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INTRODUCTION 

This book is a practical introduction to scientific computing and offers 

BPSIC subroutines, suitable for use on a perscnal complter, for solving a 

number of important problems in the areas of chmistry, biology and 

pharmacology. Althcugh our text is advanced in its category, we assume only 

that you have the normal mathmatical preparation associated with an 

undergraduate degree in science, and that you have some familiarity with the 

S I C  programing language. We obviously do not persuade you to perform 

quantum chemistry or molecular dynamics calculations on a PC , these topics 
are even not considered here. There are, however, important information - 

handling needs that can be performed very effectively. A PC can be used to 

model many experiments and provide information what should be expected as a 

result. In the observation and analysis stages of an experiment it can acquire 

raw data and exploring various assumptions aid the detailed analysis that turns 

raw data into timely information. The information gained f r m  the data can be 

easily manipulated, correlated and stored for further use. Thus the PC has 

the potential to be the major tool used to design and perform experiments, 

capture results, analyse data and organize information. 

Why do w e  use 

another programing language who challenge the use of anything else on either 

technical or purely motional grounds, m t  BASIC dialects certainly have 

limitations. First, by the lack of local variables it is not easy to write 

multilevel, highly segmented programs. For example, in FWTRAN you can use 

subroutines as "black boxes" that perform 5 ~ e  operations in a largely 

unknown way, whereas programing in BASIC requires to open tl-ese black boxes 

up to certain degree. We do not think, hOwever, that this is a disadvantage for 

the purpose of a book supposed to teach you numerical methods. Second, BASIC 

is an interpretive language, not very efficient for programs that do a large 

amwnt of "number - crunching'' or programs that are to be run many times. kit 

the loss of execution speed is compensated by the interpreter's ability to 

enable you to interactively enter a program, immdiately execute it and see the 

results without stopping to compile and link the program. There exists no more 

convenient language to understand how a numerical method works. BASIC is also 

superb for writing relatively small, quickly needed programs of less than llaaw 

program lines with a minimvn programming effort. Errors can be found and 

corrected in seconds rather than in hours, and the machine can be inmediately 

quizzed for a further explanation of questionable answers or for exploring 

further aspects of the problem. In addition, once the program runs properly, 

you can use a S I C  compiler to make it run faster. It is also important that 

BASIC? Althcugh we disagree with strong proponents of one or 
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on most PC’s BASIC is usually very powerful for using all re5Wrce5, 

including graphics, color, sound and commvlication devices, although such 

aspects will not be discussed in this book. 

Why do we claim that cur text is advanced? We believe that the methods and 

programs presented here can handle a number of realistic problw with the 

power and sophistication needed by professionals and with simple, step - by - 
step introductions for students and beginners. In spite of their broad range of 

applicability, the subrcutines are simple enwgh to be completely understood 

and controlled, thereby giving m r e  confidence in results than software 

packages with unknown source code. 

Why do we call cur subject scientific computing? First, w e  as- that you, 

the reader, have particular problems to solve, and do not want to teach you 

neither chemistry nor biology. The basic task we consider is extracting useful 

information fran measurements via mcdelling, simulatim and data evaluation, 

and the methods you need are very similar whatever your particular application is. 

More specific examples are included only in the last sections of each chapter 

to show the power of some methods in special situations and pranote a critical 

approach leading to further investigation. Second, this book is not a course in 

numerical analysis, and we disregard a number of traditional topics such as 

function approximation, special functions and numerical integration of k n m  

functions. These are discussed in many excellent books, frequently with PASIC 

subroutines included. You  will find here, however, efficient and robust 

numerical methods that are well established in important scientific 

applications. For each class of problems w e  give an introduction to the 

relevant theory and techniques that should enable you to recognize and use the 

appropriate methods. Simple test examples are chDsRl for illustration. Although 

these examples naturally have a numerical bias, the dominant theme in this book 

is that numerical methods are no substitute for poor analysis. Therefore, we 

give due consideration to problem formlation and exploit every opportunity to 

emphasize that this step not only facilitates your calculations, but may help 

ycu to avoid questionable results. There is nothing mt-e alien to scientific 

computing than the use of highly sophisticated numerical techniques for solving 

very difficult problw that have been made 50 difficult only by the lack of 

insight when casting the original problem into mathematical form. 

What is in this book? It cmsists of five chapters. The plrpose of the 

preparatory Chapter 1 is twofold. First, it gives a practical introduction to 

basic concepts of linear algebra, enabling you to understand the beauty of a 

linear world. FI few pages will lead to comprehending the details of the two - 

phase simplex method of linear programing. Second, you will learn efficient 

numerical procedures for solving simultaheous linear equations, inversion of 

matrices and eigenanalysis. The corresponding subrcutines are extensively used 
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in further chapters and play an indispensable auxiliary role. chang the direct 

applications we discuss stoichimtry of chemically reacting systems, robust 

parameter estimation methods based on linear progrming, as well as elements 

of principal component analysis. 

Chapter 2 g i w s  an overview of iterative methods of solving ncnlinear 

equations and optimization problems of m e  or several variables. Though the one 

variable case is treated in many similar bcoks, wm include the corresponding 

simple subroutines since working with them may help you to fully understand t h  

use of user supplied subroutines. For solution of simultaneous nonlinear 

equations and multivariable optimization problmns sane well established methods 

have been selected that also amplify the theory. Relative merits of different 

m e t W s  are briefly discussed. As applications we deal with equilibrium 

p r o b l w  and include a general program for complting chemical equilibria of 

gasems mixtures. 

Chapter 3 plays a central role. It concerns estimation of parameters in 

complex models fran relatively small samples as frequently encavltered in 

scientific applications. To d m s t r a t e  principles and interpretation of 

estimates we begin with two linear statistical methods (namely, fitting a 

line to a set of points and a subroutine for mrltivariable linear regression), 

but the real emphasis is placed on nonlinear problems. After presenting a 

robust and efficient general purpose nonlinear least squares -timation 

praedure we proceed to more involved methods, such as the multirespmse 

estimation of Box and Draper, equilibrating balance equations and fitting 

error-invariables models. Thcugh the importance of the6e techniques is 

emphasized in the statistical literature, no easy-twsc programs are 

available. The chapter is concluded by presenting a subroutine for fitting 

orthogonal polynomials and a brief swrv~ry  of experiment design approaches 

relevant to parameter estimation. The text has a numerical bias with brief 

discussion of statistical backgrmd enabling you to select a method and 

interpret rexllts. Sane practical aspects of parameter estimation such as 

near-singularity, linearization, weighting, reparamtrization and selecting a 

mdel from a harologous family are discussed in more detail. 

Chapter 4 is devoted to signal processing. Through in most experiments w e  

record 5om quantity as a function of an independent variable (e.g., time, 

frequency), the form of this relationship is frequently u n k n m  and the methods 

of the previous chapter do not apply. This chapter gives a swrv~ry  of classical 
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techniques for interpolating, smoothing, differentiating and integrating such 

data sequences. The same problems are also sold using spline functions and 

discrete Fourier transformation methods. Rpplications in potentiaetric 

titration and spectroscopy are discussed. 

The first two sections of Chapter 5 give a practical introduction to 

dynamic models and their numslrical solution. In addition to 5omp classical 

methods, an efficient procedure is presented for solving systems of stiff 

differential equations frequently encountered in chemistry and biology. 

Sensitivity analysis of dynamic models and their reduction based on 

quasy-steady-state approximation are discussed. The secaxl central problem of 

this chapter is estimating parameters in ordinary differential quations. ch 

efficient short-cut method designed specifically for 

applied to parameter estimation, numerical deconvolution and input 

determination. Application examples concern enzyme kinetics and pharmacokinetic 

canpartmental modelling. 

PC's is presmted and 

Prwram modules and sample p r w r w  

For each method discussed in the book you will find a W I C  subroutine and 

an example consisting of a test problem and the sample program we use to solve 

it. k r  main asset5 are the subroutines we call program modules in order to 

distinguish than from the problem dependent user supplied subroutines. These 

modules will serve you as building blocks when developing a program of ycur aw 

and are designed to be applicable in a wide range of problem areas. To this end 

concise information for their use is provided in remark lines. Selection of 

available names and program line numbers allow you to load the modules in 

virtually any cabinatim. Several program modules call other module(.). Since 

all variable names consist of two characters at the most, introducing longer 

names in your o w  user supplied subroutines avoids any conflicts. These user 

supplied subroutines start at lines 600, 700, OE0 and %El , depending on the 
need of the particular module. Results are stored for further use and not 

printed within the program module. Exceptions are the ones corresponding to 

parameter estimation, where we wanted to save you from the additional work of 

printing large amxlnt of intermediate and final results. You will not find 

dimension statements in the modules, they are placed in the calling sample 

programs. The following table lists our program modules. 
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Table 1 
Program mcdules 

M10 
M11 

M14 
M15 

Ml6 
M17 
M1B 

m 
M z l  

Mn 

Mz3 

Mz4 

M25 

M26 

m 

M31 

M32 

M34 

M36 

M4QJ 
M41 
M42 

M45 

MW 

Vector coordinates in a new basis 
Linear programing 
two phase simplex method 
LU decanposition of a square matrix 
Solution of sirmltanecus linear equations 
backward substitution using LU factors 
Inversion of a positive definite symmetric matrix 
Linear equations with tridiagonal matrix 
Eigenvalues and eigenvectors of a symmetric 
matrix - Jacobi method 
Solution of a cubic equation - Cardano method 
Solution of a nonlinear equation 
bisection method 
Solution of a nmlinear equation 
regula falsi method 
Solution of a nonlinear equation 
secant method 
Solution of a nonlinear equation 

Minirmm of a function of one variable 
method of golden sections 
Minimum of a function of one variable 
parabolic interpolation - Brent's method 
Solution of sirmltanmus equations X = G ( X )  

Wegstein method 
Solution of sirmltanmus equations F(X)=0 

Solutim of sirmltanmus equations F(X)=0 
Broyden method 
Minimization of a function of several variables 
Nelder-Mead method 
Minimization of a function of several variables 
Davidonfletcher-Powell method 
Fitting a straight line by linear regression 
Critical t-value at 95 % confidence level 
kltivariable linear regression 
weighted least squares 
Weighted least squares estimation of parameters 
in multivariable nonlinear models 
Gauss-Newton-Marquardt method 
Equilibrating linear balance equations by 
least squares method and outlier analysis 

Newton-Raphson method 

Newton-Rapkon method 

1002 

l lm 
14eW 

1500 
lM0 
1702 

1WIZI 
Zen0 

21m 

2200 

2302 

24m 

25m 

2 m  

ma0 

31m 

3 m  

34m 

3 m  
4 m  
41m 

4 m  

45x3 

mzizl 

1044 

1342 
1460 

1538 

1656 
1740 

1938 
2078 

2150 

2254 

2354 

2454 

2540 

2698 

3074 

3184 

3336 

3564 

3794 
4096 
4156 

4454 

4934 

5130 



XI11 

M52 

M55 

M.0 

M6l 
M62 
M63 
M64 

M65 

M67 

M70 

M71 

M72 

M75 

Fitting an error-in-variables model 
of the form F(Z,P)=RJ 
modified Patindeal - Reilly method 
Polynomial regression 
using Forsythe orthogonal polynomials 
Newton interpolations computation of polynomial 
coefficients and interpolated valws 
Local cubic interpolation 
5-pint cubic smoothing by Savitzky and Golay 
Determination of interpolating cubic spline 
Function value, derivatives and definite 
integral of a cubic spline at a given point 
Determination of Maothing cubic spline 
method of C.H. Reinsch 
Fast Fourier transform 
Radix-2 algorith of Cooley and Tukey 
Solution of ordinary differential equations 
fourth order Wga-Uutta method 
Solution of ordinary differential equations 
predictor-corrector method of Milne 
Solution of stiff differential equations 
semi-implicit Wge-Kutta method with backsteps 
RosRlbrak-Gottwald-khnner 
Estimation of parameters in differential 
equations by direct integral method 
extension of the Himnelblau-Jones-Bischoff method 

54m 

5628 

6054 
61 56 
6250 
6392 

6450 

6662 

6782 

7058 

7288 

7416 

8040 

While the program modules are for general application, each sample program 

is mainly for demonstrating the use of a particular module. To this end the 

programs are kept as concise as possible by specifying input data for the 

actual problem in the DFITA statements. TMs test examples can be checked 

simply by loading the corresponding sample program, carefully merging the 

required modules and running the obtained program. To solve your ow7 problems 

you should replace DFITA lines and the user supplied subroutines (if 

neecled). In more advanced applications the READ and DFITA statemeots may be 

replaced by interactive input. The following table lists thp sample programs. 

! DISKETTE, SUITABLE FOR MS-DOS COMPUTERS. THE DISKETTE CAN BE 

ORDERED SEPARATELY. PLEASE, SEE THE ORDER CARD IN THE FRONT 
OF THIS BOOK. - I------ 
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Table 2 
Sample programs 

Identifier Example Title Modules called 

EX112 
EX114 

EX12 

EX132 
EX133 

EX134 

EX14 

EX15 

EX16 

EX182 

EX183 
EX184 

EX211 
EX212 
EX221 
EX231 
EX232 

EX241 

EX242 

EX253 

EX254 
EX31 
EX32 

EX33 

EX37 
EX38 

1.1.2 
1.1.4 

1.2 

1.3.2 
1.3.3 

1.3.4 

1.4 

1.5 

1.6 

1.8.2 

1.8.3 
1.8.4 

2.1.1 
2.1.2 
2.2.1 
2.3.1 
2.3.2 

2.4.1 

2.4.2 

2.5.3 

2.5.4 
3.1 
3.2 

3.3 

3.7 
3.8 

Vector coordinates in a new basis 
Inversion of a matrix 
by Gauss-Jordan elimination 
Linear programing by two phase 
simplex method 
Determinant by LU decomposition 
Solution of linear equations by 
LU decomposition 
Inversion of a matrix by LU 

decomposition 
Inversion of a positive definite 
symmetric matrix 
Solution of linear equations with 
tridiagonal matrix 
Eigmvalue-eigmvector decomposition 
of a sym. matrix 
Fitting a line - least absolute 
deviations 
Fitting a line - minimax method 
Analysis of spectroscopic data with 
backgrwnd 
Molar volume by Cardano method 
Molar volume by bisection 
Optimm dosing by golden section method 
Reaction equilibrium by Wegstein method 
Reaction equilibrium by Newton-Raphsm 
method 
Rosenbrock problem by Nelder-Mead 
method 
Rosenbrock problem by Davidonfletcher- 
Powell method 
Liquid-liquid equilibrium by Broyden 
method 

M1O 

see EX112 

M10, M11 

M14 

M14,M15 

M14,M15 

Mlb 

M17 

M18 

see EX12 
see EX12 

see EX12 
m 
M21 
m5 
M 3 0  

M14,M15,MJ1 

M34 

M 3 6  

M32 
Chemical equilibrium of gasews mixtures M14,M15 
Fitting a regression line M40, M41 
Wltivariable linear regression - 
acid catalysis Ml6,MlB,M41,M42 
Nonlinear Ls(3 parameter estimation - 
Bard example Mlb,MlB,M41,M45 
Equilibrating linear balances Ml6,M50 
Error-in-variables parameter estimation - 
calibration Mlb,MlB,M41,M45, 

M52 
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EX3104 

EX411 
EX413 

EX421 
EX422 
EX433 
EX511 

EX52 

EX53 

EX55 

EX56 

EX57 

3.9 

3.10.4 

4.1.1 
4.1.3 

4.2.1 
4.2.2 
4.3.3 
5.1.1 

5.2 

5.3 

5.5 

5.6 

5.7 

Polynomial regression using Forsythe 
orthogona 1 pol ynomial s 
Van Laar parameter estimation (error-in- 
variables method) 

Newton interpdlatim 
Smmthed derivatives by Savitzky and 
Golay 
Spline interpolation 
Smoothing by spline 
Application of FFT techiques 
Fermentation kinetics by RungeKutta 
method 
Solutim of the Dregmator model by 
semi-implicit method 
Sensitivity analysis of a microbial 
growth process 
Direct integral parameter estimation 

Direct integral identification of a 
linear system 

Inplt function determination to a given 
respmse 

MS5 

Mlb,Ml8,M41,M45, 
M52 
M60 

M62 

m,w 
M65 
M67 

m 

M14 ,M15,M2 

M14, M15, M2 
M14,M15,Mlb,Ml8, 
M4l,M63,M72,M75 

Mlb,M18,M41,M42, 
M63 

see EX56 

Prwram portability 

We have attempted to make the programs in this b m k  as generally useful as 

possible, not just in terms of the subjects concerned, but also in terms of 

their degree of portability among different 

since the recent interpreters and compilers are usually much more generous in 

terms of options than the original version of BASIC developed by J o h  Kemeny 

and Thomas Kurtz. Standardization did not keep up with the various improvmts 

made to the language. Restricting consideration to the c m  subset of 

different W I C  

enhancements introduced during the last decade, a price t m  high for complete 

compatibility. Therefore, we choose the popllar Microsoft’s WSIC that canes 

installed on the IBM FC family of complters and clmes under the name 

(disk) BASIC, BASICA or GWBASIC. A disk of Ms WS (i.e., PC WS) format, 

containing all programs listed in Tables 1 and 2 is available for purchase. 

If you plan to use more than a few of the programs in this b m k  and you work 

with an IBM PC or compatible, ycu may find it useful to obtain e copy of the 

disk in order to save time required for typing and debugging. If you have the 

PC’s. This is not easy in BASIC, 

dialects would mean to give up sane very comfortable 
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sample programs and the program mcdules on disk, i t  i s  very easy t o  run a test  

example. For instance, t o  reproduce Example 4.2.2 you should s t a r t  your 

BASIC , then load the f i l e  "EX4Z.EAS", merge the f i l e  "M65.EAS" and run the 

program. I n  order t o  ease merging the programs they are saved i n  ASCI I  format 

on the disk. You  w i l l  need a pr in ter  since the programs are wr i t ten wi th 

LPRINT statements. I f  you prefer pr in t ing t o  the screen, you may change a l l  

the LFRINT statements t o  PRIM statements, using the edi t ing f a c i l i t y  of  the 

BASIC interpreter or  the more user f r iendly change o p t i m  of any edi tor  

program. 

Using our programs i n  other BCISIC d ia lects you may experience sane 

d i f f i cu l t i es .  For example, several d ia lects do not allow zero indices of 

an array, r e s t r i c t  the feasible names of  variables, give +1 instead of  -1 

for a logical expression i f  i t  i s  true, do not allow the structure IF  ... Tl€N 

... ELSE, have other syntax fo r  formatting a PRINT statement, etc. &cording 

to  our experience, the most dangerous ef fects are connected with the d i f ferent  

treatment of  FOR ... N X T  Imps. In s ~ e  versims of the language the 

statements inside a l w p  are carried out mce, even i f  the I m p  c c n d i t i m  does 

not allow it. I f  running the following program 

10 FOR 1.2 TO 1 

28 PRINT "IF YOU SEE THIS, THEN YOU SHOULD BE CBREFUL WITH YOUR BASIC' 

38 NEXT I 

w i l l  result i n  no outpi t ,  then you have no r e a m  t o  worry. Otherwise you w i l l  

f i nd  i t  necessary t o  inser t  a test before each FOR ... N X T  loop that can be 

mpty.  For example, i n  the module M15 the l w p  i n  l i n e  1532 i s  mp ty  i f  

1 i s  greater than K - 1 (i.e., K < 2) , tlus the l i n e  

1531 I F  C(2 THEN 1534 

inserted i n t o  the module w i l l  prevent unpredictable results. 

We deliberately avoided the use of sane elegant constructions as WILE ... 
WEND structure, SWAP statement, EN ERROR condition and never broke up a s ingle 

s t a t m t  i n t o  several l ines. Although t h i s  sel f - restraint  implies that we  had 

to  give up sane principles of structural  programming (e.g., we used more GOT0 

statements than i t  was absolutely necessary), we think that  the loss i s  

conpensated by the improved po r tab i l i t y  o f  the programs. 
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Note to  the reader 

O f  course we would be fool ish t o  claim that there are no tugs i n  such a 

large number of  program lines. We t r i ed  t o  be very careful and tested the 

program modules m various problwm. Nevertheless, a new problem may lead t o  

d i f f i c u l t i e s  that we overlooked. Therefore, w e  make no warranties, express or 

implied, that the programs contained i n  this book are free of  error, or  are 

c m s i s t m t  wi th any particular standard o f  merchantibility, or  that they w i l l  

meet your requirements fo r  any particular application. The authors and 

publishers disclaim a l l  l i a b i l i t y  for  d i rect  or  consquential damages resul t ing 

from the use of  the programs. 
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Chapter 1 

COMPUTATIONAL LINEAR ALGEBRA 

The problems we are going to study cans from chemistry, biology or 

pharmacology, and most of them involve highly nonlinear relationships. 

Nevertheless, there is almost no example in this book which could have been 

solved withaut linear algebraic methods. MDreover, in most cases the success of 

solving the entire problem heavily depends on the accuracy and the efficiency 

in the algebraic compltation. 

We assume most readers have already had xyne expoKlre to linear algebra, but 

provide a quick review of basic concepts. ph usual, our natations are 

X ”  (1.1) 

where x is the m-vector of the elements [xli, and A is the nwn matrix of 

the elements CAIij = aij. Consider a scalar 

m x p  matrix B . The basic operations on vectors and matrices are defined as 
follows: 

s, another ni-vector y, and an 

where xTy i5 called the scalar product of x and y . We will also need the 

Euclidean norm or simply the length of x , defined by 11x11 = ( X ~ X ) ” ~  . 
The most important canpltational tasks considered in this chapter are as 

follows: 

Solution of the matrix equation 
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& = b ,  (1.3) 

where CI is an n m  matrix of known coefficients, b is a know, right-hand 

side vector of dimension n, and we want to find the m-vector x that 

satisfies (1.3). 

0 Calculatim of the matrix CI-' which is the matrix inverse of an n m  

square matrix CI , that is 

A-16 = m-1 = 1 , (1.4) 

where I is the n m  identity matrix defined by C1lij = 0 for i # j, and 

CIIii = 1 . 

0 Let a and b be vectors of dimension n. The inequality a 5 b means 

ai 5 bi for all i = 1, ..., n. 
find the m-vector x which will maximize the linear function 

In the linear programning problem w e  want to 

z = CTX (1.5) 

subject to the restrictions 

A x L b ,  x 2 0 .  

As we show in Section 1.2, a more general class of problRm can be treated 

similarly. 

Solution of eigenvalue-eigenvector problem, where we find the eigenvalue h 

and the eigenvector u of the square symmetric matrix CI such that 

I % l = x u .  (1.7) 

These problem are very important and treated in many excellent books, for 

example (refs. 1-61. Though the numerical methods can be presented as recipes, 

i.e. , sequences of arithmetic operations, w e  feel that their essmce wwld be 

lost without fully understanding the underlying concepts of linear algebra, 

reviewed in the next sectim. 

1.1 BASIC W M P T S  fW0 MTHJJX 

1.1.1 Linear vector 50aces 

The goal of this section is to extend 5ome cmcepts of 3dimensional space 

$ to n dimensicns, and hence we start with $, the world we live in. 

Considering the components ali,a21 and aS1 of the vector al = (all,a21,,a31) T 

as cmrdinates, dl is show in Fig. 1.1. In  terms of these cmrdinates 
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al = allel + a21q + aSl% , where ei denotes the i - t h  unit vector defined 

t 

J 

Fig. 1.1. Subspace i n  J-dimmsional space 

by Ceil = 1, Ceil = 0, i # j. I f  s i s  a scalar and 9 i s  a vector i n  

G, then 5al and a l+9  are also 3-dimensimal vectors, and the vector space 

i s  closed under rml t ip l icat ion by scalar5, and addition. This i s  the 

fundamental property of any l inear vector space. Consider the vectors and 

9 i n  Fig. 1.1, which are not on the same l ine. The set of  l inear combinations 

slal + s m ,  where s1 and s2 are arbi t rary scalars, i s  a plane i n  $. I f  

bl and t~ are any vectors i n  t h i s  plane, then sbl and b1 + 9 are also i n  

the plane, which i s  therefore closed under m l t i p l i c a t i o n  by scalars and 

addition. Thus the plane generated by a l l  l inear combinations of  the form 

slal + % 
chy vector i n  th i s  subspace i s  of the form 

described i n  terms of the coordinates 

system defined by the vectors a1 and 9 . We can, howwer, select another 

system of coordinates (e.g., two perpendicular vectors of  w i t  length i n  the 

plane). I f  al and 9 are coll inear, i.e., are m the same l ine,  then the 

combinations slal + 

a1 

i s  also a l inear vector space, a Z-dimersional subspace of  R3. 

b = slal + % , and hence can be 

b = (sl,s2IT i n  the coordinate 

define only this l ine, a one dimensional subspace of 

R3. 
To generalize these well known concepts consider the n-vectors al, 9, ..., 



a1 = 

The linear combinations 

. . ., q,,' 

form a subspace of al, . . . ,a,,,. 
We face a number of questions concerning the structure of th is  subspace. Do we 

need a l l  vectors al, 3, ..., a,,, 
be dropped? Do these vectors span the whole space R" ? How to  choose a system 

of coordinates i n  the subspace? The an5wers to  these questions are based on the 

concept of linear independence. The vectors al, %, ..., q,, are said to  be 

l inearly independent i f  the equality 

I? which i s  said to  be spanned by the vectors 

to  span the subspace or sure of them could 

slal + s* + ... + Sma, = 0 (1.10) 

implies s1 = % = ... sm = 0 . Otherwise the vectors al, +, ..., q,, are said 

to  be l inearly dependent. In th is  la t ter  case w e  can solve (1.10) such that a t  

least me of the coefficients i s  nmzero. Let 

exwessed fran (1.10) as the linear combination 

si # 0 , then ai can be 

(1.11) 

of the other vectors i n  the system. I t  i s  ncw clear that we can res t r i c t  

consideration to l inearly independent vectors when defining a subspace. ffisume 

that there exists only r independent vectors m g  al, *, ..., a,,,, i.e., 

any set of r+l vectors i s  l inearly dependent. Then the integer r i s  said to  

be the rank of the vector system, and also define the dimension of the subspace 

spanned by these vectors. 

Let al,-, ...,a,- be a l inearly independent subset of vectors al,%, ...,am 
with rank r . Any vector i n  the subspace can be expressed a5 a linear 

canbination of 

coordinate system i n  the subspace, also called a.ba5is of the subspace. Since 

any such set of r linearly independent vectors fo rm a basis, i t  i s  obviously 

not unique. 

q,-, ...,a,- , thus these la t ter  can be regarded t o  form a 

I f  r = n, then the l inearly independent vectors span the entire 
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1 

0 

el = 

0 

n-dimensional space. Again one can choose any n l inearly independent vectors 

as a basis of the space. The uni t  vectors 

I 

0 

1 

9 =  

0 

. '  (1.12) 

clearly are l inearly independent. This i s  the canonical basis for 

components aij 

i f  not otherwise stated. 

R", and the 

of the vectors (1.8) are cmrdinates in the canonical basis, 

1.1.2 Vector cmrdinates i n  a new basis 

In  practice a vector ai i s  specified by i t s  cwrdinates 

(ayi,a2i ,..., %iIT i n  a particular basis bl, %, ..., %. For example the 

vectors (1.8) can be represented by the m a t r i x  

a l l  a12 

a21 a22 

A =  (1.13) 

where the cwrdinates aij 

basis. It w i l l  be important t o  see how the cmrdinates change i f  the vector 

of the starting basis i s  replaced by 

basis vector aq and any further vector a j  as 

do not necessarily correspmd to the canonical 

bp 
% . We f i r s t  write the intended new 

(1.15) 

Introducing th is  expression of bp in to  (1.15) and rearranging w e  have 
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Since (1.17) gives aj as a l inear combination of  the vectors 

bl, 9 ,..., brl, $, bW1 ,..., b,, , i t s  coeff ic ients 

(1.18) 

are the coordinates of aj i n  the new basis. The vector bp can be replaced 

by q i n  the basis i f  and only i f  the pivot  elwnent (or pivot)  am i s  

nonzero, since th i s  i s  the element we div ide by i n  the transformations (1.113). 

The f i r s t  BASIC program module of t h i s  book performs the coordinate 

transformatims (1.18) when one of  the basis vectors i s  replaced by a new me. 

Program d u l e  M10 

I880 REH t t t t t t l t t t t t t t t ~ ~ t ~ ~ ~ & t k t t k k k l t l t ! ~ t t l t t t ~ t ~ t ~ t : t t t  
1082 REM $ VECTOR COORDINRTES 1N R NEW BRSlS : 
1004 REH t l t l t t t t t ~ t t t t t t t t t t t t t ~ ~ t t I t k t t t t & t t t ? t ~ ? t t ! t t t t t t  
l00b RE! INPUT: 
1808 REH N DlHENSION OF VECTORS 
I010 RER ti NUNBER OF VECTORS 
1812 REH IP ROW INDEX OF THE PIVOT 
1814 REfi JP COLUHN INDEX OF THE PIVOT 
1016 REH I l N , N )  TABLE OF VECTOR COORDINATES 
1018 REH OUTPUT: 
1 0 2 0  REH A(N,M) VECTOR COORDINlTES IN THE NEW BASIS 
1022 A=A(IP,JP) 
1024 FOR J=I TO N :R(IP,J)=RIIP,J)/A :NEXT J 
1026 FOR 1.1 TO N 
1 0 2 8  IF  I = I P  THEN 1838 
1838 A=AlI,JP) :IF A=8 THEN 1038 
1832 FOR J=I TO n 

i03e NEXT I 

1834 
1036 NEXT J 

1 8 4 0  BI8,R(IP,0))=0 :A(IP,B)=JP :A(E,JP)=IP 
1842 RETURN 
1844 REH F t t l t t t t t t t t t t t t t t t t ~ t t t t t k ~ t t t t ~ t t t ~ t t ~ t t t t ~ t t ~ t t I  

IF  R ( I P , J I  0 9  THEN A 1  1, J I+.( 1, J I-R(IP ,J ) tA 

The vector cmrdinates (1.13) occupy the array A(N,M). The module w i l l  

replace the IP-th basis vector by the JP-th vector of the system. The pivot  

element i s  A(IP,JP). Since the module does not check whether A(IP,JPI i s  

nmzero, yar should do th i s  when selecting the pivot. The information on the 

current basis i s  stored i n  the mtries A(0,J) and A(I,0) as follows: 



0 if the I-th basis vector is ei 

J if the I-th basis vector is aj 
A(I,0) = { 

-2 1 

1 2 

- 5 , a 5 =  
-1 3 

-7 2 

0 if aj is not present in basis 

I if aj is the I-th basis vector. 
A(0,J) = 

l , d 6 '  

The entry A(0,0) is a dumny variable. 

If the initial coordinates in array A correspond to the canonical basis, 

we set A(I,0) = A(0,J) = 0 for all I and J . Notice that the elements A(0,J) 
can be obtained from the values in A(1,0), thus we store redundant 

information. This redundancy, however, will be advantageous in the programs 

that call the d u l e  M10. 

Example 1.1.2 Transformation of vector coordinates. 

2 

-1 

3 

1 

5 

kwne that the vectors 

, a q =  (1.19) 

are initially given by their coordinates in the canmical basis. We will 

replace the first basis vector el by al , and compute the coordinates in the 
new basis al, 9, %, e4, % , using the following main program as follows. 
188 REH ________________________________________--------------- 
182 REH EX. 1.1.2. VECTOR COORDINATES IN A NEW BASIS 
104 RE! flER6E H I E  
106 REM ---------- DATA 
I88 RE! (VECTOR DIHENSION, NUHBER OF VECTORS) 
118 DATA 5, 6 
112 DATA 2,-1, 2 , - 2 ,  1, 1 
114 DATA I, Z,-l, 1, 2, 3 
I16 DATA -1,-2, 3,-5, 1, 2 
118 DATA 3, 1, l ,-l,  3, 4 
128 DATA 1,-3, 5,-7, 2, 3 
288 REH ---------- READ DATA 
202 READ N,il 
284 DIM A[N,N) 
206 FOR I=l TO N :FOR J+I TO H :READ A(I,J) :NEXT J : N E H  I 
288 V(=STRIN6$(Bt(Htl) , * - " )  
210 LPRINT 'COORDINATES I N  CANONICAL BASIS' 
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PRINT COORDINATES 112 REH _ _ _ _ _ _ _ _ _ _  
214 LPRINT V1 
216 LPRINT 'vector 1'; 
218 FOR J=1 TO R :LPRINT TAB(Jt8t41;J; :NEWT J :LF'RINT 
228 LPRINT ' i basis' 
222 LPRINT V1 
224 FOR 1.1 TO N 
226 K=A(I,B) 
228 IF K)0 THEN LPRINT USING " t a# ' ; l , K ;  ELSE LPRINT USING" I. e t  ' ; I , ] ;  
238 FOR J = 1  TO ll :LPRINT USING ' t#t.t##';A(I,J); :NEXT J :LPRINT 
232 NEWT I 
234 LPRIHT V1 :LPRIHT 

SELECT MODE 236 RER _ _ _ _ _ _ _ _ _ _  
238 INPUT 't(transforiation),r(row interchange) or 5(5topI';A$ 
248 M=CHR1(32 OR A S C i A O l  
242 IF A1:'t' THEN 246 ELSE I F  A1='r" THEN 268 
2114 I F  A$='S' THEN 276 ELSE 238 
246 RER ---------- TRANSFORHATION 
248 INPUT 'row index ( I P )  and column index ( JP)  o f  the pivot: ' ; IP,JP 
258 IF I P i l  OR 1P)N OR JP(1 OR J P M  THEN PRINT 'unfeasible* :GOTO 236 
252 IF RBS(A[IP,JP))).BBB08~ 1HEN 256 
254 PRINT 'zero or near ly  2ero pivot' :GOTO 236 
256 LPRINT 'PIVOT R0W:';IP;" C0LUnN:';JP 
258 GOSUB I888 :60TO 212 
268 RER ---------- CHANGE TWO ROWS 
262 INPUT "enter il,i2 to interchange row5 il and i2' ;11,12 
264 IF II(1 OR I l > N  OR 12(1 OR 12)N THEN PRINT 'unfeasible' :GOTO 236 
266 IF A(II,8)4 OR A(I2,8)=0 THEN PRINT 'unfeasible" :6OTO 236 
268 LPRINT 'ROWS INTERCHANGED:';I1;',';12 
278 FOR J-8 TO H :R=RIll,J) :A(II,J)=A(I2,J) :8(12,J)=A :NEXT J 
272 A(B,A( II ,8) )=I1 : A ( B , A (  12,8) 1.12 
274 GOT0 212 
276 REH ---------- STOP 
278 STOP 

The program reads the dimension N , the number M of the vectors, and the 

array FI(N,M) of coordinates i n  the canonical basis, a l l  f rom CAT0 

statements. The coordinates are read rowby-row, i.e., w e  specify the f i r s t  

coordinates i n  a l l  vectors and proceed by coordinates. The program f i r s t  prints 

the starting cwrdinates: 

COORDINATES I N  CANONICAL BASIS 

v e c t o r  j 1 2 3 4 5 6 
i basis 

I e l  2.888 -1.888 2.888 -2.888 1.800 1.RBB 
2 e2 1.888 2.888 -1.008 1.008 2.888 3.880 
3 e3 -1.008 -2.808 3.888 -5.888 1.888 2.888 
4 e4 3.988 1.880 1.888 -1.888 3.880 4.880 
5 e5 1.880 -3.880 5.888 -7.808 2.888 3.888 

........................................................ 

There  are now three options to  proceed: transformation ( t) ,  row interchange (r) 

or stop (5).  You can select me  of these options by entering the appropriate 
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character. 

In this example we perform a transformation, and hence enter "t". Then the 

row index and the c o l m  index of the pivot e1-t are required. We enter 

"1,l" and the program returns the new coordinates: 

PIVOT ROW: 1 COLUMN: 1 

vector j I 2 3 4 5 6 

........................................................ 

i basis 

1 a1 1.008 -0.580 1.008 -1.008 8.580 0.580 
2 e2 8.008 2.588 -2.008 2.888 1.508 2.588 
3 e3 8.000 -2.500 4,808 -6.008 1.580 2.508 
4 e4 8.008 2.508 -2.0UU 2.88B 1.500 2.588 
5 e5 0.888 -2.500 4.800 -6.886 1.500 2.588 

........................................................ 

........................................................ 

1.1.3 Solution of matrix wuations by Gauss-Jordan elimination 

To solve the simltancus linear equations 

A x = b  (1.20) 

recall that the coefficients in A can be regarded as the coordinates of the 

vectors q,+, ...,a,,, (i.e., the colunns of A ) in the canonical basis. 

Therefore, (1.20) can be written as 

X1al + X A  + ... + xm% = b (1.21) 

with unknown coefficients 

and only if b is in the subspace spanned by the vectors al,*, ...,a,, i.e., 
the rank of this system equals the rank of the extended system al,%, . . . ,a,,b. 

For simplicity aswme first that A is a square matrix (i.e., it has the 

same number n of rows and colms), and rank(A) = n. Then the c o l m s  of A 

form a basis, and the coordinates of b in this basis can be found replacing 

the vectors el,% ,..., % by the vectors q,q, ..., q, , one-by-one. In this 

new basis matrix A is the identity matrix. The procedure is called 

Gauss-Jordan elimination. Fk we show in the following example, the method also 

applies if n # m . 

xl, xZ, ..., xm - There exist such coefficients if 

Example 1.1.3 General solution of a matrix equation by Gauss-Jordan 

elimination 

Find all solutions of the sirmltaneous linear equations 



10 

2x1 -x2 +2x3 -2x4 +x5 = 1 

x1 +zx2 -x3 +x4 +Zx5 = 3 

-xl - 2 9  +3x3 -5x4 +x5 = 2 

3Xl +x2 +x3 -x4 +3x5 = 4 

x1 -3x2 +5x3 -7x4 +Zx5 = 3 

(1.22) 

The colurms of the coefficient matrix A i n  eqn. (1.22) are the vectors 

al, 9, %, a4, and i n  (1.191, whereas the right-hand side b equals d6' 

Therefore the problem can be solved by replacing further vectors of the current 

basis i n  the previous example. Replacing 9 by 9 and then 9 by we 

obtain the following coordinates: 

PIVOT ROW: 2 COLUHN: 2 

v e c t o r  j I 2 3 4 5 6 
i basis 

1 a 1  1.000 0.008 0.600 -8.680 0.800 1.088 
2 a 2  0.080 1.908 -0.800 0.BBB 0.600 1.088 
3 e3 0.000 0.000 2.000 -4.080 3.000 5.088 
4 e4 0.008 0.000 0.0N0 'd.BB8 0.600 0.808 
5 e5 0.000 0.080 2.008 -4.800 3.800 5.808 

PIVOT ROW: 3 COLUIIN: 3 

v e c t o r  j I 2 3 4 5 b 
i basis 

........................................................ 
I a1 1.000 0.000 0.000 9.600 -8.100 -8.508 

3 a3 0.600 8.880 1.808 -2.010 1.588 2.580 
2 a2 0.898 1.600 0.600 -0.800 1.886 3.880 

4 e4 0.908 8.800 0.000 8.080 0.098 8.008 
5 e5  0.080 0 . W  0.000 8.010 0.880 6.608 

According to  th is  last table, the vectors a4 ,9  and a6 are expressed as 

linear combinations of the vectors al,+ and 9 of the current basis. Thus 

the rank of the coefficient m a t r i x  of eqn. (1.22) and the rank of the extmded 

system (1.19) are both 3, and we need only to  interpret the results. From the 

last c o l m  of the table 

ah = b = -0.5al + + 2.% , (1.23) 

and hence x = (-0.5, 3, 2.5, 0, O)T 

general solution, i.e., the set of a l l  solutions, w e  w i l l  exploit that 

i s  a solution of (1.22). To obtain the 

a4 and 

are also givm i n  terms of the f i r s t  three vectors: 

a4 = 0.6al - 0.- - 2% 

9 = *.lal + 1.- + 1.* . 
(1.24) 

(1.25) 
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Chmsing arbitrary values for x4 and x5 , eqns. (1.23-1.25) give 

b = (-0.5 - 0 . 6 ~ ~  + 0.1x5)al + (3  + 0.8~~ - 1.8x5)q + (2.5 + 2x4 - 1.5X5)5 + 

+ x4a4 + X5% . (1.26a) 

Therefore, the general solution is given by 

x1 = -0.5 - 0 . 6 ~ ~  + 0 . 1 ~ ~  

x2 = 3 + 0 . 8 ~ ~  - 1 . 8 ~ ~  

x3 = 2.5 + 2x4 - 1 . 5 ~ ~  . 
( 1.26b) 

Since (1.26b) gives the solution at arbitrary x4 and x5 , these are said 
to be "free" variables, whereas the coefficients xl, x2 and x3 of the 

current basis vectors a 1, 9 and 5 , respectively, are called basis 
variables. Selecting another basis, the "free" variables will be no m r e  

and x5, and hence we obtain a general solution that differs from 

Emphasize that the set of solutions x is obtained by evaluating (1.26) for 

all values of the "free" variables. Though another basis gives a different 

algebraic expression for x , it may be readily verified that we obtain the 

same set of values and tl-us the general solution is independent of the choice 

of the basis variables. 

x4 
(1.26). We 

In linear programming problwm we will need special solutions of matrix 

equations with "free" variables set to zero. Th6?se are called basic solutions 

of a matrix equation, where rank(&) is less than the number of variables. 

The coefficients in (1.23) give such a basic solutim. Since in this example 

the two "free" variables can be chosen in [:] = 10 different ways, the 

equation m y  have up to 10 different basic solutions. 

In Examples 1.1.2 and 1.1.3 we did not need the row interchange option of 

the program. This option is useful in pivoting, a practically indispensable 

auxiliary step in the Gauss-Jordan pradure, a5 will be discussed in the next 

sxtion. While the Gauss-Jordan procedure is a straightforward way of solving 

matrix equations, it is less efficient than sure methods discussed later in 

this chapter. It is, howwer, almost a5 efficient as any other method to 

calculate the inverse of a matrix, the topics of our next section. 

Exercises 

0 Select a different basis in Example 1.1.3 and show that the basic solution 

corresponding to this basis can be obtained from 

of x4 and x5. 

(1.26) as suitable values 

Replace the last e l m t  of the right-hand side vector b in (1.24) by 4. 
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We will run into trouble when trying to solve this system. Why? 

1.1.4 Matrix inversion bv Gauss-Jordan elimination 

Cmsider the n% square matrix A and find its inverse A-l  defined by 

M-l= I . (1.27) 

Let Si = (Zli,Z2i,...S,.,i)T denote the i-th colunn vector of 0-l (i.e., the 

set of cmrdinates in the canonical basis), then by (1.27) 

where ei is the i-th unit vector. According to (1.28), the vector li is 

given by the coordinates of the unit vector ei in the basis a l , S ,  ...,a, 
the colunn vectors of A . Thus we can find A-1 replacing the canonical 

vectors el,%, ...,+ by the vectors al,*, ...,a,, in the basis one-byme. 

In this new basis A is reduced to an identity matrix, whereas the coordinates 

of el,% ,..., e,, form the c o l m s  of A-' . If rank(A) < n , then A is said 

to be singular, and its inverse is not defined. Indeed, we are then unable to 

replace all unit vectors of the starting basis by the c o l m s  of A . 

Example 1.1.4 Inversion of a square matrix by Gauss-Jordan elimination. 

To calculate the inverse of the matrix 

5 3-1 0 

2 0 4 1  

-3 3 -3 5 

0 4-2 3 

A =  

consider the vectors a l , ~ , ~ , a 4 , e l , ~ , ~  and e4, where aj is the j-th 

colunn vector of A . These coordinates are listed in the new DATA statements 

of the main program we used in the previous examples: 

188 RE\ ________________________________________-------------------- 
102 REM EX. 1.1.4. INVERSION OF A IIATRIX BY GAUSS-JORDAN ELMINATION 
104 REM IIERGE Hl8 
106 REM ---------- DATA 
188 REII (VECTOH DIHENSION, NUMBER OF VECTORS) 
118 DATA 4,8 
112 DATA 5, 3,-1, 0, 1, 0, 0, 0 
114 DATA 2, 8, 4, I ,  8, 1, 0, 0 
116 DATA -3,  3 , -3 ,  5, 0, 0, 1, 0 
118 DATA 0 ,  6,-2, 3, 8, 8, 8, 1 
128 REH ---------- FRDN HERE THE SAHE AS THE PROGRAH OF EX. 1.1.2 
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Replacing the canonical basis vectors by al,%,%, and a4 we obtain the 

following table of coordinates: 

P I V O T  ROW: 4 COLUMN: 4 

vector j 1 2 3 4 5 6 7 8 
i basis 

1 a1 1.880 8.888 8.888 8.888 8.235 8.044 0.888 -0.162 
2 a2 8.0B8 1.088 8.888 8.008 -8.108 -0.010 -0.186 0.314 
3 a3 8.880 0.800 1.880 8.888 -8.147 8.191 -8.118 0.132 
4 a4 8.800 8.80B #.RE0 1.088 0.118 8.147 0.294 -0.206 

The last 4 colwrns of th is  table form A-'. 

In  Example 1.1.4 we could replace ei by the vector ai i n  the basis for 

a l l  i. Matrix inversion (or solution of a m a t r i x  equation) is ,  hcwever, not 

always as simple. Indeed, w e  run in to trouble i f  we w a n t  to  replace ei by 

ai , but the desired pivot element aii 
i s  singular i f  ei can be replaced by another vector, say aj. I f  the m a t r i x  

i s  nmsingular, we w i l l  be able to  include also ai in to  the basis later on. 

Altering the order of entering vectors we interchange the rows of 

true order of row5 can be restored by the row interchange option of the 

program. (Note that a row cannot be mwed i f  the correspmding basis vector i s  

s t i l l  the canonical me.) 

i s  zero. This does not mean that CI 

CI-' . The 

The next diagonal element i s  not necessarily the best choice for the pivot, 

even when nonzero. By (1.18), the current vector coordinates are mdi f ied by 

quantities proportional to  the rat io  apj/aw . The magnitude of aw, the 

intended pivot e l m t ,  may be small, and divison by i t  i s  undesirable i n  the 

presence of roundoff errors, inherent to  any cmpltat im. This i s  particulary 

important i n  the inversion of large matrices, where such errors may accumulate. 

Fh obvious ccuntermeasure i s  picking the largest ( i n  magnitude) available 

element of the next row as the pivot. This procedure i s  called part ial  

pivoting. A m r e  involwd procedure i s  f u l l  pivoting, where the pivot i s  the 

largest ( i n  magnitude) available element, not necessarily i n  the next rcw. 

Exercises 

0 Calculate the inverse of A i n  Example 1.1.4 by different pivoting 

strategies. Save the inverse i n  an array and chRk i t s  accuracy by 

evaluating the matrix product m-1. 
0 Replace the last row of A i n  Example 1.1.4 by (0, 6, -8, 4) and t r y  to  

calculate the inverse. 
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We begin by solving a simple blending problem, a classical example i n  l inear 

programing. 

To kinds of  row materials, A and B , are used by a manufacturer t o  

produce products I and 11. To obtain each u n i t  of product I he blends 1/3 u n i t  

of A and 2/3 u n i t  of B , whereas fo r  each unit of  product I 1  he needs 5/6 

unit of A and 1/6 unit of  B . The available supplies are 30 un i t s  of  A and 

16 unit5 of B . I f  the p r o f i t  on each unit of  product I i s  102 ECU (European 

Currency Unit )  and the p r o f i t  on each unit of  product I 1  i s  Z0 EUJ, how many 

uni ts  of each product should be made t o  maximize the p ro f i t ?  

Let x1 and x2 denote the number of  un i ts  of  product I and 11, 

respectively, being produced. By the l imi ted supply of A w e  rmst have 

whereas the supply of B gives 

I n  addition, the number of unit5 o f  a product must be nonnegative: 

x1 2 0, x2 2 0 . 

z = lmxl + m x 2  

(1.29c) 

Now we want t o  maximize the objective function (i.e., the p r o f i t )  given by 

(I.=) 
subject t o  the constraints (1.29). 

Fk shown i n  Fig. 1.2 , t o  solve t h i s  problem we need only analytical 

geometry. The constraints (1.29) r e s t r i c t  the solution t o  a cmvex polyWron 

i n  the positive quadrant of  the cwrdinate system. Any point of  t h i s  region 

sat is f ies the inequalit ies 

or feasible Mlut ion.  The function (1.m) t o  be maximized i s  represented by 

i t s  contour lines. For a part icular value of  z there exists a feasible 

solution i f  and only i f  the contour l i n e  intersects the region. Increasing the 

value of z the contcur l i n e  moves upmrd, and the optimal solution i s  a 

vertex of the polyhedron (vertex C i n  t h i s  example), unless the contour l i n e  

w i l l  include an ent i re  segment of the bcundary. In any case, however, the 

problem can be solved by evaluating and comparing the objective function a t  the 

vertices of the polyhedron. 

(1.29), and hence corresponds t o  a feasible vector 

To f ind the cmrdinates of  the vertices i t  i s  useful t o  translate the 

inequality constraints (1.29a -1.29b) i n t o  the equal i t ies 

1 5  
= 3 0  5"1 + ax2  + x3 

( 1.31a) 

2 1  
5 x 1  + ax2 + x4 = 16 (1 .Jib) 
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by introducing the so called slack variables xJ and x4 which mst be also 

nonnegative. Hence (1.2%) takes the form 

x1 2 0, x2 2 0, XJ 2 0, x4  2 0 . ( 1.31~ ) 

Fig. 1.2. Feasible region and contour lines of the objective function 

The slack variables do not influence the objective function (1.m) but for 

convmimce we can include them with zero coefficients. 

We consider the equality cmstraints (1.31a-1.31b) as a matrix equation, 

and generate one of its basic solution with "free" variables beeing zero. A 

basic solution is feasible if the basis variables take nonnegative values. 

It can be readily verified that each feasible basic solution of the matrix 

equation (1.31a-1.31b) corresponds to a vertex of the polyhedron shown in 

Fig. 1.2. Indeed, x1 = x2 = 0 in point A , x1 = x3 = 0 in point B , 
x3 = x4 = 0 in point C , and x2 = i4 = 9 .in p0int.D . This is a very, _ ,  

important observation, fully exploited in the next section. 

1.2.1 Simplex method for normal form 

By introducing slack variables the linear programing problem (1.5-1.6) 

can be translated into the normal form 
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Ax = b , ( b 2 0  

x 2 0 ,  

2 = CTX --> max , 
(1.32) 

where we have n constraints, m+n variables and A denotes the (extended) 

coefficient matrix of dimensions nx(m+n). (Here w e  assume that the right-hand 

side is nonnegative - a further assumption to be relaxed later on.) The key to 

solving the original problem is the relationship bet- the basic solutions of 

the matrix equation Ax = b and the vertices of the feasible polyhedron. Pn 

obvious, but far from efficient procedure is calculating all basic solutions of 

the matrix equation and comparing the values of the objective function at the 

feasible ones. 

The simplex algorith (refs.7-8) is a way of organizing the above 

procedure rmch more efficiently. Starting with a feasible basic solution the 

praedure will move into another basic solution which is feasible, and the 

objective function will not decrease in any step. These advantages are due to 

the clever choice of the pivots. 

A starting feasible basic solution is easy to find if the original 

constraints are of the form (1.6) with a nonnegative right-hand side. The 

extended coefficient matrix A in (1.32) includes the identity matrix (i.e., 

the colwms of A corresponding to the slack variables xm+1, ..., xm. 1 

Ccnsider the canonical basis and set xi = 0 for i = l,...,m, and x ~ + ~  = bi 

for i = l,..,n. This is clearly a basic solution of Ax = b , and it is 
feasible by the assumption 

know the coordinates of all the vectors in this basis. As in Section 1.1.3 , we 

consider the right-hand side b as the last vector % = b, where M = m+n+l . 

bi 2 0 . Since the starting basis is canonical, we 

To describe me step of the simplex algorithn assume that the vectors 

present in the current basis are 

notation because the indices El, BZ, ..., Bn are changing during the steps of 

the algorithn. They can take values from 1 to m+n . Similarly, we use the 

notation cBi for the objective function coefficient corresponding to the 

i-th basis variable. Assume that the current basic solution is feasible, i.e, 

the coordinates of 4.1 
operations to perform: 

%, ..., %. We need this indirsct 

are nonnegative in the current basis. We first list the 

(i) Complte the indicator variables zj - cj for all j = 1, ..., m+n 
where z j  is defined by 

n 
(1.33) 

-77 
zj = 2, a. .c ' 

1J Ell . 
i=l 

The expression (1.33) can be complted also for j = M. In this case it 
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gives the current value of the objective function, since the "free" 

variables vanish and aim is the value of the i-th basis variable. 

(ii) Select the column index q such that zq - c < z . - c . for all 9 -  J J 
j = 1, ..., m+n, i.e., the column with the least indicator variable 

value. If 

proceed to step (iii). 

zq - cq 2 0 , then we attained the optima1 solution, otherwise 

(iii) If a- < 0 for each i = 1, ..., n, (i.e., there is no positive entry in 
1q - 

the selected column), then the problem has no bounded optimal solution. 

Otherwise proceed to step (iv). 

(iv) Locate a pivot in the q-th column, i.e.,select the row index p w c h  

that am > 0 and apM/aw < aiM/aiq for all i = l,...,n if aiq > 0. 

(v) Replace the p-th vector in the current basis by , and calculate the 
new coordinates by (1.18). 

To understand why the algorithm works it is convenient to consider the 

indicator variable z j i j  

variable xj 

for i = l,...,n in order to satisfy the constraints. The loss thereby occuring 

is zj. Thus step (ii) of t k  algorithm will help us to mve to a new basic 

solution with a nondecreasing value of the objective function. 

as loss minus profit. Indeed, increasing a "free" 

from zero to one results in the profit cj . CI, the other hand, 

the values of the current basis variables xBi = W 5 t  be reduced by aij 

Step (iv) will shift a feasible basic solution to another feasible basic 

solution. By (1.18) the basis variables (i.e., the current coordinates of the 

right-hand side vector 9) in the new basis are 

(1.34) 

Since the previous basic solution is feasible, 

a iM 2 0 am 2 0 
to satisfy ama. Iq /a 5 aiM for all i corresponding to positive aiq. 

According to a "dynamic" view of the process, we are increasing a previously 

"free" variable until one of the previous basic variables is driven to zero. 

If there is no positive entry in the q-th c o l m ,  then none of the 

aiM 2 0 . If aiq < 0 , then 
follows. Howwer, a iM 2 0 in any case, since we selected 

previous basic variables will decrease and w e  can increase the variable 

indefinitely, yielding ever increasing values of the objective functicn. 

Detecting this situation in step (ii), there is no reason to continue the 

procedure. 

xj 
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Replacing the p-th basis vector by aq in step (v), the new value z 

of the objective function will be 

(1.35) 

By (1.18) we can express the new coordinates a iM and a pM in terms of the 

old ones, resulting in the relationship 

Since z9-cq is negative and aw is positive, the sign of the change in the 

objective function 

(increasing the objective function value) or zero (resulting in no change of 

the objective function value). 

depends on the sign of am. This latter might be positive 

It remains to show that z -c > 0 really indicates the optimal solution. 
q 9 -  

This requires a -hat deeper analysis. Let B denote the nrh matrix 

formed by the c o l m  vectors 

feasible solution y , the objective function does not increase, i.e., 

cTBB-'b 2 cTy . (1.37) 

agl,agZ, ..., a& . We have to show that for every 

We will exploit the fact that all indicator variables are nonnegative: 

zj 2 cj, j = 1,2 ,..., m+n . 
& virtue of the definition (1.33) 

z .  J = cTg- laj, j = 1,2, ... m+n . 

(1.38) 

(1.39) 

Using this expression in (1.38) and multiplying t h e  j-th inequality by the 

nonnegative y, gives m+n inequalities whose sum is 

(1.40) 

m+n 
7-l 

Since y is the solution of the matrix equation, 2, ajyj = b . Introducing 

this equality into (1.40) gives the inequality (1.37) that we wanted to 

prove. 

j =1 

Similarly to the derivatim of (1.35) and (1.36) one can easily show 

that 
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(1.41) 

Thus the coordinate transformations (1.18) apply also to the indicator 

variables and to the objective function. Ch the basis of this observation it is 

convenient to perform all calculations on a matrix extended by the 

values and the objective function value as its last row. This extended matrix 

is the so-called simplex tableau. 

z j i j  

If the j-th column is in the basis then zjij = 0 follows, but an entry 

of the last row of the simplex tableau may vanish also for a column that is not 

in the basis. If this situation occures in the optimal simplex tableau then 

the linear programming problem has several optimal basic solutions. In our 

preliminary example this may happen when contour lines of the objective 

function are parallel to a segment of the kxlndary of the feasible region. 

The simplex algorith will reach the optimal solution in a finite number of 

steps if the objective function is increased in each of them. In special 

situations, however, the objective function value may be the same in several 

consecutive steps and we may return to the same basis, repeating the cycle 

again. The analysis of cycling is a nice theoretical problem of linear 

programming and the algorithms can be made safe against it. It is very 
unlikely, however, that you will ever encounter cycling when solving real-life 

problems. 

1.2.2 Reducinq qeneral problems to normal form. The twO-DhaSe simplex method 

In this section we state a rmch more general linear programming problem, 

introducing notations which will be used also in our linear programming module. 

Let W be the number of variables, denoted by x1,x2, ..., xw . The N 
constraints are of the form 

where we adopt the notation < 
relation signs can be used in 

are 

xi 2 0, x2 2 0 ,  ..., xI\N 2 0 ,  

but now we do not require the 

- <, =, 2 1 to emphasise that any one of these 
a constraint. As before, our primary constraint 

(1.43) 

entries of the right-hand side vector to be 



nonnegative. The problem is either to maximize or minimize the objective 

function 

CIlL3X-r 
ClXl + c2x2 + ... + c w x w  --> < . J’ . min 

(1.44) 

This generalized problem can easily be translated to the normal form by the 

follming tricks. 

If the right-hand side is negative, multiply the constraint by (-1). 

As discussed, a constraint with < is transformed into an equality by 

adding a (nonnegative) slack variable to its left-hand side. The same can be 

done in an inequality with 2 , this time by substracting a (nonnegative) 
slack variable from its left-hand side. 

The problem of locating the m i n i m  is translated to the normal 

(maximization) problem by changing the sign of the objective function 

coefficients. 

With inequality constraints of the form only,  the colurms corresponding 

to the slack variables can be used as a starting basis. This does not work for 

the generalized problem, and we must proceed in two phases. 

In the first phase we invent futher variables to create an identity matrix 

within the coefficient matrix CI. We need, say, r of these, called artificial 

variables and denoted by 

variable is added to the left-hand side of each constraint with the sign = or 

L , P basic solution of this extended matrix equation will be a basic solution 

of the original equations if and only if 

such a solution by applying the simplex algorithm itself. For this purpose 

replace the original objective function by zI = - E si, which is then 

maximized. This can obviwsly be done by the simplex algorithm described in the 

previous section. The auxiliary linear programing problem of the first phase 

always has optimal solutim where either zI < 0 or zI = 0 . With zI < 0 
we are unable to eliminate all the artificial variables and the original 

problem has no feasible solution. With 

situations. If zI = 0 and there are no artificial variables among the basic 

variables, then we have a feasible basic solution of the original problem. It 

may h a p p ,  hanPver, that ZI = 0 but there is an artificial variable among 

the basic variables, obviously with zero value. If there is at least one 

nonzero entry in the corresponding rcw of the tableau then we can use it as a 

pivot to replace the artificial vector still in the basis. If all entries are 

zero in the correspmding row, we can simply drop it, since the constraint is 

..., sr . Exactly one non-negative artificial 

51 = s2 =...= sr = 0 . We try to find 

r 

i=l 

zI = 0 there may be two different 
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then a linear combination of the others. 

After completing the first phase we have a feasible basic solution. The 

second phase is nothing else but the simplex method applied to the normal form. 

The follcwing module strictly follows the algorithmic steps described. 

Proqram module M11 

ll0E REfl t t t t t t l t t t l t t t l t l t t l t t t l t t t l t t t t t l t l l l t l l t l l l l l l l l t  
1182 RE! t LINEAR PROGRAMHING t 
1104 REN I TWO-PHASE SINFLEY tlETHOD t 
1106 REH t t t t t l t t ~ t ! t l t t t t t t l k l t l t l l l t t l t t l l t t l l l l l l k l l t  
1188 RE1 INPUT: 
1110 HEM NV 
1112 REH ME 
1114 HEN E l  
Ill5 REN E$(NE) 
1118 HEN A ( . , , ]  
1120 REN 
1122 BEN 
1124 REH C I N V )  
1 1 3  RER OUTPUT: 
1128 REtl ER 
1 1 3  HEM 
113: REH 
11:4 REtl 
1136 REN 
1138 R i H  N 
1140 REN H 
1142 REH A(N,N) 
1144 REK 
1146 HEM 

1150 REN 
1152 REV 

1148 REH 

NUNBER OF VARIABLES 
NUMBER OF CONSTRAINTS 
PRORLEH TYPE: 'HAX' OR ' H l N '  
TYPE OF CONSTRAINTS: 'LE ' , 'EQ'  OR ' 6 E '  
I N I T I A L  SIKPLEX TABLEAU 
All,. .NE, l . ,  .NV) CONSTRPINT HATRIX COEFFICIENTS 
All,. .NE,NVt l )  
OBJECT I VE FUNCTION COEFF I C IENTS 

STATUS FLAG 

CONSTRAINT RIGHT HAND SIDES 

I OPTINUH FOUND 
I NO FEASIBLE SOLUTION 
2 NO F I N I T E  OPTIHUN 
3 ERRONEOUS CHARACTERS I N  E I ( . )  OR E I  

NUHBER OF ROWS I N  F I N A L  SIMPLEX TABLEAU, N = N E t l  
NU1HER OF COLUMNS I N  F I N A L  SIMPLEX TABLEAU,H=NVtLEtGEt l  
F I N A L  SINPLEX TABLEAU 
OPTIMUM VALUE OF THE J-TH VARIABLE 

A ( b ( I , J ) , t l )  OTHERWISE 
OPTIMUN OfiJECTIVE FUNCTION VALUE IS E I b ( N , f l )  

0 IF A(B,J)=I , 

1154 RE\ NODULE CALLED: ti10 
1156 REH ---------- I N I T I A L  VALUES 
1156 LE.0 : E Q 4  :GE=B : E P = . I I B 0 0 I  :EN=EP : H A = l E t 3 B  
1160 REH ---------- CHECK INPUT DATd 
116: FOR 1.1 T O  NE 
1164 IF A ( ! , N V t l ) ) = B  THEN 1170 
1166 IF E l l I ) = ' L E "  THEN E I ( I ) - ' G E "  :GOTO 1170 
1159 I F  E $ ( I ) = ' G E "  THEN E I I I ) = ' L E "  
1170 I F  E O ( I ) = " L E "  OR E $ l I ) = ' E Q "  OR E I I l ) = " G E "  THEN 1174 
1172 ER.3 : GOT0 1340 
1174 E Q = E Q - l E l l I ) = " E Q " )  
1176 L E = L E t ( A : ! = B ) t l E I I I ) ~ " L E " ) t ~ A ~ 0 ) & ( E I ! I ) = " G E ' )  
1176 6E=GEt (P'=0! I i E l (  I )="GEE ! + l R < I )  li E I I  I ) = " L E U )  

1182 IF E W ' N A X "  AND E I O ' Y I N "  THEN ER=; : GOT0 1340 
1134 t 4 = I V t L E t E P + ? t G E + l  :N=NEt l  

1188 PRINT 'SOLUTION OF THE ACTUAL PROBLEN REQUIRES DIH Ai';N;',';H;')* 

iiae NEXT I 

1186 RE/ ________________________________________---------------------- 

1190  RE;^ ._._____________________________________---------------------- 
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F I L L  SIEIFLEX TbBLEbU I;?: EEfl _________. 

1194 JV=NV :J;I:NVtLEtGE 
I l ? b  FOP I.1 T@ NE 
lLg3 E = ! E I I  I ) : "GE")- iE$I  I I = ' L E "  1 
!208 M(!,NV+1) : I F  R'M THEN 1204 
1222 A=-A : FOR J = l  TO NV :A(I,J)=-R(I,J) :NEXT J :E=-E 
!?a4 FOR J z N V t l  TO W-1 : d ( I , J ) = $  :hlEYT J :P(! ,&=a 
im I F  E=B THEN izia 
1 3 8  
1 2 l t  !F EJO THEN 1214 
1212 J4=JR+1 : b i I , J A ) = l  : A ( l , J A ) = I  :A(I,B)=JA 
1211 NEXT I 

PHRSE I 
1213 IF E O t G E 4  THEN 1294 

1222 FOF: J = l  TO I4 
1 2 4  I F  A ! I , J ! < 4  THEN 1 2 3 0  
1226 A ( # , J i = 0  
1229 FOR 1.1 TO NE :biW,J)=RIN,J)tA(I,J)t(A(1,0)?NVtlEtGE) :NEXT I 
1230 NEXT J 
1232 IF R(N,H))=-EP THEN 1266 
1234 REM ---------- ---------- CHECK F E R S I P I L I T Y  
1236 MI=@ 
1233 FOR J = l  TO fl-1 
1240 IF AIN,J) !HI  THEN HI=R!N,J l  :JP=J 
124? NEYT .1 
1244 I F  HI20 THEN ER=l : GOT0 1340 

1246 MI=MR 
1250 FOR 1.1 TO HE 
125: I F  P ( l , J F l ; = E P  THEN 1256 
1 2 5 4  
1256 NEXT I 
1258 G O S N  1000 :Ef=EP+EN 

J;i=JV+l : A i l , J V ) = E  :iF E>0 THEN G(@,JV)=I  :A(I,O!=JU 

1216 REH ..__...... 

I?:@ kEM _.__.._._. _.._...... 7.C '!ALLIES 

1246 BE)r _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _  CHANGE B A S I S  

IF A(!,Mi!blI,JPl(M! THEN M I = A ( I , M ) / A ( I , J P )  : l P = I  

TERI l INRTION COMDITION 1260 BE\ _______.__ ____.__.._ 

12b2 I F  d(N,H)( -EP THEN 1236 
1264 PEIl ---------- ---------- E L I M l N B T l O H  OF ARTlFlClRL VARIABLES 
1266 FOR IP=l  TO NE 
1269 IF UiIP,@!. -NV+LEtGE THEN 1260 
1 2 i 8  FGR JP.1 TO N V t L E t G E  
1272 !F APS!B(IP,JP!) ' :=EP THEN GOSiJB 1809 : E P E P t E N  :GOTO 1 2 B I  
1774 A i l P , J f l = B  
1276 NEXT J f  
l?X klIF,0)=8 : b ( I P , H ) = 0  
ma NEXT I P  
1782 RE\ ---------- PHASE 7 * _  

C E 4  FOE 1.1 TO HV : P ( N , J ! - C ( J )  :NEXT J 
1 2 M  E = [ E I = " l l N " ! - ( E S ~ " W b X "  
1266 N=NV+LE+GE+l 
1298 B(E,I4)=0 
1292 FOR J:NV*l TO I : A i N , J ) = B  :NEXT J 
1294 FOP 1.1 TO NE :A( I , I4)=A( I ,H+EQ+GEj  :NEXT ! 

1298 FOR J = 1  TO tl 
1308 IF R(@,J!:@ THEN 1706 
.. i :@: 
1394 FOE I=! T O  I E  :A(N,J!~A!N,J)+E1AII,JilSIN,AI1,B)) :NEXT 1 
1!@6 NEXT J 
G08 FUF: I = l  TO NE : b t N , R i l , 8 l ) = 0  :NEXT I 

LIES 127b WE\ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _  ;-C Vf,L 

b (  N, 2 )  : - E M  [ N  J 1 
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The remarks i n  the module t e l l  you how to  specify the input. Notice that 

any right-hand coeff ic ient  may be negative, and you do not have to  group the 

constraints depending on the i r  re lat ion signs. What you should do i s  simply to  

wr i te the character sequences "LE", "EQ" or  "GE" i n t o  the entr ies of  the 

vector E30 f o r  the constraints <, =, and 2, respectively. Depending on 

what you want ,  plt the character sequences "MFIX" or "MIN" i n t o  the 

non-vector variable E$. 

You  may face, however, d i f f i c u l t i e s  i n  selecting the physical dimensions of  

the array A i n  your ca l l ing program, since t h i s  array stores the simplex 

tableau i n  both phases. We w i l l  present a main program that selects these 

dimensions for  you. I f  y w  want to  c a l l  the module from your own program, you 

shwld specify dimensions that are large enough. S I C  does not care about the 

extra space occupied. I f  you do not know what large enough means i n  your 

particular problem, you may watch the screen, since the module w i l l  outplt the 

dimensions of the array A actually required. 

C h  wtpt  the f lag ER w i l l  t e l l  you the outcome. The return value EF4 = 0 

indicates an optimal solution i s  fcund. In t h i s  case the solution i s  stored i n  

the M-th colunn of A , where the value of  M i s  determined also by the 

module. To f i nd  the results, I-asver, you need t o  know which vectors are i n  the 

f i na l  basis, and also the positions of these vectors i n  the tableau. The 

coordinate transformations are performd by the module M10, and hence t h i s  

information i s  stored i n  the entries A(0,J)  , as described i n  Section 1.1.2. 

Y o u  may wish to  follow the steps of  the procedure and p r i n t  the indices 

IP,JP of the pivot. This can be done i n  the module M10. The current value of 

the objective function may be obtained by pr int ing the product EXA(N,M). 

While our test  example i s  very simple, the module enables you t o  solve rmch 

larger problms, i n  pr inciple constrained only by the storage capacity provided 

by your BFISIC interpreter or compiler. As mphasized i n  Section 1.1.4, i n  a 



24 

sequence o f  coordinate transformations we accumulate round-off errors. W h e n  

selecting a pivot element the test fo r  inequality wi th zero actually i s  a test  

against a small parameter whose value i s  increased i n  each step t o  cmpmsate 

the accumulation of  errors. Nevertheless, you may encwnter problems wi th  

detecting convergence i f  there are order of magnitude differences i n  the 

coeff ic ient  m a t r i x .  Therefore, i t  i s  advisable t o  perform some scaling o f  the 

constraints and the variables before solving a larger problem. You may 

multiply a l l  coeff ic ients and the right-hand side of  a constraint by a scaling 

factor. Similarly, y w  may mult ip ly a l l  coeff ic ients i n  a colwm of 0 and the 

corresponding coeff ic ient  in  the objective function, but i n  th i s  case a f te r  

solving the problem the corresponding variable must also be mult ip l ied by the 

same factor. 

Eample 1.2 Solution of the blending problem 

Though we solve here only the simple blending problem (1.29-1.30) by 

ca l l ing the mcdule M11, we present a main program which, apart f rom the 

specific input i n  i t s  DATA statements, i s  rather general and performs a number 

of  auxi l iary operations. In particular, i t  reads the problem, calculates the 

dimensions, ca l l s  the module, locates and pr in ts  wt the results. Later on we 

w i l l  solve other problems by t h i s  program, replacing only the data l ines. 

100 REK ____________________-----------------.----------------- 
102 REH EX. 1.2. LINEAR PROGRIflnING BY TMO PHRSE SItPLEX IETHOD 
104 HEH KERGE 8 1 0 , f l l l  

108 HEB [NUHBER OF VARIABLES, NURBER OF CONSTRAINTS) 
110 DATA 2,; 
112 HEN CONSTRAINTS 
114 DATA 6.333333, 0.833333, LEI 50 
116 DATA 1.6bbbb7, 'J.166667, LE, 1 6  
119 REH OBJECTIVE FUNCTION: 
!?P DATA 100, 200, MA! 
'Xi@ REfl ---------- CHECK DEITA IN@ COflPUTE DIBFNSIONS 
3 2  L i z 0  :EQ=@ : G E 4  :READ NV,NE 
3 4  FOR 1.1 TO NE 
20b FOX J=J TO NV :READ A :NEXT J: READ El,A 
208 I F  E I= "LE"  OR E$='EQu OR E$='GE' THEN 212 
?18 
212 I F  E$="EOn THEN EQ=E;)+l :GOTO 22: 
214 I F  EI='GE" THEN 220 
;I6 I F  A ' > 4  ldEN L E = L E t l  ELSE GE=GE+l 
119  G O T 2  ??? 
220 I F  A:=8 THEN 6 E z 6 E t l  ELSE L E z L E t l  
2 2  NEXT I 
2 4  FOR J=: TO NV :READ I: NEXT :READ El 
??b I F  ES="#AX" OR E l = " l I l l '  THEN 230 
228 LPPlNT "ERROR I# OBJECTIVE FUNCTION SPECIFICATION" : E N @  324 
2;0 t l=NVtL;tEQ+itGEtl  : t W E t l  
?!: PIN A(#,n),CIN1'),E)INE) 

i e 6   RE;^ om 

L P P I V T  "ERROR I N  CONSTRAINT No.":I :GOTO 524 
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:74 PEIl ---------- FILL : N I T I A L  SIMPLE! TABLEAU 
Z h  REST3RE 

240 FOR 111 TO NE 
242 FOR J = l  TO N!: :HEAD A ( 1 , J )  :NEYT J 
244 READ E ? ( I ! , A ( ! , N V t l )  
?4h N E l T  I 
246 F I K  J = l  TO NV :READ C ( J )  :NEXT J 
250 READ ES 
252 R E 1  ---------- CALL LP MODULE 
3 4  605UB 11M 
256 LPRINT 
258  Li 'KINT TAk(1O);"LINEAR PROGRAMMING BY T l j O  F'HASE SINPLEX BETHOD' 
260 LFRINT : I F H I N T  :LF'RlNT 
26: I F  E R Z l  THEN !PRINT 'NO F E A S I k L E  SOLUi!ON" :60TO 3 2 4  
?64 I F  ER=? i H E N  L P R I N T  "NO F I N I T E  ";F$;"IBUH" :GOTO 324 
:hh LPRINT :LPRINT "EVbLUhTION OF CONSTRAINTS" :LPRINT 
268 V l = S T R I N E S ~ 1 2 . ' - " 1  :Vl$:SiRIN6$(54,"- ')  
270 L W I N T  '!% 
272 !Pn'!YT ' I TYPE L.H.S. R.H.S SLACK SHRDOW PRICE" 
274 LPRINT V1 
276 ?EE;TOHE :REAP NV,NE :JY=NV 
278 FOR 1.1 TO NE 

28? FOP J = 1  TO NV 

?:a REM N V , ~ E  

280 B = a  

2 8 4  READ a :K=AIB,J! : I F  t.=0 THEN x=0 ELSE X = A ( K , M  
286 R = k t A t X  
2 8 8  NEXT J :READ E%,P 
?'il T=ABf(l-6) : I F  T i = E P t A B S I R )  THEN T 4  
292 LPRINT I;TAB(hj;EI;TRB(lU);B;TbB1?4!;A;TAP(34!;T; 
?94 I F  E l ( 1 ) : i " E Q "  THEN J F J V t l  :IF A(0,JV)=B THEN LPRINT T b B ( 5 8 ) ; A ( N , J V ) ;  
Zob L F F I N T  
298 NEXT I 
:OC L P F I I T  V 1  : M I N T  
1.02 LPRINT :LFRINT " OPTItlUH SOLUTION" :LPRINT 
364 P R I N T  
SBb LPRINT " J " , "  Xj"%' C j " , "  C j I X J u  
1.08 !PRINT vit 

112 HEAP c :K=A!B,J) : I F  R > B  THEN X=w,ni ELSE 1.8 
310 F 3  J=1 TO NV 

1.1 4 LPRINT ;:TAB( 1 5 )  1( ; TAB ( 3 8  !C; T A B ( 4 5 )  C t X  
Ilh NEhT J 
S:B HEAD EP :A=kiN,l!) :IF E$="MIN" THEN A = - A  
320 LPRINT V1l :LPRINT 

3 2 4  STOP 
z: LPXIIUT "OBJECTIVE FUNCTION ~ ; ~ ~ ; ~ i t i u n  VALUE ..,,,,,,,. :LPRINT 

The DFYTA s t a t m t s  cmta in the i n p l t  data i n  the following order: 

0 the number of variables and the number of constraints; 

o for  each constraint the coefficients, the type of  the constraint ("LE","EQ" 

or "GE" )  and the right-hand side; 

0 the objective funct im coeff ic ients and the type of  the problem ( " M X "  or 

"MIN" ) . 

The program rxltput for  t h i s  example i s  as follows. 
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LINEAR PROGRRBBING BY TWO PHASE SII(PLE% METHOD 

EVALUATION OF CDNSTRkIIlTS 

I 16.66664 100 lbbb.664 
2 29.:3337 208 5B66.674 

________________________________________-------------- 

OBJECTIVE FUNCTION BAXIfiUB VALUE . . ... . . . ,. 7533.337 

k c o r d i n g  to t h e s e  results the slack v a r i a b l e s  van i sh  i n  the c o n s t r a i n t s  1 

and 2 ,  which are of  type  5 . Therefore ,  the optimal  s o l u t i o n  is on the 

boundary de f ined  by these two c o n s t r a i n t s .  Such c o n s t r a i n t s  are s a i d  to be 

a c t i v e  ones. In physical  terms it means that the a v a i l a b l e  s u p p l i e s  of r a w  

ma te r i a l  A and B are both exhausted.  The optimal  s t r a t e g y  is producing 16.7 

u n i t s  of  product I and 29.3 u n i t s  of product  11. 

Our r e s u l t s  i n c l u d e  the shadow p r i c e s  f o r  each  a c t i v e  c o n s t r a i n t .  A shadow 

p r i c e  can be regarded as the change i n  the opt imal  v a l u e  of the o b j e c t i v e  

func t ion  fol lowing the i n c r e a s e  of  the right-hand s i d e  of the c o n s t r a i n t  by me 

u n i t .  ( S t r i c t l y  speaking you may o b t a i n  even l a r g e r  change i n  t he  o b j e c t i v e  

func t ion  i f  t h e  opt imal  basis w i l l  n o t  r m i n  the same. ) In t h e  given example 

it is advantageous to  i n c r e a s e  t h e  supply of A i f  its market p r i c e  is less 

than 233.3 ECU/unit. The r a w  material B is n-uch less v a l u a b l e  i n  t h e  g iven  

s i t u a t i o n .  Y c u  can l e a r n  mre a b x t  shadow p r i c e s  by r ead ing  on the concept  of 

d u a l i t y  i n  l i n e a r  programming, e . g . ,  i n  ( r e f .  8). 

E x e r c i s e  

So lve  t h e  blending problem wi th  o b j e c t i v e  f u n c t i o n s  

2 = l m x l  + 250x2 

2 = l m x ,  + m x 2  , 
and 

both by the program and by g-trical c m s i d e r a t i m s .  
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5 3 -1 0 XI 

-3 3 -3 5 x 3  

0 6 -2 3 ~4 

2 0 4 1  

1.3 LU DEKWOSITION 

11 

x 2 =  1 
-2 

9 

In this section we restrict considerations to an n M  nonsingular matrix 

A . As show, in Section 1.1, the Gauss-Jordan elimination translates A into 

the identity matrix I . Selecting off-diagonal pivots we interchange ~ i ~ m e  r w  

of I , and obtain a permutation matrix P instead, with exactly one el-t 1 

in each row and in each colunn, all the other entries beeing zero. Matrix P 

is called permutation matrix, since the operation PCI will interchange saw 

ra*h of A . 
We can save scme efforts reducing A into a triangular matrix and not all 

the way to the identity matrix. More generally, we will write 

w=LlJ, (1.45) 

A as 

r 5  3 -1 0 

0 -1.2 4.4 1.0 

0 4.0 -3.6 5.0 

0 6.0 -2.0 3.0 
_. 

where P is a permutation matrix, L is a lower triangular (has elements only 

in the diagonal and below), U is upper triangular (has elements on ly  on the 

diagonal and above), and [L]ii = 1 . 
The decomposition will be performed by Gaussian elimination. This classical 

method can easily be understood by solving an example. 

- 1 x1 
x 2  = -3.4 

x3 4.61 

9.0 _x4. 

1.3.1 Gaussian eliminatim 

We solve the matrix equation (ref. 9 )  

(1.46) 

by reducing its coefficient matrix to an upper triangular one. Therefore, let 

us first eliminate x1 

equatation by factors (2/5) and (-3/5) , respectively, and then substracting 
from equations 2 and 3 . The resulting equation is 

fran equations 2 and 3, multiplying the first 

(1.47) 

The pivot (i.e., the elemmt we divide by) in this step was 5 , and the 
factors (215, -315, 0) = (0.4, -0.6, 0 )  are called multipliers. We perform 

partial pivoting (see Section 1.1.4) and pick [A14,2 = 6.0 as the next pivot 



instead of the diagonal element 

interchanging rows 2 and 4 (and also the corresponding right-hand side 

entries). Using the multipliers (4.W6.0, -1.W6.0) = (0.8, -0.2) we have 

CA12,2 = -1.2. This choice implies 

x1 

X Z  

x4- 

xs 

5 3 -1 

0 6.0 -2.0 

0 0 -2.0 ::: j 
0 0 4.0 1.6 

11 

= 9-0 . 
-2.6 

-1.6 

5 3 - 1  0 

0 6.0 -2.0 3.0 

0 0 4.0 1.6 

0 0 0 3.4 - 

(1.48) 

9.0 

-1.6 

-3.4 

= . 

-x4 

The  next pivot will be 

eliminate x3 from equation 3 we need the single multiplier -2.0/4.0 = -0.5, 

and obtain the matrix in the desired upper triangular form: 

CAI4,3 = 4.0 , thereby interchanging rows 3 an 4. To 

(1.49) 

Equations (1.49) are very easy to solve. Indeed, x4 = -1 is already isolated 

in equation 4. Proceeding with this value to equation 3 gives x3 = 0 . Then w e  

mve to equation 2 with 

backsubstitution and gives the solution vector 

x3 and x4 k n w .  The procedure is called 

x = (1.0, 2.0, 0.0, -l.O)T. 

1.3.2 Performinq the LU decomposition 

The Gaussian elimination also enables us to decompose the matrix in (1.46). 

We already have the upper triangular in 

P we will interchange those rows of the identity matrix I that have been 

interchanged in A in the course of the Gaussian elimination. Let (i,ki) 

denote the operation of interchanging row5 i and ki in the i-th step, 

then what w e  did is (l,l), (2,4) and (3,4) . These operations applied to the 
identity matrix I result in the permutation matrix 

(1.49). To form the permutation matrix 

1 0 0 0  

0 0 0 1  

0 1 0 0  

0 0 1 0  

P =  (1.50) 

The lower triangular matrix L can be constructed from the rrultipliers used 

in the elimination steps if we adjust them according to the rows interchanged. 

Taking into account that for the row of the pivot the multiplier is necessarily 

1.0 (i.e., this row remains unchanged), in the three steps of the Gaussian 

elemination the multipliers were (1.0, 0.4, -0.6, 0.0), (1.0, 0.8,- 0.2) and 
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(1.0, -0.8). In the second elimination step we performed the interchange (2,4), 

and hence write the previous multipliers in the order (1.0, 0.0, -0.6, 0.4). 

In step 3 the interchange was (3,4), which will affect all the previous 

multipliers, resulting in (1.0, 0.0, 0.4, -0.6) and (1.0, -0.2, 0.8), whereas 

(1.0,-0.5), used in this last step, remains unchanged. We put these vectors 

into the lower triangular of a matrix and obtain 

L.1 0.4 -0.2 1 0 1 .  0 
(1.51) 

L-0.6 0.8 -0.5 11 

It can be readily verified that the matrices (1.461, (1.49), (1.50) and 

(1.51) satisfy the relation (1.45). Since L is constructed from nultipliers, 

on the basis of the Gaussian elimination algorithn you will understand why the 

method works. 

Ncw we present a module for the LU decomposition and apply it to compute the 

determinant of A . ph is well k n m ,  det(A) is a number, defined by 
(1.52) 

where the indices 

each column of A in each term of the sum, and we add all the possible 

combinations. Therefore, the number of term in (1.52) is n! . In each term 
the indices ki take the values 1,2, ..., n in different orders. Finally, h 

in (1.52) is the number of pairwise permutations required to bring all 

indices ki into the order l,Z, ..., n . 

ki are selected so that there is exactly one element from 

Since det(A) = 0 if and only if A is singular, it provides a convenient 

way of checking singularity. Determinants have traditionally been used also for 

solving matrix equations (ref. 101, but both the Gauss-Jordan method and the 

Gaussian elimination are much more efficient. The determinant itself can easily 

be calculated by LU decomposition. For the decomposed matrix (1.451 

1 

det(A) = ------ det(L) det(U) . 
det (P)  

(1.53) 

For a triangular matrix the only nmzero term in (1.52) is the product of the 

diagonal elements. Therefore, det(L) = 1, and det(U) = . T I  [aii . There is 

also only a single nonzero entry in det(P) , so that det(P) = +1. Since 

det(1) = 1 , det(P) = +1 if the number of row interchanges translating I 

into P is even, and det(P)= -1 if this number is odd. 

n 

1=1 

The following module for LU decomposition of an n% matrix A is based m 



the algorithm in (ref. 1). 

Prcqram module M14 

Since only n-1 elimination steps are required for the decanpusiticn, it can 

be performed also for matrices with rank(&) = n-1. For simplicity, however, 

the module will return the flag ER with value 1 if A is singular. 

The decomposition is "in place", i.e., all results are stored in the 

lmxtims that matrix A used to occupy. The upper triangular matrix U will 

replace the diagcnal elements of A and the ones above, whereas L is stored 

in the part below the diagonal, the unit elemmts of its diagonal being not 

stored. We will then say that the matrices are in "packed" form. The 

permutation matrix P is not stored at all. As discussed, the row interchanges 

can be described by n-1 pairs (i,ki), and all information is contained in a 

permutation vector kl, k2, ..., kn-l that will occupy the mtries 

A ( 1 , 0 ) ,  A (2 ,0 )  ,..., A(N-1,0) . T h e  module writes +1 or -1 into A(0 ,0 )  

depending on the number of row interchanges. 
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Example 1.3.2 Determinant of a matrix by LU decomposition 

The follwing program performs LU decomposition of the matrix in (1.46) and 

calculates its determinant. 

N 

1 4  
The determinant is cwnputed by det(f4) = TI A(1,I) , where cI(0,0) affects 

only the sign. The resulting matrix is printed a5 stored, in a packed form. It 

it is easy t o  recqnise U . The elements of L are stored with opposite 

signs, and in the order they originally appeared in the Gaussian elimination. 
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1.3.1 Solution of matrix equations 

We can use the LU decomposition to solve the equation clx = b very 

efficiently, where cl is a nonsingular square matrix. Multiplying the equation 

by a permutation matrix P we have PCIx = pb , and hence WX = pb by 

(1.45) . This last equation is very easy to solve, first by solving for a 
vector d such that 

Ld=pb (1.54) 

and then solving 

U x = d .  (1.55) 

Since both L and U are triangular matrices, (1.54) and (1.55) are 

solved by the simplest backsubstitution except for taking into account the 

right-hand side interchanges in (1.54). The next d u l e  performs these 

calcul at ions . 

Proqram rodule M15 

On inplt the array FI contains the decomposed matrix as given by the module 

M14, and the right-hand side coefficients are placed into the vector X .  (Ih 

wtput, this vector will store the solution. There is nothing to go wrong in 

backsubstitution if the previws decomposition was successful, and hence we 

dropped the error flag. 
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Example 1.3.3 Solution of simultaneous linear equations by LU decomposition 

We u5e the follwing main program to salve (1.46) by the modules M14 and 

M15: 

100 RE\ ________________..-_____________________------------------- 

10; RE( EX. I . ? , ? .  SOLUTIO!i OF L I N E A R  EQUGTIONS BY LU D E C O B P O S I T I O N  
1C4 RE\  RERGE rl l4,\15 

108 % E l l  ( l U # E R  OF EQUATIONS)  
: ; c  DkT4 4 
!12 EATU 5 ,  13-lq B. 2 %  I! 
114 0816 2!  5, 4, !, =, 1 
l l b  D A T A  -3 ,  5, = I  -2  
113 DATA 0 ,  b , - 2 ,  I ,  9 
L ,  , D DFTR 
2C: R E X  N 
X4 31!4 A!W.N!,X!N) 
?0t FOR 1.1 T O  N 
263 FOF' J = 1  TO N :REPD A [ I ! J )  :HEIT J 
210 READ M q Y ( I j  
212 NEXT I 
1 1 4  q ~ \  _ _ _ _ _ _ _ _ _ _  c 
216 GOSUB 1400 
218 I F  EY.1 THEN L P R I t i T  "CCIEFFIC IENT MATRIX IS  SINGULAR" : 6 0 T 3  238 

2:: EOSLA 15C0 
224 L F R I H T  "SirLUTION CF THE SY'STEN CIF L I N E A R  EQUATIONS" :LPRINT 
226 ?'b=5TFtIIX$( I & , " - "  ) 
226 LFKINT 
:;o LPH!#T " I X(I)" 
:32 LPRINT VB 
234 F3R I = l  TU ti : L P H I I T  USING " X X  HU,##I l#":  I,X(I) :NEXT 1 
?3t LPRIWT VS : L f F ' I # T  
K E  STOF 

REH _ _ _ _ _ _ _ _ _ _  DATA 

F E Y  _ _ _ _ _ _ _ _ _ _  PEA 

ALL DECOIIPOSITIOM MODULE ..I . 

LL SOLUTICIN MODULE 22B FEY _ _ _ _ _ _ _ _ _ _  CA 

The coefficients and the right-hand sides are separated by the character 

but y w  can use any other character sequence as a separator. The resulting 

outplt agrees with cur hand calculations: 

"=" 

SOL!IT!ON OF THE SYSTEN OF LIlEPX E Q U A T I O N S  

I X ! ! )  

A special property of solving a matrix equatim in this way is that the LU 

decanposition does not involve the right-hand side vector b , in contrast both 
to the Gauss-Jordan method and to the Gaussian elimination. This is 
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particularly advantageous when solving several matrix equations with the same 

coefficient matrix A , as we do in the next section. 

1.3.4 Matrix Inversion 

Fk discussed in Section 1.1.4, to calculate the inverse of the n m  matrix 

A one solves n matrix equations Ax = ei, i = l,Z, ..., n, and hence the LU 

decomposition is particularly advantageous. Y o u  must, haever, never compute 

A-' Ax = b in the form 

x = A-lb 

only to obtain the solution of the matrix equation 

since the method applied in Example 1.3.3 is m r e  efficient. 

Example 1.3.4 Inversion of a square matrix 

We find the inverse of the matrix in (1.46). Ih input, the original matrix 

is stored in the array A , and its inverse will occupy the array B on 

wtpt. Performing LU decomposition by the module M14, the original matrix will 

be destroyed. The program and the cutpt are as follms: 
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0.235 0.044 0.055 -0.162 
-8.108 -0.816 -0.18t. 0,514 

P.llB P.147 0.294 -8 .206  
-0.147 8.191 -0.118 0.132 

Y w  may find interesting to compare the results with the output in Example 

1.1.4. 

1.4 INMRSION ff f7 SYMVETRIC POSITIVE DEFINITE MATRIX 

As y w  learned in the previws sections, LU decomposition with 

built-in partial pivoting, followed by backsubstitutim is a good method to 

solve the matrix equation Ax = b . You can use, b v e r ,  considerable simpler 

technics if the matrix A has 5 ~ e  special structure. In this section we 

assume that A is symmetric (i.e., AT = A ) ,  and positive definite (i.e., 

xT&x > 0 for a11 x # 0 ; you will encounter the expression 

in this book, and hence we note that it is called quadratic form.) The problem 

considered here is special, but very important. In particular, estimating 

parameters in Chapter 3 y w  will have to invert matrices of the form A = XTX 

many times, where x is an n m  matrix.  he matrix XTX is clearly 

symmetric, and it is positive.definite if the colurms of X are linearly 

independent. Indeed, xT(XTX)x = ( X x I T ( X x )  0 for every x since it is a sum 

of squares. Thus (XxIT(Xx)  = 0 implies Xx = 0 and also x = 0 if the 

columns of X arc linearly independent. 

A = HiT 

interesting application is to d e c o m m  the inverse in the form A-' = Q Q, 

where Q is an upper triangular matrix, easily obtainable from H. We will 

need such a decomposition when dealing with error-in-variables models 

in Chapter 3 . Y o u  may find details of the algorithm in (ref. 21, and the 

corresponding BFISIC statements in the module M52 of Chapter 3. Here we 

provide a module based on Gaussian elimination, for inverting a positive 

definite matrix. 

x T ~ x  many times 

P positive definite symmetric matrix A can be decomposed in the form 

where H is a lower triangular matrix, by the method of Cholevsky. An 

The method (ref. 2) is based on solving the matrix equation y = Ax , where 
y is not a fixed right-hand side, but a vector of variables y1,y2, ...,yn 

with completely "free" values. To Solve the equation for x in terms of y 

notice that all # 0 due to positive definiteness of A, since 

all = (elITfkl. We can therefore solve the first equation for 

x1 

xl, and replace 

by the resulting expression in the other equatims: 
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(1.56) 

where the new coefficients are: 

a Ij = -a1j/a11 , ( j = 2, 3, ..., n ) , 

To proceed we have to assume that a # 0. It can be shown that this 

follows from the positive definiteness of fA , (see ref. 2). If a 22 # 0 then 

w e  solve the second equation of (1.56) for x2 in terms of y1,x3, ..., xn, 
and replace 

Since Cl is positive definite, we can perform a l l  the elimination steps in 

this way and obtain x in terms of y as 

x = e y .  (1.57) 

xz with the resulting expression in all the other equations. 

Since y = Clx according to the original equation, B = fA-' follows, thus we 

obtain the inverse in place of the original matrix. 

Thwgh the procedure appears to be special, you will notice that it is 

essentially a Gaussian eliminatim withwt pivoting. 

The  following d u l e  is b a d  M the algorithm in (ref. 2). Its concise 

structure is due to cyclic renumbering of both grmps of variables, 50 that 

always x1 is expressed and always from the first equation. 
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Proqram d u l e  Ml6 

1120 REH t t t t t l t t t t t t t t t t t t t t t t t ~ t t t t t t t t t l t t l t t t t t t t t t t t t t t  
I602 REH tINVERSION OF A POSITIVE DEFINITE SVHNETRIC HRTRIlt 
1684 REH t l t t t t t t t t t t t t l t t t t t l t t t t t t t l t t t t l t t t t t t t t t t t t l t  
1606 REM INPUT: 
1608 REM N 
1610 REtl A(N,N) 
1112 REM 
I614 REM OUTPUT; 
1616 REH EH 
1618 REll 
16% REH 
1622 REM A(N,C)  
1624 HE1 

DiflEhlSlGN OF MATRIX 
MRTRIX 
(ONLY LOWER TRIANGLE IS USED! 

STATUS FLRG 
0 SUCCESSFUL INVERSION 
I RATRIX IS NOT POSITIVE DEFINITE 

INVERSE MATRIX 
(INCLUDING THE UPPER TRIINGLE) 

1626 FOR K=N TO I STEP -1 
1628 IF A(1!1)<=0 THEN ER=I :GOTO 1654 
1630 A(B!N)=IIP(!,l) 
1632 FOR 122 T O  N 
1634 8=A(I,l!tRiB,M) 
I636 
1538 
1640 NEWT I 
I642 FGR 1.1 TO N :Q(N~I!=A(0~1) :NEXT I 
l b 4 4  NEXT K 
1646 FOR I l l  TO N-1 
1648 FOR J=Itl TO N :A(I,J)=A(J,I) :NEXT J 
1150 NEXT I 
lb52  ER.8 
:b54 RETURN 
1556 F:EM t t t I t  t t  I t  t t  $1  1 t t t t t t t I t t t  t t t t t t t t t t t t t  t t t t t t t t t t t t t 

I F  I ? K  THEN A[O,i-l)=A ELSE R(0!1-I)=-A 
FOR 522 T O  I : P ( l - l ~ ~ - l ) ~ I ~ l ~ J ) t ~ ( l ~ l ) t I ( 0 , J - l )  :NEXT J 

Since FI is symmetric, on input it is sufficient to store its corresponding 

portion in the lower triangular part of the array A , including the diagonal. 
The inverse is also symmetric, but on output it will occupy the entire matrix, 

since ithis i advantagwus for further use. The zero-th row of array A is 

used as a vector of auxiliary variables, so do not store your ow7 data here. If 

the matrix is not positive definite, the d u l e  will return the flag ER = 1. 

As we discussed, for a matrix of the form 

general symmetric matrix, however, the return value ER = 1 does not 

necessarily imply its singularity, and you can still try to use the modules M14 

and M15 in order to invert the matrix. 

XTX this implies singularity. For a 

Example 1.4 Inversion of a positive definite matrix 

Our test problem will involve the Hilbert matrix of order 6, defined by 

[Hblij = l/(i + j - 1) , i,j = 1 ,  2, ..., 6. (1.58) 

Hilbsrt matrices (and obviously their inverses) are positive definite and are 

frequently used for testing algebraic procedures (ref. 1). We present a main 

program, with the lower triangular of the inverse of H6 in the DATA statemnts. 
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We e x p e c t  to o b t a i n  elwnents that s a t i s f y  (1.58). T h e  program c u t p u t  is: 

INVERSE MTSI f :  

0s y w  5ee, the elements  are accurate m l y  up to  t h r e e  d i g i t s .  To g e t  mre 

a c c u r a t e  r e s u l t s ,  y w  may repeat the same c a l c u l a t i m  i n  doub le  p r e c i s l a ,  

i n s e r t i n g  the BASIC l i ne :  

99 DEFDFL 3 

We w i l l  r e t u r n  to the problem of numerical  accuracy i n  Sectims 1.7 and 1.8.6. 

Here w e  on ly  n o t e  that similar problerm may arise even w i t h  f u l l  p ivo t ing .  ( Y w  

may t r y  i t  us ing  the program of Example 1.1.2 . )  
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1.5 TRIDIfYXWL SYSTEM OF ECXICITICNS 

Another special case of the matrix equation Ax=b is the one with A beeing 

tridiagonal, i.e., having nonzero elements only on the diagonal plus or minus 

one colunn. For example, the equatims 

4x1 + 2 9  = 1  
XI + 4x2 + x3 = 2  

x2 + 4x3 + x4 = 3  
x3 + 4x4 + x5 = 4 

2x4 + 4x5 = 5 

(1.59) 

form a tridiagonal system. To devise a very simple algorithm for solving 

equations of this form we need a further special property called diagonal 

dminance. The coefficient matrix A is diagonally dominant if 

71 

laii[ > 1, laij] 

large in magnitude. ph in the previous section, tkse assumptions are 

restrictive, but satisfied in a number of important applications. For example, 

we solve tridiagonal systms of linear equations when interpolating by spline 

functions in Section 5.3, and a similar problm arises in modelling 

distillation columns (the latter is not treated in this book). 

for all i, i.e., each diagonal element is sufficiently 

j fi 

The Gaussian elimination can be used withaJt pivoting because of diagonal 

dominance (ref. 1). Due to the many zeros the algorithm (sometimes called 

Thamas algorithm) is very easy to implement: 

Prosram module M17 

1736 FOR I = N - 1  T O  1 STEP -1 : ~ ~ ~ ~ = ~ K ~ l j - C i l ! t X ( l ~ l ) ) ~ P ~ l l  :NEXT I 
1755 RETURN 
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The 3 nmzero entries of the i-th row of the coefficient matrix occupy the 

variables A(I), B ( I )  and C ( 1 )  ,M that A ( 1 )  and C(N) are not used. We need 

an auxiliary vector P O  of N elements. Since there i5 no pivoting, you may 

experience overflow (i.e., division by a t w  small pivot) even for a 

nmsingular matrix, if it is not diagonally dominant. 

Example 1.5 Solution of a tridiagmal matrix equaticn 

The matrix in (1.59) is diagonally dominant, and w e  can use module M 1 7  to 

mlve the equation. As in example 1.3.3, we separate the coefficients from 

the right hand side by the character "=" in each M T A  line. 

100 RE[ .........._..___._______________________--------------------- 

102 PEfl Er. 1.5. SOLUTlOli OF L I N E I R  EOUMIONS U I T H  TRIDIAGONBL #ATHI! 
184 RER MERSE HI7 

REM ---------- DATA 
!06 REM (WCtIPEB OF EGURTIONS) 
!I0 DRTA 5 

:!4 DATA !,4!1! =,? 
: I t  DA!A 1!4Q1, = , 3  
119 :ATA l i4!! ,=,4 

11: D A T A  4,2, = , I  

1 3  U A i A  : q 3 ! = a 5  
?01 RE! ---------- READ DATA 
:a2 HER3 I 
104 D Ill A I1 ,B(N i ,C( 1; 1 ,D I 10 , X ( k !  , P (ti 1 
205 FOP I=! T O  N 
20E IF 1)1 THEN READ A ( ] )  
?I0 HEAD B(I! 
212 IF I < N  THE# READ CiI) 
214 HERD R$,O(I) 
216 Rili 1 
TIE REIl ---------- C K L  SOLUTION MODULE 
2 0  GOSUB 1780 
2 2  :PRINT "SOLUTION:" :LPPINT 
2 4  V$:STRING$i 15, "-"  J 
2 5  LF'RI#T " I X(I)n 
228 LPHINT v1 
2 3  FOE I:! T O  H :?PB!NT l ; T M [ b ) ; X [ l )  :NE1T I 
3 2  LPRINT V $  :LPRINT 
234 STOP 

The results are as follow.: 

SOLUTIOW: 

I XiIi 
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1.6 EIGEWALUES PND EIGENMCTORS ff A R E K  SYMTTRIC f " I X  

In Section 1.1 we defined the eigenvalue h and the eigmvector u of the 

n m  matrix A to satisfy the matrix equation 

(&XI)U = 0 . (1.m) 

This is a homogmwus set of linear equations (i.e., its righ-hand side 

zero), and has a ncnzero solution if and only if the c o l m s  of (&XI) 

linearly dependent. Thus 

det(&hI) = 0 , 

is 

are 

1.61) 

which is said to be the characteristic equation of A . a/ the definition 
(1.52) of the determinant, the left-hand side of (1.61), if expanded, is a 

polynomial of degree n in h w h o s e  n rwts are the eigenvalues of A . If 
A is symmetric, all eigmvalues h1,h2, ...,& are real (ref. 10). The i-th 

eigenvector ui can be obtained by solving the equation 

(&XiI)Ui = 0 . (1.62) 

The solutim of this equation is not unique. The eigenvector will be, however, 

uniquely defined if we prescribe its length, e.g., by the constraint 

I(ui112 = uTiui = 1 , and specify the sign of its first nonzero element. An 

eigmvector of unit length is called normalized eigenvector. Assume that all 

eigenvalues h1,h2, ..., hn of A are different, i.e., the characteristic 

equation has no repeated rwts. Then the eigmvectors 

linearly independent and form a basis of the n dimensional space. Furthermore, 

the eigenvectors are pairwise orthogonal, and the set 

normalized eigenvectors is said to be orthmormal, which mans the property 

u1,9, ...,I+, are 

u1,9, ...+, of 

1 if i=j 

0 otherwise. 
uT.u. = { (1.63) 

Consider the matrix B = T-lAT , where T is an n m  nmsingular matrix, and 

find the eigenvalues of 

det(EFh1) = det(T1(AhI)T) = det(A-hI) . (1.64) 

B . Since det(T)det(T1) = 1 , 

Thus each eigenvalue of B is an eigenvalue of A and vice versa. I n  this 

case the matrices A and B are said to be similar and T is called 

similarity transformation. 

An important application of eigenanalysis is the diagonalization of a 

(symmetric) matrix A . Let U dmote the matrix whose columns are the 

normalized eigmvectors u l , ~ ,  ...,I+, . By the definition (1.m) we have 
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w = m  (1.66) 

where D denotes the nm diagonal matrix with the diagonal elements 

X1,x2, ..., hn . The matrix 

(1.63), r1 = UT 

U of eigenvectors is nonsingular, and by virtue of 

(i.e., UTU = I ) .  Therefore, from (1.65) w e  obtain 

UTW = D . (1.66) 

The eigenvalues of A can be find by solving the characteristic equation of 

(1.61). It is much more efficient to l w k  for similarity transformations that 

will translate A into the diagonal form with the eigenvalues in the diagonal. 

The Jacobi method involves a sequence of orthonormal similarity transformations 

T1,T2, ... such that = TTk%Tk . The matrix Tk differs from the identity 

matrix only in four elements: tpp = tqq = cos z tW - - -tqp = sin z . We 

can chose a value for z such that 

"bring back" some off-diagonal elements, annihilated in the previws steps. 

Nevertheless, the diagonal form (1.66) may be approximated with a desired 

accuracy after sufficiently large number k of steps. The diagonal elements of 

% will then converge to the eigenvalues and the accurmlated product 

TIT Z...Tk to the matrix U of the eigenvectors. In the classical Jacobi 

iteration always the largest (in magnitude) off-diagonal element is annihilated 

and the search for it is time consuming. A better strategy is to annihilate the 

first off-diagonal element which is larger than a certain threshold, and 

decrease the threshold when no m r e  such element is fowd (ref. 11). This is 

the basis of the following program module: 

and 

[%+l]w = 0 , but the transformation may 

Prcqram m d u l e  M1B 

18PI REIl t t t t t t t t I t  t t t t I t  L I I t  l t  t t I t  t t t t I t  t I t  t t  t t t t t t t t t t t t l t  
:BE? HEN t EIGEMVALUES RND EIGENVECTORS OF R SYRHETRIC t 
:P04 *Ell t M T R l W  - JACOB1 METHOD t 
!O& REI I  l t t t t l t t t l t t t l l t ~ l t t t ~ t t t t t l t t t t t t t t ? t l ~ ~ ~ t t l t t t t t t  

lhi2 W N D l f l E N S I O N  GF RbTRlX 
13i: 7 E l l  A!N,W! RATRIX 
-3!a REIl 
IBla fiEM W P U T :  
1818 PEfl Ulh,J) l=i T O  N ,  EIGENVRLUES 
l8lE PEl l  ! I N  DECREASING ORDER) 
1922 R E 1  U[l,J) 1.1 TO N ,  J-TH EIGENVECTDR 
1024 HEM 
i 6 Z  FGR ;:I TC N :FOR J.1 TO W 
1928 U I  I , I  j z - (  I z J I  

iB3R C E l i  J : f t E l T  I 
1e;; :'=l 
:9;1 FOE 1=2 TO N :FOR J:! T O  I-! 

i83B Nil: :NEXT I 

RE4 !!PUT: 

IONLY LOWER TRIANGLE IS USED) 

! LlWER TRIANGLE OF M A T R I X  A l , , , )  IS OVERWRITTEN ) 

ie3t V Z V ~ R B S I A ;  I , J )  i 
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la10 IF v.0 THEN 1922 
1842 V0=ViNiNl.RBH00S : V 1 4  
1844 V=V/h 
lE46 FOR I@=; TO N :FOR JC.1 TO I@-1 
1848 IF ABS(AiIO,JB))<=V THE# 1916 
1858 Vl=l 
1852 IF A(J@,JQ!=kiI@,l@) THEN 1.1 :GOTO 18t.2 

lP56 C:.=ABS(A(J0.J0! - A (  10, iE1) 
1958 'I4zSQHi iR(!0,?0I-A( I!, I01 I'?t4lEii IP,J01*21 
!8bB T~2tk(lB,J8)tV?/i!'3tV4i 
lab! C=l!SER(ltT.'I) 
i964 S = T t C  

l R 6 8  'YS4(IP,iE] 
18'0 A (  10,l@l~Cl1(VS-~tT1A( IB,JB)tTlIR(J0,JB)) 
IS!? A(J@,~@!=Cll~A(J@,le)r2tTtiliIB,JO)tTlIVS) 
1871 RlIC,JB)=@ 
1876 FOP J.1 TO JE-1 
1878 
!8@@ A(J~~J)=CtA(JB,J)tSlb(I0,J) 
1682 ic(l0,!)=?'5 
1884 N E i T  1 
1636 FSR IdBtl TO 10-1 

1854 I F  AIJB,J0I>A(IS,IVI) THEN W 1  ELSE V2=-1 

Cl=C', :sf=S.'? :T!=T"? 

V S = - S t A (  J0 ,  J ) + C I A (  I0,J) 

I888 VS=-SIAiI ,JS)tCIII( I 0 , I )  
i890 
1892 A(IB,I)=VS 
1894 NEXT I 
18% FOR I=I@+l T O  N 
LE98 
1900 NI, JBi=CIA!I, JB)+StA( I! I @ )  
1902 A(Iq10)=V5 
1904 NEXT I 
lY@6 FOR 1 ~ 1  TO N 
1908 V S = C t U (  I,IB)-SlU( I ,J0) 
1910 UI I,JB)=SIU( I 10l+CtU(I,J0) 
i912 U(I,IE)=V5 
1914 NEXT I 
1916 NEXT J @  :NETT I@ 
1q18 IF Vl=l THEN V1.C :GOTO 1846 
1920 IF V?z'V0 TilEN 1844 

A (  1 ,JPI=CIA( I , J B ) + S t R [  10, I ]  

VS=-Stbi I , J P ) t C t A (  I ,101 

T IN DECRERSING ORDER 192-8 PE! _ _ _ _ _ _ _ _ _ _  
1924 FOR Is1 TO N :U(B,I~=G~I,Il :NEXT I 
1926 FOR I=? TO N :L= I  
1928 IF U(B,L-I))=U(0,L) THEN 1934 
1930 
19Y IF L!2 THEM L=L-1 :C.OTO 1928 
1934 NEXT I 
1936 RETURN 
1938 RE1 ltttt~ltttttt~tltltt~llllllll!!!llltttttttlltlttllt 

FOP 1.0 TO N :14(J,L-l) : U ( J , L - i ) 4 l ( J , L )  :U(J,L)=T :NEXT J 

Since the matrix 0 is symmetric, on input we store only its lower triangular 

portion (including the diagonal) in the correspmding entries of the array 6. 

This matrix will be destroyed during calculations. The resulting eigenvalues 

occupy the zeroth row of array U, in decreasing order. The corresponding 

eigenvectors are stored in the corresponding colurm of array U. ( Y o u  can 
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A =  

m i t o r  the iteration by printing the actual value of the threshold stored in 

the variable V ,  for instance in line 1845.) 

r10 1 2 3 4 

1 9 -1 2 -3 

2-1 7 3-5 

3 2 3 12 -1 

4 -3 -5 -1 15 

Example 1.6 Eigenvalues and eigenvectors of a symmetric matrix 

The eigenanalysis of the matrix (ref. 2) 

is carried cut by the following main program: 

100 PEP ________________________________________---------------------- 
/ ,  

102 REM EX. 1.t. EIGEN1'ALUE-EiGEWVECTCR DEiOMPOSlTlilN OF 4 SVH. M A T V I X  
184 REH bERGE MlB 

I05 REM [ D I f l E N S I S N  OF W T K I X i  
110 DATA 
112 RE# I L C I E R  TRIANGULAR PART! 
114 CIITA 18 
115 DATA 1, 9 
118 DATA ?,-i, 7 
1 3  DATA 
I?? DATA 4,-3,-5, -1, 15 
200 REII ---------- READ DATA 
202 READ W 
284 DIM A(N,N!,VIN,N! 
206 FUR 1.1 TO N :FOR J = l  TO 1 
208 READ A ( 1 , J )  
210 NEXT J :NEXT I 
212 HEM ---------- CALL JACOFI MODULE 
214 GOSUB 1800 
216 R E 1  ----------LPRINT RESULTS 
218 VI:STHING$( 13M, " - * !  
2 0  LPRINT nE16EtiVALUES:n 
222 LPRINT 
2 4  FOR ;=1 TO N :LPRINT USING " t.X##Wt'" " ;U[$,d j ;  :NEXT J 
225 L P R l N T  :LPRINT 1'1 
728 L P R I N T  :LPRIIJT "EIGENVECTORS:" 
230 L P R I N T  It 
232 FCH J=l TO N :LPRINT USING " ut " ; J ;  :NEXT 1 
?:4 L P R I N T  
236 FOR 121 TC N 
236 FOR J=1 10 N :LPRINT L E I N G  A 1I.XIMXZ " ; U i I , J ! ;  : R E U  J 
240 L P R I N T  
?42 NEXT I 
244 L P R I N T  VO :LPRINT 
246 STOP 

106 REM _ _ _ _ _ _ _ _ _ _  DATA 

:, 2 ,  3 ,  17 
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The program cutplt is as follaws. 

EikEI39ALUES: 

Exercise 

0 Check the results on the basis of (1.65). 

1.7 ACCURACY IN ALGEBRAIC WF.IPUTATIONS. 1LL-WM)ITIOND PROBLEMS 

Solving the matrix equation c\x = b by LU decanposition or by Gaussian 

elimination you perform a number of operations on the coefficient matrix (and 

also on the right-hand side vector in the latter case). The precision in each 

step is constrained by the precision of your computer‘s floating-point word 

that can deal with numbers within certain range. Thus each operation will 

introduce sme round-off error into your results, and you end up with some 

residual r = f%i - b # 0 , where 3i is the numerical solution of the equatim. 

Y o u  have seen that pivoting will decrease the round-off errors and hence the 

residual 

variables thereby increasing the range of your floating-point arithetics. 

r. Y o u  can also decrease the errors by using double-precision 

bother prwnising way to reduce the residual r is to perform an iterative 

improvement of the solution. The equations we use are Ax = b and AZ - b = r. 

Substracting the first equation from the secmd one gives I%Z = r , where 
e = K - x is the error in the solution j i  . We have two expressions for r 

that yield the equation 

since x is the solution we want to improve. We need only to solve this 

equation far e and to get the improved soluticn x = Si - e . Of course, 
neither e can be canpJted without error, but it will certainly reduce the 

error in x . We can repeat this step iteratively until all elements of r 

cle = f& - b with know terms on the right-hand side, 

- 
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will be indistinguishable from zero, which obviously means the machine epsilon 

of the computer w e  use. I t  is highly advisable to calculate at least the 

product A% in double precision. 

While the residual r can be considerable reduced by iterative improv-t, 

in many problems this does not mean that the residual error e will be also 

small. To relate e to r , define the norm IlAll of the square matrix A by 

IlAXll 

IlAll = max ---- - - max IlAxll 
IlXllW II x 11 =1 

I IXI I  

(1.67) 

which is a straightforward extension of the norm of a vector as defined in 

Section 1.1. According to (1.67) 

IlAXll 5 l lA l l l lx l l  (1.68) 

for all A and x . Since r = Fle and FI is nonsingular, e = A - l r  , and by 
(1.68) 

llell i I IA -~ I I I I~ I I  . (1.69) 

Since b = Ax , 

llbll i ll All llxll - (1.70) 

Wltiplying the two last inequalities and rearranging, for b f 0 we have 

(1.71) 

the desired relationship between the relative residual Ilrll/llbll and the 

relative error Ilell/llrll , where the llAllIIA-lI1 is called the condition number 

of  A , denoted by cond(6) . EIy (1.71) cond(A) is the relative error 

magnification factor, and its value is at least one. If it is very large, the 

relative error in x will be large in spite of carefully reducing the residual 

r by m e  of the methods discussed. Such problems are said to be 

ill-conditioned or nearly singular, and can only be solved by sophisticated 

regularization methods (ref. 12). The basic idea of regularization is replacing 

A by a sequence of matrices A1, %, ... such that cmd(Ai) <: cond(A) . The 
matrices Ai approximate A , but we constrain cond(Ai) by a suitable upper 

bound. In practice it is far from easy to select a reasonable termination 

cmdi tion. 

As a numerical analyst you may have to solve inherently ill-conditioned 

problems, but in scientific computing there are further opportunities. 

Neglecting or coupling unimportant variables, seeking further constraints or 
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devising new experiments fo r  fur ther information m y  help you t o  der ive a 

"better"  rrcdel and avoid near-singulari ty i n  computations. While t h i s  i s  one of 

the basic ideas o f  s c i e n t i f i c  computing, i t  is too genera1 t o  be useful,  and we 

can give you fur ther suggestions only i n  par t i cu la r  app l i ca t ims  (e.g., i n  

Chapter 3) . 

1.8 APPLICATIWS AND FLRTHER PRDELEMS 

1.8.1 Sto ich imet ry  o f  chemically reactinq species 

While l inear  algebraic methods are present i n  almost every problem, they 

also have a number o f  d i rec t  applications. Che of  them is formulating and 

solving balance equations f o r  extensive quant i t ies  such as mass and energy. A 

par t i cu la r l y  n ice  appl icat ion i s  stoichianetry o f  chemical systems, where you 

w i l l  discover m o s t  o f  the the basic concepts of l inear  algebra under d i f f e r e n t  

names. 

We consider a closed system wi th  k species denoted by M1, 3, ..., Mk . 
Let  ni denote the quant i ty o f  species Mi expressed i n  moles. The k-vector 

n = (nl, n2, ..., nk)T  

change 

closed, the mole vector changes 4-i are no t  a rb i t ra ry .  S t o i c h i m t r y  o f fe rs  

two ways t o  specify the se t  o f  admissible mole vector changes, i.e. the 

s t o i c h i m e t r i c  subspace. In par t i cu la r  appl icat ions ( e . g .  when ca lcu la t ing  

chemical equi l ibr ium) one o r  the other approach might be more advantageous, so 

that w e  study t h e i r  re la t i on  here. 

i s  ca l led  the mole vector and we are interested i n  i t s  

&I = n - no w i t h  respect t o  an i n i t i a l  s ta te  no. Since the sytem i s  

The f i r s t  approach i s  based on e x p l i c i t l y  describing chemical reactions. We 

wppose tha t  there are p reactions taking place i n  the system. The j - th 

reaction i s  described by equation o f  the form 

(1.72) 

where the s t o i c h i m e t r i c  coe f f i c ien ts  bij are'negatLve f o r  reactants (o r  so 

ca l led  left-hand species) and pos i t i ve  f o r  products (o r  right-hand species) o f  

the j - t h  reaction. The s t o i c h i m e t r i c  coe f f i c ien ts  can be considered as the 

components o f  the reaction matrix (o r  s t o i c h i m e t r i c  m a t r i x )  B of dimension 

kxp . I f  the system i s  closed, any mole vector change i s  due t o  chemical 

reac t ims,  i.e., 

C h = B S ,  (1.73) 
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where the p-vector 5 is formed by the extents of individual reactions.Its 

j-th compxlent [&.Ij measures how many moles of "left-hand side" have been 

transformed to "right-hand side" in the j-th reactim. 

The concept of a closed system can also be introduced without considering 

reactions. Chemical species are built from building blocks called atoms. Define 

the atom matrix CI , where CAIij is the number of the i-th atom in the 

molecule of the j-th species Mj . If the number of different atoms is 
denoted by a then the atom matrix is of dimension axk . The quantities of 
atoms in the system can be calculated by summing up their quantities in each 

spies, i.e., forming the product Pn. These quantities remain unchanged if 

the system is closed, 50 that 

& = 0 .  (1.74) 

For a given system both (1.73) and (1.74) hold, and hence 

ABs=0. (1.75) 

Since in qn. (1.75) the reaction extent vector 5 can take arbitrary values, 

w = o ,  (1.76) 

where 0 is a null matrix of d i m s i m  axp . 
Equatim (1.76) expresses the fundamental relation between the atom matrix 

and the reaction matrix of a closed system. The matrices CI and B , however, 
result in the same stoichiometric wbspace if and only if the wbspace 

defined by (1.73) and the one defined by (1.74) are of the same 

dimension, in addition to the relation (1.76). We denote the 

dimenaim of the stoichiometric wbspace by f also called the stoichiwnetric 

number of freedom . If the reaction matrix B is know,, then f = rank(B), 

i.e., f is the number of linearly independent reactions. If the atom matrix 

CI is k n m ,  then the stoichiometric number of freedom defined by (1.74) can 

be obtained from f = k - rank(CI1, i.e., f is the number of "free" variables 

in the general solution of the matrix equation (1.74). 

There are the following two basic problems in stoichiometry: 
- 

(i) Given an atom matrix CI construct a (virtual) reaction matrix B 

that defines the same stoichiometric subspace and has a minimum number 

of colums. 
- 

(ii) Given a reaction matrix B cmstruct a (virtual) atom matrix CI 

that defines the same stoichiometric suthpace and has a minirmm number 

of rows. 

a 
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The solution of  problem (i) involves the transformation of the basis. Starting 

from the canonical basis w e  replace r u n i t  vectors by r column vectors of 

the m a t r i x  A , where r = rank (A)  . For notational s impl ic i ty l e t  us renumber 

the species such that the f i r s t  r colums al, 9, ..., + are i n  the 

resulting basis. Then the table of coordinates takes the form: 

ar 0 0 1 

where Yr,k_r ccntainr the coordinates of vectors ++I, ..., + i n  the 

current basis. We select = k - r reactions i n  which species Mr+l, 

..., Mk are decomposed, respectively, i n t o  species M1, f+$, ..., Mr and 

obtain the reaction matrix: 

Mr+2 , 

- 
Interchanging the rows of 

species. 

B y w  can easi ly restore the or ig inal  order of 

To i l l u s t r a t e  the above procedure cmsider the species M4, %D, 
k = 5, and f ix ing the order of  CI-$D2, CHD3 and CD4 (ref. 15). Here a = 3, 

atoms as C, H and D gives the atom m a t r i x  

A =  4 3 2 1 0 .  [:: 1 :  :] 
After two transformations we ar r ive a t  the table of cmrdinates: 

dl 1 314 1/2 1/4 0 
a5 0 114 1/2 3/4 1 

e3 0 0 0 0  0 
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- 
From the table r = 2 and f = 5 - 2 = 3 . The (virtual) reaction matrix B 

with k = 5 row5 and = f = 3 columns is given by 

1 1 - 1  0 0 

3/4 1/2 1/4 

In m r e  familiar chemical terms the following reactions have been 

constructed: 

Now we turn to problm (ii). Taking the transpose of eqn. (1.76) we obtain 

BThT = 0 , (1.78) 

where the null matrix 0 is of dimension pXa . It is then foll- from 

(1.78) that starting with BT and repeating all the steps needed in problem 

(i) we arrive at iT . The number of rows in will be I = k - rank(B) . 
To see hw the method works, suppose six species M1, b, ..., M6 are know 

to take part in the reactions (ref. 15) 

The transpose of the reaction matrix is then 

0-1 0 0-1 1 , 1 -1-2 1 2  0 0 

B T =  [ 
-1 -1 1 2 1 -1 

and after two transformations we arrive a t  the table of cwrdinates: 

b1 b2 b3 b4 b5 b6 

b3 -1 -2 1 2 0 0 
b6 0 - 1  0 0 - 1  1 

e3 0 0 0 0 0 0  
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- 
A =  

F r a  the table rank(B) = 2 , Z = 6 - 2 = 4 , and the virtual atom matrix is 

-1 0-1 0 0 0 

0 -1 -2 0 0 -1 

0 0 2-1 0 0 

0 0 0 0 - 1 - 1  

- 
The matrix A imposes constraints m the mole vector change. In terms of mole 

numbers it means that 

"1 + "3 = cmstl 

=3 - "4 = cmst3 

"5 + "6 = cmst4 . 

n2 + 2n3 " 6  = ccnst2 

These quantities are preserved like atoms in the given reactions and hence are 

called reaction invariants (ref. 16). In this example we found 4 linearly 

independent reaction invariants. It does not mean, however, that the species 

MI, %, ..., M6 are built necessarily from 4 atans. In  fact, introducing the 

species M1 = CH4, 2 = 02, % = q, Mq =v, M5 = 9 ,  and M6=k$& 

the considered reacticns are possible, although the number of atam is only 3 . 
Based on the true atcm matrix the number of stoichimetric freedan is 

f = 6 - 3 = 3 , but the actual reactions do not span the possible 

stoichimetric subspace, and that is why a fourth reaction invariant appears. 

1.8.2 Fittinq a line bv the method of least absolute deviations 

We will discuss many times the problem of adjusting the parameters a and b 

of the linear functim y = ax + b in order to "fit" the line to the set 

{(xi,yi), i = l,Z, ..., m} of observations. In this sectim the "best fit" will 

mean the least sum of the absolute deviations between observed and computed 

values of y , i.e., the m i n i m  of the objective fwctim 

(1.79) 

This problem can be translated into m e  of linear programning. Introducing the 

variables 

problem given by 
si 2 0 we first construct an equivalent constrained minimization 
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m 
r1 

L A  
lyi-axi-bl 5 si, i = 1,2,  ..., m; ) si --> min. 

i=l 

Each constraint in (1.80) can be splitted as 

(1.81) 

Thus both the constraints and the objective function are linear. 

The only remaining problem is that a and b are not necessarily 

nonnegative, as required in linear programing. Inventing further nRnl variables 

al, a2, bl, $ 2 0 and setting a = al - a2 and b = bl - b2 will eliminate 

this difficulty, and we can finally formulate the linear programming problem as 

m 

) si --> min , 
i=l 

7-l 

L A  

subject to 

We apply the method to the data of Table 1.1, which gives the content of 

tar (x) and nicotine ( y )  in different sorts of cigarettes (ref. 17). 

Table 1.1 

Tar and nicotine content of cigarettes 

No. of observation 1 2 3 4  5 6 7 8 9 1 0  

Tar, mg 8.3 12.3 18.8 22.9 23.1 24.0 27.3 30.0 35.9 41.6 

Nicotine, mq 0.32 0.46 1.10 1.32 1.26 1.44 1.42 1.96 2.23 2.m 

As in the constrainto (1.82), the variables will be listed in the order 

bl, $, al, 5 1 9  52, ..., 510. To use the main program of Example 1.2 ,  it5 

IXYTA statements will be replaced by the following lines: 
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100 RE( ..____._________________________________----------.---- 

la? RE! E l .  1.8.:. F I T T I N G  A L I N E  - E A S T  ABSOLUTE DEVIATIONS 
104 RE! I1ER6E fl18,lill 

HEN ---------- DATA 
lh8 REN (kU!UER OF V M I A P L E S ,  HUNBEH OF CCHSTRAINTS) 
110 D A T A  14,Y 
112 DBTF i u  -1, 8.3, - 8.3, 1, 0, 0,  0, 0, B, 0 ,  0, 0, 0, GE, 0.32  
114 D A T A  1, - I ,  8.3, - 8.3, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0 ,  LE, 0 . 3 2  
116 DATA 1, -1, 1?.3* -12.3, 0, 1, 0, a, 8, 8, 8, 0 ,  0 ,  B, SE, 0.46 
118 D A T i  1, -1, 1?,3, - 1 2 , 7 ,  0,-1, 8 ,  0, 0, 0, 0 ,  0, 0, 0 ,  LE, 0 .46  
120 DdTB 1, -1, 18.8, -1R.8, 0, 0, I ,  0, 0, 0, 0, 0 ,  0 ,  0 ,  SE, 1.18 
l?? D A T A  1, -1, 18.8, -18.8, 0, 0,-1, 0 ,  0 ,  0, 0, 0, 0, 0, LE, 1.10 
124 DATP 1, -1, 2 2 . 9 ,  -22.9,  0, 0, 0 ,  1, 8 ,  8, 0, 8, 0 ,  0, SE,  1.32 
12C. DilT4 1, -1, 22.9 ,  -2.9, 0, 8 ,  0,-1,  0 ,  0, 0, 8, 0 ,  8 ,  LE, 1.32 

130 DATA 1, -1, 23.1 ,  -23.1, 0, 0, 0 ,  0,-1, 0, 0, f l ,  0, 0, LE, 1.26 
112 DATA 1, -1, 24.0, -24.0, 0, 0, 0, 0, 0, I, 0, 0, 8, 0, GE, 1.44 
134 DATA I ,  -1, ?4.C, -24 .0 ,  0, 8, 0, 0, 0,-I, 0, 0, 0, 0, LE, 1.44 
136 DATA 1, -1, 27.3, - 2 7 . 3 ,  0 ,  0, 0, 0, 0, 0, 1, 0, 0, 0, 6E, 1.42 
158 DATb I, -1, 2 7 . 5 ,  -27 .3 ,  0, 0, 0,  0, 0, B,-1, 0 ,  0, B, LE, 1.42 
141 PAT4 1, -1, 3.@, -30.0, 0 ,  8, 0,  0 ,  0 ,  0 ,  0 ,  1, 8, 0, 6E, 1.96 
142 DATA 1, -1, 30.0, -39.8, 0 ,  0, 0 ,  0, 0, 0 ,  @,-l, 0, 0 ,  LE, 1.96 
114 DATA 1, -1, TS.?, -35.9, 8 ,  0, 0 ,  0 ,  0, 0, 0 ,  0, 1, 0, GE, 2.23 
146 D A T A  1, -1, 3 5 . 9 ,  -3S.9,  0, 0, 0 ,  0 ,  0, 0 ,  0, 0 , - 1 ,  0 ,  LE, 2.23  
118 DATA 1, -1, 41.6, -41.6, 0, 0, 0 ,  8, 0, 0, 0, 0 ,  0, 1 ,  SE, 2.20  
150 D A T A  1, -1, 41.6, -41.6, 0, 0, 0 ,  0 ,  0 ,  0, 0, 0, 0,-1, LE, 2.20  
15; HE! [ OBJECTIVE FUt iCTlUN ) 
154 D A T A  @, 0, B, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, f l I N  
155 RE! ---------- FRO! HEFE THE SARE AS THE PROGRAM OF EK. 1.2. 

 DATA 1, -1, 23.1, -xi, 0, 0, 0, 0, I ,  0, 8, B, 0 ,  0, SE, i.?b 

The sample o u t p t  of the program is: 

OPTIHUH SOLUTION 

: 
2 

4 
5 
b 
7 
8 
7 

10 
1: 
12 
11 
!4 

0 
,2484932 
6.RWlbE-02 
0 
0 
.1 ,3V27 
6.882199E-02 
0 
7.3698!bE-02 
4 .465 iS lE-02  
.201:b91 
.15:b98s 
1.958874E-fl2 
.40082lq 

0 0 
0 0 
0 8 
0 0 
1 0 
1 ,1339727 
1 6.08?198E-02 
1 0 
1 3,369876E-02 
1 4 I 465751E-02 
1 .?El3699 
1 ,153985 
1 I .958874E-02 
1 .4808?19 

________.___________------ 

ORJECTIL'E FUNCTION MlNl!UH VALUE .,....,.,. 1.08863 

Thus the estimates of the parameters are a = 0 . W 9  and b = -0.2485 . 
We are a l m t  sure that you solved simi lar  problem by the method of  least 
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squares (also k n m  as linear regression) and yar know that it is 

computationally simpler than the procedure suggested here. The method of least 

absolute deviations is, however, more robust, i.e., it is less sensitive to the 

errors in observations (ref. 18). We will give you m r e  details in Section 

3.10.1. 

1.8.3 Fittino a line bv the minimax method 

Now we solve the previous problem by minimizing the objective function 

Q(a,b) = max lyi - axi - bl . ( 1.83) 

This procedure is also known as uniform or Chebyshev approximation. We have the 

introduce the single auxiliary variable s 0 to translate the minimizatim 

of (1.83) into the problem 

1 <i <m 

Iyi - axi - bl 5 s, i = 1,2, ..., m ; s --> min . (1.84) 

Proceeding a5 in the previous section we obtain the linear programing problem 

The main program is now used with the DATA statements 

174 BATR 
120 P4Tb 
128 D A T 4  

122 DUT4 
134 D A T A  
1% BPTA 
138 D A T R  

131 D A T R  

, -1, 2?.F, - 2 2 . 4 ,  -1, LE, 1 , X  
I -1, 22.1, -2Z,lq 1 ,  EE, l .?h 
, -1, 23.1, -23,1, -1, LE, 1 . 3  
I -1, :'4.0, -25.0, 1, GE,  1.44 
I -1, 24.0*  -24.8,  -1, LE, 1 .44  
I -1, 27.1,-27.T, 1, GE,  1.4; 
! -1: ?7.:, - 2 7 . 3 ,  -1. LE, 1 .42  

(1.85) 
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and g i v e s  the o u t p l t  

I T r P E  L.H,S. R.H.5 3 t ; C l i  SHADOW P R I C E  

.. . i; 
. l' .- 
'46 
I 4 6  

1.1 
1.1 
1.32 
i.:.: 
1.26 
l.:b 

1 , 4 4  
1-44 
1.4: 
1.42 
1.9$ 
1.96 
i 77 

" 1- 
& . ' 1  

..-.. 
^ *  i.' 

q q  L.' 

T h u s  a = 0.05939 and b = -0.4601 . In t h i s  case the shadow prices are also 

of i n t e r e s t  and show t h a t  p o i n t  8 seems to be an outl ier.  
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Notice that the methods presented in Sections 1.8.2 and 1.8.3 can be 

extended to estimate the parameters in mltivariable functions that are linear 

in the parameters. 

1.8.4 halvsis of spectroscopic data for mixtures with backqrwnd absorption 

SpectroKopy in the visible region is a classical method of determining the 

composition of species in solution if they have sufficiently different 

light-absorbing properties. The method is based on measuring light absorption 

at different wavelengths. If aij denote the molar absorption of the j-th 

ccmponent at the i-th wavelength, then the total light absorption is well 

n 

described by the weighted sum Ai = 1 aijxj, where n is the number of 

i=l 

absorbing species in the solution, and xj i5 the concentration of the j-th 

component. If the aij's are known, observations Al, $, ..., An at n 

appropriately selected wavelengths will enable us  to find 

by solving a matrix equation. Since the 

errors, it is better to have m > n observations, and estimate x by the 

least squares method, i.e., minimizing the objective function 

T x = (x1,x2, ..., xn) 
hi's are corrupted by measurement 

m 
Tl 

Q(x1,x2 ,..., xn) = 2, (Ai -.% a. .x.I2 . 
i=l 

1J J 

We run, however, into difficulty if there is an (n+l)-th, unidentified 

component in the mixture with unknown molar absorption cefficients. T h  

(1.87) 

and the best we can do is to minimize 5ome error norm, e . g . ,  (1.86) under 

constraints (1.87). Because of the absorption of the unknann component, the 

minimum of (1.86) is expected to be large, with large residual deviations 

between the observed and measured absorbances. As we will discuss in Section 

3.10.1, in such situations we obtain better estimates of x by minimizing the 

sum of absolute deviations 

In addition, this extremum is easier to find. Indeed, by (1.87) each deviation 

in (1.881 is nonnegative, and (1.88) can be replaced by the sum of 
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deviations w i t h w t  taking absolute values. Furthermre, the sum of fixed 

does not change the value of x minimizing (1.881, and hence w e  obtain a 

linear programming problem with constraints (1.87) and x j  2 0 

Ai’s 

the objective function (j = 1,2 ,..., n ) ,  and with 

Our considerations are va l id  only for  error-free observations since with 

errors i n  Ai the inequalit ies (1.87) are not necessarily true. It is f a r  f rom 

easy to  extend th i s  method to  the real situation. In ( re f .  19) the authors 

increased each observed Ai 

intervals ( fo r  def in i t ion see Chapter 3), i.e., replaced (1.87) by 

inequalit ies 

values by the half-length of  the confidence 

n 
T-1  

. L A  
} 

j =1 

aijx 2 Ai + tsi , 

where si i s  an estimate of the standard deviation of Ai, t i s  the value of 

the Student’s t ( say, a t  0.05 probabil ity level ) with r - 1 degrees of 

freedom and r denotes the number of Ai’s used t o  determine the standard 

error si. I f  there are no repeated observations, si can be the estimated 

precision of the spectroscopic measuremeot, but then there i s  5 ~ e  

arbitrariness i n  selecting a reamable value fo r  t. 

We are going to  reproduce the example studied i n  ( re f .  191, where the term 

tsi 
ar7,b and € isomers of hexachlorin=yclohexane, for  testing the method i n  

known quantities. The absorption of the mixture was measured a t  i0 wavelengths, 

and the 6 ixxner was regarded as the unknown compent,  responsible fo r  the 

background absorption. Therefore, only the specific absorbances of the a,7 and 

6 i m r s  were assumed t o  be known. 

has heen replaced by a given percentage of Ai . The mixture consisted of 

We use the main program of Example 1.2 t o  solve the l inear programing 

problem. A t  si=O 

i n  each statement are the molar absorption coeff ic ients a t  the 

corresponding wavelength, whereas the right-hand side is the observed 

absorbance Ai . The objective function coefficients are the sums i n  (1.89). 

Y o u  can easily reconstruct the data of ( re f .  19) from the following DATA 

statements. 

the constraints have the form (1.87). Thus the coefficients 

DATA 



58 

I@B REW ________________________________________-----------.--..- 

10:' FiEH EX. 1.8.4. ANALYSIS OF SPECTRDSCOF'IC DATA YITH EACPGROUND 
104 REM M R G E  t!la,Kll 
106 KEH -------- DATA 
108 KEfl (NUREER OF VAPIARLES, NUMBER OF CONSTRAINTS) 
11% DATA Z,X 
1 2  RE! [ ALFA B A M A  DELTA OBSERVED) 

llt DATA 0 , ,182928, I ,LE, 0.913 
118 DATA ,388334 , 17 , .i31?!91 ,LE, 1.106 
1 3  DATA P , 0 , ,111669 ,I€, 2.938 
122 DATR B A , ,436536 , ?El  2.49 
12! DATA .i25941 , Ll , B ,LE, 1.219 
126 DfiTA 0 , ,121804, B ,LEY 0.63 
128 DATP ,83647 , .424i93, .04i717 ,LE, 2.534 
138 DATA ,862569 , . ? X 4  , ,072141 , LE, 1.87 
11: DATA ,25941 , ,090188, .02605? ,LE, 1.673 
134 DdTA .BY1088 , ,238967, ,00971 ,LE, 1.547 
135 D A T A  ,109423 , .0X76 , ,18749 ,LEI C . 7 8  
_. 13 F T 4  .04G!!82 , .0?:965, ,68749 ,LEV 1.367 
14B DATA ,089458 I .004937, .19f114 , L E I  1.034 
142 TIST4 ,1235 , .0898!5, ,075599 ,LEY 0,959 
144 DATA .001256 , ,@524?8, , 3 9 1 6 7  ,LE, 1.8' 
145 DATA ,289388 , ,11127?, ,017632 ,LE, 1.738 
148 11416 .157084 I ,838698, ,015211 ,LE, 2.88: 
158 DATir .0!226? , . N 5 8 3 ,  ,88749 ,LE, 1.1% 
IS; Dl)Tfi  .17Q558 , ,627956, ,052665 ,LE, 0.969 
154 EEi'i !OHJECTIVE FUNCTION COEFFICIE#TS! 

114 D A T A  e , 8 , . i m a 4  ,LE, e .755  

131 D m  2 . ~ 1 5 5 5  , ! , B ~ P P B  ,1,5?015 ,MAX 
158 REM ---------- FkOM HERE THE M E  ii5 THE PROGRAN OF E l .  I.?. 

It is easy to modify the program t o  Solve the problem assuming 5% and 1W. 

errors in observations. Results are summarized in Table 1.2. The table 

also includes the uncmstrained least squares estimates of x ,  i.e., the values 

minimizing (1.86) with n = 3 and m = 22 . This latter result was obtained 
by inserting the appropriate data into the main program of Sectim 3.2 . 

Table 1.2 

Results for the spectroxopic problem with background 

I saner True Estimated concentration, X 

7. 1 inear programming 
least squares 

tsi= ML tsi= 5% tsi=lO% 

a 3.85 3.33 3.49 3.66 4.51 
7 4.88 4.67 4.70 5.14 4.69 
6 4.86 5.02 5.27 5.52 6.21 

The procedure described here clearly gives s-hat better results at each 

assumed magnitude of errors than the least squares approach. 
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1.8.5 Canonical form of a Quadratic response function 

The conversion y in a chemical reaction was described by the empirical 

relationship (ref. 13) 

y = 67.711 + 1.944~1 + 0 . 9 0 6 ~ ~  + 1.069~3 - 1.539~~1 - 0.264x22 - 
- 0 . 6 7 6 ~ ~ ~  - 3 . W x 1 x 2  - 2 . 1 8 8 ~ ~ ~ 3  - 1.212~2~3 (1.91) 

as a function of the temperature xl, the feed concentration xz  and the 

reaction time x3. We want to know whether or not (1.91) has a maximum. More 

generally, we are interested in the gwmetric characterization of the quadratic 

function 

y = a + bTx + xTAx 

of n variables x = (x~,x~,...,x~)~, where b is an n-vector and A is an 

nW symmetric matrix. From (1.911 in this example we have 

(1.92) 

-1.539 -1.544 -1.094 

-1.544 -0.264 - 0 . 6  

-1.094 - 0 . 6  -0.6761 

Any extremum point of (1.91) satisfies the 

-- * - b + 2 A x = 0 .  - 
ax 

6s we will see later, A is nonsingular, hence 

equatim 

the only solution is 

(1.93) 

(1.94) 

x' = -(1/2)A-'b . It may be a maxinum, a mininum or a saddle point. We can 

slightly simplify the problem by setting 

into 

y - yo = zTAz , 

z = x - xo , wich translates (1.92) 

(1.95) 

where yo is the value of (1.91) at xo. This point xo i5 the (global) 

maxinum point of (1.91) if and only if 

matrix A is negative definite. We can easily check this property by 

diagonalizing A. Let U denote the matrix formed by the normalized 

eigmvectors of 

(1.95) is reduced to 

Z ' A Z  < 0 for all nonzero z ,  i . e . ,  the 

A . By (1.66), introducing the new variables w = UTz , 

n 
- yo = -y XiWZi , 

L J  

i=l 

(1.96) 

where Xi is the i-th eigmvalue of A and wi i5 the i-th element of 



the vector w , that is wi = uTiz . Expression (1.96) gives the quadratic 
function (1.91) in its canonical form. This function has maximum at xo if 

and only if 

eigmvalue-eigmvector decompocition of matrix A by changing the DATA 

statements in the program presented for Example 1.6. The following results are 

obtained : 

xi < 0 for i = 1,2, ..., n. Therefore, we perform the 

What can we see f r m  these results? The point xo is not a maximum, since the 

first eigenvalue is positive. Selecting the canonical variables 

w2 = w3 = 0 we can increase the value of y . By orthogonality of the 
eigmvectors any step x - xo parallel to the first eigenvector u1 results 

in wlf 0 and wz = w3 = 0 . 

w1 # 0, 

To find the point xo m e  can use LU decomposition and a backsubstitution. 

An other possibility is to apply the results of the eigmvalue-eigenvector 

decanpositim directly. By eqn. (1.66) 

Y (1.97) ,--1 = m-luT 

and hence (1.94) takes the form 

x0 = -(1/2)LQ-1UTb . (1.98) 

Evaluating this expression is quite easy if taking into account that is a 

diagonal matrix with reciprocal values of the eigenvalues in its main diagonal. 

We leave to you to compute 

higher at the point x = xo + u1 than at the point xo. 

D-' 

xo and to show that the computed conversion is 

1.8.6 Euclidean norm and condition number of a square matrix 

In Section 1.7 we emphasized the importance of the condition number ccnd(A), 

but did not tell you how to find it. Now w e  try to close this gap, first 

considering the norm IIAII of a matrix. &cording to (1.67) to find IlAll we 

have to maximize the function 

l lxl l = 1 . This problem is easy to solve by writing clx in the basis of the 

llc1x1I2 = xT(ATAlx subject to the constraint 
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eigenvectors U of ATA, thereby introducing the new variables w = UTx. Since 

the columns of U form an orthonormal system, IlwII = IIUTxII = llxll , and by (1.66) 

IIAxll~ = WTDW , (1.99) 

where D is diagonal matrix with the eigmvalues of ATA in its diagonal. The 

function 

eigmvector correspmding to the largest eigmvalue Xmx = X1 of ATA, and hence 

(1.99) clearly will attain its maxirmm value if w = ul, the 

IIAII = ( X m a X P 2  . (l.lrn, 

Since ATA is symmetric and positive semidefinite, Xmax is real and 

nonnegative. If the matrix is nonsingular (and hence positive definite) then 

Xmin f 0 and by (1.97) 

IlA-lII = (Xmin)-1/2 , 

where Xmin = An is the smallest eigenvalue of AT& Therefore, by 

def inition 

cond(6) = ( x ~ ~ / x ~ ~ ~ ) ~ ’ ~  . 
We note that the values are called the singular values o 

(1.101) 

its 

(1.102) 

the matrix - 
A and they can be determined directly from A , withwt forming AT& . The 
correspmding numerical method called singular value decomposition is 

relatively complex but somewhat m r e  accurate then the procedure described 

here, for details see (ref. 11). 

For exercise find cond(H6) of the Hilbert matrix H6 defined by (1.691. 

Give a crude estimate of the relative errors of the columns of H-’6, if the 

floating-point numbers are stored to 7 digits. 

1.8.7 Linear dependences in data 

Observing a process, scientists and engineers frequently record several 

variables. For example, (ref. 20) presents concentrations of all species for 

the thermal i-rization of a-pinene at different time points. These species 

are orpinene (yl), dipentene (yz), all-ocime (y,), pyrmme (yq) and a dimer 

product (y5). The data are reproduced in Table 1.3. In (ref. 20) a reaction 

scheme has also been proposed to describe the kinetics of the prDcess. Several 

years later B o x  at al. (ref. 21) tried to estimate the rate coefficients of 

this kinetic model by their rmltirespmse estimation procedure that will be 

discussed in Section 3.6. They run into difficulty and realized that the data 

in Table 1.3 are not independent. There are two kinds of dependencies that may 

trouble parameter estimation: 



Table 1.3 
Concentrations i n  the thermal isomerization o f  a-Dinene 

(1) I f  one of  the variables is d i f f i c u l t  t o  measure, the experimenter may 

calculate i t s  values f rom some known re la t imsh ip ,  e.g. ,  a balance 

equation . Let Y = [yl,yz,...,yn] denote the m m  observation m a t r i x ,  where 

m i s  the number o f  observations , n i s  the number o f  variables and y, 

is the j - t h  column o f  the observation matrix. The dependence is o f  the 

form 

n 

2; vjyij = c m s t  

j=1 

( 1.103) 

fo r  a l l  i = 1,2,...,m, where the v j ' s  are constant coeff ic ients.  The 

a f f i n e  l inear  relat ionship (1.103) can be transformed i n t o  a l inear  one 

by centering the data, i.e., considering the deviat ions xij = yij - y j ,  

where y, = [izlyi, ] / m  i s  the average of  the elements i n  the j - th  

column o f  Y . T h  the colums o f  the centered data m a t r i x  X , defined 

by [ X I i j  = x -  ., are l i nea r l y  dependent, and hence there ex i s t s  an 

n-vector u # 0 such that 

- 

- r m  

1, 

x u = 0  . (1.104) 

M-l l t ip ly ing (1.104) by XT we have ( X T X ) u  = 0 , and thus there ex i s t s  

an a f f ine  l inear dependence of the form (1.103) a m g  the columns o f  Y 

i f  and only i f  the matrix XTX has a A = 0 eigenvalue. I t  i s  obv iws  

that Amin 

raindof f errors. 

w i l l  equal not zero, but 5ome small number because o f  the 



63 

(ii) The second kind of dependmce is somewhat weaker. In chemical systems the 

variables are required to satisfy a number of balance equations, e . g . ,  

stoichiometric relations. Therefore, certain affine linear relationships 

may exist among the expected values of the responses. In such cases the 

least eigmvalue x~~~ of XTX will be larger ttwn in the previous case, 

stemming from a linear dependence directly a m g  the (centered) data, but 

still small. 

We need threshold values of Xmin in order to classify the correspmding 

linear dependence as (i) or (ii). According to Box at al. (ref. 211, in case 

(ii), i.e., a linear dependence in the expected values of the responses 

yl, y2, ..., yn, the expected value of the eigenvalue x~~~ can be estimated 

bY 

~((~,~~)(ii)) = (m-l)uTCxu , 

where u is the corresponding eigmvector of XTX , and C, is the n m  

covariance matrix of measurement errors in the observations of y1,y2, ...,yn. In 

practice it is usually difficult to find a reliable estimate of 

discuss this problem in Chapter 3 ) ,  and we can get a crude estimate of 

E[(Xmin)(ii)I approximating Cx by I?r , where the average variance ”zr 
is estimated from the residual s u m  of squares following a least squares 

estimation procedure. These concepts will also be discussed in Chapter 3, and 

here we simply state that under the above approximatim 

E[(Xmin)(ii)l Z (m - 112,. To obtain a similar upper bwnd on 

case (i), when there are only roundoff errors present, Box at al. (ref. 21) 

suggested to assume that the rounding error is distributed uniformly with range 

-0.5 to +0.5 of the last digit reported in the data. The rwnding error 

variance “zre is then givm by the range squared divided by 12, and 

E((Xmin)(i)) Z (m-l)”zre . In Table 1.3 the concentration data are reported to 
the nearest 0.1 percent and therefore the range of the last reported digit is 

from -0.05 to +0.05 or 0.1. Thus, for class (i) of the dependences we have 

EC(Amin)(i)l 5 71(0.1)2/12 Z 0.006 . As we will show in Section 3.6, the 

average variance 2 5 0.6 and hence the threshold for class (ii) is given by 
EC(Xmin)(i)I Z (m-l)> z 4.2 . 

eigmvectors of XTX, where x is the centered observation matrix from the 

data of Table 1.3. The program outplt is as follows. 

( 1.105) 

Cx (we will 

- 

Xmin(i) in the 

- 

- 

We used the program given in Example 1.6 to calculate the eigmvalues and 
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Since 

we expect t o  f ind two exact l inear dependences i n  the data. F r m  an exemination 

ofthe or ig inal  paper (ref .  20) Box a t  a l .  ( ref .  21) fwnd that y4 had been not 

measured because of experimental d i f f i c u l t i e s ,  but rather had been assumed to  

constitute 

assumed that 

relationship 

x4, x5 << 4.2, and both are close t o  the threshold (Xmin)(i) = 0.006 , 

3% of the to ta l  cooversion of a-pinene (y4) .  That is, i t  was 

y4 = 0.03(1Wa-y1) , which gives the exact a f f i ne  l inear 

(0.@3)~~ + ( 0 ) ~ ~  + ( 0 ) ~ ~  + ( l ) y 4  + ( 0 ) ~ s  = 3 (1.106) 

among the observations. The second such dependence, associated with 

frm the normalization of the data, forced t o  sat is fy  the balance equation 

x4, s t m s  

Y 1 + Y 2 + Y 3 + Y 4 + Y 5 = 1 .  (1.107) 

The eigenvalue X3 i s  less than 4.2, but much larger than 0.awb. Thus there 

i s  a further l inear dependence, now a m g  the expectations of the y ' s .  This 

stems from the assumed reaction scheme, given la te r  i n  Section 3.6, and i s  

discussed there. 

The form of the l inear dependences (l.lmb) and (1.107) can be discovered 

by looking a t  the eigenvectors that correspond to  the small eigmvalues 

and X4, respectively. The only large el-t i n  u5 corresponds t o  the 

variable y4, and hence u5 certainly stems from (1.10A). According t o  

(1.107) the eigenvalue u4 i s  expected to  have the form u4 = (v,v,v,v,v) 

with identical elements v. Since IIu411=1, v = J5/5 = 0.447 . The eigmvectors 

are, however, forced to  be orthogonal. The projection of  the thwre t i ca l  

eigenvector (0.447, 0.447, 0.447, 0.447, 0.447IT 

to  

close to  the empirical eigenvector 

interpretations of eigenvectors i n  Section 3.5.2. 

X5 

T 

i n t o  the subspace orthogonal 

gives the vector (0.465, 0.468, 0.464, 0.363, 0.466IT, which i s  rea l l y  u5 
u4. We w i l l  use s imi lar  mechanistic 

I n  th i s  example we used some concepts that w i l l  be r i go rws ly  defined only 
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in latter chapters. It is, however, difficult to avoid such flaws in structure 

when presenting applications of essentially algebraic methods, since the 

problems themselves usually c o w  from other application areas. 

1.8.8 Principal component and factor analysis 

We generalize the discussi~ of the previous section by considering the m m  

raw data matrix Y, obtained by measuring the variables yl, y2, ..., y, at 

m sample points. Depending M the physical meaning of the data we apply sane 

kind of preprocessing of the raw data to obtain the observation matrix X 

with the same number of row5 and colums, respectively. In the previous section 

we considered centering as possible preprocessing. Another useful procedure is 

normalizing a colwm by the empirical standard deviation of the observations in 

the given column. 

decomposition of the n m  empirical covariance matrix Cx = XTX (ref. 22-24). 

The eigenvalues are denoted by 

inequality follows from the presence of sow random error in the data. Using 

the eigmvector5 ul, u2, . . . , un, define the new variables 

Principal canponent analysis is based a, the eigenvalue-eigenvector 

x1 2 x2 2 ... 2 An > 0 , where the last 

2, = x-1/2n(ulnxl + U a X 2  + . . . + unnxn) 

(1.110) 

called principal components or abstract factors. We calculate the row vector 

(zl, z 2 ,  ..., zn) for each sample point, and construct the mm principal 

component observation matrix 2 from these row5. By (1.110) 2 is given by 

z = xm-1/2 , (1.111) 

where D-li2 is the diagonal matrix with the square roots of the reciprocal 

eigenvalues in its diagonal. Y w  can readily verify that 

thus the principal components are uncorrelated and each variable 

empirical variance 1. These are the important properties we will exploit. 

C, = ZTZ = I ,  and 

zi has the 

Since UTU = I, by (1.1W) the observation matrix can be written as 

X = ZD1/2UT . (1.112) 

Thus the variables x are represented by the linear combinations 



(1.113) 

of  the p r i n c i p a l  cmpments. Th i s  expres s ion  is ve ry  in fo rma t ive .  Each v a r i a b l e  

zi has u n i t  va r i ance ,  and i n c r e a s i n g  t h e  index i the corresponding p r i n c i p a l  

components zi w i l l  less and less i n f l u e n c e  the observed v a r i a b l e s ,  according 

to  the dec reas ing  e i g m v a l u e s  X i .  

P r i n c i p a l  components corresponding to small  e igenva lues  may g i v e  e f f e c t s  

w i th in  the range of measuremmt errors. Having information on the magnitudes of 

these errors e n a b l e s  u s  to  c l a s s i f y  the p r i n c i p a l  components as primary and 

secondary ones. T h e  s i m p l e s t  method of c l a s s i f i c a t i o n  is cons ide r ing  a 

th re sho ld  on the e igenva lues ,  as we d i d  i n  the p r e v i w s  section, bu t  there 

e x i s t s  a l a r g e  number of more involved procedures  ( r e f .  23). In s m  

a p p l i c a t i o n s  the selected primary p r i n c i p a l  components are r o t a t e d  i n  o r d e r  to 

f o r m  f a c t o r s  which can be better i n t e r p r e t e d  i n  phys i ca l  t e r m s .  Sometimes one 

wants to know on ly  the number of primary f a c t o r s .  For example, spec t roscop ic  

a n a l y s i s  of a number of mix tu res  con ta in ing  the same components i n  d i f f e r e n t  

compositions w i l l  e n a b l e  us to f i n d  the number of  species w i t h o u t  any f u r t h e r  

information on their p r o p e r t i e s .  

Another important problem is to reproduce the obse rva t ion  matr ix  us ing  on ly  

the primary f a c t o r s ,  i.e., dropping sane small  terms i n  (1.113) that l i k e l y  

stem from measurement error. 

Represent ing the d a t a  i n  terms of  a small number of  primary f a c t o r s  is a 

very e f f i c i e n t  way of  s t o r i n g  information.  Th i s  approach is f r e q u e n t l y  used i n  

spec t roscop ic  l i b r a r i e s ,  designed to  i d e n t i f y  unknown species by c m p a r i n g  

their spectra with ones f i l e d  i n  the l i b r a r y .  

Y w  w i l l  better understand the g o a l s  of f a c t o r  a n a l y s i s  cons ide r ing  f i r a t  

the h igh ly  i d e a l i z e d  s i t u a t i o n  wi th  e r r o r - f r e e  o b s e r v a t i o n s  and on ly  r < n 

l i n e a r l y  independent columns i n  the matr ix  X . As d i scussed  i n  Sec t ion  1.1, 

a l l  columns of X are then i n  an r-dimensional subspace,  and you can w r i t e  

t h e m  as l i n e a r  combinations of r b a s i s  v e c t o r s .  S i n c e  t h e  matr ix  X T X  h a s  

now r nonzero e i g m v a l u e s ,  there are e x a c t l y  r nmvan i sh ing  v e c t o r s  i n  the 

m a t r i x  2 def ined  by (l.lll), and these v e c t o r s  form a b a s l s  f o r  the subspace.  

T h e  corresponding p r i n c i p a l  cmp-ents zl, z2, ..., zr  are the c o o r d i n a t e s  i n  

t h i s  b a s i s .  In t h e  real l i f e  you have measurement errors, the c o l u m s  of  X 
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are no more linearly dependent, and XTX has n - r -11, but nonzero 

eigmvalues. Nevertheless, choosing the primary factors you select the subspace 

what is really important, and the primary factors are coordinates in the basis 

for this subspace. 

Exercise 

0 Reproduce the observation matrix in Sectim 1.8.7 using 1, 2, 3, and 4 , 
respectively, primary factors. Compute the sum of reproduction error squares 

for each case. Compare these sums with the following wms: X2 + X3 + h4 + X5, 

X3 + X4 + X5, X4 + X5 and X5, respectively. 
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Chapter 2 

NONLINEAR EQUATIONS AND EXTREMUM PROBLEMS 

On the basis o f  the p rev iws  chapter y w  can t e l l  i n  advance t k  number o f  

el imination steps or, more generally, the number o f  algebraic operations 

required fo r  solving the system c\x = b of l inear equations. Chfortunately, 

there ex i s t  no s imi lar  f i n i t e  procedures f o r  solving the system o f  nonlinear 

equations o f  the general form 

f ( x )  = 0 . (2.1) 

Root f inding i n  (2.1) invar iably proceeds by i t e r a t i o n  ( re fs .  1-31, 

constructing a sequence 

t o  converge t o  a root r o f  (2.1). Natural ly you would l i k e  t o  terminate the 

i t e ra t i on  when Xk sa t i s f i es  the condit ion llxk - rll 5 E , where E i s  a 

desired error bound, but the rwt r i s  unknown. Some pract ical  termination 

xl, x2, ... of  approximate solut ions that are expected 

where El and E2 are small parameters, and I M  i s  an upper bcund on the 

number of i terat ions.  Neither o f  these condit ions w i l l  assure that 

rea l l y  close to the root r , but w i l l  save you frm useless i t e r a t i m s  that 

can move Xk  even fur ther apart f r o m  r because o f  the accumulating rwndo f f  

errors. Since y w  cer ta in ly  know what r e a m a b l e  tolerance means f o r  your 

part icular problem, fol lowing the i t e ra t i ons  M the screen i s  of ten superior t o  

sophisticated convergence c r i t e r i a .  

xk i s  

Another class o f  problems requir ing i t e ra t i on  i s  minimization or 

maximization of a nonlinear scalar valued function g which depends on one or 

i n r e  variables x ( re f .  4 ) .  A value r of  the independent variables i s  a 

local  minimum p i n t  i f  g ( r )  < g (x )  f o r  a l l  x i n  a neighborhccd o f  r . 
Simi lar ly,  r i s  a local maximum i f  g ( r )  2 g(x)  i n  a neighborhwd, and then 

r i s  a l o r a l  m in imum point of the function -g(x) . Therefore, we will 

r e s t r i c t  consideration t o  the problem 

g ( x )  --> min . (2.2) 
X 

In some problems the possible region o f  independent variables i s  defined by 

equali ty or inequal i ty constraints. As y w  have seen i n  Section 1.2, such 

constrained extrermm problems are easy t o  solve i f  both the cms t ra in t s  and the 
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objective function are linear. In the nonlinear case the most popular approach 

is to convert constrained problems into a sequence of unconstrained ones by 

penalizing points outside the feasible region (ref. 5 ) .  Such sophisticated 

methods are beyond the scope of our book. Nevertheless, our programs will also 

keep the estimates within a region defined by the user in order to avoid 

functim evaluation at points where the function may not be defined at all. 

This simple test is sufficient if the extremum is known to be at some inner 

point of the feasible region. 

While the number of independent variables is arbitrary in cur definitions, 

it makes a tremendous difference in cmpltations. Simultanews solution of n 

equatims and minimization in n dimensions are much m r e  difficult than in 

one dimension. The main difference bet- one and several dimsions is that 

in one dimension it is possible to "bracket" a root or a local minimum point 

between s m  bracketing values, and then to tighten the interval of 

uncertainty. This gives rise to special algorithms, and hence the solution of a 

single equation and minimization in one variable will be dixussed separately 

f r m  the multidimensional methods. 

Solutions of equations and those of extremum problems are closely related. A 

point r is the root of the equations f(x) = 0 only if it minimizes the 

function 

differentiable function g satisfies the equations % ( % ) / a x  = 0 . Though a 
r w t  is not necessarily an extremrm point of g, this transformation may be 

advantagwus in one dimension. As will be discussed the situation is, however, 

completely different with m r e  than one variable. 

We would like to c b s e  methods that are robust, i.e., will converge to a 

solution if our initial estimate is reasonably close to it and, in addition, 

will cmverge rapidly. Apart from the one-dimensional case, where the snlution 

can be bracketed and found in a very safe way, robustness of a method is nuch 

problem dependent. To measure hcw fast the convergence is we can use the local 

approximation 

g = fTf. RI the other hand every local extrmm point of a 

in a small neighborhood of the solution 

in the k-th iteration. The exponent p depends only on the method, which is 

then said to have cmvergmce of order p . Since C is problem dependent and 

this analysis is local, the order p does not characterize the cmputational 

effort required to solve a particular problem. For this latter plrpose one can 

use the number of iterations. We may need, however, to evaluate the function 

(and its partial derivatives, if the algorithm requires t h )  different times 

in each iteration of different methods, and hence a sanewhat m r e  realistic 

r , where ek = xk - r is the error 
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measure of the computational e f fo r t  i s  the number of equivalent function 

evaluations. 

2.1 MIvII\EAR EWFlTIONS I N  auE VARIQELE 

2.1.1 Cardano method for cubic equations 

The roots of  quadratic and cubic equations are w e l l  kncm as algebraic 

expressions of the equation’s coefficients, and hence t h i s  section i s  cmlete ly  

disconnected f r o m  the rest of the chapter. Nevertheless, these simple problems 

are so frequently encantered that we cannot ignore the i r  special solutions. 

Y o u  certainly knm hcw to  solve a quadratic equation, but we provide a routine 

for  solving the cubic equation 

Ax3 + Ex2 + Cx + D = 0 . (2 .3 )  

Since A f 0 (otherwise we have a quadratic equation), introducing the 

variable x = y - El(=) , (2.3) can be reduced to  the form 

Y 3  + PY + 9 = 0 9 

where p = (=/A - B2/A2)/3 and q = (Z7D/A - 9BC/A2 + 2$/A3)/27 . 
2.4) 

We f i r s t  evaluate the discriminant 

cubic equation has three (but not necessarily d i f ferent )  real  roots. I f ,  M the 

other hand, d > 0 , then the equation has me real  rmt and a conjugate pair 

of  complex roots. Since y w  f ind the expressions for  the roots i n  mathematical 

tables we proceed to the module. 

d = ( ~ 1 3 ) ~  + (q/2I2 . I f  d 5 0 , then the 

Proqram d u l e  IT0 

3 0 8  FEN t l t l t t t t t t t t t t t l t t t t t t t t l t l l t t t l t l l l l t t t t t t t t t t t t t t  
?PE2 REb t SCLUTION OF G CUBIC EOUbTlOW t 
2P@J PEIl t CARfiANO HETHOD t 
200t  PEN ~ t ~ t t l t t t t t l t t t t t t t t ~ t & t I t t t t t k t t t f l ~ t t l ~ t t t t t t t t t t  
2BP8 PEN INPtK: 
3 1 8  L E I  I I , E , C , D  COEFFICIENTS OF THE EQUATION: 
;el: REM d tY’ ;+BW:tCtXtD=0  
2014 REM OUTPUT: 
2016 RE! ER STATUS FLGG 
me BEn I SUCCESSFULL SOLUTION 
2820 REN 1 DATA ERROR: Fi=E 
3 2 :  REN WR NURbEF OF KEAL ROOTS 11 OR 3) 
2824 REH IF N R = I  
20% REN X REAL ROOT 
2 8 3  REti X R , X 1  REAL AND I M A G I N W  PART OF THE COMPLEX 
2 0 3  REfl 
2312 REH I F  #R=: 
3 3 4  REY Xl,XZ,X: REAL ROOTS 

CONJULATE kO@TS (RtltXI A N D  XR-ltII 
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The only potential trouble i s  A = 0 , which gives the return value of  the 

status f lag ER = 1 . The return value of N3 i s  the number of real  roots. I f  

N3 = 3 , the real  roots w i l l  occupy the variables X 1 ,  X2 and X3 . I f  N3 = 1 

thw, the only real root w i l l  occupy X , whereas you w i l l  f i nd  the real  and 

imaginary parts of the conjugate complex pai r  i n  the variables XR and X I ,  

respectively . 

Example 2.1.1 Molar volume of  n-buthane f rom the Peng-Robinson equation o f  

state 

Find the molar volume v of n-hthane a t  temperature T = 373.15 K and 

pressure P = 1.5x10‘ Pa 

6) 

by solving the Peng-Robinson equation of  state ( re f .  

(2.5) 

where R = 8.3144 J/(mol K )  i s  the universal gas constant, b and a(T) are 

parameters of  the equation of state depending on substance specific 

properties (and temperature). The expression for  b is 

b = 0.07760 RT,/P,, 

where Tc i s  the c r i t i c a l  temperature and Pc i s  the c r i t i c a l  pressure. In 

addition to  the two c r i t i c a l  properties, the expression fo r  a(T1 contains the 

actual temperature T and a th i rd  substance specific property called P i t ze r ‘ s  
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accentricity factor w, 

2 
a(T) = 0.45724($T2c/Pc)( 1 + m C 1  - (T/Tc)0’51) , 

where 

m = 0.37464 + 1.54226~ - 0.269923 . 
For n-buthane the substance specific properties are ( re f .  7)  Tc = 425.2 K ,  

Pc = 3.75x10’ Pa and o = 0.193 . 
The follcwing main program computes b and a(T), rearranges (2.5) t o  the 

form (2.3) and ca l l s  d u l e  M2e). I f  the equation has 3 real  roots, we pr in t  

only the largest, corresponding t o  ga-s state, and the smallest, which 

corresponds to  l iqu id  state. The root between them has no physical meaning. 

l@fl  REY __..___-_.._-___________________________------------------- 

102 REM EX. :.1.1 NOLAR VOLUHE BY CARPGNO NETHOD 
1P4 REN MEFEE b2@ 

$Efl ___.._____ DQTA IF;, T c .  Pc, ONEGB; TEnPERRTURf AND PRESSURE) 

11@ TT=3i3,15 : PP:1580@00 ! 
3 0  REM ---------- COEFFICIENTS OF THE EQUATION OF STGTE 
282 BE=. O i 7 6 l k l l l l C ~ P C  :ME=, 3 7 4 6 4 t l  I 54226 t O N - .  26992FOH”Z 
?64 AEz.457241 iRUtTf! “?/PCl( l+MEt!  !-ITT!TC)^. 51 !”? 

206 I1.W :FI:PPtPE-RUtTT :C.-31PPlREA2-21RU1TllREtAE 
:la D=YPlBE”3tB!ltTilFE“?-AEtHE 
212 REM ---------- CCRDANE METHOD 
1 1 4  GCSUB 20P0 
? l b  VS=STl r lXG$(  50, ) 

216 !PPI?U VB 

222 IF NR.3 THEN 228 
224 LFRINT “ V !  m‘3)eol .......................... ‘;I 
2 6  6010 232 
228 LPRIIIT “Vgas,  ki”3mol ....................... “;X1 
238 LPRINT “Vliq, ~*3/mol  ....................... ‘iiY2 
212 LPRINT V I  
254 STOP 

10s  RU=E, 3 4 4  : ~c=4:5 . 2  : ~ c = 3 7 5 ~ 0 ~ 0 !  :OR=, 173 

DfFFIPlENTS OF THE CUBIC ERURTION ?& REH _ _ _ _ _ _ _ _ _ _  C 

::a LFHINT “NUNHER OF REAL ROOTS ................ *:NH 

The w t p u t  i s  as follows: 

NUMRER OF REGL ROOTS ................ ? 
Vgas,  lilh:!m~l ....................... 1.505?98E-03 
Vliq, r‘:!sol ....................... 1.270651E-84 

Further information i s  needed to  select the thermodynamically stable state. The 

equilibrium vapor pressure is 

( re f .  91, hence we accept the root 

the gaswus state. ( I f  no experimental value i s  available fo r  Psat we can 

compute the fugacity coefficients fo r  both states f rom the equation of  state 

Psat = 1 .529xd  Pa a t  the given temperature 

v = 1.505298~10-’ m ’ h l  corresponding t o  



and select the thermodynamic state with the lower fugacity coefficient, see 

ref. 61. 

This example illustrates that there MY exist several mots even for very 

simple problem and we need a priori information to select the 'right' me. In 

iterative procedures this information is necessary for choosing an initial 

guess that will p r m t e  convergence to the desired r w t  or, in me dimension, 

for choosing an interval that brackets it. 

The possibility of several rmts has two further consequences. First, y w  

s h l d  always try to get 5ome idea of how y w r  function l w k s  like, either M 

the basis of theoretical expectation, or by constructing a crude function plot. 

Second, it is advantagwus to have methods that never get outside of the 

bracketing bcunds, or never "jump" to a very far pint of the region thereby 

avoiding divergence or convergence to a wrong root whw, the initial guess is 

sufficiently good. 

2.1.2 Bisectim method 

~ 

Fig. 2.1. Iterations in the bisection method 

To apply this classical method we have to find a "bracketing" interval 

[xL, xu] on which the continuous function f(x) changes sign, thus the 



isolated r m t  has odd rmltiplicity. The idea is very simple. We evaluate the 

function value f(x) at the interval's midpoint iT = (xL + xu)/Z . If 
f(3)f(xL) 2 0, then 3 replaces the lower limit xL, otherwise it will replace 

the upper limit 

containing the root by a factor of two. Therefore, to achieve the given 

tolerance EP , we need 

xu. Each iteration decreases the length of the interval 

iterations. Fig. 2.1 shanh three iterations, where 

lower and upper limits in the k-th step. 

x L ( k )  and xuCk)  are the 

The only information used in bisection is the sign of the function. The 

cmvergmce is slow (of order 11, but never fails. Its disadvantages are the 

need for bracketing, which may be hard when two roots are very close, and the 

unability to find a r m t  of odd multiplicity. 

Prcqram m u l e  MZ1 

: l $ C  FEM t t t t t ! t t t t t t t t t t t t t t t t t t t t t t t t t t t f t t t t t t t t t l t t t t t t t t t t  
::I: REM 1 SCLUTIOP! OF A #ONL!NEAR EQUATION t 
2104 REP f R!SEC'!OL! METHOD t 
;1Cb HEY t t t t t l t t t t t t t t t t t t t t t t t t t t t t t t t t t t l t t t t t t t t t t t ~ t t t t t  

21;O P i b  lL LOWER BOUND 
:If: 6EE XU UPPER BOUND 
2 1 1 4  QEE EP EFRCP TOLERANCE ON THE ROOT 
:!lt REH OLTPUT: 
2 1 1 8  HEM ER STATUS FLAE 
:12E RE1 P SUCCESSFUL SOLUTION 
2 1 2 2  RE1 1 NO SIGN CHANGE BETWEEN X R  PND XU 
2:4 RE!! k ESTIHATE OF THE HOOT 
2 1 1 6  REE F FUNCTION JALUE F i k j  

2 1 2  BEtl USEL-SUV',!EI~ S!IPRrJUT!NE: 
?L70 HEN FROH L!NE 900; X ---' F ( FUIICTION EVALUATION ) 
32 X=XL :GOSUB Y I I  :FL=F :X=XU :GOSUB 98H :FU=F 
2134 !F FLtFU 0 THEW EP.1 :GOTO ?!48 
: I 2  I M = L I E I ? ~ A E S I Y U - ~ ~ )  E 0 ~ / t 0 6 [ ? )  
2138 'X I T = l  TL IH 
Li13 :=iWL*XU! ? :GCSUE q@@ 

2142 !F FtFL'=R THEN PL=\ :FL=F ELSE XU=X :FU=F 
1141 NEIT I T  
:!4t EP=& 
::42 E T L I R I I  
?lM PES t I t  1 t t t t  t t t t t t  t 1 t I I t  t t t t t t  1 t t t t  t t t t  t I t  t t t  1 t t t  t t t t  t t  

;lee SEN w T :  

The module returns the value ER = 1 if there is no sign change in the given 

interval. Otherwise it calculates the number IM of required iterations and 

performs IM bisections. 
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Example 2.1.2 Molar volume of  n-buthane by bisection method 

A l l  methods i n  t h i s  section w i l l  be tested by solving the problem presented 

i n  Example 2.1.1 . Rearranging ( 2 . 5 )  we have the function 

a(T) 

X ( X  + b)  + b ( x  - b) 
( X  - b) - RT , 

where the solution of  the equation f ( x 1  = 0 i s  the molar volume. The simple 

main program we use i s  as follows. 

This i s  the f i r s t  program i n  t h i s  b w k  that needs a subroutine supplied by 

the user. Each program intending t o  c a l l  the module M 2 1  must include EASIC 

statements that evaluate the function f a t  x. The f i rst  l i n e  o f  the user 

supplied w b r w t i n e  i s  l i n e  Sew i f  only one i s  needed. Almost every program 

further i n  the bock w i l l  require one, two or even three such subrwtines, 

start ing a t  l ines Sew, 800 and 7E0, respectively. Now you contribute t o  the 

program and hence i t  i s  advisable to  include s m  extra pr in ts  i n  the 

subrwtines for  debugging. Since there are no local variables i n  BFISIC, you 

s h w l d  be careful when f i t t i n g  user supplied subroutines t o  more complex 

program. Part icular ly dangerous is al ter ing values of the FOR-NXT loop 

variables ( i n  th i s  case I T  i s  such a variable). To minimize the threat of 

con f l i c t  t r y  t o  distinguish your variables from ours, e.g. through the use of 

variable names consisting of  three or more l e t te rs  i f  your BASIC version does 

accept such longer names. a user supplied subroutine i s  always closed by a 



RETURN statement. 

In this example line 902 evaluates the function (2.6) and stores its value 

in the variable F . We print X and F to follow the iteration. The 

bracketing interval is chosen on the basis of a priori information. We know 

that in this example the compressibility factor W/(RT)  is close to me, 

and use the lower and upper limits 

where vo is the ideal molar volume 

vo = RT/P . (2.7) 

xL = v0/2 and xu = 2vo , respectively, 

The error tolerance EP 

smaller than the attainable accuracy based on the approximate equation (2.5). 

h e  to the PRINT statement in the user supplied subroutine the program output 

is long, and only a few iterations are shown in Table 2.1. 

is set to the value EP = ~~tlE-6 , which is certainly 

Table 2.1 
Steps in the bisection method 

15 
16 
17 
18 
19 
20 

0.103417E-02 

0.1421%-02 

0.150512E-02 
0.150521E-02 
0.15052M-02 
0.150528E-02 
0.15053iE-02 

0.41Jb69E-02 
0.25854JE-02 
0.16098eE-02 

0.161590E-02 

0.150531E-02 

0.15053zE-02 

+1 
+1 
-1 
+1 
+l 

-1 
-1 
-1 
-1 
+1 

2.1.3 False position method 

Similarly to the bixticn method, we need an interval CXL, xu1 that 

includes the root. The method is based m local linear interpolation of the 

functim f by the straight line or chord through the points (xL, f(xL)) and 

{xu, f(xU)>, as shown in Fig. 2.2. The "root" of this interpolating linear 

functim is 
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(2.8) 

If f ( x ) f ( x L )  2 0 then the new lower l i m i t  w i l l  be X , otherwise F w i l l  

replace the upper l i m i t .  

Fig. 2.2. I terat ions i n  the false p s i t i o n  method 

use the convergence c r i t e r i on  - r i ( k - 1 )  I < EP , where is the 

estimate (2.8) i n  the k-th ‘iteration. Three i terat ions are shown i n  Fig. 2.2. 

The convergence is of order p , where p i s  s l i g h t l y  larger than 1. 

Indeed, the method usually performs better then the bisection method, while 

having the same robustness. Therefore, i t  i s  recmmmded fo r  solving problems 

with l i t t l e  information available on the form of the function f .  The only 

r e q u i r m t  is suf f ic ient  smoothess of f near the rwt. 



79 

Praqram module M22 

2 3 8  K E N  t t t t t t t t t t t t t t  t t ! f  t !  1111 t t l f  t I t  t t t  t t t t t t t t t t  t t  t t t  t t 
2202  CEM t SOLUTIGN OF R l O R L I N E R P  EOUGTIO!1 t 

2204 REfl t RE6:JLB FRLSI X T H C D  t 
72C6 REf l  t t ! ! t t  t t l  t t t t  t t l 4 t  t t  I f  t t  I t *  t I t  I t  t t t t t t t t t t  t I t  t I t  I t t  
X0t R E 3  !lPFT: 
!::$ :L LOI;EE $lLlY$ 

R E t  XU UPPEf  L3L;tjP 
1214 @EM EP ERROR TCLEMdC-i 9EI TYE ROOT 
2?lt REH 1% MNIkUE ?C!BBER 0; I T E R A T I O N S  
2218 REf l  OUTP!!T: 
2 2 2 8  REF ER STATES F i A i  
2222 REf l  0 SUCCiSSFOL SOLUTIf?N 
7224 REI1 I 10 E I G N  CHANGE BETWEEN XL AlD XU 
E b  F'EM 2 REOLIPEC ACCURClCY NOT A T T A I N E D  
?2?E REH Y ESTIMRTE DF THE ROUT 
2230 AEM F FUNCTION I'dl!lf f ( 9 J  
2232 REfl U S E R - S W L I E B  S U B ? O U l I I E :  
1254 REh FR?H L!HE 900; X ---: F I FUNCTION E V A L U A T I O N  j 
22% X=YL :GtOSUB 008 :FL=F :I=It! :68S?13 908 :FU=F 
2 3 8  I F  FLtFU)0 THEN ER=! : 6 0 T 3  225: 
2248 FOR 11.1 T O  I N  
2247 XOzY : X = ( l L t F U - X U t F L i i l F l l - F l j  :GOSUP 900 
2214 I F  F t F L : 4  THEN XL=X :FL=f E L S E  XUzX :FU=F 
2246 I F  ABSIX-XG)<=EP THEN E R 4  :C;OTfl 2252 
2248 NEXT I T  
2250 ER=? 
2252 RETURN 
22S4 REt4 t t l t t t t l l t t l t t t t l l l l t t l l l t l t t ~ t 4 t l t t 4 t l t ~ ~ 4 t ~ t t ~  

Example 2.1.3 Molar volume by f a l s e  position method 

The main p r q r a m  is almost the same as i n  

are i n  the l i n e s  listed below. 

Example 2.1.2. The o n l y  d i f f e r e n c e s  

102 REN EX.  2.1.; NOLAR VULME B Y  T A L E  POSITION NETHOD 

jN4  REt4 NERGE ti22 

:'BE X L W t T T I P P I 2  :XU=RUtT!!YPf2 :EP=XUt.B000Bl : It4=70 

214 GOSUB 2260 

s i n c e  w e  have to s p x i f y  t k  number 

m u l e  NZ?. T h e  iteratim prDce.s is summarized i n  Table 2.2 , where the lower 

and upper l i m i t s ,  the i nne r  p o i n t  and the corresponding f u n t t i m  v a l u e  are 

sham i n  each iteratim. 

IM of allowed iteratims and cal l  the 
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Table 2.2 
Steps in the false position method 

- f ( Z )  , J/ml X step xL, m3/m1 m3/m1 
(sign f(x) = -1) (sign f(x) = +1) 

1 0.103417E-02 0.413669E-02 
2 0.132899E-02 
3 0.145394E-02 

8 0.1 E0524E-02 
9 0.1!Xl52E-02 

10 0.150529E-02 

Note that me of the limits is fixed during 

with the false position method. 

2.1.4 Secant method 

0.132assE-02 -.1570&+03 
0.145394E-02 -.-mi02 
0.149163E-02 -.12955€+02 

0.15052E-02 -.14648E-01 

0.1Yii53E-02 -.lZi07E-0)2 
0.1 w529~-m2 - . 3 m ~ r n 2  

the iterations. This often happens 

Fig. 2.3. Iterations in the secant method 

The basic idea is the same as in the false position method, i.e., local 

linear approximation of the function. The starting interval 

not, however, necessarily include the rwt. ThR, the straight line through the 

Exl, x21 does  
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points Cxl, f ( x 2 ) )  and Cx2, f ( x 2 ) >  extrapolates rather than interpolates 

the function, and i t s  "root" 

w i l l  replace the "older" of the two previous points, thereby always retaining 

the most recent two estimates. (This requires an arbi t rary choice i n  the f i r s t  

i terat ion.)  I f  x2 i s  the la test  point, then x1 i s  replaced by x2 and x2 

by E , as shorn i n  Fig. 2.3. The convergence cr i ter ion is again 

Retaining the latest  est imates for  x1 and x2 , the slope of the l i n e  

follows more closely the form of the funct im than i n  the false positim 

method. The order of  convergence can be show t o  be 1.618, the "golden rat io",  

which we w i l l  encounter i n  Section 2.2.1. The root, hawever, i s  not necessarily 

bracketed, and the next estimate 

f (x l )  

search i n  a region where the function i s  not monotonic. 

x3 may be f a r  away i f  the function value 

i s  close to  f ( x 2 ) .  Therefore we may run i n t o  trouble when star t ing the 

Prqram module M23 

2300 REH t t t t t t t t t t t t t t t t t t l l t l t t ~ t t t t ! t t t l t & t t t t t t t t t l t t t t t t t t  
2 3 0 2  RE! t SOLUTION OF A NONLINEAR EQUATION t 
2304 REH t SECANT HETHOD t 
2 3 0 6  REH t ~ t t t l l t t t t t t t t t t t t t t t t t t t t t t t l t ~ t t t t t l l t l t l t l l l t t k  
2308 REfl INPUT: 
2 3 1 0  REII X I  I N I T I A L  ESTIIIATE OF THE ROOT 
2312 REH Y ?  SECOND I N I T I A L  ESTIIIATE OF THE ROOT 
2 3 1 4  REfl EP ERROR TOLERANCE ON THE ROOT 

2 3 1 8  REH OUTPUT: 
2320 REM ER STATUS FLAG 
2322 REfl D SUCCESSFULL SOLUTION 
2324 REM 1 REQUIRED ACCURACY NOT ATTAINED 
2 3 2 6  RE! 2 ZERO SLOPE 
2328 RE1 X ESTIMATE OF THE ROOT 
2330 REII F FUNCTION VALUE F I X )  
23!2 PER USER SUPPLIED SUBROUTINE: 
21.34 REF FHOII L I N E  900; X ---) F ( FUNCTION EVALUATION ) 
2336 X = X I  :GOSUB 900 : F l = F  :X=X2 :GOSUB 900 :F2=F 
2?38 FOR l T = l  TO I N  

2316 REH IH NAXInun NUHBER OF ITERATIONS 

2340 
2342 X = ( X l t F 2 - X 2 t F l ) / ( F 2 - F 1 )  :GOSUB 980 

I F  AES(F?-FI)!lE-30 THEN ER.2 :GOTO 2352 

2344 IF BBS(X-XZ)(:EP THEN ER=B :GOTO 2352 
2346 Xl=XZ :Fl=F2 :XZ=X :F2=F 
2 . 3 8  NEXT I T  
2 3 0  ER.1 
2352 RETURN 
2214 RE! t t t t l t t t t l t l t t t t t t t t t t t t t ~ t t t t t l t t t t t t t t t t t t t t l t t t l  
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kcord ing to  (2.9) the method breaks down i f  

i terat ions.  Then the module returns the value ER = 2 . 
f (x l )  = f ( x 2 )  i n  any one of the 

Example 2.1.4 Molar volume by secant method 

We deliberetely do not "bracket" the rwt and use the i n i t i a l  estimates 

x1 = vo and x2 = 1 . 0 1 ~ ~  , where vo i s  the m l a r  volume calculated f rom the 

ideal gas law (2.7). The i terat ion i s  expected t o  converge t o  the root 

correspcnding to  the gaseous state. We do not present the main program, because 

the deviations from the previous two main prqrams are only i n  the l ines: 

102 REIC EX. 2 . 1 . 2  MOLBF! VOLUME BY SECANT METHOD 

184 PEN IIEKE HF 

Z08 Yl=RUtTT/PF : X 2 = 1 . O l t R U t T T / P P  :EF~Xlt.000001 : Itl=30 

214 GOSUP ?!00 

i.e., we  have t o  specify X 1  and X 2  instead of XL and XU . Results are l i s ted  

i n  Table 2.3. 

Table 2.3 
I terat ions i n  the secant method 

1 0.22&835E-m 0.200703E-02 0.155446E-02 0.4754e€+02 
2 0.2GEmaE-02 0.155446E-02 0.151126E-02 0.568J3E+01 
3 0.15544M-02 0.151 126E-02 0.150539E-02 0.86914E-01 
4 0.15112M-02 0.150539E-02 0.1505311E-02 0.24414E-03 
5 0.1 m39E-02 0.13053E-02 0.1505311E-02 -.24414E-03 

The idea i s  again local l inear approximation, but now w e  use the tangent 

l i ne  a t  a current estimate x of the root. The tangent l i n e  w i l l  cross the 

zero a t  the abscissa 

f ( X )  
- 
x = x - ---- 9 

f ' ( x )  

(2.10) 

where f ' ( x )  i s  the derivative o f  function f a t  x , and w e  adopt R as the 

next estimate. 
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While a l l  the previous methods use two points, the correction (2.10) i s  

based exclusively on the local behavior of  the function as show, on Fig. 2.4. 

Fig. 2.4. Iterations i n  the Newtm-Raphsm method 

Therefore the method has excellent convergence properties near the root (wi th  

order of convergence 

otherwise. I n  addition, the number of  equivalent function evaluations i s  

usually larger than i n  the secant method, which does not require the derivative 

but has almost the same convergence rate. Neither the Newton-Rapkon, nor the 

secant method are recommended i f  the function f has an extremvn near the 

root. Y o u  can easily construct pathological case5 t o  understand th i s  rule. 

the derivative f ’ ( x 1  vanishes i n  one of the i terat ions,  and by (2.10) the 

procedure breaks down. 

p = 21, but may result i n  meaningless estimates 

I n  the following module i f  the return value of  the status f lag i s  ER = 2, 



84 

Proqram module MZ4 

2400 REM t t t t t l ~ & t t t ~ l t t t t t t t ~ l l t l l l l t l l t t l l l l l & l t l l t t l l t & t ~  
2402 REtl t SOLUTION OF A NONLINEAR EQUATION t 
2404 RE\ t NEWTON-RAPHSON METHOD t 
2406 REM l t t t t t ~ t t t t t t t l & t f t & l t l t t t t t t t t t t t l t t l t l t t t t l l l ~ l l l l l l  
2488 RE1 INPUT: 
2416 REH X I N I T I R L  ESTl t lATE OF THE ROOT 
2412 RER EP ERROR TOLERANCE ON THE ROOT 
2414 REtl In NAXlflUtl NUMBER OF ITERATIONS 
2416 RE! OUTPUT: 
:41E REIl ER STATUS FLA6 
242C REW 0 SUCCESSFUL SOLUTION 
2422 REH 1 REQUIRED ACCURRCV NOT ATTAINED 
2424 REW 2 ZERO SLOPE 
2426 RE1 X ESTIHATE OF THE ROOT 
2426 RER F FUNCTION VALUE FIX) 
2431 BEN USER-SUPPLIED SUBROUTINE: 
243: REN FRO# L I N E  90B; X ---) F ( FUNCTIUM EVALUATION ) 
2434 REIl FRO\ L I N E  800; X ---> D 1 DERIVATIVE EVALUATION ) 

2436 GOSUB 900 
2438 FDR 11.1 T@ I M  
2440 GOSUB 800 
2442 I F  A E S ( D ) c l E - M  THEN ER.2 :60TO 2452 
2444 DX=-F/D :X=XtDX :GOSUB '400 
2446 I F  ABS(DX)!=EP THEN E R 4  :60T@ 2452 
2448 NEXT I T  
2450 ER.1 
245: RETURM 
:454 REH t t ! t t l t l l t l l l t l l l t t l l t t t t l t t t t t t t t t t t t t t t l l t l l l l l l l  

Example 2.1.5 Molar volume by Newtcn-Raphsm method 

To use the m u l e  MIL4 y w  should supply two subrou t ines .  As i n  the p r e v i w s  

methods t h e  one s t a r t i n g  a t  l i n e  CMW w i l l  e v a l u a t e  t h e  va lue  F of t h e  

funct ion.  T h e  second s u b r w t i n e ,  s t a r t i n g  a t  l i n e  Sena, g i v e s  t h e  c u r r e n t  va lue  

of the d e r i v a t i v e  f '  ( X I  

s i n g l e  i n i t i a l  guess X . Chce again we u s e  t h e  i d e a l  gas volume a5 i n i t i a l  

estimate. T h e  l i n e s  d i f f e r e n t  from the l i n e s  of t h e  previous program are: 

t o  the v a r i a b l e  D . To s ta r t  the i t e r a t i o n  we need a 

8Ba REW ---------- DERIVATIVE 
682 D=PFtAE/ (XI (X+BE)+BEt IX-BE) ) - l X - B E )  t A E l i 2 t X t 2 & B E ) / ( X t ( X + B E ) t B E & ( X - ~ E )  )^2 
804 RETURN 

R e s u l t s  are shown i n  Table 2.4. 
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Table 2.4 
Iterations i n  the Newtondapkon method 

A br ie f  comparison of  the di f ferent methods i s  given i n  Table 2.5. You may 

notice that the methods that use m r e  informatim (i.e., the value o f  the 

function, not only i t s  sign; a pair of values, not m l y  one of them) converge 

more rapidly. Y o u  already know, her, that robustness i s  decreasing along 

the same l ine.  Therefore, choosing a method you ought t o  cmsider h w  nuch i s  

k n m  on the form of the funct im and the position o f  i t s  roots. 

Table 2.5 

Convergence behaviour of  the di f ferent methods i n  the test example 

Method MJmber Munber of  equivalent Theoretical order of 
of i terat ions function evaluations cmvergence, p 

--------------_---____I___ I-- 

Bisection 19 21 1 
False position 10 12 >1 
Secant 5 7 1.6 
Newton-Raphson 4 9 2 
------_--__----__I_I___- ---I__ 

2.1.6 Successive approximation 

This method has such poor convergence properties that  i t  i s  usually omitted 

from up-to-date textbooks m numerical analysis. We mention it, however, 

because i t  i s  very simple and s t i l l  i n  use. I n  addition, the method can be 

easily extended t o  systems o f  equations where i t  is the basis fo r  a number of 

improved techniques. The idea i s  wr i t ing the equation i n  the form 

(2.11) 

and performing the i terat ion 

where x and Z are the old and new guesses of  the rwt, respectively. A 

suf f ic ient  condition for  convergence i s  the existence of a constant K < 1 and 
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of an interval arwnd the root on which 

if cur initial guess is also in this iterval. The steps of this procedure, also 

k n w  as direct iteration, can be well follDved on plots like the ones shown in 

Fig. 2.5. The 45' straight line helps to convert a 

guess si . You may encwnter the situations of monotonic or oscillating 

convergence (Fig. 2.5.a and b, respectively) and monotonic or oscillating 

divergence (Fig. 2.5.c and d, respectively). 

g(x) value into a new 

YA 

y-g(x) 

X '1 '2'3 

a 

yk; yk=x 

x3 x2 x1 X x3 x1 K2 

Fig. 2.5. Typical situations in successive approximation 
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I t  i s  m r e  d i f f i c u l t  t o  judge the properties of successive approximation i f  

the or ig inal  equation i s  of the form f ( x )  = 0 , since i t  can be rearranged t o  

the form (2.11) i n  many d i f ferent  ways, thereby s ign i f icant ly  influencing the 

convergence. For example, an appropriate r e a r r a n g m t  resul ts i n  (2.103, and 

hence even the Newton-Rapkm method can be regarded as successive 

approximation. 

Exercises 

0 Derive the i terat ion formulas (2.81, (2.9) and (2.10) on the basis of the 

geometrical ideas used i n  the corresponding method. 

0 Solve the test problem of t h i s  section a t  the pressure P = 1.6x10' Pa 

keeping i n  mind that now the n-tuthane i s  i n  l iqu id  state. 

0 Three r e a r r a n g m t s  of equation (2.5) t o  the form x = g(x)  are: 

g2(x) = RT/P(l + a/P/Cx(x + b) + b(x - b) l ) - '  + b 

Try to  solve the test  problem by successive approximation on the basis of  

these rearrangements. What i s  the reaKn of  divergence i n  the ca5e of g3 ? 

2.2 M I N I M  a " C T I O N S  IN ON DIMNSION 

Similarly t o  the most robust methods of  solving nonlinear equations, we 

s ta r t  with bracketing. Assume that the interval  

minirmm point r, i.e., the function f i s  decreasing up t o  r and increasing 

afterwards. Then the function i s  said to  be u n i d a l  on the interval  [xL, xu]. 

This property i s  exploited in cut-of f  methods, plrported t o  reduce the length 

of  the interval which w i l l ,  however, include the minirmm point i n  a l l  

i terations. 

[xu, xL] contains a single 

The idea we use i s  s imi lar  t o  bisection, but now we need t o  evaluate the 

function at  two inner points 

xL < x1 < x2 < xu. I f  

ExL, x21 , since we assumed that the function i s  decreasing up t o  the mini- 

point, see Fig. 2.6.a. Similarly, 

x1 and x2 of  the interval ,  where 

f(x l )  5 f ( x 2 ) ,  then the minimum point i s  i n  the interval  

f(xl) 2 f (x2)  implies that the minimum 
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point  is i n  t h e  i n t e r v a l  

can disregard 5ome portion of the i n t e r v a l ,  e i t h e r  

[x l ,  xu],  as show, i n  Fig.  2.6.b. In both cases we 

( ~ 2 ,  xu] or C X L ,  x i ) .  

Fig.  2.6. Two s i t u a t i o n s  i n  cut-off  methods 

The above discussion sugges ts  s e l e c t i n g  x1 and xz close to t h e  midpoint, 

thereby reducing the i n t e r v a l  a l m t  by a f a c t o r  of two i n  one "cut" .  This  is 

t r u e  i n  a s i n g l e  s t e p .  The search is, however, i t e r a t i v e ,  and there is a better 

s t r a t e g y  which involves  a s i n g l e  funct ion evaluat ion i n  each i t e r a t i o n  (except  

t h e  f i r s t  me), while s i g n i f i c a n t l y  reducing t h e  bracket ing i n t e r v a l .  

2.2.1 Golden sec t ion  search 

We select t h e  i n t e r n a l  p i n t s  x1 and x2 with t he  same spacing frcm e i t h e r  

end, as show, i n  Fig.  2.7, where 

t h e  total length of the  uncer ta in ty  i n t e r v a l ,  i.e., 

X denotes  t h e  ratio of t h e  longer segment to  

-A = (x2  - X L )  : ( x u  - XL) = ( x u  - X I )  : ( x u  - X L ) .  

T h e  e f f i c i e n c y  of t h e  golden s E t i o n  stem f r m  the special va lue  of the ratio 

X . We requi re  t h e  ratio o f  t h e  l a r g e r  of t h e  two segments to  the total  length 

of t h e  i n t e r v a l  be t h e  same as the ratio of the smaller t o  t h e  l a r g e r  segment, 

i.e., ?J1 = (1 - h)/X. 
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Fig. 2.7.  Notations used in golden-section search derivation 

The Dositive solution 

A = ($5 - 1) /2  = 0.618... (2.14) 

of this quadratic equation is the golden ratio, w h o s e  origin goes back to the 

ancient Greeks, but pops up in many different places in mathwMtics. Thus, the 

internal points are selected according to 

x 1  = AXL + ( l - X ) X u  

x 2  = ( l - A ) x L  + AXu . (2.15) 

To show why this f m s  ratio A is g w d  for u5, assume that f(xl) > f ( x 2 )  

as shown in Fig. 2.8, and hence we cut off the interval 

ratio of the remaining two segments is given by 

[XL,  XI). Then the 

(2.16) 

where the last equality follows from the special choice of A . Tt-us the 
reduced interval [xl, xu] i5 already divided by the point x2 in the same 

way as the original interval [xL, xu] was divided by xl. Therefore, we 



90 

replace xL and x1 by the old value of 

evaluate the function only at the new point 

Fig. 2.8 shows how the roles of our four points have been changed w h e n  

performing this step. Similarly, for 

interval is [xL, x21 and thus we replace xz and xu by x1 and xz , 
respectively, and evaluate the function at the newly selected 

x1 and xz , respectively, and need to 
x2, selected again by (2.15). 

f(x1) < f(x2) the new bracketing 

xi. 

X 

Fig. 2.8. Steps in the goldm-section search 

The golden section search guarantees that each new function evaluation will 

reduce the uncertainty interval to a length of X times the previous interval. 

This is comparable to, but not as g d  as interval halving in the bisection 

method of solving a nonlinear equation. Y o u  can easily calculate that to attain 

an error tolerance EP we need 

iterations. The following module calculates IM and performs the iterations. 
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Proqram module M25 

301 PER ttttttttttttttttttttttttttttttt~tttittttttttttttttt 

;554 R i n  t BETHOD OF GOLDEN SECTIONS t 
:'& PEfl I t  t t t t t t t t t t t t t t It t t t t t t t t t t t t t I t t t t t t t t 1 t t t 1 t t t I It 

REM t M I N I W M  OF A FUNCTION OF m E  V ~ R I A P L E  t 

2568 EEN INFUT: 
2 x 8  HEM x i  LOWER POUND 
251: HEN Y U  UPPER houw 

:sie FEN x ESTIMATE OF THE MINIHUH POINT 

3 1 4  RE1 EP ERROP TCLEPANCE ON HINIMUM POINT 
151b REH CUTPUT: 

252e REM F #INIMU! FUNCTION VPLUE F(W) 
2 S Z  RE! USER-SUPPLIED SUBROUTINE 
2521 HEM FXI)M L I N E  9 0 8 ;  X - - - )  F I FUNCTION EVALUPTIOl  1 
iYC PL= I S X  ( 5 )  -1 ! i 2  : RUZl-HL : RE:l IRL 
2 5 2  I f l=LOG(REtAES( XU-XL) !EP) ILOG(RE) 
3 5 8  21=RLtYL+RUtXU :$=XI :GOSUB 900 :F l=F 
25;: X?=RUtXL+RLtYU :l=!: :GOSUP 700 :F?=F 
i5!4 FOF. 11.1 TO I R  
.5h I F  FI'FZ i h E N  2512 
23 tJ=i:  : Y l = X l  : F X l  :Xl=RLtYL+RUtXU : X = X l  :GOSUR 900 :F l=F  
2 5 4 6  SOTO :544 
254: !:=XI : Y I = X ?  : F l = F ?  :X?=RUtXLtRLtXU :X=X2 :GOSUP 900 :F?=F 
3 4 4  NEi '  IT 
2 5 4 6  PiTUFN 
?SJ8 PEfl tttttttttttttttttttt~ttttt!tttt~tttttttttttttittttF 

- 7  

The mdu le  needs a user supplied r w t i n e  s ta r t ing  a t  l i n e  W that  w i l l  set  

the variable F to  the value of the function evaluated a t  the actual value of 

x .  

Example 2.2.1 Optimal drug dosing by golden section search 

Consider a tab le t  that  i s  taken regular ly once a day. We want t o  f i n d  the 

optimal quanti ty of the drug (i.e., the only act ive ingredient) i n  the tablet  

i n  order t o  keep the drug concentration i n  the b l d  w i th in  a given therapeutic 

range 

use the l inear compartmental model shmm i n  Fig. 2.9, me of  the most p o p l a r  

models i n  pharmacokinetics. 

[cL, cul as s t r i c t l y  as possible. To predict the drug concentration we 

The model assumes that the drug enters compartment 1, representing mainly 

the gastrointest inal  t rac t .  The drug i s  then absorbed i n t o  the blood f low,  

represented by compartment 2 .  The absorption ra te  i s  kaql , where q1 i s  the 

current drug quanti ty i n  compartment 1. There i s  also a secretion o r  

e l im ina t im  process f rom compartment 2, w i th  the el iminat ion ra te  

q2 

kq2 , where 

denotes the quanti ty of drug i n  compartment 2. 
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Fig. 2.9. Pharmacokinetic compartmtal rodel 

1 - gastrointestinal tract; 2 - blood flow 

The compartmental &el gives rise to a system of two linear differential 

equations whose forcing term (i.e., the drug intake) is a periodic function 

(ref. 9). After a transient period the solution of the differential equations 

is also a periodic function. This periodic solution predicts the drug 

concentration 

(2.17) 

where D denotes the dosis, i.e., the quantity of drug in the tablet (q); V 

is the distribution volume of the blood compartment; 

coefficient; k is the elimination rate coefficient; 7 is the period, i.e., 

the time elapsed betmen two intakes of the tablet, and t is the time 

elapsed after the latest intake. In this example 

k = 0.a93 h-l and 

k, is the absorption 

V = 10 1, k, = 0.231 h-', 

7 = 24 h (ref. 9). 

We want to find the value of D that will keep c(t) between the values 

cL = 14 mg/l  and cu = 26 mg/l 
minimize the objective function 

as far as possible. For this p r p e  we 
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7 

f(D) = (1/7)[[hz1(t) + hZ2(t)]dt (2.18) 

where 

thereby more penalizing concentration values far from the therapeutic range. 

The area contributing to the objective function is shaded in Fig. 2.10. 

Fig. 2.10. Periodic drug concentration in blwd 

Y w  are certainly aware that the compartmental &el is a simplified 

representation of the real physicological process. Therefore, it is completely 

adequate to use  a simplified objective functim by approximating the integrals 

in (2.17). We divide the interval 10, 71 of integration into W equal 

subintervals of length At = 7/W , and approximate c(t) by its midpoint 

value ci = cC(i - 1/2)Atl. The objective function is approximated by 

(2.19) 
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where 

[(ci  - cu) 'At  i f  ci > cu 

(cL - c i ) ' A t  i f  ci < cL 

0 otherwise . 

Since  t h e  d o s i s  D 

a t  c e r t a i n  t ime p o i n t s ,  from the approximate balance e q u a t i m  

have D 5 260 mg . Therefore ,  the i n i t i a l  i n t e r v a l  [0, 10D23 c e r t a i n l y  

inc ludes  the minimm p o i n t ,  which can be e a s i l y  c h e c k e d  e v a l u a t i n g  the func t ion  

(2.19) over  a cour se  g r i d .  T h e  d e s i r e d  error t o l e r a n c e  is EP = 0.1 , more than 

adequate  i n  t h i s  problem. The main program we u s e  is as follOW5. 

is e x p e c t e d  to raise the blood concmtratim a t  least to cu 

D/V z cu we 
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The limits of the uncertainty interval in some of the iterations are show 

Table 2.6. The optimal dosis is Dopt = 335.4 mg , which gives the minimum 
value f(Dopt) = 14.44 (q21-2s). 

in 

Applying a finer grid (Nw > 48) does  not alter the location of the minimum 

m r e  than the desired tolerance EP = 0.1 mg . In Fig. 2.10 we have already 

shown t k  concentration of the drug following the dosis 

beginning of  each period of length T = 24 h. kcording to this solution, one 

tablet a day does not enable us to keep drug concentration 

therapwtic range for all times. We could decrease the period, i.e., T = 20 h 

wwld be a suitable choice, but it is not a practical advice to take a tablet 

each 20 hours. Taking two tablets a day (i.e., with T = 12 h), there exists an 
interval CDL, DU1 such that f(D) = 0 for all D in this interval. F r a  

physiological point of view the best choice is 9, i.e., the least dosis that 

gives the desired drug concentration in blood. The golden section search d u l e  

as presented here will result in this lower limit (4 = 138.2 mg) because in 

line 2536 we used the relatimi sign ">" and not ">=" . 

Dopt, taken at the 

c(t) within the 

Table 2.6 
Steps in the golden section search 

step XL, mg xu3 mg relation of fl to f2 

1 0 
2 
3 236.M 
4 

10DZI 
418.034 

472.136 

18 335.275 335.555 > 
19 335. J82 < 
final 335.489 

Although the golden section search works quite w e l l ,  it is obviously not the 

best available for a given number of function evaluations. For example, with 

only two evaluatims allowed it is better to choose the internal points close 

to the midpoint of the initial interval, as we already discussed. The idea can 
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be extended to any a priori fixed number N of function evaluations, and gives 

rise to the Fibmacci search strategy, involving the f m s  Fibonacci numbers 

(ref.10). For sufficiently large N, hOwever, the golden section search is 

almxt as efficient as the Fibonacci search (and can be regarded as the 

limiting case of the latter). Comparing the function values in the inner 

points, both methods use little information, and their ca-ivergence is linear 

(i.e., of order p = 1). Similarly to the methods of solving a nonlinear 

equation we can increase the order p by constructing a local approximation of 

the function. While in equation solving a linear approximation did the job, now 

we look for a mininum, and hence the approximating function should be at least 

quadratic. 

2.2.2 Parabolic interpolation 

In this method the next estimate F is the laation 

( x-vpc f ( x ) -f (w 11 - ( x-w) 2c f ( x ) -f (v) 1 
- = 

(x-v)[f(x)-f(w)l - (x-w)Cf(x)-f(v)l 
(2.20) 

of the m i n i m  of the parabol through the last point Cx,f(x)3 and two 

previously evaluated points <w, f(w)) and Cv, f(v)> . The method fails if 
the three points are on a straight line, since then the dmaninator is zero 

(i.e., the parabola has no minimum). In addition, equation (2.20) will locate 

the maximum rather than the minimum if the coefficient of the second order term 

in the interpolating parabola is negative. 

To avoid these problerm Brent (ref. 11) aggested a canbination of the 

parabolic fit and the golden section bracketing tRhnique. The main idea is to 

apply equation (2.i0) only if (i) the next estimate falls within the most 

recent bracketing interval; (ii) the movement frm the last estimate is less 

than half the step taken in the iteration before the last. Otherwise a golden 

section step is taken. The follcwing module based on (ref. 12) tries to avoid 

function evaluation near a previously evaluated pint. 

Prwram module M26 

ib0B REH t t t t t t t t l t l t t t t l t l l t l l t t t t l t t l l ~ ~ t ~ l l l ~ l ~ l t l t t t t t ~ l  
?b0? REM 1 I 
2604 REM t PARABOLIC INTERPOLATIDN - RRENT'S NETHOD t 
2506 RE! ~ t t t t ~ t ~ ~ t l t t t t l ~ l t t l l l t l l l l ~ t t l t ~ l l ~ l l l l ~ l t l ! l ~ l ~ l  
2608 REH INPUT: 
2b lB  REM XL LOUEF! BOUND 
2512 REtl XU UPPER BOiiND 
2614 REM EP ERROR TOLERANCE ON BINIHUH POINT 
? b l b  REIl IN tlAxlMUH NUMBER OF ITERATION 

HINIHUM OF A FUNCTION OF ONE VAHIPBLE 
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2 6 1 8  REM OUTPUT: 
2620 RE4 X ESTIflBTE OF THE f l I N I H U 1  POINT 
2622 REH F MINIMUIi FUNCTION VALUE F ( X )  
2624 RE1 ER ST4TUS FLAG 
2626 REM 0 

2630 HEM USER-SUPPLIED SUBROUTINE 
2632 RE1 FRO\ L I N E  901; X ---) F ( FUNCTION EVALUATION 1 
2634 ER.8 :RL~(SQR(S)-l)/2 :DI=(XU-XL) /2 :X=(XU+XL)/2 
76% V = X  : W = X  :E=0: GOSUE 900 :FX=F :FV=F :F&F 
263P REM ----- LOOP 
2640 FOR I T = l  TO I f l  
2642 
2644 I F  ABS(E)(EP THEN 2664 
2646 
2649 
23550 Q = ? t ! Q - R !  : I F  0:>=0 THEN P=-P ELSE 0.-0 

2 6 3  REH 1 TOLERANCE NOT ATTAINED IN ' Ins ITERATIONS 

! M ~ ( X L t X U ) i 2  : I F  ABS[X-Xn)i=2tEP-(XU-XLI I2 THEN 2696 

RER ----- AUXILIARY QUANTITIES TO A PARABOLIC STEP 
Rz ( X - W )  t (FX-FV) : Il=( X-V! 1 (FX-FIJI : P'( 14') tQ-( X - W  1 tR 

2152 EL=E :E=DX 
2654 
2656 REH ----- PARABOLIC STEP 
2658 DX=F'/Q : U = l t D I  
26t.8 I F  ( U - X L ) < ? t E P  OR (IU-U)!:tEP THEN I F  Xn:}X THEN DX=EP ELSE DXz-EP 
2662 GOT0 2678 
2664 HEM ----- GOLDEN SECTION STEP 
2666 I F  X ) = X I I  THEN E.1L-X ELSE E.1U-X 

2678 RE! ----- FSNCTION EVALUATION 
2672 
2674 X0:Y :X=U :GOSUB 9 8 8  :FU=F : X = k O  
2676 
2678 I F  F U N  THEN 2684 
2 6 8 8  IF UI=X THEN XL=X ELSE XU:X 
2682 V=W :FV=FW : W = X  :F#=FY :X=U :FY=FU :GOTO 2692 
2684 I F  U%'X THEN XL-U ELSE XU=U 
2686 I F  FU!FW AND #<:I THEN 2690 
2 6 8 8  V=W :FV=FW :W=U :FW=FU :GOTO 2692 
3 9 8  I F  FU.=FV OR V = X  OR V=W THEN V=U :FV=FU 
2692 NEIT I T  
2694 ER.1 
2696 F=FB :RETURN 
rb?s REH l t t : t t t t t l r t t t t t t t t t t t t t t l t t t t t t t t t t t t t t t t t t ~ t t : I t t  

I F  APS(P))=ABS(QtEL/2)  OR P i = Q t ( X L - X )  OR P)=QtlXU-X) THEN 2664 

2668 DXzRLtE 

I F  ABS(DX):=EP THEN U=XtDX ELSE I F  DX;B THEN U=XtEP ELSE U=X-EP 

REM ----- NEbi BRACKET AND PREVIOUS POINTS 

The i n p l t  to the module is similar to the me of t h e  module M25. T h e  on ly  

d i f f e r e n c e  is that i n  t h i s  case the maximm number IM of iteratims should 

be s p e c i f i e d  be fo re  c a l l i n g .  

Example 2.2.2 Optirmm dosing by B r e n t ' s  method 

We s o l v e  the problem of Example 2.2.1 wi th  the same s t a r t i n g  i n t e r v a l .  T h e  

main program is e s s e n t i a l l y  the same excep t  the fol lowing l i n e s :  

208 XL.0 :YU=180@ :EP=. l  :IM=38 

714 L P R I l T  V1 :LPRINT :LPRINT "BREIIT'S flETHOD' :LPRINT 

216 GOSUB 2600 
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The iteration process is m a r i s e d  in Table 2.6. 

Table 2.6 
Steps in Brent's method 

iteration xL, mg 

--------I--------- 

1 0 
2 
3 190.983 
4 
5 331.111 
6 318.578 
7 
8 

xu, mg 

10ZGl 
w.2 

381.966 

360.131 
346.636 

type of step 

golden 5 .  

golden s. 
parabolic 
parabolic 
parabolic 
golden 5.' 

golden s.' 
parabolic 

best estimate 
X f(x) 

190.983 350.169 
381.966 lB8.784 
301.111 35.696 
318.570 21.586 
324.801 17.703 

334.473 14.469 

12 334.783 335.522 parabolic 335.422 14.439 
final 335.322 

* parabolic mv-t would be too big compared to the m v m t  two steps before 

Parabolic interpolation is more effective than golden section search for 

this problem, because the function is of parabolic character in the vicinity of 

the minirmm. To 5how a cwterexample we slightly change the approximate 

objective function (2.19) and define Afi by 

- cU)At 
- ci)At 

if ci > cu 
if ci < cL 

0 otherwise , 
(2.21) 

i.e., now we minimize the shaded area show in Fig. 2.10. ( Y w  can easily make 

this change in the main program by dropping the expent 2 from lines 910 and 

912 . )  In this case Brent's method needs the same number of function 

evaluations a5 the golden section search does. 

As we mentioned, in one-dimensional problems it might be advantageous to 

solve the equation f (x) = 0 instead of minimizing f. The roots of 

f ( x )  = 0 are, b v e r ,  not necessarily minimum points, and hence we can run 

into trwble without a g o d  a priori knowledge of the form of the function. In 

addition, we need an expression for the derivative f (x) which is frequently 

not available, e.g., in the optimal dosing problem of this section. 
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2.3 SYSTEMS OF NavINAR EWTIONS 

In the following sections x , f and g are all n-vectors, and we'shwld 

slightly change cur notations. The estimates of a r m t  (or those of a minimum 

point) in iterations 1,2 ,..., k will be denoted by x(l), x('), ..., X(k), 
,..., x ( ~ )  will denote the vector cmpments of the k-th 

(k) (k) 
1 'x2 

whereas x 

estimate x(k). 

The simplest method of slving a system of nonlinear equations is the 

successive approximation 

.(k) = 9 (  (k-1) ) ,  (2.22) 

where g denotes the function rearranged as described in Section 2.1.6. As in 

me dimension, the method is slow and does not guarantee the convergence, 

t b g h  these properties heavily depend on the way of rearranging the equations 

to the form x = g(x) . It is, hDwever, extraordinarly simple and hence 
convenient in many applications, e . g . ,  for flowsheeting in chanical engineering 

(ref. 13), and hence must be taken more seriously than in one dimension. Great 

efforts have been devoted to improve the basic method. The simplest modified 

version is 

(2.23) 

which retains the previous estimate 

If c = 1 (i.e., the simplest direct iteration) gives rise to motonic 

convergence, then w e  can try to increase the rate of convergence by setting 

c > 1 . This simple trick is known as acceleration or overrelaxation. !3 the 
other hand a divergent or wildly oscillating iteration observed at c = 1 may 

be improved by choosing an appropriate value 0 < c < 1 , which leads to 
relaxed or damped iteration. The method is 50 simple that we do not include a 

program module, but suggest to write your own program and experimnt with 

different values of c on the test example we will study in the next sections. 

x(~-') up to the weighting factor (1-c). 

2.3.1 Wwstein method 

A popular version of successive approximation due to Wegstein (ref. 14) can 

be best understwd by considering the one dimensional case as shown in 

Fig. 2.11. Let 

equation x = g(x) . Gewnetrically the method consists of extending the line 

through {x(l), g(x(l))) and {x('), g(x(2))> until it crosses the line y = X. 

 he new estimate is then set to the abscissa 

replacing the oldest of the previous estimates. 

x(') and x(') denote two current estimates of the r m t  of 

x(3) of the cross point, 
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Fig. 2.11. Gwmetric idea o f  the Wegstein method 

Therefore the above expression provides an a u t m t i c  selection of  the damping 

or accelerating factor c i n  each i terat ion.  The idea i s  easy to  extend t o  a 

system of equations, i f  each element xi o f  the vector x i s  regarded t o  be 

independent of the others w h w ,  using the expressims (2.23) and (2.24) . Thus 

the Wegstein method use5 separate factors ci for  each variable: 

(2.25) 

(2.26) 

The gecwnetrical idea introduced fo r  one dimensicn applies only t o  a system 
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of independent equations with gi depending only on xi . Thcugh i n  the 

general case the method does not have a sound theoretical basis, i t  MY perform 

surprisingly well. 

Proqram module PE0 

!BE0 REll t l t t t t l t t t t l t t t t t t t t l l l l l l l l l l l t l l l l l t t l t l l l l l l l l l l  
3802 REH 1 SOLUTION OF SIIULTANEOUS EQUATIONS X = G l X )  1 
3884 REIl 1 WEGSTEIN flETHOD t 
300t REM 1 t t 11 t t t  111 11 t t t l t l t  l t  11 11 t t t t t t  lttt t 11 111 t l l l l l l t t  
3888 REM INPUT: 
3 0 1 1  RER N PROBLEH S I Z E  
3812 REH XIN) STARTING POINT 
3814 REH D(N) PERTURBATION OF STARTING POINT 
3816 RE! EP THRESHOLD ON NORM OF THE STEP 
3018 REti IH MAXIHUH NUMBER OF ITERATION 
3020 REI1 OUTPUT: 
1822 RE# ER STATUS FLPG 
3024 REll 0 SUCCESSFUL SOLUTION 
3826 REM 1 UNADtllSSIELE STARTING POINT 
3028 REtl 2 REQUIRED ACCURACY NOT ATTAINED 
3838 RE1 XINI ESTlHATE OF THE SOLUTION 
3032 REM G I N )  RHS OF EQUATIONS AT F I N A L  E S T I I I T E  
38Z4 REM USER-SUPP!IED SUBROUTINE: 
M 6  REM FROM L I N E  908; XI.) --> GI.) I RHS EVALUATION 1 
3 8 3  REM AUXILIARY ARRAY: 
3040 REtl R ( N )  
3042 E R 4  :GOSUB 9P0 :IF E R O B  THEN E R = l  :GOTO 3872 
3844 FOR IT.1 TO IM 
3846 FOR 1.1 TO N :RlII=Gl1) :XlI)=Xll)tDlI) :NEXT 1 
3848 ER.8 :GOSUE 988 : I F  ER=B THEN 3054 
3858 FOR 1.1 TO N :DlI)=.95tD(I) :X(I)=XlI)-.85tDII) :NEXT I 
3052 SD=SDt.9025 ;GOTO 3048 
3054 IF I T > 1  BND SOR(SD)<=EP THEN 3072 
3156 SD=8 
3058 FOR 1.1 TO N 
3860 C=Dl1)-6[ I ) + H I  1) :IF A B S l C ) ( I E - 3 0  THEN C = S G N ( C ) l l E - 3 8  
3862 
3864 NEXT I 
3866 IF SQRlSD)(=EP THEN ER.8 :60TO 3072 
3068 NEXT I T  
3078 ER=! 
3 8 7 2  RETURN 
3874 HEM t t t t t l t t l t t t l t t t l t l t l l l l l l l l l l t l l l t l l l l l l l l l l t l t l t~  

C:D( I)/C :D l  I )  :CtlG( ])-XI I )  ) :SD=SDtDl  I )tD( I )  

To s t a r t  the procedure we need a vector X of i n i t i a l  est imates and a vector D 

o f  i n i t i a l  corrections (mv-ts), both o f  dimension N . During the i terat ion 

the vector D contains the current correction vector x ( k )  - x(k-1) .   he 

convergence cr i ter ion i s  [(Dl1 < EP . The user supplied subroutine s tar t ing a t  

l i n e  Sew sets the vector G t o  the actual value of  the r i g h t  hand side vector 

cmplted a t  the current estimate X .  

An important feature of the program module i s  checking the feas ib i l i t y  of 
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the current estimate X .  If X is outside the region y w  anticipate to contain 

the mluticn, y w  shwld set the error flag ER to a nonzero value in the 

subrwtine. Flt a nonzero ER value the module will repeatedly decrease the 

length of the correction vector by SL in order to keep the estimate within the 

feasible region. This is particularly important if the function g is not 

defined for all values of the variables (e.g., in the following example all 

variables shwld be positive). All the further programs of this chapter will 

include such t-t and dification of a potential n w  point. 

Example L3.1 Equilibrium of chemical reactions by Wegstein method 

We consider a chemical system consisting of the following species: 

methane (M4) , water (+O) , carbw, m o x i d  (M3) , carbon dioxide (CO2) , and 
hydrogen (H2) . There are two linearly independent reactions a m g  these 

species, e . g . ,  

M4 + "p = co + y(2 

and 

(2.27) 

C O + H $ = C O ; , + H 2 .  (2.28) 

We want to find the equilibrium caposition at the temperature T = 1m K and 

pressure P = 1.013~10~ Pa if the system initially contains 2 moles of methane 

and 3 moles of water. For the given temperature and pressure the natural 

logarithms of the equilibrium constants 

fractions are k n m :  log K1 = 3.4789 and log K2 = -0.0304 . Let nl, n2, 

..., n5 denote the mole numbers of species M4, H F ,  CO, CO;,, and H2, 

respectively. Then n=.C ni is the total mole number. Writing the mole fractions 

K1 and K2 expressed in terms of mole 

5 

1=1 

yj = nj/n into the equilibrium relations K1 = y~y,/(y~y~l and 

K2 = y4y5/(y3y2) 
following equations 

and taking the logarithms of both sides we arrive at the 

log Cn4n5/(n3n2)l = log K2 . 
(2.29) 

0 
As discussed in Section 1.8.1, with known initial mole numbers n thrwgh 

1 

0 
n the extents x1 and x2 of reactions (2.27) and (2.281, respectively, 

determine the current mole vector uniquely. Since 

CH4 consumed in the first reaction and measures the moles of CO2 produced 

5 

x1 measures the roles of 

x2 
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i n  the second reactim, we have the  s t o i c h i m t r i c  relations: 

0 0 0 0 0 
n1 = n -x l ,  n2 = n2-x1-x2, n3 = n +xl-x2, n4 = n4+x2, n5 = n +3xl+xz 

1 3 5 

c 

Using (2.50) we can write equa t ions  

equa t ions  w i l l  be rearranged to the 

(2.50) 

(2.29) i n  terms of x1 and x2 . These 

form x = g ( x ) ,  simply by adding xl to 

both s i d e s  of the f i r s t ,  and x2 to both s i d e s  of the second: 

T h e  fol lowing main program s o l v e s  the system (2.31) . 
100 HEN ........................................................... 
102 REM EX. 2,3,1 REACTION E8llILIRRIUN BY WEGSTEIN HETHOD 
104 REM MERGE MI0 

108 Dlfl #8(5),NWi5I,N1(51 
I10 RE# iNATURAL LOG K VALVES! 
112 W1=:.4789 :W2=-.@584 
114 HEM iINITIAL NOLE NUIIBERS) 
116 N0(1)=2 :N0[2!=3 :N@=5 
l l@ REN [NAHES) 
I2Yi N I ( 1 ) Z " m e t h a n  ..,....." 
122 N$[?)="water ,. ,. . ....' 
124 N6IJ):'ccarbon aonoxid " 

126 NI(4)="carbon dioxid ." 
128 Nli5!='bhydrogen ,....." 
200 REI1 ---------- PHOXLEi? SIZE AND CONTROL PAKANETERS 
282 N=2 :1M=30 :EP=.UE00BI 
204 D I H  X(N),DIN),G(N!,R(NI 
206 HEM ---------- STARTING POINT AND STARTING STEP 
2B8 Xil)=I :X(?)=.l 
210 D[1)=.01 :D(2)=.01 
212 VI=STRIN& i 53 I I-' ! 
214 LPBlNT 'HEGSTEIN NETHOD" :LFRINT 
716 GOSUH 3500 
218 LPRIW? :LPRINT ' I$  
220 LPHIRT " INlTiAL 7. EQUILIBRIUM 7." 
222 F I = "  ##.lWI II#.I#X # Y . # # W # X #  #11.1#1' 
224 LPRlNT V$ 
226 FOR 1.1 TO 5 
228 LFRINT Nlil!; 
230 LPRlNT USING F$;NB( I )  ;N@( I)iNBI!0B,NYII) ,NW(I )/NWtl@B 
2 3 2  NEXT I 
234 LPalNT VI :LPR!NI 
236 ?TOP 

10b REM ---------- DATA 

(2.31) 



104 

S t a r t i n g  a t  l i n e  920 you f i n d  the u s e r  s u b r m t i n e .  In  t h i s  r o u t i n e  the mole 

numbers occupy the a r r a y  elwnents  Nw(11, Nw(2), ..., Nw(5) and the scalar 

v a r i a b l e  Nw stores the total mole number. A t  t h e  c u r r e n t  v a l u e  X ( 1 )  and X ( 2 )  

of the reactim e x t e n t s  w e  first c a l c u l a t e  the mole numbers. I f  any of  them is 

n e g a t i v e  or ze ro ,  the error f l a g  ER i5 set to  a nonzero value.  I f  the mole 

numbers are f e a s i b l e ,  the v a l u e s  cmplted according to  (2.31) w i l l  occupy t h e  

a r r a y  elements  G(1) and G ( 2 ) .  The i n i t i a l  estimates are X ( 1 )  = 1 and 

X ( 2 )  = 0.1 , the f i r s t  corrections are D(1) = D(2) = 0.01 . T h e  fo l lowing  

o u t p l t  shows same of  the iteratims. 

WEGSTEII ItETHOD 

IT= 8 x(1)=0.18570Et01 ;(2)=0.21259Et08 q(1)=0,18573Et01 g(2)=0.24274Et00 
I T =  9 x~l)=0.18569Et01 r(?)=0.24258E+00 g(l)=0.18569Et01 g(2)=0.24:6lEt00 
IT= 10 x (1 )=0,1@569E+01 Y (2)=0.24?58EtR0 g( 1)=0.18569Et01 9 (2)=8.24259EtBI 
IT= 11 x i  1 l~0.18569Et01 i (2l=0.24258EtUR g (  1)=0.1@569Et0I g (2)=0.24258Et08 

INITIAL X EOUILlRRIUt4 1 
..................................................... 
methin ..,...,. 2.000 40.000 0.143061 1.642 
water ,.,. ..... 3.008 60.008 8.900486 18.:34 
carbon nonoxid 0.B00 8.000 1.614364 18.526 
carbon d i w i i d  I 0.000 0.00R 8,242575 2.784 
hydrogen ...... 0.008 0.800 5.81335'2 65.714 

2.3.2 Newtm-Raphson method i n  mul t id imens ims  

Fk i n  m e  dimension, the Newton-Rapkon method is based m local l i n e a r  

approximation of  the f u n c t i m  f around the c u r r e n t  estimate xCk- ' ) .  The 

approximating l i n e a r  func t ion  is g iven  by 
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(2.32) 

where 

are the elements of the n m  Jacobian matrix of f at x ( ~ - ' ) .  Setting y = 0 

in (2.32) we obtain a set of linear equations for the correction 

d(k) = x ( ~ )  - x ( ~ - ' )  . The solution of this matrix equation is 
.(kI - x ( k - l )  = [~(k-l)l-lf(~(k-l)). (2.33) 

Though (2.33) is the well know, form of the Newton-Rapkm correction formla, 

it is more efficient to solve the matrix equation for d(k)  by LU 

decmposition and backward substitution. 

As for a single equation, the convergence is of order 2, and hence the 

method is expected to perform very well if the elements of the Jacobian matrix 

are continuous functions in a neighborhood of the root and the initial guess is 

sufficiently good. The cmpltational costs are, hOwever, high, since we perform 

n equivalent function evaluations for constructing the Jacobian matrix in each 

iteration. The solution of the matrix equation is also a nontrivial task. In 

addition, a singular or nearly singular Jacobian matrix (2.32) gives 

meaningless corrections. 

Prwram module M31 

3100 RE1 I t t l t t t l l t t t t t t t t t t t t l t l t t t t t t t t l t t t t t t t l t l ~ ~ ~ l l l  
3102 REH I SOLUTION OF SIHULTANEOUS EQUATIONS F(W)=0 I 
3104 REM t NEWTON-RAPHSON METHOD I 
3 1 0 b  REM t l t t t ~ l t l t t t ~ l t ~ t t t t t t t t t ~ ~ l l ~ l l l l l ~ l ~ ~ l t t t l t ~ l ~ l l l  
3 1 0 8  R E I  INPUT: 
3 1 1 8  REM N PROBLEH S I Z E  
3112 REH XIN) STARTING POINT 
3 1 1 4  REM E l  THRESHOLD ON FUNCTION NORH 
3116 RE1 E 2  THRESHOLD ON STEP LENGTH 

3 1 2 8  REM OUTPUT: 
3 1 2 2  REH ER STATUS FLAG 
3 1 2 4  HER I SUCCESSFUL SOLUTION 
3 1 2 6  REE 1 UNADMISSIPLE STARTING POINT 
3 2 8  REH 2 SINGULAR JACOB1 MATRIX 
3138 REM 3 NEITHER THRESHOLD ATTAINED 
3132 HEM X(N) ESTIMATE OF THE SOLUTION 
2134 REH F(N) FUNCTION VALUES AT THE ESTIHATE 
3 1 3 6  KEN 
3 1 3 8  REH AUXILIARY VECTOR: 
3 1 4 0  HER R(N) 
3 1 4 2  HEM USER SUPPLIED SUBROUTINES: 
3 4 4  REH FROH L I N E  900,  J( . )  --) F(.I ( FUNCTION EVALUATION ) 
3 1 4 6  HEM 

3 1 1 8  REH i n  MAXIMUW NUMBER OF ITERATIONS 

A [ H , N )  INVERSE OF THE JACOB1 HATRIX AT THE ESTIHATE 

FROM L I N E  RRB, XI.) --> A ( , ,  . )  1 JACOB1 HATRIX EVALUATION ) 
3148 REM 1ODULES CALLED: Rl4,R15 
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3 1 5 9  ER.2 :GOSUB 9 9 0  :IF E R I E  THEN ER.1 :GOTO 3182 
3152 FOR IT=1 TO I N  
3 5 4  SF.0 :FOR 1.1 T O  14 :R(II=X(I) :SF=SFtF(I)tF(II :NEXT I 
5 1 5 6  IF SOR!SFJ<=El THEN .?la2 
3158 
3 6 0  6OSUB 800 :GOSUB 1 4 0 0  :IF E R = I  THEN ER=2 :60TO 3162 
3162 REW --------- EPCKSURSTITUTION 
31b4 FOR 1.1 TO N: X[I)=-F(I! :NEXT I :60SUB 1500 
516b 34 : i D R  1.1 TO ti :SX=SXtX(I)fX(I) :XlI!=R(l)tX(!! :NE%T I 

317P EP=C :GGSUE WR : I F  ER:R THEN 3176 
3 1 7 7  
3 1 7 4  SX=S(t,90?S :SOTO I170 
3 7 6  I i  SQR(SX):=E? THEN 3 1 8 2  
31’5 t!EXT I T  
>Id3 ER:3 

REN --------- LU DECOWFOSITION OF THE JACOBIRH M T R I X  

CHECK NEH POINT 3168 REM _ _ _ _ _ _ _ _ _  

FOR 1=1 TO bl : ~ l I ~ = . ? S t X ( l ) t , ~ 5 t R ( ! ~  :NEXT I 

7 -  

;13? RETURM 
3184 RE! r t t t t t t t t t t t t t t t t t t ) t l t t t t t t t t t t t t t t t t t t [ [ [ [ [ t t : [ [ t  

Two subrout ines  s h x l d  be suppl ied by the u s e r  of the module. T h e  subrout ine  

s t a r t i n g  a t  l i n e  ‘902 computes the l e f t  hand s i d e s  of t h e  equat ions f (XI  = 0 , 
and stores them i n  a r ray  F. The s u b r w t i n e  s t a r t i n g  a t  l i n e  602 evalua tes  t h e  

elements o f  t h e  Jacobian m a t r i x  and puts  them i n t o  the a r r a y  A. The 

subrout ine s t a r t i n g  a t  l i n e  SCdB should re turn  the error f l a g  va lue  ER # 0 i f  

the c u r r e n t  estimate s tored  i n  a r r a y  X is unfeasible .  The m a t r i x  equation is 

solved by c a l l i n g  t h e  modules M14 and M15, 50 that do n o t  f o r g e t  to merge these 

modules when using module M31. We terminate  t h e  prwredure i f  I l f ( x c ( k ) ) l l  E l  

Example 2.3.2 Equilibrium of chemical reac t ions  by Newton-Raphson method 

The problem is the  one stated i n  t h e  previous example. The equat ions are 

obtained rearranging (2.29). Since  the Jacobian is always ca lcu la ted  a f t e r  

funct ion eva lua t ion ,  t h e  subrout ine  s t a r t i n g  a t  l i n e  WUl m a k e s  u s e  of the 

canplted mole numbers. We show t h e  main program and t h e  i t e r a t i o n s ,  whereas 

the f i n a l  r e s u l t s  are t h e  same as i n  t h e  previous example and hence o m i t t e d  

f r m  the outplt. 
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2.3.3 Broyden method 

The Broyden method is me of the simplest quasi -htan method. The aim of 

quasi Newton methods is t n  achieve cmvergence properties canparable to  those 
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of the Newton-Raphscn method, but without the use of the Jacobian matrix, and 

with no need for solving a matrix equation in each iteration. A11 quasi-Newton 

methods are based on local linear approximation 

(2.34) 

where ax(k) = , (k)  - . (k - l ) ,  A f ( k )  = f c x ( k ) )  - f ( . ( k - l ) )  and B ( k + l )  can be 

regarded as the approximation of the Jacobian matrix. Similarly to the 

correction forrmla (2.33) of the Newton-Raphm method we can derive the 

correc tion 

(2.351 

where H(k+l) = [B(k+l)l-l. In me dimension the scalar dk+l) is the slope 
of the secant and knowing two previous pints we can calculate it from (2.34). 

In mltidimensions, however, dk+') is an nXn matrix, whereas we have only 

n equations in (2.34). To fill the gap we need assumptions, and different 

assumptions result in different quasi-Newton methods, see, e . g .  (ref. 15). In 

the so called rank 1 methods dk+l) is restricted to the form 

where u ( ~ )  and 

of the Jacobian is therefore obtained from a colurm vector n-ultiplied by a row 

vector. The rank of such matrices does not exceed one which gives the name of 

the methods. 

v ( ~ )  are n-vectors. The matrix modifying the current estimate 

In the method of Broydm (ref. 16) vtk) is selected to be equal to Ax(k) 

and u ( ~ )  

behind selecting this v ( ~ )  is to leave dk+l) unchanged along directions 
with no new information available in the k-th iteration. Indeed, for any 

vector z orthogonal to (i.e., with A x ( ~ ) z ~  = 0 ) w e  get 

d k + ' ) z  = , and hence dk+l) behaves similarly to along these 

vectors. 

is then obtained from the n equations (2.34).  The gwmetric idea 

Using the estimate dk+l) updated in each iteration we do not need to 

evaluate the Jacobian matrix. The second improvement is avoiding the inversion 
of dk+l) 
latter, the inverse of dk+l) of the form (2.36) is given by 
[ B ( k + l ) i - l  = [~(k)l-1 - CB(~)I-~,TCB(~)I-~,(~ + vTrg(k)~-lu) , 

through the u5e of the Hausholder forn-ula. kcording to this 

(2.37) 

where we omitted the superscript k for the vectors u and v. Therefore we 

can derive H(k+l) = CB(k+l)l-l 

inverse H(k) = and the vectors u and v. In the Broyden m e t W  the 

particular selection of these vectors results in the updating forwla 

directly frm the previms estimate of the 
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The (k+l)- th i terat ion of  the Broyden method consists of  updating the inverse 

according to  (2.38) and then performing a correction by (2.35). 

The convergence properties are s imi lar  t o  those of  the Newton-Rapkan 

method, usually with m r e  i terat ions but less equivalent function evaluations. 

I n  cases, m v e r ,  the correction vector  AX(^) gets i n t o  a subspace 

and remains there i n  a l l  subsequent iterations. Then the method i s  unable t o  

explore the whole space of  the variables. This problem can be resolved by 

restarting the procedure a t  the point where i t  claims t o  have found a rmt 

(i.e., r e i n i t i a l i z e  H(') t o  the ident i ty  matrix). 

I n  the following program module based on ( ref .  17) w e  need only an i n i t i a l  

guess 

we perform n steps t o  update only H(' ) ,  while the estimate of the solution 

i s  l e f t  unchanged. The Broyden i terat ion,  involving both (2.38) and (2.35) 

star ts  only af ter  t h i s  i n i t i a l  updating cycle. The procedure i s  terminated i f  

x ( O ) ,  whereas H(') = I ,  the ident i ty  m a t r i x .  A t  the beginning, hDwever, 

Proqram module M32 

32e0 HEM t : t t t t l l t t ;~~l~~~l l t~ l l t ; ;11111:t t t~t :11t :&;;11111~ 
3202 HEN I SOLUTION OF SIHULTANEOUS EQUATIONS F(X)=0 t 
3204 REtl t BROYBEN METHOP 1 
3206 REN ~ t t t t ~ l ~ ~ l ~ ~ t t t t l l l t l 1 t 1 1 ~ & t t t t ~ t t l 1 ~ 1 ~ l 1 1 1 ~ l t 1 ~ & & ~  
3288 REII INPUT: 
3 2 1 0  REV N PROBLEN S I Z E  
3 2 2  REH ! IN)  STARTING POINT 
3214 REV E l  THRESHOLP ON FUNCTION NORN 
3 2 1 6  RE\ E 2  THRESHOLD ON STEP LENGTH 

3220 REM OUTPUT: 
3222 RE! ER STATUS FLAG 
3224 REM 0 SUCCESSFUL SOLUTION 
3226 REH 1 UNADHISSIBLE STARTING POINT 
1 2 2 8  REM 2 NEITHER THRESHOLP ATTAINED 
32Z0 REN $IN) ESTIIIATE OF THE SOLUTION 
3232 REII FIN) FUNCTION VALUES AT THE F I N A L  ESTIHATE 
3234 REH 
3236 REM USER-SUPPLIED SUBROUTINE: 
$238 REV FROH L I N E  9 0 0 ;  X [ . )  --> FI.1 [ FUNCTION EVALUATION ) 
3240 REH AUXILIARY ARRAY: R(3,N)  
3242 RE# ---------- STAPTING POINT 
3244 ER.0 :GOSUB 900 :IF ERO.0 THEN ER.1 :GOTO X 4  
3246 RER ---------- U N I T  MATRIX INTO H 

ma REH IN t i~ i~nun NUNBER OF ITERATIONS 

H I N , N l  ESTIMATE OF THE INVERSE OF THE JACOB1 MATRIX 

3248 FOR 151 TO N 

3252 FOR J = l  TO N : H [ I + J j = - [ I = J )  :NEXT J 
3254 NEXT I 

3250 RlI,Ij=H 
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1!5a SEF1 ---------- N STEPS TO I N I T I A L I Z E  H 
2 5 8  FOR t:l TO N : R i l , l ) = 1 0 8 t E ?  :60SciB 3292 :R(l,K)=0 :NEXT K 
3260 HEN ---------- ITERRTIOM 
17 -5~5; I FOR IT=l TO IN 
3263 FOR I=: TC I 
2 6 6  Sd.0 
3268 
3270 R!i,I!-SP 
3272 NEYT I 
2 7 4  M S U B  3292 

FOR J.1 TO N :SA=Si ) -H i I ,J ) tF (J )  :NEXT J 

3 2 7 4  SA=a :Sr+e 
5 x 8  FOR 1.1 T'J H 
128P E;;I=SAt;[ I itF(1) :SB=SB+RiI, I )lR(l,I) 
3282 NEXT I 
3284 RE! --------- CONVERGENCE 
:?Eb IF SCR(SA)<=E! OR SRR(SB)(=E? THEN EH=A :GOTO 3334 
3288 NEXT IT 
3 3 0  ER.2 :GOTO 3334 
329:' REtl ---------- STEP OF THE BROYDEN flETHOD 
3294 FOR 1.1 TO N :X(I)=X[I)+R(l,l) : R l 3 , l ) = F i l )  :NEXT I 
3296 ER.8 :EOSUS 9 A I  :IF ER.0 THEN 3302 
J298 FOR I:1 TO N : X I I ) = X ( I ) - . A 5 1 R i l , I )  :R(I,1)=.95tR~I,I) :NEXT I 
3388 6010 32P6 
3382 
3 3 4  SA=t 
3316 FOB 1=1 TO N 
:308 SB.0 
331R 
3 1 2  
3315 NEIT I 
3316 IF SG.0 THEN 3330 
3316 FOR J = I  TO N 
3 2 1  56.0 

3324 SB=SB/SG 
3326 
3328 NEXT J 
3336 RETURN 
1312 REH ---------- END OF STEP 
:334 RETURN 
3336 RE! l t t t t t t l t l l t l t t t l t t t t t t t t t t t t t l t l l t l t t l l l l t t t t t l t l t ~ ~  

FOii l:1 TO N :R(2,I)=F(I)-F(S,I) :NEXT I 

FOR J=I  TO N : S B = S B t H ( I , J ) t R ( 2 , J )  :NEXT J 
R (  3, I )=SB-R( I ,  I )  :SA=SA+SBtP(I, I ) 

777-3 FOB I=! TO N :SH=SB+R!I,I)tH(I,J) :NEXT I 

FOR 1.1 TO N :H(I,J).H(I,J)-SBtR(a,I) :NETT I 

7 -  

We need on ly  a single user subroutine starting at line 900, which is completely 

analogous to the corresponding one required by the Newtm-Raphscn method. 

Example 2.3.3 Equilibrium of reactions by Broydm method 

In order to complte the reaction equilibrium studied in the previws 

examples we slightly change the main program of Example 2.3.2. Lines WMD-810 

are omitted and the following lines are replaced: 

104 REH HERGE H32 

21: LPRIKT 'RROYDEN RETHOD" :LPRlMl 

214 GOSUB 3200 
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The part of the out@ that shows the iterations is as follows. 

BHOYDEN HETHOD 

Table 2.8 shows the computational efforts required to solve the test problem 

on reaction equilibrium by five different methods. For cunparison successive 

approximation and damped ~lccessive approximation with a damping factor 

c = 0.75 are also included. 

Table 2.8 
Computational effort in different methods 

Method kmber of iterations Munber of equivalent 
function evaluations 

Successive approximation 24 24 
Damped iteration (c = 0.75)  9 9 
Wegstein 11 11 

Broyden 9 11 
Newton-Rapkon 5 15 

____________I____111____________________ 

Exercises 

0 Derive the formlas (2.23) and (2.24) of the Wegstein iteratim from the 

0 Consider the n m  matrices A and B = A + uvT, where u and v are 

gwmetrical idea. 

n-vectors and assume that A and B are noneingular..According to the 

Hausholder formula, exploited in Section 2.3.3, the inverse of B is given 

bY 

To prove this relationship, show that B-lB = I . 
0 Solve the system Ax - b = 0 with a square, nonsingular A by the Broyden 

method and test whether or not the final matrix H will satisfy the equality 

H = A-1 . 
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2.4 MINIMIZATIW IN MULTIDIEENSIONS 

In this section we deal with the problem of finding the minimum of a 

function of more than m e  variables. 

There are three major families of algorithms for minimization: 

i) direct search methods, involving the evaluation of the function f ( x )  only; 

ii) gradient methods, based on the use of the gradimt vector g of 

the elements gi = af(xl/axi , in addition to the values of f(x); 

iii) Newton type methods that require also the Hessian matrix H of the 

elements 

values. 

[HI.. = Sf/axiaxj , in addition to the gradient and function 
1J 

The direct methods are not very efficient in term of the number of function 

evaluations, but are robust, decreasing the objective function up to sane 

extent in most cases. Requiring only one user supplied subroutine they are easy 

to use. 

The most traditional and simplest gradient method is the steepest descent. 

Its idea is moving the current estimate x ( ~ )  to the next one x ( ~ + ' )  by 

minimizing the objective function along the line from 

the local negative gradient 

one dimensional minimization problem 

x ( ~ )  in the direction of 

[ - g ( ~ ( ~ ) ) ]  . Thus in each iteration we solve the 

(2.39) 

called directional search. The entire step is then repeated from the new 

estimate as many times as needed. Though the method will decrease the function 

value in each iteration, it will perform very m a l l  steps in rest cases, 

particularly when going down a long, narrow valley. The convergence is of order 

1, and the numerical efficiency is poor because of the effort required in the 

directional search. Though there are considerably improved versions, e . g . ,  the 

conjugate gradient methods, we will not consider them here. 

TIW Newton method will set the next estimate x ( ~ + ' )  to the minimum point 

of the local quadratic approximation of the function. Comparing (2.40) and 

(2.33) 

minimization and for solving a set of nonlinear equations. In (2.401, however, 

the matrix H is always symmetric, and at convergmce (but not necessarily in 

intermediate iterations) it is positive'definite. The properties of the method 

are also retained. The convergence is of order 2, and hence is rapid near the 

minimum point, but may be poor far from the solution. In addition, the number 

of equivalmt function evaluations is high because of the need for evaluating 

H . The Newton method finds, however, the minimum of a positive definite 

shows that we use essentially the same correction formula for function 
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quadratic function in a single step, and w e  will exploit this advantagwus 

property in parameter estimation. 

 he quasi-Newton methods estimate the matrix c = ti-1 by updating a 

previous guess of C in each iteration using only the gradient vector. These 

methods are very close to the quasi-r\lewton methods of solving a system of 

nonlinear equaticns. The order of convergence is between 1 and 2 ,  and the 

minim of a positive definite quadratic function is found in a finite number 

of steps. 

The algorithms using first or second derivatives are somewhat m r e  powerful 

than those using only function values, but not always enough so as to 

compensate for the additional function evaluations. Nevertheless, if y w  can 

compute the the derivatives select a method that will use them. Therefore, the 

Newton method is the best choice if you are able to differentiate the function 

twice and and have a gccd initial guess. Replacing the derivative with finite 

differences is more controversial. If only the gradient vector is available in 

analytic form, the variable metric method due to Davidm, Fletcher and Powell 

usually dominates the finite difference version of the Newton method. If ycu do 

not have analytic derivatives at all, it is usually better to consider a direct 

search. From this latter family we describe here the simplex method due to 

Nelder and Mead. 

2.4.1 SimDlex method of Nelder and Mead 

A simplex is the closed gwmetric figure ccnsisting, in n dimensions, of 

n+l vertices and all their interconnecting straight line segments. In two 

dimensions a simplex is a triangle, not necessarily a regular one. The search 

procedure due to Nelder and Mead (ref.18) is based on selecting a starting 

simplex represented by n+l vertices x(1), ~(21, . . . , x(~+') and then 

successively improving it. 

To describe the method w e  introduce the following concepts. 

n i=l 
, 

Notice that the centroid excludes the worst point. In one step of the search 

the following candidates are investigated in order to replace the worst point: 



114 

r e f l e c t i o n  p o i n t  x* = ZP - x(MX) 

expansion p o i n t  xf* = xf + ( P  - x ( ~ ~ ) )  

c o n t r a c t i o n  p o i n t  x*** = ( x ( ~ x )  + ii)/2 . 

I f  none of these c a n d i d a t e s  is better than  the worst  p o i n t ,  the s i z e  of the 

simplex is reduced leaving on ly  the bes t  p o i n t  i n  place:  

Fig.  2.12 skws the i n i t i a l  simplex and the c a n d i d a t e  p o i n t s  i n  two 

dimensions. The method is sumnarized i n  the logic diagram based on ( r e f .  19) 

and shown i n  Fig.  2.13. 

Fig .  2.12. A simplex i n  two dimensions 

The iteration is stopped i f  the norm of  the correction i n  the c e n t r o i d  and 

the d i s t a n c e  bet- the bes t  p o i n t  and the c e n t r o i d  are both less than a small 

th re sho ld  EP . 
The a lgo r i thm has g r e a t  v e r s a t i l i t y  to  adopt  the simplex to  the local 

landscape of  the func t ion  s u r f a c e .  I t  w i l l  elongate and t a k e  a l a r g e  s t e p  i f  

can do  so, it w i l l  change d i r e c t i o n  on encounter ing a v a l l e y  a t  an a n g l e  and it 
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STARTING 
S I M T E X  ? 

REFLECTION 

EXPANSION c 
I 

1 
WORST BY 

EXPANSION 

l- 

[2-] 

ENTRACTION t Lrl c - SI rPLEX 

Fig. 2.13. L o g i c  diagram of the simplex method of Nelder and Mead 
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w i l l  contract i n  the neighbourhood of a m i n i m .  A l l  these steps provide us 

useful information on the form of the surface, though we usually have to pay 

the price by evaluating the-function a t  many points. A considerable advantage 

of the method is that i t s  code i s  very concise, as shown i n  the following 

module. 

Proqram module M34 

3480 REM t t t t t t ~ t ~ t ~ t t t t t t t t t ~ t t t l t t t ~ l t t l t ~ t t t ~ ~ t l t l l t l l t t l  
3482 REH t MINlHlZATlON OF B FUNCTION OF SEVERAL VARIABLES t 
34N4 REM I NELDER-READ RETHOD t 

3408 RER INPUT: 
3418 RER N NUHBER OF VARIABLES 
3412 REH S(Nt1,N) INITIAL SIMPLEX COORDINATES (ROY BY ROW) 
3414 REIl EP THRESHOLD ON NORM OF THE CENTROID CDRRECTION 
3416 REM It4 M A X I M M I  NUHBER OF ITERATIONS 
3418 REM OUTPUI: 
3428 REH ER STBTUS FLAG 
3422 HEM @ SUCCESSFUL SEARCH 
3424 REH 1 UNADHISSIBLE POINT I N  INITIAL SINPLEX 
3426 REH 2 THRESHOLD NOT ATTRINED 
3428 REH X(N1 ESTIMATE OF THE HINIMUM POINT 
3430 REM F FUNCTION VALUE AT THE FINAL ESTINITE 
3432 HEM USER-SUPPLIED SUBROUTINES: 

s4ab REM t t t t t t t t t t t t t t t t t : t t t ; t ; t ; t t : : t t t t t t t t t t ~ : t t : t ~ t : t t  

3434 RE\ FROH LINE 9 ~ a ;  x(.) --> F ( FUNCTION EVALUATION 1 
3436 REM AUXILIflRV BRRAV: 
3438 REH R(3,Ntl) 
3441 RE[ ______---- INITIAL SIMPLEX EVALUITION 
3442 ER.8 
3444 FOR JN=l TO Mtl 
3446 FOR 1=1 TO N :X(I)=S(JN,Il :NEXT I 
3448 GOSUB 9BB :IF ERO8 THEN ER=l :60TO 3562 
3458 R(S,JN)=F 
3452 NEXT JN 
3454 REM ______---- ITERATION (BEST:KN, WORST:Nl, NEXT W0RST:NZ) 
34S6 FOR 11.1 TO IM 
3458 F=R(3,Ntl) :FK=F :KN=Ntl :Fl=F :NI=Ntl :F2=-lEt30 
s46a FOR J=I TO N 
3462 F=R(3,J) 
3464 I F  FiFK THEN FK=F :KN=J :60TO 3478 
3466 I F  F)F2 BHD F(=FI THEN F2.F :NZ=J :GOTO 3478 
3468 IF F)F2 THEN F2:Fl :N2=N1: Fl=F :Nl=J 
3478 NEXT J 
3472 REH --------- CENTROID 
3474 FOR 1=1 TO N 
3476 R(Z,I)=R(l,l) :R[I,l 1 4  
3478 FOR J= l  TO Ntl 
3480 IF J O N 1  THEN R(1,1l=R(l,l)tS(J,I)/N 
3482 NEXT J 
3484 NEXT I 
3486 REN --------- REFLECTION 
3488 FOR 1.1 TO N :X(I~=21R~1,II-S~NllII :NEXT 1 
3490 ER.0 :GOSUB 900 :IF E R O B  THEN 3528 
3492 IF F)FK THEN 3508 
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SUCCESSFUL STEP 3494 REH _____L- -_  

3496 FOR 1.1 TO N: S(Nl,I)=X(I): NEXT I :R(j,Nl)=F :FK=F :KN=Nl 

3580 FOR I:1 TO N :XiI)=2tY(I)-R(llI) :NEXT I 
3502 ER.0 :GOSUB 900 :IF E R M  THEN 3528 
3504 IF F(=FK THEN FOR 1=1 TO N :S(Nl,I)=X(l) :NEXT I :R(3,Nl)=F 
3505 GOT0 3548 
3508 REH --------- NEUTRAL 
351% IF F)=F2 THEN 3514 
3512 FOR 1.1 TO N: S(Nl,I)=X(I): NEXT I :R(3,Nl)=F :60TO 3548 
3515 REH --------- UNSUCCESSFUL STEP 
3515 IF F(F1 THEN FOR 1.1 TO N: S(Nl,I)=X(I): NEWT 1 :RIJ,Nl)=F :Fl=F 
3518 HEW --------- ---------- CONTRACTION 
3520 FOR I=1 TO N :X(I)=IR(l,IltS(Nl,I))/2 :NEXT I 
3522 ER=0 :GOSUB 900 :IF ER00 THEN 3528 
3524 IF F(FK THEN KN=Nl :FK=F 
3526 IF F(F1 THEN FOR 1.1 TO N: S(Nl,I)=X(I): NEXT I :R(3,Hl)=F :6OTO 3548 
3528 RE1 --------- ---------- REDUCING SIHPLEX SIZE 
3530 FOR J=1 TO Ntl 
3532 

3498 REn _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _  EXPANSION 

IF J O K N  THEN FOR I=1 TO N :S(J,I)=(SlJ,I)tS(KN,1))/2 :NEXT I 
3534 NEXT J 
3536 FOR J= l  TO Ntl 
3538 IF J=KN THEN 3546 
3540 FOR 1.1 TO N :W(I)=S(J,I) :NEXT I 
3512 GOSUB 900 :IF E R 0 0  THEN ER.2 :60TO 3562 
3544 R(3,J)=F :IF F G K  THEN FK=F :KN=J 
3546 NEXT J 
3548 SX=E :SK4 :F=FK 
3550 FOR 1=1 TO N 
3552 D~R(l,I)-RI2,1) :SX=SX+DtD :X(I)=S(KN,I) :D: 
3554 NEXT I 
3556 IF SORISX)(=EP AND SORISK)(EP THEN 3562 
3558 NEXT IT 
3560 ER=2 
3562 RETURN 

I1,I)  :SK=SKtDtD 

The func t ion  is c a l c u l a t e d  i n  a u s e r  r o u t i n e  s t a r t i n g  a t  l i n e  900. l3-1 the 

i n p l t  you s h w l d  d e f i n e  the N+1 v e r t i c e s  of  the simplex. I f  you do  n o t  have a 

better idea ,  these can be generated by per tu rb ing  the e l m t s  of  an i n i t i a l  

guess  one -byme .  

Example 2.4.1 Minimization of  the Rosenbrock func t ion  by t h e  simplex method of  

Nelder and Mead 

The func t ion  

f ( x )  = l0a(XZ - x21)2 + (1 - X 1 P  , (2.41) 

proposed by Rosenbrock ( r e f .  MI), is a s imple  b u t  famous test problem i n  

non l inea r  minimization, s i n c e  it is f a r  frcm easy to f i n d  its m i n i m  at  

x = (1 ,1 )T  

fol lowing main program we regard t h i s  last p o i n t  as one of  the v e r t i c e s ,  and 

s t a r t i n g  from the i n i t i a l  guess x ( 0 )  = (-1.2,1)' . In the 
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generate the other two, perturbing the coordinates of x ( O )  by 0.01 in turn. 

100 RE[ ........................................................... 
102 REM EX. 2.4.1 ROSENBRDCK PROBLEM BY NELDER-BEAD HETHOD 
104 REB MERGE B34 
200 REM ---------- PROBLEI SIZE 
202 N=2 
204 DIH X(N),S(NtI,N),R(3,Ntl) 
2Bb RER ---------- CONTROL PARABETERS 
208 EP=.08081 :IM=l00 
210 RE1 ---------- INITIAL SIBPLEX 
212 X!1)=-1.2 :!(2)=.1 
214 FOR J = 1  TO Ntl 
216 FOR 1.1 TO N 
218 
220 NEXT I 
222 NEXT J 
224 VVSTRINH (60, "-') 
226 LPRINT 'SIHPLEX METHOD OF NELDER AND HEAD" :LFRINT 
228 LPRINT V1 
238 GOSUB 3400 
232 LPRlNT :LPRINT 'MINIHUM"; 
231 LPRINT TAB( 10) ; ' x  ( 1 
236 LPRINT :LPRINT V$ :LPRINT 
258 STOP 
900 REM ---------- FUNCTION EVALUATION 
902 F:l008 (W!2)-X( 1)*2)^2t( 1-1 (1) )"Z 
904 LPRINT USING"IT=l## x 11 l=ll.#lll###A'A* x (2)=11. #####V"* ";IT, X (1) , X  (2) ; 
906 LPRINT USING'F=#.#####'"*A";F 
908 RETURN 

S ( J  I )=XI I )-.el1 ( 1 4 )  

; X ( 1 ) ;TAB(25) ; " Y  (2 )="  ; X [ 2) ;TAB( 40) ; " F = O  ;F 

The shortened iteration history i s  as follows. 

SIHPLEX IETHOD OF NELDER AND READ 

IT= 0 x(l I = - ,  1190EEE+B1 Y (7)4.lEllEE0Et0E F=E.  17BBlEt03 
I T =  0 x(l)=-. 120000Et01 ~(2)=B.l10000Et00 F4.18173Et03 
IT= B x(l I = - ,  12000BEt01 x [ 2)=0.10B000EtBB F=8,1844BEt03 
IT= 1 r (  1)~-.119000Et01 x[2)=0.110000E+00 F=0. 17539Et03 
IT= 1 x(I):-.118500Et01 x(2)=0.115000Et00 F4.17098Et03 

11. 50 ~(1)=0.975553EtBB x(?)=B,9426%E+B0 F=0.87133E-82 
IT= 51 x (1 )4.101253Et01 x (2)=0.1014%3EtBl F d .  10619E-01 
I T =  51 x (1 )=8.98SB04Et00 x (2)=0.963877Et00 F4.42642E-02 

IT= 83 xll)4.999987Et00 x(2)=0.999977Et00 F=0.67?69E-09 
IT. 83 ~(1)=8.999998E+BB ~(2)=8.999995Et00 F.8.55511E-10 
IT= 84 x (1 )4.lB000lEt01 x 12 )=0.100002Et61 F=0.88448E-10 
IT= 84 x ( 114.1000BBEt01 x (2)=8.10000lEt01 F=0.33879E-10 
IT= 85 x [l)=@. 1000@BEt01 x (2)=0.lB000BEt01 F4.53944E-10 
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2.4.2 Davidonfletcher-Powell method 

The method (also called variable metric method, ref.21) is based on the 

correction formula 

x ( k + l l  = .(k) - x ( k + l ) C ( k + l ) g ( x ( k ) )  (2.42) 

which differs from the Newto, correcton (2.40) in the use of a current estimate 

C(k+l) of the inverse Hesse matrix [ H ( x ( ~ ) ) ] - '  . Furthermore, the step size 
is found by directional search, i.e., it is the solution of the 

one-dimensimal problem 

f [ x ( k )  - ~ ~ ( k + l ) g ( x ( k ) ) ~  --> min . (2.43) 
A20 

where Ax(k)  = - x(k-l) and Ag(k) = g ( k )  - g(k-l). -paring (2.44) to 

the updating formula (2.38) of the Broydm method shows the similarity of the 

underlying ideas. The rank of the correction matrix in (2.44) equals, however, 

two, and hence this algorithm is a rank 2 method. Furthermore, starting with a 

positive definite symmetric matrix 

definite in all iterations. 

d k )  it remains symmetric and positive 

The following module strictly follows the algorithmic ideas of the n r W M I N  

program (ref. 22) ,  the original implementation of the Davidmfletcher-Powell 

algori t h  . 
a/ the simple initial guess 191) = I , the first steps may be t w  large, 

and hence it is advisable to scale the variables ty transformations bringing 

their value close to one. You  will need two user subrcutines for the module 

MJ6. The first one starts at line Sew and is the usual function evaluation. The 

second me, starting at line tMa ,  cmputes the gradient vRtor and stores its 

elements in array G. 

where g ( ~ ( ~ ) )  is the gradient vector computed at xCk). At start dl) is a 
symmetric, positive definite matrix. The usual choice is 

identity matrix. It is then updated according to 

dl) = I , i.e., the 
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Proqram module M36 

3688 RE! t t t t t t  t t  t t t t  t t t  t t t t  t t  t t t l t t  t t t t t l t  t t t l t t  t t t t t t t l t  t t 
3682 REM t M I N I M I Z A T I O N  OF A FUNCTION OF SEVERAL VARIABLES t 
3684 REH t DAVIDON-FLETCHER-POWELL HETHOD t 
3686 R E 1  t t t t t t t  t t t t t t t t t t t  t t t t t t t t t t t t t t t t t t t  t t t  t t t t t t t  t t t  t 
3688 REM INPUT: 
3610 REH N NUMBER OF VARIABLES 
3612 REN XIN)  STARTING POINT 
3614 RE\ EF THRESHOLD ON STEP LENGTH 
3616 REM IH HAXIHUH NUMBER OF ITERATIONS 

3620 REH ER STATUS FLAG 
3622 RER B SUCCESSFUL SEARCH 
3624 REW 1 UNADHlSSlBLE STARTING POINT 
3626 RE! 2 ESTIHATE C IS NOT P O S I T I V E  D E F I N I T E  
3628 REH 3 UNIDIRECTIONAL SEARCH F A I L E D  
3638 REM 4 THRESHOLD NOT ATTAINED 
3632 REH K I N )  ESTIHATE OF THE MINIHUH POINT 
3634 REH F FUNCTION VALUE AT THE F I N A L  ESTIHATE 
3636 RE# G ( N )  GRADIENT VECTOR AT THE F I N A L  ESTIHATE 
3638 REM C[N,N) E S T I H I T E  OF THE INVERSE HESSIAN i l A T R l X  
3648 REH USER-SUPPLIED SUBROUTINES: 
3642 REH FROM L I N E  988; XI.) --> F ( FUNCTION EVdLUBTION ) 
3644 REM 
3546 REH AUXILIARY ARRRY: 
3648 REI! R(3,N)  
3650 ER=B :GOSUB 900 : IF  E R O B  THEN ER.1 :GOTO 3792 
3652 GOSUB 8BB 
3654 REN ---------- I N I T I A L I Z E  C TO U N I T  MATRIX 
3656 FOR 1.1 TO N 
3658 FOR J = l  TO N :ClI,J)=-lI=J) :NEXT J 
3660 NEXT I 
3662 RE# ---------- STPRT OF ITERRTION 
3664 51.1 
3 6 6 6  FOR 11.1 TO I N  
3668 GB=8 :GA=B 
3 6 7 0  FOR 1.1 TO N 
3672 Rl2,  I )=I  I I :Rl3,  I )  4 1  I )  : R 4  
3 6 7 4  FOR J.1 TO N : R = R - C I I , J ) t G I J )  :NEXT J :R[l,I)=R 
3676 GB=GBtG( I ) tR : G A = 6 A t G ( I ) t G [ I )  
3678 NEXT I 

3618 REI~ OUTPUT: 

FROH L I N E  888; XI.) --> 6(.) 1 GRADIENT VECTOR EVALUATION ) 

3 ~ 8  FO=F :IF GA=B THEN ER=B :GOTO 3792 
3682 REH ---------- DIRECTIONAL SEARCH ALONG s 

3688 SP=ST 

3684 FB=F 
3686 IF GB)B THEN ER.2 :GOT0 3792 

3698 REN _ _ _ _ _ _ _ _ _ _  ______________- EXTRAPOLATE 

3692 FA=FB :GA=GB 
3694 FOR 1.1 T O  N : X I I ) = X ( I ) t S P t R ( I , I )  :NEXT 1 
3695 ER=B :GOSUB 988 :IF ER=B THEN 3 7 8 2  
5698 FOR 1.1 TO N : X ( I ) = X I I ) - S P t R l I , I )  : R l l , l ) = . 9 5 t R ~ l , I )  :NEXT I 
3788 GOT0 3694 

3784 FP=F :GB=B 
3 7 8 6  FOR 1.1 T O  N : G B = G B t G I I ) t R l l , l )  :NEWT I 
3788 I F  6K8 AND F K F A  THEN SPz4ISp :ST=4tST :GOTO 3684 

3 7 8 2  GOSUP 888 
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REfl ._________ ___.___________ INTERPOLATE 

2.31 (FA-FP) 'SF'tGPtGB 
W=SW (Zt Z-GAtGP! 
S L 4 F t ( G B + W - Z ) /  IGB-GPtZtW) 
FOP I=l TO N :YIII=X(I)-SLtR(I,I) :NEXT I 
502% 780 :GOSUB 800 
IF F(=FPtl.BBB01 AND F<=FBtl.EBBEl THEN 3742 
ST=ST/4 
IF FR)=FP THEN 3732 
FOR I = I  TO N :XlI~=~lI)~SLtR(l~I) :NEXT I 
F=FB :GOTO 3742 
GR=0 
FOR 1.1 TO N :GB=GB~G(1)tR(l,I) :NEXT I 
IF IT<N THEN 3740 
IF GB(8 AND ST(.BBBBBl THEN ER=3: 6010 3792 
FB=F :SP=SP-SL :IF SP>0 THEN 3712 
REn _____--__- END OF UNIDIRECTIONAL SEARCH 
GOSUB 3752 
IF ITi=N AND (SOR(SS)IEP OR SQR[SI)(EPl OR F M O  THEN 3792 

3748 NEXT IT 
3750 ER.4 :6DTO 3792 
3752 REH ---------- UPDATE C 
3754 
3756 

3768 
37 b2 
3764 
3766 
3768 
3770 
3772 
3774 
3776 
3778 
3786 
3782 
3784 
3786 
3788 

3758 

SG.0 :SS:0 :SI=B 
FOR 1.1 TO N 
R(?,I)=X(II-R(2,1) :R(3,1)=6(I]-R(3,1) 
SG=SG+R(2, I ) t R ( Z ,  11 :SS=SS+R( 1 , I ) I R (  1 I I I :SI=SItR(Z, I I lR(2, I1 

NEXT I 
GH.8 
FOR 1.1 TO N 
5.0 :FOR J.1 TO N :S=StC(I,J)tR(S,J) :NEXT J 
R(l , I ) = S  :GH=GH+StR(3, I ]  

NEXT I 
IF 56.8 OR 6H=0 THEN RETURN 
FOR I=1 TO N 

FOR J=l TO I 
C( I, J ) z C (  I, J )+R(Z,I) tR(2, J)/SG-R( 1,I 1 lRll I Jl/GH 
C( J ,  I )=C( I ,J 

NEXT J 
NEXT 1 
RETURN 

3798 REH ---------- END OF UPDPTING C 
3792 RETURN 
3794 REH t t t t t t l l t t t  t l t  t t t t l l  t t t I t t t t  t t  I t t It I l l  t t tt ttt t t t t l t  

Example 2.4.2 Minimizatim of the Rosenbrock function by 

Davidonfletcher-f'cwell method 

The i n i t i a l  guess i s  the me used i n  the previous example. The main program 

and the shortened artput are as follows. 
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?US REM ---------- CONTROL PARMETERS 
,@L iP=.00001 ;ItI=l00 
218 REF ---------- INITIAL POINT 
::2 X(1)=-1.2 :X[2]=,1 
214 V$=STRING$[CB,'-"] 
216 LPRINT 'DPVIDON-FLETCHER-POWELL METHOD" :LPRINT 
218 LPRIlT V1 
228 SOSUP 5688 
222 LPRINT :LPRINT 'IfINlHUM'; 
224 LPRINT TAR( 181 ; " x  11 I='; X I1 ! ; TAB1251 ; ' x  (2 )="  ;X I21 ;TAB()#! ; 'F=';F 
226 LPRINT :LPRINT V$ :LPRINT 
228 IF E R O B  THEN LPRINT 'STATUS FLA6:';ER 
238 STOP 
810 REM ---------- GRADIENT EVPLUlTION 
882 GI 11~-48011X121-Xll)A2)t1 (1 l-21( 1-1 (11 I 
804 612). ?UBt(X(2)-X(1)̂ 2) 
886 RETURN 
9e0 REW ---------- FUNCTION EVALUATIDN 
902 F=llBtlW(2)-X[ 1 )"2)"2+( 1-1 (1 11'2 
904 LPRINT USING'IT=### x (ll=#.##WAA** ~121=#.1##111~*~" "; IT.K( 1 I tX121 ; 
986 LPRINT USIN6"F=#.##l##A*AA";F 
988 RETURN 

DAVIDON-FLETCHER-POWELL IETHOD 

............................................................ 
I T =  0 x I1 l=-.12BUBEt81 x 121=0.1BB00EtB0 F=B.l8440Et03 
I T =  1 ~(11-0.64648E+U3 x(2)=0,2681BEtU3 F-8.17436Etl4 
IT= 1 x111=0.2156%E~03 xl21=0.8?821EtU2 F=8.21525Et12 
11. 1 x (1 I=0.72EB2Et82 x I2 1 =0.383?3Et82 F=ES2656?Et18 
IT= 1 XI 11=U,24126E+82 xl2)=8.10581EtB2 F=8,32662Et88 
IT= 1 XI 11=8.91463EtBl P (2]=8.3?678Et~l F=0,38?35Et06 
IT= 1 x i  1 14.27649EtUl Y [2]=0.174U8EtRl F=8,34887EtB4 
IT= 1 x ( 1 I =On 82338EtB0 x ( 2  I =0, 93735Et08 F=0,67596Et81 
IT= 2 x (1 1=0.86586E+B0 x12)=8.86315EtBE F=B. 13848EtU1 
IT= 2 x i  11=0.18358EtUl x121=U.56633EtUB F4.25653EtU2 
IT= 2 :: I1 1=0.89828EtBB x(2)=0.88658Et00 F4.18364E-81 

IT= 12 ~Il14.97897Et80 x(2]=B.?66?2Et8B F=U.!7?53E-b)2 
IT: 12 x I 11:8.99?73EtU0 x(2)=8.?9?46EtBB F=0.75?76E-U7 
IT= 13 ~IlI~R.10139Et81 ~(21=8. 102BBEt81 F4.19362E-03 
IT= 13 x i  1 I=U.l0U8UE+01 x [2!=8.lUU80Et8l F=0.28422E-10 
IT= 14 i: (1 1=8.97970E+UE x l2)=0.??93?Et80 F4.11266E-86 
IT. 14 x(l 1=8.10008E+01 x(?)=0.1088UEtBl F=8.8U00BEt08 

#INIHUH x(ll= 1 x(2l= 1 F= 0 

The method needed 44 function evaluations, almost four tims less than the 

simplex method of Nelder and Mead. 

the equation f'(x) = 0 instead of the m i n i m  of a differentiable function 

f(x) . This trick rarely gives you any g a d  in rmltidimensions. First, as w e  

emphasised, solving a system of nonlinear equations is m r e  difficult than 

We noticed that in me dimension it may be advantageous to seek the r m t  of 
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sliding downhill on a single surface in minimization, where you can always 

measure your progress. Second, you may bring in several roots that are not 

minimum points. These problems raise another question. If solving system of 

equations is so hard, why not to replace it by minimization of the function 

g = fTf 

a global minimum of zero exactly at all solutions of the original set of 

equations. Lhfortunately, in multidimensims this trick does rarely work 

either. Y o u  must be prepared to have several local minima of the function g ,  

and each local minimum is a trap for the minimization teclniques. Therefore 

equation solving and minimization are completely different problems in 

rmltidimmsions, in spite of their algorithic similarities. 

in all cases? Indeed, the function g is positive semidefinite, and has 

Exercises 

Solve the problem in Example 2.3.1 by minimization. 

0 Find the minimum of the R-brock function by solving the nonlinear 

equations df(x)/h = 0 . 

0 Find the m i n i m  of the quadratic function 

f(x) = (1/2)(x - bITA(x - b) 

by the Davidon-Fletcher-Pcwell method selecting A to be an n m  symmetric, 

diagonally dominant matrix with positive diagonal elements. Check if the 

equality C = A-' holds at convergence. 

2.5 APPLICATICNS cy\ID FLRTI-ER PROBLEMS 

2.5.1 Analvtic solution of the Michaelis-Wenten kinetic eauation 

The simplest mechanism of enzyme reactions is of the form 

kl k3 
--> --> 

E + S  ES E + P ,  <-- <-- 
k2 k4 

(2.45) 

where E, S ,  P and ES denote the enzyme, the substrate, the product and the 

enzyme-substrate complex, respectively (ref. 23). The reaction rates are 
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(2.46) 

where kl, k2, k3 and k4 are the rate coefficients and C.1 denotes 

concentration of the corresponding species. 6s we will discuss in Section 5.4, 

the quasi steady state approximation 

approximation of the global reaction 

VsCSI/Ks - VpCPl/Kp 
r = r1 = r2 = 

1 + [S]/Ks + [PI/+ 

where 

Vs = k3CEIo, Vp = k2CE10, KS 

for species CES] gives an excellent 

rate for nmst enzyme reactions: 

(2.47) 

are called Michaelis-Menten parameters. 

Introducing the reaction extent x = [Slo - CSI = CP] , corresponding to the 
initial condition [PI, = 0 , equation (2.47) is of the form 

(2.48) 

where 

The differential equation (2.48) is separable, and by integrating the rational 

function on its right-hand side the solution is given by 

t = D EX + - $1 log [--.--I A + Bx . (2.49) 

We want to use (2.49) to calculate the concentration [PI at t = 180 s in the 

enzy-atalysed hydrolysis of fumarate, with the initial enzyme concentration 

[El, = 5 ~ 1 0 - ~ m l / m 3  

Michaelis-llentm parameters for this reaction are 

KS = 3.9 m l  m-3 , 
By (2.48) dx/dt = 0 implies A + Bx = 0 , and the equilibrium reaction 

coordinate +/B clearly is an upper band on the solution. Use the methods of 

Section 2.1 to verify the solution 

and substrate concentration [S], = 40 ml/m3. The 

Vs = 0.65 mmol m-3 s-’, 

Vp = 0.4 m l  m-3 5-l and Kp = 10.3 m l  

[PI = 32.268 mnol m-’. 
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2.5.2 Solution equilibria 

In textbooks of cmptational chemistry y a  will invariably find examples 

calculating the 

acid - weak base solutions. Indeed, these examples are important in the study 

of acids, bases and of complex formation, as well as for calculating titration 

curves. Following (ref. 24) we consider here the aquas solution that contains 

a weak tribasic acid H$ and its sodium salts in knam 

initial concentrations. The dissociation reactions and equilibrium relations 

are given as follws. 

pH = - lg (CH+l/(mol/l)) in weak acid - strong base or strong 

w, N a p  and Na$ 

-> 
K,, = CH+lCU-l-l . 

Further constraints are the mass balance equation for the total acid 

concentration CA 

cA = C ~ I  + c y - 3  + "?-I + CA~-I , 

and the charge balance equation 

CH'I + "a+] = CH9-I + 2CW2-1 + 3[fi3-] + [M-3 . 
F r m  the initial conditions 

and 

(2.50) 

(2.51) 

(2.52) 

(2.54) 

( 2 . 5 5 )  

where the initial concentrations are denotedf by subscript o . To calculate the 

hydrogen ion concentration we express 

equilibrium relations 

and substitute these expressions into (2.54). As a rewrlt we obtain the 

expressions 

CH91, CH9-I and CW2-1 from the 

(2.501, (2.51) and (2 .52)  using only CO3-I and CH'I 



126 

CH3.41 = CH+I%A/D, [v-I = K1[H+I2CA/D, 

CHn2-3 = K1K2CH+]CA/D, 

where 

D = CH+I3 + K1[H+l2 + K1K2[H+l + K1KzK3. 

CI-!A'-~ = KIK-$JCFI/D, 
(2.56) 

Substituting (2.56) into the charge balance equation and using (2.53) to 

eliminate [W-] we obtain the fith-order polynomial equation in CH+] : 

CH+15 + alCH+14 + a2CH+13 + a3CH+12 + a4CH+l + a5 = 0 , 
where 

al = K1 + 

a2 = K1(K2 + [*+I - CA) - $ 

a3 = KlCKz(K3 + CNa'I - X.4) - $1 

a4 = K1K2CK3(CNa+l - 3 c ~ )  - $1 

(2.57) 

a5 =-%K-$3% - 
We want to calculate the equilibrium pH of the solution if its initial 

composition is given by 

based logarithms of the dissociation constants are: 

lgCK1/(m1/1)1 = -2.15, lgCK2/(ml/l)l = -7.21, lgCK1/(~l/l)l = -12.36 

CH,po410 = 1 ml/l and CNa3p0410 = 1 mol/l . The ten 

and KV = 10-14 m12 1-' , 

Equation (2.57) has five, real or complex rwts. From chemistry, hOwever, we 

k n w  a good starting guess for the pH (it is slightly above 71. king this 

information we can easily find the solution applying any of the methods of 

Section 2.1. For extreme initial concentrations it might be necessary to scale 

the variable, e.g., by introducing 

special methods for finding all rwts of a polynomial equation, see e.g.,  

(ref. 121, but then you shwld "polish" the selected real root for higher 

accuracy, e.g., by Newtan+aphson iteration. With the a priori information 

available in scientific applications, you rarely need such special methods. 

x = 107CH+l . We note that there are 

Exercise 

It is interesting to try to solve the original system of equations (2.50 - 
2.55) in six unknowns using m e  of the methods of Section 2.3. The 

canpltational effort is certainly higher and yar should select the starting 

values of the variables very carefully. 
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2.5.3 Liquid-liquid equilibrium calculation 

The determination of the equilibrium composition in two contacting liquid 

phases has great significance for extraction process design. To obtain a system 

of equations we need a thermodynamic model for the excess Gibbs free energy 

&/(RTl . We chose the 

the excess Gibbs free energy of a 

mole fractions zl, z2, ..., zc : 

3-wffix Margules equation (refs. 25-26) expressing 

C component liquid as a function of the 

L?& c c  c c  c 
.?-I T ZkZIZ$*klm (2.58) 

Tl T7 -__ - - 2, (Zk)2z1Alk + 2, I, 
RT k=ll=l k=l l=k+l m=l+l 

l#k 

where 

and the table of coefficients Akl, which can be determined from infinite 

dilution activity data, is supposed to be known. The activity coefficient 

of the i-th cmpment can be cmpted from the thermodynamic relation 
7i 

(2.59) 

where ni is the mole number of the i-th cmpment, n is the total mole 

number and the second equality holds only because 

expression of the mole fractims. 

(2.58) is a cubic 

Let us denote by superscript R the raffinate phase and by superscript E 

the extract phase. In equilibrium the distribution ratio can be 

calculated from the activity coefficients (or rather from their logaritk) as 

zEi/zRi = Ki 

K~ = 7Ri/7Ei = exp( log 7Ri - log 7Ei . (2.60) 

Equations (2.58-2.60) form the thermodynamic base for liquid equilibrium 

calcula tions . 
Suppose we add 6.6 mol Furfural (1) to the mixture of 0.2 mol n-l-leptane 

(2) and 0.8 mol Cyclohexane (3). We want to determine the composition of the 

extract phase rich in Furfural and of the raffinate phase poor in Furfural. The 

Margules coefficients (ref. 26) are shown in Table 2.9. 
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Table 2.9 
Aij coeff ic ients fo r  the Furfural - 

i\ j 1 2 3 

1 3.16992 3.0975 
2 3.1252 - 
3 2.3399 0 

n-Heptane - Cyclohexane system 

-I--- 

- 
0 
- 

We have eight unknms: x1 - the raf f inate i n  moles, x2 - the extract i n  

moles, 

mole f ract ion of n-Heptane i n  the raf f inate phase, 

Cyclohexane i n  the raf f inate phase; 

extract phase i n  the came order. The eight equations are as follows. 

Overall material balance 

x3 - the mole f ract ion of  Furfural i n  the raf f inate phase, x4 - the 

x5 - the mole f ract ion of 

x6, x7 and x~ - the mole fractions for  the 

~1 + ~2 - 7.6 = 0 ; 

mole f ract ion summation fo r  the raf f inate phase 

x3 + x4 + x5 - 1 = 0 ; 

material balances fo r  each component 

~ 1 x 3  + x2x6 - 6.6 = 0 
~ 1 x 4  + ~ 2 x 7  - 0.2 = 0 
x1x5 + X2X8 - 0.8 = 0 ; 

and equilibrium conditions fo r  each component 

(2.61) 

(2.62) 

(2.63) 

(2.64) 

In the f o l l m i n g  main prqram equations (2.61-2.64) are solved using the 

Broydm method. The d is t r ibut ion coeff ic ients are complted from equations 

(2.58 - 2.60) wri t ten for  C = 3 components. The s tar t ing values us& are 

very simple, f o r  the extract phase w e  s t a r t  f rom poor Furfural and fo r  the 

raf f inate phase from the or ig inal  n-Heptane - Cyclohexane mixture. Negative 

mole numbers and mle fractions are not allowed. 

100  RE# ........................................................... 
102 RE# EX. 2 . 5 . 3  LIQUID-LIOUID EOUILIBRIUH BY BRDYDEN METHOD 
104 RE# MERGE ti32 
166 RER ---------- DATA 
106  REH RARGULES COEFFICIENTS (FURFURAL, N-HEPTAHE, CVCLDHEXRNE) 
110 A124 .16B92  :A134.0?75 :P21=3.1252 :P31=2.3393 :A?:=@ :P3?=0 
11: A12~=(Al?tA?ltAlStR3lrA23+A32)/2 
200 RER ---------- PROBLEn SIZE AND CONTROL PARAflETERS 
3 2  N=B :Ifl=38 :El=.000001 :EZ=.00000I 
204 D In  X (N1 ,F ( N  I ,HI N,N 1 ,R ( 3 ,N I 
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206 RER ---------- STARTING VALUES 
208 RER RAFFINATE ll4OLl AND EXTRACT IflOL) 
218 X!l)=l :X[2)=h.6 
212 KEN RAFFINATE ROLE FRACTIONS AND EXTRACT ROLE FRACTIONS 
214 Xl$l=8 :X(41=.? :X (5 )= .8  :X[6)=l :X(7)=8 :X(8)=8 
216 RER ---------- CALL RODULE 
218 V$:STRINGI( 53, "-" 1 
220 LPRINT 'BROYDEN RETHOD" :LPRINT 
222 GOSUB 3280 
224 LPRINT :LPRINT V$ 
226 LPRINT ,"RAFFINATE EXTRACT' 
?2@ F$= 'HBLES 1.11111 [t1.111%) 1.11111 1#1.#11%)' 
238 LPRINT USING F1; XI 1) ! XI l)/lX (1 ItXI? 1 ) tl0B,X(21 , X  ( ? ) I (  X 11 ItX(2) 1 I188 
234 LPRINT USING FI; 10BtX13),10BtX(6] 
236 F)= "N-HEPTANE ##.111% #1,1#1%" 
238 LPRINT USING FI; l00If(4),lBBtX17) 
240 FI= "CVCLOHEXAN i l # , # I # X  #1.#1#%" 
242 LPRINT USING F); 108tX(5l,lBB1X(8) 
244 LPRINT V I  
24h STOP 
900 REN ---------- F I X )  
902 E R 4  :FOR IE.1 TO N: ER=ER-lYlIE)!B):NEXT IE :IF E R M  THEN RETURN 
904 HER DISTRIBUTION COEFFICIENTS FROM LOG ACTIVITY COEFFICIENTS 
9Uh Zl=Xl3) :Z?=X(41 :Z3=Xl5) :EOSUB 958 :Kl=Ll :K2=L2 :1(3=L3 
908 Zl=116) :ZZ=Xi71 :23=X(8) :GOSUB 950 
910 KlzEXPIKl-Lll :K2=EXPIK?-L?) :K3:EXPlK3-L3) 
912 REfl EQUATIONS 
914 FIlI=X(l!tX[21-7.6 :REM MASS BALANCE 
916 F ~ 2 ) ~ X ( 3 ) t X ~ 4 ] t ~ ~ 5 1 - 1  
918 F131-X I1 IIX lS)+XlZIlX 161-h.6 :RER FURFURAL MASS BALANCE 
920 Fl4l=XIl 1tX (4) +XI21 lX171-.2 :RE# N-HEPTANE HASS BALANCE 
922 FI51'X 11) lXl51tX 12IlX 181-.8 :REN CYCLOHEXANE HASS BALANCE 
924 Flbl~XIhl-KltXl3l : REH EQUIL I BRI UW 
9% F171~X171-K2tX141 :REH " 
928 F[8)=X18)-K31X[5) :REH ' 
930 LPRINT " IT=n ; IT; TAB1 10) "R=" ; X I1 ) TAB1321 "MOLE FR: ' ; X 13) ; X I 4 1  ; X I51 
932 LPRINT TAB(l0) "E=':;X[?)TAB(321" ';X161;X17);X181 
934 FOR KF.1 TO 8:LPRINT ,'F('~F")=';FIYF):NEXT KF :LPRINT 
938 RETURN 
958 HEN ---------- LOG ACTIVITY COEFFICIENTS FROM 3-SUFFII HARGULES EOUATlON 
952  DG.2 1'21 I ZZlA21+131ri31 ItZ2'21 I ZllA12tZ3IA32) tZ3'21 1 ZllA13tZ2IA23 1 
954 DG=DGtZltZ2tZ3tA123 

:RE\ ROLE FRACTION SUHWATION FOR RAFFINATE 

956 L1~2121llZ2IA2l~Z3lA~l ltZ2*21A12tZ3*2tA13tZ2123tA123-~lD6 
958 L2=2122t( ZllA12~Z31A3~1~Z1'2tA21tZ~A21A2~tZl1131A123-21DG 
960 L3~2tZ3l~ZllA13~Z2lA23l~Zl~2lA3ltZ2*2l~32tZllZ2lAlZ3-2lDG 
962 RETURN 

After 17 iterations we arrive at the equilibrium compositions. 

..................................................... 
RAFFINATE EXTRACT 

tlOLES 8.1086h ( 1.324%) 7.49934 (98,h76%) 
FURFURAL 6.896% 87.915% 
N-HEPTANE 27.688% 2.295% 
CYCLOHEXAN 65.41b% 9.7982 

Calculation of other types of phase equilibria, e . g . ,  vapor-liquid 



130 

equilibrium, are based on similar principles. If the same thermodynamic model 

is used for both phases, the method (whatever sophisticated it is) can easily 

converge to identical compositions in the two phases. This is called trivial 

solution and the best way to avoid it is to start from physically reamable 

guesses of the compositions. 

2.5.4 Minimization subject to linear wualitv constraints: chemical eauilibrium 

comwsition in qas mixtures 

If the n variable function f(x) should be minimized subject to the 

m < n independent linear constraints 

A x = b ,  (2.65) 

where A is a given m m  matrix and b is a given m-vector, then the method 

of Lagrange multipliers might be useful. We introduce the n+m variable 

function 

L(x;A) = f(x) + (C\x-bITA , (2.66) 

where A is the m-vector of Lagrange rmltipliers. At the constrained minimum 

point the Lagrange function has zero partial derivatives with respect to all 

its variables, i.e., 

fx(x) + A ' X  = 0 , (2.67) 

A x - b = 0 ,  (2.68) 

where fx(x) is the gradient vector of the objective function f . The set of 

equations (2.67-2.68) is solved by the Newton-Raphson method, linearizing 

(2.67) around a feasible initial guess 

corrRtions Ax together with the rmltipliers A can be obtained from the 

n + m linear equations 

fx(xo) + Fx,(xo)Ax + ATA = 0 , (2.69) 

clbx=0, (2.70) 

xo satisfying (2.68). Then the 

where Fxx(xo) is the Hessian matrix of the objective function f complted at 

the point xo . The uwal procedure of solving (2.69-2.70) is to add the 

corrections Ax to the initial guess x' and repeat the iteration until 

convergence. An important property of the algorithm is that any new point 

x = xo + W x  (2.71) 

is also a feasible solutim in the sense of (2.65), whatever the scalar 5 is. 

Cansequently, we can make a reduced correction with 5 < 1 , if the calculated 
correctiqn is not acceptable. 
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Equations (2.69 - 2.70) can be solved by standard LU decomposition and 

backward substitution, but very often we can reduce the computational e f f o r t  

considerably by making use of  the special structure of  the equations. I n  the 

chemical equilibrium problem these ideas lead t o  a very concise algorithm. 

I f  the temperature T and pressure P of a closed system are kept 

constant, the to ta l  Gibbs free energy i s  minimum i n  equilibrium. For an ideal 

gas mixture of species the Gibbs free energy i s  given by NS 

NS Ns 
rl 0 

G = L ni[ g.(T) + RT log (P/Pu) + RT log [ ni / 
n j  ] ] 

j =1 i = l  

where R i s  the universal gas constant, ni 

i - t h  species, g . (T)  i s  the standard molar 

spRies corresponding to  temperature T and 

discussed i n  Section 1.8.1, the mole numbers 

constraints 

0 

1 

&I= b ,  

(2.72) 

i s  the number of  moles o f  the 

Gibbs free energy of the i - t h  

standard pressure Pu. As 

rmst sat is fy  the atom conservation 

(2.73) 

where CI i s  the atom matrix with bH rows and NS colwms, and b i s  the 

bH vector of  the i n i t i a l  elemental abundances. 

Kncwing the standard molar Gibbs free energy values and giving an i n i t i a l  

mole number vector the determination of the equilibrium composition cms is t s  of  

minimizing (2.72) subject t o  the l inear constraints (2.73). The d i rec t  

appl icat im of (2.69-2.70), hOwever, would be rather complicated. I n  the 

FWUD method ( re f .  27) a function f(xl,x2,...,x~+1) of Ns + 1 variables i s  

minimized instead of  the funct im G(nl,nZ, ..., nW) of  Ns variables, f 

being defined as 

where 

(2.74) 

and the relations between the mole numbers ni and the new variables xi are 
given by 
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NS 

xi = ni, (i = 1, 2, ..., NS) ; XNS+~ = 2: nj . 
j =1 

The m i n i m  of (2.72) subject to (2.73) can also be found minimizing 

(2.74) subject to an extended set of constraints: 

(2.75) 

%,1"1 + %,2X2 + ... + aNA,NSXNs = %  
+ x2 + ... + xm - xm+1 = 0. 

Due to the simple structure of the function f, its first and second partial 

derivatives are easy to cmplte 

Cfxli = fi ( i=1,2, ...NS ) 

Ns 

Cfxl&+l = -[ c xj 3 1 x*+1 = -1 
j=1 

With the above derivatives equations (2.69) are given by 

NA 

LJ 3 J 1  

71 

fi + Axi/xi - ) h.a.- - = 0 (i=1,2, ... NS) (2.76) 
j =1 

- AXNS+l/XNS+1 = 0 - (2.77) 

From (2.76) and (2.77) the corrections Axl, Ax2, ...,  AX^+^ can be 

expressed as 

NA 
7 - 0  

Axi = xi(-fi + k+l + 1, xjaji1 , (i=1,2, ... NS) (2.78) 
j =1 
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(2.79) 

Substituting (2.78( and (2.79) into the actual form of (2.70) we obtain 

the set of W1 linear equations in W1 unknowns with the coefficient 

matrix and right hand side vector as follows. 

11 A 2  ... h 1  Right h. s. 

The solution of this matrix equation is used to compute the corrections 

(2.78-2.79). If the correction vector results in me or more zero or negative 

mole numbers, equation (2.71) is applied with 5 selected to give maxim 

9SL reduction in any mole number in one iteration step. 

Notice that the number NA of a t w  is usually -11 compared to the number 

Ns of species, and hence the f?MD algorithm is very effective in terms of 

compltational effort. The rank of the atom matrix, hawever, must be equal to 

the number W of atans. At this point it is interesting to remark that 

instead of the atom matrix we can use a virtual atom matrix, i.e., the matrix 

of reaction invariant coefficients if the atom matrix is not available or we 

are interested in a restricted equilibrium. For details see Section 1.8.1. 

The following main program is an implementation of the RAM) algorithm. Its 

use is illustrated on the example of hydrazin combustion at 

P = 5.17Xl& Pa 

T = 35DZl K and 

(ref. 27). The elemntal atundances of hydrogen, nitrogen and 
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oxygen s a t i s f y  t h e  ratio H : N = H : 0 = 2 : 1 . The species p r e s e n t  a t  

equ i l ib r ium i n  p h y s i c a l l y  meaningful q u a n t i t i e s  are l i s t e d  i n  Tab le  2.10. T h e  

reduced molar G i b k  f r e e  e n e r g i e s  ci 
species are also shown i n  the t a b l e .  S i n c e  t h e  total mole number is a r b i t r a r y ,  

on ly  the ratios o f  the i n i t i a l  e lemental  abundances are of i n t e r e s t  w h e n  

s p e c i f y i n g  t h e  problem. 

and the i n i t i a l  mole numbers of  the 

Table  2.10 
Data f o r  hydrazin combustion equ i l ib r ium c a l c u l a t i o n  

No. Name Formula Reduced Gibbs f r e e  i n i t i a l  
i energy,  ci (-) noi (ml) 

1 Hydrogen atom H -6.089 2 
-17.164 0 
-34.054 0 

2 Hydrogen H2 

-5.914 1 
3 Water H20 
4 Nitrogen atom N 

-24.721 0 
-14.986 0 

5 Nitrogen N2 
6 N-l r a d i c a l  N-l 
7 Nitrogen m o x i d  No -24.1 0 
8 Oxygen atom 0 -10.7m 1 

-26.662 0 
-22.179 0 

9 Oxygen 02 
10 Hydroxil r a d i c a l  M 

I________________________________I______--_----_ 

T h e  i n p l t  is accepted i n  chemical n o t a t i o n .  T h e  atom matr ix  is cons t ruc t ed  

i n  the "formula i n t e r p r e t e r "  section i n  l i n e s  214-248 . S t r i c t l y  speaking t h e  

func t ion  we minimize is n o t  de f ined  i f  any one o f  the mole numters is ze ro .  

S i n c e  the vector of  i n i t i a l  role numbers s e r v e s  also as an i n i t i a l  g u e s s  of the  

s o l u t i o n  and it o f t e n  c o n t a i n s  z e r o  elements ,  w e  add a -11 q u a n t i t y  to each 

n and correct f o r  t h i s  b i a s  a f t e r  the f i r s t  iteration. 
0 

i 

100 RE[ ________________..-...----------------.-------------------. 

101 HEM EX. 2.5.4 CHEIICAL EQUILIBRIUH OF GhSEUUS MIXTURES 
102 RER NEREE t414,H15 
104 HER INPUT DATA STRUCTURE: 
106 REH 
!03 REV FOR EGCH SPECIES 
110 REH I! NAME 
112 RER 
114 RE1 
116 RE1 
113 RE! 41 INITIAL NUBPER OF ROLES 

NS - NUMBER OF SPECIES 

2 )  FORNULA [ e . g .  Na20 - note second letter is loner case1 
31 [NOiftR ElPBS FREE ENERGY! / [ R t T I 

AT THE TEHPERATURE ANE PRESSURE OF THE HIXTURE 
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120 REH ---------- DATA 
122 DATA I0 
124 DATA "H aton', HI -6.BE9, 2 
126 DATA 'hydrogen', H2, -17.164, 0 
128 DATA *water', H20,-34.854, B 
130 DATA "N aton", N ,  -5.914, I 
132 DATA 'nitrogen", N2, -24.721, 0 
134 DATA 'NH radical', NH, -14.986, 0 
136 DATA 'N monoxid', NO, -24.1, 0 
138 DATA "0 atom', 0, -18.708, I 
140 DATA 'ooxggen", 02, -26.662, B 
142 DATA 'hydroxil', OH,  -22.179, 0 
200 REM ---------- READ DATA 
282 READ NS 
204 DIH MINS, 10) , GINS) , Z (NS) , X ( 11 ,Y ( NStl ) , A (  11 , I1 ) , N I  (NS) ,A$ ( 18) ,KI (NS) 
3 6  FOR 1.1 TO NS 
288 READ N I (  I )  ,KI( I ) ,C( I ]  ,Z( I)  
218 NEXT I 

214 REW ---------- FORNULA INTERPRETER 
21b NA.0 :Z=0 
218 FOR I=1 TO NS 
228 L=LEN(K$(I)) :K=l 
222 AI=nlDI(KI( I)  ,K, 1) 
224 CI:"" :IF K=L THEN 234 
226 
228 IF K=L THEN 234 
238 
232 CI=CItDI :K=Ktl :GOTO 228 
234 I F  C$='" THEN CI="l' 
236 FOR J=I TO NA 
238 IF A I ( J ) = A I  THEN 242 
240 NEXT J :NA=NAtl :AI(NA)=RI :J=NA 
242 f l (  I , J)=VAL(C$) 
244 IF K(L THEN K=Ktl :GOTO 222 
246 2=ZtZ(I) :Y(I)=Z(l) 
248 NEXT I 
250 REM ---------- RAND ALGORITHR 
252 Y=Z :E=Yt.0001 
254 FOR 1.1 TO NS :Y(I)=V(I)tE :NEXT I :V=YtEtNS 
256 N=NAtl 
258 RER ---------- START ITERRTION 
260 FOR 11.1 TO IR 
262 FOR 1.1 TO NS :F(ll=C(l)tLOG(Y(Il/Y) :NEXT I 
264 FOR 1.1 TO NA 
266 FOR J=l TO I 
268 A 4  
270 
272 A(I,J)=A :A(J,I)=P 
274 NEXT J 
276 14 :FOR K=l TO NS :X=XtH(#,I)~F(K)tV[K) :NEXT K :X(I)=X 
278 NEXT I 
288 FOR J=I TO NA 
282 8.0 
284 
286 R(N,J)=A :A(J,N)=A 
288 NEXT J 
290 A(N,N)=B :X=0 
292 FOR K = l  TO NS :X=XtF(K)tY(K) :NEXT k :X[N)=X 

212 ~ ~ = . 0 0 0 0 1  : i n = z ~  

BI=RIDI[KI(I),Ktl,l) :IF B$lr='a" AND BI(="z' THEN AI=R$tB$ :K=Ktl 

DI=HlDI~RI(I1,Ktl,ll :IF DI)='A' AND D${='Z' THEN 234 

FUR K=l TO NS :A=AtHlK,I):M(K,J)tY(K) :NEXT K 

FOR K=l TO NS :A=AtH(K,J)tY(K) :NEXT K 
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294 REN ---------- SOLVE SYSTEM OF L I N E A R  EQUATIONS 
296 GOSUB 1488 : I F  ER>B THEN ER=2 :6OTO 346 
298 GOSUB 1588 
388 REM ---------- COMPUTE STEP 
362 FOR 1.1 TO NS 
384 
386 
388 NEXT I 
318 DT=V$X(N) 
312 
314 X I = l  
316 FOR I=1 TO NS 
318 IF D ( 1 ) ( 0  AND X l t D ( I ) / Y ( 1 ) ( - . 9 5  THEN XI=-.95tY(I)/D(I) 
320 NEXT I 
322 
324 0.8 
326 FOR I=1 TO NS : Y I I ) = Y ( I l + X l t D l I )  : D = D + D ( I ) 1 D ( I )  :NEXT I 
326 Y=YtXltDT 

330 I F  I T ) l  THEN 348 
332 
334 FOR 1.1 TO NS 
336 IF Y ( I ) ) E  THEN V ( I ) = V ( I ) - E  :Y=V-E 
338 NEXT I 
348 IF SQR(D)<=EP THEN E R 4  :GOTO 346 
342 NEXT I T  
344 ER-I 
346 REM ----------- PRINT RESULTS 
348 I F  E R = I  THEN LPRINT nREOUIRED bCCURhCY NOT ATTAINED' 
350 IF ER.2 THEN LPRINT 'RANK OF NATRIX IS LESS THAN NUtlBER OF ATOHSO 
352 L P R I N T  :LPRINT 
354 V1:STRING$(bb,"-') :F$='t.tttW"A 
356 L P R I N T  V I  
358 LPRINT I NAnE FORNULA CII) I N I T I A L  E Q U I L I B R l U t l  Z" 
3 0  L P R I N T  V1 
362 FOR 1-1 TO NS 
364 L P R l N T  I;TAB(S) ;N1( I ) ;TAB( 16) ;K$(  I ) iTAB124)" '; 
366 LPRINT USING F1;CI I )  ,ZI I )  ,Y (  I )  , :LPRINT USING u4H#.#I*;18BtY ( I ) / V  
368 NEXT I 
378 LPRINT V I  
372 LPRINT 'SUn';TAB(36)'  ';;:LPRINT USING FI;Z,Y,:LPRINT "lBE.08" 
374 L P R I N T  :LPRINT 
376 W S T R I N G 1  (33 ,  '-' ) 
!76 L P R I N T  V I  
381 L P R l N T  " I ATOM LAGRANGE H U L T I P L I E R ~  
382 L P R I N T  V t  
3 4  FOR 1.1 TO NA :LPRINT I;TRB(5)~AS(Il;TRB115);X(I! :NEWT I 
386 L P R I N T  V1 
388 LPRINT :LPRINT 
590 STOP 

R=X(N)  :FOR K=l TO NR : A = A + X ( K ) F t l ( l , K )  :NEXT k 
D( I ) = Y (  I It(A-F( I ) )  

REH ---------- SET X I  TO ASSURE F E A S I H I L I T Y  

REH ---------- NEW VECTOR OF HOLE NUHBERS 

REH ---------- IF F I R S T  I T E R A T I O N  THEN CORRECT 

After ten i t e r a t i m s  the convergence cr i ter icn i s  satisfied and the following 

results are printed: 
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I NAME 

I H ator 
2 hydrogen 
3 water 
4 N ator 
5 nitrogen 
6 NH radical 
7 N aonoxid 
8 0 atom 
9 oxygen 
10 hydrcril 

-__----_______ 
FORflULA 

H 
H? 
H20 
N 
N2 
NH 
NO 
0 
02 
OH 

_ _  __----- 
C(I) INITIRL EQUILIBRIUM 

-.60898Etll 0.20080E+01 0.4B669E-81 
-.17164Et82 0.80888Et00 0.14774Et88 
- ,34054Et02 0.08008Et00 8,7831 5Et08 
-.59140Et01 0.1000BEtBl 8.14142E-02 
-.24721Et02 0.008BEEt88 0,48525E+88 
-.14986Et82 0.08080Et08 0.69318E-83 
-.241BBEt02 8.0008BEt01 8.27399E-81 -. 1078BEt02 8.18880E+BI 8,17947E-81 
-.26662Et02 B.BBBBBEt08 8.37312E-81 
-.22179E+02 0.80080E*BB 8.95878E-01 

_----- 
2.48 
9.82 

47.80 
0.09 

29,62  
8.84 
1.67 
1.10 
2.28 
5.91 

................................. 
I ATOR LAGRANGE HULTIPLIER 

1 H  -9.785044 
2 0  -15.22289 
3 M  -12.96893 

A t  convergence the Lagrange m u l t i p l i e r s  have sane physical  meaning similar to 

the "shadow p r i ces"  discussed i n  Sect ion 1.2. The i n t e r e s t e d  reader  may c o n s u l t  

( r e f s .  28-29) w h e r e  n m i d e a l i t y ,  t reatment  of condensed phases, numerical 

d i f f i c u l t i e s  and o t h e r  problems are also discussed.  Handbooks l i k e  ( r e f .  30) 

c m t a i n  the necessary s tandard Gibbs f r e e  energy d a t a  f o r  a g r e a t  number of 

SLlbStances. 
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Chapter 3 

PARAMETER ESTIMATION 

The most immediate goal of scientific or industrial experimentation is to 

find relationships among manipllated and observed variables, or to validate 

such relationships coming f r m  some underlying theory. A mathematical 

description almost invariably involves estimating the values of 5ome unknown 

parameters to best match the available body of experimental observations. 

The simplest mathematical description or model of a system is the function 

y = f(x,p) , (3.1) 

assumed to predict the dependent variable y in terms of the independent 

variables x = (x1,x2,. . . ,xnXlT and unknavl parameters p = (pl,@, . . . . 
To begin with a relatively simple problem we will assure that the independent 

variables can be manipllated or observed error-free, and only the dependent 

variable y is corrupted by measurement errors. Thus the outcome of the i-th 

experiment is given by the vector (xil, xi2, ..., yi) , where Ir 

Our basic assumption is that the respmse function f(x,p) is a correct one 

and the random quantity Li represents the measurement error. It is then 

meaningful to ask what the true value p of the parameters is, though by the 

imprecise nature of measurements we can never hope to determine it with 

c 

absolute certainty. Hawever, having a set < (xii, xiz, ..., xi,nxs Yi) ; 
i = 1,2, ..., nm 1 
the errors, it is reasonable to seek parameter estimates that yield not only a 

gccd fit to the data, but on the average c- firmly close to the true values, 

and do not vary excessively f r m  one set of experiments to the next. 

of observations and assuming some statistical properties of 

Parameter estimation is rooted in several scientific areas with their own 

preferences and approaches. While linear estimation theory is a nice chapter of 

mathematical statistics (refs. 1-31, practical considerations are equally 

important in nonlinear parameter estimatim. As emphasis& by Bard (ref. 41, in 

spite of its statistical basis, nonlinear estimation is mainly a variety of 

cmpltational algorithms which perform well on a class of problems but may fail 

on some others. In addition, most statistical tests and estimates of 
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variability are forrmlated for linear models, and in the nonlinear case mst 

often the best we can do is to apply these linear results as approximations. 

Furthermore, in practice no parameter estimation problem can be solved 

automatically in one go even with a fairly gccd numerical algorithm available. 

As you will see in this chapter, one usually needs additional assumptions, good 

knowledge of underlying processes, or simply c o m ~ n  sense, and thus we end up 

with a typical problem of scientific computing rather than that of mathematical 

statistics. 

In spite of the variety of approaches and methods, it is relatively easy to 

formlate the c m  steps of solving an estimation problem, as we do in the 

remainder of this section. 

Response function selection 

The form of the response function to be fitted depends on the goal of 

modeling, and the m n t  of available theoretical and experimental information. 

If we simply want to avoid interpolation in extmsive tables or to store and 

use less numerical data, the model may be a convenient class of functions such 

as polynomials. In m y  applications, however, the model is based on 

theoretical relationships that govern the system, and its parameters have some 

well defined physical meaning. A model coming from the underlying theory is, 

hOwwer, not necessarily the best response function in parameter estimation, 

since the limited amount of data may be insufficimt to find the parameters 

with any reasanable accuracy. In such cases simplified mcdels may be 

preferable, and with the problem of simplifying a nonlinear model we leave the 

relatively safe waters of mathmatical statistics at once. 

Selection of error structure and estimation criterion 

For a mcdel of the form (3.2) it is natural to choose parametet- values that 

minimize 5ome norm of the errors. The first norm that comes to mind is the sum 

of squares 

(3.3) 

where the w s are a priori fixed weighting coefficients measuring the 

importance of particular observations in the sum. 

Other error norms have been cmsidered in Sections 1.8.2 and 1.8.3. Why the 

least squares method is the mnst popllar? Where does it come from? If it is 

good at least for a well defined class of problems, why to experiment with 
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other estimation criteria? We try to answer these questims in turn. 

Withcut information m the errors any error norm is as good as the others. 

Tl-us, to explain the popularity of the least squares method we have to make a 

number of assumptions. In particular, for model (3.2) we assume that 

(i) the independent variables x are error-free; 

(ii) the error Ci is independent of xi; 

(iii) Li has zero mean, i.e., ECCi> = 0;  

(iv) the errors Ci and Cj, i#j, are independent; 

2 

i 
(v) the variance L?{Ci> = u of Ci is know, at least up to a tomnun 

scalar factor in all variances; and 

Ci is a normally distributed random variable. (vi) 

Assumptions (i) and (ii) justify the model in the form (3.21, with an 

additive error as the only random variable. By (iii) we assume that the model 

is correct and there are no systematic measurement errors, i.e., 

ECyi> = f(xi,p) for the true value p of the parameters. The role of other 

assumptions will be clarified later. At this mrnent the most important message, 

coming frm mathematical statistics, is as follows. If assumptions (i) through 

(iii) are satisfied, the model (3.2) is linear in the parameters, and we select 

the weighting coefficients according to wi = 2/Si , where u is a (possibly 
unknow) scalar, then the vector 

satisfying statistical properties. First, p 

true parameter vector. Second, p has the least variance m g  all unbiased 

estimates (ref. 1). While for a nonlinear function of the parameters these 

properties can be show, mly assymptotically, i.e., increasing the number of 

experiments beyond bound, the method produces acceptable estimates in m y  

situations (ref. 4). 

." 

^p of least squares estimate has very 

A 

is unbiased, t h s  E{^p> = p , the 
h 

While the least squares estimator appeared several centuries ago as an 

independent method giving good results under certain assumptions, we have to 

dig deeper into mathematical statistics to see its roots, and, in particular, 

its limitations. This general subject is the maximum likelihood principle, me 

of the basic concepts of mathematical statistics. The principle is simple: 

select the parameters such that the Occurence of the observed values 

ynm 
how this can be done? It is very important that given a value of the parameters 

one can canplte the probability of occurence of a particular data set, if the 

. . . , 
.* 

be the most likely among all the possible outcanes of the experiment. But 
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error distribution function is known. There is only a small trick: since the 

y‘s take on continuws values, this probability is always zero unless we 

consider an interval around each observation. So w e  always assume such 

intervals when talking about probabilities. According to assumptions (iv), (v) 

and (vi), cur data points 

normal (Gaussian) distribution around the true f(xi,p) with the standard 

deviation 

(recall the intervals uiA around them!) is the product of the probabilities 

of each point, 

% 

uiA 

% 

yi are independently random and distributed as a 

% 

ui. Then the probability of obtaining the data set jl, . . . , Ynm 

Maximizing (3.4) is equivalent to minimizing its negative lqarith. 

Furthermore, since A is constant and the ui’s are know,, minimizing this 

equation is equivalent to minimizing (3.3) with 

particular value of 

wi = 2/oi2 , where the 
2 clearly does not affect the location of the minimum. 

Though the maximum likelihood principle is not less intuitive than the least 

squares method itself, it enables the statisticans to derive estimation 

criteria for any known distribution, and to generally prove that the estimates 

have nice properties such as asymptotic unbiasedness (ref. 1). In particular, 

the method of least absolute deviations introduced in Section 1.8.2 is also a 

maximum likelihood estimator assuming a different distribution for the error. 

Since the final form of a maximum likelihood estimator depends on the 

assurd error distribution, we partially answered the question why there are 

different criteria in use, but we have to go further. Maximum likelihood 

estimates are only guaranteed to have their expected properties if the error 

distribution behind the sample is the one assumd in the derivation of the 

method, but in many cases are relatively insensitive to deviations. Since the 

error distribution is k n m  only in rare circumstances, this property of 

robustness is very desirable. The least squares method is relatively robust, 

and hence its use is not restricted to normally distributed errors. Tbs, w e  

can drop condition (vi) when talking about the least squares method, thwgh 

then it is no more associated with the maximum likelihood principle. There 

exist, hauever, more robust criteria that are superior for errors with 

distributions significantly deviating from the normal one, as we will discuss 
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in Section 3.10.1. 

Up to this pint we relaxed only assumption (vi), now we try to do the same 

with the others, except (iii). This latter is necessary, since a nonzero mean 

€i = ECCi) f(xi,p). We can relax the 

other assumptions, but then the least squares method no m r e  applies. In 

particular, one can drop (iv) and (v), and estimate the covariance matrix (or 

part of it) simultaneously with the model parameters. This means introducing 

additional parameters, and hence the problem is clearly more difficult to 

solve. Nevertheless, observing several variables simultaneously, the assumption 

of independent errors is frequently unfeasible. A possible treatment of the 

problem will be considered in Section 3.6. In another class of applications we 

cannot neglect the error in the independent variables of 

up assumption (i), estimating the expected value of all variables 

simultaneously with estimating the parameters. As you will see in Section 3.8, 

the treatment of such error-in-variables models differs considerably from that 

of the model (3.2). 

- 
is undistinguishable from the response 

(3.11, and hence give 

While you will use the least squares method in m t  cases, do not forget 

that selecting an estimation criterion you make assumptions on the error 

structure, even without a real desire to be involved with this problem. 

Therefore, it is better to be explicit on this issue, for the sake of 

consistency in the further steps of the estimation. 

Parameter estimation 

In a strict sense parameter estimation is the procedure of computing the 

estimates by localizing the extremvn point of an objective function. CI further 

advantage of the least squares method is that this step is well supported by 

efficient numerical techniques. Its use is particularly simple if the response 

function (3.1) is linear in the parameters, since then the estimates are found 

by linear regression without the inherent iteration in nonlinear optimization 

problems. 

Goodness-of-fit 

The validity of parameter estimation clearly depends on the validity of the 

assumptions m the form of the response function and the error distribution. 

The simplest way to check these assumptions is to inspect the residuals 

* A 

ri = yi - f(xi,p) (3.5) 

computed at the estimates ^p . If the residuals are large, or of such a 
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nonrandom structure, that they cannot be ascribed to randan observation errors, 

then this constitutes strong graulds for rejecting the assumed model or the 

error structure. More generally, the method of testing the godness-of-fit in a 

particular problem depends on the assumptions you made in the estimation stage. 

Interpretation of the estimates 

h 

It is not enough to compute the estimates p of the parameters, we must 

also investigate their reliability and precision. Camputed from the random 

variables 

completely characterized only by its distribution function. Some important 

statistical properties of p (e.g., its covariance matrix) can, hDwever, be 

estimated on the basis of the a s d  error structure. We can answer also 

questions such as "what are the chances that the estimate is off by no m r e  

than 1%?", i.e., to compute some confidence regions. It should be, however, 

emphasised that m t  statistical tests and estimates of variability apply only 

approximately to nonlinear models, and even for linear models they are exact 

only if the measurement errors do indeed follow whatever distribution was 

assumed for them. Nevertheless, even the approximate results are particularly 

useful if the parameters have physical significance. 

* 
yi, the estimate is a random vector itself and hence can be 

h 

Simulation 

Even with powerful computer programs at hand, the solution of estimation 

problems is usually far from simple. FI convenient way to eliminate 

compltational errors and to study the effects of statistical assumptions is to 

solve first a problem with know, true parameter values, involving data 

generated at sane nominal parameter vector. Initially it is advisable to 

investigate with error-free data, then to add errors of the assumed structure. 

The simulation usually requires normally distributed random variables. Random 

numbers R that approximately are from a normal distribution with zero man 

and unit variance can be obtained by 

(3.5) 

where the U ' s  are random numbers, uniformly distributed in the interval 

[0,l] and readily supplied by an internal function of most BASIC dialects. 
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3.1 FITTING A STRAIMT LIE BY WEIGHTED LINAR REGRESSIaV 

The mcxt frequent estimation problem is to find the parameters a and b 

of the linear function y = ax + b in order to fit the line to the 

observations C (xi, yi); i = l,Z, ..., n ) ,  where .% 

(3.6) 

Assuming conditions (i) through (v) we will minimize the least squares 

objective function 

(3.7) 

where the w’s are fixed weighting coefficients. If the errors are normally 

distributed, then with wi = 2/ui2 

likelihwd objective function. Therefore it is advantageats to chose the 

weights on this basis, if estimates of the error variances 

The value of 2 
hence it suffices to know (or, in practice to as-) the relative error 

variances in advance. 

(3.7) correspmds to the maxim 

ui2 are available. 

clearly does not affect the location of the minimum, and 

Equations W(a,b)/& = 0 and W(a,b)/ab = 0 are linear in the 

parameters. Solving them simultaneatsly we obtain the least squares estimates 

where the sumation goes from 

defined by 

1 to n , and the weighted means vw and xi are 

The estimates yield the regression line 

h h  h 

y = ax + b . 

(3.9) 

(3.10) 

The goodness of fit can be measured by the weighted residual sum of squares 

Q( : , ^b )  . 
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If the errors have the same variance, we can take u = ui without knowing 

the real value of u by pltting wi = 1 for all i. This case is called 

unweighted least squares , and the quantity 

(3.11) 

is an unbiased estimate of 2 (55s e . g . ,  ref. 5 ) .  The square root of s2 is 

called standard residual error or simply standard error. 

With unequal variances we cannot speak of an "overall standard error". In 

that case 

2 in the weighting coefficients. Therefore, si2 = s2/wi is an unbiased 

estimate of the error variance 

estimate of the same variance, for example computed from the replicates at the 

value xi of the independent variable, then our assumptions can be checked by 

an F-test, involving the ratio of the two estimates, see e.g. Himlblau 

(ref. 5). Though this is the best way to measure the gwdness-of-fit, it 

requires additional information (i.e., replicates), not always available. 

s2 canplted by (3.11) yields an unbiased estimate of the constant 

ui2. If we have a different independent 

Lhder the conditions (i) through (v) the least square estimates are unbiased 

in the linear case. Thus €<:I = a , and the variance D2C;> is 

% 

From the last expressim D2C;> can actually be complted, since replacing yi 

by the error-free variable yi 

a as the estimate. Therefore, we set this expressim and (3 .h )  into (3.121, 

and compute the expectation. Since 

by 

in (3.8a) we would obtain the true parameter 

Ecei - yiI = ui2, which can be estimated 

si2 = n2/wi , after some algebraic manipulation we have the estimate 

for the variance D2C;>. Similarly, we obtain the estimate 

(3.13) 

(3.14) 

for the variance I?{;>. 
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&cording to ( 3 . h )  is a linear combination of the observations 

. * . *  r 

Yl, Y2r -.., ynm . Therefore, normally distributed observations result in 
normally distributed estimates. Then the quantity defined by 

has t-distribution (also called Student distribution) with n-2 degrees of 

freedom (ref. 5). The intervals, that ccntain the true parameters with OX 

probability, called g. confidence intervals, are given by 

t = (: - a)/s 
a 

h h 

a - s  t c - a 2 a + s  t 
a p,n-2 a p,n-2 

(3.15) ,. h 

b - s  t 9 b S b - s  t 
b p,n-2 b p,n-2 

where p = 1 - a/lm , and tp,n-2 is the tabular value of the 

t - distribution with n-2 degress of freedom at the probability p . The 
following program module compltes and prints the quantities discussed. 

Prosram module M40 

4 8 0 8  REH t t t  t t t t t t t t t t t  t t t t t  t t  t t t t t t t t  t t t  t t t t t t t t t t  t t t t t  t t t  t 
4 8 0 2  REti t F I T T I N G  d STRAIGHT L I N E  BY LINEAR REGRESSION t 
4 8 0 4  REH t t t t  t t t t  t t t t  t t t  t t  t t t t t t  t t  t t t t t t t  ttt t t t t  t t t  t t t t t t t  t t  
4886 RE4 INPUT: 
4 8 0 8  REH N NUHBER OF SAHPLE POINTS 
4 8 1 0  REH X(N) OBSERVATIONS OF INDEPENDENT VARIABLE X 
4 8 1 2  RE! Y ( N )  OBSERVATIONS OF DEPENDENT VARIABLE V 
4 0 1 4  REti W I  I D E N T I F I E R  OF WEIGHTING OPTIONS 
4 0 1 6  RE1 0 IDENTICAL WEIGHTS ( W(1)=1 ) 
4 8 1 8  REH I RELATIVE WEIGHTS ( W(I)=I/Y(1)*2 ) 
4%28 RE1 2 USER-SPECIFIED WEIGHTS FURTHER GIVEN I N  
4 8 2 2  RE! W(N) 
4 8 2 4  REH OUTPUT: 
4 0 2 6  REH A SLOPE 
4 8 2 8  REH B V-INTERCEPT 
1838 REti ... AND FURTHER PRINTED RESULTS 
4 0 3 2  REH MODULE CALLED: ti41 
4 0 3 4  XW=8 :YW=0 : W W 4  
4 8 3 6  FOR 1.1 TO N 
4 8 3 8  IF WI=0 THEN M(I)=l ELSE I F  WI=l THEN W(I)=I/Y(I)Y 
4 0 4 0  XW=XWtW( I )  tX ( I )  :YW=VWtW( I ) t V (  1) :WW=WWtW( I )  
4 8 4 2  NEXT I 
4 8 4 4  X W = X W / Y W  :VW=VW/WY : D=0 
4 8 4 6  FOR I:1 TO N : D = D + W ( I ) t ( X ( I ) - X W ) " 2  :A=AtW(I)tV(I)t(X(I)-XW) :NEXT I 
4 8 4 8  A=A/D :B=VW-AtXW 
4850 52.0 :FOR 1.1 TO N : D E = Y ( I ) - A t X ( I ) - B  : S 2 4 2 t W ( I ) t D E t D E  :NEXT I 
4 0 5 2  NF=N-2 :S?=SZ/NF :SA=SQR(SZ/D) :SB=SOR(S2t(l/WWtXWA2/D)) 
4 8 5 4  GOSUB 4 1 0 8  
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4055 HEW ---------- PRINT RESULTS 
4058 V$4TRIN6$[7Uq'-') :F$="#.#1111"""* ' 
4060 LPRINT TABl2B)"LERST SQUARES FIT OF LINE Y=AtXtB" :LPRINT :LPRINT 
4062 LPRINT V $  

4066 FOR 1.1 TO N 

4870 NEXT I :LPRINT V$ :LPRINT :IF WI>0 THEN LPRINT 
4072 LPRlNT . RESIDUAL SUR OF SQUARES ............... ";SZtNF 
4074 IF UI=0 THEN LPRlNT . STANDRRD RESIDUAL ERROR ............... ";SOR(S2) 
4076 I F  WIYd THEN LPRINT . ESTlliATED SIGtlA FACTOR IN WEIGHTS ..... ";SQRISZ) 
4078 LPRINT . DEGREES OF FREEDOH .................... ';NF 
4080 LPRlNT ' CRITICAL T-VRLUE AT 9 5  1 CONF. LEVEL .. ' ;T  
4082 LPRINT :LPRINT V$ 
4084 LPRINT 'PARARETER ~l"ESTIRRTEn,,'STNRD,ERROR",'LOWER BOUND" ,"UPPER BOUNDu 
4086 LPRINT V1 
4888 LPRINT ' 
4098 LPRINT a 

4892 LPRINT V% :LPRINT 
4894 RETURN 
4896 RER tttt~ttttttltttttttttltltttttlttttttttttttttttttttt 

4064 LPRINT 0 I ~ , H X  H E R S ~ ~ ~ Y  R E A S ~ , ~ Y  c o n P n , v ~ s ~ ~ ~ f i ~ "  :LPRINT v$ 

4868 V=AtXlI)*B :DE=YlI)-Y :LPRINT I, :LPRINT USING F$;XlI),YII),Y,DE 

A' ,  :LPRINT USING F);A,SA,A-TtSA,RtTtSb 
B", :LPRINT USING FS;B,SB,B-TtSB,BtTtSB 

The module offers three weighting options. I f  no weighting is used, wi = 1 

i5 set for all i by the module. If relative weighting is used, the module 

cmpltes the weights 

observed variable is near to zero. If you choose the third weighting option 

then you should wpply the weights in the vector W(N). No error flag i5 

implied, although errors may cccur if the number of points is less than 3, the 

xi 

- 2  
wi = 1 / yi , tb5 this option is not recommended if any 

values are all the sane or sane of the weights are negative. 

The tabular value of the t-distritutim, required to find the confidence 

intervals (3.151, is obtained by calling the following auxiliary module. 

Proaram module M41 

4100 RE! ttttttttttttttttttttttt~ttt~tttttttlttttt~ttttt~ttt 
4102 RE# t t 
4104 REM ttttttttttttttlttt&ttttttttttttttltttttttttttt!tttt 
4106 RE1 !NPUT: 
4188 HEN NF DEGREES OF FREEDOH 
4118 RE1 OUTPUT: 
4112 HEN T CRITICAL 1-VALUE 
4114 IF NF>28 THEN 4126 
4116 1- -(NF=I)t12.71 -(NF=2)t4.3 -[NF=3)t3.18 -1NF=4)t2.78 -INF=5)12.57 
4118 T=T-INF:b)t2,45 -lNF=7)t2.37 -1NF41t2.31 -INF=9)t2.26 -INFz10)t2.23 
4128 T=T-INF=ll)tP.? -INF=12)tZ.18 -1NF=13)t2.lb-INF=14)~2.15 -INF=15)12.!3 
4122 T=T-(NF=lb]t2.12 -(NF=17)t2.11 -lNF=18)t2.1 -lNF=19)t2.0? -lNF4)t2.09 
4124 GOT0 4134 
4126 I F  NF(31 THEN AT-12 I 3 : BT:l LO61 AT I -LO6 18.2 ) ll0t I28-NF) :6OTO 4132 
4128 IF NF(61 THEN A T 4 . 2  :BT~1L061PT)-L0614))/38tl38-NF) :GOTO 4132 
4150 AT4.9 :BT=(LOGI AT )-LO612 ) ) I601 160-NF I 
4132 T=INTl196.5tATtEXPlPT) )/I08 
4134 RETURN 
4136 HE! t t t I It 1 t 1 t It t t t t t t t t It t ttt 11 t tt t t  t t t t t t t ttttt ttllt t 

CRITICPL T-VALUE AT 95 Z CONFIDENCE LEVEL 
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The only goal of this simple module is to return the t-value found in 

statistical tables. Thus, the module could be based m DFIT6 and REFU) 

statements instead of the expressions above, but the present form is more 

convenient to use if the module is called several times. 

Example 3.1 Fitting a straight line by least squares methcd 

Table 1.1 lists nicotine and tar concentrations found in different sorts of 

cigarettes. ck discussed in Section 1.8.2, me has reason to as- a simple 

linear relatimship between the two quantities. First w e  assume that the error 

variance is constant, and solve the unweighted least squares problem by the 

following main program. 

180 REW ________________________________________------------------- 
1 0 2  REIl EX. 3.1. F I T T I N G  A REGRESSION L I N E  
1 8 4  REH MERGE H48,tl41 
186 HEM ---------- DATA 
168 REtl ( N )  
118 DATA 18 
112 REM ( X , Y 1 
1 1 4  DATA 8.3, 8.32 
116 DATA 12.3, 0.46 
118 DATA 18.8, 1.10 
120 DATA 22.9, 1.34 
1 2 2  DATA 2 3 . 1 ,  1.26  
124 DdTA 24.8, 1.44 
1 2 6  DATA 27.3, 1 . 4 2  
128 DATA 30.8, 1.96 
130 DATA 35.9, 2 . 2 3  
132 DATA 4 1 . 6 ,  2.28 
288 REN ---------- READ DATA 
282 READ N 
204 DIM X [ N ) , V ( N ) , W I N )  
286 FOR I=I TO N :READ X ( I ) , V ( I )  :NEXT I 
288 REM ---------- F I T  A STRAIGHT L I N E  # I T H  NO WEIGHTING 
210 WI-0 :GOSUB 4888 
212 STOP 

It is interesting to compare the following output printed by the module with 

the results of Examples 1.8.2 and 1.8.3. 
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LEAST SQUARES FIT OF LINE Y-AtXtB 

Y COHP 

U.35851EtBB 
0.61825EtBB 
8.10193EtBl 
0.12773EtI l  
8.12899Et01 
0.13466Et81 
8.15542Etfll 
0.17242EtBl 
8.28955EtBl 
0.24542Et01 

RESIDUAL 

-. 3E515E-81 
-, 15025EtBB 
B. B06E5E-81 
0 ,  b2659E-81 
-.2992@E-BI 
0.93432E-01 
-. 13425EtB8 

0.13453Et80 
-.25419EtBE 

___------_______ 

8,?3583Et00 

RESIDUAL sun OF SQUARES ............... .28~4785 
STANDARD RESIDUAL ERROR ............... .158299E 
DEGREES OF FREEDOfl .................... 8 
CRITICAL 1-VALUE AT P5 X CONF. LEVEL .. 2.31 

...................................................................... 
PARMETER ESTIllRTE STNRD.ERROR LOWER BOUND UPPER BOUND 

A 8.62933E-81 0.52587E-02 8.50804E-0I 0.75862E-81 
B -.16383Et@E 0.13765E+W -.481EBEtBB 0.15413Et00 

...................................................................... 

Thwgh the variances are unknum, considering the small residuals the fit 

can be intuitively judged acceptable. This is supported by the lack of trend in 

the sequence of the residuals. The slope a is m r e  reliable than the 

intercept b. In fact the latter estimate heavily depends on the estimation 

criterion, as shown in Sections 1.8.2 and 1.8.3. The relations among the 

different methods we used to solve this problem will be discussed 

3.10.1. 

h 

h 

in Section 

Exercises 

0 Solve the regression problem with relative weighting (use option WI=1). 

Campare the two sequences of residuals. 

0 Since tar concentrations are also corrupted by measurement errors, and since 

we do not know which variable is more reliable, it is equally meaningful to 

fit the inverse model x = Ay + B to the data, thereby regarding the 

nicotine concentration a5 independent variable. Show that the two regression 

lines differ, t h 5  a  ̂ f 1/6 and ^b # -&a . This problem will be further 



151 

discussed i n  Section 3.8. 

3.2 MULTIVMIABLE LINAR REGRESSION 

Extending the methods of the previws sec t im  we f i rst f i t  the l inear &el 

Y = PIXI + 4 x 2  + * * *  + PnxXnx (3.16) 

* 
t o  the 5et c (Xi l ,  xi2, ..., yi) ; i = 1,2,.. .,nm 1 of observations, 

where 

-w 

y i  = p1xi1 + @Xi2 + ... + b x x l , n x  + €.i . 
As i n  Section 3.1, w e  assume that the errors are of  zero mean and independent, 

with the variances 

(3.17) 

2 
L?{€.i) = Ui = C A W i  , (3.18) 

where the weighting coefficients wi 

function i s  

are known. The least squares objective 

‘* 

Y =  , x =  

‘1 ,nx . . .  Kll x12 

K21 x n  . . . ‘2,nx 

%m, l  ‘nm,2 . * ‘nrn , nx 

expressions (3.17) and (3.19) are reduced t o  

? = x p + c  

and 

Q(p) = ( ?  - X P ) ~ W ( ?  - Xp) , 

, € . =  

(3.19) 

(3.21) 

(3.22) 
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respectively, where W is an nmwm diagonal matrix with diagonal entries 

W l ,  - 7  

i = 1,2,...,nx , gives the least squares estimates 
-.-, wnm. Solving the sirmltaneous linear equations 2a(p)/api = 0 ; 

The goodness-of-fit is again measured in terms of the residual sum of 

squares Q ( $ )  and the variance 

(3.24) 

of the residuals. ck in the previous section, 

constant 2 in the weights, and hence s = sz/wi is an unbiased estimate of 

s2 is an estimate of the 

2 

i 

2 -2 

i i 
the error variance u for all i. Having another estimate s of the same 

2 -2 
variance (e.g. from replicates), the F-test involving the ratio F = s. / s 

i i  

can be used to check cur assumptions. In practice, however, such independent 

estimates s are available in rare circumstances, and the gdness-of-fit is 
i 

* A  h 

usually assessed by studying the sequence 

... - pi,nxxnx , 
are in use, the basic idea is that in case of a satisfactory fit the 

observations should be randanly distibruted around the regression hyperplane 

ri = yi - plxil - p2xi2 - ... 
of residuals. While many diagnosis methods 

h 

i = 1,2, ..., nm , 

Simple but useful diagnosis twls are the residual plots discussed by wmd 

(ref. 6) . If the residuals are of highly nonrandom structure, at least one of 
the assumptions is questionable. This nonrandumess implies that the el-ts 

of the residual sequence rl, r2, ..., rnm are correlated. A measure of this 

serial correlation is the D-statistics proposed by Durbin and Watt- (ref. 7), 

and cwnpted according to 

nm nm 
T - 1  2 

u i  
D = 1: (ri-ri-1l2 1 ) r . 

i=2 i=2 

(3.26) 

Too large or too small values of (3.26) indicate nonrandumess in the 

residual sequence. The critical values of D are tabulated in many textbooks 
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(see, e.g., refs. 5) for nm > 15 . Qssymptotically (i.e., for nm 2 100), the 

fit is acceptable at 9% confidence level if 1.7 5 D 5 2.3 , and this interval 
is larger for smaller samples. Lhfortunately the value of D statistics depends 

m the particular order of the observations, which is arbitrary in many cases. 

Thus you should be careful with D statistics in multivariable regression. 

The most important variability measure of the estimate ^p is its covariance 

matrix defined by 

This definition already takes into account that in the linear case the least 

square estimates are unbiased, t h s  

denote the vector of the "true" dependent variables in the sample points, thm 

replacing Y by Y'  in (3.23) we obtain the true parameters p as estimates. 

Using this expression for p and (3.23) for ^p , the definition (3.27) gives 

E( ^p ? = p . Let Y' = ( y l ,  y2, ..., ynmIT 

(3.28) 

where 6 = Y - Y ' .  TIW factor E(GG') 

the measurmt errors, and according to (3.18) it is given by 

in (3.28) is the covariance matrix of 

covCtX> = E{SCT) = . (3.29) 

king (3.29) and taking into account that s2 is the estimate of 2, (3.28) 

yields the expression 

c = 52 (XTkU0-1 (3.30) 
P 

h 

to estimate the covariance matrix of p . According to the definition (3.27) 

of the covariance matrix, the diagonal entries of C estimate the variances 

of individual parameters, and we can also evaluate confidence intervals for 

them, similarly to (3.15). The only difference is that now there are nm - nx 
degrees of freedom. 

P 

The statistical dependence between the estimates 

in term of the correlation coefficients 

the estimates 

CR lij = rij = c c lij ( c  c iiic c ijj11/2 . (3.31) 

^pi and Ej is expressed 

rij, forming the correlation matrix of 

P P P P 

If the estimates are strongly correlated then they are far from being 

independent and it is better to evaluate their joint confidence region instead 

of individual confidence intervals. k show e.g., by Bard (ref. 4), the 
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quantity (p  - 6) C (p  - 6 )  follows X2 distribution with nx degrees of 

freedom, and hence the region of the parameter space defined by 
P 

(3.32) 

contains the true parameter vector in a'/. of all possible data samples. In 

(3.32) X is the tabular value of the X2 distribution with nx degrees 

of freedom at the probability p = 1 - all021 . The d. confidence region 
(3.32) is a hyperellipsoid in the nx-dimensional space arcund the estimate 

As sham in Fig. 3.1, the confidence region may include parameter values that 

are not at all.close to the actual estimate 

confidence limits usually underestimate this uncertainty and do not reflect the 

dependences amcng the parameters. 

2 

Plnx 

6.  

n 
p , whereas the individual 

c 

p1 

Fig. 3.1. Confidence region of the parameter estimates 

In the multivariate linear regression module M42 first we normalize the 

matrix 

(3.31) in order to sanewhat decrease the numerical errors. This transformation 

X'WX to a correlation-type matrix by a transformation similar to 
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is equivalent to a scaling of the parameters, i.e., the unknm variables of 

the normal equations. With an ill-cmditioned XTWX , hOwever, the estimates 

are strongly influenced by small perturbations in the observations vector ? . 
This is a frequent problem in parameter estimation, and we use the eigenvalue- 

eigenvector decomposition of the normalized 

Interpretation of the results of this procedure will be detailed in Section 

3.5. 

XTWX in order to detect it. 

The three weighting options of the module are similar to the ones of the 

module We). With no weighting or with relative weighting the array 

containing the diagonal entries of the weighting matrix is generated 

automatically. This array should be evaluated in the main program only if the 

option of user specified weights is used. 

W 

The parameter FP m g  the inpt data is the ridge parameter that will be 

exploited in Section 3.5. In normal regression problems FP = 0 should be used. 

Proqram module M42 

4 2 0 0  REfl t l t t t t t t t t t t t t t t t t t t t t t t t t t t l t l t t t t t l t t l l t t l l l l t t l  
4 2 0 2  REH t HULTIVARIABLE LINEAR REGRESSION t 
4204 REH 1 WEIGHTED LEAST SOUARES 1 
4286 REH t t t t l t t t t t t t t t t t l t t l t t l t t t t t t t t t t t t t t t t t l l l l l l l t t t l  
4 2 8 8  REtl INPUT: 
4 2 1 1  REH NH NUHBER OF SAHPLE POINTS 
4212 REM NX NUHBER OF INDEPENDENT VARIABLES 
4 2 1 4  REIl X(Nt!,NXl TABLE OF INDEPENDENT VARIABLES 
4 2 1 6  REll Y(NH1 
4 2 1 8  HEM WI 
4220 REH 
4 2 2 2  REfl 
4 2 2 4  RER 
4226 RER 
4228 REfl W[Nt!J 
4 2 3 8  REtl RP 
4232 REH OUTPUT: 
4 2 3 4  REH ER 
4236 REH 
4 2 3 8  RE1 
4 2 4 0  REH P ( N X I  
4 2 4 2  REH 
4 2 4 4  RER ..... 

OBSERVATIONS OF DEPENDENT VARIABLE 
I D E N T I F I E R  OF HEIGHTIN6 OPTIONS 

@ IDENTICAL WEIGHTS ( W ( I ) = l  1 
1 RELATIVE WEIGHTS ( W ( I ) = l / Y ( 1 ) * 2  ) 

2 USER-SPECIFIED UEIGHTS 
GIVEN BY FURTHER INPUT AS 

VECTOR OF WEIGHTS (ONLY FOR WI.2) 
RIDGE PARAHETER (ZERO FOR ORDINARY LEAST SQUIRES) 

STATUS F L A 6  
0 REGRESSION COflPLETED 
1 SINGULAR COVARIANCE RATRIX 

REGRESSION COEFFICIENTS I N  THE EOUATION 
V = P l t l l  t P 2 t X 2  t ... t P n x t X n x  

(FURTHER RESULTS ARE PRINTED I N  THE t!ODULE] 
4 2 4 6  REH AUXILIARY ARRAYS: 
4 2 4 8  REIl AINX,NXl ,C(NX,NXI ,U(NX,NX) ,D(NXl  
4 2 5 0  REH MODULES CALLED: Rlb,Hl8,H41 
4 2 5 2  I F  WI.0 THEN FOR K = l  TO Nl i  :U(I)=l :NEXT K :GOTO 4260 
4 2 5 4  I F  W I = ?  THEN 4 2 6 0  
4 2 5 6  FOR K.1 TO Nt! :Y=ABSIYIK)) :IF Y < l E - 1 5  THEN Y=IE-15 
4 2 5 8  W ( K J = l / Y I Y  :NEXT K 
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426% REH ---------- CONPUTE Y'M AND UX'Y 
426; FOR 1=1 TO NX 
4264 P [ I ) = 0  :FOR J=l TO I :C(I,J)=0 :NEXT J 
4266 NEXT I 
4268 FOR K=l TO Nt! 
4270 FOR 1.1 TO NX 
4272 FOR 3.1 TO I: C(I,J)=C[I,J)tY(K)tX(E,I)tX(K,J) :NEXT J 
4274 P(I)=P(I)tW(K)tX(C,I)tY(h') 
4276 NEXT I 
4278 NEXT C 
4280 REM ---------- COVARIANCE RATRlY 
4282 TRzlE-30 :FOR 1.1 TO N I  : C ( I , @ ) = C ! I , l )  :NEXT I 
4264 FOR I=1 TO N I  
4286 I F  C(!,0)<=TR THEN CIl,fl)=l ELSE C ( I , 0 1 = S Q R ( C ( I , R ) )  
4288 NEXT I 
4290 FOR I=l TO NX :FOR J=I  TO I 
4292 CII,J)=C(I,J)/C(I,0)~C(J,B) 
4294 NEXT J :NEXT I 
4296 REn ---------- RIDGE STEP 
4298 FOR 1=1 TO NX :FOR J=l TO I 
4300 C (  I,J)=CI I ,  JI-RPt(I=J) 
4302 NEXT J: NEYT I 
4304 RE! ---------- PRINCIPAL COMPONENT ANALYSIS OF THE COVARIANCE I A T R I X  
4306 N=NX 
4308 FOR 1.1 TO N :FOR J:1 TO I :A(I,J)=C(I,J) :NEXT J :NEXT I 
4318 GOSUR l8PB 
4312 RE\ ---------- HATRlX INVERSION 
4X4 FOR !:I TO N :FOR J = l  TO I : R ( I , J ) = C ( I , J )  :NEXT J :NEXT I 
4316 GOSUB l6n0 : I F  ER=l THEfI 4359 
4318 REH ---------- COHPUTE PARAHETER ESTIHATES 
4370 FOR 1.1 TO NX 
4322 D=O :FOR J=1 TO NX : D = D t R ( I , J ) / C ( J , 0 l t P ( J )  :NEXT J : D ( I ) = D  
4324 NEXT I 
4326 FOR 1.1 TO NX : P ( I ) = D [ I ) / C ( I , 8 )  :NEXT I 
4328 REH ---------- WEIGHTED SUN OF SQUARES AND DURBIN-WATTSON S T A T I S T I C S  
4330 FOR K=l TO NH 
4332 
4334 S 2 = S ? t W ( K ) t D t D  
4336 
4338 NEXT K 
4340 NFZNI-NX :SE=SQR(SP/NF) 
4332 I F  DN(1E-30 THEN DS:? ELSE DS=DS/DN 
4344 REN ---------- STANDARD ERRORS AND CORRELATION HATRIX OF ESTIHATES 
4346 FOR 1=1 TO NX 
4348 DI I I = S Q R ! S 2 / N F t A ! I , I  )/Cil,0)/C( 1,I))  :C(B, I ) = S Q R I A ( I ,  I ) )  
435I NEXT I 
4352 FOR I=1 TO NX :FOR J=l T O  NX 
4354 C[I,J)~AIl,J)ICIB,I)/CI0,J1 
4356 NEYT J:NEWT I 
4;58 REN ---------- PRINT RESULTS 
4360 V$=STRIN6$170,'-") :F1="l .###l l""A " :FI(=*#.##t * 

DE=D :D=Y(K)  :FOP 1.1 TO NX : D = D - P ( I ) t X ( k ' , I )  :NE#T I 

DN=DN+DtD : I F  t31 THEN DS=DSt(D-DE)t (D-DE) 

4362 LPRINT TAB(:@);"\ULTIVARIAPLE LINEAR REGRESSION" 
4364 LPRINT TbB(?5);'f lETHOD OF LERST SOUARES" 
4366 LPRINT :LPRINT :LPRINT 
4368 LPRINT 'NUHBER OF INDEPENDENT VARIABLES . . . . . ';NX 
4378 LPRINT 'NNUHBER OF SAtiPLE POINTS . . . , . . . ,, I ,, ';Nil 
4372 I F  RPC0 THEN LPRINT "RIDGE P A M E T E R  ..................... ':PIP 
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4374 LPRINT :LPRINT 
4376 LPRINT 'PRINCIPAL COHPONENT ANALYSIS OF THE CORRELATION MATRIX" 
4378 LPRINT :LPRINT "El6ENVhLUE'; 
4380 FOR 1.1 TO NY :LPRINT TAB(ll11+3);" X(";I;") '; : NEXT I :LPRINT : L P R I N l  
4382 FOR I=1 TO NX 
4384 LPRINT USING F$;U(B,I): 
4386 FOR J = 1  TO W X  :LPRINT USING Fl1; UIJ,I); :NEXT J : L P R I N l  
4388 NEXT I 
4370 LPRINT :LPRINT 
4392 I F  E R O I  THEN 4398 
4394 LPRINT ' SINGULAR COVARIANCE MATRIX OF INDEPENDENT VARIABLESB 
4396 6010 4452 
4398 LPRINT V1 
4408 LPRlNT ' In,," V tlEAS',," WEIGHT",' Y COtlP'," RESIDUAL' :LPRINT V I  
4402 FOR K = l  TO Ntl 
4484 Y=0 :FOR 1.1 TO NK : Y = V + P ( I ) t X ( K , I )  :NEXT I 

4408 NEXT K :LPRINT V I  :LPRINT 

4412 IF WI>0 THEN LPRINT 'MEIGHTED SUH OF SQUARES ,.,..,,.,..,. ';S2 
4414 LPRlNT 'DEGREES OF FREEDOH .................. ';NF 
4418 IF HIM THEN LPRINT 'SIGHA FACTOR I N  THE WEIGHTS ,..,.,,., ';SE 
4420 LPRINT 'DURBIN-WATSON D-STATISTICS , , , , , . , , , , ';DS 
4422 GOSUB 4100 
4424 LPRINT "CRITICAL 1-VALUE AT 95 X CONF. LEVEL 
4426 LPRINT :LPRINT V1 
4428 LPRINT "PARAHETER", "ESTIMATE', 'ST.ERROR", "LOWER BOUND', 'UPPER BOUND' 
4438 LPRlNT V1 
4432 FOR I=1 TO NX 
4434 LPRINT ' PI ' ;  I;" 
4436 NEXT I 
4438 LPRINT V1 :LPRINT 
4440 LPRINT "CORRELATION HATRIX OF PARARETERS' :LPRINT 
4442 FOR 1.1 TO NX :LPRINT TAB(llll+31;' P( ' ; I ; ' )  '; :NEXT I :LPRINT :LPRINT 
4444 FOR 1.1 TO NX 
4446 LPRINT " P ( " : I ; " )  y 1  

4448 FOR J.1 TO I :LPRINT USING F l $ ; C ( I , J ) ;  :NEXT J :LPRINT 
4450 NEXT I :LPRINT :LPRINT 
4452 RETURN 
4454 KEH ltttltlttttlltlttttttlllllllttl~tlltllllllllll~llll 

4486 D:Y(K)-Y :LPRINT K ,  :LPRINT USING FC;Y(K),W(K),Y,D 

4410 IF w1.0 THEN LPRINT "sun OF SQUARES ...................... 9 ; s 2  

4416 IF 111.0 THEN LPRINT 'STANDARD ERROR ...................... -;SE 

';I 

" , :LPRINT USING F1;PI  I )  ,D( I ]  ,PI I ) - T l D (  I )  , P I  I ) * T t D (  I )  

W h e n  computing the estimates (3.231, the matrix XTWX is already 

normalized, with unit entries in its diagonal. The d u l  Ml6 performs the 

inversicn and returns the status flag ER = 1 if this step is not successful, 

i.e., the problem cannot be salved. 

Example 3.2 Decomposing the rate constant of an acid-catalysed reaction 

The hydrolysis of o-aceticacid-ethylester, dexribed by 

agC(OcLH5)3 + w --> M3wOcP5 + XTsQ-4 
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is a typical acid-catalysed reaction. As show, by Schwetlick (ref. 81, in the 

presence of the weak acid and at Constant ionic strength the rate 

constant k of the reaction can be decomposed as 
Ml$6H4Ui 

k = ko + k~[d] + k w C W I  , (3.33) 

where ko is the rate constant of the uncatalysed reaction, whereas kH and 

kW 
concentration [H'] and that of the undissociated acid concentration [HA], 

respectively. In our case HFI is Ml$6H4M. Table 3.1, originally published 

in (ref. 91, lists the rate constants observed at different values of 

and [W]. Column 3 of the table will be used only in a forthcoming 

investigation of Section 3.5. 

are catalysis constants that measure the influence of the hydrogen ion 

[H+l 

Table 3.1 

Rate constant of an acid-catalysed reaction 

Experimental conditions 
kx104 

[H+]X109 [HFI]X103 [HFI-lX103 11s 
ml/l ml/l ml/l 

4.8 2.42 2.42 1.21 
4.8 5.66 5.66 1.20 
4.0 16.00 16.00 1.35 
4.8 21.21 20.20 1.44 
6.5 3.84 2.84 1.54 
6.5 10.25 7.56 1.61 
6 . 5  18.30 13.50 1.77 
10.2 3.10 1.45 2.37 
10.2 10.30 4.83 2.47 
10.2 30.90 14.50 2.84 

_________-__-___-__-l___________l_l 

We present a simple main program to estimate the parameters ko, kH and kHFI 

by the unweightd least squares method. The program can be used for solving 

other linear regression problems if altering the DATA stat-ts appropriately. 

The first DRTA line specifies the sample size and the number of independent 

variables. The observations are listed in separate DATA lines, where the 

first number is the dependent variable. The second number equals 1 and will 

result in the cmstant term ko of the rodel (3.33). This is followed by the 

values of CH+l and [MI. 
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REH ........................................................... 
102 RE\ EX. 3.2. NULTIVARIAFLE LINEAR REGRESSION - ACID CATALYSIS 
I 0 4  REF NERGE H16,N13,N41,M42 
106 REM [NUMBER OF SANPLE POINTS AND NUMBER OF INDEP. VARIABLES) 
10@ DATA 10,3 
118 RE[ (DEPENDENT VARlAEiE AND INDEPENDENT VARIABLES) 
11: DATA 1.21E-4, 1, 4.8E-9, 8.00242 
114 DATA 1.20E-4, 1, 4.8E-9, 0.00566 
I16 DATA 1.35E-4, I ,  4.8E-9, 0.01600 
118 DATA 1.44E-4, 1, 4.8E-9, 0.02121 
120 DATA 1.54E-4, 1, 6.5E-9, 0.00334 
122 DATA 1,61E-4* 1, 6.5E-9, 0.81025 
124 DATA 1.77E-4, I ,  6,SE-9, 0.01830 
126 DATA 2.37E-4, 1, 10.2E-9, 0.00310 
128 DATA 2.47E-4, 1, 10.2E-9, 0.01038 
130 DATA 2.84E-4, 1, 10.2E-9, 0.03090 
209 RE! ---------- READ DATA 
202 READ NH,NX 
204 DI! X (NF1,NX ) ,Y ( Nli ,UlNM) ,PiNX I 
206 DIN AINX,NXl ,C(NX ,NY)  ,U(NX,NXl ,DiNX) 
208 FOR 1.1 T O  NM 
210 READ Y ( 1 )  
212 FOR J = l  T O  NX :HEAD XII,J) :NEWT J 
214 NEXT I 
216 REH ---------- CALL MODULE (NO WEIGHTING AND NO RIDGE) 

220 6OSUB 4200 
222 STOP 

218 wI.0 :RP=B 

The first part of the output contains the principal component analysis of the 

correlation matrix discussed later in Section 3.5. In addition to the 

residuals, goodness-of-fit, parameter estimates and bcunds, the Durbin-Wattson 

D statistics is also printed by the module. 

flULTIVARIABLE LINEAR REGRESSION 
WETHOD OF LEAST SQUARES 

NUWBER OF INDEPENDENT VARIABLES . . . . . 3 
NUMBER OF SANPLE POINTS 10 

PRINCIPAL COMPONENT ANALYSIS OF THE CORRELATION HRTRIX 

EIGENVALUE XI 1 1 Y (  2 I X (  3 I 

8.27101Et01 0.589 0.588 0.554 
0.24102Et00 -.374 -.410 0.332 
0.48887E-01 -.716 0.698 0.022 
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3 
4 
5 
6 
7 
R 
9 
IB 

1 

0.12100E-03 
0.12000E-03 
0.13500E-03 
0.  I4400E-03 
0.15400E-03 
B.lbl00E-03 
0.17700E-03 
0.23700E-03 
0.24700E-83 
0.28408E-03 

0.10000Et01 
0. I0000E+BI 
0.1B0BBEtBI 
8.10000Et01 
0.108BEE+Bl 
0.10B00Et01 
B,l8000EtBl 
0.100B0Et01 
8.18880Et01 
8.108iiBEtBl 

0.1148BE-03 
8.11993E-83 
0.1363BE-03 
0.14455E-03 
8.15513E-83 
0.16528E-03 
8.17803E-03 
0.23685E-03 
8.24825E-03 
0 I 28087E-83 
-----_____. 

0.62011E-05 
0.70540E-07 
-.13030E-05 
-.55316E-86 -. 11318E-05 
-.42821E-05 
-.10294E-05 
0.15071E-06 
-.1?5BbE-05 
B. 31289E-05 

sun OF SOUARES ...................... 7.2517e3~-11 
DEGREES OF FREEDOM .................. 7 
STANDARD ERROR ...................... 3.21863E-Bb 
DURBIN-WATSON D-STATISTICS .......... 1.158288 
CRITICAL T-VALUE A T  95 X CONF. LEVEL 2.37 

...................................................................... 
PARAHETER ESTIMATE ST.ERROR LOWER BOUND UPPER BOUND 

P i  1 1 0.34346E-85 8.34861E-05 -.46378E-05 8.11507E-04 
PI  2 I 0.224B3Et05 0.45859Et03 0.21316Et05 0.23489Et05 
P i  3 1 0.15835E-02 0.11693E-03 0.13064E-02 B.lR686E-02 

...................................................................... 

CORRELATION HATRIX OF PARAKETERS 

P i 1 1  P i ? )  P i 3 1  

P I  1 1 I. 000 
P I  2 -.861 1.080 
PI  3 I -.257 -.173 1.080 

The standard error is about ZL, which is certainly not larger than the 

error in the observed rate coefficients. Therefore, the fit is acceptable in 

spite of sme nonrandmess in the sequence of residuals. This conclusion is 

supported by the acceptable value of D-statistics, athcugh with only 10 data 

points we cannot use this test rigorously. 

Though the confidence intervals of the parameters are reasonably small, the 

interval for ko includes the value k, = 0, and hmce at the given 

significance level we cannot reject the hypothesis ko = 0. Indeed, fitting a 

simplified model to the data yields the standard error 

s = 3.22x10-6, 50 that the gwdness-of-fit is practically unchanged. Dropping 

the constant term is supported by an F-test at any reasonable significance 

level. I3 the other hand, a model containing even m r e  than three terms might 

seem to be natural from a chemist's point of view. We will return to this 

question in Section 3.5.1. 

k = k,[H+l + k,+CHPl 
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Exercises 

Apply (3.23) and (3.30) to the model y = plx + 9 . Compare the resulting 
expressions with the corresponding expressions of Section 3.1. 

Discuss the relation between transforming the matrix XTWX into a 

correlation type matrix and scaling of the parameters. 

Solve Example 3.2 with the simplified model k = k ~ [ H + l  + kwCWIl withart 

weighting, then, in turn, apply relative weighting and user specified 

weights 
c 

wi = l/ki (also called Poissa, weighting). 

o Fit a parabol y = p1 + pzx + ex2 to the data of Examples 1.8.2, 1.8.3 

and 3.1 using the program module M42. (See Section 3.9 for a m r e  

straightforward solution of this problm.) 

3.3 NONINE#? L W T  s(xwIES 

In this Section we estimate the parameters of the nonlinear vector valued 

function 

y = f(x,p) (3.34) 

c c 

The model is fitted to the observations 

i = 1 ,..., nm }. Let Ci = ( Lil, ..., €i,ny)T denote the error vector in the 
i-th observation. We assume that the nymy covariance matrices of the error 

vectors are knOwn, at least up to a constant factor. The nm weighting 

matrices of dimensions nymy are selected according to 

{ (xil, ..., Xi,nx; Yilg * * . ,  Yi ,ny) 9 

-1 
COVC Ci 1 = 2 w. , 

1 
(3.36) 

where 2 is a (possibly unknw) scalar rmltiplier. Note that nondiagonal Wi 

matrices are also allowed. The least squares objective function 
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(3.37) 

i s  i n  agreement with the m a x i m  l i k e l i h w d  principle. 

For the sake of s impl ic i ty we introduce the notations 

therby reducing the objective function t o  the form 

The m i n i m  of  (3.39) can be localized by the methods discussed in Section 

2.4. As shown i n  many comparative studies (see, e.g., refs. l P k l Z ) ,  apart f rom 

sane special cases ( re f .  13) the most e f f i c i e n t  algorithms t o  minimize 

sum-of-squares objective functions are the various versions of the Gauss-Newton 

method. The method i s  based on the local l inear approximatim 

F(p) H F(p(O)) + J(p(O))Cp - p(O)I  (3.40) 

of the function F around the i n i t i a l  estimate p ( O )  of  the parameters. The 

(nrnmy)mp Jacobian m a t r i x  J of F i s  defined by 

J(p) = (3.411 

Setting (3.40) i n t o  (3.39) yields the quadratic approximation 

of  the objective function, where the argument p(O) of F and J i s  dropped 

for  notational simplicity. TM next estimate p(1) i s  then the minirmm point 
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of  the quadratic function (3.421, which i s  easy t o  find. Indeed, regarding 
= p - p(O) as the u n k n m  parameter vector, minimization of  (3.42) i s  

equivalent t o  a l inear regression problem 

variables ? - F and the m a t r i x  of independent variables J. The solution t o  

t h i s  problm i s  

yields the Gauss-Newton i terat ion 

with the vector of  dependent 

4 = [JTW]-lJTW [? - F]. Repeated application of t h i s  idea 

where J and F are cmplted a t  P ( ~ ) .  Similarly t o  the quasi Newton 

optimization methods, the Gauss-Newton algor i thn of fers  quadratic convergence 

close to  the m i n i m .  Further apart, howwer, the step size i s  frequently 

inflated, part icular ly when [JTWl i s  nearly singular. Then p(k+l) might be 

a worse approximation t o  the m i n i m  of  (3.39) ttmn i t s e l f .   he goal of  

the famous Lemberg-Marquardt modification (refs. 14-15) o f  the 

Gauss-Newton algorithn i s  to  overcane th i s  disadvantage through the i terat ion 

p(k)  

P ( k + l )  = p(k) + CJTW + ~(~+~)II-~JTW [? - F] , (3.44) 

where I i s  the npmp unit m a t r i x  and the nonnegative scalar x(k+l) i s  the 

Marquardt parameter. With x suf f ic ient ly  large, the additional term 

moderates the length of the step and forces i t s  direct ion toward the negative 

gradient of the objective function. A variety of  rules has been proposed fo r  

selecting the Marquardt parameter i n  subsequent i terat ions (refs. 5,121. I n  a 

convergent i terat ion most of the methods decrease i t s  value, thereby returning 

t o  the Gauss-Newton procedure. 

Chalcqcusly to  the l inear case, the goodness-of-fit i s  measured i n  terms of  

the residual sum of squares Q(p) and the residual variance (or  sigma square) 

5' , defined by (3.24) with the degrees 

denominator. Interpretation of  estimates is based on the observation that each 

i terat ion of the Gauss-Newton algorithn i s  equivalent t o  solving a l inear 

regression problem. Replacing the m a t r i x  X i n  (3.30) by the Jacobian J(^p), 

corresponding t o  the l inear approximation of the r e s p s e  function F i n  a 

neighborhood of  ^p , the covariance m a t r i x  of  est imates i s  approximated by 

h 

(nmmy - np) o f  freedom i n  the 

(3.451 

Based on the same l inear approximation, the confidence region i s  described 

by (3.32) a5 i n  the l inear case. This i s  an approximate relat imship,  and may 

considerably d i f f e r  f rom the exact confidence region given by 
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Q(p) - Q ( ^ p )  5 X 2 ,  where 

Bard, ref. 51. The exact confidence region has little practical value for 

np > 2, since it is very difficult to canpute, whereas the local linear 
approximation (3.32) will be very useful. 

X2 depends on the probability level, (see, e.g., 

The follcwing simple tricks improve the efficiency of the Gauss-Newton- 

Marquardt algorithm implemented in the module M45. 

(i) The parameters are normalized. In the (k+l)-th iteratim the minimum is 

localized in the space of the parameters defined by 

Therefore, the initial guess is 

entries of the Jacobian matrix are 

pj = pj/pj(k).  

pj = 1 in every iteration, and the 

(3.46) 

In spite of the definition of Dj, according to (3 .46)  we never divide by 

pj. Thus you can choose the initial estimate p, = 0 , but then the j-th 
parameter remains zero during the iterations. 

(ii) The cross product matrix [JT(p)W(p)l is further normalized to a 

correlation type matrix before inversion. A t  this point we leave 

a diagmal entry unchanged if it is less than a threshold selected 

relatively to the trace of the matrix. The idea behind this trick is to 

allw the additional term x(k+l)I to eliminate the possible near 

singularity of the matrix to be inverted. 

(iii) The above normalization enables us to use simple rules for selecting the 

Marquardt parameter. 

Initially x ( 0 )  = 121.01 , whereas in subsequent iterations 
= O . l x ( k )  if Q(p(k+l)) < Q(P(~)) , and 

A(‘+’) = 11211(k) otherwise. 

(iv) The sign of the parameters are usually k n m  from physical 

considerations. Restricting 

estimate of the parameters. 
pj 2 0 we keep the sign of the starting 

The termination conditions are 

the selected 1-r bound M the relative step size, and IM is the m a x i m  

number of iterations. 

IIApj ( k )  11 5 EP or k > IM, where EP is 
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Prosram module M45 

4 5 0 0  REN t t t t t t t t t t t t t t t t t t t l t t t t t t t t t t ~ t ; t I t t t t t t t t t t t t l t l t  
4 5 0 2  REH t WEIGHTED LEAST SQUARES ESTlHl lTION OF PARAMETERS 1 
4 5 8 4  RER t I N  HULTIVARIABLE NUNLINEAR HODELS t 
4 5 6 6  REH t GAUSS - NEWTON - HARQUARDT HETHOD t 
4 5 0 8  REM I l t l l t t l t t t t t t t t t t t t t l t t t t t t t t t t F l ~ t t t t ! t ! ~ t t ~ l t t t ~ ~ ;  
4 5 1 0  REH INPUT: 
4 5 1 2  REN NH NUHBER DF SAHPLE POINTS 
4 5 1 4  REH NX NUHBER OF INDEPENDENT VARIABLES 
4 5 1 6  REM NY NUHBER OF DEPENDENT VARIABLES 
4 5 1 8  REH NP NUHBER OF PAHAHETERS 
4 5 2 0  REH T(NH,NX) TABLE OF INDEPENDENT VARIABLES 
4 5 2 2  REH V(NH,NY) TABLE OF DEPENDENT VARIABLES 
4 5 2 4  REH M I  IDENTIFIER OF HEIGHTIN6 OPTIONS 
4 5 2 6  REH 0 IDENTICAL HEIGHTS ( W ( l , I ) = l ,  WlI,JI=U 1 
4 5 2 8  REfl I RELATIYE WEIGHTS I H l I , l ~ = l / V ~ f l , l ~ * 2 ,  Wll,J)=B 1 
4 5 5 0  REH 2 USER-SPECIFIED WEIGHTS GIVEN BY FURTHER INPUT AS 
4 5 3 2  REH 
4534 REH 
4536 REH 
4538 REN P(NP) I N I T I A L  PARAMETER ESTIHATES 
4 5 4 0  REH EP THRESHOLD ON RELRTIVE STEP LENGTH 
4 5 4 2  REH It4 NAXIMUH NUHBER OF ITERATIONS 
4 5 4 4  REH OUTPUT: 
4 5 4 6  REM EH STATUS FLAG 
4 5 4 8  REH 0 SUCCESSFUL ESTlHATlON 
4 5 5 0  REH 1 REQUIRED THRESHOLD NOT ATTAINED 
4 5 5 2  REN P I N P )  PARAHETER ESTIHATES 
4 5 5 4  REN ,.... FURTHER RESULTS ARE PRINTED I N  THE NODULE 
4 5 5 6  REfl USER-SUPPLIED SUBROUTINES: 
4 5 5 8  REH FROM L I N E  900: 
4 5 6 0  REM X i l ,  ..., n x )  AND F(1, ..., n p )  --> Y l l ,  ..., n y )  
4 5 6 2  REM 
4564 REH FROH L I N E  EBB: 
4 5 6 6  REM H --> "1, ..., n y ; l ,  ... ,ny) 
4 5 6 8  RER ( COMPUTE ACTUAL WEIGHTS FUR SARPLE t i  
4 5 7 0  REH CALLED ONLY I F  WI=3 ) 
4 5 7 2  REH AUXILIARY ARRAYS: 
4 5 7 4  REN A lNP,NP) ,C(NP, NP 1, UINP,NP) ,BINPI, DINP) ,G(NY ,MP ) 
4 5 7 6  RER RDDULES CALLED: M l 6 , N l B , R l l  
4 5 7 8  I F  U I 0 0  THEN 4 5 8 2  
4580 FOR 121 TO NY :FOR J.1 TO NY :H(l,J)=-ll=J) :NEXT J :NEXT I 
4 5 8 2  REN ---------- STARTING VALUE OF HARQUARDT'S LAHDA IS 0.01 
4584 PB=.01 : E l 4  :ES=8 
4586 REH ---------- SUM OF SQUARES 
4 5 8 8  GOSUP 4768 
4 5 9 0  REN ---------- START OF ITERATION 
4 5 9 2  LPRINT :LPRINT "STARTING POINT";TAB(25);'SUH SO=";F :LPRINT 
4 5 9 4  FOR K = l  TO NP :LPRINT TAB(25);"PI';K;')=';PIK) :NEXT t! 
4 5 9 6  FUR 11.1 TO I R  
4 5 9 8  FOR K = l  TO NP :U(K,U)=P[K) :NEXT K :FR=F 

4 6 0 2  FOR C=l TO NP : B ( K ) = 0  :FUR L = l  TO K :CIK,L)=B :NEXT L :NEXT K 
4 6 0 4  FOR fl=1 TO NN 
4 6 0 6  
4688 
4 6 1 0  
4 6 1 2  GOSUB 4 7 9 2  

Y(NY,NYI HATRIX OF ME16HTING COEFFICIENTS ( ONLY FUR WI.2 ) 
3 WEIGHTS COHPUTED FOR SAHPLE POINT H I N  USER 

SUPPLIED SUBROUTINE STARTING RT LINE 888 

( RESPONSE FUNCTION EVALUATION ) 

4 6 0 0  RE! ---------- COHPUTE T'WT AND N T ' Y  

FOR 1.1 TO NX :Xll)=T[fl,l) :NEXT I 
I F  WI=I THEN GOSUB 4784 
I F  UI.3 THEN ER=U :GOSUB 880 : I F  ER)0 THEN 4 9 5 2  



166 

4614 FOR K = l  TO NP 
4616 FOR L = l  TO K 

4628 
4622 
4624 
4626 NEXT L 
4628 A=0 
4638 FOR 1.1 TO NY:F@R J = 1  TO NY 
4 6 2  
4634 NEXT J :NEXT I :P(K)=RlK)+A 
4636 NEXT C 
4638 NEXT ti 

4642 TR.0 :FOR 1.1 TO NP : C l l , O ) = C ( I q l )  :TR=TR+C!I,I) :NEXT I 
4644 TR=TR/NP/ IB08 
4646 FOR 1=1 TO NP 
4b48 
4650 NEXT I 
4652 FOR 1=1 TO NP :FOR J = l  TO I 
3654 
4656 NEXT J :NEXT I 

4668 FOR 1.1 TO NP 
4662 FOR J=I TO 1-1 : I l ( l , J ! = C i l , J ]  :NEXT J 

4666 NEXT I 
4668 REIl ---------- I A T R l X  INVERSION 
4670 ER.8 :N=NP :GOSUB 1600 : I F  EP=I  THEN 4718 
4672 REH ---------- CORPUTE STEP 
4674 FOR I:1 TD tip 
4676 

4bie ~ = 0  
FOR I=1 TO NY:FOR J = l  TO NY 

NEXT J :NEXT I :ClK,L!=ClK,L!tA 
A=AtM( I ,  J It61 I , L )  $61 J , K ) t P ( L ) l P l K )  

8=6tW! I , J It6l J ,K) t lVlH, I !-Y l I ) ! W ! K !  

NORMALIZE 4648 REM --____---- 

IF C/I ,U)(=TR THEN C(l,B!=l ELSE C!I,0)=SQR(ClI,P!! 

U l  I ,  J )=C( I ,  J 1 :C! I ,  J!=Cl I , J1 / C I  I ,0) / C (  J ,B) 

4658 REN ---------- I IAROUARDT 'S  COt4PRONlSE 

4504 AI I ,  I I = C (  r , I i t ~ n  

D 4  :FOR J = 1  TO NP : D = D t A I ~ , J ) / C I J , @ ) t R ! J !  :NEXT J :DII)=DICiI,A! 
4678 NEH I 
4680 
4682 SL-0 :ll=l 
4684 FOR 1.1 TO NP 
4686 IF r I tD! I ) ( : - .?5 THEN XI=-.95/D(I) 
4688 S L = S L t D ( I ) t D ( I )  
4690 NEXT I : S L = S O R I S L l t X I  
46V RER ---------- NEW ESTIIIATES 
4694 FOR 1.1 TO NP : P l l ~ = U l l , B ~ t ( l t X I t D ~ I ~ )  :NEXT I 
4696 GOSUB 4760 
4698 RER ---------- PRINT ITERATION STEP 
4708 F$=n# . l " *A"  :LPRINT 
4782 LFRINT "IT=';IT;TRRilB);"P#="; :LPRINT USING F$;PH; 
4704 LPRINT T I l B ( 2 5 )  :"SUM SQ=";F;TAP( 501 ; "SL=";SL :LPRINT 
4786 I F  F>=FR THEN 4710 
4788 FOR K=l TO NP :LPRINT TRBIZS);'PI';;K;")=';;PiK) :NEXT K 
4718 PEN ---------- END OF PRINT 
4 7 2  IF SL!=EP THEN E l 4  :60TO 4726 
4714 REH -______--- RAROUARDT'S PARAIIETER 
4716 IF F V R  THEN 4720 
4718 PH=10tPH :GOTO 4658 
4720 P t k P t i i l 0  :IF Ptl(.B0!001 THEN Pfl=.000001 
4722 NEXT I T  
4724 EI=I 
4726 IF F F R  THEN 4738 
4728 F=FR :FOR 1=1 TO NP :PlI)=UlI,B) :NEXT I 

REH ---------- CHECK S16N AH0 REDUCE STEP IF NEEUEU 
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4730 REM ---------- STANDARD ERROR AND CORRELATION MATRIX OF PARAMETERS 
4732 NF:NtltNY-NP :SE=SQRlF/NF) 
4734 FOR 1.1 TO NP :FOR J = l  TO I :Al1,J)=ClI,J) :NEXT J:NEXT I 
4736 GDSUB I600 :IF E R = I  THEN ES.1 :GOTO 4752 
4738 FOR I = I  TO NP 
4740 B ( I ) = S Q R ( F / N F t A l  I , I  )/ClI,0)/C( I ,8)) 
4742 C ( B 3  I )=SORIA( I I I ) ) 
4744 NEXT I 
4746 FOR I=l  TO NP :FOR J = 1  TO NP 
4748 C l  I , J)=A( I , J  1 /Cl8, I ) / C l 0 ,  J )  
4758 NEXT J:NEXT I 
4752 REH ---------- PRINCIPAL COHPONENT ANALYSIS 
4754 FOR I = I  TO NP :FOR J = I  TO I :A(I,J)=U(I,J) :NEXT J :NEXT 1 
4756 N=NP :GOSUB l88e 
4758 GOT0 4818 
4760 RER ---------- COMPUTE SSQ 
4762 F=0 
4764 FOR 1.1 TO NH 
4766 FOR I=1 TO NX : X l I ) = T l H 4 1 )  :NEXT I 
4768 I F  W I = l  THEN GOSUB 4784 
4778 IF W1.3 THEN GOSUB 800 
4772 GOSUB 908 
4774 FOR 1-1 TO NV :FOR J=1 TO NY 
4776 F ~ F t # l I , J ~ t ~ V l ~ , l ~ - Y l ~ ~ ~ t l V l M , J ~ - Y I J ~ ~  
4778 NEXT J :NEXT 1 
4780 NEXT M 
4782 RETURN 
4784 REH ---------- RELATIVE WEIGHTS 
4786 FOR I=1 TO NY :V=ABS(V( i l , I ) )  : I F  Y(1E-15 THEN Y=lE-15 
4788 W ( I , I ) = l / V / Y  :NEXT I 
4798 RETURN 
4792 REIl ---------- COHPUTE JACOB1 MATRIX GINY,NP) AND RESPONSE Y(NY) 
4794 FOR J=I  TO NP 
4796 D E ~ . 8 0 l t A B S l P l J ) ) t l E - l 0  : P I J ) = P l J ) + D E  :GOSUB 900 
4798 FOR I=1 TO NY : 6 ( 1 , J I = V l I ) / D E  :NEXT I 
4800 P I  J ) = P I  J ) -DE :D I J ):DE 
4882 NEXT J 
4884 GOSUB 988 
4886 FOR 1.1 TO NY :FOR J=I TO NP :6(1,J)=GII,J)-YlI)/DIJ) :NEXT 3: NEXT I 
4888 RETURN 
4810 REM --------- PRINT RESULTS 
4812 LPRINT :LPRINT 
4814 LPRlNT TAB(15);"WEIGHTED LEAST SQUARES PARAMETER ESTIMATION' 
4816 LPRINT T A B ( 2 1 ) ; ' I N  f lULTIVARlABLE NONLINEAR MODELS' 
4818 LPRINT TRB(21);'6AUSS - NEWTON - MAROUARDT HETHOD" 
4821 LPRINT :LPRINT :LPRINT 
4822 LPRINT 'NUMBER OF INDEPENDENT VARIABLES . . . . , ";NX 
4824 LPRINT "NUMBER OF DEPENDENT VARIABLES , . . . . . . ';NY 
4826 LPRINT 'NUMPER OF PARAIIETERS ,. . . ,. ..,...., I I ';NP 
4828 LPRINT "NUMBER OF SAMPLE POINTS ,. ,. . . . . . . . . . ':NM 
4830 LPRINT "OPTION OF WEIGHTING .. ... . . . . . . . . . . . . ';HI; 
4832 IF UI=0 THEN LPRINT " I I D E N T I C A L  WEIGHTS)' 
4834 I F  W I = l  THEN LPRINT ' [RELATIVE WEIGHTS)" 
4836 IF MI=2 THEN LPRlNT '[USER DEFINED WEIGHTS, INDEPENDENT ON THE SAMPLE" 
4838 IF W1.3 THEN LPRINT *(USER DEFINED WEIGHTS, DEPENDENT ON THE SAMPLE' 
4848 FS='#.#tll#"A*A * :FI$="#,### ':LPRIMT :LPRINT 
4842 LPRlNT *PRINCIPAL COMPONENT ANALYSIS OF NORHED CROSS PRODUCT HATRIX" 
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4 8 4 4  LFRINT : L P R I N T  "EIGEN!'ALUE"; 
4 8 1 b  FOR I=! TO UP :LPRlWT T f i E ( l l t l + ; ) ; "  P ( " : I : " j  " ; : NEXT I :LPRINT :LPRINT 
4 8 4 3  F1R I = 1  TC NP 
4 8 5 0  LF'RINT USING FIiUIB,:), 
4 8 E  FOR J = 1  T O  I P  :LPPINT USING F l ' l ;  UiJ,I); :NEXT J :LPRINT 
4851  NEXT I 
4856 LPRINT :LPRINT 
4 8 5 8  Yt=STRING$170," - " )  :V! i=STRIN6)(55," - " )  
4 3 6 0  IF E I = l  THEN LPRINT " REQUIRED THRESHOLD NOT RTTAINED" :LPRI#T :;PRINT 
4 8 6 2  I F  ES.1 TBEN LPRINT " SIISULRR CRCSS PRODUCT H f i T R I i "  :LPRINT :LPRINT 
4 8 5 4  FOR 151 TO N'/ 
4 8 6 5  LF'RINT :IF NY)! THEN L P l I N T  "RESPONSE FUNCTIOI4";I 
4 8 6 8  LFP!NT ill$ : L P R I I T  "SAMPLE #a' ,"  Y HEAS"!" Y C@)rP', ' '  R E S I D i l k L "  :LFHINT V1$ 
4 8 7 0  FUR H=l TO NM 
487: FOR J=1 TO N X  :X(J;=7(MtJ) :NEXT 1 

4 8 7 6  LPRINT !I, :LPR!NT USI#G F I ; ' ~ ~ M , I ) , Y ~ I ! , V ~ ~ , I ! - Y I . ~ ~  
4 8 7 4  SDSUB 9 n a  

4 8 7 8  N E X T  n :LPRIWT vis 
4 e 3 B  NEXT I :LPRI#T :LPPiNT 
488: IF II.0 THEN LFRINT "SU! OF SQURRES ...................... ";F 
4 8 3 4  I F  WI%l THEN LPRINT  WEIGHTED SUM OF SQUARES ............. ";F 
4 8 3 6  LPPINT "DEGSEES OF FREEDOM .................. ";NF 
4 a a 8  IF WI=O THEN LPRINT "STBNDABD EWIR ...................... ";SE 
4 8 9 0  I F  $1 : a  THEN LPRINT "SISMfi FACTOk I N  THE WEIGHTS ..... 
4 8 9 2  GOSUB 4 1 0 0  
4 3 9 4  LPRINT " C H I T I C A L  1-VALUE RT 95  7, CONF. LEVEL 
4 8 9 6  LFRIHT :LPRINT Vd 

4 W @  I F  ES.0 THEN LPRINT "ST. ERROR","LOUER BOUND","UPFEP @OUND*: 
4 9 0 2  LF'RINT :LPRINT V $  
4904 FOR 1=1 TO NP 
4 9 0 5  LPRINT " P [ ' i I I ; " )  *, :LPRINT !SING F$;P(l), 
4 9 0 8  PR=ARS(Rl I )tPi 1 ) )  
4 9 1 3  
4 9 2  LPRINT 
4 9 1 4  NEXT I 
4 9 1 6  L P R I I T  Vf :LPRIIT 
4919 IF ES=! THEN ER.1 :GUT0 4 9 3 7  
4 9 2 0  LPRINT "CORRELATION MATRIX OF PPIRRHETERSn :LPRINT 
4 9 2 2  FOR 1.1 T3 NP :LPRINT T A B ( l l t I t 3 ) ; "  P ( " ; I ; " )  "; :NEXT I :LFRIWT :LFRINT 
4 9 2 4  FOR 111 TO NP 
49% LPPINT 'P!" ; I ; " )  ", 
4928 FOR J = 1  TO I :LPRINT USING FI$:C(IIJ): :NE?T J :LPRINT 
4 9 3 0  NEXT I :LPRINT :LPRI#T 
4972 RETURN 
49:4 REH t t t t t ~ t t t t t l l t t t t l ~ ! ( t t t t t t l t t t t t t t t t t t t t t t t t ~ t l ~ t l  

";T 

4 3 9 8  LPRINT ~PPARAIIETEP", W I ~ ~ R T E " ,  

I F  ES.0 THEN LFRINT USING FI;PF,PII)-TLPB,P(I)tTtPB; 

The  ro le  of the i n p l t  data NVI, NX, NY and N) i s  obvious frm the text  and 

the remark lines, but the array T("1,NX) of independent variables deserves - explanation. Each l i n e  of the array should contain a l l  information that 

enables us to canplte the value of  the dependent variables for  a sample p i n t  

a t  the current values of the parameters. Therefore, the module transfers the 

appropriate row of T(NVI,NX) i n t o  the vector X(NX) fo r  further use i n  the 

user supplied subroutine. This subroutine start ing a t  l i n e  920 cmpl tes the 

independent variables Y ( N Y )  a t  the current parameters P(W) and independent 
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variables X ( N X ) .  If the model consists only of one response function, then 

NY = 1 and only Y ( 1 )  is evaluated in the user subroutine. The observed 

values of the dependent variables are stored in the array V(”l,NY). If there 

is only one response function, this array consists of one column. 

There are four weighting options. No weighting (WI = 0) and relative 

weighting (WI = 1) are easy to use, because the weights are generated 

automatically. Y o u  should remember, hOwever, that relative weighting is not 

recormended if any observed value is near to zero. With the option WI = 2 

y w  should provide an N Y W Y  matrix of weights in the array W(NY,NY). The 

same weighting matrix will be then used in all sample points. 

Y o u  may also wish to use different weighting matrices for different 

observations. For this pIrpose the weighting option WI = 3 is provided. To 

use this option you rmst supply a second subroutine starting at line 600 , 
where you have access to the index M of the current sample point. The task of 

the second routine is to compute the N Y W Y  weighting matrix for the current 

sample point and to place it into the array W. 

Selecting the initial estimates of the parameters P(W)  you should keep in 

mind that their signs remain unchanged during the iterations. For a first try 

it is reaMnable to set a low limit on the number of iterations, say IM = 5 , 
and to use a moderate value, say 0.01 or 0.001 , for EP. 

The subroutine bet- lines 4792 - 4808 provides divided difference 

approximation of the appropriate segment of the Jacobian matrix, stored in the 

array G(NY,I\P). In saw applications the efficiency of the minimization can be 

considerably increased replacing this gmeral purpose routine by analytical 

derivatives for the particular model. In that case, hawever, Y ( N Y )  should be 

alsn updated here. 

Example 3.3 Fitting a nonlinear rate expression 

Rational functions are frequently encountered as rate expressions of 

catalytic reactions. In addition, the function 

(3.48) 

is a popular test problem for comparing parameter estimation procedures 

(refs. 10,12). In this case we have only m e  response function, three 

independent variables and three parameters. Line 110 of the following main program 

smifies these values, together with the number NM = 15 of observations. 

The 15 MTFI lines starting at line 114 correspond to the 15 observation 

pints. The values of the dependent variable and of the independent variables 

can be easily reconstructed from the listing. Since NY = 1 , the subroutine 
starting at line 90 compltes the single value Y ( 1 ) .  Selecting the unweighted 

option WI = 0 we do not need the second user subroutine. The starting 

estimate of the parameters i5 given in line 220. 
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100 REfl ___-_______-____________________________......-~~---------- 

102 HEM Ef. 3,3, NONLINEAR LS9 PARAHETER ESTlH4TION - RRHD EXARPLE 
104 REN MERGE fll6,Nlfl,N41,N45 

IE8 REH I N M ,  NY, NX, NP) 
l!O DATA 15, 1, 3, 3 
11; REN ! Y ,  XI, X:, X3 1 
114 DATA 0.14, 1, 15, 1 
I16 DATA 0.18, 2 ,  14, 2 
118 DATA 0 . 2 ,  3, 13, 3 
l?tl DkTA fl.X, 4 :  12, 4 
!Z DATA 0 , 2 9 ,  5 ,  11, 5 
124 DATA 0 . 2 ,  6 ,  18, b 
!:A DATA 3.15, 7, 9, 7 
128 DATA 0 . 3 9 ,  R, 8, 8 
1:0 DATA E . 3 ,  9 ,  7, ? 

1:: DATA 0.58, 10, 6 ,  6 
134 DATA 0 , 7 3 ,  11, 5, 5 
1:b DATA 0 . 9 6 ,  I ? ,  4 ,  4 
I 8  DATA 1.34, 13, 3, 3 
140 DATA 2 - 1 8 ,  1 4 ,  2 ,  2 
142 DATA 4 . 3 ,  15, 1, 1 
288 HEM ---------- READ DATA 
282 READ NN,NY,NI,NP 
2R4 DIN TINII,NX i ,ViNn,NY ,PINPI, X INX , Y  “I! , W(NY,NY! 
X b  DIR A! BPI NP , C(NP,NP I , U [ NP, NP! , R (NP i , D (NP! ,GI NY ,NF) 
208 FOR I:l TO NM 
210 FOR J.1 TO NY :READ V ( l , d !  :NEXT J 
212 FOR d=l T@ NT :READ TII,J! :NEXT J 
;I4 NEXT I 
216 REIl ---------- CALL NONLINERR LSQ EST!HATIOH MODULE 
218 WI.0 :EP=.BB0I :Itl=20 
220 Pili=l :P12!=1 :P i ; i= l  
222 GOSUB 4580 
224 STOP 
90R BEH ---------- FUNCTION EVALUATION 
902 Y ( 1  )=PI! )+XI I)/( P ( 2 )  tX (2jtP( 3)  tX ( 3 )  ) 
904 RETURN 

106 REF ---------- DATA 

kcord ing t o  the following cutplt, the module needed s i x  i terat ions t o  f ind 

the m i n i m  of the objective f u n c t i m .  The value of the Marquardt parameter 

PM, i.e., A ( k )  i s  gradually decrased. I n  i terat ions 

attempts wi th d i f ferent  Marquardt parameters are necessary t o  improve the 

objective funct im. I n  less cooperative estimation problems the module 

frequently needs t o  increase the Marquardt parameter. The current value of  the 

sum of squares, i.e., the objective function and the re la t ive step length SL 

are also printed i n  every i terat ion.  

5 and 6 several 

I f  a less conservative terminatim cr i ter ion,  say EP = 0.ml were used, 

the prazedure would be stopped af ter  the 5 t h  i t e ra t i on  as seen f rom the value 

of SL. 
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S T A i t T I N G  POINT 

IT= 1 PII=B. IE-@l 

IT= 2 PN=@.lE-I2 

I T =  3 Pti4.IE-13 

I T =  4 Pti=@.IE-64 

IT. 5 PH=E.lE-05 

I T =  5 Pk0.lE-04 

I T =  6 PM=B.lE-85 

I T =  5 PM:O,lE-04 

I T =  6 PM=l.IE-13 

IT. 6 PH4.lE-02 

IT= 6 Ptl=B.IE-01 

S L l l  SO: 41,5817 

P i  1 ) =  1 
Pi 2 ) =  1 
P i  : ) =  1 

SUM SO= 1.345128 

P i  1 I =  ,1051949 
P (  2 1: 1.42418 
P i  != 1.4323; 

SUN SO: 3.852356E-02 

P i  1 ) =  9.08139E-12 
P i  2 ) =  1.47196 
F'i : != 1.90143 

P i  1 != 8.343399E-02 
P i  2 I =  1,14498:: 
P i  3 ) =  2.338202 

SUM 50: 8.214884E-13 

P (  1 != 8.244011E-02 
P! 2 I= 1.133951 
P i  3 I= 2.342925 

SUN 50: 8,214894E-03 

SUM SO= 8.?14876E-03 

P! 1 ) =  8.241451E-02 
P (  2 ) =  1.133249 
P i  i; ) =  2.343488 

SUM SO: 8.214985E-03 

SUM SO. 8.214876E-03 

Slifl SO= 8.214886E-B3 

SUfl SO. 9.214867E-13 

SL= 1.07967:; 

SL= ,3596549 

SL= , 326665  

SL= 1.660105E-02 

SL: 7.513525E-84 

SL. 7.476811E-14 

SL= 2.55171E-84 

SL. 2 I 539624E-84 

SL= 2.426527E-04 

SL= 1.711297E-04 

SL= 6.648381E-85 
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WEIGHTEU LEAST SQIJAFES PARAMETER ESTIMAT!ON 
I N  MULT!VARIABLE NONLINEM HODELS 
GAUSS - MENTON - HARQUARDT METHOD 

NUMBER OF !\DEPENDENT V A ~ l P B i E S  ..,.. 3 
NUHBER OF DEPENDENT ?'BRIfiRLES , , , I . .  . 1 
NUNBER OF P4PMETEPS . , . . , . . . . . . , . . . . 3 

O P T I O N  OF WEIGHTING ,.,,,,,......,... 0 (IDENTICAL WEIGHTS) 
NUNPER OF Sf i l lP~E PGINTS ............. : 5  

PRlNClPAL CGNPOYERT ANALYSIS OF NORHED CROSS PRODUCT HATR! Y 

EIGEMVALUE P I  I ! P (  2 i P i  1 

0.14589Et02 -.048 0.437 0 . 8 W  
0,79533E-01 8.973 - ,XS 0.707 
0.6592:E-02 0,383 0.839 - . B E  

.___________________----------------..-----.-...---.--- 

SAtlPLE No Y MEAS Y C O W  RESIDUAL 

I 
2 

4 
5 
6 
7 
8 
9 
10  
I! 

13  
14 
15 

> 

( 7  
A. 

1, 14BEEE+00 
0. 18000E+8@ 
0. ?:O00Et00 
0.?5000E+00 
0 ,  ?9000E+00 
0.12000Et00 
E .  350@0E+@0 
0 . 3 0 0 0 E t 1 0  
0.37000Et00 
a .  Z80@@E+@@ 
0,7:000E+O0 

0.13400E+01 

0.4Z900Et01 

B . P ~ R ~ C E + E ~  

@.71@0@EtOl 

0.13411E+B@ 
@.1797?E+00 
0.?7926E+00 
0,?5653E+PB 
0 I 78917EtE0 
1.31Eb9E+00 

0,3!004E+00 

0.56179E+10 

B ,  94529Et10 
0.1!2iiBE+Bl 
A. 20?58E+Q1 
0 ,43968EtB I  

0.34553E+00 

%.45!27E+0@ 

a , 7 i w ~ t @ a  

0.588BSE-02 
0,2761 5E-03 
-. Zb?71E-Y13 
-. 6S301E-0: 
0.83?74E-03 
0.130b7E-07 
0.44672E-82 
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0.42033E-02 
-.68097E-0? 

-.mi 5 ~ 4 1  

SUfl OF SOUARES . . . , . . . . . . . . , . . . . . . . . . 
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Most part of the output i s  similar t o  the artput of  the l inear regression 

module. The eigenvalues and eigenvectors refer t o  the m a t r i x  

w i l l  discuss i n  Section 3.5 how to  use t h i s  information. 

[JT(fi)WI(fi)]. We 

Exercises 

0 Show that increasing the Marquardt parameter moves the correct im vector 

tward the direction of the negative gradient of the objective function 

while the length of the correction vector decreases. 

Ap 

0 The Hessian m a t r i x  of the quadratic approximation (3.42) of  the objective 

function equals 

objective function (3.39). Show that the Gauss-Newton method can be 

interpreted as a quas i -Wtm method of minimization that neglects a certain 

term i n  the Hessian. Can you j u s t i f y  t h i s  approximation i f  the residuals are 

5M1 l ?  

fi = 2JTW . Compare t h i s  with the t rue Hessian m a t r i x  of  the 

0 Rerun Example 3.3 with d i f ferent  start ing estimates. Does the number of 

i t e r a t i m s  depend heavily M the start ing estimate i n  t h i s  problem? 

3.4 LINARIZATICN, WEIGHTING AND REPNWETERIZATIaU 

Though module M45 i s  an e f f i c i en t  tml, f i t t i n g  a nonlinear model t o  data 

usually requires considerable computational ef for ts,  and w i t h w t  a good i n i t i a l  

guess even the convergence i s  questionable. Therefore, a transformation 

replacing the problem with a l inear regression one i s  of  great practical value. 

A well known example i s  the Arrhmius dependence 

k = kxpC-E/(RT)] (3.49) 

of  the chemical k inet ics rate coeff ic ient  k on the temperature T, where 

R = 8.3144 J / ( m l  K) i s  the universal gas constant, and the preexponential 

factor A and the activation energy E are the u n k n m  parameters. These 

parameters are a l m t  invariably determined by f i t t i n g  the l i n e  

y = ax + b ; with y = log(k1 and x = - l / T ,  (3.50) 

where E/R = a and log(A) = b. A number of simple functions are l inearizable 

by suitable transformations (see e.g., re f .  5 )  with part icular ly many 

applications i n  the k inet ics of enzyme reactions ( re f .  16) and cata ly t ic  

processes ( re f .  17) .  

F i t t i ng  the expressions (3.49) and (3.50) t o  experimental data we  obtain, 
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hMrJever, somewhat different estimates, since the transformation distorts the 

error distribution, and the original assumptions do not m r e  apply. 

In this section we show how the deviations stming f r m  linearization can 

be compensated by selecting suitable weighting coefficients. The observartions 

are of the form 

5 

Yi = Yi + Li , (3.51) 

2 
where yi = f(xi,p), and D2{ Li 1 = u . Instead of fitting y = f(x,p) to 

i 

5 

the data yi we rather fit the transformed model y '  = g[ f(x,p) 3 to the 

traneformed data yi' = g[ ;i 3 ,  where g[ I is the linearizing 

transformation, and 

5 

.., 
= g [  yi 1 + Li' . 

To find the variance of Li' note that by (3.51) 

(3.52) 

5 5 

€1' = g [  yi 1 - gc yi - €1 1 , (3.53) 

- * -" 
where 

g '  = dg/dy . Therefore, from (3.53) Ci' S g ' [  yj ILi and 

g[ yi - ci 3 5 g[ yi 3 - g'[ yi from the linear approximation and 

5 

Thus, fitting the transformed model to the data the original 

assumptions are better retained through the use of the weighting coefficients 

wi = 2/( g'[ ;i lai )' , where 

gC ;i 3 

2 is an arbitrary positive constant. 

Example 3.4 Estimation of Arrhenius parameters by weighted linear regression 

Table 3.2 lists the rate coefficient of the reaction 

ag1 + cp5ma ---> cH30c$i5 + NaI 

at 6 different temperatures (ref. 18). First we assume that k 1s 

observed with constant error variance. Equation (3.49) is fitted to the data 

using nonlinear least squares with weighting coefficients wi = 1. In 

addition to the nonlinear fit we estimate the parameters from the logarithmic 

model (3.m). 
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Table 3.2 
Observed temperature dependence of rate coefficient 

T, K 273.15 279.15 285.15 291.15 297.15 m . 1 5  
kx105, l/(ml 5 )  5.6 11.8 24.5 48.8 102 m 

Fitting (3.50) w e  first use the weights 

frm (3.54) . This is done by the m u l e  M40 with options WI = 0 and 

W I  = 2, respectively. Table 3.3 lists the estimates and the 9SL confidence 

intervals that are not symmetric, due to the exponential back transformation. 

wi = 1 , and then wi = zi2 following 

Table 3.3 
Estimates and 95% confidence intervals of the Arrhenius parameters 

Nonlinear estimation Linear estimation 

0x10-12, l/(ml 5 )  3.42 0.317 0.325 3.10 
(-2.2, 9.1) (-0.12, 0.75) (0.09, 1.2) (0.61, 16) 

EXI~-~,   mi 8.83 8.25 8.25 8.81 
(8.4, 9.2) (7.9, 8.6) (7.9, 8.6) (8.4, 9.2) 

As seen from the first and last columns of the table, the appropriate weighting 

considerably reduces the deviations between the results of linear and nonlinear 

estimations. 

The table also shows that the nonlinear fit gives a very large confidence 

interval for the parameter A, an inherent problem in fitting the Arrhenius 

expression (3.49) directly. While the extremely large Confidence interval is an 

overestimation stming from the local linear approximation of the &el, it 

still reveals a real problem. As discussed in the previous section, the 

Gauss-Newton method involves a sequence of quadratic approximations of the 

objective function. Each of such approximations is a long valley along the 

coordinate axis corresponding to A, and its minimum is rather difficult to 

localize with reasonable accuracy. This problem, reconsidered in the next 

section, increases the significance of the simple linear estimation through 

logarithnic transformation. 

The "observed" rate constants are, in fact, derived from other measurable 

quantities, and according to chemists the assumption of constant relative 

variances (i.e., criz is proportional to ki') is usually closer to the reality 

than that of constant variances. Assuming such error structure one chooses the 

weighting coefficients wi = zi-' 

" 3  

when fitting (3.49) directly, and hence unit 
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weights wi = 1 

considerations and the corresponding results show, in the second and third 

colunns of Table 3.3 justify the use of unweighted linear regression for 

estimating Arrhenius parameters. 

in the linear regression involving (3.50). These 

lhfortunately, many transformations purported to linearize the model also 

interchange the role of dependent and independent variables. Important examples 

are the various linearization transformations of the simple steady-state 

Michaelis-Mentm d e l  

(3.55) 

of the enzyme reaction studied in Section 2.5.1, where [ S ]  denotes the 

concentration of the substrate and r is the rate of the reactim. To estimate 

the Michaelis-Mentm parameters V and K from the data C (CSil, ri); 

i = 1,2, ..., nm >, me can fit, for example, the following linear functions 

(ref. 19): 

* 

(Hanes), 

(Scatc hard ) 

(Lineweaver-Eurk) 

(3.57) 

(3.58) 

(3.59) 

These classical methods are still poplar. Since the error in the observed 

reaction rate ri 

concentration CSil, assumption (i) of the least squares method is 

approximately satisfied w h e n  fitting (3.55) directly. This assumption is, 

however, clearly violated in models (3.56 - 3.581, where the error corrupted 
r appears also on the right hand side. Therefore, the use of mst linearized 

models should be restricted to determining a good initial guess for the 

nonlinear parameter estimation (ref. 20). 

* 
is usually much larger than the error in the substrate 

Linearization by transformation and rearrangemmt of the variables is not 
I 

the mly way to reduce computational efforts in nonlinear estimation. A faster 

convergence can be expxted if the nonlinear character of the model is 

decreased by manipulating the parameters. Bates and Watts (ref. 21) proposed a 

measure of nonlinearity and found that the major part of nonlinearity was due 

to the particular parameterization in many models. In such caws nonlmear 

parameter transformations may considerably improve the efficiency of the search 
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algorithm. While the literature provides a number of interesting applications 

(refs. Z ) ,  model reparameterization is somewhat a kind of art owing to the 

lack of systematic approaches. 

Exercises 

0 Fit the models (3.55) through (3.59) to the data listed in Table 3.4 

(ref. 19) by the modules M45 and M40. Compare the estimates and the 

confidence intervals. 

Table 3.4 
Initial substrate concentrations and rates for an enzyme reaction 

~ ~ 1 x 1 6 ,  moi/i r~105, mi/(i s) 

32 1.967 
40 1.723 
3m 1.517 
m 1.1m 
15 0.967 

10 
8 
5 
3 
1 

0.717 
0.537 
O . m  
0.243 
0.103 

0 The kibull growth model y = a - b exp( - c xd ) is frequently used in 

biological and agricultural appl icaticns. According to the investigations 

in (ref. 2 2 ) ,  the nonlinearity of this model is considerably reduced if 

fitted in one of the reparameterized forms 

with a = pl, b = 6, c = exp(-p3) and d = p4 , or 

Selezt values of the independent variable f r m  the interval CO, lml. 

Generate error-free data with nominal parameters a = 70, b = 60, c = 0.awa)2 

and d = 2. Investigate the convergence behavior of the module M45 for the 

original and for the two reparametrized models. Use several sets o f  starting 

parameter values, paying attention to the relations between the original and 

the newly introduced parameters. 
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3.5 ILL-CONDITIOND ESTIMFITION PROBLEMS 

To obtain the estimate (3.23) in a multivariate linear regression problem w e  

h 

solve a set of linear equations. According to Section 1.7, the estimate p is 

sensitive to small perturbations of the observation vector 

XTWX 

number of this matrix is the ratio of its largest eigenvalue Xl to its 

smallest eigenvalue inX. In the program module M ~ Z  the matrix XTWX is 

transformed to a correlation type matrix. The 5um of the eigenvalues of this 

matrix is nx and the largest eigenvalue is always near to one. Y c u  can easily 

recognize an ill-conditioned regression problem looking at the smallest 

eigenvalue hx of the correlation matrix. If hX is less than, say, 10-5 
then the results should be treated with caution. 

? if the matrix 

is ill-conditioned, i.e., its cmdition number is large. The condition 

Now w e  analyze a little deeper the effect of a small eigenvalue. By (3.30) 

and (3.32) the joint confidence region o f  the parameters at a given confidence 

level is a hyperellipsoid 

* 
where Ap = p - p. In the basis of the eigenvectors ul, I+, ..., SX of XTWX 

the left hand side of ( 3 . M )  reduces to canonical form, and the confidence 

ellipsoid is given by 

rl nx 
) , xi(AfiI2 const , - 1=1 (3.61) 

where XI, h2, . . . , Xnx are the eigenvalues of XTWX and Afi = [uiITAp 

denotes the i-th principal component. From (3.61) follms that the principal 

axes of the ellipsoid are along the eigenvectors, and the length of the axis 

along ui is proportional to If Xi is small, the ellipsoid is 

elongated along 

values that are far apart. Furthermore, the mean square error, i.e., the 

expected distance between the estimate p and the true parameter vector p 

satisfies the inequality (ref. 23) 

ui and we get almost the same gwdness-of-fit at parameter 

h 

Thus, with a nearly zero eigenvalue of the covariance matrix of the independent 

variables the estimates tend to be inflated and the results are meaningless. 

Therefore, in nearly singular estimation problems reducing the mean square 
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error of the estimates i s  of  f i r s t  importance. Since the least squares 

estimator gives minirum variance only i n  the class of unbiased estimators, we 

rather give up unbiasedness. 

3.5.1 Ridqe resression 

The simplest and mt popular biased estimator i s  due t o  Hoerl and Kmnard 

(ref .  231, estimating the u n k n m  parameters by 

; (A )  = [ XTWX + X I  1-1 XTW? (3.63) 

instead of equation (3.23) o f  ordinary least squares. The scalar X i s  called 

the ridge parameter. As i n  the Marquardt modification of  the Gauss-Newton 

method, the additional term XI increases the smallest eigmvalue of  the 

m a t r i x  t o  be inverted. The ro le  of the ridge parameter d i f fers ,  however, 

considerably from that of the Marquardt parameter. We usually f i x  the ridge 

patrameter a t  some positive value that hopefully gives a smaller square error 

than 

twl used only during the i terat ion and not affecting the f i n a l  result. 

Unfortunately, selecting an appropriate ridge parameter i s  f a r  f rom simple. 

Very often we rather vary the ridge parameter and p lo t  the ridge estimates 

(3.63) a t  d i f ferent  values of  X . The p lo t  reveals possible i n s t a b i l i t y  of 

saw parameters. Since XTWX 

module M42, the ridge parameter i s  usually varied between 0 and 1. 

X = 0 , whereas the Marquardt parameter can be considered as a technical 

i s  normalized t o  a correlation matrix i n  the 

Y w  may notice that the ridge regression i s  a straightforward s t a t i s t i c a l  

counterpart of the regularization methods discussed i n  Section 1.7. 

Example 3.5.1 Analysis of the rate coeff ic ient  of an acid-catalysed reaction by 

ridge regression 

We assume that the reaction considered i n  Example 3.2 i s  not only 

acid-catalysed but also basis-catalysed. Then i t s  rate coeff ic ient  i s  of the 

form 

k = ko + kHCH+l + km[MI + kmCOH-I + k6CA-I . (3.64) 

I n  th i s  system 

since the cmcentrat im 

[H+lCM-l = 

3.1 we have the following results: 

[&-I = [No$bH40-]. Table 3.1 includes the data we need, 

[M-] can easily be obtained f rom the ionic product 

of the water. F i t t i n g  (3.64) to  the data of Table (m01/1)’ 
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MULTI!'ARIABLE LINEM REGRESSION 
METHOD OF LEbST SQUARES 

RUMBER OF INDEPENDENT VARIABLES ,,,,. 5 
NUMBER OF SAMPLE PCINTS . ............ 10 

PRINCIPAL COHP04ENT ANALYSIS OF THE CORRELATION t4ATRlX 

EIGENVRLUE X (  I 1 X (  2 1 11 3 i XI 4 1 XI 5 1 

0.43760Et01 0.464 0.441 0.441 0.448 0.442 
6.4@586E+00 -.I70 -.407 0.547 -.301 0.555 
0.?0395EtEB 0.048 -.6?7 -.I43 0.647 B.:i3 
0.13648E-'dl -.A26 0.307 -.6?4 -.302 8.654 
0.58193E-0: -.903 0.195 I.082 0.447 -.006 

1 
2 
3 
4 
5 
b 
7 
8 
9 
10 

0 I 12100E-0: 
I. I200BE-03 
0.1:500E-03 
0.14480E-03 
0.15400E-0: 
0.16100E-03 
0.17708E-03 
0.23700E-03 
0.24700E-01 
0.28400E-03 

0.10000Et01 
0.10000EtBl 
B.IB000EtEl 
0.1000BEtB1 
0.10000Et01 
0.10000Et01 
U.l88@0Et@l 
B,lI0IBEt01 
B,l0@00Et01 
0.10B00Et01 

0.11847E-03 
B.12260E-0: 
0 I 13S77E-03 

0.15359E-03 
0.16322E-13 
0.17529E-03 
0. m4E-03 
0.24830E-03 
0. 28396E-03 

a . i 4 m ~ - u  

0.25275E-05 
-.2600?E-B5 
-. 77304E-06 
0.7201BE-06 
0.4BS?lE-06 

B .  17lZE-05 
8.11570E-05 
-.13041E-05 
0.43615E-07 

-.zzisaE-bs 

SUM OF SQUARES ..... . . ,. , . . . . . . . . . . . . 
DEGREES OF FREEDOM ........, ....., ... 
STANDARD ERROR , , , , , . , . , . , . . . . . . . . . . . 
DUSBIN-UATSON D-STATISTICS . . . . . . . , . . 
CRITICAL 1-VALUE A T  95 % CONF. LEVEL 2.57 

2.531233E-11 
5 
2.249992E-06 
2.46b7.59 

_______.__.....-..______________________------------------------------ 

PARRNETER ESTlnATE ST.ERBOR LOWER BOUND UFPER BOUND 

Since the model (3.64) includes all terms of the model (3.33), and this 

latter gave gocd fit to the same data in Example 3.2, it is not surprising that 

the fit is excellent. While it is not always the case, the standard residual 

error is even slightly decreased by extending the model. Although according to 

the 

the better value o f  the D-statistics. We obtain, howver, negative and hence 

F-test this decrease is not significant, the improved fit is revealed by 
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physically meaningless parameters for p1 = ko and p5 = kp. 
The smallest eigenvalue of the correlation matrix is 5.8~10)-~. From a 

strictly numerical point of view the matrix to be inverted is not 

ill-conditioned. From a statistical point of view, b v e r ,  this eigenvalue is 

t w  small. Indeed, XTWX 

being 1. Such a normalized matrix with nearly orthogonal c o l m s  wwld have 

eigenvalues close to 1, and the obtained much smaller eigenvalue reveals near 

linear dependency among the colums. 

is in normalized form, each of its diagonal entry 

We use the ridge option of the module M42, i.e., inprt parameter Rp , to 
construct a ridge plot shown in Fig. 3.2. In this plot the ratios 

ai = ^pi( X ) / I p̂i( B ) I are shown as functions of the ridge parameter. 

I “;t 
I Qa 

Fig. 3.2. Relative change of the estimates as a function of the ridge 

parameter 

A small increase of x heavily affects the ridge estimates of p4 = kw and 

p5 = kA and even their signs are changed. These estimates are not stable. At 

s m  small value X > 0 we have cw 5 0 and 2, 5 0. The estimate 

p3 = kHFI is almost constant, whereas p2 = kH mderately decreases. That 

latter is a normal behavior even for an orthogonal matrix X’WX , thus the 
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,-. 
estimate of kH is also stable. The estimate p1 = ko changes in an 

interesting way. While 

and remains almost constant further on. Thus this parameter estimate is 

evmtually stable, but can be neglected because of its small value. Chr 

analysis supports the assumption that the reaction i5 acid-catalysed with the 

only essential parameters kH and kHA considered in model (3.64). 

* 
pl( 0 ) is negative, it changes sign at a m a 1 1  x > 0 

The information revealed by ridge plots as the m e  shown in Fig. 3.2 can 

be better understood noting that the ridge estimate (3.63) is the solution of 

the minimization problem: 

IIpII --> min , 

where C > 0 i5 an increasing function of X (ref. 23) . Therefore, an 
elongated confidence ellipsoid results in wildly changing ridge estimates for 

some of the parameters, whereas other parameters remain stable. 

subject to the constraint Q(p)  - Q(p(0) )  = C , 

3.5.2 Overparameterized nonlinear models 

On the basis of it5 constrained minimization interpretation the ridge 

regression technique can be extended to nonlinear models, but the construction 

of ridge plots requires considerable computing effort. Therefore, ridge 

regression is rarely used in nonlinear estimation, though near singularity is 

an even m r e  inherent problem than in the linear case. In fact, the small 

eigenvalues of the cross product matrix 

increased by appropriate experiment design (see Section 3.10.21, the 

eigenvalues of the matrix JT(0)WJ(O) 

also on the form of the response function and the actual parameter values. 

Therefore, the psibilities of eliminating near singularity by experiment 

design are usually quite restricted in the nonlinear case. For example, the 

partial derivatives of the Arrhenius function (3.49) are ak/W = exp[-E/(RT)l 

and ak/& = - A expC-E/(RT)l/(RT), and the columns of the Jacobian matrix are 

nearly collinear if the rate constants are observed over a relatively small 

temperature intervall, as usually restricted by the experimntal techniques. In 

such cases the model might be overparameterized (see, e.g., ref. 24) in spite 

of its apparent simplicity. 

eigenvalue-eigenvector analysis. In the module M45 the matrix JT(0)WJ(Li) 

is investigated. We call it normalized cross product matrix, because the 

partial derivatives are computed with respect to the normalized parameters 

X ’ W X  of a linear mdel can be 

of a nonlinear &el depend, haYever, 

Overparameterization and frequently its sources are revealed by an 
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p -  = p . / ~ . ( ~ )  . In cmtrast to the linear case, this matrix is not normalized 
further to a correlation type matrix before the principal component analysis. 

Its eigenvalues and eigenvectors are of considerable help when interpreting the 

results. For example, at most 107. relative mean error in the parameters 

implies the inequality 

normalized parameters in JT(p)WJ(p) and according to (3.62) , this can be 

attained if the smallest eigenvalue satisfies the inequality 

J J J  

E{ CP - 31T[p - 31 1 < 0.01 . h e  to the use of 

>  la^ 2 z IDZ 2 , where s2 is the estimate of the squared sigma factor 

in the weights. 6s usual, we consider the estimation problem nearly singular if 

the smallest eigenvalue is below this limit. 

Another advantage of the normalized parameters is that the eigenvectors 

corresponding to small eigenvalues frequently reveal the form of nonlinear 

dependences a m g  the estimates. For this interpretation we introduce the 

parameters 

have 

aj = log c pj I. It is important to note that at p = p(k) we 

af/apj = af/aaj = (af/ap.)p.(k) , and hence the two parameter J J  
transformations w e  introduced locally give the same Jacobian matrix. 

Furthermore, we exploit the canonical form 

(3.65) 

h h 

of the quadratic approximation (3.42), where 

Afi = uiT[ a - 3 .  Moving from the point a along the eigenvector ui 

by a step of unit length implies 

?J (  a ) - O( a ) z xi. Assume that 
eigenvector is 

we move along ui, and a (  a ) - a (  ) Z 0 . The line Aal = Aa2 in 

the space of the a’s corresponds to the curve log[ pl/@ I = log[ p1/p2 I ,  
i.e., p1/p2 = const., in the space of the original parameters. Thus, keeping 

the ratio p1/p2 

In other mrds the objective function depends only on the ratio 

does not depend on the individual parameters p1 and p - ~  separately. 

Similarly, the eigenvector 

a nearly zero eigenvalue xi 
m the product 

Corresponding to a nearly zero eigenvalue. Then the parameter corresponding to 

the coefficient 1 in the eigenvector cannot be identified. The analysis can 

also be extended to find relationships -g several parameters, and is 

particularly useful in chemical kinetics (ref. 25-26). 

aj = log C pj 1 and 

h 

(Afi)’ = 1, (Afj)2 = 0 for ifj, and hence 

r A  

xi 5 0, and the corresponding 

ui = [0.707, 0.707, 0, ..., 0IT. Then selecting &al = Aa2 

A h  

fixed, the objective functim value r a i n s  almost unchanged. 

p1/p2 , and 

ui = C0.707, -0.707, 0, ..., 0IT corresponding to 

reveals that the objective function depends only 

p1p2. It is even simpler to interpret a unit vector 
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Exercise 

0 At a fixed value V = 0.035~10-’ mol/(l s) and several values of K between 

lK3 ml/l and 

(3.55) at the substrate concentrations listed in Table 3.4. Perform principal 

component analysis (using the module M45 and setting IM = 1) of the 

normalized crc155 product matrix. Find a value 

only the parameter V can be estimated with reasonable accuracy. 

Similarly, find K2 such that if K > K2 then a reasonable estimate can 

be obtained only for the ratio 

0.1 moll1 , compute the error-free rates from the model 

Ki of K such that for K < K1 

V/K. 

3.6 MJ-TIRESWNSE ESTIMATION 

In Section 3.3 we a l l 4  the errors in the observatims qil, ;iz, . . . , 
qi,ny to te correlated, tmt apart from a scalar factor a2 their covariance 

matrix was asKlmed to be k n w .  The rmltiresponse estimation method proposed by 

Box and Draper (ref. 27) does not require this strong assumption. The method 

is based m the maxim likelihood principle, and involves the minimization of 

the objective function 

O ( p )  = detC V(p) 1 (3.36) 

where 

(3.67) 

is the nymy empirical covariance matrix cunputed at the actual parameter 

vector p . Notice that the errors in different sample points are still assumed 
to be uncorrelated. The determinant criterim (3.66) is equivalent to the 

unweighted least squares method if mly one dependent variable is observed in 

every sample point. For the rmltiresponse case it is, at least from a 

theoretical point of view, a more general estimator than the least squares. 

Lhfortunately, there are sure technical difficulties associated with the 

determinant criterim (ref. 28). Minimizing the determinant (3.66) is not a 

trivial task. In addition, the method obviously does not apply if detC V(p) 1 

is zero or nearly zero for all parameter values. This is the case if there 

exist affine linear relationships ammg the respmses yl, y2, ..., Yny~ as we 

dixussed in Section 1.8.7. To overcome this problem the principal component 

analysis of the observations is applied before the estimation step. 
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Example 3.6 Compariscn of  the determinant  criterion wi th  least s q u a r e s  

Return to the  example of Box et a l .  ( r e f .  29) we s t a r t e d  to d i s c u s s  i n  

Sec t ion  1.8.7. The thermal i somer i za t ion  be desc r ibed  by t h e  mechanism show, 

i n  F igu re  3.3. 

F ig  3.3. Mechanism of the thermal i s o m r i z a t i o n  of a-pinene 

Assuming f i r s t  o r d e r  reactions, the mechanism g i v e s  rise to a set of f i r s t  

o r d e r  d i f f e r e n t i a l  equat ions.  T h e  fol lowing s o l u t i o n  of t h e  equa t ions  g i v e s  the 

component concen t r a t ions  yl, y2,  ..., y5 as func t ion  o f  t h e  reaction t ime t: 
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where y10 = lC0L 

(a-pinene); kl, k2, k3, k4 and kg are the unknow, ra te coefficients, and 

i s  the i n i t i a l  concentration of  the f i r s t  component 

5 = kl + k2 

a = k3 + k4 + k5 

P = [-a + / 2 

7 = [-a - ( r ~ ~ - 4 k ~ k ~ ) ~ / ~ ]  / 2 

The observed concentrations have been l i s ted  i n  Table 1.3. Let us f i r s t  f i t  

the above response function to  the data by the least sqares method with the 

weighting matrices 

estimates shown i n  the f i r s t  row o f  of  Table 3.5. 

Wi = I ,  i.e., without weighting. M u l e  M45 results i n  the 

Table 3.5 
Estimated rate coeff ic ients 

As found i n  Section 1.8.7, there were two a f f i n  l inear dependences m g  the 

data, c lassi f ied as exact ones. Therefore, Box e t  a l .  ( re f .  29) considered the 

principal components corresponding to  the three largest eigenvalues as response 

functions when minimizing the objective function (3.66).  By v i r tue o f  the 

eigenvectors derived i n  Section 1.8.7, these pr incipal  comments are: 

(3.68) 

The linear transformation (3.68) should obvicxlsly be applied both t o  the 

observed ccncentrations and t o  the computed ones. 



187 

0.745 -0.269 -0.234 -0.016 -0.250l 

-0.269 0.715 -0.247 0.018 -0.264 

-0.234 -0.247 0.785 -0.- -0.230 

-0.016 0.018 -0.m 0.001 0.005 

-0.258 -0.264 -0.230 0.005 0.755 

Based on the analytical expression for the derivative of detC Wp) 3 , 
Bates and Watts (ref. 30) recently proposed a Gauss-Newton type procedure for 

minimizing the objective function (3.66). We use here, howwer, the simplex 

methad of Nelder and Mead (module My)) which is certainly less efficient but 

does not require further programing. The determinant is evaluated by the 

module M14. After 95 iterations we obtain the results shum in the second row 

of Table 3.5, in good agreement with the estimates of Box et al. (ref. 29 1. 

Canparing the first and second rows of Table 3.5 we could cmclude that the 

least squares and the determinant criterion yield significantly deviating 

estimates. This cmclusion is, however, not completely true. We repeat the 

estimation by the least squares method, but considering the three principal 

components (3.68) as responses. This can alternatively done retaining the 

original model with five responses, but introducing the weighting matrix 

elements 

with 

where uik is the i-th element of the k-th eigenvector compted in Section 

1.8.7. Then the nondiagmal weighting matrix 

W =  

is used in the d u l e  M45, exploiting the weighting option WI = 2 . The result 
of the estimatim is shcw, in the third row of Table 3.5. 

Cansidering the recent general dislike of statisticians t w r d  the 

application of the least squares method to rmltiresponse problms, it is 

surprising to =ee that having eliminated the linear dependences from the data, 

the least squares method gives very similar estimates to the determinant 

criterion. Thus, in this f a m s  example a preliminary screening of the data is 

rrure important than the choice of the estimation criterion. To put it more 

simply, the analysis of linear dependences revealed that had not been 

measured but assumed, thwgh its values significantly influenced the estimate 

of k3, in accordance with the reaction mechanism shown in Fig. 3.3. Using 

three principal canponmts we practically dropped these "measurements", and 

obtained an improved value of 

criterion. 

y4 

k3, a l m t  independently of the estimation 
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3.7 EUJILIBRATIffi R F W C E  EWTIONS 

The problem to be solved here primarily cmes from chemical engineering 

where m e  sirmltanwusly observes several variables that are expected to 

satisfy a number of balance equations such as stoichiometric relations. Due to 

measurement errors the observed values obviously do not fulfill this 

expectation. Let xl, xz, ..., xnv denote these variables observed in a single 

sample point that gives the data { xi = xi + Ci; i=l,nv 1. CkKtming that the 

covariance matrix c o v { C )  = V of the error vector C is diagonal and knum, 

we would like to find the values x that minimize the quadratic form 

c 

cx - ;IT v-1 cx - ;I 

and, at the - time, satisfy the set 
W x - b = 0  

(3.69) 

(3.70) 

of nb linear balance equations. Since we do not have unknown parameters, and 

observe the variables only once, this problem differs from the ones studied in 

the previous sections. Nevertheless, the same estimation tecbique is used and 

the results will be useful for parameter estimation in the next section. 

c 
Introducing the correction vector c = x - x and the equation error vector 

*. 

f = Wx - b, according to (3.69) and (3.70) we minimize the objective function 

Q(c) = cT V1 c (3.71) 

subject to the constraints 

W + f = O .  (3.72) 

PI similar constrained optimization problem has been solved in Sectim 2.5.4 

by the method of Lagrange mltipliers. king the same method we look for the 

stationary point of the Lagrange function 

L ( C , X )  = CT v-1 c + AT c w + f 1 (3.73) 

where denotes the nb-vector of Lagrange rmltipliers. At the stationary 

point the partial derivatives of the function (3.73) vanish 

a 
ac 
- = 2 2 1 c  + w T x = 0 ,  (3.74) 

(3.75) 
a -- = K + f = 0 .  
ax 
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l3y 

X = 2CWI-lf , and using 
(3.74) c = - (1/2)WJTx . Introducing this value into (3.751 gives 

(3.74) again, we obtain the optimal correction 

c = - WJTCWTI-lf . (3.76) 

Thus the problem can be analytically solved, similarly to linear regression. At 

the correction (3.76) the objective function (3.71) takes the value 

q2 = fTCwTl-lf , (3.77) 

called error measure in the literature of balance equilibration. 

The error measure is invariant under rexaling the equations (3.70) and even 

under replacing the original equations by their independent linear 

cmbinatims. This latter m y  be necessary if the matrix is singular and 

hence the inverse in (3.77) is not defined. Since V ir a diagonal matrix with 

nonzero diagonal entries, this case reveals that the balance equations are not 

linearly independent. The problem can be resolved by considering a m a x i m  

linearly independent subset of the balance equations. 

WT 

Since qz is distributed as X2 , the measuremnts can be accepted if 

(3.78) 

where the right hand side is the tabular value of the 

nb degrees of freedom at the significance level a, usually at a = 0.05 . 
Unfortunately, the error variances should be exactly known for this test. If 

the error variances are known only up to a scalar factor, then the correction 

vector is still correctly givm by (3.76) , but the inequality (3.78) is of 

no value. 

X2 distribution with 

Nevertheless, if (3.78) is known to be violated, a further issue is to 

find the variable that is primarily responsible for the violation. The ratio of 

the absolute value of the correction to the corresponding standard deviation 

provides s ~ e  information but may be misleading (ref. 31) . The analysis 
proposed by Almdsy and Sztanb (ref. 32) is based on geanetric ideas. If 

exactly one observation is corrupted by gross error then the corresponding 

colurm of matrix W and the vector f of equation errors are nearly 

collinear. Useful measures of collinearity are 7i = cos ai , where ai is the 

angle bet- f and the i-th c o l m  of W . The variable suspected to be 
corrupted significantly is then the one corresponding to the largest AlmAsy 

indicator 17i 1 .  The Ti values are invariant under scaling of the balance 

equations (ref. 32) .  
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Proqram d u l e  M 5 0  

5000 HEM ~ t l l l t t t t t t t t t t t t t t t t t l t t l l l l t l t t t t l t l l t t l t t t ~ l l l l l  
500: RE# I EQUILIBRATINS LINEAR BALANCE EOUATIONS PV 1 
5004 REH t LEAST SOUARES METHOD AND OUTLIER ANALSSIS t 
5006 REM t t  I t I t t 1 t t t t t t I t I t I l l  t 1 l l t l t l t l l t  t I t  I t  I I t t t t f Ill1 I t  
5008 BE1 INPUT:  
5010 REh NE NUMBER OF BALANCE EQUATIONS 
5012 RE\ NV NUMBER OF VARIABLES 
5014 2Eti WINB,NVI HEITRIX OF COEFFICIENTS IN EQUATIONS 
51lb REN B!NBJ RIGHT HAND SIDE OF EQUATIONS 
5%13 RE! X(NV) OBSERVATIONS 
5620 REN V(NV1 VARIaNCES [SQUARED ERRORS) OF VARIABLES 
5122 RE1 OUTPUT: 
5024 REK EE STRTUS FLAG 
5026 REM 0 SUCCESSFUL EQUILIBRATIDN 
5128 REM 1 LINEARLY DEPENDENT EQUATIONS 
5838 RE\ FINPI EQUATION ERRORS BEFORE EOUILIBRATING 
5632 RER C(NV) CORRECTIONS OF VARIIBLES 

5136 RER BINV) VECTOR OF ALIASY I I IDICATORS 
5038 REfl CH 
5048 REM AUXILIARY ARRAYS: 
5042 REH A(NB,NR),T(NV,NRl 
5844 RE1 b@DULE CALLED: Nib 
504t ~ E H  ---------- T.VIJ' 
5048 FOR 1-1 TO NV :FOR J-1 TO N B  
5850 T I  I , J)=W( J , I ltV( I I 
5052 NEXT J :NEXT I 

5E5b FOR 1.1 TO NB :FOR J=l TO I 
5858 A=O :FOR K=l TO NV :A=AtWII,K)tT(K,J) :NEXT K :A(I,J)=A 
5060 NEXT J :NEXT 1 

5064 N=NB :GOSUB I600 :IF ER=I THEN 5128 

50b8 FOR 1.1 TO NB 
58'0 
5872 NEXT I 
50!4 REH ---------- (WVW )'-ltF 
5076 FOR 1=1 TO NB 
5078 T.0 :FOR K = l  TO NB :T=T+B(I,KltF(K) :NEXT R :T[I,I)=T 
5880 NElT I 
5882 RE!! ---------- COlfPUTE CORRECTIONS 
5084 FOR 1.1 TO NV 
5186 
5088 NEXT I 

SUH OF SQUARES 5898 RE! __-_-_____ 
5892 QN :FOR 1.1 TO NB :Q2=02+FII)tTIB,I) :NEXT 1 :D=SQR(02) 

5896 FOR 1.1 TD tiV :FOR J=! TO NB 
5098 T.0 :FOR Y=l TO NB :T=T+W(K,IllRlk',J) :NEXT K :TII,J)=T 
5iB0 NEXT J :NEWT I 
5102 REM ---------- 61 I l=(llq) (DIAStw' IWVU'  i'-ltWlA-0.5)tW' ( W V W '  lA-ltF 

5034 REH 02 WEIGHTED sun OF SOUARES OF CORRECTIONS 

CH! SQUARE A T  8.05 SIGNIFICANCE LEVEL IIF NB<=lI) 

5854 REN ---------- A=WVY' 

P=( UVW' 1 '-1 5062 RE! __-------- 

$066 REn ___--_____ F 

Fz-BII! :FOR k'=I TO NV :F=FtW(I,R)tX(K) :NEXT K :F(I)=F 

C=R :FOR K.1 TO NB :C=C-TII,K)tT(0,I() :NEXT k :C(I)=r 

5094 RE! ---------- T=W'(WV#']"-1 

5184 FOR 1=1 TO NV 
5106 D=$ :E=8 
5188 FOR I 4  T O  Nb 
5110 D=DtT( I , K l  lU(K, I )  :E=EtTI I ,K) tF(ll1 
5112 NEXT t! 
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5114 G(I)=liQ/SQR(C)lE 
5116 NEXT I 
5113 REM ---------- CHI SQURRE 
5 1 3  CH=Q :IF W10 THEH 5126 
5122 CH= - (  N H = I ! ~ L B ~ - ( N P = : )  lS,99-iNB=3! 17.81-(NB=4)19.49-( NB=S)tll. 1 

5126 ER=E 

5130 HER l l l t t t l l l l l l t l l t l t l l t t t t l t l t l t l l l l l l l l ~ t l t l l l l l  

5124 C H ~ C H - ( ~ P ~ 6 ) 1 1 ~ . ~ - ( M B . i ) t ! 4 . i - ( N P . B ) t l 5 . S ~ ( N B ~ 9 ) 1 1 6 . 9 - ( N P ~ 1 0 ) t 1 ~ . 3  

size RETURN 

Since the covariance matrix is diagmal, a vector denoted by V is used to 

store the variances. If the number of balances does not exceed ten, the module 

also computes the tabular value of the chi square distribution at significance 

level a = 0.05 and degrees of freedom nb. The return value ER = 1 of the 

status flag indicates that the rcws of the matrix W are linearly deplndent, 

and hence you should drop at least one of the balance equations. If the source 

of linear dependence is not clear then the module Ml0 can help to uncover it. 

Example 3.7 Equilibrating linear balance equations 

The four variables x1, xz, XJ, and x4 describing a process are expected 

to satisfy the balance equations (ref. 31): 

0 . 1 ~ ~  + 0.6~~ + - 8.2~~ - 0.7~~ = 0 

0.8x1 + O.lxz + - 0.2x3 - 0.1x4 = 0 

0.1~1 + 0.3~2 + - 0.6~3 - 0.2~4 = 0 . 

The observations and error variances are s k w  in Table 3.6. 

Table 3.6 
Observed values and variances for the balance equilibration problem 

variable measured variance 

x1 0.1858 0.002mP 

x4 3.eEam O.m 

x2 4.7935 0.IDZP5 
x3 1.2295 0.000576 

The main program and the results are as follows: 
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180 HEN ........................................................... 
182 REM EX. 3.7. EQUILlERATING LINEAR EALANCES 
104 HEN IIERGE N16,N51 

118 RE1 
110 DATA 3 ,  4 
112 REM ( EALRNCES ) 

114 DATA .1,,5,-,2,-.7t=,1 
115 DATA .8, .1,-.2!-,1,=,1 
118 DATA .l , .3,-.6,-. 2 , = ,  0 
120 RE! (MEASURED VALUE, VARIANCE) 
122 DATA ,1858, ,001289 
124 DATA 4.7935,.0125 
125 DRlR 1.2295, .000576 
128 DATA 3.8800,.14 
130 REH ---------- READ DATA 
132 READ NP,NV 
134 DIM W lNR,NV), X lNV1 , V( NS) R INRI ,Fl NF) ,C ( NS) ,G(NV) , A (  NE,NPI ,TI NV,NE 
135 FOR 1.1 TO NB 
138 FOR J=l TO NV :READ U(I,Jl :NEXT J 
146 READ AI,P(I) 
142 NEXT I 
114 RE! ---------- CALL HODULE 
145 FOR 1.1 TO NS :READ XlI),V(I) :NEXT I 
148 GOSUR 5001 

PRINT RESULTS 
152 IF EFi.0 THEN 158 
154 LPRINT 'LINEARLY DEPENDENT EQUATIONS, STATUS FLA6:";ER 
156 GOTO 178 
158 LPRINT 
150 LPRINT "WEIGHTED SUH OF SOUARES [ERROR NEASURE:';Q2 
162 IF NP<=l8 THEN LPRIRT "CHI SQUARE AT 0.05 SIGNIFICANCE LEVEL 
164 LPRINT : V$=STRINGI [53! "-I ) :F$='#. # # # l X * " " "  
156 LPRINT "SARIAPLE HEASURED CORRECTED ALNASY-GAflMAu 
168 ?PRINT V$ 
I71 FOR 1.1 TO BV 
172 LPfiIRT I;TAP(11)" ";:LPRINT KING F$;X[I) ,K(l)tC(I),G[I! 
174 NEXT I 
176 LPPINT Vb :LPRINT 
178 STOP 

116 REN ---------- DATA 
(NUNPER OF BALANCES, NUNPER OF SARIAPLES! 

158 RE4 _ _ _ _ _ _ _ _ _ _  

';CH 
:LPRINT V$ 

YEIGHTED SLIH OF SQUARES 
CHI SQUARE AT 0.05 SIGNIFICANCE LEVEL 7.81 

(ERROR PlEkSURE) 8.454745 

Since the error measure i s  greater than the ch i  square value, the measurements 

are not acceptable. According t o  the CllmAsy indicators, the variable x2 i s  

most l i k e l y  t o  be corrupted by gross error. 
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Now we proceed to the problem of equilibrating nonlinear balance equations 

of the form 

f(x) = 0 . (3.79) 

These equations are considered a5 constraints when minimizing the objective 

function (3.69). The basic idea is similar to that of the Gauss-Newton 

algorithm. Let x denote an estimate of x . We linearize the function (3.79) 

arowd x, and define the equation error in terms of this linear approximation 

A 

h 

by 

h 

where J(C) denotes the Jacobian matrix of f(x) evaluated at . Keeping x 

temporarily fixed, w e  have a linear equilibration problem with the equation 

error vector (3.80) and coefficient matrix 

correction vector 

W = J(C) , whose solution is the 

The nonlinear problem is solved by repeating such linear steps. Starting with 

the initial estimate 

the new estimate of the corrected variables 

repeated with the estimates ;(I), ;(') , ... to satisfy 5ome termination 

condition. The resulting value of x is a fixed point of the iteration. 

Substituting (3 .80)  into (3.72) the following equation is obtained for x : 

;(O) = z , equation (3.81) gives the correction ;(O) and 

= + ;(O). The procedure is 

h 

h 

Thus the corrected variables indeed satisfy (3.79) at convergence. 

Since the corrections are now known, the error measure can be computed from 

(3.69). The same value can be obtained from (3.77) using the equation error 

defined by (3.801, i.e., 

This expression might seem to be complicated, but it will play an important 

role in the next section. 
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3.6 FITTING ERROR-IN-VARIABLES M l D a S  

If the assumption of neglecting errors in independent variables cannot be 

justified, there is no statistical distinction bet- dependent and 

independent variables. Then we rather use the vector 

denote the variables of the model written in the more general implicit form 

z = (z~,z~,...,z~~)~ to 

f(z,p) = 0 . (3.84) 

The model consists of nk equations and contains np unknown parameters p 

to be estimated f r m  nm observations. The outcane of the i-th observation 

is the data vector 

allow for sane error Cij in all variables. 

errors in the i-th observation can be correlated, their covariance matrix Vi 

is assumed to be know, i.e., 

E{ ci > = 0, EC GiGiT 1 = Vi 

- * -  .% -.. 
zi = (zil,zi2 ,..., ~ i , ~ ~ ) ~  where z . -  = z - -  + L... Thus we 

1J 1J 1J 

We assume that errors in different observations are uncorrelated. Although 

and E{ GiGjT 1 = 0 if i f j . (3.65) 

In order to obtain the parameter estimates 

21 = (Zil, zi2, ..., zi,nz)T, i = 1 ,..., nm, ttw error norm function 
^p and the corrected variables 

h h h  h 

(3.86) 

h 

is minimized with respect to zi's and p , subject to the constraints 

h 

f(zi; p) = 0 , i = 1, 2, ..., nm . (3.87) 

The above criterion can be derived f r m  the maximum likelihood principle 

(refs. 33-34). 

Having a well defined minimization problem, we can proceed to its solution. 

At any fixed p minimization of (3.66) subject to (3.67) is equivalent to 

solving nm nonlinear balance equilibration problw of the form 

(3.88) 
h 

f(zi; p) = 0 . 

Solving the nonlinear balance equilibration problems (3.88) and cmplting the 

error measures frcm (3.63) we obtain 



195 

h h h h - , A  

X [J(~~,p)VJ~(z~,p)l-~ x C f(zi,p) + J(zj,p)Czi - zil. (3.89) 

h h 

where J(zi,p) is the Jacobian matrix of f(zi; p) with respect to the 

variables 

(3.86) takes the new form (3.89) supplying mre explicit information on how 

the objective function changes if p is varied. W e  should bear in mind that 

zi depends on p. Thus, minimizing (3.89) with respect to p at fixed 

corrected variables zi 

in one go. Patindeal and Reilly (refs. 35-36) suggested to take a 

minimization step with the objective function (3 .89) ,  then to correct the 

variables zi 

based on their ideas with some modifications (ref. 37). Let j denote the 

actual number of iteration. 

(i) At j = 0 select an initial guess p(O) and let ;i(o) = zi. 

(ii) Starting from the estimate p(J) find the minim p(J+') of the 

h 

zi . With optimally corrected variables the objective function 

h 

h 

will not take us to the solution of the whole problem 

h 

again, and to continue the iteration. The following algorithm is 

-., 

h 

function (3 .89)  at fixed zi = ;i(J). If j > 0 and 

[lp(J+')-p(J)ll < EF', then finish, otherwise proceed to step (iii). 

(iii) At fixed p(J+') perform balance equilibration for each 

i = 1,2, ..., nrn, through the use of the iteration 

where the Jacobian J and the function f are computed at ;i(old) 

and G(J+'). Denote by si(J+') the result of repeating the 

iteration (3.90) until convergence. 

(iv) Replace j by j + 1 and return to step (ii). 

Computationaly the most demanding task is locating the minimm of the function 

(3 .89)  at step (ii). Since the Gauss-Newton-Marquardt algorith is a robust and 

efficient way of solving the nonlinear least squares problem discussed in 

Section 3.3, we would like to extend it to error-in-variables models. First we 

show, however, that this extension is not obvious, and the apparently simplest 

approach does not work. 
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With the weighting matrices Wi = C J.VJ.T I-' the objective function 1 1  

(3.891 reminds that of the least quares method given by (3.37). This apparent 

similarity suggests the following iterative reweighting strategy: compute the 

weighting matrices Wi at 5ome estimate p(j), solve the corresponding 

weighted least squares problem for 

Lhfortunately, this idea is erronwus, as it can be readily show, by 

considering the simple example of fitting the straight line 

y - a x  - b = 0 (3.91) 

p(J+l), and continue until convergence. 

* *  
to the set {(yi,xi), i = 1,2, ..., nm} of observations, where both variables 

are subject to error. For simplicity assume constant variances, i.e., the 

covariance matrix is given as 

(3.92) 

In our simple case the Jacobian is a row vector 

objective function (3.89) takes the form 

Ji=C1; -a], and hence the 

kcording to the 

'uy2 + a2ux2r1 

(3.93) 

iterative reweighting we fix the weighting coefficient 

in every iteration, thus the strategy results in the 

h h 

unweighted linear regression coefficients a and b, whatever the actual 

variances (3 and ux2 are. The correct solution of this problm should, 

however, depend on the ratio 

and X --> rn result in the two regression lines, with the role of dependent 

and independent variables interchanged. As illustrated in Section 3.1, these 

two straight lines are definitely different. The iterative reweighting is 

unable to give this expected result, and its convergence does not guarantee 

that (3.93) has been minimized. 

parameter-dependent matrices CJiViJiT]-' cannot simply be considered as 

weighting matrices. We can give, however, a true Kim-of-squares structure 

Y 
X = u 2/ux2. Indeed, the limiting values A --> 0 Y 

The pitfall of iterative reweighting stem f r m  the fact that 

to the objective function (3.93) by introducing the response function 
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(3.95) 

I 

and the "observed" responses si E 0 for all i = 1,2,...,nm. Since 

minimization of (3.4) is now equivalent to solving a nonlinear unweighted least 

squares problem, the Gauss-Newton-Marquardt procedure applies. We note that for 

this simple illustrative problem we do not really need the iteration procedure, 

since there exist explicit expressions for the error-in-variables estimates of 

a and b, see (ref. 1). The idea of incorporating the induced weights into the 

response function is, b v e r ,  generally applicable and requires the 

decompcsi tion 

c J~(P)vJ~~(P) I-1 = Q~~(P)Q~(P) , (3.96) 

thereby transforming the objective function (3 .89)  to the unweighted sum of 

squares form 

(3.97) 

h 

where si P 0 for all i = 1,2,...,nm. Since in step (ii) of the 

error-in-variables algorithm zi is fixed, we omitted it from the 

arguments of Qir fi and Ji. When minimizing (3.97) we can use a nonlinear 

least squares algorithm with the nk-dimensional virtual response function 

defined by 

h 

for the i-th observation. 

If the problem is multifunctional, i.e., nk > 1 , then the decomposition 
(3.96) is not unique. It is advisible to use the Cholesky decomposition 

c J.v.J-T 1 1 1  1 = L ~ L ~ ~  where L~ is a lower triangular matrix. TM oi = ~ ~ - 1  is 

a suitable matrix satisfying (3.96). Efficient algorithms for obtaining Li 

and then Qi 

Lines 5404 through 5436 of the following module are based on their 

algorithmic ideas. 

can be found in the book of Wilkinsm and Reinxh (ref. 38). 

The organization of the module is sonwhat tricky in order to make use of the 

nonlinear least squares module M45. Indeed, the module M52 is essentially a 

server subroutine for the module M45. 
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Prwram module M52 

5208 REM t t t t t t t t l t t t t ~ t t t t t t ~ t t t l t l t l ~ t l l t t t t t t t t t t t t t t l l l t  
5202 REH t F I T T I N G  AN ERROR-IN-VARIABLES HODEL 1 
5284 RE1 1 OF THE FORM F ( z , r ) = e  t 
5286 REW t RODIFIED PATINO-LEAL - REILLY HETHOD 1 
5208 RE! t t  t t t t t 1 1 11 1 1 t t It t t  l t t t  t t t t t  t t  11 t t t 1 t t i t  t t  t t t t t t t t t  
5 2 1 8  REh INPUT: 
5212 RE! NM NUMBER OF SAHPLE POINTS 
5214 REH tJZ NUHBER OF VARIABLES 
5 2 1 6  REM N I  NUBBER OF EQUATIONS 
5218 REH NP NUMBER OF PARMETERS 
5220 RE1 T[NH,I...NI) TABLE OF OBSERVATIONS 
5222 RER R ( N 2 )  VARIANCES OF VARIAELES 
5224 REH P(NP) I N I T I A L  PARAHETER ESTIMATES 
5226 REH EP THRESHOLD ON RELATIVE STEP LENGTH OF PARAilETERS 
5228 REI! EZ THRESHOLD ON STEP LENGTH OF VARIABLES 
5238 REH I M  MAXIHUR NUHBER OF ITEPATIONS 

5234 RE! ER STATUS FLbG 
5236 REil B SUCCESSFUL ESTIMATION 
5238 REH 1 THRESHOLDS NOT ATTAINED 
5240 HE\ 2 HRTRIX Fz'lRlFz ND7 PDSlllVE D E F I N I T E  
5242 RER ( LOCALLY DEPENDENT EQUATIONS ) 
5244 REM P(NP) PARAMETER ESTIMATES 
5246 HEM T(NM,N!+!,. .21N2) CORRECTED VARIABLES 
5248 REH ... .. FURTHER RESULTS PRINTED I N  THE HODULE 
5250 REH USER-SUPPLIED SUBROUTINES: 
5252 REH 
5254 RER GOSUB 5399 :RETURN 
5256 REN FRO\ L I N E  788: 
5258 REH 
5260 RER 
5262 REH FROH L I N E  60s:  
5264 REB 
9266 REW 
5268 REM AUXILIARY ARRAYS: 
5278 REM A(NP,NP) ,CiNP, NP ,U(NP,NP) , X 121N2 ) ,Y (NK) ,B(NP) ,D ( NP ) ,S(NP) ,6 ( NK ,NP 
5272 RER V(NM ,NK) ,RINK ,NK ) , H ( N I  ,NK 1, W (NK , NK) 
5274 REM MODULES CALLED: ti l6,Hlfl,H41,H45 
5276 NX=NLtNZ :NY=NK : M I 4  

$232 REN m u T :  

FROM L I N E  988; OBLIGATORY STATEIlENTS ARE 

Z(1. I .nz)  ,P( l . . .np)  ---) Fll ... n k )  
( FUNCTION VALUE EVALUATION ) 

2 (1. I . n z )  ,P( l . .  .np) ---) E(1. .  .nk ,1,, a nz 1 
( P l R T l A L  DERIVATIVES OF F H I T H  RESPECT TO I ) 

5278 REIl ---------- I N I T I A L  ESTIMATE OF VARIABLES 
5 ~ 8 0  FOR H=I TO Nti 

5286 NEIT t i  

5282 FOR 1 = 1  TO NZ : T ( M , N Z + l ) = T i t i , I )  :NEXT I 
5284 FOR 1.1 TO NY :V(M,I)=8 :NEXT I 

5288 FOR 16.1 TO I H  
5290 LPRINT :LPRINT T A B ( 1 5 ) ; " t t t t t l k U k  NONLINEAR LSQ ESTIRRTION "; 
5292 LPRINT "NUNBER'jIG;' t l l t t t t t t t " ;  LPRINT 
5294 FOR 1.1 TO NP : S ( I ) = P ( I )  :NEXT I :GOSUB 4580 
5296 IF ER:0 THEN 5448 
5298 LPRINT :LPRIWT TAB(15);"tttttttttt CORRECTED VARIRBLES t l t t t l l l t t '  

5382 FOR M = l  TO N I  
5384 FOP 11-1 TO Iil 
5386 ZE.0 
5318 FOR 1.1 TO NX : X ( I ) = T ( H , l )  :NEXT I 
5310 GOSUB 537E 

5388 LPRINT  PRINT 
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5312 FOR I=1 TO NK 
5314 V=B :FOR J=l TO NK :V=YtA(I,J)tFIJ) :NEXT J :VIIl=V 
5316 NEXT I 
5318 FOR 1.1 TO NZ 
5328 Z=X(I) :FOR J.1 TO NK :Z=Z-R(I)tE(J,I)tV(J) :NEWT J 
5322 D=Z-T(R,NZtI) :T(#,NZ+I 1-2 :ZE=ZE+DtD 
5324 NEXT I 
5326 IF SQR(ZE)<=EZ THEN 5332 
5328 NEXT I T  
5338 ER=l 
5332 REH --------- PRINT VARIABLES 
5334 IF tOl THEN 5342 
5336 LPRINT V1 
5338 
5348 
5342 FOR 1.1 TO NZ 
5344 
5346 
5348 NEXT I 
5350 GOSUB 788 
5352 
5354 NEXT I! 
5356 LPRINT V$ :LPRINT 
5358 IF ER=l THEN 5446 
5360 REH ---------- TERRINATION CONDITION 
5362 PE.0 :FOR 1.1 TO NP :PE=PEt(P(I)-S(Ill^2/S(I)*2 :NEXT I 
5364 IF SQRIPE)<=EP THEN ER=0 :60TO 544R 
5366 NEXT IG 
5368 ER=I :60TO 5448 
5370 REH ---------- A=(Fz'tRtFzIA-l 
5372 6OSUB 5376 :N=NK :GOSUB I680 :IF ER.1 THEN ER.2 
5374 RETURN 
5376 REH ---------- AzFz'tRtFz AND F=FtFzt(Z-X) 
5378 FOR I0:l TO NZ :Z(IB)=X[NZtIB) :NEXT I 0  
5388 6OSUB 68B 
5382 FOR 18.1 TO NK :FOR J0.l TO I8 
5384 A=B :FOR KB=l TO NZ :A=AtR(K0)tE( I f l ,K8)tE(JB,KB) :NEXT K0 :R(IB,J0l=A 
5386 NEXT J B  :NEXT I8 
5388 GOSUB 788 
5398 FOR 18.1 TO NK 
5392 A=F(I f l )  :FOR J0.l TO NZ :A=AtElI8,J8)t(X(J8)-Z(J8]1 :NEXT J B  :F(I0)=A 
5394 NEXT I0  
5396 RETURN 
5396 REM ---------- RESPONSE FUNCTION 
5408 GOSUB 5376 :IF NK)l THEN 5484 
5482 IF RIl,l)=0 THEN ER.2 :60TO 544b ELSE Q(lll)=SQR(l/~~l,lll :60TO 5438 

5486 FOR 10.1 TO NK 

LPRINT ' HEAS";TAB( 71;" I';TAB(ll);'Z(I) HEAS";TRBI26);'Zl11 CORR'; 
LPRINT TAR(40);"EQUATION ERROR AFTER CORRECTIONn :LPRINT V$ 

IF I=l THEN LPRINT H; 
LPRINT TAB( 7);I; :LPRINT USING FS;X(I),Z(Il 

FOR K = l  TO NK :LPRINT TAB(45);'F[';K;*)=';F(K) :NEXT K 

5484 RER ---------- ---------- DECORPOSE A INTO HtH' BY CHOLESKY METHOD 

5408 FOR Je=i TO 10-1 
5418 
5412 H( I0,10)=A/H(JB,J01 
5414 NEXT JB 
5416 
5418 IF A i = B  THEN ER=2 :GOTO 5446 ELSE H(I0,IB)=SQR(A) 
5420 NEXT I0 

5424 FOR 10.1 TO NK 
5426 Q( 10, I0]=1/H( 18, 18) 

A=A(I0,JBl :FOR K0=1 TO JB-1 :A:A-H(I8,KUltH(J8,K8) :NEXT K8 

A=A(I8,IB) :FOR YB.1 TO 18-1 :A=A-H(18,68)*2 :NEXT K8 

5422 REn _ _ _ _ _ _ _ _ _ _  _______-__ FIND 0'. Hb[-l] 
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5428 FOR JE=iBtl TO NK 
5430 A 4  :FOR KB.1 TO JB-l:PI:R-H(J0,KLI)tQ(K0,10~ :NEXT K 0  
5432 QiJB,I0)=I1IH(JE,JE) 
5434 NEXT J0  
5436 NETT I0 

5440 FOR 10.1 TO NK 
5442 Y.8 :FOR JE=l TO I0 :Y=VtQ(IB,J0)tF(JBI :NEXT J0 :V(IB)=Y 
5444 NEXT I0  
5446 RETURN 
5448 RER ---------- END OF NODULE 

5436 REH _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _  COMPUTE Y = QtF 

5458 IF ER-1 THEN LPRINT 'REQUIRED THRESHOLD NOT PTTPINED" 
545: IF ER.2 THEN LPRINT 'LOCALLY DEPENDENT EQUATIONSn 
5454 LPRINT :LPRINT TAB(15);'tttttftttt END OF ERROR-IN-VIRIPBLES "; 
5456 LPRINT "ESTIBATION t t t t t t t t t? *  :LPRINT 
5458 RETURN 
5460 PEH t t t t t l t t t t t t t t t t t t t t t t t t t t t t t t t t t t ~ t t t t t t ? j t t t t t t : t  

The module M45 of the nonlinear least squares method expects a user routine, 

starting at line Saw and computing the values of the response function. In the 

error-in-variables algorithm the virtual response function is the nk vector 

(3.98). To free the user from unnecessary programming, we provide a subroutine 

starting at line 5398 that cmpltes (3.98). Therefore, the subroutine at line 

920 now consists of the single statements: "GOSUB 53% :RETLRN". There are, 

however, t w o  subroutines left to you. h e  of them starts at line 7aW , and 
evaluates the function f ( z , p ) .  The other subroutine starts at line UiW , and 
evaluates the partial derivatives of functions f with respect to z . The 
result is an nkmz matrix stored in the two dimnsional array E . 

We assume that the covariance matrix of the errors is independent of the 

observations and, for the sake of simplicity, is diagonal. Since the array V 

is already used, the error variances are stored in the vector R . 
The return value ER = 2 of the status flag indicates that the functional 

relationships (3.85) are linearly dependent, i.e., at least one of the 

equations can be mitted. 

Example 3.8 Radiographic calibration by error-in-variables method 

In radiographic investigations the image of an object is distorted if the 

X-rays strike the photographic plate at an oblique angle. In order to calibrate 

the distortion a 

centre (pl; p2) 

equation 

r 

spherical ball is investigated. The image is an ellipse with 

and further parameters b, p4 and p5 as described by the 
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h S  

The above model is fitted to 20 observed pairs of cmrdinates (ril; zi2) by 

Reilly and Patindeal (ref. 35) with the assumption that the errors are 

normally distributed and independent with variances 

ozz = 0.WZI01 . The following main program contains the observed coordinates in 

the DCITA lines 

in line 220. Termination criteria for the parameters (Ep) and for the 

equalibrated variables (EZ) are given in line 218. 

al2 = 0.0001 and 

114 - 152 , The initial estimates of the parameters are given 

118 REM ........................................................... 
182 REM El. 3.8. ERROR-IN-VARIABLES PARAMETER ESTIMATION - CALIBRATION 
184 REA HERGE M16,M18,H41,M45,M52 
I 0 6  REk ---------- DATA 
188 REM (NUABER OF SAMPLE POINTS) 
118 DATA 28 
112 REM (21, 2'2 
114 DATA 0.58, -0.12 
116 DATA 1.20, -0.60 
118 DATA 1.68, -1.88 
128 DATA 1.86, -1.48 
122 DATA 2.12, -2.54 
124 DATA 2.36, -3.36 
126 DATA 2,44, -4.88 
128 DATA 2.36, -4.75 
138 DATA 2.86, -5.25 
132 DATA 1.74, -5.64 
134 DATA 1.34, -5.97 
136 DATA 0.90, -6.32 
138 DATA -8.28, -6.44 
140 DATA -0.78, -6.44 
142 DATA -1.36, -6.41 
144 DATA -1.98, -6.25 
146 DATA -2.58, -5.88 
148 DATA -2.88, -5.50 
158 DATA -3.18, -5.24 
152 DATA -3.44, -4,86 

282 READ NH 
284 NZ.2 :NK=I :NP=5 :IR=28 
206 DIM T(NH,ZtNZ 1 ,V(NM,NK) ,R(NI 1 ,PlNP)! 

READ DATA 288 REH __-_------ 

INK 1 ,FINK 1 
288 DIH ElNK,NZ),AINP,NP),C(NP,NP),UlNP,NP),B(NP),D(NP),SINP) 
219 DIH GlNK,NP),Q(NK,NK) 
212 FOR 1.1 TO NM :READ T(I,l)lT~I,Z) :NEXT I 
214 R (  1 )=.8881 :R(2)=.  8881 
216 RER ---------- ITERATION CONTROL 
218 EP=.BBI :EZ-.BBf :IM=28 
228 P( 1 I=-. 57 :P(2)=-3.4 :P(3)=. 1 :P(4)=.8B857 :P( 5)=.882 
222 GOSUB 5280 
224 IF E R O B  THEN LPRINT 'STATUS FLA6:';ER 
226 STOP 
608 REH ---------- PARTIAL DERIVATIVES WITH RESPECT TO Z 

bB4 El1,1)=2t(Pl3)1WltP(4)lW2) :E(1,2)=2t(P(5)tW2tP(4))Y1) 
686 RETURN 

682 wi=z (1) -P( 11 :w=z (2) -pi 2) 



788 REB ---------- FUNCTION EVkLUATlON 
7812 Y1.2 (1 )-P( 1 ) :w2=z (21-P(2) 
791 F(I)~W11HItP(3)tW2tWZtP[5)t21HilH2tP(4)-1 
786 RETURN 

982 6OSUB 5398 
904 RETURN 

OBLIGATORY STATEHENT 900 REfl -_________ 

The detailed output produced by the program is rather long. This problem needs 

three repetitions of the algorithic steps (ii-iv) , 50 that the rodule M45 is 

called three times. We omit most of the out& associated with the first two 

calls. Nmlinear balance equilibratim is also carried out three times, but 

only the results of the final equilibration are show hwe. 

l t t t t t t t t t  NONLINEAR LSO ESTlHRTlON NUHBER 1 tttttttttt 

STARTING POINT 

. . .  
11. 4 FH=B.iE-84 

SUH SO= 16582.61 

P( 1 )=-.57 
P( 2 )=-3.4 
P( 3 ) =  *1 
PI 4 I =  .89857 
P (  5 )= ,882 

SUH SO= 893.6689 

P( 1 )=-1.808847 
P (  2 )=-2.923785 
P(  3 )=  8.744357E-82 
P (  4 )=  1.646991E-82 
P( 5 )=  7.961292E-82 

SUH SO= 893.6689 

SL= 2.584833E-83 

SL. 5.468988E-05 

tttttttltt NONLINEAR LSO ESTIHRTION NUHBER 2 tttttttttt 

I T =  3 PH=8.1E-3 SUH SO: 882.4754 SL= 2.366362E-84 

* . .  
tttttttltt NONLINEAR LSQ ESTIBATION NUBPER 3 tltttttttt 

. . .  
SUH OF SQUARES . . , . . . . . . . . ,. . . . ,, , , . 882.4716 
DEGREES OF FREEDON . , . . . , , . , , . . . . . . . . 15 
STRNDARD ERROR . . . . . . . . . . . . . . . ,. . ,, . . 7.6701b5 
CRITICAL T-VALUE AT 95 X CONF. LEVEL 2.13 
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...................................................................... 
PARAHETER ESTINATE ST. ERROR LONER BOUND UPPER BOUND 

. . .  
11 t t t t t t t t CORRECTED VAR I PlBLES t t t t t t t t t L 

I I 0.50808Et80 
2 -.12BBBEt18 

2 1 0.12888Et01 
2 -.600BIEt88 

3 1 0.16BBBEtBl 
2 -.18088Etll 

4 1 B.IB680E+ll 
2 -.1400BEt81 

5 1 1,21280EtBl 
2 -.25488Et81 

6 ! 8.23688Et81 
2 -.33608E+Bl 

7 1 8.2448BEt81 
2 -.400BBEt$f 

2 -.47508EtBI 
9 1 U.28681EtB1 

2 -.525BBEt81 
18 1 8.17488EtBI 

2 - .5648BEtB1 
11 1 0.1348BEtB1 

2 -I  5?710Et01 

2 - I  6328BEt0l 
13 1 -.280BBEt08 

2 -.64408EtB1 
14 1 -.78888Et'd8 

2 -.64480EtBI 
15 1 -.136%8EtB1 

2 -.64IBBEtBl 
16 1 -.19U8BEtBl 

2 -.62508Et01 
17 1 -.258@0Et01 

2 -.5BBBBEt01 
18 1 -.28800Et81 

2 -.550BBEt81 
19 1 -.31888Et81 

2 -.52400EtBI 
28 I -.3440UEtBI 

2 -.48680EtBI 

8 1 8.23688Et81 

12 1 0.9BBBBEtBB 

0.53418EtBP 
-.72187E-01 
0.11735EtB1 
-.62558Et88 

-.10498E+81 
0.17997Et81 -. 1436BEtBl 
0,22738EtBl -. 24?39Et81 
8.24349EtBI -. 33544Et81 
8.24265EtBl -. 39986Et81 
8.22679EtBl -. 47180Et81 
8.21385Et01 
-.52326Et81 

-,56381E+BI 
'd.13576EtBI 
-.59932Et81 

-. 62884Et81 
-.27835Et00 
-.65483Et81 
-.78959Et80 
-.65881EtBi 
-.13513Et81 
-.6381BEtBl -. 18675EtBi 
-.6181#+81 
-.246BBEtB1 
-.58347Et01 -. 28875Et01 
-.55885Et81 
-.31743EtB1 
-.52345E+81 
-, 34760Et81 
-.4BB84Et81 

8.15353Et81 

B.l7378E*UI 

0,88154EtB0 

F( I 1: 4.112721E-05 

F I  1 1: 8.344651E-87 

F( I ):-1.716614E-05 

F( 1 )=-2.652487E-05 

F (  I )=-3.045797E-05 

F( 1 )=-1.883587E-R5 

F( I ):-5.98886E-66 

F( 1 1: 8.948697E-06 

F( I ) =  1.748456E-85 

F(  I ) =  2.121925E-05 

F (  I )= 2.874242E-85 

F( 1 1: 1.498116E-05 

F I  1 )=-6.67572E-06 

F( 1 )=-1.49Bll6E-05 

F(  1 )=-2.110005E-05 

FI I )=-2.16968?E-05 

FI I )=-1.376Bb7E-05 

F I  1 )=-7.748684E-87 

F(  1 1.28746E-85 

F( 1 )=  3.31401BE-05 

t t t t t t t t t t  END OF ERROR-IN-VARIABLES ESTIMTION t t t t t t t t t t  
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As a byproduct, w e  obtain confidence intervals for the parameters and corrected 

values for the measured variables. The equation errors after correction are 

all negligibly small, showing that the balance equilibration b s  beRl done 

properly. The resulting fit is shown in Fig. 3.4. 

N 
N 

, 0  
21 

Fig. 3.4. Observed image (points) and fitted curve (continuas) in the 

radiographic calibration problem 

Exercise 

Assuming ~ ~ ~ ~ / c r ~ ~  = 0.01 fit an error-in-variables straight line to the data 

listed in Table 1.1 of Section 1.8.2. Show that the slope is between the two 

limiting values, obtained by regressing y on x and vica versa in 

Section 3.1. 
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3.9 FITTIffi ORTHOGONC\L F'CLYNOMIPLS 

Y o u  can use multivariable linear regression to fit a polynomial 

(3.99) 
r7 n 

LA i=0 
y = ) aixi 

- 
to the set { (x,, y,); j = 1,2, ..., np 1 of points. The i-th row of the 

observation matrix x in (3.20) is then ( 1, xjr xj2, ..., xj" 1. E V ~  for a 

polynomial of moderately high degree, however, the resulting cross-product 

matrix 

This difficulty can be avoided by estimating the parameters 

of the function 

XTX has a large condition number, and the problem is ill-conditioned. 

so, sl, ..., s,, 

(3.100) 

where Po, Pl, ..., Pn are polynomials, orthogonal on the given set of grid 
points. To define this property introduce the notation 

According to Forsythe (ref. 3 9 ) ,  the polynomials Pk and P1 are orthogonal 

over the grid points 

orthogonality of the polynomials 

regression problem associated with the model (3.100) is diagonal and hence very 

easy to invert. A further advantage is that increasing the degree of the 

polynomial from n to n+l, the previous estimates so, 51, ..., sn remain 

unchanged. 

(xl, xz, ..., xnp), if < Pk(X),Pl(x) > = 0. a/ the 

Pi, the cross product matrix of the linear 

A h  h 

The Forsythe polynomials are defined by the recursive relationships 

P-l(x) = 0 , Po(x) = 1 , Pi+l(x) = (x-ai+l)Pi(x) - ~ i P ~ - ~ ( x )  , 

where 

The least squares estimate of the parameters so, sl, ..., s,, in (3.100) are 

simply obtained by 

A -" 
5.1 = Wi/0.. 11 , where oi = < Y,Pi(x) > . 

Rearranging the polynomial (3.100) to the canonical form (3.95') gives the 

estimates for the coefficients a,, al, ..., a,,. The following module based on 
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( re f .  40) f i t s  polynomials of degree n = 0, 1, ..., ND to the set of N) 

points, where ND < W .  I f  the x j  values are not a l l  different or numerical 

errors are l ike ly  to corrupt the results, the module automatically decreases 

the maxirmm degree ND, and sets the status flag ER = 1. 

Prosram module M52 

5500 REH l l l t l ~ t t l l t t t t t l t t t t l l l l t t t t t t t t t t t t t t l l t t t l t t t ~ t  
5502 REB t POLYNOHIAL REGRESSION I 
5584 REN t USING FORSYTHE ORTHOGONAL POLYNOtllhLS 1 
550t REH t t l t i t t t t t t t l l t t t l t l t t t t t t t t t t t t t t t t t t ( t l t t t l l~ l l t t  
5508 RE1 INPUT: 
5510 REN NP NUMBER OF SAMPLE POINTS 
5512 REH X(NP) VALUES OF INDEPENDENT VARIABLE 
5514 REH YINP) OBSERVATIONS OF DEPENDENT VARIABLE 
5516 RE1 ND 
5518 REH OUTPUT: 
5520 REN ER ERROR FLAG 
5522 RE!! 0 SUCCESSFUL REGRESSION 
5524 REH I SPECIFIED ND IS TOO LARGE 
5526 REU ( IN THIS CASE A FURTHER OUTPUT IS 
5528 REH ND ACTUAL BAXlHUiI DEGREE 1 
5530 REH C(J , I J  I-TH COEFFICIENT IN THE J-TH ORDER POLYNOMIAL 
5532 REH ( V = SUM [C(J,l)IX"II I=0...J ) 
5534 REH CINP,J) RESIDUAL SUB OF SQUARES FOR THE J-TH POLYNOHIAL 
5536 REN REHARK: HINIHUH SIZE OF (IRRAY C IS NPtNP 
5538 REU ---------- GENERATE VALUES OF FORSYTHE POLYNOHIALS 
5548 FOR I = i  TO NP :ClCl,I)=l :NEXT I :C[l,B)=NP :BE38 
5542 FOR J=l TO ND 
5549 E R 4  :IF ND)NP-1 THEN ER.1 :ND=NP-I 
5546 
5548 AL=AL/C(J,B) :ClNP,J)=AL 
5550 FOR 1=1 TO tip 
5552 
5554 
5556 NEXT I 
5558 SH.0 :FOR 1.1 TO NP :Sil=SH+ClJ,IJtC(J,I! :NEWT I 
5568 C(J+l,B)=SH :BE=SH/C(J,B) 
5562 
5564 NEXT J 
5566 RE1 ---------- WEIGHTING COEFFICIENTS OF POLYNOHIALS 
5568 '3.0 :FOR 1=1 TO NP :Sl=SH+Y(I) :NEXT I 

HAXlHUl DEGREE OF THE POLYNOIIAL I ND(NP ) 

6 1 4  :FUR I=1 TO HP :AL=ALtYII!1CIJ-l,I)lC(J-I,I) :NEXT I 

C( J, I ) = ( I (  I )-AL) tCi J-1, I )  
IF 3 E O B  THEN CIJ, I )=C(J, I )-BELC(J-Z, I )  

IF Sll!=.B@BBlltC(J,0) THEN ER.1 :ND=J-l :6OTO 5566 

5570 C(0,0)=l I 
5572 FOR 1.1 TO NP-1 :Ci0,1)=8 :NEXT I 
5574 C(I,NP)=SII!NP : B E 4  
5576 FOR J.1 TO ND 
5578 SM.8 :FOR 1:l TO NP :SH=SH+Y(IJtC(J,I1 :NEXT I 
5588 AL=CINP, J ) :BU=C( Jtl , a! /C !J ,01 
5582 C[JI8)=-ALtC(J-I,8) :IF B E 0 0  THEN C l J , a ) ~ C I J , 0 I - R E l C I J - 2 , 8 )  
5584 FOR I=1 TO ND 
5586 C(J,I)~C(J-i,I-l!-ALtC(~-l,I) 
5588 IF BEOI THE# CIJ,I)=C(J,I)-BEtC(J-?,!) 
5590 NEWT I 
5592 FOR I=J+i TO NP-1 :CIJ,I)=0 :NEXT I 
5594 C[ J ,NP)=SN/C(Jtl,0 ) : BE-RU 
5596 MEXT J 
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5598 REB ---------- CANONICAL POLYNOHIALS AND SUH OF SQUARES 
5608 CIO,B)=CI0,NP) tC(0,O) :C(0,NP)=0 : SH.0 : Y=CI0,0) 
5602 FOR 1.1 TO NP :SH~SMtlYII)-Y)t(V[l)-Vl :NEXT I :C(NP,B)=SR 
5604 FOR J=l TO ND 
5606 SR=CIJ,NP) 
5608 FOR I:0 TO J :CIJ,I):SHtC(J,I)tClJ-l,I) :NEXT I :CIJ,NP)=0 
5618 SH.0 
5612 FOR 1.1 TO NP 
5614 
5616 
5618 NEXT I 
5620 Cl RP, J )=St4 
:b22 I F  SMi=ClNP,J-l) THEN ND=J-1:GOTO 5626 
5624 NEXT J 
5b2b RETURN 
5628 RE8 t t t t t t t t t t t t t t t t t t t t t t t t t t t ! & t l ~ t ~ t t t t t t t t l t t t l t t t l  

Y=CIJ,J) :FOR K=J-1 TO 0 STEP -1 :Y=YtXlI)+CIJ,K) :NEXT K 
SH=SH+lVl 1 ) - Y )  11 'il I)-Y) 

Example 3.9 Polynomial regression through Forsythe orthoga-ialization 

The LMTA statements of the following program include 12 data pairs 

(xi, yi) , where x i s  the temperature (K)  and y i s  the equilibrium vapor 

pressure (bar, 1 bar = lo5 Pa) of l iquid oxygen (ref. 41). 

We attempt to  f i t  least squares polynomials of degree 0 through 11 , 

?, 

describing the vapor prssure as a functim of temperature. 

180 RE\ ________________________________________---------- 
102 REH EX. 3.9 .  POLYNURIAL REGRESSION 
104 RE4 USING FORSYTHE ORTHOGONAL POLYNOHIALS 
I06 9EM MERGE F55 
:08 EEM ---------- D4TA 
110 REN 1)lUHBER OF POINTS AND HAXIHUH DEGREE) 
112 DRTA i2,ll 
i14 REM (XlI)-terPp Y(I)-press) 
i i b  Daia 54.35, 8.081580 
I18 PRTA 60, 0.807317 
128 DATR 70, 0.06235 
122 DdTA 80, 0.3083 
124 DRTA 90, 0.9943 
126 DATA 100, 2.546 
128 DATA 110, 5.443 
138 DATA 120, 10.21 
132 DATA 138, 17.44 
134 DATA 140, 27.82 
136 DATA 150, 42.23 
138 DATA 154.77, 50.87 
208 RER ---------- READ DATA AND CALL HODULE 
202 READ NP,ND 
204 DIH XI NP) ,Y INP ) ,C( NP,NF) 

ZPB GOSUB 5500 
206 FOR 1.1 TO NP :READ w(ri,v(i) : E X T  r 



208 

PRINT RESULTS 210 REH --_____--- 
212 IF ER THEN LPRINT 'ER.1 : R A X ,  BDnlSSIBLE DEGREE 1S";ND :LPAINT 
214 FOR J:t TO ND 
216 LPRINT 'DE6REE:';J ,'RESIDUAL SUH DF SQUARES:';C(NP,J) 
218 LPRINT USING ' Y ( X ) =  L##@##**AA'; C ( J , B )  
228 FOR I=I TO J 
222 LPRINT USING " #.##$$#A*A* t XW';C(J,I),I 
224 NEXT I 
226 LPRINT 
228 NEXT J 
238 STOP 

The outpu t  begins w i t h  a warning message: 

ER.1 : MAX. ADMISSIBLE DEGREE IS 7 

DEGREE: B 
Y ( X  )=  B.13168Et82 

RESIDUAL SUR OF SQUARES: 3512.318 

DEGREE: 1 RESIDUAL SUN OF SQUARES: 807.5648 
Y(XI= -,34171E+02 

8.45189EtBB t X A  1 

DEGREE: 2 RESIDUAL SUM OF SQUARES: 54.10914 
Y (1 I =  0.51196E+B2 

-.136llE+t1 t X A  1 
B.fl647BE-02 t X *  2 

DEGREE: 3 RESIDUAL SUH OF SQUARES: ,5136249 
Y (1). -.34631E+82 

8.14353Et81 t X* 1 
-.19677E-01 t X *  2 
0.98283E-04 t X A  3 

DEGREE: 4 RESIDUAL SUH OF SOUARES: 6.469585E-83 
Y(X)= -.98362E+00 

-.32470E-01 t X A  1 
0.32085E-82 t X" '2 
-.61456E-04 t X *  3 
8.36254E-tb t X* 4 

DEGREE: 5 
Y ( X ) =  -,96379E+01 

RESIDUAL SUH OF SQUARES: 4.128297E-03 

0.43970Et08 t X" 1 
-.67383E-02 t X' 2 
8.39624E-84 t X *  3 
-.13536E-B6 t X A  4 
8.95280E-89 t X *  5 

DEGREE: 6 RESIDUAL SUM OF SQUARES: 1.1R9194E-04 
Y ( X  I =  0.33366Et82 

-.23770E+BI L X" 1 
0.67954E-01 t X* 2 
-.98769E-83 I X* 3 
0.76843E-05 I X A  4 
-.2937flE-87 t X *  5 
0.48386E-10 t X "  6 
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DEGREE: 7 RESIDUAL SUH OF SQUARES: 8.767201E-'36 
Y ( X i =  8.78537Etll 

-.42636Et00 t 1'' 1 
0.55539E-82 t X "  2 
0.95423E-04 t X "  3 
-.34214E-05 t X *  4 
0.36510E-07 t X "  5 
-,16588E-0? t 1" 6 
~.29za3~-12 t x *  7 

Polynomials of higher degree can be fitted in this case only if double 

precision is used for the compltations. 

Exercises 

Insert the following line into the program to repeat the computations in 

double precision: 

99 DEFDBL &H,C-Z 

Compare the residual sum of squares obtained in single and in double 

precision. 

Since the vapor pressure changes over several orders of magnitude, it is m r e  

reascnable to fit polynomials to the 

Repeat the computations inserting a logarithmic transformation for y. 

Show that for a given order of polynomial the maximum relative error of the 

vapor pressure is considerable lower for the logarithized model. 

logarithm of the vapor pressure. 

0 Try to fit polynomials of degree 3 through 7 to the data using the module 

M42 . Dixuss the advantages of orthogonal polynomials in view of your 
experiences. 

3.10 APPLICATIMVS AND FLRll-ER PROaEMs 

3.10.1 Q-I different criteria for fittinq a straiaht line 

Y o u  have now several estimators to fit the line y = ax + b to the points 

." 
(yi, xi): the method of least squares (Section 3.1), the method of least 

absolute deviations (Section 1.8.2) and the minimax method (Section 1.8.3). 

Which one to use in a particular case? To answer this question consider first 

the problem of outliers., i.e., observations with gross errors. The presence of 

outliers is, unfortunately, not rare in large samples. Since in its objective 

function these large deviations are squared, the least squares estimates are 
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clearly more sensitive to the outliers than the method of least absolute 

deviations. The least squares is a m a x i m  likelihood estimator so far the 

error distribution is normal. In a normal distribution the probability of 

wtliers is vanishingly small, and hence their presmce signifies deviation 

from the assumed normality. Therefore, if the error distribution is suspected 

to be "flat", i.e., the probabilitiy of large errors is higher than expected in 

a normal distribution then the more robust least absolute deviations criterion 

is preferable. 

In practice the error distribution is usually unkncm, and the choice can be 

made on the basis of the empirical curtosis of the residuals defined by 

2 
k = n [Zri4] / [Cri2] , (3.101) 

where the 

goes from 1 to the number of sample pints. According to (ref. 42), in case 

of a large curtosis, k > 3.8 , the sum of absolute deviations is better to 
use. The other extreme case is indicated by a low curtosis, k < 2.1, w h e n  the 

error distribution is possibly "sharper" than the normal. In this case the 

minimax criterion is a good choice. 

ri's are the residuals from a least squares fit, and the sumtion 

Exercise 

0 Select the suitable criterion for the nicotine - tar data investigated 
in Sections 1.8.2, 1.8.3 and 3.1. Inspecting the shadow prices in the 

minimax estimation omit the mcht suspectible point and repeat the estimations 

by the different methods. Discuss the sensitivity of the various estimates 

with respect to omitting this pint. 

3.10.2 k i q n  of experiments for parameter estimation 

The best known application of experiment design is to find the extrefrum of a 

quantity depending on further variables by observing its value at appropriately 

selected points (refs. 43-46). In this section, hawwer, consideration is 

restricted to design methods, purported to increase the reliability of 

estimates when fitting a model to observations. 

A k - point design is described by the design matrix Xk , consisting of 
k rows. The i-th row of the matrix specify the values o f  the the independent 

variables to be selected in the i-th experiment. Depending on the linearity or 

nonlinearity of the rodel, the design matrix affects the covariance matrix Cp 
of the estimates according to the expressions (3.301 and (3.45), respectively. 

The covariance matrix, in turn, determines the joint confidence region (3.321 
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of the parameters. Our goal is to obtain a confidence region as small as 

possible. The size of the ellipsoid (3.32) can be measured in different ways, 

and these give rise to various optimality concepts listed in Table 3.7. 

Table 3.7 
Optimality criteria in experiment design 

Optimality concept Cri terion 

det[ C 3 ---> min 
trace[ C 1 --> min P 

P 

D 
A 
E XminC cp 1 --> max 

____________________________I_ 

kcording to Table 3.7, a D - optimal design X minimizes the volume of 

the confidence ellipsoid. The mean square length of the axes is minimized in 

A - optimal design, whereas 

longest axis. In the case of a nonlinear respse functim the Jacobian matrix 

(3.411, and hence also the approximate covariance matrix (3.45) depend on the 

parameter values, in addition to the design 

defined at 5 ~ e  fixed parameter vector. 

E - optimality means the m i n i m  length of the 

Xk. Thus optimality of a design is 

To obtain a meaningful extremum problem the number of experiments k and 

the set of feasible vectors of the independent variables T are fixed. In most 

ca5es T 

introducing penalty functions 

by the methods and modules described in Section 2.4, this direct approach is 

usually very inefficient. In fact, experiment design is not easy. The 

dimensionality of the extrermm problem is high, the e x t r a  are partly m the 

boundaries of the feasible region 

symnetric in the vectors xl, x2, ..., xk , you have to face the difficult 
problem of multiple maxima (ref. 44). 

is defined by inequalities & 5 xi 5 xu, i = 1,2,.. .,k. Though 
such constrained extrwm problems can be solved 

1, and since the objective functions are 

In practice it is more efficient to adopt a less ambitious approach of 

"polishing" a starting design xk 

objective functim in each iteration and thereby determining a nearly optimal 

design. A useful algorithm i5 to drop one point of the current design and add 

an optimally selected new point xk to the remaining design Xk-1. This 

inner iteration is repeated for each point of the design in turn. Then the 

procedure can be restarted updating the first point again. The convergence rate 

might be disappointing, 

inhermt approximations. 

iteratively, increasing the value of the 

but high accuracy is not necessary because of the 
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Example 3.10.2 Approximate D - optimal design fo r  estimating Michaelis-Menten 

parameters 

Starting with the substrate values xi = CS i l  i n  Table 3.4, we construct a 

nearly D - optimal design t o  estimate the parameters of  the response function 

(3.55). Since we have 10 measurements i n  the s tar t ing design, we f i x  k = 10. 

The feasible region i s  given by xL = 0 and 

parameter values, necessary t o  be selected a p r io r i ,  are 

and 

xu = 5x10-’ mo l / l .  The nominal 

V = 4X10-’ m o l / ( l  a) 

K = 4x10-’ ml/l. h s t a n t  error variance i s  assumed. 

In  every inner i t e ra t i on  step the objective function 

Q ( x )  = det{ Jz-lJk-l + j(x;V,K)jT(x;V,K) 1 (3.1022) 

i s  minimized subject t o  the constraint 

correspcnding to  the r m i n i n g  experiment design Xk-l, denoted by JkP1, does 

not depend on x , and j i s  the column vector of pa r t i a l  derivatives a t  x . 
Evaluating (3.102) over a course g r id  we can f i nd  a t  most two local maxima. 

xL < x 5 xu, where the Jacobian 

Therefore, the program designed t o  solve t h i s  problem f i r s t  divides the 

interval  CxL,xu], each of  the two subintervals bracketing one of the maxima. [h 

each interval  the single maximum is localized by module M25, and the larger one 

i s  selected fo r  the new point of the design. As shorn i n  Table 3.8, the f i r s t  

three p i n t s  are irmediately replaced by xu. I n  the next 5 inner i terat ions,  

b v e r ,  the global maximum i s  located a t  inner points o f  the feasible 

interval. Final ly,  (3.102) takes i t s  maximum value again on the upper end w h e n  

replacing the last  2 p i n t s .  The design obtained i n  the f i rst  outer 

i terat ion (i.e., a f ter  updating a l l  the 10 points) remains almost unchanged 

subsequently, with the inner points approaching t o  a single value. The 

resul t ing design decreases the volume of  the (approximate) confidence e l l ipso id 

of the parameters by a factor of 2 wi th respect t o  the s tar t ing design. 

Table 3.8 
Wte r  i terat ions of  the experiment design procedure 

Design p i n t s  xi~103, ml/ l  
ater QXl@ 

i terat ion 1 2 3 4 5 b 7 8 9 10 

0 1.02 3.02 5.02 8.02 10.02 15.00 20.00 30.00 40.02 50.00 2.S96 
1 50.00 50.02 50.02 14.74 14.- 14.63 14.75 15.13 50.00 50.00 4.5854 
2 50.02 50.02 50.02 15.42 15.42 15.34 15.33 15.38 50.00 50.00 4.5939 

b 50.00 50.02 50.00 15.38 15.39 15.38 15.38 15.38 50.02 50.02 4.5939 
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In this example the approximate design consists only of two differmt points 

with replicates. Restricting the number of points to k = 2 right at the 
beginning, the problem can be solved by hand calculations yielding the same 

result. Y o u  should not draw, however, overly general cmclusion from this fact, 

since the number of different points in a D - optimal design can exceed the 
number of the parameters. Nevertheless, the optimal design normally involves a 

relatively small number of different points, and the corresponding observations 

are hardly suitable for validating the model. Thus the methods of this section 

apply only when the form of the response function is no more questionable. The 

need for replicates is a disadvantage also in kinetic analysis, where in a 

single experimntal run the variables can be sampled at points that are not t w  

close. Such additional constraints, however, can be incorporated into the 

design procedures (see, e . g . ,  refs. 47-48). 

Exercise 

0 Repeat the design procedure of Example 3.10.2 assuming constant relative 

variances. 

3.10.3 Selectins the order in a family of horol~cus models 

In Example 3.5.1 we used ridge regression to confirm that the simpler model 

(3.33) is preferable to (3.64), though the latter gives slightly better fit. 

Such model selection problems are faced in many applications, particularly when 

considering a homologous family of candidate models. For example, in polynomial 

regression we should select a degree n. A similar problem, discussed in 

Chapter 5, is to select the order n of a linear differential equatim when 

identifying a pharmacokinetic model. 

Example 3.5 has certainly convinced you that the test fitting model is not 

necessarily the one to chc-=e. In fact, it may be overparameterized with respect 

to the available data, leading to inflated or even meaningless estimates of the 

parameters. In addition, a t m  complex model usually gives unsatisfactory 

predictions, even slightly apart from the observed values of independent 

variables. Which model should be then adopted? The simplest rule is that model 

cmplexity (i.e., its degree or order) should be increased only while the 

residual variance is significantly decreasing. This can be tested cunparing the 

residual variances of different models ty the F-criterion. This test is 

not "sharp" enwgh and frequently suggests a too complex model. A number of 

criteria has been proposed that take the number of parameters into account more 

explicitely (for reviews see e . g . ,  refs. 49-54)). The most poplar one is the 

Akaike's Information Criterion (ref. 511, suggesting to choose the model for 
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which the quantity 

AIC = - 2 log (maximium likelihmd) + 2 np (3.103) 

takes its minim value, where np is the number of the parameters. If the 

assumptions (i)-(vi) of the least squares method are valid, minimizing (3.103) 

is equivalent to minimizing the simple expression 

AIC’ = Q(G;np)/t? + 2 np , (3.104) 

where Q(̂ p;np) 

weighting coefficients 

parameters. In practice 2 is replaced by its estimate s2. At this point it 

is advantagas to use a c m  s2, not depending on the number of parameters 

of the particular model. Obviously, the a priori choice of 

affects the atcome of the test. 

is the minim value of the weighted wn of squares with 

wi = c?/cri2, found for the model containing np 

s2 significantly 

Exercise 

0 Select the degree of the polynomial describing the logarithnic vapor pressure 

of oxygen as a function of the temperature (see Example 3.9). 

Suppose the vapor pressure is exact to three digits and give an estimate 

for the logarithms. Apply (3.104) replacing 2 with 5’. 

s2 

3.10.4 Error-in-variables estimation of van Laar wrameters from 

vapor-liauid eauilibrium data 

At low pressures the following equations are valid for a binary vapor-liquid 

mixture : 

(3.104) 

where 

mole fraction of component 1 in the liquid phase 
mole fraction of component 1 in the vapor phase 
pressure 

equilibrium vapor pressure of pure component i 
activity ccefficient of component i. 

x1 
Y1 
P 
T temperature 
pio(T) 
7i 

The functions pio(T) 
equation: 

are supposed to be know exactly, given by the Fhtoine 

log pio(T/K)/Pa = A i  - Bi/CT/K + Cil . 
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A popllar model to  describe the activi ty cwf f ic ients  i s  the van Laar equation 

where R = 8.3144 J / ( m l  K )  i s  the universal gas constant, CI and B are the 

van Laar parameters, characteristic for the given pair of compxlents. 

Estimate the van Laar parameters of methanol (1) and 1,2-dichloro--ethane (2) 

from equil ibria data obtained a t  

Antoine parameters for these components are (ref. 52) :  

T = 323.15 K and shaw, i n  Table 3.9 i f  the 

A 1  = 23.0843, 

B1 = 3626.55, Ci = -34.29 and = 21.0692, % = 2927.17, % = -54).22 * 

Table 3.9 
Binary vapor-liquid equilibrium data 

Measuremeot 1 ~ 1 0 ~ ~  1ml p ~ 0 - 5 ,  Pa 
---- 

1 30 59.1 0.6450 
2 40 60.2 0.6575 
3 50 61.2 0.6665 
4 70 65.7 0.6685 
5 50 81.4 0.6262 

The two functimal relations stemming f rom (3.104) take the form 

The standard errors we assume are ux = 0.005, u 4.015, up 400 Pa and Y 
uT = 0.1 K , based on the reamable accuracy of vapor-liquid equi l ibr ia 

measurmts . 
The module M52 i s  used to  solve the error-in-variables estimation problem. 

The main program contains the starting estimates of the unknow, parameters 

A = B = RT 

current values of the two functimal relations. The part ial  derivatives with 

respect to  the observed variables are canputed i n  l ines 600-622. 

i n  l ine  230. The subroutine starting a t  l ine  700 canputes the 
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108 REn ........................................................... 
182 REH EX. 3.18.4 VRN LRRR PRRRNETERS (ERROR-IN-VARIRBLES HETHOD) 
104 R E I  MERGE Hl6,HlR,H4l,H45,H52 
186 RE1 ---------- DATA 
188 REH ( NH ) 
110 DRTR 5 
112 REH ( X1 Y1 P/PA T/K 1 
114 DRTR 8.38, 8,591, .6458E5, 323.15 
116 DATA 8.48, 8.602, .6575E5, 323.15 
118 DATA 8.58, 8.612, ,6665E5, 323,15 
128 DATA 8.70, 0.657, .6685E5, 323.15 
122 DRTR 8.98, 8.814, .62b?E5, 323.15 

282 READ NH 
284 NZ.4 :NK=2 :NP=2 :IH=28 
3 6  DIH T(NH,?tNZ 1 ,V(NH,NKl ,R(NZ ,P(NP) I Z (NZ 1, X ( 2tNZ) ,Y INK) ,FINK) 
208 DIH E(NK,NZ ) ,R(NP,NP), C(NP,NP) ,U( NP,NP) ,B(NP) ,DlNP) ,S(NP) 
218 DIH G(NK,NP),OINK,NKI 
212 FOR 1.1 TO NH 
214 FOR J=l TO NZ :READ TI1,Jl :NEXT J 
216 NEXT I 
21B BN1=23.4883 :BN1=3626.55 :CN1=-34.29 :REI ANTOINE PIRAHETERS 
220 RN24'1.0692 :BN212927.17 :CN2=-56.22 :REH 

READ DATA 288 REM _______--_ 

' 
222 RU=8.3144 :REH 6RS CONSTANT 
224 R l  I )=(  .885) "2 :R(2 )= ( .  815)T :R(3 )= (  188)*2 : R ( 4 ) = ( .  1 )^2 :REH VARIANCES 
226 REfl ___--___-- ITERGTION CONTROL PRRBHETERS AND INITIRL GUESS 
228 EP=.BBI :EZ=.B81 :IH=28 
230 PI 1 ]=RUt323.15 :P(2)=RUt323.15 
232 GOSUB 5288 
234 IF EROB THEN LPRINT 'STATUS FLA6:';ER 
236 STOP 
688 REM ________-_ JACOBIAN HRTRlX OF F WITH RESPECT TO I 
682 RR=P(l) :BB=P(Zl :PT=Z131 :T=2(4) 
684 XI=Z(l) :X2=l-X1 :YI=Z(2) :Y2=1-Y1 
686 Pl=EXPlRNl-BNI/ ( TtCNlI ) :PZ;EXP(RN2-BN2/ (TtCN2) ) 
618 Sl=RA/RU/T/(ltAA/BBtXl/X2)*2 
610 S2=BU/RU/T/lltBB/AAtX2/X1)*2 
612 SI=EXP(SI) :62=EXP(S2) 
614 E(1,l): 6ltP1-2t6ltXltPltBR/RU/TtRR/~B/XZ*2/(liXl/X2tRA/~U]A3 
616 E(l,Z)=-PT :E(1,3)=-Yl :E~1,9)~-XltPlt61tSI/T~61t~ltPl~BNl/(T~CNl~A2 
618 E(2,1):-62tP2~2t62tX2tP2t~B/RU/TtBB/AA/Xl~2/(ltX2/XltBE/RR]*3 
b28 E 12,2 )= PT : E (2,314 2 :E (2,4 1 =-XZtP2t62tS2/Tt62tX2&P2tENZ/ ( TtCN2) *? 
622 RETURN 

FUNCTION EVALUATION 718 RE! _ _ _ _ _ _ _ _ _ _  
782 AR=P(l) :BB=Pl2) :PT=2(3) : T - Z ( 4 )  
784 Xl=Z(lI :XZ=l-XI :Y1=2(2) :YZ=I-Yl 
7616 PI=EXP(AHl-BNI/ (TtCN111 :PZ=EXP(RN2-BN2/ (TtCN2) ) 
708 SI=AA/RU/T/ (ltAA/BBtXI/X2)*2 
712) SZ=BB/RU/T/ (ItBB/AAtX2/X1)^2 
712 61=EXP(SI) :62=EXP(S2) 
714 F(1)=6ltXltPl-YltPT 
716 F(2)=62tX2tP2-YZtPT 
718 RETURN 

982 6OSUB 5398 
984 RETURN 

DBLIGATORY STITEMENT 9Bfl REH ---___-_-- 

After two cuter iterations the following results are obtained. 
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...................................................................... 
PARPHETER ESTllPTE ST. ERROR LOWER BOUND UPPER BOUND 

P (  1 ) 8.51359Et04 8.19477Et83 0.48939EtB4 9.53779Et94 
PI 2 ) 8.43207Et04 6.52429Et02 0.41996Et94 0.44418E+04 

...................................................................... 

HEAS I Z( I ) H E M  2 I I )  CORR EOURTION ERROR AFTER CORRECTION 

1 9.30000Et9B 
2 0.59109Et00 
3 8.64508Et05 
4 0.32315EtB3 

1 B.400BBEt0B 
2 0.6020BEtEB 
3 0.6575BEtB5 
4 0.32315Et03 

I 0.50E90Et00 
2 0.6128BEtB0 
3 0.66658Et05 
4 0.32315EtU3 

1 0.7BBB0EtEE 
2 0.6579@Et00 

4 0.32315Et03 

1 0.90000Et00 
2 0.8140BEtEB 
3 B.62620EtB5 

3 0.66850E+B5 

4 8.32315Et93 

0.29879Et09 
B.59596EtB0 
0.64525Et15 
0.32309EtB3 

0.39967Et90 
0.61214Et09 
0.65761Et95 
0.32312EtE3 

0.5BB18Et90 
8.62400EtUB 
B. 666lEEtB5 
8.32324EtB3 

0.69947Et0B 
0.66676Et00 
8.66835Et05 
6.32319Et83 

9.98060EtBB 
0.8104BEtBB 
E.62621Et85 
0.3231 5Et03 

F(  1 )=-.915625 
F(  2 )=-9.765625E-03 

F (  1 )=-.046875 
F (  2 )=-2.734375E-02 

F I  1 )=-3.90625E-83 
F(  2 )=-3.9Bb25E-83 

The van Laar parameters CI = 5135.9 J/ml and B = 4320.7 J/ml yield a 

good fit. The observed variables are only slightly corrected to satisfy the 

d e l  equations. The quantity "equation error after correction" is expressed in 

Pascals, hence the above values are negligible mall .  

You can meet almost all the difficulties of parameter estimation w h e n  

evaluating vapor-liquid equilibria data (implicit functional relations among 

several variables, corrupted by measurement errors that are likely to be 

correlated (see, e . g . ,  ref. 53). 
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Chapter 4 

SIGNAL PROCESSING 

Many experimwlts result in a sequence { (xi,yi), i = 1, 2, ..., m 3 of 

data pairs. As in the previous chapter, w e  assume that there exists a 

functional relationship y = f(x) between the two variables, and hmce refer 

to (xl, ..., x,) and (yl, ..., y m )  as grid points and function values, 

respectively. The form of this function is, lmwever, often unknowr. In other 

cases it may be deduced from physical principles, but is too complex far 

meaningful parameter estimation, with m a n y  parameters of no particular 

interest. In both situations we wish to predict s ~ e  properties of f directly 

from the observations 

as follows: 

(xiryi). The most important quantities to estimate are 

i) the functim value f(x) between two grid points (interpolation); 

ii) the derivative f'(x) (numerical differentiation); and 

iii) the integral f(x)dx , where the limits a and b satisfy the 
b 

a 

inequalities x1 5 a < b 2 xm (numerical integration). 

The important application of numerical differentiation is locating the 

extrema or inflection points of the curve. Finding the area under the curve 

involves numerical integration. 

Since f(x) is known only at the grid points, to solve these problems we 

must connect the data by saw plausible interpolating function. Its form s b l d  

be sufficiently general so as to be able to approximate large classes of 

functions, but simple enough to deal with. By far the most c m  a m 9  such 

functions are polynomials. If we use all data pairs simultaneously, the 

interpolation is called global. In many cases, hDwever, local interpolation is 

a better choice, considering only n < m grid points a r m d  the point x of 

interest. Local linear and quadratic interpolation (i.e., n = 2 and n = 3 , 
respectively) are the most familiar procedures. W h e n  the interpolating function 

has been selected, numerical differentiation and integration are 

straightforward. For example, with local linear interpolation shown in 

Fig. 4.1, the estimate of the derivative is (yi+l-yi)/(xi+l-xi) at all 

x -  1 -  < x 5 xi+l , whereas J:f+lf(x)dx 2 (yi+l + yi)/(xi + 1-xi)/2 by the well 
1 
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know, trapezium rule. 

c c 

I 
Fig. 4.1. Local linear interpolation 

Interpolation as- that the data are error-free. In many cases, however, 

w e  must assume that the observed sequence is c i = I, 2, ..., m I , 
where Li 
appropriate to look for a "-thing" function that fits the data, but does not 

necessarily interpolate them. Since this function is expected to estimate the 

error-free function values yi , the procedure is also called filtering. To 

choose a meaningful -thing function one needs further assumptions on the 

error structure. In some cases the emphasis is on the magnitude of the error 

variance, (or the signal-to-noise ratio), aswned to be k n m .  In other cases 

our assumptions rather concern the time behavior of the noise process, for 

instance we suppose that the noise varies much faster (or rmch slower) than the 

useful signal. Similarly to interpolation, -thing may be global ( e . g . ,  least 

squares fit of a polynomial of degree n < m - I to all points) or local 

(e.g., fitting a quadratic to the 5 points nearest to x of interest). 

Differentiation of smwthing functions yields forrmlas less sensitive to 

measurement errors than the forrmlas of numerical differentiation derived from 

interpolating functions. Integration automatically removes 5ome noise, and 

hence -thing functions are rarely used in such applications. 

n, 

yi = yi + Gi , and the errors are not negligible. Then it is more 
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Each signal processing method dixussed here involves sane function which is 

either interpolating or smoothing, and is either local or global approximation 

of the data. This results in the two-way classification of the methods show, in 

Figure 4.2, where the quadrants of each card list methods of the same family 

for the particular application. 

Signal processing may also involve parameter estimation methods (e.g., 

resolution of a spectral curve into the sum of Gaussian functions). Even in 

such cases, however, we may need non-parametric methods to approximate the 

position, height and half-width of the peaks, used as initial estimates in the 

parameter estimation procedure. 

In this chapter we restrict consideration to nm-recursive signal 

processing. A good introduction into recursive filtering can be found in the 

b w k  of Bozic (ref. 1). Another interesting field not discussed here is to 

modify conventional analytical methods to produce signals, w h o s e  direct huMn 

interpretation is no longer necessary and possible ( e . g . ,  correlation 

chromatography). The interested reader may consult the review paper (ref. 2). 

As shown in Fig. 4.2, we have several methods to solve any particular 

problem. The choice primarly depends on the sample size, and hence we introduce 

the following classificatim: 

i) small samples (5-15 points); 

ii) medium samples (lE-llZEi pints); and 

iii) large samples (from 50 points). 

Small samples are practically error-free in most cases ( e . g . ,  data in 

thermodynamical tables), but given over an irregular mesh. Ch the other hand, 

large samples almost invariably represent the "raw" output of a measuring 

device, or are obtained by sampling a continuous signal. In this class the grid 

pints are equidistant that may simplify data processing. In medium 

samples we often have sme assumption on the signal-to-noise ratio while in 

large samples the spectral properties of the noise process are m r e  or less 

known. 

There is an extensive mathematical literature devoted to interpolation, 

function approximation, numerical differentiation and integration (refs. 3-5), 

but many methods are not particularly useful for signal processing. For 

example, there is a large variety of efficient methods of integrating 

numerically a function that can be cmplted at any desired point. In signal 

processing, however, the data are a priori given, and the class of applicable 

methods is considerably restricted. In addition, many classical formulas are 

very simple so that discussing them we include only three modules. 

More attention will be given to two families of very general methods. The 
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first is based on the use of spline functions, and is going to replace many 

classical procedures for interpolation, smwthing, numerical differentiation 

and integration. The second family contains the Fourier transform spectral 

methods, and it has such an extensive list of potential applications that we 

can discuss only of the most basic mes. 

4.1 CLASSIW MTHODS 

4.1.1 Interpolation 

In global polynomial interpolation we fit the polynomial 

P,l(X) = a,lxm-l + a,p m-2 + ... + do 

to the points 

equations 

pW1(xi) = yi, i = 1, 2, ..., m . 

{ (xi,yi), i = 1, 2, ..., m } by solving the set of 
. .  

If the grid points are distinct, the solution of (4.2) is 

unique. The correspcnding polynomial can be given in several explicit forms 

different from the canonical form (4.1). For instance, it can be complted as a 

linear combination 

a,, al, ... am-l 

of the Lagrange base polynomials defined by 

TI (x-xi) 

TI (xj-xi) 
- i#j 

i #j 

Lj(X) = 

(4.3) 

(4.4) 

The classical Lagrange forrmla is not efficimt numerically. One can derive 

m r e  efficient, but otherwise naturally equivalent interpolation forrmlas by 

introducing finite differences. The first order divided differences are 

defined by 

f(x.) - f(x- 

xi - xi-1 
f ( Xi, xi-l ) = ---L--2d 

where f(xi) = yi. Similarly 

defined recursively by 

, i=2, ... m, (4.5) 

the (k+l)-th order divided differences are 
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(4.6) 

simplest interpolating 

formulas based on divided differences go back t o  h t o n ,  and involve 

polynomials of  the form 

+ A,2(x-xm) + ... + ~l(X-Xm)...(X-X1)' 
(4.7) 

where the coefficients Ak (not t o  be confused with the coeff ic ients ak i n  

representation 4.1) are e x p l i c i t l y  given by 

Am = f ( x m )  , Aml = f ( X m , X m - l ) ,  ..., A 1  = f(Xrn,Xm-1,"' Xi) (4.8) 

i n  terms of  the divided differences. To evaluate (4.7) i t  i s  useful t o  wr i te i t  

i n  a s l i gh t l y  modified form 

requiring only m - 1 rmlt ip l icat icns.  

Prmram m u l e  PA0 

6000 RE! t I t t t  tttttt t t t t t t It ttttttt I t t I I I It t t t t t t t t t t t t t t t t t  
6002 REIl t NEWTON IMTERPOLPTION: COWPUTATION OF POLYNONIAL t 
6004 REH I COEFFICIENTS AND INTERPOLATED VALUES t 
60B6 RE! t I t  ttttttl I t  t I t  It tttt tttt It t t ttt t tttt tttttttt It t t t t 
OBBB REN !N?CT: 
601B RE5 tl NJNFER OF 6RID POINTS 
6012 RE8 Z(1) GRID POINTS 
A014 REM F[N)  FUNCTION VALUES A! 6RID POINTS 
6016 REF X POINT WHERE FUNCTION VALUE IS REQUIRED 
6018 RER FC IDENTIFIER OF FIRST CALL 
6820 REM (':I - FIRST INTERPOLATION 
be22 RE8 10 - REPEATED INTERPOLATION 
6024 RE! 0UTPL;T: 
6026 REK Fin) COEFFICIENTS OF THE INTERPOLATING POLYNOMRL 
6028 REH F:FlM)+IX-ZlH) ! t  [F[N-11+!X-Z!R-l) t ( , . . F(1) ) 1 
6050 RE! F INTERPOLATED FUNCTIDN VALUE AT X 
6032 IF FC=0 THEN 6048 
0034 RE!! ---------- COEFFICIENTS 
A076 FCR J.1 TO H-1 
6038 FOR 1.1 TO N-J 
6040 
6042 NEXT I 

Fl I ) = l F i  I+l!-F( I )  ) i (Zl  I+J)-Z( I) 1 

5a44 NEXT J 
INTERPOLATED VALUE b045 REH ._________ 

6848 F=F[I) 
6050 FOR !=2 TO M :F=FtlX-ZII))tFlI) :NEXT I 
6852 FC.0 :RETURN 
6054 REN t t t t  t t I I tttt ttt t It t t It tlttt t t t t t t It tttttttttttttttt 
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There are two operations performed in the module. First, it determines the 

coefficients Ak 

at the specified X .  Both operations are performed if the first call flag FC 

has a nonzero value on the inplt. 

of the function values, and the module sets the value FC = 0 . In a second 
(and in any subsequent) call with the same data but with a different 

coefficients are not recomputed. 

in the expression (4.7). Second, it calculates the polynomial 

The coefficients will be stored in the place 

X the 

Example 4.1.1 Determination of enthalpy by Newton interpolation 

Each DATFI line of the following main program gives a temperature T and a 

corresponding molar enthalpy value 

(ref. 6). The units are K and kJ/ml, respectively. We find the molar 

enthalpy at the temperature 

# ( T I  - p ( 0 )  of SiF4 in gaseous state 

T = 298.15 K. 

188 RE1 ........................................................... 
102 REH EX. 4.1.1 NEWTON INTERPOLATION 
104 REH NERGE N60 
L86 REH ---------- DATA 
10B REH (NUNBER OF POINTS) 
IIU DATA 9 
112 RER (1,K H-H0,kJ/nolI 

116 DATA 388, 15.492 
118 DATA 408, 23.367 
128 DATA 588, 32.826 
122 DATA 608,  41.225 

126 DATB 800, b0.637 

138 DATA 1000, 88.836 
280 REH ---------- READ DATA 

204 D M  Zln),F(H) 
206 FOR 1=1 TO Il 
288 READ Z(I),F(I) 
218 NEXT I 
212 RE1 ---------- CALL INTERPOLATION MODULE 
214 FC.1 :X=298.15 
216 LPRINT 'NEUTON INTERPOLATION, NUHBER OF PO1NTS:";H 
218 GOSUB 6000 
220 VI=STR196)05, '-I I 
222 LPRINT V1 
224 LPRINT USING ' T = I t # . t #  K 
226 LPRINT V$ 

114 DATA 290, e.722 

124 DATA 708, 50.799 

128 DATA PBB, 70.666 

202 READ n 

H( T )-H( 8 )-I$ .##I kJ/nol" ; X ,F 

228 STOP 

The outpit of the program is as follows. 



227 

NEYTON INTERPOLBTION, MUilEER OF POINTS: 9 
............................................. 
T=298.15 K H I  1) -H(0)=15.356 kJ/&ol 
---_____________________________________----- 

Global polynomial interpolation is restricted to ~jmall samples of fairly 

gmd data. If there are many grid points, the resulting higher order polynomial 

tends to oscillate wildly bet- the tabulated values as show in Fig. 4.3. 

I I I I i b 

Xi-1 xi xitl X i t 2  

Fig. 4.3. Fh interpolating polynomial p oscillating a r m d  the "true" 

functim f . 

This oxillation may have nb relation at all to the behavior of the "true" 

function. Therefore, we cannot recarmend global interpolation except for 

m a l l  samples. In large samples interpolation is rarely needed. For medium size 

samples low order local interpolation considering 3 - 6 nearest neighbors of 
the point 

is lmal cubic interpolation in the Aitken form programmed in the 

following module. 

x of interest does the job in most cases. The m t  popular m e t W  
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Proqram module M b l  

6100 REII t l t t t l t t t ~ t t t t ~ t t t t ~ 1 l l t l 1 l ~ l t 1 l 1 1 1 l ~ ! t 1 ~ l l l t l 1 l l 1 t  
6102 REfl 1 LOCAL CtiBIC INTERPOLATION 1 
6104 REH t l t l t t t t t t t1 l t t t l t t t~ t t t l11 l~ t l~ t l t l l t l t l l t l l t l t11 l  
6106 REF INPIT: 
6108 RE1 N NUBREF! OF GRID POINTS 

6112 REH F(R) FUNCTION VALUES AT 6RID POINTS 
t114 RE! X GIVEN POINT 
bllb REfl WTPJT: 
6llE REr F INTERPOLATED FUNCTION VALUE 
6li0 FOR 11.4 TO H-1 
6122 IF Z(6-l)bX THEN 6128 
6124 NEWT K 
6 1 3  K=n 
6128 F3.F [i -3) : F?=F IR-2) :Fl=F (K-1) :F=F[ C )  
6130 Dj=Z(K-Z)-X :DZ=Z(K-ZI-X :Dl=Z[K-l)-X :D=Z(K)-W 
6132 F?=(F3tDWZtD3)/ (D2-D3) 
6134 Fl.IF3tDl-FlrD3;/[Dl-D3) 
6136 F ZIF3tD -F tDSi/(D -D3) 

6lSh) F =!F21C -F tDZ)/(D -D2! 
b142 F =1FltD -F tDI)/[D 4 1 )  
b144 RETURN 
6140 R E 1  ~t l t t t l t t t t l l t t t t t1 t t t t t t1 t t11 l t t t~ l t t l~ l t t t l1 t l l1 t  

tiia REH z(n)  WID POINTS 

613 Fl=(F?lDl-FltD2)i(Dl-D?) 

The module selects the four nearest neighbors of X and evaluates the cubic 

interpolating polynomial. 

Evaluation of a function outside the range of the grid points is called 

extrapolation. While extraplation is based on the same ideas as interpolation, 

it is mch more hazardous and shwld be avoided whenever possible. 

4.1.2 Smmthinq 

Smoothing of noisy data is justified if the sampling frequency is 

sufficiently high, and hence the sample contains information for adjusting the 

observed function values by kind of averaging. Then the smmthing function 

enables us to evaluate function values at both the grid points and bet- them 

a5 well. Global least squares polynomial fit is the most traditional method of 

smoothing for small and medium samples. Orthogonal polynomials and the program 

module M55 are useful to carry cut such calculations. 

For large samples global polynomial smoothing is either not sufficiently 

flexible (if the selected degree is low) or faces the same problems as in the 

case of interpolation (if the selected degree is high). Local smathing 

usually gives better results. This involves least squares fit of polynomials of 

degree n < Zk to the 2k + 1 points (X-k,Y-k), ... (Xo,yo), ... (XkrYk), 
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-h3 h2 -h 1 

h3 h2 h 1 

. ah3 4hZ 2h 1 ,  

0 0 0 1 

where 2k is sufficiently smaller than m and xo is a selected grid point 

of interest. The fit is particularly simple if the grid points are equidistant 

and the aim is to obtain a corrected value xo. Then this estimate can 

be computed as the linear combination 
yo at 

r , Y =  

(4.10) 

of the considered 2k + 1 function values. The coefficients ci and the 

denaninator F of the forrmlas (4.10) have been compiled by Savitzky and Golay 

(refs. 7-6) for several values of k and n. 

Table 4.1 shows the Savitzky - Golay coefficients obtained by fitting a 

quadratic or cubic (these two yield identical coefficients for ) to 5, 7, 9 

and 11 points. The way to select the number of points is discussed in (ref. 9). 

The use of t m  many points is hazardous, since increasing the “extent of 

smoothing” such fits can distort also the useful signals. Therefore, the m x t  

popllar forrmla involves only 5 points and the cubic 

R(X) = a3x3 + a2x2 + alx + do . (4.11) 

Derivation of the coefficients in (4.10) for this case is very simple. If h 

is the distance bet- the grid points denoted by 

(O,yO), (h,;l) and (2h,q2), then the observatim matrix X and observation 

(-2h,;-2), (-h,;-l), 
I 

vector 3 introduced in Section 3.2 are given by 

c 

Y-2 

Y-1 

YO 

r 

I 

c 

Y1 

;2 

(4.12) 

Ejy (3.23) the least squares estimates of the coefficients in (4.11) are 

(4.13) 
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Since 

formula we were lmking for. 

p3(0) = a. , the first expression of (4.13) is the Savitzky - Golay 

Table 4.1 
Coefficients for local quadratic or cubic smmthing by Savitzky and Golay 

5 -3 12 17 12 -3 35 
7 -2 3 6 7  6 3 - 2  21 
9 -21 14 39 54 59 54 39 14 -21 231 
11 -36 9 44 69 84 89 84 69 44 9 -36 429 

In addition to their simplicity the Savitzky - Golay formulas are well 

suited to real time filtering. While more advanced methods such as -thing by 

spline functions or  by Fourier techniques as- the knowledge of the entire 

sample, to apply (4.10) we have to wait mly for further k points. If k is 

Once fixed the extent of smoothing can be increased by applying the procedure 

several times. If the sampling frequency is high, it may be sufficient to pick 

up each (Zk+l)-th point and wrooth only these ones using their nearest 

neighbors. 

4.1.3 Differentiation 

The derivatives of the unknown functim are estimated by the derivatives of 

an interpolating or smoothing function fitted to the given set of data. Global 

interpolating polynomials wildly oscillating bet- grid points are not 

suitable for estimating the derivatives. Fk show, in Fig. 4.3, we may expect 

particularly bad estimates at the grid points where the polynomial crosses the 

"true" curve. 

The familiar forrmlas of numerical differentiation are the derivatives of 

local interpolating polynaials. A11 such formulas give bad estimates if there 

are errors in the data. To illustrate this point consider the case of linear 

interpolation where the divided difference (yi+l - - xi) estimates 

the derivative at xi < x < xi+l . Let = c? denote the variance of 

the measurwnent errors. We are usually m r e  concerned with the relative errors 

a/yi, the inverse of the signal-to-noise ratio. If the errors are independent, 

then 

r r 

r 

D2{;i+l - ;i) = 2 2  and hence the relative error in the slope is given 
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error of the slope may be much larger than the relative error in the data. 

Notice that this error is additional to the one introduced w h e n  approximating 

the function by a straight line. 

It follows that the formlas of nwrical differentiation do not apply to 

noisy sequence of data. Formulas based on the differentiation of local 

smoothing polynomials perform somewhat better. These are also of the form 

(4.10) if the derivatives are required only at the grid points. For example, 

the derivative of (4.11) is 

~ ' ~ ( 0 )  = al , where al is given by (4.13) as a linear combination of the 
function values. The coefficients of the formulas of -thing differentidtion 

based on the fit of a cubic (ref. 7) are show, in Table 4.2. To obtain correct 

numerical values you should multiply the denaninator by the distance h as 

shown in (4.13). 

P'~(x) = 3a3x2 + 2a2x + al . Therefore, 

Table 4.2 
Coefficients for local cubic smoothing differentiation by Savitzky and Golay 

2k + 1 x-5 X-4 X-3 x-2 x-1 xo xi x2 x3 x4 x5 

5 1 -8 0 8 -1 12 
7 22 -67 -58 0 58 67 -22 252 
9 86 -142 -193 -126 0 126 193 142 -86 1188 
11 302-294 -532-503-296 0 296 323 532 294 -302 5148 

Although numerical differentiation is considered as a routine step in signal 

processing, our discussion tries to emphasize that its results heavily depend 

on the choice of the interpolating or -thing function. Different methods may 

lead to much deviating estimates. Nevertheless, from frequently sampled data 

we may be able to locate e x t r a  or inflection points by nwrical 

differentiation, since zero-crossing of the first or second derivatives is 

Mmewhat more reliable than their values. 

The next d u l e  is based on the five point Savitzky - Golay formulas listed 

in Tables 4.1 and 4.2. It returns both the smoothed function values and the 

estimates of the derivative. The formulas are extended also to the four 

outermost points of the sample, where (4.10) does not directly apply. 
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Prwram module M2 

mu REH t t t t t t t t t t t t t t t t t t t t t : t t t t t t t t t t t t t i ~ ; ; t : : r t : t t ~ i ~ t  
6202 RE# t 5-POINT CUBIC SMOOTHING BY SAVITZCY AND GOLAY t 
6204 RER t t t t t ~ ~ ~ t t t t t t t t t t t t l t t f t t ~ ~ 1 : t ~ t ~ t t t t l t t t t t t t t t t t t  
6286 PEfl IMFUT: 
b208 REY N #UMBER OF GRID POINTS 
6210 RER FIN1 FUNCTION VALUES AT 6RID POINTS 
b212 2EM OUTPUT: 
5214 RE! SI1,N) S l B , I )  SHOOTHED FUNCTION VALUES 
6216 PEW 
b218 RER REMARK: 
6 2 8  S10,1~=i267tF111~12LF12]-1BtF~3!~12tF141-~tF(5))1210 
6222 S l B , 2 ~ ~ 1 2 1 F l l l ~ 2 7 t F ~ 2 ) t 1 2 t F ~ 3 ] - B t F [ 4 ) t 2 t F [ S ) ) / 3 5  
6 2 3  FOR 1 4  TO N-2 
b226 SI0,I 1=1-3tFI 1 - 2 ) t l Z t F l  1-1 l t l 7 t F I  I )+12tF[ I t 1  ) -3 tF [  I t ? )  1/35 
6228 NEXT I 
6230 SiU,Nl~i287tFlNl~12tFl~-l~-lBtF~N-?)~l2tF~N-3l-3tF~N-4ll/2l0 
6232 
6234 5 I1 , 1 I =i -125tF I  1) t 1 3 6 t F  121t4RtF13) -8BtFl 4) t 2 9 t F  I51 1 /84 
6236 S(1,21=1 - S 7 t F ( l )  -~~Fl2)~3~tF~3!*39tF~4)-lS~F(5))/l~b 
6239 FOR 1-3 TO N-2 
1248 S l l ,  I ) = I F 1  I -Z) -RtF(  1-1 I t B t F I  It1 )-F( I t 2 1  1/12 
b242 NEXT I 
6144 Sl 1 N l =  1125 tFlN)-l36tF(N-ll-4BtFlN-2l~~BtF lN-31-29tF "-4) 1 /a4 
6246 
6248 RETURN 
6250 RE! t t t t t t t l t t t l t t t l t t t 1 t t t t : t t t ~ t t t t t t t t t t t t t t f t t ~ ~ t t l  

S ( 1 , I )  SMOOTHED FIRST DERI'VATIVES 
END POINTS ARE ALSO PROCESSED 

SI0 ,N- l I= lZ  tF IN1 t 2 7 t F I N - 1  I t l 2 t F  "-21 -8 IF lN-3 l t2 tF(N-4 ]  1135 

S l  1 ,N-1 ) = I  97 IF IN)  +3 tF(N- l  I -36tF(N-2)-3TtF(N-3) t15tF(N-4 1 i /1?6 

Note that the the g r i d  poin ts  are n o t  s p e c i f i e d  on the i n p t .  The  d e r i v a t i v e  

is numerically correct i f  the d i s t a n c e  h between the g r i d  p o i n t s  is 1. 

Otherwise, to obta in  t h e  d e r i v a t i v e  a t  the I-th point  you rmst d i v i d e  S ( 1 , I )  

by t h e  d is tance .  

Example 4.1.3 Detection of end p o i n t s  i n  potent icmetr ic  t i t r a t i o n  by the method 

of Savitzky and Golay 

In potent icmetr ic  titratim a vol tage  is obtained f r m  an e l e c t r o d e  that is 

s e n s i t i v e  to  an imic species =uch a5 , i.e., the pH of the s o l u t i o n  i n  

t h i s  case. We w i l l  consider  t h e  t i t r a t i o n  of t h e  mixture of a s t r o n g  a c i d  ( K 1 )  

and a weak ac id  (M$UFl) with NaOH ( r e f .  10). ck 2 m l  vol- of the base 

are given t o  the a c i d i c  s o l u t i o n ,  t h e  pH increases  and w h e n  one of the a c i d s  

is neut ra l ized  t h e  pH changes very rap id ly  by a small a d d i t i m  of NaM . We 

want to f i n d  these maximum poin ts  of the f i r s t  d e r i v a t i v e  of the t i t r a t i o n  

curve.  In t h e  following main program the DFITA l i n e s  conta in  32 d a t a  pairs, 

each cons is t ing  of the volume of t h e  added NaM i n  m l  and the measured pH. 

F i r s t  we call the module to  obta in  the f i r s t  der iva t ive .  Then t h i s  

d e r i v a t i v e  is placed i n t o  t h e  a r r a y  F , and by repeatedly c a l l i n g  the module 

w e  obta in  the  estimate of the second der iva t ive .  
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109 REH ________________________________________------------------- 
102 REH EX. 4.1.3 SMOOTHED DERIVATIVES BY SAVITZKY RND 60LAY 
104 REH MERGE Hb2 
106 REM ---------- DATA 
108 REH (NUNBER OF POINTS) 
118 DATA 32 
112 REH (V,m1; pH) 
114 DATA 2.4, 2.642, 2.6, 2.706, 2.8, 2.786, 3.1, 2.877 
116 DATA 3.2, 2.986, 3.4, 3.126, 3.6, 3.295, 3.8, 3.480 
118 DATA 4.8, 3.659, 4.2, 3.816, 4.4, 3.952, 4.6, 4.874 
128 DATA 4,8, 4.183, 5.8, 4.285, 5.2, 4.384, 5.4, 4.488 
122 DATA 5.6, 4.579, 5.8,  4.682, 6.8, 4.791, 6.2, 4.988 
124 DATA 6.4, 5.845, 6.6, 5.211, 6.8, 5.444, 7.1, 5.859 
126 DATA 7.2, 8.617, 7.4, 9.747, 7.6,18.134, 7.8,18.348 
128 DATA 8.8,18.491 , R.2,18.684, 8.4,10.692, 8.6,18.7b6 
200 REN ---------- READ DATA 
282 READ N 
284 Dln I IN) ,F (N) , S l  1 ,N) ,A1 ( N ) ,AZ(N) ,A3(N) ,A4 IN) 
286 FOR 1.1 TO N 
288 READ Z(II,F(I) :!Al(I)=F(Il 
218 NEXT I 
212 RE! ---------- SMOOTH TWICE 
214 DI=Z(2)-2(1) 
21b GOSUB 6208 
218 FOR 1.1 TO N :A2(1)=S(B,I) :A3(1)=S(l,I)/DI :F(I)=R3(1) :NEXT I 
220 GOSUB 6288 
222 FOR 1.1 TO N :A4(1)=S(l,I)/D2 :NEXT I 
224 REn 
226 REH ---------- PRINT RESULTS 
228 V$=STRlN6~145,"-*) :LPRINT V$ 
230 LPRINT 'V,nl pH smoothed pH first second" 
232 LPRINT " derivative ' 
234 LPRINT V1 
236 V1$= * 1.11 81.111 11.111 111.111 111.111 
238 FOR 1.1 TO N 
240 LPRINT USING V11;7(I) ,Al(I) ,RZ(I),A3( I)  ,A4111 
242 NEXT I 
244 LPRINT V$ 
246 STOP 

The program gives the output a5 f o l l m .  

............................................. 
V,rl pH smoothed pH first second 

derivative 

2.48 2.642 2.642 8.292 8.425 
2.68 2.706 2.707 8.357 8.299 
2.88 2.786 2.785 8.427 8.313 
3.88 2.877 2.876 0.492 6.462 
3.28 2.986 2.987 8.618 8.768 
3.48 3.126 3.127 8.779 8.758 
3.68 3.295 3.296 8.900 8.395 
3.88 3.488 3.479 8.926 -0.157 
4.08 3.659 3.658 0.846 -0.548 
4.28 Z.816 3.815 0.729 -0.536 
4.40 3.952 3.953 8.642 -8.381 



234 

4.60 4.174 
4.88 4.183 
5.88 4.285 
5.20 4.384 
5.40 4.480 
5.61 4.579 
5.88 4.682 
6.80 4.791 
6.28 4.988 
6.40 5.045 
6.68 5.211 
5.88 5.444 
7.08 5.859 
7.20 8,617 
7.48 9.747 
7.68 10.134 
7.81 18.348 
8.88 11.491 
8.20 10.604 
8.48 11.692 
8.60 18.766 

4.074 
4.183 
4,285 
4 * 383 
4.480 
4.579 
4,682 
4,798 
4.908 
5.043 
5.214 
5.269 
6.385 
8.201 
9.774 

10.174 
10.353 
10.494 
18.683 
18.692 
18.766 

1.575 -8.299 
8.523 -8.181 
8,501 -8.090 
8.485 -0.846 
0.485 8.051 
8.584 0.115 
0.528 8.126 
8.559 8.229 
0.626 8.427 
8.738 0.978 
8.934 -3.579 
1.672 21.565 
8.687 33.589 

11.806 -18.564 
3.186 -29.339 
1.222 -3.517 
8.833 -8.865 
0.621 -8.781 
0.496 -0.534 

8.343 -0.284 
8.399 -8.358 

ck it will be discussed, while three maxim of the first derivative are 

observed, the secmd one is a consequence of the applied numerical method. 

Using the second derivative valu- in the last co1um-1, local inverse linear 

interpolation gives V = 3.74 ml and V = 7.13 ml for the two equivalence 

points. We will see later on how the false end point can be eliminated. 

Exercise 

0 Cunplte the second derivative by divided finite difference approximation and 

cunpare the result with that of the Savitzky - Golay method. 

4.1.4 Inteqration 

For small samples we can integrate the global interpolating polynomial. For 

larger samples the trapezium rule 

(4.14) 

based on local linear interpolation, is usually sufficient. FIfter the trapezium 

integration, textbwks m numerical analysis invariably proceed to the familiar 

Simpxn rule, resulting in doubled weighting for each secmd point. Althargh 

the method has theoretical superiority over (4.14) if the distance h can be 

arbitrarily reduced, it is difficult to justify such weighting schffne with a 

priori given data. 
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Exercise 

Discuss the behavior of the Simpson formla on a "measured" data sequence 

similar to 1,-1,1,-1, ... 

Show that integration amplifies the signal-tcmoise ratio if the errors are 

independent . 

4.2 SPLIN FUUCTIONS IN SIawL PRDCESSING 

Local cubic interpolation results in a function whose derivative is not 

necessarily continuous at the grid points. With a nm-local adjustment of the 

coefficients we can, hDwever, achieve global differentiability up to the second 

derivatives. Euch functions, still being cubic polynomials between each pair of 

grid points, are called cubic splines and offer a "stiffer" interpolation than 

the strictly local approach. 

4.2.1 Interpolatinq splines 

We find the cubic spline interpolating the points C (xi,yi), i = 1, 2, 
..., n 1. Let pi(d) denote the cubic polynomial over the interval [xi,xi+ll 

of length hi = xi+l - xi , where d = x - xi. To define the n-1 cubics we 

need 4(n-1) coefficients. The available constraints are as follows: 

(a) The cubics are interpolating ones, and hence 

pi(0) = yi , i=1,2, ... n-1; 
pi(hi) = yi+l , i=1,2, ... n-1. 

(b)  The continuity of the first derivative implies 

= p'i(0), i=2,3, ... n-1, 

(4.15) 

(4.16) 

(4.17) 

(c) whereas from the continuity of the second derivative we have 

p"i-l(hi-l) = ~"~(01, i=2,3 ,... n-1. (4.18) 

Thus we have 4n-6 equations, and need two further constraints to define the 

coefficients uniquely. In m t  case5 these are chosen according to me of the 

following alternatives. 
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i) Assume that the second derivative vanishes at the end points x1 and xn, 

resulting in the equations ~"~(0) = 0 and ~"~-l(h,-l) = 0 . The derived 
function is called natural spline. 

ii) The first derivative has arbitrarily fixed values at the end points, 

P'l(0) = Y ' O  and P'n-l(%-l) = Y ' ~ .  

It can be verified that the set of linear equations given by the constraints 

has a unique solution both for cases i) and ii), if the grid points 

xl, x2, ..., xn are distinct (ref. 11). 

quantity 

To illustrate a special smoothness property of natural splines, define the 

Obviously, S = 0 for a straight line. If S is small for a 

function, it indicates that f does not wildly oscillate over 

[xl,xn] o f  interest. It can be shown that m g  all functions 

given 

the interval 

that are twice 

continuously differentiable and interpolate the given points, S takes its 

minimum value on the natural cubic interpolating spline (ref. 12). 

It remains to calculate the coefficients that define the interpolating 

spline. [he can obviously solve the 4(n-1) constraint equations directly, but 

there exists a much m r e  efficient algorithm. Let mi and mi+l denote the 

second derivatives of the cubic pi at d = 0 and d = hi, respectively. The 

derivative is a linear function, given by 

Integrating the function (4.20) twice and determining the two integration 

constants from the constraints (4.15) and (4.16), the cubic polynomial 

obtained in the form 

pi is 

i = 1,2, ... n-1 . (4.21) 

Now we differentiate (4.21) once and exploit the constraints (4.17). The 

resulting equations are 
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i = 2, 3, ..., n-1 . (4.22) 

If we select the end conditions 

m l = O  and m,,=0. (4.23) 

i), the further equations are 

Wopting assumption ii) instead, equations (4.23) are replaced by 

2hlml + hl- = - Y * ~ ]  and 
hl 

(4.24) 

In both cases the resulting system of equatims is tridiagonal and can be 

easily solved by the special method presented in Sectim 1.5. (hce the 

values are knorn, equations (4.21) can be easily rearranged to obtain the 

polynomial coefficients. Camputing the function value and the derivatives at 

any point x is then straightforward, whereas integration is facilitated by 

the relationship 

mi 

valid for any cubic. 

Prwram module M63 

6385 REH INPUT: 
6388 REH N 

6312 REH F ( N )  
6314 REIl EC 
6316 R E 1  
6318 REfl 
6320 RER 
5322 REH D1 
6324 REH DN 
6526 REH OUTPUT: 
6328 RE1 S14.N) 
6338 RER 

6316 REH Z(NI 
NUHBER OF GRID POINTS 
6RID POINTS (KNOTS) 
FUMCTION VALUES 
I D E N T I F I E R  FOR SELECTING END CONDITIONS 

NOT 0 - FIRST DERIVATIVES GIVEN AT END POINTS 

F I R S T  DERIVATIVE AT X=I(l) 
F I R S T  DERIVATIVE AT X=Z(N) 

0 - NATURAL SPLINE 

T H I S  CASE REQUIRES FURTHER INPUTS: 

S ( J , I I  COEFFICIENTS OF THE J-TH DEGREE TERHS ( 5 4 . . . 3 )  
S(4,I) INTEGRAL VALUE FRON Z(l) TO Z(I) 
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6332 FOR l = I  TO N-1 
6334 S ~ U , I ~ ~ Z ~ l ~ l l - Z ~ l l  : 5 ~ l , ~ ) ~ ( F ( ~ t l ~ - F ( ~ ) ) / 5 ( 0 1 ~ )  
6336 NEXT I 
6338 S($,N)=B 
6340 5(3,1)=2tS(0,1) 
6342 I F  ECOU THEN 5(2,1)=3t~S(l,lI-D1) 

6346 S=S(B, 1-1 1 /S(3,1-1) 
6344 FOR 1.2 To N 

b358 S~3,I~=2:(S~0,I~tS~0,I-lll-sts~u~1-1~ 
6348 IF EC.0 AND 1.2 THEN S=0 

6352 IF I (N  THEN 5~2,11~~~~S~1,1)-5(1,1-11~-5~5(2,~-1) 
b354 NEXT I 
6356 I F  ECOB THEN S~2,N~~3t~DN-S(1,N-l))-StS~Z,N-l) 
6358 I F  EC.0 THEN 512,N)=8 
6360 S(Z,N)=S( 2, N )  IS( 3,N) :S( 3,N)=U 
6362 FOR 1.N-1 TO 1 STEP -1 
6364 S(?,1)~(S(2,I]-S(B,l)tS(?,Itl))/S[~,I) 
6366 IF E C 4  AND 1=1 THEN S(2,1)=8 
6368 S11,1)~S~1,3)-S(B,I)t(21S(2,I)~S(2,I~l))13 
6378 5(3 I I I W 2 ,  It1 )-5(2 I 1  ) IS(0, I )  13 
6372 NEXT I 
6374 S( I ,N)=S( 1 ,N-1 )tS(B,N-ll t (S (2,N-1 )tS(?,N) ) 
6376 S(4,1)=8 
6378 FOR 1.2 TO N 
6388 SzS( 4,I-1 l*S(B, 1-1 t I F ( I ltF( 1-1 ) ) 12 
b382 5 ( 4 ,  I +S( B, 1-1 )^3t ( S( 2 , I 1 tS ( 2  , 1-1 ) 1 112 
6384 S( B, I-1) =F( 1-11 
6386 NEXT I 
6388 S( B,N) =F( N )  
6398 RETURN 
6391 REA t t t t t l t t t t t t t t t l t t t t t : : t : : : : : : : : : : : : t t t t~~:: : : : : t : :  

With the end condition flag EC = 0 m the input, the module determines the 

natural cubic spline function interpolating the function values stored in 

vector F. Otherwise, D1 and DN are additional input parameters specifying 

the first derivatives at the first and last points, respectively. Results are 

returned in the array S such that S(J,I), J = 0, 1, 2, 3 contain the 4 

coefficients of the cubic defined on the I-th segment bet- Z(1) and 

Z(I+l). Note that the i-th cubic is given in a coordinate systm centered 

at Z ( 1 ) .  The module also calculates the area under the curve from the first 

point Z(1) to each grid point Z(1) , and returns it in S(4,I) . The entries 
in the array S can be directly used in applications, but we provide a further 

module to facilitate this step. 
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Proaram module M64 

6488 REH I & t I I t t t t t t t t t l t t t t t t t t ~ l t t t t I t I I t l t ~ t l t t t t l ~ t t t ! ~ t  
6482 REH t FUNCTION VALUE, DERIVATIVES AND D E F I N I T E  t 
6404 REH I t 
6406 REH t t l t I t t t t t t t t t t t t I t t ~ ~ t t l t & t & & k I I t t t t t t ~ ~ t t t t t t t t ~ t  
6488 REH INPUT: 
6410 R E 1  N NUNBER OF KNOTS 
6412 REH Z(N) GRID POINTS (KNOTS) 
6414 REH S(4,N) SPLINE COEFFICIENTS (FROH H63 OR 165) 
6416 REH X GIVEN POINT 
6418 REH OUTPUT: 
6428 REH SB SPLINE FUNCTION VALUE AT X 
6422 REH 51 F I R S T  DERIVATIVE 
6424 REH 52 SECOND DERIVATIVE 
6426 REH 53 THIRD DERIVATIVE 
6428 REH 54 D E F I N I T E  INTEGRAL FROH Zll) TD X 
6438 FOR I=N TO 1 STEP -1 
6432 IF XU(I1 THEN 6442 
6434 
6436 
6438 
6440 60TO 6448 
6442 NEXT I 
6444 S=X-ZII) :S0=[5[2,1)tS+S(1,1) )tS+SIB,l) :S1=2tSIZ11 )tS+S(l,!) 
6446 S2=512,1) :S34 :S4=StISB+S(B,l) )/2-StStSIS2/6 
6448 RETURN 
6458 REIl t t I t t t t t t t t t t t l t t I I I I I t t l & t t t t l l t t t t I t t t t l t t t t t ~ t t &  

INTEGRAL OF A CUBIC SPLINE RT A 6IVEN.POINT 

S=X-Z[I) :58=( ( S( 3,  I )tS+S(2, I )  )tStS(l,I) )tS+S(0,1) 
S1=(315(3, I)tS+2tS(2, I))tS+S(l, I) :S2=6tS(3, I)tS+2tS[2, I) 
53=6tS( 3, I ) :S4=S( 4, I )  +St (SBtS(B,  I ) )/Z-StStSt lS2+S(2, I ) ) 112 

In addition to the grid points stored in the vector 2 and the array S 

of coefficients created by the mdule M63 (or by M69), the input to this module 

is a specified point 

the values of the first, secmd and third derivatives in S1, 52 and S3 , 
respectively. The area under the curve from Z(1) to the specified X is 

returned in 54. If X is outside the range of the grid points, the 

extrapolation involves a straight line tangential to the function at the 

corresponding end point. 

X . This module returns the functicn value in S0 , and 

ExamDle 4.2.1 Enthalpy and heat capacity by spline interpolation 

We use the mdulg. MaJ and M64 to solve the interpolation problem 

discussed in Example 4.1.1. In addition to the enthalpy at T = 298.15 K , the 
heat capacity (i.e., the first derivative) is also cmputed at this point. The 

main program an0 the results are as follows. 
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180 REN ____-___________________________________------------------- 
182 REfl EX. 4.2.1 SPLINE INTERPOLATION 
184 REM HERGE H63, H64 
186 REH ---------- DATA 
188 REH (NUHBER OF POINTS) 
118 DATA q 
112 REM (T,K H-Hfl,kJ/~l) 
114 DATA 280, e.722 
116 DATA 388, 15.492 
118 DATR 488, 23.367 
128 DATA 580, 32.826 
122 DATA baa,  41.225 
124 DATA 788, 58.799 
126 DATR EBB, 68.637 
128 DATA 988, 78.666 
130 DATA 1881, 88.836 

202 RERD N 
284 DIH Z(N),F(N),S[4,N) 
286 FOR I=1 TD N 
288 READ Z(l),F(l) 
210 NEXT I 
212 LPRINT "NATURAL CUBIC SPLINE INTERPOLATION" 
214  RE^ _ _ _ _ _ _ _ _ _ _  CALL SPLINE DETERHINATION AND EVRLUATIDN HODULES 
216 EL=% :GOSUB 6380 
218 X=298.15 :6OSUB 6488 
228 VI=STRING$( 45, '-' 1 
222 LPRINT V1 
224 LPRINT USING "T=W.$# K 
226 LPRINT USING ' C p 4  .### J /  (001 K)';SIk1008 
228 LPRINT VS 
238 STOP 

READ DATA 288 REfl _-_--_--__ 

H(T)-H(81=$#.### kJ/nol';X,SB 

NATURAL CUBIC SPLINE INTERPOLATION 

4.2.2 Smoothins solines 

c 
I f  the data C (x i ,y i ) ,  i = 1, 2, ..., n > are noisy, i t  i s  not reasonable 

to  force a function f to  pa55 through the measured values. Suppose we have an 

estimate di of the standard error of the i-th function value. ThRl a 

suitable measure of the distance of any smoothing function 

measurement points i s  the sum of squares 

f f rom the 

(4.26) 

If  the squared distance F2 i s  greater than the number of points n, then the 
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function f is too far from the measurement points. Therefore, we restrict 

consideration to functions satisfying the constraint 

F2(n, (4.27) 

i.e., we attempt to fit the data within the range of measurement errors. 

In addition, we are interested in functions that are at least twice 

continuously differentiable. a7e can draw several such curves satisfying 

(4.27), and the "smoothest" of them is the one minimizing the integral (4.19). 

It can be shown that the solution of this constrained minimization problem is a 

natural cubic spline (ref. 12). We call it wnwthing spline. 

The smoothing spline converges to the interpolating spline if di -> 0. 

with too large While this function is unique for reasanable values of 

standard errors an entire family of straight lines satisfy (4.27) t b s  yielding 

zero value for S in (4.19). This family includes the straight line fitted by 

weighted linear regression, and hence in this case it is not justified to seek 

the solution in spline form. 

di, 

If the solution is unique, it can be obtained by the method of Lagrange 

multipliers (ref. 13). We look for the minimum of the Lagrange function 

L =  
'n 1 

[f'8(x)12dx + -(F2 - n) 
P 

X1 

(4.28) 

where p is the reciprocal Lagrange multiplier. For any fixed value of p 

the 4(n-1) equations for the 4(n-1) coefficients of the natural cubic spline 

function minimizing (4.28) can be obtained from the Euler - Lagrange 

relations (ref. 13). Introducing the second derivatives mi as in the previous 

section, the system can be reduced to simultanwus linear equations with a 

coefficient matrix of band structure. The matrix has 5 nonvanishing 

diagonals. Therefore, the spline is relatively easy to determine for a given 

value of p , and it yields the actual squared distance (4.26) denoted by 
F2(p). 

The additional problem we face i5 determining the optimal value for p. It 

is important to note that the squared distance 

of p . Therefore, the algorithm can be viewed as starting with an 

interpolating spline obtained at 

gradually increasing the value of p until (4.27) holds. To find this 

particular p we solve the nonlinear equation 

Fz(p) increases with the value 

p = 0 , and then "streching" this function by 

A Newton method can be used, since the derivative F'(p) is relatively easy 

to compute. The following program d u l e  is based on the procedure proposed by 

Reinxh (ref. 13). The only essential deviation from the original algorithm is 
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i n  the formula for the correction 4 : 

where the additional square root convergence promtion factor can sanewhat 

improve the convergence a t  the beginning of the iteration where 

satisfies the inequality 

~ ' ( p )  

0 < ~ ' ( p )  << n . 

Prosram module M65 

6588 REll t t t t t t t t I t  t t tt tt t ttt t tttt tt tt t t t t t t t tI t tt t t t t t ttkt t 
6582 REH t DETERHINBTION OF SHOOTHIN6 CUBIC SPLINE t 
6584 RER I HETHOD OF C. H. REINSCH t 
6506 RER t t t tl t t t t t t t I t t t t t tt tt t t t t I t t t t t t t t ttt t t tttl t k t tt t t 
6508 REH INPUT: 
6518 REH N NUHBER OF 6RID POINTS 
6512 REH Z ( N )  6RID POINTS (KNOTS) 
6514 REll F(N) FUNCTION VALUES 
6516 REH D(N) STANDARD ERRORS AT 6RID POINTS 

6528 RER OUTPUT: 
6522 REH ER STATUS FLAG 
6524 REH 8 SUCCESSFUL COHPLETITION 
6526 REH 1 SOLUTION IS P STRAIGHT LINE 
6528 REH 2 NURBER OF ITERATIONS IS INSUFFICIENT 
6538 REH 
6532 RER 
6534 REH AUXILIARY ARRAY: 
6536 RER R(6,N) 
6 5 3  R(5,8)=8 :R(5,1)=8 :P=B 
6548 R('d,B)=8 :R(B,l)=B :R(B,N)=B :RG?,N)=B 
6542 H=Z(Z)-Z(I) :F=(F(2)-F(l))/H 
6544 FOR 1.2 TO N-1 
6546 6.H :H=Z(I+l)-Z[I) 
6548 E=F :F~(F(I+l!-F(I))/H 
6550 S(B,I)=F-E :R(3,1)=2t(6tH)/3 :R(9,1)=H/3 
t 5 5 2  R(2,1)=D(I-1!/6 :R(B,I)=D(ltl)/H 
6554 
6556 NEXT I 
6558 FOR 1:2 TO N-1 
6568 S I  1 , I )=R(B,  I ) tRI 0, I )MI1 , I ) tR( 1 I I )tRl2,I) tR (2,l) 
6562 S(2,1)=R(B,1~tR~1,lt1~~R11,1~tR12,1~1) 
6564 
6566 NEXT I 

6518 REH In HAXIHUH NUHBER OF ITERATIONS 

S(4,N) S(J,I) COEFFICIENTS OF THE J-TH DEGREE TERHS (5.8 ... 3)  
S(4,I) INTEGRhL VALUES FROH I l l )  TD Z(I) 

R(1,I )=-D( I )/ED( I)  /H 

IF I(N-1 THEN S13,1)=R(0,I)tR12,It2) ELSE S(3,1)4 



243 

6568 REfl ---------- START OF ITERBTION 

6572 FOR Iz2 TO N-1 
6574 RIl,I-l~=FlRl8,I-l~ :RI2,1-21=6tR(8,1-2) 
6576 
6578 
6588 
6582 NEXT I 
6584 FOR 1.N-1 TO 2 STEP -1 
6586 R(5,1)=R(B,I)tR(5,1)~[l,l)tR(5,ltl) 
6588 IF I(N-1 THEN R ( 5 , I ) = R ( 5 , l ) - R ( 2 , 1 ) & R l 5 , I ( 2 )  
6598 NEWT I 
6592 E=8 :H=0 
6594 FOR 1.1 TO N-1 
6596 
6598 
6688 NEXT I 
6602 6=-HtD(N)tD(N) : R ( 6 , N ) 4  :E=E-GtH :FZ:E&PIP 
6604 I F  BPS(Pt (Z(N) -2( I ) ) )  ) l E t 8 8  AND F2(N THEN ER:l :60TO 6630 
6606 I F  BBS(FZ-N)GN/lBB99 THEN ER=B :60TO 6639 
6608 F.8 :H=IR(6,2 )-R(6,1 I I /(2(2)-2(1) 1 
6619 FOR 1.2 TO N-1 
6612 
6614 6=H-6-R(I,I-l)tR(B,I-1)-R(2,1-Z)tR(9,1-2) 
6616 
6418 NEXT I 
6620 H:E-PIF : I F  H 4  THEN ER.0 :60TO 6638 
6622 E=(N-F2)/( (SQR(N/E)tP)&H) 
6b24 IF 11.1 THEN P=PtE ELSE P=PtElSOR(N/FZ) 
6626 NEXT I T  
6628 ER=2 
6639 REA ---------- SPLINE COEFFICIENTS INTO S 
6632 S(B,N)=F(N )-PtR(b,N) :SI 2,N)4 
6634 FOR 1.N-1 TO I STEP -1 
6636 H d I  I + 1 ) - 2 ( 1  ) 
6638 SI 2, I )=R( 5, I ) 
6640 S l9 , I )=F( I ) -P IR(6 , I )  
6b42 S(1,1)~(Sl0,ltl)-S(B,I))/H-Ht(2lS(2,I)tS(2,Ilf))/3 
6644 S(3, I )=(S( 2, I t1 ) -512, I ) ) / (3 tH)  
6646 NEXT I 
6648 S( 1 ,N)=S( 1 ,N-1 ) t  12 (N1-2 (N-1 ) ) t(SIZ,H-l)tS(Z,W) ) 
6659 S(3,N)=9 :S(4,1)=9 
6652 FOR 1.2 TO N 

6579 FOR IT=~ TO i n  

RIB, I )=I /  ( P t S I  I , I )  t R I  3, I ) -FIR( 1,1-1)-6tRI2, 1-21 1 
R ( 5 ,  I )=S( 9, I )-R(l, 1-1 ) tR( 5 , I - I  ) -R(  2,I-2) tRI 5! 1-21 
FzPtS(2, I ) t R (  4, I )-HtR( I ,  1-1 ) :6.H :H=S(3, I ) t P  

6.H :H=IRI5, It1 )-R( 5, I )  1 /I I ( It1 1-2 I I ) ) 
R(6 , I  Iz(H-6) tD(  I ) tDI I ) :E=EtR(6, I ) t (H-6) 

6 4  :H=(R(6, I * l ) -R(6 ,  I )  )/I11 I+l)-I ( I )  ) 

F=Ft6tR(E, I ) t 6  :RIB,  11.6 

6654 H ~ Z ( I ) - I ( I - I )  
6656 S(4,1)~S~4,I-I)+HtlSIB,I)tS(8,1-1~)/2-HtHtHt(S(2~~)tS~Z,~-l~)/12 
6658 NEXT I 
6660 RETURN 
6662 RER t t t t t t t t l l t t t l l l t t t l i l l l l l t t t t t t t ~ t ~ l t ~ l ~ t l ~ l ~ t t ~ l l  

The input is similar to that of the module M63. No end condition flag is 

used since only natural splines can be fitted. & the other hand, ycu should 

specify the maximum number IM of iterations. The module returns the array S 

defined in the description of the module M63, and hence the function value, 

the derivatives and the integral at a specified X can be computed by calling 

the module W .  The important additional inputs needed by the module M65 are 

the standard errors givm in the vector D . With all D(1) = 0 , the module 
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returns the interpolating natural cubic spline, whereas t m  large 

m y  result in a straight line idicated by the error flag 

D(1) values 

ER = 1 . 

ExamDle 4.2.2 Detection of end points in potentiometric titration by spline 

smmthing 

The problem of Example 4.1.3 is revisited here. We determine the smoothing 

spline function and its derivatives assuming identical standard errors 

di = 0.25 in the measured pH. 

198 REH ........................................................... 
182 REH EX. 4.2.2 SHOOTHING BY SPLINE 
184 REH H E R E  R65 
106 REM ---------- DATA 
188 REM (NUNBER OF POINTS) 

112 REH [V,nl ;  pH1 
114 DATA 2.4, 2.642, 2.6, 2.716, 2.8, 2.786, 3.0, 2.877 
116 DATA 3.2, 2.986, 3.4, 3.126, 3.6, 3.295, 3.8, 3.480 
118 DATA 4.8, 3.659, 4-2, 3.816, 4.4, 3.952, 4.6, 4.874 
128 DATA 4.8, 4.183, 5.0, 4.35, 5.2, 4.384, 5.4, 4.480 
122 DATA 5.6, 4.579, 5 , 8 ,  4.682, 6.8, 4.791, 6.2, 4.988 
124 DATA 6.4, 5.845, 6.6, 5.211, 6.8, 5.444, 7.1, 5.859 
126 DPTR 7.2, 8.617, 7.4, 9.747, 7.6,10.134, 7.8,18.348 
128 DATl 8.8,18.471, 8.2,18.684, 8.4,18.692, 8.6,10.766 
2PC REI  ---------- READ DITP 
202 REID H 
284 DIH Z(N),FIN),D(N),S(4,N),Rlb,N) 
216 FOR 1.1 TO N 
288 READ ZII),F(I) 
:I0 NEXT I 
212 REH ---------- CONSTANT STANDARD ERROR 
214 SD=.25 
216 FOR 1.1 TO N :D(I)=SD :NEXT I 

220 18=28 :GOSUB 6501 
222 IF ER=l THEN LPRINT "STRAIGHT LINE' 
224 IF ER.2 THEN LPRINT "MAX NUHEER OF ITERATIONS I H  IS EXCEEDED' :STOP 
226 RER ---------- PRINT RESULTS 
228 VS=STRIN6$(65, "-'I 
238 A$=B 11.#1 11.111 11.111 1W.11 11111.W 
232 LPRlhT USING 'SMOOTHING SPLINE, ST. ERR: 1t.tt';SD :LPRINT 
234 LFRINT VS 
236 LPRINT 'V, 11 tlEAS. pH SROOTHED pH FIRST DER. SECOND DER." 
238 LPRINT Vt 
24C FOR 1.1 TO N 
242 LPRINT USING R1; Z ( I 1 ,F( I )  , S ( B ,  I 1 ,S( 1, I ] ,  2 W 2 ,  I )  
244 NEXT 1 
246 LPRINT V$ 
248 STOP 

iie DATA 32 

218 RE! ---------- CALL SROOTHING SPLINE RCDULE 

Note that the coefficients S(2,I) are rmltiplied by 2 to obtain the second 
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derivatives shown in the last colunn of the following Output. 

StIDOTHING SFLINE, ST. ERR: 0.25 

2.48 
2.60 
2.88 
3.80 
3.20 
3.40 
3.60 
3.88 
4.B0 
4.20 
4.40 
4.60 
4.80 
5.08 
5.20 
5.48 
5.68 
5.80 
6.08 
6.20 
6.40 
6.60 
6.881 
7.00 
7.28 
7.40 
7.60 
7.80 
8.00 
8.20 
8.40 
8.60 

2.642 
2 I 706 
?.786 
2 I 877 
2.986 
3.126 
3.295 
3.480 
3.659 
3.816 
3.952 
4.874 
4.183 
4.285 
4.384 
4.480 
4 * 579 
4.682 
4.791 
4.908 
5.045 
5.211 
5.544 
5.859 
8.617 
9.747 
18.134 
10.348 
18.491 
11.684 
10.692 
10.766 

2.625 
2 I 703 
2.788 
2.885 
3.103 
3.143 
3.303 
3.474 
3.644 
3.802 
3.945 
4,072 
4.186 
4.291 
4.389 
4.481 
4,564 
4.639 
4.718 
4.808 
4.961 
5.285 
5.885 
6,834 
8.027 
9.128 
9.898 
10.355 
10.588 
10.697 
10.754 
10.796 

8.38 0.08 
0.40 0.16 
8.45 0.34 
0.53 0.51 
0.64 0.59 
0.76 0.52 
0.84 8.28 
0.86 -0.84 
0.83 -0.30 
0.76 -8.42 
0.67 -8.48 
0.60 -0.32 
0.54 -8.23 
0.51 -0-16 
8.47 -0.16 
0.44 -0 120 
0.39 -8.25 
8.35 -0.16 
0.37 8.34 
0.57 1.62 
1.12 3.92 
2.22 7.83 
3.86 9.13 
5.57 7.63 
5.97 -3.43 
4.76 -8. 88 
3.83 -8.37 
1.64 -5.61 
0.78 -2.93 
8.37 -1.16 
a.23 -0.28 
0.20 0.80 

Using inverse linear interpolation the two titration equivalence pints are 

obtained as the zero-crossing points of the second derivative at 

and V = 7.14 ml . On Fig. 4.4 the second derivative curve of the 

interpolating spline (SD = 0) 

are shown. The false zero-crossing of the second derivative present at 

interpolation is eliminated by mmthing. 

V = 3.78 ml 

and that of the -thing spline (SD = 0.25) 

We note that another type of smmthing spline can be fitted by the 

traditional least squares method. In that case, however, the q subintervals 

on which t k  individual cubics are defined should be selected prior to the fit, 
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. 0  

Fig. 4.4. Second derivative of -thing (SD = 0.25) and interpolating (SD = 0) 

spl in- 

where q << n . Then the squared distance F2 between the smoothing function 

and the measurment points is minimized by rmltivariable linear regression. The 

extent of smoothing can be influenced only indirectly, changing the number and 

locations of the grid points. 

Apart from some special drift processes that w e  will treat separately, the 

noise in the measurements is expected to be the result of random processes 

rmch faster than the changes in the useful signal itself. Fourier transform 

spectral methods exploit this difference in frequency for separating the two 

components by considering a frequency-domain representation of the signal 

instead of its original time domain representation. 
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4.3.1 Continuous Fourier transformation 

The frequency domain representation F of a function f depending on 

time t is defined by the Fourier transform 

m 

kCf1 = F(Y) = s f(t)exp(-iZllYt)dt , 
-m 

(4.31) 

where i =(-l)”’ and F depends on the frequency Y. If the integral in 

(4.31) converges, then the Fourier transform is one-to-me, and its inverse is 

given by 

The generally complex function 

parts according to 

F can be decomposed into real and imaginary 

m m 

F ( v )  = s f(t)cos(ZIbt)dt - is f(t)sin(2llvt)dt 
-m -m 

(4.33) 

due to the Euler equality expcix) = cos(x) + i sin(x). If f is even, then 

its transform F is real, F(v) = Re F(v). If f is odd, then F is 

plrely imaginary, F(Y) = i Im F(v). Otherwise F is a complex valued function. 

Sane elementary properties of the Fourier transform are listed in Table 4.3. 

Table 4.3 
Properties of the Fourier transform 

Property Relationship 

1 ineari ty ZCa1f1 + azf21 = a1ECfyI + a2ZCf21 

time shifting ZCf(t-to)l = FCf(t)lexp(-i2nvt0) 

differentiation IC--fl = i2n~ZCfl 
d 

dt 

integration Z[ s mf(7)d7 3 = (iZn~)-~ZCfl 
-m 
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It is important that differentiation and integration in the time domain give 

multiplication and division, respectively, by the variable v in the 

frequency domain. The role of convolution integrals will be further discussed 

in Chapter 5. 

We can regard Fourier transform as decomposing f into trigonometric 

functions of different frequencies. This spectral decomposition is based on the 

property 

m 1 ~ ~ ( z n v l t ) i  = A ~ E ~ ~ - ~ ~ )  + 6(r+v1)1 (4.34) 

where 6(v-vl) denotes the Dirac impllse such that 6(v-vl) = 0 for v f u1 

and 

(4.35) 

By the time shifting property shown in 

cosine function 

Table 4.3, the transform of a shifted 

The transform (4.36) is complex valued and vanishes at all frequencies except 

v = r1 and v = -v l  . The complex number F C v I  can be represented by its 

amplitude A(v) = CRe%(v) + Im2F(v)11'2 and phase 

P ( V )  = arc tg [Im F(v)/Re F(v)]. ck functions of v ,  A ( v )  and ~ ( v )  are 

called amplitude and phase spectra, respectively. In the amplitude spectrum of 

(4.36) we have ~ ( 7 ~ )  = ~ ( - v ~ )  = h1 , whereas ~ ( v )  = 0 if I v I  IC v1  . Since 
any piecewise continuous function can be expanded into a sum of trigonometric 

functions with different amplitudes and phases, by (4.36) and by the linearity 

of Fourier transform the amplitude and phase spectra A ( v )  and ~ ( v )  uniquely 

specify the function 

only as the power spectrum $ ( v )  = Re%(") + Im%(v) , which does not specify 
f uniquely, but contains sufficient information in many applications. 

f. The frequency domain description is frequently given 

This is the analytical formalism we will need in the present section. The 

experimental data are, however, almost invariably given by a limited set of 

discrete observations instead of a continucus function defined for -m < t < m. 

The next s u m t i o n  extends the Fourier transformation to a finite set of 

sampled data. 
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4.3.2 Discrete Fourier transformation 

Consider a sample of n observations {yo, y1, ..., yn-l> and define i t 5  

discrete Fourier transform by 

n-1 
Tl 

L A  
ak = ) yjexp(-i2nkj/n) , k = 0, 1, ..., n-1 , 

j=Q, 

(4.37) 

where the n ak values are generally complex numbers. The transformation i s  

one-to-one, and i t s  inverse i s  given by 

n-1 

2, akexp(i2nkj/n) , 
k=O 

1 Tl 

yj  = ; j = 0, 1, ..., n-1 . (4.38) 

The expression (4.37) can be extended fo r  k < 0 or k > n-1. A t  f ixed j, 

however, the points exp(-iZmj/n) are on the unit c i r c l e  and constitute the 

edges of a regular polygon, and hence the sequence 

periodic with the period n . Thus a n m k  = ak fo r  a l l  m. I n  addition, for  

a real sequence {yo, yl, ..., yn-l} we have the property dk = +,-k , i.e., 

Re ak = Re anWk 

... a-1, do, a1 ... i s  

and I m  ak = - I m  an-k . 
Let {yo, yl, ..., yn-l} represent the sampled values of  a continuous 

function f, i.e., yk = f ( k A t )  , where A t  i s  the length of the sampling 

interval .  It i s  interesting t o  see how the discrete transforms dk are related 

t o  the sampled values F(kAt) of the Fourier transform of the continuous 

function f . Assume f i r s t  that f vanishes outside the interval  C0,Tl , 
where T = nAt is the sampling time, and f ( 0 )  = f ( T )  . Estimating the 

integral i n  (4.31) by the trapezium ru le  we have 

n-1 
T 

F ( v )  = J0f(t)exp(-2nvt)dt 2 At): yjexp(-i2nVjAt) . 
j=1 

(4.39) 

Let ? ( Y )  

sampling interval  Av i n  the frequency domain by 

AV = l / (nA t )  . (4.40) 

denote the s u m  on the r i gh t  hand s i d e  of (4.391, and define the 

Then vk = kAv and 

n-1 -.. Tl 
F(vk) = 2, yjexp(-i2nkj/n) = ak . 

j=1 

(4.41) 

Thus, for  cur special function f, F(kAv) z Atak. I f  the yk values are real, 
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then by (4.40) the points of the dixrete spectrum are obtained at the 

frequencies = 0 , v1 = 1 / T  , v2 = 2/T, ..., vnI2 = n/(2T) , where vnI2 

is called the Nyquist critical frequency. The further points of the spectrum 

are determined by the relation 

additional information. 
an-k = ak , and hence do not offer any 

kwever, unless special care is exercised, generally the dixrete spectrum 

does not estimate very well the sampled continuous spectrum. The problems we 

face are as follows. 

Aliasing is present if the function 

a frequency Y higher than Y,,,~, say Y = vnI2 + &. This component 
shows up in the spectrum at the frequency 

distorted unless f i5 bandwidth limited to less than the Nyquist 

critical frequency. This relationship is the sampling theorem implying that 

the sampling interval At shauld be chrxen sufficiently small, depending 

on the estimated bandwith of f. 

f contains a periodic component with 

vnI2 - AY. Thus the spectrum is 

Broadening and "leakage" of the spectrum is the consequence of the finite 

interval [0,T] of integration in (4.39), if f does not vanish outside 

this interval. In fact, (4.39) then means estimating the Fourier transform 

of the product 

defined by 

f(t)WCm,Tl, where WCO,T] is the square window function 

(4.42) 

Thus Atak 2 PCfWC0,T13, which is the convolution integral of the 

transforms ZCfl and Z[Wc0,T~3. The latter has rather unpleasant 

properties. For example, Fig. 4.5 shows the even square window 

and its 

similar sidelobs. The undesired convolution of ZCfl with such a boxcar 

function implies that the spectrum is broadened and has several sidelobs 

near the critical frequency Y ~ , ~  . It can be improved by increasing the 

samDle size. 

WC-T,TI 
(purely real) transform. NWC0,T33 i5 caplex valued, but has 

CIlthough one has to deal with the above problems, the discrete Fourier 

transformation is still a powerful tool, mainly because of its numerical 

efficiency. The efficiency does not follow from (4.37) that requires n2 

complex multiplications. As shown, however, by Cooley and Tukey (ref. 141, the 

transform can be computed in operations with an ingenious algorithm 

called Fast Fourier Transformation (FFT). The original Radix-2 version of FFT 

applies to sample sizes n = 9 , where m is a positive integer. This 

nxlogp 
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assumption i s  not very restr ict ive,  since we can always add a suf f ic ient  number 

of  zeros to  the sample i n  order to  reach the nearest power of  2. As w e  w i l l  

discuss, such zero addition might even improve the spectrum. 

sin2T9Q F(3) = - I 

I I I 1 I--- 

Fig. 4.5. The boxcar function f ( t )  = WC-T,T3 and i t s  Fourier transform F ( v )  

The following module i s  b a d  on the FORTRAN program of Cooley, Lewis and 

Welch (ref .  15). 

Proqram module M67 

6 7 8 0  REtl t t t t l ~ l ~ ~ l l l l l l l l l l l l $ l l l ~ l l l l l l ~ l l l ~ ~ l ~ ~ ~ ~ ~ l l l l l ~ ~  
6 7 8 2  REM I FAST FOURIER TRRNSFORH I 
6 7 8 4  REH I RADIX-2 ALGORITHM OF COOLEY AND TUKEY t 
6 7 0 6  RE! l l l l l l l l l ~ l ~ ~ $ l l ~ l ~ l l l l l l ~ l l l ~ l l ~ l l l l l l l l ~ ~ l l ~ l ~ l ~ ~  

6 7 1 8  REtl tl LOK'(NLltlBER OF POINTS) 
6712 REH A(1 ... 2.1, 
6 7 1 4  REH B(1. . .2*tl)  
b 7 1 5  RER I N  I D E N T I F I E R  OF INVERSE TRANSFORMATION 
6 7 1 8  RE! 0 - DIRECT TRANSFORMATION 
6 7 2 0  REH NOT 0 - INVERSE TRANSFORMATION 
6722 REH OUTPUT: 
5 ? 2 4  REtl A(1. I .2*tli REAL PART OF TRANSFORNED SEQUENCE 
6 7 2 6  REll B(1.. .2*ti) IHA61NARY PART OF TRANSFORHED SEQUENCE 

6788 RER INPUT: 

REAL PART OF FUNCTION VALUES 
IHRGINARY PART OF FUNCTION VALUES 
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The module assumes that the sample points are complex. The real components are 

placed in vector A ,  i.e., Re yo is stored in Q(11 on input. For a real 

valued sample (like a titration curve) vector B should contain zeros. Cn 

cutput the transform i5 stored in the same vectors, i.e., 

in A ( 1 )  and Im a, in B(1). The module compltes the inverse transform (4.38) 

if the inver- transformation flag I N  has a nmzero value. 

Re a, can be found 

Before considering a numerical example we discuss  me of the m s t  

fundamental potential applications. 

4.3.3 Qpplication of Fourier transform techniques 

Sroothinq. The basic idea is to eliminate the highfrequency part of the 

spectrum and obtain a smoothed function by inverse transformation. Applying 

such a square window to the spectrum gives, hDwever, pDOr results due to the 

phenomena of broadening and leakage. Windowing the spectrum by a smoother 

function is mch better (ref. 16). Fig. 4.6 shows the simple triangle windrw we 

will use in Example 4.3.3. 
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Fig. 4.6. A simple window Wro,n-ll fo r  smoothing real  data 

The mult ip l icat ion of the spectrum by a window i s  equivalent t o  a convolution 

i n  the t i m e  d m i n ,  and hence the approach i s  related t o  the Savitzky-Golay 

procedure. Indeed, by (4.10) th i s  l a t te r  i s  also a convolution of the function 

values and the coeff ic ients ci/F . 
Another approach to  smoothing involves several W m t s  of  the sample, 

averaging the i r  spectra, and applying the inverse transformation t o  the i r  mean 

( re f .  17). Eliminating the high-frequency part  of the spectrum, both approaches 

are also called low-pass f i l t e r i ng .  

Base l i ne  correction. I n  a number of  applications the signal i s  distorted by 

slow effects, resulting i n  the d r i f t  of the base l i n e  of  the output signal of 

the instrument. Such slow processes are, f o r  example, the electrochemical 

changes on the electrode surface i n  EEG measurements ( re f .  la), and the 

fluorescence signal i n  Raman spectroscopy (ref .  16). The data are 

then f i rs t  smoothed by low-pass f i l t e r i ng ,  and substracted f rom the or ig ina l  

signal, thereby eliminating the low frequency cmpcnents. 

Interpolation and smoothins by addition of zeros. We may need t o  add zeros t o  

the sample simply i n  order t o  obtain 

however, also increases the length of the observation interval  [0,T], and hence 

the number of frequences i n  the discrete spectrum. Smoothing the spectrum by an 

appropriate window and applying the inverse transformation then resul ts i n  an 

p i n t s .  The addition of zeros, 
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enhanced sample with new d a t a  p o i n t s  between the o r i g i n a l  ones. 

D i f f e r e n t i a t i o n  and i n t e a r a t i o n .  As seen from Table  4.3, we can e s t i m a t e  the 

d e r i v a t i v e  of t h e  sampled funct ion i f  we mul t ip ly  ak by t h e  f a c t o r  ( i 2 l l k A v )  

before  the inve r se  t r ans fo rma t im.  Th i s  operation a m p l i f i e s  the high frequency 

components, and hence it can be used only with a smoothing window as a f u r t h e r  

r ru l t i p l i e r .  Ch the other hand the spectrum is divided by the same f a c t o r  i n  

o rde r  to e s t ima te  t h e  i n t e g r a l  of t h e  sampled funct ion.  Therefore ,  a t  

s u f f i c i e n t l y  l a r g e  values  of k 

the i n t e g r a t i m .  Th i s  shows why i n t e g r a t i o n  always l eads  to  sane smoothing. 

the high-frequency components does n o t  d i s t u r b  

Munerical deconvolution. A number of techniques t h e o r e t i c a l l y  r e s u l t  i n  l i n e  

spectra, with n m z e r o  va lues  only a t  well  def ined va lues  of t h e  independent 

va r i ab le .  Due to  s c a t t e r i n g  phenomena, however, the s e p a r a t e  l i n e s  are 

broadened i n t o  p e a k s  of a cont inuous cu rve  that may be viewed as the 

convolution of t h e  o r i g i n a l  l i n e  spectrum with the Gaussian funct ion 

g ( t )  = exp(-atZ) ( r e f .  16). By the last  r e l a t i o n  i n  Table  4.3 we can restore 

the t h e o r e t i c a l  l i n e  s t r u c t u r e ,  or  a t  least s i g n i f i c a n t l y  narrow the p e a k s  by 

d iv id ing  the transform of the ou tpu t  s i g n a l  by the transform of the Gaussian 

and then performing inve r se  t ransformation.  Th i s  procedure is of cons ide rab le  

importance i f  t h e  p e a k s  ove r l ap  and t h e i r  number is n o t  a p r i o r i  k n m .  

Feature  e x t r a c t i o n  and d a t a  reduct ion.  A sampled cont inuous s i g n a l  can 

f r equen t ly  be well  descr ibed i n  terms of a few l awf requency  components of its 

d i s c r e t e  Four i e r  transform. Th i s  enab le s  u s  to s tudy ,  store and compare 

r e l a t i v e l y  s h o r t  v e c t o r s  i n  l a r g e  d a t a  bases. 

Example 4.3.3 Detection of  end p o i n t s  i n  po ten t i cme t r i c  t i t r a t i o n  by Four i e r  

transform techniques 

Cur goal  is again to f i n d  the maxima of  t h e  smoothed first d e r i v a t i v e  of the 

t i t r a t i o n  curve f i r s t  s tud ied  i n  Example 4.1.3. Recal l  that t h e  d i s c r e t e  

transform of  a real sample s a t i s f i e s  the r e l a t i o n s h i p  

j = 1, 2, ..., n/2-1 . 
an/2+j = Sn/2-j f o r  a l l  

h l t i p l y i n g  t h e  transform by the  window Wco,n-13 show, i n  Fig.  4.6 t h i s  

property i s . p r e s e r v e d ,  and hence the i n v e r s e  t ransform of t h e  product is purely 

real. The window (or low-pass f i l t e r )  is desc r ibed  i n  terms of two parameters, 

the index NS of the frequency w h e r e  smoothing is s t a r t e d ,  and t h e  smothing 

f a c t o r  SM that determines t h e  slope of t h e  decreasing part of t h e  window as 

show, on Fig.  4.6. The transform of  the -tW funct ion is then the product 

Z[f]Z;[W]. To ob ta in  the smoothed d e r i v a t i v e  of f , we mul t ip ly  t h i s  product by 
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the coeff ic ient  (i2llkAv) and perform inverse transformatim, whereas the 

smmthed curve i s  the inverse transform o f  the product itself. 

The following main program includes the above steps. 

180 REM 

182 REW EX. 4.3.3 APPLICATION OF FFT TECHNIQUES 
I84 REH MERGE Hb7 
186 REH ---------- DATA 
188 REH (NUHBER OF POINTS) 
118 DATA 5 
112 RER (V,ml; pH1 
114 DATA 2.4, 2.642, 2.6, 2.786, 2.8, 2.786, 3.0, 2.877 
116 DATA 3.2, 2.9e6, 3 . 4 ,  3.126, 3.6, 3.295, 3.8, 3.488 
118 DATA 4.0, 3.659, 4.2, 3.816, 4.4, 3.952, 4.6, 4.874 
128 DATA 4.8, 4.183, 5.8, 4.285, 5.2, 4.384, 5.4, 4.488 
122 DATA 5.6, 4.579, 5.8, 4.682, 6.0, 4.791, 6.2, 4.9~8 

126 DATA 7.2, 8.617, 7.4, 9.747, 7.6,18.134, 7.8,in.34e 
128 DATA e . 8 , ~ .  491, e.2,1~.6~4, 8.4, 18.692, 8.6, 111.766 

1 2 4  DATA 6.4, 5.845, 6.6, 5.211, 6.8, 5,444, 7.0, 5.859 

200 REH ---------- READ DATA 
282 READ W :N=2*N 

286 FOR 1.1 TO N 
208 READ Z(I),F(I) 
210 A(I)=F(I) :B(I)=0 
212 NEXT I : D X = I ( P ) - Z ( I )  
214 REM ---------- CALL FOURIER TRANSFORNATION MDDULE 
216 I N 4  :6USUB 6706 

SHOOTHING FROR THE NS-TH FREQUENCY 218 REM _ _ _ _ _ _ _ _ _ _  
220 RER Stl: SHOOTHIN6 FACTOR 
222 NS=N/8 :SM=l 
224 FOR 1.2 TO N / 2  

228 IF S(B THEN S=B 
238 M I  )=S1A( I )  :B(I)=SkB( I) 
232 A I N t 2 - I  ) = A (  I) : B ( N t 2 - I  )4( I )  
234 NEXT I 
236 S=l -SR :IF S(0 THEN S.8 
238 A ( N / 2 t l ) = A ( N / 2 t l )  tS 

STORE SHOOTHED TRANSFORH 248 RER _ _ _ _ _ _ _ _ _ _  
242 FOR 1.1 TO N 
244 U(I)=AIIl : V [ I ) = B ( I )  
246 NEXT I 

INVERSE TRANSFORHATION 248 REH _ _ _ _ _ _ _ _ _ _  
250 IN=1 :6OSUB 6788 
252 RE1 _____---__ STORE SMOOTHED FUNCTION VALUES 
254 FOR 1.1 TO N :S(I)=A(I) :NEXT I 
256 REM ---------- TRANSFOR1 OF THE F I R S T  DERIVATIVE 
2 5 8  D=6,28319/N/DX 
268 All)=B :BI1)=0 
262 FOR 1.2 TO N U t l  

284 D I M  I I N  1 IF i N )  3 S I N  1 ,Dl N 1 A ( N )  B(N 1 ,U( N 1 , V ( N  1 

226 S:I :IF I b N S  THEN S=1-(ItI-NS)IINI2tZ-NS)tSH 

264 A [  I )=-V[  I )tDt( 1-11 :B( 1 ):U( I ItDkI 1-11 
266 A ( N t 2 - I ) = A ( I 1  : B ( N t Z - I ) = - B ( I )  
268 NEXT I 
278 RER ---------- INVERSE TRANSFORMATION 
272 I N = l  :GOSUB 6788 
3 4  REIl ---------- STORE DERIVATIVES 
276 FOR 1.1 TO N :D(I)=A[I) :NEXT I 
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PRINT RESULTS 278 REn --________ 
280 V$=STRING$[50,"-") 
282 A)=n 1.11 ##.#I **.#I II#.llIB 
284 LPRINT ' 
2B6 LPRINT "NUMBER OF FREQUENCY WHERE SM@OTHING STARTS, NS . ,';NS 
288 LPRINT nSHOOTHING FACTOR, SW . . . . . . . , , , . . . . . . . . . . . . . . . . . ';St! 
298 LPRINT :LPRINT VS 
292 LPRINT V,  nl HEAS pH SHOOTHED pH RERIVITIVE' 
294 LPRINT V I  
296 FOR 1.1 TO N 
298 LPRINT USING AS;Z(I) ,F(I),S[ I )  ,D( I )  
388 NEXT I 
502 LPRINT V1 
304 STOP 

SMOOTHING BY DISCRETE FOURIER TRANSFORHATION": LPRINT 

The following output should be evaluated with care. 

SMOOTHING BY RISCRETE FOURIER TRANSFORHATION 

NUMBER OF FREQUENCY YHERE SMOOTHING STARTS, NS , . 4 
SWOOTHIN6 FACTOR, S i l  I , ,  . . . . , . . . . . , . . , . , . , . , . , . , , 1 

2.48 
2.60 
2.80 
3.00 
3.20 
3.48 
3.68 
3.80 
4.00 
4.20 
4.40 
4.68 
4.80 
5.88 
5.20 
5.40 
5.68 
5.88 
6.B0 
6.20 
6.40 
6-60 
6.80 
7.80 
7.20 
7.48 
7.60 
7.80 
8.00 
8.20 
8.48 
8.60 

2.64 4.44 -19.323 
2.71 2.67 -0,319 
2.79 2.81 -0.258 
2.08 2.15 0.521 
2.99 2.92 0,632 
3.13 3,04 0.910 
3.38 3.26 0.995 
3.48 3.44 1.043 
3.66 3.66 8 .  942 
3.82 s -82 0.824 
3.95 3.99 0.696 
4.07 4.10 8.601 
4.18 4.22 8.511 

4.38 4.41 8.414 
4.48 4.40 8.399 
4.58 4.57 0.484 
4.68 4.b5 8.438 
4.79 4.74 0.485 
4.91 4.85 8,610 
5 - 8 5  4.98 0.782 
5.21 5.19 1.244 
5.44 5.47 1.935 
5.86 b.36 7.811 
8.62 8.29 9.506 
9.75 9 .G  3.998 

18.13 10.18 1.888 
18.35 16.43 0.972 
10.49 1B.64 0.619 
18.60 18.61 -0 I 193 
10.69 18.75 -0.287 
10.77 8.99 -19.388 

4.29 4.31 8-45? 
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Indeed, both the m t h e d  curve and the derivative have sidelobs at both ends 

of the sample, but the results are satisfying at most o f  the internal points. 

Since Fourier transform spectral methods are usually applied to samples much 

larger than the one considered here, the distortion at a few outermost points 

is not a serious drawback. 

Exercise 

Repeat the computations with other NS and SM values and investigate 

how the number of maxima of the derivative changes. 

4.4.1 Heuristic methods o f  local interpolation 

Spline interpolation is a global method, and this property is not 

necessarily advantageous for large samples. Several authors proposed 

interpolating forrmlas that are "stiffer" than the local polynomial 

interpolation, thereby reminding spline interpolation, but are local in nature. 

The cubic polyncmial of the form 

(4.43) 

has been used in the i-th interval by Akima (ref. 191, where 

d = x - xi , hi = xi+l - xi , whereas 
the polynomial at d = 0 and d = hi, respectively. Cancatenation of the 

polynomials (4.43) gives a continuous and once continuously differentiable 

interpolating function. (Notice that cubic splines are twice continuously 

differentiable.) The kuristics lies in the choice of ti . The weighted sum 

ti and ti+l denote the derivative of 

(4.44) 

has been proved useful where 

forrmlas have been suggested by Butland (refs. 20,Zl). 

mi = (yi+l - yi)/hi . Slightly different 
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Exercise 

0 Interpolate the titratim curve implementing Akima's method. Compare the 

interpolating curve with the results of local cubic interpolation and spline 

interpolation. 

4.4.2 Praessins of spectroKoDic data 

In order to maximize information obtained from raw spectroscopic data, 

analytical chemists and instrumental specialists depend M signal processing 

and apply a large number of specialized versions of the basic methods 

considered in this chapter, as well as the parametric methods discussed in the 

previous chapter, see, e.g. (ref. 22). Here we provide only an example of 

parametric methods. Table 4.4 shows 20 points of the electronic absorption 

spectrum of o-phenilenediamidine in ethanol (ref. 23) .  

Table 4.4 
Points of an electronic absorption spectrum 

Absorptivity 20000 29020 3mz0 32002l lWQ#d 9002 &!?I00 &mil 

Frequency, cm-I 4- 4 1 m  4waew 390C30 36000 3 7 m  3612U10 35QUGl 

Absorptivity 6500 &!?I00 38mm 1800 Wil 950 1BZ0 27aM 

Frequency, cm-I 340iU1 33007l 32202 31- 

Absorptivity 3i00 2500 850 170 

Following the treatment in (ref. 23) we separate the spectrum into 3 

Gaussians, and estimate the parameters 

function 

Ai,Bi and Ci, i = 1, 2, 3, of the 

y = L, T-l Aiexp[ -[ 3i;--L] - c. 2 ] 
i=l 

(4.45) 

using the nonlinear least squares module M45. The initial estimates of the 

parameters shaKl in Table 4.5 can be obtained by inspecting the curve. Indeed, 

Ci is the location of the i-th peak, Ai is its height and Bi is its 

half-width multiplied by Jz . The initial estimates and the ones rwlting 
from the fit are sham in Table 4.5. The fit is plotted on Fig. 4.7. 
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Table 4.5 
Parameter e s t i m a t e s  i n  model (4.45) 

I n i t i a l  

390m 
2500 

46wm 
6500 
2500 
420m 
3 m  
2 w  
34020 

Final 

37165 
2365 

4m46 
64619 
2754 
42am 
3369 
1844 
34434 

95% confidence in te rva l  

-106 - 44223 
1946 - 2784 
47774 - 48319 
52Z0- 7588 
2210 - 3299 
41419 - 42741 
2271 - 40ilH 
1684- 2m3 
34247 - J46MI 

___l___________l_ 

a0 

u o v e  n u m b e r .  l / c m  

Fig. 4.7. O b s e r v e d  (poin ts )  and f i t t e d  (continuous) e l e c t r o n i c  absorption 

spectrum 

Exercise 

Use smoothing s p l i n e  to obtain the i n i t i a l  e s t i m a t e s  f o r  peak locat ion ( t h e  

l o c a t i m  of the m a x i m u m ) ,  peak height ( funct ion value a t  t h e  maximum poin t )  
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and half-width (the distance between the maxirmm point and the inflection 

point). 
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DYNAMICAL MODELS 

This chapter is devoted to predicting the behavior of systems modelled by 

ordinary differentidl equations of the form 

d 
-- y = f(t,y) , (5.1) 
dt 

that account for relationships between the dependent varjables 

..., yn)T 
To obtain such models, one first usually formulates balance equations for 

extensive quantities such as mass, mergy or momentum, cmsidering all changes 

that occur in the system during a mall time interval At. If these changes are 

smooth, and the system is homogenecus, i.e., its variables do not significantly 

depend on the spatial coordinates, then the assymptotic treatment At -> 0 

results in a rodel of the form (5.1). For example, the rate of the radioactive 

decay of y atans is proportional to the number of atoms. T b s  Ay = - kyAt , 
where k is the positive decay constant, and At -> 0 gives the well know 

differential equation 

y = (yl, y2, 
and their time derivatives dy/dt = (dyl/dt, dy2/dt, ..., dy,/dtlT . 

( 5 . 2 )  

Equations (5.1) define a direction vector at each point (t,y) of the n+l 

dimensional space. Fig. 5.1 shows the field of such vectors for the 

radioactive decay rodel (5.2). Fhy function y(t), tangential to these vectors, 

satisfies (5.2) and is a solution of the differential equation. The family of 

such curves is the so called general solution. For ( 5 . 2 )  the general solution 

is given by 

y = c*xp(-kt) , (5.31 

where c is an arbitrary constant. There exists, howwer, m l y  one particular 

solution through any fixed point (t,yo), where yo = y(0) is called initial 

condition or initial value, and it uniquely determines the value of c in the 

expression (5.3). 
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\ \ \ \ \ \ \  

t 

Fig, 5.1. Vector field defined by the differential equation 

Existence and uniqueness of the particular solution of (5.1) for an initial 

value 

sufficient to a55ume that the functim f is differentiable and its 

derivatives are bounded. Except for a few simple equations, however, the 

general solution cannot be obtained by analytical methods and we must seek 

numerical alternatives. Starting with the knom point 

methods generate a sequence (tl,y'), (t2,p), ..., (ti,yi), approximating the 
points of the particular solution through 

large and we shall be content to outline a few popular types. [he of them will 

deal with stiff differential equations that are very difficult to solve by 

classical methods. Related topics we discuss are sensitivity analysis and quasi 

steady state approximation. 

p can be s h  under very mild assumptions. For example, it is 

(to,p), all nwrical 

(to,p). The choice of the method is 

Both the function f and the initial condition p may depend on unknown 

parameters p : 

d 

dt 
-- y = f(t,y,p), y ( 0 )  = P(P) . (5.4) 
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.* 

A frequent problem is to estimate p from the sample { (ti,yi), 

i = 1, 2, ..., nm 1, where yi denotes an error-corrupted observation of the 

solution. If the solution is known in analytic form, we have a parameter 

estimation problem treated in Chapter 3. In principle, one can use  the wne 

methods even without an analytical solution, solving the differential equations 

numerically in each iteration of the estimation procedure. The canputational 

cost of such treatment is, hmever, too high for most personal canputers, and 

we will propose a special technique with improved numerical efficiency. 

.* 

Modeling of saw systems leads to higher order differential equations of the 

form 

,(m) = f(t,y,y(l) ,..., y(m-1)) . (5.5) 

The additional variables 

a set (5.1) of m first-order differential equations, and hence you do not 

need special methods to solve (5.5). Nevertheless, we will treat separately the 

problems of identifying and inverting single-input, single-cutput linear 

systems described by the equation 

y(m) + aly(m-l) + ... + amy = blu(m-l) + ... + bmu , 

xi = y, x2 = y(l), . . . , xm = y(m-ll reduce (5.5) to 

(5.6) 

where u(t) is the input and y(t) is the output of the system. 

Ordinary differential equations are suitable only for describing horogenwus 

systems, and we need partial differential equations if the variables depend 

also on spatial coordinates. The solution of such equations is beyond the x o p e  

of this b w k .  

5.1 W R I W  SDLUTICN IF ORDINPRY DIFFEREMIa ECXKSTIauS 

Although not r e c m d e d  for practical use, the classical Euler 

extrapolation is a convenient example to illustrate the basic ideas and 

problems of numerical methods. Given a point (ti,y') of the numerical 

solution and a step size h, the explicit Euler method is based on the 

approximation 

to ti+l = ti + h by the expression 

(yi+' - y(i))/(ti+l - ti) 5 dy/dt to extrapolate the solution 

yi+l = y1 ' + hf(ti,y') . (5.7) 

ck seen fran Fig. 5.2, reducing the step size h improves the accuracy of 

this estimation. 
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Fig 5.2. True values y ( t )  and cmprted values y(i) i n  the Euler method 

While i n  the f i r s t  step the deviation from the exact solution stems only from 

approximating the solution curve by i t s  tangent l ine,  i n  further steps we 

calculate the Slope a t  the current approximation instead of the unknown 

true value y(ti), thereby introducing additional errors. The solution o f  

(5.2) is given by (5.31, and the to ta l  error E i  = y(ti) - yi f o r  t h i s  

simple equation i s  

yi 

Ei = y(ti-l)exp(-kh) - (1 - kh)yi-l . (5.8) 

Since yi-l = y(ti-l) - Ei-l , (5.8) yields the recursive re la t ion 

Ei = [exp(-kh) - (1 - kh)ly(ti-l) + (1 - kh)Ei-l . (5.9) 

The f i r s t  term i n  (5.9) i s  the local truncation or step error that  occurs i n  

a single step and does not take i n t o  accwnt the use of 

y ( t i - 1 ) .  The second term shows the propagation of  the error 

primary importance to  keep the ef fect  of  

resulting i n  the s t a b i l i t y  of the method. I n  t h i s  simple example the 

yi-' instead o f  

Ei-l. It i s  of  

Ei decreasing i n  l a t t e r  steps, 
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requirement of stability implies 11-khl 5 1 , 50 that 

(5.10) 
2 

k 
h < - .  

Thus, stability can be achieved only at sufficiently small step sizes. Such 

steps decrease also the truncation error, but increase the required 

computational effort. Therefore, a c m  goal of all numerical methods is to 

provide stability and relatively small truncation errors at a reasonably large 

step size (refs. 1-2). 

The stability of the Euler method is improved by using interpolation instead 

of extrapolation, and considering the tangent evaluated at ti+l : 

yi+l = yi + hf(ti,yi+') . (5.11) 

For the special case of (5.2) we can solve (5.11) as 

and then the total error is given by 

1 
y(ti-l) + (5.12) 

1 + kh 1-1 ' 

The truncation errors in (5.9) and (5.12) are of the same magnitude, but 

the implicit Euler method (5.11) is stable at any positive step size h. This 

conclusion is rather general, and the implicit methods have improved stability 

properties for a large class of differential equations. The price we have to 

pay for stability is the need for solving a set of generally nonlinear 

algebraic equations in each step. 

To compare the explicit and implicit Euler methods w e  exploited that the 

solution (5.3) of (5.2) is known. We can, howwer, estimate the truncation 

error withwt such artificial information. Considering the truncated Taylor 

series of the solution, for the explicit Euler method (5.7) we have 

(5.13) 

where we assumed 

of  8 is between ti and ti+l, but otherwise unknown. Nevertheless, (5.13) 

shows that the truncation error is proportional to 

expression for each method, and express the truncation error in the form 

CXhP+' , where the integer 
explicit and implicit Euler methods are both first order ones. While a higher 

order implies smaller truncation error, this does not necessarily mean improved 

yi = ~ ( t ~ - ~ )  to obtain the local truncation error. The value 

h2. We can derive a similar 

p is said to be the order of the method. The 
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efficiency, since the cmpltational costs are usually increased. 

5.1.1 Runse - Kutta methods 

The formulas (5.7) and (5.11) of explixit and implicit Euler methods, 

respectively, are unsynmetrical, using derivative information only at me end 

of the time interval of interest. Averaging the Slopes of the two tangent lines 

means using m r e  information, and gives 

h 

2 
yi+l = yi + -[f(tiryi) + f(ti+l,yi+ql . (5.14) 

Since the formula (5.14) is implicit, we must solve a (generally) nonlinear 

equation to obtain 

yi+l = Y’ ’ + kl 3 

yi+’. To simplify the calculation, consider the prediction 

- 
(5.15) 

of yi+l , where 

kl = hf(ti,y’) . (5.16) 

Thus the prediction is based only on the explicit formula (5.7). Using this 

prediction, let 

approximates the formula (5.14), but is explicit. The improvement (5.18) 

makes t k  Euler method second order. The generalization of the above idea leads 

to the family of 

yi+l = yi + (blkl 

where 

km = hf (ti + dmh, 

Runge - Kutta methods in the form of 

+ $k2 + ... + bsks) , 

y’ + amlkl + ... + am,,lk,ll , 1 5 m s . 

(5.19) 

(5.20) 

The constants aij, bi and di are chosen to maximize the order p of the 

method. For any given p we need at least 5 terms in (5.191, where s 

depends on p (ref. 2). In particular, if p equals I, 2, 3 or 4, then 

s = p . For p = 5 , however, we need s = 6 terms, i.e., 6 function 

evaluations in each time step. This partly explains the popllarity of the 

fourth-order Runge - Kutta method : 



yi+l = yi + kl/6 + k2/3 + k3/3 + k l / 6  , 

where 

kl = hf ( ti,yl) 

k2 = hf( t i  + h/2, y l  + kl/Z) 

k3 = hf ( t i  + h/2, yi + k2/2) 

k4 = hf ( ti + h, y1 + k3/Z) . 
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(5.21) 

(5.22) 

The following program module extends the formula (5.21) t o  vector 

d i f ferent ia l  equatims of the form (5.1), simply by considering y , f and 

ki as vectors. 

Prosram module M70 

7000 REH ttttttttttttttttttttttt~ttttttttttttttt~ttttttttttt 
7P02 RE1 t SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS t 
7004 REN t FOURTH ORDER RUNGA-KUTTA IIETHOD t 
70C6 REM t t  t t t t t t t t t t ttttt t t t t t t tt t t t t t t t ttttt8tttt t t t ttt t t t 
7188 REIl INPUT: 
70lB RE! N NURPER OF DEPENDENT VARIABLES 
7012 HEM T INITIAL TIIE 
7814 REII Y(N1 INITIAL CONDITIONS 
7016 REN H TINE STEP SIZE 
7018 RER NS REQUIRED NUHRER OF STEPS 
7028 REH OUTPUT: 
7822 REn T END TINE 
7024 REII Y(N1 SOLUTION AT END TINE 
70% RE! USER SUPPLIED SIIBROUTINE: 
7028 REN FRO! LINE 900:  T,Y(N) --> DINj I RHS EVALUBTION ) 
7030 REM bUYILIAFiY ARRAYS: 
7032 REM R(N),Q(N) 
7034 FOR L = l  TO NS 
7 0 2  FOR I=1 TO N :R(ll=Y(I) :NEXT I 
7C38 GOSUP 900 
7040 FOP 1.1 TO N :QII!=D(II :Y(I)=R(IIt,StHtD(II :NEXT I 
7042 T=T+.StH :GOSUB 900 
7844 FOR I=1 TO Y :QII)=Q(I)t?tD(I) :Y(I)=R(I)t.5tHtDiI) :NEXT I 
7046 60SUB 900 
7048 FOR I=l TO N :QlIl=QIIl+~tD(Il :Y(I)=R(IjtHtD(I) :NEXT I 
7050 T=Tt.StH :GOSUB 900 
7852 FOR 1.1 TO N :YII!=R(I)tHi6t(Q(I]tD(I)) :NEXT I 
7054 NEXT L 
7156 RETURN 
7058 REH ttttt~tttttttttttttt~ttttttlttttttttttttttttttttFt~ 

The module ca l l s  the user supplied subroutine start ing a t  l i n e  VDZl that  

evaluates the r i gh t  hand sides of  (5.1) a t  the current values of  the Y 

vector and t ime  T and put them i n t o  the vector D. For a single equatim only 

Y ( 1 1  and D(1) are used. The step size H and the number NS of steps are 

selected by the user. 
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Example 5.1.1 Solving a microbial growth model by Runge - Kutta method 

In a batch fermentation process studied by Holmberg (ref. 3) the substrate 

is converted to biomass. The specific growth rate 

Michaelis - Menten equation 
u(y2) is described by the 

(5.23) 

where Vm is the m a x i m  specific growth rate, K, is the so called 

Michaelis - Menten constant and yz 

concentration y1 

are governed by the system of differential equations 

denotes the substrate concentration. The 

of the microorganisms and the cmcentration of the substrate 

(5.24) 

where Kd is the decay rate coefficient and Y is the yield coefficient. 

Typical values of the coefficients and initial conditions are 

K, = 3 g/1, Y = 0.6, Kd = 0.05 h-', yl0 = 1 g/l 

following main program determines the concentrations during a 10 hours 

period. 

Vm = 0.5 h-', 

and yZo = XI g/l. The 

100 REb _.._____________________________________-----.-.----------- 

1 0 2  REN EX. 5.1.1. FERMENTATION K I N E T I C S  BY RUNGE-IUTTA NETHOD 
104 REM bER6E I70 
106 REN ---------- DATA 
108 N=? :Vfl=.5 :G=3 :YY5.6 :liD=.05 

3 2  D I M  Y(N! ,D(N! ,R(NI ,CI INI  
204 REH ---------- I N I T I M  CONDITIONS! STEP S I Z E ,  NUIBER OF STEPS 
28t Y ( l ) = l  : ? ( 2 ) = 3 0  :T=8 :H=.E: ;FiS=l!H 
208 V I 4 T R I H 6 P I 4 0 ,  "-"! 
210 LPRINT "FOURTH-ORDER RUNGE-KUTTA, 
2!2 LPRINT V4 

2 1 6  LPHINT VO 
:I8 L P K N T  U S I N 6 "  11.11 
220 FOR !D=l TO 18 

224 L F R l N T  USINGn tU,R# HR.#l# t t . t # t U " : T , V ( l !  ,Y[2) 
226 N E l T  I D  
228 LF'R!IT \'I : P R I N T  
2 0  STUP 
5 P 0  RE\ ---------- RIGHT HAND SIDE EVALUATION 
902 NS=Vl??Y(Z)!(ES+Y[2! 1 

:at REM ---------- DII~EWNS 

STEP S I Z E  H=";H :LPRINT 

214 LPRINT " T I H E ,  h Y f ,  !I1 c, g l l "  

xw * X#t tU. tUUt" ;T,Y ( 1  1 , Y  ( 2 !  

m GOSUB 7100 

704 D ( 1 ! ~ M S t Y [ l ) - Y D t Y ! l )  
906 D i ? ) = - l ! Y Y t M S t Y ( l )  
908 RETURN 
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A way to check the accuracy of the solution is repeating the procedure with 

a smaller step size until the significant digits will be unchanged. More 

efficient methods of step size cmtrol will be discussed in Section 5.1.3. In 

this example the step size 

results in the following solution: 

h = 0.05 hours has been proved appropriate and 

FOUPTH-ORDER RUNGE-KUTTk, STEP SIZE H z  .05 

T I t l E ,  h 

0.00 
1.00 
z.00 
3.08 
4.00 
5.00 
t.OO 
7.00 
8.00 
9.00 

10.00 

1.000 
1.498 
2,239 
3.339 
4.955 
7 ,  2P0 

10.524 
14.586 
15.264 
15.557 
14.800 

30.0000 
29.0678 
27.6780 
25.b158 

18.1852 
12.0600 
4.5845 
0.2518 
8.0033 
0.0100 

22. sem 

5.1.2 Multistep methods 

In the improved Euler method (5.14) we use derivative information at two 

points of the time interval of interest, thereby increasing the order of the 

methal. A straightforward extension of this idea is to use the derivative at 

several grid points, leading to the k-step formulas 

( 5 . 2 5 )  

of &lams (ref. 2). More general rmltistep forrmlas can be derived using not 

only the derivatives, but also function values 

points when estimating yi+l. 
yi computed at previcus grid 

The multistep method (5.25) is explicit if b,, = 0, otherwise it is 

implicit. These latter are the test ones due to their improved stability 

properties. To use an implicit formula, haever, we need an initial estimate of 

yi+l. The basic idea of the predictor - corrector methods is to estimate yi+l 

by a p-th order explicit formula, called predictor, and then to refine yi+l 

by a p-th order implicit formula, which is said to be the corrector. 

Repeating the correction means solving the algebraic equation ( 5 . 2 5 )  by 

successive substitution. The use of m r e  than two iterations is not efficient. 
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The great advantage of  the predictor - corrector methods i s  that i n  addition 

t o  yi+l, i n  expression (5.25) we need only previously computed (and saved) 

function values. Thus, the computational cost depends on the number of 

corrections and does not depend m the order p of  the part icular forrmla. 

Starting a rmlt istep method i s  an additional problem, since no previcus 

funct im values are yet available. One can s t a r t  wi th a one step forrmla and a 

small step size, then gradually increase k t o  the desired value. A more 

c m  approach i s  t o  use Runge - Kutta steps of  the same order a t  the 

beginning. 

The module included here i s  based on the fourth order method o f  Milne 

( re f .  41, where the predictor 

i s  combined with the corrector 

h 

3 
y i + l  = yi-1 + -[ 2fi-1 - 4fi + f(ti+l,\/i+l) 1 . 

(5.26) 

(5.27) 

Only me correction i s  made and the procedure i s  started ca l l i ng  the fourth 

order Runge - Kutta module M0 . 

Prwram module M1 

7100 REM t t  t t  t t  t t t t t t t t  t 1 t 1111 t t i t  t t t  t t t t t t t  t t t  t t  t t t t t t t t t t t  
!I02 REM t SOLUTION OF ORDINARY DIFFERENTIAL ERUPlTlONS t 
7184 REM t PREDICTOR-CORRECTOR NETHOD OF IlLNE t 
7106 REM t t t t t t  t t t t  t t t t t t t  t 1 t I t t t t  t t I t  t t t t t  t t I t  t t t t t  t t  t t t t t t 
7108 REN INPUT: 
7110 HEM N NUNBER OF DEPENDENT VARIABLES 
7112 R5li T INITIAL TIME 
!I14 KEM Y ( N )  INITIAL CONDITIONS 
7116 REH H TIME STEP SIZE 
7118 REH NS 
7128 REN FC IDENTIFIER OF FIRST CALL 
7122 REH 0 - NOT FIRST CALL, THUS VALUES 
7124 REH YlIN),Y21N),Y31N),DI(NJlD2~N) ARE KNOWN 
7126 REN 
7128 REM I REQUIRES N S ) = l  ) 
7130 HEN OUTPUT: 
7132 REH T END TINE 
7134 REfi YIN! SOLUTION FT END TIME 
7136 REN 
7138 REH USER-SUPPLIED SUBROUTINE 
7148 REH FRUH LINE 908: T,YlN) --> DIN) I RHS EVALUATION 1 
7142 REH AUXILIARY ARRAYS: 
7144 REN R(NJ,QlN) 
7146 RE1 IODULE CALLED: H78 

REQUIRED NUHBER OF STEPS IAT FIRST CALL N 9 . 4 )  

NOT B - FIRST CALL 

I AND UPDATED VALUES OF YI(N),V2lN),Y3lN),DllN),D2lN),FC 
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7148 IF FC=I THEN N ~ = I  :K=NS :GOTO 7158 
7150 N1.4 :N?=NS :HS=l 
7152 FOR I 4  TO N :Y:!l)=Y(Il :NEXT I :GOSUB 7066 
7154 GDSUP 900 :FOR 1.1 TO N :Y2(I)=Y[I) :D?~Il=DIl) :NEXT I :GOSUB 7006 
7156 GOSUB 900 :FOR 1.1 TO N : Y l ( l ] = Y ( l )  :Dlill=D(Il :NEXT I :GOSUP 7000 
7158 FOR L=Nl TC N? 
7 1 b l  
7162 
1164 
7166 
7168 
7178 
7172 
7174 
7176 

7180 
7178 

RER ---------- PREDICT 
50SUB 900 
FOR 1.1 TO N 
Y=Y(I) :Yill=Y31 I)tl.333332;tHti?tD?(I1-DlIIlt2tD(I)) 
Y3(I)=Y2[I l  :Y~lIl=Ylll~ :Vl(I)=Y :D2lIl=Dl(I) :DllI)=Dll) 
NEXT I 
RE1 ---------- CORRECT 
T=T+H :GOSUB 900 
FOR 1.1 TO W 

NEYT I 
Y (I)=Y?( I )+H13tiD2( I 1+4tD1(I)tD[II 1 

The use of this module is similar to that of the module Ml0 . The only new 
variable is the first call flag FC. V w  should put a nonzero value into FC 

before the first call. In subseciuent calls FC will remain zero. 

Example 5.1.2 Solving the microbial growth model by Milne method 

Here we list only the lines differing from the ones of the main program in 

Example 5.1.1. 

102 RE! EX. 5.1.2. FERMENTATION KINETICS BY RILNE NETHOD 
111 RE! MERGE KO,K71 

282 Dlfl Y~Nl,li~N~,RlN1,O~Nl,~liN~,Y?~N),Y3(Nl,Dl~Nl,D2(Nl 

206 Ylll=l :Y12)=50 :T=0 :H=.%5 :NS=l/H :FC=I 

:lI LPHINT 'MnILNE NETHOD, 

222 G O W E  7100 

STEP SIZE H=";H :LPRINl 

The given step size results in the same solution, not repeated here. 

Fh important question is the relative numerical efficiency of the two 

methods or, m r e  generally, the two families of methods. At a fixed step size 

the predictor - corrector methbds 

This does not necessarily means, k v e r ,  that the predictor - corrector 
methods are superior in every application. In fact, in cur pr-t example 

increasing the step size leaves the Runge - Kutta solution almxt unchanged, 

whereas the Milne solution is deteriorating as sholKl in Table 5.1. 

clearly require fewr function evaluations. 
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Table 5.1 
Substrate (y2, g / l )  cmplted a t  d i f ferent  step s i z e s  H ( i n  hours) 

T i m ,  h Runge - Kutta Milne 

H = 0.1 H = 0.2 H = 0.25 H = 0.1 H = 0.2 H = 0.25 

4 1 2 . w  12 .04  12.060 1 2 . w  12.060 1 2 . w  
7 4.585 4.585 4.585 4.585 4.585 4.585 
8 0.252 0.253 0.257 0.252 0.253 0.242 
9 0.wD3 0.003 0.W 0.003 0.m 0.018 

10 0.002 0.020 0.002 0.002 -0.m1 -0.022 

Experience shows that the re la t ive ly  slow Runge - Kutta procedure i s  qui te 

robust and hence i t  i s  a g m d  choice fo r  a f i r s t  t ry .  

5.1.3 Adaptive step size control 

To control the step size adaptively we need an estimate of the local 

truncation error. With the Runge - Kutta methods a good idea i s  t o  take each 

step twice, using formulas of d i f ferent  order, and judge the error f rom the 

deviation between the two predictions. Selecting the coeff ic ients i n  (5 .m)  

t o  give the same aij and di values i n  the two formulas a t  least f o r  some of 

the internal  function evaluations reduces the overhead i n  calculation. For 

example, 6 function evaluations are required wi th  an appropriate pair of 

fourth-order and f i f th-order  formulas ( re f .  5) .  

I n  the predictor - corrector methods the magnitude o f  the f i r s t  correction 

i s  an imnediate error estimate with no additional cost. 

From the actual step size ha,-, error estimate ESt and the desired error 

bound Edes a new step size hn, can be selected according t o  

(5.28) 

where p i s  the order of  the method. The expcnent p instead of (p+l )  i n  

(5.28) resul ts i n  a more conservative step size control, taking i n t o  account 

also the propagation of errors. 

The mst sophisticated d i f f e ren t i a l  equation solver considered i n  this took 

and discussed i n  the next section includes such step size control. I n  contrast 

t o  m o s t  integrators, bowever, i t  takes a fu l l  back step when facing a sudden 

increase of  the local error. I f  the back step i s  not feasible, f o r  example a t  

s tar t ,  then only the current step i s  repeated with the new step size. 
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5.2 STIFF DIFFERENTIFIL EWTIONS 

Stiffness occures in a problem if there are two or m r e  very different time 

scales on which the dependent variables are changing. Since at least one 

cwnponmt of the solution is "fast", a small step size must be selected. There 

is, hOwever, also a "slow" variable, and the time interval of interest is 

large, requiring to p&form a large number of small steps. Such models are 

c m  in many areas, e . g . ,  in chical reaction kinetics, and solving stiff 

equations is a challenging problem of scientific canplting. 

The eigenvalues Xi of the Jacobian matrix 

of the function f in (5.1) provide s m  information on the stiffness of a 

particular system. Local linearization of f gives a linear combination of the 

expcnentials exp(xit) 

Let Xmin and xmax denote the smallest and largest eigenvalues, 

respectively. (In case of canplex eigenvalues we can use their moduli.) Then 

the ratio 

the stiffness, varying along the solution if the equations (5.1) are 

non 1 inear. 

as a local estimate of the behavior of the solution. 

hmax/Xmin shows the ratio of the involved time scales and n-easures 

Implicit methods, including predictor - corrector ones, are of primary 

importance in solving stiff equations. The traditional successive approximation 

correction procedures, however, do not converge, so that are usually replaced 

by a Newton - Raphsan iteration. This idea applies to any implicit method, and 

the rrultistep procedure of Gear (ref. 6) has been particularly successful in 

this respect. We provide, however, a program mcdule based on the so called 

procedure, that is rruch simpler than the Gear program, in spite of its 

camparable performance (ref. 7). The RCWW procedure realizes a semi-implicit 

Runge - Kutta method introduced by R-brock and modified by Gottwald and 

Wanner (ref. 8 ) .  

The basic formula of the semi-implicit Runge-Kutta methods is similar to 

(5.20) , but km appears also on the right hand side. Since the method is 

restricted to auton-s differential equations ( i . e . ,  the function f does 

not explicitly depend on time), we drop the argument t and replace (5.20) 

by the expression 

(5.30) 
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We need to  solve s sets of  nonlinear equations, but Rosenbrock devised a 

much simpler procedure. L inear izat im of  the m-th set of equations i n  (5.30) 

around the point 

m-1 
’ - ? - I  

y = y1 + L, aqkq 

q=l 

gives the equations 

(5.31) 

(5.32) 

fo r  k,, where I denotes the n m  iden t i t y  m a t r i x ,  and n i 5  the number of 

dependent variables (the dimension of  the y vector). Furthermore, the 

Jacobian m a t r i x  J i s  evaluated only a t  the beginning o f  the current time 

interval, and the a, c o e f f i c i m t s  are ident ical  f o r  any m. The 

fourth - order method then requires the solution of  4 sets o f  l inear 

equations 

Ek, = r, , m = 1, 2, 3, 4 (5.33) 

where 

Since a l l  4 sets of equatims i n  (5.33) have the same coeff ic ient  matrix E, 

a single LU decomposition i s  su f f i c i en t  as described i n  Sections 1.3.2 and 

1.3.3. The next point of the solution i s  predicted by 

yi+l = yi + blkl + b2k2 + b3k3 + b4k4 (5.34) 

whereas 

Ei+l = e l k l  + 4 k 2  + e ~ k 3  + e4k4 (5.35) 

i s  an estimate of  the local error vector. The values of  the coeff ic ients 

involved can be found i n  the l i n e  7260 through 7272 of  the following program 

module. 
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Prosram module M / 2  

7208 REN t t t l t t t t t t t t t t t t ~ t t t t t t t ~ l t t t t t k t t t t ~ ~ ~ t t l ~ t t t l l ~ l k  
7282 REM t SOLUTION OF STIFF DIFFERENTIAL EBUATlONS I 
7204 REM t SEMI IMPLICIT-RUNGE KUTTA METHOD WITH BICKSTEPS t 
7206 REH t ROSENBROCK-GOTTWALD-WANNER t 
7283 REH t t t t t t t t t t t t ~ t t t ~ t t t t ~ t t t i t t t t t i ~ t t t r t i t ~ i t t i i i t t t i  
7218 REH INPUT: 
7212 REH N 
7214 REH T 
7216 REM YIN) 
7218 RER TE 
7220 REIl EP 
7222 REN H 

7226 REM OUTPUT: 
7228 REM ER 
7238 REM 
7232 REH 
7234 REM T 
7236 REM Y(N) 
7238 REM H 
7240 REM I P  
7242 REM IR 

7224 RE! I n  

NUHRER OF DEPENDENT VARIABLES 
INITIAL TIME 
ItlITIAL CONDITIONS 
REQUIRED END TIME 
RELATIVE ERROR TOLERANCE 
INITIAL TIME STEP SIZE 
MAXIMU! NUMBER OF STEPS 

STATUS FLAG 
0 SUCCESSFULL SOLUTION 
I NUMBER OF STEPS INSUFFICIENT 

END TIME 
SOLUTION AT END TIRE 
SUOOESTED SIZE OF NEXT STEP 
NUMBER OF ACCEPTED STEPS 
NUMBER OF REPEATED AND BACKWARD STEPS 

7244 REM USER SUPPLIED SUBROUTINE: 
?246 REH FROM LINE 988: T,Y(N) --) O ( N )  ( RHS EVALUATION 
7248 RE1 AUXILIARY ARRAYS: 
7258 REM E(N,NI,A(N,N),RIN),YO(N),YLlN) 

7254 REM MODULES CALLED: H14,M15 
7256 IF T?=TE THEN ER.8 :GOT0 7414 
7258 RElr ---------- INITIALIZATION 
7260 Rl=.438 :A2=.9389487 :83=7.387954E-82 
7262 C1=-1.943474 :C2=.4169575 :C3:1.323968 
7264 C4=1.519513 :C5=1.353788 :C6=-.8541515 
7266 81=.7298448 : B2=5,418698E-B2 
7268 B3=.2815994 :B4=.25 
7270 E1=-1.908589E-82 :E2=.2556888 
1272 ES=-B.b38163E-02 :E4=.25 
7274 IP.0 : I R 4  :LS=-l :LE4 :SF4 :TR=T 
7276 FOR I=l TO N :YOlI)=Y(I) :NEXT I 
7278 REM ---------- MAX NUMBER OF STEPS OR END TIME REACHED 
7288 IF IP)=lM THEN ER=I :GOT0 7414 
7282 IF TtH?=TE THEN LEE-1 :HO=H :H=TE-T 

JACOBIRN HRTRIX 7284 RE)I _ _ _ _ _ _ _ _ _ _  
7286 GOSUB 908 
7288 FOR 1.1 TO N :R(I)=D(I) :NEXT 1 
7298 FOR J.1 TO N 
7292 Y=Y ( J )  :D=ABS(Y )t.8$ltlE-15 :Y(J)=Y+D 
7294 GOSUB 9BB 
7296 FOR 1.1 TO N :E(I,J)=(D(I)-R(II)/D :NEXT I 
7298 Y(J1.Y 
7318 NEXT J 
7302 REN _ _ _ _ _ _ _ _ _ _  LU DECOtiPOSITlON 
7384 FOR 1.1 TO N :FOR J=l TO I4 
7306 A ( I, J I=-, 3951HtE 1 I, J )- ( I d  1 
7388 NEXT J :NEXT I 
7318 6OSUB 1481 
7312 IF ER THEM H=H/2 :GOT0 7384 

7252 REM R1 IN) ,R2(N)  ,R3(N) ,R4(N) 5 X IN) 
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ONPUTE STEP RE\ _ _ _ _ _ _ _ _ _ _  C 
7316 FOR 1.1 TO N :W(I):HtR(I) :NEXT I 
7% GOSUP 1501 
7 3 3  FOR I=l TO N 
7322 R1( I )=XI I )  :Y(I)=YO( I )tAltX( I) 
7324 NEXT 1 
7226 GOSUP 901 
7:28 FOR 1.1 TO N :X(I!~HtD!I)tCltPl(I) :NEXT I 
7330 G W B  1500 
7332 FOR I=l TO N 
X 4  R2( I )=X!I) :YiI)=YO!I ItG2tR1( I )tR31R2( I) 
7335 NEXT I 
7738 GOSUE 900 
7349 FOR 1.1 TD N :X(!)~HII)(I)tC~tR1!!ItC~tRZ!I) :NEXT I 
7542 GOSUR 1500 
!!44 FOR I=: TO N 
7346 K(I!=X!Ij :K(I)=HtD( I)tC4tRl(I)+CSIR~iI!+C~lR3(1) 
734a NEXT I 
7351 GCSUB 1501 
7352 FOR 1=1 TO N 
-7 i .,54 84 ( 1 ! = X  ( I ) : Y  ( I ) = Y O !  I )+PI tP1 ( I )+P?tU( I )tB3tR3( I )tP4iR4! I! 
7356 NEXT I 
7358 T=!+H 
T I h @  REH ---------- ESTIMATE ERROR 
?:52 ES=EP,'lt 
Y 6 4  FOB 1.1 TO N 
!:At, S!.BBS(E!tRl(I)tE?tRS( I)tE3tR3( I )+E4tR4( I!! 
?368 S:=AESiY(Ij) :S?:kES(YO(I)) 
X70 S=:tS!!(S?tS3tEPIlElB) 
Y!? IF S'ES THEN ES=S 
Z 7 4  #EXT I 
7376 RE!! ---------- NEPl STEP SIZE 
7378 S=. 9t i EPIES)' . 2fm 
!181 HZStSFtH 

CHECK ERROR 7 y i  _____.____ 

7184 IF ES"EP THE# 7480 
7386 REN ---------- ACCEPT STEP AND INCRERSE STEP FACTOR SF 
7388 IP=IPtl 
739 I F  LE THEN H=HO :ER=B :6@T@ 7411 
3 9 2  FOR 1.1 TO N :VL(I)=YO(I) :YO(I)=YiI) :NEU I 
7594 TL=TR :TR=T 
7396 LS.0 :SF=I.$!ISF :IF SF!! THEN SF.1 
7398 GOT0 7281 
7410 lB=lR+l :LE=C: IF NOT LS THEN 7409 
7402 RE8 ---------- REPEB! CURRENT STEP IF BACKSTEP IS NOT POSSIBLE 
7484 FOB 1=1 TO N :V(I)=YO(I) :NEXT I 
7415 T=TE :GOT0 !304 
!408 REV ---------- STEP P R C I  PNL HODERATE STEP FACTOK SF 
7411 FOR I=l TO N :Y(I)=YL(I) :YO!I)=K(I) :NEXT I 
!412 IP=IP-I :T=TL : T k T  : LS=-1: SF:.PtSF :6OTO 7285 
7414 BETURN 
741b RE8 l t ~ ~ t l t t t t t t l t t t t t t t t t t t t t t t ~ t t ~ t ~ ~ ~ t t l t t t ~ 4 ~ ~ t 4 t ~ 4 t ~  

4 '  

In contrast to the modules M70 and M71 , here we s p e c i f y  the end t i m e  TE 

i n s t e a d  of the number of  steps, s i n c e  t h e  i n i t i a l  s t e p  s i z e  H is a d a p t i v e l y  

decreased or inc reased  i n  o r d e r  to keep the r e l a t i v e  error j u s t  below the 

th re sho ld  EP . The suggested v a l u e s  of the t h re sho ld  are between 0.01 
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and 0.W1 . The module returns the value ER = 1 if the maxin-um allowed 

number I M  of steps does not suffice to obtain the desired accuracy. The 

number of accepted steps and the number of repeated or backward steps are 

stored in variables IP and IR , respectively. This information is useful in 
evaluating the performance of the integrator. The Jacobian matrix is 

approximated by divided differences, so you need to supply only one subroutine 

for evaluating the right hand sides of the differential equations, similarly to 

the previous two modules. 

Example 5.2 Solving the model of an oscillating reaction 

The famous Oregonator model (ref. 9) is a highly simplified (but very 

successful) description of the Belousov - Zhabotinsky oscillating reaction : 

where yl, yz and y3 denote the normalized concentrations of I-BrO2, Br- 

and Ce4+, respectively, and 

parameters are kl = 77.27 , k2 = 8.375E-6 and k3 = 0.161 (ref. 8). The 

initial values yl0 = 4 , yZD = 1.33139 and yJ0 = 2.85235 result in a 

periodic solution with period length t % 302.9 . Within a period there are 
sudden changes in the variables, m r e  than seven orders of magnitude. In the 

following main program we cmplte the solution at selected time pints. 

t is the dimensionless time. The dimensionless 

105 RE\ ________________________________________------------------- 
l@? RE\ E l .  5.2. SOLUTION OF OREGONATOR MODEL BY S E M I - I I I P L I C I T  NETHOD 
in4 PEN MERGE M!4,MlS,H7? 
LQb 9EN ---------- NUMBER OF T I N E  POINTS AND TINE POINTS 
108 DATP 12,%~1,?,!,4~5,6,10,100,?08~.~~0,~0?,9 
110 HERD NT 
112 0114 TY(NT1 
114 i0H 1.1 TO NT :READ Ti4[I) :NEXT I 
3 0  REM ---------- PROBLEM S I T E  
:a2 N.3 
204 DIN Y I N 1  B i N ! ! E I N. I! ! B i N , I! 1 , P I  N i  ! Y O 1  N 1 I YL i N ! X I N ! 
206 DIY R I I N )  ,R;I#!  ,R3(N! , l i 4 i N i  
288 9EM ---------- I N I T I A L  '!!ALUES, FIRST H, ACCURACY 
110 T=TW!l) :?!1)=4 :YI2)=1.!'1!9 :Y(3!=?,95?35 :H=.l :EP=.0Bl :IN=100B 
Y Z  V b 4 T F t I N 6 $ ( 5 b , " - " !  
214 AB="XWl,# WWWWW#.11##X W#t.lttt# $ItIW.Wttlt W t  fltt' 
Zlb P R I N T  "OfiEGONATOR HODEL BY S E M I - I H P L I C I T  RUNGE-KUTTA I . ,  "; 
iie LPHINT "TOIERANCE=~:EP :IFHINT :LPRIC; ~t 
X I  LPfiI!!T " YIME y i : i  Y I Z )  y ( 3 !  i p  ir' 
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222 LPHINT V I  
224 LPRINT USING AI;T,Y(l),YIZ),Yl3) 

228 FOR 10.2 TO NT 
230 TE=TW(ID) :GOSUB 7200 
232 LPRINT USING B$;T,Y(l) , Y ( 2 )  ,Y (3 ) ,  IP,IB 
234 NEXT ID 
236 LPRINT V I  :LPRINT 
238 STOP 

982 O(lP77.27t (Y (2)tY 11) t (1-8.375E-BblY (1)-Y (2) 1 ) 
904 DIZI=(Y(3)-(ltY(I))tY(Z))/77.27 
906 D(3)=.lblt(V(l)-Y(3)) 
908 RETURN 

CALL SOLUTION WOPULE FOR EACH TIHE POINT ?1J REM _ _ _ _ _ _ _ _ _ _  
LL 

RIGHT HAND SIDE EVILURTION 900 RE! --------__ 

I n  addition t o  the so lut im,  the number o f  accepted steps ( i p )  and the number 

of  back steps or repeated steps ( i r)  are also printed t o  show how the step 

size c m t r o l  works. 

OREGONBTOR MODEL BY SEMI-IRPLICIT RUNGE-KUTTR H . ,  TOLERRNCE- ,001 

TIflE 

Q.0 
1.0 
2.0 
3.6 
4.0 
5.0 
6 . 8  

10.0 
100. 8 
280.0 
300.0 
302.9 

4.00080 
4.52980 
5.35444 
6,93755 
12.43387 

97271.55000 
1.00214 
1.08368 
1.85098 
3.13234 
4.01773 

116764 .e~m 

.- _------- ____. 

1.33139 
I .  28090 
1.22638 
1,16312 
1.17232 
0.82421 
0.18801 

785.15818 
273.45220 
20.54734 
1.46751 
1.32940 

. --_ - - -_ - - - . 

y(3) 

2.85?$5 
3.66899 
3.33716 
3.74294 
4,52226 

2839.26000 
18304.12000 
21 132. 22000 

1.01394 
1.84376 
2.44688 
2.85972 

------- 

. _ _ _ _  _ _ _  - _-_ 

ip i r  

5 0  
4 0  
4 0  
6 1  
58 5 
16 0 

183 3 
224 0 
31 2 
30 1 

b 0  
_-- ----- 

Exercise 

0 T r y  t o  solve the Oregmator model using a n m  - s t i f f  integrator as the 

module M70 . Commnt M the step size needed f o r  a reaMnable accuracy. 

5.3 SENSITIVITY INKYSIS 

I n  t h i s  s t i m  we consider the parametrized vector d i f f e ren t i a l  equation 

(5.37) 

where p denotes the np-vector o f  parameters. The vector of sens i t iv i ty  
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coefficients to the parameter pj is defined by 

(5.38) 

These partial derivatives provide a lot of information (ref. 10). T k y  show 

how parameter perturbations ( e . g . ,  uncertainties in parameter values) affect 

the solution. Identifying the unimportant parameters the analysis may help to 

simplify the model. Sensitivities are also needed by efficient parameter 

estimation praedures of the Gauss - Newton type. Since the solution y(t,p) 

is rarely available in analytic form, calculation of the coefficients sj(t,p) 

is not easy. The simplest method is to perturb the parameter 

differential equation with the modified parameter set and estimate the partial 

derivatives by divided differences. This "brute force" approach is not only 

time consuming (i.e., one has to solve np+l sets of ny differential 

equations), but may be rather unreliable due to the roundoff errors. A much 

better approach is solving the smsitivity equations 

pj , solve the 

where the i,j-th element of the Jacobian is given by 

(5.39) 

(5.40) 

The sensitivity equations (5.39) are derived by differentiating (5.37) 

with respect to 

hand side. The initial values to (5.39) are given by 

pj , and changing the order of differentiation on the left 

(5.41) 

The sensitivity equations (5.39) can be solved simultanmusly with the 

original equations (5.37). Althwgh the special structure of this extended 

system of differential equations enables m e  to devise more efficient special 

methods (see, for example, refs. 11-13), in the following example we solve the 

equations using the general purpose integrator module M72 . The straightforward 
method not making use of the special structure of the sensitivity equations is 

called direct method of sensitivity analysis. 

Example 5.3 Parameter sensitivities in the microbial growth model 

In order to discuss the practical identifiability of the model studied in 

Examples 5.1.1 and 5.1.2, Holmberg (ref. 3) computed the sensitivities of the 

microorganism concentrations y1 and substrate concentration y2 with 
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respect to the parameters V,, K,, Kd and Y. To repeat the computations, we 

need the part ia l  d e r i v a t i v e s  

(5.42) 

and 

The i n i t i a l  va lues  are 

i n i t i a l  va lues  o f  the concentrat ions  y1 and y2 do not  depend upon the 

parameters i n v e s t i g a t e d . )  To solve the extended system of d i f f e r e n t i a l  

equations t h e  fo l lowing main program is used: 

sj(O,pl = 0 , j = 1, 2, 3 and 4 . (Note t h a t  the 
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900 REK _ _ _ _ _ _ _ _ _ _  RIF T JH. H A M  SIDE EVALUATIOM 
90: M0=KStY(?) :Nl=Y(?)lN0 :M2=Nl/H0 :M3=KS/M0/b0 
904 N4=VMiHl-K3 :15=VNttt3iY!l) :M6=-\'M/YYtNl :M74M/VVtW3tY(lj 
906 RE! - ORIGINRL EQUATIONS 
908 Ctli \'YtRltY!1l-KDtY!lj 
9:0 D(2) =-VtlIYYLNlti'(l! 
912 REH - SENSITIVITY EQUilTIOMS WITH RESPECT TO Vfl  
914 Gi3) = NltV(1) tM4tV(3)tHSiY (4) 
916 D (  4 1 =-VNlYY M l t Y  (1 j tH6tY ( 3 )  tM7tV (4) 
918 REM - SENSI1I'~ITY EQUOTIONS WITH RESPECT TO Ks 
928 D( 5) 4Ntti2tY (1 1 tW4tY 15)ttlStY (6) 
922 D(6) = VN/YYtM2tY(1) tH6tYIS)+H7tY(6) 
924 RE! - SENSITIVITY EOUATIONS WITH RESPECT TO Kd 
926 D(7) =-Y(l) tI4tY (7)+\5iY (8 )  
28 Dl81 = M6tY (7)+M7tV(8) 
930 REP! - SENSITiVITY EQUATIONS WITH RESPECT TO Y 
932 D(9) = tN4iY(9)tRSiY(18) 

936 RETURN 
934 DI in)= v n i Y Y / v Y i w !  1) t n b t ~  (9)tn7ty I 10) 

Instead of the sensitivities sj(t,p) , in most applications we use the vectors 
of semi-logarithmic or normalized sensitivities, defined by 

*/'log Pj = ~jh//aPj - (5.44) 

The last four colurms of the following output list the matrix 
semi-logarithmic sensitivities consisting of n y m t  = 22 rows and np = 4 

columns. This matrix is called normalized sensitivity matrix. 

S of 

SEMI - LDGRRITHNIC IdYiidlogPj) SENSITIVITY NATRIW 

TI\E,h CO#CE#THilTi@N PARRNETER SENSITIVITY 
g / l  VP Ks Kd Y 

___-___-________________________________---------------- 
0.0 yl 1.001 0,000 0.090 8.0B0 0.000 

y 2  30.000 0,080 8,000 0.000 0.000 
1.0 yl 1.498 0.679 -0.063 -8.875 0.001 

y2 29.068 -0.691 B.107 8.025 8.931 
2.0 yl 

Y2 
3.0 yl 

Y: 

Y ?  
5.6 yl 

Y2 
6.0 yl 

Y2 
7.0 yl 

Y2 
8.0 yl 

y? 
9.0 yl 

Y ?  
10.0 y l  

Y2 

4.0 )1 

2 ,  ;:o 
:!,678 
3.339 
25,616 
4.955 

22.581 
7.290 
18.185 
10.524 
12.060 
14.385 
4.586 
16.20; 
0.252 
15.557 
e ,003 
14.880 
0.008 

. - _------- 

2,023 
-1 743 

4.496 
-5.675 
e I798 

-11.871 
15.770 

-27 I &. 209 
25.b72 
-37.461 
31.820 
-46.466 

8 . 8 i 2  
-7.873 
4.036 
-0.123 

3.771 
-0.002 

'.* 

-- 

-0.190 -8.224 0.007 
0.328 0.131 2.318 
-0.431 -0.499 0.029 
8.756 0.389 4.335 
-0.872 -8.982 8.101 
1.543 8.913 7.245 
-i.b45 -1.782 8.333 
2.933 1.854 11.237 
-2.906 -2.971 1.156 
5.211 3.295 15.936 
-4.093 -4.810 4.864 
7.499 4.289 17.020 
-0.544 -2.511 15.644 
1.812 8.769 2.525 
0.587 -2.728 16.462 
8.040 0.013 0.035 
8.505 -1.328 15.681 
0.001 0.000 0.001 
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kcording to (5.44) the semi-logarithmic sensitivity coefficients show the 

local change in the solutions when the given parameter is perturbed by unity on 

the logarithmic scale and are invariant under the scaling of the parameters. 

0 2 4 6 10 
T L m e ,  h 

Fig. 5.3. Semi-logarithmic sensitivity of the substrate with respect to the 

parameters Vm, Ks, Kd and Y 

Fk sem f r m  Fig. 5.3, the substrate concentration is m t  sensitive to the 

parameters around t = 7 hours. It is therefore advantageous to select more 

observation pints in this region when designing identification experiments 

(see Section 3.10.2). The sensitivity functions, especially with respect to 

and 

of the columns in the Jacobian matrix may lead to ill-conditioned parameter 

estimatim problem. Principal cwnpcnmt analysis of the matrix 

powerful help in uncovering such parameter dependences. The approach will be 

discussed in Section 5.8.1. 

K, 
Kd, seem to be proportional to each other, and the near-linear dependence 

STS is a 
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5.4 CXlAsI STERDY STATE PPPROXIMFITION 

The quasi steady state approximation i s  a powerful method of  transforming 

systems of very s t i f f  d i f ferent ia l  equations i n t o  non-st i f f  problems. It i s  the 

most important, although somewhat contradictive technique i n  chemical kinetics. 

Before a gmeral discussion we present an example where the approximation 

certainly applies. 

Example 5.4A Detailed model o f  the fumarase reaction 

The basic mechanism of enzyme reactions i s  

k l  k3 
-> --> 

E + S  ES E + P  <-- <- 
k2 k4 

(5.45) 

where E, S, ES and P denote the enzyme, the substrate, the intermediate 

enzyme-substrate cmplex and the product, respectively. The rate expressions 

are mass action type with ra te coefficients kl, k2, k3 and k4, resul t ing i n  

the kinetic d i f ferent ia l  equations 

d 

d t  
--[Sl = - klCElCS1 + k2CESl (5.47) 

d 

d t  
--[PI = k3CESl - k4CEICPI (5.49) 

where the brackets denote concentrations of  the species. I f  the substrate i s  

fumarate and the enzyme i s  fumarase, a t  T = 25 % and pH = 7 the rate 

constants are 

k4 = 5 1 d  1 ml-' 5-I ( re f .  14) .  We solve equations 

the reaction t i m e  t = 120 s with the i n i t i a l  concentrations 

[Elo = ZX~IZI-~ ml 1-l 

of  the mzyme-substrate and the product are zero. Since the system i s  closed, 

due to  the balance equations 

kl = 140Xl& 1 ml-I s-' , k2 = i00 s-' , k3 = 330 5-l and 

(5.46) - (5.49) up t o  

and [SIo = 20x10-6 ml 1-l . The i n i t i a l  concentrations 

[ E l  = [El0 - CESI (5.3a) 

and 

CSI = CSlo - CESI - [P I  (5.51) 
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it is sufficient to consider the two linearly independent differential 

equations 

d 
--[ESl = kl(CE1° - CESl)(CSIo - CESl - [PI) - (k2 + k3)CESl + 
dt 

and 
+ kq( [Elo - CESI 1 CPI ( 5 . 5 2 )  

d 

dt 
--[PI = k3CESI - kq(CE1° - CES1)CPl . (5.53) 

With the initial step size H = 0.1 s and threshold EP = 0.Wl01, the d u l e  

M72 gives the following results: 

ENZYilE CGTALYSIS - DETBILEO MECHAIilSM 

a,0 
h a @  

i 2 . 0  
l8.@ 
24.0 
X.9 
3 . c  
42.8 
48.C 
54.0 
61.E 
h6.P 

*..o 
!B,8 
84.E 
5e .e  
16.0 

182.0 
108.0 
1 i 4 . 8  
12E.0 

7? 

I .0B00Et01 
8.165E-03 

0.15EE-08 
&.:%3E-e8 
0.15YE-08 
a.1514E-08 
8.1414E-06 
0,!4;1E-08 
P.1467E-BE( 
P.1457E-08 
0.1451E-06 
0.144hE-08 
G .  1412E-08 
4,1440E-08 
B.1438E-08 
CS14;’E-08 
8.14:bE-OE 
0,143SE-08 

0.1434E-EB 

~ . i b ? 2 ~ - 0 a  

0.1435E-08 

0.C000Et00 
0.3136E-05 41 
0.58!2E-05 4 
0.8203E-05 : 
@.;CllE-$4 3 
0.1170E-84 3 
0.1??2E-04 3 
0.1386E-04 3 
0.14VE-14 2 
0,1509E-84 2 
0.154bE-04 2 
8.1573E-84 2 
0.1593E-04 ! 
0,lblbE-84 1 
C.lblbE-04 1 
0 . lbXE-04 1 
0,1527E-04 I 
0.lb31E-04 1 
0.163E-04 I 
0.lb34E-04 1 
O.lb3bE-64 1 

9 

0 
0 
0 
0 
0 
0 
B 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

The enzyme - substrate complex concentration reaches its maximum value in a 

very short time, and decays very slowly afterwards. To explain this special 

behavior of the concentration [ES], write its kinetic equation in the form 

dCESl/dt = rp - rc , where rp and rc denote the total production and 

consumption rates of the enzyme - substrate, respectively. Since rp and rc 

are very large, any deviation yields a quick change in 

Thus rp = rc . Therefore, it is a gwd 

approximation to assume that r = rc at every instant of time, i.e., to find 

CESISS for which the right hand side of (5.52) is zero : 

rp - rc f 0 

[ES] quickly reaches its value where 
[ESl. 

P 
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0 = kl([Elo - CES])([SIo - [ESI - [PI)  - (k2 + k3)CESl + 

+ kq(CE1° - CES1)CPI . (5.54) 

Replacing (5.52) by the algebraic equation "5.54) we can solve (5 .54)  f o r  

CESISS, the quasi steady s ta te  concentration o f  the enzyme - substrate. The 

solut ion depends cm the actual value [PI, therefore [ES],, i s  not a t  a l l  

constant, and hence the usual equation 

d 

d t  
--[ESl 5 0 (5.55) 

can be used only as a short hand notat ion f o r  

assumption simply means that [ES] can be replaced by [ES],, w i t h o u t  any 

reascnable loss i n  accuracy. 

(5.54). The quasi steady s ta te  

As seen f rom the wtput o f  Example 5.46, the solut ion o f  the system 

(5.W-53) i s  f a r  fran easy even fo r  the s t i f f  integrator M72 . In the 

following w e  solve the same problem applying the quasi steady s ta te  

approximation. 

Example 5.4B m a s i  steady s ta te  model o f  the fumarase reaction 

From equation (5.54) 

Substi tut ing this expression i n t o  

s ingle d i f f e ren t i a l  equation 

(5.531, the k ine t ics  i s  described by the 

d 
--[PI = 
d t  

k k [EI°CS10 

k2 + k3 + kl [Slo 
X 

usually w r i t t e n  i n  the form 

(5.57) 

(5.581 

where Vs = k3[EIo , Vp = k2[El0 , Ks = (k2 + k3 ) / k l  and Kp = (k2 + k3)/k4 

are the Michaelis - Menten parameters f i r s t  introduced i n  Example 2.5.1. 

Selecting the -me i n i t i a l  step s ize  and threshold as i n  Example 5.46, we 

(5.58). In order t o  compare the r e ~ ~ l t 5 ,  solve the d i f f e ren t i a l  equation 

[ES],, computed form (5.56) i s  also l i s t e d  on the fol lowing wtput. 
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0,E 
6.0 

17.8 
:9.0 
:4.8 

56.0 
47.0 
48.0 
54.0 
60.0 
66.0 
iL.O 

78.0 
84.8 
90.1 
Sb .0  

l8?.0 
188.0 
114.8 
120.8 

30,a 

-r/ 

8.lb82E-08 
8.1553E-88 
0.1672E-08 
0.1592E-08 
8.1563E-08 
0. 1S37E-08 
0.1514E-08 
R.1494E-08 
8.1479E-88 
0.1467E-BE 
0.1457E-88 
0.1451E-08 
0.1446E-08 
0.1442E-08 
0.1440E-08 
0.1438E-08 
0.1K7E-08 
0.1436E-88 

0.143E-08 
0.1434E-88 

0 . 1 4 3 5 ~ 4 a  

0.0000Et'M 
0.3136E-85 
0.5873E-85 
0.8204E-05 
8.1014E-04 
B.1170E-04 
0.1292E-14 
0.138bE-04 
0.1457E-04 
0.1509E-04 
0.1546E-04 
8.1573E-84 
0.1593E-04 
0.1606E-04 
R.lbl6E-04 
l.lb?!E-04 
B.lb27E-04 
0.1631E-04 
0.1633E-04 
0.1655E-04 
0.1636E-04 

9 
2 
2 
2 
I 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

3 
B 
8 
0 
8 
0 
0 
0 
0 
0 
0 
0 
0 
8 
0 
0 
0 
0 
0 
B 

As seen from the output, the number of steps required is significantly reduced. 

Nevertheless, apart fran a very short induction period, the solution 

essentially agrees with that of the detailed model. 

Exercise 

o Solve Example 5.4B using the program module M70 . Try to solve Example 5.4A 
with the same method. Comnent on the differences in accuracy, required step 

size, etc. 

5.5 ESTIMATIDN CF PNWETERS IN DIFFEREMIN- ECXlATIaVS 

In this section we deal with estimating the parameters p in the dynamical 

model of the form ( 5 . 3 7 ) .  As we noticed, methods of Chapter 3 directly apply 

to this problem only if the solution of the differential equation is available 

in analytical form. Otherwise one can follow the same algorithms, but solving 

differential equations nwrically whenever the computed responses are needed. 

The partial derivations required by the Gauss - Newton type algorithms can be 

obtained by solving the sensitivity equations. While this indirst method is 



very general (ref. 151, it is so time consuming that m y  be not feasible on a 

personal compter. 

The direct integral approach to parameter estimation we will discuss here 

applies only with all variables yl, yZ, ..., yny 
a m r e  efficient alternative. Let tl, t2, ..., hm dmote the sample time 
points with tl = 0 . The unknown parameters p are to be estimated from 

the set of observations { (ti,yi) , i = 1, 2, ..., nm } . The basic idea of 
the direct integral method (refs. 16-17) is transforming the vector 

differential equation (5.37) into the equivalent integral equation 

observed, but then it offers 

I 

( 5 . 5 9 )  

and approximating the integrand by cubic spline functions that interpolate the 

points { (ti,f(;i,p)) , i = I, 2, ..., nm } . Evaluating the integrals at the 
current estimate of the parameters cmverts the problem into an algebraic 

m e  which can be solved by the nwlinear least squares algorithm of Section 

3.3. 

p 

f 

P 
Let S (t) denote the ny-vector of natural cubic splines interpolating the 

values { (ti,f(;i,p)) , i = 1, 2, ..., nm } . Introducing ti-e veztor 

t) dt 

of nmmy el-ts we can write the objective function of the direct integral 

mthod in the usual form (3 .39 ) .  

The Jacobian matrix defined in (3.41) can be easily computed by the same 

interpolation technique. The idea is to differentiate ( 3 . a )  with respect to 

the parameters changing the order of differentiation and spline integration. 
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Since all the involved operations are linear we obtain 

t. 
a ti f f. 

+ j m  P 0 

--- S (t) dt = S '(t) dt 
P 

(5.61) 

f. 

P 
where S '(t) is the ny-vector of natural cubic splines interpolating the 

values { (ti,af(yi,p)/Wj) , i = 1, 2, . . . , nm } . 
J(p) of ( 5 . 6 0 )  is given by 

I 

Thus the Jacobian matrix 

... 

(5.62) 

The algorithm of the direct integral method is as follows. 

-L 

(i) Select a first guess of the parameters and cmpute the values 

and af(;i,p)/+j 9 

f(yi,p) 

(ii) Determine the interpolating splines and compute the integrals involved in 

(5.60) and (5.62) 

(iii) Knming the vector F(p) and matrix J(p) cmplte the 

Gauss - W t o n  - Marquardt step as discussed in Section 3.3 

(iv) Return to (ii) until convergmce. 

Completing the praedure we obtain only the approximation 

snluticn of the differential equations 

goodness-of-fit we must solve the differential equations (5.37) numerically 

(5.60) of the 

(5.37). To see the real 
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with the parameter estimates ^p and initial conditions f (^p)  , but only once. 
Since spline interpolation and integration is mcht faster than solving the 

sensitivity equations and the original differential equations, the direct 

method is superior to the indirect m e  in terms of numerical efficiency, 

whenever it is feasible. 

In spite of its simplicity the direct integral method has relatively g o d  

statistical properties and it m y  be even superior to the traditional indirect 

approach in ill-conditioned estimation problems (ref. 18). Good performance, 

Inever, can be expected m l y  if the sampling is sufficiently dense and the 

measurement errors are moderate, since otherwise spline interpolation may lead 

to severely biased estimates. 

The following program d u l e  is a dification of the nonlinear least 

squares d u l e  

equation solution involved it is rather lengthy. 

M45. Because of spline interpolation and differential 

Proqram module M75 

7500 REM t t t t t t t t t t t & t t l l t i t t l t t l l t t t t t t t t t l l t l t t t t t t t t & t & t t  
7502 FEM t ESTIMATIOI I  OF PARAMETERS I N  DIFFEREt iTIAL t 
'584 REM I EQUATIONS E V  DIRECT INTEGRAL HETHOD t 
' 5 @ b  FEY tElTENSICiN OF THE HIMtfELBLAU-JDNES-5ISCHOFF METHOD& 
?5#B PEI l t t t i l t t t t t t t l l t t t t t t t t t t & t t ~ t ~ t t t t t t t t t t t t & t t t t t t t  
75:0 FEM !MFUT: 
751: RE! NM NUMBER OF SAMPLE POINTS 
?:I4 RE!I YY NUIRER OF DEPENDENT VARIABLES 
7516 HEM NP NUMGEfi OF PARAMETERS 
7518 REM T ( N M )  SIMPLE TIME POINTS 
7528 E'EN ViNM,hiY! TAELE OF OBSERVATIONS 
7522 RE1 W I  I D E N T I F I E R  OF WEIEHTING OPTIONS 
7524 RE! 0 IDENTICAL WEIGHTS I W I 1 3 1 ! = 1 9  WII ,J !=0 
7526 RE! 
7528 ?EN 2 USER-SPECIFIED WEIGHTS 
7533 REM 
7532 RE\ 
7 5 3  REM P ( N P i  I N I T I A L  PARARETER ESTIMATES 
7536 REI( EP THRESHOLD DM RELATIVE STEP LENGTH 
7538 KEY I N  M A ~ I M U M  NUMBER OF ITERATIONS 
7 5 4 0  HEM CETPUT: 
7542 REH ER ST4TUS FLAG 
3 4  RE1 I SUXESSFUL ESTIMATION 
? 5 4 6  FEt? i REQUICED T?FESHOLD NOT ATTAINED 
7545 PEN PiNP! PARMETEK ESTIMATES 
7 5 5 0  RE1 ,.... FURTHER RESULTS ARE PRINTED I N  THE NODULE 
'552 FEM USER-SUPPLlEI; SLIBROUTINES: 
7554 HEM FROM L:%E SEE: 
75% SEN T I 1  !...! ny) AND PI1, ..., np! --i @(lq...,ny) 
7 3 8  RE8 I EVALUATE RHS OF @ I F F .  EQUATIONS ) 
7:CD REM 
75b2 REM FRO8 L I N E  808: 
7564 RE! Fii, ...! n p i  --! YIIl !...! n y )  
7566 REt! I EVALUATES I M T I R L  CONDITIONS FOR VRRIABLES I 

1 RELATIVE WEIGHTS ( WI I I ) =CONST/V! I, I IA2,W ( I ,  J )=a 1 

GI'JEN BY FURTHER INPUT AS 
W(tiY,NY) MA!iilI OF WEIGHTING COEFFICIENTS I ONLY FOR U I = ?  j 
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7568 RER RUXILIARV ARRAYS: 
7570 REH A 1  INP HAX NV] , [NP HA1 NVI ) ,C( NP,NP) ,U(NP,NP) ,BINP ,DE(NP), 61 NV ,NPl 
7572 REH FINH) , I  INW) ,S(4,NBl ,SF(NH,NY) ,SGINli,NY ,NP) ,YG[NY ,NPl , WINY ,NY 1 
7574 REtl EINY ,NV) ,R[NY) ,VOlNV ) ,  VL I NV ) ,Rl  (NV ) ,R2 (NY 1 ,RJ(NV) ,R4 INV) ,XI NV) 
7576 REH HODULES CRLLEO: H14,N15,tl16,Ml8,H41,H6~,H7~ 

SPLINE KNOTS 
7588 FOR M=l TO NH :Z(W)=T(i l )  :NEXT H 
7582 REH ---------- GENERATE WEIGHTING COEFFICIENTS 
7584 I F  W!OO THEN 7588 
7586 FOR I=1 TO NV :FOR J.1 TO NV :W[I,J)=-(Id) :NEXT J :NEXT I 
7588 EI.0 : E S 4  :PH=.01 
7590 REH ---------- SUH OF SQUARES AT STARTING POINT 
7592 GOSUB 7816 :GOSUB 7772 
7594 REH ---------- START OF ITERATION 
7596 LPRINT :LPRINT 'STARTING POINT';TABI25);"SUW SO=';F :LPRINT 
7598 FOR K.1 TO NP :LPRIHT T~B(25); 'P( ' ;K;'~=';plW) :NEWT K 
7688 FOR 11.1 TO 111 
7682 FOR I.1 TO NP :U(K,B)=P[K) :NEXT K :FR=F 
7684 REH ---------- COHPUTE T'WT AND W l ' V  
7686 FOR K=1 TO NP :BlK)=8 :FOR L = l  TO I :CIK.L)=8 :NEXT L :NEXT C 
7688 GOSUB 7842 
7610 FOR H.1 TO NB 
7612 
7614 GOSUB 7804 
7616 FOR K=l TO NP 
7618 FOR L=1  TO K 
7620 Q4 
7 6 2  FOR 1.1 TO NY:FOR J=1 TO NV 
7624 
7626 NEXT J :NEXT I :C(K,L)=C(K,L)tA 
7628 NEXT L 
7630 A=8 
7632 FOR 1.1 TO NV:FOR J=1 TO NY 
7634 
7b3b HEIT J :NEXT I :B(K)=BIK)tA 
7538 NEXT K 
7648 NEXT H 
7b42 REH ---------- NDRRRLIZE CROSS PRODUCT HRTRII 
7644 TR.8 :FOR 1.1 TO NP :ClI,8)=ClI,I] :TR=TR+ClI,I) :NEXT I 
7646 TR=TRIMP/lEUB 
7648 FOR 1.1 TO NP 
7650 
7652 NE!T I 
7654 FOR 1=1 TO NP :FOR J=1 TO I 
7656 
7658 NEXT J :NEXT 1 
7668 REW ---------- MAROUARDT'S COHPROHlSE 
7bb2 FOR 1.1 TO NP 
7bb4 
7666 N I , I ) = C I  I,I)+PH 
7668 NEXT I 
7678 REB ---------- RRTRIX INVERSION 
7672 ER.0 :N=NP :GOSUB 16E@ :IF EH=1 THEN 7728 
7674 REH ---------- COHPUTE STEP 
7676 FOR I=l TO NP 
7678 
7688 NEXT I 

7578 REH -__-______ 

I F  W l = l  THEN GOSUB 7792 

A=A*W I I ,  J I t6[ I ,L) tGl J ,K) t P ( L )  & P I  K! 

A=A+lJl I ,  J l  tGl J , l ) t l V ( H ,  I ) - V l  I )  ) t P l K )  

IF CII,B)<=TR THEN ClI,B)=l ELSE C(I,8)=SOR(ClI,B]) 

U I I ,  J )=E l  I ,  J 1 :C( I ,  J ) = C l  I ,  J I IC I I ,81 IC( J ,el 

FOR J = 1  TO 1-1 :RlI,J)=C(1,J) :NEXT J 

D.8 :FOR J.1 TO NP :D=D*AI I , J ) IC (J ,B ) tB [J )  :NEXT J :D(I)=D/C(I,E) 
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7682 REH ---------- CHECK SIGN AND REDUCE STEP IF  NEEDED 
7684 st=e : ~ = i  

FOR 1.1 TO NP 
7688 IF XItD(I)i=-.95 THEN XI=-.95iDi1) 
76?0 SL=SL+DiI)tD( I) 
782 NEXT I :SL=SQRiSL)lXI 
7694 RE! ---------- NEW ESTIMTES 
7696 FOR 1.1 TO NP :P(I)=U(I,0)tiltXItD(I)) :NEXT I 
7698 GOSUB 7816 :60SUB 7772 
7708 KEN ---------- PRINT ITERATION STEP 
7702 FI="t.it'"̂ *" :LPRINT 
7704 LFRIHT "IT=";IT;TRH(lB);"PN=": :LPHINT USING F$;PN; 
7706 LPRINT TbB(251;"SUM SQ=";F;TAP(50);"SL=";SL :LPRINT 
7708 IF F\=FR THEN 7712 
7710 FUR K=l TO NP :LPHINT TAB(25);"Pi ' ; ; l l :n)=n;P(K) :NEXT K 
7712 RE1 ---------- END OF PRINT 
7714 IF SL(=EP THEN EI=0 :GOTO 7728 
7716 RE! ---------- HARQUARDT' PARMETER 
7718 IF F(=FR THEN 7722 
7726 P!=l0tP!i :GOTO 7660 
7722 PH=PHil0 :IF PtK.000001 THEN PN=.000001 
.'724 NEkT IT 
7726 EI.1 
7728 IF FRCF THEN FOR I=1 TO NP :P[I)=U(I,Q) :NEXT I 
7730 REM ----------- SOLVE DIFFERENTIAL EQUbTIONS 
7732 GOSUB 7908 
7734 REfl ----------- COMPUTE E X A l T  SUfl OF SQUARES 
7736 GOSUB 7772 
7738 IF=NMtNV-NP :SE=SQR( F!NF) 
7740 RE1 ---------- STANDARD ERROR AND CORRELATION tlATRIX OF PARRHETERS 
7742 FOR 1.1 TO NP :FOR 1.1 TO I 
7744 A (  I,J)=E( I ,J) 
7746 NEXT J:NEXT I 
7748 N=YP :GOSUP 1600 :IF ER.1 THEN ES=l :60TO 7764 ELSE ES=0 
7750 FOR 1.1 TO NP 
7752 Bi I )=SOR(F/NF!A( I , I )/C( I ,0)/C( I ,0)) 
7755 C(0,Il=SQR(A(I,I)l 
7756 NEXT I 
7758 FOR I=l TO NP :FOR J=1 TO NP 
7760 Ci I, J)=INT(l080td(I,J)!C(0, I)!C(0,J)t.5)/1008 
7762 liEXT J:NEXT I 

7766 FOR 1.1 TO NP :FOR J=I TO I :t'!II,J)=U(I,J) :NEXT J :NEXT I 
7768 N=NP :GOSUB 1808 
7778 6 0 3  7920 

7774 F=8 
7776 FOR H = l  TO N! 
7778 IF WI=l THEN GOSUB 7792 
7780 FOR 111 TO NY :Y(I)=SF(H,I) :NEXT I 
7782 FOR 1.1 TO NY :FOR J=l TO NY 
7785 
7786 NEXT J :NEXT I 
7788 NEXT ti 
7798 RETUPN 

7764 REM ---------- PRINCIPAL CONPONENT ANALYSIS 

7772 RER ---------- sun OF SQUARES 

F=F+W( I ,J )! ( V ( H ,  I )-Y (I ) ),'2 
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7792 RE4 ---------- RELATI!'E WEIGHTING 
77S4 FOR 1.1 TO N? 
7796 

7800 NEXT 1 
7802 RETURN 
7801 RE1 ---------- JACOEI MATRIX AND RESPONSE 
7806 FOR 1.1 TO NY :FOR J=1 TO NP 
7808 61 I I J)=58!11, I ,  J )  

7812 FW 1:l TO I Y  :Y[l)=SF(tl,I! :NEXT I 
7814 RETURN 
7816 PER ---------- DIRECT INTEGRAL RESPONSES 
7818 GOSUB 888 
7828 FOR H=l TO NH 
7822 FOR J=1 TO NY :Y(J)=V(il ,J)  :NEXT J 
7524 GOSUB 900 
7926 FOR J=! TO N I  :SF(M,J!=D(Ji :NEXT J 
7528 NEXT 4 
7830 FUR J0.1 TO NY 
7832 FOR 4.1 TO NM :FlK)=SFIil,J8! :NEXT N 
7834 N=NN :EC=0 :GOSUB 6300 
7836 FOR H.1 TC Ntl :SF(n,J0)=SI4,#)+YI(JB! :NEXT H 
7838 NEXT J0 
7840 RETURW 
7842 RE! ---------- CIRECT INTEGRAL JACOB! RATRIX - FIRST TlHE POINT 
7844 FOR J=l  TO NP 
7846 
7848 
7850 
7852 NEXT J 
7854 EOSUB 818 
7856 FOP I=:  TO NY :FOR 3.1 TO NP 
7858 YG!I, J)=YGII,J)-YI !I I/DE(J) 
7850 NEXT J: NEXT I 
7552 REH ---------- - INNER TIKE POINT 
78t4 FOR H=l TO NN 

7868 FOR !=I TO NP 
370 
!872 
7874 
7576 NEXT J 
!8!8 GOSUP 90% 
7888 FOR 1.1 TO NY :FUR J = 1  TO NP 
3 8 2  SG(t!,I,Ji=GlI! 3 ) - 0 (  I)/DE(J) 
7884 NEXT J: NEXT I 
2386 NEXT 
7855 FOR IP=l TO NY :FOR J0.1 TO NP 
7890 FOR N=1 TO Nil :F(R)=SG(W,IB,J0) :NEXT R 
7892 N=NN :EC=0 :GOSUB 6380 
7894 FOR N.1 70 NH :SG(H,10,J0)~Sl4,~)tYG(I0,Jfi) :NEXT tl 
7896 NEXT J0 :NEXT I f i  
7308 RETURN 
7908 RE# ---------- SOLUTION OF DIFFERENTIRL EQUATIONS 
7982 N-NY :IR:lfi0 :H=lT(21-T(l)l/l0 

Y=bBS(V(b,I)! :IF Y!1E-15 THEN Y=lE-15 
7798 Hi I! I )=l/Y/Y 

7810 NEXT J: NEXT I 

DE=.0BltABS(P(J) )tlE-10 :PIJ )=P(J !tDE :GOSUB 880 

PI J)=P( JI-DE :DE( J)=DE 
FUR 1.1 TO NY :YE(I,J)=YI(I!/DE :NEXT I 

7866 FOR 1.1 TO NY :yii)=vcn,I) :NEXT I 

IIE=.10ltkBSlPl J)  )+.0000Bl :P( J )=PI J)+DE :GOSUB 9B'd 
FOR !=I TO NY :G(l,J)=D[I)/DE :NEXT I 
P( J )=Pi J -DE :DEI J ) =DE 

7904 GOS~~P 8ae 
79C6 FOR J.1 TO NY :YlJ)=YI[J) :REIT J 
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7959 FOR 16.2 TO NM 
7910 T=TiJ6-1) :TE=TiIGl :GOSUB 7280 
7912 IF ER THEN LPRINT 'ER=n;ER,"ERROR I N  DIFF. EQU. SOLUTION" :STOP 
7914 FOR J = l  TO NY :SF(IG,J)=Y(J) :NEXT J 
7915 NEXT I6 
7918 RETURN 
7920 REN ---------- PRINT RESULTS 
7922 LPRINT :LPHINT 
7924 LPRINT TAR(1S);"ESTIIATION OF PARANETERS IN DIFFERENTIAL" 
7926 LPRINT TRP(17) ;'EQUATIONS BY DIRECT INTEGRAL METHOD' 
7928 LPRINT :LPRINT :LYRINT 
7930 LPRINT . NUtlPER OF JEPEN9ENT VARIABLES ....... ';NY 
7932 LPRINT . MUMEER OF PRRRMETERS.. ............... ";NP 
7934 LPRINT . NUREER OF TIflE POINTS ............... ';NM 
7936 LPRINT . OPTION OF WEIGHTING ................. ';WI; 
7938 IF M I 4  THEN LPRINT allDENTICAL 
7940 IF W1.l THEN LPRINT '(RELATIVE WEIGHTS)' 
;942 IF WI=2 THEN LPRINT '(USER DEFINED WE1GHTS)O 
7944 F$="#.#llllltA*" ' :LPRINT :LPRINT 
7946 LPRINT " PRINCIPAL COHPONENT ANALYSIS OF NORHED CROSS PRODUCT HATRIX" 
7948 LPRINT :LPRINT "EIGENVALUE'; 
7950 FOR 1.1 TO NP :LPRINT TAB(10tlt51;' Pl";I;*) '; : NEXT I :LPRIWT :LPRINT 
7952 FOR 1=1 TO NP 
7954 LPRINT U(O,I), 
7956 FOR J = l  TO NP :LPRINT USING "11.1111 
7958 NEXT I 
7960 LPRINT :LPRINT 
79b2 V$=STRINGI 178, ' -") :Vl$:STRING$ (55, I-" 1 
7964 I F  EI=l THEN LPRINT " REQUIRED THRESHOLD NOT ATTAINED" :LPRINT :LPRINT 
7966 IF ES=l THEN LPRINT " SINGULAR CROSS PRODUCT RATRII' :LPRINT :LPRINT 
7968 FOR 1=1 TO MY 
7970 LPRINT :IF NY)l THEN LPRINT "RESPONSE FUNCT1ON";I 
7972 LPRIFIT Vl$ :LPRINT 'NO',' Y XEAS"," Y COflP',," RESIDUALn :LPRINT V1$ 
7974 FOR M=l TO Nfl 

7978 NEXT H :LPRINT V11 
7980 NEXT I :LPRINT :LPRIHT 
7982 LPRINT ' SGW OF SQUARES [VIA SOLUTION OF ODE). ';F 
7984 LPRINT . DEGREES OF FREEDOH ................... ";NF 
7986 IF WI.0 THEN LPRINT . STRNDARD ERROR ...................... ";SE 
:988 I F  !41)0 THEN LPRlWT . SIGH4 FRCTOR IN THE WEIGHTS ......... ';SE 
7990 GOSUB 4180 
7902 LPRINT " CRITICRL I-VALUE AT 95 X CONF. LEVEL 
7994 LPRINT :LPRINT V$ :LPRINT 'PARAMETER", 
7996 IF ES=B THEN LPRINT ' ESTIMATE'," ST. ERR",'LOWER BOUND",*UPPER BOUND', 
7998 LPRINT :LPRINT V$ 
8008 FOR 1.1 TO NP 
EB02 LPRINT ' P(";I;') ', :LPRINT USING F$:Pll), 
8004 PB=AFS(Pl I )  tP[ I ) ) 
8886 
8808 LPRINT 
8810 NEXT I 
8812 LPRINT V$ :LPRINT 
8014 IF ES=l THEN 8038 
8816 LPRINT 
8818 LPRINT 
8 0 3  FOR 1.1 TO NP :LPRINT TA8(18tI);Y P(' ; l ; ' )  "; : NEXT I :LPRINT :LPRINT 

';U(J,I); :NEXT J :LPRINT 

7976 LPRINT M, :LPRINT USIttG F~;V(N,I),SF(#,I),VIII,I)-SF(M,I) 

";I 

I F  E S 4  THEN LPRINT USING F);PB,P(I)-TtPB,PII)tTtPB, 

CORRELATION MATRIX OF PARPHETERS:" 
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T h e  i n p u t  d a t a  s t r u c t u r e  is very similar to  the me i n  t h e  d u l e  M45 . Two 

u s e r  r o u t i n e s  are to be supp l i ed .  T h e  f i r s t  one starts at  l i n e  9wz) and 

e v a l u a t e s  the r i g h t  hand s i d e s  of the d i f f e r e n t i a l  equa t ions .  T h e  second 

r w t i n e ,  s t a r t i n g  a t  l i n e  80.3, s e r v e s  f a r  c m p t i n g  the i n i t i a l  c o n d i t i o n s  a t  

the c u r r e n t  estimates of the parameters.  I f  the i n i t i a l  estimates are parameter 

independent ( w e  know them e x a c t l y ) ,  then t h i s  r o u t i n e  s imply puts the know, 

v a l u e s  i n t o  t h e  v a r i a b l e s  YI(l), ..., YI(NY) . The r equ i r ed  partial 

d e r i v a t i v e s  are generated us ing  d iv ided  d i f f e r e n c e s  approximation. In o r d e r  to 

ease the u s e  of the d u l e  a very s imple  example is considered here. 

Example 5.5 F i t t i n g  a Michaelis - Menten type  k i n e t i c  model 

Consider t h e  s imple  model 

(5.63) 

wi th  unknown i n i t i a l  cond i t ion  

y ( 0 )  = p3 . (5.64) 

T h e  d a t a  listed i n  Table  5.2 are the c o n c e n t r a t i o n s  of a drug i n  plasma and 

c ~ n e  f r m  a test p r o b l m  o f  the Eo*1Dp statistical program package ( r e f .  19). 

Table  5.2 
Observed drug concmtration 

No Time, min Concentrat ion,  g / l  

ti 

0 
23.6 
49.1 
74.5 
80.0 

1m.0 
125.5 
144.3 

24.44 
19.44 
15.56 
10.56 
9.07 
6.85 
4.07 
1.67 
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To illustrate the robustness of the direct integral program module, we chose 

the starting estimates p1 = 1 , p2 = 1 and p3 = 1 , althwgh ~3 = 24.44 

obviously is a better starting guess. 

100 HEM _______________-________________________------------------- 
102 RE1 EX. 5.1; DlAECT IVTEGRAL PARMETER ESTIMATION 
104 RiH BERGE ~!l,B15,Mli,~18,#41,M63,~~~,b75 

108 RE# Y Y  #B NP 

1 2  ?EM [ T I M E  All@ CONCENTRATION! 
:1: CATA 0, 24.44 

I!E DATb 4?,1, 15.56 
i?l DCTA 7 4 . 5 ,  10.56 
!2 DATA 80.0, 9.07 

126 DATA 125.5, 4.V 
128 DATA 117.3, 1 . 5 7  
23% REM ---------- RidD DATA AND SPECIFY DINENSIONS 
202 REAP NY,NB,NP 
3 4  MX=WY :IF MXiNP THEN RI(=NP 
286 DIM A[MX , Ir? ! ,CiNP ,NP ) , Ui WP,NP) , B l  NP) , CEINP! $1 MY ,NP) , N N Y  ,MY) 
3 8  DIK FiMM! ,ZINM! ,Si4,NUl ,SFIN!l,NY! ,SG[Nfl,NY ,NF! ,YG(NY,NP) 
210 B!B EiNY , N Y j  ,R!NVl ,VllNYl ,YLlNY 1 ,RliNY) ,R2!NY I ,RJiNY) ,R4INY) , X [ N Y )  
212 PIM T[NM! ,V (NM,NY!  
214 FOR 1.1 TC NH 
;lb READ Ti ' l !  :FOR J=1 TO NY :READ V ( U , J I  :NEXT J 
218 NEXT B 
220 REH ---------- SET ITERATiOM CONTROL PARABETERS AND CALL nODULE 
222 P(11'1 :P(?)=l :F[:)=l 
224 EF=.B01 :I#=JB :WI=0 
226 GOSUB 7500 
228 STOP 

106 REM ---------- Dm 

1!@ DATA :, a, 3 

116 x T a  ~ J . L ~ ,  19.44 

2 4  DATA ie0.0, 6.35 

aea REM ---------- INITIAL VALUE EVALUATION SUBROUTINE 
a02 YIii)=Pi:) 
304 RETURN 
9b0 REM ---------- RIGHT HAND SIDE EVRLUATION SUBROUTINE 
90: D i  li=-Pi I ltri l!! (Pi?]+Y (11 ) 
904 R E X R I  

Before listing the output, recall that the objective function to be 

minimized is based M the approximate response ( 5 . 6 0 ) .  The minimum of this 

function is 1.01W.02, whereas solving the differential equation ( 5 . 6 3 )  at 

the final estimate of the parameters gives the value 1.060729. The direct 

integral estimares are acceptable m l y  if these two values do not significantly 

differ, see (ref. 18). 

STARTING POINT SUU SO= 68876.19 

Pi 1 ) =  1 
P i  z ) =  1 
P( 3 ) =  1 
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11; 1 P R = E , I E - B l  

IT: 2 Ptk0.1E-02 

IT= ? Pk4. lE-B3 

I T =  4 PM=B.IE-M 

IT= 5 PM=B.IE-85 

!T= 6 PM:B.IE-PIS 

sun SR= 7 1 9 . m a  

P i  1 )= ,3919189 
P (  2 ) =  2.950189 
P I  3 != 25.26825 

SUtl SO= 9.465345 

P( 1 != .24710?1 
PI 2 ) =  4.258754 
P i  3 ) =  24.49897 

SUM SO: 1.066295 

P( 1 ) =  ,2452795 
P (  2 )= 5.326014 
P I  3 ) =  21.3834 

SUH SO= 1.01a621 

PI I ) =  ,2474369 
P (  2 != 5.573409 
P (  3 I =  24.38938 

SUH SO= 1,818682 

P( I ) =  ,2475825 
P I  2 ) =  5.58522 
PI  3 ) =  24.39008 

SU\ SQ- 1.01Bb02 

SL= 2?.3446k 

SL= .5924W4 

SL= .2507575 

SL= .0472762 

SL= 2.199665E-83 

SL: 2.64@32E-04 

ESTIEATIOI i  OF PARMETERS I N  DIFFERENTIAL 
EQUATIONS BY DIRECT INTEGRRL NETHOD 

NUKBER OF DEPENDENT VARIABLES ,. I ,, , . 1 
KURBER OF PAEIII'IETERS.. . . . . . . . . . . . . . , . 3 

O P T I O l  OF YEIGHTING ................. B ( I D E N T I C A L  WEIGHTS) 
KDHBER OF TME POINTS ..,...I.. . , . . , . a 

PRINCIPAL COMPONENT ANALYSIS OF NORHED CROSS PRODUCT n A T i u x  

EIGENVALUE P (  I P (  2 P I  3 ! 

k321.124 -.491?98 ,141432 .859146 
356.7185 .El1155 - . ? 8 4 5 3  .511119 
1.76409 ,316741 ,948176 ,825222 
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SUY OF SQUARES (?'!A SOLZT!ON 3F ODE!. 
CEEREES OF FREEDOM .................., 5 
S T X D 4 R P  EREOR , . . , . . . . . , . . . . . . . . . . . . 
CP!TICCL T-VRL!IE AT 9 5  X C O W .  LE'!EL 2 . 5 7  

1.068729 

.46%593 

FARAMETEP ESTIMTE ST. ERR LOWER FOUND UPPER FOUND 

P i  1 i 1.247581Et00 0.27640BE-01 B.176546Et00 0.318620EtB0 
F( '2 ! 0.5Z5::EtN 0.1336WEt0; 0.864411Et00 0.103060Et02 
P i  3 j @.?439@1Et$2 D.3907:6Et00 0 .233E9Et82  0.25394?EtP2 

CORRELATION PATRIX 3F PARANETEPf: 

For comparison, the indirect  least squares est imates and the i r  standard errors 

are: p1 = 0.246 2 0.029, p2 = 5.43 2 2.01 and p3 = 24.401 2 0.39 (ref. 19) . 

Exarcise 

In the previous cutplt the complted yi values correspond t o  the f i n a l  

parameter estimates. Replace the observed yi values by the cmplted y i  

values i n  the DATA stat-ts 114 - 128 of the main program. Rerun the 

modified program and compare the parameter estimates obtained by the or ig inal  

and the modified program. What i s  the r e a m  of the difference between the 

two sets of parameters? 

5.6 ILENTIFIWTIW OF LINEAR SYSTEMS 

Higher order l inear d i f ferent ia l  equations of the form 

y("') + aly(m-l) + ... + amy = blu(m-l) + ... + bmu (5.65) 
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are important in many application areas, particularly in autcunatic control and 

in pharmacokinetics. In equation (5.65) m is the model order, u(t) and 

y(t) denote the input and outplt of the system, respectively. The constant 

coefficients al, a2, ..., a, and bl, ba, ..., b, usually have no physical 

meaning. For example, in pharmacokinetics (5.65) may describe the 

distribution kinetics of a drug, where y(t) is the plasma concentration and 

the inplt u(t) represents the absorption curve following a dose administered 

via an extravaxular route (refs. 20, 22) .  

~e assume that the system is initially at rest, i.e., u(l)(t) = y(i)(t) = 0 

for t < 0 and for all i = 0, 1, ..., m-1 . Neither the response nor the input 
functions are, however, necessarily continuws at t = 0 ,  and hence the initial 

conditions (i.e., the right-sided limits of the variables) may be nonzero. 

The computational tasks in linear system modeling are 

(i) prediction of the output y(t) for a given model (5.65) and known 

input u(t) , 

(ii) system identificatim, i.e., estimation of the order m and the 

parameters ai, bi from a given input - output pair [u(t), y(t)l , 

(iii) identification of the input function u(t) for the know model (5.65) 

and output y(t). 

Transforming (5.651 to a system of m first - order differential equations 

it can be solved numerically, and fitting models of different order we can also 

estimate its parameters. There exists, however, a special family of methods 

based on the use of the convolution integral 

(5.66) 

where h(t) is the weighting function of system (5.65), i.e., the response to 

a unit Dirac impulse inplt. The correspondence between (5.65) and its 

weighting function is me - to - one. For models of moderate complexity the 

latter can be obtained by analytical methods, mainly by Laplace transformation 

(see e.g., ref. 23), and used to solve problem (i) by evaluating the integral 

(5.66). 

Cu-isider now the problem of identifying a linear system in the form of its 

weighting function h(t), using the relationship ( 5 . 6 6 ) .  This problem is 

called deconvolutim. Discrete Fourier transformtion offers a standard 

technique performing numerical deconvolutim as mentioned in Section 4.3.3. It 
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requires, however, a large sample of equidistant data points, usually not 

available in pharmacokinetics. Therefore, a variety of deconvolution methods 

have been proposed in the pharmacokinetic literature (refs. i0, 21, 22, 24, 26, 

28). The simplest and still rest popllar is the point - area metkd. Its basic 

idea is approximating the known inplt by a piecewise - constant function 

such that u(t) = Ui on the interval [ti-l, ti], and ci is defined by the 

integral mean 

u 

(5.67) 

As slmm in Fig. 5.4, the area under the curve of the input remains unchanged 

in this approximation. 

Y,- 

.. I 

rig. 5.4 Notations in the point - area rrpthod 

Similar stepwise approximation of the weighting function h(t) with the 

discrete values hl, ..., I-+,, and replacement of y(ti) by the observed values 

yi transform (5.66) to the system 
m, 
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(5.68) 

of linear algebraic equations. The coefficient matrix of (5.68) is triangular, 

and hence the equations can be easily solved for hl, h2, ...,h,, (ref. 22) .  

While the point - area method is very convenient in terms of cmputatimal 
efforts, it has a seriws drawback. The matrix of the linear system (5.68) 

is inherently ill - conditioned (ref. 251, and the result is very sensitive to 

the errors in the observations. 

More robust deconvolutim methods can be derived by a parametric approach. 

For example, let us seek h(t) in the form of a polyexpcnential 

with unknown m and parameters Ai, Xi . Substituting this function into 
(5.66) givss a (nonlinear) parameter estimation problem (ref. 26), althwgh one 

must approximate the observed input values 

order to evaluate the integral in ( 5 . 6 6 ) .  We propose here a different 

parametric method that leads to a linear estimation problem. 

ul, ..., un by some function in 

The idea is estimating first the parameters in (5.65) by the direct 

integral approach discussed in the previous section, and then evaluate the 

weighting function analitically (ref. 27) .  For notational simplicity set rn = 2 

in (5.65). The equation is integrated twice to give 

ti ti t 

y(ti) = - alJ y(7) d7 - a2J J y(7) d7 dt + 

0- 0- 0- 

(5.69) 

0- 0- E- 

where t = 0- denotes time "just before" t = 0 . A s  in the previws sections, 

we replace the integrands by spline functions interpolating the observed values 

YO, Y 1 r  - - . ,  Yn and uo, q, . . . I  un . It is advantageous to write the input 
in the form 

- r  - 

where 6(t) and H(T1 are, respectively, unit Dirac impulse and unit step 

functions and u,(t) is a continuws function such that uc(0) = 0. ( In 

pharmcokinetic applications Dc denotes the dose given as an intravenous 

bolus at t = 0 . )  Since 
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ti ti s Dc x 6(7) d7 = Dc 

0- 0- 

and s Us x H(7) d7 = US x ti , 

we need to fit a spline function only to the points of the continuous component 

u,(t) of the input. Evaluating the integrals in (5.691, the parameters al,  

a2, bl and % can be estimated by multivariable linear regression. From 

these estimates the weighting function can be obtained by simple algebraic 

expressions (ref. 27) .  

In the special case the input consists of a single Dirac impulse, the first 

sampling time can be different from zero. Then the resulting weighting function 

must be appropriately adjusted (ref. 2 7 ) .  In any other case, however, the 

method applies only, if the first time point is t = 0. 
Here we presmt a program that performs all the above operations for first 

and second order models. The input data are the model order, M3 and Us (use 

zero values if the input has only continuous component) and the number of 

sample points. In addition, for each sample point the sample time, the 

(cmtinuous part of the) input and the observed output must be givm. The 

program recognizes if the first time point is not at t = 0. Interpolating 

spline is used to compute the integrals and the linear regression procedure is 

used to estimate the parameters. The reminder of the program finds the 

analytical expression for the weighting function and evaluates its values at 

the sample time points. Before presenting the program itself we discuss a test 

example of system identification outlined in Fig. 5.5. 

n 't 

q-p - 

Intravenous Concentration 
bolus in the plasma 

Fig. 5.5. Distributim kinetics identification 
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Example 5.6 I d e n t i f i c a t i o n  of a s i n g l e  d i s t r i b u t i o n  k i n e t i c s  

Suppose an in t r avenous  bolus  is given a t  t = 0 and the drug concentration 

i n  the plasma is observed beginning a t  a time p o i n t  t > 0 . In Table  5.3 we 

list a d a t a  set of Cutler ( r e f .  20) gene ra t ed  by adding 1% r e l a t i v e  errors 

of random c h a r a c t e r  to the va lues  of the weight ing func t ion  

h ( t )  = exp( -5 t )  + e x p ( - t )  . Here we a t t empt  to i d e n t i f y  h ( t )  from the error - 

cor rup ted  d a t a ,  n a t u r a l l y  n o t  making u s e  of  t h e  " t rue"  v a l u e s  g iven  o n l y  f o r  

comparison. 

Table  5.3 
Data t o  system i d e n t i f i c a t i o n  

T i m e ,  t "True"  "Observed 'I  

weighting func t ion  response (1% error) 

0.1 
0.2 
0.3 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
2.0 

1.511 
1.187 
0.964 
0.806 
0.599 
0.468 
0.375 
0.304 
0.248 
O . m  
0.135 

1.515 
1.177 
0.972 
0.789 
0.589 
0.473 
0.372 
0.307 
0.249 
0 . m  
0.135 

F i r s t  we assume that the model o r d e r  MD = 2 ( i n  f a c t  i t  is indeed two, bu t  we 

do n o t  need to know the exact model o r d e r ) .  The i n p u t  has an impulse component, 

and hence we set M3 = 1. S i n c e  the i n p u t  has no c m t i n u a t s  cmponen t  we g i v e  

z e r o  v a l u e s  i n  p l a c e  of the (con t inuous )  i n p l t  i n  t h e  DATA l i n e s  128 - 148 . 
Note t h a t  no obse rva t ion  is a v a i l a b l e  a t  t = 0 . 

i;Eg ........................................................... 
:a? F E 8  EX. 5 .6  DIRECT IKTEClHfiL 1DENTIF:CfiTION OF fi LINEAR SYSTEM 
ia4 REti RERGE H l b 1 l r l 8 , \ 4 1 , \ 4 2 , \ b 3  
:Ci, 4Etl ---------- DATA 
10B RE\ ND HODEL SRDES ( 1 OR 2 ) 
: ID  DATfi i 
:I: RE\  DC FLAG FOR RDDIT!ONfiL INPULSE COMPONENT I N  THE INPUT 
i 3  DATA ! 
: l b  RE! US FLAG FOR ADCITIONRL S T E P  COHPCNENT IN THE I N F J '  

1 2  F;E1 KI I  NURBEF; OF SPKFLE P O I N T S  
!I! D f i i A  11 

113 i a i f i  B 
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The first part of the program output c m  frun the module M42 of 

rmltivariable linear regression. The parameters P(1), P ( 2 ) ,  P(3)  and P(4) 

correspond to al, aZr bl and +, respectively, and have no physical meaning. 

The weighting function obtained from the estimates is printed as an analytical 

expression and its values are also listed. 

HULTI'!BRIABLE LINEQR FiEGF'E5510N 
llETHOD fiF LEOST SQUIRES 
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EIGENVALUE XI 1 1 X (  2 I XI 3 1 XI 4 I 

0.363llEt01 8.520 B.498 -.461 -.518 
8.3378BEt00 -.039 8.512 0.814 -.271 
0.51837E-BI -.756 R.545 -.352 B.BBB 
0.4121BE-B4 8 .395  0.438 0.012 8.887 

.--------------------------- 

WEIGHT Y COHP 

0.lB000Et01 0.15150EtR1 
0.1flB80Et01 0.11841EtBl 
0.1BBBBEt01 0.95536EtBB 
B.IBBBBEtB1 0.7924BEtBB 
B.lB000EtBI 0.60182Et88 
0.1B000EtBl 0.4bBlbEt0B 
8.1BB1BEtBl 8.37347EtB0 
1.1B000E+BI 8.38483EtEE 
B.1000BEt01 B.24917EtBB 

0.100B0Et01 0.13745EtB0 
B.IUBEBEtB! 8.20467Et08 

.__________-_---- 
RESIDUAL 

-.28293E-84 -. 714'27E-02 
B. 16641E-Bl -. 34147E-82 
-, 12819E-01 
8.48361E-82 
-.14727E-E? 
B, 21738E-82 
-.19461E-03 
B.33343E-82 -. 24493E-82 _________-__---- 

SUM OF SQUARES ...................... 5.513071E-84 
DE6REES OF FREEDOfl .................. 7 
STANDARD ERROR ...................... 8.874578E-03 
DURBIN-WATSON D-STATISTICS .......... 2.762654 
CRITICAL T-VALUE AT 95 1: CDNF. LEVEL 2.37 

...................................................................... 
PRRANETER ESTIHATE ST,ERROR LOWER BOUND UPPER BOUND 

P i  1 1 8.59287Et81 0.28378Et08 0.52481Et01 0.65932EtBl 
P(  2 1 0.47682Et01 0.35937Et80 0.39165Et01 0.56199Et01 
P(  5 1 B.15150Et01 0.81448E-02 fl.14957EtUI 8.15343Et01 
P(  4 I 0.49347Et01 8.34565EtilE 0.41155E+Bi 0.57539EtBl 

CORRELATION MATRIX OF PARAMETERS 

MODEL ORDER: '2 

IJEIGHTING FUNCTION: 

h(t) = Aterp(alfattitBtexp(betattl 
A = .9578139 
R = 1.0591?? 

a l f a  =-.9614869 
beta =-4.959159 
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I t  i s  interesting t o  canpare the resul ts wi th the "true" weighting func t im  

values l i s ted  i n  Table 5.3. The agreement is f a i r l y  gmd. (Notice that the data 

came from "observing" the response t o  a u n i t  impulse, and hence what we d id  was 

rea l ly  a smoothing of the observed weighting function.) 

A t  t h i s  p i n t  two remarks are appropriate. F i r s t ,  l inear system 

ident i f icat ion i s  a Mmewhat m r e  general problem than parameter estimation, 

since the order of  the model (5.65) i s  dl50 unknom. In  ( re f .  27) models o f  

d i f ferent order were f i t t e d  to  the data and the Plkaike Information Cr i ter ion 

(see Section 3.10.3) was used to  select among r i v a l  model orders. I n  

particular, considering another data set of Cutler wi th larger errors, i t  was 

shown that the "best" model, resul t ing i n  a s t a t i s t i c a l l y  preferable estimate 

of the weighting function, might be of  lower order than the "true" model used 

to  generate the data. Second, we shwld admit that for  higher order models the 

direct  integral approach i s  not the best general parameter estimation method. 

In  fact, with simple input functions c ~ m m ~  i n  pharmacokinetic appl icat ims 

(e.g., impulse or step function), the colunns of the observation matrix X 

created from the integrals i n  (5.69) tend t o  be l inear ly dependent, resul t ing 

i n  ill - conditioned estimation problwm. Fk discussed i n  the next section, 

t h i s  method i s ,  hOwever, excellent for  input ident i f icat ion.  

5.7 DETERMINING TK INPUT CF A L INW SYSTEM BY " E R I C &  DECOM/OLUTION 

The problem considered here i s  cutl ined i n  Fig. 5 . 6 .  The weighting function 

h ( t )  of the system and i t s  response to  an unknown i n p t  are known. We want t o  

f ind the input u ( t )  sat isfy ing equation ( 5 . 6 6 ) .  
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Co n c e n t ra t io n 
in the plasma 

Absorption U 1 curve 

Fig. 5.6. Determining the input correspmding to a given output 

Since the cmvolution integral is symmetrical in u(t) and h(t), this 

problem is similar to the one of system identification considered in the 

previws section. Nevertheless, it is usually easier to find the weighting 

function h(t) since its form is m r e  - or - less known (e.g., as a sum of 

polyexponentials), and hence parametric methods apply, whereas the input 

function u(t) is a priori arbitrary. Therefore, the nm - parametric point - 
area method is a popular way of performing numerical decmvolutim. It is 

really simple: evaluating the integral means hl, h2, ..., hn of the weighting 

function over the subinterval [ti-l, ti] we can easily solve the set (6.68) 

of linear equations for the values El, is,, ..., 5 ,  of the stepwise input 
function. A s  emphasised in the previws section, this method is, hOwever, very 

sensitive to the errors in the o!Jservations. Althwgh we can overcm this 

difficulty by carefully smoothing the data (ref. 221, the result will m c h  

depend on the particular method of smoothing. 

- 

Another non - parametric approach is decmvolutim by discrete Fourier 

transformatim with built - in windowing. The samples obtained in 
pharmacokinetic applications are, b v e r ,  usually short with n m  - equidistant 

sample time points. Therefore, a variety of parametric decmvolutim methods 

have been proposed (refs. 20, 21, 26, 28). In these methods an input of known 

form depending on unknown parameters is assumed, and the model response 

predicted by the convolution integral (5.66) is fitted to the data. 
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The deconvolution method we propose here i s  also parametric and i s  based on 

d i rect  integral parameter estimation ( re f .  27). We consider a "hypothetical" 

l inear system S* with input u* = h , where h i s  the known weighting 

function of the real  system S , and the cutplt  of  

y* = y , the known response function. Then by 

S* i s  assumed to  be 

(5.66) we have 

Since y* = y , cmparism of equations (5.66) and (5.71) shavs that the 

weighting function h* of S* equals the input function u which i s  being 

scught. NMnl, h' can be estimated by ident i fy ing the weighting function of  a 

l inear model of the form (5.65) as described i n  the previous section. The 

sane program can be used fo r  input determination i f  the ro le  of the variables 

i s  properly understood. 

Example 5.7 Determining the absorption curve fo r  a given response function 

We continue solving the test  example of  Cutler ( re f .  20).  I n  Example 5.6 we  

ident i f ied the weighting function of  the system. Now we consider the second 

half of the data set generated by Cutler and shown i n  Table 5.4. The "true" 

input u ( t )  = l.Zexp(-Zt) and the "true" weighting function were used by Cutler 

to generate the "true" response, then 1% random error was added t o  obtain the 

"observed" response (i.e., the observed drug concentratim i n  the plasma). Our 

goal i s  t o  f i nd  the input (i.e., the absorption curve) making use of  the 

weighting function ident i f ied i n  the previous example and the "observed" 

response. 

Table 5.4 
Data t o  determine the absorDtion curve 

Time, t "True" "True" 'I Observed 'I 
input response respMse (1% error)  

0 
0.1 
0.2 
0.3 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
2.0 

1.2 
0.9825 
0.8044 
0.6586 
0.5392 
0.3614 
0.2423 
0.1624 
0.1089 
0.0733 
0.0489 
0.0i-m 

0 
0.1m 
0.293 
0.3M 
0.394 
0.4caCa 
0.368 
0.327 
0.288 
0.252 
0.211 
0.155 

0 
0.181 
0.291 
0.361 
0.388 
0.399 
0.372 
0.328 
0.286 
0.249 
0.210 
0.153 
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W h e n  i d e n t i f y i n g  t h e  hypo the t i ca l  s y s t m  S* we need u* . The weight ing  

func t ion  found i n  Example 5.6 is s u b s t i t u t e d  f o r  the i n p t  of the hypo the t i ca l  

system. Th i s  i n p u t  does n o t  c o n t a i n  an impulse  or a u n i t  s t e p  cmponent, and 

hence we set M3 = 0 and US = 0 . The response  of the hypo the t i ca l  sys tem 

e q u a l s  t h e  "Observed" response. The program is the me used i n  Example 5.6, 

on ly  t h a  d a t a  l i n e s  are changed as fo l lows:  

T h e  assumed model o r d e r  is ND = 1 . We list here m l y  t h e  essential parts of 

the rxltput. 

_._.....___________--------------------- 

! E E L  OKCER: 1 
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The "weighting function" we fwnd is that of the hypothetical system, 

therefore it is the absorption curve we were looking for. It is useful to 

compare it with the "true" input given in Table 5.4. In this special case the 

input function fwnd and the "true" input are of the same analytical form, so 

we can compare the parameters of the two functions, as well. In realistic 

applications, however, we are not interested in the "analytical form" of the 

inplt function and rather the table of computed values is of primary interest. 

The direct integral approach to numerical deconvolution preserves the 

symmetry of system identification and input determination, similarly to the 

point - area method. By (5.71) the inplt function u = ht is restricted to 

the class of weighting functions generated by a single - inpt, single - 

outplt, time invariant system (5.65). This class includes plyexponmtials, 

polynomials and trigmometric functions, so that the constraint on the form of 

the inpt is relatively mild. This constraint may in fact have a physical 

meaning in pharmacokinetics. For example, in the problem studied in Example 5.7 

the hypotetical system Sx 

bioavailability of the drug following an impulse administration via an 

extravascular route. 

may be a real linear system whose response is the 

Exercise 

0 Repeat the input identification experiment with the model order MD = 2 . 
Cwnpare the linear regression residual errors for the two cases. Select the 

"best" model order on the basis of the Akaike Information Criterion (5- 

Section 3.10.3 and ref. 27) . 
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5.8 WPLICATIaVS W D  NRHTER PRoBLOls 

5.8.1 Principal comment analysis of kinetic models 

The researcher usually looks for a model that not only fits the data well, 

but describes the mechanism of action of the chemical or biological process. 

Such detailed models are, however, frequently overparameterized with respect tn 

the available data, leading to ill-conditioned pi-nblems of parameter 

estimation. In Sectim 3.5.2 you have learned that principal component analysis 

of the normalized cross-product matrix J T ( p ) W ( p )  

detecting ill-conditioned parameter estimation problems. In Section 5.3 w e  

introduced the matrix S of normalized sensitivity coefficients. It plays the 

same role for dynamical models as J(i0) in algebraic parameter estimation 

problems. Therefore, the principal compmmt analysis of STS (or of STWS , 
if weighting is necessary) offers a convenient twl for extracting information 

from sensitivity coefficients, and it reveals whether or not there is any hope 

to identify the parameters of the model. Although we need initial parameter 

estimates to perform the calculation, such are usually available in the 

literature, at least in the form of sane order of magnitude guesses. In this 

section we reconsider the sensitivity coefficients obtained in Example 5.3. 

is a standard method of 

Example 5.8.1 Practical idmtifiability of the parameters of the microbial 

gravth process 

As sham by Holmberg (ref. 3) the four parameters Vm, K,, Kd and Y are 

theoretically identifiable if both the concentration of the microorganism 

and that of the substrate 

parameters is, hmever, a rmch more difficult issue. In the following four 

cases are investigated: 

(yl) 
are observed. Practical idmtifiability of the (yz) 

(i) Both concentrations, y1 and yz are observed. The error variance is 

small: 2 = 0.01 . 

(ii) Both y1 and yz are observed. The error variance is large: 6' = 1 . 

(iii) Gnly the substrate, yz is observed. The error variance is c? = 0.01 . 

(iv) bly yz is observed. The error variance is 2 = 1 . 

To investigate cases (i) and (ii), the S matrix obtained in Example 5.3 is 

used directly. Forming STS and applying eigenvalue-eigmvector decomposition 

(by the module M18), we obtain the results show, in Table 5.5. 
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Table 5.5 
Principal component analysis of the normalized 
sensitivity matrix; both concentrations observed 

Eigenvalue Eigenvector components corresponding to 
vln KS Kd Y 

69429 0.957 -0.134 -0.095 -0.239 
12304 0.230 0.020 -0.137 0.963 

2.583 0.042 -0.518 0.846 0.121 
1.724 0.172 0.845 0 .37  0.013 

In case (i) l W a 2  = 1 , and hence the problem is not ill-conditioned, all 

the parameters can be identified. Lhfortunately we can hardly hope such a small 

error variance in biotechnical applications. In the more realistic case (ii) 

l W a 2  = 100 , thus two eigenvalues are below the threshold. As it was discussed 

in Section 3.5, the eigenvectors corresponding to the small eigenvalues show 

that there is no hope to identify parameters Ks and Kd with reasonable 

accuracy. 

To investigate cases (iii) and (iv), we include only every second r w  of 

matrix S obtained in Example 5.3 w h e n  forming STS . Plpplying eigenvalue- 
eigenvector decomposition again, the results shown in Table 5.6 are obtained. 

Table 5.6 
Principal compcnent analysis of the normalized 
sensitivity matrix; only substrate y2 is observed 

--------________________________________----___------_ 
Eigenvalue Eigenvector cmponents corresponding to 

Vm KS Kd Y 

51599 0.912 -0.137 -0.DBl -0.378 
19.225 0.334 -0.225 -0.097 0 . W  
0.409 0.212 0.964 0 . W  0.162 
0 . m 7  0.10-5 -0.041 0.991 0.057 

As seen from the table, in case (iii) we can identify V, and Y , but 
neither K, nor Kd can be estimated. In the (unfortunately) more realistic 

case (iv) one can hope a reasonable parameter estimate only for V,. It is 

advantageous to fix all the other parameters at s m e  nominal value, so avoiding 

the inherent difficulties of the parameter estimation process. 

Practical identifiability is not the only problem that can be adressed by 

principal compcnent analysis of the sensitivity matrix. In (refs. 29-30) 

several examples of model reduction based on this technique are discussed. 
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Computing the sensitivities is time consuming. Fortunately the direct 

integral approximation of the sensitivity matrix and its principal compment 

analysis can offer almost the same information whmever the direct integral 

method of parameter estimation applies. 

5.8.2 Identification of a linear compartmental model 

Assuming that a small dose of drug does not m v e  the organism far from 

equilibrium state, linear differential equations are frequently used to 

describe the kinetics of drug distribution a m g  different organs, and its 

elimination from the body. Giving some insight into the mechanism of action, 

linear compartmental models are particularly important and m r e  popular than 

models of the form (5.65). In Example 2.2.1 a very simple cmpartmmtal model 

was used to describe the concentration of a certain drug in blwd. Jennrich and 

Bright (ref. 31) estimated the parameters of the linear campartmental model 

shown in Fig. 5.7 from the data of Table 5.7. 

Table 5.7 
Sulphate kinetics data 

Time, 
-_____ 
0 
2 
4 
6 
8 
10 
15 
20 
25 
30 
40 

.” 

ti Activity, yi 

2m0m 
151117 
113601 
97652 
90935 
84820 
74991 
73342 
70593 
67049 
64313 

.” 

Time, ti Fktivity, yi 

50 
60 
70 
60 
90 
110 
132 
150 
160 
170 
160 

61554 
59940 
57689 
564m 
53915 
5093 
40717 
45996 
44968 
43607 
42668 

The experiment consists of applying an intravenous bolus of sulphate traced by 

a radioactive isotope and measuring the activity of blwd samples. The 

compartmental &el in Fig. 5.7. leads to the differential equations 

(5.72) 
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Fig. 5.7. Canpartmental model of sulphate distribution kinetics 

In this model x1 is the activity in Cmpartment 1 representing the blood 

plasm volume, x2 and x3 are unobserved activities, and kl, k2, ..., k5 
are the rate constants to be determined. The initial values 

x20 = xJO = 0 

y = x1 . Jennrich and Bright (ref. 31) used the indirect approach to parameter 
estimation and solved the equations (5.721 numerically in each iteration of a 

Gauss-Newton type procedure exploiting the linearity of (5.72) only in the 

sensitivity calculation. They used relative weighting. Altbgh a similar 

procedure is too time consuming on most personal complters, this does not mean 

that w e  are not able to solve the problem. In fact, linear differential 

equations can be solved by analytical methods, and solutions of most important 

linear compartmental models are listed in pharmacokinetics textbooks ( s e e  e . g . ,  

ref. 33). For the three compartment model of Fig. 5.7 the solution is of the 

f orm 

xIo = ZXlD5  , 
assumed to be known exactly. The only observed variable is 

where the parameters Al, A2, A3, XI, X2 and X3 are given as functions of 

the rate constants kl, k2, ..., k5 and initial conditions. In addition, 

evaluating (5.73) at t = 0 shcws that 

A1 + + + % = x10 , (5.74) 

thereby eliminating one of the parameters of (5.73). 
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Now we can proceed i n  two d i f f e r e n t  ways, either by e s t ima t ing  the 

parameters k l ,  k2, ..., k5  d i r e c t l y ,  u s ing  the a n a l y t i c a l  s n l u t i o n  and the 

module M45, or e s t ima t ing  f i r s t  the parameters  i n  (5.73). In t h i s  latter 

case we can use the very s imple peel ing method, also known a5 the method of  

r e s i d u a l s .  A l thwgh  the pee l ing  procedure is of approximate character and does  

n o t  t a k e  i n t o  account t h e  a v a i l a b l e  c o n s t r a i n t s  such a5 (5.741, it s t i l l  g i v e s  

use fu l  i n i t i a l  estimates f o r  the least s q u a r e s  method. 

T h e  peel ing method is based on the obse rva t ion  that f o r  compartmental models 

Xi < 0 

n o t  close to each other, s i n c e  otherwise we are unab le  to s e p a r a t e  the terms of 

(5.73) and m u s t  lump s e v e r a l  compartments. A s s u m e  that the i n e q u a l i t i e s  

X1 < h2 < X3 < 0 

i n  the s o l u t i o n s  of t h e  form (5.73). In  a d d i t i o n ,  the exponents are 

hold,  t h m  the peel ing c o n s i s t s  of the fol lowing steps: 

( i )  Divide the time i n t e r v a l  i n t o  3 s u b i n t e r v a l s ,  con ta in ing  nl,  n2 and 

n3 
sample p i n t s .  

p o i n t s ,  r e s p e c t i v e l y ,  w h e r e  n1 + n2 + n3 = n , the total number of  

(ii) S ince  X1 and X2 are sma l l e r  than X3, w e  may assume t h a t  i n  the last  

s u b i n t e r v a l  the c o n t r i b u t i o n  from the f i r s t  two exponents  is small. 

Therefore ,  

* 
log yi z log + hJ t i  , i = n1 + n2 + 1, ..., n , (5.75) 

and % and X3 can be found by f i t t i n g  a s t r a i g h t  l i n e  to  the last  

n3 p o i n t  of the da ta .  

(iii) In the second s u b i n t e r v a l  on ly  the f i r s t  term of (5.73) is assumed to 

be small, but  +xp(A3ti) is a l r e a d y  k n m  from (ii). Thus aga in  

a s t r a i g h t  l i n e  is f i t t e d  to the d a t a  

log[;. - A exp(X t 11 z log A + X 2 t i  , i = n + 1, ..., n + n 
1 3 3 i  2 1 1 2 ’  

(5.76) 

thereby e s t ima t ing  % and X2. 

( i v )  F i n a l l y ,  a s t r a i g h t  l i n e  is f i t t e d  to the d a t a  

i n  o r d e r  to e s t i m a t e  A1 and X1. 

T h e  c r i t i ca l  p o i n t  i n  the peel ing technique is the r i g h t  choice o f  

n2 . By (5.75) 

n3 and 

the logar i th ized  obse rva t ions  are close to a s t r a i g h t  l i n e  i n  
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the last subinterval, and hence a semi - lcqarithic plot of the data helps to 

find the value of 

values log[yi - A3exp(h3ti)l may help to choose n2 . For the data of Table 
5.7 we select n1 = 6, n2 = 8 and n3 = 8 . Since relative error i5 assumed 
in the original data, unit weights are used when fitting the logarithic data 

(see Section 3.4), and hence the modul M40 applies. The resulting estimates 

are 

n3 . A similar plot of the corrected and logarithized 

* 

A1 = l.WXlD5 , + = 2.19~10~ , A3 = 6.93~10~ , 
X i  = -.313 , h2 = 43.0562 'A3 = -0.0027 . 

These values are further refined by the module M45 applying relative 

'c 

weighting wi = l /yi2 and eliminating A-J by (5.74). The following estimates 

and standard errors are obtained 

The weighted residual sum of squares is Q = 0.00284 , close to the value 
Q = 0 . m 7  of Jennrich and Bright. Thus the fit is satisfying and the 

peeling method is 5- to give surprisingly good initial estimates. The only 

remaining problem is to find the values of the original parameters 

kl, k2, ..., k5. This can be done via the formulas listed in (ref. 32) 

where 

The final estimates 
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kl = 0.0754 , k 2  = 0.1754 , k3 = 0.1351 , k4 = 0.0156 and kg = 0.04m 

agree well with the ones of Jmnrich and Bright (ref. 31). 

Exercises 

0 Carry w t  numerical experiments with other choices of n1 , n2 and n3 in 

the peeling method. Try to construct a heuristic rule for subinterval 

selection which can be used in a computer without hwnan interaction. 

Compute approximate standard errors of the parameters kl, k2, ..., k5 , 
using the error propagation law 

2 
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