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INTRODUCTION

This book is a practical introduction to scientific computing and offers
BASIC subroutines, suitable for use on a personal computer, for solving a
nunber of important problems in the areas of chemistry, biology and
pharmacology. Although our text is advanced in its category, we assume only
that you have the normal mathematical preparation associated with an
undergraduate degree in science, and that you have some familiarity with the
BASIC programming language. We obviously do not persuade you to perform
quantum chemistry or molecular dynamics calculations on a PC , these topics
are even not considered here. There are, however, important information -
handling needs that can be performed very effectively. A PC can be used to
model many experiments and provide information what should be expected as a
result. In the observation and analysis stages of an experiment it can acquire
raw data and exploring various assumptions aid the detailed analysis that turns
raw data into timely information. The information gained from the data can be
easily manipulated, correlated and stored for further use. Thus the PC has
the potential to be the major tool used to design and perform experiments,
capture results, analyse data and organize information.

Why do we use BASIC? Although we disagree with strong proponents of one or
another programming language who challenge the use of anything else on either
technical or purely emotional grounds, most BASIC dialects certainly have
limitations. First, by the lack of local variables it is not easy to write
multilevel, highly segmented programs. For example, in FORTRAN you can use
subroutines as 'black boxes" that perform some operations in a largely
unknown way, whereas programming in BASIC requires to open these black boxes
up to certain degree. We do not think, however, that this is a disadvantage for
the purpose of a book supposed to teach you numerical methods. Second, BASIC
is an interpretive language, not very efficient for programs that do a large
amount of "number - crunching" or programs that are to be run many times. But
the loss of execution speed is compensated by the interpreter’'s ability to
enable you to interactively enter a program, immediately execute it and see the
results without stopping to compile and link the program. There exists no more
convenient language to understand how a numerical method works. BASIC is also
superb for writing relatively small, quickly needed programs of less than 1003
program lines with a minimum programming effort. Errors can be found and
corrected in seconds rather than in hours, and the machine can be immediately
quizzed for a further explanation of guestionable answers or for exploring
further aspects of the problem. In addition, once the program runs properly,

you can use a BASIC compiler to make it run faster. It is also important that
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on most PC's BASIC is usually very powerful for using all resources,
including graphics, color, sound and communication devices, although such
aspects will not be discussed in this book.

Why do we claim that our text is advanced? We believe that the methods and
programs presented here can handle a number of realistic problems with the
power and sophistication needed by professionals and with simple, step - by —
step introductions for students and beginners. In spite of their broad range of
applicability, the subroutines are simple enough to be completely understood
and controlled, thereby giving more confidence in results than software
packages with unknown source code.

Why do we call our subject scientific computing? First, we assume that you,
the reader, have particular problems to solve, and do not want to teach you
neither chemistry nor biology. The basic task we consider is extracting useful
information from measurements via modelling, simulation and data evaluation,
and the methods you need are very similar whatever your particular application is.
More specific examples are included only in the last sections of each chapter
to show the power of some methods in special situations and promote a critical
approach leading to further investigation. Second, this book is not a course in
numerical analysis, and we disregard a number of traditional topics such as
function approximation, special functions and numerical integration of known
functions. These are discussed in many excellent books, frequently with BASIC
subroutines included. You will find here, however, some efficient and robust
numerical methods that are well established in important scientific
applications. For each class of problems we give an introduction to the
relevant theory and techniques that should enable you to recognize and use the
appropriate methods. Simple test examples are chosen for illustration. Although
these examples naturally have a numerical bias, the dominant theme in this book
is that numerical methods are no substitute for poor analysis. Therefore, we
give due consideration to problem formulation and exploit every opportunity to
emphasize that this step not only facilitates your calculations, but may help
you to avoid guestionable results. There is nothing more alien to scientific
computing than the use of highly sophisticated numerical techniques for solving
very difficult problems that have been made so difficult only by the lack of
insight when casting the original problem into mathematical form.

What is in this book? It consists of five chapters. The purpose of the
preparatory Chapter 1 is twofold. First, it gives a practical introduction to
basic concepts of linear algebra, enabling you to understand the beauty of a
linear world. A few pages will lead to comprebending the details of the two -
phase simplex method of linear programming. Second, you will learm efficient
numerical procedures for solving simultaneous linear equations, inversion of

matrices and eigenanalysis. The corresponding subroutines are extensively used
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in further chapters and play an indispensable auxiliary role. Among the direct
applications we discuss stoichiometry of chemically reacting systems, robust
parameter estimation methods based on linear programming, as well as elements

of principal component analysis.

Chapter 2 gives an averview of iterative methods of solving nonlinear
equations and optimization problems of one or several variables. Though the one
variable case is treated in many similar books, we include the corresponding
simple subroutines since working with them may belp you to fully understand the
use of user supplied subroutines. For solution of simultaneous nonlinear
equations and multivariable optimization problems some well established methods
have been selected that also amplify the theory. Relative merits of different
methods are briefly discussed. As applications we deal with equilibrium
problems and include a general program for computing chemical equilibria of

gaseous mixtures.

Chapter 3 plays a central role. It concerns estimation of parameters in
complex models from relatively small samples as frequently encountered in
scientific applications. To demonstrate principles and interpretation of
estimates we begin with two linear statistical methods (namely, fitting a
line to a set of points and a subroutine for multivariable linear regression),
but the real emphasis is placed on nonlinear problems. After presenting a
robust and efficient general purpose nonlinear least squares estimation
procedure we proceed to more involved methods, such as the multiresponse
estimation of Box and Draper, equilibrating balance equations and fitting
error~in—variables models. Though the importance of these techniques is
emphasized in the statistical literature, no easy—to—use programs are
available. The chapter is concluded by presenting a subroutine for fitting
orthogonal polynomials and a brief summary of experiment design approaches
relevant to parameter estimation. The text has a numerical bias with brief
discussion of statistical background enabling you to select a method and
interpret results. Some practical aspects of parameter estimation such as
near—-singularity, linearization, weighting, reparametrization and selecting a

model from a homologous family are discussed in more detail.

Chapter 4 is devoted to signal processing. Through in most experiments we
record some quantity as a function of an independent variable (e.g., time,
frequency), the form of this relationship is frequently unknown and the methods

of the previous chapter do not apply. This chapter gives a summary of classical
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techniques for interpolating, smoothing, differentiating and integrating such
data sequences. The same problems are also solved using spline functions and
discrete Fourier transformation methods. Applications in potentiometric

titration and spectroscopy are discussed.

The first two sections of Chapter 5 give a practical introduction to
dynamic models and their numerical solution. In addition to some classical
methods, an efficient procedure is presented for solving systems of stiff
differential equations frequently encountered in chemistry and biology.
Sensitivity analysis of dynamic models and their reduction based on
quasy—steady—state approximation are discussed. The second central problem of
this chapter is estimating parameters in ordinary differential equations. An
efficient short-cut method designed specifically for PC’'s is presented and
applied to parameter estimation, numerical deconvolution and input
determination. Application examples concermn enzyme kinetics and pharmacokinetic
compartmental modelling.

Program modules and sample programg

For each method discussed in the book you will find a BASIC subroutine and
an example consisting of a test problem and the sample program we use to solve
it. Our main assets are the subroutines we call program modules in order to
distinguish them from the problem dependent user supplied subroutines. These
modules will serve you as building blocks when developing a program of your own
and are designed to be applicable in a wide range of problem areas. To this end
concise information for their use is provided in remark lines. Selection of
available names and program line numbers allow you to load the modules in
virtually any combination. Several program modules call other module(s). Since
all variable names consist of two characters at the most, introducing longer
names in your own user supplied subroutines avoids any conflicts. These user
supplied subroutines start at lines 600, 700, 800 and 900 , depending on the
need of the particular module. Results are stored for further use and not
printed within the program module. Exceptions are the ones corresponding to
parameter estimation, where we wanted to save you from the additional work of
printing large amount of intermediate and final results. You will not find
dimension statements in the modules, they are placed in the calling sample
programs. The following table lists our program modules.
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Table 1

Program modules

Identifier Purpose First Last
line line

M1@ Vector coordinates in a new basis 1002 1044
M11 Linear programming

two phase simplex method 1100 1342
M14 LU decomposition of a square matrix 1402 1460
M15 Solution of simultaneous linear equations

backward substitution using LU factors 1508 1538
M16 Inversion of a positive definite symmetric matrix 1608 1656
M17 Linear equations with tridiagonal matrix 1700 1740
M18 Eigenvalues and eigenvectors of a symmetric

matrix = Jacobi method 1800 1938
M20 Solution of a cubic equation - Cardano method 2000 2078
M21 Solution of a nonlinear equation

bisection method 2100 2150
M22 Solution of a nonlinear equation

regula falsi method 2208 2254
M23 Solution of a nonlinear equation

secant method 2300 2354
M24 Solution of a nonlinear equation

Newton-Raphson method 2400 2454
M25 Minimum of a function of one variable

method of golden sections 2508 2548
M26 Minimum of a function of one variable

parabolic interpolation - Brent's method 2600 2698
M32 Solution of simultaneous equations X=G(X)

Wegstein method 302D 3274
M31 Solution of simultaneous equations F(X)=0

Newton—Raphson method 3100 3184
M32 Solution of simultaneous equations F(X)=0

Broyden method 3200 3336
M34 Minimization of a function of several variables

Nelder-Mead method 3400 3564
M36 Minimization of a function of several variables

Davidon-Fletcher—Fowell method 3600 3794
M40 Fitting a straight line by linear regression 4000 4296
Ma1 Critical t-value at 95 % confidence level 4100 4156
M42 Multivariable linear regression

welighted least squares 4200 4454
Ma5 Weighted least squares estimation of parameters

in multivariable nonlinear models

Gauss—Newton—-Marquardt method 4500 4934
M5@ Equilibrating linear balance equations by

least sgquares method and outlier analysis 57200 5130
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M52 Fitting an error—in—variables model

of the form F(Z,P)=0

modified Patinoieal - Reilly method 5200 54460
M35 Polynomial regression

using Forsythe orthogonal polynomials 5500 5628
M&B Newton interpolation: computation of polynomial

coefficients and interpolated values =i 7. 7] o534
Mb1 Local cubic interpolation 6100 6156
M&2 5—point cubic smoothing by Savitzky and Golay 6200 6250
M&3 Determination of interpolating cubic spline 63028 6392
M&4 Function value, derivatives and definite

integral of a cubic spline at a given point 640D &458
M&S Determination of smoothing cubic spline

method of C.H. Reinsch 6500 6662
M&7 Fast Fourier transform

Radix-2 algorithm of Cooley and Tukey 6700 6782
M7@ Solution of ordimary differential equations

fourth order Runga—Kutta method 7o 7058
M71 Solution of ordinary differential equations

predictor-corrector method of Milpe 7100 7188
M72 Solution of stiff differential equations

semi—implicit Runge—Kutta method with backsteps

Rosenbrock—Gottwald-Wanner 7200 7416
M75 Estimation of parameters in differential

equations by direct integral method
extension of the Himmelblau-Jones-Bischoff method 7500 8040

While the program modules are for general application, each sample program
is mainly for demonstrating the use of a particular module. To this end the
programs are kept as concise as possible by specifying input data for the
actual problem in the DATA statements. Thus test examples can be checked
simply by loading the corresponding sample program, carefully merging the
required modules and running the obtained program. To solve your own problems
you should replace DATA lines and the user supplied subroutines (if
needed). In more advanced applications the READ and DATA statements may be
replaced by interactive input. The following table lists the sample programs.

THE PROGRAM MODULES AND THE SAMPLE PROGRAMS ARE AVAILABLE ON

DISKETTE, SUITABLE FOR MS-DOS COMPUTERS. THE DISKETTE CAN BE

ORDERED SEPARATELY. PLEASE, SEE THE ORDER CARD IN THE FRONT
OF THIS BOOK.
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Table 2

Sample programs

Identifier Example

Title

Modules called

EX112
EX114

EX12

EX132
EX133

EX134

EX14

EX15

EX16

EX182

EX183
EX184

EX211
EX212
EX221
EX231
EX232
EX241
EX242
EX253
EX254
EX31

EX32

EX33

EX37
EX38

1.3.2
1.3.3

1.8.2

1.8.3
1.8.4

2.1.1
2.1.2
2.2.1
2.3.1
2.3.2

2.4.1

2.4.2

2.5.4
3.1
3.2

3.3

3.7
3.8

Vector coordinates in a new basis
Inversion of a matrix

by Gauss—Jordan elimination

Linear programming by two phase

simplex method

Determinant by LU decomposition
Solution of linear equations by

LU decomposition

Inversion of a matrix by LU
decomposition

Inversion of a positive definite
symnetric matrix

Solution of linear equations with
tridiagonal matrix
Eigenvalue—eigenvector decomposition

of a sym. matrix

Fitting & line — least absolute
deviations

Fitting a line — minimax method
Analysis of spectroscopic data with
background

Molar volume by Cardano method

Molar volume by bisection

Optimum dosing by golden section method
Reaction equilibrium by Wegstein method
Reaction equilibrium by Newton—-Raphson
method

Rosenbrock problem by Nelder—Mead
method

Rosenbrock problem by Davidon—Fletcher-
Powell method

Liquid-liquid equilibrium by Broyden
method

Chemical equilibrium of gaseous mixtures
Fitting a regression line
Multivariable linear regression -

acid catalysis

Nonlinear LSG parameter estimation -
Bard example

Equilibrating linear balances

Error—-in-variables parameter estimation -

calibration

M10@

see EX112

M10,M11
M14

M14,M15

M14,M15

M1&6

M17

M18

see EX12
see EX12

see EX12
M2D

M21

M25

M3
M14,M15,M31
M34

M35

M32
M14,M15
M40, Ma1

M16,M18,M41,M42

M16,M18,M41,M45
M16,M58

M16,M18,M41,M4S,
M52



EX39

EX3104

EX411

EX413

EX421

EX422

EX433

EXS11

EXS2

EX53

EXSS

EX36

EX57

5.3

5.5

5.6

5.7

Polynomial regression using Forsythe
orthogonal polynomials

Van Laar parameter estimation (error-in—
variables method)

Newton interpolation

Smoothed derivatives by Savitzky and
Golay

Spline interpolation

Smoothing by spline

Application of FFT techniques
Fermentation kinetics by Runge-Kutta
method

Solution of the Oregonator model by
semi—-implicit method

Sensitivity analysis of a microbial
growth process

Direct integral parameter estimation

Direct integral identification of a
linear system

Input function determination to a given
response

XV

MSS
Mié,M18,M41,M45,
M52
Mo

M&62

M14,M15,M72
M14,M15,M72
M14,M15,M16,M18,
MA1,M63,M72,M75

MLé,M18,M41,M42,
Ms3

see EXS6

Program portability

We have attempted to make the programs in this book as generally useful as

possible, not just in terms of the subjects concerned, but alsoc in terms of

their degree of portability among different PC’'s. This is mot easy in BASIC,

since the recent interpreters and compilers are usually much more generous in
terms of options than the original version of BASIC developed by Jobn Kemeny

and Thomas Kurtz. Standardization did not keep up with the various improvements

made to the language. Restricting consideration to the common subset of

different BASIC dialects would mean to give up some very comfortable

enhancements introduced during the last decade, a price too high for complete

compatibility. Therefore, we choose the popular Microsoft’'s BASIC that comes

installed on the IBM PC family of computers and clones under the name
(disk) BASIC, BASICA or GWBASIC. A disk of MS DOS (i.e., PC DOS) format,

containing all programs listed in Tables 1 and 2 is available for purchase.

If you plan to use more than a few of the programs in this book and you work

with an IBM PC or compatible, you may find it useful to obtain a copy of the

disk in order to save time required for typing and debugging. If you have the
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sample programs and the program modules on disk, it is very easy to run a test
example. For instance, to reproduce Example 4.2.2 you should start your
BASIC , then load the file "EX422.BAS", merge the file "M&S5.BAS" and run the
program. In order to ease merging the programs they are saved in ASCII format
on the disk. You will need a printer since the programs are written with
LPRINT statements. If you prefer printing to the screen, you may change all
the LPRINT statements to PRINT statements, using the editing facility of the
BASIC interpreter or the more user friendly change option of any editor
program.

Using our programs in other BASIC dialects you may experience some
difficulties. For example, several dialects do not allow zero indices of
an array, restrict the feasible names of variables, give +1 instead of -1
for a logical expression if it is true, do not allow the structure 1IF ... THEN
... ELSE, have other syntax for formatting a PRINT statement, etc. According
to our experience, the most dangerous effects are connected with the different
treatment of FOR ... NEXT loops. In some versions of the language the
statements inside a loop are carried out once, even if the loop condition does

not allow it. If running the following program

1B FOR 1=2 10 1
28 FRINT "IF YOU SEE THIS, THEN YOU SHOULD BE CAREFUL WITH YOUR BASIC*
30 NEXT |

will result in no output, then you have no reason to worry. Dtherwise you will
find it necessary to insert a test before each FOR ... NEXT loop that can be
empty. For example, in the module M15 the loop in line 1532 is empty if

1 is greater than K-1 (i.e., K < 2) , thus the line

1531 IF K{(2 THEN 1534

inserted into the module will prevent unpredictable results.

We deliberately avoided the use of some elegant constructions as WHILE ...
WEND structure, SWAP statement, ON ERROR condition and never broke up a single
statement into several lines. Although this self-restraint implies that we had
to give up some principles of structural programming (e.g., we used more GOTD
statements than it was absolutely necessary), we think that the loss is
compensated by the improved portability of the programs.
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Note to the reader

Of course we would be foolish to claim that there are no bugs in such a
large number of program lines. We tried to be very careful and tested the
program modules on various problems. Nevertheless, a new problem may lead to
difficulties that we overlooked. Therefore, we make no warranties, express or
implied, that the programs contained in this book are free of error, or are
consistent with any particular standard of merchantibility, or that they will
meet your requirements for any particular application. The authors and
publishers disclaim all liability for direct or consequential damages resulting

from the use of the programs.
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Chapter 1

COMPUTATIONAL LINEAR ALGEBRA

The problems we are going to study come from chemistry, biology or
pharmacology, and most of them involve highly nonlinear relationships.
Nevertheless, there is almost no example in this book which could have been
solved without linear algebraic methods. Moreover, in most cases the success of
solving the entire problem heavily depends on the accuracy and the efficiency
in the algebraic computation.

We assume most readers have already had some exposure to linear algebra, but

provide a quick review of basic concepts. As usual, our notations are

*1 a1 312 -+ - A
Xz 321 322 » . - azm

x= |1, A= |’ , (1.1)
| *m] 1301 2 © - ¢ Znm)

where x is the m—vector of the elements [xJi, and A is the nxm matrix of

the elements [A) ij = 8ij- Consider a scalar s, another m—vector y, and an

mxp matrix B . The basic operations on vectors and matrices are defined as

follows:

m
«
Dervli = motvis [ox]g = sxis (] = 3?__, ajjxijr [sAlig = =345
(1.2)
- T _ T, o
(P55 = élaikbkj’ ('] = a5  xy= 12_41 XiYis
where xTy is called the scalar product of x and y . We will also need the
: ; ; = (T 172

Euclidean norm or simply the length of x , defined by “x" (x'x) .

The most important computational tasks considered in this chapter are as

follows:

O Solution of the matrix equation



Ax = b, (1.3)

where A is an nxm matrix of known coefficients, b is a known right—hand
side wvector of dimension n, and we want to find the m—vector x that

satisfies (1.3).

0 Calculation of the matrix A ! which is the matrix inverse of an nxn
square matrix A , that is

ala=ml=1, {1.4)

where I is the nxn identity matrix defined by [I]
[I] ii =1 .

iJ-=ID for i # j, and

olet a and b be vectors of dimension n. The inequality a < b means
a; { b; for all i = 1,...,n. In the linear programming problem we want to

find the m—vector x which will maximize the linear function

2 = cTx (1.5)

subject to the restrictions

AK<b, x>B. (1.6)

As we show in Section 1.2, a more general class of problems can be treated

similarly.

Q Solution of eigenvalue—eigenvector problems, where we find the eigenvalue

and the eigenvector u of the square symmetric matrix A such that

Aa =M. (1.7)

These problems are very important and treated in many excellent books, for
example (refs. 1-6). Though the numerical methods can be presented as recipes,
i.e. , sequences of arithmetic operations, we feel that their essence would be
lost without fully understanding the underlying concepts of linear algebra,

reviewed in the next section.
1.1 BASIC CONCEPTS AND METHODS

1.1.1 Linear vector spaces

The goal of this section is to extend some concepts of 3—dimensional space
R° to n dimensions, and hence we start with R3, the world we live in.
Considering the components ajyysang and azy of the vector a = (all,a21,,a31)T

as coordinates, a; is shown in Fig. i1.1. In terms of these coordinates



a; = ajje) + ap|e; + ayjex , where e; denotes the i-th unit vector defined

Fig. 1.1. Subspace in 3-dimensional space

by [e;l; =1, [ei]j =0, i #j. If s is a scalar and a, is a vector in
Rs, then sa; and aj+a, are also 3-dimensional vectors, and the vector space
is closed under multiplication by scalars, and addition. This is the
fundamental property of any linear vector space. Consider the vectors a; and
a, in Fig. 1.1, which are not on the same line. The set of linear combinations
sya) + spay, where sy and s, are arbitrary scalars, is a plane in RS, If
b, and b, are any vectors in this plane, then sb; and b; + by are also in
the plane, which is therefore closed under multiplication by scalars and
addition. Thus the plane gemerated by all linear combinations of the form

Siay *+ spay is also a linear vector space, a 2-dimensional subspace of RS.
Any vector in this subspace is of the form b = s;a; + s»a; , and hence can be
described in terms of the coordinates b = (s4,s5) in the coordinate

system defined by the vectors a; and a5 . We can, however, select another
system of coordinates (e.g., two perpendicular vectors of unit length in the
plane). If a; and a, are collinear, i.e., are on the same line, then the
combinations sja; + spa; define only this line, a one dimensional subspace of

RS,

To generalize these well known concepts consider the n-vectors ay, ag, ...,



a, , given by

211 212 S1m
a21 az 22m

ag =1 "y apg=]" |y o ay=| . (1.8)
18n1] | 812 \_anm_

The linear combinations
b=sja +szay+ ... +sa (1.9)

form a subspace of R" which is said to be spanned by the vectors 15 -ya.
We face a number of questions concermning the structure of this subspace. Do we
need all vectors a;, a5, ..., a, to span the subspace or some of them could
be dropped? Do these vectors span the whole space R" ? How to choose a system
of coordinates in the subspace? The answers to these questions are based on the
concept of linear independence. The vectors ay, ayy, ..., &, are said to be
linearly independent if the equality

Sqay + Spap + ... + 5.4, =0 (1.10@)

implies sy =S, = ...5, =0 . Otherwise the vectors a;, ap, ..., a; are said
to be linearly dependent. In this latter case we can solve (1.10) such that at
least one of the coefficients is nonzero. Let s; #@ , then a; can be
expressed from (1.10) as the linear combination

S1 Si-1 Si+) Sm
a; == —a; — .. T STAjy — TTTT@jy) T ... — —Tag (1.11)
S

i S Si Si

of the other vectors in the system. It is now clear that we can restrict
consideration to linearly independent vectors when defining a subspace. Assume
that there exists only r independent vectors among ap, a9, ..., ag, i.e.,
any set of r+l1 vectors is linearly dependent. Then the integer r is said to
be the rank of the vector system, and also define the dimension of the subspace
spanned by these vectors.

Let aq,ap,...,a- be a linearly independent subset of vectors ag,ag,...,a,
with rank r . Any vector in the subspace can be expressed as a linear
combination of a),ag,...,a_ , thus these latter can be regarded to form a
coordinate system in the subspace, also called a basis of the subspace. Since
any such set of r linearly independent vectors forms a basis, it is obviously
not unique.

If r =n, then the linearly independent vectors span the entire



n-dimensional space. Again one can choose any n linearly independent vectors

as a basis of the space. The unit vectors

1] (@] (o]
1 )

e =l = |y oy e (1.12)
) 2 1

clearly are linearly independent. This is the canonical basis for R?, and the
components ai; of the vectors (1.8) are coordinates in the canonical basis,
if not otherwise stated.

1.1.2 Vector coordinates in a new basis

In practice a vector a; is specified by its coordinates

(ali'EZi""’ani)T in a particular basis bl’ b2, +evy By For example the
vectors (1.8) can be represented by the matrix

r 1
all 312 . . . alm
621 322 . . . a2m

A = , (1.13)

_Enl an2 . . . anm.

where the coordinates aj j do not necessarily correspond to the canonical
basis. It will be important to see how the coordinates change if the vector bp
of the starting basis is replaced by a - We first write the intended new

basis vector aq and any further vector a: as

J
a = alqbl + aquz + ...+ aqup + ..+ anqth (1.14)
aJ- = al_)bl + aszz + .. + aprp + .. + ath‘.. . (1.195)
If g # 0, then from (1.14)
31q a2q 3p-1,q 1 3p+1,q 3nq
by =~ —by — —by = ... - bpy * —"ag - - Boyy = re = ——hy .
“pq 4pq 4pq 4mq %pq 4pq
(1.16)

Introducing this expression of bp into (1.15) and rearranging we have



FY a - a_ .
aj = [ag; - ;‘:"lq] by + [ag; - ;:"92q]b2 METTIR L ;:ap—l,q]bp—l *

ag : a_.
* [;‘;‘;]“q + {apr,; - zzaml,q]bml METTI L ;ganq]m . (1.17)

Since (1.17) gives a; as a linear combination of the vectors

by, by ... -1 9g» bp+1 serny by, its coefficients

a.: . a s

ij = —lgapj for i #p and anpn; = ~-R1 (1.18)
a a
Pq Pq

are the coordinates of a; in the new basis. The vector bp can be replaced
by ay in the basis if and only if the pivot element (or pivot) anq is
nonzero, since this is the element we divide by in the transformations (1.18).

The first BASIC program module of this book performs the coordinate

transformations (1.1B) when one of the basis vectors is replaced by a new one.

Program module M10

1000 REM SEESEEERLLLLLEINNNNRRRRRBRRRIRRRRRLRSERIRIILLLLINY
1082 REM ¥ VECTOR CODRDINATES IN A NEW BASIS t
1084 REN SRERS3ER0RERER 0N nnniRstanaasaaettsttsstasaananeees
1886 REM INPUT:

1888 REM N DIMENSION OF VECTORS

1e1@ ReM N NUMBER OF VECTORS

1812 REM IP ROW INDEX OF THE PIVOT

1014 REM P COLUMN INDEX OF THE PIVOT

1016 RE®  A(N,M)  TABLE OF VECTOR CDORDINATES

1818 REM OUTPUT:

1028 REM  A(N,M)  VECTOR COORDINATES IN THE NEW BASIS
1822 A=A(IP,JP)

1024 FOR J=1 TO M :A(IP,J)=ALIP,J)/A NEXT J

1026 FOR I=L TO N

1828 IF 1=IP THEN 1838

1030 A=A(1,dP} :IF A= THEN 1038

1832 FOR J=1 7O N

1034 IF A{IPJ) (D THEN A(I,d}=A{1,3)-A(IP,J}14

1836 NEXT J

1838 NEXT 1

1840 A(R,A{IP,0))=0 :A(IP,B)=JP :A{B,JP)=IP

1842 RETURN

1044 REM sptpnnssssnasssaceetsstinnsisiisnsaneaaningy

The vector coordinates (1.13) occupy the array A(N,M). The module will
replace the IP-th basis vector by the JP-th vector of the system. The pivot
element is A(IP,JP). Since the module does not check whether A(IP,JP) is
nonzero, you should do this when selecting the pivot. The information on the
current basis is stored in the entries A(B,J) and A(I,0) as follows:



ALY = {D if the I-th basis vector is e;
’ J if the I-th basis vector is a;
@ if a; is not present in basis
A(B,Jd) = R
I if a; is the I-th basis vector

J

The entry A(@,08) is a dummy variable.

If the initial coordinates in array A correspond to the canonical basis,
we set A(I,0) = A(B,J) =@ for all I and J . Notice that the elements A(2,J)

can be obtained from the values in A(I1,0), thus we store redundant

information. This redundancy, however, will be advantageous in the programs

that call the module M10@.

Example 1.1.2 Transformation of vector coordinates.

Assume that the vectors

2 -1 2 -2
1 2 -1 1
a = |-1|, ap = |-2|, agx = 3|y ag = [~5], a5 =
3 1 1 -1
1 -3 5 -7

are initially given by their coordinates in the canonical basis. We will

N W= N =

WP NWP-

(1.19)

replace the first basis vector e, by a3, and compute the coordinates in the

new basis a;, ey, ey, e, €g , using the following main program as follows.

188 REN
182 REM EX. 1.1.2, VECTOR COORDINATES IN A NEW BASIS
104 REM MERGE M10

196 REN ----=---m- DATA
188 REN (VECTOR DINENSION, NUMBER OF VECTORS)
118 DATA 5, 4

U2 DATA 2,71, 2,-2, 1, 1

114 DATA 1, 2,1, 1, 2, 3

116 DATA -1,-2, 3,5, 1, 2

118 DATA 3, I, 1,-L, 3, 4

120 DATA 1,73, 5,7, 2, 3

200 REN --------—- READ DATA

202 READ NN

204 DIN A(NN)

206 FOR 1=1 T0 N :FOR J=1 TO M :READ A{I,J) :NEXT J :NEXT I
208 VS=STRINGS(BH(M+1),"-")

210 LPRINT *COORDINATES IN CANONICAL BASIS”



212 REM -------=-- PRINT COORDINATES

214 LPRINT V$

216 LPRINT *vectar i

218 FOR J=1 TO M :LPRINT TAB(J%8+4);d; :NEXT J :LPRINT

220 LPRINT * i basis"

222 LPRINT V8

224 FOR I=1 TON

226 K=A(1,8)

228 IF K>B THEN LPRINT USING " # a# ";1,K; ELSE LPRINT USING® § ef ;1,1
230 FOR J=1 TO M :LPRINT USING * #38.388°;A{1,1); :NEXT J :LPRINT

232 NEXT |
234 LPRINT Vs :LPRINT
236 REM ------==== SELECT MODE

238 INPUT *t(transforsation},r{row interchange) or s(stop)”;A$

240 A$=CHR$(32 OR ASC{AS))

242 IF A$="t" THEN 244 ELSE IF A$="r" THEN 268

244 IF A$="s" THEN 276 ELSE 238

244 REN ---------- TRANSFORMATION

248 INPUT “row index (IP) and colusn index (JP) of the pivot:®;IP,JP
258 IF IP<1 OR IP3N OR JP{1 OR JP)M THEN PRINT *unfeasible” :B0TC 236
257 IF ABSIR(IP,JP))).BRBOB1 THEN 256

254 PRINT *zero or nearly zero pivot® :60TO 236

256 LPRINT *PIVOT ROW:*;IP;* COLUMN:*;JP

258 60SuB 1080 :60T0 212

268 REM --------—- CHANGE TWO ROWS

262 INPUT *enter il,i2 to interchange rows il and i2* ;11,12

264 IF 11¢1 OR 115N OR 12¢1 OR 123N THEN PRINT "unfeasible® :B0T0 236
266 IF R{I1,0)=8 OR A(12,8)=0 THEN PRINT *unfeasible" :60T0 234

268 LPRINT "RONS INTERCHANBED:®;Ii;*,";12

270 FOR J=0 TO N :A=A{I1,d) :A{11,d)=A{12,0) :A{12,0)=R :NEXT J

272 A{0,A{11,0))=11 :A(B,A(12,0))=12

274 GOTO 212

276 REM ---------- ST0P

278 S0P

The program reads the dimension N , the number M of the vectors, and the
array A(N,M) of coordinates in the canonical basis, all from DATA
statements. The coordinates are read row-by-row, i.e., we specify the first
coordinates in all vectors and proceed by coordinates. The program first prints

the starting coordinates:

COORDINATES IN CANONICAL BASIS

vector j 1 2 3 L} 5 b

i basis

1 el 2.000 -1.000 2.800 -2.p0 1.000 1.099
2 e2 1.000 2.000 -1.000 1.000 2.09@ 3.000
3 e3 -l.p0@ -2.28@ 3.200 -5.090 i.p0@ 2,000
4 o4 3.000 1,000 1.000 -1.M00 3.P20 4.000
3 ed 1.000 -3.000 5.008 -7.000 2,000 3.000

There are now three options to proceed: transformation (t), row interchange (r)

or stop (s). You can select one of these options by entering the appropriate



character.
In this example we perform a transformation, and hence enter "t". Then the
row index and the column index of the pivot element are required. We enter

"1,1" and the program returns the new coordinates:

PIVOT ROW: 1 COLUMN: 1

vector j 1 2 3 4 3 [

i basis

1 al 1.800 -0.509 1.000 -1.P00 0.580 9.500
2 e? p.020 2.502 -2.p08 2,000 1,500 2,500
3 e3 p.002 -2.508 4.200 -6.000 1.500 2.50@
4 u4 0.088 2.500 -2.880 2,000 1,500 2,500
5 e 0.080 -2,509 4.P0@ -5.000 1.500 2.50@

1.1.3 Solution of matrix equations by Gauss—Jordan elimination

To solve the simultanous linear equations

Ax = b (1.20)

recall that the coefficients in A can be regarded as the coordinates of the
vectors aj,ay,...,a, {(i.e., the columns of A ) in the canonical basis.
Therefore, (1.20) can be written as

X131 + xodp + ...+ XA, = b (1.21)

with unknown coefficients x3, x5, ..., x5 - There exist such coefficients if
and only if b is in the subspace spanned by the vectors a;,ag;...;a;, i.e.,
the rank of this system equals the rank of the extended system a;,ay,...,a,b.
For simplicity assume first that A is a square matrix (i.e., it has the
same number n of rows and columns), and rank(A) = n. Then the columns of A
form a basis, and the coordinates of b in this basis can be found replacing
the vectors e;,eo,...,8, by the vectors a,,ag,...,a, , one-by-one. In this
new basis matrix A is the identity matrix. The procedure is called
BGauss-Jordan elimination. As we show in the following example, the method also

applies if n#m .

Example 1.1.3 General solution of a matrix equation by Gauss—Jordan

elimination

Find all solutions of the simultaneous linear equations
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2xy X +2x3 —2xq txg =

it

Xl +2X2 -X3 +X4 +2X5

—Xg  T2x%p +3xx —SXa +xg (1.22)

3xy txo X3z ~xg +3x5

W d N W+

Xy —3x2 +5xx ~7xq +2xg

The columns of the coefficient matrix A in egn. (1.22) are the vectors

aj, a5, ag, ag, and ag in (1.19), whereas the right-hand side b equals a,.
Therefore the problem can be solved by replacing further vectors of the current
basis in the previous example. Replacing e, by a, and then eg by az we

obtain the following coordinates:

PIVOT ROW: 2 COLUMN: 2

vector j 1 2 3 4 5 [
i basis

I al 1,000 B8.008 @©.c00 -0.o00 @.08@ 1.000
2 a2 0.000 1.00¢ -0.000 0.008 @2.580 1.000
MK o.008 0.000 2.000 -4.008 .eee 5.oe@
4 ed B.00d 0.000 ©.008 ©.000 0.000 0.000
3 el 8.000 0.000 2.000 -4.008 .00 5.0@@

PIVOT ROW: 3 COLUMN: 3

vector j 1 2 3 4 3 [

i basis

1 al 1,000 0.000 0.080 9..008 -6.108 -0.300
2 a2 0.000 i.eed ©.000 -8.808 1.808 3.00D
3 a3 8.000 0.000 1.000 -2.808 1.3 2.5@0
4 o4 8.000 0.000 P.000 @.000 @.080 0.p00
5 el 0.008 0.000 @.08 P.000 0.000 @.008

According to this last table, the vectors ag,agz and ay are expressed as
linear combinations of the vectors ay,a; and agxy of the current basis. Thus
the rank of the coefficient matrix of egn. (1.22) and the rank of the extended
system (1.19) are both 3, and we need only to interpret the results. From the
last column of the table

a, = b= —0.5a, + 3ay + 2.5ax , (1.23)

and hence x = (-0.5, 3, 2.5, @, E)T is a solution of (1.22). To obtain the
general solution, i.e., the set of all solutions, we will exploit that a, and

ag are also given in terms of the first three vectors:

a, = @.6a; - 0.8ay - 2ax (1.24)

ag

—0.1a; + 1.Ba, + 1.5ax . (1.25)
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Choosing arbitrary values for xz and xg , egns. (1.23-1.25) give
b= (0.5 - B.6xg + B.1xg)ay + (3 + 0.8xg5 — 1.Bxglay + (2.5 + 2x4 ~ 1.Sxglag +

+ X4a4 + Xsas . (1.268)

Therefore, the general solution is given by
x4 = 0.3 - @.b6xg + 0.1xg

Xp = 3 + @0.Bxq — 1.8xg (1.26b)

Xz = 2.3 + 24 — 1.5x5 .

Since (1.26b) gives the solution at arbitrary x; and xg , these are said
to be "free" variables, whereas the coefficients X1y Xp and xg of the
current basis vectors a, & and ag , respectively, are called basis
variables. Selecting another basis, the "free" variables will be no more x4
and xg, and hence we obtain a general solution that differs from (1.26). We
emphasize that the set of solutions x is obtained by evaluating (1.26) for
all values of the "free" variables. Though another basis gives a different
algebraic expression for x , it may be readily verified that we obtain the
same set of values and thus the general solution is independent of the choice
of the basis variables.

In linear programming problems we will need special solutions of matrix
equations with "free" variables set to zero. These are called basic solutions
of a matrix equation, where rank(A) is less than the number of variables.
The coefficients in (1.23) give such a basic solution. Since in this example

S
the two '"free" variables can be chosen in [2] = 10 different ways, the

equation may have up to 10 different basic solutions.

In Examples 1.1.2 and 1.1.3 we did not need the row interchange option of
the program. This option is useful in pivoting, a practically indispensable
auxiliary step in the Gauss—Jordan procedure, as will be discussed in the next
section. While the Gauss—Jordan procedure is a straightforward way of solving
matrix eguations, it is less efficient than some methods discussed later in
this chapter. It is, however, almost as efficient as any other method to

calculate the inverse of a matrix, the topics of our next section.
Exercises

o Select a different basis in Example 1.1.3 and show that the basic solution
corresponding to this basis can be obtained from (1.26) as suitable values
of xz and xsg.

O Replace the last element of the right-hand side vector b in (1.24) by 4.
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We will run into trouble when trying to solve this system. Why?

1.1.4 Matrix inversion by Gauss-Jordan elimination

Consider the n>Xn square matrix A and find its inverse Al defined by

=1, (1.27)

Let &; = (511,321,...'a'ni)T denote the i-th colum vector of A1 (i.e., the
set of coordinates in the canonical basis), then by (1.27)

Ellal + 32132 +enet Eni% = El . (1-28)

where e; is the i-th unit vector. According to (1.28), the vector &; is
given by the coordinates of the unit vector e; in the basis a;,aj,...,a,
the column vectors of A . Thus we can find A1 replacing the canonical
vectors ey,e5,...,8, by the vectors a;,a;,...,a, in the basis one-by-one. »
In this new basis A is reduced to an identity matrix, whereas the coordinates
of eq,ey...,8, form the colums of al | ¢ rank{(A) <n , then A is said
to be singular, and its inverse is not defined. Indeed, we are then unable to

replace all unit vectors of the starting basis by the columns of A .
Example 1.1.4 Inversion of a square matrix by Gauss—Jordan elimination.

To calculate the inverse of the matrix

w
2]
&
wu -8

consider the vectors a;,a5,ag,a,,8,85,85 and €, where a; is the j-th

column vector of A . These coordinates are listed in the new DATA statements

of the main program we used in the previous examples:

188 REM
182 REM EX. 1.1.4. INVERSION OF A MATRIX BY GAUSS-JORDAN ELIMINATION
104 REM MERGE M1®

106 REM ---------- DATA
108 REM (VECTOR DIMENSION, NUMBER OF VECTORS}
110 DATA 4,8

12 DATA 5, 3,-1, 8, 1, @,
MEDATA 2,8, 4,1, 0,1, @,
116 DATA -3, 3,-3, 5, @, 8, 1
118 DATA 8, 6,-2, 3, 8, @, 0
[P T — FROH HERE THE SAME AS THE PROERAN OF EX. 1.1.2

— s m =

¥
1
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Replacing the canonical basis vectors by a;,aj,az, and a; we obtain the

following table of coordinates:

PIVOT ROW: 4 COLUMN: 4

vector j 1 2 3 4 3 b 7 8

i basis

{1 al 1.000 0.602 0.000 Q.000 0.235 0.844 @.088 -B.182
2 a2 2.000 1.000 Q2.000 0.000 -0.108 -6.0190 -8.186 9,314
3 a3 8.000 @.909 1.e0@ @.000 -0.147 @.191 -8.118 0.132
4 a4 0,000 0.900 .20 1.000 9.118 0.147 B.294 -0.28%

The last 4 columns of this table form A’l.

In Example 1.1.4 we could replace e; by the vector a; in the basis for

all i. Matrix inversion {or solution of a matrix equation) is, however, not
always as simple. Indeed, we run into trouble if we want to replace e; by

a; , but the desired pivot element a is zero. This does not mean that A

is singular if e; can be replaced b:/lanother vector, say a;. If the matrix
is nonsingular, we will be able to include also a; into the basis later on.
Altering the order of entering vectors we interchange the rows of atl . The
true order of rows can be restored by the row interchange option of the
program. (Note that a row cannot be moved if the corresponding basis vector is
still the canonical one.)

The next diagonal element is not necessarily the best choice for the pivot,
even when nonzero. By (1.1B), the current vector coordinates are modified by

PJ°7Pq Pa’ the
intended pivot element, may be small, and divison by it is undesirable in the

quantities proportional to the ratio a J-/a . The magnitude of a
presence of roundoff errors, inherent to any computation. This is particulary
important in the inversion of large matrices, where such errors may accunulate.
An obvious counter-measure is picking the largest (in magnitude) available
element of the next row as the pivot. This procedure is called partial
pivoting. A more involved procedure is full pivoting, where the pivot is the

largest (in magnitude) available element, not necessarily in the next row.
Exercises

O Calculate the inverse of A in Example 1.1.4 by different pivoting
strategies. Save the inverse in an array and check its accuracy by
evaluating the matrix product L,

O Replace the last row of A in Example 1.1.4 by (@, 6, 8, 4) and try to

calculate the inverse.
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1.2 LINEAR PROGRAMMING

We begin by solving a simple blending problem, a classical example in linear
programming.

To kinds of row materials, A and B , are used by a manufacturer to
produce products I and II. To obtain each unit of product I he blends 1/3 unit
of A and 2/3 unit of B , whereas for each unit of product II he needs 5/6
unit of A and 1/6 unit of B . The available supplies are 30 units of A and
16 units of B . If the profit on each unit of product I is 10@ ECU (European
Currency Unit) and the profit on each unit of product 11 is 20@ ECU, how many
units of each product should be made to maximize the profit?

Let x; and x5, denote the number of units of product I and II,
respectively, being produced. By the limited supply of A we must have

é—xl + §x2 < 32 (1.29a)
whereas the supply of B gives

2 1

3"1 + gxz <16 . (1.29b)
In addition, the number of units of a product must be nonnegative:

Xy 20, X 20 . (1.29c)
Now we want to maximize the objective function (i.e., the profit) given by

z = 100x; + 200xo (1.38)

subject to the constraints (1.29).

As shown in Fig. 1.2 , to solve this problem we need only analytical
geometry. The constraints (1.29) restrict the solution to a convex polyhedron
in the positive guadrant of the coordinate system. Any point of this region
satisfies the inegualities (1.29), and hence corresponds to a feasible vector
or feasible solution. The function (1.30) to be maximized is represented by
its contour lines. For a particular value of z there exists a feasible
solution if and only if the contour line intersects the region. Increasing the
value of z the contour line moves upward, and the optimal solution is a
vertex of the polyhedron (vertex C in this example), unless the contour line
will include an entire segment of the boundary. In any case, however, the
problem can be solved by evaluating and comparing the objective function at the
vertices of the polyhedron.

To find the coordinates of the vertices it is useful to translate the

inequality constraints (1.29a -1.29b) into the equalities

1 5
ixl + gx2 + X3 = 30 (1.31a)
2 1
=Xy t =% + xgq = 16 (1.31b)
3 b6



by introducing the so called slack variables xz and

Xq which must be also
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nonnegative. Hence (1.29c) takes the form
Xy 20, xp 2 B, x3 2 0, Xq 2@ . (1.31c)
X
2\
Lxy+2x,=30
31 2
\/@1+ZOOXZ=C0nSt )
‘- s
~o S el
Sao ~ \\\
24D, "~ s s o
A10 20 30 40 50 60 70 X4
Fig. 1.2. Feasible region and contour lines of the objective function
The slack variables do not influence the objective function (1.3@) but for

convenience we can include them with zero coefficients.
(1.31a-1.31b)

and generate one of its basic solution with "free" variables beeing zero. A

We consider the equality constraints

basic solution is feasible if the basis variables take nonnegative values.
It can be readily verified that each feasible basic solution of the matrix
equation (1.31a-1.31b)
Fig. 1.2. Indeed,
%% = x4 =@ in point C, and x5 = %g £ @ dn poirt D . This is a very

corresponds to a vertex of the polybedron shown in

Xy = % =@ in point A, xy = xx =@ in point B,

important observation, fully exploited in the next section.

1.2.1 Simplex method for normal form

By introducing slack variables the linear programming problem (1.5-1.6)

can be translated into the normal form

as a matrix equation,
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Ax=b, (b>0)
x>0, (1.32)

z = clx —> max .

where we have n constraints, mtn variables and A denotes the (extended)
coefficient matrix of dimensions nxX(mtn). (Here we assume that the right-hand
side is nonnegative - a further assumption to be relaxed later on.) The key to
solving the original problem is the relationship between the basic solutions of
the matrix equation Ax = b and the vertices of the feasible polyhedron. An
obvious, but far from efficient procedure is calculating all basic solutions of
the matrix equation and comparing the values of the objective function at the
feasible ones.

The simplex algorithm (refs.7-8) is a way of organizing the above
procedure much more efficiently. Starting with a feasible basic solution the
procedure will move into another basic solution which is feasible, and the
objective function will not decrease in any step. These advantages are due to
the clever choice of the pivots.

A starting feasible basic solution is easy to find if the original
constraints are of the form (1.6) with a nonnegative right-hand side. The
extended coefficient matrix A in (1.32) includes the identity matrix (i.e.,
the columns of A corresponding to the slack variables

Xm+1s== s Xmin- )
Consider the canonical basis and set x; =@ for i =1,...,m, and xg,; = b;
for i = 1,..,n. This is clearly a basic solution of Ax = b , and it is
feasible by the assumption b; > @ . Since the starting basis is canonical, we
know the coordinates of all the vectors in this basis. As in Section 1.1.3 , we
consider the right-hand side b as the last vector ay = b, where M = min+l .
To describe one step of the simplex algorithm assume that the vectors
present in the current basis are ag;, agp, ..., ag,. We need this indirect
notation because the indices B1, B2, ..., Bnh are changing during the steps of
the algorithm. They can take values from 1 to mtn . Similarly, we use the
notation cpg; for the objective function coefficient corresponding to the
i-th basis variable. Assume that the current basic solution is feasible, i.e,
the coordinates of ay are nomnegative in the current basis. We first list the

operations to perform:

(i) Compute the indicator variables z; - cj for all j =1,...,mn

where Z; is defined by
n
<

25 = 2, 3ii°Bi * (1.33)
i=1

The expression (1.33) can be computed also for 3 = M. In this case it
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gives the current value of the objective function, since the "free"

variables vanish and ajpm is the value of the 1i-th basis variable.

(11) Select the column index q such that 2q ~ Sq < Z; - cj for all

i=1, ..., mn, i.e., the column with the least indicator variable

value. If z_ -c, > @ , then we attained the optimal solution, otherwise

q q
proceed to step (iii).

(iii) If aiq { @ for each i =1,...,n, (i.e., there is no positive entry in
the selected column), then the problem has no bounded optimal solution.

Otherwise proceed to step (iv).

(iv) Locate a pivot in the qg-th column, i.e.,select the row index p such
that apq > 8 and apM/apq < aiM/aiq for all 1 =1,...,n if aiq > 8.
(v) Replace the p-th vector in the current basis by ag and calculate the

new coordinates by (1.18).

To understand why the algorithm works it is convenient to consider the

indicator variable z;€; as loss minus profit. Indeed, increasing a "free"

variable X5 from zero to one results in the profit Cj - On the other hand,
the values of the current basis variables xg; = ajq must be reduced by aj;
for i = 1,...,n in order to satisfy the constraints. The loss thereby occuring

is Zj. Thus step (11} of the algoritim will help us to move to a new basic
solution with a nondecreasing value of the objective function.

Step (iv) will shift a feasible basic solution to another feasible basic
solution. By (1.18) the basis variables (i.e., the current coordinates of the

right-hand side vector ay) in the new basis are

aiq_
- == a .
apqg P

a'jM = a3y (1.34)
Since the previous basic solution is feasible, ajq 2 0 . If 3iq <@, then
a jm 2 @ follows. However, a ;v 2 @ in any case, since we selected 2pq >0
to satisfy apMaiq/apq L ajq for all i corresponding to positive ajq-
According to a "dynamic" view of the process, we are increasing a previously
"free" variable until one of the previous basic variables is driven to zero.
If there is no positive entry in the g-th columh, then none of the
previous basic variables will decrease and we can increase the variable 5
indefinitely, yielding ever increasing values of the objective function.
Detecting this situation in step (ii), there is no reason to continue the

procedure.
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Replacing the p-th basis vector by a

q in step {v), the new value Z,M

of the objective function will be

n

Z'M = :): a’iMCBi + a'pﬂcq . (1.35)
i=1
(1#p)

By (1.18) we can express the new coordinates a'iM and a’pM in terms of the

old ones, resulting in the relationship

. Z. = C

Z =2y - B4 . 1.36

] a op ( )
Pq

Since z2q7Cq is negative and a is positive, the sign of the change in the

objective function depends on i)qhe sign of apme This latter might be positive
(increasing the objective function value) or zero (resulting in no change of
the objective function value).

It remains to show that zq—cq > @ really indicates the optimal solution.
This requires a somewhat deeper analysis, Let B denote the nxn matrix
formed by the column vectors ag)sagps - -+ sdp, » We have to show that for every

feasible solution y , the objective function does not increase, i.e.,

g lb > cly . (1.37)

We will exploit the fact that all indicator variables are nonnegative:

4 Zc_j, J = 1,2,...,mn . (1.38)

3
By virtue of the definition (1.33)

z; = c'gB taj, i = 1,2,...mn . (1.39)

Using this expression in (1.38) and multiplying the j-th inequality by the

nonnegative Yj gives m+n inequalities whose sum is

m+n
‘;-' CTBB_laJyJ

La

Jj=1

>cly . (1.42)

m+n
Since y is the solution of the matrix equation, :): a;y; = b . Introducing
Jj=1
this equality into (1.4@) gives the inequality (1.37) that we wanted to
prove,
Similarly to the derivation of (1.35) and (1.34) one can easily show

that
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, z, —C

. —C:i = 2. —Cy - B Q5 .

z = 25 c; 3 A
Pq

. (1.41)

Thus the coordinate transformations (1.18) apply also to the indicator
variables and to the objective function. On the basis of this observation it is
convenient to perform all calculations on a matrix extended by the 2;C;
values and the objective function value as its last row. This extended matrix
is the so-called simplex tableau.

If the j-th column is in the basis then zy€; = @ follows, but an entry
of the last row of the simplex tableau may vanish also for a column that is not
in the basis. If this situation occures in the optimal simplex tableau then
the linear programming problem has several optimal basic solutions. In our
preliminary example this may happen when contour lines of the objective
function are parallel to a segment of the boundary of the feasible region.

The simplex algorithm will reach the optimal solution in a finite number of
steps if the objective function is increased in each of them. In special
situations, however, the objective function value may be the same in several
consecutive steps and we may return to the same basis, repeating the cycle
again. The analysis of cycling is a nice theoretical problem of linear
programming and the algorithms can be made safe against it. It is very
unlikely, however, that you will ever encounter cycling when solving real-life

problems.

1.2.2 Reducing general problems to normal form. The two—phase simplex method

In this section we state a much more general linear programming problem,
introducing notations which will be used also in our linear programming module.
Let N be the number of variables, denoted by xjs%gs.-.,Xp « The NE

constraints are of the form

apXy Ak e tapaiw C 6 5 20 3 wa

-
v

apixy  tagoxy  t.as tapz gy (6 = } ap v+t (1.42)

g, 1% T Ag,2%2 T et AaE,NW S T 20 ang vt

where we adopt the notation { <, =, > } to emphasise that any one of these
relation signs can be used in a constraint. As before, our primary constraint

are
Xy 20y %p 2 By ..oy xpy 2 0, (1.43)

but now we do not require the entries of the right-hand side vector to be
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nonnegative. The problem is either to maximize or minimize the objective
function
ANAX~
C1Xg + CoXo + wes + Oy T2 &min] . (1.44)
This generalized problem can easily be translated to the normal form by the

following tricks.

If the right-hand side is negative, multiply the constraint by (-1).
As discussed, a constraint with < is transformed into an equality by
adding a (nonnegative) slack variable to its left-hand side. The same can be
done in an inequality with > , this time by substracting a (nonnegative)
slack variable from its left-hand side.

o The problem of locating the minimum is translated to the normal
(maximization) problem by changing the sign of the aobjective function

coefficients.

With inequality constraints of the form < only, the columns corresponding
to the slack variables can be used as a starting basis. This does not work for
the generalized problem, and we must proceed in two phases.

In the first phase we invent futher variables to create an identity matrix
within the coefficient matrix A. We need, say, r of these, called artificial

variables and denoted by s4,55,...,5, . Exactly one non—negative artificial

r
variable is added to the left-hand side of each constraint with the sign = or
2 . A basic solution of this extended matrix equation will be a basic solution
of the original equations if and only if s = s, =...= 5, =0 . We try to find

such a solution by applying the simplex algorithm itself. For this purpose
r

replace the original objective function by 2z = - _Elsi, which is then
l:

maximized. This can obviously be done by the simplex algorithm described in the
previous section. The auxiliary linear programming problem of the first phase
always has optimal solution where either 2; <@ or 2; =0 . With 2z; <0
we are unable to elimipate all the artificial variables and the original
problem has no feasible solution. With zy = @ there may be two different
situations. If 2z; =@ and there are no artificial variables among the basic
variables, then we have a feasible basic solution of the original problem. It
may happen, however, that z; =@ but there is an artificial variable among
the basic variables, obviously with zero value. If there is at least one
nonzero entry in the corresponding row of the tableau then we can use it as a
pivot to replace the artificial vector still in the basis. If all entries are

zero in the corresponding row, we can simply drop it, since the constraint is
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then a linear combination of the others.

After completing the first phase we have a feasible basic solution. The
second phase is nothing else but the simplex method applied to the normal form.
The following module strictly follows the algorithmic steps described.

Program module M11

1108 REM ISR RRasas e aananantagsaaas e iagansssassssansssy

1192 REH 8 LINEAR PROGRAMMING t

1104 REM ¢ TWO-FHASE SIMPLEY METHOD 1

1106 REN SRRSRRRRRRSRaasassasaasssssssassasssssssssssssssssy

1188 REM INPUT:

1118 REM Ny NUMBER OF VARIABLES

1112 REM NE NUMBER OF CONSTRAINTS

1114 REM E$ FROBLEM TYPE: 'MAX" OR ‘MIN

{116 REM  ES$(NE}  TYPE OF CONSTRAINTS: 'LE,’EQ" OR 'BE’

1118 REM  A(.,.} INITIAL SIMPLEX TABLEAU

1120 REM A{1...NE,1...NV) CONSTRAINT MATRIX COEFFICIENTS
1122 REM A{l...NENV+1}  CONSTRAINT RIGHT HAND SIDES
1124 REM  C{NV)  OBJECTIVE FUNCTION COEFFICIENTS

1126 RE# OUTPUT:

1128 REN ER STATUS FLAG

1138 REM B OPTINUM FOUND

1132 REM 1 NO FEASIRLE SCLUTION

1134 REM 2 ND FINITE OPTIMUM

1136 REM 3 ERRONEDUS CHARACTERS IN E$(.) OR E$

1138 REN N NUMBER OF ROWS IN FINAL SINPLEX TABLEAU, N=NE+l
1140 REY i NUMBER OF COLUMNS IN FINAL SINPLEX TABLEAU,M=NV+LE+GE+1
1142 REM  A(N,M)  FINAL SIMPLEX TABLEAU

1144 REM OPTINUM VALUE OF THE I-TH VARIABLE

1146 REM [} IF A8, J)=0 ,

1148 REM A{A{D,J) )}  OTHERWISE

1150 REN OPTIMUM CBJECTIVE FUNCTION VALUE IS EXA(N,M)
1132 REM

1134 REM MODULE CALLED: M1@

1156 REW ---------- INITIAL VALUES

1156 LE=9 :E0= :GE=@ :EF=.200081 :EN=EP :MA=1E+30

{160 REW ~--------- CHECK INPUT DATA

1162 FOR 1=1 TO NE

1164 IF A{1,NV+1))>=@ THEN 1170

1166 IF E$(I)="LE" THEN ES{I)="6E" :60TO 1170

1168 IF E${1)="GE" THEN E${I)="LE"

1170 IF E$(1}="LE" OR E${I1)="EQ" OR E${1)="BE" THEN 1174
1172 £R=3 : GOTO 1340

1174 EQ=EQ-{E$(1)="E0")

1176 LE=LE+(A>=@)3{ES{1}="LE"}+{A<D)H(ES{I)="GE")

1178 BE=GE+(A¥=DI4{ES{1)="BE" )+ (ALDIKIES(T)="LE")

1188 NEXT I

1182 IF ESC:*MAX" AND ESO"MIN® THEN ER=3 : GOTO 1340
1184 N=RY+LE+EQ+ZHGE+L :N=NE+l

1186 REM
1188 FRINT “SOLUTION OF THE ACTUAL PROBLEM REGUIRES DIM A{*;N;*,”;M;*)"
1198 REM




1192 REM ------mee- FILL SIHPLEY TABLEAU
1194 V=NV 2 JA=NV+LE+GE

1196 FOR 1=1 10 NE

1199 E={E${1)="BE")-{E${1}="LE")

1200 A=A(I,NV+1) :IF A>=@ THEN 1204

1202 A=-A ¢ FOR J=1 T0 NV :A{1,3)=-A(1,d) NEXT J sE=-E
1204 FOR J=NV+1 TO M-1 :A(T,0)=@ sNEXT J :A(1,Ni=A

1286 IF E=B THEN 1218

1208 19=0V+1 sA{T1,0V)=E :IF E30 THEN A{Q,dV)=1 :A{1,B)=0v
1219 IF ExD THEN 1214

1212 JA=dA+L dA{10A)=1 sA(D,JR)=T :A(1,0)=dA

1213 NEXT 1

1216 REN ----oommo PHASE 1
1218 IF EQ+GE=0 THEN 1284
1220 REM =-mmemmmm mmmmmeooes 1-C VALUES

Z2LFORJ=L TC N

1224 IF A{®,J)<:@ THEN 1230

1226 A{N,J)=0

1228 FOR I=! TO NE sA{N,J)=A(N,J)+A{T,J)F{A{] B)INV4LE+GE) NEXT I
1238 NEXT J

1232 IF A{N,M}2=-EP THEN {266

1234 REM --------mo —oomoooeo- CHECK FEASIRILITY

1236 Hi=0

1233 FOR J=1 70 M-t

1248 IF A(N,J}<H] THEN MI=AINJ) :0P=)

1242 NEXT J

1244 1F W1=0 THEN ER=1 : GOTO 1348

1785 REM ----r-ommm —momommoe- CHANGE BASIS

1248 HI=MA

1258 FOR I=1 T0 NE

1252 IF A{1,JF)<=EF THEN 1256

1254 IF A(I,M}/ALL,JP)<NI THEN MI=A(I,M}/A{1,JP} :IP=]
1756 NEXT 1

1258 GOSUB 1000 :EP=EP+EN

1268 REM =--omomomm —mmmoooooo TERMINATION CONDITION
1262 IF A{N,N){-EP THEN 1236
1264 REM =----o-mmm wmmoooooo- ELIMINATION OF ARTIFICIAL VARIABLES

1266 FOR 1P=1 TO NE
1268 IF A{1P, ) C=NV+LE+BE THEN 1280

1270 FOR IP=1 TD NYHLEYBE

1272 IF ABS(A(IP,JP))3=EP THEN GOSUE 1808 : EF<EP+EN :G0TO 1280
12774 ALIP,IP)=0

1276 NEXT JP

1276 A{TF,0)=B :A{IP,H)=D

1280 NEXT 1P

R — FHASE 2

1284 FOR 3=1 TO NV ¢ A(N,3)=CLI) :NEXT 2

1286 E=(E$="HIN")-{E$="M0X")

1288 M=NVHLEGE+

1299 4(0,M)=0

1292 FOR J=NVel TO M :A{N,J)=d cNEXT J

1290 FOR 1=1 TO NE :A(1,M)=ALT MEGE] <NEXT I

VT e — 1-C VALUES

1298 FOR 3=1 T0 H

1300 IF A(R,1)30 THEN 1306

8 AN =-ERAND)

1380 FOR I=¢ TO NE tA(N,2)=A(N,J)/ERACT,JVAIN,ALT,B)) SNEXT |
1386 NEAT ]

1308 FOR 1=1 T0 NE : AIN,A(T,8))=0 :NEXT I
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I CHECK OPTINALITY
1312 MI=-F

1314 FOR 3=1 T0 M-t

1316 IF A{N,J)ONT THEN MI=AINJ) 1P=]

1348 NEXT J
1320 IF MI=-EP THEN ER=B : G0TO 1348

322 BEM weeemns wmemeeeeee CHANGE BASIS
1324 HI=MA

1328 IF A{1,JF}<=EF THEN {332

1338 IF A{I,M)/A{T,JP)<MI THEN MI=A{I,M)/A{1,0P} :IP=1

1332 NEXT |

{334 REN =m--mmmmmm mmmemeeee NO FINITE OFTIMUM OR CONTINUE
1336 IF MI=MA THEM ER=2 : 5OTO 1340

1338 GOSUE 1880 :EP=EP+EN :GOTD 1312

1342 RETURN

1342 REM SR80t tnt i e e s e s e e s s anaanssy

The remarks in the module tell you how to specify the input. Notice that
any right-hand coefficient may be negative, and you do not have to group the
constraints depending on their relation signs. What you should do is simply to
write the character sequences "LE", "EG" or 'GE" into the entries of the
vector E$() for the constraints ¢, =, and », respectively. Depending on
what you want, put the character sequences '"MAX" or "MIN" into the
non—vector variable E%.

You may face, however, difficulties in selecting the physical dimensions of
the array A 1in your calling program, since this array stores the simplex
tableau in both phases. We will present a main program that selects these
dimensions for you. If you want to call the module from your own program, you
should specify dimensions that are large enough. BASIC does not care about the
extra space occupied. If you do not know what large enough means in your
particular problem, you may watch the screen, since the module will output the
dimensions of the array A actually required.

Dn output the flag ER will tell you the outcome. The return value ER =@
indicates an optimal solution is found. In this case the solution is stored in
the M-th colum of A , where the value of M is determined also by the
module. To find the results, however, you need to know which vectors are in the
final basis, and also the positions of these vectors in the tableau. The
coordinate transformations are performed by the module Mi@, and hence this
information is stored in the entries A(@,J) , as described in Section 1.1.2.

You may wish to follow the steps of the procedure and print the indices
IP,JP of the pivot. This can be done in the module Mi@. The current value of
the objective function may be obtained by printing the product EXA(N,M).

While our test example is very simple, the module enables you to solve much
larger problems, in principle constrained only by the storage capacity provided
by your BASIC interpreter or compiler. As emphasized in Section 1.1.4, in a
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sequence of coordinate transformations we accumulate round-off errors. When
selecting a pivot element the test for inequality with zero actually is a test
against a small parameter whose value is increased in each step to compensate
the accumulation of errors. Nevertheless, you may encounter problems with
detecting convergence if there are order of magnitude differences in the
coefficient matrix. Therefore, it is advisable to perform some scaling of the
constraints and the variables before solving a larger problem. You may
multiply all coefficients and the right-hand side of a constraint by a scaling
factor. Similarly, you may multiply all coefficients in a columm of A and the
corresponding coefficient in the objective function, but in this case after
solving the problem the corresponding variable must also be multiplied by the

same factor.

Eample 1.2 Solution of the blending problem

Though we solve here only the simple blending problem (1.29-1.30) by
calling the module M11l, we present a main program which, apart from the
specific input in its DATA statements, is rather general and performs a number
of auxiliary operations. In particular, it reads the problem, calculates the
dimensions, calls the module, locates and prints out the results. Later on we

will solve other problems by this program, replacing only the data lines.

180 REM
102 REM EX, 1.2, LINEAR PROGRAMMING BY TWO PHASE SIMPLEX METHOD
104 REM MERGE M1iQ,M11

186 REM DATA

106 REM (MUMEER OF VARIAELES, NUMBER OF CONSTRAINTS)

118 DATA 2,2

112 REX CONETRAINTS

114 DATA 9.333333, @.833333, LE, 3@

116 DATA Q.bb66b7, B.166KT, LE, 1f

118 REM ORJECTIVE FUNCTION:

120 DATA 1o@, 200, NAX

208 REN ---------- CHECK DATA AND COMPUTE DIMENSIONS

282 LE=0 :E0=B :5E=B :READ NV,NE

204 FOR I=1 TO ME

285 FOR J=) TO NV :READ A :NEXT J: READ E$,A

288 IF E$="LE" OR E$="ED" OR E$="GE" THEN 2i2

212 LPRINT "ERROR IN CONSTRAINT No.";1 :60T0 324

212 1F E$="ED" THEN EB=EQ+{ :60TC 222

214 IF E$="GE" THEN 228

216 IF A>=Q THEN LE=LE+] ELSE GE=GE+]

218 60T 222

220 IF A%=® THEN BE=BEtl ELSE LE=LE+]

222 NEXT 1

224 FOR J4=1 T0 NV :READ A: NEXT 1 :READ E$

225 IF E$="MAX" OR E$="NIN" THEN 230

228 LPPINT "ERROR IN ORJECTIVE FUNCTION SPECIFICATION® :8070 324
230 M=NV+LEEB+28GE+] :N=NE+]

232 DIM A{N, M), LINV) ESNE)
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274 REN ---ommoee- FILL INITIAL SIMPLEX TABLEAU
23b RESTORE

238 READ NY,NE

240 FOR I=1 7O NE

242 FOR =1 TO NY :READ A(1,d) :NEXTJ

244 READ ES(1),A{I,NV+])

244 NEYT |

248 FOR J=1 TO NV :READ C(J) :NEXT J
250 READ E$

252 REM -----=---- CALL LP MODULE

254 GOSUB 110

256 LERINT

258 LPRINT TAB(18);"LINEAR PROGRAMNING BV THOD FHASE SIMPLEX KETHOD*
260 LFRINT sLPRINT :LFRINT

262 IF ER=1 THEN LPRINT "N FEASIELE SOLUTION* :GOTO 324

264 IF ER=2 THEN LPRINT *NO FINITE *;F$;*INUN* :6OTD 324

266 LERINT sLFRINT *EVALUATION OF CONSTRAINTS® :LPRINT

760 V4=STRING$1L2,"~*} tV1$=STRINGS(54,"=")

270 LPRINT V8

WLLRRINT T TYPE LS. RMH.S  SLACK SHADOW PRICE"
274 LPRINT V8

276 RESTORE :READ NV,HE :3V=NY

278 FOR 1=} T0 NE

80 Bed

02 FOR 3=1 TO WY

284 READ A& :K=A(B,]) :IF k=B THEN 1=B ELGE X=A{K,N)

286 BeBeAt)

283 NEXT J tREAD E$,8

298 T=ABS(A-B) :1F T(-EPRABS{A) THEN T=0

292 LPRINT I;TAB(6);ES;TAR(18);B1TAB(24) 1A TAB(S4);T;

294 IF ES(1}43"EQ" THEN JV=J¥+ :IF A(8,V)=B THEN LPRINT TABLSB);AIN,dV);
706 LFRINT

298 NEXT 1

08 LERINT V8 sLFRINT

302 LPRINT sLPRINT * DPTIMUM SCLUTION® :LPRINT

304 LPRINT ¥1s

Wb LPRINT * 5°,7 X3"," Cj","  Cisyje

88 LERINT Y18

348 FOR J= TO W

12 READ € :k=Al,3) :IF K38 THEN X=A(K,N) ELSE X=2

304 LPRINT J3TAB(1S)X;TAR{30)C; TABL4S)CHY

316 NEAT J

I8 READ ES :A=AiN,M) :IF E$="NIN" THEN A=-A

320 LPRINT Vi$ :LPRINT

227 CPRINT "OBJECTIVE FUNCTION *§ES3"INUM VALUE .......... ";A :LPRINT
324 STOP

The DATA statements contain the input data in the following order:

the number of variables and the number of constraints;
for each constraint the coefficients, the type of the constraint ("LE","EQ"
or "GE") and the right-hand side;

O the objective function coefficients and the type of the problem ("MAX" or
"MIN").

The program output for this example is as follows.
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LINEAR PROGRAMMING BY TWO PHASE SIMPLEX METHOD

EVALUATION OF CONSTRAINTS

I TYPE L.H.5. R.H.8 SLACK SHADOK PRICE
1 LE 38 M [} 233.3334
2 LE 16 16 [} 33,3334

OPTIMUN SOLUTION

i Xj Cj CitXj

1 16.66664 180 1666.664
2 2933337 200 3B66.674
Q0BJECTIVE FUNCTION MAXIMUM VALLE .......... 7533.3%7

According to these results the slack variables vanish in the constraints 1
and 2, which are of type < . Therefore, the optimal solution is on the
boundary defined by these two constraints. Such constraints are said to be
active ones. In physical terms it means that the available supplies of raw
material A and B are both exhausted. The optimal strategy is producing 16.7
units of product I and 29.3 units of product Il.

Our results include the shadow prices for each active constraint. A shadow
price can be regarded as the change in the optimal value of the objective
function following the increase of the right-hand side of the constraint by one
unit. ( Strictly speaking you may obtain even larger change in the objective
function if the optimal basis will not remain the same. ) In the given example
it is advantageous to increase the supply of A if its market price is less
than 233.3 ECU/unit. The raw material B is much less valuable in the given
situation. You can learn more about shadow prices by reading on the concept of

duality in linear programming, e.g., in (ref. 8).
Exercise

O Solve the blending problem with objective functions
z = 100x; + 25Bx2
and
z = 100x; + 342!2!)(2 ,
both by the program and by geometrical considerations.
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1.3 LU DECOMPOSITION

In this section we restrict considerations to an nxn nonsingular matrix
A . As shown in Section 1.1, the Gauss—Jordan elimination translates A into
the identity matrix I . Selecting off-diagonal pivots we interchange some rows
of I, and obtain a permutation matrix P instead, with exactly one element 1
in each row and in each column, all the other entries beeing zero. Matrix P
is called permutation matrix, since the operation PA will interchange some
rows of A .

We can save some efforts reducing A into a triangular matrix and not all

the way to the identity matrix. More generally, we will write A as

=L, (1.45)

where P is a permutation matrix, L is a lower triangular {has elements only

in the diagonal and below), U is upper triangular (has elements only on the
diagonal and above), and [L] ij =1 -

The decomposition will be performed by Gaussian elimination. This classical

method can easily be understood by solving an example.
1.3.1 Gaussian elimination

We solve the matrix equation (ref. 9)

5 3-1 0] [x 11
20 4 1] |x 1

= (1.46)
3 33 5| |x3 -2
@ 6-2 3| % 9

by reducing its coefficient matrix to an upper triangular one. Therefore, let
us first eliminate x; from eguations 2 and 3, multiplying the first
equatation by factors (2/5) and (-3/5) , respectively, and then substracting

from equations 2 and 3 . The resulting eguation is

5 3 -1 o Xy 11]
@ -1.2 4.4 1.0 X2 -3.4
= (1.47)
@ 4.8 -3.6 5.0 X3 4.6
@ 6.0 2.0 3.0 %4 9.0

The pivot (i.e., the element we divide by) in this stepwas 5 , and the
factors (2/5, -3/95, B) = (@.4, 0.6, @) are called multipliers. We perform
partial pivoting (see Section 1.1.4) and pick [A]4’2 = 6.0 as the next pivot
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instead of the diagonal element [A]2,2 = -1.2. This choice implies
interchanging rows 2 and 4 (and also the corresponding right—hand side
entries). Using the multipliers (4.8/6.0, -1.2/6.0) = (0.8, —0.2) we have

5 3 -1 @ [xl 11
@ 6.0 -2.0 3.0 Xo 9.0
= . (1.48)
@ © -2.0 2.6 X3 -2.6
2 0 4.8 1.6 X -1.6

The next pivot will be [A]4’3 = 4.0 , thereby interchanging rows 3 an 4. To
eliminate xg from equation 3 we need the single multiplier -2.0/4.0 = -0.5,

and obtain the matrix in the desired upper triangular form:

S 3 -1 @ X1 11
1) 6.0 -2.0 3.0 ) 9.0
= . (1.49)
1) @ 4.0 1.6 Xz -1.6
@ 1) B 3.4 Xg -3.4
L
Equations (1.49) are very easy to solve. Indeed, x4 = -1 is already isolated

in equation 4. Proceeding with this value to equation 3 gives X3 =0 . Then we
move to equation 2 with x3 and x4 known. The procedure is called

backsubstitution and gives the solution vector x = (1.0, 2.0, 0.0, —1.(ZI)T.

1.3.2 Performing the LU decomposition

The Gaussian elimination also enables us to decompose the matrix in (1.46).
We already have the upper triangular in (1.49). To form the permutation matrix
P we will interchange those rows of the identity matrix 1 that have been
interchanged in A in the course of the BGaussian elimination. Let (i,k;)
denote the operation of interchanging rows 1 and k; in the i-th step,
then what we did is (1,1), (2,4) and (3,4) . These operations applied to the

identity matrix I result in the permutation matrix

1000
2001

P = . (1.50)
2100

o1 @

The lower triangular matrix L can be constructed from the multipliers used
in the elimination steps if we adjust them according to the rows interchanged.
Taking into account that for the row of the pivot the multiplier is necessarily
1.8 (i.e., this row remains unchanged), in the three steps of the Gaussian
elemipation the multipliers were (1.0, 0.4, -0.4, 0.0), (1.0, 8.8,—~ 0.2) and
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(1.0, -@.8). In the second elimination step we performed the interchange (2,4),
and hence write the previous multipliers in the order (1.0, 8.0, ~0.6, 0.4).
In step 3 the interchange was (3,4), which will affect all the previous
multipliers, resulting in (1.0, 0.0, 0.4, -@.6) and (1.8, 0.2, @.8), whereas
(1.0,0.5), used in this last step, remains unchanged. We put these vectors

into the lower triangular of a matrix and obtain

1 [r] [r] 1]

[r] 1 [r] [r]
(1.51)

2.4 -8.2 1 [r]

2.6 0.8 0.5 1

It can be readily verified that the matrices (1.46), (1.4%9), (1.95@) and
(1.51) satisfy the relation (1.45). Since L is constructed from multipliers,
on the basis of the Gaussian elimination algorithm you will understand why the
method works.

Now we present a module for the LU decomposition and apply it to compute the

determinant of A . As is well known, det(A) is a number, defined by

det(A) = T-1)May 178 kX -+ Xan k) (1.52)

where the indices kj; are selected so that there is exactly one element from
each column of A in each term of the sum, and we add all the possible
combinations. Therefore, the number of terms in (1.52) is n! . In each term
the indices k; take the values 1,2,...,n in different orders. Finally, h
in (1.52) is the number of pairwise permutations required to bring all
indices k; into the order 1,2,...,n .

Since det(A) = @ if and only if A is singular, it provides a convenient
way of checking singularity. Determinants have traditionally been used also for
solving matrix equations (ref. 10), but both the Gauss—Jordan method and the
Gaussian elimipation are much more efficient. The determinant itself can easily
be calculated by LU decomposition. For the decomposed matrix (1.45)

det(A) = ———— det(L) det(l}) . (1.53)
det(P)

For a triangular matrix the only nonzero term in (1.52) 1is the product of the
n

diagonal elements. Therefore, det(L) = 1, and det(Ul) = ‘nl (Ul;; - There is
1=

also only a single nonzero entry in det(P) , so that det(P) = +1. Since
det(I) =1, det(P) =+1 if the number of row interchanges translating I
into P is even, and det{(P)= -1 if this number is odd.

The following module for LU decomposition of an n> matrix A is based on
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the algorithm in (ref. 1).

Program module M14

1508 REM XSSERSEEEIREREERLERRtUER AN tEs CTRNEeRsansaassns
1803 REH 8 Lit BECONFDSITION GF A SQUARE MATRIX 1
L300 REH DXRXBERSAERELERIIESEANTRERILESEERIPERsEReLengesnony
1425 BEW INPLT:

1488 BEM N i
116 RER AN MR
1417 REW GUTFT:

(414 pEN £8 STATUS FLAG

1ags £EN @ SUCCESSFUL DECCHFCSITION
1616 M { SINGULAR MATRIY

1420 RER  A{NN) BRTRIX FECTORS TN PACKED FORM
1422 REN
1424 3{0,0;
1426 FOR =
1808 M=
W3 FOR G=Kel TON
14 IF ABSIALL
1434 HENT

W36 &K, BN AANK)

1436 IF MoK THEN A(R,0)=-RiB,0) :AINK)=AIK,K) :AIK.K)=A
1446 TF A{*B THEN A=1/A ELSE ER=1 :G0T0 1458

1342 FOR I=hel TOON SAET,K)=-B(1,E188 (NEXT I

1484 FOR Jek+t 10 H

16 ATAINGE ACHLDI=ALE, D) GATK,D)=A

1448 IF A=@ THEN 1552

(50 FOR T=KRD TOON :A(LJ)=RiT,0)+A(T,ETSA NEXT 1

1452 NEXT )

1453 NEXT &

1455 1F AIN,N)=@ THEN ER=) ELSE ER=

1456 RETHRN

1450 REN CESLEESEERLEES RS EERTEXRONRREEELERSTEEseRtsasseeny

MENSION OF MATRIX
TRIX

REGEAM,E)) THEN M=1

Since only n-1 elimination steps are required for the decomposition, it can
be performed also for matrices with rank(A) = n—1. For simplicity, however,
the module will return the flag ER with value 1 if A 1is singular.

The decomposition is "in place", i.e., all results are stored in the
locations that matrix A used to occupy. The upper triangular matrix U will
replace the diagonal elements of A and the ones above, whereas L is stored
in the part below the diagonal, the unit elements of its diagonal being not
stored. We will then say that the matrices are in "packed" form. The
permutation matrix P is not stored at all. As discussed, the row interchanges
can be described by n-1 pairs (i,k;), and all information is contained in a
permutation vector kj, ko, ..., kg that will occupy the entries
A(L1,0), A(2,0) ,..., A(N-1,@0) . The module writes +1 or -1 into A(2,0)

depending on the number of row interchanges.
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Example 1.3.2 Determinant of a matrix by LU decomposition

The following program performs LU decomposition of the matrix in (1.46) and

calculates its determinant.

188 REW -
182 FEM EX. 1.7.7. DETERMINANT BY LU DECONPOSITION
18 EN HERGE M14

1B REW ----nmeees DATA

106 REM (DIMENSION OF WATRIY)

118 DATA 4

{12 DATR [}
114 DATA o
116 DATA 3
118 BATA 3
208 REM EAD DATA

207 RERD
204 DIN AIN,N)
L FOR =1 TO § :FOR J=1 TO N
READ &(1,])
NEXT 1 GNEXT
REH —-mmmaee CALL DECTMFOSITION MODULE
GOSUE 1400
IF ER=1 THEN D=0 :G0TQ 727
1=A(2,0)
FOR I=4 T0 N :B=D4A{T, 1) GNEXT 1
LPRINT "BETERMINANT +vvvvrvvernsensseironses "i0
§ LPRINT
¢ LPRINT LU DECOMFOSITION IN FACKED FORM"
=GTRINGS(BI(N+1],"-"]
LPRINT ¥s
LPRINT USING * ¥4 ";A(8,0)
FOR 1=1 T0 N
236 LPRINT USING * 80 ";A(I,B)
218 FOR d=1 70 K :LPRINT LSING * BER.BM":A(1,0); NEXT J
240 LRRINT
247 NEXT 1
204 LERINT V%
44 LFRINT
213 570¢

N
The determinant is computed by det(A) = IEéA(I’I) , where A(B,0) affects

only the sign. The resulting matrix is printed as stored, in a packed form. It
it is easy to recognise U . The elements of L are stored with opposite

signs, and in the order they originally appeared in the Gaussian elimination.

DETERMINANT oooviincvnnnninns viones B8

LU DECOMFOSITION [N FACKED FORN

1

i 5.020 I.eee -1.2ed 0.000
i -R.400 5,088 -2.000 .00
) 2,600 -0.800 4.3@8 !f..00
2 3.260 @.7a@  g.Sed  I.500
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1.3.1 Solution of matrix equations

We can use the LU decomposition to solve the equation Ax = b very
efficiently, where A is a nonsingular square matrix. Multiplying the equation
by a permutation matrix P we have PAx = Pb, and hence LuUx = Pb by
(1.45) . This last equation is very easy to soplve, first by solving for a

vector d such that

Ld = Pb (1.54)
and then solving
Ux =d . (1.39)

Since both L and U are triangular matrices, (1.54) and (1.55) are
solved by the simplest backsubstitution except for taking into account the
right-hand side interchanges in (1.34). The next module performs these

calculations.

Program module M15

PR IR EERR R ERRARTLER Qi eecessstcacistttsetisattiitind
1592 REM & SOLUTION OF SIMULTANECUS LINEAR EQUATIONS 1
1584 REM §  BACKWARD SURSTITUTION LSING LY FACTORS L
1506 REM LERSSRsdRas st n g aanaas e sassqgparassseesssy
1508 REM INRUT:

1318 REM i NUMBER OF EQUATIONS

{512 REM  AIN,N) LU DECOMPOSITION OF THE COEFFICIENT MATRIX
1514 REM YIN)  RIGHT HAND SIDE

1516 REM QUTPUT:

1518 REM LN} SOLUTION

1522 FOR k=1 TO N-1

1922 1=AiK, @) A=X{I) X{1)=X{K} sX{K)=A

1524 FCR I=K+1 TO N sB(I)=X(D)ACT,K)8A SNEXT I

1926 NEXT K

1528 FOR k=N TO 1 STEP -1

1530 X{K)=K{K) /ALK )

1532 FOR I=s1 70 K-1 sX(D)=X{T)-AIT,K3H0(K) sNEXT I

1834 NEAT ¥

1336 RETLRN

1538 REM SSRERSsasggaap s assssaasa et asaaassssaspssrsssny

On input the array A contains the decomposed matrix as given by the module
Mi4, and the right-hand side coefficients are placed into the vector X. On
output, this vector will store the solution. There is nothing to go wrong in
backsubstitution if the previous decomposition was successful, and hence we

dropped the error flag.
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Example 1.3.3 Solution of simultaneous linear equations by LU decomposition

We use the following main program to solve (1.46) by the modules Mi4 and
M15:

180 REM
102 REN EX. 1,33, SOLUTION OF LINEAR EQUATIONS BY LU DECOMPOSITION
184 REM MERGE M{4,MI5

186 RN ----nmeme DATA
108 REN (NUMBER OF EQUATIONS)
116 DATA 4

Y7 DATA 5, 3,-1, 0
L4 DATA 7, 8, 4,
136 BATH -3, 3,-3,
118 DATA 8, 4,-2, 1
200 REY ---=----n~ ‘
282 READ N

284 DIH AINN) (N)
206 FOR 121 TO N

283 FOR J=1 T0 N :READ Afl,J) :NEXT

210 READ A%, X(1}

22 NET I

pILIN: (2 [ — CALL DECOMPOSITION MODULE

21b GOSUE 1420

218 IF ER=1 THEN LFRINT "COEFFICIENT MATRIZ IS SINGULAR® :B0TD 23
Yy 1 R— CALL SOLUTION MADULE

227 GOSUR 1500

224 LERINT “SOLUTION OF THE GYSTEM OF LINEAR EQUATIONS® :LPRINT
226 V$=3TRINGS(L6,"-")

228 LERINT V3

230 LERINT * 1 e

232 LPRINT v3

734 FOR 1=1 T0 N sLPRINT USING "#b  HB.0HEH"; 1,0(1) sNEXT I
236 LERINT U§ LPEINT

236 ST0P

t

The coefficients and the right-hand sides are separated by the character "="
but you can use any other character sequence as a separator. The resulting

output agrees with our hand calculations:

SOLUTION OF THE SYSTEM OF LINEAR EQUATICNS

i 1.2089
2 2,000
3 8.ee0e
4 -L.peR

A special property of solving a matrix equation in this way is that the LU
decomposition does not involve the right—hand side vector b , in contrast both

to the Gauss-Jordan method and to the Gaussian elimination. This is
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particularly advantageous when solving several matrix equations with the same

coefficient matrix A , as we do in the next section.
1.3.4 Matrix Inversion

As discussed in Section 1.1.4, to calculate the inverse of the nxn matrix

A one solves N matrix equations Ax = e i=1,2,...4n, and hence the LU

i
decomposition is particularly advantageous. You must, however, never compute
Al only to obtain the solution of the matrix equation Ax = b in the form

x = Alb since the method applied in Example 1.3.3 is more efficient.
Example 1.3.4 Inversion of a square matrix

We find the inverse of the matrix in  (1.46). On input, the original matrix
is stored in the array A , and its inverse will occupy the array B on
output. Performing LU decomposition by the module Mi4, the original matrix will
be destroyed. The program and the output are as follows:

JUL o [—

192 REN EX, 1.3.4. INVERSICN OF A MATRI% BY LU DECOMPOSITION
184 REM MERSE W14 MI5

184 REN ---mmmme- DATA

188 REY [DINENGION OF MATRIX)
119 aTA 4

112 TATA 0

114 DATA !

116 DATA 5

113 DATH 8, 6,2, 1

208 REN READ DATA

202 READ N

204 01N AN BON, M) XN)

206 FOR =0 T0 N :FOR J=1 T0 N

208 READ A{1,J}

210 NEXT 1 NET

242 REY ----=me—- CALL DECOMFOSITIAN MODULE

214 GOSUE 1428

716 TF ER={ THEN LPRINT "NATRIY IS SINGULAR™ :50TO 248

218 REN --------—- CALL SOLUTION MODULE
220 FOR J=1 O N

222 FOR I=f TO N :X(l)=-{I=J) NEXT I
224 BCSUR 1509

226 FOR I=1 TO N :B(L,2)=X{I}) tNEXT I
228 NEXT

230 V=STRINGE B3N, "-")

LERINT "INVERSE MATRIL:" :LFRINT

LPRINT V§

bFCR I=LTON

P38 FOR J=1 TO N :LPRINT USING " S84 388" iE(1 01 :NEXT ]
248 LPRINT

247 HEYT ]

744 LFRINT V$ :LFRINT

o4t 570

&
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INVERSE MATRIX:

8.235 0.844 2.088 -0.182
-p.1e8 -g.0i8 -0.186 0.314
~0.147  B.191 -0.118 Q.32

B.118  8.147 .29 -0.206

You may find interesting to compare the results with the output in Example
1.1.4,

1.4 INVERSION OF A SYMETRIC POSITIVE DEFINITE MATRIX

As you learned in the previous sections, LU decomposition with
built-in partial pivoting, followed by backsubstitution is a good method to
solve the matrix equation Ax = b . You can use, however, considerable simpler
technics if tbe matrix A has some special structure. In this section we
assume that A is symmetric (i.e., al = A), and positive definite (i.e.,
x'Ax > @ for all x # B 5 you will encounter the expression xTAx many times
in this book, and hence we note that it is called quadratic form.) The problem
considered here is special, but very important. In particular, estimating
parameters in Chapter 3 you will have to invert matrices of the form A = XTX
many times, where X 1is an nXm matrix, The matrix XX is clearly
symmetric, and it is positive definite if the columns of X are linearly
independent. Indeed, xT(XTX)x = (Xx)T(Xx) > @ for every x since it is a sum
of squares. Thus (Xx)T(Xx) =0 implies Xx =@ and also x =@ if the
colums of X are linearly independent.

A positive definite symmetric matrix A can be decomposed in the form
A=t where H is a lower triangular matrix, by the method of Cholevsky. An
interesting application is to decompose the inverse in the form al= GITGI,
where Q@ 1is an upper triangular matrix, easily obtainable from H. We will
need such a decomposition when dealing with error—-in—-variables models
in Chapter 3 . You may find details of the algorithm in (ref. 2), and the
corresponding BASIC statements in the module M52 of Chapter 3. Here we
provide a module based on Gaussian elimination, for inverting a positive
definite matrix.

The method (ref. 2) is based on solving the matrix equation y = Ax , where
y is not a fixed right-hand side, but a vector of variables vy ,yp,...sYq
with completely "free" values. To solve the equation for x in terms of vy
notice that a;; # @ due to positive definiteness of A, since
ajy = (el)Tml. We can therefore solve the first equation for x;, and replace

%y by the resulting expression in the other equations:
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+

¥1 T Ay T At e YA 0%n

Y2 T @ 21yp T @t eee * 8 00%,

. (1.56)
Ya = 2 n1Y1 + a n2%2 ...+ a 00Xy

where the new coefficients are:

311 =13y

a lj = _alj/all s ( _] = 2, 3, sesyg N ) )
a iy = aji/ay ( 1=2,3, ..., n) ,
a'yj =aj; —ajagy/ayy ., (1,3 =2,3, .., 0.

To proceed we have to assume that a'22 # 0. It can be shown that this
follows from the positive definiteness of A, (see ref. 2). If a'22 #0 then
we solve the second equation of (1.56) for X2 in terms of Y1sXZse o s%ms
and replace x;, with the resulting expression in all the other equations.
Since A is positive definite, we can perform all the elimination steps 1in

this way and obtain x in terms of y as

X = By . (1.57)

Since y = Ax according to the original equation, B = Al follows, thus we
obtain the inverse in place of the original matrix.

Though the procedure appears to be special, you will notice that it is
essentially a Gaussian elimination without pivoting.

The following module is based on the algorithm in (ref. 2). Its concise
structure is due to cyclic renumbering of both groups of variables, so that

always x is expressed and always from the first equation.
1
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Program module M16

1620 REM SR80S ssaasssasssssxssssssaaasssssssssssssasin
1602 REM $INVERSION OF A POSITIVE DEFINLTE SYMMETRIC MATRIX®
164 REN SHpppssassssassniaaaaaass st a gy
1606 REM INPUT:

1608 REM N DIMENSION OF MATRIX

1610 REM  A{N,N}  MATRIX

1612 REM {ONLY LOWER TRIANBLE 15 USED)

1614 REM QUTPUT;

1616 REM ER STATUS FLAB

14618 REM @ SUCCESSFUL INVERSION

1628 REM 1 MATRIX IS NOT FOSITIVE DEFINITE
1622 REM  A(N,N)  INVERSE MATRIX

1624 REM {INCLUDING THE UPPER TRIANGLE)

1826 FOR K=N T0 1 STEP -1
1423 IF A{1,1)¢=B THEN ER=1 :GOTO 1454

1638 A8, N)=1/ALL,1)

1832 FOR 1=2 70 N

1674 AsA(1,1)HA{R,N)

1636 IF 1K THEN A(0,1-1)=A ELSE A(B,I-1)=-A

1638 FOR J=2 70 1 sA(I-1,3-1)=ALT,d)#AL1,1)8A(0,d-1) :NEXT J
1640 NEYT 1

1642 FOR 1=1 TO N :A(N,1)=A(0,1) sNEXT 1

1648 NEXT K

1686 FOR 1=1 TO K-

1648 FOR J=I+1 T0 N sA{1,d)=A(J,1} :NEXT J

1650 NEXT |

1657 ER=D

1854 RETURN

1556 FEN SSERERERIRSIREREESRARERRERES RERRLERSREEETNEITReneey

Since A 1is symmetric, on input it is sufficient to store its corresponding
portion in the lower triangular part of the array A , including the diagonal.
The inverse is also symmetric, but on output it will occupy the entire matrix,
since ithis i advantageous for further use. The zero-th row of array A 1is
used as a vector of auxiliary variables, so do not store your own data here. If
the matrix is not positive definite, the module will return the flag ER = 1.
As we discussed, for a matrix of the form X'X this implies singularity. For a
general symmetric matrix, however, the return value ER = 1 does not
necessarily imply its singularity, and you can still try to use the modules M14

and M15 in order to invert the matrix.
Example 1.4 Inversion of a positive definite matrix

Our test problem will involve the Hilbert matrix of order 6, defined by
[Hé’]ij=1/(i+j—1) , i, =1, 2, seuy 6 . (1.58)

Hilbert matrices (and obviously their inverses) are positive definite and are
frequently used for testing algebraic procedures (ref. 1). We present a main

program, with the lower triangular of the inverse of H, in the DATA statements.



LB REM --mmmmm oo oo e
122 REM EX, 1.4, INVERSION OF A FOSITIVE DEFINITE SYMMETRIC MATRIY
104 REH MERGE Mit

iBb REY ----meeem- DATA

105 REM {LIMENSION DF MATRIX)

LB DATA &

117 REM (LOWER TRIANGULAR PARTY

118 DATA i

Lt DATA  -430, 14708

118 DATA 3360, -0820@, Ga4480

120 DATA -755,  Z114R@, -1411208, 3528800

122 DATA 756D, -220308, 1512008, -3959000, 44ic000

124 DATA -277%, 83168, -382179, 1302320, -1746348, 498344
208 REM ---------- REAL DATA

282 SEAD N
204 DIN AiN

206 FOR 1=0 TO N :FOR J=f 10 1

BB READ (1,4}

210 NERT T SHEXT 1

IO I TALL INVERSION MDDULE

714 GCSUR 1600

4 IF ER=0 THEN 220

718 LERINT "MATRIX 15 SINGULAR® $G0TD 22

220 LORINT *INVERSE MATRIL:" :LPRINT

222 Y$=STRINGS{9ON, ")

224 LPRINT V§

226 FOR 1=1 10 N

228 £0R J=t TO N LERINT USING * MHHWEHE';ALT, )5 NEXT J
238 LPRINT

We expect to obtain elements that satisfy (1.58). The program output is:

INVERSE MATRIX:

0.999%  0.4996  0.2230  0.7497  0.1997  D.1664
8,499 B30 0.2497  Q.1997  D.1664 0,142
9.3330 .2497  0.1997  B.lebh D.1426 014G
B,2497  2.1997  f.1e54 B.1426  B.1248  0.1189
2.1997  0.166% Q.1426  R.1248 D.1109  @.09%8
2.1864  2.1426  @.1248  Q.1109 3.0998  2.8988

As you see, the elements are accurate only up to three digits. To get more
accurate results, you may repeat the same calculation in double precision
inserting the BASIC line:

95 DEFDRL 2
We will return to the problem of numerical accuracy in Sections 1.7 and 1.8.6.

Here we only note that similar problems may ar}se even with full pivoting. (You

may try it using the program of Example 1.1.2 .)



1.5 TRIDIAGONAL SYSTEM OF EQUATIONS

Another special case of the matrix equation Ax=b is the one with A beeing
tridiagonal, i.e., having nonzero elements only on the diagonal plus or minus

one column. For example, the equations

4><l + 2x2
Xy + 4x2 + %3
X5 + 4x3 t g
x3+4x4+ Xg
2x4 + 4x5

U s UWN P+

(1.59)

form a tridiagonal system. To devise a very simple algorithm for solving
equations of this form we need a further special property called diagonal
dominance. The coefficient matrix A is diagonally dominant if

laji| > D7 [aj;| for all i, i.e., each diagonal element is sufficiently

J#1
large in magnitude. As in the previous section, these assumptions are
restrictive, but satisfied in a number of important applications. For example,
we solve tridiagonal systems of linear equations when interpolating by spline
functions in Section 5.3, and a similar problem arises in modelling
distillation columns (the latter is not treated in this book).
The Gaussian elimination can be used without pivoting because of diagonal

dominance (ref. 1). Due to the many zeros the algorithm {(sometimes called

Thomas algorithm) is very easy to implement:

Program module M17

1700 REM JRRRRRERCREESS R s Ia IR s EaRn e R e e aeasasssnsesseny
1702 FEM ¢ LINEAR ECUATIONS WITH TRIDIAGONAL MATRIX t
1704 REM SXORREtet s et e et ieaaaaasaasaaaaaasaasassassnesssy
1785 REM INFUT:

1708 REM i NUMBER OF EQUATIONS

1718 REM A(N) BN}, C{N},DIN)

1717 REW COEFFICIENTS AND RIGHT HAND SIDE IN
1714 REM THE I-TH EQUATION OF THE FDRM
1716 REM ALY (T-10 4B XD +C{ T X141 )=D4 1)

1718 REM 0UTPUT:

1728 RER X{N)  SDLUTION

1722 REM AUXTLIARY ARRAY:

1724 REX PiN}

1726 PEL)=BIL] sX(1)=DIL)

1728 FOR 1=2 10 N

1738 G=A()/PUI-1) <PiTi=B{1)-Q8C{1-1} X(1)=D{I)-08X{I-1)
1732 NEXT 1

1735 X{RI=XON /RN

1736 FOR 1=N-1 70 { STEF -1 sX(D)=(X{I}-C(IYRX(T+1))/F(I) :NEXT I
1738 RETURN

PR BT R ARty tecteteititeiieaiesiiiteetsitiitiesetittl

39
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The 3 nonzero entries of the 1i-th row of the coefficient matrix occupy the
variables A(I), B(I) and C(I) ,so that A(1) and C(N) are not used. We need
an auxiliary vector P() of N elements. Since there is no pivoting, you may
experience overflow (i.e., division by a too small pivot) even for a

nonsingular matrix, if it is not diagonally dominant.

Example 1.5 Solution of a tridiagonal matrix equation

The matrix in (1.3%) is diagonally dominant, and we can use module M17 to
solve the equation. As in example 1.3.3, we separate the coefficients from
the right hand side by the character "=" in each DATA line.

100 REW --------------
102 REM EX. 1.5. SOLUTION OF LINEAR EQUATIONS WITH TRIDIAGONAL MATRIX
184 REN MERGE Hi7

18 REW --=--mmmmn 1ATA

108 REN (NUMBER OF ECUATIONS)

110 DATA §

17 0ATA 4,2, =1
L4 DATA 14,0, =2
16 08T 14,8, =3
118 TATA  1,4,1,%,4
178 TATA 2,4,7,5
209 REN --------m- READ DATA

282 READ N

204 DIN AN) BINL,CINY,DENY, XEN) ,PIN)
2085 FOR I=1 TON

208 IF 131 THEM READ ALI)

218 READ B(I)

212 IF <N THEN RERD C{1)

214 READ AS$,DM1)

16 NEQT ]

216 REN -----eoom- CALL SOLUTION MORULE
220 GOSUB 1708

222 LPRINT "SOLUTION:" :LPRINT

228 V=5TRINGS(16,"-")

225 LRRINT * | e

228 LPRINT V$

230 FOR I=1 7O W :LPRINT IjTAB{E);X(1) :NEXT I
232 LPRINT V$ :LPRINT

234 STOF

The results are as follows:

L 7.142837E-02
2 LIB71429
I8
4 L6428578
5 .9285713
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1.6 EIGENVALUES AND EIGENVECTORS OF A REAL SYMMETRIC MATRIX

In Section 1.1 we defined the eigenvalue » and the eigenvector u of the

N1 matrix A to satisfy the matrix equation

(A2Hu=0. (1.68)

This is a homogeneous set of linear equations (i.e., its righ—hand side is
zero), and has a nonzero solution if and only 1if the columns of (A-AI) are

linearly dependent. Thus

det(A-21) =0, (1.61)

which is said to be the characteristic equation of A . By the definition
(1.52) of the determinant, the left—hand side of (1.61), if expanded, is a
polynomial of degree n in 2 whose n roots are the eigenvalues of A . If
A is symmetric, all eigenvalues Mj,Np,...,N, are real (ref. 10). The i-th

eigenvector u; can be obtained by solving the equation

(A3 Du; =@ . (1.62)

The solution of this equation is not unique. The eigenvector will be, however,

uniquely defined if we prescribe its length, e.g., by the constraint

"ui"2 = uTiui =1, and specify the sign of its first monzero element. An

eigenvector of unit length is called normalized eigenvector. Assume that all
eigenvalues Mj,;3g,...,%, of A are different, i.e., the characteristic
equation has no repeated roots. Then the eigenvectors ug,up,...,u, are
linearly independent and form a basis of the n dimensional space. Furthermore,
the eigenvectors are pairwise orthogonal, and the set uj,us,...u, of
normalized eigenvectors is said to be orthonormal, which means the property
1 if i=j

T
ul.u. = (1.63)

11 < @ otherwise.
Consider the matrix B = TlAT , where T is an n nonsingular matrix, and

find the eigenvalues of B . Since det(T)det(T‘l) =1,

det(B21) = det(T"H(AADT) = det(AAI) . (1.68)

Thus each eigenvalue of B is an eigenvalue of A and vice versa. In this
case the matrices A and B are said to be similar and T is called
similarity transformation.

An important application of eigenanalysis is the diagonalization of a
(symmetric) matrix A . Let U denote the matrix whose columns are the

normalized eigenvectors uj,Up,... U, - By the definition (1.68) we have
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Al = UD (1.65)

where D denotes the n>h diagonal matrix with the diagonal elements
A{32p5---5Ry - The matrix U of eigenvectors is nonsingular, and by virtue of
(1.63), Ul =u" (i.e., UU = I). Therefore, from (1.45) we obtain

viau=Dp . (1.66)

The eigenvalues of A can be find by solving the characteristic equation of
(1.61). It is much more efficient to look for similarity transformations that
will translate A 1nto the diagonal form with the eigenvalues in the diagonal.
The Jacobi method involves a sequence of orthonormal similarity transformations
TisTpse.. such that A = TTkAka . The matrix T, differs from the identity

matrix only in four elements: tpp = tqq = cos 2z and tpq = 'tqp = sin z . We

can chose a value for z such that [Ak+l]pq =0 , but the transformation may

"bring back" some off-diagonal elements, annihilated in the previous steps.
Nevertheless, the diagonal form (1.46) may be approximated with a desired
accuracy after sufficiently large number k of steps. The diagonal elements of
fy, will then converge to the eigenvalues and the accumulated product

Ty T5...T, to the matrix U of the eigenvectors. In the classical Jacobi
iteration always the largest (in magnitude) off-diagonal element is amnihilated
and the search for it is time consuming. A better strategy is to annihilate the
first off-diagonal element which is larger than a certain threshold, and
decrease the threshold when no more such element is found (ref. 11). This is

the basis of the following program module:

Program module M18

1608 REM SEXRRESERRRRasqsvstysuasatsans st isaiaaaastsasass
1582 REM ¢ EIGENVALUES AND EIGENVECTORS OF A SYMMETRIC ¢
1004 REM 8 MATRIX - JACDRI METHOD H
1806 REM SIITERENNEINIRENIRRIRRRRnsssasssssssssasnssesess
19D8 REM INPUT:

1810 ®EX Ll TIMENSION OF MATRIX

1312 3EM AN MATRIX

i8ia REM {ONLY LOWER TRIANGLE I5 USED)

1815 REM QUTPUT:

1818 REW  U{@,d)  J=1 TO N, EIGENVALUES

1870 REM {IN DECREASING DRDER)

1822 REM  U(I,}  I=1 TO N, J-TH EIGENVECTOR

1824 REM { LOWER TRIANGLE OF MATRIX A(.,.) IS OVERWRITTEN }
1626 FOR =1 TC N ;FOR J=1 TO N

1928 U{1,1=-(1=])
1830 NEYT 3 :NEAT 1

1032 4=

1934 FOR [=2 TO N :FOR J=f 70 I-!
1836 V=V4ABSIA{L,d))
1838 NEYT 1 GNEXT 1



1840 IF V=@ THEN 1922

1842 VO=Y/N/Nt.D00RE5 :V1=0

1844 Y=u/N

1646 FOR 18=2 T0 ¥ :FOR Je=t T0 18-1

1848 TF ABSCA(18,00]1¢=V THEN 191h

1850 V1=l

1857 1F A{J0,18)=A(18,18) THEN T=1 :50TO 1842
1854 IF A(10,10)3A(18,13) THEN Y2=1 ELSE V2=-1
1856 Vi=ARS(A{JD,J0i-A(1,18))

1958 Y4=SOR{(A(JD,I0)-A(10, 10)) “2HA1A{1E,10)72)
1860 T=24A110,3)8V2/(V34VA)

1862 C=1/SBRI1+4T*2)

1384 §=TIC

1860 C1=0°7 :§1=5°2 :T4=T*7

1B Y5=A(10,18)

1878 A(10,18)=CLE{VS-T8THAL10,10)+T10A(20,0))
1872 A(JR,001=C18(A{JR, J01+20THA( 10, J0}4TLHVS)
1874 Al18,J6)=

1876 FOR J=1 10 Jg-1

1878 ¥5=-S1A(JB,3)+CIA(1B, )

1880 A{J8,J)=CHALID,1)+5HA(10,0)

1882 A(IB,2}=V5

1884 NEAT )

L6 FOR 1=02¢1 10 10-1

1888 Y5=-S1A(1,J2+CIA(IB, 1)

1890 AL1,JB3=CHALT,JR)+54A110, 1)

1852 A(18,1)=Y5

1894 NEXT I

189 FOR I=I9+l TO N

B9 V5=-StA(I,IBI+CIA(T,IR)

1908 A(1,J0)=CEAL1,J0)+5HA(1,10)

1902 Al1,1B)=Y5

1984 NEXT 1

1986 FOR =1 TO M

1908 YS=CHU(1,10)-S8U¢1,30)

$910 U{1,8)=88011,18)4CHU(1,30)

1912 ULL,IB)=V5

1944 NEXT

1915 NEXT 30 :NEXT 18

1518 IF V1=1 THEN V1= :60T0 1846

1928 IF V=@ THEN 1844

1927 BEW --mmmmmnme SORT IN DECKEASING DRDER
1924 FOR 1=1 70 N :U{0,1)=R{1,1) NEXT |

1926 FOR 1=2 TO N sL=]

1928 IF 0(B,L-1)3=U(Q,L) THEN 1934

1930 FOR J=0 TO N :T=U(d,L-1) s0(3,L=13=0(),L) (I L)=T :NEXT J
1932 1F 137 THEN L=L-1 :B0TD 1928

1934 NEXT 1

1934 RETURN

1938 REM BESEREEEERISTETAEELLAENITEREREs IRt ItNtaansnitIee

Since the matrix A is symmetric, on input we store only its lower triangular
portion (including the diagonal) in the corresponding entries of the array A.
This matrix will be destroyed during calculations. The resulting eigenvalues
occupy the zeroth row of array U, in decreasing order. The corresponding

eigenvectors are stored in the corresponding column of array U. (You can

43
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monitor the iteration by printing the actual value of the threshold stored in

the variable V, for instance in line 1845.)

Example 1.6 Eigenvalues and eigenvectors of a symmetric matrix

The eigenanalysis of the matrix (ref. 2)

is carried out by the following main program:

100 FEN
182 REM £X. 1.4, EIGENVALUE-EIGENVECTCR DECOMPOSITION OF & SYM. MATRIX
104 REN MERGE M1

[T e — DATA

108 REM {DIMENSION OF MATRIY)

118 T4TA &

112 REM (LCHER TRIANGULAR PART)

114 BATA L0

H5DATA |, 9

1B DATA  %,-L, 7

128 DATA 3, 2, 3, 12

122 DATA  4,-3,-5, -1, 15

200 REM -=-------- READ DATA

202 READ N

204 DIN ALN,NDUINN)

286 FOR 1=1 TO N :FOR J=1 70 i

208 READ A(1,d)

240 NEXT J oNEXT |

212 REM --=-m=m--- CALL JACORI MODULE
214 GOSUB 1888
216 REM ~--mmmmmm- LFRINT RESULTS

218 V§=STRINGS(1344,"-")
220 LPRINT "EIBENVALUES:®
222 LFRINT v$

224 FOR J=1 TO N :LPRINT USING " #3434~ "1U(B,d)¢ NEXT J
225 LPRINT :LPRINT V§

228 LPRINT :LPRINT "EIBENVECTORS:"

238 LFRINT V8

232 FCR J=1 TO N :LPRINT USING ® ut 337 NEXT ]

234 LPRINT

236 FOR I=1 TON

236 FGR J=1 TO N :LPRINT USING " 43,4434 ";Ui1,00; :NEXT )
24@ LPRINT

242 NEXT 1

244 LPRINT V¥ :LPRINT
246 STOF
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The program output is as follows.

EIGENVALUES:

2.191756+02 Q.130Q9E+27 @.93506E+BL @.£9948E+ 0.16553E+01

EIGENVECTORS:

u! ud ud ud ud
8.1745084 9.623783  -8.052151 0.654087  -B.387297
-0.247383 g.i5910t B.859954 2.199481 0.36622
-B,361642 8.227297  -2.505575 B.256510 D.784377
-B.264412 B.69268F  -@.000201 -B.660407  -0.118928
B.841244 8,232823 B.046219  -2.174280 8.433423

Exercise

O Check the results on the basis of (1.69).

1.7 ACCURACY IN ALGEBRAIC COMPUTATIONS. ILL-CONDITIONED PROBLEMS

Solving the matrix equation Ax = b by LU decomposition or by Gaussian
elimination you perform a number of operations on the coefficient matrix (and
also on the right-hand side vector in the latter case). The precision in each
step 1s constrained by the precision of your computer’'s floating-point word
that can deal with numbers within certain range. Thus each operation will

introduce some round-off error into your results, and you end up with some

residual r=AXx - b #@O , where X is the numerical solution of the equation.
You have seen that pivoting will decrease the round—off errors and hence the
residual r. You can also decrease the errors by using double-precision
variables thereby increasing the range of your floating—point arithmetics.

Another promising way to reduce the residual r is to perform an iterative

improvement of the solution. The equations we use are Ax = b and AX - b=r.
Substracting the first equation from the second one gives Ae = r , where

e =X - x 1is the error in the solution X . We have two expressions for r
that yield the equation Ae = Ax — b with known terms on the right-hand side,
since X 1is the solution we want to improve. We need only to solve this

equation for e and to get the improved solution x = X - e . Of course,
neither e can be computed without error, but it will certainly reduce the

error In x . We can repeat this step iteratively until all elements of r
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will be indistinguishable from zero, which obviously means the machine epsilon

of the computer we use. It is highly advisable to calculate at least the

product AX 1n double precision.
While the residual r can be considerable reduced by iterative improvement,
in many problems this does not mean that the residual error e will be also

small. To relate e to r , define the norm {IAll of the square matrix A by

1A%l
Al = max ——— = max |lAxl| (1.67)

Il #@ fIxi=1
Ixll

which is a straightforward extension of the norm of a vector as defimed in
Section 1.1. According to (1.&7)

it < Al (1.68)

for all A and x . Since r = A2 and A 1s nonsingular, e = nlr , and by
(1.68)

el < WA Lnen . (1.69)
Since b = Ax ,

Ibit < NAI=il . (1.7@)

Multiplying the two last inequalities and rearranging, for b # @ we have

liedl iiril
— ¢ nanaTy — (1.71)
fixll bl

the desired relationship between the relative residual |irli/libli and the
relative error llell/lirll , where the |lAll IIA—lll is called the condition number
of A, denoted by cond(A) . By (1.71) cond(A) is the relative error
magnification factor, and its value is at least ome. If it is very large, the
relative error in x will be large in spite of carefully reducing the residual
r by one of the methods discussed. Such problems are said to be
1ll-conditioned or nearly singular, and can only be solved by sophisticated
regularization methods (ref. 12). The basic idea of regularization is replacing
A by a sequence of matrices A;, Ay, ... such that cond(A;) < cond(A) . The
matrices fA; approximate A , but we constrain cond(A;) by a suitable upper
bound. In practice it is far from easy to select a reasonable termination
condition.

As a numerical analyst you may have to solve inberently ill-conditioned
problems, but in scientific computing there are further opportunities.

Neglecting or coupling unimportant variables, seeking further constraints or
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devising new experiments for further information may help you to derive a
"better" model and avoid near-singularity in computations. While this is one of
the basic ideas of scientific computing, it is too general to be useful, and we
can give you further suggestions only in particular applications (e.g., in

Chapter 3).

1.8 APPLICATIONS AND FURTHER PROBLEMS

1.8.1 Stoichiometry of chemically reacting species

While linear algebraic methods are present in almost every problem, they
also have a number of direct applications. One of them is formulating and
solving balance equations for extensive quantities such as mass and energy. A
particularly nice application is stoichiometry of chemical systems, where you
will discover most of the the basic concepts of linear algebra under different
names.

We consider a closed system with k species demoted by Mj, My, ..., M .
Let n; denote the quantity of species M; expressed in moles. The k-vector
n=(ny, N, ..., nk)T is called the mole vector and we are interested in its
change & =n - n°® with respect to an initial state n°. Since the sytem is
closed, the mole vector chaiges &n are not arbitrary. Stoichiometry offers
two ways to specify the set of admissible mole vector changes, i.e. the
stoichiometric subspace. In particular applications (e.g. when calculating
chemical equilibrium) one or the other approach might be more advantageous, so
that we study their relation here.

The first approach is based on explicitly describing chemical reactions. We
suppose that there are p reactions taking place in the system. The j-th

reaction is described by equation of the form

b;sM; = @, (1.72)

i=1

where the stoichiometric coefficients ' bj; are negatjive for reactants (or so
called left—-hand species) and positive for products (or right-hand species) of
the j—-th reaction. The stoichiometric coefficients can be considered as the
components of the reaction matrix (or stoichiometric matrix) B of dimension
kxp . If the system is closed, any mole vector change is due to chemical

reactions, i.e.,

&M = Bt , (1.73)
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where the p-vector § is formed by the extents of individual reactions.lts
Jj—th component [l;]j measures how many moles of "left—hand side” have been
transformed to "right-hand side" in the j-th reaction.

The concept of a closed system can also be introduced without considering
reactions. Chemical species are built from building blocks called atoms. Define
the atom matrix A , where [A] ij is the number of the i-th atom in the
molecule of the j-th species M_j . If the number of different atoms is
denoted by a then the atom matrix is of dimension a>k . The quantities of
atoms in the system can be calculated by summing up their quantities in each
species, i.e., forming the product An. These gquantities remain unchanged if
the system is closed, so that

A =0 . (1.74)

For a given system both (1.73) and (1.74) hold, and hence

ABE = 0 . (1.79)

Since in eqn. (1.75) the reaction extent vector & can take arbitrary values,

AB =0, (1.76)

where O is a null matrix of dimension axp .

Equation (1.76) expresses the fundamental relation between the atom matrix
and the reaction matrix of a closed system. The matrices A and B , however,
result in the same stoichiometric subspace if and only if the subspace
defined by (1.73) and the one defined by (1.74) are of the same
dimension, in addition to the relation (1.76). We denote the
dimension of the stoichiometric subspace by f also called the stoichiometric
number of freedom . If the reaction matrix B is known, then f = rank(B),
i.e., f 1is the number of linearly independent reactions. If the atom matrix
A is known, then the stoichiometric number of freedom defined by (1.74) can
be obtained from f = k — rank(A), i.e., T 1is the number of "free" variables
in the general solution of the matrix equation (1.74).

There are the following two basic problems in stoichiometry:

(i) Given an atom matrix A construct a (virtual) reaction matrix B

that defines the same stoichiometric subspace and has a minimum number p
of columns.

(ii) Given a reaction matrix B construct a (virtual) atom matrix A
that defines the same stoichiometric subspace and has a minimum number a

of rows.
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The solution of problem (i) involves the transformation of the basis. Starting
from the canonical basis we replace r unit vectors by r colum vectors of
the matrix A , where r = rank(A) . For notational simplicity let us renumber
the species such that the first r colums ajs 8yy ...y a8 are in the
resulting basis. Then the table of coordinates takes the form:

3132---ar a.r.+1 -..Bk

a 2 1 1}

: vr',k—r'
a, o 0 1

=W [ i} 1] @ 1]
ey 2 ° 2 @ @

where Yr,k—r contains the coordinates of vectors Qry1s @425 «-0s ¢ In the

current basis. We select p = k — r reactions in which species Mr+1’ M4
20y M, are decomposed, respectively, into species Mis Mo, ovey M. and

obtain the reaction matrix:

Interchanging the rows of B you can easily restore the original order of
species.

To illustrate the above procedure consider the species CHg CH3D,
CHoDo, OHDx and €D, (ref. 15). Here a =3, k =35, and fixing the order of

atoms as C, H and D gives the atom matrix
111 11

A=}14 3 2 1 0 .
1t 2 3 4

After two transformations we arrive at the table of coordinates:

44 42 & a4 35

ay 1 3/4 1/2 1/4 7]
ag ® 1/4 1/2 3/4 1

ex 1} [} @ @ @
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From the table r =2 and f =5 -2=3 ., The (virtual) reaction matrix B
with k=93 rows and p=f =3 columns is given by

3/4 1/2 1/4
-1 e @

B = 2 -1 o] .
2 ° -1
1/8 1/2 3/4

In more familiar chemical terms the following reactions have been

constructed:

CHzD = (3/4)CH,; + (1/4)CDy
CHoD, = (1/2)CH, + (1/2)CDy
CHDy = (1/4)CH, + (3/4)CD,y

Now we turn to problem (ii). Taking the transpose of egn. (1.76) we obtain

B'a’ =0, (1.78)

where the null matrix 0 is of dimension pxa . It is then follows from
(1.78) that starting with B' and repeating all the steps needed in problem

(1) we arrive at I_AT . The number of rows in l; will be & = k - rank(B) .
To see how the method works, suppose six species My, Moy ooy My are known

to take part in the reactions (ref. 135)

Mo+ M Mz + g

My + Mg =My
M3+2M4+M5.

M1+M2+M6

The transpose of the reaction matrix is then

-1-2 12 2 0
B=| 0-1 2 6-1 11},
-1-1 1 2 1-1

and after two transformations we arrive at the table of coordinates:
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From the table rank(B) =2 ,a=6-2=4, and the virtual atom matrix is

-1 61 0 0 @
2-1-2 2 21
2 2 2-1 0 0
2 2 @ 0-1-1

DI
I

The matrix A imposes constraints on the mole vector change. In terms of mole

numbers it means that

i§

ny +nxg cmstl
No + 2ng Ny = ccnstz
2nz — Ny = constx

Ng + Ng = const4 .

These quantities are preserved like atoms in the given reactions and hence are
called reaction invariants (ref. 16). In this example we found 4 linearly
independent reaction invariants. It does not mean, however, that the species
Myy Moy «euy My are built necessarily from 4 atoms. In fact, introducing the
species My = CHg, Mp =0z, My=0C0p My =HD, Mg=Hp, and M, =HD
the considered reactions are possible, although the number of atoms is only 3 .
Based on the true atom matrix the number of stoichiometric freedom is
f=6-3=3, but the actual reactions do not span the possible

stoichiometric subspace, and that is why a fourth reaction invariant appears.

1.8.2 Fitting a line by the method of least absolute deviations

We will discuss many times the problem of adjusting the parameters a and b
of the linear function y = ax + b in order to "fit” the line to the set

{(xjsvi)» i = 1,2,...,m} of observations. In this section the "best fit" will

mean the least sum of the absolute deviations between observed and computed

values of y , i.e., the minimum of the objective function

m

O(a,b) = > |yz-ax;-b| . (1.79)
i=1

This problem can be translated into one of linear programming. Introducing the

variables s. > @ we first construct an equivalent constrained minimization

i
problem given by
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m
is 1= 1,2,0..,m O s; = min. (1.82)

£ 1
i=1

yi—ax;j~b| <'s

Each constraint in (1.80) can be splitted as

S.

yi-axA—b i

1

[ZaY

(1.81)

yi —axj - b2 -s;

Thus both the constraints and the objective function are linear.

The only remaining problem is that a and b are not necessarily
nonnegative, as required in linear programming. Inventing further new variables
ay, apy by, by > @ and setting a=a; ~ap; and b =b; - by, will eliminate
this difficulty, and we can finally formulate the linear programming problem as

m

5

i=1

--> min ,

subject to

By = b+ %58 ~ Xjax * 55 2 yj

>
- } i=1,2,...,m
by = by + xja1 ~ xjap ~ 55 LYy

(1.82)
a1, a1y byy by Sy Spy ceey 5, 20 .

We apply the method to the data of Table 1.1, which gives the content of

tar (x) and nicotine (y) in different sorts of cigarettes (ref. 17).

Table 1.1

Tar and nicotine content of cigarettes

No. of observation 1 2 3 4 5 6 7 8 9 16
Tar, mg 8.3 12.3 18.8 22.9 23.1 24.0 27.3 30.0 35.9 41.6
Nicotine, mg .32 0.46 1.10 1.32 1.26 1.44 1.42 1.96 2.23 2.20

As in the constraints (1.82), the variables will be listed in the order
bys bos 315 32y Sys S35 +-es Sipe To use the main program of Example 1.2, its
DATA statements will be replaced by the following lines:



108 REM
182 REM EX. 1.8.2, FITTING A LINE - LEAST ARSOLUTE DEVIATIONS
104 REM MERGE M1 M1t

106 REM ---------- DATA

188 REM (NUMBER OF VARIABLES, WUMEER OF CONSTRAINTS)

110 DATA 14,20

U2 AT &, -1, 8.3,-83, 1,08, 8,80,80,8°¢889,80,6, 8.2
HADATA §, -1, B.3,-83,-1,0,0,8@ 0,808, 0, LE, 2,32
116 DATA 1, -1, 12.3,-12.3, 8, 1,0,9,8,9,0,8, 8,8, 66, 0.4
1B DATA 1, -1, 123, <123, B,-1, B, 0, 2, 8,0, 8, 8, 8, LE, 0.4
120 DATA I, -1, 18.8, -18.8, @, 8,1, 8, B, @, @, 8, 0, B, GE, 1.8
122 BATA 1, -1, 18.8, -13.8, @, 8,-1, 0, 0,8,9,@, 0, &, LE, 1.19
124 0ATR L, -1, 0.9, <229, O, 8,0,1,8,9,8 @, 0 @ 6, 1.3
126 DATR 1, -1, 22.9, -22.%, @, 8, 8,-1,8,8,0,8 8,8 L6, L.32
128 DATA 1, -1, 23.1,-23.1, @, @, @8,0,1,0,80,8,8,6E 1.2
130 DATA 1, -1, 23.1, -23.1, @, 0,8, 02,-1,0,0,8, 0, 8, LE, 1.2
132 0ATA L, -1, 24.0, -24.0, 0,0,8,8,0,1,0,08@ @, GE, 1.34
136 DATA 1, -1, 24.8, -24.8, ©,0,9,0,0,-1,9, 0,0, @ LE, 1.34
136 0ATA 1, -1, 27.3,-27.3, 0, 8,0, 0,0,0, 1,8, 9,8, 6, 1.8
136 DATA I, -1, 27.3,-27.3, O, 8,8,0, 0, 8,-1, 0, &, @, LE, 1.42
198 DATA 1, -1, 8.0, -30.0, @, 0,8,0,0,8,@,1,0,8, 6, 1.9
162 DATA I, -1, 0.8, -30.2, @,0,0,0, 8,9, 8,1, 8, B, LE, 1.9
144 0ATA 1, -1, 15,9, -35.9, B, 08,08, 8,08,08,0, 1,0, 6, 2.2
146 DATA 1, -1, 35.9, -35.9, @, 0, 8,0,0,8, 0, 8,-1, 9, LE, 2.73
148 DATA 1, -1, &l.b, 81,6, ,0,0,0,0,8, 00,0, 1,5, 2.2
158 DATA 1, -1, 1.6, -41.6, B, B, B, 0, 8, 8, @, 9, 0,-1, LE, 2.20
152 REM { ORJECTIVE FUNCTION )

1S4 DATA B, 8, B, 8 1,1, 1,1, 1,1, 1,1, 1,1, HIN

PRI — FROM HEFE THE SAME A5 THE PROGRAM OF EX. 1.2

The sample output of the program is:

OFTIRUA SOLUTION

i Xj 8 CitXj

1 [} [} [}

2 2484932 2 2

3 6.649316E-02 @ ?

4 [ [} [}

3 [} 1 [}

[ 1339727 1 1339727

7 6.882198E-02 1 6.882198E-02
8 [} 1 [}

9 7.359876E-82 1 7.369874E-02
18 4.465700E-02 1 4.465731E-02
11 2012499 1 2013699

12 1526783 1 1336985

13 1.930974E-02 | 1.95BB74E-22
i .4ppR219 1 .4pee219

OBJECTIVE FUNCTION NINIMUM VALUE .......... 1.08843

Thus the estimates of the parameters are a = 0.06849 and b = -@.2485 .
We are almost sure that you solved similar problems by the method of least
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squares (also known as linear regression) and you know that it is
computationally simpler than the procedure suggested here. The method of least
absolute deviations is, however, more robust, i.e., it is less sensitive to the
errors in observations {ref. 18). We will give you more details in Section

3.10.1.

1.8.3 Fitting a line by the minimax method

Now we solve the previous prablem by minimizing the objective function

B(a,b) = max : — ax;: — b| . (1.83)
’ 154m Vi i

This procedure is also known as uniform or Chebyshev approximation. We have the

introduce the single auxiliary variable s > @ to translate the minimization
of (1.83) into the problem

yi —axj — bl £8,1=1,2, ..., m3 s —> min . (1.84)

Proceeding as in the previous section we obtain the linear programming problem

s —> min ,

subject to

by = by + xja1 ~ %jap + 55 2 vj )

by = bz + xja; = xjap =55 £
(1.85)

34y 89, by, by, 520 .

The main program is now used with the DATA statements

18@ REW ------------

12 REM EX, 1.8.3, FITTING A LINE - MININAX METHOD
184 REM MERGE M1, 411

12 REN -------—- DATA

108 REM (NUMRER OF VARIAELES, NUMEER OF CONSTRAINTS)

112 DATA 5.0

117 DATE 1, -, &3, - 8.3, 1, Of, 8.32
A 0ATA L, <l 8.3, - 8.3, -1, LE, A2
116 DATA &, -1, 123, -12.3, 1, BE, B.4%
{13 DATA &, -1, 12.3, -12.3, -1, LE, 0.8
126 DATA §, -, 18.9, -18.9, 1, BE, 1.18
122 0ATA 1, -1, 1.8, -18.9, -1, LE, 1.18
124 DATA 1, -1, 2.9, -22.9, 1, BE, L.}
126 TATA 1, -1, 2.9, -22.9, -1, LlE, L.32
128 DATA i, -f, 3.4, -23.4, 1, BE, 1.2
130 DATA &, -1, 251, <234, -1, LE, L.2b
132 DATA 1, -1, 74.8B, -24.8, 1, GF, 1.M4
134 DATA 1, -1, 20.0, -28.8, -1, LE, 1.4
V3 DATA 1, -1, 0.3, -I0.3, I, GOE, 1.A2
138 DATA &, -1, 20.3, <203, -1, LE, 1.2



143 pATA 1, -1, 38.e, -30.9, I, GE, 1.9
142 DATA §, -1, ID.R, -38.%, -1, LE, 198
144 DATA L, -, 353, -89, I, ©
146 DAT4 L, -1, 33,9, -35.9, -l .
145 DATA f, -1, 4t.a, -4L04, 1, BE, 2.78
150 pATR L, -1, 314, <4006, -1, LE, 2,78
152 REM { ORJECTIVE FUNCTION }
i54 DATA @, B, 3, @, 1y MK
155 REM -----===-- FROM HERE THE SAME AS THE PROGRAM OF EX. 1.2,
and gives the output
EVALURTION OF CONSTRAINTS
I R.H.§ SLACK SHADOW FRICE
! L5330
2 9.734272E-D2
3 448873
4 [ L 1979525
i6E  1.294881 . 1945885
& LB ,340D06R L.t 2539933
7 OGE {
8 LE i
7 GE i
18 LE 1.2t 3 !
PG L4 163585
1.44 ,2851877
1.42 3794388
1,42 6,921494E-2
1.56 (] 3
1.9 4488737
2 8.037367E-02
2 ,3684982
2.2 .4488718
2.2 2 ,3020477
OPTIMUM SOLUTIDH
) 1§ j Cintj
H ] [ 2
2 4.600591E-82 @ 2
3 5.918567e-07 @ 2
4 [} [ a
5 2284346% ! 2284749
QBJECTIVE FUNCTION MINIMUM VALUE ....ouvu.s JET44369

Thus a = 0.@5939 and b = —0.4601 . In this case the shadow prices are also

of interest and show that point B seems to be an outlier.
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Notice that the methods presented in Sections 1.8.2 and 1.8.3 can be
extended to estimate the parameters in multivariable functions that are linear

in the parameters.

1.8.4 Analysis of spectroscopic _data for mixtures with backqround absorption

Spectroscopy in the visible region is a classical method of determining the
composition of species in solution if they have sufficiently different
light-absorbing properties. The method is based on measuring light absorption

at different wavelengths. If denote the molar absorption of the j-th

aj;
conponent at the i-th wavelength, then the total light absorption is well
n

- . <
described by the weighted sum A; = 2..

i=1

3% where n is the number of

absorbing species in the solution, and X5 is the concentration of the j-th

component. If the aij’s are known, observations Ay, Ay, ..., A,
appropriately selected wavelengths will enable us to find x = (xl,xz,...,xn)T

at n

by solving a matrix equation. Since the A;’'s are corrupted by measurement
errors, it is better to have m > n observations, and estimate x by the

least squares method, i.e., minimizing the objective function

m

a( x) =5 (A - T a2 (1.86)
Xl,xzs-.-, n 2 i =1 ij®j . .
i=1

We run, however, into difficulty if there is an (n+l)-th, unidentified
component in the mixture with unknown molar absorption cefficients. Then

n
<

>, ajjxj LA, (1.87)

e

Jj=1

and the best we can do is to minimize some error norm, €.g., (1.86) under
constraints (1.87). Because of the absorption of the unknown component, the
minimum of (1.8B6) is expected to be large, with large residual deviations
between the observed and measured absorbances. As we will discuss in Section
3.18.1, in such situations we obtain better estimates of x by minimizing the

sum of absolute deviations

m
<3 n

Qxqg%mseeexy) = {2_'1 Ai_jglai_jx_j . (1.88)
i=

In addition, this extremum is easier to find. Indeed, by (1.87) each deviation

in (1.88) is nonnegative, and (1.88) can be replaced by the sum of
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deviations without taking absolute values. Furthermore, the sum of fixed A;'s

does not change the value of x minimizing (1.88), and hence we obtain a

linear programming problem with constraints (1.87) and X; >0

(j =1,2,...,n), and with the objective function

n m

Al hwnt __) 1 89
2 |24 215)%d max . (1.89)
i=1 =1

Our considerations are valid only for error—free observations since with
errors in A; the inequalities (1.87) are not necessarily true. It is far from
easy to extend this method to the real situation. In (ref. 192) the authors
increased each observed A; values by the half-length of the confidence
intervals (for definition see Chapter 3), i.e., replaced (1.87) by

inequalities

A

a;:x < A; + ts; , (1.99)
j=1

where s; 1is an estimate of the standard deviation of A;, t is the value of
the Student’'s t ( say, at ©@.05 probability level ) with r — 1 degrees of
freedom and r denotes the number of A;'s used to determine the standard
error s;. If there are no repeated observations, s; can be the estimated
precision of the spectroscopic measurement, but then there is some
arbitrariness in selecting a reasonable value for t.

We are going to reproduce the example studied in (ref. 19), where the term
ts; has been replaced by a given percentage of A; . The mixture consisted of
o 7y8 and € isomers of hexachlorine—cyclohexane, for testing the method in
known quantities. The absorption of the mixture was measured at 20 wavelengths,
and the ¢ isomer was regarded as the unknown component, responsible for the
background absorption. Therefore, only the specific absorbances of the o7 and
& isomers were assumed to be known.

We use the main program of Example 1.2 to solve the linear programming
problem. At s;=0 the constraints have the form (1.87). Thus the coefficients
in each DATA statement are the molar absorption coefficients at the
corresponding wavelength, whereas the right—-hand side is the observed
absorbance A; . The objective function coefficients are the sums in (1.879).
You can easily reconstruct the data of (ref. 19) from the following DATA

statements.
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100 REN
102 REM £X, 1.8.4, ANALYSIS OF SPECTROSCOFIC DATA WITH BACKGROUND
104 REM HERGE K18, HLL

[T T — DATA

188 REM (NUKBER OF VARIABLES, NUMEER OF CONSTRAINTS)

110 DATA 2,78

142 REM [ ALFA GAMNA  DELTA OBSERVED)
U4 DATA B, B, .3TMB4 LE, D755
1E DATA B, 182928, @ JLE, 913
118 DATA 308334, @, .B12790 LLE, 1.184
IZBDATA @, B, .011869 LLE,  2.53
Z20ATh B, B, 436536 LE, 2.8
120 DATA 26941, B, D JLE, 1219
6 DATA @, 170804, @ LE, 0,83
128 DATA 35649 , .A24193, .BAIT17 LE,  2.534
130 DATA 862569 , .27624 , 072041 LE,  1.87
132 DATA 329941 , 070488, 020052 LLE,  1.673
134 DATA 91088 , 238947, 00991 LE, 1,547
136 DATA 109423 , 03376 , 00749 A, .99
138 0814 Q40182 , 022965, .BE749 LE,  1.347
140 DATA ,DOSASE , .DDASI7, L1914 LE, 1.0W
147 DATA L1235, .BE987S, .E75998 LE,  9.9%9
144 DATA .D06256 , 052478, 209167 LLE,  1.87
145 DATA 209388 , 111273, 017832 L, 1.738
198 DATA 157084 , 038498, .B15211 LE,  2.882
150 DATA 022261 , 207503, .B@T4  |LE,  1.13
157 DATA 179558 , 02294k, .B52665 (LE, 8,949
154 REN {ORJECTIVE FUNCTIBN COEFFICIENTS)

156 DATA 2,01555 ,1,90808 ,1,52815  ,MA

158 REW ----mmmm - FROM HERE THE SAME AS THE PROGRAN OF EX. 1.2,

It is easy to modify the program to solve the praoblem assuming 5% and 10%
errors in observations. Results are summarized in Table 1.2. The table

also includes the unconstrained least squares estimates of x, i.e., the values
minimizing (1.86) with n =3 and m =20 . This latter result was obtained

by inserting the appropriate data into the main program of Section 3.2 .

Table 1.2
Results for the spectroscopic problem with background

Isomer True Estimated concentration, %
concentration
% linear programming
least squares
tsi= @% ts;= 5% ts;=10%
o 3.85 3.33 3.49 3.66 4.51
7 4.88 4.67 4.90 5.14 4,89
& 4.86 5.02 5.27 5.52 6.21

The procedure described here clearly gives somewhat better results at each

assumed magnitude of errors than the least squares approach.
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1.8.5 Canonical form of a quadratic response function

The conversion y 1n a chemical reaction was described by the empirical

relationship (ref. 13)

y = 67.711 + 1.988x; + B.90bxp + 1.B69%g — 1.539x%; ~ 0.264x%, ~
- 0.676x°%5 = 3.088xyx5 — 2.18Bx;x3 — 1.212x5%g (1.91)

as a function of the temperature x,, the feed concentration x, and the
reaction time x<. We want to know whether or not (1.21) has a maximum. More

generally, we are interested in the geometric characterization of the quadratic
function
y =a+blx+ xAx (1.92)

of n variables x = (xl,x2,...,xn)T, where b is an n-vector and A is an

Xy symmetric matrix. From (1.91) in this example we have

1.944 -1.537 -1.544 -1.094
b= |0.906| , A= [-1.544 —0.264 —0.606| . (1.93)
1.@6‘?J -1.094 -0.6B6 —(Z.b76J

Any extremum point of (1.91) satisfies the equation

B9

—~=b+ 2Ax =0 . (1.94)

'

As we will see later, A is nonsingular, hence the only solution is

X2 = —(1/2a b . 1t may be a maximum, a minimum or a saddle point. We can
slightly simplify the problem by setting z = x — x° , wich translates (1.92)
into

y - y° = 2'A2 (1.95)

where y° is the value of (1.91) at x°. This point x° is the (global)

maximum point of (1.91) if and only if 2'az < @ for all nonzero 2z, i.e., the
matrix A is negative definite. We can easily check this property by
diagonalizing A. Let 1) denote the matrix formed by the normalized
eigenvectors of A . By (1.66), introducing the new variables w = u'z f

{1.95) is reduced to

0 -5 .2, (1.96)

where %; is the i-th eigenvalue of A and w; is the i-th element of
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the vector w , that is w; = uTiz . Expression (1.96) gives the quadratic
function (1.91) in its canonical form. This function has maximum at x° if
and only if ik <@ for 1=1,2,...,n. Therefore, we perform the
eigenvalue-eigenvector decomposition of matrix A by changing the DATA
statements in the program presented far Example 1.6. The following results are

obtained:

ETBENVALUES:

0.77995E+00 -, 6AATBE-01 -.T19Q3E+DL

ul i il
-@,58497 -8.104329 0.751015
2.804293 -@.2386H4 £.488293
2.104742 0.889453 9.444460

What can we see from these results? The point x© is not a maximum, since the
first eigenvalue is positive. Selecting the canonical variables wy # 0,
Wy = wgx =@ we can increase the value of y . By orthogonality of the
eigenvectors any step x — x° parallel to the first eigenvector u; results
in w#0@ and wy; =wg =0.

To find the point x® one can use LU decomposition and a backsubstitution.
An other possibility is to apply the results of the eigenvalue-eigenvector

decomposition directly. By eqgn. (1.66)

Al -uwil, (1.97)

and hence (1.94) takes the form

X2 = —(1/2)yw s . (1.98)

Evaluating this expression is quite easy if taking into account that pl isa

diagonal matrix with reciprocal values of the eigenvalues in its main diagonal.

Q

We leave to you to compute x and to show that the computed conversion is

higher at the point x = x° + u; than at the point x°.

1.8.6 Euclidean norm and condition number of a sguare matrix

In Section 1.7 we emphasized the importance of the condition number cond(A),
but did not tell you how to find it. Now we try to close this gap, first
considering the norm ||All of a matrix. According to (1.67) to find Al we
have to maximize the function |IAx|I2 = x1(A'A)x subject to the constraint

Ixll = 1 . This problem is easy to solve by writing Ax in the basis of the
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eigenvectors U of ATA, thereby introducing the new variables w = U'x. Since

the columns of U form an orthonormal system, [lwll = IIUTXII = lixll , and by (1.66)

naxi? = wiw , (1.99)

where D is diagonal matrix with the eigenvalues of Ala in its diagonal. The
function (1.99) clearly will attain its maximum value if w = uy, the

eigenvector corresponding to the largest eigenvalue A, = 3 of ATA, and hence

Al = (a0 t/2 . (1.100)

Since AlA is symmetric and positive semidefinite, Mnax 1S real and
nonnegative. If the matrix is nmonsingular (and hence positive definite) then

Amin * @ and by (1.97)

-1/2 (1.101)

-1, _
WA = () ,

where N\pjn = Ay 1S the smallest eigenvalue of ala. Therefore, by its
definition

cond(A) = (2 yie (1.182)

max/}‘min

We note that the values )\1/21_ are called the singular values of the matrix
A and they can be determined directly from A , without forming ATA . The
corresponding numerical method called singular value decomposition is
relatively complex but somewhat more accurate then the procedure described
here, for details see (ref. 11).

For exercise find cond(H,) of the Hilbert matrix Hy defined by (1.49).
Give a crude estimate of the relative errors of the columns of H_lb, if the

floating—point numbers are stored to 7 digits.

1.8.7 Linear dependences in data

Observing a process, scientists and engineers freguently record several
variables. For example, (ref. 20) presents concentrations of all species for
the thermal isomerization of o—pinene at different time points. These species
are o—pinene (y,), dipentene (y5), allo—ocimene (yz), pyronene (yg) and a dimer
product (yg). The data are reproduced in Table 1.3. In (ref. 20) a reaction
scheme has also been proposed to describe the kinetics of the process. Several
years later Box at al. (ref. 21) tried to estimate the rate coefficients of
this kinetic model by their multiresponse estimation procedure that will be
discussed in Section 3.6. They run into difficulty and realized that the data
in Table 1.3 are not independent. There are two kinds of dependencies that may

trouble parameter estimation:
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Table 1.3
Concentrations in the thermal isomerization of o—pinene

Observation Time, Concentration, mol %
min
Y1 Yo Y3 Yq Y5
1 1238 88.35 7.3 2.3 @.4 1.75
2 3850 76.4 15.6 4.5 @.7 2.8
3 4920 65.1 23.1 5.3 1.1 5.8
4 7800 50.4 32.9 6.0 1.5 9.3
5 12680 37.5 42.7 6.0 1.9 12.0
6 15032 25.9 49.1 3.9 2.2 17.0
7 226720 14.0 57.4 5.1 2.6 21.0
8 36420 4.5 63.1 3.8 2.9 25.7

(1)

If one of the variables is difficult to measure, the experimenter may

calculate its values from some known relationship, e.g., a balance
equation . Let Y = [yl,yz,...,yn] denote the mXh cbservation matrix, where

m is the number of observations , n is the number of variables and Yj
is the j-th column of the observation matrix. The dependence is of the

form

> ViYij = const (1.1@3)

for all 1 =1,2,...,m, where the vj's are constant coefficients. The

affine linear relationship (1.1@3) can be transformed into a linear one

by centering the data, i.e., considering the deviations Xij =VYij T Yj»

- m
where Yi = (iglyij ]/m is the average of the elements in the Jj-th

column of Y . Then the columns of the centered data matrix X , defined
by [X] ij = %ij» are linearly dependent, and hence there exists an
n-vector u # @ such that

Xu=0 . (1.1@4)

Multiplying (1.1@4) by X' we have (XTX)u =@ , and thus there exists
an affine linear dependence of the form (1.1@3) among the columns of Y
if and only if the matrix XTX has a »=0 eigenvalue. It is obvious
that Apj, will eqgual not zero, but some small number because of the

roundoff errors.
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(ii) The second kind of dependence is somewhat weaker. In chemical systems the
variables are required to satisfy a number of balance equations, e.g.,
stoichiometric relations. Therefore, certain affine linear relationships
may exist among the expected values of the responses. In such cases the
least eigenvalue A,;, oOf X'X will be larger then in the previous case,
stemming from a linear dependence directly among the (centered) data, but

still small.

We need some threshold values of ,;, 1in order to classify the corresponding
linear dependence as (i) or (ii). According to Box at al. (ref. 21), in case
(ii), i.e., a linear dependence in the expected values of the responses

Yis Y25 ---3 ¥n the expected value of the eigenvalue 13 ;, can be estimated
by

E((pin) 1) = (m-uTCu, (1.105)

where u is the corresponding eigenvector of xTx s and C, is the nxn
covariance matrix of measurement errors in the observations of y;,¥5,...sy4. In
practice it is usually difficult to find a reliable estimate of C, (we will

discuss this problem in Chapter 3}, and we can get a crude estimate of
EL(Apin) (1177 approximating €, by 102, , where the average variance o2,
is estimated from the residual sum of squares following a least squares
estimation procedure. These concepts will also be discussed in Chapter 3, and

here we simply state that under the above approximation

E[(Xmin)(ii)] x (m -~ 1);2r.. To obtain a similar upper bound on )‘min(i) in the
case (1), when there are only roundoff errors present, Box at al. (ref. 21)
suggested to assume that the rounding error is distributed uniformly with range

-0.5 to +0.5 of the last digit reported in the data. The rounding error
variance ;2',.9 is then given by the range squared divided by 12, and

E((\pin) 2)) & (m1)02., . In Table 1.3 the concentration data are reported to
the nearest 0.1 percent and therefore the range of the last reported digit is
from -0.05 to +0.05 or @.1. Thus, for class (i) of the dependences we have

EL(apin) (171 2 7%(8.1)%/12 2 0.026 . As we will show in Section 3.6, the

average variance ;—2 R 0.6 and hence the threshold for class (ii) is given by

EL(hpi) (13 % (m-1)02 % 4.2 .
We used the program given in Example 1.6 to calculate the eigenvalues and
eigenvectors of XTX, where X is the centered observation matrix from the

data of Table 1.3. The program output is as follows.
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EIGENVALUES:

0.96629E+04 0.23830€+02 0.12194E+01 0.15679E-81 0.12790E-02

EIGENVECTORS:

ul u2 ud ud us
8.908729 8.836799  -B.294717 B.475478  -0.17@%@9
-0.548384  -0.227608  -0.512784 2.489190  -8.213592
-0.812679  -8.612247 B.642183 B.434226  -@.1k3114
-8.024124 0.0e3752  -0.029978 B.348382 2.929381
-8, 230667 B.756249 #,339945 B.458648  -0.184982

Since 34, Mg << 4.2, and both are close to the threshold (3;,) (1) = @.o8s
we expect to find two exact linear dependences in the data. From an exemination
ofthe original paper (ref. 28) Box at al. (ref. 21) found that y, had been not
measured because of experimental difficulties, but rather had been assumed to
constitute 3% of the total conversion of a-pinene (yg4). That is, it was
assumed that vy, = (Zl.(ZB(l(ZlZ!—yl) » which gives the exact affine linear

relationship

(@.83)y; + (B)yp + (D)yg + (1)y, + (Blyg = 3 (1.106)

among the observations. The second such dependence, associated with Ag, Stems

from the normalization of the data, forced to satisfy the balance equation
Y1 * Y2 tyztygtyg=1. (1.1@7)

The eigenvalue »z is less than 4.2, but much larger than B.0B6. Thus there
is a further linear dependence, now among the expectations of the y’'s. This
stems from the assumed reaction scheme, given later in Section 3.6, and is
discussed there.

The form of the linear dependences (1.106) and (1.107) can be discovered
by looking at the eigenvectors that correspond to the small eigenvalues 1g
and 34, respectively. The only large element in ug corresponds to the
variable y4, and hence ug certainly stems from (1.106). According to
(1.1@07) the eigenvalue u; is expected to have the form ug = (v,v,v,v,v).r

with identical elements v. Since [lug|=1, v = y5/5 = 0.447 . The eigenvectors

are, however, forced to be orthogonal. The projection of the theoretical
eigenvector (@.447, ©0.447, ©.447, 0.447, 12!.447)T into the subspace orthogonal
to ug gives the vector (0.463, ©.468, 0.464, B.3463, 12!.466)T, which is really
close to the empirical eigenvector uy. We will use similar mechanistic
interpretations of eigenvectors in Section 3.5.2.

In this example we used some concepts that will be rigorously defined only
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in latter chapters. It is, however, difficult to avoid such flaws in structure
when presenting applications of essentially algebraic methods, since the

problems themselves usually come from other application areas.

1.8.8 Principal component and factor analysis

We generalize the discussion of the previous section by considering the m>n
raw data matrix Y, obtained by measuring the variables vy, vp, ..., ¥, at
m sample points. Depending on the physical meaning of the data we apply some
kind of preprocessing of the raw data to obtain the observation matrix X
with the same number of rows and columns, respectively. In the previous section
we considered centering as possible preprocessing. Another useful procedure is
normalizing a column by the empirical standard deviation of the observations in
the given column.

Principal component analysis is based on the eigenvalue—eigenvector
decomposition of the n>Xh empirical covariance matrix C, = XTX (ref, 22-24).
The eigenvalues are denoted by *; 2 % 2 ..o 2 Ay > @, where the last
inequality follows from the presence of some random error in the data. Using
define the new variables

the eigenvectors Ujs Uoy ooy Up,

2 = VY2000 + ugpig e * ey

2 = N1 ZpMup0x) + uggrp + s+ Uy

(1.11@)
z = x_l/zn(ulnxl + U Xo + e + U %)

called principal components or abstract factors. We calculate the row vector
(29, 2oy «vuy zn) for each sample point, and construct the mn principal

component observation matrix Z from these rows. By (1.110) Z is given by

Z= x| (1.111)

where D12 is the diagonal matrix with the square roots of the reciprocal
eigenvalues in its diagonal. You can readily verify that C, = 7'z = I, and
thus the principal components are uncorrelated and each variable z; has the
empirical variance 1. These are the important properties we will exploit.

Since U'U = I, by (1.109) the observation matrix can be written as

x = /47 (1.112)

Thus the variables x are represented by the linear combinations
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-
= OF2upzy + 020002 v 082002,

= ()‘1/21U21)Zl + ()\1/224.122)22 + ... + ()\1/2nU2n)Zn

x
N
I

. (1.113)

= (»172 2 1/2

Unplzy + e+ (A U 0z

x
|

7y + O

of the principal components. This expression is very informative. Each variable
z; has unit variance, and increasing the index i the corresponding principal
components z; will less and less influence the observed variables, according
to the decreasing eigenvalues 1.

Principal components corresponding to small eigenvalues may give effects
within the range of measurement errors. Having information on the magnitudes of
these errors enables us to classify the principal components as primary and
secondary ones. The simplest method of classification is considering a
threshold on the eigenvalues, as we did in the previous section, but there
exists a large number of more involved procedures (ref. 23). In some
applications the selected primary principal components are rotated in order to
form factors which can be better interpreted in physical terms. Sometimes one
wants to know only the number of primary factors. For example, spectroscopic
analysis of a number of mixtures containing the same components in different
compositions will enable us to find the number of species without any further
information on their properties.

Another important problem is to reproduce the observation matrix using only
the primary factors, i.e., dropping some small terms in (1.113) that likely
stgrr) from measurement error.

l'?«’epresenting the data in terms of a small number of primary factors is a
very efficient way of storing information. This approach is frequently used in
spectroscopic libraries, designed to identify unknown species by comparing
their spectra with ones filed in the library.

You will better understand the goals of factor analysis considering first
the highly idealized situation with error-free observations and only r < n
linearly independent columns in the matrix X . As discussed in Section 1.1,
all colums of X are then in an r-dimensional subspace, and you can write
them as linear combinations of r basis vectors. Since the matrix XxTX has
now r nonzero eigenvalues, there are exactly r nonvanishing vectors in the
matrix 2 defined by (1.111), and these vectors form a basis for the subspace.
The corresponding principal components 2zji, Zp, ..., Z are the coordinates in

-
this basis. In the real life you have measurement errors, the columns of X
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are no more linearly dependent, and X'X has n-r small, but nonzero
eigenvalues. Nevertheless, choosing the primary factors you select the subspace
what is really important, and the primary factors are coordinates in the basis

for this subspace.
Exercise

O Reproduce the observation matrix in Section 1.8.7 using 1, 2, 3, and 4 ,
respectively, primary factors. Compute the sum of reproduction error squares
for each case. Compare these sums with the following sums: At Azt Mgt g,

Mg+t Mgt Agy Mt A and ig, respectively.
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Chapter 2

NONLINEAR EQUATIONS AND EXTREMUM PROBLEMS

On the basis of the previous chapter you can tell in advance the number of
elimination steps or, more generally, the number of algebraic operations
required for solving the system Ax = b of linear equations. Unfortunately,
there exist no similar finite procedures for solving the system of nonlinear

equations of the general form

f(x) =@ . (2.1)

Root finding in (2.1) invariably proceeds by iteration (refs. 1-3)},
constructing a sequence Xys %oyaes of approximate solutions that are expected

to converge to a root r of (2.1). Naturally you would like to terminate the
iteration when x, satisfies the condition ”xk - r" <E , where E 1is a
desired error bound, but the root r is unknown. Some practical termination
criteria you may use are ”xk - xk—l“ $Ey “f(xk)” S Es 5, or simply k > IM,

where E; and E5 are small parameters, and IM is an upper bound on the
number of iterations. Neither of these conditions will assure that x, is
really close to the root r , but will save you from useless iterations that
can move x; even further apart from r because of the accumulating roundoff
errors. Since you certainly know what reasonable tolerance means for your
particular problem, following the iterations on the screen is often superior to
sophisticated convergence criteria.

Another class of problems requiring iteration is minimization or
maximization of a nonlinear scalar valued function g which depends on one or
more variables x (ref. 4). A value r of the independent variables is a
local minimum point if g(r) < g(x) for all x in a neighborhood of r .
Similarly, r 1is a local maximum if g(r) > g(x) in a neighbortood, and then
r is a lecal minimum point of the function -g({x) . Therefore, we will
restrict consideration to the problem
g{x) ——> min . (2.2)

X

In some problems the possible region of independent variables is defined by

equality or inequality constraints. As you have seen in Section 1.2, such

constrained extremum problems are easy to solve if both the constraints and the
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objective function are linear. In the nonlinear case the most popular approach
is to convert constrained problems into a sequence of unconstrained ones by
penalizing points outside the feasible region (ref. 5). Such sophisticated
methods are beyond the scope of our book. Nevertheless, our programs will also
keep the estimates within a region defined by the user in order to avoid
function evaluation at points where the function may not be defined at all.
This simple test is sufficient if the extremum is known to be at some inner
point of the feasible region.

While the number of independent variables is arbitrary in our definitions,
it makes a tremendous difference in computations. Simultaneous solution of n
equations and minimization in n dimensions are much more difficult than in
one dimension. The main difference between one and several dimensions is that
in one dimension it is possible to '"bracket" a root or a local minimum point
between some bracketing values, and then to tighten the interval of
uncertainty. This gives rise to special algorithms, and hence the solution of a
single equation and minimization in one variable will be discussed separately
from the multidimensional methods.

Solutions of equations and those of extremum problems are closely related. A
point r is the root of the equations f(x) = B only if it minimizes the
function g = fTf. Dn the other hand every local extremum point of a
differentiable function g satisfies the equations &g(x)/8x = @ . Though a
root is not necessarily an extremum point of g, this transformation may be
advantageous in one dimension. As will be discussed the situation is, however,
completely different with more than one variable.

We would like to choose methods that are robust, i.e., will converge to a
solution if our initial estimate is reasonably close to it and, in addition,
will converge rapidly. Apart from the one-dimensional case, where the solution
can be bracketed and found in a very safe way, robustness of a method is much
problem dependent. To measure how fast the convergence is we can use the lacal

approximation
el 2 € fa”

in a small neighborhood of the solution r , where e = X, — r 1is the error
in the k-th iteration. The exponent p depends only on the method, which is
then said to have convergence of order p . Since C is problem dependent and
this analysis is local, the order p does not characterize the computational
effort required to solve a particular problem. For this latter purpose one can
use the number of iterations. We may need, however, to evaluate the function

(and its partial derivatives, if the algorithm requires them) different times

in each iteration of different methods, and hence a somewhat more realistic
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measure of the computational effort is the number of eguivalent function

evaluations.

2.1 NONLINEAR EQUATIONS IN ONE VARIABLE

2.1.1 Cardano method for cubic equations

The roots of guadratic and cubic egquations are well known as algebraic
expressions of the eguation’s coefficients, and hence this section is comletely
disconnected from the rest of the chapter. Nevertheless, these simple problems
are so frequently encountered that we cannot ignore their special solutions.
You certainly know how to solve a quadratic eguation, but we provide a routine

for solving the cubic equation
A3 +Bx2 +Cx +D=0 . (2.3)
Since A # @ (otherwise we have a quadratic eguation), introducing the
variable x =y - B/(3A) , (2.3) can be reduced to the form

3 =
y>+tpy +q=20, (2.4)
where p = (3C/A - B2/82)/3  and q = (27D/A - 9BC/AZ + ZBS/AS)/27 .
We first evaluate the discriminant d = (p/3)° + (q/2)2 . If d < @ , then the
cubic equation has three {but not necessarily different) real roots. If, on the
other hand, d > @ , then the equation has one real root and a conjugate pair

of complex roots. Since you find the expressions for the roots in mathematical

tables we proceed to the module.

Program module M20

2008 REM SREBRORiaEnanaataxasaaaaataataaasanasanssssssssety
2002 REM 1 SCLUTION OF & CURIC EGUATION !
2009 REN 8 CARDAND METHOD '
F{ LG IRER R IR 000000 0000000000080
2008 REM INPUT:

2918 RE®  A,E,C,D COEFFICIENTS OF THE EGUATION:

812 REM AL THEIX2+CHX+D=0

2014 REM OUTPUT:

2016 REN ER STATUS FLAG

2018 REM @ SUCCESSFULL SOLUTION

2020 REM 1 DATA ERROR: A=0

7822 REM R NUMBER DF REAL ROOTS {1 OR 3)

2024 REN IF NR=!

2826 REM X REAL ROCT

2028 REN  XR,XI  REAL AND IMAGINARY PART OF THE COMPLEX
2038 REM CONJUGATE RODTS XR+itX] AND XR-i3X}
2032 REM IF NR=3

Z834 REM  X1,X2,X3 REAL ROOTS
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2036 IF A=B THEM ER=1 :60TO 2074

238 ER=R :P3=1.141593/2

2048 FB=B/A/3: FL=C/AZI-POIFQ tPIERIPRYPD+(D-CAPR)/2/A
842 TF PI{:B THEN 2948

28445 PA=ARS{23P2)4(1/3) 1 IF P2(B THEN X1=P4-P@ ELSE Y!=-P4-P2
2846 X2Z=i1 1X3=8 :NR=I :GOTC 2076

2048 DC=PZ¥P2+FLIPLIFL sP=SOR(ABS(F1))} :IF F2XQ THEN P=-F
2852 P4=P2/P/EIP

ZB3Z IF P1x=Q THEM 2070

234 IF DC THEN 2862

25k NR=3 :FI=ATN{SOR{1-PARP4)/P4)

2058 X1=-2PYCOS(FI/3)-PR sM2=20PXCOS{P3-F1/3}3-FD

2068 YI=ZAPYCOS{PI+FT/3)-PQ :GOTO 2074

28627 NR=1 ;F1=LOGIP4+SOR{P4LPE-1]) «FI=EIP{FI/I)

2858 FI=(FI-1/F1V {(F1+1/FT} sPS=1-FISF]

Z8hb  X=-28P/3OR(PY) :XI=PYFI45QR{I/PS} :XR=-Y/2-PQ iX=X-PQ
2863 GOTO 2074

2870 NR=1 :FI1=LOB(PA+SRR{PASPA+L)) (FT=EXPIFI/I)

2072 FI=(FI-L/FI}/(FI+1iFT) 2PO=1-FILF]

3074 Y=-ZRPYFI/SORIPE) :XT=PRSOR{I/PS) :¥R=-1/2-FO :Y=X-PR
2876 RETURN

2078 REM MERERREERN RO RO R I R T

The only potential trouble is A = @ , which gives the return value of the
status flag ER =1 . The retum value of NR is the number of real roots. If
NR = 3 , the real roots will occupy the variables X1, X2 and X3 . If NR =1
then the only real root will occupy X , whereas you will find the real and
imaginary parts of the conjugate complex pair in the variables XR and X1,

respectively.

Example 2.1.1 Molar volume of n-buthane from the Peng—Robinson equation of

state

Find the molar volume v of n-buthane at temperature T = 373.15 K and
pressure P = 1.5a2° Pa by solving the Peng—Robinson equation of state (ref.
&)

RT a(T)
P = - , (2.5)
v->b v(v + b) + b(v — b)

where R = B8.3144 J/(mol K) is the universal gas constant, b and a(T) are
parameters of the equation of state depending on substance specific

properties (and temperature). The expression for b is
b = 0.07780 RT_/P.,
where T_ is the critical temperature and PC is the critical pressure. In

addition to the two critical properties, the expression for a(T) contains the

actual temperature T and a third substance specific property called Pitzer's
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accentricity factor w,
’72 r m5'\2
a(T) = @.45724(R“T /P 1+ ml - (T/T)™" 17

where

m = 0.37464 + 1.54226w - 0.269920° .

For n-buthane the substance specific properties are (ref. 7) Tc = 425.2 K,
P. = 3.75x10° Pa and w = 0.193 .

The following main program computes b and a(T), rearranges (2.5) to the
form (2.3) and calls module M20. If the equation has 3 real roots, we print
only the largest, corresponding to gaseous state, and the smallest, which
corresponds to liquid state. The root between them has no physical meaning.

180 REM ------

182 REM EX. 2.1.1 MOLAR VOLUME BY CARDANO METHOD

184 REM MERBE W20

106 REM ---------- DATA (R, Tc. Pc, OMEGA; TEMPERATURE AND PRESSURE)

188 RU=8.3144 :TC=423.2 :PC=3750000! :04=.193

118 TT=373.1% :FP=1500000!

208 REW ---------- COEFFICIENTS OF THE EQUATION OF STATE
ZB2 BE=.@77BIRUSTC/PC ME=,37464+1,54225808-,26992¢00K"2
204 AE= 457248 (RUSTC)“2/PCH{LHHER(I-{TT/TC) . 5) )2

286 REM ---------- COEFFICIENTS OF THE CUBIC EQUATION
208 A=PP :B=PPYBE-RUSTT :C=-3PPYRE~2-ZIRUITTREEHAE

210 D=FPRBE“I+RUSTTRE2-AERBE

212 REM ~--mmmmoee CARDAND METHOD

214 GCEUR 2000

214 V$=CTRING%{5@,"-")

218 LPRINT V4

229 LFRINT "NUMEER OF REAL RDDTS ...... vevennnass TiNR
222 IF NR=3 THEN 22

224 LERINT "V, »°3/p0l ...0es vaerenrasiararreens M3

226 BOTO 237

228 LPRINT "Voas, a"°3/M0l wvvuvvvvvinrreniinvanes "
230 LPRINT "V1ig, R*3/R0] covviivvvvrnvncineronns "2
232 LPRINT V$

234 STOP

The output is as follows:

NUMBER OF REAL RDOTS +vvvenvrsvnnenss 3
Ygas, m*3/mol oo ceeswnnss  1,3083298E-083
3 1.278651E-04

V1iq, a"3/mc! .ouanieenn TR

Further information is needed to select the thermodynamically stable state. The
equilibrium vapor pressure is psat = 1.529x10° Pa at the given temperature
(ref. 9), hence we accept the root v = 1.505298x18~> mS/mol corresponding to
the gaseous state. (If no experimental value is available for P52t e can

compute the fugacity coefficients for both states from the equation of state
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and select the thermodynamic state with the lower fugacity coefficient, see
ref. 6).

This example illustrates that there may exist several roots even for very
simple problems and we need a priori information to select the ‘right’ one. In
iterative procedures this information is necessary for choosing an initial
guess that will promote convergence to the desired root or, in one dimension,
for choosing an interval that brackets it.

The possibility of several roots has two further consequences. First, you
should always try to get some idea of how your function looks like, either on
the basis of theoretical expectation, or by constructing a crude function plot.
Second, it is advantageous to have methods that never get outside of the
bracketing bounds, or never "jump" to a very far point of the region thereby
avoiding divergence or convergence to a wrong root when the initial guess is

sufficiently good.

2.1.2 Bisection method

f)

(2) ‘
X i
A .
! L (2) (Mm x
1 XU XU
(3)
*u

Fig. 2.1. Iterations in the bisection method

To apply this classical method we have to find a "bracketing" interval

[x s %yl on which the continuous function f(x) changes sign, thus the
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isolated root has odd multiplicity. The idea is very simple. We evaluate the
function value f(x) at the interval’'s midpoint X = (xL + xU)/2 . If

f(X)f(x ) 2 @, then X replaces the lower limit x , otherwise it will replace
the upper limit x|,. Each iteration decreases the length of the interval
containing the root by a factor of two. Therefore, to achieve the given
tolerance EP , we need
X — X
IM=1 —U————L]
92 [ EP
iterations. Fig. 2.1 shows three iterations, where xL(k) and xU(k) are the
lower and upper limits in the k~th step.
The only information used in bisection is the sign of the function. The
convergence is slow (of order 1), but never fails. Its disadvantages are the

need for bracketing, which may be hard when two roots are very close, and the
unability to find a root of odd multiplicity.

Program module M21

UL IR Eeeeetisitiittcatiteteitetsitatitersitatisttsittt

2102 REM 2 SOLUTION OF A NONLINEAR EQUATION t

2104 REM RISECTION METHOD 1

Zlﬂé [ A Rt iateesseaiiaceessriiibecitsissteasisiii
2108 SEM INRUT:

”llﬂ REN L LOWER BOUND

Z112 REM W UPPER BOUND
2114 REM EP ERRCR TOLERANCE ON THE ROOT
241¢ REM DUTPUT:
2118 REH ER STATUS FLAS

2120 REM # SUCCESSFUL SOLUTION
2172 ReM { NO SIGN CHANGE BETHEEN XA AND XU
2124 REX I ESTIMATE OF THE KOOT

2126 REM F FUNCTION YALUE FiX}
2128 REM USER-SUPPLIED SUBROUTINE:
i@ REM  FROM LINE 908; X ---> F ( FUNCTION EVALUATION )
32 X=XL :B0SUE 703 :FL=F :X=XU :BOSUR 988 :FU=F
4 IF FLIFUD THEN ER=1 :60TO 2148
& IM=LOB(2+ARSIXU-YL)/EP)/LOB(2)
g FOR 17=1 TG ¥
2143 r={XL+xU}/2 :6OSUR 900
2142 IF FAFL:=@ THEN IL=X :FL=F ELSE XU=X :FU=F
44N DT
2146 ER=0
2145 RETURN
ZLOQ REM HONILILIRRRROI RN R s L e e g

e

The module returns the value ER =1 if there is no sign change in the given
interval. Otherwise it calculates the number IM of required iterations and

performs IM bisections.
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Example 2.1.2 Molar volume of n-buthane by bisection method

All methods in this section will be tested by solving the problem presented
in Example 2.1.1 . Rearranging (2.3) we have the function

a(T)
f(x) = [P + (x — b) - RT , (2.6)
x{(x + b) + b{x - b)

where the solution of the equation f(x) = @ 1is the molar volume. The simple

main program we use is as follows.

188 REM
182 REM EX. 2.1.2 MOLAR VOLUME BY BISECTION

184 REM MERGE %21

106 REM ---------- DATA iR, Tc. Pc, OMEGA; TEMPERATURE AND PRESSURE}
108 RU=2.3144 :7C=425,2 :PC=3750000' :0M=.193

11@ T1=373.13 :FP=1300000!

208 REM ---------- COEFFICIENTS OF THE EOUATION OF STRTE (b,m and a)
202 BE=,@7788RUSTC/PC tME=.37060+1,54226800-, 259924082

204 AE= 457244 {RUSTC)"2/PCHL+ME{L-(TT/TC) . 8) )42

206 REN ----o--oe- INITIAL INTERVAL AND ERROR TOLERANCE

788 XL=RUSTT/PP/2 :XU=RUSTT/PPIZ :EP=XUt,00000!

218 ve=CTRINGS(50,"-")

21T LPRINT V4

214 GO5UD 2122

216 LORINT

218 LFRINT "Vgas, 6"3/m0} vevvivinnninns vesaneens "X

220 LFRINT

272 LFRINT v$

224 570P

528 REM ---------- FUNCTION EVALUATION

902 F={PP+AE/(X${X+BE)+BEX{X-BE)) )3 {X-BE)-RUITT

984 LPRINT USING" 17= ##8  I=h.bshidic~ F=RBHH T 0 F
926 RETURN

This is the first program in this book that needs a subroutine supplied by
the user. Each program intending to call the module M21 must include BASIC
statements that evaluate the function f at x. The first line of the user
supplied subroutine is line 900 if only one is needed. Almost every program
further in the book will require one, two or even three such subroutines,
starting at lines 900, BOB® and 780, respectively. Now you contribute to the
program and hence it is advisable to include some extra prints in the
subroutines for debugging. Since there are no local variables in BASIC, you
should be careful when fitting user supplied subroutines to more complex
programs. Particularly dangerous is altering values of the FOR-NEXT loop
variables (in this case IT is such a variable). To minimize the threat of
conflict try to distinguish your variables from ours, e.g. through the use of
variable names consisting of three or more letters if your BASIC version does

accept such longer names. A user supplied subroutine is always closed by a
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RETURN statement.

In this example line 9B2 evaluates the function (2.6) and stores its value
in the variable F . We print X and F to follow the iteration. The
bracketing interval is chosen on the basis of a priori information. We know
that in this example the compressibility factor PV/(RT) is close to one,
and use the lower and upper limits x_= v®/2  and Xy = 2v° , respectively,

(a]

where v is the ideal molar volume

ve = RT/P . (2.7)

The error tolerance EP is set to the value EP = x %1F-6 , which is certainly
smaller than the attainable accuracy based on the approximate equation (2.5).
Due to the PRINT statement in the user supplied subroutine the program output

is long, and only a few iterations are shown in Table 2.1.

Table 2.1
Steps in the bisection method

STEP  x_, m>/mol Xy m>/mol sign f(X)
(sign f(x) = -1) (sign f(x) = +1)
1 0.103417E-02 .4136656-02 +1
2 " .258543E-02 +1
3 " 0. 180980602 -1
4 0.1421996-02 " +1
5 " 0. 161590602 +1
15 0.1505126-02 @.150531E-22 -1
16 0.150521E-02 " -1
17 0.1505266-02 " -1
18 0.150528E-@2 " -1
19 0.150530E-02 " +1
20 " 0. 150530622

2.1.3 False position method

Similarly to the bisection method, we need an interval [xL’ xyl that
includes the root. The method is based on local linear interpolation of the
function f by the straight line or chord through the points {x , flx )} and
{xy, fixy)¥, as shown in Fig. 2.2. The "root" of this interpolating linear

function is
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X flxy) - xyf (<)

x|
N
.

(2.8)
foxg) - fix)

If f(X)f(x ) 2@ then the new lower limit will be % , otherwise ¥ will
replace the upper limit.

f(x)

Fig. 2.2. Iterations in the false position method

We use the convergence criterion '7“‘) - i(k_l)' < EP , where (k) g the

estimate (2.8) in the k-th 'iteration. Three iterations are shown in Fig. 2.2.
The convergence is of order p , where p is slightly larger than 1.
Indeed, the method usually performs better then the bisection method, while
having the same robustness. Therefore, it is recommended for solving problems
with little information available on the form of the function f. The only

requirement is sufficient smoothness of f near the root.
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Program module M22

2200 REM SEREERasssipna s s R AN LR LR ERRRRERENRRRRILLANY
2202 REM ¢ SOLUTION GF & MOMLINEAR EQUATION 1
2204 REM ¢ REGILA FALE] METHOD L
2286 REM CRESTRLSLIRI ORI E R T ORI Y
2208 REM INPUT:

2710 REM i LOWER BOLNE

I212 REM K] LiPPER EQLNE

2214 FEM Ef ERADR TILERANCE ON THE ROOT

221% REM M MAYIMIR WIRBER OF ITERATICRS

2218 REN OUTRUT:

2220 REK ER STATUS FLAR

2222 REM @ SUCCESSFUL SOLUTION

2224 REM { NG EIGN CHANGE BETWEEN XL AND XU
2224 REM 2 BEJGIREC ACCURACY NOT ATTAINED

2228 REM L ESTIMARTE GF THE ROOT

2230 REM F FUNCTION VALIE £LY)

2232 REM YSER-SUFPLIED SUBRCHITENE:

2234 REM  FROM LIME 988; % ---> F  { FUNCTION EVALUATION }
2236 X=XL ;G60SUR 90 :FL=F ri=fl :60SUR 900 :FU=F

2238 IF FLIFU® THEN ER=! :GOT] 2232

2249 FOR 1T=1 70 I

2242 XO=X :X={XLAFU-XUSFL}/{FU-FL} :GDSUR 982

2244 IF FAFLy=Q THEN XL=Y :Fi=F ELSE XU=X iFU=F

2286 IF ABS(X-XD)<=EP THEN ER=# :G270 2252

2248 NEXT IT

2250 ER=2

2232 RETURN

2254 REM SHXBRRERs s xpssans s tass s snaasassannasaansnasssy

Example 2.1.3 Molar volume by false position method

The main program is almost the same as in Example 2.1.2. The only differences

are in the lines listed below.

102 REM £X. 2.1.3 HOLAR VOLUNE BY FALSE POSITION METHOD
184 REM MERGE M22

208 XL=RUSTT/PP/2 :XU=RUSTT/PPEZ :EP=)US.000001 :1N=30
214 GOSUR 226

since we have to specify the number IM of allowed iterations and call the
module MZ22, The iteration process is summarized in Table 2.2 , where the lower
and upper limits, the ipner point and the corresponding function value are

shown in each iteration.



80

Table 2.2

Steps in the false position method

step  x, m>/mol Xy m>/mol % (%), J/mol
(sign f(x) = -1) (sign f(x) = +1)
1 0.103417E-02 0.413669%E-02 0.132899E-02  -.1570LE+D3
2 0.132899%-02 " 0.145394E-02 - .48040E+D2
3 0.145394E-02 " 0.149163E-02  —.129556+02
8  0.150524E-02 " 0.150528E-02  -.14648E-D1
9  0.1505286-02 " 0.150529E-22  -.39063E-02
18 0.1505296-02 " 0.150530E-02  -.12207E-2

Note that one of the limits is fixed during the iterations. This often happens

with the false position method.

2.1.4 Secant metbod

fx)h

i "4/

Fig. 2.3.

Iterations in the secant method

The basic idea is the same as in the false position method, i.e., local

linear approximation of the function. The starting interval ["1, x2] does

not, bowever, necessarily include the root. Then the straight line through the
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points %y, f(xz)> and {xp, f(x5)> extrapolates rather than interpolates

the function, and its "root"

xlf(xz) - xzf(xl)
(2.9)

x|
]

Fxp) — flxg)

will replace the "older" of the two previous points, thereby always retaining
the most recent two estimates. (This requires an arbitrary choice in the first
iteration.) If x5, is the latest point, then x; is replaced by xo and x5

by X , as shown in Fig. 2.3. The convergence criterion is again
g(k) _ x(k-1) < EP,

Retaining the latest estimates for x; and x, , the slope of the line
follows more closely the form of the function than in the false position
method. The order of convergence can be shown to be 1.618, the 'golden ratio”,
which we will encounter in Section 2.2.1. The root, however, is not necessarily
bracketed, and the next estimate xx may be far away if the function value
f(xy) is close to f(xp). Therefore we may run into trouble when starting the

search in a region where the function is not monotonic.

Program module M23

2300 REN SRR ssnsaasssassassassssssasasassiasansssssy
2702 REN 1 SOLUTION OF A NONLINEAR EQUATION L
23084 REN 3 SECANT METHDD L
2306 REN SRXESXEERRstataassssssassssssssssassssssssnsssssssy
2108 REM INPUT:

2318 REM X INITIAL ESTINATE OF THE ROOT

2312 REM 12 SECOND INITIAL ESTIMATE OF THE ROOT
2314 REM EP ERROR TOLERANCE ON THE RDOT

2316 REM I MAXIMUM NUMBER OF ITERATIONS

2318 REM QUTPUT:

232@ REM ER STATUS FLAG

2322 REN 8 SUCCESSFULL SOLUTION
2324 REM 1 REBUIRED ACCURACY NOT ATTAINED
2326 REM 2 IERD SLDPE

2328 REM X ESTIMATE OF THE ROOT

2310 REM F FUNCTION VALUE F{X)

2332 REM USER SUPPLIED SUBROUTINE:

2334 REM  FROM LINE 9883 X ---> F ( FUNCTION EVALUATION )
2336 X=X!1 :G0SUB 9@ :F1=F :X=X2 :G0SUB 909 :F2=F

2138 FOR IT=1 TO IN

2348 IF ABS{F2-F1)<1E-3@ THEN ER=2 :GOTO 2352

2342 X={XL4F2-X2F1}/(FI-F1) s6OSUB 900

2344 IF ABS{X-X2)<=EP THEN ER=@ :60T0 2332

2346 X1=X2 :F1=F2 :1X2=X F2=F

2348 NEXT IT

2350 ER=1

2352 RETURN

2354 REM SSEIERSERERRRRRORRanetnsssiassnts s aaxssssnassassny
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According to (2.9) the method breaks down if f(xl) = f(x2)
iterations. Then the module returns the value ER = 2 .,

in any one of the

Example 2.1.4 Molar volume by secant method

We deliberetely do not "bracket" the root and use the initial estimates

-0 (o]

X; =V and x5 = 1.01v° , where is the molar volume calculated from the

ideal gas law (2.7). The iteration is expected to converge to the root
corresponding to the gaseous state. We do not present the main program, because

the deviations from the previous two main programs are only in the lines:

102 REM EX. 2.1.2 MOLAR YOLUME BY SECANT METHOD

{04 REM MERGE M23

208 X1=RUSTT/PP ;)Y2=1.R1SRUSTT/PF :EP=X1%.B00001 :1M=30
214 GOSUE 2309

i.e., we have to specify X1 and X2 instead of
in Table 2.3.

XL and XU . Results are listed

Table 2.3
Iterations in the secant method

step %13 m>/mol Xy m3/mol X f(X), J/mol
1 @.206835E-02 0.208903F-02 0.155446E-02 ©0.4754QE+22
2 0.208903E-02 @.1554466-02 @.151126E-02  @.56833E+01
3 @.155446E—02 D.1511266-02 B.150539%€-02 ©0.86914E-01
4 @.151126E-02 0.150339E-02 0.1505306-02 ©.24414E-03
5 @.150537e-02 0.1305326-02 @.1505306-02 —.24414E-03

2.1.5 Newton—Raphson method

The idea is again local linear approximation, but now we use the tangent

of the root. The tangent line will cross the

line at a current estimate

zero at the abscissa

f(x)

X = x = =, (2.10)
(%)

where f'(x) is the derivative of function f at x , and we adopt X as the

next estimate.
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While all the previous methods use two points, the correction (2.10) is
based exclusively on the local behavior of the function as shown on Fig. 2.4.

fx) |

Fig. 2.4. Iterations in the Newton—Raphson method

Therefore the method has excellent convergence properties near the root (with
order of convergence p = 2), but may result in meaningless estimates
otherwise. In addition, the number of equivalent function evaluations is
usually larger than in the secant method, which does not require the derivative
but has almost the same convergence rate. Neither the Newton—Raphson, nor the
secant method are recommended if the function f bhas an extremum near the
root. You can easily construct pathological cases to understand this rule.

In the following module if the return value of the status flag is ER
the derivative (x) vanishes in one of the iterations, and by (2.1@) the

2,

procedure breaks down.
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Program module M24

2400 REN LRRRSSRSSasaasasasarsuasaananaasasassssssssssssssey
242 REM 8 SOLUTION DF A NONLINEAR EQUATION L4
2404 REM 8 NEWTON-RAPHSON METHOD L4
2405 REN SSUSRSRRSRERERRRnsasstassassasasssssasqrabassesssy
2488 REM INPUT:

2418 REM 14 INITIAL ESTIMATE OF THE ROOT

2412 REM EP ERROR TCLERANCE DN THE ROOT

2414 REM 4 MAXIMUM NUMBER OF ITERATIONS

2416 REM OUTPUT:

2418 REM ER STATUS FLAG

2428 REM @ SUCCESSFUL SOLUTION
2422 REM 1 REQUIRED ACCURACY NOT ATTAINED
2424 REM 2 IERD SLOPE

2426 REN X ESTIMATE OF THE ROOT

2428 REM F FUNCTION VALUE F{X)

2430 REM USER-SUPPLIED SUBROUTINE:

2432 REN  FROM LINE 90@; X ——-> F { FUNCTION EVALUATION }
2434 REM  FROM LINE 88@; X ---> D { DERIVATIVE EVALUATION )
2436 GOSUB 908

2438 FOR IT=1 TO IM

2440 GOSUB 6802

2442 IF ABSID)<1E-30 THEN ER=2 :60T0 2452

2444 DX=-F/D :X=X+DX :GOSUB 900

2445 IF ABS(DX)4{=EP THEN ER=B :60TD 2452

2448 NEXT IT

2458 ER=1

2452 RETURN

ZASA REM SRRRRERRLsass et s s s asaaaasarassrasssssessssssssy

Example 2.1.5 Molar volume by Newton—Raphson method

To use the module M24 you should supply two subroutines. As in the previous
methods the one starting at line 908 will evaluate the value F  of the
function. The second subroutine, starting at line 828, gives the current value
of the derivative f'(x) to the variable D . To start the iteration we need a
single initial guess X . Once again we use the ideal gas volume as initial

estimate. The lines different from the lines of the previous program are:

208 X=RUSTT/PF :EP=Y$.000001 :IN=3B

214 50508 2402

688 REM --------——- DERIVATIVE
882 D=PP+AE/ (X {X+BE)+BES(X-BE))-(X-BE)SAEX{2¢X+24BE) /(X8 (X+BE)+BEX(X-BE)) 2
B84 RETURN

Results are shown in Table 2.4.



Table 2.4
Iterations in the Newton—Raphson method

STEP X, m>/mol £(x) %, m>/mol
2 0. 2068345602 0.61113E+@3  @. 1553254602
1 0. 1553254602 @.46354E+02 @ 150599322
2 . 150559322 D.66136E+00 0. 1505298E—03
3 @. 1505298622 0.24414E6-03  0.1505298E—03
4 @. 15052986-22 —.24414E-03

A brief comparison of the different methods is given in Table 2.5. You may
notice that the methods that use more information (i.e., the value of the
function, not only its sign; a pair of values, not only one of them) converge
more rapidly. You already know, however, that robustness is decreasing along
the same line. Therefore, choosing a method you ought to consider how much is

known on the form of the function and the position of its roots.

Table 2.5
Convergence behaviour of the different methods in the test example

Method Number Number of equivalent Theoretical order of
of iterations function evaluations convergence, p

Bisection 19 21 1

False position 10 12 >1

Secant S 7 1.6

Newton—-Raphson 4 9 2

2.1.6 Successive approximation

This method has such poor convergence properties that it is usually omitted
from up—to—date textbooks on numerical analysis. We mention it, however,
because it is very simple and still in use. In addition, the method can be
easily extended to systems of equations where it is the basis for a number of

improved techniques. The idea is writing the equation in the form

x = g(x) (2.11)

and performing the iteration

X = g(x) (2.12)

where x and X are the old and new guesses of the root, respectively. A

85

sufficient condition for convergence is the existence of a constant K < 1 and
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of an interval around the root on which

la 0] ¢k, (2.13)

if our initial guess is also in this iterval. The steps of this procedure, also
known as direct iteration, can be well followed on plots like the ones shown in

Fig. 2.5. The 450 straight line helps to convert @ g(x) value into a new

guess X . You may encounter the situations of monotonic or oscillating
convergence (Fig. 2.5.a and b, respectively) and monotonic or oscillating

divergence (Fig. 2.5.c and d, respectively).

Y
y y=x y-x
y=g(x)
I
AN o P -
X1 Xg X3 " Xy X3 Xg X
a
) b)
Y\ y=g(x) 4 y=g(x)

=X \ y=X

X3 xlz X«‘ X x3 x1 x2 X

Fig. 2.5. Typical situations in successive approximation
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It is more difficult to judge the properties of successive approximation if
the original equation is of the form f(x) =@ , since it can be rearranged to
the form (2.11) in many different ways, thereby significantly influencing the
convergence. For example, an appropriate rearrangement results in (2.1@), and
hence even the Newton—Raphson method can be regarded as successive

approximation.
Exercises

O Derive the iteration formulas (2.8), (2.9) and (2.1@) on the basis of the
geometrical ideas used in the corresponding method.

O Solve the test problem of this section at the pressure P = 1.6x12° Pa
keeping in mind that now the n-buthane is in liquid state.

O Three rearrangements of equation (2.5) to the form x = g(x) are:
gy (x) = RT/P — a(x — b)/[x(x + b) + b(x — b)] +b
go(x) = RT/PC1 + a/P/[x(x + b) + b(x - b)13 ™ + b

x + P(x — b) + a(x — b)/[x(x + b) + b(x — b)] - RT .

93()()

Try to solve the test problem by successive approximation on the basis of

these rearrangements. What is the reason of divergence in the case of gz ?

2.2 MINIMM OF FUNCTIONS IN ONE DIMENSION

Similarly to the most robust methods of solving nonlinear equations, we
start with bracketing. Assume that the interval [x, xL] contains a single
minimum point r, i.e., the function f is decreasing up to r and increasing
afterwards. Then the function is said to be unimodal on the interval Ix s xyl-
This property is exploited in cut-off methods, purported to reduce the length
of the interval which will, however, include the minimum point in all
iterations.

The idea we use is similar to bisection, but now we need to evaluate the
function at two inner points x; and x5 of the interval, where
X < xp <xgp <oxye If f(x1) < f(xy), then the minimum point is in the interval
[x_s x2] , since we assumed that the function is decreasing up to the minimum

point, see Fig. 2.6.a. Similarly, fixg) 2 f(xz) implies that the minimum
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point is in the interval [xj, xU], as shown in Fig. 2.6.b. In both cases we

can disregard some portion of the interval, either (x5, xyl or [x , %1).

f(x) f(x)

| - X éé
%2 Xy WX X

2 Xy

XA

Fig. 2.6. Two situations in cut-off methods

The above discussion suggests selecting x; and x5 close to the midpoint,
thereby reducing the interval almost by a factor of two in one "cut". This is
true in a single step. The search is, however, iterative, and there is a better
strategy which involves a single function evaluation in each iteration (except

the first one), while significantly reducing the bracketing interval.

2.2.1 Golden section search

We select the internal points x; and x5 with the same spacing from either
end, as shown in Fig. 2.7, where » denotes the ratio of the longer segment to
the total length of the uncertainty interval, i.e.,

A= Uxo mox ) s Oy R ) = Oy moxg) 1wy mox ).

The efficiency of the golden section stems from the special value of the ratio
» . We require the ratio of the larger of the two segments to the total length
of the interval be the same as the ratio of the smaller to the larger segment,
i.e., »1 = (1 - 2)/x.
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(- xy-x| ) i A xy-x )

a

XL X Y ou

\
A (xy-xL) (1-N(xy-x)

Fig. 2.7. Notations used in golden-section search derivation

The positive solution

A= (YO~ 1)/2 = D.618... (2.14)

of this quadratic eguation is the golden ratio, whose origin goes back to the
ancient Greeks, but pops up in many different places in mathematics. Thus, the

internal points are selected according to
Xy = WX+t (l—x)xu

%o = (I-N)x + W%y . (2.15)

To show why this famous ratio » is good for us, assume that f(x;) > f(xy)
as shown in Fig. 2.8, and hence we cut off the interval [x, x;). Then the
ratio of the remaining two segments is given by
Xy T ¥p 1 -
————eee =D e——— = )

y (2.16)

Xy T %1 by
where the last equality follows from the special choice of » . Thus the
reduced interval ([x;, %] is already divided by the point xp in the same

way as the original interval [x_, x,] was divided by x;. Therefore, we
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replace x_and x; by the old value of x; and x5, , respectively, and need to
evaluate the function only at the new point x5, selected again by (2.15).
Fig. 2.8 shows how the roles of our four points have been changed when
performing this step. Similarly, for f(x;) < f(x5) the new bracketing
interval is [x_, %] and thus we replace x5 and x; by x; and x5 ,

respectively, and evaluate the function at the newly selected x;.

f(x)

—poe X

0 0382 06180764 1
(0) 4 (0) (0 (0)
A S X

1 M M
R PN

Fig. 2.8. Steps in the golden-section search

The golden section search guarantees that each new function evaluation will
reduce the uncertainty interval to a length of 2\ times the previous interval.
This is comparable to, but not as good as interval halving in the bisection
method of solving a nonlinear equation. You can easily calculate that to attain

an error tolerance EP we need

M = -log [EUE';—E'-J / log »

iterations. The following module calculates IM and performs the iterations.
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Program module M25

PET I I PR ERERR SR pRRRRRCESIESERRRR02300030000000 800004
2502 REM 1t NINIMUM OF A FUNCTION OF ONE VARIABLE '
2004 REM METHOD OF GOLDEN SECTIONS '
2506 REN SHRURSIRRRBRIISsRnessssssssnasssassssssessisigy
2508 REM INFUT:

2510 REM i LOWER BOUND

2312 REM 1] UPPER EOUND

2314 REM EF ERROR TOLERANCE ON MINTMUM POINT

2316 REM QUTPUT:

2518 REX i ESTIMATE DF THE MINIMUM POINT

2528 REN F MININUN FUNCTION VALUE F(X}

2522 REM USER-SUPPLIED SUBROUTINE

”524 REM ~ FROM LIME 988; X --- F [ FUNCTION EVALUATION |
526 RL={88R{5)-1}/2 :RU=1-RL :RE=1/RL

8 IM=LOG(RE+ARS(XU-XL)/EP)/LOG(RE)

2 Y1=RLEXL+RUSXU :¥=Xi :GOSUB 980 :Fl=F

L

59
82
5
a2
3

5
932 12=RUSKL+RLIAU :X=12 :GOSUB 9@ :F2=F
7524 FOR IT=1 7D IM

336 IF FLMFZ THEN 2542

336 ¥UsY2 x2=f1 sF2=F1 oXI=RLAXL+RUIXU :X=X1 :GOSUR 908 :F1=F
2040 GOTO 2544

2042 XL=XD oXESX2 :F1=F2 :X2=RUSXL+RLSXU :X=X2 :GOSUR 900 :F2=F
2544 NEXT IT

2545 RETURN

2048 REM IOORORIBLIEEER LIS RE RN R R NIRRT LN LS

The module needs a user supplied routine starting at line 900 that will set
the variable F to the value of the function evaluated at the actual value of
X .

Example 2.2.1 Optimal drug dosing by golden section search

Consider a tablet that is taken regularly once a day. We want to find the
optimal quantity of the drug (i.e., the only active ingredient) in the tablet
in order to keep the drug concentration in the blood within a given therapeutic
range [c , c] as strictly as possible. To predict the drug concentration we
use the linear compartmental model shown in Fig. 2.9, one of the most popular
models in pharmacokinetics.

The model assumes that the drug enters compartment 1, representing mainly
the gastrointestinal tract. The drug is then absorbed into the blood flow,
represented by compartment 2. The absorption rate is kg , where g; is the
current drug quantity in compartment 1. There is also a secretion or
elimination process from compartment 2, with the elimination rate kg, , where

gp denotes the quantity of drug in compartment 2.
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Fig. 2.9. Pharmacokinetic compartmental model
1 - gastrointestinal tract; 2 - blood flow

The compartmental model gives rise to a system of two linear differential
equations whose forcing term (i.e., the drug intake) is a periodic function
(ref. 9). After a transient period the solution of the differential equations
is also a periodic function. This periodic solution predicts the drug

concentration
(t) kol [ ! (—kt) = {~k_t) (2.17)
c = exp(— = —m—————e—— X p{ - .
V(ky—k) L l-exp(-k7) P 1-exp(—k,7) P a

where D denotes the dosis, i.e., the quantity of drug in the tablet (mg); V
is the distribution volume of the blood compartment; k, is the absorption
coefficient; k is the elimination rate coefficient; 7 1is the period, i.e.,
the time elapsed between two intakes of the tablet, and t is the time
elapsed after the latest intake. In this example V =10 1, kg = @.231 h’l,
k=2.093 hland 7=28h (ref. 9).

We want to find the value of D that will keep c(t) between the values
€ = 14 mg/l and ¢y = 26 mg/l as far as possible. For this purpose we

minimize the objective function
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T
(D) = (1/7)i[h21(t) + np(t) Jat (2.18)
where
t) - if c(t) > - c(t), if c(t) <
hy(t) = {c( ) cys i .c( ) cy hy(t) = {CL c , 1 -c =3
B otherwise , B otherwise ,

thereby more penalizing concentration values far from the therapeutic range.
The area contributing to the objective function is shaded in Fig. 2.1@.

VAVAW

T0 T0 70

Fig. 2.10. Periodic drug concentration in blood

You are certainly aware that the compartmental model is a simplified
representation of the real physicological process. Therefore, it is completely
adequate to use a simplified objective function by approximating the integrals
in (2.17). We divide the interval [@, 7] of integration into NW equal
subintervals of length 4t = 7/NW , and approximate c(t) by its midpoint
value c; = cl(i - 1/2)4t]). The objective function is approximated by

N
<7

£(D) = (1/1)). &f{(D) (2.19)
i=1



94

where

(c; - et if ¢j > ¢
af; (D) = 1(cL - %t if gy <o

2 otherwise .

Since the dosis D is expected to raise the blood concentration at least to ¢
at certain time points, from the approximate balance equation D/V % cy we
have D z 260 mg . Therefore, the initial interval [B, 18@0] certainly
includes the minimum point, which can be easily checked evaluating the function
(2.19) over a course grid. The desired error tolerance is EP = B.1 , more than

adequate in this problem. The main program we use is as follows.

182 REN -----------=-
192 REN EX. 2.2.1 OFTIMGM DOSING BY GOLDEM SECTION METHOD
184 REN HERGE K25

106 RLW ---------- ATA

188 REM {VOLUME,ABSORPTION ELIMINATION)

140 ¥R=10 :K4=,231 :¥W=h.9300801E-02

112 REM (TIME INTERVAL,LOWER AND UPPER LIMIT OF CONCENTRATION)
i3 TH=24 L=14 :CU=26

1ic REM {NUMBER OF NDDES)

118 Nu=48

288 REM ---------- AUXTLIARY QUANTITIES

782 DT=TW/NW

4 EL=1/(1-EXP-KHATHY) (BZ=1/(1-EXF{-KASTH})

205 REM ---------- LOWER AND UPPER LIMIT OF DOSE, ERROR TOLERANCE
Z0e XL=0 :XU=1008 :EP=.!
210 FEW ---------- GOLDEN SECTION MODULE

212 V4=5TRINGS{5R,"-"}

214 LPRINT V§ tLFRINT :LPRINT "BOLDEN GECTION METHDD® :LPRINT
214 EDSUR 250

216 IF ER THEN LPRINT "STATUS FLAB:"3ER :6OTD 25

228 LPRINT :LPRINT *  MINIMIZATION CF SOUARE ERRORS" :LPRINT

222 LPRINT "CYCLE LEMSTH, h ovvviiinni vervenrseee NiTH
224 LPRINT "NUMBER OF KODES .uvvvvvvvirvivnnveniraasy "iNH
226 LFRINT “CFTIMUM DRUS DOSE, mo/1 oo.viivnns ceeees THINTLIREXDELE
228 LPRINT "MINTMUM DRIECTIVE FUHCTION VALUE ........ "F
218 LPRINT
232 LPRINT v¢
F4OLPRINT "TIME, & FLASMA CONC, ng/l FEMARE"

216 LPRINT 98

T9OFCR T=1 TOOTH
280 T=HRKA/VR/ LKA-RWI R {ELREXP(-ERIT)-E2HEXPI-KARTY)
257 LPRINT USING "## (A1 T

244 IF YeCL THEN LFRINT "HIGH CONCENTRATION";
T4k IF Y(CL THEW LPRINT "LDW CONCENTRATION";
240 LPRINT

REXT T

252 LPRINT Ve

754 STOF
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300 REY ------o--- QRIECTIVE FUNCTION
%07 F=§
984 FOR 1=1

0 N

T

H

1
4

LPRINT USING® 1T=#44 DOSE=88dh.8%  OBJ. FUN.=R. 0088820007, 00F
RETURN

The limits of the uncertainty interval in some of the iterations are shown in
Table 2.6. The optimal dosis is D
opt) = 14.44 (mg%17%s).
Applying a finer grid (NW > 48) does not alter the location of the minimum
more than the desired tolerance EP = 8.1 mg . In Fig. 2.10 we have already
shown the concentration of the drug following the dosis Dopt’ taken at the

pt = 335.4 mg , which gives the minimum

value (D

beginning of each pericd of length 7 = 24 h., According to this solution, one
tablet a day does not enable us to keep drug concentration c(t) within the
therapeutic range for all times. We could decrease the period, i.e., 7 =20 h
would be a suitable choice, but it is not a practical advice to take a tablet
each 20 hours. Taking two tablets a day (i.e., with 7 = 12 h), there exists an
interval [D,, D,] such that f(D) =@ for all D in this interval. From
physiological point of view the best choice is D, i.e., the least dosis that
gives the desired drug concentration in blood. The golden section search module
as presented here will result in this lower limit (D_ = 138.2 mg) because in
line 2536 we used the relation sign ">" and not ">="

Table 2.6
Steps in the golden section search

step X 5, Mg Xy M relation of f; to f;
1 ] 1000 <
2 " 6£18.034 >
3 236.068 " <
4 " 472,136 >
18 335.275 335.555 >
19 335.382 " <
final " 335.487

Although the golden section search works quite well, it is obviously not the
best available for a given number of function evaluations. For example, with
only two evaluations allowed it is better to choose the intermal points close
to the midpoint of the initial interval, as we already discussed. The idea can
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be extended to any a priori fixed number N of function evaluations, and gives
rise to the Fibonacci search strategy, involving the famous Fibonacci numbers
(ref.10). For sufficiently large N, however, the golden section search is
almost as efficient as the Fibonacci search (and can be regarded as the
limiting case of the latter). Comparing the function values in the inner
points, both methods use little information, and their convergence is linear
(i.e., of order p = 1). Similarly to the methods of solving a nonlinear
equation we can increase the order p by constructing a local approximation of
the function. While in equation solving a linear approximation did the job, now
we look for a minimum, and hence the approximating function should be at least

quadratic.

2.2.2 Parabolic interpolation

In this method the next estimate X is the location

(=) 2LE()=F (W) ] — (x=w)2[F(x)=F(V)]
T=x— (2.20)
(=) LFOO)=F (W) ] = (e=w) [F(x)=F (V)]

of the minimum of the parabol through the last point {x,f(x)} and two
previously evaluated points {w, f(w)} and (v, f(v)} . The method fails if
the three points are on a straight line, since then the denominator is zero
(i.e., the parabola has no minimum). In addition, equation (2.20) will locate
the maximum rather than the minimum if the coefficient of the second order term
in the interpolating parabola is negative.

To avoid these problems Brent (ref. 11) suggested a combination of the
parabolic fit and the golden section bracketing technique. The main idea is to
apply equation (2.28) only if (i) the next estimate falls within the most
recent bracketing intervalj (ii) the movement from the last estimate is less
than half the step taken in the iteration before the last. Otherwise a golden
section step is taken. The following module based on (ref. 12) tries to avoid

function evaluation near a previously evaluated point.

Program module M26

7608 REM ISRESRISRLIBssRstssnsnpsrnnsssassssssiaspsessniiiyg
2682 REM MINTMUM OF A FUNCTION OF ONE VARIABLE '
2604 REM 1 PARABOLIC INTERPOLATION - BRENT'S METHOD ¢
2506 RER LRRsssssssssssssspaseaassssaapsraansenninn
2688 REH INPUT:

2612 REM (N LOWER BOUND

2512 REM U] UPPER BOUND

2614 REM EP ERROR TOLERANCE ON WINIMUM POINT

2616 REM ] MAXIMUM NUMBER OF ITERATION



2618 REM DUTFUT:

2620 REM X ESTIMATE OF THE MINIMUM POINT

2622 REH F KININUM FUNCTION YALUE F(X)

2624 REM ER STATUS FLAG

2425 REM [

2628 REM 1 TOLERANCE NOT ATTAINED IN "IH' ITERATIONS
2438 REM USER-SUPPLIED SUBROUTINE

2637 REM  FROM LINE 908; X ---> F ( FUNCTION EVALUATION )
2634 ER=0 :RL={50R{3)-1)/2 :DX={XU-XL}/2 iX={XU+iL)/2

263h V=X tM=Y :E=Q: GOSUR 90@ :FY=F :FV=F :F¥=F

2638 REM ----- LOOF

2b48 FOR 1T=1 T0 INH

2642 IM={XL4XUY/2 tIF ABS{X-XM){=28EP-{XU-XL}/2 THEN 2696
2644 1F ABS(E)CEP THEN 2664

2b46  REW ----- AUXILIARY QUANTITIES TD A PARABOLIC STEF

2648 R={X-W)R(FX-FV) :0=(X-VII(FX-FH) :P={X-V}30-{X-N)3R

2658 B=28{B-R) :IF O>=B THEN P=-P ELSE 0=-Q

2632 EL=E :E=Di

2694 IF ABS{P}>=ARS{QIEL/2) OR P<=B8(XL-X) OR P>=B8{XU-X) THEN 2464
2636 REM ----- PARABOLIC STEP

2658 DX=F/@ :b=X+DX

2668 IF {U-XL)<Z3EP OR (XU-U)<Z$EF THEN IF XM>X THEN DX=EP ELSE DX=-EP
2662 GOTO 2670

2064 REN ----- GOLDEN SECTION STEF

2b6b IF X»=XM THEN E={L-X ELSE E=XU-X

2668 DX=RLIE

2679 REM ----- FUNCTION EVALLATION

2672 IF ABS{DX)}=EF THEN U=X+DX ELSE IF DX>@ THEN U=X+EP ELSE U=X-EP
2674 XD=X :X=U :GOSUR 900 :FU=F :X=X0

2676 FEM ----- NEW BRACKET AND PREVIOUS POINTS

2678 IF FULFX THEN 2484

2680 IF U:=X THEN XL=X ELSE XU=X

2082 V=W sFY=FW sW=X sFH=FX sX=U :FX=FU 3BOTO 2692

2684 IF U<X THER XL=U ELSE Xu=

2686 IF FUXFW AND WX THEN 2690

2688 V=W :FV=FU 1W=U :FW=FU :G0TO 2692

2698 IF FU<sFV OR V=X OR V=W THEN V=U :Fv=FU

2692 NEAT IT

2694 ER=1

2696 F=FX :RETURN

2699 REM RIS as it i eps na s aa st qaaaassssaagsny

The input to the module is similar to the one of the module M25. The only
difference is that in this case the maximum number IM of iterations should

be specified before calling.

Example 2.2.2 Optimum dosing by Brent’'s method

We solve the problem of Example 2.2.1 with the same starting interval. The

main program is essentially the same except the following lines:

208 XL=0 :XU=1008 :EP=.1 :IH=30
214 LPRINT V$ :LPRINT :LPRINT "BRENT'S METHOD" :LPRINT
216 GOSUB 2402
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The iteration process is summarised in Table 2.6.

Table 2.6
Steps in Brent's method

iteration x_, mg Xy Mg type of step best estimate
X f(x)
1 @ 1002 golden s. 198.983  3I5B.169
2 " 500 golden s. 3B1.9566 128.784
3 190.983 » parabolic 301.111 35.696
4 " 381.%66 parabolic 318.578 21.586
S 3P1.111 " parabolic 324.801 17.7@3
6 318.578 g golden s.* " "
7 " 360.131 golden s.* " “
8 " 346.636 parabolic 334.473 14.46%
12 334.783 335.522 parabolic 335.422 14.439
final 335.322 " " "
X

parabolic movement would be too big compared to the movement two steps before

Parabolic interpolation is more effective than golden section search for
this problem, because the function is of parabolic character in the vicinity of
the minimum. To show a counterexample we slightly change the approximate

objective function (2.19) and define Afi by

ey - cylot if cj > oy
af; (D) = 1(c|_ - cjlet if c; < (2.21)

@ otherwise ,

i.e., now we minimize the shaded area shown in Fig. 2.1@8. (You can easily make
this change in the main program by dropping the exponent 2 from lines 210 and
912 .) In this case Brent's method needs the same number of function
evaluations as the golden section search does.

As we mentioned, in one—dimensional problems it might be advantageous to
solve the equation '3 {x) = @ ipstead of minimizing f. The roots of
£ (x) =@ are, however, not necessarily minimum points, and hence we can run
into trouble without a good a priori knowledge of the form of the function. In
addition, we need an expression for the derivative 2 (x) which is frequently

not available, e.g., in the optimal dosing problem of this section.
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2.3 SYSTEMS OF NONLINEAR EQUATIONS

In the following sections x , ¥ and g are all n-vectors, and we should
slightly change our notations. The estimates of a root (or those of a minimum
point) in iterations 1,2,...,k will be denoted by x{17, x{(2}), , nik)

(k) (k) (k)
whereas x1 ,x2 seasg X will denote the vector components of the k-th
n

estimate x(k) .

The simplest method of solving a system of nonlinear equations is the

successive approximation

x(K) = g(xlkl)y | (2.22)
where g denotes the function rearranged as described in Section 2.1.6. As in
one dimension, the method is slow and does not guarantee the convergence,
though these properties heavily depend on the way of rearranging the eguations
to the form x = g(x) . It is, however, extraordinarly simple and hence
convenient in many applications, e.g., for flowsheeting in chemical engineering
(ref. 13), and hence must be taken more seriously than in one dimension. Great
efforts have been devoted to improve the basic method. The simplest modified

version is

%K = (1 - D) 4 cqextkl)y (2.23)

which retains the previous estimate x(k=1) up to the weighting factor (1-c).
Ifc=1 (i.e., the simplest direct iteration) gives rise to monotonic
convergence, then we can try to increase the rate of convergence by setting

c > 1 . This simple trick is known as acceleration or overrelaxation. On the
other hand a divergent or wildly oscillating iteration observed at c =1 may
be improved by choosing an appropriate value B < c < 1 , which leads to
relaxed or damped iteration. The method is so simple that we do not include a
program module, but suggest to write your own program and experiment with

different values of c on the test example we will study in the next sections.

2.3.1 Wegstein metbod

A popular version of successive approximation due to Wegstein (ref. 14) can
be best understood by considering the one dimensional case as shown in
Fig. 2.11. Let x{1) and x(2) denote two current estimates of the root of
equation x = g(x) . Geometrically the method consists of extending the line
through  (x(1?, g(x{1))) and ¢x¢2}, g(x{2))3 until it crosses the line y = x.
The new estimate is then set to the abscissa x(3) of the cross point,

replacing the oldest of the previous estimates.
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y y=x
}
/y=g(x)
h |
451 |
Do
MENCORN S <1 X

Fig. 2.11. Geometric idea of the Wegstein method

You can verify that this iteration can be described by (2.23) where the

parameter c 1is chosen according to

«(2) - (1)

c= . (2.24)
«(2) — (1) _ q(x(@y - gx(1)y]

Therefore the above expression provides an automatic selection of the damping
or accelerating factor c in each iteration. The idea is easy to extend to a
system of equations, if each element x; of the vector x is regarded to be
independent of the others when using the expressions (2.23) and (2.24) . Thus

the Wegstein method uses separate factors c; for each variable:

i
k k k-1) k _

x(_ ) = (1 - cf ))x(. + c(_ )gi(x(k l)) (2.25)

1 i i i
where the factor for the i-th variable is given by

(k-1) (k=2)
X - X

(k) i i
i T TR () : (2.26)

i - - - _

x x0T = gy KDy — gy xtkT2)yg

i

The geometrical idea introduced for one dimension applies only to a system
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of independent equations with g; depending only on  x; . Though in the
general case the method does mot have a sound theoretical basis, it may perform

surprisingly well.

Program module M3@

3880 REM srasttrssssnrspasnnsntannnonnnnn
3802 REM ¢ SOLUTION OF SIMULTANEOUS EGUATIONS X=G(X) 3
3004 REN 1 HEGSTEIN METHOD 1
3006 REN SERsssasstsssaasssateeasatappaaseesstetienesening
3008 REM INPUT:

312 REM N PROBLEN SIZE

3812 REM Y{N}  GTARTING POINT

@14 REM D(N)  PERTURBATION OF STARTING POINT

3815 KEM EP THRESHOLD ON NORM OF THE STEP

1018 REM M MAXINUM NUMBER OF ITERATION

3820 REX OUTRUT:

30822 REN ER STATUS FLAG

3824 REX @ SUCCESSFUL SOLUTION
1026 REN 1 UNADMISSIBLE STARTING POINT
3828 REM 2 REQUIRED ACCURACY NOT ATTAINED

3830 REN X(N}  ESTIMATE OF THE SOLUTION

3832 REM G(N)  RHS OF EQUATIONS AT FINAL ESTIMATE

3834 REM USER-SUPPLIED SUBROUTINE:

1036 REM  FROM LINE 90@;  X{.) --> 6{.) { RHS EVALUATION }
3838 REM AUXILIARY ARRAY:

1940 REM R{N)

3842 ER=@ :6DSUB 98@ :IF ERCM@ THEN ER=1 :GOTC 3072

3844 FOR IT=1 TO IN

3046 FOR I=1 TO N :R(I)=B(I) :X(I}=X{1}+D{1} :NEXT I

3048 ER=@ :GOSUB 5@@ :IF ER=@ THEN 3@54

3058 FOR I=1 70 N :D{I)=.958D{1) sX{I}=X(1)-.@58D{1} sNEXT I
3052 SD=5D¥.9825 :GOTO 3248

3854 IF IT>1 AND SOR{5D)¢(=EP THEN 3872

3056 50=0

3858 FOR I=1 TON

3068  C=D{I1)-6(I}+R{1) :IF ABS(C)<1E-38 THEN C=5BN{C)$1E-3@
3862 C=D{I}/C :D{1)=CH{G(I)-X(1}) :5D=SD+D(1}8D{1)

3064 NEXT 1

3@bb IF SOR{SD)<=EP THEN ER=@ :60TD 3872

3868 NEXT IT

3070 ER=2

3872 RETURN

3074 REN SS888sstiasdat et st s e tsnsntens i snsnntiny

To start the procedure we need a vector X of initial estimates and a vector D
of initial corrections (movements), both of dimension N . During the iteration

the vector D contains the current correction vector x(K) = (k1) | The
convergence criterion is ”D” < EP . The user supplied subroutine starting at

line 900 sets the vector G to the actual value of the right hand side vector
computed at the current estimate X.
An important feature of the program module is checking the feasibility of
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the current estimate X. If X is outside the region you anticipate to contain
the solution, you should set the error flag ER to a nonzero value in the
subroutine. At a nonzero ER value the module will repeatedly decrease the
length of the correction vector by 5% in order to keep the estimate within the
feasible region. This is particularly important if the function g is not
defined for all values of the variables (e.g., in the following example all
variables should be positive). All the further programs of this chapter will

include such test and modification of a potential new point.
Example 2.3.1 Equilibrium of chemical reactions by Wegstein method

We consider a chemical system consisting of the following species:
methane (CH4) , water (HZD) , carbon monoxid (CO) , carbon dioxide (CDZ) , and
hydrogen (H5) . There are two linearly independent reactions among these

species, e.g.,

CHy + HYO = €0 + 3+, (2.27)
and
0O + Hy0 = COy + H; . (2.28)

We want to find the equilibrium composition at the temperature T = 1008 K and
pressure P = 1.013x10° Pa  if the system initially contains 2 moles of methane
and 3 moles of water. For the given temperature and pressure the natural
logarithms of the equilibrium constants K; and K5 expressed in terms of mole
fractions are known: log K; = 3.4789 and log Ky = —0.0304 . Let ny, no,
.++3 Ng denote the mole numbers of species CHy, Hy0, €0, €Oy, and Hy,

S
respectively. Then n= X n. is the total mole number. Writing the mole fractions
i=1 1

3
Yj = nJ-/n into the equilibrium relations K; = y3y5/(y1y2) and

K2 = y4y5/(y3y2) and taking the logarithms of both sides we arrive at the

following equations

3
1og [n3n5/(n1n2nz)] = log K3

(2.29)
log [ngng/(nxnp)] = log Ko .

o
fs discussed in Section 1.8.1, with known initial mole numbers nl through

o
n.5 the extents x; and x, of reactions (2.27) and (2.28), respectively,

determine the current mole vector uniquely. Since x; measures the moles of

CHy consumed in the first reaction and x, measures the moles of CO, produced
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in the second reaction, we have the stoichiometric relations:
o o C)+ (=] C)_'-3
n =n —X n =N _—Xq47X n =n Xq1—X n =N +x n =n X q+X
1 1 1 2 2 172 3 < 172 4 g 2’ 5 5 1772

5
O
n=[‘3-ln:|+2x1. (2.30)
] i
i=1

Using (2.3@) we can write eguations (2.29) in terms of x; and x, . These
eguations will be rearranged to the form x = g(x), simply by adding x; to
both sides of the first, and x5, to both sides of the second:

3
X1 log [n3n5/(nln2n2)] - log Ky + x5 = gy(xg4%3)
(2.31)

xp = log [ngng/(nzn5)] — log Ko + x5 = golxg,%xo).

The following main program solves the system (2.31) .

188 REM
182 REM EX. 2,3.1 REACTION EQUILIERIUM BY WEGSTEIN METHOD
184 REM MERGE M30

186 REM -------~-- DATA

109 DI NO(5),NH(3) N§{3)

110 REM {NATURAL LDB X VALUES)

112 Wi=2,4789 :W2=-.2304

114 REM (INITIAL MOLE NUMBERS)

116 NO{1}=2 NB(2)=3 :NB=3

{1B REM (NAMES)

120 Rs(1)="methan ..0.00il®

122 N${2)="water ....o0eed”

124 N$(3)="carbon monoxid "

126 N${4)="carbon dioxid ."

128 N$(3)="hydraogen ...... "

208 REN ---------- PROBLEM SIIE AND CONTROL PARAMETERS
202 K=2 :IN=30 :EP=,00000!

204 DIM X{N),D{N) (G(N},R{N}

206 REW ~--------- STARTING POINT AND STARTING STEP

208 x{1r=1 ¥(2)=.1

218 D{1}=.01 :D{2)=.01

212 V$=5TRINGS(53,*-")

214 LPRINT "WEBSTEIN METHOD" :LPRINT

216 GOSUE 3200

218 LPRINT :LPRINT V$

220 LPRINT " INITIAL b EGUILIBRIUN I
272 F3=" HEHHE B0 BLOERERRE RO

224 LPRINT Vs

226 FOR 1=1 70§

228 LPRINT N$(I);

230 LPRINT USING Fe;N@(T);NG{I)}/NOLIQO NW{T},NW{T)/NWL100
232 NEXT I

234 LPRINT V8 LPRINT

214 5T0°P
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938 REM
02 NW(1)=NB(1)-X{1) :NW(2)=NB(2)-X{1)-X(2)

94
706
988
918
912
914

6(X)

SNW(Z)=NB{3)4+X(1)-X(2)

NW4)=NB(4)+X{2) NW(S)=NB(D)+3RX{1)+X({2) :NU=NB+2§1{])

FOR 1=t T0 5
ER=ER-{NH{IH){=0)
NEXT I

IF ER{:® THEN

997
il

G{1}=LOGCNM(IYINB{D) 3/ (NW{1)INW(Z)INWSZ) ) -WE4X{1)
516 5)

G2V =LOGINH{ATENR{S)/ (NR(Z)INW(2) )} -R24X(2)

918 LPRINT USING"IT=#8% x(1)=8.43888° «(2)=H, 808887 00T, 0{1),X(2);
520 LPRINT USING"g{1}=4. 4888070 g(2) =8, $0a88°422"16(1),6(2)
922 RETURN

Starting at line 200 you find the user subroutine. In this routine the mole
-eay NW(3)
variable MW stores the total mole number. At the current value X(1) and X(2)
If any of them is
If the mole

numbers occupy the array elements NW(1), NW(2), and the scalar
of the reaction extents we first calculate the mole numbers.
is set to a nonzero value.
(2.31)
array elements G(1) and G(2). The initial estimates are X(1) =1 and
X(2) = 0.1 , the first corrections are D(1) = D(2) = 0.81 . The following
output shows some of the iterations.

negative or zero, the error flag ER

numbers are feasible, the values computed according to will occupy the

WEGSTEIN METHOD

IT= B %(1)=0.10000E+21 «(2)=0,10000E+0@ g{1}=-,37237E+81 g(2)=-,13773E+01

IT= 1 x(1)=0.1010BE+B] x(2)=0.11080E+0@ g(1)=-.34AR3E+] g(2)=-.144B4E+B]

IT= 2 %{1)=0.1884BE+@1 x(2)=0.24129E+8@ 9(1)=0,21785E+B1 g{2)=0.24207E+88

1T= B x(1}=8.18570E+B1 x{2)=0.24259E+88 g{1)=0,1B573E+21 g{2)=0.24274E+00

IT= 9 x{1)=0.18369E+81 x{2)}=0.24258E+00 g(1)=0.189A9E+81 (2)=0,24261E+00

1T= 18 #(1)=0.18569E+81 x(2)=0,24230E+00 g{1)=0,18569E+01 g(2)=0,24239E+00

IT= 11 #{1)=0,18549E+081 x(2)=0.24258E+0@ g(1)=@.18569E+81 g(2)=0,24258E+00
INITIAL 1 EQUILIBRIUM 1

methan ..,..... 2.000 40.080 0.143861  1.642

water sovaianis 3.008 0.0 B.900486 10.334

carbon monoxid 0,000 9.002 1.614364 1B.526

carbon dioxid . 0,000 0.808 B.24257% 2,784

hydrogen ...... p.0ee 9.000 5.813392 44,714

2.3.2 Newton-Raphson method in multidimensions

approximation of the function f around the current estimate

As in one dimension, the Newton-Raphson method is based on local linear
K1) | The

approximating linear function is given by
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y = f(x(k“l)) + J(k-l)[x(k) - x(k—l)] ’ (2_32)

where

ratkby . = afi(x(k—n,,axj

are the elements of the nxn Jacobian matrix of f at x(k71), Setting y=@
in (2.32) we obtain a set of linear equations for the correction

d(k) = (k) _ x(k=1) | The golution of this matrix equation is

(K = kol = gkl y=dg(y k=l (2.33)

Though (2.33) is the well known form of the Newton—Raphson correction formula,
it is more efficient to solve the matrix equation for o'k} by LU
decomposition and backward substitution.

As for a single equation, the convergence is of order 2, and hence the
method is expected to perform very well if the elements of the Jacobian matrix
are continuous functions in a neighborhood of the root and the initial guess is
sufficiently good. The computational costs are, however, high, since we perform
N equivalent function evaluations for constructing the Jacobian matrix in each
iteration. The solution of the matrix equation is also a nontrivial task. In
addition, a singular or nearly singular Jacobian matrix (2.32) gives

meaningless corrections.

Program module M31

3188 REN seonssst st s aa e s st e s s e e nt s eeny
3182 REM 8 SOLUTION OF SIMULTANEQUS EBUATIONS F(X)=@ &
3184 REM 8 NEWTON-RAPHSON METHOD t
3106 REM $RRESERERRRBRRRNRRRBEROQRasIRIILIIRIIILILLLLILIIIILINSE
3188 REM INPUT:

3118 REM N PROBLEM SIZE

3112 REN X(N)  GTARTING POINT

3114 REM El THRESHOLD ON FUNCTION NORM

3116 REM E2 THRESHOLD ON STEP LENGTH

3118 REM M MAXIMUM NUMBER OF ITERATIONS

3120 REM OUTPUT:

3122 REM ER STATUS FLAG

3124 REM B SUCCESSFUL SOLUTION

3126 REM 1 UNADMISSIBLE STARTING POINT
3128 REM 2 SINGULAR JACORI MATRIX

31308 REM 3 NEITHER THRESHOLD ATTAINED

3132 REN X{N)  ESTIMATE OF THE SOLUTION

3134 REM F(N}  FUNCTION VALUES AT THE ESTIMATE

3136 REM  A{N,N)  INVERSE OF THE JACOBI MATRIX AT THE ESTIMATE

3138 REM AUXILIARY VECTOR:

3149 REM R{N)

3142 REM USER SUPPLIED SUBROUTINES:

3144 REM  FROM LINE 9@, X(.) --> F{.) { FUNCTION EVALUATION }

1145 HEM  FROM LINE B@@, X{.) --> A{.,.) { JACOBI MATRIX EVALUATION )
3148 REM MODULES CALLED: M14,M15
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3150 ER=2 :60SUB 9@ :If ERC:D THEN ER=1 :6070 3182

3152 FOR 17=1 T0 IM

3154 SF=R :FOR I=1 TO M sR{TI=XCTY sGP=SF+F{1IAF(T) NEXT 1
3196 IF SOR{SF)<=EL THEN 3182

3198 REM --------- LU DECOMPOSITION OF THE JACDBIAN MATRIX
3168 60SUB 88@ :GOSUB 1488 :1F ER=1 THEN ER=2 :60TD 3182
3162 REM --------- BACKSUBSTITUTION

3164 FOR 1=t TO N: X{I)=-F{I) :NEXT ] :605UB 15@@

31 8¥=B :FOR I=1 TO N :SX=SX+X{1IEXCT) «X{D)=R{I}+X{]) <NEXT I
3168 REM --------- CHECK NEW POINT

3178 ER=R :G0SUE 908 :IF ER=8 THEN 3174

T2 FOR 1=1 TO K oX{1)=.956%(1}+ B54R¢1) SHEXT |

1174 SX=51t,9823 :60T0 3179

3176 IF SAR(5X){=E2 THEN 3182

178 REXT IT

3189 ER=3

3182 RETURM

T108 REN SLELERNIRXTEIRRRT iR REX R KR e R R R aastIRIILLY

Two subrautines should be supplied by the user of the module. The subroutine
starting at line 900 computes the left hand sides of the equations f (x) = 0@ ,
and stores them in array F. The subroutine starting at line 800 evaluates the
elements of the Jacobian matrix and puts them into the array A. The
subroutine starting at line 9@@ should return the error flag value ER # @ if
the current estimate stored in array X is unfeasible. The matrix eguation is

solved by calling the modules M14 and M13, so that do not forget to merge these

modules when using module M31. We terminate the procedure if ”f(x(k))” <El

or otk <E2 .

Example 2.3.2 Equilibrium of chemical reactions by Newton-Raphson method

The problem is the one stated in the previous example. The equations are
obtained rearranging {2.29). Since the Jacobian is always calculated after
function evaluation, the subroutine starting at line 800 makes use of the
computed mole numbers. We show the main program and the iterations, whereas
the final results are the same as in the previous example and hence omitted

from the output.

180 REM
182 REM EX. 2.3.2 REACTION EQUILIBRIUM BY NEWTON-RAPHSON METHOD
104 REM MERGE M14,Mi%, M3t

184 REM -------m-- DATA

108 DR NB{S) NHIS) NE(T)

118 REM {NATURAL LOG K YALUES)

112 W1=3.4789 :W2=-.D304

114 REM {INITIAL MOLE NUMBERS)

116 MR{1)=2 tNB{2)=3 :NB=3




{18 REM (NAMES)

120 ¥$(1)="methan viuvuu !
122 N&(Z)="vater ...vuuuis "
124 N${3}="carhcn mo
125 N¢{4i="carbon dicxid ."

126 N§{5)="hydroger ...... !

200 REM -------~-~ PROELEM GIZE wHE CONTROL FARAMETERS
287 N=7 1IM=30 :E1=1£-058 :EI-,R@gpfl

204 DI X(N},F{N),A(NN)

20b REY - STARTING FTI
08 ¥{1=t (2=

;1@ V$=STRINGS{53,"-")

202 LPRINT "NEWTON-RAFHSON METHOD® :LPRINT

14 G0SBE Zloo

216 LFRINT :LPRINT V$

240 LPRINT " TNITIR A EGUILIBRIUM i

220 F&=" BRBEE BN oMM BB

222 LPRINT V¢

JFOR 1= TO

226 LFRINT N8(l):

228 LFRINT USING FE;NR{I1)jMR{TE/NECLRO,NU(T) NN{T1)}/NWS100

230 NEXT I

232 LFRINT V$ :LPRINT

234 ST0F

BBQ KEW ---------- JACORI MATRIY

302 ALL LT=L/NN{T/NBES H LWL+ 1MW (2) -4/ N8

B4 A(..L)'-IJNH( 3N SreLSNNE 2T

804 A{2,1)=T/NH{S)-L/NW{T)HL (2}

BOE A{2,2)=1/NH{4}+1/NN(T)+1/NRTILEI/NN(D)

318 RETURN

DD REX ---mmmmmee Fix)

902 NW{L)=NBLE)-X(L) (NW{Z)=NBIZI-RE1)-X(2)  sNB(I)=NB(3)+X(1)-X(2)

904 NN(4)=NB{A)HE(2) (NWIS)=HR(5)478K01040(2) sNW=NB+28X (L)

O3h FOR Th=1 70 §

908 ER=ER-{NW({IW){=B}

P12 NEXT W

12 IF ER@ THEN 922

F14 F{1)=LOGINW{Z)ENK(S) 3/ (NMLE TSR 2 8NWA2) ) -}

16 F{2)=LOGINW{A)ENN{S]/NRITTERN (2] 3 )-W2

Q1B LFRINT USING"IT=#4¥ «{1)=%. 438085 2 (2)=4, 80088 07,010, X(2)
F20 LPRINT USING™f{1}=#, #apan"" H{21=R 8000004 1P (1),F(2)

922 RETURH

33

NEWTCN-RAPHSON METHOD

DT= 0 x{1)=0.10008E+81 «(2)=R, I09PQE+BO f(1)=-.47237E+B1 f(2)=-.16773E+D}
IT= 1 afl}=@.19420E+@1 =(2}=8,21Q€7E+08 f(1)=C.11097E+01 f(2)=-.1162BE+0D
iT= 2 x{1}=0.18854E+81 «{Z]=8.25661E+08 f(11=0.29574E+80 f{2)=-.39448E-22
IT= I x{1j=0.18393E+@1 5(2)=0,24221&+B8 f(1)=0.22473E-01 £(2)=0.12591F-83
IT= 4 #{1)=0.163700+Q1 «(T}-0.24257E+DQ f{1)=8.13113E-83 £(2)=0.18273€-@5
IT= 5 x{1)=8.18560E+01 #{2}=0.24250E+00 f{1)=-,23842E-8b f(2)=-.1B626E-D7

2.3.3 Broyden_method

The Broyden method is one of the simplest quasi~Newtorn method. The aim of
guasi Newton methods is to achieve convergence properties comparable to those

107
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of the Newton—Raphson method, but without the use of the Jacobian matrix, and
with no need for solving a matrix equation in each iteration. All guasi-—Newton

methods are based on local linear approximation

aF() = glk*1) py (k) (2.34)

where  ax(K) = x(k) _ x(k_l), oK) = £(x(K)y - g(xlk=1)y  gng BK*D) can be
regarded as the approximation of the Jacobian matrix. Similarly to the
correction formula (2.33) of the Newton-Raphson method we can derive the

correction

ax(K¥L) o W (k¥1) (k) o - kL) g (k) ) (2.35)

where HIKTL) = [B“‘"’l)]_l. In one dimension the scalar B(K*1)  ig the slope
of the secant and knowing two previous points we can calculate it from (2.34).
In multidimensions, however, Bk*1) g an nXn  matrix, whereas we have only
n equations in (2.34). To fill the gap we need assumptions, and different
assumptions result in different guasi—Newton methods, see, e.g. (ref. 135). In
the so called rank 1 methods B(k*1)  ig restricted to the form

pk*1) = (k) 4 (k) (k)9T, (2.36)

where ulk) and %) are n-vectors. The matrix modifying the current estimate
of the Jacobian is therefore obtained from a column vector multiplied by a row
vector. The rank of such matrices does not exceed one which gives the name of
the methods.

In the method of Broyden (ref. 16) v(k) is selected to be equal to Ax(k)
and u'X) is then obtained from the n equations (2.34). The geometric idea
behind selecting this vk} s to leave B(K*L) unchanged along directions
with no new information available in the k-th iteration. Indeed, for any
vector z orthogonal to Ax(k) (i.e., with Ax“‘)zT =0 ) we get
plk+1); = glk); s, and hence Blk+1) behaves similarly to (k) along these
vectors.

Using the estimate ptk+1) updated in each iteration we do not need to
evaluate the Jacobian matrix. The second improvement is avoiding the inversion
of Blk*1) through the use of the Hausholder formula. According to this
latter, the inverse of B(k+1) of the form (2.36) is given by

rplk+1)9=1 = gtk -1 _ gty L Trpk) =1, 05 + VTIBK) 17y (2.37)

where we omitted the superscript k for the vectors u and v. Therefore we
can derive Hik+D) = [B(k"'l)]_'1 directly from the previous estimate of the
inverse H{K) = [B(k)]_1 and the vectors u and v. In the Broyden method the

particular selection of these vectors results in the updating formula
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HEKAL) = k) O ap(k) - (k) 3pae (k)3 THOO / [ax (k) TR A (2,38)

The (k+1)-th iteration of the Broyden method consists of updating the inverse
according to (2.38) and then performing a correction by (2.33).

The convergence properties are similar to those of the Newton—Raphson
method, usually with more iterations but less equivalent function evaluations.
In some cases, however, the correction vector ax (k) gets into a subspace
and remains there in all subsequent iterations. Then the method is unable to
explore the whole space of the variables. This problem can be resolved by
restarting the procedure at the point where it claims to have found a root
(i.e., reinitialize H{1) to the identity matrix).

In the following program module based on (ref. 17) we need only an initial
guess x(o), whereas H(1) = I, the identity matrix. At the beginning, however,
we perform n steps to update only H(l), while the estimate of the solution
is left unchanged. The Broyden iteration, involving both (2.38) and (2.35)

starts only after this initial updating cycle. The procedure is terminated if

af ] <E1 or laxt) < E2 .

Program module M32

JZ00 REM SURLESRERRRIannan s s s aanaassagasaeyy
3207 REM & SOLUTION OF SIMULTANEOUS EQUATIONS F(X)}=@ &
1204 REM BROYDEN METHOD 1
3200 REM SRRRRRRRRRRRLLRIRTRRRRLLLLLLLRRLILRRRLIILILLLLILIIL
3288 REN INPUT:

3210 REM N PROBLEN SIIE

3212 REM ¥{N}  STARTING FOINT

3214 REN El THRESHOLD ON FUNCTION NORM

3216 REM £z THRESHOLD ON STEP LENGTH

3219 REM I MAXIMUM NUMBER OF ITERATIONS

3220 REM DUTPUT:

3222 REN ER STATUS FLAG

3224 REX @ SUCCESSFUL SOLUTION

3226 REM t UNADMISSIELE STARTING POINT

1228 REM 2 MNEITHER THRESHOLD ATTAINED

3230 REM 1N} ESTIMATE OF THE SOLUTION

3232 REN F(N)  FUNCTION VALUES AT THE FINAL ESTIMATE

3234 REM  HIN,N]  ESTIMATE OF THE INVERSE OF THE JACOBI MATRIX
3236 REM USER-SUPPLIED SUBROUTINE:

3238 REM  FROM LINE 90@;  X{.) --» F{.} { FUNCTION EVALUATION )
3240 REM AUXILIARY ARRAY: R{3,N)

3242 REM ------ome- STARTING POINT

3244 ER=0 :GOSUB 900 :IF ER(>B THEN ER=1 :60TO 3334

3246 REM ---------- UNIT MATRIX INTO H

3749 FOR 1=1 TO N
3250 Ri1,1)=0

3252 FOR J=1 TO N :H(1,d)=-{I=J} sNEXT J
3254 NEXT 1
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3256 REN ---nmmmeem N STEFS T0 INITIALLZE H

32568 FOR k=1 TO N :R{1,K)=18R4E2 :50SUB 3292 :R(1,K)=0 :NEXT K
3240 REN ------m--- TTERATION

2262 FOR 1T=4 T

3264 FOR =4 T
15 SA=D
1268 FOR J=1 TO N :5A=SA-H{I,1)RF(J) tNEXT J

3200 (1,118

1272 NENT 1

3274 G0SUB 3292

37h  SA=D :5E<0

378 FOR =1 DN

1280 SA=SASF[T)EF(T) :SB=3ReR{1,1}IR(L,1)

3282 MEXT I

3284 REH -----m--- CONVERGENCE

3285 IF SER(SAIC=EL OR SOR(SB)(=EZ THEN ER=D :60TD 333

3785 NEXT 1T

3298 ER=2 :60TO 3334

3297 REW ==mmmmmmm STEP OF THE RROVDEN METHOD

3294 FOR T=1 TO N sX{D)=X{IMRIL, 1) sR(3,1)=F(I) :NEXT 1
329 ER=D :GOSUR 900 :IF ER=B THEN 3302

3298 FOR I=1 TO N t1(I)=X(1)-.B58R{1,1) sR(1,1)=.958RIL, 1) «NEXT I
3300 5OTD 329

3382 FOR I=1 T0 N :R(2,T)=F(1)-R(3,1) sNEXT 1

3304 8A=0

13 FOK T=1 TO N

3308 5p=0

33D FOR =1 TO N :SB=SBH(1,)0R (2,3} iNEXT |

32 R(3,1)=8B-R(L,1) 18A=5A+SHIR(L, )

134 NEAT I

316 IF SA<B THEN 3330

3B FOR J=1 TON

320 560

3122 FOR I=1 TO N :3B=SB4R(1,1)4H(1,0) :NEXT I

3324 5B=5B/SA

3326 FOR 1= TO N tR(1,0)=H(1,])-SRIR(3, 1) <NEXT 1

1328 NEXT J

3330 RETURN

3332 REN ---------- END OF STEP

3334 RETURN

3336 REK SEEERSREEIREEREEURREIEEERsaentsgarsttsnsasstasesssy

We need only a single user subroutine starting at line 908, which is completely

analogous to the corresponding one required by the Newton-Raphson method.
Example 2,3.3 Equilibrium of reactions by Broyden method

In order to compute the reaction equilibrium studied in the previous
examples we slightly change the main program of Example 2.3.2. Lines 802-810
are omitted and the following lines are replaced:

184 REM MERGE M32
212 LPRINT "BROYDEN METHOD® :LPRINT
214 6OSUB 3208
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The part of the output that shows the iterations is as follows.

BROYDEN METHOD

IT= B x{1)=0.10000E+01 x(2)=0.1000E+00 f(1)=-.47237E+B1 f(2)=-.16773E+01
IT= 9 x(1)=Q.10001E+01 x(2)=0.10000E+00 (1)=-.47232E+81 f(2)=-.16772E+01
IT= 9 x(1)=0.10001E+01 x(2)=0.10010E+00 {1)=-,47232E+01 ({2)=-,16760E+01
IT= 1 x(1)=0.19413E+01 x(2)=0.21025E+00 {1)=0.10944E+D1 f(2)=-,11599E+00
17= 2 x(1)=0.17614E+01 2{2)=0.2238BE+09 f(1)=-.79734E+00 1(2}=-.204B4E+20
IT= 3 x(1)=0,18370E+01 x{2)=0.2322BE+00 f(1)=-.19684E+00 f{2)=-,B82538E-01
IT= 4 x(1)=0.18618E+D1 x(2)=0,25865E+80 f(1)=0.4446BE-01 ({2)=-.18B55E-01
[T= 5 x{1)=0,18572E+01 x{2)=0.24012E+08 f(1)=-.38958E-03 f(2)=-.14622E-01
IT= 6 «(1)=0,18571E+01 #(2)=0,24149E+80 f(1)=0.96369E-83 (2)=-.63162E-02
IT= 7 x(1)=0.18569E+01 2(2)=0.24262E+88 f(1)=-.20742E-04 f(2)=0.2B936E-03
1T= 8 x(1)=0,1B569E+01 x(2)=0.24258E+00 f(1)=-,95367E-86 (2)=0.341B0E-05
IT= 9 ¥{1)=0.18569E+01 x(2)=0.24258E+00 f(1)=-.23B42E-06 f{2)=-.83819E-87

Table 2.8 shows the computational efforts required to solve the test problem
on reaction equilibrium by five different methods. For comparison successive
approximation and damped successive approximation with a damping factor

c = 0.75 are also included.

Table 2.8
Computational effort in different methods

Method Number of iterations Number of equivalent
function evaluations

Successive approximation 24 24

Damped iteration (c = 0.79) Q9 Q

Wegstein 11 11

Newton-Raphson S 15

Broyden Q 11

Exercises

a0 Derive the formulas (2.23) and (2.24) of the Wegstein iteration from the

geometrical idea.

0O Consider the nx matrices A and B=A +

uvT, where u and v are

n-vectors and assume that A and B are nonsingular.. According to the

Hausholder formula, exploited in Section 2.3.3, the inverse of B

by

El=n!-alnal/1+vialy .

To prove this relationship, show that ple=1.

is given

0 Solve the system Ax — b =@ with a square, nonsingular A by the Broyden

method and test whether or not the final matrix
1
H

= A

H will satisfy the equality
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2.4 MINIMIZATION IN MULTIDIMENSIONS

In this section we deal with the problem of finding the minimum of a
function of more than one variables.

There are three major families of algorithms for minimization:

i) direct search methods, involving the evaluation of the function f(x) only;

ii) gradient methods, based on the use of the gradient vector g of
the elements g; = Bf(x)/dx; , in addition to the values of f(x);

iii) Newton type methods that require also the Hessian matrix H of the
elements [H]ij = Bzf/axiaxj , 1n addition to the gradient and function
values.

The direct methods are not very efficient in terms of the number of function
evaluations, but are robust, decreasing the objective function up to some
extent in most cases. Requiring only one user supplied subroutine they are easy
to use.

The most traditional and simplest gradient method is the steepest descent.
Its idea is moving the current estimate xK) to the next one x(k*1) by
minimizing the objective function along the line from x(K) in the direction of
the local megative gradient [—g(x(k))] » Thus in each iteration we solve the

one dimensional minimization problem

k) — o (k)yy —=> mi 2.39
[x glx )] l;\ia, ( )

called directional search. The entire step is then repeated from the new
estimate as many times as needed. Though the method will decrease the function
value in each iteration, it will perform very small steps in most cases,
particularly when going down a long, narrow valley. The convergence is of order
1, and the numerical efficiency is poor because of the effort required in the
directional search. Though there are considerably improved versions, e.g., the
conjugate gradient methods, we will not consider them here.

The Newton method will set the next estimate xk*1) tg the minimum point

x(K) = y(k=1) _ [H(x(k—l))]—lg(x(k—l)) (2.40)
of the local quadratic approximation of the function. Comparing (2.4@) and
(2.33) shows that we use essentially the same correction formula for function
minimization and for solving a set of nonlinear equations. In (2.40), however,
the matrix H is always symmetric, and at convergence (but not necessarily in
intermediate iterations) it is positive definite. The properties of the method
are also retained. The convergence is of order 2, and hence is rapid near the
minimum point, but may be poor far from the solution. In addition, the number
of equivalent function evaluations is high because of the need for evaluating
H . The Newton method finds, however, the minimum of a positive definite
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quadratic function in a single step, and we will exploit this advantageous
property in parameter estimation.

The quasi—Newton methods estimate the matrix C = Wi by updating a
previous guess of C in each iteration using only the gradient vector. These
methods are very close to the guasi—Newton methods of solving a system of
nonlinear equations. The order of convergence is between 1 and 2, and the
minimum of a positive definite quadratic function is found in a finite number
of steps.

The algorithms using first or second derivatives are somewhat more powerful
than those using only function values, but not always enough so as to
compensate for the additional function evaluations. Nevertheless, if you can
compute the the derivatives select a method that will use them. Therefore, the
Newton method is the best choice if you are able to differentiate the fumction
twice and and have a good initial guess. Replacing the derivative with finite
differences is more controversial. If only the gradiemt vector is available in
analytic form, the variable metric method due to Davidon, Fletcher and Powell
usually dominates the finite difference version of the Newton method. If you do
not have analytic derivatives at all, it is usually better to consider a direct
search. From this latter family we describe here the simplex method due to
Nelder and Mead.

2.4.1 Simplex method of Nelder and Mead

A simplex is the closed geometric figure consisting, in n dimensions, of
n+l vertices and all their intercomnecting straight line segments. In two
dimensions a simplex is a triangle, not necessarily a regular one. The search
procedure due to Nelder and Mead (ref.18) is based on selecting a starting
simplex represented by n+l vertices x(l’, x(z), eey x(M*1)  and then
successively improving it.

To describe the method we introduce the following concepts.

o worst point x(M) ¢ f(x{1)) ¢ #(x(MX)) for i=1,2, ..., nu1
o best point x(MN) ;o feulddy 5 f(xMiN)y for i =1, 2, ..., N+l
1 n+1
o centroid X = - [[z x(i)] - x(max)]
n i=1

Notice that the centroid excludes the worst point. In one step of the search

the following candidates are investigated in order to replace the worst point:
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O reflection point x¥ = 2x - x(max)
O expansion point o= s (X - x(max))
O contraction point x™* = (x(Ma%) 4 5y/2 |

If none of these candidates is better than the worst point, the size of the
simplex is reduced leaving only the best point in place:

2 reduction operation: x1) «— (x(i) + x(min))/2 for all i.
Fig. 2.12 shows the initial simplex and the candidate points in two

dimensions. The method is summarized in the logic diagram based on (ref. 19)
and shown in Fig. 2.13.

2

(max)
X

X4

Fig. 2.12. A simplex in two dimensions

The iteration is stopped if the norm of the correction in the centroid and
the distance between the best point and the centroid are both less than a small
threshold EP .

The algorithm has great versatility to adopt the simplex to the local
landscape of the function surface. It will elongate and take a large step if

can do so, it will change direction on encountering a valley at an angle and it
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will contract in the neighbourhood of a minimum. All these steps provide us
useful information on the form of the surface, though we usually have to pay
the price by evaluating the function at many points. A considerable advantage
of the method is that its code is very concise, as shown in the following
module.

Program module M34

KL R R TR 23 e e ttRatitiissiesssiititiy]
3482 REM & MINIMIZATION OF A FUNCTION OF SEVERAL VARIABLES
3484 REM ¢ NELDER-MEAD METHOD ]
3486 REM SEEEEERERERERBRERRELRRREERRRRTRELTRENNERNLLLSLLLILS
3488 REM INPUT:

3410 REM N NUMBER OF VARIABLES

3412 REM  S(N+1,N) INITIAL SIMPLEX COORDINATES (ROW BY RO)
3414 REM EP THRESHOLD ON NORM OF THE CENTROID CORRECTION
3416 REM L MAXIMUM NUMBER OF ITERATIONS

3418 REM OUTPUT:

3428 REM ER STATUS FLAG

3422 REM B SUCCESSFUL SEARCH
3424 REM 1 UNADMISSIBLE POINT IN INITIAL SIMPLEX
3426 REM 2 THRESHOLD NOT ATTAINED

3428 REW  X(N)  ESTIMATE OF THE MININUM POINT

A3 REN  F FUNCTION YALUE AT THE FINAL ESTINATE
3432 REM USER-SUPPLIED SUBROUTINES:

434 REW  FROM LINE 988; X(.) -=> F  ( FUNCTION EVALUATION )
3436 REW AUXILIARY ARRAY:

3B REN  R3NH)

3440 REN ---nmmemnn INITIAL SINPLEX EVALUATION

3442 ER=0

3444 FOR IN=L TO Nel

3446 FOR I=1 TO N 1X{I)=S(IN,T) :NEXT I

3448 GOSUB 908 :IF ERC)@ THEN ER=1 :G0TO 3362

3450 RI3,IN)=F

3452 NEXT JN

3454 REN ----nnmmnn ITERATION (BEST:KN, WORSTINI, NEXT WORST:N2)
345 FOR IT=1 10 IN

3458 F=R(3,N+1) sFK=F sKN=N¢1 :FisF :N1=Nel tF2=-1E43
3460 FOR J=1 TO N

W2 F=R(3,))

3464 IF FFK THEN FK<F :KN=J  :60TD 3470

3466 IF F)FZ AND FC=FL THEN F2=F :N2=J :50T0 3470
W68 IF FOF2 THEN F2sFL :N2=Nit Fi=F :N1=)

3478 NEXT J

472 REM -----m-e- CENTROID

3474 FOR 1= TO N

W R(2,D=R(L,1) SR(L,1)=0

378 FOR J=1 TO Nel

3480 IF JONL THEN R{L,1)=R(1,1)+5(J,1}/N

3482 NEXT

WA ONEXT 1

3485 REM --rmemees REFLECTION

3488 FOR T=1 TO N :X{D)=20R(L,1)-6(NL, 1} :NEXT 1

3499 ER=R :GOSUB 988 :1F ER(® THEN 3528

3492 IF FOFK THEN 3508



117

94 REN ~--mmoeee SUCCESSFUL STEP
M9 FOR 1=1 TO N SINLT)=K{D): NEXT 1 :R(3,NL)=F sFK=F :KNeNL
498 REN ~--omoee —mmeeee- EXPANSION

3508 FOR I=1 TO N sX{I)=28X(1)-R(1,1) :NEXT I

3382 ER= :G0SUB 900 :IF ERC:B THEN 3528

3584 IF F{=FK THEN FOR I=1 TO N :S{NL,1)=X(1}) :NEXT I :R{3,N1}=F
3306 GOTO 3948

3508 REN --------- NEUTRAL

3510 IF F>=F2 THEN 3514

3912 FOR I=1 TO N: S{N{,1)=X(I}: NEXT I :R{3,N1)=F :G60TD 3348

514 REM ~---me-m- UNSUCEESSFUL STEP
3546 IF FCFL THEN FOR T=1 70 N: S(NL,1)=X{3)s MEXT 1 sR{3,NU)=F sFisF
I51B REN —-----= mmmmnneees CONTRACTION

1528 FOR I=! TO N :X{I)=(R{L,1}48{NL,1}}/2 sNEXT ]

3522 ER=@ :GOSUB 999 :IF ERC>@ THEN 3528

3524 IF F{FK THEN KN=N{ :FK=F

3926 IF FCFL THEN FOR I=1 TO N: S(N{,I)=X{I): NEXT I :R{3,Ni}=F :6070 3548
3328 REM ==emwommm moommemeee REDUCING SIMPLEX SIZE

3538 FOR J=1 T0 N+

3532 IF JOKN THEN FOR I=1 T0 N :5{3,1)=(5(d,1}45¢KN,1})/2 :NEXT 1
3538 NEXT J

3336 FOR J=1 TO N+l

31338 IF J=KN THEN 3544

3548 FOR I=f TO N :X{I)=S(J,I) :NEXT I

3342 GOSUB 9@@ :IF ER{>@ THEN ER=2 :G0T0 3562

3544 R(3,J)=F :IF F<FK THEN FK=F :KN=J)

3546 NEXT J

3348 SX=0 :5K=@ :F=FK

3590 FOR I=1 TON

3532 D=R(1,1}-R{2,1) :SX=GX4D3D :X{I)=S{KN,I) eD=X(I)-R{i,I} :5K=5K+D$D
3954 NEXT I

3956 IF SBR{SX)¢=EP AND SGR(SK}<EP THEN 3342

3998 NEXT IT

3560 ER=2

3562 RETURN

3364 REN SESERERSIseasaaanssaagasssaasssxssssssanssaasnstssy

The function is calculated in a user routine starting at line 90@. On the
input you should define the N+1 vertices of the simplex. If you do not have a
better idea, these can be generated by perturbing the elements of an initial

guess aone—by-one.

Example 2.4.1 Minimization of the Rosenbrock function by the simplex method of
Nelder and Mead

The function

f(x) = 108(xy ~ x2)2 + (1 - x)? , (2.41)

proposed by Rosenbrock (ref. 20), is a simple but famous test problem in
nonlinear minimization, since it is far from easy to find its minimum at
x = (1,1)7 starting from the initial guess x(®) = (-1.2,1)T . In the

following main program we regard this last point as aone of the vertices, and
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generate the other two, perturbing the coordinates of x(0)

188 REM
192 REM EX. 2.4.1 ROSENBROCK PROBLEX BY NELDER-MEAD METHOD
184 REM MERGE M34

1L — PROBLEM SIZE

202 N=2

204 DIM X{N),5(N+1,N) R(3,N41)

20h REW -------~-- CONTROL PARAMETERS
208 EP=.00091 :1M=100

U — INITIAL SIMPLEX

A2 Y(1)=-1.2 1}{2)=.1

214 FOR J=1 TO N+l

216 FOR 1=1 T0 N

18 S(J,1)=X(1)-.008{1=])

220 NEXT

222 NEXT

224 Y$=STRINGS (50,"-*)

225 LPRINT "SIMPLEX METHOD OF NELDER AND MEAD* sLPRINT

228 LPRINT Vs

238 50SUB 3400

232 LPRINT :LPRINT *MININUN®;

734 LPRINT TABLIB};*x{1}="X{1);TABI23); x(2)="; X{2); TAB(4D) ;"F=";F
236 LPRINT :LPRINT V$ :LPRINT

238 ST

900 REM -------~-- FUNCTION EVALUATION

902 F=1008(X{2)~X(1)"2)*2+{1-X(1))*2

904 LFRINT USING®IT=HE¥ x{1)=H, BEBEIEAAAS (2)=0, BB %501, 0(1),X(D);
905 LPRINT USING®F=d, H4H~~*5F

908 RETURN

The shortened iteration history is as follows.

SINPLEX METHOD DF NELDER AND MEAD

IT= @ x(1}=-.119880E+81 x(2)=0.100080E+02 F=8,17B01E+83
IT= 0 x{1)=-.120000E+0{ x{2)=0.1100DBE+00 F=0.18173E+03
1T= 0 x{1)=-.120000E+0] x(2)=0.108B0OE+B0 F-0,1B440E+03
IT= 1 %{1}=-.119008E+0] x(2)=0.110R0BE+DB F=,17539E+03
1T= 1 x{1)=-,118300E+8] x(2}=0.113000E+d0 F=0,1789BE+03

17= 58 x{1)=B.975553E+08 x(2)=0.942494E+00 F=0.87133E-02
IT= 51 x{1}=0.101253E+d1 x(2)=0.101498E+81 F=0,1Q419€-01
IT= 51 x{1)=0.985804E+00 x(2)=0.943077E+B0 F=0.42642E-02

1T= 83 x(1)=0.999987E+00 x(2)=0.999977E+0 F=0.67269E-89
IT= 83 x(1)=0.999998E+00 x(2)=0.999995E+00 F=1,55511E-19
1T= 84 x{1)=0.1B0001E+01 x{2}=0.100002E+0]1 F=0,88448E-10
IT= B4 #{1}=0.100000E+01 x(2)=0.100001E+01 F=9.33879E-1B
IT= 85 x{1)=0.120008E+81 x(2)=0.1000BBE+AL F=9.53944E-10

MINIMUM z(1}= 1.000003 x(2}= 1.000007 F= 3.387868E-11

by @.01 in turm.
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2.4,2 Davidon-Fletcher—Powell method

The method (also called variable metric method, ref.21) is based on the

correction formula

x(KHL) o (k) (ke Dplktl) gy (kdy (2.42)

which differs from the Newton correcton (2.48) in the use of a current estimate
clk*1l) 5f the inverse Hesse matrix [H(x(k))]_1 . Furthermore, the step size
2k*1) e found by directional search, i.e., it is the solution of the

one—dimensional problem

fIx) — et Dgeutk)yy - min . (2.43)
220

where g(x(k)) is the gradient vector computed at xK) At start C'1) is a
symmetric, positive definite matrix. The usual choice is ctl) =1 , i.e., the
identity matrix. It is then updated according to
ax®paxtk) T etk agtkd jrelk) aglkd g7
ctk+) - plk) 4 - (2.44)
[Ax(k)]TAg(k) [Ag(k)]Tc(k)Ag(k)

where ax(K) = x(K) _ ((k=1) ong  ag(k) = glk) g(k—l). Comparing (2.44) to
the updating formula (2.38) of the Broyden method shows the similarity of the
underlying ideas. The rank of the correction matrix in (2.44) equals, however,
two, and hence this algorithm is a rank 2 method. Furthermore, starting with a
positive definite symmetric matrix ck) it remains symmetric and positive
definite in all iterations.

The following module strictly follows the algorithmic ideas of the FLEPOMIN
program (ref. 22), the original implementation of the Davidon—Fletcher—-Powell
algorithm.

By the simple initial guess cD) =1 , the first steps may be too large,
and hence it is advisable to scale the variables by transformations bringing
their value close to one. You will need two user subroutines for the module
M346. The first one starts at line 9@ and is the usual function evaluation. The
second one, starting at line 800, computes the gradient vector and stores its

elements in array G.
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Program_module M36

3588 REM SS3338888ssaasssasasrassasrantatasteessssssssssssy
3602 REM § MINIMIZATION OF A FUNCTION OF SEVERAL VARIABLES &
3684 REM & DAVIDON-FLETCHER-POWELL METHOD H
3686 REM SSEERRRRRREEBRLBLRELRRRRRLLBIRRERALLRARATIIIIIEILY
3688 REM INPUT:

3610 REM N NUMBER OF VARIABLES

3612 REM X(N)  STARTING POINT

3614 REM EP THRESHOLD ON STEP LENGTH

3616 REM M MAXIMUM NUMBER OF ITERATIONS

3618 REM OUTPUT:

36208 REM ER STATUS FLAG

3622 REM 8 SUCCESSFUL SEARCH

3624 REM 1 UNADMISSIBLE STARTING POINT

3626 REM 2 ESTIMATE C 15 NOT POSITIVE DEFINITE
3628 REM 3 UNIDIRECTIONAL SEARCH FAILED

3638 REM 4 THRESHOLD NOT ATTAINED

3632 REM XN} ESTIMATE OF THE MINIMUM POINT

M REW  F FUNCTION VALUE AT THE FINAL ESTIMATE
3636 RER G(N)  GRADIENT VECTOR AT THE FINAL ESTINATE
3638 REW  C(N,N)  ESTIMATE OF THE INVERSE HESSIAN MATRIX
3648 REM USER-SUPPLIED SUBROUTINES:

3442 REM FROM LINE 90@; X{.) --> F { FUNCTION EVALUATION )
3644 REM FROM LINE 80@; X{.) --> 6{.)} { GRADIENT VECTOR EVALUATION )
3646 REN AUXILIARY ARRAY:

3648 REM R(3,N)

3650 ER=P :GOSUB 92@ :IF ER<>@ THEN ER=1 :6070 3792

3652 GOSUB 828

3634 REM ---==w~-nm INITIALIZE C TO UNIT MATRIX

3656 FOR I=1 TO N

3658 FOR J={ TO N :C{I,d}=-(1=]) :NEXT J

J660 NEXT 1

TR I — START OF ITERATION

3664 §T=1

3866 FOR I17=1 T0 I

1660 G9=0 :6A<0

3670 FOR I=1 TON

3672 R(2,1)=X01) R3,1)=B{1) :R=B

3678 FOR d=1 T0 N sR=R-C{I,J)86(J) :NEXT J :R(1,1)=R

3676 GB=GB4B(I)HR :BA=GA+G(1)4G(1)

3678 NEXT 1

3680 FO=F :IF GA=8 THEN ER=8 :60T0 3792

T e — DIRECTIONAL SEARCH ALONG §

3684 FB=F

3686 IF GB>@ THEN ER=2 :60TD 3792

488 5P=5T

3699 REM EXTRAPOLATE

3492 FA=FB :GA=GB

3694 FOR I=1 TO N :X{I)=X(I)}+SPSR{1,I} sNEXT I

149 ER=0 :GOSUB 908 :IF ER=B THEN 372

498 FOR I=1 TO N sX{1)=X(1)-SPHR(L, 1) tR(1,1)=.956R(1,1) :NEXT I
3700 60T 3494

1782 GOSUB 8ee

3784 FB=F :GB=@

3786 FOR I=1 T0 N :6B<GB+6I1}8R{L,1) sNEXT I

3708 IF GB(D AND FB{FA THEN GP=435P :ST=445T :60T0 3484




3710
T2
T4
3716
3718

7n
72

1797
Wi

777
Y

72

3728
3730
732
734
M
3738
3740
3742
3784
1746

3
I
[l
5
F
§
!
5
I
F
F

EM INTERPOLATE
=34 (FA-FR}/5F+BA+GR

=5QR(242-GAIGE)

L=0F${GB+W-1}/ (BE-GA+24N)

OR 1=1 TO N :X{1)=X{1)-GLR(1,1) :NEXT I
05Uk 900 :GOSUE 88

F F(=FA11.00081 AND F¢=FBL1,B0001 THEN 3742
T=8T/4

F FEY=FA THEN 1732

OR I=1 TO N :X{1)=X{1)+5LeR{L,I) :NEXT I
=f8 :60T0 3742

6B=0

F
I
I
F
R

OR I=1 TO N :GB=BB+5(I)4R(1,1} :NEXT I

F IT(N THEN 3740

F GB¢@ AND 5T(.008@@ THEN ER=3: 5OTO 3792
B=F :5P=8P-5L :IF SP>@ THEN 3712

B --ooemeo- END OF UNIDIRECTIONAL SEARCH

5OSUB 3752

I

F IT>=N AND (SOR(SS)<EP OR SOR(SI)<EP) OR F>=FO THEN 3792

3748 NEXT IT

3758 ER=4 :607D 3792

3752 REN ---=------ UPDATE C
56=@ :55=0 :51=0

3754
3736
3738
1769
3762
3764
1766
1768
178
i
3774
77
3778
3780
1782
1784
3786
3788

F

N
B
F

N
I
F

N
R

OR I=L TON

R(2,1)=X(1)-R(2,1) tR(3,1)=6(1)-R(3,])
§6=56+R(2, 118R(3,1) :35=85+R(1,1)0R(1,1) +51=G1+R{2,114R(2, 1)
EXT I

He

OR I=1 TO N

5=0 :FOR J=1 TO N :5=5+C{I,J)8R(3,d) :NEXT J
R(1,1)=5 :GH=GH4SIR(3,1)

EXT 1

F 55=0 OR BH=@ THEN RETURN

ORI=1L TON

FOR J=L 10 1
C(1,3)=C11,)+R(2,1)4R(2,d)/56-R{ 1, 1)4R(L, 1) /BH
LI, 11=C{1,0)

NEXT )

BT |

ETURN

379 REN ---------- END OF UPDATING C
3792 RETURN
3794 REN SERSSSERRBiRpstaaassas s sas s isasissassasing

Example 2.4.2 Minimization of the Rosenbrock function by

Davidon—-Fletcher—Powell method
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The initial guess is the one used in the previous example. The main program

and the shartened output are as follows.

1e@
132
184
m
82

Kl

EY. 2.4.2 RDSENBROCK PROBLEM BY DAVIDON-FLETCHER-POMELL M.
MERGE H36

---------- PROBLEM SIZE

X{H)GON) TN, ND RN
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284 REM --------—- CONTROL PARAMETERS
ZBE EF=.09991 :IM=100
212 REM ------oee INITIAL POINT

A2 X{N=-1.2 1X{2)=.1

214 V$=CTRINGS(60,"-")

216 LPRINT *DAVIDON-FLETCHER-POWELL METHOD® :LPRINT

218 LPRINT V8

220 G0SUR 3408

222 LPRINT :LPRINT "MININUM';

224 LERINT TAB(10);"x{1)=";X(1);TAB(25};"x{2}="3X(2);TAB{40}; F=";F
226 LPRINT :LPRINT V$ :LPRINT

226 TF ER<OB THEN LPRINT "STATUS FLAG:":ER

238 ST0P

808 REN -------—-- GRADIENT EVALUATION

802 G(1)=-4DRK(X{2)-X{1)*2)8x(1}-28{1-X{1})

8B4 6(2)= 200%(X{2)-1(1)*2)

B8R4 RETURN

788 REW ---------- FUNCTION EVALUATION

902 F=1008(X(2)-X(1)"2)*2+(1-X[1))*2

904 LPRINT USING* IT=HE x(1)=h, HMN*AY (2=, 80804 1T, X1} XH2);
986 LPRINT USING"F=#.438887""";F

988 RETURN

DAVIDON-FLETCHER-POWELL METHOD

IT= 0 x(1)=-,12000E+21 x{2)=0,10000E+2@ F=0.1B440E+83

IT=
IT=

%(1)=0.1033BE+01 x(2)=0.564633E+0 F=D.25653E+02
x{1)=08,8982BE+00 x{2)=0.B0650E+88 F=D.1D364E-01

IT= 1 x{1)=0.64640E+83 x{2)=0.26810E+03 F=8,17436E+14
IT= 1 x{1}=0,21568E+83 x{2}=0.89821E+82 F=.2{525E+12
IT= 1 %(1)=0.72002E+02 x(2)=0.30393E+02 F=B.26562E+10
IT= 1 #(1)=0.24126E+02 »{2)=D.10581E+B2 F=B.32662E+08
IT= 1 x{1)=0,81463E+01 x(2)=0.39678E+BL F=0,38933E+06
IT= 1 x{1)=B.27649E+0] £(2)=0.174BBE+B] F=D.J4BE7E+D4
IT= 1 %(1)=0.8233BE+2D x{2)=0.93735E+E0 F=0.47394E+01
IT= 2 x(1)=0.86586E+00 x(2)=0.B4315E+00 F=0.13048E+21

2

2

IT= 12 %(1)=0.97897E+00 x(2)=0.96692E+00 F=0.77253E-02
IT= 12 x{1}=08.99973E+00 x{2}=0.99945E+20 F=B.75975E-07
IT= 13 %{1)=0.18139E+81 x(2)=0.10280E+01 F=0.19362E-03
IT= 13 x{1)=0.10008E+D! x(2)=0.10000E+01 F=@.28422E-19
IT= 14 2(1)=0,95970E+08 x(2)=08.99939E+00 F=0.11266E-05
1T= 14 x{1)=0.10000E+d! x{2)=0.10088E+81 F=0.B0800E+00

NINIMUN x{i)= 1 x(2)= 1 f= 8

The method needed 44 function evaluations, almost four times less than the
simplex method of Nelder and Mead.

We noticed that in one dimension it may be advantageous to seek the root of
the equation f'(x) = @ instead of the minimum of a differentiable function
f(x) . This trick rarely gives you any good in multidimensions. First, as we
emphasised, solving a system of nonlinear equations is more difficult than
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sliding downhill on a single surface in minimization, where you can always
measure your progress. Second, you may bring in several roots that are not
minimum points. These problems raise another question. If solving system of
equations is so hard, why not to replace it by minimization of the function

g = £1f in all cases? Indeed, the function g is positive semidefinite, and has
a global minimum of zero exactly at all solutions of the original set of
equations. Unfortunately, in multidimensions this trick does rarely work
either. You must be prepared to have several local minima of the function g,
and each local minimum is a trap for the minimization techniques. Therefore
equation solving and minimization are completely different problems in

mdaltidimensions, in spite of their algorithmic similarities.
Exercises
O Solve the problem in Example 2.3.1 by minimization.

D Find the minimum of the Rosenbrock function by solving the nonlinear
equations 3f(x)/ox = @ .

D Find the minimum of the quadratic function

f(x) = (1/2)(x - b)TA(x - b)

by the Davidon-Fletcher—Powell method selecting A to be an X symmetric,
diagonally dominant matrix with positive diagonal elements. Check if the
equality C = al holds at convergence.

2.5 APPLICATIONS AND FURTHER PROBLEMS

2.5.1 Analytic solution of the Michaelis—Menten kinetic eguation

The simplest mechanism of enzyme reactions is of the form

Ky k<
-—> -—>

E+S ES E+P, (2.45)
<— <—
Ko kg

where E, S, P and ES denote the enzyme, the substrate, the product and the

enzyme—substrate complex, respectively (ref. 23). The reaction rates are
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d[s]
ry = = == = ky[E)[S] - ko[ES]
dt
(2.46)
d[P]
ro = === = k3[ES] - k4[EILP],
dt

where ki, kp, kg and kg are the rate coefficients and [.] denotes
concentration of the corresponding species. As we will discuss in Section 5.4,
the quasi steady state approximation for species [ES] gives an excellent

approximation of the global reaction rate for most enzyme reactions:

Vg[81/Kg = VpIPI/K,
Py =y s , (2.47)
1 + [S1/Kg + [P1/Kp

where
Vg = kz[El,, Vp = kolE],, Kg = (kp + k3)/k1, Kp = (ko + kx)/ky
are called Michaelis-Menten parameters.

Introducing the reaction extent x = [S], - [S] = [P] , corresponding to the
initial condition [Pl = @ , equation (2.47) is of the form

dx A + Bx

— = e (2.48)
dt C + Dx

where

A= VS[S]D/KS, B = - (VS/KS + VP/KP), C=1+ [S]D/KS, D= 1/KP - /Kp .

The differential equation (2.48) is separable, and by integrating the rational

function on its right-band side the solution is given by
£= D s |58 g |2 EX (2.49)
= —x - - i . .
g2 og

We want to use (2.49) to calculate the concentration [P] at t = 1883 s in the
enzyme—catalysed hydrolysis of fumarate, with the initial enzyme concentration
(Elp = 5x187% mmol/m®> and substrate concentration [Sl, = 48 mmol/m>. The
Michaelis-Menten parameters for this reaction are Vg = @8.65 mmol mS 5—1,
Kg = 3.9 mmol = sy Vp = 0.4 mmol mSs1l and Kp = 18.3 mmol ms.

By (2.48) dx/dt =@ implies A + Bx = @ , and the equilibrium reaction
coordinate -A/B clearly is an upper bound on the solution. Use the methods of
Section 2.1 to verify the solution [P] = 32.268 mmol S,
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2.5.2 Solution equilibria

In textbooks of computational chemistry you will invariably find examples
calculating the pH = - lg {[H'1/(mol/1)} in weak acid - strong base or strong
acid - weak base solutions. Indeed, these examples are important in the study
of acids, bases and of complex formation, as well as for calculating titration
curves. Following (ref. 24) we consider here the agquous solution that contains
a weak tribasic acid HzA and its sodium salts NaHyA, NajHA and NazA  in known
initial concentrations. The dissociation reactions and equilibrium relations

are given as follows.

N [HYI[HAT)
Hy HY + HA™ Ky = ———— (2.50)
[H=A)
N HI[HA2T)
WA HY + HaZ™ Kp = —— 3 (2.51)
[HA7]
. [HI0AS]
HAZ™ M HAS™ Ky = ——— (2.52)
[HA27]
O HY 4O K, = [HYIIOHT . (2.53)
Further constraints are the mass balance equation for the total acid
concentration CA
Cp = [HgATl + [HAT] + [HAZT] + [AT] (2.54)
and the charge balance equation
[H') + [Na*] = [HpA™] + 2[HAZ7] + 3[AS7] + [OH] . (2.55)

From the initial conditions

Ca = [HAL, + INaHAT, + [NagHhl, + [Naghl,

and
[Na*] = [NaHAl, + 2[NajHAl, + 3[NazAl, ,

where the initial concentrations are denotedf by subscript o . To calculate the
hydrogen ion concentration we express [HzAl, [HA"] and [HA27] from the
equilibrium relations (2.5@), (2.51) and (2.52) using only [As—] and [H']
and substitute these expressions into (2.54). As a result we obtain the

expressions
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[HsAl = [H'1%Cy/D, [HAT1 = K,[H"1%C,/D,

(2.56)
[HAZT] = K Ko[H'ICA/D,  [HAST1 = K KK<Ca/D,
where

D = [H'1® + K [H"1? + KiKp[H'] + KiKoK.

Substituting (2.56) into the charge balance equation and using (2.53) to
eliminate [0OH™] we obtain the fith—order polynomial equation in [H']

[H'15 + a,[H" 1% + a [H'IS + ag[H'12 + a4[H*) + ag = @, (2.57)
where

ay; = Ky + [Na']

ap = Ky(Ky + [Na*] - Cp) =~ K

11

ag = Ky[Ko(Kz + [Na®] - 2Ch) - K)

ag = KyKo[Kg([Na*] - 3Ca) ~ KyJ
35 =K KKKy -

We want to calculate the equilibrium pH of the solution if its initial
composition is given by [HzPO4ly = 1 mol/1 and [NazP0,], = 1 mol/l . The ten
based logarithms of the dissociation constants are:

19K, /(mo1/1)] = =2.15,  1glKy/(mol/1)] = =7.21,  1g[K;/(mol/1)] = -12.36

and Ky = 16714 mo12 172,

Equation (2.57) has five, real or complex roots. From chemistry, however, we
know a good starting guess for the pH (it is slightly above 7). Using this
information we can easily find the solution applying any of the methods of
Section 2.1. For extreme initial concentrations it might be necessary to scale
the variable, e.g., by introducing x = 1B7[H+] . We note that there are
special methods for finding all roots of a polynomial equation, see e.g.,

(ref. 12), but then you should "polish" the selected real root for higher
accuracy, e.9., by Newton—Raphson iteration. With the a priori information

available in scientific applications, you rarely need such special methods.
Exercise

O It is interesting to try to solve the original system of equations (2.58 -
2.55) in six unknowns using one of the methods of Section 2.3. The
computational effort is certainly higher and you should select the starting

values of the variables very carefully.
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2.5.3 Ligquid-liquid eguilibrium calculation

The determination of the equilibrium composition in two contacting ligquid
phases has great significance for extraction process design. To obtain a system
of equations we need a thermodynamic model for the excess Gibbs free energy
AGE/(RT) . We chose the 3-suffix Margules equation (refs. 25-26) expressing
the excess Gibbs free energy of a C component liguid as a function of the

mole fractions 2zj, 2y ...y Zp ¢

&F coc C C C
- v I | 2 A | <1 bl *
TTEL A AN 2 2 2 A1 A ki (2.58)
RT  k=1l=1 k=1 l=k+l m=1+1
1%
where

X _
ATkim = Pl + A * Ry + A + Ay + Ay )72

and the table of coefficients Ay,, which can be determined from infinite
dilution activity data, is supposed to be known. The activity ceefficient 7y
of the i-th component can be computed from the thermodynamic relation

log 7. = 2 [meet) L o [F) (2.59)
P T R az; | RT RT )

where n; is the mole number of the i-th component, n is the total mole
number and the second equality holds only because (2.58) is a cubic
expression of the mole fractions.

Let us denote by superscript R the raffinate phase and by superscript E

E./2R

the extract phase. In equilibrium the distribution ratio i/2°'] = K; can be

calculated from the activity coefficients (or rather from their logarithms) as

Ki = 7Ri/‘1Ei = exp( log 7Ri - log ’1Ei ) . (2.60)

Eguations (2.58-2.68) form the thermodynamic base for ligquid equilibrium
calculations.

Suppose we add 6.6 mol Furfural (1) to the mixture of ©@.2 mol n—Heptane
(2) and ©@.8 mol Cyclohexane (3). We want to determine the composition of the
extract phase rich in Furfural and of the raffinate phase poor in Furfural. The
Margules coefficients (ref. 26) are shown in Table 2.9.
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Table 2.9

Aij coefficients for the Furfural - n-Heptane - Cyclohexane system
i\j 1 2 3

1 - 3.16892 3.8975

2 3.1252 - 7]

3 2.3399 7} -

We have eight unknowns: x; — the raffinate in moles, x5, - the extract in
moles, x3 — the mole fraction of Furfural in the raffinate phase, xq — the
mole fraction of n—Heptane in the raffinate phase, x5 — the mole fraction of
Cyclohexane in the raffinate phase; Xgy %7 and xg — the mole fractions for the
extract phase in the same order. The eight equations are as follows.

Overall material balance

Xy t X - 7.6=0; (2.61)
mole fraction summation for the raffinate phase

Xzt Xq + x5 -~ 1 =0 ; (2.62)
material balances for each component

XiXg + XXy = 6.6
XiXgq + XX = 2.2 =
XiXg + Xoxg ~ 2.8

(2.63)

I
(S S

5
and equilibrium conditions for each component
X ~ le3

X7 = K2x4
XB - K3X5

(2.64)

nhon
88068

In the following main program equations (2.61-2.64) are solved using the
Broyden method. The distribution coefficients are computed from equations
(2.98 = 2.60) written for C =3 components. The starting values used are
very simple, for the extract phase we start from poor Furfural and for the
raffinate phase from the original n—Heptane - Cyclohexane mixture. Negative

mole numbers and mole fractions are not allowed.

109 REX
182 REM EX. 2.5,3 LIOUID-LIOUID EQUILIBRIUN BY BROYDEN METHOD

104 REM MERGE M32

186 REN ---------- DATA

108 REW HARGULES COEFFICIENTS (FURFURAL, N-HEPTANE, CYCLOHEYANE)
110 A12:3.16892 :A13=3.0975 :A21=3.1252 1A31=2.3393 :A23=0 :A32:=0
112 AL123=(A12+A21+AL+AZ1 +A23+A32) /2

208 REW ---------- PROBLEM SIIE AND CONTROL PARAMETERS

202 N=B ;=38 :E{=,00000! :E2=. 000001

284 DIM X(N},F (N}, H(N,N) ,R(3,N)
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206 REM ---~------ STARTING VALUES

208 REM RAFFINATE (MOL) AND EXTRACT (MOL)

218 X(1)=1 :X{2)=b6.b

212 REM RAFFINATE MOLE FRACTIONS AND EXTRACT MOLE FRACTIONS
204 X{3)=0 :X(4)=.2 :X{5)=.8 :X{6)=1 :X(7)=D :X{B)=B

216 REM ---------- CALL MODULE

218 V$=STRINGS (33,"-")

218 LPRINT "BROYDEN METHOD" :LPRINT

222 605U 3208

224 LPRINT :LPRINT V$

226 LPRINT “RAFFINATE EXTRACT®

228 F§=  "MOLES LA (M) FH (M)

230 LPRINT USING F$; X(1), X(1)/(X{1)¢X{2))4100,X(2),X(2}/(X{1)+X{2})s100
234 LPRINT USING F$; 1B08X(3),1008X(6)

236 F§=  "N-HEFTANE "By H.H

238 LPRINT USING F$; 1008X(4),1008X(7)

240 F§=  "CYCLOHEXAN  #3.04%1 LRI

242 LPRINT USING F$; 1@@3X(3),1008X(8)

244 LPRINT V8

246 STOP

900 REM ---------- F{X)

982 ER=@ :FOR IE=1 TO N: ER=ER-(X{IE)<B):NEXT IE :IF ERX® THEN RETURN
984 REM DISTRIBUTION COEFFICIENTS FROM LOG ACTIVITY COEFFICIENTS

986 11=X(3) :12=X(4) :13=X(5) :GOSUB 950 :Ki=L1 :K2=12 :K3=L3

988 11=1(6) :12=X(7) :13=X{B) :6OSUB 930

918 KI=EXP(KI-L1) :K2=EXP{K2-L2) :KI=EXP{K3-L3)

912 REM EQUATIONS

914 F{1)=X{1}4X{2)-7.6 REM MASS BALANCE

916 FL2)=X{30X(4 14X (0)-L tREM MOLE FRACTION SUMMATION FOR RAFFINATE
918 F(3)=X{1}XX(3)+X{2)0X(6)-6.6 sREM FURFURAL MASS BALANCE

920 F{4)=X{1)8X(4)+X{2)8X{7)-.2 :REM N-HEPTANE MASS BALANCE

922 F{3}=X(1)8X{5)+X{2)¥X(8)-.8 :REM CYCLOHEXANE MASS BALANCE

924 Fb)=X{6]-KIKX(3) +REM EQUILIBRIUM

926 F{7)=X{7)-K28X(4) tREM !

928 F(B)=X{B)-K3#X(3) tREM *

938 LPRINT “1T=";IT;TAB(18)"R="4X{1)TAB(32)"HOLE FR:";X{3);X{4};X{5)
932 LPRINT TAB{10) "E="3X{2)TAB(32)" "X{6)5X(7)5X(8)

934 FOR KF=1 TO 8:LPRINT ,"F("KF")=";F(KF):NEXT KF :LPRINT

9328 RETURN

950 REM ----sssme-- LO& ACTIVITY COEFFICIENTS FROM 3-SUFFIX MARGULES EGUATION
952 DB=I1"28(128A2L+138A3L)+12° 28 (T10A12+130A32) +13° 28 (T10AL3+120A23)

934 DB=DB+I18124130A123

956 LI=28118 {12021+ 130A31) +12°20A12+4 13 28A13+ 1241 30A123-24D6

938 L2=28128{T18A12+138A32) +11°20A21+1320A23+118130A123-24D6

960 L3=28I38(118A13+120A23)+11 " 20A314+12420A324114124A123-20D6

562 RETURN

After 17 iterations we arrive at the equilibrium compositions.

RAFF INATE EXTRACT
MOLES B.100866 { 1.3241) 7.49934 (98.6763)
FURFURAL 6.996% 87.9151
N-HEFTANE 27.688% 2.295%
CYCLOHEXAN 63,4161 9.798%

Calculation of other types of phase equilibria, e.g., vapor-—-liquid
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equilibrium, are based on similar principles. If the same thermodynamic model
is used for both phases, the method (whatever sophisticated it is) can easily
converge to identical compositions in the two phases. This is called trivial

solution and the best way to avoid it is to start from physically reasonable

guesses of the compositions.

2.5.4 Minimjization subject to linear equality constraints: chemical eguilibrium

composition in gas mixtures

If the n variable function f(x) should be minimized subject to the

m < n independent linear constraints

Ax = b, (2.65)

where A is a given m matrix and b is a given m—vector, then the method
of Lagrange multipliers might be useful. We introduce the n+m variable

function

Lix;2) = f(x) + (Ax-b) 1 , (2.66)

where A 1is the mvector of Lagrange multipliers. At the constrained minimum
point the Lagrange function has zero partial derivatives with respect to all

its variables, i.e.,
f (0 +AN=0, (2.67)

Ax-b=0, (2.68)

where f, (x) is the gradient vector of the objective function f . The set of
equations (2.67-2.68) is solved by the Newton—Raphson method, linearizing
{2.67) around a feasible initial guess x® satisfying (2.68). Then the
corrections &x together with the multipliers A can be obtained from the

n+ m linear equations

(o] (o] T, =
f (x0) + F o (x")ox + AA =0, (2.69)
Atx =0, (2.70)

where Fxx("o) is the Hessian matrix of the objective function f computed at
the point x°® . The usual procedure of solving (2.69-2.7@) is to add the
corrections &4x to the initial guess x° and repeat the iteration until

convergence. An important property of the algorithm is that any new point
x = x© + Eax (2.71)
is also a feasible solution in the sense of (2.65), whatever the scalar & is.

Consequently, we can make a reduced correction with § < 1 , if the calculated

correctign is not acceptable.
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Equations (2.469 ~ 2.7@) can be solved by standard LU decomposition and
backward substitution, but very often we can reduce the computational effort
considerably by making use of the special structure of the equations. In the
chemical equilibrium problem these ideas lead to a very concise algorithm.

If the temperature T and pressure P of a closed system are kept
constant, the total Gibbs free energy is minimum in equilibrium. For an ideal

gas mixture of NS species the Gibbs free energy is given by

NS NS
< o <

G = ¢.>_| ni[ gi(T) + RT log (P/PU) + RT log [ ni / ¢.>_| n; ] ] (2.72)
i=1 Jj=1

where R is the universal gas constant, n. is the number of moles of the

1

o
i-th species, g (T) is the standard molar Gibbs free energy of the i-th
1

species corresponding to temperature T and standard pressure P . As
discussed in Section 1.8.1, the mole numbers must satisfy the atom conservation

constraints

mm=b, (2.73)

where A is the atom matrix with NA rows and NS columns, and b is the
NA vector of the initial elemental abundances.

Knowing the standard molar Gibbs free emergy values and giving an initial
mole number vector the determination of the equilibrium composition consists of
minimizing (2.72) subject to the linear constraints (2.73). The direct
application of (2.69-2.70), however, would be rather complicated. In the
RAND method (ref. 27) a function f{xg,xo,.«ss¥Ngey) of NS + 1 variables is
minimized instead of the function G(nj,np,...,Myg) of NS variables, f
being defined as

NS
f(Xl,Xz,...,XhE+1) = S.‘ Xifi(Xl,Xz,...,X'\S+1) y (2.74)

Lo
i=1

where
Ti(XgsX0seeesXngey)= €3 + 100 x5 — 1og XNS+t

c; = [ g (T) +RT log (P/P,) 1/ (RT) ,
1

and the new variables x; are

and the relations between the mole numbers n; i

i
given by
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NS
. Al
X =nj, (1=1,2, ..., NS) 3 NS+ = 2, Ny

3=1

The minimum of (2.72) subject to (2.73) can also be found minimizing

(2.74) subject to an extended set of constraints:

ap1¥1 T appxe *o.e * A NeRNS = by
S21%1  * gzt ...t A3 n5Ng = b2
(2.75)
aNA, 1% T 8NA,2%2 Tt ANa,NSPNS = B
X1 +)(2 +"'+X,\E ~ XNS+1 =0 .

Due to the sinple structure of the function f, its first and second partial

derivatives are easy to compute

[fdi = 5 ( i=1,2,...NS )
NS
<
Efnger = ‘[ 2 % ] / *ngey T 71
j=1
[Fyxlij =0 ( i#j, 1i,j<NS )
[Fyxlis = 1/%; { i¢NS )
(FuxIns+1,i = [Fuxli,NSv1 = ~1/%nget ( iNS )
NS
_ Ll 2 _
[y INg+1,NS+1 = [)_. %5 ] 7 *Ng+1 = 17%ser -
i=1

With the above derivatives equations (2.6%) are given by

NA

o+ x/xg D) Nagi - Maaey = O (i=1,2,...NS) (2.76)
j=1

M+l ~ Mg/ = @ - (2.77)

From (2.76}) and (2.77} the corrections BX1y OXoy «eay OXpngyy C€an be

expressed as

A

s

B = xi(=F; + ey + j85i) (i=1,2,...NS) (2.78)

j=1

o
Il
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and

ANGHL T *NS+1MNA+L ¢ (2.79)

Substituting (2.78( and (2.79) into the actual form of (2.78) we obtain
the set of NA+1 linear equations in NA+1 unknowns with the coefficient

matrix and right hand side vector as follows.

L3t Ao e M NG+ Right h. s.
NS NS NS NS NS

< Ayl L) < vl

2, 21331i%5 P, 81482i%1  +er D, B1i3A,iXi 2 21i%i 2, 2nifixg
i=1 i=1 i=1 i=t i=1

NS NS NS NS NS

Ll b L) < L

2, 223X 2, 321X eee Q) Apid\a % 2. @2i%i 2, 22ifiXi
i=1 i=1 i=1 i=t i=1

NS NS NS NS NS

S a s S o an s T o cae ke S S fox,
2o MN,i%1i%0 2, ANA,id2iXi cee 2, 3A,ifNA i 2, @a,i%i 2, ane,ifiXi
i=1 i=1 i=t i=1 i=1

NS NS NS NS

<1 Ayl A L)

2o 2% 2, 32X e 2, @A, i%i 2 2. Ty

i=1 i=1 i=1 i=1

The solution of this matrix equation is used to compute the corrections
(2.78-2.79). If the correction vector results in one or more zero or negative
mole numbers, equation (2.71) is applied with E selected to give maximum
95% reduction in any mole number in one iteration step.

Notice that the number NA of atoms is usually small compared to the number
NS of species, and hence the RAND algorithm is very effective in terms of
computational effort. The rank of the atom matrix, however, must be equal to
the number NA of atoms. At this point it is interesting to remark that
instead of the atom matrix we can use a virtual atom matrix, i.e., the matrix
of reaction invariant coefficients if the atom matrix is not available or we
are interested in a restricted equilibrium. For details see Section 1.8.1.

The following main program is an implementation of the RAND algorithm. Its
use is illustrated on the example of hydrazin combustion at T = 35@8@ K and
P = 5.17x18° Pa (ref. 27). The elemental abundances of hydrogen, nitrogen and
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oxygen satisfy the ratio H: N=H : 0=2:1 . The species present at
equilibrium in physically meaningful quantities are listed in Table 2.1@0. The
reduced molar Gibbs free energies c; and the initial mole numbers of the
species are also shown in the table. Since the total mole number is arbitrary,
only the ratios of the initial elemental abundances are of interest when

specifying the problem.

Table 2.1@
Data for hydrazin combustion equilibrium calculation

No. Name Formula Reduced Gibbs free initial
i energy, c; (=) n% (mol)
1 Hydrogen atom H ~-6.089 2
2 Hydrogen Ho -17.164 @

3 Water H>0 -34.054 1]
4 Nitrogen atom N -5.914 1
5 Nitrogen N, -24.721 ?
& MH radical NH -14.,986 7]
7  Nitrogen monoxid NO =24.1 ']
8 Oxygen atom [a] -10.7@8 1
9  Oxygen 0o —2b.6562 @
1@ Hydroxil radical oH -22.179 7]

The input is accepted in chemical notation. The atom matrix is constructed
in the "formula interpreter" section in lines 214-248 . Strictly speaking the
function we minimize is not defined if any one of the mole numbers is zero.
Since the vector of initial mole numbers serves also as an initial guess of the

solution and it often contains zero elements, we add a small quantity to each

o
n. and correct for this bias after the first iteration.
i

188 REM
181 REM EX. 2.5.4 CHEMICAL EQUILIBRIUM OF GASEOUS MIXTURES
102 REM MERGE M14,M15

104 REN INPUT DATA STRUCTURE:

106 REX NS - NUMBER DF SPECIES

103 REM FOR EACH SPECIES

110 REM 1) NAME

112 REM 2} FORMULA {e.g. Na20 - note second letter is lower case)
114 REM 3) {WOLAR GIBBS FREE ENERGY) / { R 2 T )

116 REM AT THE TEMPERATURE AND PRESSURE OF THE MIXTURE

118 REM 4) INITIAL NUMBER OF MOLES



120 REM ----==ou-m DATA

122 DATA 18

124 DATA "H atos®, Hy -b.B89,
126 DATA “hydrogen®,  H2, -17.144,
128 DATA "water”, H20,-34.,B54,
130 DATA °N atoas", N, -5.914,
132 DATA *nitrogen”, N2, -24.721,
134 DATA *NH radical®, NH, -14.986,
136 DATA "N monoxid", NO, -24.1,
138 DATA "D atoa®, 0, -10.708,
148 DATA “pxygen®, 02, -26.462,
142 DATA "hydroxil®,  OH, -22.179,
200 REM ---------- READ DATA

282 READ NS

204 DIM H{N3,10),C(NS),1INS), X(11),YINS+1),A(11,11) NS (NG} A${10) KS(NS)

286 FOR I=1 TO NS

288 READ N${1),K${1),C(1),2{I)

W S S =N

218 NEXT |

212 £P=.0008! :IN=20

214 REN ---------- FORMULA INTERPRETER
216 NA=B :1=0

218 FOR I=1 TO NS
220 L=LEN(KS$(1})} K=l
222 A$=HIDS(K$(I},K,1)

224 [$="" :IF K=L THEN 234
226 B$=HID$(K${I),K+1,1} :IF B$>="z" AND B$<="2" THEN A$=A$+B$ :K=K+]

228 IF K=L THEN 234

230 D$=RID$(K$(I},K+1,1) :IF D$>="A" AND D$<="1" THEN 234

232 C$=C$+D$ :K=K+! :G0TD 228

234 IF C$="" THEN C$="1
236 FOR J=1 TD NA
238 IF AS${J)=AS THEN 2

12

240 NEXT I :NA=NA+l :AS(NA)=A$ :J=NA

242 K(1,1)=VAL(CS)

244 IF KCL THEN K=K+l :60TD 222

286 I=1+1(1) Y{D)=1(])
248 NEXT |

258 REN ---------- RAND ALBORITHM

252 Y=1 :E=Y1.8001

254 FOR 1=1 TO N8 :Y(I)=Y{I)+E :NEXT T :Y=Y+EINS

256 N=NAt{

258 REN ---------- START ITERATION

268 FOR IT=1 70 M

262 FOR I=1 TO NS :F{1)=C(I)+LOG(Y{I)/Y) sNEXT I

264 FOR I=1 TO NA
266 FOR J=1 70 1
268 A=p

278 FOR K=1 TD N5 :A=A+M{K,1)SB(K,J)8Y(K) :NEXT K

272 A(1,0)=A A0, 1)
274 NEXT )

276 X=B :FOR K=1 TD N5 :X=X+M{K,I)8F(K)8Y(K} :NEXT K :X{I)=X

278 NEXT 1
280 FOR J=1 TD NA
282 AP

284 FOR K=1 TO NS ;A=A+M{K,J}1Y(K) :NEXT K

286 AN, J)=h AL, N)=A
289 NEXT J
299 A(N,N)=D 4=

292 FOR K=1 TO NS :X=X+F({K)8Y{K) :NEXT K tX{N}=X

=A

135
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294 REW ~---m-nnee SOLVE SYSTEN OF LINEAR EGUATIONS

29 GOSUB 1480 :1F ERYD THEN ER=2 :60TO 344

298 60SUB 1580

511 1 J— CONPUTE STEF

302 FOR I=1 TO NS

304 A=KIN) sFOR K=1 TO NA :A=A+X{K)N(I,K} :NEXT X

306 DI=Y(I)HA-FLI))

308 NEXT 1

B DT=YIX(N)

K{VJ 1 Q—— SET X1 T0 ASSURE FEASIBILITY

M A=l

36 FOR I=1 TO NS

38 IF D(1)<B AND XIID(1}/Y(1)¢-.95  THEN XI=-.958Y(1}/D{1)
320 NEXT I

322 REM ---mme- NEW VECTOR OF MOLE NUNBERS

324 D=0

326 FOR I=1 TO NS :Y{D)=Y(1}+X18D{1) :D=D+D{I)4D{I) :NEXT I
328 Y=YeX[407

330 IF IT31 THEN 348

332 REM —----m--- IF FIRST ITERATION THEN COARECT

334 FOR I=1 TO NS

336 IF Y(I)OE THEN YIT)=Y{1)-E sY=¥-E

338 NEXT I

348 IF SOR(D)<=EP THEN ER=0 :EOTO 344

342 NEXT 1T

344 ER=1

346 REW --mmmmmmmnm PRINT RESULTS

348 IF ER=1 THEN LPRINT "REGUIRED ACCURACY NOT ATTAINED®

35 IF ER=2 THEN LPRINT "RANK OF MATRIX IS LESS THAN NUMBER OF ATONS®
352 LPRINT :LPRINT

354 VEBTRINGS (46,"-") tF$="4, BHEH4 ~» *

356 LPRINT s

35 LPRINT * 1 NAME  FORMULA o INITIAL  EQUILIBRIUN 2°
360 LPRINT Vs

342 FOR I=4 T0 NS

364 LPRINT 1;TAB(S) ;NS (1)3TAB(LS);KS(1);TAB(2A}" *

366 LPRINT USING F$3L(1),2(1),¥{1),:LPRINT USING 484,44 ; 1084Y{1)/Y
368 NEXT 1

370 LPRINT Vs

372 LPRINT "SUK*;TAB(36)" *;:LPRINT USING F$;7,Y,:LPRINT *100.08"
374 LPRINT :LPRINT

376 Y$=5TRINGS(33,°-")

378 LPRINT Vs

382 LPRINT * 1 ATOM LABRANEE MULTIFLIER®

382 LPRINT Vs

389 FOR 1= TO NA :LPRINT 1;TAB{S);A${1);TAB(15);X(1) sNEXT I
385 LPRINT Vs

388 LPRINT ;LPRINT

399 8T0°

After ten iterations the convergence criterion is satisfied and the following

results are printed:
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1 NAKE FORMULA L1 INITIAL  EQUILIBRIUM %

1 Hatos H - 6Q898E+D] .20000E+01 B.4B649E-B1 2.48
2 hydrogen W2 -.17164E+82 0.00Q0RE+DA 0. 14774E+00  9.02
3 water H20 -.34B54E+82 2.00000E+B0 8.78B315E+00 47,80
4 N atom N -,59140E+0! 0.10000E+0! 8,141426-02 0.09
5 nitrogen N2 -,24721E+02 0,D0000E+D0 9,48525E+00 29,62
& NH radical NH -.14984E+22 0.000D0E+00 0.69318E-0F  0.04
7 N monoxid NO -.24100E+02 0.00000E+00 @,27399E-01 1,47
8 0 atos 1] -.10708E+02 ©.10000E+01 0.17947E-01 1.10
9 Dxygen 02 -.2bb42E+02 0.00000E+RR 0,373126-01 2,28
18 hydroxil OH -,22179E402 ©.000POE+AR 0,94870E-01 5.91
SUN .40000E+81 2.163R85E+01 100,00
[ ATON LAGRANGE MULTIPLIER

1 H -9.783044

20 -15.22209

3N -12,96893
At convergence the Lagrange multipliers have some physical meaning similar to

the "shadow prices" discussed in Section 1.2. The interested reader may consult

(refs. 28-29) where nonideality, treatment of condensed phases, numerical
difficulties and other problems are also discussed. Handbooks like (ref. 3@)

contain the necessary standard Gibbs free energy data for a great number of

substances.
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Chapter 3

PARAMETER ESTIMATION

The most immediate goal of scientific or industrial experimentation is to
find relationships among manipulated and observed variables, or to validate
such relationships coming from some underlying theory. A mathematical
description almost invariably involves estimating the values of some unknown
parameters to best match the available body of experimental observations.

The simplest mathematical description or model of a system is the function

y = fix,m , (3.1)

assumed to predict the dependent variable y in terms of the independent

n)()T and unknown parameters p = (pl,p_-z,...,pnx)T .

To begin with a relatively simple problem we will assume that the independent

variables x = (XjsXoy.sayX

variables can be manipulated or observed error-free, and only the dependent

variable y is corrupted by measurement errors. Thus the outcome of the i-th

experiment is given by the vector (Xjj,; Xj2s -« Xi,nxs ;i) , where

vi = flx;,p) + € . (3.2)

Our basic assumption is that the response function f(x,p) is a correct one
and the random quantity €; represents the measurement error. It is then
meaningful to ask what the true value p of the parameters is, though by the

imprecise nature of measurements we can never hope to determine it with

absolute certainty. However, having a set { (xj1, Xjps «»e) Xi,nx? ;i) H
i=1,2,...,nm > of observations and assuming some statistical properties of
the errors, it is reasonable to seek parameter estimates that yield not only a
good fit to the data, but on the average comes firmly close to the true values,
and do not vary excessively from one set of experiments to the next.

Parameter estimation is rooted in several scientific areas with their own
preferences and approaches. While linear estimation theory is a nice chapter of
mathematical statistics (refs. 1-3), practical considerations are equally
important in nonlinear parameter estimation. As emphasised by Bard (ref. 4), in
spite of its statistical basis, nonlinear estimation is mainly a variety of
computational algorithms which perform well on a class of problems but may fail

on some others. In addition, most statistical tests and estimates of
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variability are formulated for linear models, and in the nonlinear case most
often the best we can do is to apply these linear results as approximations.
Furthermore, in practice mo parameter estimation problem can be solved
automatically in one go even with a fairly good numerical algorithm available.
As you will see in this chapter, one usually needs additional assumptions, good
knowledge of underlying processes, or simply common sense, and thus we end up
with a typical problem of scientific computing rather than that of mathematical
statistics.

In spite of the variety of approaches and methods, it is relatively easy to
formulate the common steps of solving an estimation problem, as we do in the

remainder of this section.

Response function selection

The form of the response function to be fitted depends on the goal of
modeling, and the amount of available theoretical and experimental information.
If we simply want to avoid interpolation in extensive tables or to store and
use less numerical data, the model may be a convenient class of functions such
as polynomials. In many applications, however, the model is based on
theoretical relationships that govern the system, and its parameters have some
well defined physical meaning. A model coming from the underlying theory is,
however, not necessarily the best response function in parameter estimation,
since the limited amount of data may be insufficient to find the parameters
with any reasonable accuracy. In such cases simplified models may be
preferable, and with the problem of simplifying a nonlinear model we leave the

relatively safe waters of mathematical statistics at once.

Selection of error structure and estimation criterion

For a model of the form (3.2) it is patural to choose parameter values that
minimize some norm of the errors. The first norm that comes to mind is the sum

of squares

nm
B(p) = 3| [yg = flxg,p1%; (3.3)
i=t

where the w s are a priori fixed weighting coefficients measuring the
importance of particular observations in the sum.

Other error norms have been considered in Sections 1.8.2 and 1.8.3. Why the
least squares method is the most popular? Where does it come from? If it is

good at least for a well defined class of problems, why to experiment with
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other estimation criteria? We try to answer these questions in turn.
Without information on the errors any error norm is as good as the others.
Thus, to explain the popularity of the least squares method we have to make a

number of assumptions. In particular, for model (3.2) we assume that

(1) the independent variables x are error—free;

(ii) the error €; is independent of x;;

(1ii) €; has zero mean, i.e., E{e;} = @;

(iv) the errors €; and G,J-, i#j, are independent;
2

(v) the variance chei} = o of ¢; is known, at least up to a common
i

scalar factor in all variances; and

(vi) €; is a normally distributed random variable.

Assumptions (i) and (ii) Jjustify the model in the form (3.2), with an
additive error as the only random variable. By (iii) we assume that the model

is correct and there are no systematic measurement errors, i.e.,

E{'y\'i} = f(x;,p) for the true value p of the parameters. The role of other

assumptions will be clarified later. At this moment the most important message,
coming from mathematical statistics, is as follows. If assumptions (i) through
(iii) are satisfied, the model (3.2) is linear in the parameters, and we select

the weighting coefficients according to w; = azlazi , where o is a (possibly
unknown) scalar, then the vector B of least squares estimate has very
satisfying statistical properties. First, B is unbiased, thus E(B} =p, the

true parameter vector. Second, B has the least variance among all unbiased
estimates (ref. 1). While for a nonlinear function of the parameters these
properties can be shown only assymptotically, i.e., increasing the number of
experiments beyond bound, the method produces acceptable estimates in many
situations (ref. 4).

While the least squares estimator appeared several centuries ago as an
independent method giving good results under certain assumptions, we have to
dig deeper into mathematical statistics to see its roots, and, in particular,
its limitations. This general subject is the maximum likelihood principle, one

of the basic concepts of mathematical statistics. The principle is simple:
select the parameters such that the occurence of the observed values ;1’ ceey

;nm be the most likely among all the possible outcomes of the experiment. But
how this can be done? It is very important that given a value of the parameters

one can compute the probability of occurence of a particular data set, if the
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error distribution function is known. There is only a small trick: since the

;'s take on continuous values, this probability is always zero unless we
consider an interval o0;A around each observation. So we always assume such

intervals when talking about probabilities. According to assumptions (iv), (v)

and (vi), our data points ;i are independently random and distributed as a

normal (Gaussian) distribution around the true f(x;,p) with the standard

deviation o;. Then the probability of obtaining the data set ;1, ey ;nm
(recall the intervals o034 around them!) is the product of the probabilities

of each point,

vi = T(x;,p)
p{ Yy T TiRP) <A i=1, ...,nm} =
9i

nm ~
= (zﬂ)—nmlz 'I"I' <ci_1exp[ - (__Y' —_I_(_xilgl_Jz ] A >_ (3.4)

i=

Maximizing (3.4) is equivalent to minimizing its negative logarithm.
Furthermore, since & is constant and the o;'s are known, minimizing this
equation is equivalent to minimizing (3.3) with w; = °2/°i2 y where the
particular value of a2 clearly does not affect the location of the minimum.

Though the maximum likelihood principle is not less intuitive than the least
squares method itself, it enables the statisticans to derive estimation
criteria for any known distribution, and to generally prove that the estimates
have nice properties such as asymptotic unbiasedness (ref. 1). In particular,
the method of least absolute deviations introduced in Section 1.8.2 is also a
maximum likelihood estimator assuming a different distribution for the error.

Since the final form of a maximum likelihood estimator depends on the
assumed error distribution, we partially answered the guestion why there are
different criteria in use, but we have to go further. Maximum likelihood
estimates are only guaranteed to have their expected properties if the error
distribution behind the sample is the one assumed in the derivation of the
method, but in many cases are relatively insensitive to deviations. Since the
error distribution is known only in rare circumstances, this property of
robustness is very desirable. The least squares method is relatively robust,
and hence its use is not restricted to normally distributed errors. Thus, we
can drop condition (vi) when talking about the least squares method, though
then it is no more associated with the maximum likelihood principle. There
exist, however, more robust criteria that are superior for errors with

distributions significantly deviating from the normal one, as we will discuss
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in Section 3.1@.1.
Up to this point we relaxed only assumption (vi), now we try to do the same

with the others, except (iii). This latter is necessary, since a nonzero mean

Ei = E{¢;} is undistinguishable from the response f(x;,p). We can relax the
other assumptions, but then the least squares method no more applies. In
particular, one can drop (iv) and (v), and estimate the covariance matrix (or
part of it) simultaneously with the model parameters. This means introducing
additional parameters, and hence the problem is clearly more difficult to
solve. Nevertheless, observing several variables simultanecusly, the assumption
of independent errors is frequently unfeasible. A possible treatment of the
problem will be considered in Section 3.46. In another class of applications we
cannot neglect the error in the independent variables of (3.1), and hence give
up assumption (i), estimating the expected value of all variables
simultaneously with estimating the parameters. As you will see in Section 3.8,
the treatment of such error—-in-variables models differs considerably from that
of the model (3.2).

While you will use the least squares method in most cases, do not forget
that selecting an estimation criterion you make assumptions on the error
structure, even without a real desire to be involved with this problem.
Therefore, it is better to be explicit on this issue, for the sake of

consistency in the further steps of the estimation.
Parameter estimation

In a strict sense parameter estimation is the procedure of computing the
estimates by localizing the extremum point of an objective function. A further
advantage of the least squares method is that this step is well supported by
efficient numerical techniques. Its use is particularly simple if the response
function (3.1) is linear in the parameters, since then the estimates are found
by linear regression without the inherent iteration in nonlinear optimization

problems.
Goodness—of-fit

The validity of parameter estimation clearly depends on the validity of the
assumptions on the form of the response function and the error distribution.
The simplest way to check these assumptions is to inspect the residuals

ri=vyi - F(x;,p) (3.5)

computed at the estimates B . If the residuals are large, or of such a
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nonrandom structure, that they cannot be ascribed to random observation errors,
then this constitutes strong grounds for rejecting the assumed model or the
error structure. More generally, the method of testing the goodness—of—fit in a

particular problem depends on the assumptions you made in the estimation stage.

Interpretation of the estimates

It is not enough to compute the estimates B of the parameters, we must

also investigate their reliability and precision. Computed from the random

variables ;"i’ the estimate is a random vector itself and hence can be

completely characterized only by its distribution function. Some important

statistical properties of B (e.g., its covariance matrix) can, however, be
estimated on the basis of the assumed error structure. We can answer also
questions such as "what are the chances that the estimate is off by no more
than 1%?", i.e., to compute some confidence regions. It should be, however,
emphasised that most statistical tests and estimates of variability apply only
approximately to nonlinear models, and even for linear models they are exact
only if the measurement errors do indeed follow whatever distribution was
assumed for them. Nevertheless, even the approximate results are particularly

useful if the parameters have physical significance.
Simulation

Even with powerful computer programs at hand, the solution of estimation
problems is usually far from simple. A convenient way to eliminate
computational errors and to study the effects of statistical assumptions is to
solve first a problem with known true parameter values, involving data
generated at some nominal parameter vector. Initially it is advisable to
investigate with error—free data, then to add errors of the assumed structure.
The simulation usually requires normally distributed random variables. Random
numbers R that approximately are from a normal distribution with zero mean

and unit variance can be obtained by

12
R=5""uU, - &, (3.5)

Laj=g 2

where the U’s are random numbers, uniformly distributed in the interval

[@,1] and readily supplied by an internal function of most BASIC dialects.
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3.1 FITTING A STRAIGHT LINE BY WEIGHTED LINEAR REGRESSION

The most frequent estimation problem is to find the parameters a and b
of the linear function y = ax + b in order to fit the line to the

observations { (xj, ;i); i=1,2,...,n 2}, where

yi=ax; +b+eg . (3.6)
Assuming conditions (i) through (v) we will minimize the least squares

objective function

n
Q(a,b) = > [ y; - ax; — b 2w (3.7)
i=1

where the w's are fixed weighting coefficients. If the errors are normally
distributed, then with w; = crz/cri2 (3.7) corresponds to the maximum
likelihood objective function. Therefore it is advantageous to chose the
weights on this basis, if estimates of the error variances cri2 are available.
The value of o? clearly does not affect the location of the minimum, and
hence it suffices to know (or, in practice to assume) the relative error
variances in advance.

Equations &Q(a,b)/2a = @® and &Q(a,b)/2b =@ are linear in the

parameters. Solving them simultaneously we obtain the least squares estimates

4= PR (3.8a)
EW‘I()(‘1 T‘W)

and

b=y, -ax, , (3.8b)

where the summation goes from 1 ton , and the weighted means ¥, and x| are
defined by

Wy Tw; %
7= — y , %, = oA (3.9
b2eH 2y

The estimates yield the regression line

-~

? =ax +b . (3.10)

The goodness of fit can be measured by the weighted residual sum of squares

Qa,by .
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If the errors bave the same variance, we can take o = o; without knowing
the real value of o by putting w; =1 for all i. This case is called

unweighted least squares , and the quantity

. Gfa,b) (3.11)

is an unbiased estimate of o2 (cee e.g., ref. 5). The square root of 2 is
called standard residual error or simply standard error.

With unequal variances we cannot speak of an 'overall standard error'. In
that case =2 computed by (3.11) yields an unbiased estimate of the constant
o2 in the weighting coefficients. Therefore, Si2 = 52/wi is an unbiased
estimate of the error variance oiz. If we have a different independent
estimate of the same variance, for example computed from the replicates at the
value x; of the independent variable, then our assumptions can be checked by
an F-test, involving the ratio of the two estimates, see e.g. Himmelblau
(ref. 5). Though this is the best way to measure the goodness—of-fit, it
requires additional information (i.e., replicates), not always available.

Under the conditions (i) through (v) the least square estimates are unbiased

in the linear case. Thus E{a) = a , and the variance D2(3) is
~ A N2 a2
P2t a3y =6 (a-E®) r=EC (a-3)%) . (3.12)

From the last expression D2¢3) can actually be computed, since replacing ;i

by the error-free variable Yi in (3.8a) we would obtain the true parameter

a as the estimate. Therefore, we set this expression and (3.8a) into (3.12),

and compute the expectation. Since E(;i - yi) = oiz, which can be estimated

by 51-2 = s2/w; after some algebraic manipulation we have the estimate

1 ?

s =g ————Fm—— (3.13)
a

= 2
Ewi(xi %)

for the variance D2(3). Similarly, we obtain the estimate
T 2
2 1 X
SCogz | Al BRI (3.14)
Zw;

= 2
g (x3%,)

for the variance DZ(B) .
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According to (3.8a) a is a linear combination of the observations
;1, ;2, chey ;nm . Therefore, normally distributed observations result in
normally distributed estimates. Then the quantity defined by t = (3 - a)/s
a

has t-distribution (also called Student distribution) with n-2 degrees of
freedom (ref. 5). The intervals, that contain the true parameters with o%

probability, called of. confidence intervals, are given by

a—-s t = a £ a+s t
a p,n-2 a p,n—2
(3.15)

~

ld

=4

L]
(=04

s t s t
b p,n—2 b p,n-2

where p=1- /100 , and tp,n—2 is the tabular value of the
t - distribution with n-2 degrees of freedom at the probability p . The
following program module computes and prints the quantities discussed.

Program_module M4@

4008 REM SRERRLREREERQRRRERRRERRRERRERR Rt irRreeasssiny
402 REM ¢ FITTING A STRAIGHT LINE BY LINEAR REGRESSION ¢
4084 REM FERRREREREERQRRRERRERRRReaRRtiat s iaareeasssiny
4885 REM INPUT:

4008 REM N NUMBER DF SAMPLE PDINTS

4010 REN X{N)  OBSERVATIONS OF INDEPENDENT VARIABLE X
4812 REN Y(K)  OBSERVATIONS DF DEPENDENT VARIABLE Y
4814 REN L) IDENTIFIER OF WEIGHTING OPTIONS

4816 REM B IDENTICAL WEIGHTS ( W{I)={ }
4918 REM { RELATIVE WEIGHTS ( W(I)=1/¥{I}*2 )
4828 REM 2 USER-SPECIFIED WEIGHTS FURTHER GIVEN IN

4822 REN LIL))

4024 REM OUTPUT:

4026 REM A SLOPE

4328 REM B Y-INTERCEPT

4238 REM e AND FURTHER PRINTED RESULTS

4832 REM MODULE CALLED: M4t

4034 XN=6 :YN=0 :Ni=R

4B36 FOR I=1 TO N

4838 IF WI=B THEN W(I)=} ELSE IF WI=1 THER W{I}=1/Y(I1)"2

4040 XW=XNeW{I)EX(I) :YN=YN¢N(I)EY(D) :Mu=NN+N{I)

4p42 NEXT 1

4844 XN=XN/WW :YN=YN/WN : D=0

4946 FOR I=t TO N @ D=D+W(I)R{X(I)-XK)"2 :A=A+W{T}EY{T)E{X{I)-XN) :NEXT I
4248 A=A/D :B=YW-AKIN

4950 52=0 :FOR I=1 TO N :DE=Y{I)-A%X{I}-B :52=62+N{I1}4DESDE :NEXT I
4852 NF=N-2 :52=52/NF :5A=G0R{52/D) :5B=5QR(52¢{1/WN+XN*2/D})

4934 605UB 41880
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4035 REM ---------- PRINT RESULTS

4058 V$=GTRINGS(7D,"-") sF4="3. 444"

4860 LPRINT TAB(28)"LEAST SBUARES FIT OF LINE Y=ASX+B" :LPRINT :LPRINT
4862 LPRINT V$

4864 LPRINT ® 1°,"X MEAS","Y MEAS","Y COMP","RESIDUAL® :LPRINT V$

4866 FOR I=1 TO N

4868 Y=AEX(1)+B :DE=Y{I}-Y :LPRINT I, sLPRINT USING F&;X(I),Y(1},Y,DE
4878 NEXT I :LPRINT V$ :LPRINT :IF WIXd THEN LPRINT *{WEIGHTED)"

4872 LPRINT * RESIDUAL SUM OF SOUARES .........ovveee ";S24NF
4874 IF WI=B THEN LPRINT " STANDARD RESIDUAL ERROR ....uevvvsvenss "350R(52)
4876 1F WIXB THEN LPRINT " ESTIMATED SIGMA FACTOR IN MEISHTS ..... "550R{52)

4978 LPRINT * DEBREES OF FREEDOM ..vvvvverervnsnens "iNF

4088 LPRINT * CRITICAL T-VALUE AT 95 % CONF. LEVEL .. *;T

4082 LPRINT :LPRINT V$

4084 LPRINT "PARAMETER *,*ESTIMATE","STNRD.ERROR”,*LONER BOUND*,"UPPER BOUND*
1086 LPRINT V$

4083 LPRINT * 4", :LPRINT USING F$;8,50,A-TH5A, A+THSA

4099 LPRINT *  B*, sLFRINT USING F$;B,58,8-T45B,B+T15B

4092 LPRINT V8 :LPRINT

4894 RETURN

4095 REN FESLSSEEERUSLERERITRREREELEEERLETRRREsteanssstseeny

The module offers three weighting options. If no weighting is used, w; =1

is set for all i by the module. If relative weighting is used, the module

computes the weights w; =1 / ;12 , thus this option is not recommended if any
observed variable is near to zero. If you choose the third weighting option
then you should supply the weights in the vector W(N). No error flag is
implied, although errors may occur if the number of points is less than 3, the
X; values are all the same or some of the weights are negative.

The tabular value of the t-distribution, required to find the confidence

intervals (3.15), is obtained by calling the following auxiliary module.

Program module M41

4100 REM SERRRRSRRBsssssssass s s saaasasasssassasasassssy

4182 REM ¢ CRITICAL T-VALUE AT 95 % CONFIDENCE LEVEL ¢

4184 REM SRRRRRRRRRRsaban s aaseasaas s aseassressessssy

4186 REN INPUT:

4108 REM NF DEGREES OF FREEDOM

4118 REM OUTPUT:

4112 REM T CRITICAL T-VALUE

4114 IF NFX20 THEN 4126

4116 T= -(NF=1)812,71 ~(NF=2)84.3  -(NF=3)43.1B -(NF=4)42.78 -{NF=5}12,57
4118 T=T-(NF=6)$2.45 -(NF=7)82,37 -(NF=8)82.31 -(NF=9)¥2.26 -{(NF=10)$2.23
4120 T=T-{NF=11)32.2 -{NF=12)%2,18 -(NF=13)%2,16-(NF=14)¥2.15 -{NF=15)12.13
4122 T=T-{NF=16)92.12 -(NF=17)82.11 -(NF=18)42.1 -(NF=19)42.89 -(NF=20)$2.09
4124 GOTO 4134

4126 IF NF31 THEN AT=12,3:B7=(LOG(AT)-L06(B8.2))/108{20-NF) :60TO 4132

4128 IF NFCA1 THEN AT=8.2 :BT={LOG(AT)-LOG(4))/3B%{30-NF)  :EOTO 4132

4130 AT=3.9 :BT=(LOG(AT)-LOB(2)}/60%(50-NF}

4132 T=INT(196.5+ATSEXP(BT))/108

4134 RETURN

4136 REM SERSSERRRRganet s rane sttt aaaseassesasaseny
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The only goal of this simple module is to return the t-value found in
statistical tables. Thus, the module could be based on DATA and READ
statements instead of the expressions above, but the present form is more

convenient to use if the module is called several times.

Example 3.1 Fitting a straight line by least squares method

Table 1.1 lists nicotine and tar concentrations found in different sorts of
cigarettes. As discussed in Section 1.8.2, one has reason to assume a simple
linear relationship between the two quantities. First we assume that the error
variance is constant, and solve the unweighted least squares problem by the

following main program.

10@ REM
102 REM EX. 3.1, FITTING A REGRESSION LINE
184 REM MERGE M4@,M4!

186 REM ---------- DATA

188 REM (K)

110 DATA 10

LI2ZREN (X, Y

114 DATA 8.3, 8.32

116 DATA 12.3, 8.46

118 DATA 18B.8, 1.18

120 DATA 22.9, 1.34

122 DATA 23.1, 1.2

124 DATA 24.0, 1.4

126 DATA 27.3, 1.42

128 DATA 30.8, 1.96

138 DATA 35.9, 2.23

132 DATA 41.6, 2.20

200 REM ---------- READ DATA

202 READ N

2084 DIM XIN),Y(N},W(N)

206 FOR I=1 TO N :READ X(I),Y{I} :NEXT I

208 REM ---------- FIT A STRAIGHT LINE WITH NO WEIGHTING
210 WI= :60SUB 4eee
212 STOP

It is interesting to compare the following output printed by the module with
the results of Examples 1.8.2 and 1.8.3.
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LEAST SQUARES FIT OF LINE Y=R$X+B

X MEAS Y MEAS Y COMP RESIDUAL

0.03080E+81  0.32000£+09  8.35851E+0@  -,38515E-01
0.12380E+02  0.46000E+08  9.51925E+P0 -, 15025E+B0
©.18800E+02 0.11000E+01  9.19193E+01  8.88685E-01
B.22980E+02  B.134Q0E+01  B.12773E+81  8.562659E-21
0.23100E402  9.12600E+01  9.12899E+01  -.29928E-81
0.24000E+02  B.134B0E+01  B.13465E+81  0,93432E-01
0.27309E+02  0.14200E+01  0.155426+01  -.13425E4088
0.36060E+02  0.19500E+01  0.17242E+81  9.23583E+08
0.35988E+02  0.22300E+@1  0.20955E+81  D.13453E+08
0.41500E402  0.22000E+01  0.24542E481 -, 25419E408

— 0 O3~y O~ cn e R e

RESIDUAL SUM OF SOUARES ......... v 22004705
STANDARD RESIDUAL ERRDR ......... . .1582998
DEGREES OF FREEDON ..vvvvvvnvivnninnnns
CRITICAL T-VALUE AT 95 % CONF. LEVEL ..

8
2,31

PARAMETER ESTIMATE STRD.ERROR  LOWER BOUND  LPPER BOUND

07e-82  0.58804E-01  @.75@62E-81

A B.52933E-91  8.525
0.137656+00 -.4B1BOE+08  @.15413E+00

B - 16383E+00

Though the variances are unknown, considering the small residuals the fit

can be intuitively judged acceptable. This is supported by the lack of trend in
the sequence of the residuals. The slope 3 is more reliable than the

intercept B. In fact the latter estimate heavily depends on the estimation
criterion, as shown in Sections 1.8.2 and 1.B.3. The relations among the
different methods we used to solve this problem will be discussed in Section
3.1@.1.

Exercises

o0 Solve the regression problem with relative weighting (use option WI=1).

Compare the two sequences of residuals.

O Since tar concentrations are also corrupted by measurement errors, and since
we do not know which variable is more reliable, it is equally meaningful to
fit the inverse model x = Ay + B to the data, thereby regarding the

nicotine concentration as independent variable. Show that the two regression

lines differ, thus & # 1/A and b # -B/A8 . This problem will be further
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discussed in Section 3.8.

3.2 MALTIVARIABLE LINEAR REGRESSION

Extending the methods of the previous section we first fit the linear model

Y = Pg%y * PoXp * oeee * PuyXny (3.16)

to the set € (Xjy, Xjps -=+s Xj nxs yi) 3 1i=1,2,...,nm ) of observations,

where

Yi = P1Xig * P2Xi2 *oeee * PngXi,nx T & - (3.17)
As in Section 3.1, we assume that the errors are of zero mean and independent,
with the variances

i (3.18)

2
D%{e;} = a. = o%/w;
1

where the weighting coefficients w; are known. The least squares objective

1
function is
nm
<< ~
Q(R) = 20 [ Vi = Prxi1 = Ppiz = +++ = Procki,mx 1% - (3.19)
i=1
Introducing the notations
n ] [ ] ]
Y1 %11 %12 -+ X1nx €
. Y2 %21 %22 < s *2nx €2
Y = y X = y €= (3.20)

~

ynm

L 4 L

X €

X nm, Nx

nm,2 [

expressions (3.17) and (3.19) are reduced to

Y=xp+e¢ (3.21)

and

ap) = (Y - xp WY - xp) , (3.22)
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respectively, where W is an nm*m diagonal matrix with diagonal entries
Wiy Wpy -vey Woq. Solving the simultaneous linear equations &Q(p)/@p; = 0 ;

i=1,2,.4.4n%x , gives the least squares estimates
p= (XTw) " ixTwy . (3.23)

The goodness-of-fit is again measured in terms of the residual sum of

squares G(B) and the variance

= (3.24)

of the residuals. As in the previous section, 52 is an estimate of the

2/w- is an unbiased estimate of

2
constant ¢ in the weights, and hence s. = s°/w;
1

2 A2
the error variance o_ for all i. Having another estimate s of the same
i i

2 2
variance (e.g. from replicates), the F-test involving the ratio F =5 / s
i i

can be used to check our assumptions. In practice, however, such independent
’\12

estimates s, are available in rare circumstances, and the goodness—of-fit is
i

usually assessed by studying the sequence rj; = ;.i - Bl"il - B2xi2 ~ e

e T Pinx¥nx 0
are in use, the basic idea is that in case of a satisfactory fit the

1=1,2,...,nm , of residuals. While many diagnosis methods
observations should be randomly distibruted around the regression hyperplane

Y = PyxXg * Po¥Xo * ee * Bog¥nx - (3.25)

Simple but useful diagnosis tools are the residual plots discussed by Wood
(ref. &) . If the residuals are of highly nonrandom structure, at least one of
the assumptions is gquestionable. This nonrandomness implies that the elements

of the residual sequence rj, ro, «.., I are correlated. A measure of this

nm
serial correlation is the D-statistics proposed by Durbin and Wattson (ref. 7),

and computed according to

nm nm 2
_ ul _ 2 Al
D= EJ triri—g)® /7 2, v - (3.26)
i=2 i=2

Too large or too small values of (3.26) indicate nonrandomness in the

residual sequence. The critical values of D are tabulated in many textbooks



153

(see, e.g., refs. 5) for mm > 15 . Assymptotically (i.e., for nm > 108), the
fit is acceptable at 954 confidence level if 1.7 { D £ 2.3 , and this interval
is larger for smaller samples. Unfortunately the value of D statistics depends
on the particular order of the observations, which is arbitrary in many cases.

Thus you should be careful with D statistics in multivariable regression.

The most important variability measure of the estimate B is its covariance

matrix defined by

cov{ pl=E{ (p-pl)ip-p) 2. (3.27)

This definition already takes into account that in the linear case the least
square estimates are unbiased, thus E({ B Y=p.tet ¥ = (yg, Y5 «ney Vnm)T
denote the vector of the "true" dependent variables in the sample points, then

replacing Y by Y’ in (3.23) we obtain the true parameters p as estimates.

Using this expression for p and (3.23) for B , the definition (3.27) gives

cov{ p 3 = (X"w0OIxTWw E¢eeTy wxTwo L, (3.28)

where € =Y - Y. The factor E{G.G.T) in (3.28) is the covariance matrix of

the measurement errors, and according to (3.18) it is given by

covi{ee) = E(ee’) = AWl . (3.29)

Using (3.29) and taking into account that 2 is the estimate of 02, (3.28)

yields the expression

C =<2 (XTwx)" L (3.30)
p

to estimate the covariance matrix of B . According to the definition (3.27)

of the covariance matrix, the diagonal entries of C estimate the variances
p

of individual parameters, and we can also evaluate confidence intervals for
them, similarly to (3.15). The only difference is that now there are nm — nx
degrees of freedom.

The statistical dependence between the estimates Bi and BJ- is expressed
in term of the correlation coefficients r; forming the correlation matrix of

ij»
the estimates
Rl;;=r;;=0C1;/(cC 10c 1;pY2. (3.31)
p i ij p i p "1t T dd
If the estimates are strongly correlated then they are far from being

independent and it is better to evaluate their joint confidence region instead
of individual confidence intervals. As shown e.g., by Bard (ref. 4), the
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quantity (p-p) €L (p-p) follows X2 distribution with nx degrees of
p

freedom, and hence the region of the parameter space defined by

n~ ~ 2
p-pcCclip-p <X (3.32)
p Pynx

contains the true parameter vector in o/ of all possible data samples. In

2
(3.32) X is the tabular value of the X2 distribution with nx degrees
Pynx

of freedom at the probability p=1 - «/108@ . The o, confidence region

(3.32) is a hyperellipsoid in the nx—dimensional space around the estimate B
fAs shown in Fig. 3.1, the confidence region may include parameter values that

are not at all close to the actual estimate B , whereas the individual
confidence limits usually underestimate this uncertainty and do not reflect the

dependences among the parameters.

2

Fig. 3.1. Confidence region of the parameter estimates

In the multivariate linear regression module M42 first we normalize the
matrix XWX to a correlation-type matrix by a transformation similar to

(3.31) in order to somewhat decrease the numerical errors. This transformation
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is equivalent to a scaling of the parameters, i.e., the unknown variables of
the normal equations. With an ill-conditioned XTwx s however, the estimates

are strongly influenced by small perturbations in the observations vector Y.
This is a frequent problem in parameter estimation, and we use the eigenvalue—
eigenvector decomposition of the normalized XTwx in order to detect it.
Interpretation of the results of this procedure will be detailed in Section
3.5.

The three weighting options of the module are similar to the ones of the
module M4@. With no weighting or with relative weighting the array W
containing the diagonal entries of the weighting matrix is generated
automatically. This array should be evaluated in the main program only if the
option of user specified weights is used.

The parameter RP among the input data is the ridge parameter that will be
exploited in Section 3.5. In normal regression problems RP = @ should be used.

Program module M42

4208 REM SEEEREIIRRTLLEEEEERRER e as Rt satastannassstasssssing
4202 REM ¢ MULTIVARIABLE LINEAR REGRESSION L
4204 REN ¢ MEIGHTED LEAST SBUARES L
4286 REM SRRIERSRERRERLSLIRESNNNLEIEINIIIRIRINRIEEETE It
4208 REN INPUT:

4210 REN NK NUMBER OF SAMFLE POINTS

4212 REM NX NUMBER OF INDEPENDENT VARIABLES

4214 REM  X(NM,NX) TABLE OF INDEPENDENT VARIABLES

4216 REM  Y(NM)  OBSERVATIONS OF DEPENDENT VARIABLE

4218 REM LI} TDENTIFIER OF WEIGHTING OPTIONS

4220 REM @ IDENTICAL WEIGHTS { W(I})=1

4222 REM 1 RELATIVE WEIGHTS { W(I}=1/Y{I)*2 )
4224 REN 2 USER-SPECIFIED WEIGHTS

4226 REM GIVEN BY FURTHER INPUT AS

4228 REM  W{NM)  VECTOR OF WEIGHTS (ONLY FOR WI=2)

4238 REM RP RIDGE PARAMETER {ZERO FOR ORDINARY LEAST SGUARES)
4232 REM OUTPUT:

4234 REM ER STATUS FLAB

4236 REM 0 REGRESSION COMPLETED

4238 REM 1 SINGULAR COVARIANCE MATRIX

4240 REM  P(NX)  REGRESSION COEFFICIENTS IN THE EQUATION
4242 REM Y = PISX1 + P28X2 + ... + Pnx#¥nx
4244 REM ... {FURTHER RESULTS ARE PRINTED IN THE MODULE)

4245 REN AUXILIARY ARRAYS:
4248 REN  A(NE,NXY,CONX NED UCNX NE),DINY)

4250 REM MODULES CALLED: M1&,H1B,H41

4252 IF WI=B THEN FOR K=L TO NM sM(X)=1 :NEXT K :GOTO 4250
4254 IF WI=2 THEN 4250

4256 FOR K=1 TO NM :Y=ABS(Y(K)) :IF Y<1E-15 THEN ¥=1E-15
4258 W{K}=1/Y/Y SNEXT K
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268
4262
4264
4266
4268
4278
4272
4274
4276
4278
4288
4282
4784
4286
4288
4290
4292
4294
4296
4298
4380
4392
4304
4306
4308
4310
4312
4314
4316
4318
4320
4122
4324
4326
4328
4338
4332
4334
4336
4338
4340
4342
4344
4344
4348
4358

352
4334
4336
4338
4360
4362
4364
4366
4368
4378
4372

) J— CONPUTE X' MY AND WX'Y
FOR =1 TO NX
P{I}=0 :FOR J=1 T0 1 :C{I,d)=@ :NEXT J
NEXT 1
FOR K=1 T0 MM
FOR 1= TO NX
FOR J=1 T F: C(1,3)=C(1,3)+H(K)RK(E, ) BX(K,) tNEXT
PUII=P L1} HHE}IX(K, 1)V (K)
NEXT 1
NEXT ¥
3 J— COVARTANCE MATRIY
TR=1E-38 :FOR I=1 TO NY :C(I,8)=C{I,1) NEXT I
FOR 1=1 T0 N
IF C{1,B)<=TR THEN C(1,8)=1 ELSE C{1,B)=5QR(C(I,8))
NEXT 1
FOR =1 TO NX sFOR J=1 10 1
CUL,1=C(T,0)/5(1,8) /C(0,0)
NEXT J sNEXT 1
g, R RIDGE STEP
FOR =1 T0 NX :FOR J<1 70 1
C{T 0 )=CL1,0}-RPH(1=0)
NEXT J: NEXT |

REM ---------- PRINCIPAL COMPONENT ANALYSIS OF THE COVARIANCE MATRIX
N=NX
FOR 1=1 TO N :FOR J=1 TO I :A(1,d)=C(1,d) :NEXT J :NEXT I

GOSUR 1808
REM ---------- MATRTX INVERSION
FOR 1=1 TO N :FOR J=1 TO I :A{I,d)=C{I,J) :NEXT J :NEXT I

BOSUB 1608 :IF ER=1 THEM 4358
12— CONPUTE PARAMETER ESTIMATES

FOR =1 TO N

D=0 :FOR J=1 T0 NX :D=D#A{1,J)/C{J,010P{J) sNEKT J :D{l)=D

NEXT 1

FOR 1=1 T0 MY tP(1)=D(1}/C(1,B) :NEXT 1

REN ~--=mnnmnn WEIGHTED SUM OF SOUARES AND DURBIN-WATTSON STATISTICS
FOR K=1 T0 NN

DE=D :D=¥{K) :FOR I=1 TO NX :D=D-P(I}4%{K,1) :NEXT I
§2:524H(K)4D1D

DN=DN+DAD :1F K31 THEN DS=DS+(D-DE)#(D-DE)
NEXT K
NF=NM-NY 1SE=SOR(S2/NF)

iF DNCIE-3@ THEN DS=2 ELSE D3=DS/DN
REN ==-m=nn-=n STANDARD ERRORS AND CORRELATION MATRIY OF ESTIMATES
FOR I=1 TO NX

D{1}=50R(52/NFIA(T,1)/Ci1,8)/C(1,8)) :C{B,1)=SOR(A(I, 1))

NEXT |

FOR 1=1 TO NX :FOR J=1 TO NX
CiI,0)=A(1,d)/C(0,1)/C(8,d)

NEXT J:NEXT I

REM --=-----n PRINT RESULTS

V§=5TRINGS (70,"-") sFe="R. 00334~ ¥ oF16="4. 418
LPRINT TAB(Z2@);"MULTIVARIABLE LINEAR REGRESSION®
LPRINT TAB{25}3"METHOD OF LEAST SQUARES"

LPRINT :LPRINT :LPRINT

LPRINT "NUMBER OF INDEPENDENT VARIAELES ..... "INX
LPRINT “NUMBER OF SAMPLE POINTS ........vuuws "{NM
IF RP<>@ THEN LPRINT "RIDGE PARAMETER ....cuuvnvannveeses

. AP



4374 LPRINT :LPRINT
4375 LPRINT *PRINCIPAL COMPONENT ANALYSIS OF THE CORRELATION MATRIX*

4378 LPRINT :LPRINT "EIGENVALUE*;

4388 FOR I=1 T0 NY :LPRINT TAB(118143)5" X("j13") "5 ¢ NEXT I :LPRINT :LPRINT
4382 FOR T=1 TO NX

4384 LPRINT USING F$;U(D,1);

4385 FOR J=1 TO NX :LPRINT USING F1$; U(J,1); :NEXT J sLPRINT

4388 NEXT 1

4398 LPRINT :LPRINT

4392 1F ER<OL THEN 4398

4394 LPRINT * SINGULAR COVARIANCE MATRIX GF INDEPENDENT VARIABLES"

4395 GOTO 4452

4398 LPRINT Vs

4480 LPRINT * 1°," ¥ MEAS"," WEIGHT",” Y CONP*," RESIDUAL" :LPRINT V8
4462 FOR =1 T0 NH

4484 Y=0 :FOR 1=t TO NY sY=Y#P(D)BX{K,1) NEXT 1

4405 D=Y(K)-Y sLPRINT K, :LPRINT USING F$;¥(K),K(K),Y,D

4488 NEXT K :LPRINT V§ :LFRINT

4418 IF WI=0 THEN LPRINT "SUN OF SHUARES +vvvvussersersaneensns "382

4412 IF WI)D THEN LPRINT "WEIGHTED SUN OF SBUARES .....vvves.r. °352

4414 LPRINT *DEGREES OF FREEDDM .eevuvverrveres.. "3NF

4416 1F W1=0 THEN LPRINT "STANDARD ERROR +vvvvvvvovrrrrvnnsnnns *5E
4418 1F WIXD THEN LPRINT *SIGMA FACTOR IN THE WEISHTS ......... *;SE

4420 LPRINT "DURBIN-HATSON D-STATISTICS ..0uvvvvy, *308

1422 GOSUB 4108

4424 LPRINT "CRITICAL T-VALUE AT 95 % CONF. LEVEL *;T

1426 LPRINT :LPRINT Vs

4428 LPRINT *PARAMETER*,*ESTINATE*,*ST.ERROR”,"LOHER BOUND®,*UPPER BOUND*
4430 LPRINT Vs

4437 FOR 1=1 T0 NX

4434 LPRINT * P(*;1;") *, sLFRINT USING F$;P(I},B(1),P(1)-T4D(I),P(1)+THD(I)
4435 NEXT 1

4438 LPRINT V$ :LPRINT

4449 LPRINT *CORRELATION MATRIX OF PARAMETERS® :LPRINT

4442 FOR 1=1 TO NX :LPRINT TAB(1131+3);" P{*;1;") “; :NEXT I :LPRINT :LPRINT
4444 FOR 1=1 T0 NX

4485 LPRINT *P{*;1;") *,

3448 FOR J=1 TO 1 :LPRINT USING F183C(1,d); sNEXT J :LPRINT

4450 NEXT T :LPRINT :LPRINT

4452 RETURN

4454 REM SSISINILIRAREASIRESRANLISIRESLAsLIARIRILILNILILINY

When computing the estimates (3.23), the matrix XTWX
normalized, with unit entries in its diagonal. The modul M146 performs the
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inversion and returns the status flag ER = 1 if this step is not successful,

i.e., the problem cannot be solved.

Example 3.2 Decomposing the rate constant of an acid-—catalysed reaction

The hydrolysis of o—aceticacid-ethylester, described by

EHC(OCHg) 3 + H0 ~=> CHICOOC Hg + 2CH50H
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is a typical acid-catalysed reaction. As shown by Scihwetlick (ref. B), in the
presence of the weak acid NOC H,OH and at constant ionic strength the rate
constant k of the reaction can be decomposed as

K = kg + KylH™Y + kpyalHAD (3.33)

where kg 1is the rate constant of the uncatalysed reaction, whereas ky and
kpy are catalysis constants that measure the influence of the hydrogen ion
concentration [H+J and that of the undissociated acid concentration [HAJ,
respectively. In our case HA is NOLHyOH. Table 3.1, originally published
in (ref. ?), lists the rate constants observed at different values of [H"3
and [HA]. Column 3 of the table will be used only in a forthcoming

investigation of Section 3.5.

Table 3.1

Rate constant of an acid-catalysed reaction

Experimental conditions

kx10?
[(H*1x107  [HA]ABS  [HA 1l 1/s
mol/1 mol/l mol/1
4.8 2.42 2.42 1.21
4.8 5.66 5.66 1.20
4.8 16.00 16.00 1.35
4.8 21.21 20.20 1.44
6.5 3.84 2.684 1.54
6.5 10.25 7.56 1.61
6.5 18.30 13.50 1.77
10.2 3.10 1.45 2.37
10.2 19.30 4.83 2.47
10.2 38.90 14.50 2.84

We present a simple main program to estimate the parameters kg, ky and ky
by the unweighted least squares method. The program can be used for solving
other linear regression problems if altering the DATA statements appropriately.
The first DATA line specifies the sample size and the number of independent
variables. The observations are listed in separate DATA lines, where the
first number is the dependent variable. The second number equals 1 and will
result in the constant term kg of the model (3.33). This is followed by the
values of [H*] and [HAJ.



108 ReM
182 REM EX. 3.2. MULTIVARIABLE LINEAR REGRESSION - ACID CATALYSIS
104 REM MERGE M1é,M18,H81,M42

186 RENM (NUMBER OF SAMPLE POINTS AND NUMEER OF INDEP, VARTABLES)
108 DATA 10,3

118 REM {DEPENDENT VARIABLE AND INDEPENDENT VARIABLES)

102 DATA L2064, f,  A.BE-9,  0.00242

114 DATA  1.206-4, 1,  A.BE-9,  B.BBSs6

116 DATA  13SE-4, 1,  4.BE-9,  .01500

118 DATA  L.44E-4, f,  4.BE-9, 0.0
120 DATA  1.S4€-4, 1,  6.5€-9,  0.00384

122 DATA 1.61E-4, 1,  6.56-9,  @.B1825

124 DATA  L77E-4, 1,  &.56-9,  0.01830

126 DATA  2.37E-4, 1, 10.26-9,  0.88318

128 DATA  2.47E-4, 1, 10.26-9,  0.01830

130 DATA  2.88E-4, 1, 18.26-9,  B.B3R%R

280 REW -=------—- READ DATA

202 KEAD N, NY

204 DIM X{NM,NK) ,Y(NH) BONM) , PONK)

286 DIM A(NX,NY),CINK NXD,LENY, ) DINK)

208 FOR =1 T0 N¥

218 READ V(1)

212 FOK J=1 TO NX :READ X{1,d) :NEXT J

244 NEXT

214 REW --mommmemn CALL MODULE (NO WEIGHTING AND NO RIDGE)
218 W1=0 :RP=0

220 GOSUR 4209

222 §T0P

—

The first part of the output contains the principal component analysis of the

correlation matrix discussed later in Section 3.5. In addition to the
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residuals, goodness—of-fit, parameter estimates and bounds, the Durbin-Wattson

D statistics is also printed by the module.

HULTIVARIABLE LINEAR REGRESSION
METHOD OF LEAST SGUARES

NUMBER OF INDEPENDENT VARIABLES ..... 3
NUMBER OF SAMPLE FOIRTS ........ seene 10
PRINCIPAL COMPONENT ANALYSIS OF THE CORRELATION MATRIX
EIGENVALUE  X( 1) 1) 03
J271B1E+8]  D.589 8,588 8.554

3.2
8.241026+00  -.374 -.410 8.832
B.48887E-81  -.716 8.598 .022
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[ Y MEAS NEIGHT Y COHP RESIDUAL

1 B.12100E-B3  @.10888E+B1  @.11480E-03  @.62811E-05
2 B.12000E-03  0.10800E+B1  B.11993E-83  @.70540E-07
3 B.13500E-03  0.10088E+B1  @.1363BE-B3  -.13B3BE-85
4 B.14400E-03  D.1088BE+D1  B.14455E-03  -.55316E-06
3 0.15400E-03  0.10880E+B1  @.15513E-03  -.1131BE-05
b B.16100E-03  @.10808E+B1  @.16528E-03  -.42821E-05
7 8.17788E-83  0.10000E+@1 B.17883E-83  -,1B294E-85
f B.23708E-03  ©.10008E+81  @.23685E-03  @.15871E-26
9 8.24700E-83  0.10000E+d1  B.24825E-03  -.125@4E-85
18 B.28408E-65  ©.100PGE+0l ©.28087E-83  8.31289E-85

SUM OF SQUARES ......ovvvenevaneereen 7.251783E-11

DEGREES OF FREEDOM .......... eeneens 7
STANDARD ERROR .uvvvvevvvvnnennnenins  3.21B63E-86
DURBIN-WATSON D-STATISTICS .....0.... 1.150208

CRITICAL T-VALUE AT 93 % CONF. LEVEL 2.37

PARAMETER ESTIMATE ST.ERROR LOWER BOUND  UPPER BOUND

) 0.34346E-85  @.34061E-85  -.44378E-05  B.11587E-94
) 8.22403E+05  0.45839E+B3  D.21316E+85  B.234B9E+85
)

P{
P
P 8.15835E-82  8.11693E-03  0.13864E-82  0.186846E-82

N

CORRELATION MATRIX OF PARAMETERS

PE L) PL2) P{3)

PEL 1.eee
P{2) -.861 1,000
P{3) =257 -3 1.eeg

The standard error is about 24, which is certainly not larger than the
error in the observed rate coefficients. Therefore, the fit is acceptable in
spite of some nonrandomess in the sequence of residuals. This conclusion is
supported by the acceptable value of D-statistics, athough with only 1@ data
points we cannot use this test rigorously.

Though the confidence intervals of the parameters are reasonably small, the
interval for kg includes the value kg = @, and hence at the given
significance level we cannot reject the hypothesis kg = @. Indeed, fitting a
simplified model k = kH[H+] + kya[HA]  to the data yields the standard error
s = 3.22><l@—6, so that the goodness-of-fit is practically unchanged. Dropping
the constant term is supported by an F-test at any reasonable significance
level. On the other hand, a model containing even more than three terms might
seem to be natural from a chemist's point of view. We will return to this

question in Section 3.5.1.
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Exercises

O Apply (3.23) and (3.30) to the model y = pyjx + pp . Compare the resulting
expressions with the corresponding expressions of Section 3.1.

O Discuss the relation between transforming the matrix X'WX into a

correlation type matrix and scaling of the parameters.
O Solve Example 3.2 with the simplified model k = kH[H+] + kya[HA]  without
weighting, then, in turn, apply relative weighting and user specified

weights w; = Ui:i (also called Poisson weighting).

i

O Fit a parabol y = p; + pox + p3x2 to the data of Examples 1.8.2, 1.8.3
and 3.1 using the program module M42. (See Section 3.9 for a more

straightforward solution of this problem.)

3.3 NONLINEAR LEAST SQUARES

In this Section we estimate the parameters of the nonlinear vector valued

function
y = f(x,p) (3.34)
given by ny functions as

= fi(x,p)

~
-
I

Yny = fny(x,p) .

The model is fitted to the observations ( (xj1, ---) Xinxd Yilr =ces yi,ny)’
i=1,...,nm 3. Let € = ( €595 o-ey e’i,ny)T denote the error vector in the
i-th observation. We assume that the ny»Xy covariance matrices of the error
vectors are known, at least up to a constant factor. The mnm weighting

matrices of dimensions nyXhy are selected according to

-1
cov( € } =a° W, (3.36)
1

where o2 is a (possibly unknown) scalar multiplier. Note that nondiagonal W;

matrices are also allowed. The least squares objective function
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nm
ap) = D Cy; - Foxg,mIWIY; — Fix;,p)3 (3.37)
i=1

is in agreement with the maximum likelihood principle.

For the sake of simplicity we introduce the notations

Vi
f(xl,P) wl
V=1.{, Fm= . , W= ] , (3.38)
' (%P o
LYrm]

therby reducing the objective function to the form

ap) = [Y - F(mITWY; - F(p1 . (3.39)

The minimum of (3.39) can be localized by the methods discussed in Section
2.4. As shown in many comparative studies (see, e.g., refs. 1@-12), apart from
some special cases (ref. 13) the most efficient algorithms to minimize
swn—of—squarés objective functions are the various versions of the Gauss—Newton

method. The method is based on the local linear approximation

F(p 2 F(pl®)) + 3(p@)[p - plo) (3.40)

of the function F around the initial estimate p(c’) of the parameters. The
(nm>ny)xXnp Jacobian matrix J of F is defined by

[ ot ,p) 20k P
=01 alF’np
et(x »P) ef(x2 »,P)
J(p) = ! Prp |, (3.41)
af (%om2P) et (xop2P)
%y apnp

Setting (3.4@) into (3.39) yields the quadratic approximation
Gp = [Y-F-ap-p@H ] w [Y-F-ap-p)] (3.42)

of the objective function, where the argument p(D) of F and J is dropped
for notational simplicity. The next estimate p(l) is then the minimum point
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of the guadratic function (3.42), which is easy to find. Indeed, regarding
Ap = p - p(c’) as the unknown parameter vector, minimization of (3.42) is

equivalent to a linear regression problem with the vector of dependent
variables ¥ - F and the matrix of independent variables J. The solution to

this problem is 4p = [J'WIT™13TW [¥ - F]. Repeated application of this idea
yields the Gauss—Newton iteration

ptkt) = k) & T 13Tw ¥ - FI, (3.43)

where J and F are computed at p(k). Similarly to the gquasi Newton
optimization methods, the Bauss—Newton algorithm offers gquadratic convergence
close to the minimum. Further apart, however, the step size is frequently
inflated, particularly when [JTWJ] is nearly singular. Then p(k"'l) might be
a worse approximation to the minimum of (3.39) than p'%) itself. The goal of
the famous Levenberg—Marquardt modification (refs. 14-13) of the

Bauss—Newton algorithm is to overcome this disadvantage through the iteration
pd*l) = p(k) & aTwa + A0 D137 10Tw (¥ - F7 , (3.44)

where I is the npxp unit matrix and the nonnegative scalar Aktl) g the
Marguardt parameter. With ) sufficiently large, the additional term
moderates the length of the step and forces its direction toward the negative
gradient of the objective function. A variety of rules has been proposed for
selecting the Marquardt parameter in subsequent iterations (refs. 5,12). In a
convergent iteration most of the methods decrease its value, thereby returning
to the Gauss—Newton procedure.

Analogously to the linear case, the goodness—of-fit is measured in terms of

the residual sum of sguares G(B) and the residual variance {or sigma square)
2 , defined by (3.24) with the degrees (nmxny — np) of freedom in the
denominator. Interpretation of estimates is based on the abservation that each

iteration of the Gauss—Newton algorithm is equivalent to solving a linear

regression problem. Replacing the matrix X in (3.30) by the Jacobian J(B),

corresponding to the linear approximation of the response function F in a
neighborhood of B , the covariance matrix of estimates is approximated by
C=<20d(p) Wwam 171 . (3.45)
p

Based on the same linear approximation, the confidence region is described
by (3.32) as in the linear case. This is an approximate relationship, and may

considerably differ from the exact confidence region given by
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Q(p) - A(P) < X2, where X2 depends on the probability level, (see, e.g.,

Bard, ref. 3). The exact confidence region has little practical value for

np > 2, since it is very difficult to compute, whereas the local linear

approximation (3.32) will be very useful.

The following simple tricks improve the efficiency of the Gauss—Newton—
Marquardt algorithm implemented in the module M45.

(1)

(1i)

(1i1)

(iv)

The parameters are normalized. In the (k+1)-th iteration the minimum is
localized in the space of the parameters defined by 8 = pJ-/pJ-(k).
Therefore, the initial guess is 8 = 1 in every iteration, and the

entries of the Jacobian matrix are

%8 2P k)

. (3.46)
as; ap; J

In spite of the definition of Bjs according to (3.46) we never divide by
Pj- Thus you can choose the initial estimate p; = @ , but then the j-th

parameter remains zero during the iterations.

The cross product matrix [JT(B)NJ(B)] is further normalized to a
correlation type matrix before inversion. At this point we leave

a diagonal entry unchanged if it is less than a threshold selected
relatively ta the trace of the matrix. The idea behind this trick is to
allow the additional term A(K*1)1 to eliminate the possible near
singularity of the matrix to be inverted.

The above normalization enables us to use simple rules for selecting the
Marquardt parameter.
Initially A(®) = .21 , whereas in subsequent iterations

A = gk 56 geptktl)y ¢ qeptk)y |, and

ak+l) o 1K) otherwise.

The sign of the parameters are usually known from physical
considerations. Restricting 85 > @ we keep the sign of the starting

estimate of the parameters.

The termination conditions are [|As; (k)” < EP or k> IM, where EP is

the selected lower bound on the relative step size, and IM is the maximum

number of iterations.
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Program module M45

4588 REM SUSSERBRESSXRESBsassasntsnssassxbsaasnssanstsaasy
4382 REM § WEIGHTED LEAST SQUARES ESTINATION OF PARAMETERS #
4384 REM 8 IN MULTIVARIABLE NONLINEAR MODELS L
4586 REM # GAUSS - NEWTON - MARGUARDT METHOD L
4508 REM SERSEREBRERXRSSRREERENRRERRRER s RbRRRRnRsRRRsaiIy
4518 REM INPUT:

4312 REM NM NUMBER OF SAMPLE POINTS

4314 REN NX NUMBER GF INDEPENDENT VARIABLES

4316 REM NY NUMBER OF DEPENDENT VARIABLES

4318 REM NP NUMBER OF PARAMETERS

4528 REM  T{NN,NX) TABLE OF INDEPENDENT VARIABLES

4522 REM  V(NM,NY) TABLE OF DEPENDENT VARIABLES

4524 REM L} IDENTIFIER OF WEIGHTING CPTIONS

4526 REM @ IDENTICAL MWEIGHTS ( W(I,I}=L, W{I,J)=0 )

4528 REM 1 RELATIVE WEIGHTS { W(I,I)=1/v(¥,1)*2, W(I,d}=8@ )
4530 REM 2 USER-SPECIFIED WEIGHTS GIVEN BY FURTHER INPUT AS
4332 REM  W(NY,NY) MATRIX OF WEIGHTING COEFFICIENTS { ONLY FOR WI=2 )
4534 REM 3 WEIGHTS COMPUTED FOR SAMPLE POINT M IN USER

453 REM SUPPLIED SUBROUTINE STARTING AT LINE 888

4538 REM  P(NP)  INITIAL PARAMETER ESTIMATES

4548 REM EP THRESHOLD ON RELATIVE STEP LENGTH
4342 REM In MAXIMUM NUMBER OF ITERATIONS

4544 REN DUTPUT:

4346 REM ER STATUS FLAG

4348 REM B SUCCESSFUL ESTIMATION

4550 REM 1 REGUIRED THRESHOLD NOT ATTAINED
4552 REM  P{(NP)  PARAMETER ESTIMATES

4554 REN  .....  FURTHER RESULTS ARE PRINTED IN THE WODULE
4334 REM USER-SUPPLIED SUBROUTINES:

4338 REM  FROM LINE 3e0:

4368 REM X{1,.00nx) AND PUL,..uynp) == Y{lga..yny)
4362 REM { RESPONSE FUNCTION EVALLATION

4544 REM  FRON LINE B@@:

434b REN M-y WLyl e ny)

4568 REM { COMPUTE ACTUAL WEIGHTS FOR SAMPLE M

4578 REM CALLED ONLY IF WI=3 )

4572 REM AUXILIARY ARKAYS:
4574 REM  A(NP,NP) ,C(NP,NP) ,U{NP,NP} B(NP},DINP],G(NY,NP)

4576 REM NODULES CALLED: Mis,M18,M4{

4578 IF NIC)B THEN 4582

3588 FOR T=1 T0 NY sFOR J=1 TO NY N(1,d)=-{I=J) sNEXT J GNEXT |

4582 REM ---------- STARTING VALUE DF MARQUARDT'S LAMDA 15 .01
4584 PN=.01 :EI=R :E5=0

4586 REN ---------- SUM OF SGUARES

4388 GOSUR 4768

4598 REN ---------- START OF [TERATION

4592 LPRINT :LPRINT "STARTING POINT";TAB(25);"SUM 58="3;F :LPRINT
4594 FOR K=1 TO NP :LPRINT TAB{25);"P(*;K;"}=";P{K) :NEXT K

4595 FOR I1T=1 TO IM

4398 FOR K=1 TO NP :U(K,8)=P(K) :NEXT X :FR=F

4688 REM ---------- COMPUTE T'WT AND WT'Y

4682 FOR K=1 TD NP :B{K)=8 :FOR L=1 TD K :C(K,L)=0 :NEXT L :NEXT K
4604 FOR N=1 TO NM

4606  FOR I=1 TO NX :X{I}=T{M,I) :NEXT I

4608 IF Wi=1 THEN GOSUB 4784

4610 IF WI=J THEM ER=@ :GOSUB B@ :1F ER>B THEN 4932

4612 GOSUB 4792
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8614 FOR K=1 70 NP

316 FOR L=1 T K

e ase

1628 FOR =1 70 NY:FOR J=t TO NY

1622 A=MM(T,J)I6(T,LI6(3,K)EP(LIEPIK)

4624 NEXT 3 sNEXT T :C{E,L)=COK L)+

4626 NEXT L

428 A=

4630 FOR =L TO NY:FOR J=1 T0 NY

4832 A=RHHIT,INIB(I,K)RYIN, TI-YEE) )IPIK)
4638 NEXT J oNEXT 1 :B{K)=R(K)+A

4636 NEXT X

4638 NEAT

PTIT 12 —— NORNALIZE

4642 TR=B :FOR I=L T0 NP :C{1,M)=C{I,1) :TR=TReC(I,1} :NEXT 1
1644 TR=TR/NP/ 1000

4646 FOR I=1 TO NP

448 IF C{1,03¢=TR THEN £{1,0)=1 ELSE C(1,0)=50RIC{1, D))
4650 NEXT |

4652 FOR T=1 TO NP :FOR J=1 T0 1

8654 O(1,0)=C(1,0) sC41,0)=C01,d)/C(1,0)/C(3,0)
4656 NEXT 1 :NEXT 1

4458 REM ----mmoen NARGUARDT'S CONPRONISE

1549 FOR I=1 TO NP

4662 FOR J=1 T0 I-1 :A(1,d)=Ci1,3) :NEXT )

4684 ACT,1=C(1,114PM

4666 NEXT 1

4668 REM ---------- MATRIX INVERSION

4670 ER=B :N=NP :GOSUF 16@8 :IF ER=1 THEN 4718
4672 REM ---~------ COMPUTE STEP

4674 FOR I=1 TO NP

4676 D=B :FOR J=1 70 NP :D=D+A{1,J)/C(J,B)88(1) NEXT J :D(1)=D/E(1,0)
4678 NEXT 1

4688 REH ~----mn-m- CHECK SIGN AND REDUCE STEP IF NEEDED
4682 SL=0 :¥I=1

483 FOR I=1 T0 NP

4486 IF YIND{1)<=-.95 THEN XI=-.95/D{[}

4688 SL=5L+D{1)8D(1)

4690 NEXT 1 :SL=SOR{SLI#XI

ITL7IR 3 J— NEW ESTIATES

4694 FOR 1=1 TO NP :P{1)=U(T,0)%{1+118D(1)) sNEXT 1

496 BOSUB 4740

FTTT 1 J—— PRINT ITERATION STEP

4700 F$="R 454" SLPRINT

4787 LFRINT *IT=";17;TAB{18);"PH"; sLPRINT USING F$;PM;
4704 LPRINT TAB(25);"SUM S0=";F;TAB(50);"SL=";5L :LPRINT
4786 IF F3=FR THEN 4710

4788 FOR K=1 TO NP :LPRINT TAB(25);*P(*;Ki")=";P{K) :NEXT K

4719 REM ~-------—- END OF PRINT
4792 IF 5L4=EP THEN E1=8 :60T0 4726
4714 REM ~----m-ee- NARGUARDT'S PARAMETER

4716 IF FCFR THEN 4720

4718 PH=108PH :60T0 4658

4720 PN=PN/1@ :IF PMC.BB0001 THEN PH=.000081
4722 NEXT 1T

4724 El=1

4726 IF FCFR THEN 4730

4728 F=FR tFOR I=1 TO NP :P(I}=U{],8) :NEXT I
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4730 REN -=---mm=-- STANDARD ERROR AND CORRELATION MATRIX OF PARAMETERS
4732 NF=NHINY-KP :SE=SER(F/NF)

4734 FOR 1=1 TO NP <FOR J=1 T0 1 :A(L,3)=C{1,d) sNEXT J:NEXT 1

4734 BOSUB 188 :1F ER=1 THEN ES=l :60TD 4752

4738 FOR 1=1 TO NP

4748 B(1)=SOR(F/NFRA(T,1}/C(1,0)/C(1,B))

4742 C{B,1)=50R(A(1, 1))

4748 NEXT |

4745 FOR 1=1 TO NP :FOR J=1 TD WP

4788 C(1,0)=AL1,7)/C(0,1)/C(8,0)

4750 NEXT J:NEXT 1

4752 REN -----n=n- PRINCIPAL CONPONENT ANALYSIS

4754 FOR 1= TO NP sFOR J=1 T0 1 sA(1,0)=U{1,d) sNEXT 1 :NEXT 1

4756 N=NP :60SUR 1800

4758 GOTO 4818

4760 REN -=-------- COMPUTE S50

4762 F=9

4764 FOR M=1 TO NN

4766 FOR T=1 TO KX :X(1)=T(N,1) :NEXT I

4768 IF WI=1 THEN GOSUB 4784

4770 IF W1=3 THEN GOSUR 800

4772 GOSUB 900

4774 FOR 1=1 TO NY tFOR J=1 TO NY

1776 F=FRILIVB(VOH,1)-V(T)IR(VIN,D)-Y1D))

4778 NEXT 1 NEXT I

4780 NEXT

4782 RETURN

4784 REN ---------- RELATIVE NEIGHTS

4786 FOR 1=1 T0 NY :Y=ABS(V(M, 1)) :IF Y{IE-15 THEN Y=1E-15

4788 W(I,1)=1/Y/Y :NEXT 1

4799 RETURN

4792 REN —-----——-- CONPUTE JACORT MATRIX G(NY,NP) AND RESPONSE Y(NY)
4794 FOR J=1 10 NP

4796 DE=,B81ABS(P(J))+1E-10 :P{1)=P(1}+DE :505UB 988

4798 FOR =1 TO NY $G(1,d)=Y(1)/DE :NEXT 1

1800 P(3)=P{1)-DE :D{J)=DE

4802 NEXT J

4804 GOSUE 990

4806 FOR 1=1 TO NY :FOR J=1 TO NP :6(1,3)=6(1,d)-Y(1)/D(J} :NEXT J: NEXT I
4868 RETURN

4819 REW --------- PRINT RESULTS

4812 LPRINT :LPRINT

4814 LPRINT TAB{15);"MEIGHTED LEAST SOUARES PARANETER ESTIMATION®
1814 LPRINT TAB{21);" IN MULTIVARTABLE NONLINEAR NDDELS*

4818 LPRINT TAB{21);*GAUSS - NENTON - MARDUARDT METHDD®

4820 LPRINT :LPRINT :LPRINT

4822 LPRINT *NUNBER OF INDEPENDENT VARIABLES ..... ";NX

4824 LPRINT "NUNGER OF DEPENDENT VARIABLES ....... *;NY

4826 LPRINT *NUNBER OF PARBHETERS vvvvvuvvnesvers *5NP

1828 LPRINT "NUNBER OF SAMPLE POINTS vvvvvusvv.... “3NN

4830 LPRINT "OPTION OF NEIGKTING ....eeersvvrnenn. Nl

4832 IF WI=A THEN LPRINT "{IDENTICAL WEIGHTS)®

4834 IF WI=1 THEN LPRINT *(RELATIVE WEIGHTS)"

1836 IF W1=2 THEN LPRINT *[USER DEFINED WEIGHTS, INDEPENDENT ON THE SANPLE®
4838 IF N1=3 THEN LPRINT *(USER DEFINED WEIGHTS, DEPENDENT ON THE SANPLE*
1840 FS="H, MR~ 0 GFIS=PLHE :LPRINT LPRINT

4842 LPRINT "PRINCIPAL COMPONENT ANALYSIS OF NORMED CROSS PRODUCT MATRIY*
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4844 LPRINT sLERINT “EIGENVALUE";

4894 FOR 1=3 TO NP :LPRINT TAB{LIBI43):" P{";15°) "5 ¢ MEXT 1 :LPRINT :LPRINT
4843 FOR =1 TO WP

4850 LFRINT LUSING F8;U08,1),

4857 FOR J=1 TO NP :LPRINT USING FI$; U{J,1); sNEXT J :LPRINT

4854 NEXT T

4856 LPRINT :LPRINT

4858 Y$=STRINGS(78,"-*] :V1$=5TRINGS(55,"-"}

4B6B IF E1=1 THEN LPRINT * SEDUIRED THRESHOLD NOT ATTAINED® :LPRINT :LPRINT
4842 IF ES=1 THEN LPRINT * SINBULAR CROSS FRODUCT MATRIX® :LFRINT :LPRINT

4844 FOR =) TO NY

4865 LPRINT :1F NY21 THEN LPRINT "RESPONSE FUNCTION';1

4868 LPRINT VI3 :LPRINT "SAMPLE No*,* V MEAS",” ¥ COMP*," RESIDUAL" :LPRINT V1s
4870 FOR M=1 TO M

4872 FOR J=1 TO MY :X{3)=TM,d) :NEXT

4874 SO5UB 928

4876  LPRINT M, :LPRINT USING FS:9(M,1),¥(1},V(M,1}-Y{1)

4878 NEXT % sLPRINT Vi$

4880 NEXT 1 :LFRINT :LPRINT

4882 IF WI=B THEN LPRINT "SUM OF SBURRES .............. veeenees F
4884 1F WIX@ THEN LPRINT "WEISHTED SUM OF SGUARES .....vvvuvnus 3F
4886 LFRINT "DEGREES OF FREEDOM .......ovvvvvienss "INF

4888 IF WI=0 THEN LPRINT "STANDARD ERROR ...... draares ieeeens "iSE
4898 IF #1:@ THEN LFRINT "SIGMA FACTOR IN THE WEIGHTS ......... "iSE

4892 50SUR 41008

4894 LPRINT "CRITICAL T-VALUE AT 95 % CONF. LEVEL ";7

4895 LFRINT :LPRINT Vs

4398 LPRINT "PARAMETER", "ESTIKATE",

49p@ IF ES=8 THEN LPRINT "ST. ERRCR","LOWER BOUND","UPPER BOUND";
4982 LFRINT :LPRINT Vs

4904 FOR =1 70 NP

4935 LPRINT * P{"i13") ", :LPRINT USINE F$;F{1},

4988 PR=ARS(B(I1)3F(I})

4913 IF ES=B THEN LPRINT USING F$;PE,P{1)-T4PRP(1)+TIPR;
4912 LPRINT

4914 NEXT 1

4916 LPRINT V§ :LPRINT

4918 IF £S=1 THEN ER=1 :60TO 4932

4928 LPRINT "CORRELATION MATRIX OF PARAMETERS" :LPRINT

4922 FOR i=1 TO NP :LPRINT TAB{L1#1+3);" P{"315") *y :NEXT I :LFRINT :LPRINT
4924 FOR 1=1 TO NP

4926 LPRINT "P{";13") ",

4928 FOR J=1 TO 1 :LPRINT USING F1$;C{I,d)5 sNEXT J :LPRINT
4930 NEXT T :LPRINT :LPRINT

4932 RETURN

4934 REN PRRSSSRsnt e s b st baasssssassssssnirssanssLIsIn

The role of the input data NvM, NX, NY and NP is obvious from the text and
the remark lines, but the array T(NM,NX) of independent variables deserves
some explanation. Each line of the array should contain all information that
enables us to compute the value of the dependent variables for a sample paoint
at the current values of the parameters. Therefore, the module transfers the
appropriate row of T(NM,NX) into the vector X(NX) for further use in the
user supplied subroutine. This subroutine starting at line 900 computes the

independent variables VY(NY) at the current parameters P(NP) and independent
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variables X(NX). If the model consists only of one response function, then
NY =1 and only VY(1) is evaluated in the user subroutine. The observed
values of the dependent variables are stored in the array V(NM,NY). If there
is only one response function, this array consists of one column.

There are four weighting options. No weighting (WI = B) and relative
weighting (WI = 1) are easy to use, because the weights are generated
automatically. You should remember, however, that relative weighting is not
recommended if any observed value is near to zero. With the option WI = 2
you should provide an NyY>xXNY matrix of weights in the array W(NY,NY}. The
same weighting matrix will be then used in all sample points.

You may also wish to use different weighting matrices for different
observations. For this purpose the weighting option WI =3 is provided. To
use this option you must supply a second subroutine starting at line 8BGO ,
where you have access to the index M of the current sample point. The task of
the second routine is to compute the NYXNY weighting matrix for the current
sample point and to place it into the array W.

Selecting the initial estimates of the parameters P(NP) you should keep in
mind that their signs remain unchanged during the iterations. For a first try
it is reasonable to set a low limit on the number of iterations, say IM =5,
and to use a moderate value, say 0.21 or 0.021 , for EP.

The subroutine between lines 4792 - 4888 provides divided difference
approximation of the appropriate segment of the Jacobian matrix, stored in the
array G(NY,NP). In some applications the efficiency of the minimization can be
considerably increased replacing this genetral purpose routine by analytical
derivatives for the particular model. In that case, however, Y(NY) should be
also updated here.

Example 3.3 Fitting a nonlinear rate expression

Rational functions are frequently encountered as rate expressions of

catalytic reactions. In addition, the function
Y = Py + X1/{poxp + pxxx) (3.48)

is a popular test problem for comparing parameter estimation procedures
(refs. 1@,12). In this case we have only one response function, three
independent variables and three parameters. Line 11@ of the following main program
specifies these values, together with the number NM = 15 of observations.

The 15 DATA lines starting at line 114 correspond to the 15 observation
points. The values of the dependent variable and of the independent variables
can be easily reconstructed from the listing. Since NY =1 , the subroutine
starting at line 0@ computes the single value Y(1). Selecting the unweighted
option WI =@ we do not need the second user subroutine. The starting

estimate of the parameters is given in line 220.
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100 REM ----
102 REM EX. 3.3, NONLINEAR LSO FARAMETER ESTIMATION - BARD EXAMPLE
104 REM MERGE M14,Mi8,M41,H45
73 1o Jr— DATA
188 REK (NM, NY, N1, NP)
140 DATA 45, 1, 3, 3
UZREN (Y, %L, 42, X3
144 DATA .14, 1,15, 1
,

116 DATA .18, 2, 14,
118 DATA .22, 3, 13,
178 DATA .25, 4, 12, 4
122 ATA 0,29, 5, 11, §
124 DATA .32, 6, 19, 4
(26 DATA R3S, 7, 9, 7
128 DATA .39, B, B, B
10 DATA 837, 9, 7, 7
I20ATA 0.58, 10, &, 4
134 DATA B.73, 11, 5, §
126 DATA  9.98, 12, 4, 4
138 DATA 1,34, 13, 3, 1
142 DATA  2.1@, 18, 2, 2
142 DATA 4,39, 15, 1, 1
200 REW --------—- READ DATA

202 READ N, NY, X NP
204 DIN T(NM,NX) ViNN,NY) PENE)  K(NEY Y NY D, HONY,NY)
206 DIX A{NP,NP),CINP,NP],U(NP,NP), B(NP) , D(NP)  GINY,NP)
208 FOR 1=1 10 N

2B FOR J=1 TO NY sREAD V(I,1) :NEXT J

217 FOR J=1 T0 NX :READ T(I,J) :NEXT J

214 NEXT 1

24b REN ~-mmmmmmnn £ALL NONLINEAR LSG ESTIMATION MODULE
218 WI=0 :EP=,0001 :IN<28

220 P(1)=1 :P2)=1 F{3)=L

222 GOSUB 4508

224 ST0P

908 REN ---------- FUNCTION EVALUATION
902 V(1) =P(L]+X{1}/{P(2]IX(2]+P(3)0X(T))
9B4 RETURN

According to the following output, the module meeded six iterations to find
the minimum of the objective function. The value of the Marquardt parameter
PM, i.e., LS gradually decrased. In iterations S and & several
attempts with different Marquardt parameters are necessary to improve the
objective function. In less cooperative estimation problems the module
frequently needs to increase the Margquardt parameter. The current value of the
sum of squares, i.e., the objective function and the relative step length SL
are also printed in every iteration.

If a less conservative termination criterion, say EP = 0.201 were used,
the procedure would be stopped after the 5-th iteration as seen from the value
of SL.



STARTING POINT

Pr=0.1E-01

Pr=0.1E-02

PM=B.1E-03

FM=0.1E-04

Pr=0,1£-03

FrH=0.1£-04

PM=0,1E-85

PM=0.1E-04

PM=8.1E-83
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PM=B.1E-D1
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Py
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L
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SUM 58=
PEL)
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SUM 506=

5UM 56=

SuM 50=

SUM 58=
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L
w0 on

41,6817
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i

1.345128
1061849
1.42408
1.43277
1.85235¢6E-02
7.888309E-02
1.47196
1.90143
8.241143E-03
B8.347398E-02
1.144982
2,330702
8.214884E-03
8.24401E-02
1,133951
2,342825

8,214884E-02

8.21487¢6E-83
241451E-02
3249
3488

8.24
113
2.34

8.214885E-03
B.214888E-83
8.214876E-03
8.214886E-83

B8.214B47E-03

5L=1.079673

Sl= .3396549

Sl= 326665

5= 1.660185E-02

5= 7.513525E-04

5l= 7.476011E-04

SL= 2,55171E-84

5= 2.539624E-84

SL= 2.426527E-04

5L= 1.711297E-04

Sl= 6.64D381E-05
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WEIGHTED LEAST SQUARES PARAMETER ESTIMATION

IN MULTIVARIABLE NOMLINEAR MODELS
GAUSS - NEWTON - MARGUARDT METHOD

HUMBER OF INDEPENDENT VARIABLES ..... 3
NUMBER OF DEPENDENT VARIABLES ....... |
NUMBER OF PARAMETERS ..........covvs 3
NUMBRER OF SAMPLE POINTS .......cuuens {
OPTION OF WEIGHTINE «vvvvvvvnnnunnens B {IDENTICAL WEIBHTS)

PRINCIPAL COMPONENT ANALYSIS OF NORMED CROSS PRODUCT MATRIX

EIGENVALUE  P{ 1} Fe 2 PL3)

0.14589E+02  -.048 0.437 0.8%8
8.79333E-81  2.923 =325 n.207
B.65923E-22  0.383 8.839 -.388

SANPLE No Y MEAS Y CONP RESIDUAL

B.14000E+00
. 1BO0RE+0R
B.22090c+00
9.25002E+09
. 29000 +00
.32009E+00
. 15000E+00
,3900BE+00
8.27808E+00
[} . 58000E+R0

3

565\E+BB - 65401E EL
7176400 0.83274E-03
B6IE+2D B.13B67E 22
MI3E+00  9.445726-02
70BAE+00  8.19944E-01
452226408 -.B82215E-01
b179E400  0.18212E-01

S~ O O e G BT e

- e
n.»curur.-lrar-dra
~d e = @

eladb i R

1 0,73800E+20  9.71519E+09  0.14B1ZE-B1
2 0.95000E+00  0,94529E400  0.14710E-01
3 9.13400£+01  9.1323BE+@1  @.112@8E-01
4 B.210@@E+B1  B,209%BE+BL  0,42073E-92
5 9.43900E+01  0.42968E+01  -.46BE97E-D2

- ks = s = = .0 O

SUM OF SQUARES .uevvvvvvnnviiiinnnnns B,214867E-02
DEBREES OF FREEDOM ......iuuu 12

ETANDARD ERROR ....evvvuvuniis 2,616433E-02
CRITICAL T-VALUE AT 95 % CONF. LEVEL 2,18

PARAMETER ESTIMATE 57, ERROR LOWER BOUND

UPPER BOUND

) §.82410E-01  0.123L9E-D1  B.59446E-Ri
) 8.113326+01  0.30815E+00  B.46145E+00
} B.23435E+01  0.29600E+00  D.1496BE+DL

Fi
i

!
i

[EYRE N

B, 1R937E+00
0.18050E+8L
2,299@2E+01

CORRELATION MATRIX DF PARAMETERS

PEL) FL2) PO3)
PEL) 1.ee9
Pi2) 8.753 1,000
PL2) -2 -.997 1.0082



173

Most part of the output is similar to the output of the linear regression
module. The eigenvalues and eigenvectors refer to the matrix [JT(,O)WJ(,B)]. We

will discuss in Section 3.5 bow to use this information.
Exercises

0 Show that increasing the Marquardt parameter moves the correction vector 4p
toward the direction of the negative gradient of the objective function

while the length of the correction vector decreases.

0 The Hessian matrix of the gquadratic approximation (3.42) of the objective

function equals H=23Twg . Compare this with the true Hessian matrix of the
objective function (3.39). Show that the Gauss—-Newton method can be

interpreted as a gquasi-Newton method of minimization that neglects a certain
term in the Hessian. Can you justify this approximation if the residuals are

small?

O Rerun Example 3.3 with different starting estimates. Does the number of

iterations depend heavily on the starting estimate in this problem?

3.4 LINEARIZATION, WEIGHTING AND REPARAMETERIZATION

Though module M45 is an efficient tool, fitting a nonlinear model to data
usually requires considerable computational efforts, and without a good initial
guess even the convergence is questionable. Therefore, a transformation
replacing the problem with a linear regression one is of great practical value.

A well known example is the Arrbenius dependence

k = Aexp[-E/(RT)] (3.49)

of the chemical kinetics rate coefficient k on the temperature T, where
R = B.3144 J/(mol K) is the universal gas constant, and the preexponential
factor A and the activation emergy E are the unknown parameters. These

parameters are almost invariably determined by fitting the line

y =ax + b j; with y = log(k) and x = -1/T, (3.5@)

where E/R =a and log(AR) = b. A number of simple functions are linearizable
by suitable transformations (see e.g., ref. 5) with particularly many
applications in the kinetics of enzyme reactions (ref. 16) and catalytic
processes (ref. 17).

Fitting the expressions (3.49) and (3.50) to experimental data we obtain,
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however, somewhat different estimates, since the transformation distorts the
error distribution, and the original assumptions do not mare apply.

In this section we show how the deviations stemming from linearization can
be compensated by selecting suitable weighting coefficients. The observartions

are of the form

Yi=VYi*tE s (3.51)

2
where vy. = f(x:,p), and D2( €: Y =0 . Instead of fitting y = f(x,p) to
i i i i

the data ;i we rather fit the transformed model y' = gl f(x,p) ] to the
transformed data ;i' = gl ;i 1, where gl ] 1is the linearizing
transformation, and

;i' =gl y; 1+¢€ - (3.52)

To find the variance of €;° note that by (3.31)
€;° =gl y; 1 -9l v; — € 1, (3.53)

where gl ;i -€ 1=zqgl ;i -9t ;i Je; from the linear approximation and

g’ = dg/dy . Therefore, from (3.53) ¢;' 2 g'[ y; J¢; and

. e 2
D?{ €;" Y & (gl y; Jog )2 . (3.54)

Thus, fitting the transformed model to the data gl ;i ] the original

assumptions are better retained through the use of the weighting coefficients

wy = 02/( g'f ;i Jo; )2 s, where & is an arbitrary positive constant.

1

Example 3.4 Estimation of Arrhenius parameters by weighted linear regression

Table 3.2 lists the rate coefficient of the reaction
CHgl + CHsONa ===> CHROCHg + Nal

at & different temperatures (ref. 1B). First we assume that k 1is
observed with constant error variance. Equation (3.4%) is fitted to the data
using nonlinear least squares with weighting coefficients w; = 1. In
addition to the nonlinear fit we estimate the parameters from the logarithmic
model (3.50).
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Table 3.2
Observed temperature dependence of rate coefficient

T, K 273.15 279.15 285.15 291.15 297.15 303.15
k><1(2!5, 1/(mol s) 5.6 11.8 24.5 48.8 100 208

#

1212 following

Fitting (3.3@) we first use the weights w; =1 , and then wi
from (3.54) . This is done by the module MA@ with options WI = @ and
WI = 2, respectively. Table 3.3 lists the estimates and the 95% confidence

intervals that are not symmetric, due to the exponential back transformation.

Table 3.3
Estimates and 957 confidence intervals of the Arrhenius parameters

Nonlinear estimation Linear estimation
w; =1 Wi = l/i\('i2 w; =1 wi = ’l:iz
a18712, 1/(mol s) 3.42 2.317 8.325 3.10
(-2.2, 9.1) (-0.12, 2.75) (2.09, 1.2) (@.61, 16)
ex18~%, J/mol 8.83 8.25 8.25 8.81
(8.4, 9.2) (7.9, B.6) (7.9, B.6) (8.4, 9.2)

As seen from the first and last columns of the table, the appropriate weighting
considerably reduces the deviations between the results of linear and nonlinear
estimations.

The table also shows that the nonlinear fit gives a very large confidence
interval for the parameter A, an inherent problem in fitting the Arrhenius
expression (3.49) directly. While the extremely large confidence interval is an
overestimation stemming from the local linear approximation of the model, it
still reveals a real problem. As discussed in the previous section, the
Gauss—Newton method involves a sequence of quadratic approximations of the
objective function. Each of such approximations is a long valley along the
coordinate axis carresponding to A, and its minimum is rather difficult to
localize with reasonable accuracy. This problem, reconsidered in the next
section, increases the significance of the simple linear estimation through
logarithmic transformation.

The "observed" rate constants are, in fact, derived from other measurable

quantities, and according to chemists the assumption of constant relative

variances (i.e., cri2 is proportional to Qii’) is usually closer to the reality

than that of constant variances. Assuming such error structure one chooses the

weighting coefficients w; = k; 2 when fitting (3.49) directly, and hence unit
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weights w; =1 1in the linear regression involving (3.95@). These
considerations and the corresponding results shown in the second and third
columns of Table 3.3 justify the use of unweighted linear regression for
estimating Arrhenius parameters.

Unfortunately, many transformations purported to linearize the model also
interchange the role of dependent and independent variables. Important examples
are the various linearization transformations of the simple steady—state

Michael is-Menten model

VR S (3.55)

of the enzyme reaction studied in Section 2.5.1, where [S] denoctes the

concentration of the substrate and r+ is the rate of the reaction. To estimate

the Michaelis-Menten parameters V and K from the data { ([S;], ?"i);
i=1,2,...,mm }, one can fit, for example, the following linear functions
(ref. 19):

r=-K Eéi + V (Eadie——Hofstee) , (3.56)
[S] 1 K

=2 =-1[S]+ - (Hanes), (3.57)
r \ \

r 1 v

— =i - (Scatchard) (3.58)
[S] K K

1 K 1 1

- = - -+ = (Lineweaver—Burk) (3.59)
r VISl Vv

These classical methods are still popular. Since the error in the observed

reaction rate ;i is usually much larger than the error in the substrate
concentration [S;], assumption (1) of the least squares method is
approximately satisfied when fitting (3.55) directly. This assumption is,
however, clearly violated in models (3.56 - 3.58), where the error corrupted
r appears also on the right hand side. Therefore, the use of most linearized
models should be restricted to determining a good initial guess for the
nonlinear parameter estimation (ref. 20).

Linearization by transformation and rearrangement of the variables is not
the only way to reduce computational efforts in nonlinear estimation. A faster
convergence can be expected if the nonlinear character of the model is
decreased by manipulating the parameters. Bates and Watts (ref., 21) proposed a
measure of nonlinearity and found that the major part of nmonlinearity was due
to the particular parameterization in many models. In such cases nonlinear

parameter transformations may considerably improve the efficiency of the search
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algorithm., While the literature provides a number of interesting applications
(refs. 22), model reparameterization is somewhat a kind of art owing to the

lack of systematic approaches.

Exercises

O Fit the models (3.55) through (3.59) to the data listed in Table 3.4
(ref. 19) by the modules M45 and M4@. Compare the estimates and the

confidence intervals.

Table 3.4
Initial substrate concentrations and rates for an enzyme reaction

[S1x@°, mol/1  rx1@°, mol/(1 s) [SIX1E5, mol/1  rxi@°, mol/(1 s)
S0 1.967 10 0.717
4 1.723 8 2.537
30 1.517 5 0.300
20 1.150 3 0.243
15 0.967 1 .103

0O The Weibull growth model y = a - b exp( — ¢ x4 ) 1is frequently used in
biological and agricultural applications. According to the investigations
in (ref. 22), the nonlinearity of this model is considerably reduced if

fitted in one of the reparameterized forms

Pg

(1) y =p; — pp expl — exp{—p3) x ]

with a =p), b=py, c = exp(~pz) and d = pg , o

(i1) y = exp(py) — expl pp - exp{-px) xp4 ]

with a = exp(py), b = exp(pp), c = exp(-px) and d = pg .

Select values of the independent variable from the interval [0, 10@].
Generate error—-free data with nominal parameters a = 78, b = 60, c = 0.0002
and d = 2. Investigate the convergence behavior of the module M43 for the
original and for the two reparametrized models. Use several sets of starting
parameter values, paying attention to the relations between the original and

the newly introduced parameters.
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3.5 ILL-CONDITIONED ESTIMATION PROBLEMS

To obtain the estimate (3.23) in a multivariate linear regression problem we
solve a set of linear equations. According to Section 1.7, the estimate B is

sensitive to small perturbations of the observation vector Y if the matrix
XTwx  is ill-conditioned, i.e., its condition number is large. The condition
number of this matrix is the ratio of its largest eigenvalue ; to its
smallest eigenvalue 1, . In the program module MA2 the matrix XWX is
transformed to a correlation type matrix. The sum of the eigenvalues of this
matrix is nx and the largest eigenvalue is always near to one. You can easily
recognize an ill-conditioned regression problem looking at the smallest
eigenvalue W, of the correlation matrix. If A, is less than, say, 1073
then the results should be treated with caution.

Now we analyze a little deeper the effect of a small eigenvalue. By (3.30)
and (3.32) the joint confidence region of the parameters at a given confidence

level is a hyperellipsoid
(ap)T(XTWX124p] < const , (3.60)

where op = p - B In the basis of the eigenvectors uy, Uy, ..., u,, oOf xTwx
the left hand side of (3.46@) reduces to canonical form, and the confidence
ellipsoid is given by

Al

nx 2
25 o hilaF? Ceonst (3.61)

where Xj, Ay ..., A, are the eigenvalues of XWX and &f; = [u;174p
denotes the i—-th principal component. From (3.461) follows that the principal

axes of the ellipsoid are along the eigenvectors, and the length of the axis

along u; is proportional to (172, If »; is small, the ellipsoid is

elongated along u; and we get almost the same goodness—of-fit at parameter

values that are far apart. Furthermore, the mean square error, i.e., the

expected distance between the estimate B and the true parameter vector p
satisfies the inequality (ref. 23)

2 w1 nx 1 o2 52

o —

> —— 2z — ., (3.62)

~T ~ _ Tyl =
E - - =t X WX =
{Ip-pP)llp-p]? race [ ] 2og=t 5

X X
Thus, with a nearly zero eigenvalue of the covariance matrix of the independent
variables the estimates tend to be inflated and the results are meaningless.

Therefore, in nearly singular estimation problems reducing the mean square
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error of the estimates is of first importance. Since the least squares
estimator gives minimum variance only in the class of unbiased estimators, we

rather give up unbiasedness.

3.5.1 Ridge regression

The simplest and most popular biased estimator is due to Hoerl and Kennard

(ref. 23), estimating the unknown parameters by
p(y) = [ XTwx + a1 371 xTwy (3.63)

instead of equation (3.23) of ordinary least squares. The scalar » is called
the ridge parameter. As in the Marquardt modification of the Gauss—Newton
method, the additional term I increases the smallest eigenvalue of the
matrix to be inverted. The role of the ridge parameter differs, however,
considerably from that of the Marquardt parameter. We usually fix the ridge
patrameter at some positive value that hopefully gives a smaller square error
than A = @ , whereas the Marquardt parameter can be considered as a technical
tool used only during the iteration and not affecting the final result.
Unfortunately, selecting an appropriate ridge parameter is far from simple.
Very often we rather vary the ridge parameter and plot the ridge estimates
(3.63) at different values of » . The plot reveals possible instability of
some parameters. Since XWX is normalized to a correlation matrix in the
module M42, the ridge parameter is usually varied between @ and 1.

You may notice that the ridge regression is a straightforward statistical

counterpart of the reqgularization methods discussed in Section 1.7.

Example 3.5.1 Analysis of the rate coefficient of an acid-catalysed reaction by

ridge regression

We assume that the reaction considered in Example 3.2 is not only
acid-catalysed but also basis-catalysed. Then its rate coefficient is of the

form

k = kg * kylH'") + kyn[HAT + ko [OHT] + kp[ATD . (3.64)

In this system [A™] = [NOC,H40 1. Table 3.1 includes the data we need,
since the concentration [0OH ] can easily be obtained from the ionic product
[HI0H7] = 10714 (mo1/1)2 of the water. Fitting (3.44) to the data of Table
3.1 we have the following results:
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MULTIVARIABLE LINEAR REGRESSION
METHOD OF LEAST SGUARES

NUMBER OF INDEPENDENT VARIABLES ..... 3
NUMBER OF SAMPLE PCINTS

FRINCIPAL COMPONENT ANALYSIS OF THE CORRELATICN MATRIX

EIGENVALUE  X{ 1} K 2) 1) 04 s
B.A3760E+01  B.464 B.441 8.441 B.448 0.442
B.4B386E+08  -.370 -.407 8.547 -3l B.553
2.20395E+08  0.048 =627 =343 B.647 8.283
8.13648E-B1  -,B26 8.382 -6 -2 B.654
0.58193E-02  -.803 0.39% B.082 8.447 ~.006
I Y HEAS WEIGHT Y COMP RESIDUAL
1 0.12108E-07  0.10000£+0!1  9.11B47E-03  9.25275E-05
2 8.12000E-03  0.10000E+01  0.12268E-07  -.24002E-85
3 0.13500E-83  0.10000E+01  0.13577E-83  -.77304E-86
4 0.14400E-03  0.10000£+01  8.14328E-83  @.7281BE-B
3 B.154B0E-02  0.10000E+01  @.15359E-Q3  9.4@521E-Qb
b B.15100E-03  0.10000E+B1  0.163226-B3  -.2215BE-85
7 B.17700E-03  0.10000E+@!  @.17529E-03  @.17123E-0%
8 8.23700E-03  0.10880E+d1  @.23594E-83  B.1157@E-@5
9 8.24700E-03  0.10008E+d!  B.24B30E-03  -.13041E-85
10 0.28400E-B3  0.10088E+0!  B.20396E-03  @.43@15E-@7

SUM OF SBUARES ..........
DEGREES OF FREEDOM
STANDARD ERROR ..evuewnn

DURBIN-WATSON D-STATISTICS

CRITICAL T-VALUE AT 95 %

3
2.2
2.4
2.5

D raerenn e

CONF. LEVEL

2.531233E-11

49952E-86
66769

)

LOWER BOUND

UPPER BOUND

PARAMETER ESTIMATE ST.ERRGR
Pl - AS46SE-B4  0.23677E-04
BL2) 0.25216E+85  B.16272E+04
PL3) B.20348E-02  @.25814E-03
F{4) B.19113E+82  8.88478E+81
FL3) -.B6BSE-BT  9.372876-03

-, 1B632E-02
0,21034E+83
8.14714€-02
-.16212E401
-.1BI91E-07

B.15386E-04
8.29198E+85
8.27982€-02
8.39848E+07
8.97436E-04

Since the model (3.64) includes all terms of the model (3.33), and this
latter gave good fit to the same data in Example 3.2, it is not surprising that
the fit is excellent. While it is not always the case, the standard residual
error is even slightly decreased by extending the model. Although according to
the F-test this decrease is not significant, the improved fit is revealed by
the better value of the D-statistics. We obtain, however, negative and hence
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physically meaningless parameters for py = kg and pg = kp.

The smallest eigenvalue of the correlation matrix is 5.8x107%. From a
strictly numerical point of view the matrix to be inverted is not
ill-conditioned. From a statistical point of view, however, this eigenvalue is
too small. Indeed, X'WX is in normalized form, each of its diagonal entry
being 1. Such a normalized matrix with nearly orthogonal columns would have
eigenvalues close to 1, and the obtained much smaller eigenvalue reveals near
linear dependency among the columns.

We use the ridge option of the module M42, i.e., input parameter RP , to
construct a ridge plot shown in Fig. 3.2. In this plot the ratios

oy = E’i( )/ l E’i( 1] )‘ are shown as functions of the ridge parameter.

o

3

1 o o

=
of\_"u 02 03 A
Xg

_14

Fig. 3.2. Relative change of the estimates as a function of the ridge

parameter

A small increase of » bheavily affects the ridge estimates of pg = kgyq and

ps = ky and even their signs are changed. These estimates are not stable. At

some small value A > @ we have ECH ¥ @ and EA % @. The estimate
Pz = kyn is almost constant, whereas pp = ky moderately decreases. That
latter is a normal behavior even for an orthogonal matrix xTwx , thus the
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estimate of &k, is also stable. The estimate p; = Qo changes in an

interesting way. While Bl( @ ) 1is negative, it changes sign at a small x > @
and remains almost constant further on., Thus this parameter estimate is
eventually stable, but can be neglected because of its small value. Our
analysis supports the assumption that the reaction is acid-catalysed with the
only essential parameters ky and kyy considered in model (3.64).

The information revealed by ridge plots as the one shown in Fig. 3.2 can
be better understood noting that the ridge estimate (3.63) is the solution of

the minimization problem:
o] —> min , subject to the constraint Q(p) - Q(p(@)) =C ,

where C > @ 1is an increasing function of X (ref. 23) . Therefore, an
elongated confidence ellipsoid results in wildly changing ridge estimates for

some of the parameters, whereas other parameters remain stable.

3.5.2 OQverparameterized nonlinear models

On the basis of its constrained minimization interpretation the ridge
regression technique can be extended to nonlinear models, but the construction
of ridge plots requires considerable computing effort. Therefore, ridge
regression is rarely used in nonlinear estimation, though near singularity is
an even more inherent problem than in the linear case. In fact, the small
eigenvalues of the cross product matrix XTWX of a linear model can be
increased by appropriate experiment design (see Section 3.10.2), the
eigenvalues of the matrix JT(.O)NJ(B) of a nonlinear model depend, however,
also on the form of the response function and the actual parameter values.
Therefore, the possibilities of eliminating near singularity by experiment
design are usually quite restricted in the nonlinear case. For example, the
partial derivatives of the Arrhenius function (3.49) are ok/AA = exp[-E/(RT)]
and ok/eE = - A exp[-E/(RT)1/(RT), and the columns of the Jacobian matrix are
nearly collinear if the rate constants are observed over a relatively small
temperature intervall, as usually restricted by the experimental techniques. In
such cases the model might be overparameterized (see, e.g., ref. 24) in spite
of its apparent simplicity.

Overparameterization and frequently its sources are revealed by an
eigenvalue—eigenvector analysis. In the module M43 the matrix JT(p)NJ(.c)
is investigated. We call it normalized cross product matrix, because the

partial derivatives are computed with respect to the normalized parameters
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BJ- = pj/pj(k) . In contrast to the linear case, this matrix is not normalized
further to a correlation type matrix before the principal component analysis.
Its eigenvalues and eigenvectors are of considerable help when interpreting the

results. For example, at most 10% relative mean error in the parameters

implies the inequality E{ [8 ~ 81'(8 - 81 } < .81 . Due to the use of
normalized parameters in JT(B)NJ(B) and according to (3.62) , this can be
attained if the smallest eigenvalue satisfies the inequality

Mp > 100 oZ % 100 52 , where s? is the estimate of the squared sigma factor
in the weights. As usual, we consider the estimation problem nearly singular if
the smallest eigenvalue is below this limit.

Another advantage of the normalized parameters is that the eigenvectors
corresponding to small eigenvalues frequently reveal the form of nonlinear
dependences among the estimates. For this interpretation we introduce the
parameters o5 = log [ P ]J. It is important to note that at p = p(k) we
have af/a;aj = af/aaj = (af/apj)pj(k) s, and hence the two parameter
transformations we introduced locally give the same Jacobian matrix.
Furthermore, we exploit the canonical form

~ n
8 ay -Bcay=5""

2
Sioy Mi(ATD) (3.65)

of the gquadratic approximation (3.42), where &J- = log [ Bj ] and

af; = uiT[ @ - a ]. Moving from the point a along the eigenvector uj
by a step of unit length implies (Afi)2 =1, (Afj)2 =@ for i#ji, and hence

~

d¢ a) - @C @) & »;. Assume that »; z @, and the corresponding
eigenvector is u; = [@.707, @.7@7, @, ..., @]T. Then selecting Aay = Ao,
we move along u;, and G @) -G @) = @ . The lire Agy) = Aoy 1IN
the space of the «o's corresponds to the curve logl py/py J = logl 81/82 3,
i.e., p;/py = const., in the space of the original parameters. Thus, keeping
the ratio p;/p, fixed, the objective function value remains almost unchanged.
In other words the objective function depends only on the ratio p;/py , and
does not depend on the individual parameters p; and po separately.
Similarly, the eigenvector u; = [0.707, -@.707, @, ..., lZl]T corresponding to
a nearly zero eigenvalue »; reveals that the objective function depends only
on the product p;py. It is even simpler to interpret a unit vector
corresponding to a nearly zera eigenvalue. Then the parameter corresponding to
the coefficient 1 in the eigenvector cannot be identified. The analysis can
also be extended to find relationships among several parameters, and is

particularly useful in chemical kinetics (ref. 25-26).
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Exercise

0 At a fixed value V = 0.!2135><1m—3 mol/(1 s) and several values of K between
1073 mol/1  and @.1 mol/1 , compute the error—free rates from the model
(3.55) at the substrate concentrations listed in Table 3.4. Perform principal
component analysis (using the module M45 and setting IM = 1) of the
normalized cross product matrix. Find a value K; of K such that for K < Ky
only the parameter V can be estimated with reasonable accuracy.
Similarly, find K; such that if K > Ky then a reasonable estimate can
be obtained only for the ratio WV/K.

3.6 MLTIRESPONSE ESTIMATION

In Section 3.3 we allowed the errors in the observations ;il’ ;12, ey

;i,ny to be correlated, but apart from a scalar factor o? their covariance
matrix was assumed to be known. The multiresponse estimation method proposed by
Box and Draper (ref. 27) does not require this strong assumption. The method
is based on the maximum likelihood principle, and involves the minimization of

the objective function

Q(p) = detl V(p) 1 (3.36)
where
nm
V(P 155 = 90 [ Yiep = 3040 3 L Y5 = F5045P) 3 (3.67)
k=1

is the nyXy empirical covariance matrix computed at the actual parameter
vector p . Notice that the errors in different sample points are still assumed
to be uncorrelated. The determinant criterion (3.66) is equivalent to the
unweighted least squares method if only one dependent variable is observed in
every sample point. For the multiresponse case it is, at least from a
theoretical point of view, a more general estimator than the least squares.

Unfortunately, there are some technical difficulties associated with the
determinant criterion (ref. 28). Minimizing the determinant (3.66) is not a
trivial task. In addition, the method obviously does not apply if det[ V(p) 1]
is zero or nearly zero for all parameter values. This is the case if there
exist affine linear relationships among the responses vyi, Yo, -:-» Ynys as we
discussed in Section 1.8.7. To overcome this problem the principal component
analysis of the observations is applied before the estimation step.
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Example 3.6 Comparison of the determinant criterion with least squares

Return to the example of Box et al. (ref. 29) we started to discuss in
Section 1.8.7. The thermal isomerization be described by the mechanism shown

in Figure 3.3.

p)
ky
Y
ky ks
3. 7=
ky| (ks
Y5

Fig 3.3. Mechanism of the thermal isomerization of o—pinene

Assuming first order reactions, the mechanism gives rise to a set of first
order differential equations. The following solution of the equations gives the

component concentrations vyy, yp, ..., Y5 as function of the reaction time t:

Y1 = Yip expl[-%t]
- k1Y10
v2 = 75 (1-exp[~%t])
yz = ciexpl~#t] + coexplet] + caexpl7t]

[ c
va = k3 [ (-expr-t) + %2 (explot]-1) + =% (expl7t)-1) )

(=

c c
Y5 = Kg [ ksfi (1-exp[-3t]) + ;—i—} (exp[ot]-1) + ;—f; (exp[7t]1-1) ] B

5 S
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where yjg = 10@% is the initial concentration of the first component

(c—pinene); ki, kp, kxy kg and kg are the unknown rate coefficients, and

®
i

[-a + (a?-akzk5)172] 7 2

T = [~a - (a?-8kzkg)1/2] / 2

k ke—% k ket k ke+7
¢, = 21ps7® c, = kaviptkste) e = 22105 T)
(3+6) (2+7) (8+8) (6-T) (E+7) (1-8)

The observed concentrations have been listed in Table 1.3. Let us first fit
the above response function to the data by the least sgares method with the
weighting matrices W; = I, i.e., without weighting. Module M45 results in the
estimates shown in the first row of of Table 3.5.

Table 3.5
Estimated rate coefficients

Rate coefficientx1®>, 1/min

Method
Ky k2 k3 kg k5
Least squares, 5 responses 5.93 2.96 2.@5 27.5 4.00
Box-Draper, 3 principal component 5.95 2.84 2.43 31.3 5.74
Least squares, weighted 5.95 2.87 @.51 29.6 5.16

As found in Section 1.8.7, there were two affin linear dependences among the
data, classified as exact ones. Therefore, Box et al. (ref. 29) considered the
principal components corresponding to the three largest eigenvalues as response
functions when minimizing the objective function (3.66). By virtue of the

eigenvectors derived in Section 1.8.7, these principal components are:

y,* = 0.8087y, - 0.5404y, - 0.0127y5 - 0.0241y, ~ 0.2307ys
yo* = 0.0568y; - 0.2236y, - 0.6122y5 + 0.0375y, + 0.7562ys (3.58)
ys* =0.2957y; - 0.6108y, + 0.6402y5 - D.010Dy, + @.359%s .

The linear transformation (3.68) should obviously be applied both to the
observed concentrations and to the computed ones.
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Based on the analytical expression for the derivative of det[ V(p) 1,
Bates and Watts (ref. 3@) recently proposed a Gauss—Newton type procedure for
minimizing the objective function (3.66). We use here, however, the simplex
method of Nelder and Mead (module M34) which is certainly less efficient but
does not require further programming. The determinant is evaluated by the
module M14. After 95 iterations we obtain the results shown in the second row
of Table 3.5, in good agreement with the estimates of Box et al. (ref. 29 ).

Comparing the first and second rows of Table 3.5 we could conclude that the
least squares and the determinant criterion yield significantly deviating
estimates. This conclusion is, hawever, not completely true. We repeat the
estimation by the least squares method, but considering the three principal
components (3.48) as responses. This can alternatively done retaining the
original model with five responses, but introducing the weighting matrix with
elements

< 3
Wij = 2umy YikMik o

where uj, is the i-th element of the k-th eigenvector computed in Section
1.8.7. Then the nondiagonal weighting matrix

2.745 —0.265 —0.234 -0.016 —0.250
—0.269 @.715 -0.247 0.018 -0.264
W= [-0.234 0.247 0.785 -0.008 -0.230
—-0.2i6 0.2i8 0.008 0.001 ©.205
—0.250 8.264 0.232 0.285 @.755

is used in the module M45, exploiting the weighting option WI = 2 . The result
of the estimation is shown in the third row of Table 3.5.

Considering the recent general dislike of statisticians toward the
application of the least squares method to multiresponse problems, it is
surprising to see that having eliminated the linear dependences from the data,
the least squares method gives very similar estimates to the determinant
criterion. Thus, in this famous example a preliminary screening of the data is
more important than the choice of the estimation criterion. To put it more
simply, the analysis of linear dependences revealed that y,; had not been
measured but assumed, though its values significantly influenced the estimate
of kz, in accordance with the reaction mechanism shown in Fig. 3.3. Using
three principal components we practically dropped these "measurements', and
obtained an improved value of kg, almost independently of the estimation

criterion.
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3.7 EQUILIBRATING BALANCE EQUATIONS

The problem to be solved here primarily comes from chemical engineering
where one simultaneously observes several variables that are expected to
satisfy a number of balance equations such as stoichiometric relations. Due to
measurement errors the observed values obviously do not fulfill this

expectation. Let xy, x5, ..., x,,, denote these variables observed in a single

sample point that gives the data ( ;i =%yt €53 i=i,nv }. Assuming that the

covariance matrix cov{e} =V of the error vector € 1is diagonal and known,

we would like to find the values x that minimize the quadratic form
[x - x1T vl [x -3 (3.69)

and, at the same time, satisfy the set

Wx -b=0 (3.70)
of nb limear balance equations. Since we do not have unknown parameters, and
observe the variables only once, this problem differs from the ones studied in

the previous sections. Nevertheless, the same estimation technique is used and

the results will be useful for parameter estimation in the next section.
Introducing the correction vector c = x - % and the equation error vector
f = Wx — b, according to (3.49) and (3.70) we minimize the objective function

ey =c' vic (3.71)

subject to the constraints
W+ f=08. (3.72)
A similar constrained optimization problem has been solved in Section 2.5.4

by the method of Lagrange multipliers. Using the same method we look for the
stationary point of the Lagrange function

Lic,m) = viice + Al we+ 3 (3.73)

where A denotes the nb-vector of Lagrange multipliers. At the stationary

point the partial derivatives of the function (3.73) vanish

a
a—:=2V_1c+NTk=ID, (3.74)
a
—=w+f=0. (3.75)

a
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By (3.74) c= - (1/2)WT7. . Introducing this value into (3.75) gives
A= 2[M]_1f , and using (3.74) again, we obtain the optimal correction

c=- wiwwi s, (3.76)
Thus the problem can be analytically solved, similarly to linear regression. At
the correction (3.76) the objective function (3.71) takes the value

a2 = firwmT 171 (3.77)

called error measure in the literature of balance equilibration.

The error measure is invariant under rescaling the equations (3.70) and even
under replacing the original equations by their independent linear
combinations. This latter may be necessary if the matrix waw'  is singular and
hence the inverse in (3.77) is not defined. Since V is a diagonal matrix with
nonzero diagonal entries, this case reveals that the balance equations are not
linearly independent. The problem can be resolved by considering a maximum
linearly independent subset of the balance equations.

Since q2 is distributed as X2 , the measurements can be accepted if
a? <X b (3.78)
where the right hand side is the tabular value of the X2 distribution with
nb degrees of freedom at the significance level «a, usually at o« = 0.05 .
Unfortunately, the error variances should be exactly known for this test. If
the error variances are known only up to a scalar factor, then the correction
vector is still correctly given by (3.76) , but the ipequality (3.78) is of
no value.

Nevertheless, if (3.78) is known to be violated, a further issue is to
find the variable that is primarily responsible for the violation. The ratio of
the absolute value of the correction to the corresponding standard deviation
provides some information but may be misleading (ref. 31) . The analysis
proposed by Almdsy and Sztand (ref. 32) is based on geometric ideas. If
exactly one observation is corrupted by gross error them the corresponding
column of matrix W and the vector f of equation errors are nearly
collinear. Useful measures of collinearity are 7; = cos o4 , where «; is the
angle between f and the i-th column of W . The variable suspected to be
corrupted significantly is then the one corresponding to the largest Almasy

indicator l’ri | . The 7; values are invariant under scaling of the balance

equations (ref. 32).
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Program module M5@

SPR8 REM LERBEREEREERSEREERRERTRRBSSERRERRRTBERLEREERIIsY
5862 REM ¢ EQUILIBRATING LINEAR BALANCE EQUATIONS BY  #
584 REM ©  LEAST SGUARES METHOD AND OUTLIER ANALYSIS ¢
5084 REM BEREETERTEREERRERARIIEnIRREREENBINBINERLRSRNINLY
5888 REM INFUT:

5810 REM B NUMEER OF BALANCE EQUATIONS

5812 REN NV NUNEER OF VARIABLES

914 REW WINB,NV)  MATRIX OF COEFFICIENTS IN EQUATIONS
SB14 REN  B(NB)  RIGHT HAND SIDE OF EGUATIONS

519 BEM  X(NV)  OBSERVATIONS

5020 REW  V(NV)  VARIANCES (SGUARED ERRORS) OF VARIABLES
5822 REM OUTPUT:

5026 REM ER STATUS FLAG

5926 REM ® SUCCESSFUL EQUILIBRATION

5928 REM 1 LINEARLY DEPENDENT EGUATIONS

5930 REM  F{NB)  EOUATION ERRORS BEFORE EQUILIBRATING
5032 REN  C(NY)  CORRECTIONS OF VARIABLES

5034 REN 02 WEIGHTED SUM OF SQUARES OF CORRECTIONS
5834 REN  B(NV)  VECTOR OF ALMASY INDICATORS

5038 REM  CH CHI SQUARE AT .85 SIGNIFICANCE LEVEL [IF NB{=10)
5040 REM AUKILIARY ARRAYS:

5842 RER  A(NB,NB),T(NV,NB)

5044 REM MODULE CALLED: M14

5844 REN ---------- T=08’

5848 FOR 1=1 TO NV :FOR J=1 TO NB

5050 T{I,0)=N(J,1)Hv(I)

5852 NEXT J :NEXT 1

5054 REN ---------- A=WV’

5856 FOR I=1 TO NB :FOR J=1 70 1

558 A= tFOR K=1 TO NV :A=A+H{1,K)BT(K,0) :NEXT K :A(1,])=h
5860 REXT J :NEXT 1

TR e — A= (NH )1
5864 N=NB :GOSUB 148@ :IF ER=1 THEN 5129
3046 REM ~--=--=--- 3

5048 FOR 1= 7O NB

5870 F=-B(I1) :FOR K=1 TO NV :F=F+N{T,K}RX(K) sNEXT K «F(1)=F
3872 KEXT ]

5874 REM ---------- (WU} -18F

5876 FOR 1=1 TO NB

5078 T=@ :FOR X=1 TO NB :T=T+A(1,K)8F(K) :NEXT K :T{8,1)=T
3088 NEXT I

5082 REM ---------- COMPUTE CORRECTIONS

5084 FOR I=1 TO NV

5886 C=@ sFOR K=1 TO NB :C=C-T{I,K)8T(8,K) :NEXT K :C(I)=C
5888 NEXT I

5899 REM -----n-e- SUN OF SOUARES
5892 02=0 :FOR 1=1 0 NB :DZ=024F(1)4T{R,1) :NEXT 1 :D=SOR(02)
5094 REM ------=--- TR (VK" ) -1

5096 FOR I=1 TO NV :FOR J=1 TO ¥B

5098 T=@ :FOR ¥=1 TO NB sT=T+N(K,1)XA(K,d) :NEXT K :T(I,d)=T

5108 NEXT J :NEXT |

G102 REM ---mmmme-- 6(1)=(1/q) (DIAGIW' (WVH')"-1EN]"-8,5)40" (KVN' ) -14F
5104 FOR 1=1 TO NV

5186 D=0 :E=0

5188 FOR K=1 TO NB

5118 D=D+T(1,K)HW(K,I) :E=E+T{I,K}¥F{K)

5112 NEXT X
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5114 6{1)=1/0/5QR{D)2E

5116 NEXT I

5119 REM ---------- CRI SQUARE

F28 CH=d :IF NBX1@ THEN 3126

3122 CH= -(NB=1)43.84-{NB=2)45.99-{NR=2}47.81~(NB=4)49,49-(NB=5}$11.1
3124 CH=CH-(NB=6)¥12.6-(NB=7)%14.1-(NB=B)$15.5~(NB=9)¥#16.9-(NB=18}$18.3
9126 ER=

5128 RETURN

G130 REM SERSRRsiasssatisanssqsaasiastsdanasssaassssssisssy

Since the covariance matrix is diagonal, a vector denoted by V is used to
store the variances. If the number of balances does not exceed ten, the module
also computes the tabular value of the chi square distribution at significance
level « = @.05 and degrees of freedom nb. The return value ER = 1 of the
status flag indicates that the rows of the matrix W are linearly dependent,
and hence you should drop at least one of the balance equations. If the source
of linear dependence is not clear then the module M1@ can help to uncover it.

Example 3,7 Equilibrating linear balance equations

The four variables xq, X5, X and x describing a process are expected
1» 72 73 4 g

to satisfy the balance equations (ref. 31):

D.1%) + B.bx5 + = 0.2x3 —B.7%4 = 0

it

D.8x; + (Z|.1x2 + - 0.2x3 - 0.1x, @

@.1x3 + E.3x2 + — D.bxz — 0.2%g 2.
The observations and error variances are shown in Table 3.6.

Table 3.6
Observed values and variances for the balance equilibration problem

variable measured variance
X1 @.1858 0.000209
%o 4,7935 0.0025
xz 1.2293 @.000576
Xg 3.8800 0.24

The main program and the results are as follows:
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108 REM
102 REM EX. 3.7, EGUILIBRATING LINEAR BALANCES

104 REM MERBE M14 M50

Y131 p— DATA

188 REM  (NUMBER OF BALANCES, NUMBER OF VARIABLES)

110 DATA 3, 4

112 REM  { BALANCES )

118 DATA .1,.6,-.2,-.7,=0

116 DATA .8,.1,-.2,-.1,%,0

118 DATA .1,.3,-.6,-.2,=,0

120 REM (NEASURED VALUE, VARIANCE)

122 DATA .1858,.008289

124 DATA 4.7935,.0025

126 DATA 1,229%,.000576

128 DATA 3.3800,.04

JB{ 13, J— READ DATA

132 READ NB, NV

134 DIN W{NB,NV),X(NV},V(NV) ,B(NR},F(NR),CENV) BNV}, A{NB,NE}, T{NV,NB)
136 FOR 1=1 TO NP

138 FOR J=1 T0 NV :READ W{I,J} :NEXT I

140 READ AS,B(1)

142 NEXT 1

184 REN ---------- CALL MODULE

145 FOR 1=1 T0 NV sREAD X{I1),9(I) :NEXT I

148 GOSUE 5600

158 REM ~=--n----- PRINT RESULTS

152 IF ER=R THEN 158 ’

154 LPRINT "LINEARLY DEPENDENT EQUATIONS, STATUS FLAB:";ER

156 BOTO 178

158 LFRINT

160 LPRINT *NEIGKTED SUM OF SGUARES (ERROR MEASURE}®;02

162 1F NB¢=1D THEN LPRINT "CHI SGUARE AT 0.05 SIGNIFICANCE LEVEL ";CH
164 LPRINT :V$=GTRINGS(53,%-") :F$="4, B8~~~ * :(PRINT V§
166 LPRINT "VARIABLE  NEASURED CORRECTED ALMASY-GANMA"
168 LPEINT V8

178 FOR 1=1 TO W

172 LPRINT I;TAB(L1)" ";:LPRINT USING F$;X(1),1{1)+C(1},B(1)

174 NEST 1

176 LPRINT V$ :LFRINT

178 STOP

WEIGHTED SUM OF SQUARES (ERROR MEASURE) 8.454743
CHI GAUARE AT 0.05 SIGNIFICANCE LEVEL 7.8t
VARIABLE  MEASURED CORRECTED ALMASY-GAMBA

D.1B500E+00  0.16757E+0@  0.37032E+00
D.47935E401  0.48594E+D1  -.94129E+00
B.12293E401  0.11730E+81  0.90238E+00
0.28000E401  9.I8040E+BL  B.45320E-B1

R

Since the error measure is greater than the chi square value, the measurements
are not acceptable. According to the Almésy indicators, the variable x5 is

most likely to be corrupted by gross error.
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Now we proceed to the problem of equilibrating nonlinear balance equations
of the form

f(x) =0 . (3.79)

These equations are considered as constraints when minimizing the objective
function (3.69). The basic idea is similar to that of the Gauss—Newton

algorithm. Let X denote an estimate of x . We linearize the function (3.79)
around ;, and define the equation error in terms of this linear approximation
by

f = f(x) + J()Ix - x] (3.80)

where J(;) denotes the Jacobian matrix of f(x) evaluated at X . Keeping %
temporarily fixed, we have a linear equilibration problem with the eguation

error vector (3.80) and coefficient matrix W = J(;) , whose solution is the

correction vector
€=-VIT(x) WGV [ (%) + J00x - %11 . (3.81)

The nonlinear problem is solved by repeating such linear steps. Starting with
the initial estimate x(©) = X , equation (3.81) gives the correction £(©) and
the new estimate of the corrected variables x(1) = x + €(®), The procedure is
repeated with the estimates ;(l), %x(2) , --« to satisfy some termination
condition. The resulting value of x is a fixed point of the iteration.

Substituting (3.802) into (3.72) the following equation is obtained for x
JOOMX — %1 + F(x) + I(NIx-x1 =0 . (3.82)

Thus the corrected variables indeed satisfy (3.79) at convergence.

Since the corrections are now known, the error measure can be computed from
(3.67). The same value can be obtained from (3.77) using the eguation error
defined by (3.80), i.e.,

= f(x) +d0x - x1 17 IGOWITGIT™E [ (%) + I(OIx - %3 1.  (3.83)

This expression might seem to be complicated, but it will play an important

role in the next section.
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3.8 FITTING ERROR-IN-VARIABLES MODELS

If the assumption of neglecting errors in independent variables cannot be
Justified, there is no statistical distinction between dependent and
independent variables. Then we rather use the vector 2z = (z“_,zz,...,znz)T to

denote the variables of the model written in the more general implicit form

f(z,p) =@ . (3.84)

The model consists of nk equations and contains np unknown parameters p

to be estimated from nm observations. The outcome of the i-th observation

~ ~ o~ ~ ~
is the data vector z; = (zil’ziZ""’zi,nz)T where Z;5 = 255+ €55 Thus we

allow for some error €ij in all variables.

We assume that errors in different observations are uncorrelated. Although
errors in the 1i-th observation can be correlated, their covariance matrix Vi

is assumed to be known, i.e.,

E(€ 2 =0, E{ €€ }=V; and E{ €67 ) =@ ifi=j. (3.85)

In order to obtain the parameter estimates E) and the corrected variables

~

~ ~ ~ T . X
Z; = (215 Zjpy -en) zi,nz) sy 1 =1,...,nm, the error norm function

nm

Q( 2,205 cee0Zpy 5 P) = [z; - 2;37 v;71 1z - 253 (3.86)

™

i=1

is minimized with respect to ;1

s and p , subject to the constraints
fz;3 =@, i=1,2, ..., nm. (3.87)

The above criterion can be derived from the maximum likelihood principle
(refs. 33-34).

Having a well defined minimization problem, we can proceed to its solution.
At any fixed p minimization of (3.86) subject to (3.87) is equivalent to

solving mm nonlinear balance equilibration problems of the form

~ - ~ ~ T - ~ ~ -
Q;(zy) =25 - 2317 V71 125 - 250 —> min ,
(3.88)

f(z;3 p) =0 .

Solving the nonlinear balance equilibration problems (3.88) and computing the

error measures from (3.83) we obtain
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nm
o =

~ ~ ~ ~ T
b=t [ f(z5,p) + J(z;,p)[z; - 23] 1 x

x [3(2;,pVWIT (2,17 x [ £(2;,p) + IG,PIZ; - 2,1, (3.89)

where J(z;,p) is the Jacobian matrix of f(2;; p) with respect to the

variables ;i . With optimally corrected variables the objective function
(3.86) takes the new form (3.89) supplying more explicit information on how
the objective function changes if p is varied. We should bear in mind that

;i depends on p. Thus, minimizing (3.89) with respect to p at fixed

corrected variables ;i will not take us to the solution of the whole problem
in one go. Patino-Leal and Reilly (refs. 35-36) suggested to take a
minimization step with the objective function (3.8%), then to correct the

variables ;i again, and to continue the iteration. The following algorithm is
based on their ideas with some modifications (ref. 37). Let j denote the

actual number of iteration.

(i) At j =@ select an initial guess p(@ and let ’z\i(o) = ;i'

(ii) Starting from the estimate p{J) find the minimum pOI*) of the

A~

function (3.89) at fixed 2z; =2;09). If j> @ and
[p3*1)-pld)|| < EP, then finish, otherwise proceed to step (iii).

(iii) At fixed p(j+1) perform balance equilibration for each
i=1,2,...,nm, through the use of the iteration

z;(new) = 7. 1) _ g aTravaTi i £+ arz; - 2,911, (390

where the Jacobian J and the function f are computed at 2z;(°19)

and a(j+1). Denote by ;i(j+1) the result of repeating the
iteration (3.9@) until convergence.

(iv) Replace j by j + 1 and retun to step (ii).

Computationaly the most demanding task is locating the minimum of the function
(3.89) at step (ii). Since the Gauss—Newton—Marquardt algorithm is a robust and
efficient way of solving the nonlinear least squares problem discussed in
Section 3.3, we would like to extend it to error—-in-variables models. First we
show, however, that this extension is not obvious, and the apparently simplest
approach does not work.
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With the weighting matrices W; = [ JiVJiT ]_1 the objective function
(3.89) reminds that of the least squares method given by (3.37). This apparent
similarity suggests the following iterative reweighting strategy: compute the
weighting matrices W; at some estimate p(j), solve the corresponding
weighted least squares problem for p(j+1), and continue until convergence.
Unfortunately, this idea is erroneous, as it can be readily shown by

considering the simple example of fitting the straight line

y—ax - b=0 (3.91)

to the set {(y;,x;), i = 1,2,...,nm} of observations, where both variables
are subject to error. For simplicity assume constant variances, i.e., the

covariance matrix is given as

0,2 2
v, =V = Y > |- (3.92)

In our simple case the Jacobian is a row vector J;=[1; -al], and hence the

objective function (3.89) takes the form
Ga,p) = D, R . (3.93)

According to the iterative reweighting we fix the weighting coefficient

(s:ry2 + 320’)(2)_1 in every iteration, thus the strategy results in the

unweighted linear regression coefficients a and B, whatever the actual
\/2 and sz are. The correct solution of this problem should,
however, depend on the ratio » = oyz/ 2. Indeed, the limiting values » ——> @
and » —> o result in the two regression lines, with the role of dependent

and independent variables interchanged. As illustrated in Section 3.1, these

variances o,

ag

two straight lines are definitely different. The iterative reweighting is
unable to give this expected result, and its convergence does not guarantee
that (3.93) has been minimized.

The pitfall of iterative reweighting stems from the fact that
parameter—-dependent matrices [JiViJiT]—l cannot simply be considered as
weighting matrices. We can give, however, a true sum—of-squares structure

nMm ~ ~ A
Qa,b) = . [S] - gi(¥i,x;,a,b)12 (3.94)

Laj=)

to the objective function (3.93) by introducing the response function
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~ ~ 2
~ oo (y:—ax;-b)
9;(yjs%j,a,b) = “‘ﬁ“zl'2;172 (3.95)

(cry +a“o,

and the '"observed" responses gi =0 for all i =1,2,...,nm. Since

minimization of (3.4) is now equivalent to solving a nonlinear unweighted least
squares problem, the Gauss—Newton—Marquardt procedure applies. We note that for
this simple illustrative problem we do not really need the iteration procedure,
since there exist explicit expressions for the error—-in—variables estimates of
a and b, see (ref. 1). The idea of incorporating the induced weights into the
response function is, however, gemerally applicable and requires the

decomposition

T -1 . q.T
L 3w T 178 = g, Tee; (p , (3.96)

thereby transforming the objective function (3.8%9) to the unweighted sum of

squares form

nm T

ap = > [ 55 -6y fip) + Iz - 2311 ] x

i=1
x[ 8 - @M fi(p) + J;(PZ; ~ ;1 1) (3.97)

where gi =@ for all i=1,2,...,Am. Since in step (ii) of the

error—in—-variables algorithm ;i is fixed, we omitted it from the

arguments of @Q;, f; and J;. When minimizing (3.97) we can use a nonlinear
least squares algorithm with the nk-dimensional virtual response function

defined by
Q;(p)L fi(p) + J;(p)Lzy — 23] ] (3.98)

for the i-th observation.

If the problem is multifunctional, i.e., nk > 1 , then the decomposition
(3.96) is not unique. It is advisible to use the Cholesky decomposition
L JiViJiT ] = LiLiT where L; is a lower triangular matrix. Then Q; = Li_1 is
a suitable matrix satisfying (3.96). Efficient algorithms for obtaining L;
and then B; can be found in the book of Wilkinson and Reinsch (ref. 38).
Lines 5484 through 5436 of the following module are based on their
algorithmic ideas.

The organization of the module is somewhat tricky in order to make use of the
nonlinear least squares module M45. Indeed, the module M52 is essentially a

server subroutine for the module M45.,
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Program module M52

3200 REM SHRSSININIREENNNRIRRRIIR I as I st e i

3202 REM FITTING AN ERROR-IN-VARIABLES MODEL L4
5284 REM ¢ OF THE FORM F(1,P)=0 1
3206 REM t  MODIFIED PATINO-LEAL - REILLY METHOD 1

5208 REM HISNNBIININERIRNIRIRIRIINIRERNRNRRARRNNERLLLELINILY
3218 REM INPUT:

5212 REN N NUMBER OF SAMPLE POINTS

5214 REN NI NUMBER OF VARIABLES

5216 REN NK NUMBER OF EQUATIONS

5218 REM NP NUMBER OF PARAMETERS

3220 REM T{NM,1...NI) TABLE OF OBSERVATIONS

5222 REM  R{NI)  VARIANCES OF VARTABLES

5224 REM  P(NP)  INITIAL PARAMETER ESTIMATES

5226 REM EP THRESHOLD ON RELATIVE STEP LENGTH OF PARAMETERS
5228 REM EZ THRESHOLD ON STEP LENGTH OF VARIABLES
3238 RENM ] MAXIMUM NUMBER OF ITERATIONS

5232 REM DUTPUT:

5234 REM ER STATUS FLAG

3236 REM 8 SUCCESSFUL ESTIMATION

5238 REM 1 THRESHOLDS NOT ATTAINED

9248 REM 2 MATRIX Fz'$R$Fz NOT POSITIVE DEFINITE
5242 REN { LOCALLY DEPENDENT EQUATIONS )

5244 REN  P(NP)  PARAMETER ESTIMATES

5246 REM T{NM,NZI+!,,.20NI) CORRECTED VARIABLES

S4B REM ... FURTHER RESULTS PRINTED IN THE MODULE
5259 REM USER-SUPPLIED SUBROUTINES:

5232 REM  FROM LINE 988; OBLIGATORY STATEMENTS ARE

3254 REM 60SUB 5398 :RETURN

5236 REM  FROM LINE 7@@:

5238 REM Lt...nz),P{L...np) =2 Fil...nk)

3260 REM { FUNCTION VALUE EVALUATION )

5262 REM  FROM LINE 60@:

5264 REM (1. .nz} P{l..unp) —--> Ell.. ok le.anz)

5266 REM { PARTIAL DERIVATIVES OF F WITH RESPECT TO 7 }

5268 REM AUXILIARY ARRAYS:

5270 REM A(NP,NP},CiNP,NP),UINP,NP),X(2ENT), Y (NK),BINP), D(NP),S (NP, B (NK,NP)
5272 REN VNN, NK)  BONK,NK ) HONK NK)  RENK, NK)

5274 REM MODULES CALLED: Mié,M18,MA1,N45

5276 NX=NTHNT :NY=NK :¥1=

5278 REN ~------=m- INITIAL ESTIMATE OF VARIABLES

5280 FOR M=1 TO N

5282 FOR I=) T0 NI :T(M,NI+1)=T(H,1) :NEXT |

5284 FOR I=1 TO NY :Y(¥,1)=B :NEXT I

5286 NEXT N

5288 FOR 16=1 TO IN

5299 LPRINT :LPRINT TAB{15);*3%086dass NONLINEAR LSD ESTIMATION *;
5292 LPRINT "NUMBER*;I6:* SEE8R84X38"; LPRINT

5294 FOR I=1 TO NP :S(1)=P{1} :NEXT I :605UB 4500

529 IF ERYD THEN 5448

5298 LPRINT :LPRINT TAB{15);"$483883%2% CORRECTED VARIABLES 183fasanss®
5308 LPRINT LPRINT

5382 FOR M=i TO NN

5384 FOR I7=1 T0 IN

5306 IE=0

5308 FOR I=1 70 NX :X(I)=T(N,1) :NEXT 1

5348 GOSUB 5378



5312 FOR 1=1 T0 MK
5314 ¥=B sFOR J=1 TO NK :Y=Y+A(1,J)8F(0) NEXT J :¥{l)=y

5316 NEXT {

5318 FOR 1=1 70 NI

53120 I=X(I) :FOR J=1 TO NK :I=I-R(I)IE{I,1I8Y(J) :NEXT 3

5322 D=I-T(MNZ+1) :T(H,NI+1)=1 :IE=IE+DAD

5324 NEXT |

5326 IF SOR(ZE)¢=ET THEN 3332

5328 NEXT IT

5330 ERe1

5332 REN ==--n- PRINT VARIABLES

5334 IF M1 THEN 5342

5336 LPRINT V$

5338 LPRINT * HEAG*;TAR( 7);" 1°;TAB(11};*I(I) NEAS";TAB(26);"2(1) CORR";
5348 LPRINT TAB(4@);"EQUATION ERROR AFTER CORRECTION® :LPRINT V$

5342 FOR 1=1 T0 NI

§344  IF I=1 THEN LPRINT H;

5346 LPRINT TAB( 7);1; sLPRINT USING F$;X(I),2(I

5348 NEXT I

5358  GOSUB 78R

5352 FOR K=1 TO NK sLPRINT TAB{45);°F(*;K;*)=";F(K) :NEXT K

5354 NEXT M

5356 LPRINT V$ :LPRINT

5359 IF ER=1 THEN 5446

FHTV 1 JE—— TERKINATION CONDITION

5342 PE=@ :FOR I=1 TO NP :PE=PE+(P(I)-S{1})*2/5(1)*2 tNEXT I

5344 IF SOR(PEJ{=EP THEN ER=D :5OTC 544

5366 NEXT 16

5348 ER=1 :50TO 5448

RO — A=(F2" RIF2)*-1

5372 GOSUB 5376 :N<NK :GOSUB 1608 :IF ER=1 THEN ER=2

5374 RETURN

5376 REM ~---nnnnn- A=Fz'IREFz AND F=F4Fz8(1-X)

5378 FOR 18=1 TO NI :1(18)=K{NI+IB) :NEXT 1

5380 50SUB 400

5382 FOR 18=1 TO NK :FOR JB=1 TO 10

5384 =@ :FOR KB=1 T0 NI :A=A+R(KD)IE(10,KDI4E(JB,KB) sNEXT KD :A{10,30)=A
5384 NEXT J@ :NEXT I8

5388 50SUB 700

5390 FOR 18=1 TO WK

5392 A=F(18) :FOR J8=1 TO NI :A=A+E(I8,J0)K(X(JB)-1(J0)) :NEXT @ :F{IB)=A
5394 NEXT 10

5396 RETURN

5398 REN -=-------- RESPNSE FUNCTION

5490 GOSUB 5376 :IF NK>1 THEN 5404

5482 IF A{1,1)=B THEN ER=2 :B0TD 5446 ELSE 0(1,1)=S0R{1/A{1,1}) :5OTD 5438
T, [ ——. DECOMPOSE A INTO HEH' BY CHOLESKY METHOD
5495 FOR 10=1 T NK

5403 FOR J8=1 0 18-1

410 A=A(I8,JB) :FOR Ke=1 TO J8-1 :A=A-H(18,XB)tH(ID,KB) sNEXT KB
5412 W{ID,38)=A/H(30,00)

S48 NEXT J8

5416 A=A(18,10) :FOR XB=1 TO 10-1 sA=A-H(IB,KB)*2 :NEXT KD

5418 IF AC=B THEN ER=2 :60T0 5444 ELSE H(IB,18)=50R{A)

5420 NEXT 18

TPV 1 e —— FIND 0= H{-1)

5424 FOR 19=1 TO WK

5426 G(10,18)=1/H(18,10)

199
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5428 FOR J0<1@+t TO MK
5430 A= :FOR KB=1 TO J2-1:A=A-H(JD,K9)80(KD,10) :NEXT KO

5432 0{J0,10)=A/H(J8,J0)

5434 NEXT J0

5434 NEXT 10

5438 REN =--mmrmeem =ememmoonn COMPUTE ¥ = O4F

5400 FOR 10=1 TO NK

5442 Y=0 :FOR J0=1 TO 10 :Y=Y+R(10,J0)8F(J0) :NEXT J@ :Y(10)=Y
$444 NEXT 10

5404 RETURN

5448 REN -------—-- END OF HODULE

5459 IF ER=1 THEN LPRINT "REQUIRED THRESHOLD NOT ATTAINED®

5452 IF ER=2 THEN LPRINT *LOCALLY DEPENDENT EQUATIONS®

5454 LPRINT sLPRINT TAB{15);"I$KEXE884 END OF ERROR-IN-VARIABLES *;
5454 LPRINT "ESTIMATION FEESESEEEN" :LPRINT

5458 RETURN

5448 REN SEERERERERSESEERSREREEREIEEEIREREREERERIRILRINTA

The module M45 of the nonlinear least squares method expects a user routine,
starting at line 9@@ and computing the values of the response function. In the
error—in-variables algorithm the virtual response function is the nk vector
(3.98). To free the user from unnecessary programming, we provide a subroutine
starting at line 5398 that computes (3.98). Therefore, the subroutine at line
P20 now consists of the single statements: "GOSUB 5398 :RETURN". There are,
however, two subroutines left to you. One of them starts at line 700 , and
evaluates the function f(z,p). The other subroutine starts at line 682 , and
evaluates the partial derivatives of functions f with respect to z . The
result is an nkXz matrix stored in the two dimensional array E .

We assume that the covariance matrix of the errors is independent of the
observations and, for the sake of simplicity, is diagonal. Since the array V
is already used, the error variances are stored in the vector R .

The return value ER = 2 of the status flag indicates that the functional
relationships (3.85) are linearly dependent, i.e., at least one of the
equations can be omitted.

Example 3.8 Radiographic calibration by error-in-variables method

In radiographic investigations the image of an object is distorted if the
X-rays strike the photographic plate at an oblique angle. In order to calibrate
the distortion a spherical ball is investigated. The image is an ellipse with
centre (py; pp) and further parameters P3, Pg and pg as described by the
equation

[2g-py zppp) | 15 DAL (AP o,
Pg Ps
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The above model is fitted to 20 observed pairs of coordinates (Z;y; Z;5) by
Reilly and PatinoLleal (ref. 35) with the assumption that the errors are
normally distributed and independent with variances 012 = 2.0001 and

022 = 0.0001 . The following main program contains the observed coordinates in
the DATA lines 114 - 152 . The initial estimates of the parameters are given
in line 22@0. Termination criteria for the parameters (EP) and for the

equalibrated variables (EZ) are given in line 218.

189 REM
182 REM EX, 3.8. ERROR-IN-VARIABLES PARAMETER ESTIMATION - CALIBRATION
184 REM MERGE M1b,M18,M41,M45,H52

106 REN ---------- DATA
108 REM {NUMBER OF SAMPLE PDINTS)
110 DATA 20

uz RN (1, I12)

114 DATA @.50, .12

116 DATA 1,20, -B.60

118 DATA 1.68, -1.80

120 DATA 1.B4, -1.40

122 TATA 2,12, -2.54

124 DATA 2,36, -3.3

126 DATA 2.88, -4.00

128 DATA 2,36, -4.75

130 DATA 2.B4, -5.25

132 DATA 1,74, -5.44

134 DATA L.34, -5.97

136 DATA .99, -5.32

138 DATA -2.2B, -b.44

140 DATA -0.78, -5.44

142 DATA 1,36, -6.41

144 DATA -1.90, -5.25

146 DATA -2.50, -5.88

148 DATA -2.88, -5.50

159 DATA -3.18, -5.24

152 DATA -3.44, -4.86

208 REN ~---—mme- READ DATA

202 READ NM

204 NI=2 tNK=1 1NP=5 :IN=20

206 DIN T{NN,20NT},VINN,NK),RINZ) ,PENP), T (NT), X(28NT), YANK) FNK)
288 DIN E(NK,NI) ,ANP, NP} ,C{NP,NP) ,ULNP NP ) B(NP) ,D{NP), S{NP)
218 DIN G{NK,NP) ,0{NK,NK)

217 FOR 1=1 TO NM :READ T(I,1),T(1,2) NEXT 1

214 R(1)=.8081 :R(2)=, 0001

PTUR — ITERATION CONTROL

218 EP=,001 :El=.001 :IN=20

220 P{1)=-.57 tP(2)=-3.4 :P(3)=.1 :P{4)=,00057 :P(5)=.082
222 GOSUB 5268

224 IF ERCA THEN LPRINT *STATUS FLAG:";ER

226 ST0P

408 REM -----nn-=x PARTIAL DERIVATIVES WITH RESPECT T0
582 W1=1(1)-P(1) tH2=2(2)-P(2)

404 E(1,1)=28{P(3}SHL+P(4)XN2) :E(1,2)=28 (P(5)IR2+P(4)8H1)
486 RETURN
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708 REN ---------- FUNCTION EVALUATION

782 Wi=1(1)-P{1) :W2=1(2}-P{2)

T84 F{1}=H1SHINP(3)+WZAN2SP(5)+ZIN1ANZIP(4)-1
786 RETURN

980 REN ---------- OBLIGATORY STATEMENT

982 GOSUB 5398

984 RETURN

The detailed output produced by the program is rather long. This problem needs
three repetitions of the algorithmic steps (ii-iv) , so that the module M4S is
called three times. We omit most of the ocutput associated with the first two
calls. Nonlinear balance equilibration is also carried out three times, but
only the results of the final equilibration are shown here.

$382439999 NONLINEAR LSO ESTIMATION NUMBER 1 s%8sgsttts

STARTING POINT SUNM 58= 18502.64

Vo
[ I
< em
=

.Beas7
.BB2

- v v
L N

Wowouoou
—

17= 4 PN=B,1E-4 SUM 58= B93.4689 5L=

=
[l

2,584833E-03
P{ 1 )=-1.008047
P{ 2 )=-2.923785

P( 3 )= B.744357E-02
P{ 4 )= 1.b46901E-82
P{ 5 )= 7.961292E-82

IT= 5 PH=Q.1E-B5 5UM 5= 893,689 5

=
1]

= §.46B988E-05

$11838888s NONLINEAR LSO ESTIMATION NUMBER 2 $333fsssss

17= 3 PM=8.1E-3 5UM 50= 882.4754 SL= 2.366362E-04

$XEE888888 NONLINEAR LSB ESTINATION NUMBER 3  $33338siit

SUM OF SDUARES «vievvvvivovuunnnnnnss BB2.4716
DEGREES OF FREEDOM ....vvvcnncsnneses 15
STANDARD ERROR «vuvvvesssennnennannns 7,670185
CRITICAL T-VALUE AT 95 ¥ CONF. LEVEL  2.13



PARAMETER

ESTINATE

ST. ERROR

LONER BOUND

UPPER BOUND

- - ™o o

W o R

-.99939E+08  9.11134E+00
-.29308E+81  @.18974E+08
B.87566E-01  8.4198E-02
0.16235E-01  8.27473E-02
B.79747E-81  8.34953E-62

-.12367E+81
-, 31646E+01
8.78813E-01
8.108383E-01
8.72302E-01

-.76243E+08
- 26970E+01
0.96320E-81
8.22087€-81
2.87192e-01

sessssests CORRECTED VARIABLES ssssstssss

MEAS I I{I} MEAS I{1) CORR EBUATION ERROR AFTER CORRECTION
1 1 8.50000E+00  B.5341BE+D@

2 -.12000E+08 -.72187E-01 F{ 1 )= 4.112721E-85
2 1 0.12000E+81  @.11735E+01

2 -.b000BE+A0  -.62550E+D0 F{ 1 )= 8.344651E-87
3 1 0.16000E+01  8.15353E+81

2 -, 10080E+Q1  -.10490E+0] F{ 1 }=-1.716b14E-05
4 1 0.18600E+81  8.17997E+01

2 -, 1400RE+D1 -, 1436BE+D1 F( 1 )=-2.652407€-05
5 1 8,21208E+01  @.2273BE+81

- 20400E401 -, 24939E+01 F( 1 }=-3.845797E-085

b L B.23600E+01  0.24349E+01

2 - 3360BE+D1  -.33544E+01 F{ 1 )=-1,883507€-05
7 1 0.20400E+01  B.24265E+01

2 -.ABOBRE+D]  -.399BSE+DL F{ 1 }=-3.90086E-84
B 1 0.23600E+01  8.22679E+D1

2 - 475008401 -.471B0E+AL F{ 1 }= 8,940697E-86
9 1 0.20400E+01  0.20305E+8}

2 -.52500E+01  -.52326E+01 F{ 1 )= 1.74BAS6E-05
18 1 8.17400E+81  B.17378E+01

2 -.56400E+R1  -.563B1E+AL F( 1 )= 2,121925E-85
11 1 8.13400E+01  8.13576E+01

2 -.59700E+01  -.59932€+01 F( 1 }= 2.8742426-085
12 1 0.90000E+6  8.88154E+20

2 -.63200E+01  -.62BB4E+D) F{ 1 }= 1.490116E-85
13 1 -.28000E+88  -.27B35E+8Q

2 - 4400E+R1  -.65403E+01 F{ 1 }=-b.67572E-0b
14 1 -.78000E+08  -.7B99E+20

2 -.b4400E+81  -.65BBIE+D) F{ 1 )=-1,498116E-85
15 1 -.13680E+81  -.13513E+81

2 -.64100E+R1  -.63B1BE+B1 F{ 1 )=-2.112085€-05
16 1 -.19080E+81 -.1B675E+B1

2 -.62508E+81  -.b61B18E+81 F{ 1 )=-2.1569609E-05
17 1 -.25080E+1  -.246BBE+81

2 -.58800E+81  -.5B347E+d1 F{ 1 )=-1.376867€-83
18 1 -.28B@PE+d1  -.28875E+B1

2 -.55008E+B1  -.550B5€+81 F{ 1 )=-7.748584E-87
19 1 - 31880E+R1  -.31743E+B1

2 -.52400E+401  -.52345€+01 F{ 1 )= 1.28744E-85
28 1 -.3M0eE+dl  -.34760E+01

2 -.A86B0E+21  -.4BBBAE+BL F{ 1 )= 3.314018E-85

$ER8LRR88 END OF ERROR-IN-VARIABLES ESTINATION s33s33ssss

203
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As a byproduct, we obtain confidence intervals for the parameters and corrected
values for the measured variables. The equation errors after correction are
all rmegligibly small, showing that the balance equilibration has besn done
properly. The resulting fit is shown in Fig. 3.4.

0.0
-2.0 \
]

N -4.0

-6.0 J '/

A

-8.0
-4.0 -2.0 0.0 2.0 4.0
21

Fig. 3.4. Observed image (points) and fitted curve (continuous) in the
radiographic calibration problem

Exercise

| Assuming 0X2/0y2 = 0.01 fit an error-in-variables straight line to the data
listed in Table 1.1 of Section 1.8.2. Show that the slope is between the two

limiting values, obtained by regressing y on x and vica versa in
Section 3.1.
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3.9 FITTING ORTHOGONAL POLYNOMIALS

You can use multivariable linear regression to fit a polynomial

n -
S agxd (3.99)
1=

y =
to the set (xj, ;J-); i=1,2,...,np } of points. The i-th row of the
observation matrix X in (3.20) is then ( 1, Xis ><J-2, ceey xjn ). Even for a
polynomial of moderately high degree, however, the resulting cross—product
matrix X'X has a large condition number, and the problem is ill-ctonditioned.
This difficulty can be avoided by estimating the parameters s, sy, ..., Sy
of the function

siPi(x) , (3.100)

_ s n
Y= 2

where Py, Py, ..., P, are polynomials, orthogonal on the given set of grid

points. To defime this property introduce the notation

< PL(x),Py(x) > = ZJZT Pi(*)P(%5) .

According to Forsythe (ref. 39), the polynomials Py and P; are orthogonal
over the grid points (xy, %o, ..., xnp), if < PL(x),Py(x) > = 0. By the
orthogonality of the polynomials P;, the cross product matrix of the linear
regression problem associated with the model (3.10@) is diagonal and bhence very
easy to invert. A further advantage is that increasing the degree of the

polynomial from n to n+l, the previous estimates go’ gl, ceny gn remain
unchanged.
The Forsythe polynomials are defined by the recursive relationships

Pog(x) =B, Po(x) =1, Pj(x)= (x-a;,1)P;(x) ~ 8;P;_4(x) ,

where
- 5P 2 - -
G+l = 250y %5 PiIT 8y = 0gi/05 5y and gy = CPO,P 00 > .

The least squares estimate of the parameters Sgs S1s +-e¢s Sy 10 (3.100) are
simply obtained by

s; = “’i/“’ii f where w; = < Y,Pi(x) > .

Rearranging the polynomial (3.100) to the canonical form (3.99) gives the
estimates for the coefficients a_, a;, ..., a;. The following module based on
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(ref. 4@0) fits polynomials of degree n =0, 1, ..., ND to the set of NP

points, where ND < NP. If the X values are not all different or numerical

errors are likely to corrupt the results, the module automatically decreases

the maximum degree ND, and sets the status flag ER = 1.

Program module MS2

REL LI IREEieesssiieetttttttttotettttntttitittttttitsy
3562 REM 8 POLYNONIAL REGRESSION L
3584 REM § USING FORSYTHE ORTHOGONAL POLYNOMIALS L
RIS I iiEestttttttttteientittinttiiintitijitttttititins]
5508 REM INPUT:

551@ REM NP NUMBER OF SAMPLE PDINTS

3312 REM  X{NP)  VALUES OF INDEPENDENT VARIABLE

5314 REM  Y{NP}  OBSERVATIONS OF DEPENDENT VARIABLE

5516 REM N MAXIMUM DEGREE OF THE POLYNOMIAL { NDCNP )
5518 REM DUTPUT:

5320 REM ER ERROR FLAS

3522 REM 0 SUCCESSFUL REGRESSION

3524 REN 1 SPECIFIED ND IS TOD LARGE

3526 REM { IN THIS CASE A FURTHER OUTPUT IS

5528 REM ND ACTUAL MAXINUN DEGREE )

5330 REM  C(3,I)  I-TH COEFFICIENT IN THE J-TH ORDER POLYNOHIAL
5332 REM (¥ =SUM [CLa, DX I=0...0 )

5334 REX  C{NP,J) RESIDUAL SUM OF SBUARES FOR THE J-TH POLYNOMIAL
5536 REM REMARK: MINIMUN SIIE OF ARRAY C IS NPENP

5338 REM ---------- GENERATE VALUES OF FORSYTHE POLYNONIALS
5540 FOR I=1 TO NP :C(B,I)=1 :NEXT I :C{1,@)=NP ;BE=R

5542 FOR J=1 TO ND

5544 ER=0 :IF NDNP-1 THEN ER=1 :ND=NP-1

5546 AL=0 :FOR I=1 TO NP sAL=AL+X[I}C{J-1,1)80{J-1,1} NEXT I
5348 AL=AL/C{J,B) :C{NP,J)=AL

535 FOR I=! 7O WP

3552 CU,I)={X{I)-AL)SC{d-1,1)

5354  IF BEC)B THEN C{J,I)=C{J,I)-BEXC{J-2,1)

5556 NEXT I

5558 M= :FOR I=1 TO NP ;SM=GM+C(J,I1)8C{3,1) :NEXT I

3968 C{J+1,@)=5M :BE=GN/C(J,0)

3362 IF EM¢=.0800@14C(J,0) THEN ER=! :ND=J-1 ;607D 3366

5564 NEXT J

3366 REN ---------- WEIGHTING COEFFICIENTS OF POLYNONIALS
5568 SN= :FOR I=1 TO NP :SM=GM#¥(1) :NEXT %

5376 Cie,0)=! !

5572 FOR 1=1 T0 NP-1 :C{8,1)=0 sNEXT 1

5574 C(D,NP)=SN/NP :BE=8

5574 FOR J=1 TC ND

5578 SM=A :FOR 1=1 TO NP :SH=SM+Y(I}EC(3,1) :NEXT I
5588 AL=CINP,J) :BU=C{J+1,8)/C(J,0)

5582 C{J,0)=-ALIC(I-1,8) :IF BE}® THEN C(J,8)=C{J,0)-BESC(3-2,0)
5584 FOR 1=1 T0 ND

5585 C{3,1)=C(d-1,1-1)-ALIC(3-1,1)

5568 IF BECY® THEW C{J,1)=C(3,1)-BERC(I-2,1)

5599 NEXT |

5592 FOR I=J41 T0 NP-1 :C{J,1)=0 sNEXT 1

5594 C{J,NP)=GN/CI+1,0) +BE=BU

5595 NEXT J
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5598 REN -------=n CANONICAL POLYNDMIALS AND SUM OF SOUARES
5608 £(0,8)=C{D,NP)LC{B, D) :0(0,NP)=0 :5H=B :Y=C{B,R)

5682 FOR [=1 TO NP :5M=SM+{Y(I)-Y)R(Y(I)-Y) :NEXT 1 :C(NP,2)=5H
5404 FOR J=1 10 ND

5686 SM=C(J,NF)

5608 FOR 1=@ T0 J :C{J,1)=SM8CEI, IM4CUI-1,1) oNEXT 1 5CLJ,NP)=8
5610 SH=@

5612 FOR 1=1 T0 NP

5614 ¥=C(J,3) :FOR X=3-1 TD D STEP -1 sY=YRX{1)4C[J,K) :NEXT X
Shis  SHESMHLY{T)-YIR(¥{1)-¥)

5618 NEXT I

5620 C{NP,J)=5M

5422 IF S>=CINP,J-1) THEN ND=J-1:807D 5626

5624 NEXT J

5426 RETURN

5628 REM TRUEIERERERIRREIERERERERERRIRRREESRICEEIIIREIRILALS

Example 3.9 Polynomial regression through Forsythe orthogonalization

The DATA statements of the following program include 12 data pairs

(%5, ;i) y where x is the temperature (K) and y is the equilibrium vapor
pressure (bar, 1 bar = 1@5 Pa) of liquid oxygen (ref. 41).
We attempt to fit least squares polynomials of degree @ through 11 ,

describing the vapor pressure as a function of temperature.

100 REM
182 REM EX. 3.9. POLYNOMIAL REGRESSION

104 REM USING FORSYTHE CRTHOGONAL POLYNOMIALS
186 REM MERGE M55

108 REM --------—- DATA

118 REM (NUMBER OF POINTS AND MAXIMUM DEGREE)
112 DATA 12,1

114 REM (X(1}-tenp Y{1}-press)

116 DATA 54.35, 8.801580

118 DATA 60, 8.007317

128 DATA 70, 8.86236

122 DATA 8B, 8.3003

128 DATA 98, 8.9943

126 DATA 188, 2,546

128 DATA 118, 5.443 '
138 DATA 128, 18.2

132 DATA 138, 17.44

134 DATA 148, 27.82

136 DATA 1359, 42.23

138 DATA 154.77, 30.87

280 REH ---------- READ DATA AND CALL MODULE

202 READ NP,ND

204 DIM X{NP),Y(NP},C{NP NP}

286 FOR I=1 TO NP :READ X{I),Y{I} :NEXT I
208 60SUB 5588
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210 REX ~~----mm- PRINT RESULTS

212 IF ER THEN LPRINT "ER=1 : MAX, ADMISSIBLE DEGREE I5*;ND :LPRINT
214 FOR J=0@ TO ND

216 LPRINT “DEGREE:*3;J ,*RESIDUAL SUM OF SGUARES:";C{NP,J)
218 LPRINT USING °Y(X)= §.8E808%%44% C{],0)

220 FOR 1=1 TDJ

222 LPRINT USING * SRS L 00,0,

224 NEXT 1

226 LPRINT

228 NEXT 4

238 ST0P

The output begins with a warning message:

ER=1 : MAX. ADMISSIBLE DEGREE 1S 7

DEGREE: @ RESIDUAL SUM OF SGUARES: 3512.318
Y{X}= 0.13150E+02

DEGREE: | RESIDUAL SUM OF SGUARES: 0887,5648
Y(X)= -, 38171E+02
B.45109E+400 ¢ ¥~ 1

DEGREE: 2 RESIDUAL SUM OF SOUARES: 54.18914
Y(X)= B.31194E+82

- 136106401 ¢ X~ L

0.86470E-02 ¢ X* 2

DEBREE: 3 RESIDUAL SUM OF SGUARES: .5434249
Y{3)= -, J4631E+D2

B.14353E401 8 X* |

- 19677E-01 & ¥* 2

B.90203E-04 $ X~ 3

DEGREE: 4 RESIDUAL SUM OF SRUARES: 6.449505E-23
Y(X}= -.90362E+00
- 32478E-01 ¢ (*
B.320856-82 ¢ 1*
-.b1456E-04 ¢ X*
8,36254E-06 ¢ 1~

R N

DEGREE: § RESIDUAL SUM DF SGUARES: 4.128297E-83
YiX)= -.96379E+01

B.43970E400 8 X 1

-.b7363E-B2 ¥ X~ 2

B.39624E-84 ¢ X1~ 3

-.13536E-06 ¢ X~ 4

8.95200E-89 ¢ X* 5

DEGREE: & RESIDUAL SUM OF SGUARES: 1.189194E-04
Y(X)= 0.33365E+82

- 23770401 ¢ X~ L

B.67954E-01 ¢ X* 2

<. 9B769E-03 ¢ X~ 3

0.76B43E-85 ¢ X~ &

135

L}

A
A

A

-.29378E-07 ¢ 1
0.48385E-10 ¢

A
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DEGREE: 7 RESIDUAL SUM OF SBUARES: B.767201E-B6
Y{X}= B.78337E+81
- A2636E+00
B.53339E-02
B.95423E-04
-.34214E-05
B.36318E-87
-, 16588E-09
B.29283E-12

B e B m B B
> > o x x
~N O en G R e

>

N

Polynomials of higher degree can be fitted in this case only if double

precision is used for the computations.

Exercises

O Insert the following line into the program to repeat the computations in
double precision:
79 DEFDBL A-H,0-Z
Compare the residual sum of squares obtained in single and in double

precision.

O Since the vapor pressure changes over several orders of magnitude, it is more
reasonable to fit polynomials to the logarithm of the vapor pressure.
Repeat the computations inserting a logarithmic transformation for vy.
Show that for a given order of polynomial the maximum relative error of the

vapor pressure is considerable lower for the logarithmized model.

O Try to fit polynomials of degree 3 through 7 to the data using the module
M42 . Discuss the advantages of orthogonal polynomials in view of your
experiences.

3.1@ APPLICATIONS AND FURTHER PROBLEMS

3.10.1 On different criteria for fitting a straight line

You have now several estimators to fit the line y = ax + b to the points

(;i, xj): the method of least squares (Section 3.1), the method of least
absolute deviations (Section 1.8.2) and the minimax method (Section 1.8.3).
Which one to use in a particular case? To answer this question consider first
the problem of outliers., i.e., observations with gross errors. The presence of
outliers is, unfortunately, not rare in large samples. Since in its objective

function these large deviations are squared, the least squares estimates are
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clearly more sensitive to the outliers than the method of least absolute
deviations. The least squares is a maximum likelihood estimator so far the
error distribution is normal. In a normal distribution the probability of
outliers is vanishingly small, and hence their presence signifies deviation
from the assumed normality. Therefore, if the error distribution is suspected
to be “flat", i.e., the probabilitiy of large errors is higher than expected in
a normal distribution then the more robust least absolute deviations criterion
is preferable.

In practice the error distribution is usually unknown, and the choice can be
made on the basis of the empirical curtosis of the residuals defined by

k=n (=r;%) / [Zriz]z, (3.101)

where the r;’'s are the residuals from a least squares fit, and the summation
goes from 1 to the number of sample points. According to (ref. 42), in case
of a large curtosis, k > 3.8 , the sum of absolute deviations is better to
use. The other extreme case is indicated by a low curtosis, k < 2.1, when the
error distribution is possibly "sharper”" than the normal. In this case the

minimax criterion is a good choice.
Exercise

o Select the suitable criterion for the nicotine - tar data investigated
in Sections 1.8.2, 1.8.3 and 3.1. Inspecting the shadow prices in the
minimax estimation omit the most suspectible point and repeat the estimations
by the different methods. Discuss the sensitivity of the various estimates

with respect to omitting this point.
3.10.2 Design of experiments for parameter estimation

The best known application of experiment design is to find the extremum of a
quantity depending on further variables by cbserving its value at appropriately
selected points (refs. 43-44). In this section, however, consideration is
restricted to design methods, purported to increase the reliability of
estimates when fitting a model to observations.

A k - point design is described by the design matrix X, , consisting of
k rows. The i-th row of the matrix specify the values of the the independent
variables to be selected in the i—th experiment. Depending on the linearity or
nonlinearity of the model, the design matrix affects the covariance matrix Cp
of the estimates according to the expressions (3.3@) and (3.45), respectively.
The covariance matrix, in turn, determines the joint confidence region (3.32)
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of the parameters. Our goal is to obtain a confidence region as small as
possible. The size of the ellipsoid (3.32) can be measured in different ways,
and these give rise to various optimality concepts listed in Table 3.7.

Table 3.7
Dptimality criteria in experiment design

Optimality concept Criterion
D det[ Cp ] —> min
A tracel Cp ] —> min
E Mnink C ] —> max

According to Table 3.7, a D — optimal design X minimizes the volume of
the confidence ellipsoid. The mean square length of the axes is minimized in
A - optimal design, whereas E — optimality means the minimum length of the
longest axis. In the case of a nonlinear response function the Jacobian matrix
(3.41), and hence also the approximate covariance matrix (3.45) depend on the
parameter values, in addition to the design X, . Thus optimality of a design is
defined at some fixed parameter vector.

To obtain a meaningful extremum problem the number of experiments k and
the set of feasible vectors of the independent variables T are fixed. In most
cases T is defined by inequalities x- ¢ x; < xY, 1 =1,2,...,k. Though
introducing penalty functions such constrained extremum problems can be solved
by the methods and modules described in Section 2.4, this direct approach is
usually very inefficient. In fact, experiment design is not easy. The
dimensionality of the extremum problem is high, the extrema are partly on the
boundaries of the feasible region T, and since the objective functions are
symmetric in the vectors X3, X3, .., X, you have to face the difficult
problem of multiple maxima (ref. 44).

In practice it is more efficient to adopt a less ambitious approach of
"polishing" a starting design X, iteratively, increasing the value of the
objective function in each iteration and thereby determining a nearly optimal
design. A useful algorithm is to drop one point of the current design and add
an optimally selected new point x, to the remaining design X, _;- This
inner iteration is repeated for each point of the design in turn. Then the
procedure can be restarted updating the first point again. The convergence rate
might be disappointing, but high accuracy is not necessary because of the

inherent approximations.
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Example 3.10.2 Approximate D — optimal design for estimating Micheelis-Menten
parameters

Starting with the substrate values x; = [5;] in Table 3.4, we construct a
nearly D - optimal design to estimate the parameters of the response function
(3.55). Since we have 1@ measurements in the starting design, we fix k = 10.
The feasible region is given by xt =@ and xM = 5a072 mol/l1. The nominal
parameter values, necessary to be selected a priori, are V = axip~2 mol/(l s)
and K = 4x10"2 mol/1. Constant error variance is assumed.

In every inner iteration step the objective function

Q(x) = det{ H_;d_q + JOGYKIFT (GV,K) 3 (3.102)

is minimized subject to the constraint xt < x < xU, where the Jacobian
corresponding to the remaining experiment design X, _;, denoted by J;._;, does
not depend on x , and j 1is the column vector of partial derivatives at x .
Evaluating (3.1@2) over a course grid we can find at most two local maxima.
Therefore, the program designed to solve this problem first divides the
interval [xL,xU], each of the two subintervals bracketing one of the maxima. On
each interval the single maximum is localized by module M25, and the larger one
is selected for the new point of the design. As shown in Table 3.8, the first
three points are immediately replaced by xU. In the next 5 inner iterations,
however, the global maximum is located at inner points of the feasible
interval. Finally, (3.102) takes its maximum value again on the upper end when
replacing the last 2 points. The design obtained in the first outer
iteration (i.e., after updating all the 1@ points) remains almost unchanged
subsequently, with the inner points approaching to a single value. The
resulting design decreases the volume of the (approximate) confidence el lipsoid

of the parameters by a factor of 2 with respect to the starting design.

Table 3.8
Outer iterations of the experiment design procedure

Design points x;x10°, mol/l

Outer @10
iteration 1 2 3 4 5 =} 7 B8 Q 10
@ 1.00 3.00 5.00 8.00 12.00 15.00 20.00 32.00 40.00 S50.00 2.3886
1 50.00 50.00 50.02 14.74 14.60 14.63 14.75 15.13 52.00 S50.00 4.5854
2 50.02 50.00 S58.08 15.42 15.42 15.34 15.33 15.38 50.00 52.00 4.5939

[} 50.92 50.02 52.28 15.38 15.39 15.38 15.38 15.38 50.00

g
8

4.5939
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In this example the approximate design consists only of two different points
with replicates. Restricting the number of points to k = 2 right at the
beginning, the problem can be solved by hand calculations yielding the same
result. You should not draw, however, overly general conclusion from this fact,
since the number of different points in a D - optimal design can exceed the
number of the parameters. Nevertheless, the optimal design normally involves a
relatively small number of different points, and the corresponding cbservations
are hardly suitable for validating the model. Thus the methods of this section
apply only when the form of the response function is no more questionable. The
need for replicates is a disadvantage also in kinetic amalysis, where in a
single experimental run the variables can be sampled at points that are not too
close. Such additional constraints, however, can be incorporated into the

design procedures (see, e.g., refs. 47-48).
Exercise

0 Repeat the design procedure of Example 3.10.2 assuming constant relative

variances.

3.10.3 Selecting the order in_a family of homologous models

In Example 3.5.1 we used ridge regression to confirm that the simpler model
(3.33) is preferable to (3.64), though the latter gives slightly better fit.
Such model selection problems are faced in many applications, particularly when
considering a homologous family of candidate models. For example, in polynomial
regression we should select a degree n. A similar problem, discussed in
Chapter 5, is to select the order n of a linear differential equation when
identifying a pharmacokinetic model.

Example 3.5 has certainly convinced you that the best fitting model is not
necessarily the one to chose. In fact, it may be overparameterized with respect
to the available data, leading to inflated or even meaningless estimates of the
parameters. In addition, a too complex model usually gives unsatisfactory
predictions, even slightly apart from the observed values of independent
variables. Which model should be then adopted? The simplest rule is that model
complexity (i.e., its degree or order) should be increased only while the
residual variance is significantly decreasing. This can be tested comparing the
residual variances of different models by the F-criterion. This test is
not "sharp" enough and frequently suggests a too complex model. A number of
criteria has been proposed that take the number of parameters into account more
explicitely (for reviews see e.g., refs. 49-50). The most popular one is the
Akaike's Information Criterion (ref. 51), suggesting to choose the model for
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which the quantity

AIC = - 2 log (maximium likelihood) + 2 np (3.103)

takes its minimum value, where np is the number of the parameters. If the
assumptions (i)-{vi) of the least squares method are valid, minimizing (3.103)

is equivalent to minimizing the simple expression

AIC' = Q(p;np)/o2 + 2 np , (3.124)

where Q(B;np) is the minimum value of the weighted sum of squares with
weighting coefficients w; = 02/012, found for the model containing np
parameters. In practice o is replaced by its estimate s2. At this point it

is advantageous to use a common 52

, not depending on the number of parameters
of the particular model. Obviously, the a priori choice of =2 significantly

affects the outcome of the test.
Exercise

O Select the degree of the polynomial describing the logarithmic vapor pressure
of oxygen as a function of the temperature (see Example 3.9).
Suppose the vapor pressure is exact to three digits and give an estimate 52
for the logarithms. Apply (3.184) replacing o2 with s2.

3.10.4 Error—in-variables estimation of van Laar parameters from
vapor—-liguid equilibrium data

At low pressures the following equations are valid for a binary vapor-liquid

mixture:

yip = Txgp O

(1=y)p = To(1-x3)p2AT) , (3.104)
where

Xq mole fraction of component 1 in the liquid phase

Y1 mole fraction of component 1 in the vapor phase

p pressure

T temperature

pio(T) equilibrium vapor pressure of pure component i

T activity coefficient of component i.

The functions pio(T) are supposed to be known exactly, given by the Antoine
equation:

log p;°(T/K)/Pa = A; - B;/IT/K + C;] .
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A popular model to describe the activity coefficients is the van Laar equation

- A A X332

leg 7, = RT[1+ B xz]
B B -2
leg 7, = ﬁ?[1+ A Ef] ’

where R = B8.3144 J/(mol K) is the universal gas constant, A and B are the
van Laar parameters, characteristic for the given pair of components.

Estimate the van Laar parameters of methanol (1) and 1,2-dichloro—ethane (2)
from equilibria data obtained at T = 323.15 K and shown in Table 3.9 if the
Antoine parameters for these components are (ref. 52): Ay = 23.0843,

By = 3626.55, C; = -34.29 and Ay = 21.8&92, B, = 2927.17, Cp = -50.22 .

Table 3.9
Binary vapor-liquid equilibrium data

Measurement 108x, 100y, px1@O, Pa
1 R 59.1 0.4450
2 40 60.2 8.4575
3 50 61.2 2. 6655
4 70 £5.7 2.6485
5 90 81.4 2.6262

The two functional relations stemming from (3.104) take the form

Fl(*l’yl’T’p) =
- A A Xy 12 ~
= exp{ AT [ 1+ B ;2 ] bexp{A; — B;j/[T +Cil} -~ y1p=0
F2(>‘1,Y1!T,P) =
- B x232 -
=expl — ((1+ = ] 7 Ya-xq)expihy - By/[T + €21 - (1-y;)p = @

X1

The standard errors we assume are o, = 0.0@5, o, =2.0815, % =108 Pa and
o = 8.1 K, based on the reasonable accuracy of vapor—liguid equilibria
measurements.

The module M52 is used to solve the error-in-variables estimation problem.
The main program contains the starting estimates of the unknown parameters
A =B =RT in line 230. The subroutine starting at line 700 computes the
current values of the two functional relations. The partial derivatives with

respect to the observed variables are computed in lines &0@-622.
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108 REH
182 REW EX. 3.18.4 VAN LAAR PARAMETERS (ERROR-IN-VARIABLES METHOD)
184 REM MERGE M1é,Mi8,MA1,MA5, M52

106 REM ---------- DATA

108 REM ( NM )

118 DATA 5

112 REN (X4 1 PreA T

114 DATA 0,38, 0.591,  .G4SOES, 323.15

116 DATA .49, 8.582,  .4STSES, 323.15

118 DATA 0.58, 9.612,  .646SES, 323,15

120 DATA 8.78, 8.657,  .b64BSES5, 323.15

122 DATA .99, 9.818,  .6262E5, 32315

200 REM —-------- READ DATA

202 READ M

204 NI=h tNK=2 tNP=2 :IN=28

286 DIN T(NN,28NT),V(NM,NK) RINZY,P(NP), T(NT), %(2ENT ), Y(NK) FNK)
209 DIN E{NK,NI],A(NP,NP), CINP,NP}, L{NP NP} ,BCNP ), DINP) , S{NP)
218 DIN G(NK,NP),B{NK,NK)

212 FOR 1=1 T0 N

214 FOR J=1 T0 NI sREAD T{I,0} :NEXT )

216 NEXT 1

218 AN1=23,4883 :BN1=3426.55 :CN1=-34.29 :REM ANTOINE PARAMETERS
220 AN2=21.B692 :BN2=2927.17 10N2=-58.22 :REN  *

222 RU=8.3144 iREW GAS CONSTANT
224 R{L)={.005)"2 :R(2)=(.815)2 :R(3)=(180)*2 :R{4)={.1)*2 :REM VARIANCES
226 REM ---+----=- ITERATION CONTROL PARAMETERS AND INITIAL GUESS

228 EP=.001 :EI=.001 :IN=20

238 P{1)=RU$323.15 :P(2)=RUS323.15

232 60SUB 5200

234 IF ERX® THEN LPRINT "STATUS FLAG:*;ER

236 STOP

688 REM ---------- JACOBIAN MATRIX OF F WITH RESPECT 10 1

602 AR=P({1) :BB=P(2) sPT=1(3} :T=1{4)

684 X1=1(1) :X2=1-X1 :¥1=1(2} :¥2=1-Y1

686 P1=EXP(AN1-BN1/{T+CNL}) :P2=EXP{AN2-BN2/{T+CN2))

688 S1=AA/RU/T/{1+AR/BBIX1/X2)%2

518 52=BB/RU/T/{1+BB/AAEX2/X1)*2

§12 S1=EXP(51) :62=EXP{52)

614 E(1,1)= B1#P1-24B18X14PIRAR/RU/TEAR/BB/ X242/ (1+X1/X28AA/BB}*3
616 E(1,2)=-PT :E(1,3)=-Y1 :E(1,4)=-X18P18B1851/T+B18X1IP1EBNL/ (T+INT}~2
618 E(2,1)=-628P2+28624X24P24BB/RU/THBB/AA/ XL 2/ (1+X2/X14BB/AA}A3
820 E(2,2)= PT :E(2,3)=-Y2 :E{2,4)=-X24P2862852/ T+E24X28P2¥BN2/ (T+CN2)*2
622 RETURN

700 REM ---------- FUNCTIDN EVALUATION

702 AA=P(1) :BB=P(2) :PT=I{3} :T=1(4)

784 X1=1(1) :X2=1-X1 :Y1=1(2} :¥2=1-Y1

786 PL=EXP(ANL-BN1/(T+CNL)) tP2=EXP(AN2-BN2/(T+CN2))

788 S1=AA/RU/T/(L+AA/BBEX1/X2)42

710 52=BB/RU/T/(1+BB/AASX2/X1)*2

712 B1=EXP(51) :62=EXP(52)

714 F{1)=B18X18P1-Y14PT

716 F(2)=628X28P2-Y24PT

718 RETURN

988 REM ---------- OBLIGATORY STATEMENT

992 6OSUB 5398

984 RETURN

After two outer iterations the following results are obtained.



217

PARAMETER ESTIMATE ST. ERROR LOWER BOUND  UPPER BOUND

P{1) 0.51359E+B4 0. 10477E+03  0.48939E+04  0.53779E+04
P{2) B.432076+04  0.52428E+B2  0.41996E+84  0.44418E+04

MEAS 1 I(1} MEAS 1(1) CORR EQUATION ERROR AFTER CORRECTION

1 1 0.30000E+00  8.29879E+00
2 0.59180E+88  0.59594E+B0
1 0.64500E+05 0. 44525E+05
4 0.32315E+03  0.32309E+03 F{ 1 )=-.815625
F{ 2 )=-9.765625E-03
2 1 0.40000E+00  0.39967E+00
2 B.5B200E+00  B.61214E+0D
3 B.657S0E+R5  B.65761E+R5
4 9.32315E+03  0.32312E+83 F{ 1 }=-.B46875
F{ 2 )=-2.734375E-02
3 1 9.50000E+00  B.5001BE+22
2 0.61280E+08  0.524B0E+DE
3 D.6665BE+@5  B.b6661BE+RS
4 0.32315E+03  9.32324E+03 F{ 1 )=-,015623
F{ 2 )=-1.3467188E-02
9.70800E+00  9.49947E+00
B.4570BE+BE  .b66675E+RD
B.66858E+85  B.566BI5E+R5
B.32315E+83  B.32319E+B3 F{ 1 )=-3.98625E-03
F{ 2 )=-3.98625E-03

!
2
3
Il

1 0.90000E+00  0.90Q40E+00
2 0.Bl4BBE+BE  0.Bl1B4BE+RO
3 0.62620E+05  0.62621E+05
4 0.32315E+03  0.32315E+83 -5.078125E-02

-4,882813€E-83

F{1)
F(2)

The van Laar parameters A = 5135.9 J/mol and B = 4320.7 J/mol vyield a
good fit., The cobserved variables are only slightly corrected to satisfy the
model equations. The quantity "equation error after correction" is expressed in
Pascals, hence the above values are negligible small.

You can meet almost all the difficulties of parameter estimation when
evaluating vapor-liquid equilibria data (implicit functional relations among
several variables, corrupted by measurement errors that are likely to be

correlated (see, e.g., ref. 33).
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Chapter 4

SIGNAL PROCESSING

Many experiments result in a sequence { (xj,y;)y i =1, 2, ..., m} of
data pairs. As in the previous chapter, we assume that there exists a
functional relationship y = f(x) between the two variables, and hence refer
to (X3, «.ny Xg) and (yy, «-ey Y,) as grid points and function values,
respectively. The form of this function is, however, often unknown. In other
cases it may be deduced from physical principles, but is too complex faor
meaningful parameter estimation, with many parameters of no particular
interest. In both situations we wish to predict some properties of f directly
from the observations (xj,y;). The most important quantities to estimate are
as follows:

1) the function value f(x) between two grid points (interpolation);

ii} the derivative f'(x) (numerical differentiation); and
b

i1ii) the integral I f(x)dx , where the limits a and b satisfy the
a

inequalities x; < a < b < x (numerical integration).

m

The important application of numerical differentiation is locating the
extrema or inflection points of the curve. Finding the area under the curve
involves numerical integration.

Since f(x) is known only at the grid points, to solve these problems we
must connect the data by some plausible interpolating function. Its form should
be sufficiently general so as to be able to approximate large classes of
functions, but simple enough to deal with. By far the most common among such
functions are polynomials. If we use all data pairs simultaneously, the
interpolation is called global. In many cases, however, local interpolation is
a better choice, considering only n < m grid points around the point x of
interest. Local linear and quadratic interpolation (i.e., n =2 and n=3,
respectively) are the most familiar procedures. When the interpolating function
has been selected, numerical differentiation and integration are
straightforward. For example, with local linear interpolation shown in
Fig. 4.1, the estimate of the derivative is (yj,q-yj)/(xj,17%;) at all

"
xj € x £ xj,q 5 whereas jx{‘”lf(x)dx B (yjeq + ¥i)/(X{ + 17%j)/2 by the well
1
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known trapezium rule.

Fig. 4.1. Local linear interpolation

Interpolation assumes that the data are error—free. In many cases, however,
we must assume that the observed sequence is (xi,;i), i=1,2, ..., m},

where ;i =yj +€ , and the errors €; are not negligible. Then it is more
appropriate to look for a 'smoothing" function that fits the data, but does not
necessarily interpolate them. Since this function is expected to estimate the
error—free function values yi s the procedure is also called filtering. To
choose a meaningful smoothing function one needs further assumptions on the
error structure. In some cases the emphasis is on the magnitude of the error
variance, (or the signal-tonoise ratio), assumed to be known. In other cases
our assumptions rather concern the time behavior of the noise process, for
instance we suppose that the noise varies much faster (or much slower) than the
useful signal. Similarly to interpolation, smoothing may be global (e.g., least
squares fit of a polynomial of degree n < m — 1 to all points) or local
(e.g., fitting a quadratic to the 5 points nearest to x of interest).
Differentiation of smoothing functions yields formulas less sensitive to
measurement errors than the formulas of numerical differentiation derived from
interpolating functions. Integration automatically removes some noise, and

hence smoothing functions are rarely used in such applications.
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Each signal processing method discussed here involves some function which is
either interpolating or smoothing, and is either local or global approximation
of the data. This results in the two-way classification of the methods shown in
Figure 4.2, where the gquadrants of each card list methods of the same family
for the particular application.

Signal processing may also involve parameter estimation methods (e.g.,
resolution of a spectral curve into the sum of Gaussian functions). Even in
such cases, however, we may need non—parametric methods to approximate the
position, height and half-width of the peaks, used as initial estimates in the
parameter estimation procedure.

In this chapter we restrict consideration to non-recursive signal
processing. A good introduction into recursive filtering can be found in the
book of Bozic (ref. 1). Another interesting field not discussed here is to
modify conventional analytical methods to produce signals, whose direct human
interpretation is no longer necessary and possible (e.g., correlation
chromatography). The interested reader may consult the review paper (ref. 2).

As shown in Fig. 4.2, we have several methods to solve any particular
problem. The choice primarly depends on the sample size, and hence we introduce

the following classification:

i) small samples (5-15 points);
ii) medium samples (18-1@@ points); and

iii) large samples (from 58 points).

Small samples are practically error—free in most cases (e.g., data in
thermodynamical tables), but given over an irregular mesh. On the other hand,
large samples almost invariably represent the "raw" output of a measuring
device, or are obtained by sampling a continuous signal. In this class the grid
points are equidistant that may simplify data processing. In medium
samples we often have some assumption on the signal-to-noise ratio while in
large samples the spectral properties of the noise process are more or less
known .

There is an extensive mathematical literature devoted to interpolation,
function approximation, numerical differentiation and integration (refs. 3-35),
but many methods are not particularly useful for signal processing. For
example, there is a large variety of efficient methods of integrating
numerically a function that can be computed at any desired point. In signal
processing, however, the data are a priori given, and the class of applicable
methods is considerably restricted. In addition, many classical formulas are
very simple so that discussing them we include only three modules.

More attention will be given to two families of very general methods. The
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first is based on the use of spline functions, and is going to replace many
classical procedures for interpolation, smoothing, numerical differentiation
and integration. The second family contains the Fourier transform spectral

methods, and it has such an extensive list of potential applications that we

can discuss only some of the most basic ones.

4.1 CLASSICA. METHODS

4.1.1 Interpolation

In global polynomial interpolation we fit the polynomial

m-1 X2 4 L.+ ag (4.1)

Pr-g (%) = 8qy X7 7 * ap-2

to the points { (xj4y§)y 1 =1, 2, «2sy m } by solving the set of linear

equations

P1(X{) =vis 1 =1, 2, covym. (4.2)

If the grid points are distinct, the solution ag, ajy... a1 of (4.2) is
unique. The corresponding polynomial can be given in several explicit forms
different from the canonical form (4.1). For instance, it can be computed as a

linear combination

m
pm_l()() = Z YJLJ(X) (4.3)
j=2

of the Lagrange base polynomials defined by

. (x—xi)
i#j

LJ-(x) = (4.4)
11;_) (XJ'—Xi)

The classical Lagrange formula is not efficient numerically. One can derive
more efficient, but otherwise naturally equivalent interpolation formulas by
introducing finite differences. The first order divided differences are
defined by

Fixg) = FO_
Fongangog) = 22 ZI0G) an L, (4.5)

Xj T Xi-1

where f(x;) = vyj. Similarly the (k+1)—-th order divided differences are

defined recursively by
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FlXpagsee=aXa) = FlXpyauasxg)
R+l T Xt

FlXpapsrresXnsXy) = (4.6)

in terms of the k—th order divided differences. The simplest interpolating
formulas based on divided differences go back to Newton, and involve

polynomials of the form

Pr—1(X) = Ay + A (xxp) + A o(xx ) (X=X ) + oo + Ag(X=x%p) eaa(X—Xq),
(4.7)

where the coefficients Ak (not to be confused with the coefficients g in

representation 4.1) are explicitly given by

An = F0) 5 Ay = Flgaxpoq)s eeey Ay = F0Xgy%o gy0ee Xg) (4.8)

in terms of the divided differences. To evaluate (4.7) it is useful to write it
in a slightly modified form

qn_l(x) = A t (x—xm)(Am_l + (x—xm_l)(Am_z + ... +(x—x2)A1)...) (4.9)

requiring only m - 1 multiplications.

Program module M&2

SBBD REM SEE8388biritt st artiasaat s aaassassanssasssssssing
6882 REM & NEWTON INTERPOLATION: COMPUTATION OF POLYNOMIAL
6884 REM 1t COEFFICIENTS AND INTERPOLATED VALUES 1
5086 REM SRRRssssstatssasasssasstaatsaaasassassssssesseess
5088 REM INPLT:

50108 REM A NUMBER OF GRID POINTS

6012 REM 1(N)  GRID PDINTS

5814 REM F{#y  FUNCTION VALUES AT BRID POINTS

6015 REM X FOINT WHERE FUNCTION VALUE IS REGUIRED
6018 REM FC IDENTIFIER OF FIRST CALL

6820 REM (38 - FIRST INTERPOLATION

6822 REM =B - REPEATED INTERPOLATION

6024 REM DUTPLT:

6026 REX F{M}  COEFFICIENTS OF THE INTERPOLATING POLYNOMIAL
6028 REM FF (N} +{X-L{N) JR{F(N-1)+(3-T(N-108( ... F{1) )
6030 REN F INTERPOLATED FUNCTION VALUE AT X

5032 IF FC=0 THEN 6248

6034 REN ------m-m- COEFFICIENTS

6035 FCR J=1 TO H-1

6838 FOR I=1 70 #-J

S840 F{L)={F{I+1}-F{INATITR)-T(I))

5042 NEXT 1

5044 NEXT J

5046 REN ---------- INTERPOLATED VALUE

5048 F=F{1)

6058 FOR I=2 TO M :F=F¥{X-T(I1})+F(I) :NEXT I

6852 FC=@ :RETURN

6834 REM SIERRRTRLSSTSBRLLILLLLLLSERLELERTLTOINIIININLINNING
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There are two operations performed in the module. First, it determines the
coefficients A in the expression (4.7). Second, it calculates the polynomial
at the specified X. Both operations are performed if the first call flag FC
has a nonzero value on the input. The coefficients will be stored in the place
of the function values, and the module sets the value FC =@ . In a second
(and in any subsequent) call with the same data but with a different X the
coefficients are not recomputed.

Example 4.1.1 Determination of enthalpy by Newton interpolation

Each DATA line of the following main program gives a temperature T and a
corresponding molar enthalpy value H2(T) - H(@) of 5iF,; in gaseous state
(ref. 6). The units are K and kJ/mol, respectively. We find the molar
enthalpy at the temperature T = 298.15 K.

100 REM
182 REM EX. 4.1.1 NEWTON INTERPOLATION
104 REM MERGE M&D

106 REN ~--------- DATA
188 REN (NUNBER OF POINTS)
118 DATA 9

112 REN (T,K H-HD,kd/aal)

114 DATA 208, 8.722

116 DATA 308, 15.492

118 DATA 408, 23.367

120 DATA 508, 32.826

122 DATA 608, 41,225

124 DATA 700, 58.799

126 DATA 820, 60.637

128 DATA 500, 79.865

130 DATA 1008, 89.835

208 REM -——-—--——- READ DATA

202 READ M

204 DIM I(M},F(N)

206 FOR 1=1 TO ¥

208 READ Z(1),F{1)

210 NEXT 1

PIPR o — CALL INTERPOLATION NODULE
244 FL=1 11=298.15

216 LPRINT "NEWTON INTERPOLATION, NUMBER OF POINTS:*;N
218 OSUB 5000

228 V$=STRINGS(45,"-")

222 LPRINT v$

224 LPRINT USING *T=#48.84 ¥ HET)-H{0) =08 484 kd/anl™;X,F
226 LPRINT V8

228 ST0P

The output of the program is as follows.
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NEWTON INTERPOLATION, NUMBER OF PGINTS: 9

7=298.15 K H{T)-H(8)=15.356 kJ/eol

Global polynomial interpolation is restricted to small samples of fairly
good data. If there are many grid points, the resulting higher order polynomial
tends to oscillate wildly between the tabulated values as shown in Fig. 4.3.

Yi-1

Xji.1 X Xist  Xig2

Fig. 4.3. An interpolating polynomial p oscillating around the "true"

function f .

This oscillation may have no relation at all to the behavior of the "true"
function. Therefore, we cannot recommend global interpolation except for

small samples. In large samples interpolation is rarely needed. For medium size
samples low order local interpolation considering 3 - & nearest neighbors of
the point x of interest does the job in most cases. The most popular methad
is local cubic interpolation in the Aitken form programmed in the

following module.
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Program module M6l

6100 REN SSSEESSEERISSEREEEREEERELLAEARAEEAANS ARBEEERILLLLL
6182 REN ¢ LOCAL CUBIC INTERPOLATION '
6104 REN SREERRSEEREBSEREEEEEEEEREREENELLIRAARSARITERIIIIIES
6186 REK INPUT:

BB KEN N NUNBER OF GRID POINTS

6L REW  I{N)  GRID POINTS

BIIZ REW  F(M)  FUNCTION VALUES AT BRID POINTS

ELL4 REN X GIVEN POINT

5116 REM DUTPT:

BUEREX  F INTERPOLATED FUNCTION VALUE

5120 FOR K=4 T0 4-1

6122 IF 1{k-1))X THEN 6128

8124 NEXT X

8125 k=N

6178 F3=F(k=3) tF2sF(K-2) SFL=F(K-1) sF=F{K)

5130 D3=1(K-3)-1 $D2=1(K-2)-X :DI=1{K-1)-X :D=I(K)~X

8132 F2={F34D2-F2403)/ (02-D3)

6134 F1={F38DL-FL4D3}/(D1-D3)

6136 F =(F34D -F 433)/(D ~D3)

6138 Fi={F2D1-F14D2)/ (D1-D2)

6140 F =(F24D -F $02)/(D -D2)

8142 F ={FL8D ~F $01)/(D -Di)

6144 RETURN

b165 REM S3SSEBERSRREERRRBRettttttnarananassssssstisnisnin

The module selects the four nearest neighbors of X and evaluates the cubic
interpolating polynomial.

Evaluation of a function outside the range of the grid points is called
extrapolation. While extrapolation is based on the same ideas as interpolation,
it is much more hazardous and should be avoided whenever possible.

4.1.2 Smoothing

Smoothing of noisy data is justified if the sampling frequency is
sufficiently high, and hence the sample contains information for adjusting the
observed function values by some kind of averaging. Then the smoothing function
enables us to evaluate function values at both the grid points and between them
as well. Global least squares polynomial fit is the most traditional method of
smoothing for small and medium samples. Orthogonal polynomials and the program
module MSS are useful to carry out such calculations.

For large samples global polynamial smoothing is either not sufficiently
flexible (if the selected degree is low) or faces the same problems as in the
case of interpolation (if the selected degree is high). Local smoothing
usually gives better results. This involves least squares fit of polynomials of

degree n < 2k to the 2k + 1 points (XY )s »ee (XgaYg)s --- (Xs¥)s
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where 2k is sufficiently smaller than m and x, is a selected grid point

of interest. The fit is particularly simple if the grid points are eguidistant

and the aim is to obtain a corrected value 70 at xg. Then this estimate can

be computed as the linear combination

Ci;i (4.18)

of the considered 2k + 1 function values. The coefficients c; and the
denominator F of the formulas (4.1@) bhave been compiled by Savitzky and Golay
(refs. 7-6) for several values of k and n.

Table 4.1 shows the Savitzky — Golay coefficients obtained by fitting a

quadratic or cubic (these two yield identical coefficients for 70 ) to 5, 7, 9
and 11 points. The way to select the number of points is discussed in (ref. 9).
The use of too many points is hazardous, since increasing the "extent of
smoothing” such fits can distort also the useful signals. Therefore, the most

popular formula involves only S5 points and the cubic

3 2

px(x) = agx> + ax“ + a;x + a, . (4.11)
Derivation of the coefficients in (4.1@) for this case is very simple. If h
is the distance between the grid points denoted by (—2h,y_o), (=h,y_;),

(@,;D), (h,;l) and (2h,;2), then the observation matrix X and observation

vector ¥ introduced in Section 3.2 are given by

5
-ah>  4n? —2h 1 "
-3 h2 ~h 1 Y-1
X = ] ) ) 1], ¥=1vy, . (4.12)
hS h2 h 1 .
ghs  4n? 2h 1 Y1
| V2 |

By (3.23) the least squares estimates of the coefficients in (4.11) are

ag = (<By_p + 12y 4 + 17y, + 12y, =3y, ) / 35

a; = { ;—2 - BYN_]_ + BYNI - ;2 ) /7 (12h)

= (Yo~ Yoy— 2Zyg - ¥y +2yp) / (1807) (4.13)
axy = (Yo + 2y - Dy o+ vp ) /Ry .
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Since pz(@) =aj , the first expression of (4.13) is the Savitzky - Golay

formula we were looking for.

Table 4.1
Coefficients for local quadratic or cubic smoothing by Savitzky and Golay

Number of Grid point weights, cj Denominator
points F
2k + 1 X.g M.gq X_3 X3 X_y Xg X4 X2 X3 Xgq Xg
5 -3 12 17 12 -3 35
7 -2 3 & 7 & I 2 21
9 -21 14 3 54 5 54 39 14 -2 231
11 -36 9 44 69 B4 89 84 69 44 e -3 429

In addition to their simplicity the Savitzky - Golay formulas are well
suited to real time filtering. While more advanced methods such as smoothing by
spline functions or by Fourier technigues assume the knowledge of the entire
sample, to apply (4.10) we have to wait only for further k points. If k is
once fixed the extent of smoothing can be increased by applying the procedure
several times. If the sampling frequency is high, it may be sufficient to pick
up each (2k+1)-th point and smooth only these ones using their nearest
neighbors.

4.1.3 Differentiation

The derivatives of the unknown function are estimated by the derivatives of
an interpolating or smoothing function fitted to the given set of data. Global
interpolating polynomials wildly oscillating between grid points are not
suitable for estimating the derivatives. As shown in Fig. 4.3, we may expect
particularly bad estimates at the grid points where the polynomial crosses the
"true" curve.

The familiar formulas of numerical differentiation are the derivatives of
local interpolating polynomials. All such formulas give bad estimates if there

are errors in the data. To illustrate this point consider the case of lipear
interpolation where the divided difference (yj4 - vi)/(Xj4 - x;) estimates

the derivative at x; < x < x4y - Let DQ{;i) = o2 denote the variance of

the measurement errors. We are usually more concerned with the relative errors
o/;i, the inverse of the signal-to—noise ratio. If the errors are independent,

then Dzi;i.,,l - ;i) = 202 and hence the relative error in the slope is given
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<<

by (V2 0) / (yj41 - vi). Since usually |yi4q — v; vi| s the relative
error of the slope may be much larger than the relative error in the data.
Notice that this error is additional to the one introduced when approximating
the function by a straight line.

It follows that the formulas of numerical differentiation do not apply to
noisy sequence of data. Formulas based on the differentiation of local
smoothing polynomials perform somewhat better. These are also of the form
(4.10) if the derivatives are required only at the grid points. For example,

the derivative of (4.11) is p'3{x) = 3a3x2

+ 2aox + a; . Therefore,

p'z(@) = a; , where a; is given by (4.13) as a linear combination of the
function values. The coefficients of the formulas of smoothing differentiation
based on the fit of a cubic (ref. 7) are shown in Table 4.2. To obtain correct
numerical values you should multiply the denominator by the distance h as

shown in (4.13)}.

Table 4.2
Coefficients for local cubic smoothing differentiation by Savitzky and Golay

Number of Grid point weights, c;j Denominator
points F
2k + 1 X_g X_g X.3 X.p X_j Xg Xy X X3 Xq Xg
) 1 -8 0 g8 -1 12
7 22 -67 -8 @ ©SB &7 -2 252
L4 86 —142 -193 -126 @ 126 193 142 -86 1188
11 302 -294 -532 503 296 @ 296 S@3 S32 294 300 5148

Although numerical differentiation is considered as a routine step in signal
processing, our discussion tries to emphasize that its results heavily depend
on the choice of the interpolating or smoothing function. Different methods may
lead to much deviating estimates. Nevertheless, from frequently sampled data
we may be able to locate extrema or inflection points by numerical
differentiation, since zero—crossing of the first or second derivatives is
somewhat more reliable than their values.

The next module is based on the five point Savitzky — Golay formulas listed
in Tables 4.1 and 4.2. It returns both the smoothed function values and the
estimates of the derivative. The formulas are extended also to the four

outermost points of the sample, where (4.1@) does not directly apply.
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Program module M&2

6200 REM SEEEEEEEEEEEEEERRRRRERRRRRssarsesssesssssssseenn

6202 REN ¢ 5-POINT CUBIC SMOOTHING BY SAVITIKY AND GOLAY ¢
[YIERI I Eiittetieteeeeeassstttetihistisisiigaceeseetetsi

6286 REM INFUT:

£208 REM N NUMBER OF GRID FOINTS

5210 REM F{N}  FUNCTION VALUES AT GRID POINTS

6212 REN DUTPUT:

5214 REM  S{1,N)  5(@,1) SHOOTHED FUNCTION VALUES

6216 REM 5{1,1) SMOOTHED FIRST DERIVATIVES

6218 REM REMARK: END POINTS ARE ALSC PROCESSED

6220 S{0,1)=(2074F (1) +128F(2)-1B4F (3)+12¢F (4)-33F(5)) /210

6222 5{0,2)={20F (1) +274F (2) +120F (3} ~BIF (4} +2¢F {3)}/35

6224 FOR 1=3 70 N-2

6226 S(0,1)=(-34F(I-2)+120F (I-1)+1TAF (1) +128F {141)-34F (142) ) /35
6228 NEXT |

6238 5(B,N)={2078F{N)+128F (N-1)-188F {N-2) +124F {N-3)-34F (N-4})/218
232 S{O,N-1)={28F (N} +278F (N-1)+124F (N-2) -BIF(N-3)+2tF(N-4)}/35
6234 5(1,1)={-1258F(1)+1364F (2)+484F (3)-8B4F (4)+294F (5))/B4

6236 5{1,2)={ -5TIF(L}) -J8F{Z)+368F(3)+394F{4)-150F(5))/124

6238 FOR 1=3 70 N-2

6240 S{1,1)={F{1-2)-B8F{I-1)+BsF(I+1)-F{142))/12

6242 NEXT |

6244 S{1,N}=  {1258F{N)-1364F (N-1)-4B8F (N-2)+BOF (N-3)-298F (N-4)) /84
6246 S{1,N-1)={ JT4F{N) +I8F(N-1)-368F{N-2)-394F (N-3)+158F {N-4})/126
6248 RETURN

6238 REM STRXRERERRRBEITRITTEERRRRRERsssssagnesssastassssins

Note that the the grid points are not specified on the input. The derivative
is numerically correct if the distance h between the grid points is 1.
Otherwise, to obtain the derivative at the I-th point you must divide S(1,I)
by the distance.

Example 4.1.3 Detection of end points in potentiometric titration by the method
of Savitzky and Golay

In potentiometric titration a voltage is obtained from an electrode that is
sensitive to an ionic species such as H30+ s 1.2., the pH of the solution in
this case. We will consider the titration of the mixture of a strong acid (HC1)
and a weak acid (CHCOOH) with NaOH (ref. 1@). As 2 ml volumes of the base
are given to the acidic solution, the pH increases and when one of the acids
is neutralized the pH changes very rapidly by a small addition of NaOH . We
want to find these maximum points of the first derivative of the titration
curve. In the following main program the DATA lines contain 32 data pairs,
each consisting of the volume of the added NaOH in ml and the measured pH.

First we call the module to obtain the first derivative. Then this
derivative is placed into the array F , and by repeatedly calling the module

we obtain the estimate of the second derivative.



100 REM
102 REM EX. 4.1.3 SMOOTHED DERIVATIVES BY SAVITIKY AND GOLAY
104 REM MERGE Mb2

106 REN ---------- DATA
188 REN (NUMBER OF POINTS)
110 DATA 32

112 REN  (V,al; pH)

114 DATA 2.4, 2.642, 2.4, 2,706, 2.8, 2.78b, 3.8, 2.877
116 DATA 3.2, 2,984, 3.4, 3.126, 3.4, 3.295, 3.8, 3.488
118 DATA 4.0, 3.659, 4.2, 3.B16, 4.4, 3.952, 4.6, 4.B74
120 DATA 4.8, 4,183, 5.8, 4.285, 5.2, 4.384, 5.4, 4.480
122 DATA 5.6, 4.579, 5.8, 4.682, 6.0, 4.791, 6.2, 4.908
124 DATA 4.4, 5.045, 4.4, 5.211, 6.8, 5.444, 7.8, 5.859
126 DATA 7.2, 8.417, 7.4, 9.747, 7.4,19.134, 7.8,10.348
128 DATA 8.8,10.491, B.2,18.504, B.4,10.692, B.4,10.746
200 REM -=-=~---=- READ DATA

282 READ N

284 DIM 1{N),F(N),S(1,K)AL{N),A2(N) ,A3(N) ,A4{N}

286 FOR I=1 TO N

288 READ Z(1},F{I) sA1(1})=F{1)

218 NEXT I

212 REM --------—- SHOOTH TWICE

214 D1=1(2)-1H1)

214 BOSUB 429

218 FOR I=1 T0 N :A2{1)=5(,1) :A3{1)=5(1,1)/DI :F(1)=A3(1) :NEXT I

220 6OSUB 6209

222 FOR I=1 T0 N :A4(I)=5(1,1)/D1 :NEXT I

224 REN

226 REM ---------- PRINT RESULTS

228 V4=GTRING$(43,"-*) :LPRINT V§

239 LPRINT "V,pl pH  smoothed pH  first second”
232 LPRINT * derivative *
234 LPRINT V4§

236 V= " 48 W HaAH A
238 FOR i=1 TO N

24@ LPRINT USING V1$;7(1),AL(1),A2(1),A3(1),A4(])

242 NEXT I

244 LPRINT V$

244 ST0P

The program gives the output as follows.

V,al pH  caoothed pH  first second

derivative
2,40 2.442 2,642 9,292 0.425
2,60 2.786 2,787 8,357 0.299
2.80 2.78b6 2,785 8.427  0.313
3.00 2.877 2,876 0.492  D.482
3.2 2.984 2.987  9.618  B.740
3.4 3.126 3127 0779 .78
3,68 3.295 3.296  9.988  0.395
3.80  3.409 3.479 8.9 8197
4,00 3.659 3.658  .846 -0.548
4.20  3I.Blb 3.815  8.729 -0.53h

4.4 3,952 3,953  0.642 -D.38l

233
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4.60  4.074 4074 8.575  -9.299
4.8 4.183 4,183  9.523 -0.181
3.80 4,265 4,285  9.501 -0.998
.20 4.384 4,383 0.485 -0.846
5.40 4.400 4.480  0.485 0.0%1
5.60 4,579 4.579  B8.584 0115
5.80  4.682 4,682 0.528  9.12b
6.80 4,791 479  0.5%9  0.2%9
5.20 4,908 4,900  0.626 0.427
5,40 5.045 5.043  8.738  9.978
6.60 5,211 5.204  9.93%  -3.519
5.80  5.444 5.269  B.672 21,565
7.00  5.859 6,385  8.687 33.589
7.20 8,617 8.201 11.086 -18.564
7.40 9947 9.774  3.186 -29.339

7.60 19.134 10474 222 -3.517
7.80 18.348 10.353  0.833 -0.885
8.89 10.491 10.494  p.821 -0.781
8.20 10,684 10.603  B.496 -0.534
8.40 10.692 10,692 9.399 -0.350
8.60 10.766 10,766  8.343  -0.284

As it will be discussed, while three maxima of the first derivative are
observed, the second one is a consequence of the applied numerical method.
Using the second derivative values in the last column, local inverse linear
interpolation gives V =3.74ml and V = 7.13 ml for the two equivalence
points. We will see later on how the false end point can be eliminated.

Exercise

0 Compute the second derivative by divided finite difference approximation and
compare the result with that of the Savitzky — Golay method.

4.1.4 Integration

For small samples we can integrate the global interpolating polynomial. For

larger samples the trapezium rule
X|e 1 [ k-1 ]

f{x)dx & — +2 ) -+ (4.14)
J‘Xl 2h Yi £ i=2yl Yk
based on local linear interpolation, is usually sufficient. After the trapezium
integration, textbooks on numerical analysis invariably proceed to the familiar
Simpson rule, resulting in doubled weighting for each second point. Although
the method has theoretical superiority over (4.14) if the distance h can be
arbitrarily reduced, it is difficult to justify such weighting scheme with a

priori given data.
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Exercise

A Discuss the behavior of the Simpson formula on a "measured" data sequence

similar to 1,-1,1,-1,...

A Show that integration amplifies the signal-tonoise ratio if the errors are

independent.

4.2 SPLINE FUNCTIONS IN SIGNAL PROCESSING

Local cubic interpolation results in a function whose derivative is not
necessarily continuous at the grid points. With a non-local adjustment of the
coefficients we can, however, achieve global differentiability up to the second
derivatives. Such functions, still being cubic polynomials between each pair of
grid points, are called cubic splines and offer a "stiffer" interpolation than

the strictly local approach.

4.2.1 Interpolating splines

We find the cubic spline interpolating the points { (xj,yj)s 1 =1, 2,
+vay N }. Let p;i(d) denote the cubic polynomial over the interval [x59%541]
i+ where d = x — x;. To define the n-1 cubics we
need 4(n-1) coefficients. The available constraints are as follows:

of length hy = %41 — X%

(a) The cubics are interpolating ones, and hence

Pi(® =vy; ,  i=1,2,... n-1; (4.15)
Pi(hi) = yi4 5 i=1,2,... n-1. (4.16)

(b) The continuity of the first derivative implies

P ij—1thj_1) = p' (@), 1i=2,3,... n-1, (4.17)
(c) whereas from the continuity of the second derivative we have

P ij-1(hj_1) = p"j(@), 1i=2,3,... n-1. (4.18)
Thus we have 4n—-6 equations, and need two further constraints to define the

coefficients uniquely. In most cases these are chosen according to one of the

following alternatives.
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i) Assume that the second derivative vanishes at the end points Xy and  x,
resulting in the equations p";(@) =@ and p"_y(h,—;) =@ . The derived

function is called natural spline.

ii) The first derivative has arbitrarily fixed values at the end points,
P 1(@) =vy'g and p'aglhqog) =v¥'n.

It can be verified that the set of linear equations given by the constraints
has a unique solution both for cases i) and 1ii), if the grid points
X{s X2y ss., ¥ are distinct (ref, 11).

To illustrate a special smoothness property of natural splines, define the

quantity

X
1 n
§=——— [ [f0)1%x . (4.19)

XX

no1y

1

Obviously, S =0 for a straight line. If S is small for a given
function, it indicates that f does not wildly oscillate over the interval
[x1,%,] of interest. It can be shown that among all functions that are twice
continuously differentiable and interpolate the given points, S takes its
minimum value on the natural cubic interpolating spline (ref. 12).

It remains to calculate the coefficients that define the interpolating
spline. One can abviously solve the 4(n-1) constraint equations directly, but
there exists a much more efficient algorithm. Let m; and m;,; denote the
second derivatives of the cubic p; at d =9 and d = h;, respectively. The
derivative is a linear function, given by

h: - d d
plild) = —te———m; + —m;q . (4.20)
hy hs
Integrating the function (4.20) twice and determining the two integration
constants from the constraints (4.15) and (4.16), the cubic polynomial p; is
obtained in the form

m; ms ; hym; ; h;m;
py(d) = ~i=h; ~ )3+ —;tld3 + [thl - —l—ltl]d + [%l - —Z—ll(hi -d) ,
i i hi 6 i

i=1,2,..n-1 . (4.21)

Now we differentiate (4.21) once and exploit the constraints (4.17). The

resulting equations are



= ofYitl T Yi _Yi Z Yi
Pi—1Mi—g + 2(hg + Nyepdmg + hymiey = "{ Ll hiy ’
i -

i=2,3, oo, 01 . (4.22)

If we select the end conditions i), the further equations are

m=0 ad m, =0. (4.23)

Adopting assumption ii) instead, equations (4.23) are replaced by

Yo - Y .
2hymy + hym> 6[-L1 -y o] and

hy
(4.24)

M-1M-1 * 2y, = 6[Y'n - ZL_YD:“‘]

M-t
In both cases the resulting system of equations is tridiagonal and can be
easily solved by the special method presented in Section 1.5. Once the my
values are known, equations (4.21) can be easily rearranged to obtain the
polynomial coefficients. Computing the function value and the derivatives at
any point x is then straightforward, whereas integration is facilitated by
the relationship

b 1 1
J_pstax = (b - a)lpg(a) = py(b)3 - S0 - @3ps(a) + pige)] ,  (4.25)

valid for any cubic.

Program module M&3

638D REM SEEEEERUTssassasaantsssssasasssssssssessssssssssing
4382 REN ¢ DETERMINATION OF INTERPOLATING CGBIC SPLINE ¢
5304 REM SERRREEssssasssssssssssassassassssssstssssststssy
6386 REM INPUT:

5388 REN N NUMBER OF GRID POINTS

6318 REM 1(N}  BRID PDINTS {KNOTS)

6312 REM F{N)  FUNCTION VALUES

6314 REM EC IDENTIFIER FOR SELECTING END CONDITIONS

6316 REM 8 - NATURAL SPLINE
6318 REN NOT @ - FIRST DERIVATIVES GIVEN AT END POINTS
6328 REM THIS CASE RERUIRES FURTHER INPUTS:

5322 REM D1 FIRST DERIVATIVE AT X=1{1)

6324 REM N FIRST DERIVATIVE AT X=1(N)

326 REM OUTPUT:

6328 REM  S(4,M)  S(J,1) COEFFICIENTS OF THE J-TH DEGREE TERMS (J=0...3)
6338 REM S(4,1} INTEGRAL VALUE FRO® Z{1) TO I(I)

237
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$332 FOR 1=1 T0 N-1

8334 S(B,1)=2(I+1)-2{1} :5(1,1)=(F(1+1)-F{1})/5(0,1)
6336 NEXT 1

4338 5(8,N)=0

6348 5(3,1)=245(8,1)

6347 IF ECOE THEN $(2,1)=38(5(1,1)-D1)

6344 FOR 1=2 70 N

6346 5:5(8,1-1)/5(3,1-1)

6348 IF EC=0 AND 1=2 THEN 5=

6350 §(3,T)=28(5{0,1145(8,1-1})-515(0,1-1)

8352 IF I(N THEN §{2,1)=30{5(1,1)-8¢1,1-1)}-58(2,1-1)
4354 NEXT 1

£356 IF ECOB THEN §{2,N)=31(DN-5{1,N-1)}-545(2,N-1)
4358 IF EC=B THEN §(2,N)=0

6368 §(2,N)=5(2,)/5(3,N) :5(3,N)=8

4362 FOR T=N-1 TO 1 STEP -1

6368 §(2,1)=(5(2,1)-6(0, 1)85{2, 1+1)}/5(3,1)

6366 IF EC=@ AND =1 THEN §(2,1)=0

8368 5{1,1)=5(1,1)-5(0,1)8{205{2,1)45{2,141))/3
6370 5(3,1)=(5(2,1+1)-§(2,11}/5(0,1)/3

8372 NEXT 1

8374 S(1,N1=5(1,N-1)+S(B,N-1)8(5(2,N-1)+5(2,N})

4376 5{4,1)=0

4378 FOR 1=2 TO N

4388 5=5(4,1-1)45(0,1-1)8({F(1}4F{1-1))/2

6382 5(4,1)=5-5(0,1-1)734{8{2,1)45(2,1-1})/12

5384 5{0,1-1)=F(1-1)

4385 NEXT 1

4388 5{0,N)=F(N)

6398 RETURN

5392 REM SESLEBEERREESEEENEREREIEEERsastessuessssanstitasant

With the end condition flag EC = @ on the input, the module determines the
natural cubic spline function interpolating the function values stored in
vector F. Otherwise, D1 and DN are additional input parameters specifying
the first derivatives at the first and last points, respectively. Results are
returned in the array S such that S(J,1), J =0, 1, 2, 3 contain the 4
coefficients of the cubic defined on the I-th segment between Z(I) and
Z(I+1). Note that the i-th cubic is given in a coordinate system centered
at Z(I). The module also calculates the area under the curve from the first
point Z(1) to each grid point 2Z(I) , and returms it in S(4,I) . The entries
in the array S can be directly used in applications, but we provide a further
module to facilitate this step.
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Program module M&4

5408 REM SRESSSRSSIERSSNLTERTSRALERSLIRESTLLIELLIILIIINLLL
6402 REM §  FUNCTION VALUE, DERIVATIVES AND DEFINITE t
6404 REM ¢  INTEGRAL OF A CUBIC SPLINE AT A GIVEN POINT ¢
6405 REM LRRREERRRERRSRRBRRRRTRREEERREREEEREsRRERILERIsLLLISY
5488 REM INPUT:

b419 REM N NUMBER OF KNOTS

5412 REM I{X)  BGRID POINTS {KNOTS)

6414 REM  §(4,N) SPLINE COEFFICIENTS (FROM Mb3 OR Mb3)
b416 REM H GIVEN POINT

6418 REM OUTPUT:

5428 REM 58 SPLINE FUNCTION VALUE AT X

6422 REM 51 FIRST DERIVATIVE
6424 REM 52 SECOND DERIVATIVE
b426 REM §3 THIRD DERIVATIVE
5428 REM 54 DEFINITE INTEGRAL FROM (1) TD X

6430 FOR I=N YO 1 STEP -{

6432 IF XCI{I) THEN 6442

6434 5=X-1{1} :50=((S(3,1)¥8+5(2,1})¥5+5(1,1))45+5(Q,1)

6436 S1={348(3,1)454245(2,1))85+5{1,1) :52=485(3,1)35+245(2,1)
6438 53=b85(3,1) :54=5(4,1)+56(50+5(B,1})/2-S45458(5245{2,1))/12
6443 GOTO 4448

b442 NEXT 1

6444 S=X-1(1) :58=(5(2,1)85+5{1,1))85+5(D,1) :51=295(2,1)4545(1,1)
6446 52=5(2,1) :53=8 :54=54{5B+5(8,1))/2-58585452/6

5448 RETURN

6450 REM LEREERRRRLERRSARRTTLLLREEORSIREIRERRRLLLISIILSLILY

In addition to the grid points stored in the vector Z and the array S
of coefficients created by the module M&3 (or by M&3), the input to this module
is a specified point X . This module returns the function value in S@ , and
the values of the first, second and third derivatives in Si, S2 and S3 ,
respectively. The area under the curve from Z(1) to the specified X is
returned in S4. If X is outside the range of the grid points, the
extrapolation involves a straight line tangential to the function at the
corresponding end point.

Example 4.2.1 Enthalpy and heat capacity by spline interpolation

We use the moduley M3 and M&4 to solve the interpolation problem
discussed in Example 4.1.1. In addition to the enthalpy at T = 298.15 K , the
heat capacity (i.e., the first derivative) is also computed at this point. The

main program anog the results are as follows.
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100 REN
182 REM EX. 4.2.1 SPLINE INTERPOLATION
194 REM MERGE M43, Mb4

186 REM ==--=-=--- DATA
108 REM  (NUNBER OF POINTS)
119 DATA §

112 REX {T,X H-Ho,kI/ol)
114 DATA 209, 8,722

116 DATA 388, 15.492

118 DATA 488, 23.367

120 DATA 500, 32.826

122 DATA 608, 41,225

124 DATA 700, 58,799

126 DATA 699, 69437

128 DATA 908, 78.6b66

130 DATA 1999, 68,836

PR READ DATA
282 READ N

204 DI 1(N),F(N),5(4,N)

206 FOR I=1 TON

208 READ 1(1),F(1)

218 NEXT |
212 LPRINT “"NATURAL CUBIC SPLINE INTERPOLATION®
214 REM -=vomeomee CALL SPLINE DETERMINATION AND EVALUATIDN MODULES

216 EC=B :6OSUB 6309
218 X=298.15 :60SUB &40
220 V$=STRINGS {45,"-*)
222 LPRINT v§

224 LPRINT USING "T=#43.4% X R{T)-H{Q)=R4. 848 kI/m01";X,50

226 LPRINT LSING * Cp=#4.38% J/{mol K)";5171000
228 LFRINT V$

238 s10P

NATURAL CUBIC SPLINE INTERPOLATION

7=298.15 K H{T)-H(8)=135.358 ki/aol
£p=72.398 1/(m0l K)

4.2.2 Smoothing splines

If the data ( (xi,;i), i=1, 2, ..., n} are noisy, it is not reasonable
to force a function f to pass through the measured values. Suppose we have an
estimate d; of the standard error of the i-th function value. Then a
suitable measure of the distance of any smoothing function f from the

measurement points is the sum of squares

n ~
-y 2
F2=% [ o) - vi ] . (4.26)

If the squared distance F2 is greater than the number of points n, then the
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function f is too far from the measurement points. Therefore, we restrict

consideration to functions satisfying the constraint

F2<n, (8.27)

i.e., we attempt to fit the data within the range of measurement errors.

In addition, we are interested in functions that are at least twice
continuously differentiable. One can draw several such curves satisfying
(4.27), and the "smoothest" of them is the one minimizing the integral (4.19).
It can be shown that the solution of this constrained minimization problem is a
natural cubic spline (ref. 12). We call it smoothing spline.

The smoothing spline converges to the interpolating spline if d; —> @.
While this function is unigue for reasonable values of dj, with too large
standard errors an entire family of straight lines satisfy (4.27) thus yielding
zero value for S in (4.19). This family includes the straight line fitted by
weighted linear regression, and hence in this case it is not justified to seek
the solution in spline form.

If the solution is unique, it can be obtained by the method of Lagrange

multipliers (ref. 13). We look for the minimum of the Lagrange function

X,
n
1
L= f01%x + =(F2 - n) (4.28)
p

*1

where p is the reciprocal lLagrange multiplier. For any fixed value of p
the 4(n-1) equations for the 4(n-1) coefficients of the natural cubic spline
function minimizing (4.28) can be obtained from the Euler — Lagrange
relations (ref. 13). Introducing the second derivatives m; as in the previous
section, the system can be reduced to simultaneous linear equations with a
coefficient matrix of band structure. The matrix has 5 nonvanishing
diagonals. Therefore, the spline is relatively easy to determine for a given
value of p , and it yields the actual squared distance (4.26) denoted by
F2(p).

The additional problem we face is determining the optimal value for p. It
is important to note that the squared distance Fz(p) increases with the value
of p . Therefore, the algorithm can be viewed as starting with an
interpolating spline obtained at p = @ , and then "streching” this function by
gradually increasing the value of p until (4.27) bolds. To find this

particular p we solve the nonlinear equation
Fip) ~nl’2 =90 . (4.29)
A Newton method can be used, since the derivative F'(p) is relatively easy

to compute. The following program module is based on the procedure proposed by
Reinsch (ref. 13). The only essential deviation from the original algorithm is
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in the formula for the correction A&p @

F(p)-ni/? [ n ]1/2

T T F2(p)

’ (4.30)

where the additional square root convergence promotion factor can somewhat
improve the convergence at the beginning of the iteration where Fz(p)
satisfies the inequality @ < F2(p) << n .

Program module M&S

5300 REM SESSERLRLLRLLILRILLILLLTLLTLLLLLLLRLLRRASRALANNL
6562 REW 8 DETERMINATION OF SMOOTHING CUBIC SPLINE t
5384 REN § METHOD OF C. H. REINSCR ]
5586 REN SESRRSSSSEEREETLREEETRRETssssessssssassnsassssenss
5588 REM INPUT:

5318 REM N NUMBER OF GRID PDINTS

6312 REM L(N)  GRID POINTS (KNOTS)

6314 REM F(N})  FUNCTION VALUES

6316 REM D(N)  STANDARD ERRORS AT GRID POINTS

5318 REM L] MAXIMUM NUMBER OF ITERATIONS

6528 REM OUTPUT:

6522 REM ER STATUS FLAB

5524 REM @ SUCCESSFUL COMPLETITION

5326 REM 1 SOLUTION IS A STRAIGHT LINE

6528 REM 2 NUMBER OF ITERATIONS IS INSUFFICIENT

653D REM  S{4,N) S(J,1) COEFFICIENTS OF THE J-TH DEBREE TERMS {J=0...3)
6332 REM S(4,1) INTEGRAL VALUES FROM I(1} TO I{I)

4534 REM AUXILIARY ARRAY:

4536 REN  R{&,N)

4538 R{5,8)=0 :R{5,1)=@ :P=B

5540 R{8,8)=0 :R(D,1)=0 :R(B,N)=B :R(2,N}=B

8542 K=1{2)-1(1) sF=(F{2)-F(1))/H

5544 FOR 1=2 TO N-1

8586 B=H tH=I{1+1)-1(1)

L548 EsF tF={F(1+1)-F(1))/H

4550 §(B,1)=F-E :R(3,1)=28(B+K}/3 R(4,1)=H/3

£552 R{2,13=D(I-1)/B :R(B,1)=D{1+1)/H

6534 R{1,D=-D{1)/8-M{1)/K

4556 NEXT 1

6558 FOR 1=2 TO N-1

8560 S(1,1)=R{8,1)4R(B,1}4R(E,1}8REL,114RI2,1)8R(2,1)
8562 §(2,1)=R(8,1)4R(1,141)+R11, 1)8R{2,141)

8564 TF T¢N-1 THEN §(3,1)=R(8,1)#R(2,142) ELSE 5(3,1)=8
4566 NEXT 1
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4568 REN =-===--wmv START OF ITERATION
4578 FOR 17=1 T IN

4572 FOR 1=2 0 N-1

8574 R{1,I-1)=F8R(D,1-1) :R{2,1-2)=64RIB,1-2)

5576 R(D,1)=1/(P4S(Y, T)4R(3,1)-FER(1,1-1)-GRR(2,1-2})
8578 R(5,1)=5(8,1)-R{1,1-1)R(5,1-1)-R(2,1-2)8R(5,1-2)
4580 F=PAS{2,1)4R(4,1)-HIREL,1-1) $6=H sH=S(3,1)8P
4582 NEXT I

4584 FOR 1=N-1 TD 2 STEP -1

4585 R(S,1)=R(8,1)8R(5,1)-R{1,1)4R(5,1+1)

4588 IF I(N-1 THEN R(5,1}=R{5,1)-R(2,1)8R(5,1+2)

4598 NEXT 1

4592 £<B :H=d

4594 FIOR 1=1 T0 ¥-1

5596 G=H :H=(R(5,1¢1)-R(5,1))/(2(141)-1{1})

4598 R(b,1)=(H-B)8DCI)ID(I} sE<E+R(6,1)8(H-5)

5680 NEXT I

5602 G=-HIDIN)AD(N) :R(6,N)=6 :E=E-BSH :F2=ENPIP

5604 IF ABS(PR(I{N)-I(1))) > 1E+B8 AND F2CN THEN ER=1 :GOTD 6430
5605 IF ABS(F2-N)<=N/18099 THEN ER=3 :50TD 6630

4608 F=B tH=(R(6,2}-R(b,1))/(1(2}-1{1)]

4618 FOR 1=2 T0 N-1

8612 B=H :H=(R(,1+1}-R(b, 1))/ (I(1+1)-1(1})

8614 G=H-G-R(1,1-1)¥R(D,1-1)-R(2,1-2)8R(,1-2)

8616 F=F+GIR(D,1)46 :R(D,I)=6

5618 KEXT 1

4620 W=E-PAF : IF H=B THEN ER=B :60TD 6630

5622 E=(N-F2)/((SOR{N/E}+P)3H)

8624 IF 1T=L THEN P=P4E ELSE P=P+E4SOR{N/F2)

8626 NEXT IT

4628 £R=2

4638 REN =---=n-mmv SPLINE COEFFICIENTS INTD §

6632 5(B,N)=F{N}-PIR(b,N) :5(2,N}=8

4634 FOR I=N-1 TO 1 STEP -1

8636 H=1{1+1)-1{1)

8638 5(2,1)=R(5,1)

5640 5(B,1)<F(1)-PER(6,1)

8642 S(1,1)=(5({@,1+1)-5(0,1))/H-H8{205(2,1)45(2,1+1)}/3
bo44 §(3,1)=(5(2,141)-5(2,1))/(38H)

b64b NEXT 1

5648 5{1,N}=5(1,N-1)+(ZIN}-T(N-1)}${S{2,N-1)4§(2,N})
5658 S(3,N)=0 :5{4,1)=0

4652 FOR 1=2 TO N

8654 He1(1}-1{1-1)

8656 5(4,1)=5(4,1-1)+H8(5(D,1)+5(8,1-1)}/2-HIHEHE(5(2,1)45(2,1-1)}/12
5658 NEXT 1

4668 RETURN

5662 REN SSSSSSRLERSEEREOBIRRNNIREOBIREENsSURIRIssssssanasyy

The input is similar to that of the module M&3. No end condition flag is
used since only natural splines can be fitted. On the other hand, you should
specify the maximum number IM of iterations. The module returms the array S
defined in the description of the module ™63, and hence the function value,
the derivatives and the integral at a specified X can be computed by calling
the module Mb4. The important additional inputs needed by the module M&S are
the standard errors given in the vector D ., With all D(I) = @ , the module
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returns the interpolating natural cubic spline, whereas too large D(I) values

may result in a straight line idicated by the error flag ER =1 .

Example 4.2.2 Detection of end points in potentiometric titration by spline

smoothing

The problem of Example 4.1.3 is revisited here. We determine the smoothing
spline function and its derivatives assuming identical standard errors
d; = @.25 in the measured pH.

188 REM
192 REM EX. 4.2,2 SMODTHING BY SPLINE
104 REM MERGE Mb5

106 REN --------- DATA
108 REM (NUNBER OF POINTS)
110 DATA 32

112 REM  {V,al; pH)

114 DATA 2.4, 2.642, 2.6, 2.706, 2.8, 2.786, 3.0, 2.877
115 DATA 3.2, 2.986, 3.4, 3.126, 3.4, 3.293, 3.B, 3.488
118 DATA 4.8, 3,659, 4.2, 3.Bl4, 4.4, 3.952, 4.6, 4.074
120 DATA 4.8, 4.183, 5.0, 4.285, 5.2, 4.384, 3.4, 4.480

122 DATA 5.5, 4,579, 5.8, 4,682, 6.8, 4,791, 6.2, 4.908
124 DATA 6.4, 5.045, 6.6, 5.211, 6.8, 5.444, 7.8, 5.859
126 DATA 7.2, 8.617, 7.4, 9.747, 7.5,10.134, 7.8,10.348
128 DATA B.0,19.491, 8.2,10.609, B.4,18.692, 8.6,10.766

200 REM =-nmn-mmn READ DATA
202 READ N

204 DIM I(N},F{N),D(N),5{4,N),R(6,N)
206 FOR 1=1 TO N

208 READ It1),F(D)

218 NEXT 1

212 REM --==------ CONSTANT STANDARD ERROR

214 §D=.25

216 FOR I=1 TO N sD(I)=SD :NEXT I

218 REM ---------- CALL SMOOTHING SPLINE MGDULE

220 1M=20 :G0SUB 6300
222 IF ER=1 THEN LPRINT "STRAIGHT LINE"
224 IF ER=2 THEN LPRINT "MAX NUMBER OF ITERATIONS IM IS EXCEEDED* :STOP

226 REN -=--=m=--- PRINT RESULTS
228 V$=STRING${43,"-"}
230 As=" H.H H.43 H.aH Hit.H #Ha.u

232 LPRINT USING “SMOGTHING SPLINE, ST. ERR: #%.H*;SD :LPRINT

234 LPRINT Vs

234 LPRINT *V, ol MEAS. pH  SMOOTHED pH  FIRST DER.  SECOND DER.”
238 LPRINT V8

240 FOR 1=1 TO N

242 LPRINT USING A$;I{I),F{1},5(®,1),51,1},248(2,1)

284 NEXT I

246 LPRINT V8

248 STOP

Note that the coefficients S(2,1) are multiplied by 2 to obtain the second
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derivatives shown in the last column of the following output.

SNDOTHING SPLINE, 57. ERR: 8.2

vV, al MEAS. pH  GMDDTHED pK  FIRST DER.  SECOND DER.

2.4 2.642 2,625 .38 B.88
2.60 2,786 2,783 0,40 B.16
2.80 2.786 2,788 8.45 8.34
3.90 2,877 2.889 8.33 .51
3.20 2,986 3.883 .64 8.39
3.48 3.126 3143 8.76 .52
3.68 3.295 3.383 .84 8.28
3.0 3.488 3.474 2.86 -0.04
4,28 3.639 1.644 8.83 -0.30
4.2 3.816 3.802 8.76 -8.42
4.48 3.952 3.945 8.67 -0.40
.68 4.874 4.872 8.6 -8.32
4,80 4.183 4.18s 2.5 -0.23
.00 4.285 4.291 8.3l -B.18
5.2 4.384 4,389 8.47 -B.1b
3.40 4.480 4.481 8.44 -0.28
360 4,579 4,364 8.39 -8.2%
.80 4,682 4,639 8,35 -B.18
b.00 4.791 4.710 8.37 8.34
6.28 4.908 4,008 8.57 1.42
.48 5,843 4,981 1.12 3.92
b.68 5.2 53,283 2.22 7.83
6.88 5,444 5.885 3.86 9.43
7.08 3.859 6.834 3.97 7.63
7.28 8.617 8.027 3.99 -3.43
7.48 9.747 9.128 8,78 -8.88
7.68 18.134 9.898 3.03 -8.37
7.88 18.348 18.355 1.4 -3.61
8.68 18.491 18.588 8.78 -2.93
8.28 18.604 10.697 8.37 -1.16
8.48 18.692 18.754 .23 -8.28
8.68 18.766 18,79 8.28 e.e0

Using inverse linear interpolation the two titration equivalence points are
obtained as the zero—crossing points of the second derivative at V = 3.78 ml
and V =7.14ml . On Fig. 4.4 the second derivative curve of the
interpolating spline (SD = @) and that of the smoothing spline (SD = 8.25)
are shown. The false zero—crossing of the second derivative present at
interpolation is eliminated by smoothing.

We note that another type of smoothing spline can be fitted by the
traditional least squares method. In that case, however, the g subintervals
on which the individual cubics are defined should be selected prior to the fit,
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Fig. 4.4. Second derivative of smoothing (SD = @.25) and interpolating (SD = @)

splines

where g << n . Then the squared distance FZ between the smoothing function
and the measurement points is minimized by multivariable linmear regression. The
extent of smoothing can be influenced only indirectly, changing the number and
locations of the grid points.

4.3 FOURIER TRANSFORM SPECTRAL METHODS

Apart from some special drift processes that we will treat separately, the
noise in the measurements is expected to be the result of random processes
much faster than the changes in the useful signal itself. Fourier transform
spectral methods exploit this difference in frequency for separating the two
components by considering a frequency—domain representation of the signal
instead of its original time domain representation.
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4.3.1 Continuous Fourier transformation

The freguency domain representation F of a function f depending on

time t is defined by the Fourier transform

@
] = F(v) = _[ f(t)exp(—i2llvt)dt , (4.31)

—m@

where i =(-1)1/2 and F depends on the frequency ». If the integral in
(4.31) converges, then the Fourier transform is one-to—one, and its inverse is

given by

@
1
FUFI = f(t) = = [ Flvexp(izivtiar (4.32)

The generally complex function F can be decomposed into real and imaginary

parts according to

o o
Fiv) = [ f(ticos(2mtidt - i f(t)sin(2Mt)dt (4.33)
-0 —o

due to the Euler equality exp(ix) = cos(x) + i sin(x). If f is even, then

its transform F is real, F(v) = Re F(v). If f is odd, then F is

purely imaginary, F(v) = i Im F(v). Otherwise F is a complex valued function.
Some elementary properties of the Fourier transform are listed in Table 4.3.

Table 4.3
Properties of the Fourier transform

Property Relationship
linearity #a fy + axfyl = a( &1 + ax# 5]
time shifting FE(E-t)] = ALf(t)Jexp(—iZ2llvt,)

d
differentiation I[azf] = i2[WE[f]
® -1
integration st [ f(mar 1= (i2m)~lare)
-

t
convolution * I_mf(t—'r)g('r)d'r 1 = *[fl%[g]
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It is important that differentiation and integration in the time domain give
multiplication and division, respectively, by the variable » in the
frequency domain. The role of convolution integrals will be further discussed
in Chapter 5.

We can regard Fourier transform as decomposing f into trigonometric
functions of different frequencies. This spectral decomposition is based on the

property

FAjcos(2v )] = AES(v—vq ) + 6(v+vy)] (4.34)

where &(v-»;) denotes the Dirac impulse such that &(v-vy) =@ for v # v

and

[ Zsv-vpray = 1 . (4.35)
-

By the time shifting property shown in Table 4.3, the transform of a shifted

cosine function

Ajcos[2lvy (t-t )] = Ajcos(2Mv,t + @)

is given by

Flv] = #{Aqcos(2vyt + ¢)] = A [8(v=vy) + 8(v+vy)lexpliv). (4.36)

The transform (4.346) is complex valued and vanishes at all frequencies except
v=v; and v =-v; . The complex number F[v] can be represented by its
amplitude A(v) = [Re%F(v) + Im?F(»)11/2 and phase

w(v) = arc tg [Im F(v)/Re F(v)]. As functions of v, A(») and e(v) are
called amplitude and phase spectra, respectively. In the amplitude spectrum of

(4.36) we have A(vy) = A(-v;) = Ay , whereas A(v) =0 if lvl # v, . Since

any piecewise continuous function can be expanded into a sum of trigonometric
functions with different amplitudes and phases, by (4.346) and by the linearity
of Fourier transform the amplitude and phase spectra A(») and ¢(v) uniquely
specify the function f. The frequency domain description is frequently given
only as the power spectrum H2(v) = RezF(v) + Im2F(v) , which does not specify
f uniquely, but contains sufficient information in many applications.

This is the analytical formalism we will need in the present section. The
experimental data are, however, almost invariably given by a limited set of
discrete observations instead of a continuous function defined for -o < t < =.
The next subsection extends the Fourier transformation to a finite set of

sampled data.
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4,3.2 Discrete Fourier transformation

Consider a sample of n observations {ygs Yjs «--s Yq—1} and define its

discrete Fourier transform by

n-1

a = . yjexp(-i2lki/n) , k =8, 1, ..., n-1, (4.37)
=0

where the n a, values are generally complex numbers. The transformation is

one—to-one, and its inverse is given by

n-1

s ] . . .

/_>_. aexp(iz2lkj/mn) , 3 =0, 1, ..., n-1 . (4.38)
k=@

Yj =

The expression (4.37) can be extended for k <@ or k > p-1. At fixed j,
however, the points exp(—-iZ2lkkj/n) are on the unit circle and constitute the
edges of a regular polygon, and hence the sequence ... a_j, a5y @) ... is
periodic with the period n . Thus ajn = g, for all m. In addition, for

a real sequence {yg, Yy, --+s Yp-1} we have the property a, = a s 1.2y
Re a, =Rea and Ima, =-1Ima _ .

Let f{ygs Ygs ++-s Yp-1} represent the sampled values of a continuous
function f, i.e., vy, = f(két) , where 4t is the length of the sampling
interval. It is interesting to see how the discrete transforms a, are related
to the sampled values F(kat) of the Fourier transform of the continuous
function f . Assume first that f vanishes outside the interval [0,T] ,
where T = nat is the sampling time, and (@) = f(T) . Estimating the
integral in (4.31) by the trapezium rule we have

T n—1
F(v) = j@f(t)exp(—znvt)dt % 6t) yexp(-i2MviAt) . (4.39)
i=1

Let E(v) denote the sum on the right hand side of (4.39), and define the

sampling interval &y in the frequency domain by

Ay = 1/(nAt) . (4.40)

Then v = k&v  and

n-1
Fly) = D yjexpl-i2lki/mn) = a . (4.41)
=1

Thus, for our special function f, F(k&) % Ata . If the Yk Values are real,
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then by (4.4@) the poimts of the discrete spectrum are obtained at the
frequencies vg =@ , vy = /T, vy = 2/Ty euns vpyo = N/(2T) , where v o
is called the Nyquist critical frequency. The further points of the spectrum

are determined by the relation a,_, = Sk , and hence do not offer any
additional information.

However, unless special care is exercised, generally the discrete spectrum
does not estimate very well the sampled continuous spectrum. The problems we

face are as follows.

(a) Aliasing is present if the function f contains a periodic component with

a frequency v higher than v, 5, say v = v ,p + Dv. This component

n

shows up in the spectrum at the frequency v, — &v. Thus the spectrum is

n
distorted unless f is bandwidth limited to less than the Nyguist
critical frequency. This relationship is the sampling theorem implying that
the sampling interval At should be chosen sufficiently small, depending

on the estimated bandwith of f.

(b) Broadening and "leakage" of the spectrum is the consequence of the finite
interval [0,T] of integration in (4.39), if f does not vanish outside
this interval. In fact, (4.3%9) then means estimating the Fourier transform
of the product f(t)w[m,T], where wm,n is the square window function
defined by

W —{1’ AT (4.42)
(@,71 @, otherwise . ’

Thus Ata, =& wa[ﬂ,T]]’ which is the convolution integral of the
transforms X[f] and x[ww,n]. The latter has rather unpleasant
properties. For example, Fig. 4.5 shows the even square window w[—T,T]
and its (purely real) transform. ;v[ww,”] is complex valued, but has
similar sidelobs. The undesired convolution of #[f] with such a boxcar
function implies that the spectrum is broadened and has several sidelobs
near the critical frequency v,,, . It can be improved by increasing the

sample size.

Although one has to deal with the above problems, the discrete Fourier
transformation is still a powerful tool, mainly because of its numerical
efficiency. The efficiency does not follow from (4.37) that requires n?
complex multiplications. As shown, however, by Cooley and Tukey (ref. 14), the
transform can be computed in nxlogon operations with an ingenious algorithm
called Fast Fourier Transformation (FFT). The original Radix-2 version of FFT

applies to sample sizes n = 2" , where m is a positive integer. This
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assumption is not very restrictive, since we can always add a sufficient number

of zeros to the sample in order to reach the nearest power of 2. As we will

discuss, such zero addition might even improve the spectrum.

=W ® Flv)= SINETY
21
1
[Tl A I\
-T T VE E\/ A4
e
i 27

Fig. 4.5. The boxcar function f(t) = w[-T,T]

The following module is based on the FORTRAN program of Cooley, Lewis and

Welch (ref. 15).

Program module M&7

H70D REM SESESSSSREBOsnuBesisnaaasssassssasassaasaasassssss

4782 REM §

FAST FOURIER TRANGFORM

6784 REM § RADIX-2 ALGORITHM OF COOLEY AKD TUKEY
Gyl I R ettetiinnctiiteteisceinitiatitasitttitinel]

4708 REM INPUT:
4718 REM b
8712 REM A{l...2°H)
5714 REM B{1...2°4)
6716 REM N
4718 REM

4728 REM

6722 REM OUTPUT:
5724 REM A(1...2*0)
6726 REM B(1...2*N)

LOB2{NUMBER OF POINTS)

REAL PART OF FUNCTION VALUES

IMABINARY PART OF FUNCTION VALUES

IDENTIFIER OF INVERSE TRANSFORMATION
8 - DIRECT TRANSFORMATION

NOT @ - INVERSE TRANSFORMATION

REAL PART OF TRANSFORMED SEDUENCE
IMABINARY PART OF TRANSFORMED SEQUENCE

L
L

and its Fourier transform F(»)
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§728 Np=2°M
738 IF IN THEN FOR 1=1 TO NP :A{1)=A(1)/NP :B{I)=-B{1}/NP :NEXT |
6732 REM ---oomomes REVERSED HIT ORGER
5734 J=1 :ND=NF/Z
6736 FOR I=1 T0 NP-{
6738 IF 140 THEN TR=A{1} :TI=B{l} :A{I)=A(J) +B{D)=B{I) tAlJ)=TR :B{J}=T]
6748 K=ND
6742 IF K{J THEN J=1-F :K=INT(K/2) :60TQ 4742
6748 J=0+K
6746 NEXT 1
5748 REM ---------- RADIX-2
5758 LE=1
A752 FOR L=1 TO M
6754 LD=LE :LE=LE+LE
6736 UR=! :UI=@ :AN=3.14159/LD
£758  WR=COS{AN) :WI=-SIN{AN}

4768 FOR J=i TO LD

6762 FOR I=1 TO NP STEP LE

6764 IR=1+LD

£765  TR=A{IP)SUR-B{IP)RUL :TI=A{IP}IUI+B{IF)ILR

A768  A{IF)=ALT)-TR BUIPI=BIDI-TL sALT)=A{T)4TR (B{1)=B{1)+T1
§770 NEXT 1

6772 TR=URtWR-UTSWD :UI=UREWI+UTLWR :UR=TR

8775 REXT

5776 NEXT L

6378 IF IN THEN FOR I=1 TC NP :B{I)=-E{I] :NEXT I

6788 FETURN

G737 REN SALRERLIILLLIRRRRRRRRRR LR LLERREstRRTRRLLILLLLnY

The module assumes that the sample points are complex. The real components are
placed in vector A, i.e., Re y, is stored in A(1l) on input. For a real
valued sample (like a titration curve) vector B should contain zeros. On
output the transform is stored in the same vectors, i.e., Re a, can be found
in A(1) and Im aj in B(l). The module computes the inverse transform (4.38)
if the inverse transformation flag IN has a nonzero value.

Before considering a numerical example we discuss some of the most

fundamental potential applications.

4.3.3 Application of Fourier transform techniques

Smoothing. The basic idea is to eliminate the high—frequency part of the
spectrum and obtain a smoothed function by inverse transformation. Applying
such a sguare window to the spectrum gives, however, poor results due to the
phenomena of broadening and leakage. Windowing the spectrum by a smoother
function is much better (ref. 16). Fig. 4.6 shows the simple triangle window we

will use in Example 4,3.3.
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Fig. 4.6. A simple window w[D’n_” for smoothing real data

The multiplication of the spectrum by a window is equivalent to a convolution
in the time domain, and hence the approach is related to the Savitzky—Golay
procedure. Indeed, by (4.18) this latter is also a convolution of the function
values and the coefficients c;/F .

Another approach to smoothing involves several segments of the sample,
averaging their spectra, and applying the inverse transformation to their mean
(ref. 17). Eliminating the high-frequency part of the spectrum, both approaches

are also called low-pass filtering.

Base line correction. In a number of applications the signal is distorted by
slow effects, resulting in the drift of the base line of the output signal of
the instrument. Such slow processes are, for example, the electrochemical
changes on the electrode surface in EEG measurements (ref. 18), and the
fluorescence signal in Raman spectroscopy (ref. 16). The data are

then first smoothed by low-pass filtering, and substracted from the original
signal, thereby eliminating the low frequency components.

Interpolation and smopthing by addition of zeros. We may need to add zeros to

the sample simply in order to obtain 2" points. The addition of zeros,
however, also increases the length of the observation interval [@,T], and hence
the number of frequences in the discrete spectrum. Smoothing the spectrum by an

appropriate window and applying the inverse transformation themn results in an
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enhanced sample with new data points between the original ones.

Differentiation and integration. As seen from Table 4.3, we can estimate the

derivative of the sampled function if we multiply a, by the factor (i2lkav)
before the inverse transformation. This operation amplifies the high frequency
components, and hence it can be used only with a smoothing window as a further
multiplier. On the other hand the spectrum is divided by the same factor in
order to estimate the integral of the sampled function. Therefore, at
sufficiently large values of k the high—frequency components does not disturb

the integration. This shows why integration always leads to some smoothing.

Numerical deconvolution. A number of techniques theoretically result in line

spectra, with nonzero values only at well defined values of the independent
variable. Due to scattering phenomena, however, the separate lines are
broadened into peaks of a continuous curve that may be viewed as the
convolution of the original line spectrum with the Gaussian function

g(t) = exp(-atz) (ref. 16). By the last relation in Table 4.3 we can restore
the theoretical line structure, or at least significantly narrow the peaks by
dividing the transform of the output signal by the transform of the Gaussian
and then performing inverse transformation. This procedure is of considerable

importance if the peaks overlap and their number is not a priori known.

Feature extraction and data reduction. A sampled continuous signal can

frequently be well described in terms of a few low-frequency components of its
discrete Fourier transform. This enables us to study, store and compare

relatively short vectors in large data bases.

Example 4.3.3 Detection of end points in potentiometric titration by Fourier

transform techniques

Our goal is again to find the maxima of the smoothed first derivative of the
titration curve first studied in Example 4.1.3. Recall that the discrete

transform of a real sample satisfies the relationship an/2+j = sn/2—j for all
J=1,2, ey n/2-1 .

Multiplying the transform by the window w[o,n-l] shown in Fig. 4.6 this
property is.preserved, and hence the inverse transform of the product is purely
real. The window (or low-pass filter) is described in terms of two parameters,
the index NS of the frequency where smoothing is started, and the smothing
factor SM that determines the slope of the decreasing part of the window as
shown on Fig. 4.6. The transform of the smoothed function is then the product
Z[f1Z[W). To obtain the smoothed derivative of f , we multiply this product by



the coefficient (i2[kav) and perform inverse transformation, whereas the

smoothed curve is the inverse transform of the product itself.

The following main program includes the above steps.

100 REM
102 REM EX. 4.3.3 APPLICATION OF FFT TECHNIGUES
104 REM MERGE M&7

186 RENM ---=nmeven DATA
188 REM (NUMBER OF PGINTS)
110 DATA 5

112 REN (V,al; pH)
14 DATA 2.4, 2.642, 2.6, 2785, 2.8, 2.786, 3.0, 2.877
116 DATA 3.2, 2986, 3.4, 3.12b, 3.5, 3.295, 3.8, 3.480
118 DATA 4.0, 3.659, 4.2, 3.81a, 4.4, 3.952, 4.5, 4.074
120 DATA 4.8, 4.183, 5.8, 4.285, 5.2, 4.384, 5.4, 4.480
122 DATA 5.6, 4,579, 5.8, 4.482, 6.8, 4.791, 6.2, 4,988
124 DATA 6.4, 5.845, 6.6, 5.211, 6.8, 5.444, 7.8, 5.859
126 DATA 7.2, B.617, 7.4, 9.747, 7.5,10.134, 7.8,18.348
126 DATA 8.0,10.491, 8,2,10.604, 8.4,10.692, 8.5,18.76b
208 REM -------——- READ DATA

202 READ M :N=2*M

204 DIN T(N),F(N),5(N),D{N},A(N),BIN},U(N) V(N

206 FOR 1=1 10 K

208 READ I(1),F(1)

210 ALD)=F(1} :B(1)=0

212 NEXT 1 sDX=1{2)-Z{1)

214 REM -----m--e- CALL FOURIER TRANSFORMATION MODULE
216 IN=0 :G6OSUB &6700

218 REM ----==---- SMOOTHING FROM THE NS-TH FREGUENCY
228 REM 5M: SMGOTHING FACTOR

222 N5=N/8 :5M=1

224 FOR I=2 TO N/2

226 8= :IF I>=N5 THEN S=1-{I1+1-N§}/{N/2+2-NS}t5M
228 IF 5@ THEN 5=0

230 MI)=58A(1)  :B(I)=5tB{I)

232 A{N+2-1)=A(1} :B{N+2-1)=-B(I}

234 NEXT I

236 5=1-5M :1F 5¢@ THEN 5=B

238 A(N/2+1)=A(N/2¢1)45

240 REM --------—- STORE SMOGTHED TRANSFCRM
242 FOR I=1 TO N

244 W{I)=RLT) <V(T)=B(I}

286 NEXT ]

249 REM ---------- INVERSE TRANSFORMATION

250 IN=1 :605UB 6700

252 REM --o--s-m- STORE SMOOTHED FUNCTION VALUES
234 FOR I=1 70 N :S5(I)=A(I} :NEXT I

236 REM -----=---- TRANSFORM OF THE FIRST DERIVATIVE

238 D=6,28319/N/DX

260 A(1)=0 :B(1)=0

262 FOR 1=2 70 N/2+L

264 A{1)=-V{I)ADR{1-1) :B{1)=U{1}2D8{I-1)
266 A(N+2-1)=A{1} :B{N+2-1}=-B{]}

268 NEXT [

270 REM ==---=v--- INVERSE TRANSFORMATION
272 IN=1 :GOSUB &700

274 REM ------mme- STORE DERIVATIVES

276 FOR I=1 TO N :D{I)=A(1) :NEXT I

2565
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278 REM =--------- PRINT RESULTS
280 Y$=STRING${59,"-")
282 As=" 1.1 H.H w8 e

284 LPRINT *  SMOQTHING BY DISCRETE FOURIER TRANSFORMATION": LPRINT
286 LPRINT "NUMBER OF FREQGUENCY WHERE SMOOTHINE STARTS, NS ..*;NS
288 LPRINT "SHOOTHING FACTOR, SM vevvverrecrsrsonsansannases”3SH
298 LPRINT sLPRINT v$

292 LPRINT *V, ol HEAS pH  SMOOTHED pH  DERIVATIVE®

294 LPRINT Vs

295 FOR I={ TO N

298 LPRINT USING A$;I(1),F(1},5(1),D(1)

300 NEXT I

382 LPRINT Vs

34 STOP

The following output should be evaluated with care.
SMOOTHING BY DISCRETE FOURIER TRANSFORMATION

NUMBER OF FREGUENCY WHERE SMOOTHING STARTS, N5 .. 4
SMODTHING FACTOR, SM \ivvvevsnnrssirsrrrannnsenas 1

v, 8l MEAS pH  SMOOTHED pH  DERIVATIVE

2.40 2.64 4.44 -19.323
2,68 .11 2.67 -8.319
2.80 2.79 2.81 -0.259
3.00 2.88 2,75 8.521
3.20 2,99 2.92 8.632
3.40 3143 3.0 8.919
3.60 3.39 3.26 8.995
3.80 3.48 3.44 1.843
4.0 3.66 3.66 8.942
4,20 3.82 3.82 9.824
4.40 3.95 3.99 9.696
4.60 4.87 4.1 2.601
4.80 4.18 4.22 8.311
3.08 4.29 4.3 0.459
5.20 4,38 .4 9.414
3.40 4.48 4.48 8.399
.60 4,38 4,57 0.404
3,80 4.48 4.63 2.438
.00 4,79 4,74 .485
6.2 .91 4.85 8.610
b.48 3.09 4,98 8.782
b.60 5.2 3.19 1.244
5.80 5,44 3.47 1.935
7.8 3.86 6.36 7.811
7.20 8.62 .29 9.506
7.49 9.75 9.63 3.999
7.60 18.13 1e.18 1.880
7.80 18.35 18.43 2.972
8.80 10.49 12,64 8.679
8.20 18.40 18.61 -8.1%3
8.40 10.69 18.75 -8.287

B.60 18.77 8.99 -19.308




257

Indeed, both the smoothed curve and the derivative have sidelobs at both ends
of the sample, but the results are satisfying at most of the internal points.
Since Fourier transform spectral methods are usually applied to samples much
larger than the one considered here, the distortion at a few outermost points

is not a serious drawback.

Exercise

O Repeat the computations with other NS and SM values and investigate

how the number of maxima of the derivative changes.

4.4 APPLICATIONS AND FURTHER PROBLEMS

4.4.1 Heurigtic methods of local interpolation

Spline interpolation is a global method, and this property is not
necessarily advantageous for large samples. Several authors proposed
interpolating formulas that are "stiffer" than the local polynomial
interpolation, thereby reminding spline interpolation, but are local in nature.

The cubic polynomial of the form

2
3(yier = Yi) d
py(d) = y; + tyd + ALS T NS LA 2t =ty |t
hi hy
20y541 ~ yi) | &
w| g gy - SRR (4.43)
1 1

has been used in the i-th interval by Akima (ref. 1%9), where

d=x - x; s hj =xj4q — % y whereas t; and t;,y denote the derivative of
the polynomial at d =@ and d = h;, respectively. Concatenation of the
polynomials (4.43) gives a continuous and once continuously differentiable
interpolating function. (Notice that cubic splines are twice continuously

differentiable.) The heuristics lies in the choice of t; . The weighted sum

mi—llmi+1 - mi' + mi|‘“i—1 - mi—2|
t; = , (4.44)

lmi+1 - mi\ + Imi—l - mi—2|

has been proved useful where m; = (yj,q = yj)/h; . Slightly different
formulas have been suggested by Butland (refs. 20,21).
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Exercise

0 Interpolate the titration curve implementing Akima‘'s method. Compare the
interpolating curve with the results of local cubic interpolation and spline

interpolation.

4.4.2 Processing of spectroscopic data

In order to maximize information obtained from raw spectroscopic data,
analytical chemists and instrumental specialists depend on signal processing
and apply a large number of specialized versions of the basic methods
considered in this chapter, as well as the parametric methods discussed in the
previous chapter, see, e.g. (ref. 22). Here we provide only an example of
parametric methods. Table 4.4 shows 20 points of the electronic absorption
spectrum of o-phenilenediamidine in ethanol (ref. 23).

Table 4.4
Points of an electronic absorption spectrum

Frequency, cml  SO00D 45000 4BODD 4TOOR ALDDD 4SODD 440D A3IDND

Absorptivity 20000 29000 38000 32000 19000 00 LD L2200

Frequency, cml 47000 41000 40000 39000 IDOXD I70DD I6VDD ISA00

Absorptivity 6500 LO20 3800 21800 8820 950 1800 2700

Frequency, cm 1 34000 33000 32000 31000

Absorptivity 3200 2500 8508 17@

Following the treatment in (ref. 23) we separate the spectrum into 3
Baussians, and estimate the parameters A;,B; and C;, i =1, 2, 3, of the

function
3 C;12
=5 a. B S .
y ‘)_‘ Alexp[ [ B } ] (4.45)
i=1

using the nonlinear least squares module M45. The initial estimates of the
parameters shown in Table 4.5 can be obtained by inspecting the curve. Indeed,
C; 1is the location of the i-th peak, A; is its height and B; 1is its
half-width multiplied by J2 . The initial estimates and the ones resulting
from the fit are shown in Table 4.5. The fit is plotted on Fig. 4.7.



Table 4.5

Parameter estimates in model (4.45)
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Initial Final ?5% confidence interval
Ay 37002 37165 32108 - 44223
B, 2500 2365 1946 - 2784
Cy 48000 48046 47774 — 48319
A 6500 6427 5238 - 7588
B, 2500 2754 2210 - 3299
Co 42000 42080 41419 - 42741
Ax 3200 3389 2271 - A@28
By 2500 1844 1684 - 2003
Cx 34000 34434 34247 — 344620
40000
o
30000
>
-
2
-t
a 20000 h
.
o
®
0
o
10000
%) W
30000 36000 40000 46000 50000
Wwava number, 1/cm

Fig. 4.7. Observed (points) and fitted (contiruous) electronic absorption

spec trum

Exercise

@ Use smoothing spline to obtain the initial estimates for peak location (the

location of the maximum), peak hbeight (function value at the maximum point)
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and half-width (the distance between the maximum point and the inflection
point).
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Chapter b

DYNAMICAL MODELS

This chapter is devoted to predicting the behavior of systems modelled by

ordinary differential equations of the form

SE y = f(t,y) , (5.1)
that account for relationships between the dependent variables vy = (y;, yo,
. yl_‘)T and their time derivatives dy/dt = (dy,/dt, dyy/dt, ..., dyl_‘/dt)T .
To obtain such models, one first usually formulates balance equations for
extensive quantities such as mass, energy or momentum, considering all changes
that occur in the system during a small time interval At. If these changes are
smooth, and the system is homogeneous, i.e., its variables do not significantly
depend on the spatial coordinates, then the assymptotic treatment &t —> 0
results in a model of the form (5.1). For example, the rate of the radioactive
decay of y atoms is proportional to the number of atoms. Thus &y = - kyat ,
where k is the positive decay constant, and 4t ——> @ gives the well known

differential equation

-— == ky . (5.2)

Equations (5.1) define a direction vector at each point (t,y) of the n+l
dimensional space. Fig. 5.1 shows the field of such vectors for the
radioactive decay model (5.2). Anhy function y(t), tangential to these vectors,
satisfies (5.2) and is a solution of the differential equation. The family of
such curves is the so called general solution. For (5.2) the general solution

is given by

y = cxexp(—kt) , (5.3)

where ¢ 1is an arbitrary constant. There exists, however, only one particular
solution through any fixed point (t,y®), where y® = y(@) is called initial
condition or initial value, and it uniquely determines the value of c in the

expression (5.3).
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Fig. S5.1. Vector field defimed by the differential equation

Existence and uniqueness of the particular solution of (5.1) for an initial
value y° can be shown under very mild assumptions. For example, it is
sufficient to assume that the function f is differentiable and its
derivatives are bounded. Except for a few simple equations, however, the
general solution cannot be obtained by analytical methods and we must seek
numerical altermatives. Starting with the known point (tD,yD), all rnumerical
methods generate a sequence (tl,yl), (tz,yz), ey (ti,yi), approximating the
points of the particular solution through (to,yo). The choice of the method is
large and we shall be content to outline a few popular types. One of them will
deal with stiff differential equations that are very difficult to solve by
classical methods. Related topics we discuss are sensitivity analysis and quasi
steady state approximation.

Both the function f and the initial condition y° may depend on unknown
parameters p

d
YT Ty, @ = Y (p) . (5.4)
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A frequent problem is to estimate p from the sample ( (ti,;li),

i=1,2, ..., nm }, where ;'i denotes an error—corrupted observation of the
solution. If the solution is known in analytic form, we have a parameter
estimation problem treated in Chapter 3. In principle, one can use the same
methods even without an analytical solution, solving the differential equations
numerically in each iteration of the estimation procedure. The computational
cost of such treatment is, however, too high for most personal computers, and
we will propose a special technique with improved numerical efficiency.
Modeling of some systems leads to higher order differential equations of the

form
y(™ = fit,y,y DLy MLy (5.5)

(1) =

The additional variables x; =y, %, =y seeey Xy = y(m_l) reduce (5.5) to
a set (5.1) of m first-order differential eguations, and hence you do not
need special methods to solve (5.5). Nevertheless, we will treat separately the
problems of identifying and inverting single-input, single—output linear

systems described by the equation

y(m) + aly(m_l) t .. tagy = blu(m_l) + ...t bu, (5.6)

where u(t) is the input and y(t) is the output of the system.

Ordinary differential equations are suitable only for describing homogeneous
systems, and we need partial differential equations if the variables depend
also on spatial coordinates. The solution of such equations is beyond the scope
of this book.

5.1 NOMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

Although not recommended for practical use, the classical Euler
extrapolation is a convenient example to illustrate the basic ideas and
problems of numerical methods. Given a point (ti,yi) of the numerical
solution and a step size h, the explicit Euler method is based on the
approximation (yi*! - y()) (e, 1 - t;) x dy/dt to extrapolate the solution
to tj4; = t; + h by the expression

yitl =yl hfceg vl (5.7)

As seen from Fig. 5.2, reducing the step size h improves the accuracy of

this estimation.
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Fig 5.2. True values y(t) and computed values y(i) in the Euler method

While in the first step the deviation from the exact solution stems only from
approximating the solution curve by its tangent line, in further steps we
calculate the slope at the current approximation yi instead of the unknown
true value vy(t;), thereby introducing additional errors. The solution of
(5.2) 4is given by (5.3), and the total error E; = vy(t)) - yi for this

simple eguation is

E; = y(t;_plexp(—kh) - (1 — kh)yi™d | (5.8)

Since yi_l = y(tj_1) - Ej_y » (5.B) yields the recursive relation

E; = [exp(-kh) = (1 = kh)Jy(t;_4) + (1 — kh)Ej_; . (5.9)

The first term in (5.9) is the local truncation or step error that occurs in
a single step and does not take into account the use of yi—l instead of
y(t;j_q). The second term shows the propagation of the error E;j—q. It is of
primary importance to keep the effect of E; decreasing in latter steps,

resulting in the stability of the method. In this simple example the
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requirement of stability implies |1—kh| <1, so that

(5.10)

xIN

Thus, stability can be achieved only at sufficiently small step sizes. Such
steps decrease also the truncation error, but increase the required
computational effort. Therefore, a common goal of all numerical methods is to
provide stability and relatively small truncation errors at a reasonably large
step size (refs. 1-2).

The stability of the Euler method is improved by using interpolation instead

of extrapolation, and considering the tangent evaluated at t;,; :

yith =yl s hrceg,yith (5.11)

For the special case of (5.2) we can solve (5.11) as

and then the total error is given by

E; = [exp(—kh) - I‘%‘;;,]Y‘ti-ﬂ + I—_t—GEi_l . (5.12)
The truncation errors in (5.9) and (5.12) are of the same magnitude, but
the implicit Euler method (5.11) is stable at any positive step size h. This
conclusion is rather genmeral, and the implicit methods have improved stability
properties for a large class of differential equations. The price we have to
pay for stability is the need for solving a set of generally nonlinear
algebraic equations in each step.

To compare the explicit and implicit Euler methods we exploited that the
solution (5.3) of (5.2) is known. We can, however, estimate the truncation
error without such artificial information. Considering the truncated Taylor
series of the solution, for the explicit Euler method (5.7) we have

) he . : He

Yitiag) = v =yt * hy () + Sy () -y = nftyh) = oyt (e

(5.13)
where we assumed yi = y(t;_;) to obtain the local truncation error. The value
of 6 is between t; and t;,;, but otherwise unknown. Nevertheless, (5.13)
shows that the truncation error is proportional to h2. We can derive a similar
expression for each method, and express the truncation error in the form
CxhP*L ; where the integer p is said to be the order of the method. The
explicit and implicit Euler methods are both first order ones. While a higher

order implies smaller truncation error, this does not necessarily mean improved
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efficiency, since the computational costs are usually increased.
5.1.1 Runge - Kutta methods

The formulas (5.7) and (S5S.11) of explixit and implicit Euler methods,
respectively, are unsymmetrical, using derivative information only at ome end
of the time interval of interest. Averaging the slopes of the two tangent lines
means using more information, and gives

. . h . .
Y=yt Sy fe T (5.14)

Since the formula (S.14) 1is implicit, we must solve a (generally) nonlinear

equation to obtain yi+1. To simplify the calculation, consider the prediction
yi+1 = yi + kg (5.195)
of yi*l | where

Ky = hf(ti,yh . (5.16)

Thus the prediction is based only on the explicit formula (5.7). Using this
prediction, let

kp = Pty v+ kp) (5.17)
then

i+l i 1

y =y + 5 (ky + kp) (5.18)

approximates the formula (5.14), but is explicit. The improvement (5.18)
makes the Euler method second order. The generalization of the above idea leads
to the family of Runge - Kutta methods in the form of

y =y 4 (brky + bokp + aes + bgkg) (5.19)
where

km = Df(t; + dphy y5 +ag kg + con +ag ogkp ), 1 <M< . (5.20)

The constants 3 b

method. For any given p we need at least s terms in (5.19), where s

; and dj are chosen to maximize the order p of the

depends on p (ref. 2). In particular, if p egquals 1, 2, 3 or 4, then
s=p.For p=5, however, weneed s =46 terms, i.e., & function
evaluations in each time step. This partly explains the popularity of the
fourth~order Runge - Kutta method :
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yitl =yl v k76 + ko/3 + ks/3 + ky/6 (5.21)

where
ky = hf(t;,yh)

ko = hf(t; + h/2, y* + ky/2) 5.22)
kg = hf(t; + h/2, yb + ko/2)

kg = bttty + h, vyl + kg/2) .

The following program module extends the formula (5.21) to vector
differential equations of the form (S5.1), simply by considering y , f and

k.

i a5 vectors.

Proqram_module M70@

7008 REM SHERrrrrrepenesiaaaaanaaasaaaaaaasseeaesnetananatst
7882 REM t  SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 1
7084 REM ¢ FOURTH ORDER RUNGA-KUTTA METHOD 1
TO06 REM SEEREEEREEErRaaaeaaaeast et aaeenetaaaattannaaaaasy
7088 REM INPUT:

7018 REM N NUMBER OF DEPENDENT VARIABLES

7812 REM T INITIAL TIME

7814 REM Y(N)  INITIAL CONDITIONS

7816 REM H TIME STEP SIIE

7018 REM NS REQUIRED NUMBER OF STEPS

7028 REM DUTPUT:

7922 REM T END TIME

7024 REM Y(N)  SOLUTION AT END TIME

7826 REM USER SUPPLIED SUBROUTINE:

7828 REM  FROM LINE 988: T,Y(N) --> DN}  ( RHS EVALUATION
7838 REM AUYILIARY ARRAYS:

7032 REM  R{N},O(N)

7834 FOR L=1 TO NS

7836 FOR I=1 7O N sR{ID=Y{I) :MEXT I

7838 GOSUR 988

7048 FOR I=1 TO N :G{I}=D{I} :Y{I)=R{1)+.50H8D{1) :NEXT |
7842 T=T+,5tH :GOSUB 988

7044 FOR I=1 TO N :G{I}=Q(I)428D{1) :Y(I)=R{I}+, S4HED{T) :NEXT ]
7846 GOSUB 988

7048 FOR I=1 TO N :Q(I)=Q{I}+24D(1) :V{I}=R{1}4HED{1) :NEXT I
7058 T=T+,51H :60SUB 988

7832 FOR I=1 TO N :¥{I)=R{1)+H/6H{O(I}4D(I)}) NEXT T

7834 NEXT L

7856 RETURN

JLE R YRR EAE420t R et Riiatitttiesatitertirtotitettets

The module calls the user supplied subroutine starting at line 9@@ that
evaluates the right hand sides of (5.1) at the current values of the Y
vector and time T and put them into the vector D. For a single eguation only
Y(1) and D(1) are used. The step size H and the number NS of steps are
selected by the user.
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Example 5.1.1 Solving a micraobial growth model by Runge — Kutta method

In a batch fermentation process studied by Holmberg (ref. 3) the substrate
is converted to biomass. The specific growth rate wu(ys) is described by the

Michaelis - Menten equation

v
ulyy) = —0Y2__ (5.23)
Kg + v2

where V. is the maximum specific growth rate, K is the so called

=)
Michaelis — Menten constant and y, denotes the substrate concentration. The
concentration y; of the microorganisms and the concentration of the substrate

are governed by the system of differential equations

dy
a;l = ulyplyy = Kgvy »
(5.24)
d)f;i 1
s = - Zulys)
at yHY2YL

where Ky is the decay rate coefficient and Y 1is the yield coefficient.
Typical values of the coefficients and initial conditions are V, = 0.5 h’l,
Kg = 3g/1, Y = 0.6, Ky = @.05 h“l, y1° =1g/l and y2° =30 g/l. The
following main program determines the concentrations during a 18 bhours

period.

108 REX
102 REM EX. 5.1.1, FERMENTATION KINETICS BY RUNGE-KUTTA METHOD
104 REM MERBE M70

106 REM ---------- DATA

108 N=2 M= :K§=3 :¥¥=.b KD=.05

208 REN ---------- DIMENSIONS

202 DIN Y{N),DINT,RINY,GIN)

284 REM ---------- INITIAL CONDITIONS, STEP SIIE, NUMBER OF STEPS

286 Y{1)=1 1¥{2)=30 :T=8 :H=.80 :NS=l/

208 V4=8TRINGS{48,"-")

218 LPRINT "FOURTH-ORDER RUNBE-KUTTA, STEP SIZE H=";H :LPRINT
202 LPRINT v$

214 LPRINT "TIME, h vl, g/} y2, 9/1"
216 LPRINT V$
218 LPRINT USING" #3.%4 LEEE] #HONT, V), Y2)

228 FOR ID=1 79 10

222 G60SUR 7008

224 LFRINT USING" #4.43 .4 LTV, Y(2)
226 NEXT 1D

228 LPRINT v :LPRINT

230 ST0F

a0 REN ---------- RIGHT HAND SIDE EVALUATION
02 MS=VMIY(2)/(K5+Y(2))

904 Dii)=MS1Y{1)-KDIV{L)

986 D(2)=-1/YVENSEY(L)

788 RETURN
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A way to check the accuracy of the solution is repeating the procedure with
a smaller step size until the significant digits will be unchanged. More
efficient methods of step size control will be discussed in Section 5.1.3. In
this example the step size h = 0.05 hours has been proved appropriate and

results in the following solution:

FOURTH-ORDER RUNGE-KUTTA, STEF SIZE H= .09

TI¥E, h v, g/l y2, ¢/l
.00 1.008 38,6800
1.8 1.498 29,0678
2.00 2,239 27,4760
3.0e 3.33¢% 23,6158
4.00 4,955 22,5808
5.pe 7.298 18,1832
6.0 18.524 2.B600
7.50 14.386 4.5845
8.00 16,204 B.2318
9.00 15,557 0.0033

18.80 14,808 8.eee8

S5.1.2 Multistep methods

In the improved Euler method (5.14) we use derivative information at two
points of the time interval of interest, thereby increasing the order of the
method. A straightforward extension of this idea is to use the derivative at
several grid points, leading to the k—step formulas

k
= S bty gyt ™) (5.25)
m=0

Y

of Adams (ref. 2). More general multistep formulas can be derived using not
only the derivatives, but also function values yi computed at previous grid
points when estimating yi+l.

The multistep method (5.25) is explicit if by = B, otherwise it is
implicit. These latter are the best ones due to their improved stability

properties. To use an implicit formula, however, we need an initial estimate of
1

1

yi"'l. The basic idea of the predictor — corrector methods is to estimate yi+
by a p-th order explicit formula, called predictor, and then to refine yi+
by a p-th order implicit formula, which is said to be the corrector.
Repeating the correction means solving the algebraic equation (5.235) by

successive substitution. The use of more than two iterations is not efficient.
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The great advantage of the predictor — corrector methods is that in addition
to yi+1, in expression (5.25) we need only previously computed (and saved)
function values. Thus, the computational cost depends on the number of
corrections and does not depend on the order p of the particular formula.

Starting a multistep method is an additiomal problem, since no previous
function values are yet available. One can start with a one step formula and a
small step size, then gradually increase k to the desired value. A more
common approach is to use Runge - Kutta steps of the same order at the
beginning.

The module included here is based on the fourth order method of Milne
(ref. 4), where the predictor

-3 ; 4h
i+l o i-3 | 10 -

Y =Yy + 3 (2f, o = fjq + 2f;) (5.26)

is combined with the corrector

. L h .
yitl = yitl o P25y — Aty eyt 1. (5.27)

Only one correction is made and the procedure is started calling the fourth
order Runge — Kutta module M70 .

Program module M71

7100 REM SERRRRRRRLRLLLLLLLRILIRRALLLLRALALIIIRIRLLLLLLLLLLS
7182 REM $  SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS &
7184 REM § PREDICTOR-CORRECTOR METHOD OF MWILNE L
7186 REM SERRRRLRSRRBLLLRLLLLLLELILILLEEEEEEREEETLIRLLLILLLL
7188 REM INPUT:

7118 REM N NUMBER OF DEPENDENT VARIABLES

7112 REM T INITIAL TIME

7114 REM Y{N}  INITIAL CONDITIONS

7116 REM H TINE STEP SIZE

7118 REM NS REQUIRED NUMBER OF STEPS (AT FIRST CALL NS>=4)
7128 REN FC IDENTIFIER OF FIRST CALL

7122 REN 9 - NDT FIRST CALL, THUS VALUES

7124 REN YL{N),Y2{N),Y3(N),DL{N),D2(N) ARE KNOWN
7126 REM NDT @ - FIRST CALL

7128 REM { REQUIRES NS>=4 )

7138 REM OUTPUT:

7132 REM T END TINE

7134 REM Y(N}  SOLUTION AT END TIME

7136 REM  { AND UPDATED VALUES OF YI(N),YZ(N},Y3(N),DL(N},D2(N},FC )
7138 REM USER-SUPPLIED SUBROUTINE

7148 REM  FROM LINE 908: T,Y(N} --> D{N) { RHS EVALUATION |

7142 REM AUXILIARY ARRAYS:

7148 REN  R(N},B(N)

7146 REM MODULE CALLED: M78
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7148 IF FC=B THEN N1=1 :N2=NS :G0TO 7158

7138 Ni=4 :N2=NS :NS=1

7152 FOR T=1 TO N sYI{I}=Y(1) «NEXT 1 :GOSUR 7008

7158 GOGUR 908 :FOR I=1 TO N :Y2(1)=Y(I) :D2{1)=D{I} :NEXT I :GOSUB 7088
7136 BOSUB 90@ :FOR I=1 TO N :¥1{1)=Y{I) <D1{1}=D(I} :NEXT I :5OSUR 7000
7158 FOR L=N1 TC N2

7168 REM ---------- PREDICT

7162 505UB 980

7164 FOR I=L TO N

7166 Y=Y(I) s¥{D)=Y3(I)+1. 333332 HC24D2( 1) -DLCT) +24D( 1))

7168 YHDISY2D) «Y2013=YH{T) sYHD)=Y 2D2(1)=Di{T) :D1(1)=D{]}
7178 NMEXT 1

72 REM ----m----- CORRECT

7174 T=T+H :60SUB 920

7176 FOR I=1 TO M

7178 Y{I)=YZ{T)+H/38{D2{1}+41D1(1)+D{1}}

7188 NEXT I

7182 NEXT L

7184 FC= :NS=N2

7186 RETURN

7188 REM IO uan nannnng

The use of this module is similar to that of the module M70 . The only new
variable is the first call flag FC. You should put a nonzero value into FC
before the first call. In subsequent calls FC will remain zero.

Example 5.1.2 Solving the microbial growth model by Milne method

Here we list only the lines differing from the ones of the main program in
Example 5.1.1.

182 REM EX. §.1.2. FERMENTATION KINETICS BY MILNE METHOD
104 REM HERGE M78,M71

202 DIM YIN), DUND,RINYOINY YLIND, Y2UNY, Y3(N),DLNY, D2(N}
286 Y{l)=1 :Y{2)=3D :T=@ :H=.03 :N5=1/H :FC=1
210 LPRINT "HILNE METHOD, STEP SIZE H=";H :LPRINT

n
<

2 GOSUB 7160

3

The given step size results in the same solution, not repeated here.

An important question is the relative numerical efficiency of the two
methods or, more generally, the two families of methods. At a fixed step size
the predictor — corrector methods clearly require fewer function evaluations.
This does not necessarily means, however, that the predictor - corrector
methods are superior in every application. In fact, in our present example
increasing the step size leaves the Runge - Kutta solution almost unchanged,

whereas the Milne solution is deteriorating as shown in Table S5.1.
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Table 5.1
Substrate (y,, g/1) computed at different step sizes H (in hours)

Time, h Runge — Kutta Milne
H= 0.1 H=0.2 H=0.25 H=08.1 H=0.2 H=0.25
6 12.0660 12.060 12.860 12.060 12.860 12.0452
7 4.585 4.585 4.585 4,585 4.585 4,585
8 @.252 @.253 @.257 @.252 @.253 @.242
9 @.223 0.003 @.004 0.0283 0.203 0.018
102 0.0 @.000 @.000 0.020 -0.001 -8.022

Experience shows that the relatively slow Runge - Kutta procedure is quite
robust and hence it is a good choice for a first try.

5.1.3 Adaptive step size control

To control the step size adaptively we need an estimate of the local
truncation error. With the Runge - Kutta methods a good idea is to take each
step twice, using formulas of different order, and judge the error from the
deviation between the two predictions. Selecting the coefficients in  (5.20)
to give the same a;; and d; values in the two formulas at least for some of
the internal function evaluations reduces the overhead in calculation. For
example, 6 function evaluations are required with an appropriate pair of
fourth-order and fifth-order formulas (ref. 5).

In the predictor - corrector methods the magnitude of the first correction
is an immediate error estimate with no additional cost.

From the actual step size h error estimate E_,., and the desired error

act?
bound Egjog a new step size h,, can be selected according to

1
'Edesl |hnew| o
% R (5.28)

1
lhactlp+

IEest|
where p 1is the order of the method. The exponent p instead of (p+l) in
(5.28) results in a more conservative step size control, taking into account
also the propagation of errors.

The most sophisticated differential equation solver considered in this book
and discussed in the next section includes such step size control. In contrast
to most integrators, however, it takes a full back step when facing a sudden
increase of the local error. If the back step is not feasible, for example at

start, then only the current step is repeated with the new step size.
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5.2 STIFF DIFFERENTIAL EQUATIONS

Stiffness occures in a problem if there are two or more very different time
scales on which the dependent variables are changing. Since at least one
component of the solution is "fast", a small step size must be selected. There
is, however, also a "slow" variable, and the time interval of interest is
large, requiring to pér'for'm a large number of small steps. Such models are
common in many areas, e.g., in chemical reaction kinetics, and solving stiff
equations is a challenging problem of scientific computing.

The eigenvalues »; of the Jacobian matrix

B (t:,y)
L35, = ._.15;;12__ (5.29)

k

of the function f in (S5.1) provide some information on the stiffness of a
particular system. Local linearization of f gives a linear combination of the
exponentials exp(xjt) as a local estimate of the behavior of the solution.
Let Npjnh and gy, denote the smallest and largest eigenvalues,
respectively. (In case of complex eigenvalues we can use their moduli.) Then

the ratio Nnax” shows the ratio of the involved time scales and measures

min
the stiffness, varying along the solution if the equations {5.1) are
nonlinear.

Implicit methods, including predictor - corrector ones, are of primary
importance in solving stiff equations. The traditional successive approximation
correction procedures, however, do not converge, so that are usually replaced
by a Newton — Raphson iteration. This idea applies to any implicit method, and
the multistep procedure of Gear (ref. &6) has been particularly successful in
this respect. We provide, however, a program module based on the so called
ROW4A procedure, that is much simpler than the Gear program, in spite of its
comparable performance (ref. 7). The ROW4A procedure realizes a semi—implicit
Runge - Kutta method introduced by Rosenbrock and modified by Gottwald and
Wanner (ref. 8).

The basic formula of the semi-implicit Runge—Kutta methods is similar to
(5.28) , but k, appears also on the right hand side. Since the method is
restricted to autonomous differential equations (i.e., the function f does
not explicitly depend on time), we drop the argument t and replace (5.20)

by the expression

m
k=hf[yi+§:ak],m=1,...,s. (5.30)
q:
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We need to solve s sets of nonlinear equations, but Rosenbrock devised a
much simpler procedure. Linearization of the m—th set of equations in (5.30)

around the point

m-1
i <
+ :Z.n amqkq (5.31)

q=1

Y=y

gives the equations

m-1
T Al
(I - apMlk, = hf[yl + 2, 3ngkq ]
9=1

(5.32)

for k;, where I denotes the n>n identity matrix, and n is the number of
dependent variables (the dimension of the y vector). Furthermore, the
Jacobian matrix J is evaluated only at the beginning of the current time

interval, and the a coefficients are identical for any m. The

mm

fourth - order method then requires the solution of 4 sets of linear
equations

Ekrn=rm’m=1! 2, 3,4 (5.33)
where

E=I—alth

hf(yl)

r =

r2 = hfty! + agky) + cpyky

rg = Myt + agky + agokp) + c3iky + c3pkp

rg = hTy! + agiky + agokp + agsks) + cayky + capky +oazks -

Since all 4 sets of equations in (5.33) bave the same coefficient matrix E,
a single LU decomposition is sufficient as described in Sections 1.3.2 and
1.3.3. The next point of the solution is predicted by

yitl =yl o+ biky + boky + bk + bk (5.34)
whereas
EI* = e ky + egky + exkx + e5kg (5.35)

is an estimate of the local error vector. The values of the coefficients
involved can be found in the line 7260 through 7272 of the following program
module.



Program_module M72

7288 REM SEESSSSSTRSEASITASTISLATTILLSITLLIIILASLLLINARLASINLE
7282 REM t  GOLUTION OF STIFF DIFFERENTIAL EGUATIONS '
7284 REM t SEMI IMPLICIT-RUNGE KUTTA METHOD WITH BACKSTEPS #
7285 REM 8 KOSENBROCK-GOTTWALD-WANNER '
7283 REM SRRLRRRRERRRRRERLIRSASSSRRIREIIRSRERIRISIIIISLINLIL
7210 REM INPUT:

7212 REM R NUMBER OF DEPENDENT VARIABLES

7214 REM T INITIAL TIME

7216 REM  Y(N) INITIAL CONDITIONS

7218 REM TE REGUIRED END TIME

7220 REM EP RELATIVE ERROR TOLERANCE

7222 REM H INITIAL TIME STEP SIIE

7224 REM 4] MAXIMUN NUMBER OF STEPS

7226 REM OUTPUT:

7228 REN ER STATUS FLAB

7230 REM @ SUCCESSFULL SOLUTION

7232 REM { NUMBER OF STEPS INSUFFICIENT

7234 REM T END TINE

7236 REM Y(K}  SOLUTION AT END TIME

7238 REM H SUBGESTED SIZE OF NEXT STEP

7240 REM IP NUMBER OF ACCEPTED STEPS

7242 REM IR NUMBER OF REPEATED AND BACKWARD STEPS
7244 REM USER SUPPLIED SUBROUTINE:

7246 REM  FROM LINE 98@:  T,¥Y{N) --> D{N}  { RHS EVALUATION )

7248 REM AUXILIARY ARRAYS:

7258 REM E(N,N),A(N,N),RIN},YO(N),YLN)
7232 REM RI{NY,R2{N) ,RI(N} ,RA{K) X (N}
7254 REM MODULES CALLED: M14,ML5

7256 IF T>=TE THEN ER=9 :G0TO 7414

7258 REM ------=-== INITIALIZATION

7260 Al=,438 :A2=,9389487 :A3=7,307954E-02
7262 C1=-1.943474 102=.4169373 103=1,323948
7264 £4=1,519513 :£5=1.353708 :C6=-,B8541515
7266 B1=.7290448 :B2=5.4106968E-82

7268 B3=,2815994 1B4=,25

7279 E1=-1.908589E-82  :E2=.2556088

7272 E3=-B.638163E-02  :E4=,25

7274 1P=9 :IR=Q :L8=-1 :LE=@ :SF={ ¢TR=T
7276 FOR 1=1 TO K :YO{I)=Y(I} :NEXT I

7278 REN ---------- MAX NUMBER OF STEPS OR END TIME REACHED
7288 IF IPY=IN THEN ER=1 :G60TC 7414

7282 IF T+H>=TE THEN LE=-1 :HO=H :H=TE-T
7284 REM -----=weun JACOBIAN MATRIX

7284 GOSUB 900

7288 FOR I=1 TO N :R{1)=D{I) :NEXT I

7290 FOR J=1 TO N

7292 Y=Y(J} :D=AB5{Y)%.001+1E-15 :Y{J)=Y+D
7294 GOSUB 908

729 FOR I=1 TO N :E(I,d)={D{I}-R{1}}/D :NEXT I
7298 Y{d)=Y

7380 NEXT J

7302 REM ==-wemmman LU DECORPOSITION

7304 FOR 1=1 TO N :FOR J=1 TO K

7386 A(1,d)=-,395¢H8E(1,0)-(1=])

7308 NEXT J :NEXT I

7310 605UB 1408

7312 1IF ER THEN H=H/2 :50TC 7304

275
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7314 REM ------emm COMPUTE STEP
7316 FOR I=1 TO N :X(I)=HIR{I} :KEXT I
7318 G0OSUR 15@e
7320 FOR I=1 TO N
322 RUD=X{1) tY(D)=YO(I) eALRXLT)
7324 NEXT 1
7326 GOSUB 908
7328 FOR I=1 TO N :X{I)=HID(I)+CL1ERI(T) :KEXT I
7330 GASUB 1500
7332 FOR I=1 TO N
733 RUD=XT) sYD=YOUT)+AZIRILT) +ATIR2(T)
7335 NEXT ]
338 GOSUR 708
734 FOR I=1 TO N :X{I}=HED(I}+C2URL(T)+CTIR2(1) ¢NEXT I
7342 GOSUR 1500
T4 FOR 1= TO N
T34 RI(T)=X{I} X{TI=HADOT}+CARRI(T) +CTARZ(T14LALRT(])
7343 NEXT ]
7352 GOSUR 1508
7352 FOR I=1 TO N
7394 RA(D=X{1} sY(D}=YO(I)+BLRRI(TI+B2AR2(])+RIART (1) +BALRA( T}
7336 NEXT |

T=T+
REM ---------- ESTIMATE ERROR
ES=EP/1E
FOR T=1 TO N
SI=AES{EYERI{I)+EZIR2(T)+ESIRI (1) +E4LRA(T))
S2=AES{Y(I)) :53=AES(YD{])
£=2851/{S2+G3+EP/1E1D)
77 IF S)ES THEN £68=5
7374 REXT 1
7376 REM --------—- NEW STEP SIZE

7378 §=.98({EP/ES).25
73BR H=S¥SFHH

7382 REW ---~-mom- CHECK ERROR
7384 IF ESSEP THEN 7400
7386 REM -------—-- ACCEPT STEP AND INCREASE STEP FACTOR SF

7388 IP=IP+1

7398 IF LE THEN H=HD :ER=@ :6070 7414

7392 FOR I=1 TO N :YL{I}=YO(E) sYO{Tis¥{1} :NEXT I

7394 TL=TR :TR=T

7396 L5=0 :SF=1.2110F :IF GFM THEN SF=1

7396 6070 7280

7ARB IR=IR+1 :LE=@: IF NOT L5 THEN 7408

7402 REW ---------- REPEAT CURRENT STEP IF BACKSTEP IS NOT POSSIBLE
7404 FOR 1=1 TO N :Y({1)=YO{I} :NEXT 1

7486 T=TR :6070 7

7498 REM ----momoee STEP BACK AND MODERATE STEP FACTOR SF
7418 FOR T=1 TO N «Y{I)=YLED) «YO(I)=YL(1) :REXT 1

7412 1P=1P-1 :T=TL :TR=T : LS=-1: SF=,9%5F :6070 7286

7414 RETURN

FROY-0:3 I SRR3R0 20 e eeReetesiniisissssiteciisitsi

In contrast to the modules M70 and M71 , here we specify the end time TE
instead of the number of steps, since the initial step size H 1is adaptively
decreased or increased in order to keep the relative error just below the
threshold EP . The suggested values of the threshold are between .01
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and @3.0001 . The module returns the value ER =1 if the maximum allowed
number IM of steps does not suffice to obtain the desired accuracy. The
number of accepted steps and the number of repeated or backward steps are
stored in variables IP and IR , respectively. This information is useful in
evaluating the performance of the integrator. The Jacobian matrix is
approximated by divided differences, so you need to supply only one subroutine
for evaluating the right hand sides of the differential equations, similarly to

the previous two modules.

Example 5.2 Solving the model of an oscillating reaction

The famous Oregonator model (ref. 9) is a highly simplified (but very

successful) description of the Belousov — Zhabotinsky oscillating reaction :

dy

é—tl = k1[y2 + yl(l - k2y1 - Y2)]

d

azz = [yz — (1 + yy)yp1/k; (5.36)
ot 3y1 ~v3)

where vy;, yp and yx dencte the normalized concentrations of HBrO;, Br~
and Ce4+, respectively, and t is the dimensionless time. The dimensionless
parameters are k; = 77.27 , ko, = B.3738-6 and kg = 0.161 (ref. 8). The
initial values vy =4, y,© = 1.33139 and y3° = 2.85235 result in a
periodic solution with period length t z 302.9 . Within a period there are
sudden changes in the variables, more than seven orders of magnitude. In the

following main program we compute the solution at selected time points.

100 REX
102 REM £Y. 5.2, SOLUTION OF OREGONATOR MODEL BY SEMI-IMPLICIT METHOD
104 REM WERGE Mi4,N1S,¥72

104 RER --mnmemev NUMBER OF TIME FOINTS AND TIME POINTS

198 DATA 12,0,1,2,3,4,5,4,10,108, 206,392, 302.9

118 READ HT

112 DIM TH{NT)

118 FOR T=1 TO NT :READ TW(T} :NEXT I

208 REW -=----n-- PROBLEM SIZE

207 Ne3

204 DIM YN}, DiN),EN, NI ATN,H)ROND, YOINY YLEND  X(N)

286 DI R1{N},R2(N) RI(N},RA(N)

208 GEN --mmmmmmmm INITIAL VALUES, FIRST H, ACCURACY

700 T=TH{L) 190128 :Y(2)=1,32139 +¥{3)=2.85235 H=.1 :EP=.001 :IN=1000
212 Y$=5TRINGS(56,"-")

28 BTHLE HHDLHE BN HEBLHEE R e

215 LORINT "IREGONATOR WODEL BY SENI-IMPLICIT RUNGE-KLTTA M., "

718 LPRINT *TOLERANCE=";EP :LPRINT sLPRINT V8

200 LFRINT * TINE yi y12) yi3 ip ir
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222 LPRINT VS
224 LFRINT USING A$3T,Y(1),Y(2),¥(3)
226 REN —-—mmmmvre CALL SOLUTION NODULE FOR EACH TIME PDINT

228 FOR 1D=2 T0 NT
230 TE=TH(ID) :GOSUB 7208
232 LPRINT USING A$;T,¥{1),Y{2),Y(3),1P,IR

234 NEXT ID

236 LPRINT V§ LPRINT

238 STOP

908 REM -----=---- RIGHT HAND SIDE EVALUATION

982 D{1}=77.274(Y(2)+Y(1)8(1-B.375E-064Y(1)-Y(2)))
984 D(2)={Y(3)-(1+Y(1))0Y(2}}/77.27

996 D(3)=.161(Y(1)-Y(3))

988 RETURN

In addition to the solution, the number of accepted steps (ip) and the number
of back steps or repeated steps (ir) are also printed to show how the step

size control works.

UREGONATOR MODEL BY SEMI-IMPLICIT RUNGE-KUTTA M., TOLERANCE= .001

TINE yit) yi2) y(3}) ip  ir
8.0 4.0e000 1,33139 2.8523%
1.9 4,52980 1.2809@ 3.06099 H [}
2.9 5.35444 1.22638 333748 4 [}
3.0 5,93735 1,16312 J.74244 L] ]
4.0 12.433e7 1,87232 4,52226 [ 1
3.0 116764.80000 8.82421  2839.25000 38 3
5,8 97271.55009 8.18801 18304.12000 16 [}
19.9 1.08214  785,15818 21132.22988 183 3
100.0 1.00368  273.45229 1.01394 224 [}
200.¢ 1.95898  20.54734 104376 3t 2
309.8 313234 1,45751 2.44508 30 1
392.9 4.01773 1.32949 2.83972 b [}
Exercise

O Try to solve the Oregonator model using a non — stiff integrator as the
module M7@0 . Comment on the step size needed for a reasonable accuracy.

5.3 SENSITIVITY ANALYSIS

In this section we consider the parametrized vector differential equation

d
It y(t,p) = f[y(t.p),pﬂ » vi@) = yo(p) , {5.37)

where p denotes the np-vector of parameters. The vector of sensitivity
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coefficients to the parameter Pj is defined by

s;(t,p = ?Ziagl_gl ) (5.38)
3

These partial derivatives provide a lot of information (ref. 1@). They show
how parameter perturbations (e.g., uncertainties in parameter values) affect
the solution. Identifying the unimportant parameters the analysis may help to
simplify the model. Sensitivities are also needed by efficient parameter
estimation procedures of the Gauss — Newton type. Since the solution vy(t,p)
is rarely available in analytic form, calculation of the coefficients sj(t,p)
is not easy. The simplest method is to perturb the parameter P s solve the
differential equation with the modified parameter set and estimate the partial
derivatives by divided differences. This "brute force" approach is not only
time consuming (i.e., one has to solve np+tl sets of ny differential
equations), but may be rather unreliable due to the roundoff errors. A much

better approach is solving the sensitivity equations

d =}
255 (6P = 3(y(t,p),p)s;(t,p) + -é;;f[y(t,p),p] , (5.39)

where the 1i,j-th element of the Jacobian is given by

=]
J( ) = —F;( ) . (5.40)
[ \/,p]i‘i o 1P

The sensitivity equations (5.39) are derived by differentiating (5.37)
with respect to Pj » and changing the order of differentiation on the left
hand side. The initial values to (5.39) are given by

=]
s;(@,p) = == ¥Y°(p) . (5.41)
%

The sensitivity equations (5.39) can be solved simultaneously with the
original equations (5.37). Although the special structure of this extended
system of differential equations enables one to devise more efficient special
methods (see, for example, refs. 11-13), in the following example we solve the
equations using the general purpose integrator module M72 . The straightforward
method not making use of the special structure of the sensitivity equations is

called direct method of sensitivity analysis.
Example 5.3 Parameter sensitivities in the microbial growth model
In order to discuss the practical identifiability of the model studied in

Examples 5.1.1 and 5.1.2, Holmberg (ref. 3) computed the sensitivities of the

microorganism concentrations y; and substrate concentration y, with
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respect to the parameters V, Ko, Ky

need the partial derivatives

VaY2 o _ g __Yofs
J = Kg + v2 . (Kg +
_ L Vaya 1 Y
Y Kg + yp Y (Kg
and
Yz oo L __YleZZ_z
of _ Kg * v2 (Kg + v2)
op Y vave o L __VavaY2
Y Kg + vy2 Y o(Kg # v2)

and Y. To repeat the computations, we
Y1
777
2 , (5.42)
55!1_2
+ yz)
- y2 m
(5.43)
D - \_’mZLZZ_-_

Y2k, + yo)

The initial values are 5j(m,p) =@, j=1, 2, 3 and 4 . (Note that the

initial values of the concentrations

parameters investigated.) To solve the

Y1 and

extended system of differential

y2 do not depend upon the

equations the following main program is used:

ek

102 F 11

. 5.3, CENSITIVI
RBE M1&,HM13,MTZ

REY --
DATH 11,8,1,2,%,4,5,6,7,8,9,10
8 READ NT

DIN THENT)
FOR 1=1 70 N

T :READ TW(T} sNEXT 1
-- PARAMETERS

YY=.6 :KD=.25

---- PROBLEN SIZE

DIM YINY DANG (EINRD ACH DRI YOULNY YLING XUND

DI% RLCH),RI(H),RIN, RAQN)

? REM INITIAL VALUES, FIRST H, ACCURACY
T=TWOLD sY(L)= 1¥(2]=3@ :H=,1 :EP=.001 :IM=1000

6 VE=GTRING${%6,"

TR T |

pg=" 72

LFRIFT

LPRINT :LFRINT V$

LPRINT "TIME, R

LPRINT

2 LPRINT v$

LERINT USING A$3T,¥(1),D,8,8,0

LERINT USING E$; ¥(2),,0,8,8

REM CALL SOLUTION MODUL

B FOR ID=2 T3 NT

TE=TR{1D} :GOSUE

LPRINT USIHE A$;T

244 LPRINT USING BS;

246 NEXT 1D

268 LARINT V& GLPRINT

IER TR

-

"SEM] - LOBARITHMIC {dYi/dInFi) SENSITIVITY

CONCENTRATION
g9/t

Ym

Ks

---------- FOR EACY
7200

ISR
(20,14

i

{
"
<

¥

TY ANALYSIS OF A MICRORIAL GROWTH PROCESS

NUMBER OF TINE POINTS AND TINE POINTS

R LM BT AL M
FRELBEE BRLBED BREOBEE BNRLORR MR

HATRIX"

FARRMETER SENSITIVITY”

K "

TINE POINT

31 EBEV(D) KDY (T, VY8V (T)
ESHY(8) KDIV{B), YYHY

(18)
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909 REM ---------- RIGHT HAND SIDE EVALUATION
902 RD=KS+Y{2} :MI=¥(2}/MD :M2=M1/ND :M3=KS/NB/NE
924 NA=VMINL-KD cMB=UNINIEY(L) oMe=-UH/VYRNL :H7=-VM/YYINRY(L)
986 REM - ORIGINAL EQUATIONS
908  D{1) = VMEIMLEY{D;-KDAY({1)
718 M2} =-VH/YYIMLIY{L)
912 REM - SENSITIVITY EGUATIONS WITH RESPECT TO Va
914 D{3) = HIHY(L) HASY{T)MTRY (4)
916 DU} =-VH/YYENLEY(1}  +MBRY(3)+NT3Y(4)
918 REM - SENSITIVITY EQUATIONS WITH RESFECT TO Ks
920 D(D) =-VMEMZHY{l} +MALY () 4M8Y (b)
922 Do) = VM/YYRM2ZEY(L}  +MOIY(5)+MTHY(S)
924 REM - SENSITIVITY EOUATIONS WITH RESPECT TO Kd
926 M7) =-Y{1} +HALY (7} +N58Y(8B)
28 D(B) = +HOLY(7)+N71Y(8B)
938 REM - SENSITIVITY EQUATIONS WITH RESPECT T0 Y
932 D9 = +HAKY(9)4H3LY(10)
G34  DO1@)= VM/YYZYYRMIZY(L) «MATY(9)4M71Y{1D)
36 RETURN

Instead of the sensitivities sJ-(t,p) , in most applications we use the vectors
of semi-logarithmic or normalized sensitivities, defined by

dy/8log p; = pjdy/3p; . (5.44)

The last four columns of the following output list the matrix 8§ of
semi-logarithmic sensitivities consisting of nyxnt = 22 rows and np = 4
columns. This matrix is called normalized sensitivity matrix.

SEM1 - LOGARITHMIC (dYi/diogPj) SENSITIVITY MATRIX

TIME,h  CONCENTRATION PARANETER SENSITIVITY
g/1 Vo Ks Kd Y

8.0 1 1.0e2  6.000 @.000 o.cee  €.200
y2  I0.000 0.000 0.000 Q.000 0.000
1.0yt 1,498 B.679 -0.063 -0.07%  B.00M
y2  29.068  -B.691  B.187  8.025  9.93
2.8yl 2,739 2823 -p.1%¢  -0.224  0.0@7
y2 27,678 -2,383 0 0.328 @131 2,310
oy 3,339 449 -B.431 -0.499  R.029
y2  25.616  -5.893  B.756  0.389 4,335
4.8 4l 4,955 B.799  -0.872 -8.982  e.l0!
y2 22,581 -11.871  1.WM3  8.913  7.24%
5.6yl 7.290  15.778  -1.64%F -1.782  9.333
y2  1B.18B5 -22.389 2,933  1.B34 11.2%7
6.0yl 10524 25,672 -2.908 -2.971  1.1%6
y2 12,060 -37.481 G201 3295 15.93
7.0yl 14,387 31.820 -4,093  -4,019  4.844
y2 4,586 -46.466  7.499  4.289 17.02¢
8.2 yl 16.20F  8.872 -0.544 -2.511 15.6M4
y2 0.252 -7.873  1.B12  @.769  2.92%
9.8yl 15557 4036 0.507 -7.728  1b.A82
y2 g.e83 -0.123  0.940  @.013  0.835
1e.8 y! 14,800 .77 .50 -3.328 15,681
y2 2.080 -0.902  0.0e!  0.880  0.eel
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According to (5.44) the semi-logarithmic sensitivity coefficients show the
local change in the solutions when the given parameter is perturbed by unity on

the logarithmic scale and are invariant under the scaling of the parameters.
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Fig. 5.3. Semi-logarithmic sensitivity of the substrate with respect to the

parameters V., K, Ky and Y

As seen from Fig. 5.3, the substrate concentration is most sensitive to the
parameters around t = 7 hours. It is therefore advantageous to select more
observation points in this region when designing identification experiments
(see Section 3.10.2). The sensitivity functions, especially with respect to Kg
and K, seem to be proportional to each other, and the near-linear dependence
of the columns in the Jacobian matrix may lead to ill-conditioned parameter
estimation problem. Principal component analysis of the matrix s's is a

powerful help in uncovering such parameter dependences. The approach will be
discussed in Section 5.8.1.
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5.4 QUASI STEADY STATE APPROXIMATION

The quasi steady state approximation is a powerful method of transforming
systems of very stiff differential eguations into non—stiff problems. It is the
most important, although somewhat contradictive technique in chemical kinetics.
Before a general discussion we present an example where the approximation

certainly applies.

Example 5.4A Detailed model of the fumarase reaction

The basic mechanism of enzyme reactions is

kq k3
—> ->
E+5 ES E+P (5.45)
L <—
ko kg

where E, S, ES and P denote the enzyme, the substrate, the intermediate
enzyme~-substrate complex and the product, respectively. The rate expressions
are mass action type with rate coefficients k;, ko, kg and kg, resulting in

the kinetic differential eguations

d
J7[E) = = K [EIIS] + kplES] + k3[ES] - k4[EILP) (5.46)
d -

EE[S] = — ky[EI[S] + ko[ES] (5.47)
d

EE[ES] = ky[EJ[S] - kolES] - kz[ES] — kga[EILP] (5.48)
d —_

EEEPJ = kz[ES] — kga[EI[P] (5.49)

where the brackets denote concentrations of the species. If the substrate is
fumarate and the enzyme is fumarase, at T =25 ° and pH =7 the rate
constants are k; = 142x12° 1 mo171 571 y ko = 200 g1 ks = 330 sl and

kg = 51x18° 1 mol™! 57! (ref. 14). We solve equations (5.46) - (5.49) up to
the reaction time t =120 s with the initial concentrations

[E° = 2x18™7 mol 171 and [S51° = 20x10™® mol 17! . The initial concentrations
of the enzyme—substrate and the product are zero. Since the system is closed,

due to the balance equations
[E] = [EI° - [ES] (5.50)
and

[S] = [S)° - [ES] - [P (5.51)
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it is sufficient to consider the two linearly independent differential

equations

d
7[ES] = Ky ([E1° - [ESH(ISI® - [ES] - [P) - (kp + k3)[ES] +

+ kg([EJ® - [ES])[P] (5.52)
and

d
EE[P] = kz[ES] - kq([EI° - [ES])IP] . (5.53)

With the initial step size H = @.1 s and threshold EFP = 0.0001, the module
M72 gives the following results:

ENIYME CATALYSIS - DETAILED MECHANISM

ki= 1.4E+@8 k2= 200
k3 v4= 5, 1E+07

TIRE,s  ES,molfl  Pumol/l  ip  ir

8.2 0.0200E+02  0.2000E+00
£.2 3, 1653E-03  0.3136E-85 4
12.2 8.1622E-88  9.3872E-05
12.0 B.1592e-08  .8203E-05
24.0 £.1563E-08  0.1014E-04
0.2 8.1537E-88  B.1170E-94
6.0 2.1514E-08  90.1292E-04
42.0 B.1494E-08  D.1386E-04
48,2 9.1479e-08  8.1457E-14

4.0 8, 1467E-08  D.1509E-24
50.2 8.1457E-03 0. 1546E-04
66,8 B.IASIE-86  B.1G73E-04
7, 0.1444E-83  @.1593E-04
78,8 B.1442E-88 0. 16ReE-04
8s.e 0.1440E-08  B.1615E-04
5.0 8,1410E-88  B.1623E-04
9a. 8.1437E-08  8.16276-04
1£2.¢ B.1436E-88  0.1631E-04
188.8 0.14756-08  2.1533E-04
114.3 0, 1435E-88  B.1634E-04
128.8 0.1434E-08  B.1636E-94

L T N S Sy SR SR N N RSV SV R RSV RN Ry
N I I R - R

The enzyme — substrate complex concentration reaches its maximum value in a
very short time, and decays very slowly afterwards. To explain this special
behavior of the concentration [ES], write its kinetic equation in the form
d[ES]/dt = p~ rc s where "n and r_ denote the total production and

consumption rates of the enzyme — substrate, respectively. Since b and r.

are very large, any deviation p~ rc # @ yields a quick change in [ES].

Thus [ES] quickly reaches its value where = Tc - Therefore, it is a good

approximation to assume that p = rc at every instant of time, i.e., to find

[ESJSS for which the right hand side of (5.52) 1is zero :
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@ = ky([E]° - [ES])([S1° - [ES] - [P1) - (ky + kz)[ES] +
+ kg ([E1® - [ESN[P] . (5.54)

Replacing (5.52) by the algebraic equation (5.54) we can solve (5.54) for

[ES]ges
solution depends on the actual value [P], therefore [ES]_ . is not at all

the quasi steady state concentration of the enzyme - substrate. The

constant, and hence the usual eguation

d
SE[ES] + @ (5.59)

can be used only as a short hand notation for (5.54). The quasi steady state
assumption simply means that [ES] can be replaced by [ES],, without any
reasonable loss in accuracy.

fs seen from the output of Example 5.4A, the solution of the system
(5.52-53) is far from easy even for the stiff integrator M72 . In the
following we solve the same problem applying the quasi steady state

approximation.
Example 5.4B Quasi steady state model of the fumarase reaction

From equation (5.54)

ky[S1° + (kg = kq)IP]

5 . (5.56)
kp + k3 + ky[S1° + (kg — ky)[P]

[ES], = [E1°

Substituting this expression into (5.53), the kinetics is described by the

single differential equation

- kikg r kokg g,

1
d k k=[E1°[S]° k,k<[51°
ey = —-<akalEL LS 5 X SLEILS (5.57)
dt k2 + k3 + kl[S] 1+ k4 - kl (P3

ko + kg + ky[51°

usually written in the form
d (Va/K 519 - [P]) - (Vo/ Pl
9 (py = Varke) (L 2 [P1) - (Vp/Ko)[ (5.58)
dt 1+ ([S1° - [P1)/Kg + [P1/Kp

where Vg = kz[E1® , Vp = kplE]” , Kg = (ko + kz)/ky; and Kp = (ko + kz)/kg
are the Michaelis — Menten parameters first introduced in Example 2.5.1.

Selecting the same initial step size and threshold as in Example S.4A, we
solve the differential equation (5.58). In order to compare the results,
[ES],55 computed form (5.56) is alsp listed on the following output.
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ENIYME CATALYSIS - MICHAELIS - MENTEN RATE EXPRESSION

Vs= 5.6E-87  ¥s= 3.783715E-B6
Vp= .0000004 Kp= 1.039216E-05

TIME,s  ES,m0l/] P,m0l/1  ip ir

B.15B2E-88  2.0000E+0D
8.1553E-08  B.3136E-05
B.1622E-88 B, 5873E-85
8.15926-08  9.8204E-05
B.1563E-08  @.1014E-04
0.1577e-08  0.1170E-04
8.1314E-08  0.1292E-04
0.1494E-08  0.13B4E-04
8,1479E-08  0,1457E-94
4.8 8.1467E-08  @.1009E-04
0.9 0.1457E-08 9, 1546E-04
66.0 0.1451E-08  @,1573E-04
77.0 B.14446E-08  0.1593E-04
78.0 B.14426-88  0.1606E-04
84.0 B.1440E-08  @.1516E-04
98.2 8.1438E-08  B.1623E-04
9.8 8.1427e-08  .1627E-04
1e2.8 8.1436E-08  B.1631E-04
1e8.8 B.1435E-08  0.1633E-04
114,80 B.1435E-08  0.1635E-04
120.0 B.1434E-08  B.1636E-04

>
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As seen from the output, the number of steps required is significantly reduced.
Nevertheless, apart from a very short induction period, the solution
essentially agrees with that of the detailed model.

Exercise

0 Solve Example 5.4B using the program module M7@ . Try to solve Example 5.4A
with the same method. Comment on the differences in accuracy, required step

size, etc.

5.5 ESTIMATION OF PARAMETERS IN DIFFERENTIAL EQUATIONS

In this section we deal with estimating the parameters p in the dynamical
model of the form (5.37). As we noticed, methods of Chapter 3 directly apply
to this problem only if the solution of the differential equation is available
in analytical form, Otherwise one can follow the same algorithms, but solving
differential equations numerically whenever the computed responses are needed.
The partial derivations required by the Gauss - Newton type algorithms can be
obtained by solving the sensitivity equations. While this indirect method is
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very general (ref., 15), it is so time consuming that may be not feasible on a
personal computer.

The direct integral approach to parameter estimation we will discuss here
applies only with all variables vy;, Yo, ..., Yhy observed, but then it offers
a more efficient alternative. Let ty, tp, ..., t, denote the sample time
points with tl =@ . The unknown parameters p are to be estimated from

the set of observations { (tj,y;) » i =1, 2, +..y nm } . The basic idea of

the direct integral method (refs. 16-17) is transforming the vector
differential equation (5.37) into the equivalent integral equation

t.
1

y(t;,m = v2(p) + [ f(v(t,p),p) at, (5.59)
2

and approximating the integrand by cubic spline functions that interpolate the
points < [ti,f(;i,p)] s 1=1, 2, c00y N } . Evaluating the integrals at the

current estimate of the parameters p converts the problem into an algebraic
one which can be solved by the nonlinear least squares algorithm of Section
3.3.

r
Let S (t) denote the ny-vector of natural cubic splines interpolating the
p

values { [ti,f(;i,p)] s 1=1, 2, souy Nm } . Introducing the vector

yo(m
to p
vo(m + [ s () dt
)
F(p) = (5.60)
tnm f
vO(p) + [ s (t) dt
@ P

of nmxny elements we can write the objective function of the direct integral
method in the usual form (3.39).

The Jacobian matrix defined in (3.41) can be easily computed by the same
interpolation technique. The idea is to differentiate (3.62) with respect to

the parameters changing the order of differentiation and spline integration.
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Since all the involved operations are linear we obtain

t; t;

a 1 f 1 f.

_— j S (t) dt = js J(t) dt (5.61)
ig P o F

f.
where S 3(t) is the ny-vector of natural cubic splines interpolating the
p

values { (ti,oty,p/ap;) » i=1, 2, ..., nm ) . Thus the Jacobian matrix

J(p) of (5.60) 1is given by

ay®(p)/op, aYD(p)/apnp
t2 ¢ tz
ay®(pysap; + [ 8 1ty ot cev 2yO(p)/ap o+ {8 Pty gt
] p
) ]
tnm f nm £
ay%(p)/sap; + [ s l(t) dt cee BYO(PY /2P, + [ s MP(t) dt
2] ]
L 0 0 i

(5.62)
The algorithm of the direct integral method is as follows.

(i) Select a first guess of the parameters and compute the values f(;i,p)

and 2f(y;,p)/3p; ,

{ii) Determine the interpolating splines and compute the integrals involved in
(3.68) and (3.62)

(iii) Knowing the wvector F(p) and matrix J(p) compute the
Gauss — Newton — Marquardt step as discussed in Section 3.3

(iv) Return to (ii) until convergence.
Completing the procedure we obtain only the approximation (5.460) of the

solution of the differential equations (5.37). To see the real

goodness—of-fit we must solve the differential equations (5.37) numerically
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with the parameter estimates 3 and initial conditions yo(s) , but only once.

Since spline interpolation and integration is mucht faster than soclving the
sensitivity equations and the original differential equations, the direct
method is superior to the indirect one in terms of numerical efficiency,
whenever it is feasible.

In spite of its simplicity the direct integral method has relatively good
statistical properties and it may be even superior to the traditional indirect
approach in ill-conditioned estimation problems (ref. 18). Good performance,
however, can be expected only if the sampling is sufficiently dense and the
measurement errors are moderate, since otherwise spline interpolation may lead
to severely biased estimates.

The following program module is a modification of the nonlinear least
squares module MAS. Because of spline interpolation and differential

equation solution involved it is rather lengthy.

Program module M/5

TSR REM EEEEEOEOIREERRRE RO R R R R R R
7382 REM £ ESTIMATION OF PARAMETERS IN DIFFERENTIAL ¥
7504 REM ¢ EQUATIONS BY DIRECT INTEGRAL METHOD i
7585 REM SCATENSIGN OF THE HIMMELBLAU-JONES-BISCHOFF METHODS
7908 REM HEREERERILENIILERIIENNENE I LI Ry
7510 REM INPUT:

7512 REM NN NUMBER OF SAMPLE POINTS

7514 REM NY NURBER OF DEPENDENT VARIAELES

7316 REM NP NUMBER OF PARAMETERS

7518 REM  T{NM)  GRMPLE TIME PDINTS

7520 REM  V{NM,NY)} TAELE OF OESERVATIONS

7522 REM I IDENTIFIER OF WEIGHTING OPTIONS

7524 REYM 0 IDENTICAL HEIGHTS { W{I,Ty=1, W{I,J}=0 )
7326 REM L RELATIVE WEIGHTS ( W(I,1)=CONST/VIM,I)°2,M(1,1)=0)
7528 REM 2 USER-SPECIFIED MEIGHTS

330 REM GIYEN BY FURTHER INPUT AS

7332 REM  W(NY,NY] MATRIX OF WEIGHTING COEFFICIENTS ( ONLY FOR WI=2 |
7534 REM  PINP) INITIAL PARAMETER ESTINMATES

7336 REM EP THRESHOLD ON RELATIVE STEF LENGTH

7538 REM i MAYINUM NUKBER OF ITERATIONS

7540 REM CLTPUT:

7342 REM ER STATUS FLAG

7344 REM § GUCCESSFUL ESTIMATION

7546 REM 1 REGUIRED THRESHOLD NOT ATTAINED
7548 REM  PINPI  PARANETER EGTIMATES

7550 REM  .....  FURTHER RESULTS ARE PRINTED IN THE MODULE

7992 REM USER-SUPPLIED SUBRDUTINES:
7934 REM  FROM LINE 900:

7554 REM V{Leeo.,ny) BND P(3,0e.,np) =2 D(L,...,0y)
7558 REX { EVALUATE RHS OF DIFF, EQUATIONS |

7548 REM

7557 REM  FROM LINE 880:

7564 REX PLyuuegnp]l =3 ¥1{L,0ee,0y)

7366 REM ( EVALUATES INITIAL CONDITIDNS FOR VARIABLES )
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7568 REN AUXILIARY ARRAYS:

7578 REM A{CKP MAX NY1,INP MAX NY),C{NP,NP),U(NP,NP),B{NP) DECNP),B{NY NP
7572 REM F{NN) ,Z(NN),5(4,NM) ,SFNH,NY) ,SG{NM,NY NP}, YE(NY, NP} ,W(NY ,NY )

7574 REN E(NY,NY),RINY), YO(NY), YLNY),RL(NYS,R2(NY),R3(NY) RACNY), X(NY)
7576 REM MODULES CALLED: M14,415,M16,M10,M41,N63,M72

7378 REN ---=------ SPLINE KNOTS
7580 FOR N=1 TO NM :I(M)=T(M} :NEXT
7582 REM ------=eee BENERATE WEIGHTING COEFFICIENTS

7584 IF WICHD THEN 7588
7386 FOR 1=1 TO NY sFOR d=1 TO NY :W{¥,J)=-{I=J) :NEXT J :NEXT I
7588 EI=Q :E5=D :PM=.B1

7599 REM ---------- SUN OF SGUARES AT STARTING POINT
7392 80SUB 7816 :GOSUB 7772
7594 REM ---------- START OF ITERATION

759 LPRINT :LPRINT *STARTING POINT®;TAB(ZS);"SUN 50=";F :LPRINT
7598 FOR K=1 T0 NP :LPRINT TAB(25);"R{*3K;*)="3P{K} INEXT K
7609 FOR 17=1 T0 IN

7682 FOR K=1 TO NP :U(K,8)=P(K) :NEXT K :FR=F

I — COMNPUTE T*NT AND NT'Y

7686 FOR K=1 TO NP :B(K)=8 :FOR L=1 70 K :L{K,L)=8 sNEXT L sNEXT K
7688 GOSUB 7842

7610 FOR M=l TO N

7612 IF WI=i THEN BOSUB 7792

7414 SOSUB 7804

7616 FOR E=1 TO NP

7418 FOR L=1 T0 K

7628 A=d

7622 FOR 1=1 T0 NY:FOR J=1 TO MY

7628 A=AHR(1,J146(1,LIE6(J,K)IP(LISP(K)

7626 NEXT J NEXT 1 C(K,L)=C(K,L)+A

7628 NEXT L

7638 A=p

7632 FOR I=1 TO NY:FOR 3=1 TO NY

634 A=AHN(T, D)6, KIE(VIN, D)=Y (1)) IP(K)

7635 NEXT J :NEXT 1 :B{K)=B(K)+A

7639 NEXT X

7640 NEXT M

TR —— NORMALITE CROSS PRODUCT MATRIX

7644 TR=D :FOR I=1 TO NP :C{I,0)=C{1,1) :TR=TReC{I,1) :NEXT 1
7646 TR=TR/NP/10800

7648 FOR I=1 TO NP

7650 IF C{1,8)¢=TR THEN C{I,B)=1 ELSE C{1,8)=SAR(C{1,0))
7652 NEXT 1

765 FOR I=1 TO NP :FOR J=1 T0 I

7656 O(1,3)=C(1,0) :C(1,3)=C(1,3)/C(1,0)/C(3,0)

7658 NEXT J SNEXT 1

Y L — MARGUARDT'S CONPRONISE

7642 FOR 1=1 TO NP

764 FOR =1 TD -1 :A(1,3)=C{1,]) :NEAT J

7666 A(T,1)=C(1,1)4PH

7668 NEXT I

7670 REM ---------- HATRIX INVERSION

7672 ER=B :N=NP :GOSUB 160Q :IF ER=1 THEN 7729
7674 REN ---------- COMPUTE STEP

7676 FOR I=1 TD NP
7678 D=0 :FOR J=1 TO NP :D=D+A(I,J)/C(J,0}¥B{J) :NEXT J :D{1)=D/C{I,0}
7688 NEXT 1
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~

2 REM ---------- CHECK SIGN AND REDUCE STEP IF NEEDED
4 Si=@ :XI=1

485 FOR I=1 TO NP

688 IF XIED{I){=-.9% THEN XI=-.95/D{])

7590 SL=SL+D{I)¢D(1)

7692 NEXT 1 :SL=GOR{SL;jtXI

7694 REM ---------- NEW ESTINATES

7696 FOR 1=1 TO NP :F{1)=U(1,Q)0(1¢XTUD(1)) sNEXT I

7498 GOSUB 7814 :60SUB 7772

7708 REM ------v--- FRINT ITERATION STEP

7782 Fe="4,4%%**" LPRINT

7788 LPRINT "IT=";IT;TAR{1);"PM="1 :LPRINT USING F$;P¥;
7786 LPRINT TAB(23);"5UM 50=";F;TAB{38);"SL=";5L :LPRINT
7788 IF FX=FR THEN 7712

7718 FOR K=1 TO NP :LPRINT TAB{25)3"P{";K;")=";P(K) :NEXT K

b

L

8
48
8
8

~

7

4

7712 REN ---------- END OF PRINT
7714 IF SL{=EP THEN EI=8 :60T0 7728
7716 REN ---------- MARGUARDT" PARAMETER

7718 IF F{=FR THEN 7722
7728 PM=1B1PH :60TD 7660
7722 PH=FH/10 :IF PN(.DDO@@1 THEN PM=.B92001

7124 NEXT IT

7725 El=l

7728 IF FRCF THEN FOR I=1 TO NP :P{I)=U{I,B) :NEXT I
7730 REM ----------- SOLVE DIFFERENTIAL EQUATIONS
7732 BO5UB 7980

7734 REM ----mmomom- COMPUTE EXAXT SUM OF SGUARES

7736 BOSUB 7772

7738 HF=NMINY-NP :SE=50R{F/NF)

7740 REM ---------- STANDARD ERROR AND CORRELATION MATRIX OF PARAMETERS
7742 FOR T=1 TO NP :FOR =1 TO I

778 ALII=C{1L0)

7746 NEXT J:NEXT 1

7748 N=NP :BOSUE 1680 :IF ER=! THEN ES=1 :60TD 7744 ELSE ES=0
7750 FOR 1=1 TO NP

7752 B{1)=SOR(F/NFRALT,11/C(I,0)/C(1,08))

7754 C18,1)=50R(A(1, 1))

7756 NEXT 1

7758 FOR 1=1 T0 NP :FOR J=1 TO WP

7768 C(1,0)=INT(10088A(1,J}/C10,1)/C(8,3)+.5) /1800

7762 NEXT J:NEXT I

7784 REW ---eemnen PRINCIPAL COMPONENT ANALYSIS

7766 FOR 1=1 TO NP sFOR J=1 TO 1 sA(1,d)=UC1,d) :NEXT J sNEXT I
7768 N=NP :605UR 1880

7770 BOTD 7920

772 REN -mmmemeev SUM DF SOUARES

7774 F=0

7776 FOR N=1 TO KM

7778 IF Wi={ THEN BOSUB 7792

7788 FOR I=1 TO NY :Y{1)=SF(M,I} :NEXT I

7782 FOR 1=1 TO NY :FOR J={ TO NY

7784 F=F+W{1,J}H(V{N,1}-Y(I))*2

7786 NEXT J SNEXT I

7788 NEXT M

7790 RETLRN



292

7792 REM --mnmemmm RELATIVE WEIGHTING

7794 FOR 1=1 T0 WY

779 Y=ABS{V(M,1}) :IF V(1E-15 THEN Y=iE-15

7798 WL, 1)=1/¥/Y

7880 NEAT 1

7802 RETURN

7804 REM ~-------- JACOBI MATRIX AND RESPONSE

7885 FOR 1= T0 NY :FOR J=3 T0 NP

7808 6(1,1)=55(4,1,J)

7818 NEXT J: NEXT I

7812 FOR 1=1 TO NY sYI1)=SF(M,1) sNEXT I

7814 RETURY

7816 REN --nnmmme- DIRECT INTEGRAL RESPONSES

7818 GOSUB 80¢

7828 FOR H=1 70 N

7822 FOR J=1 T8 NY r¥(J)=V{M,d) :NEXT J

7824 GOSUB 900

7826 FOR J=0 TO NY :SF(M,J)=D(J) :NEXT J

7828 NEXT ¥

7830 FOR J8=1 70 NY

7832 FOR M=t TO NM :F(X)=SF(N,10) :NEXT H

7034 NeNM :EC=0 :GOSUE 6300

7836 FOR M=1 TO NM :SF(M,J0)=5(4,M)+Y1{]0} :NEXT M
7838 NEXT 10

7840 RETURN

7842 REN ---------- DIRECT INTEGRAL JACORI MATRIY - FIRST TIME POINT
7844 FOR J=1 TO NP

7046 DE=.BR19AB3(P(1))+1E-18 :PJ)=P{J}+DE :GOSUB 898
7048 FOR =0 TO NY :YG(I,J)=YI(1}/DE :NEXT I

7850 P{I)=P{1}-DE sDE(1)=DE

7852 NEXT )

7854 GOSUB 808

7856 FOR 1= TO NY :FOR J=1 T0 NP

7858 YB(I,d)=YB(I,)-YI{I}/DE(D)

7860 NEXT J: NEXT I

7852 REM =eemmeme - INNER TIME POINT

7864 FOR M=1 70 NN

7856 FOR 1=1 TO NY :Y(I)=V(N,1) :NEXT I

788 FOR J=! TO NP

7978 5E=,OBLEABS{P(J))+. 008881 :P(1)=P(J)+DE :GOSUB 980
7872 FOR 1=t TO NY :6(1,)=D{1)/DE sNEXT 1

7874 F(3)=P{J)-DE :DE{J)=DE

7876 NEXT )

7878 GOSUE 920

7888 FOR I=1 TO NY :FOR J=1 T0 NP

7882 BB(M,1,0356(1,0)-D{1)/DE()

7888 NEXT J: NEXT 1

7886 NEXT M

7889 FOR 10=1 T0 NY :FOR J8=1 TO NP

7899 FOR M=l TO NN :F(M)=S6¢M,18,38) sNEXT A

7892 N=NM :EC=0 :GOSUE 4308

7894 FOR M=1 TO NM :3G(M,10,70)=5(4,H)+Y6(10,0) sNEXT M
789 NEXT J0 :NEXT 10

7398 RETURN

7900 REN ---------- SOLUTION OF DIFFERENTIAL EQUATIONS
7902 NeNY :IN=180 sH=(T(2)-T(1)}/18

7904 GOSUR 620

7986 FOR J=1 T0 NY :Y(J)=Y1{d) SNEXT 3
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7508 FOR 18=2 10 M
7910 T=T{1G-1} :TE=T{IG) :50SUB 7200

7912 IF ER THEN LPRINT "ER=";ER,"ERROR IN DIFF. EQU. SOLUTION® :STOP

7918 FOR J=1 TO WY :SF(I6,0)=Y(d) NEXT J

7916 NEXT 16

7918 RETURN

LI R — PRINT RESULTS

7522 LRINT :LPRINT

7924 LPRINT TAR{15);"ESTINATION OF PARAMETERS IN DIFFERENTIAL®

7924 LPRINT TAB{17);"EQUATIONS BY DIRECT INTEGRAL WETHOD®

7928 LPRINT :LPRINT :LPRINT

7938 LPRINT * NUNBER OF DEPENDENT VARIABLES ....... *;NY

7932 LPRINT * NUMEER OF PARAMETERS..........e.eesns ";HP

7934 LPRINT * NUNBER OF TIME POINTS vvvvvvuereerss *3N

7936 LPRINT * GPTION OF HEIBRTING vvvvervuverrvens "jHE;

7938 IF WI=D THEN LPRINT *{IDENTICAL WEIGHTS)®

7948 IF WI=1 THEN LPRINT *(RELATIVE WEIGHTS}"

7942 1F WI=2 THEN LPRINT °(USER DEFINED WEIGHTS)®

7944 F5=L MM % SLPRINT sLPRINT

7944 LPRINT * PRINCIPAL COMPONENT ANALYSIS OF NORMED CROSS PRODUCT MATRIY®
7948 LPRINT :LPRINT "EIGENVALUE®;

7950 FOR 1=1 T0 NP :LPRINT TAB{1881+5);* P{";13*} " : NEXT 1 :LPRINT sLPRINT
7952 FOR 1=1 70 NP

7954 LBRINT U(8, 1},

7956 FOR J=1 TO NP :LPRINT USING “#4.3884  *;Ui{J,1); :NEXT J sLPRINT
7958 NEXT 1

7968 LPRINT :LPRINT

7962 V§=STRINGS(78,"-") :V18=GTRINGS(55,"-*)

7964 IF £1=1 THEN LPRINT * REDUIRED THRESHOLD NDT ATTAINED® :LPRINT :LPRINT
7966 IF ES=1 THEN LPRINT * SINGULAR CROSS PRODUCT MATRIY* sLPRINT sLPRINT
7968 FOR 1=1 T0 NY

7978 LPRINT :IF NY31 THEN LPRINT "REGPONSE FUNCTION';1

7972 LPRINT V18 sLPRINT "Mo*,” Y MEAS®," Y COMP*,” RESIDUAL® :LPRINT V1§
7974 FOR M=t TO M

7976 LPRINT M, :LPRINT USING F$;V(K,1),SF(K,1),V(8,1)-5F (4, 1)

7978 NEXT ¥ :LPRINT V1$

7930 NEXT I sLPRINT :LPRINT

7982 LPRINT * SUM OF SGUARES (VIA SOLUTION OF DDE), *;F

7984 LPRINT * DEGREES OF FREEDON.........vverrsrrs “3NF

7986 IF H1=0 THEN LPRINT " STANDARD ERROR +vevvvrverersnersrases *3SE

7988 IF WDX® THEN LPRINT * SIGHA FACTOR IN THE WEIBHTS ......... "jSE

7990 GOSUR 4190

7992 LPRINT * CRITICAL T-VALUE AT 95 % CONF. LEVEL ;T

7994 LPRINT :LPRINT V& sLPRINT "PARAMETER®,

7996 IF ES<D THEN LPRINT * ESTIMATEY,* ST, ERR®,"LOHER BOUND®,"UPPER BOUND®,
7998 LPRINT :LPRINT v

8008 FOR [=1 70 NP

5082 LPRINT * P{";I;*) ", sLPRINT USINE F$;P(1),

BOB4  PR=ABS(E(1)1P(1))

8086 IF ES=B THEN LPRINT USING F$;PB,P{1)-THPB,P{1)+TtPB,

3008 LPRINT

8018 NEXT 1

8012 LPRINT V$ :LPRINT

8014 IF ES=1 THEN 8038

8816 LPRINT * CORRELATION MATRIX OF PARANETERS:®

8018 LPRINT

8020 FOR I=1 T0 NP :LPRINT TAB{18K1);* P(*;1;") *; 1 NEXT 1 sLPRINT :LPRINT
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8222 FOR I={ TO WP

8624 LFRINT ™ P{":1:") "¢

§a%6 FOR J=1 TO I

2028 LPRINT TAB{1B$):C{I1,}:

8O3 NEXT J ;LPRINT

3032 NEXT 1

EB34 LERINT :LFRINT

EB3b ER=Q :IF El=1 THEN ER=1

3930 RETURN

Ll ARSI et A R EER R RCCCeeeeeeeRindasiisiotiats

The input data structure is very similar to the one in the module M45 . Two
user routines are to be supplied. The first one starts at line 900 and
evaluates the right hand sides of the differential equations. The second
routine, starting at line 8038, serves for computing the initial conditions at
the current estimates of the parameters. If the initial estimates are parameter
independent (we know them exactly), them this routine simply puts the known
values into the variables YI(1), ..., YI(NY) . The required partial
derivatives are generated using divided differences approximation. In order to

ease the use of the module a very simple example is considered here.
Example 5.5 Fitting a Michaelis — Menten type kinetic model

Consider the simple model

d

_Z = - _E’J.Z__ (5.63)
dt P+ Yy

with unknown initial condition

y(@) = pg . (5.64)

The data listed in Table 5.2 are the concentrations of a drug in plasma and

come from a test problem of the BMDP statistical program package (ref. 19).

Table 5.2
Observed drug concentration

No Time, min Concentration, g/l
ti vi

1 @ 24.44

2 23.6 19.44

3 49.1 15.56

4 74.5 10.56

5 80.0 ?.@7

) 108.0 6.85

7 125.5 4.07

8 144.3 1.67




To illustrate the robustness of the direct integral program module, we chose
the starting estimates p; =1, pp =1 and pz =1, although py = 24.44

obviously is a better starting guess.

108 ReM
102 REM EX. 5.5 DIRECT INTEGRAL PARAMETER ESTIMATION
104 REM MERGE Mid,M15,M1&,MI8,N4L,M83,M72,M75
[T f—— DATA
108 REM Y MM NP
WWTE 5, 8,3
12 %N (TINE AND CONCENTRATION)
U5 TATA 0, 26.44
15 DATA 3.4, 19.44
$18 IATA 49,1, 15,5k
122 DATA 74,5, 18.56
120 TATA 80.8, 9.7
174 DATA 1000, 6.3
126 DATA 125.5, 4.7
129 DATA 147.3, 1.7
JET 12, f— READ DATA AND SPECIFY DIMENSIONS
202 READ NY,NM,NP
204 MA=NY :IF MXNP THEN MY=NP
285 DN A(MX,MX),CINPNPY,U{NP NP}, BINP)  DE(NP), B(NY, NP ) NINY, NY)
288 DIM F(NM),1(NM],5(4,NN) SFINM,NY),SE(NNNY,NP), YB(NY,NP)
218 DIN E{NY,NY3,RINVT, YOINY), YL{NY)  REINYY R2INY) RICNY)  RE (NY)  R(NY)
2127 DN T(NKY,V{NH,NY)
4 FOR Mel TO N
6 KEAD TiM) :FOR J=1 T0 NY :READ V{M,J) :NEXT J
8 NEXT M
T S— SET ITERATION CONTROL PARAMETERS AND CALL MODULE
2 PU1)=1 P(2)=1 1P{3)=1
224 £P=.001 :IN=38 :WI=0
226 GOSUE 7500

ra

[N ]

228 STOP

883 REM ---------- INITIAL VALUE EVALUATIGN SUBROUTINE
882 YI{1}=P(3}

284 RETURN

980 REM ---------- RIGHT HAND SIDE EVALUATION SUBROUTINE

902 DLy =-P{LIOVLL)/(P{2}+Y(1))
984 RETURN

Before listing the output, recall that the objective function to be
minimized is based on the approximate response (5.468). The minimum of this
function is 1.018602, whereas solving the differential eguation (5.63) at
the final estimate of the parameters gives the value 1.060729. The direct
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integral estimares are acceptable only if these two values do not significantly

differ, see (ref. 18).

STARTING POINT SUN St= 6807019
PLL=
Flz)ed
PI3)=1



IT='1  PH=0.1E-01 5UM S0= 719.57688 SL= 27.34460
F{1}=.3919189
P{ 2 )= 2.958189
PL 3 )= 28.26825

IT= 2 PH=Q.1E-82 5UM 58= 9.463343 SL= .3924984
PO b= 2471071
F{ 2 )= 4.2587M
P{ 3 )= 24.49897

IT= 1 PH=0.1E-03 SUM 58= 1.806295 5L= .25@7575
P{ 1 )= 2452755
PL 2 1= 5.326014
Pl 3 )= 24,3834

IT= 4 FPX=0.1E-84 SUM 50= 1.818621 SL= .0472762
PU L )= (2474369
P{ 2 )= 5.573488
PL 3 )= 24.38938

IT= 3 PH=B.1E-B5 SUM 50= 1,818602 Sl= 2.199665E-03
PL 1 )= 2473825
P{ 2 )= 5.08522
P{ 3 )= 24.39008

IT= & PH=0.1E-€5 SUM S0= 1.818682 5L= 2.04832E-04

ESTIMATION OF PARAMETERS IN DIFFERENTIAL
EQUATIONS BY DIRECT INTEGRAL METHCD

NUMBER OF DEPENDENT VARIABLES .......
NUMBER OF PARAMETERS.........cocivure
KUMBER OF TIME POINTS ..ovcuinnnnnnns
OPTION OF WEIGHTING ....ovnviinnvnens

[ . VR

(IDENTICAL WEIGHTS)

PRINCIPAL COMPONENT ANALYSIS OF NORMED CROSS PRODUCT MATRIX
EIGENVALUE PELY RFL2) PLIY
6321,124  -.491798 (141432 .B5914s

356.7183 .811255 -.284531 511189
1.76409 316741 L94B176 025222
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No Y MERS Y COMF REGIDUAL

'
i
'
]

=

241900E+02 @.500450E-0L
8 1972116402 -,291092E+00
2 149628E+82 0.397219E+0@
B.105600E+22 2.103999E+@2 -.39947iE-8!
8.927800E+B1  B.972145E+81 -.531446E+00
2
f
2

—

2,244400E+02
194400 +02
. 155600E427

[

ES0RE+R] 0.273172E+01 0.5B2759E-81
407000E+D]  8.376393E+01 0,3B5074E+DE
JL67R00E401 B.197414E401 -, 3R4127E+E0

€0 - D mn o G4 k3

SUM OF SBUARES (VIA SOLUTION OF ODE). 1.040729
DEGREES OF FREEDOM.......ovcvvennnnns 3
STAKDARD ERROR ..uvvvve Crerrsereiaes 468393
CRITICAL T-VALUE AT 95 % CONF. LEVEL 2.57

PARANETER STIMATE 57. ERR LOWER BOUND  LPPER BOUND

{1 8,247582E+00 0.2754R8E-01 B.176346E+B0 9.31BA2PE+08
FL2) B.550322E+@1 0.1814B9E+2! @.B64411E+0D @.103Q40E+E2
(3) B.243991E+02 2.3987Z6E+D@ @.233BL9E+@2 B.253942E+R2

CORRELATION MATRIX OF PARAMETERS:

FEL)Y RCZY PT)

FOLY
PE2) .98 1
PL3) 867 .53 1

For comparison, the indirect least squares estimates and their standard errors
are: p; = 0.246 + 0.029, pp = 5.43 + 2.81 and pg = 24.401 * 0.39 (ref. 19) .

Exarcise

Q In the previous output the computed y; values correspond to the final
parameter estimates. Replace the observed y; values by the computed vy;
values in the DATA statements 114 - 128 of the main program. Rerun the
modified program and compare the parameter estimates obtained by the original
and the modified program. What is the reason of the difference between the

two sets of parameters?

5.6 IDENTIFICATION OF LINEAR SYSTEMS

Higher order linear differential equations of the form

ylm . aly(m_l) + ... tagy = blu(m_l) + ...+ bu (5.65)
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are important in many application areas, particularly in automatic control and
in pharmacokinetics. In equation (5.65) m 1is the model order, u(t) and
y(t) denote the input and output of the system, respectively. The constant
coefficients aj, ap, ..., a, and bl, by, ..., by usually have no physical
meaning. For example, in pharmacokinetics (5.65) may describe the
distribution kinetics of a drug, where vy(t) 1is the plasma concentration and
the input u(t) represents the absorption curve following a dose administered
via an extravascular route (refs. 208, 22).

We assume that the system is initially at rest, i.e., u{1)(t) = y(I)(t) = @
for £t <@ and for all i =@, 1, ..., m1 . Neither the response nor the input
functions are, however, necessarily continuous at t = @, and hence the initial
conditions (i.e., the right-sided limits of the variables) may be nonzero.

The computational tasks in linear system modeling are

(i) prediction of the output y(t) for a given model (5.65) and known
input u(t) ,

(ii) system identification, i.e., estimation of the order m and the
parameters aj, b; from a given input - output pair [u(t), y(t)] ,

(iii) identification of the input function u(t) for the known model (5.65)
and output y(t).

Transforming (5.65) to a system of m first — order differential equations
it can be solved numerically, and fitting models of different order we can also
estimate its parameters. There exists, however, a special family of methods

based on the use of the convolution integral

t
y(t) = [ u(mh(r-t) dr (5.66)
)

where h(t) is the weighting function of system (5.65), i.e., the response to
a unit Dirac impulse input. The correspondence between (5.65) and its
weighting function is one — to - one. For models of moderate complexity the
latter can be obtained by analytical methods, mainly by Laplace transformation
(see e.qg., ref. 23), and used to solve problem (i) by evaluating the integral
(5.66).

Consider now the problem of identifying a linear system in the form of its
weighting function h(t), using the relationship (5.66). This problem is
called deconvolution, Discrete Fourier transformation offers a standard

technique performing numerical deconvolution as mentioned in Section 4.3.3. It
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requires, however, a large sample of eguidistant data points, usually not
available in pharmacokinetics. Therefore, a variety of deconvolution methods
have been proposed in the pharmacokinetic literature (refs. 20, 21, 22, 24, 26,
28). The simplest and still most popular is the point - area method. Its basic

idea is approximating the known input by a piecewise — constant function u

such that u(t) = u; on the interval [t;_y, t;], and Gi is defined by the

integral mean

S S [ uoat . (5.67)

As shown in Fig. 5.4, the area under the curve of the input remains unchanged

in this approximation.

Fig. 5.4 Notations in the point - area method

Similar stepwise approximation of the weighting function h(t) with the
discrete values hy, ..., h,, and replacement of y(t;) by the observed values

y; transform (5.66) to the system
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o,

~ o )
Y; = 2, Uihsoiag (b5 — 250, 3= 1, 2, ..., N (5.68)
i=1

4

of linear algebraic equations. The coefficient matrix of (5.68B) is triangular,
and hence the equations can be easily solved for hy, hy, ...,h, (ref. 22).
While the point - area method is very convenient in terms of computational
efforts, it has a serious drawback. The matrix of the linear system (5.68)
is inherently ill - conditioned (ref. 25), and the result is very sensitive to
the errors in the observations.
More robust deconvolution methods can be derived by a parametric approach.

For example, let us seek h(t) in the form of a polyexponential

< m
h(t) = Li=lﬁiexp(‘1it) (5.68)

with unknown m and parameters Aj, N . Substituting this function into

i
(5.66) gives a (nonlinear) parameter estimation problem (ref. 26), although one
must approximate the observed input values wuy, ..., u, by some function in
order to evaluate the integral in (5.466). We propose here a different
parametric method that leads to a linear estimation problem.

The idea is estimating first the parameters in (5.65) by the direct
integral approach discussed in the previous section, and then evaluate the
weighting function analitically (ref. 27). For notational simplicity set m = 2

in (3.65). The equation is integrated twice to give

t; t; t
y(ti) = - alj. y(7) d7 — a2J. I y{7) d7 dt +
- o- o-
ty t; t
+ by [ um dar + by[ [ utm dr gt (5.69)
- o- -

where t = @~ denotes time "just before" t =B . As in the previous sections,

we replace the integrands by spline functions interpolating the observed values

;m, ;1, reny ;n and ugy Ugs s-.y Uy - It is advantageous to write the input
in the form

u(t) =DC x &8(t) + US x H(t) + u(t) (5.70)

where &(t) and H(T) are, respectively, unit Dirac impulse and unit step
functions and u (t) is a continuous function such that u (@) = @. ( In
pharmacokinetic applications DC denotes the dose given as an intravenous
bolus at t = @ .) Since
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ty ty
_[Dc><5(7>d7=oc and _[L;SxH(v)dv=USxti,
o- 2-

we need to fit a spline function only to the points of the continuous component
u-(t) of the input. Evaluating the integrals in (5.6%), the parameters a,,
as, by and by, can be estimated by multivariable linear regression. From
these estimates the weighting fumction can be obtained by simple algebraic
expressions (ref. 27).

In the special case the input consists of a single Dirac impulse, the first
sampling time can be different from zero. Then the resulting weighting function
must be appropriately adjusted (ref. 27). In any other case, however, the
method applies only, if the first time point is t = 0.

Here we present a program that performs all the above operations for first
and second order models. The input data are the model order, DC and US (use
zero values if the input has only continuous component) and the number of
sample points. In addition, for each sample point the sample time, the
(continuous part of the) input and the observed output must be given. The
program recognizes if the first time point is not at t = @. Interpolating
spline is used to compute the integrals and the linear regression procedure is
used to estimate the parameters. The remainder of the program finds the
analytical expression for the weighting function and evaluates its values at
the sample time points. Before presenting the program itself we discuss a test

example of system identification outlined in Fig. S5.5.

t
Distribution |y(t)
ult) kinetics =3
Intravenous 7 Concentration
bolus in the plasma

Fig. 5.5. Distribution kinetics identification
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Example 3.6 Identification of a single distribution kinetics

Suppose an intravenous bolus is given at t = @ and the drug concentration
in the plasma is observed beginning at a time point t > @ . In Table 5.3 we
list a data set of Cutler (ref. 20) generated by adding 1% relative errors
of random character to the values of the weighting function
h(t) = exp(-5t) + exp(-t) . Here we attempt to identify h{(t) from the error -
corrupted data, naturally not making use of the 'true" values given only for

comparison.

Table 5.3
Data to system identification

Time, t "True" "Observed"
weighting function response (1% error)
@.1 1.511 1.515
0.2 1.187 1.177
2.3 @.964 @.972
2.4 @.8856 @.789
@.6 @.599 B?.58%9
0.8 B.448 2.473
1.0 @.375 B.372
1,2 2.304 @.307
1.4 @.248 @.249
1.6 0.202 @.208
2.0 @.135 @.135

First we assume that the model order MD = 2 (in fact it is indeed two, but we
do not need to know the exact model order). The input has an impulse component,
and hence we set DC = 1. Since the input has no continuous component we give
zero values in place of the (continuous) input in the DATA lines 128 - 148 .
Note that no observation is available at t =0 .

{08 FEM ==mmmmmemsomeeamemmn e nene s ene e

102 REM EX, 5.5 DIRECT INTEGRAL IDENTIFICATION OF A LINEAR SYSTEN
104 REM MERGE M16,M18,H41 442, K83

184 BEN ------oev DATA

108 REN WD MODEL GRDER ( 1 OR 2 )

1O ATA 2

(A2 REN  DC FLAG FOR ADDITIONAL IMPULSE COMPONENT IN THE INPUT

1
REM U5  FLAG FOR ADDITIONAL STEP COMPCNENT IN THE INPST

REn KM NUMBER OF SAMFLE POINTS
aTA U



120 KEX (TIME,  INRUT,  RESPONSE)

125 M { ND OBSERVATION AT TIME=D )
128 DATA 8.1, 8 {53

130 T8 8.7, 3, 1A

132 DATA 0.3, e, 8,972

136 DATA 0.4, 3, 2.789

136 DATA 0.4, e 2,589

B BATA .8, 8, B.472

150 DATA 1.8, 8, 0.372

7 MTh LI, 2, 9.307

144 TATA L4, 7, B.289

146 08TH L., 8, 8.288

148 0ATh 2.8, 8, 2.135

20 REW --mmmmmmee READ DATA AND SPECIFY DIMENSIING

207 READ HD,DC,US, N8

204 NY=HD+HD

26 DIN T(NMY,VINKY ¥ TNM) FENM), SCA NH), X (MM XD WONM) P ONX)
208 DIN A(KI,NS), CONK NET UK KE ), DINY)

218 FOR I=1 TO NM SREAD Z{1),V{1),¥{I} :NEXT 1

212 4=NM :EC=D

218 REN ~---o---e- COMFUTE INTEGRALS

205 FOR I=1 70 4 :F{I)
218 505CE £300
20 FOR [=t TO K (1,1
222 FOR =1 7O N 51
224 BOSUE 6300

)

226 FOR I={ TO N oX{I MD+t)

228 IF MD=1 THEN 242
238 FOR I=1 70 N :F{1}
232 GOSUR 63008

X1 MO+
80D EFFECT OF IMPULSE ANI

244 IF DC=0 AND US=8 THEN

236 FOR I=1 TD ¥ X
248 IF MD=1 THEN Z5Z

=

s

Y1} NEXT |

S, 0) NEXT I
v INEXT

S(4,11 GNEXT I

i NEXT 1
Sta. 1y NEUT 1
HIMDHL) ONEYT ]
S0 NEXT I

rEA

ide

350 FOF =0 70 N oX(1, MD+2)=1{1 M042) 4008 {211}~
252 REM ---mmmeme CALL LINEAR REGRESSION MODULE

254 RP= 1Wi=B
236 IF MD=7 THEN 7@

505D 4200

238 BEM --mmemeee- FIRST ORDER MODEL

260 He="Atesp(alfatt)"
282 A=F{Z] AL=-F(1)
264 IF T41)=D THEN 22

STEP COMPONENT
{1, MD+10=X (1, MD+L1+D0+USHI2(T}-T01)) <HEXT I

(1)) +05/28(211)-2

256 REN —--mmmmee- CORRECTION FOR NON-IERC INITIAL TIME

268 A=RIEXF{-ALLI(1)) :B070
270 Di=P(133F{1)-48F (2} :IF ABS(DIMAE-128P(1)

377
o2

272 IF DI=Q THEM 292 ELSE IF DI<@ THEN @86

T4 REN - SECLND ORDER MODEL -

274 Hb="Atexpialfati)+RYexp{betatt)” 1E5=l

78 5[=5BRIDT)

282 A = {P{I) epLeR{433/50

284 IF I(1)=@ THEN 322
<88 REM —-=emmmm-- CJRRE

~T
Ui

MLE-PUL/DEL/T iBES-RY

1B

/noepsn
11/2-8p/2

=-{P{ZHIBESR{4)1/8D

2083 A=MEEP(-ALYI{LYY B=ERERPL-RERTL)Y

278 6070 322

THEN D1=0

THO DISTINCT REAL RODTS

10N FOR NON-IERO INITIAL TIME

i1 NEXT ]

{1}
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297 REM --------m- SECOND ORDER MODEL - THO IDENTICAL REAL ROOTS
294 He="(AtREL) texp{alfakt)” 1ES=2

295 BL=-P{11/2 3R =F(3} 1B = F{I)EALP{4)

298 IF 1{1)=@ THEN 322

00 REM ------om-- CORRECTION FOR NON-IERD INITIAL TIME

382 D=EXP(-ALRI{L}) sA={A-BIZ{L1))4D :B=BID

189 607D 322

85 REM ---------- SECOND CRDER MDDEL - COMPLEY ROOTS

308 He="( Afcosibetaltj+Bisinibetakt) Jfexplalfatt)” =3
I AL=-F{1)/2 :RE=SOR{-D1}/2 :A =F(3) :B (P’S)XAL+P(4);/BE
2 IF Z(1)=G THER 322
it REM ---mmmeee- CORRECTION FOR NON-7ERC INITIAL TIM
Jib S=SIN(-BEXI{1}) :C=COS{-BEXZ(1)) :D=EXP{-ALXZ{1}}
L Qé=iﬁi£+8(:}!n (B={BIC-AIS LD A=A

xnsz;ae."-")

(LERINT :LPRINT V¢ :iFRINT V$ :LFRINT

“MODEL GRDER:":MD

'"QXNT (LPRINT (LFRINT

LPRINT "WEIGHTING FUNCTION:" :LPRINT

LERINT "hit) = ":M8

LERINT A ="14

CTEOIF OWDGLOTHEN LFRINT * B =B

9 LPRINT "alfa =";aL

J47 IF MD=I AND ES<>2 THEN LPRINT "beta =";Rf

344 LPRINT tLRRINT "MEIGHTING FUNCTION VALUES:" :LPRINT

386 LPRINT V8 :LFRINT ® No"TAR{11}" t"TAB(28)"h{t)" :LPRINT V¢
348 IF I{1)43@ THEN T=D :60SUB 336 :LPRINT TAB(1@)T;TAB(23}H
T30 FOR I=1 TO NM :T=2(I) :GOSUB 356 :LPRINT I;TAR(1@)T;TAB{2G)H +NEXT |
352 LERINT ¥$ :LPRINT

334 GOTO 3&8

336 REW -----mmmm- COMPUTE WEIGHTING FUNCTION

158 1F MD=1 THEN H=AREXP{ALAT) :RETURN

360 IF ES=] THEN H=REEXP{ALSTI+BIEXP(BEST) :RETURN

362 1F ES=2 THEN H={A+BRT)REXF(ALIT) :RETURN

154 H=(AICCS{DENT ) +BASIN(EBENT))IEXP(ALYT) :RETURN

ibé REM =----o-ees END OF PROGRAM

3ek 5707

The first part of the program output comes from the module M42 of
multivariable linear regression. The parameters P(1), P(2), P(3) and P(4)
correspond to a;, aj, by and by, respectively, and have no physical meaning.
The weighting function obtained from the estimates is printed as an analytical

expression and its values are also listed.

HULTIVARIABLE LINEAR HEGRESSION
METHOD OF LEAST SOUARES

NUMBER OF INDEPENDENT VARIABLES ..... 4
MIMBER OF SAMPLE POIRTS .........vvvs 1

PRINCIFAL COMPONENT ANALYSIS OF THE CORRELATION MATRIX
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EIBENVALUE Xt 1) X2y 3 4

8.36311E481  8.528 8.498 =461 -.518
0.33700E+08  -.839 8.512 8.814 -.27
8.31837E-81  -.756 8.545 -,392 .080

B.4121BE-84  0.395 8.438 8.812 a.807

1 Y MEAS HEIGHT Y CONP RESIDUAL

1 8.15150E+81 9.1000BE+81  9.1515@E+df -.28253E-04
2 B.11770E+81  ©.18000E+0f @.11B41E+81 -.71427E-02
3 0.97200E+00  8.10800E+01  0.95536E+M0  0.16641E-21
L] D.78900E+00  0.1POOE+Q1  B.79240E+80  -.34D47E-82
3 8.58990E+00  0.1B000E+01  0,60182E+00  -.12B19E-01
5 B.4730BE+0D  0.108@0E+01  B.44816E+00  0.4B361E-02
7 0.37200E+00  0.10000E+01  0,37347E+B0  -.14727E-02
8 2.38700E+00 D.10000E+d! ©.384B3E+00  0.2173BE-B2
9 0.24900E+00  0.1000E+D!  0.24919E+00  -.19441E-83
10 0.20000E+00  0.10MOOE+D!  .20447E+BD  0.33343E-82
11 B,13503E+00  0.180Q0E+0!  0.13745E+00  -.24493E-02

SUN OF SBUARES ...ovvvervannnrseess 3.513071E-04
DEGREES OF FREEDOM .....
STANDARD ERROR ..........vus vevieers B.BT457BE-B3
DURBIN-WATSON D-STATISTICS ........ o 2.762654
CRITICAL T-VALUE AT 95 % CONF, LEVEL 2.%7

crerneenns 7

PARAMETER ESTIMATE ST.ERROR LOWER BOUND  UPPER BOUND

) 0.39207E+01  0.2837BE+88  0.524BlE+B1  @.45932E+R1
) B,47682E+B1  B.33937E+00  B.39165E+81  @.56199E+B1
) 0.15150E+01  0.B144BE-02  0.14957E+B1  0.15343E+01
) 0.493476+01  0.34565E+00  0.41155E+01  0.57539E+01

w VoD

{
{
{
{

Y

CORRELATION HATRIX OF PARAMETERS

PL 1) PC2Y  PL3I) P4

P{1) 1,008

PL2Y 0,993 1.008

P{3 ) 0.643 8.576 1.000

PLA) 08.997 0.999 8.596 1.908

MODEL ORDER: 2
WEIGHTING FUNCTION:

hit) = Atexplalfatt)+Blexp{betatt)
= 9578139
= 1.059122
alfa =-,9614869
beta =-4.959169

o
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HEIGHTING FUNC

ON VALUES:

-~

hit}

2 2.0169%8
1015029
1.18307%
L957R444
797706
591984
4628825
3736289
. 3048504
2503014
2060495
.142@374
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It is interesting to compare the results with the "true" weighting function
values listed in Table 5.3. The agreement is fairly good. (Notice that the data
came from "observing"” the response to a unit impulse, and hence what we did was
really a smoothing of the observed weighting function.)

At this point two remarks are appropriate. First, linear system
identification is a somewhat more general problem than parameter estimation,
since the order of the model (5.65) is also unknown. In (ref. 27) models of
different order were fitted to the data and the Akaike Information Criterion
(see Section 3.108.3) was used to select among rival model orders. In
particular, considering another data set of Cutler with larger errors, it was
shown that the "best" model, resulting in a statistically preferable estimate
of the weighting function, might be of lower order than the "true" model used
to generate the data. Second, we should admit that for higher order models the
direct integral approach is not the best general parameter estimation method.
In fact, with simple input functions common in pharmacokinetic applications
(e.g., impulse or step function), the columns of the observation matrix X
created from the integrals in (5.6%9) tend to be linearly dependent, resulting
in ill - conditioned estimation problems. As discussed in the next section,

this method is, however, excellent for input identification.

5.7 DETERMINING THE INPUT OF A LINEAR SYSTEM BY NUMERICAL DECONVOLUTION

The problem considered here is outlined in Fig. 5.6. The weighting function
h{t) of the system and its response to an unknown input are known. We want to

find the input u(t) satisfying equation (5.66).
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? ‘ t

(t
u(t) h (1) y(t)

Absorption Concentration
curve in the plasma

Fig. 5.6. Determining the input corresponding to a given output

Since the convolution integral is symmetrical in u(t) and h(t), this
problem is similar to the one of system identification considered in the
previous section. Nevertheless, it is usually easier to find the weighting
function h(t) since its form is more — or — less known (e.g., as a sum of
polyexponentials), and hence parametric methods apply, whereas the input
function u(t) 1is a priori arbitrary. Therefore, the non — parametric point -
area methoed is a popular way of performing numerical deconvolution. It is
really simple: evaluating the integral means h;, hg, ..., h; of the weighting

function over the subinterval [ti_l, ti] we can easily solve the set (6.68)

of linear equations for the values U;, Uy, ..., U,, Of the stepwise input
function. As emphasised in the previous section, this method is, however, very
sensitive to the errors in the observations. Although we can overcome this
difficulty by carefully smoothing the data (ref. 22), the result will much
depend on the particular method of smoothing.

Another non - parametric approach is deconvolution by discrete Fourier
transformation with built - in windowing. The samples obtained in
pharmacokinetic applications are, however, usually short with non - equidistant
sample time points. Therefore, a variety of parametric deconvolution methods
have been proposed (refs. 28, 21, 26, 28). In these methods an input of known
form depending on unknown parameters is assumed, and the model response
predicted by the convolution integral (5.66) is fitted to the data.
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The deconvolution method we propose here i1s also parametric and is based on
direct integral parameter estimation (ref. 27). We consider a 'hypothetical”
linear system ¥ with input W = h , where h is the known weighting
function of the real system S , and the output of s* is assumed to be

y* =y , the known response function. Then by (5.66) we have

t t t
v ) = f -y () dr = f Kot-mn¥ ey dr = j hit-7)r*(7) d7 . (5.71)
)] 7] 2

Since y* =y , comparison of eguations (5.66) and (5.71) shows that the
weighting function h¥ of S* equals the input function u which is being
sought. Now, n¥ can be estimated by identifying the weighting function of a
linear model of the form (5.65) as described in the previous section. The

same program can be used for input determination if the role of the variables

is properly understood.
Example 5.7 Determining the absorption curve for a given response function

We continue solving the test example of Cutler (ref. 20). In Example 5.6 we
identified the weighting function of the system. Now we consider the second
half of the data set generated by Cutler and shown in Table 5.4. The "true"
input u(t) = 1.2exp(-2t) and the "true" weighting function were used by Cutler
to generate the "true" response, then 1% random error was added to obtain the
"observed'" response (i.e., the observed drug concentration in the plasma). Our
goal is to find the input (i.e., the absorption curve) making use of the
weighting function identified in the previous example and the "observed"

respanse.

Table 5.4
Data to determine the absorption curve

Time, t "True" "True" "Observed"
input response response (1% error)

1] 1.2 @ o]

2.1 ?.9825 ?.180 @.181
0.2 0.8044 0.293 ?.271
8.3 0.6586 0.360 0.361
2.4 0.53792 0.394 ?.388
0.6 0.3514 B.400 ?.379
0.8 0.2423 0.368 0.372
1.0 @.1624 0.327 0.328
1.2 0.1089 0.288 0.286
1.4 0.0730 @.250 8.249
1.6 0.248% ?.211 0.210
2.0 0.0220 @.155 @.153
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When identifying the hypothetical system S* we need u*

. The weighting
function found in Example 5.6 is substituted for the input of the hypothetical
system, This input does not contain an impulse or a unit step component, and
hence we set DC =@ and US =@ .

equals the "Observed" response. The program is the one used in Example 5.6,

The response of the hypothetical system

only tha data lines are changed as follows:

i@ REM - -

(BZ REM EX, BT INPUT FURCTION DETERMINATION TD A GIVEN RESPONSE

s ERBE Mib W18, M1 M42 M63

H L CATE

163 REN 80 HYPOTHETICAL MODEL ORDER

110 DATR !
C  FLAB FOR IMPULEE COMPONENT IN HYPOTHETICAL INPUT
2
U5 FLAG FOR STEF COMPOMERT IN HYPOTHETICAL INFUTN
S NUMEER OF SAMPLE FOINTE

The assumed model order is MD = 1

the output.

POINTS HYPOTHETICAL INPUT  RESPONSE
8.2, 2.8 .boe
8.4, 1.t (81
2.2, 1. .29
8.3, 2570444, I
8.4, L 79770%, 8
2.8, 591584,

2.8, 4630875, 72
1.2, .32
1.2, . \286
1.4, 7503814, J248
L6, 205049, 210
2.8, 1400574, 153

FROM HERE THE SAME AS THE FROGRAM OF £X, 5.5

HODEL ORDER: |

WEISHTING FUNCTION

hit) =

©ors

. We list bere only the essential parts of
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WEIGHTING FUNCTION VALUES:

No t hit}

]

1.173618
9674452
1961681
L£352003
,5391924
365156
2472961
1674787
138222
0748134
5.202054E-02
2, 2

2. T83904E-2

w1 e D e
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The "weighting function" we found is that of the hypothetical system,
therefore it is the absorption curve we were looking for. It is useful to
compare it with the "true" input given in Table 5.4. In this special case the
input function found and the “true" input are of the same analytical form, so
we can compare the parameters of the two functions, as well. In realistic
applications, however, we are not interested in the “analytical form" of the
input function and rather the table of computed values is of primary interest.

The direct integral approach to numerical deconvolution preserves the
symmetry of system identification and input determination, similarly to the
point — area method. By (5.71) the input function u = h* is restricted to
the class of weighting functions generated by a single - input, single -
output, time invariant system (5.65). This class includes polyexponentials,
polynomials and trigonometric functions, so that the constraint om the form of
the input is relatively mild. This constraint may in fact have a physical
meaning in pharmacokinetics. For example, in the problem studied in Example 5.7
the hypotetical system g¥ may be a real lipear system whose response is the
bicavailability of the drug following an impulse administration via an

extravascular route.

Exercise

0 Repeat the ipput identification experiment with the model order MD = 2 .
Compare the lipear regression residual errors for the two cases. Select the
"best" model order on the basis of the Akaike Information Criterion (see
Section 3.10.3 and ref. 27) .
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5.8 APPLICATIONS AND FURHTER PROBLEMS

5.8.1 Principal component analysis of kinetic models

The researcher usually looks for a model that not only fits the data well,
but describes the mechanism of action of the chemical or biological process.
Such detailed models are, however, frequently overparameterized with respect to
the available data, leading to ill-conditioned praoblems of parameter
estimation. In Section 3.5.2 you have learned that principal component analysis
of the normalized cross—product matrix JT(B)WJ(B) is a standard method of
detecting ill-conditioned parameter estimation problems. In Section 5.3 we
introduced the matrix S of normalized sensitivity coefficients. It plays the
same role for dynamical models as J{(8) in algebraic parameter estimation
problems. Therefore, the principal component analysis of s's (or of sTws ,
if weighting is necessary) offers a convenient tool for extracting information
from sensitivity coefficients, and it reveals whether or not there is any hope
to identify the parameters of the model. Although we need initial parameter
estimates to perform the calculation, such are usually available in the
literature, at least in the form of some order of magnitude guesses. In this

section we reconsider the sensitivity coefficients obtained in Example 5.3.

Example 5.8.1 Practical identifiability of the parameters of the microbial

growth process

As shown by Holmberg (ref. 3) the four parameters Vn: Kgs Kg and Y are
theoretically identifiable if both the concentration of the microorganism (yq)
and that of the substrate (y2) are observed. Practical identifiability of the
parameters is, however, a much more difficult issue. In the following four

cases are investigated:

(1) Both concentrations, y; and y, are observed. The error variance is
small: o2 = Q.01 .

(i1) Both y; and y, are observed. The error variance is large: =1,
(iii) Only the substrate, y, is observed. The error variance is o = 0.01 .
(iv) Only y5 is observed. The error variance is a2 =1 .

To investigate cases (i) and (ii), the S matrix obtained in Example 5.3 is

used directly. Forming s's and applying eigenvalue-eigenvector decomposition
(by the module M18), we obtain the results shown in Table 5.5.



312

Table 5.5
Principal component analysis of the normalized
sensitivity matrix; both concentrations observed

Eigenvalue Eigenvector components corresponding to
Vi Kg Ky Y
67429 0.957 -0.134 -0.695 -0.239
12304 2.230 2.220 -0.137 B.963
2.583 0.042 -@.518 0.846 @.121
1.724 ?.172 @.845 @.507 0.213

In case (i) 10862 = 1 , and hence the prablem is not ill-conditioned, all
the parameters can be identified. Unfortunately we can hardly hope such a small
error variance in biotechnical applications. In the more realistic case (ii)
10002 = 100 s thus two eigenvalues are below the threshold. As it was discussed
in Section 3.5, the eigenvectors corresponding to the small eigenvalues show
that there is no hope to identify parameters Kg and Kg with reasonable
accuracy.

To investigate cases (iii) and (iv), we include only every second row of
matrix S obtained in Example 5.3 when forming s's . Applying eigenvalue-

eigenvector decomposition again, the results shown in Table 5.4 are obtained.

Table 3.6
Principal component analysis of the normalized
sensitivity matrix; only substrate y> 1is observed

Eigenvalue Eigenvector components corresponding to
Vm KS Kd Y

51592 2.912 -0.137 -2.881 —2.378

19.225 0.334 -0.225 —2.097 0.90%

@.48% @.212 @.964 0.228 B.162

0.000007 2.186 —2.041 0.931 0.257

As seen from the table, in case (iii) we can identify Vo and Y , but
neither K. nor Ky can be estimated. In the (unfortunately) more realistic
case (iv) one can hope a reasonable parameter estimate only for V. It is
advantageous to fix all the other parameters at some nominal value, so avoiding

the inherent difficulties of the parameter estimation process.

Practical identifiability is not the only problem that can be adressed by
principal component analysis of the sensitivity matrix. In (refs. 29-30)

several examples of model reduction based on this technique are discussed.
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Computing the sensitivities is time consuming. Fortunately the direct
integral approximation of the sensitivity matrix and its principal component
analysis can offer almost the same information whenever the direct integral

method of parameter estimation applies.

5.8.2 Identification of a linear compartmental model

Assuming that a small dose of drug does not move the organism far from
equilibrium state, linear differential equations are frequently used to
describe the kinetics of drug distribution among different organs, and its
elimination from the body. Giving some insight into the mechanism of action,
linear compartmental models are particularly important and more popular than
models of the form (5.65). In Example 2.2.1 a very simple compartmental model
was used to describe the concentration of a certain drug in blood. Jennrich and
Bright (ref. 31) estimated the parameters of the linear compartmental model
shown in Fig. 5.7 from the data of Table 5.7.

Table 5.7
Sulphate kinetics data

Time, t; Activity, y; Time, t; Activity, y;
2 200000 50 61554
2 151117 &0 59940
4 113601 70 57689
6 97652 80 56440
8 90935 o0 53915
10 84820 110 50938
15 76891 130 48717
s 73342 150 45996
25 70593 160 44948
30 &7049 170 43607
4 64313 180 42648

The experiment consists of applying an intravenous bolus of sulphate traced by
a radioactive isptope and measuring the activity of blood samples. The
compartmental model in Fig. 5.7. leads to the differential equations

dxy/dt = (kg + kolxg + kzxo

dx2/dt = k2x1 - (k3 + k4)x2 + k5x3 (5.72)

d><3/dt = k4x2 = kgxz .
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; \“/Input
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| ko ks

y=X1 X2 X3

Fig. 5.7. Compartmental model of sulphate distribution kinetics

In this model x; is the activity in Compartment 1 representing the blood
plasma volume, x, and x3 are unobserved activities, and ky, kp, ..., kg

are the rate constants to be determined. The initial values xlD = 2x10° y

Xpo = x3° =@ assumed to be known exactly. The only observed variable is

y = x4 . Jennrich and Bright (ref. 31) used the indirect approach to parameter
estimation and solved the equations (5.72) numerically in each iteration of a
Bauss—Newton type procedure exploiting the linearity of (5.72) only in the
sensitivity calculation. They used relative weighting. Although a similar
procedure is too time consuming on most persomal computers, this does not mean
that we are not able to solve the problem. In fact, linear differential
equations can be solved by analytical methods, and solutions of most important
linear compartmental models are listed in pharmacokinetics textbooks (see e.q.,
ref. 33). For the three compartment model of Fig. 5.7 the solution is of the

form

yit)y = Alexp(}lt) + Azexp(kzt) + Qsexp(kst) (5.73)

where the parameters A;, Ay, Az, 31, dp and Az are given as functions of

the rate constants kj, kg, ..., kg and initial conditions. In addition,
evaluating (5.73) at t =@ shows that
Ap + Ay + Az = X0, (5.74)

thereby elimipating one of the parameters of (5.73).
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Now we can proceed in two different ways, either by estimating the
parameters ki, kp, ..., kg directly, using the analytical solution and the
module M45, or estimating first the parameters in (5.73). In this latter
case we can use the very simple peeling method, also known as the method of
residuals. Although the peeling procedure is of approximate character and does
not take into account the available constraints such as (5.74), it still gives
useful initial estimates for the least squares method.

The peeling method is based on the observation that for compartmental models
A <@ in the solutions of the form (5.73). In addition, the exponents are
not close to each other, since otherwise we are unable to separate the terms of
{5.73) and must lump several compartments. Assume that the inegualities
A <2 < 23 <@ hold, then the peeling consists of the following steps:

(1) Divide the time interval into 3 subintervals, containing ny, n, and
nz points, respectively, where n; + n; + n3=n, the total number of

sample points.

(ii) Since »; and », are smaller than Az, we may assume that in the last
subinterval the contribution from the first two exponents is small.

Therefore,

logy; * lag Ag + Azt , i =ny +np+1, ..oy n, (5.75)

and and ¢ can be found by fitting a straight line to the last
3
nz point of the data.

(iii) In the second subinterval only the first term of (5.73) is assumed to
be small, but Azexp(izt;) is already known from (ii). Thus again
a straight line is fitted to the data

logly . - A exp(a_t )] % log A_ + »_t i=n +1, e, n_+n

Dg[yi 393i)] 092 2i,1 1 ] » Ny r
(5.76)

thereby estimating A, and 5.

(iv) Fipally, a straight line is fitted to the data

logly; — Asexp(dti) ~ Azexp(dzt;)] & log Az + Azt ,
i=1, vy Ny +0p, (5.77)

in order to estimate A; and ;.

The critical point in the peeling technique is the right choice of nx and

np . By (5.73) the logarithmized observations are close to a straight lipe in
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the last subinterval, and hence a semi — logarithmic plot of the data helps to
find the value of n3 . A similar plot of the corrected and logarithmized

values log[;i - Asexp(x:()ti)] may help to choose ny - For the data of Table
3.7 we select ng =6, ny, =8 and n3y =8 . Since relative error is assumed
in the original data, unit weights are used when fitting the logarithmic data
(see Section 3.4), and hence the modul M4@ applies. The resulting estimates

are
A; = 1.86X18° , Ay = 2.19x108% , Az = 6.93x10% ,
3 = -.313 A = -0.0562 , g = -D.0027 .

These values are further refined by the module M43 applying relative

weighting w; = 1/y;? and eliminating Ay by (5.74). The following estimates

and standard errors are obtained

2.206x10% (+4x18°),
-0.05323 (+3.014), Kz = -0.00267 (+0.00015) .

Al = 1.092X10° (+5X18°), A,

-.3226 (+0.019), o

M

The weighted residual sum of squares is G = 0.00284 , close to the value
Q = 0.20287 of Jennrich and Bright. Thus the fit is satisfying and the
peeling method is shown to give surprisingly good initial estimates. The only
remaining problem is to find the values of the original parameters

kis ks ..., kg. This can be done via the formulas listed in (ref. 32)
- .0
X1 az/bg
- _ a_
k2 = a; bz/xl kl
_ =} - o _ o
b2/xl - [a2 klb2/xl bz/xy 17k2

kg = bg/ (x;%z)

x
(e
1

x
W
i

— - o _ -
kg = [ag = kybo/xy bg/x{®1ks - kg
where
a1 = = ANt Mt A3) as = Ml NI+ Aodg

ag = “MAhg ,

M
[
Ii

Az(3x22 + 23,0 + a5) - xlc’xzz .

= A1(3x12 + 23,7 + ap) - xloxlz , Fo

N
i

(Fl - Fz)/()\l - \2) ; b3 (F2\1 - Fl}‘2)/“‘1 - 7\2) .

The final estimates
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ky = 0.0754 , ky = 0.1754 , kg = 0.1351 , k4 = 0.0156 and kg = @.0450

agree well with the ones of Jennrich and Bright (ref. 31).

Exercises

a Carry out numerical experiments with other choices of ny , np, and nz in
the peeling method. Try to construct a heuristic rule for subinterval

selection which can be used in a computer without human interaction.

O Compute approximate standard errors of the parameters kg, Koy eeey Kg o

using the error propagation law

: . . 2 2
2 =[§'_<;]202 . [?':;]2 2, [9’:;]2 2 ., [?k_;] 2,
2l A1 ¥y Ay any N
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extract 127

extrapolation 228

F-test 146, 152

false position method 77
Fast Fourier Transformation 250
feasible solution 15
Fibonacci search 96
FLEPOMIN program 119
Forsythe polynomials 205
Fourier transformation 24&
-, continuous 247

-, discrete 249, 298, 328
free variable 11

frequency domain 248

full pivoting 13
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Gauss—Newton—-Marquardt method

195, 164
BGaussian elimination 27, 36, 39
Gaussian function 223, 254, 258
Gear program 273
Gibbs free energy 127, 131
golden section 88, 98
gradient method 112

Hausholder formula 108, 111
Hessian matrix 112, 173
Hilbert matrix 37, 61

ill-conditioned problem
45, 178, 282, 3@b6

indicator variable 16
inverse matrix 12
inverse transform 247, 249
iterative improvement 46
iterative reweighting 196
isomerization of alpha-pinene

' 61, 185

Jacobi method 42
Jacobian matrix 1@5, 162, 274, 288

Lagrange formula 224

Lagrange multiplier 138, 188, 241
least absolute deviations 51
least squares 58, 14@, 258, 289
Levenberg-Marquardt modification 163
linear combination 3

linear dependence 61

linear interpolation 210

linear system 297

linearization, Eadie--Hofstee 176
—, Hanes 17&

-, Lineweaver—Burk 176

—, Scatchard 176

linearly dependent vectors 4
linearly independent vectors 4
lower triangular matrix 27

LU decomposition 28, 131

Marqules equation 127, 164
Marquardt parameter 163, 179
mass balance equation 125
material balance 128
matrix inverse 2, 12, 34
maximum likelihood principle
141, 194

method of residuals 315
Michaelis - Menten equation

123, 176, 268, 294
Milne method 272
minimax criterion 54, 210
multiresponse estimation 61

Newton formula 2251
Newton method 112, 241

Newton-Raphson method 82, 104, 130
normal distribution 144, 219
normal form 15

normalized eigenvectors 41

Nyquist critical frequency 250

odd multiplicity 75
ordinary differential equation 261

Oregonator model 277

orthogonal polynomials 205, 228
orthonormal eigenvectors 41
outlier 55, 218

overrelaxation 99

Oregonator model 277

orthogonal polynomials 205, 228
orthonormal eigenvectors 41
outlier 55, 210

overrelaxation 99

partial pivoting 13
peeling method 315
Peng-Robinson equation of state 72
permutation matrix 27, 29
phase equilibrium 129
pivot element &6, 9, 38
point-area method 299, 387
polynomial equation 126
positive definite matrix 35, 119
potentiometric titration 232, 254
practical identifiability 311
predictor-corrector method 269
principal component analysis

65, 183, 282, 311

quadratic form 35, 188

quasi Newton method 187

quasi steady state approximation
124, 283

radiographic investigation 200
raffinate 127

RAND algorithm 133

random number 144

reaction invariants 51, 133
reaction matrix 47

-, virtual 48

regression line 145
residual 45, 143

response function 59, 139

-y virtual 197

restricted equilibrium 133
ridge parameter 155, 179
ridge regression 179
Rosenbrock function 117, 121
Rosenbrock method 273

ROW4A 273

Runge—Kutta method 265

-, semi implicit 273



saddle point 59
Savitzky - Golay formula
229, 231, 253
scalar product 1
scaling of the parameters 155
secant method 80
sensitivity coefficient 278
-, semi-logarithmic 281
sensitivity eguation 279
sensitivity matrix 281
shadow price 26, 137
signal-to~noise ratio 221
similarity transformation 41
simplex 113
simplex method of Nelder and Mead
113, 187
simplex tableau 19
Simpson rule 234
singular value 61
singularity 37
slack variables 15, 20
solving a matrix equation 33
spectroscopy 56
spectrum, amplitude 248
-, phase 248
—~, power 248
spline, cubic 236, 287
-, interpolating 235, 302
-, natural 236, 241, 287
-, smoothing 240
stability 265
standard error 146
steepest descent method 112
step size 272
stiff differential equation 273
stoichiometric coefficient 47
stoichiometric number of freedom 48
stoichiometric subspace 47
stoichiometry 47
Student’s t distribution 57, 147
subspace 3
successive approximation 85, 99
symmetric matrix 35, 41

Taylor series 245

Thomas algorithm 39

trapezium rule 234, 249
tridiagonal matrix equation 39

unimodal function 87

unit vector 4

updating formula 108, 119
upper triangular matrix 27
user supplied subroutine 76

van Laar parameters 215
vapor pressure 73, 207, 214
vapor—liquid equilibrium 214
vector coordinates 2
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Weigstein method 99

weighting coefficients 145, 174
welghting function 298, 308
welghting matrix 187

welghting, Poisson 161

-, relative 148, 155, 149
window function 25@
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