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Preface

The purpose of this text is to enable biomedical researchers to use a num-

ber of advanced statistical methods that have proven valuable in medical

research. The past thirty years have seen an explosive growth in the develop-

ment of biostatistics. As with so many aspects of our world, this growth has

been strongly influenced by the development of inexpensive, powerful com-

puters and the sophisticated software that has beenwritten to run them.This

has allowed the development of computationally intensivemethods that can

effectively model complex biomedical data sets. It has also made it easy to

explore thesedata sets, todiscoverhowvariables are interrelated and to select

appropriate statistical models for analysis. Indeed, just as the microscope

revealed new worlds to the eighteenth century, modern statistical software

permits us to see interrelationships in large complex data sets that would

have been missed in previous eras. Also, modern statistical software has

made it vastly easier for investigators to perform their own statistical anal-

yses. Although very sophisticated mathematics underlies modern statistics,

it is not necessary to understand this mathematics to properly analyze your

data with modern statistical software. What is necessary is to understand

the assumptions required by each method, how to determine whether these

assumptions are adequately met for your data, how to select the best model,

and how to interpret the results of your analyses. The goal of this text is

to allow investigators to effectively use some of the most valuable multi-

variate methods without requiring an understanding of more than high

school algebra. Much mathematical detail is avoided by focusing on the use

of a specific statistical software package.

This text grewoutofmy second semester course inbiostatistics that I teach

inourMastersofPublicHealthprogramat theVanderbiltUniversityMedical

School. All of the students take introductory courses in biostatistics and

epidemiology prior to mine. Although this text is self-contained, I strongly

recommend that readers acquire good introductory texts in biostatistics and

epidemiology as companions to this one. Many excellent texts are available

on these topics. At Vanderbilt we are currently using Pagano and Gauvreau

(2000) for biostatistics andHennekens and Buring (1987) for epidemiology.

The statistical software used in this text is Stata (2001). It was chosen for

xv



xvi Preface

the breadth and depth of its statistical methods, for its ease of use, and for its

excellentdocumentation.Thereare severalother excellentpackagesavailable

on the market. However, the aim of this text is to teach biostatistics through

a specific software package, and length restrictions make it impractical to

usemore than one package. If you have not yet invested a lot of time learning

a different package, Stata is an excellent choice for you to consider. If you are

already attached to a different package, you may still find it easier to learn

Stata than tomaster or teach thematerial coveredhere fromother textbooks.

The topics covered in this text are linear regression, logistic regression,

Poisson regression, survival analysis, and analysis of variance. Each topic

is covered in two chapters: one introduces the topic with simple univariate

examples and the other covers more complex multivariate models. The

text makes extensive use of a number of real data sets. They all may be

downloaded from my web site at www.mc.vanderbilt.edu/prevmed/wddtext.

This site also contains complete log files of all analyses discussed in this text.

I would like to thank Gordon R. Bernard, Jeffrey Brent, Norman E.

Breslow, Graeme Eisenhofer, Cary P. Gross, Daniel Levy, Steven M.

Greenberg, Fritz F. Parl, Paul Sorlie, Wayne A. Ray, and Alastair J. J. Wood

for allowing me to use their data to illustrate the methods described in this

text. I am grateful to William Gould and the employees of Stata Corpora-

tion for publishing their elegant and powerful statistical software and for

providing excellent documentation. I would also like to thank the students

in our Master of Public Health program who have taken my course. Their

energy, intelligence and enthusiasm have greatly enhancedmy enjoyment in

preparing this material. Their criticisms and suggestions have profoundly

influenced this work. I am grateful toDavid L. Page,my friend and colleague

of 24 years, with whom I have learnt much about the art of teaching epi-

demiology and biostatistics to clinicians. My appreciation goes to Sarah K.

Meredith for introducingme to Cambridge University Press, to Peter Silver,

Frances Nex, Lucille Murby, Jane Williams, Angela Cottingham and their

colleagues at Cambridge University Press for producing this beautiful book,

to William Schaffner, my chairman, who encouraged and facilitated my

spending the time needed to complete this work, to W. Dale Plummer

for technical support, to Patrick G. Arbogast for proofreading the entire

manuscript, and to my mother and sisters for their support during six crit-

ical months of this project. Finally, I am especially grateful to my wife and

family for their love and support, and for their cheerful tolerance of the

countless hours that I spent on this project.

W.D.D.

Lac des Seize Iles, Quebec, Canada
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necessarily reflect those of the authors acknowledged in this preface, their

employers or funding institutions. This includes the National Heart, Lung,

and Blood Institute, National Institutes of Health, Department of Health

and Human Services, USA.





1

Introduction

This text is primarily concerned with the interrelationships between multi-

ple variables that are collected on study subjects. For example, we may be

interested in how age, blood pressure, serum cholesterol, body mass index

and gender affect a patient’s risk of coronary heart disease. Themethods that

we will discuss involve descriptive and inferential statistics. In descriptive

statistics, our goal is to understand and summarize the data that we have

actually collected. This can be a nontrivial task in a large databasewithmany

variables. In inferential statistics, we seek to draw conclusions about patients

in the population at large from the information collected on the specific pa-

tients in our database. This requires first choosing an appropriatemodel that

can explain the variation in our collected data and then using this model

to estimate the accuracy of our results. The purpose of this chapter is to

review some elementary statistical concepts that we will need in subsequent

chapters.

1.1. Algebraic Notation

This text assumes that the reader is familiar with high school algebra. In this

section we review notation that may be unfamiliar to some readers.
� We use parentheses to indicate the order of multiplication and addition;

brackets are used to indicate the arguments of functions. Thus, a (b + c)
equals the product of a and b + c, while a [b + c] equals the value of the

function a evaluated at b + c.
� The function log [x] denotes the natural logarithm of x. You may have

seen this function referred to as either ln [x] or loge [x] elsewhere.
� The constant e = 2.718 . . . is the base of the natural logarithm.
� The function exp [x] = ex is the constant e raised to the power x.
� The function

sign [x] =
{

1: if x ≥ 0

−1: if x < 0
.

1



2 1. Introduction

� The absolute value of x is written |x| and equals

sign [x] x =
{

x: if x ≥ 0

−x: if x < 0
.

� Theexpression
∫ b
a f [x] dx denotes the areaunder the curve f [x]between

a and b. That is, it is the region bounded by the function f [x] and the x-

axis and by vertical lines drawn between f [x] and the x-axis at x = a

and x = b. With the exception of the occasional use of this notation, no

calculus is used in this text.

Suppose that we have measured the weights of three patients. Let x1 = 70,

x2 = 60 and x3 = 80 denote theweight of the first, second and third patient,

respectively.
� We use the Greek letter � to denote summation. For example,

3∑
i=1

xi = x1 + x2 + x3 = 70 + 60 + 80 = 210.

Whenthe summation index isunambiguouswewilldrop the subscript and

superscript on the summation sign. Thus,
∑

xi also equals x1 + x2 + x3.
� We use the Greek letter � to denote multiplication. For example,

3∏
i=1

xi =
∏

xi = x1x2x3 = 70 × 60 × 80 = 336 000.

� We use braces to denote sets of values; {i : xi > 65} is the set of integers

for which the inequality to the right of the colon is true. Since xi > 65 for

the first and third patient, {i : xi > 65} = {1, 3} = the integers one and

three. The summation∑
{i : xi>65}

xi = x1 + x3 = 70 + 80 = 150.

The product∏
{i : xi>65}

xi = 70 × 80 = 5600.

1.2. Descriptive Statistics

1.2.1. Dot Plot

Suppose that we have a sample of n observations of some variable. A dot
plot is a graph in which each observation is represented with a dot on the
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Figure 1.1 Dot plot of baseline APACHE score subdivided by treatment (Bernard et al.,
1997).

y-axis. Dot plots are often subdivided by some grouping variable in order to

permit a comparison of the observations between the two groups. For exam-

ple, Bernard et al. (1997) performed a randomized clinical trial to assess the

effect of intravenous ibuprofen on mortality in patients with sepsis. People

with sepsis have severe systemic bacterial infections that may be due to a

wide number of causes. Sepsis is a life threatening condition. However, the

mortal risk varies considerably from patient to patient. One measure of a

patient’s mortal risk is the Acute Physiology and Chronic Health Evaluation

(APACHE) score (Bernard et al., 1997). This score is a composite measure

of the patient’s degree of morbidity that was collected just prior to recruit-

ment into the study. Since this score is highly correlated with survival, it

was important that the treatment and control groups be comparable with

respect to baseline APACHE score. Figure 1.1 shows a dot plot of the base-

line APACHE scores for study subjects subdivided by treatment group. This

plot indicates that the treatment and placebo groups are comparable with

respect to baseline APACHE score.

1.2.2. Sample Mean

The sample mean x̄ for a variable is its average value for all patients in

the sample. Let xi denote the value of a variable for the i th study subject
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Baseline APACHE Score in Treated Patients

0 5 10 15 20 25 30 35 40

x = 15.5

Figure 1.2 Dot plot for treated patients in the Ibuprofen in Sepsis study. The vertical line
marks the sample mean, while the length of the horizontal lines indicates the
residuals for patients with APACHE scores of 10 and 30.

(i = 1, 2, . . . , n). Then the sample mean is

x̄ =
n∑

i=1

xi/n = (x1 + x2 + · · · + xn) /n, (1.1)

where n is the number of patients in the sample. In Figure 1.2 the vertical

linemarks themean baseline APACHE score for treated patients. Thismean

equals 15.5. The mean is a measure of central tendency of the xi s in the

sample.

1.2.3. Residual

The residual for the i th study subject is the difference xi − x̄ . In Figure 1.2

the length of the horizontal lines show the residuals for patients with

APACHE scores of 10 and 30. These residuals equal 10 − 15.5 = −5.5 and

30 − 15.5 = 14.5, respectively.

1.2.4. Sample Variance

Weneed to be able tomeasure the variability of values in a sample. If there is

little variability, then all of the values will be near themean and the residuals

will be small. If there is great variability, then many of the residuals will be

large. An obviousmeasure of sample variability is the average absolute value

of the residuals,
∑ |xi − x̄|/n. This statistic is not commonly used because

it is difficult to work with mathematically. A more mathematician-friendly

measure of variability is the sample variance, which is

s 2 =
∑

(xi − x̄)2/(n − 1). (1.2)
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You can think of s 2 as being the average squared residual. (We divide the

sum of the squared residuals by n− 1 rather than n for arcanemathematical

reasons that are not worth explaining at this point.) Note that the greater

the variability of the sample, the greater the average squared residual and

hence, the greater the sample variance.

1.2.5. Sample Standard Deviation

The sample standard deviation s is the square root of the sample variance.

Note that s is measured in the same units as xi . For the treated patients in

Figure 1.1 the variance and standard deviation of the APACHE score are

52.7 and 7.26, respectively.

1.2.6. Percentile and Median

Percentiles are most easily defined by an example; the 75th percentile is

that value that is greater or equal to 75% of the observations in the sample.

The median is the 50th percentile, which is another measure of central

tendency.

1.2.7. Box Plot

Dot plots provide all of the information in a sample on a given variable. They

are ineffective, however, if the sample is too large andmay requiremore space

than is desirable. The mean and standard deviation give a terse description

of the central tendency and variability of the sample, but omit details of the

data structure thatmay be important. A useful way of summarizing the data

that provides a sense of the data structure is the box plot (also called the

box-and-whiskers plot). Figure 1.3 shows such plots for the APACHE data

in each treatment group. In each plot, the sides of the box mark the 25th

and 75th percentiles, which are also called the quartiles. The vertical line

in the middle of the box marks the median. The width of the box is called

Baseline APACHE Score
0 5 10 15 20 25 30 35 40

Placebo

Ibuprofen

Figure 1.3 Box plots of APACHE scores of patients receiving placebo and ibuprofen in the
Ibuprofen in Sepsis study.
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the interquartile range. The middle 50% of the observations lie within this

range. The vertical bars at either end of the plot mark the most extreme

observations that are not more than 1.5 times the interquartile range from

their adjacent quartiles. Any values beyond these bars are plotted separately

as in the dot plot. They are called outliers and merit special consideration

because they may have undue influence on some of our analyses. Figure 1.3

captures much of the information in Figure 1.1 in less space.

For both treated and control patients the largest APACHE scores are

farther from the median than are the smallest scores. For treated subjects

the upper quartile is farther from the median than is the lower quartile.

Data sets in which the observations are more stretched out on one side of

the median than the other are called skewed. They are skewed to the right
if values above the median are more dispersed than are values below. They

are skewed to the left when the converse is true. Box plots are particularly

valuable whenwewish to compare the distributions of a variable in different

groups of patients, as in Figure 1.3. Although the median APACHE values

are very similar in treated and control patients, the treated patients have a

slightlymore skewed distribution. (It should be noted that some authors use

slightly different definitions for the outer bars of a box plot. The definition

given here is that of Cleveland (1993).)

1.2.8. Histogram

This is a graphic method of displaying the distribution of a variable. The

range of observations is divided into equal intervals; a bar is drawn above

each interval that indicates the proportion of the data in the interval.

Figure 1.4 shows a histogram of APACHE scores in control patients. This

graph also shows that the data is skewed to the right.

1.2.9. Scatter Plot

It isoftenuseful tounderstandtherelationshipbetweentwovariables thatare

measuredonagroupofpatients.A scatter plotdisplays thesevaluesaspoints
in a two-dimensional graph: the x-axis shows the values of one variable and

they-axis shows theother. For example,Brent et al. (1999)measuredbaseline

plasma glycolate and arterial pH on 18 patients admitted for ethylene glycol

poisoning. A scatter plot of plasma glycolate versus arterial pH for these

patients is plotted in Figure 1.5. Each circle on this graph shows the plasma

glycolate and arterial pH for a study subject. The black dot represents two
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Figure 1.4 Histogram of APACHE scores among control patients in the Ibuprofen in Sepsis
trial.
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Figure 1.5 Scatter plot of baseline plasma glycolate vs. arterial pH in 18 patients with
ethylene glycol poisoning (Brent et al., 1999).

patients with identical values of these variables. Note that patients with high

glycolate levels tended to have low pHs, and that glycolate levels tended to

decline with increasing pH.

1.3. The Stata Statistical Software Package

The worked examples in this text are performed using Stata (2001). This

software comes with excellent documentation. At aminimum, I suggest you
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read their Getting Started manual. This text is not intended to replicate the

Stata documentation, although it does explain the use of those commands

needed in this text. The Appendix provides a list of these commands and

the section number where the command is first explained.

1.3.1. Downloading Data from My Web Site

An important feature of this text is the use of real data sets to illustratemeth-

ods in biostatistics. These data sets are located at http://www.mc.vanderbilt.

edu/prevmed/wddtext/. In the examples, I assume that you have down-

loaded the data into a folder on your C drive called WDDtext. I suggest

that you create such a folder now. (Of course the location and name of

the folder is up to you but if you use a different name you will have to

modify the file address in my examples.) Next, use your web browser to

go to http://www.mc.vanderbilt.edu/prevmed/wddtext/ and click on the blue

underlined text that says Data Sets. A page of data sets will appear. Click on

1.3.2.Sepsis. A dialog box will ask where you wish to download the sepsis

data set. Enter C:/WDDtext and click the download button. A Stata data

set called 1.3.2.Sepsis.dta will be copied to your WDDtext folder. Purchase

a license for Intercooled Stata Release 7 for your computer and install it fol-

lowing the directions in the Getting Started manual. You are now ready to

start analyzing data with Stata.

When you launch the Stata program you will see a screen with three win-

dows. These are the Stata Commandwindowwhere youwill type your com-

mands, the Stata Results window where output is written, and the Review

window where previous commands are stored. A Stata command is exe-

cuted when you press the Enter key at the end of a line in the command

window. Each command is echoed back in the Results window followed by

the resulting output or error message. Graphic output appears in a separate

Stata Graph window. In the examples given in this text, I have adopted the

following conventions: all Stata commands and output are written in a type-

writer font (all letters have the same width). Commands are written in bold

face while output is written in regular type. On command lines, variable

names and labels and other text chosen by the user are italicized; command

names and options that must be entered as is are not. Highlighted output is

discussed in the comments following each example. Numbers in braces on

the right margin refer to comments that are given at the end of the example.

Comments in the middle of an example are in braces and are written in a

proportionally spaced font.
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1.3.2. Creating Dot Plots with Stata

The following example shows the contents of the Results window after

entering a series of commands in the Command window. Before replicating

this example on your computer, you must first download 1.3.2.Sepsis.dta as

described in the preceding section.

. * Examine the Stata data set 1.3.2.Sepsis.dta. Create a dot plot of {1}

. * baseline APACHE scores in treated and untreated patients

. *

. use C:\WDDtext\1.3.2.Sepsis.dta {2}

. describe {3}

Contains data from C:\WDDtext\1.3.2.Sepsis.dta
obs: 455

vars: 2 16 Apr 2002 15:36

size: 5,460 (99.4% of memory free)

--------------------------------------------------------------------

1. treat float %9.0g treatment Treatment

2. apache float %9.0g Baseline APACHE Score

--------------------------------------------------------------------

Sorted by:

. list treat apache in 1/3 {4}
treat apache

1. Placebo 27

2. Ibuprofen 14

3. Placebo 33 {5}
. edit {6}
. dotplot apache, by(treat) center {7}

{Graph omitted. See Figure 1.8}

Comments
1 Command lines that start with an asterisk (∗) are treated as comments

and are ignored by Stata.

2 Theuse command specifies the nameof a Stata data set that is to be used in

subsequent Stata commands. This data set is loaded into memory where

it may be analyzed or modified. In Section 4.21 we will illustrate how to

create a new data set using Stata.
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3 Thedescribecommandprovides somebasic informationabout thecurrent

data set. The 1.3.2.Sepsis data set contains 454 observations. There are two

variables called treat and apache. The labels assigned to these variables are

Treatment and Baseline APACHE Score.

4 The list command gives the values of the specified variables; in 1/3 restricts

this listing to the first through third observations in the file.

5 At this point the Review, Variables, Results, and Command windows

should look like those in Figure 1.6. (The size of these windows has been

changed to fit in this figure.) Note that if you click on any command in

Figure 1.6 The Stata Review, Variables, Results, and Command windows are shown im-
mediately after the list command is given in Example 1.3.2. The shapes and
sizes of these windows have been altered to fit in this figure.
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Figure 1.7 The Stata Editor shows the individual values of the data set, with one row per
patient and one column per variable.

the Review window it will appear in the Command window where you

can edit and re-execute it. This is particularly useful for fixing command

errors. When entering variables in a command you may either type them

directly or click on the desired variable from the Variables window. The

latter method avoids spelling mistakes.

6 Typing editopens the StataEditorwindow(there is a buttonon the toolbar

that does this as well). This command permits you to review or edit the

current data set. Figure 1.7 shows this window, which presents the data

in a spreadsheet format with one row per patient and one column per

variable.

7 Thisdotplot commandgenerates thegraphshowninFigure1.8.Thisfigure

appears in its own Graph window. A separate dotplot of the APACHE

variable is displayed for each value of the treat variable; center draws the

dots centered over each treatment value. Stata graphs can either be saved

as separate files or cut and pasted into a graphics editor for additional

modification (see the File and Edit menus, respectively).

1.3.3. Stata Command Syntax

Stata requires that your commands comply with its grammatical rules. For

the most part, Stata will provide helpful error messages when you type

something wrong (see Section 1.3.4). There are, however, a few instances

where you may be confused by its response to your input.
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Figure 1.8 This figure shows the Stata Graph window after the dotplot command in
Example 1.3.2. The dot plot in this window is similar to Figure 1.1. We
will explain how to improve the appearance of such graphs in subsequent
examples.

Punctuation The first thing to check if Stata gives a confusing error mes-

sage is your punctuation. Stata commands are modified by qualifiers and

options. Qualifiers precede options; there must be a comma between the

last qualifier and the first option. For example, in the command

dotplot apache, by(treat) center

the variable apache is a qualifierwhile by(treat) and center are options.With-

out the comma, Stata will not recognize by(treat) or center as valid options

to the dotplot command. In general, qualifiers apply to most commands

while options are more specific to the individual command. A qualifier that

precedes the command is called a commandprefix.Most commandprefixes

must be separated from the subsequent command by a colon. See the Stata

reference manuals or the Appendix for further details.

Capitalization Stata variables and commands are case sensitive. That is,

Stata considers age and Age to be two distinct variables. In general, I recom-

mend that you always use lower case variables. Sometimes Stata will create

variables for you that contain upper case letters. You must use the correct

capitalization when referring to these variables.
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Abbreviations Some commands and options may be abbreviated. The

minimum acceptable abbreviation is underlined in the Stata reference

manuals.

1.3.4. Obtaining Interactive Help from Stata

Stata has an extensive interactive help facility that is fully described in the

Getting Started and User’s Guide manuals (Stata, 2001). I have found the

following features to be particularly useful.
� If you type help command in the Stata Command window, Stata will pro-

vide instructions on syntax for the specified command. For example, help

dotplot will generate instructions on how to create a dotplot with Stata.
� Typing search wordwill provide a table of contents from the Stata database

that relates to the word you have specified. You may then click on any

command in this table to receive instructions on its use. For example,

search plotwill give a table of contents of all commands that provide plots,

one of which is the dotplot command.
� When you make an error specifying a Stata command, Stata will provide

a terse error message followed by the code r(#), where # is some error

number. If you then type search r(#) you will get a more detailed descrip-

tion of your error. For example, the command dotplt apache generates the

error message unrecognized command: dotplt followed by the error code

r(199). Typing search r(199) generates a message suggesting that the most

likely reason why Stata did not recognize this command was because of a

typographical error (i.e. dotplt was misspelt).

1.3.5. Stata Log Files

You can keep a permanent record of your commands and Stata’s responses in

a log file. This is a simple text file that you can edit with any word processor

or text editor. You can cut and paste commands from a log file back into

the Command window to replicate old analyses. In the next example we

illustrate the creation of a log file. You will find log files from each example

in this text at www.mc.vanderbilt.edu/prevmed/wddtext.

1.3.6. Displaying Other Descriptive Statistics with Stata

The following log file and comments demonstrate how to use Stata to obtain

the other descriptive statistics discussed above.
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. log using C:\WDDtext\1.3.6.Sepsis.log {1}

. * 1.3.6.Sepsis.log

. *

. * Calculate the sample mean, median, variance and standard deviation

. * for the baseline APACHE score in each treatment group. Draw box plots

. * and histograms of APACHE score for treated and control patients.

. *

. use C:\WDDtext\1.3.2.Sepsis.dta

. sort treat {2}

. by treat: summarize apache, detail {3}

-> treat= Placebo

Baseline APACHE Score

------------------------------------------------------------------

Percentiles Smallest

1% 3 0

5% 5 2

10% 7 3 Obs 230

25% 10 4 Sum of Wgt. 230

50% 14.5 Mean 15.18696

Largest Std. Dev. 6.922831

75% 19 32

90% 24 33 Variance 47.92559

95% 28 35 Skewness .6143051

99% 33 41 Kurtosis 3.383043

-> treat=Ibuprofen

Baseline APACHE Score

------------------------------------------------------------------

Percentiles Smallest

1% 3 3

5% 5 3

10% 7 3 Obs 224

25% 10 4 Sum of Wgt. 224

50% 14 Mean 15.47768

Largest Std. Dev. 7.261882

75% 21 31

90% 25 34 Variance 52.73493

95% 29 36 Skewness .5233335

99% 34 37 Kurtosis 2.664936
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. graph apache, box by(treat) {4}
{Graph omitted. See Figure 1.3}

. graph apache, bin(20) {5}
{Graph omitted. See Figure 1.4}

. by treat: graph apache, bin(20) {6}
{Graph omitted.}

-> treat= Placebo

-> treat=Ibuprofen

. log close {7}

Comments
1 The log using command creates a log file of the subsequent Stata session.

This file, called 1.3.6.Sepsis.log will be written in the WDDtext folder.

There is also a button on the Stata toolbar that permits you to open, close

and suspend log files.

2 The sort command sorts the data by the values of treat, thereby grouping

all of the patients on each treatment together.

3 The summarize command provides some simple statistics on the apache

variable calculated across the entire data set. With the detail option these

includemeans,medians andother statistics. The commandprefixby treat:

subdivides the data set into asmany subgroups as there are distinct values

of treat, and then calculates the summary statistics for each subgroup. In

this example, the twovalues of treat arePlacebo and Ibuprofen. Forpatients

on ibuprofen, the mean APACHE score is 15.48 with variance 52.73 and

standard deviation 7.26; their interquartile range is from 10 to 21. The

data must be sorted by treat prior to this command.

4 The graph command produces a wide variety of graphics. With the box

option Stata draws box plots for the apache variable that are similar to

those in Figure 1.3. The by(treat) option tells Stata that we want a box

plot for each treatment drawn in a single graph. (The command by treat:

graph apache, box would have produced two separate graphs: the first

graph would have had a single box plot for the placebo patients while the

second graph would be for the ibuprofen group.)

5 With the bin(20) option, the graph command produces a histogram of

APACHE scores with the APACHE data grouped into 20 evenly spaced

bins, and one bar per bin.

6 Adding the by treat: prefix to the preceding command causes two separate

histograms to be produced which give the distribution of APACHE scores
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in patients receiving placebo and ibuprofen, respectively. The first of these

graphs is similar to Figure 1.4.

7 This command closes the log file C:\WDDtext\1.3.2.Sepsis.dta. You can

also do this by clicking the Close/Suspend Log button and choosing Close

log file.

1.4. Inferential Statistics

In medical research we are interested in drawing valid conclusions about all

patients who meet certain criteria. For example, we would like to know if

treating septic patients with ibuprofen improves their chances of survival.

The target population consists of all patients, both past and future, to

whom we would like our conclusions to apply. We select a sample of these

subjects and observe their outcome or attributes. We then seek to infer con-

clusions about the target population from the observations in our sample.

The typical response of subjects in our sample may differ from that of the

target populationdue to chance variation in subject response or tobias in the

way that the sample was selected. For example, if tall people are more likely

to be selected than short people, it will be difficult to draw valid conclusions

about the average height of the target population from the heights of people

in the sample.Anunbiasedsample is one inwhicheachmemberof the target

population is equally likely to be included in the sample. Suppose that we

select anunbiasedsampleofpatients fromthe targetpopulationandmeasure

someattributeof eachpatient.We say that this attribute is a randomvariable
drawn fromthe targetpopulation.Theobservations ina sample aremutually

independent if the probability that an individual is selected is unaffected

by the selection of any other individual in the sample. In this text we will

assume that we observe unbiased samples of independent observations and

will focus on assessing the extent to which our results may be inaccurate

due to chance. Of course, choosing an unbiased sample is much easier said

than done. Indeed, implementing an unbiased study design is usually much

harder than assessing the effects of chance in a properly selected sample.

There are, however, many excellent epidemiology texts that cover this topic.

I strongly recommend that you peruse such a text if you are unfamiliar with

this subject (see, for example, Hennekens and Buring, 1987).

1.4.1. Probability Density Function

Suppose that we could measure the value of a continuous variable on each

member of a target population (for example, their height). The distribution
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a b

Figure 1.9 Probability density function for a random variable in a hypothetical population.
The probability that a member of the population has a value of the variable in
the interval (a, b) equals the area of the shaded region.

of this variable throughout the population is characterized by its probability

density function. Figure 1.9 gives an example of such a function. The x-axis

of this figure gives the range of values that the variablemay take in the popu-

lation. The probability density function is the uniquely defined curve that

has the following property: For any interval (a,b) on the x-axis, the probabil-

ity that amember of the population has a value of the variable in the interval

(a,b) equals the areaunder the curveover this interval. InFigure 1.9 this is the

area of the shaded region. It follows that the total area under the curve must

equal one since eachmember of the populationmust have some value of the

variable.

1.4.2. Mean, Variance and Standard Deviation

Themean of a random variable is its average value in the target population.

Its variance is the average squared difference between the variable and its

mean. Its standard deviation is the square root of its variance. The key

distinction between these terms and the analogous sample mean, sample

variance and sample standard deviation is that the former are unknown

attributes of a target population, while the latter can be calculated from a

known sample. We denote the mean, variance and standard deviation of

a variable by µ, σ 2 and σ , respectively. In general, unknown attributes of a

target population are called parameters and are denoted by Greek letters.

Functions of the values in a sample, such as x̄ , s 2 and s, are called statis-
tics and are denoted by Roman letters or Greek letters covered by a hat.

(For example, β̂ might denote a statistic that estimates a parameter β.)

We will often refer to x̄ , s 2 and s as the mean, variance and standard

deviation of the sample when it is obvious from the context that we are
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68%

µ µ+2σµ-2σ

2.5% 2.5%
σ

Figure 1.10 Probability density function for a normal distribution with mean µ and standard
deviation σ . Sixty-eight percent of observations from such a distribution will lie
within one standard deviation of the mean. Only 5% of observations will lie
more than two standard deviations from the mean.

talking about a statistic from an observed sample rather than a population

parameter.

1.4.3. Normal Distribution

The distribution of values for random variables from many target popu-

lations can be adequately described by a normal distribution. The prob-

ability density function for a normal distribution is shown in Figure 1.10.

Each normal distribution is uniquely defined by its mean and standard

deviation. The normal probability density function is a symmetric bell

shaped curve that is centered on its mean. Sixty-eight percent of the val-

ues of a normally distributed variable lie within one standard deviation

of its mean; 95% of these values lie within 1.96 standard deviations of its

mean.

1.4.4. Expected Value

Suppose that we conduct a series of identical experiments, each of which

consist of observing an unbiased sample of independent observations from

a target population and calculating a statistic. The expected value of the

statistic is its average value from a very large number of these experiments.

If the target population has a normal distribution with mean µ and stan-

dard deviation σ , then the expected value of x̄ is µ and the expected value

of s 2 is σ 2. We express these relationships algebraically as E[x̄] = µ and

E
[
s 2

] = σ 2. A statistic is an unbiased estimate of a parameter if its ex-

pected value equals the parameter. For example x̄ is an unbiased estimate
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of µ since E[x̄] = µ. (The reason why the denominator of equation (1.2) is

n − 1 rather than n is to make s 2 an unbiased estimator of σ 2.)

1.4.5. Standard Error

As the sample size n increases, the variation in x̄ from experiment to ex-

periment decreases. This is because the effects of large and small values in

each sample tend to cancel each other out. The standard deviation of x̄ in

this hypothetical population of repeated experiments is called the standard
error, and equals σ/

√
n. If the target population has a normal distribution,

so will x̄ . Moreover, the distribution of x̄ converges to normality as n gets

large even if the target population has a non-normal distribution. Hence,

unless the target population has a badly skewed distribution, we can usually

treat x̄ as having a normal distribution withmeanµ and standard deviation

σ/
√
n.

1.4.6. Null Hypothesis, Alternative Hypothesis and P Value

The null hypothesis is one that we usually hope to disprove and which

permits us to completely specify the distribution of a relevant test statistic.

The null hypothesis is contrasted with the alternative hypothesis that in-

cludes all possible distributions except the null. Suppose that we observe an

unbiased sample of size n and mean x̄ from a target population with mean

µ and standard deviation σ . For now, let us make the rather unrealistic

assumption that σ is known. We might consider the null hypothesis that

µ = 0 versus the alternative hypothesis that µ = 0. If the null hypothesis

is true, then the distribution of x̄ will be as in Figure 1.11 and x̄ should be

near zero. The farther x̄ is from zero the less credible the null hypothesis.

The P value is the probability of obtaining a sample mean that is at least

as unlikely under the null hypothesis as the observed value x̄ . That is, it

is the probability of obtaining a sample mean greater than |x̄| or less than

−|x̄|. This probability equals the area of the shaded region in Figure 1.11.

When the P value is small, then either the null hypothesis is false or we have

observed an unlikely event. By convention, if P < 0.05 we claim that our re-

sult provides statistically significant evidence against the null hypothesis in

favor of the alternative hypothesis; x̄ is then said to provide evidence against

the null hypothesis at the 5% level of significance. The P value indicated in

Figure 1.11 is called a two-sided or two-tailed P value because the critical
region of values deemed less credible than x̄ includes values less than −|x̄|
as well as those greater than |x̄|. Recall that the standard error of x̄ is σ/

√
n.
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Figure 1.11 The P value associated with the null hypothesis that µ = 0 is given by the
area of the shaded region. This is the probability that the sample mean will be
greater than |x|- or less than −|x|- when the null hypothesis is true.

The absolute value of x̄ must exceed 1.96 standard errors to have P < 0.05.

In Figure 1.11, x̄ lies between 1 and 2 standard errors.Hence, in this example

x̄ is not significantly different from zero. If we were testing some other null

hypothesis, say µ = µ0, then the distribution of x̄ would be centered over

µ0 and we would reject this null hypothesis if |x̄ − µ0| > 1.96 σ/
√
n.

1.4.7. 95% Confidence Interval

In the preceding example, we were unable to reject at the 5% level of

significance all null hypotheses µ = µ0 such that |x̄ − µ0| < 1.96 σ/
√
n.

A 95% confidence interval for a parameter consists of all possible values of

the parameter that cannot be rejected at the 5% significance level given the

observed sample. In this example, this interval is

x̄ − 1.96 σ/
√
n ≤ µ ≤ x̄ + 1.96 σ/

√
n.

In this and most other examples involving normal distributions, the prob-

ability that x̄ − 1.96 σ/
√
n ≤ µ ≤ x̄ + 1.96 σ/

√
n equals 0.95. In other

words, the true parameter will lie within the confidence interval in 95% of

similar experiments. This interval, x̄ ± 1.96 σ/
√
n, provides a measure of

the accuracy with which we can estimate µ from our sample. Note that this

accuracy increases as
√
n increases and decreases with increasing σ .

Many textbooks define the 95% confidence interval to be an interval that

includes the parameter with 95% certainty. These two definitions, however,

are not always equivalent, particularly in epidemiologic statistics involving

discrete distributions. This has led most modern epidemiologists to prefer

the definition given here. It can be shown that the probability that a 95%



21 1.4. Inferential statistics

confidence interval, as defined here, includes its parameter is at least 95%.

Rothman and Greenland (1998) discuss this issue in greater detail.

1.4.8. Statistical Power

If we reject the null hypothesis when it is true we make a Type I error. The
probability of making a Type I error is denoted by α, and is the significance
level of the test. For example, if we reject the null hypothesis when P < 0.05,

then α = 0.05 is the probability of making a Type I error. If we do not reject

the null hypothesis when the alternative hypothesis is truewemake aType II
error. The probability of making a Type II error is denoted by β. The power
of the test is the probability of correctly accepting the alternative hypothesis

when it is true. This probability equals 1 − β. It is only possible to derive the

power for alternative hypotheses that completely specify the distribution of

the test statistic. However, we can plot power curves that show the power

of the test as a function of the different values of the parameter under the

alternative hypothesis. Figure 1.12 shows the power curves for the example

introduced in Section 1.4.6. Separate curves are drawn for sample sizes

of n = 1, 10, 100 and 1000 as a function of the mean µa under different

alternative hypotheses. The power is always near α for values of µa that are

very close to the null (µ0 = 0). This is because the probability of accepting

an alternative hypothesis that is virtually identical to the null equals the

probability of falsely rejecting the null hypothesis, which equals α. The

greater the distance between the alternative and null hypotheses the greater
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Figure 1.12 Power curves for samples of size 1, 10, 100, and 1000. The null hypothesis is
µ0 = 0. The alternative hypothesis is expressed in terms of σ , which in this
example is assumed to be known.
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the power, and the rate at which the power rises increases with increasing

sample size. Regardless of the sample size, the power eventually approaches 1

(certainty) as themagnitude ofµa gets sufficiently large. Note that the larger

n results in greater ability to correctly reject the null hypothesis in favor of

any specific true alternative hypothesis. For example, the power associated

with µa = 0.2 σ is 0.055, 0.097, 0.516, and 1.00 when n = 1, 10, 100, and

1000, respectively.

Power calculations are particularly useful when designing a study to en-

sure that the sample size is large enough to detect alternative hypotheses that

are clinically important. There are several good software packages available

for calculating statistical power. One of these is the PS program (Dupont

and Plummer, 1990, 1998). This is a self-documented interactive program

that produces power and sample size graphs and calculations formost of the

commonly used study designs. It is freely available and can be downloaded

from the web at www.mc.vanderbilt.edu/prevmed/ps.

1.4.9. The z and Student’s t Distributions

There are several distributions of special statistics for which we will need

to calculate confidence intervals and P values. Two of these are the z and

t distributions. The z or standardized normal distribution is the normal

distribution with mean µ = 0 and standard deviation σ = 1. If each obser-

vation xi in a sample has a normal distribution with mean µ and standard

deviation σ , then (xi − µ) /σ will have a standardized normal distribu-

tion. In addition, if the n observations in the sample are independent, then

(x̄ − µ) /(σ/
√
n) also has a standard normal distribution.

The examples given in the last three sections are rather artificial in that

it is unusual to know the true standard deviation of the target population.

However, we can estimate σ by the sample standard deviation s. Moreover,

(x̄ − µ) /(s/
√
n) has a completely specified distribution. This is a Student’s

t distribution, which is one of a family of bell shaped distributions that

are symmetric about zero. Each such distribution is indexed by an integer

called its degrees of freedom. The statistic tn−1 = (x̄ − µ) /(s/
√
n) has a

t distribution with n −1 degrees of freedom. Figure 1.13 shows the proba-

bility density functions for t distributions with one, three and ten degrees of

freedom.As the degrees of freedom increase the probability density function

converges towards the standard normal distribution, which is also shown in

this figure. The standard deviation of a t statistic is greater than that of the

standard normal distribution due to imprecision in s as an estimate of σ .

As the sample size increases s becomes a more and more accurate estimate

of σ and tn−1 converges to z.
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Figure 1.13 Probability density functions for t distributions with 1, 3 and 10 degrees of
freedom. These distributions converge to the standard normal distribution as
the number of degrees of freedom gets large.

Suppose that z has a standard normal distribution. Let zα be the 100α%

critical value that is exceeded by zwith probabilityα. (For example, z0.025 =
1.96 is the 2.5% critical value that is exceeded by z with probability 0.025.)

Algebraically, we write this relationship as

α = Pr[z > zα].

If z has a standard normal distribution under the null hypothesis, then

we can reject this hypothesis at the 100 α% significance level if z > zα/2

or z < −zα/2. Similarly, let tdf be a t statistic with df degrees of freedom.

We define tdf,α to be the 100 α% critical value that is exceeded by tdf with

probability α.

1.4.10. Paired t Test

Suppose that normally distributed responses xi1 and xi2 aremeasuredbefore

and after treatment on the i th member of an independent sample of n pa-

tients.Wewish to test the null hypothesis that the treatment has no effect on

the mean patient response. Let di = xi1 − xi2 be the change in response for

the i th patient. Then under the null hypothesis, di has a normal distribution

with mean 0 and some unknown standard deviation σd . Let d̄ and sd be

the sample mean and standard deviation of the differences di . Then sd/
√
n

estimates the standard error of d̄ . Under the null hypothesis

d̄/(sd/
√
n) (1.3)
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has a t distribution with n − 1 degrees of freedom. The P value associated

with this statistic is

P = Pr[tn−1 < −|d̄/(sd/
√
n)| or tn−1 > |d̄/(sd/

√
n)|], (1.4)

where tn−1 has a t distribution with n − 1 degrees of freedom.

The 95% confidence interval for the true change in response associated

with treatment is

d̄ ± tn−1, 0.025(sd/
√
n). (1.5)

Example

In the Ibuprofen in Sepsis study, the body temperature of all study subjects

was recorded at baseline and after two hours of therapy. All patients received

standard care for sepsis. In addition, patients who were randomized to the

intervention group received intravenous ibuprofen. There were n = 208

patients in the intervention group who had their temperatures recorded

at both of these times. The average drop in temperature for these patients

is d̄ = 0.8845◦ F. The sample standard deviation of these differences is

sd = 1.2425. The estimated standard error of d̄ is sd/
√
n = 1.2425/

√
208 =

0.086 15, and the t statistic equals 0.8845/0.086 15 = 10.27 with 207 degrees

of freedom. The two-sided P value associated with this test is <0.000 05.

This provides overwhelming evidence that the drop in temperature in the

first two hours of treatment was not due to chance. The 95% confidence

interval for the truemeandrop in temperature among septic patients treated

with ibuprofen is d̄ ± tn−1, 0.025(sd/
√
n) = 0.8845 ± 1.971 × 0.086 15 =

(0.71, 1.05). Note that the critical value t207,0.025 = 1.971is close to z0.025 =
1.960. This is due to the fact that a t distributionwith 207 degrees of freedom

is almost identical to the standard normal distribution.

1.4.11. Performing Paired t Tests with Stata

The following Stata log file shows the derivation of the statistics from the

example in the preceding section.

. * 1.4.11.Sepsis.log

. *

. * Perform paired t test of temperature change by 2 hours

. * in septic patients receiving ibuprofen.

. *

. use C:\WDDtext\1.4.11.Sepsis.dta
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. codebook treat {1}

treat ---------------------------------------------------- Treatment

type: numeric (float)

label: treatmnt

range: [0,1] units: 1

unique values: 2 coded missing: 0 / 455

tabulation: Freq. Numeric Label

231 0 Placebo

224 1 Ibuprofen

. keep if treat==1 {2}
( 231 observations deleted)

. codebook temp0 temp1 {3}
temp0 ------------------------------------------------ Baseline temperature

{Output omitted}
unique values: 96 coded missing: 0 / 224

{Output omitted}
temp1 ------------------------------------------- Temperature after 2 hours

{Output omitted}
unique values: 78 coded missing: 16 / 224

{Output omitted}
. ttest temp0 = temp1 {4}
Paired t test

------------------------------------------------------------------------------

Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

---------+--------------------------------------------------------------------

temp0 | 208 100.4056 .1493624 2.154135 100.1111 100.7

temp1 | 208 99.52106 .1285554 1.854052 99.26761 99.7745

---------+--------------------------------------------------------------------

diff | 208 .8845193 .0861504 1.242479 .7146746 1.054364

------------------------------------------------------------------------------

Ho: mean(temp0 - temp1) = mean(diff) = 0

Ha: mean(diff) < 0 Ha: mean(diff) ∼= 0 Ha: mean(diff) > 0

t = 10.2672 t = 10.2672 t = 10.2672

P < t = 1.0000 P > |t| = 0.0000 P > t = 0.0000

Comments
1 This codebook command provides information on the variable treat. It

indicates that treat is a numeric variable that takes the values zero and
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one. The value labels Placebo and Ibuprofen are assigned to these numeric

values. (See Section 4.21 for an explanation of how to assign value labels

to numeric variables.) Stata uses these labels whenever possible. However,

when we wish to specify a value of treat in a Stata command we must use

its numeric value.

2 The keep command is used to designate either observations or vari-

ables that are to be kept in the data set. When used with the qualifier

if logical expression this command keeps all records for which

logical expression is true; treat==1 is a logical expression that is true

if treat equals 1. Hence, this command keeps all records for which treat

equals 1. That is, it keeps the records of all patients receiving ibuprofen.

Stata indicates that 231 observations have been deleted, which are the

records of the 231 placebo patients.

Logical expressions can be constructed in Stata using “and” (&), “or”

(|) or “not” (∼) operators. For example, treat∼= 0 & (apache >= 30 |
temp0 < 96) is true for all patients for whom treat is not equal to 0 and

either apache ≥ 30 or temp0 < 96; otherwise it is false. The expression

∼(fruit == "apple") is true whenever (fruit == "apple") is false. That

is, it is true when fruit takes any value other than “apple”.

3 The patient’s body temperature at baseline and after two hours of therapy

are recorded in the temp0 and temp1 variables, respectively. This codebook

command indicates thatwhile all ibuprofenpatients have a recordedbase-

line temperature, there are 16 patients for whom the 2 hour temperature

is missing. Hence there are n= 224 − 16 = 208 patients in the ibuprofen

group who had their temperatures recorded at both times.

4 The ttest command performs independent and paired t tests. The qual-

ifier temp0 = temp1 specifies that a paired test of these two variables

is to be performed. In the notation of the Section 1.4.10 xi1 and xi2
denote temp0 and temp1, respectively. The mean change in tempera-

ture is d̄ = 0.8845, sd = 1.242, n = 224 − 16 = 208, sd/
√
n = 0.086 15,

and the t statistic equals 10.27 with 207 degrees of freedom. The two-

sided P value associated with this test is <0.000 05 (see last row of out-

put). The 95% confidence interval for the true drop in temperature is

(0.715, 1.054).

1.4.12. Independent t Test Using a Pooled Standard Error Estimate

Suppose that we have two independent samples of size n0 and n1 from

normal populations with means µ0 and µ1 and standard deviations both

equal to σ . Let x̄0, x̄1, s0 and s1 be the means and standard deviations from
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these two samples. Then a pooled estimate of σ from both samples is

s p =
√(

(n0 − 1)s 20 + (n1 − 1)s 21
) /

(n0 + n1 − 2), (1.6)

and the estimated standard error of (x̄0 − x̄1) is

s p

√
1

n0
+ 1

n1
.

Under the null hypothesis that µ0 = µ1,

tn0+n1−2 = (x̄0 − x̄1)

/ (
s p

√
1

n0
+ 1

n1

)
(1.7)

has a t distribution with n0 + n1 − 2 degrees of freedom. A 95% confidence

interval for µ0 − µ1 is therefore

(x̄0 − x̄1) ± tn0+n1−2, 0.025

(
s p

√
1

n0
+ 1

n1

)
. (1.8)

Example

In the previous two sections we showed that the observed drop in tem-

perature in septic patients treated with ibuprofen could not be explained by

chance fluctuations.Of course, this does not prove that ibuprofen caused the

temperature drop since there are many other factors associated with treat-

ment in an intensive care unit (ICU) that could cause this change. To show a

causal relationship between ibuprofen treatment and temperature we need

to compare temperature change in treated and untreated patients. In the

Ibuprofen in Sepsis study there were n0 = 212 patients in the control group

andn1 = 208patients in the ibuprofen groupwhohad temperature readings

at baseline and after twohours. The averagedrop in temperature in these two

groups was x̄0 = 0.3120 and x̄1 = 0.8845◦ F with standard deviations s0 =
1.0705 and s1 = 1.2425, respectively. (Note that temperatures fall in both

groups, although the average reduction is greater in the ibuprofen group

than in the control group.) The pooled estimate of the standard deviation is

s p =
√

(212 − 1) × 1.07052 + (208 − 1) × 1.24252

212 + 208 − 2
= 1.1589.

The estimated standard error of

x̄0 − x̄1 is 1.1589 × √
(1/212) + (1/208) = 0.1131,

and

t = (0.3120 − 0.8845)/0.1131 = −5.062
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has a t distribution with 212 + 208 − 2 = 418 degrees of freedom. The

two-sided P value associated with the null hypothesis of equal temperature

drops in the two patient groups isP< 0.000 05. This result, togetherwith the

fact that these data come from a double-blinded randomized clinical trial

provides convincing evidence of the antipyretic effects of ibuprofen in septic

patients. A 95% confidence interval for the true difference in temperature

reduction associated with the placebo and treatment groups is (0.3120 −
0.8845) ± 1.9657 × 0.1131 = − 0.5725 ± 0.2223 = (−0.79, −0.35), where

t418,0.025 = 1.9657 is the 2.5% critical value for a t statistic with 418 degrees

of freedom. In other words, the likely average true reduction in temperature

due to ibuprofen, and above and beyond that due to other therapy on the

ICU, is between 0.35 and 0.79◦ F.

1.4.13. Independent t Test using Separate Standard Error Estimates

Sometimeswewish tocomparegroups thathavemarkedlydifferent standard

error estimates. In this case it makes sense to abandon the assumption that

both groups share a common standard deviation σ . Let

tv = (x̄0 − x̄1)

/ 


√
s 20
n0

+ s 21
n1


 . (1.9)

Then tv will have an approximately t distribution with

v =
(
s 20

/
n0 + s 21

/
n1

)2
s 40

/ (
n2
0 (n0 − 1)

) + s 41
/ (

n2
1 (n1 − 1)

) (1.10)

degrees of freedom (Satterthwaite, 1946). The analogous 95% confidence

interval associated with this test is

(x̄0 − x̄1) ± tv , 0.025




√
s 20
n0

+ s 21
n1


 . (1.11)

This test is less powerful than the testwith thepooled standard error estimate

and should only be used when the assumption of identical standard errors

in the two groups appears unreasonable.

1.4.14. Independent t tests using Stata

The following log file and comments illustrate how to perform independent

t tests with Stata.
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. * 1.4.14.Sepsis.log

. *

. * Perform an independent t test comparing change in temperature

. * from baseline after two hours in the ibuprofen group compared

. * to that in the control group.

. *

. use C:\WDDtext\1.4.11.Sepsis.dta

. generate tempdif = temp0 - temp1 {1}
(35 missing values generated)

. *

. * Assume equal standard deviations in the two groups

. *

. ttest tempdif, by(treat) {2}

Two-sample t test with equal variances

------------------------------------------------------------------------------

Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

---------+--------------------------------------------------------------------

Placebo | 212 .3119811 .0735218 1.070494 .1670496 .4569125

Ibuprofe | 208 .8845193 .0861504 1.242479 .7146746 1.054364

---------+--------------------------------------------------------------------

combined | 420 .5955238 .0581846 1.192429 .4811538 .7098938

---------+--------------------------------------------------------------------

diff | −.5725383 .1130981 −.7948502 −.3502263
------------------------------------------------------------------------------

Degrees of freedom: 418

Ho: mean (Placebo) - mean (Ibuprofe) = diff = 0

Ha: diff < 0 Ha: diff ∼= 0 Ha: diff > 0

t = −5.0623 t = −5.0623 t = −5.0623
P < t = 0.0000 P > |t| = 0.0000 P > t = 1.0000

. *

. * Assume unequal standard deviations in the two groups

. *

. ttest tempdif, by(treat) unequal {3}
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Two-sample t test with unequal variances

-----------------------------------------------------------------------------

Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

---------+-------------------------------------------------------------------

Placebo | 212 .3119811 .0735218 1.070494 .1670496 .4569125

Ibuprofe | 208 .8845193 .0861504 1.242479 .7146746 1.054364

---------+-------------------------------------------------------------------

combined | 420 .5955238 .0581846 1.192429 .4811538 .7098938

---------+-------------------------------------------------------------------

diff | −.5725383 .1132579 −.7951823 −.3498942
-----------------------------------------------------------------------------

Satterthwaite's degrees of freedom: 406.688

Ho: mean(Placebo) - mean(Ibuprofe) = diff = 0

Ha: diff < 0 Ha: diff ∼= 0 Ha: diff > 0

t = -5.0552 t = -5.0552 t = -5.0552

P < t = 0.0000 P > |t| = 0.0000 P > t = 1.0000

Comments
1 The generate command calculates the values of new variables from old

ones. In this example tempdif is set equal to the difference between the

patient’s baseline temperature (temp0) and his or her temperature two

hours later (temp1).When either temp0 or temp1 aremissing so is tempdif.

There are 35 records where this occurs.

Note that Stata distinguishes between apple = 1, which assigns the

value 1 to apple, and apple== 1, which is a logical expression that is true

if apple equals 1 and false otherwise.

2 This form of the ttest command performs an independent t test compar-

ing tempdif in the two groups of patients defined by the values of treat.

The highlighted values in this output correspond to those in the example

in Section 1.4.12.

3 The unequal option causes Satterthwaite’s t test for groups with unequal

standard deviations to be performed. In this example, the standard devi-

ations in the two groups are similar and the sample sizes are large. Hence,

it is not surprising that this test gives very similar results to the test that

assumes equal standard deviations. Note that the approximate degrees of

freedom are reduced by about 11 and the absolute value of the t statistic

drops from 5.062 to 5.055. Hence, in this example, the loss in power due

to not assuming equal standard deviations is trivial.
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1.4.15. The Chi-Squared Distribution

Another important standard distribution that wewill use is the chi-squared
distribution. Let z1, z2, . . . , zn denote nmutually independent variables that

have standard normal distributions. Then χ2
n = ∑

z2i has a chi-squared

distribution with n degrees of freedom. The probability density functions

for chi-squared distributions with one though six degrees of freedom are

plotted in Figure 1.14. We will use this distribution for testing certain

null hypotheses involving one or more parameters. A chi-squared statis-

tic always takes a positive value. Low values of this statistic are consis-

tent with the null hypothesis while high values provide evidence that it

is false. The expected value of a chi-squared statistic under the null hypoth-

esis equals its degrees of freedom. The P value associated with an observed

value of χ2
n is the probability that a chi-squared distribution with n de-

grees of freedom will exceed this value. Note that with the t distribution

we reject the null hypothesis if t is either very large or very small. With

the chi-squared distribution we only reject the null hypothesis when χ2
n is

large.

0 2 4 6 8 10 12 14

1 df

2  df

3 df

4 df
5 df 

6 df

χ2
n

Figure 1.14 Probability density functions for the chi-squared distributions with one through
six degrees of freedom (df). High values of a chi-squared statistic provide ev-
idence against the null hypothesis of interest. The expected value of a chi-
squared statistic equals its degrees of freedom.
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1.5. Additional Reading

At the end of each chapter I have referenced textbooks that cover additional

material that may be of interest to readers. I have selected texts that I have

foundhelpful inwriting this bookor thatmay appeal to readerswith varying

levels of mathematical and statistical backgrounds. These references are by

no means exhaustive. There are many other excellent texts that cover the

same material that are not listed here.

Pagano and Gauvreau (2000) is an excellent all round introductory text in

biostatistics.

Armitage and Berry (1994) is another well written introductory text. It

covers somematerial in greater detail than Pagano and Gauvreau (2000).

Hennekens and Buring (1987) is an excellent introductory text in epidemi-

ology.

Rothman and Greenland (1998) is a more advanced epidemiology text. It

has an excellent section on the definition of confidence intervals and on

the foundations of statistical inference as they apply to epidemiology.

Stata (2001) is mandatory reading for anyone who wishes to use the Stata

statistical package for his or her analyses.

Bernard et al. (1997) conducted a randomized clinical trial of ibuprofen in

patients with sepsis. We use data from this study to illustrate a number of

important methods for analyzing medical data.

Brent et al. (1999) studied patients with ethylene glycol poisoning. We use

data from this study to illustrate elementarymethods of analyzing bivari-

ate data.

Student (1908) is the original reference on t tests. It was written by W.S.

Gosset under the pen name “Student” because his employer, an Irish

brewer, thought that he should be spending his time attending to the

quality of their brew rather than writing papers in academic journals.

Satterthwaite (1946) is the original reference for the t test with unequal

variances.

1.6. Exercises

The following questions relate to the 1.4.11.Sepsis.dta data set from my web

site, which you should download onto your computer.

1 List the names and labels of all variables in the 1.4.11.Sepsis.dta data set.

2 What are the numeric values of the race variable? Which races do these

numeric codes represent? Can you answer this question without opening

the data editor?
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3 List the APACHE score and baseline temperature of the six patients with

the lowest APACHE scores. List the APACHE score, fate and ID number

of all black patients whose APACHE score is 35 or greater.

4 Draw dot plots of baseline temperature in black and white patients. Draw

these plots on a single graph. Do not include people of other races.Where

does Stata obtain the title of the y-axis of your dot plot?

5 Draw box plots of temperature at two hours in treated and untreated

patients.

6 Consider treated patients whose race is recorded as “other”. Test whether

these patients’ baseline temperature is significantly different from their

temperature after two hours.What is the P value associated with this test?

How many degrees of freedom does it have? What is a 95% confidence

interval for the true change in temperature among this group of subjects?

7 Test whether baseline APACHE score is different in treated and untreated

patients. What is the P value associated with this test? How many degrees

of freedom does it have? What is a 95% confidence interval for the true

difference in APACHE score between treated and untreated patients.Why

is this test important in a clinical trial of the efficacy of ibuprofen in septic

patients?
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Simple Linear Regression

There is often an approximately linear relationship between two variables

associatedwith study subjects. Simple linear regression is used topredict one

of these variables given the other. We assume that the relationship between

these variables can be described by a linear function of one variable plus

an error term. We use a sample of observations to estimate the slope and

y-intercept of this function and the standard deviation of the error term.

2.1. Sample Covariance

Figure 2.1 shows the scatter plot of plasma glycolate vs. arterial pH in pa-

tients with ethylene glycol poisoning (see Section 1.2.9). These variables

are negatively correlated in that the glycolate levels tend to decrease with

increasing pH. Note, however, that there is some individual variation in

this relationship, with different glycolate levels in patients with similar pH

levels. In Figure 2.1 the sample mean glycolate and pH values are indicated

by the horizontal and vertical lines at ȳ = 90.44 and x̄ = 7.21, respectively.
Dashed lines show the glycolate and pH residuals for three of these patients.

For example, one of the patients has glycolate and pH values of 265.24 and

6.88, respectively.Theglycolate andpHresiduals for thispatient are265.24−
90.44 = 174.8 and 6.88 − 7.21 = −0.33. The product of these residuals is
174.8× (−0.33) = −57.7. If we divide Figure 2.1 into four quadrants de-
fined by the two sample means, then all observations in the upper left or

lower right quadrants will have a product of residuals that is negative. All

observations in the lower left and upper right quadrants will have a posi-

tive product of residuals. Since glycolate levels tend to fall with increasing

pH levels, most observations are in the upper left or lower right quadrants

and have a negative product of residuals. For this reason the sum of these

products,
∑
(xi − x̄)(yi − ȳ), will be negative. The sample covariance is

sxy =
∑

(xi − x̄)( yi − ȳ)/(n − 1), (2.1)

which can be thought of as the average product of residuals. In the poison

example, there are n = 18 patients, and the sample covariance is

34
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Figure 2.1 Scatter plot of plasma glycolate vs. arterial pH in patients with ethylene gly-
col poisoning. The dashed lines show the glycolate and pH residuals for three
patients (Brent et al., 1999).

sxy = −211.26/17 = −12.43. Note that if there is no relationship between
values of the twovariables then therewill be roughly equal numbers of obser-

vations in the four quadrants. In this case, the sum of products of residuals

will tend to cancel each other out, giving a small sample covariance. If there

is a positive relationship between xi and yi then most observations will lie

in the lower left or upper right quadrants and sxy will be positive.

2.2. Sample Correlation Coefficient

It is often useful to be able to quantify the extent to which one variable can

be used to predict the value of another. The sample covariance measures

this relationship to some extent but is also affected by the variability of the

observations. A better measure of this association is the sample correlation

coefficient, which is adjusted for the variability of the two variables. If sx and

s y denote the standard deviation of xi and yi then

r = sxy
sx s y

(2.2)

is the sample correlationcoefficient between xi and yi . In the poison exam-
ple sx = 0.1731, s y = 80.58 and r = −12.43/(0.1731× 80.58) = −0.891.
The correlation coefficient can take values from –1 to 1; r = 1 implies that
the points of a scatter plot of xi and yi fall on a straight line with a positive

slope; r = 0 implies no relationship between xi and yi while r = −1 im-
plies a strict linear relationship with negative slope. The closer r is to±1 the
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r = 0 

r = −1

0 < r < 1 

r = 1

Figure 2.2 Correlation coefficients for four different scatter plots. The closer the points are
to lying on a straight line, the closer r is to 1 or –1.

more accurately the values of one variable can be predicted by a linear func-

tion of the other (see Figure 2.2).

2.3. Population Covariance and Correlation Coefficient

Suppose that two variables x and y describe attributes of members of some

target population. Let µx , µy , σx and σy denote the population means and

standard deviations for these variables. Then a patient with variable values

xi and yi will have a residual product equal to (xi − µx)(yi − µy). The

population covariance, σxy , is the mean residual product for all members

of thepopulation. Ifweobserve xi and yi onanunbiased sampleofn patients

from the target population then

E[sxy] = σxy . (2.3)

The reason why the denominator of sxy in equation (2.1) is n− 1 rather
than n is to make equation (2.3) true.

The population correlation coefficient is ρ = σxy/(σxσy), which is es-

timated by the sample correlation coefficient r . The key difference between

ρ and r and sxy and σxy is that ρ and σxy are unknown parameters of the

target population while r and sxy are known statistics that are calculated

from a known sample. We will often omit the adjective “population” or

“sample” when it is clear from the context whether we are talking about a

known statistic or an unknown parameter.
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The population correlation coefficient also lies between±1. Variables are
said to be positively or negatively correlated if ρ is positive or negative.

Normally distributed variables are said to be independent if ρ = 0. In this
case knowing the value of one variable for a patient tells us nothing about

the likely value of the other.

2.4. Conditional Expectation

Suppose that x and y are variables that can be measured on patients from

some population. We observe an unbiased, mutually independent sample

of patients from this population. Let xi and yi be the values of x and y for

the i th patient in this sample. The expected value of yi , denoted E[ yi ], is

the average value of y in the population. The conditional expectation of
yi given xi is the average value of y in the subpopulation whose value of x

equals xi . We denote this conditional expectation E[yi | xi ]. For example,
suppose that half of a population aremen, and that x = 1 formen and x = 2
for women. Let y denote a subject’s weight. Suppose that the average weight

of men and women in the population is 80 and 60 kg, respectively. Then

E[yi | xi = 1] = 80 is the expected weight of the i th sampled subject given
that he is a man. E[yi | xi = 2] = 60 is the expected weight of i th sampled
subject given that she is a woman, and E[yi ] = 70 is the expected weight of
the i th subject without considering his or her sex.

2.5. Simple Linear Regression Model

There is often an approximately linear relationship between variables from a

population. Simple linear regressionallowsus toquantify such relationships.

As with most inferential statistics, we first assume a statistical model for the

data and thenestimate theparameters of themodel fromanunbiased sample

of observations. Suppose that we observe an unbiased sample of n patients

from a population, with xi and yi representing the values of two variables

measured on the i th patient. The simple linear regression model assumes
that

yi = α + βxi + εi , (2.4)

where

(i) α and β are unknown parameters of the population,

(ii) εi has a normal distribution with mean 0 and standard deviation σ ,

and

(iii) the values of εi are mutually independent.
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Figure 2.3 Schematic diagrams depicting a simple linear model (left) and a non-linear
model with heteroscedastic errors (right). The linear model assumes that the
expected value of y given x is a linear function of x and that the error terms are
independent and have a constant standard deviation.

That is, the value of εi for any one patient is unaffected by the values of any

other. εi is called the error for the i th patient; σ and σ 2 are called the error
standard deviation and error variance, respectively.
It canbeshownforanystatisticsu andv andanyconstant c thatE[u + v]=

E[u]+ E[v], E[cu] = cE[u] and E[c] = c . Suppose that we hold xi fixed.

That is,we restrict our attention toa subpopulationofpatientswith a specific

value of xi . Then the expected value of yi given xi for this subpopulation is

E[yi | xi ] = E[α + βxi | xi ]+ E[εi | xi ] = α + βxi + 0 = α + βxi . (2.5)

Thus, the expected value of yi given xi is E[yi | xi ] = α + βxi , and the

response yi equals the sumof adeterministic linear componentα + βxi plus

a random error component εi . Two explicit assumptions of the model are

that the expected response yi is a linear function of xi and that the standard

deviation of εi is a constant that does not depend on xi . Models that have

the latter property are called homoscedastic. The left panel of Figure 2.3
shows a schematic representation of the linearmodel. The expected value of

y given x is represented by the straight line while the homoscedastic errors

are indicated by identical normal probability density functions. The right

panel of Figure 2.3 violates the linear model in that the expected value of y

is a non-linear function of x , and y has heteroscedastic error terms whose
standard error increases with increasing x .

2.6. Fitting the Linear Regression Model

Let us return to the ethylene glycol poisoning example introduced in Section

1.2.9.We wish to fit the linearmodel E[yi | xi ] = α + βxi , where E[yi | xi ]



39 2.6. Fitting the linear regression model

P
la

sm
a 

G
ly

co
la

te
 (

m
g

/d
l)

Arterial pH
6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5

0

50

100

150

200

250

300

Figure 2.4 The estimated linear regression line is chosen so as to minimize the sum of
squared residuals between the observed and expected value of the y variable.
The gray dotted lines show the lengths of six of these residuals.

is the expected glycolate value of a patient whose arterial pH is xi . Let

a and b be estimates of α and β. Then ŷi = a + bxi is an estimate of

E[yi | xi ]. The residual of yi given xi is yi − ŷi , the difference between

the observed value of yi and its estimated expected value. The dotted lines

in Figure 2.4 show these residuals for six of these study subjects. A line

that gives a good fit to the data will come as close to as many of the ob-

servations as possible. For this reason, we choose as our estimates of α

and β those values of a and b that minimize the sum of squared resid-

uals for all patients in the observed sample. It can be shown that these

estimates are

b = r s y/sx (2.6)

and

a = ȳ − bx̄. (2.7)

The statistic

ŷ[x] = a + bx (2.8)

is called the least squares estimate of α + βx , and equation (2.8) de-

fines the linear regression line of yi against xi . It can also be shown

that ŷi = ŷ[xi ] is an unbiased estimate of α + βxi . Substituting equa-

tion (2.7) into equation (2.8) gives us ŷ[x]− ȳ = b(x − x̄). Hence, the

linear regression line always passes through the point (x̄ , ȳ). Since
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b = rs y/sx the slope of the regression line approaches zero as r approaches

zero. Thus, if x and y are independent and n is large then r will be very

close to zero since r ∼= ρ = 0, and the regression line will be approximately

ŷ(x) = ȳ. This makes sense since if x and y are independent then x is of

no value in predicting y. On the other hand, if r = 1, then the observations
lie on the linear regression line (all the residuals are zero). The slope of

this line equals s y/sx , which is the variation of yi relative to the variation

of xi .

Note that we have used the term residual in two slightly different ways.

In general, the residual for an observation is the difference between the

observation and its estimated expected value. When we are looking at a

single variable yi the residual of yi is yi − ȳ, since ȳ is our best esti-

mate of E[yi ]. This is the definition of residual that we have used prior

to this section. When we have two variables and wish to predict yi in terms

of xi then the residual of yi is yi − ŷi , where ŷi is our best estimate of

E[yi | xi ]. It is usually clear from the context which type of residual we are
talking about.

2.7. Historical Trivia: Origin of the Term Regression

When s y = sx , the slope of the linear regression curve is r and ŷ[x]− ȳ =
r (x − x̄), which is less than x − x̄ whenever 0 < r < 1 and x > x̄ . Fran-

cis Galton, a 19th century scientist with an interest in eugenics, studied

patterns of inheritance of all sorts of attributes. He found, for example,

that the sons of tall men tended to be shorter than their fathers, and that

this pattern occurred for most of the variables that he studied. He called

this phenomenon regression towards the mean, and the origin of the term

linear regression is from his work. Regression towards the mean will be ob-

served whenever the linear model is valid, the correlation between x and

y is between –1 and 1, and the standard deviation of the x and y variables

are equal. Had he run his regressions the other way he would have also

discovered that the fathers of tall men also tend to be shorter than their

sons.

Note that the regression line of x on y is not the inverse of the re-

gression line of y on x unless r = ±1. The reason for this asymmetry is
that when we regress y on x we are minimizing the squared residuals of

y compared to ŷ[x] while when we regress x on y we are minimizing

the squared residuals of x compared to x̂[y]. Figure 2.5 shows the lin-

ear regression lines of y on x and x on y for a positively correlated set

of data.
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Regression of
y on x

Regression of x on y

Figure 2.5 Plot of linear regression lines of y on x and x on y for a positively correlated
set of data. These plots are not inverses of each other because of the presence
of the correlation coefficient in equation (2.6).

2.8. Determining the Accuracy of Linear Regression Estimates

In the linear regression model, the error term εi has a normal distribution

with mean 0 and standard deviation σ . We estimate the error variance

σ 2 by

s 2 =
∑

(yi − ŷi )
2/(n − 2). (2.9)

The denominator of equation (2.9) is reduced by two in order tomake s 2 an

unbiased estimate of σ 2. For large n, s 2 is very close to the average squared

residual of yi . This statistic, s 2, is often called the mean squared error, or
MSE; s is called the root MSE.
The variance of b can be shown to be

σ 2
/ ∑

(xi − x̄)2 (2.10)

and the standard error of b is

σ
/√∑

(xi − x̄)2 = σ/(sx
√
n − 1). (2.11)

This implies that the precision with which we can estimate b

(i) decreases as σ , the standard deviation of εi , increases,

(ii) increases as the square root of the sample size increases, and

(iii) increases as the estimated standarddeviationof the x variable increases.

The reason why sx appears in equation (2.11) can be explained intuitively

by looking at Figure 2.6. The panels on this figure depict linear regression
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x
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x

Figure 2.6 The standard error of b is affected by the range of the observed values of x as
well as by the sample size and error standard deviation σ . In both panels of
this figure, the regression lines, error standard deviations and sample sizes are
identical. They differ in that the range of the x values is greater in the right panel
than in the left. This greater variation allows us to estimate the slope parameter
with greater precision in the right panel.

models with identical values of α and β (indicated by black lines), identical

values of σ , and identical sample sizes. They differ in that the range of the

x variable in the left panel is less than that on the right. This implies that sx
is smaller for the data in the left panel than it is in the right. The gray lines

denote possible estimates of α + βx that are compatible with the data. Note

that the small range of x in the left panel makes the data compatible with a

larger range of slope estimates than is the case for the right panel.

An unbiased estimate of the variance of b is

var[b] = s 2
/ ∑

(xi − x̄)2. (2.12)

We estimate the standard error of b to be

se[b] = s/(sx
√
n − 1). (2.13)

Under the null hypothesis that β = 0,
b/se[b] (2.14)

has a t distribution with n− 2 degrees of freedom. We can use equation
(2.14) to test this null hypothesis. A 95% confidence interval for β is given

by

b ± tn−2,0.025se[b]. (2.15)

The variance of a is estimated by

var[a] = s 2

n
+ x̄2var[b], (2.16)
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and a/
√
var[a] has a t distribution with n− 2 degrees of freedomunder the

null hypothesis that a = 0.
It is helpful to know how successful a linear regression is in explaining

the variation of the y variable. We measure the total variation by the total
sum of squares (TSS) which equals

∑
(yi − ȳ)2. The analogous variation

explained by the model is the model sum of squares (MSS), which equals∑
(ŷi − ȳ)2. R2 =MSS/TSSmeasures the proportion of the total variation

explained by the model. It can be shown that R2 equals the square of the

correlation coefficient r (hence its name). If x and y are independent then

ŷi ∼= ȳ for all i and
∑
(ŷi − ȳ)2 ∼= 0. If x and y are perfectly correlated,

then yi = ŷi and hence R2 = 1.

2.9. Ethylene Glycol Poisoning Example

For the poison data discussed in Section 1.2.9 and throughout this chapter

we have that n = 18, x̄ = 7.210 56, ȳ = 90.44, sx = 0.173 05, s y = 80.584 88
and r = –0.891 12. Hence equations (2.6) and (2.7) give that b = r s y/sx =
−0.891 12× 80.584 88/0.173 05 = –414.97 and a = ȳ − bx̄ = 90.44 −
(−414.97× 7.210 56)= 3082.6. The estimate of σ is

s =
√∑

(yi − ŷi )2/(n − 2) = 37.693.

The estimated standard error of b is

se[b] = s/(sx
√
n − 1) = 37.693/(0.173 05

√
18− 1) = 52.83.

To test the null hypothesis that β = 0 we calculate t = b/se[b] = −414.97/
52.83 = 7.85, which has a t distribution with 16 degrees of freedom (P <

0.0005). Hence, we can accept the alternative hypothesis that glycolate levels

fall with increasing pH. Now±t16,0.025 = 2.12. Therefore, a 95% confidence
interval for b is b ± tn−2,0.025se(b)= −414.97± t16,0.025 × 52.83= −414.97
± 2.12× 52.83= (−527, −303).

2.10. 95% Confidence Interval for y [x] = α + βx Evaluated at x

Let y[x] = α + βx be the expectedvalueof y given x . Then y[x] is estimated

by ŷ[x] = a + bx . The expected value of ŷ[x] given x is E[ŷ[x] | x] = y[x]

and the estimated variance of ŷ[x] given x is

var[ŷ[x] | x] = (s 2/n)+ (x − x̄)2var[b]. (2.17)

Since the regression linegoes through thepoint (x̄ , ȳ),wehave that ŷ[x̄] = ȳ

and equation (2.17) reduces to s 2/nwhen x = x̄ . The farther x is from x̄ the
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Figure 2.7 This graph shows the estimated linear regression line of plasma glycolate
against arterial pH (Brent et al., 1999). The gray lines in this graph show the 95%
confidence intervals for the expected glycolate response E[ŷ(x) | x] = α + βx.

greater the variance of ŷ[x] and the greater the influence of var[b] in deter-

mining this variance. This reflects the fact that errors in the estimate of β are

amplified as x moves away from x̄ . The 95% confidence interval for ŷ[x] is

ŷ[x]± tn−2,0.025
√
var[ŷ[x] | x]. (2.18)

For example, suppose that we wanted to estimate a 95% confidence inter-

val for the expected glycolate level of patients with an arterial pH of 7.0

who have been poisoned by ethylene glycol. Then ŷ[7.0] = a + 7.0b =
3082.6− 7.0× 414.97= 177.81, var[ŷ[7.0] | x = 7]= [s 2/n]+ (7.0− x̄)2

var[b] = 37.6932/18+ (7.0− 7.210 56)2 × 52.832 = 202.7anda95%con-

fidence interval for ŷ(7.0) is 177.81± 2.12√202.7= (148, 208). Figure 2.7
shows a plot of equations (2.8) and (2.18) for the poison data. Note that

these confidence limits indicate the plausible degree of error in our estimate

of the regression line y[x] = α + βx . They do not indicate the likely range

of the observed values of yi , and indeed the observations for half of the

patients lie outside these bounds. Note also that the linear regressionmodel

assumptions are false for larger pH values since the glycolate values cannot

be less than zero. Nevertheless, the overall fit of the data to this linear model

appears to be excellent.

2.11. 95% Prediction Interval for the Response of a New Patient

Sometimes we would like to predict the likely range of response for a

new patient given her value of the x variable. Under the linear model
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Figure 2.8 The dashed lines on this graph show 95% prediction intervals for the plasma
glycolate levels of new patients based on the data from Brent et al. (1999).

we can write her response as y[x] = α + βx + εi ∼= ŷ[x]+ εi . It can be

shown for any two independent variables u and v with variances σ 2u and σ 2v
that the variance of u + v is σ 2u + σ 2v . Hence var[y | x] ∼= var[ŷ[x] | x]+
var[εi ] = var[ŷ(x) | x]+ σ 2, and a 95% prediction interval for y can be
estimated by

ŷ[x]± tn−2,0.025
√
var[ŷ[x] | x]+ s 2. (2.19)

That is, the probability that her response will lie in the interval given

by equation (2.19) is 0.95. For example, suppose that a new patient poi-

soned with ethylene glycol has an arterial pH of 7.0. Then ŷ[7.0]= 177.81,
var[ŷ[7.0] | x = 7]= 202.7, s = 37.693 and a 95% prediction interval for y
at x = 7.0 is 177.81± 2.12√202.7+ 37.6932= (92.4, 263). In Figure 2.8 the
dashed lines show the 95% prediction intervals for new patients poisoned

by ethylene glycol. Note that we can make the 95% confidence interval for

ŷ[x] as narrow as we want by choosing a sufficiently large sample size. The

lower limit on the width of the 95% prediction interval for new observa-

tions, however, is constrained by the standard deviation of εi for individual

observations.

2.12. Simple Linear Regression with Stata

The following log file and comments illustrates how to use Stata to perform

the calculations discussed in the previous sections.

. * 2.12.Poison.log

. *

. * Calculate the mean plasma glycolate and arterial pH levels for the

. * ethylene glycol poisoning data of Brent et al. (1999). Regress glycolate



46 2. Simple linear regression

. * levels against pH. Draw a scatter plot of glycolate against pH. Plot the

. * linear regression line on this scatter plot together with the 95%

. * confidence limits for this line and the 95% prediction intervals for new

. * patients.

. *

. use C:\WDDtext\2.12.Poison.dta, clear {1}

. summarize ph glyco

Variable | Obs Mean Std. Dev. Min Max

---------+-----------------------------------------------

ph | 18 7.210556 .1730512 6.88 7.47

glyco | 18 90.44 80.58488 0 265.24

. format ph %9.1g {2}

. format glyco %9.0g

. graph glyco ph, gap(4) xlabel(6.8,6.9 to 7.5) ylabel(0, 50 to 300) {3}
> xline(7.21) yline(90.4)

{Graph omitted. See Figure 2.1}
. regress glyco ph {4}

Source | SS df MS Number of obs = 18 {5}
-------- + --------------------------- F( 1, 16) = 61.70

Model | 87664.6947 1 87664.6947 Prob > F = 0.0000 {7}
Residual | 22731.9877 16 1420.74923 R-squared = 0.7941 {8}
-------- + --------------------------- Adj R-squared = 0.7812

Total | 110396.682 17 6493.9225 Root MSE = 37.693 {6}
-------------------------------------------------------------------------

glyco | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+---------------------------------------------------------------

ph | -414.9666 52.82744 -7.855 0.000 -526.9558 -302.9775 {9}
_cons | 3082.58 381.0188 8.090 0.000 2274.856 3890.304 {10}

-------------------------------------------------------------------------

. predict yhat, xb {11}

. graph glyco yhat ph, gap(4) xlabel(6.9,7.0 to 7.5) ylabel(0, 50 to 300) {12}
> connect(.l) symbol(Oi)

{Graph omitted. See Figure 2.4}
. predict std_p, stdp {13}
. display _N {14}
18
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. display invttail(_N-2,0.025) {15}
2.1199053

. generate ci_u = yhat + invttail(_N-2,0.025)*std_p {16}

. generate ci_l = yhat - invttail(_N-2,0.025)*std_p {17}

. sort ph {18}

. graph glyco yhat ci_u ci_l ph, gap(4) xlabel(6.9,7.0 to 7.5) {19}
> ylabel(0, 50 to 300) connect(.lll) symbol(Oiii)

{Graph omitted. See Figure 2.7.}
. predict std_f, stdf {20}
. generate ci_uf = yhat + invttail(_N-2,0.025)*std_f {21}
. generate ci_lf = yhat - invttail(_N-2,0.025)*std_f

. graph glyco yhat ci_u ci_l ci_lf ci_uf ph, gap(4) xlabel(6.9,7.0 to 7.5) {22}
> ylabel(0, 50 to 300) connect(.lllll) symbol(Oiiiii)

{Graph omitted. See Figure 2.8}

Comments
1 The2.12.Poison.dtadata set contains theplasmaglycolate andarterial pH

levels of 18 patients admitted for ethylene glycol poisoning. These levels

are stored in variables called glyco and ph, respectively. The clear option

of the use command deletes any data that may have been in memory

when this command was given.

2 Stata variables are associated with formats that control how they are dis-

played in the Stata Editor and in graphs and data output. This command

assigns ph a general numeric format with up to nine digits and one digit

after the decimal point. The next command assigns glyco a similar format

with no digits after the decimal point. These commands will affect the

appearance of the axis labels in the subsequent graph commands. They

do not affect the numeric values of these variables. In the 2.12.Poison

data set both of these formats are set to %9.2g.

3 The command graph glyco ph draws a scatter plot of glyco by ph. The

options on this command improve the visual appearance of the scatter

plot; gap(4) places the title of the y-axis four spaces to the left of the

y-axis. The xlabel option labels the x-axis from 6.8 to 7.5 in even in-

crements 0.1 units apart. The ylabel options labels the y-axis from 0 to

300 in increments of 50. The xline and yline options draw vertical and

horizontal lines at x = 7.21 and y = 90.4 respectively. The default titles
of the x- and y-axes are labels assigned to the ph and glyco variables in the



48 2. Simple linear regression

2.12.Poison.dta data set. The resulting graph is similar to Figure 2.1.

(In this latter figure I used a graphics editor to annotate the mean gly-

colate and pH values and to indicate the residuals for three data points.)

4 This command performs a linear regression of glyco against ph. That

is, we fit the model E[glyco | ph] = α + β × ph (see equation 2.5). The

most important output from this command has been highlighted and is

defined below.

5 The number of patients n = 18.
6 The root MSE is s = 37.693 (see equation 2.9). The total sum of squares
is TSS= 110 396.682.

7 The model sum of squares is MSS= 87 664.6947.
8 R2 =MSS/TSS= 0.7941. Hence 79% of the variation in glycolate levels
is explained by this linear regression.

9 The slope estimate of β for this linear regression is b = −414.9666
(see equation 2.6). The estimated standard error of b is se[b]= 52.827 44
(see equation 2.13). The t statistic to test the null hypothesis that β = 0
is t = b/se[b] = –7.855 (see equation 2.14). The P value associated

with this statistic is < 0.0005. The 95% confidence interval for β is

(–526.9558, –302.9775) (see equation 2.15).

10 The y intercept estimate of α for this linear regression is a = 3082.58

(see equation 2.7).

11 The predict command can estimate a variety of statistics after a regression

orother estimationcommand. (Stata refers to suchcommandsaspost es-

timationcommands.)Thexboptioncausesanewvariable (in this example

yhat) to be set equal to each patient’s expected plasma glycolate level

ŷ[x] = a + bx ; in this equation, x is the patient’s arterial pHand a and b

are theparameterestimatesof the linear regression(seealsoequation2.8).

12 This command graphs glyco and yhat against ph. The connect and symbol

options specify how this is to be done. There must be one character be-

tween the parentheses following the connect and symbol options for each

plotted variable. The first character affects the first variable (glyco), the

second affects the second variable (yhat) et cetera; connect(.l) specifies

that the glyco values are not connected and the yhat values are connected

by a straight line; symbol(Oi) specifies that each glyco value is indicated

by a large circle but that no symbol is used for yhat. The net effect of this

command is to produce a scatter plot of glycolate against pH together

with a straight line indicating the expected glycolate levels as a function

of pH. The resulting graph is similar to Figure 2.4.

Stata commands can often be too long to fit on a single line of a

log file. When this happens the command wraps onto the next line.
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A “>” symbol at the beginning of a line indicates the continuation of the

preceding command rather than the start of a new one.

13 With the stdp option predict defines a new variable (in this example

std_p) to be the standard error of yhat. That is, std_p = √
var[ŷ[x] | x]

(see equation 2.17).

14 The display command calculates and displays a numeric expression or

constant. _N denotes the number of variables in the data set, which in

this example is 18.

15 The Stata function invttail(n,1− α) calculates a critical value of sizeα for

a t distributionwithndegreesof freedom.Thus, invttail(_N− 2,0.025)=
invttail(16,0.025) = t16,0.025 = 2.119 9053.

16 The generate command defines a new variable in terms of old ones. Here

ci_u is set equal to

ŷ[x]+ tn−2,0.025
√
var[ŷ[x] | x],

which is the upper bound for the 95% confidence interval for ŷ[x] (see

equation 2.18).

17 Similarly

ci l = ŷ[x]− tn−2,0.025
√
var[ŷ[x] | x].

18 This command sorts the data by ph. This is needed to ensure that the

following graph command draws the confidence bounds correctly. The

data should be sorted by the x-axis variable whenever a non-linear curve

is to be plotted.

19 We next add the graphs of the 95% confidence intervals for ŷ[x] to the

preceding graph, which generates Figure 2.7.

20 The stdf option of the predict command defines a new variable (std_f )

that equals the standard deviation of the response for a newpatient. That

is,

std_f = √
var[ŷ[x] | x]+ s 2.

21 The next two commands define ci_uf and ci_lf to be the bounds of the

95% prediction intervals for new patients (see equation 2.19).

22 This final graph command adds the 95% prediction intervals to the pre-

ceding graph. It is similar to Figure 2.8.

2.13. Lowess Regression

Linear regression is a useful tool for describing a relationship that is linear,

or approximately linear. It has the disadvantage that the linear relationship is

assumed a priori. It is often useful to fit a line through a scatter plot that



50 2. Simple linear regression

doesnotmake anymodel assumptions.One such technique is lowessregres-
sion, which stands for locally weighted scatter plot smoothing (Cleveland,
1993). The idea is that each observation (xi , yi ) is fitted to a separate

linear regression line based on adjacent observations. These points are

weighted so that the farther away the x value is from xi , the less effect it

has on determining the estimate of ŷi . The proportion of the total data

set that is considered for each estimate ŷi is called the bandwidth. In
Stata, the default bandwidth is 0.8, which works well for midsize data sets.

For large data sets a bandwidth of 0.3 or 0.4 usually works best; a band-

width of 0.99 is recommended for small data sets. The wider the band-

width the smoother the regression curve. Narrow bandwidths produce

curves that are more sensitive to local perturbations in the data. Experi-

menting with different bandwidths helps to find a curve that is sensi-

tive to real trends in the data without being unduly affected by random

variation. The lowess method is computationally intensive on large data

sets. Reducing the bandwidth will reduce the time needed to derive these

curves.

The black curve in Figure 2.9 shows a lowess regression curve for the

ethylene glycol poisoning data. It was drawn with a bandwidth of 0.99. The

gray line in this graph marks the least squares linear regression line. These

two curves are similar for pHs lower than 7.4. There is evidence of a mild

departure from the linear model for the larger pH values that are associated

with glycolate values at, or near, zero.
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Figure 2.9 The black line shows the lowess regression curve for the ethylene glycol poi-
soning data (Brent 1999). This curve closely approximates the linear regression
curve over most of the observed range of arterial pH.
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2.14. Plotting a Lowess Regression Curve in Stata

The 2.12.Poison.log file that was started in Section 2.12 continues as follows.

. * Derive a lowess regression curve for the ethylene glycol poisoning data

. * using a bandwidth of 0.99. Plot this curve together with the linear

. * regression line and a scatterplot of plasma glycolate by arterial pH

. * levels.

. *

. ksm glyco ph, lowess bwidth(.99) generate(low99glyco) {1}
{Graph omitted}

. graph glyco yhat low99glyco ph, gap(4) xlabel(6.9,7.0 to 7.5) {2}
> ylabel(0, 50 to 300) connect(.ll) symbol(Oii)

{Graph omitted. See Figure 2.9}

Comments
1 The ksm command with the lowess option derives a lowess regression

curve; ksm glyco ph, lowess graphs this regression curve together with a

scatterplotof glyco againstph. Thedefault bandwidth for lowess regression

is 0.8. To use a different bandwidth add the bwidth(#) option, where # is

anumbergreater thanzeroand less thanone. In this example Ihave chosen

a bandwidth of 0.99. The option generate(low99glyco) creates an new

variable called low99glyco that equals the value of the lowess regression

curve associated with each patient’s pH.

2 This command plots the lowess regression curve given by low99glyco

together with the linear regression line and a scatter plot of glyco against

ph. The resulting graph is similar to Figure 2.9.

2.15. Residual Analyses

An important advance in modern data analysis is the use of computers for

exploratory data analysis. Such analyses are useful in determining whether

a given model is appropriate for a given data set or whether specific obser-

vations are having an excessive influence on the conclusions of our analyses.

One of these techniques is residual analysis. In linear regression the resid-

ual for the i th patient is ei = yi − ŷi (see Section 2.6). Figure 2.10 shows a

linear regression of systolic blood pressure (SBP) against body mass index

(BMI) for 25 patients from the FraminghamHeart Study (Levy, 1999). The

solid line shows the estimated expected SBP derived from all 25 patients.
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Figure 2.10 Regression of systolic blood pressure against body mass index. The solid line
includes all patients in the regression. The dashed line excludes Patient A. Pa-
tient A exerts a large influence on the regression line. Patients A and B both
have high leverage because they are both far from the mean body mass index.
However, Patient B has little influence because her systolic blood pressure falls
near the regression line.

Note that patient A has an observed SBP of 260 and an expected SBP of 134

giving a very large residual 260−134 = 126. If we delete this patient from

the analysis the regression line shifts to the dashed line in Figure 2.10. The

solid and dashed lines in this figure have slopes of 1.19 and 3.53, respectively.

Thus, the deletion of this single data point causes a three-fold increase in

the regression slope. This data point is said to have great influence on our
slope estimate. The reason for this is partly because of the large residual

and partly because the patient’s BMI is fairly far from the mean BMI value.

Recall that the regression line is fitted byminimizing the sum of the squared

residuals. Rotating the dashed line in a clockwise direction towards the solid

line reduces the squared residual for patient A more than it increases the

squared residuals for all other patients.

The potential for an independent variable value to influence the results

is quantified by its leverage, which is given by the formula

h j = 1

n
+ (x̄ − x j )2∑

i (x̄ − xi )2
. (2.20)

The leverage is minimized when x̄ = x j , in which case h j = 1/n. A large

residual with little leverage will have little effect on the parameter estimates,
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particularly if the sample size, n, is large. It can be shown that h j always lies

between 1/n and 1. Data points with high leverage will have great influence

if the associated residual is large. In Figure 2.10 patient B has high leverage

but little influence since the regression lines pass near the data point. This is

particularly true of the regression in which patient A is omitted. Note that

the leverage is determined entirely by the values of the x variable and is not

affected by the y variable.

We can rewrite equation (2.17) using equation (2.20) as

var[ŷi | xi ] = s 2hi . (2.21)

Hence, an alternative definition of hi is that it is the variance of ŷi given xi
expressed in units of s 2. If x is the covariate of a new patient with leverage

h then the estimated variance of her predicted response y given x is

var[y | x] = s 2(h + 1). (2.22)

Thus, we can rewrite the 95% prediction interval for y (equation (2.19)), as

ŷ[x]± tn−2,0.025(s
√
h + 1). (2.23)

We will discuss the concepts of influence and leverage in greater detail in

the next chapter.

The variance of the residual ei is

var[ei ] = s 2(1− hi ). (2.24)

Note that high leverage reduces the variance of ei because the data point

tends to pull the regression line towards it, thereby reducing the variation of

the residual. (In the extreme case when hi = 1 the regression line always goes
through the i th data point giving a residual of zero. Hence the variance of ei
alsoequals zero.)Dividing ei by its standarddeviationgives the standardized
residual for the i th patient, which is

zi = ei/s
√
1− hi . (2.25)

Large standardized residuals identify values of yi that are outliers and are

not consistent with the linearmodel. A problemwith equation (2.25) is that

a single large residual can inflate the value of s 2, which in turn will decrease

the size of the standardized residuals. To avoid this problem, we usually

calculate the studentized residual

ti = ei/s(i)
√
1− hi , (2.26)

where s(i) denotes the root MSE estimate of σ with the i th case deleted

(ti is sometimes referred to as the jackknife residual). If the linear model is
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Figure 2.11 Scatterplot of studentized residuals against arterial pH for the linear regression
performed in Section 2.9. A lowess regression is fitted to these residuals.

correct, then ti should have a t distribution with n− 3 degrees of freedom.
Plotting these residuals against xi is useful for assessing the homoscedastic-

ity assumption and detecting departures from linearity. Figure 2.11 shows a

plot of studentized residuals against pH values for the linear regression per-

formed in Section 2.9. A lowess regression curve of the studentized residuals

against pH is also plotted. This curve should be flat and close to zero when

the regression is from a large data set in which the linear model is valid.

Dashed horizontal lines are drawn at ±tn−3,0.25 = ±t15,0.25 = ±2.13; if the
model is correct 95% of the residuals should lie between these dotted lines.

This is, in fact, the case and there is no obvious pattern in the distribution

of the residuals. The variation of the residuals does not appear to vary with

pH and the lowess regression curve is fairly flat and close to zero. Hence,

this graph suggests that the linear regression model is appropriate for these

data.

It is always a good idea to double check data points with large studentized

residuals. They may indicate data errors or some anomaly in the way the

experiment was conducted. If the data point is valid but has high influence

youmay wish to report your findings both with and without this data point

included in the analysis.

2.16. Studentized Residual Analysis Using Stata

The following log file and comments illustrate a residual analysis of the

ethylene glycol poison data.
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. * 2.16.Poison.log

. *

. * Perform a residual analysis of the linear regression of plasma glycolate

. * against arterial pH from the poison data set (Brent et al., 1999).

. *

. use C:\WDDtext\2.12.Poison.dta, clear

. format ph %9.1g

. regress glyco ph

{Output omitted. See Section 2.12}
. predict residual, rstudent {1}
. display invttail(_N-3, .025) {2}
2.1314495

. ksm residual ph, lowess bwidth(.99) gap(2) xlabel(6.9,7.0 to 7.5)

. ksm residual ph, lowess bwidth(.99) gap(2) xlabel(6.9,7.0 to 7.5) {3}
> ylabel(-2.0 -1 to 2.0) yline(-2.13 0 2.13,.95) symbol(Oi)

{Graph omitted. See Figure 2.11}

Comments
1 The rstudent option of the predict command causes studentized residuals

to be derived and stored in the specified variable – in this case residual.

(Note that the predict command applies to the most recent estimation

command; ksm is also an estimation command. Hence, if we had cal-

culated a lowess regression in between the preceding predict and regress

commands, we would have had to repeat the regress command prior to

calculating the studentized residuals.)

2 The critical value tn−3,0.25 = t15,0.25 = 2.13. If the linear model is correct

95% of the studentized residuals should lie between±2.13.
3 The ksm command accepts many of the options of the graph command.

This command produces a graph that is very similar to Figure 2.11.

2.17. Transforming the x and y Variables

2.17.1. Stabilizing the Variance

Suppose that we regress y against x , and then perform a residual plot as

in Section 2.16. If this plot shows evidence of heteroscedasticity we can

sometimes rectify the problemby transforming the y variable. If the residual

standard deviation appears to be proportional to the expected value ŷi , try



56 2. Simple linear regression

using a logarithmic transformation. That is, try the model

log[yi ] = α + βxi + εi . (2.27)

If the residual variance is proportional to the expected value ŷi , then the

square root transform

√
yi = α + βxi + εi . (2.28)

will stabilize the variance. Note, however, that transforming the y variable

affects the shape of the curve log[ ŷ[x]] as well as the residual standard

deviation.Hence, if the relationshipbetween x and y is linearbut the residual

standard deviation increases with ŷi , then equation (2.27) may stabilize the

residual variance but impose an invalid non-linear relationship between

E [yi ] and xi . In this case non-linear regression methods may be needed

(Hamilton, 1992; Draper and Smith, 1998).

2.17.2. Correcting for Non-linearity

Figure 2.12 shows four common patterns on non-linearity between x and

y variables. If x is positive, then models of the form

yi = α + β(xi )
p + εi , (2.29)

x
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Figure 2.12 Transforms to consider to achieve a linear relationship between E[yi ] and either
log[xi ], (xi )p or p

√
xi . We choose a constant p> 1 that gives the best linear

relationship for the transformed data.
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yi = α + β log[xi ]+ εi , or (2.30)

yi = α + β p
√
xi + εi (2.31)

should be considered for some p > 1. Data similar to panels A and B of

this figure may be modeled with equation (2.29). Data similar to panels C

and D may be modeled with equations (2.30) or (2.31). The best value of

p is found empirically. Alternatively, data similar to panels A or C may be

modeled with

log[yi ] = α + βxi + εi (2.32)

or

p
√
yi = α + βxi + εi . (2.33)

Data similar to panels B or D may be modeled with

y p
i = α + βxi + εi . (2.34)

These models may correctly model the relationship between x and y but

introduce heteroscedasticity in the model errors. In this case non-linear

regression methods should be used.

Data transformations can often lead tomore appropriate statistical mod-

els. In most cases, however, the results of our analyses should be presented

in terms of the untransformed data. It is important to bear in mind that

the ultimate purpose of statistics in biomedical research is to help clinicians

and scientists communicate with each other. For this reason, results should

be presented in a way that will be easily understood by readers who do not

necessarily have strong backgrounds in biostatistics.

2.17.3. Example: Research Funding and Morbidity for 29 Diseases

Gross et al. (1999) studied the relationship between NIH research funding

for 29 different diseases and disability-adjusted person-years of life lost due

to these illnesses. Scatter plots of these two variables are shown in the panels

of Figure 2.13. Panel A shows the untransformed scatter plot. Funding for

AIDS is3.7 timeshigher than foranyotherdisease,whichmakes the structure

of the data hard to see. Panel B is similar to panel A except the AIDS data has

been deleted and the y-axis has been rescaled. This scatterplot has a concave

shape similar to panel D of Figure 2.12, which suggests using a log or power

transform (equations 2.30 or 2.31). Panel C of Figure 2.13 shows funding

plotted against log disability-adjusted life-years. The resulting scatter plot

has a convex shape similar to panel A of Figure 2.12. This suggests using
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Figure 2.13 Scatter plots of NIH funding against disability-adjusted life-years lost for 29
diseases (Gross et al., 1999). The x- and y-axes of these variables are plotted
on either linear or logarithmic scales. The relationship between log funds and
log life-years in panel D is reasonably linear.

either a less concave transform of the x-axis or using a log transform of the

y-axis. In panel D of Figure 2.13 we plot log funding against log disability.

The relationship between these transformed variables is now quite linear.

AIDS remains anoutlier but is far less discordantwith theotherdiseases than

it is in panel A. The linear regression line and associated 95% confidence
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intervals are shown in this panel. The model for this linear regression is

E[log[yi ] | xi ] = α + β log[xi ], (2.35)

where yi and xi are the research funds and disability-adjusted life-years lost

for the i th disease, respectively. The slope estimate is β = 0.48, which differs
from zero with overwhelming statistical significance. Gross et al. (1999)

published a figure that is similar to panel D. Although this figure helps

to validate their statistical model, it is not an ideal graphic for displaying

the relationship between funding and lost life-years to their audience. This

relationship is more easily understood in panel E of Figure 2.13, which uses

the untransformed data. The transformed regression line and confidence

intervals from panel D are redrawn in this panel. If log[ ŷi ] = a + b log[xi ]

is the estimated regression line for the model specified by equation (2.35)

then the predicted funding level for the i th disease is

ŷi = ea xb
i . (2.36)

Equation (2.36) is themiddle curve in panel E. The 95%confidence intervals

for this curve are obtained by taking anti-logs of the confidence intervals in

panel D. Panel E shows that funding does increase with increasing loss of

life-years but that the rate of increase slows as the number of life-years lost

increases. Clearly other factors in addition tonumbers of life-years lost affect

fundingdecisions.This is particularly truewith respect toAIDS(seeVarmus,

1999). Of course, panels D and E display the same information. However,

panel D de-emphasizes the magnitude of AIDS funding and overempha-

sizes the magnitude of the number of disability-adjusted life-years lost to

this disease.

2.18. Analyzing Transformed Data with Stata

The following log file illustrates how data may be transformed to obtain

data that are appropriate for linear regression.

. * 2.18.Funding.log

. *

. * Explore the relationship between NIH research funds and disability-

. * adjusted life-years lost due to the 29 diseases discussed by

. * Gross et al. (1999). Look for transformed values of these variables

. * that are linearly related. Perform a linear regression on these

. * transformed variables. Replot this regression line as a function of

. * the untransformed variables.
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. *

. use C:\WDDtext\2.18.Funding.dta, clear {1}

. format dollars %9.1g

. graph dollars disabil ,xlabel(0, 1 to 9) ylabel(0, 0.2 to 1.4) gap(5) {2}
{Graph omitted. See Figure 2.13, panel A.}

. graph dollars disabil if dollars < 1 ,xlabel(0, 1 to 9) ylabel {3}
> (0, .1 to .4) ytick(.05 .15 .25 .35) gap(3)

{Graph omitted. See Figure 2.13, panel B.}
. generate logdis = log(disabil)

. label variable logdis "Log Adj. Life-Years" {4}

. graph dollars logdis if dollars < 1, xtick(-2.3,-1.61,-1.2,-.92,-.69, {5}
> -.51,-.36,-.22,-.11,0,.69,1.1,1.39,1.61,1.79,1.95,2.08,2.20,2.3)

> xlabel(-4.61 -2.3 0 2.3) ylabel(0 .1 .2 .3 .4) ytick(.05 .15 .25 .35) gap(3)

{Graph omitted. See Figure 2.13, panel C.}
. generate logdol = log(dollars)

. label variable logdol "Funding (log $ billions)"

. graph logdol logdis, xtick(-2.3,-1.61,-1.2,-.92,-.69,-.51,-.36,-.22, {6}
> -.11,0,.69,1.1,1.39,1.61,1.79,1.95,2.08,2.20,2.3) xlabel(-4.61,-2.3 0 2.3)

> ytick(-4.61, -3.91, -3.51, -3.22, -3.00, -2.81, -2.66, -2.53, -2.41, -2.3,

> -1.61,-1.2,-.92,-.69,-.51,-.36,-.22,-.11,0) ylabel(-4.61,-2.3,0) gap(5)

{Graph omitted.}
. regress logdol logdis {7}

Source | SS df MS Number of obs = 29

-------- + --------------------------- F( 1, 27) = 18.97

Model | 14.8027627 1 14.8027627 Prob > F = 0.0002

Residual | 21.0671978 27 .780266584 R-squared = 0.4127

-------- + --------------------------- Adj R-squared = 0.3909

Total | 35.8699605 28 1.28107002 Root MSE = .88333

-------------------------------------------------------------------------

logdo1 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+---------------------------------------------------------------

logdis | .4767575 .109458 4.356 0.000 .2521682 .7013468

_cons | -2.352205 .1640383 -14.339 0.000 -2.688784 -2.015627

-------------------------------------------------------------------------

{8}

. predict yhat, xb

. predict stdp, stdp
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. generate ci_u = yhat + invttail(_N-2,.025)*stdp

. generate ci_l = yhat - invttail(_N-2,.025)*stdp

. sort logdis

. graph logdol yhat ci_l ci_u logdis, connect(.lll) symbol(Oiii) {9}
> xlabel(-4.61,-2.3 0 2.3) xtick(-2.3,-1.61,-1.2,-.92,-.69,-.51,-.36,-.22,

> -.11,0,.69,1.1,1.39,1.61,1.79,1.95,2.08,2.20,2.3) ylabel(-4.61,-2.3,0)

> ytick(-4.61,-3.91,-3.51,-3.22,-3.00,-2.81,-2.66,-2.53,-2.41,-2.3,-1.61,

> -1.2,-.92,-.69,-.51,-.36,-.22,-.11,0) gap(5)

{Graph omitted. See Figure 2.13, panel D.}
. generate yhat2 = exp(yhat) {10}
. generate ci_u2 = exp(ci_u)

. generate ci_l2 = exp(ci_l)

. graph dollars yhat2 ci_u2 ci_l2 disabil, xlabel(0, 1 to 9) {11}
> ylabel(0, .2 to 1.4) gap(5) connect(.lll) symbol(Oiii)

{Graph omitted}
. graph dollars yhat2 ci_u2 ci_l2 disabil if dollars < 1, xlabel {12}
> (0, 1 to 9) ylabel(0,.1, .2,.3, .4,.5) gap(3) connect(.lll) symbol(Oiii)

{Graph omitted. See Figure 2.13, panel E.}

Comments
1 This data set is from Table 1 of Gross et al. (1999). It contains the annual

allocated NIH research funds and disability-adjusted life-years lost for

29 diseases. These two variables are denoted dollars and disabil in this

data set, respectively.

2 This command produces a scatter plot that is similar to panel A of Figure

2.13. In this figure the annotation of individual diseases was added with

a graphics editor.

3 AIDS is the only disease receivingmore than one billion dollars. Restrict-

ing this graph to diseases with less than one billion dollars in funding

produces a graph similar to panel B of Figure 2.13. The ytick command

draws tick marks on the y-axis at the indicated values.

4 This label variable command adds “Log Adj. Life-Years” as a label to the

logdis variable. This label will be used as the axis title in plots that use

logdis as either the x- or y-axis.

5 This graph produces a scatter plot that is similar to panel C of Figure

2.13. The xtick option draws tickmarks on the x-axis at log[0.1]= −2.3,
log[0.2], log[0.3], . . . , log[0.9], log[1], log[2], . . . , log[9] and log[10]=
2.3; x-axis labels are placed at log[0.01] = –4.61, log[0.1], log[1] and
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log[10]. In Figure 2.13, panel C these labels have been replaced by 0.01,

0.1, 1, and 10 using a graphics editor.

6 This command produces a scatter plot of log funding against log life-

years lost.

7 This command fits the regression model of equation (2.35).

8 The slope of the regression of log funding against log life-years lost is

0.4768. The P value associated with the null hypothesis that β = 0 is

< 0.0005.

9 This plot is similar to panel D of Figure 2.13.

10 The variable yhat2 equals the left hand side of equation (2.36); ci_u2 and

ci_l2 give the upper and lower bounds of the 95% confidence interval

for yhat2.

11 This graph plots funding against life-years lost. The regression curve and

95% confidence intervals are shown.

12 Deleting AIDS (diseases with dollars≥ 1) permits using a more narrow
range for the y-axis. The resulting graph is similar to panel E of Figure

2.13. In panel E, however, the y-axis is expressed in millions rather than

billions and a graphics editor has been used to break the y-axis and add

the data for AIDS.

2.19. Testing the Equality of Regression Slopes

Consider the relationship between systolic blood pressure (SBP) and body

mass index (BMI) inmenandwomen. Suppose thatwehavedata on samples

of n1 men and n2 women. Let xi1and yi1 be the SBP and BMI for the i th man

and let xi2 and yi2 be similarly defined for the i th woman. Let

yi1 = α1 + β1xi1 + εi1 and

yi2 = α2 + β2xi2 + εi2

be linear models of the relationship between SBP and BMI in men and

women, where εi1 and εi2 are normally distributed error terms with mean 0

and standard deviation σ . It is of interest to know whether the rate at which

SBP increases with increasing BMI differs between men and women. That

is, we wish to test the null hypothesis that β1 = β2. To test these hypothesis

we first perform separate linear regressions on the data from the men and

women. Let a1, b1 and s 21 estimate the y-intercept, slope and error variance

for the men and let a2, b2 and s 22 be similarly defined for the women. Let

ŷi1 = a1 + b1xi1 and ŷi2 = a1 + b2xi2. Then a pooled estimate of the error
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variance σ 2 is

s 2 =
(

n1∑
i=1
(yi1 − ŷi1)

2 +
n2∑
i=1
(yi2 − ŷi2)

2

)
/(n1 + n2 − 4)

= (
s 21 (n1 − 2)+ s 22 (n2 − 2)) /(n1 + n2 − 4). (2.37)

The variance of the slope difference is

var[b1 − b2] = s 2
(
1

/
n1∑
i=1
(xi1 − x̄1)

2 + 1
/

n2∑
i=1
(xi2 − x̄2)

2

)
. (2.38)

But

var[b1] = s 21

/
n1∑
i=1
(xi1 − x̄1)

2

and hence
n1∑
i=1
(xi1 − x̄1)

2 = s 21/var[b1].

This allows us to rewrite equation (2.38) as

var[b1 − b2] = s 2
(
var[b1]

/
s 21 + var[b2]

/
s 22

)
. (2.39)

Under the null hypothesis that β1 = β2,

t = (b1 − b2)/
√
var[b1 − b2] (2.40)

has a t distribution with n1 + n2 − 4 degrees of freedom. A 95% confidence
interval for β1 − β2 is

(b1 − b2)± tn1+n2−4, 0.05
√
var[b1 − b2]. (2.41)

2.19.1. Example: The Framingham Heart Study

The FraminghamHeart Study (Levy, 1999) has collected cardiovascular risk

factor data and long-term follow-up on almost 5000 residents of the town

of Framingham, Massachusetts. They have made available a didactic data

set from this study that includes baseline systolic blood pressure (SBP) and

body mass index (BMI) values on n1 = 2047 men and n2 = 2643 women

(see also Section 3.10). Table 2.1 summarizes the results of two separate

linear regressions of log[SBP] against log[BMI] in men and women from

this data set. The observed rate at which log[SBP] increases with increasing

log[BMI] inmen is b1 = 0.272 646mmHg per unit of BMI (kg/m2). This is
appreciably less than the corresponding rate of b2 = 0.398 595 in women.
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Table 2.1. Results of linear regressions of log systolic blood pressure against log body mass index
in men and women from the Framingham Heart Study (Levy, 1999).

Number y

Sex i of subjects ni intercept ai Slope bi MSE s 2i se[bi ] var[bi ]

Men 1 2047 3.988 043 0.272 646 0.018 7788 0.023 2152 0.000 5389

Women 2 2643 3.593 017 0.398 595 0.026 1167 0.018 5464 0.000 3440
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Figure 2.14 Linear regressions of log systolic blood pressure against log body mass index
in men and women from the Framingham Heart Study (1999). The regression
line for women (dashed line) has been superimposed over the corresponding
line for men (solid line).

Figure 2.14 shows scatter plots of log[SBP] vs. log[BMI] inmen and women

togetherwith lines depicting the expected log[SBP] from these linear regres-

sions. The regression line for women (dashed line) is also superimposed on

the scatterplot for men to provide an indication of the magnitude of the

slope difference.

Substituting these values into equations (2.37) and (2.39) gives s 2 =
(0.018 7788× (2047 − 2) + 0.026 1167× (2643 − 2))/(2047 + 2643−4)
= 0.022 91 and var[b1 − b2] = 0.022 91 × (0.000 5389/0.018 7788 +
0.000 3440/0.026 1167) = 0.000 959. Therefore, a t statistic to test the

equality of these slopes is t = (0.272 646− 0.398 595)/√0.000 959 =
−4.07 with 4686 degrees of freedom. The P value associated with this test
is P = 0.000 05. A 95% confidence interval for β1 − β2 is 0.272 646−
0.398 595 ± t 4686,0.025

√
0.000 959 = −0.126 + 1.96× 0.0310 = (−0.19,

−0.065). This test allows us to conclude with great confidence that the
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difference in slopes betweenmen and women in these regressions is not due

to chance variation. Whether this difference is due to an inherent difference

between men and women or is due to confounding with other variables re-

mains to be determined. It is worth noting, however, that these differences

are clinically appreciable. Amanwith a BMI of 35 will have an expected SBP

of exp[3.988+ 0.2726× log[35]] = 142 mm Hg. The corresponding ex-

pected SBP for a woman with this BMI is exp[3.593+ 0.3986× log[35]] =
150 mm Hg.

2.20. Comparing Slope Estimates with Stata

The following log file and comments illustrate how to perform the calcula-

tions and draw the graphs from the preceding section using Stata.

. * 2.20.Framingham.log

. *

. * Regression of log systolic blood pressure against log body mass

. * index at baseline in men and women from the Framingham Heart Study.

. *

. use C:\WDDtext\2.20.Framingham.dta, clear {1}

. generate logsbp = log(sbp) {2}

. generate logbmi = log(bmi)

(9 missing values generated)

. codebook sex {3}
{Output omitted}

tabulation: Freq. Numeric Label

2049 1 Men

2650 2 Women

. regress logsbp logbmi if sex==1 {4}

Source| SS df MS Number of obs = 2047

--------+ ----------------------------- F( 1, 2045) = 137.93

Model| 2.5901294 1 2.5901294 Prob > F = 0.0000

Residual| 38.4025957 2045 .018778775 R-squared = 0.0632

--------+ ----------------------------- Adj R-squared = 0.0627

Total| 40.9927251 2046 .020035545 Root MSE = .13704
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--------------------------------------------------------------------------

logsbp| Coef. Std. Err. t P>|t| [95% Conf. Interval]

--------+-----------------------------------------------------------------

logbmi| .272646 .0232152 11.744 0.000 .2271182 .3181739

_cons| 3.988043 .0754584 52.851 0.000 3.84006 4.136026

--------------------------------------------------------------------------

. predict yhatmen, xb {5}
(9 missing values generated)

. regress logsbp logbmi if sex==2 {6}
Source| SS df MS Number of obs = 2643

--------+ ----------------------------- F( 1, 2641) = 461.90

Model| 12.0632111 1 12.0632111 Prob > F = 0.0000

Residual| 68.9743032 2641 .026116737 R-squared = 0.1489

--------+ ----------------------------- Adj R-squared = 0.1485

Total| 81.0375143 2642 .030672791 Root MSE = .16161

--------------------------------------------------------------------------

logsbp| Coef. Std. Err. t P>|t| [95% Conf. Interval]

--------------------------------------------------------------------------

logbmi| .3985947 .0185464 21.492 0.000 .3622278 .4349616

_cons| 3.593017 .0597887 60.095 0.000 3.475779 3.710254

--------------------------------------------------------------------------

. predict yhatwom, xb

(9 missing values generated)

. sort logbmi

. graph logsbp yhatwom logbmi if sex==2, connect(.l[-#]) symbol(oi) {7}
> xlabel(2.71,3.4,3.81,4.09) xtick(3.0,3.22,3.56,3.69,3.91,4.01)

> ylabel(4.61,5.01,5.30,5.52) ytick(4.38,4.5,4.7,4.79,4.87,4.94,5.08,5.14,

> 5.19,5.25,5.35,5.39,5.43,5.48) gap(4) yscale(4.382,5.599)

{Graph omitted. See Figure 2.14, right panel}
. graph logsbp yhatmen yhatwom logbmi if sex==1 , connect(.ll[-#]) symbol(oii)

> xlabel(2.71,3.4,3.81,4.09) xtick(3.0,3.22,3.56,3.69,3.91,4.01)

> ylabel(4.61,5.01,5.30,5.52) ytick(4.38,4.5,4.7,4.79,4.87,4.94,5.08,5.14,

> 5.19,5.25,5.35,5.39,5.43,5.48) gap(4) yscale(4.382,5.599)

{Graph omitted. See Figure 2.14, left panel}
. generate s2 = (0.018778775*2045 + 0.026116737*2641)/(2047 + 2643 - 4) {8}
. generate varb_dif = s2*(0.0232152ˆ2/0.018778775 + 0.0185464ˆ2/0.026116737) {9}
. generate t = (0.272646 - 0.3985947)/sqrt(varb_dif) {10}
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. generate ci95_lb = (0.272646 - 0.3985947) {11}
> - invttail(4686,.025)*sqrt(varb_dif)

. generate ci95_ub = (0.272646 - 0.3985947)

> + invttail(4686,.025)*sqrt(varb_dif)

. list s2 varb_dif t ci95_lb ci95_ub in 1/1 {12}
s2 varb_dif t ci95_lb ci95_ub

1. .0229144 .0009594 -4.066185 -.1866736 -.0652238

. display 2*ttail(4686,abs(t)) {13}

. 00004857

Comment
1 This data set contains long term follow-upon4699people from the town

of Framingham. In this example, we focus on three variables collected at

each patient’s baseline exam: sbp, bmi and sex. The variable sbp records

systolic bloodpressure inmmHg;bmi recordsbodymass index inkg/m2.

2 Anexploratorydata analysis (not shownhere) indicates that the relation-

ship between log[sbp] and log[bmi] comes closer tomeeting the assump-

tions of a linear model than does the relationship between sbp and bmi.

3 There are 2049 men and 2650 women in this data set; sex is coded 1 or

2 for men or women, respectively.

4 This regression command is restricted to records where sex==1 is true.

That is, to records of men. The statistics from this regression that are

also in Table 2.1 are highlighted. Two of the 2049men in this data set are

missing values for either sbp or bmi, giving a total of 2047 observations

in the analysis.

5 The variable yhatmen contains the expected value of eachman’s log[sbp]

given his body mass index. These expected values are based on the

regression of logsbp against logbmi among men. There are nine sub-

jects with missing values of logbmi (two men and seven women). The

variable yhatmen is missing for these people. Note that this predict com-

mand defines yhatmen for all subjects including women. The command

predict yhatmen if sex==1, xbwould have defined yhatmen formenonly.

6 This regression of logsbp against logbmi is restricted to womenwith non-

missing values of sbp and bmi.

7 This graph is similar to the right panel of Figure 2.14. The axis labels

are written in terms of logsbp and logbmi. In Figure 2.14 these labels

have been replaced by the corresponding values of sbp and bmi using a

graphics editor.
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In Figure 2.14wewant the x- and y-axes to be drawn to the same scales

in order to facilitate comparisons between men and women. By default,

the range of the y-axis includes all ytick and ylabel values plus all values of

the y-variable. In panels of Figure 2.14 the range of values of logsbp is dif-

ferent formenandwomenandextendsbeyondtheytickandylabelvalues.

To force the scale of the y-axis to be the same for both men and women

weuse the yscaleoption,which specifies aminimumrange for the y-axis.

The y-axes for men and women will be identical as long as this range in-

cludes all logsbpvalues forbothmenandwomen.Thexscaleoptionworks

the sameway for the x-axis, but is not needed here since the xlabel values

span the range of observed logbmi values for both men and women.

In Figure 2.14 we distinguish between the regression lines for women

and men by using a dashed line for women. Stata allows a wide variety

of patterned lines. The desired pattern is specified by symbols placed in

brackets following the connect symbol of the connect option. For exam-

ple, in this command the connect(.l[−#]) option contains two connect

symbols: “.” and “l”. These symbols dictate how the first and second vari-

ables are to be connected, which in this example are logsbp and yhatwom

(see comment 12 of Section 2.12). The second of these symbols, “l”, is

followed by “[−#]”, which specifies that a dashed line is to connect the

observations of the second variable (yhatwom). Hence, the effect of this

command is to use a dashed line for the regression of logsbp against

logbmi among women. It is important when using a patterned line that

the data be sorted by the x-axis variable prior to the graph command.

See the Stata Graphics Manual for further details.

8 This command defines s2 to equal s 2 in equation (2.37); s2 is set equal

to this constant for each record in the database.

9 Thiscommanddefinesvarb_dif toequalvar(b1 − b2) inequation(2.39).

10 This is the t statistic given in equation (2.40).

11 The next two lines calculate the lower and upper bound of the 95%

confidence interval given in equation (2.41).

12 This command lists the values of s2, varb_dif, t, ci95_lb and ci95_ub

in the first record of the data file (all the other records contain identical

values). Note that these values agreewith those given for s 2, var[b1 − b2]

and (b1 − b2)± tn1+n2−4, 0.025
√
var(b1 − b2) in the example from

Section 2.19.1.

13 The function ttail(df,t) gives the probability that a t statistic with df de-

grees of freedom is greater than t. The function abs(t) gives the absolute

value of t. Hence 2*ttail(4686,abs(t)) gives the two-sided P value asso-

ciated with a t statistic with 4686 degrees of freedom. In this example,

t = −4.07 giving P = −0.00005.
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2.21. Additional Reading

Armitage and Berry (1994) and
Pagano and Gauvreau (2000) provide excellent introductions to simple lin-

ear regression. The approach to testing the equality of two regression

slopes described in Section 2.19 is discussed in greater detail by Armitage

and Berry.

Cleveland (1993) discusses lowess regression along with other important

graphical techniques for data analysis.

Hamilton (1992) provides a brief introduction to non-linear regression.

Draper and Smith (1998) provide a more thorough and more mathemati-

cally advanced discussion of non-linear regression.

Cleveland (1979) is the original reference on lowess regression.

Levy (1999) provides a review of the research findings of the Framingham

Heart Study.

Framingham Heart Study (1997) provides the 40 year follow-up data from

this landmark study. The didactic data set used in this text is a subset of

the 40 year data set that is restricted to patients who were free of coronary

heart disease at the time of their baseline exam.

Brent et al. (1999) studied patients with ethylene glycol poisoning. We used

data from this study to illustrate simple linear regression.

Gross et al. (1999) studied the relationship between research funding and

disability-adjusted life-years lost due to 29 diseases. We used data from

this study to illustrate data transformations in linear regression.

2.22. Exercises

Eisenhofer et al. (1999) investigated the use of plasma normetanephrine

and metanephrine for detecting pheochromocytoma in patients with von

Hippel–Lindau disease and multiple endocrine neoplasia type 2. The

2.ex.vonHippelLindau.dta data set contains data from this study on 26 pa-

tients with von Hippel–Lindau disease and nine patients with multiple en-

docrine neoplasia. The variables in this data set are

disease =
{
0: Patient has von Hippel–Lindau disease

1: Patient has multiple endocrine neoplasia type 2

p ne = plasma norepinephrine (pg/ml)

tumorvol = tumor volume (ml).

1 Regress plasma norepinephrine against tumor volume. Draw a scat-

ter plot of norepinephrine against tumor volume together with the
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estimated linear regression curve. What is the slope estimate for this

regression? What proportion of the total variation in norepinephrine

levels is explained by this regression?

2 Calculate the studentized residuals for the regression in question 1. De-

termine the 95% prediction interval for these residuals. Draw a scatter

plot of these residuals showing the 95% prediction interval and the ex-

pected residual values. Comment on the adequacy of themodel for these

data.

3 Plot the lowess regression curve for norepinephrine against tumor

volume. How does this curve differ from the regression curve in

exercise 1?

4 Experiment with different transformations of norepinephrine and tu-

mor volume. Find transformations that provide a good fit to a linear

model.

5 Regress the logarithm of norepinephrine against the logarithm of tumor

volume. Draw a scatter plot of these variables together with the linear

regression line and the 95% confidence intervals for this line. What

proportion of the total variation in the logarithm of norepinephrine

levels is explained by this regression? How does this compare with your

answer to question 1?

6 Using the model from question 5, what is the predicted plasma nore-

pinephrine concentration for a patient with a tumor volume of 100 ml?

What is the 95% confidence interval for this concentration?What would

be the 95% prediction interval for a new patient with a 100 ml tumor?

7 Calculate the studentized residuals for the regression in question 5. De-

termine the 95% prediction interval for these residuals. Draw a scatter

plot of these residuals showing the 95% prediction interval and the

expected residual values. Include the lowess regression curve of these

residuals against tumor volume on your graph. Contrast your answer to

that for question 2. Which model provides the better fit to the data?

8 Perform separate linear regressions of log norepinephrine against log

tumor volume in patients with von Hippel–Lindau disease and in pa-

tients with multiple endocrine neoplasia. What are the slope estimates

for these two diseases? Give 95% confidence intervals for these slopes.

Test the null hypothesis that these two slope estimates are equal. What is

the 95%confidence interval for thedifference in slopes for these diseases?

The following exercises concern the FraminghamHeart Study data set

2.20.Framingham.dta.

9 Evaluate the relationshipbetweensystolicbloodpressure (SBP)andbody

mass index (BMI). Do these variables meet the assumptions of a linear
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model? If not, explore different transformations of these two variables

that will result in variables that come closer to meeting the linear model

assumptions.

10 Replicate the regressions of log[SBP] against log[BMI] for men and

women in Section 2.20.What are the predicted SBPs formen andwomen

with a BMI of 40? Do you think that the difference between these two

blood pressures is clinically significant?

11 Plot the predicted SBPs in men and women as a function of BMI. Plot

the 95% confidence intervals for these predicted values.

The following question is for those who would like to sharpen their

intuitive understanding of simple linear regression.

12 When a data point has leverage hi = 1, the regression line always goes

through the data point. Can you construct an example where this hap-

pens? Enter your example into Stata and confirm that hi = 1 for your

designated data point. (Hint: this is not a math question. All you need

to remember is that the regression line minimizes the sum of squares of

the residuals. By experimenting with different scatter plots, find a set of

x values for which the sum of squared residuals is always minimized by

having a zero residual at your designated data point.)
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Multiple Linear Regression

In simple linear regression we modeled the value of a response variable as a

linear function of a single covariate. Inmultiple linear regression we expand

on this approach by using two or more covariates to predict the value of the

response variable.

3.1. The Model

It is often useful to predict a patient’s response from multiple explanatory

variables. The simple linear regressionmodel (equation 2.4) can be general-

ized to do this as follows. Suppose we have observations on n patients. The

multiple linear regressionmodel assumes that

yi = α + β1xi1 + β2xi2 + · · · +βk xik + εi , (3.1)

where

α, β1, β2, . . . , βk are unknown parameters,

xi1, xi2, . . . , xik are the values of known variables measured on the i th

patient,

εi has a normal distribution with mean 0 and standard deviation σ ,

ε1, ε2, . . . , εn are mutually independent, and

yi is the value of the response variable for the i th patient.

We usually assume that the patient’s response yi is causally related to

the variables xi1, xi2, . . . , xik through the model. These latter variables

are called covariates or explanatory variables; yi is called the dependent
or response variable. The model parameters are also called regression
coefficients.

Multiple linear regression is often useful when we wish to improve our

ability to predict a response variable and we have several explanatory

variables that affect the patient’s response.

72
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3.2. Confounding Variables

A confounding variable is one of little immediate interest that is correlated

with the risk factor and is independently related to the outcome variable of

interest. For example, blood pressure and bodymass index (BMI) both tend

to increase with age. Also, blood pressure and BMI are positively correlated.

If we select a stout and lean subject at random from a population, the stout

person is likely to be older than the lean subject and this difference in agewill

account for some of their difference in blood pressure. If we are interested in

the effect of BMI per se on blood pressure wemust adjust for the effect of age

on the relationship between these two variables. We say that age confounds

the effect of BMI on blood pressure. One way to adjust for age is to compare

BMI and blood pressure in a sample of patients who are all the same age. It

may, however, be difficult to find such a sample and the relationship between

BMIandbloodpressuremaybedifferent at different ages.Another approach

is through multiple linear regression. The interpretation of β1 in equation

(3.1) is that it estimates the rate of change in yi with xi1 among patients

with identical values of xi2, xi3, . . . , xik . To see this more clearly, suppose

that we have two covariates xi1and xi2. Let α = 0, β1 = 1, β2 = 2 and εi = 0

for all i (i.e., σ = 0). Then equation (3.1) reduces to yi = xi1 + 2xi2. Figure

3.1 shows a sample of values that fit this model in which xi1 and xi2 are

positively correlated. Note that the values of yi increase from 0 to 4 as xi2

increases from 0 to 1. Hence, the slope of the simple regression curve of yi

against xi2 is 4. However, when xi1 is held constant, yi increases from xi1

to xi1 + 2 as xi2 increases from 0 to 1. Hence, the rate at which yi increases

with xi2 adjusted for xi1 is β2 = 2.
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Figure 3.1 This graph shows points on the plane defined by the equation y = x1 + 2x2.
The rate at which y increases with increasing x2 is 2 when x1 is held constant
and equals 4 when x2 is not.
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3.3. Estimating the Parameters for a Multiple Linear
Regression Model

Let ŷi = a + b1xi1 + b2xi2 + · · · + bk xik be an estimate of yi given xi1,

xi2, . . . , xik . We choose our estimates of a , b1, . . . , bk to be those values

that minimize the sum of squared residuals
∑

(yi − ŷi )2. These values are

said to be the least squares estimates of α, β1, β2, . . . , andβk . This is pre-

cisely analogous to what we did in Section 2.6 for simple linear regression,

only now there are k covariates instead of 1. When there are just two covari-

ates the observations {(xi1, xi2, yi ) : i = 1, . . . , n} can be thought of as a

cloud of points in three dimensions. The estimates ŷi = a + b1xi1 + b2xi2

all lie on a plane that bisects this cloud (see Figure 3.1). The residual
yi − ŷi is the vertical distance between the observation yi and this plane.

We choose the values of a , b1 and b2, that give the plane that minimizes

the sum of squares of these vertical distances. When the points all lie on

the same plane (as in Figure 3.1) the values of a , b1 and b2, that define

this plane give residuals that are all zero. These values are our least squares

estimates of α, β1 and β2, since they give a sum of squared residuals that

equals zero.

3.4. R 2 Statistic for Multiple Regression Models

As in simple linear regression, the total variation of the dependent variable is

measured by the total sum of squares (TSS), which equals
∑

(yi − ȳ)2. The

variation explained by the model, the model sum of squares (MSS), equals∑
(ŷi − ȳ)2. The proportion of the variation explained by the model is

R2 = MSS/TSS. This is the same formula given in Section 2.8 for simple

linear regression. This statistic is a useful measure of the explanatory power

of the model. It is not, however, the square of a correlation coefficient, as

was the case for simple linear regression.

3.5. Expected Response in the Multiple Regression Model

Let xi = (xi1, xi2, . . . , xik) be a compact way of denoting the values of all of

the covariates for the i th patient. Then, if the model is true, it can be shown

that the expected value of both yi and ŷi given her covariates is

E [yi | xi ] = E [ŷi | xi ] = α + β1xi1 + β2xi2 + · · · +βk xik . (3.2)

We estimate the expected value of yi among subjects whose covariate values
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are identical to those of the i th patient by ŷi . The equation

ŷi = a + b1xi1 + b2xi2 + · · · + bk xik (3.3)

may be rewritten

ŷi = ȳ + b1(xi1 − x̄1) + b2(xi2 − x̄2)+ · · · + bk(xik − x̄k)· (3.4)

Thus ŷi = ȳ when xi1 = x̄1, xi2 = x̄2, . . . , and xik = x̄k .

3.6. The Accuracy of Multiple Regression Parameter Estimates

In equation (3.1) the error term εi has a variance of σ 2. We estimate this

variance by

s 2 =
∑

(yi − ŷi )
2/ (n − k − 1) . (3.5)

As was the case with simple linear regression, you can think of s 2 as being

the average squared residual as long as n ismuch larger than k + 1. It is often

called the mean squared error (MSE). It can be shown that the expected

value of s 2 is σ 2. The standard deviation σ is estimated by s which is called

the root MSE.
The standard errors of the parameter estimates a, b1, b2, . . . , bk are esti-

mated by formulas of the form

se[b j ] = s/ f j [{xi j : i = 1, . . . , n; j = 1, . . . , k}], (3.6)

where f j [{xi j : i = 1, . . . , n; j = 1, . . . , k}] is a complicated functionofall

of the covariatesonall of thepatients. Fortunately,wedonotneed to spell out

this formula in detail as all statistical software packages can derive it for us.

The important thing to remember about equation (3.6) is that the standard

error of b j increases as s, the standard deviation of the residuals, increases,

and decreases as the dispersion of the covariates increases. Equation (3.6)

is a generalization of equation (2.13), which gives the standard error of the

slope coefficient for the simple linear regression model.

Under the null hypothesis that β j = 0,

b j /se[b j ] (3.7)

has a t distribution with n – k – 1 degrees of freedom. That is, the number

of degrees of freedom equals n, the number of patients, minus k + 1, the

number of parameters in the model. We can use equation (3.7) to test this

null hypothesis. A 95% confidence interval for β j is given by

b j ± tn−k−1,0.025 × se[b j ]. (3.8)
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3.7. Leverage

Many of the concepts and statistics that we introduced for simple linear

regression have counterparts in multiple linear regression. One of these is

leverage. The leverage hi is a measure of the potential ability of the i th

patient to influence the parameter estimates. Patients with high leverage

will have an appreciable influence on these estimates if the residual ei =
yi − ŷi is large. The formula for hi is a complex function of the covariates

{xi j : i = 1, . . . , n; j = 1, . . . , k} but does not involve the response values

{yi : i = 1, . . . , n}. It can be shown that 1/n ≤ hi ≤ 1. A leverage greater

than 0.2 is generally considered to be large. Leverage is easily calculated by

any modern statistical software package.

The variance of ŷi given all of the covariates xi for the i th patient is

estimated by

var [ŷi | xi ] = s 2hi . (3.9)

Hence hi can also be thought of as the variance of ŷi given xi expressed

in units of s 2. Note that equation (3.9) is analogous to equation (2.21) for

simple linear regression.

3.8. 95% Confidence Interval for yi

It can be shown that (ŷi − E[yi | xi ])/
√

var[ŷi | xi ] has a t distribution with

n − k − 1 degrees of freedom. From equation (3.9) we have that the stan-

dard error of ŷi given this patient’s covariates is s
√

hi . Hence, the 95%

confidence interval for ŷi is

ŷi ± tn−k−1,0.025(s
√

hi ). (3.10)

3.9. 95% Prediction Intervals

Suppose that a new patient has covariates x1, x2, . . . , xk , which we will

denote by x, and leverage h. Let ŷ[x] = a + b1x1 + b2x2 + · · · + bk xk be

her estimated expected response given these covariates. Then the estimated

variance of her predicted response y is

var [y | x] = s 2 (h + 1) , (3.11)

and a 95% prediction interval for y is

ŷ [x] ± tn−k−1,0.025 (s
√

h + 1). (3.12)
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Equations (3.9), (3.11), and (3.12) are precisely analogous to equations

(2.21), (2.22) and (2.23) for simple linear regression.

3.10. Example: The Framingham Heart Study

The Framingham Heart Study (Levy, 1999) has collected long-term follow-

up and cardiovascular risk factor data on almost 5000 residents of the town

of Framingham, Massachusetts. Recruitment of patients started in 1948. At

the time of the baseline exams there were no effective treatments for hyper-

tension. I have been given permission to use a subset of the 40-year data

from this study in this text (Framingham Heart Study, 1997). We will refer

to this subset as the Framingham Heart Study didactic data set. It consists

of data on 4699 patients who were free of coronary heart disease at their

baseline exam. At this exam, the following variables were recorded on each

patient. The Stata names for these variables are given in the first column

below:

sbp = systolic blood pressure (SBP) in mm Hg,

dbp = dyastolic blood pressure (DBP) in mm Hg,

age = age in years,

scl = serum cholesterol (SCL) in mg/100ml,

bmi = body mass index (BMI)=weight/height2 in kg/m2,

sex = gender coded as

{
1: if subject is male

2: if subject is female,

month = month of year in which baseline exam occurred, and

id = a patient identification variable (numbered 1 to 4699).

Follow-up information on coronary heart disease is also provided:

followup = the subject’s follow-up in days, and

chdfate =
{

1: if the patient develops CHD at the end of follow-up

0: otherwise.

In Section 2.19.1 we showed that the rate at which SBP increased with

BMI was greater for women than for men. In this example, we will explore

this relationship in greater detail, and will seek to build a multiple linear

regression model that adequately explains how SBP is affected by the other

variables listed above. Although we usually have hypotheses to test that

were postulated in advance of data collection, there is almost always an

exploratory component to the modeling of a multivariate data set. It is all

too easy to force an inappropriate model on the data. The best way to avoid

doing this is to become familiarwith your data through a series of analyses of
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Table 3.1. Summary of results of three separate simple linear regressions of log systolic blood
pressure against log body mass index, age, and log serum cholesterol.

Slope 95% confidence

Model coefficient t P > | t | interval R2

log[sbpi ] = α + β × log [bmii ] 0.355 24.7 < 0.0005 0.33–0.38 0.12

log[sbpi ] = α + β × agei 0.00752 29.6 < 0.0005 0.0070–0.0080 0.16

log[sbpi ] = α + β × log [scli ] 0.196 16.3 < 0.0005 0.17–0.22 0.05

increasingcomplexityand todoresidual analyses thatwill identify individual

patients whose data may result in misleading conclusions.

3.10.1. Preliminary Univariate Analyses

We first perform separate simple linear regressions of SBP on each of the

continuous covariates: age, BMI, and serum cholesterol. Residual analyses

should be performed and the variables should be transformed if appropriate

(see Sections 2.15–2.18). These analyses indicate that reasonable linear fits

can be obtained by regressing log SBP against log BMI, log SBP against

age, and log SBP against log SCL. Table 3.1 summarizes the results of these

simple linear regressions. Figure 3.2 shows the corresponding scatter plots

and linear regression lines. These univariate regressions show that SBP is

related to age and SCL as well as BMI. Although the statistical significance

of the slope coefficients is overwhelming, the R2 statistics are low. Hence,

each of these risk factors individually only explain a modest proportion of

the total variability in systolic blood pressure. By building a multivariate

model of these variables we seek to achieve a better understanding of the

relationship between these variables.

Note that the importance of a parameter depends not only on its magni-

tude but also on the range of the corresponding covariate. For example, the

age coefficient is only 0.007 52 as compared to 0.355 and 0.196 for log[BMI]

and log[SCL]. However, the range of age is from 30 to 68 as compared to

2.79–4.05 for log[BMI] and 4.74–6.34 for log[SCL]. The large age range

increases the variation in log[SBP] that is associated with age. In fact, age

explains more of the variation in log[SBP] (has a higher R2 statistic) than

either of the other two covariates.

Changing the units of measurement of a covariate can have a dramatic

effect on the size of the slope estimate, but no effect on its biologic meaning.

For example, suppose we regressed blood pressure against weight in grams.

If we convertedweight from grams to kilogramswewould increase themag-

nitude of the slope parameter by 1000 and decrease the range of observed
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Figure 3.2 Simple linear regressions of log systolic blood pressure against log body mass
index, age and log serum cholesterol. These data are from the Framingham
Heart Study (Levy, 1999). All measurements were taken at each subject’s base-
line exam.

weights by 1000. The appearance of the plotted regression line and the

statistical significance of the regression analysis would be unchanged.

3.11. Scatterplot Matrix Graphs

Another useful exploratory graphic is the scatter plotmatrix, which consists

of all possible 2× 2 scatter plots of the specified variables. Such graphs can

be effective at showing the interrelationships between multiple variables

observed on a sample of patients. Figure 3.3 shows such a plot for log[SBP],

log[BMI], age and log[SCL] from the Framingham Heart Study. The graph

is restricted to women recruited in January to reduce the number of data

points and allow individual patient values to be discernible. A non-linear

regression line is fitted to each scatter plot by connectingmedian bands with

cubic splines. The details of this technique are not of great importance. It is

similar to lowess regression in that it attempts to fit a regression line to the

data without making any model assumptions, and it is reasonably resistant

to outliers. Although it does not always give as satisfactory a fit as lowess

regression it is much faster to compute. Like lowess regression, a parameter

may be specified to control the degree of smoothing of the curve.
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Figure 3.3 Matrix scatter plots of data from women recruited into the Framingham Heart
Study during one month. This graph shows all possible 2×2 scatter plots of the
specified variables. A non-linear regression curve is fitted to each scatter plot.

3.11.1. Producing Scatterplot Matrix Graphs with Stata

The following log file and comments illustrate how to produce a scatterplot

matrix graph with Stata.

. * 3.11.1.Framingham.log

. *

. * Plot a scatterplot matrix of log(sbp), log(bmi), age and log(scl) for

. * women from the Framingham Heart Study who were recruited in January.

. *

. use C:\WDDtext\2.20.Framingham.dta, clear

. generate logsbp = log(sbp)

. label variable logsbp "Log Systolic Blood Pressure"

. generate logbmi = log(bmi)

(9 missing values generated)
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. label variable logbmi "Log Body Mass Index"

. generate logscl = log(scl)

(33 missing values generated)

. label variable logscl "Log Serum Cholesterol"

. set textsize 120 {1}

. graph logsbp logbmi age logscl if month == 1 & sex == 2, matrix label symbol(o) {2}
> connect(s) band(4)

{Graph omitted. See Figure 3.3}

Comments
1 This command sets text on subsequent graphs to be 20% larger than the

default value; set textsize 80 would make subsequent text 20% smaller.

2 The matrix option generates a matrix scatterplot for logsbp, logbmi, age

and logscl. The if clause restricts the graph to women (sex == 2) who

entered the study in January (month == 1). The label option adds axis

labels to the graphic at evenly spaced intervals; band(4) specifies that a

non-linear regression line is to be fitted to each scatterplot. The number

in parenthesis indicates the degree of smoothing, with lower values in-

dicating greater smoothing; connect(s) indicates that the regression lines

should be smooth.

3.12. Modeling Interaction in Multiple Linear Regression

3.12.1. The Framingham Example

Let xi = (logbmii , agei , logscli , sexi )denote the covariates for log[BMI], age,

log[SCL] and sex for the i th patient. Let logsbpi denote his or her log[SBP].

The first model that comes to mind for regressing log[SBP] against these

covariates is

E[logsbpi | xi ] = α + β1 × logbmii + β2 × agei + β3 × logscli + β4 × sexi.

(3.13)

A potential weakness of this model is that it implies that the effects of the

covariates on logsbpi are additive. To understand what this means consider

the following. Suppose we look at patients with identical values of agei

and logscli . Then for these patients α + β2 × agei + β3 × logscli will equal
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a constant and model (3.13) implies that

E[logsbpi | xi ] = constant + β1 × logbmii + β4 (3.14)

for men, and

E[logsbpi | xi ] = constant + β1 × logbmii + 2β4 (3.15)

for women (recall that the covariate sexi takes the values 1 and 2 for men

andwomen, respectively). Subtracting equation (3.14) fromequation (3.15)

gives that the difference in expected log[SBP] for men and women with

identical BMIs is β4. Hence, the β4 parameter allows men and women with

the sameBMI tohavedifferent expected log[SBP]s.However, the slopeof the

logsbpi vs. logbmii relationship for both men and women is β1. Our analysis

in Section 2.19.1 indicated, however, that this slope is higher for women

than for men. This is an example of what we call interaction, in which the

effect of one covariate on the dependent variable is influenced by the value

of a second covariate. Models such as (3.13) are said to be additive in that

the joint effect of any two covariates equals the sum of the individual effects

of these parameters. Figure 3.4 illustrates the difference between additive

and interactive models. In the additive model, the regression lines for, say,

men and women are parallel; in the model with interaction they diverge.

We need a more complex model to deal with interaction. In the

Framingham example let

womani = sexi − 1.

Then

womani =
{

1: if i th subject is female

0: if i th subject is male.

No Interaction

InteractionAdditive Model

Continuous x Variable Continuous x Variable

E
xp

ec
te

d
 R

es
p

o
n

se

Figure 3.4 Effect of a dichotomous and a continuous covariate on expected patient re-
sponse. On the left the dichotomous variable (black and gray lines) does not
interact with the continuous variable (x-axis) giving parallel regression lines. On
the right the two variables interact and the effect of the dichotomous variable
is much greater for large values of x than for small values.
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Consider the model

E[logsbpi | xi ] = α + β1 × logbmii + β2 × womani

+ β3 × logbmii × womani . (3.16)

In this and subsequent models, xi represents the values of all of the model’s

covariates for the i th patient, in this case logbmii and womani . Model (3.16)

reduces to

E[logsbpii | xi ] = α + β1 × logbmii

for men and

E[logsbpii | xi ] = α + (β1 + β3) × logbmii + β2

for women. Hence, the regression slopes for men and women are β1 and

β1 + β3, respectively. The parameter β3 is the difference in slopes between

men and women.

3.13. Multiple Regression Modeling of the Framingham Data

In Section 2.19.1 we showed that there was a significant difference between

the slopes of the simple linear regressions of log[SBP] against log[BMI] in

men and women. A reasonable approach to multiple regression modeling

of these data is to regress log[SBP] against log[BMI], sex, age, log[SCL] and

the interaction of sex with log[BMI], age and log[SCL]. That is, we consider

the model

E[log[sbpi ] | xi ] = α + β1 × log[bmii ] + β2 × agei + β3 × log[scli ]

+ β4 × womani + β5 × womani × log[bmii ]

+ β6 × womani × agei + β7 × womani × log[scli ]. (3.17)

The estimates of the regression coefficients from model (3.17) are given in

Table 3.2. The covariate associated with each coefficient is given in the left

most column of this table. The P values correspond to the test of the null

hypothesis that the true values of these parameters are zero. The R2 value

for this model is 0.2550, which is about twice the R2 from the simple linear

regression of log[sbp] against log[bmi].Hence,model (3.17) explains 25.5%

of the variation in log[SBP]. We seek the simplest model that satisfactorily

explains the data. The estimate of coefficient β7 is very small and has a

non-significant P value of 0.70. This P value is larger than any of the other

parameter P values in the model. Hence, the womani × log(scli ) interaction
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Table 3.2. Parameter estimates from models (3.17), (3.18), and (3.19) for analyzing the
Framingham Heart Study baseline data (Levy, 1999).

Model (3.17) Model (3.18) Model (3.19)

Parameter P Parameter P Parameter P
Covariate

Pa
ra

m
et
er

estimate Value

Pa
ra

m
et
er

estimate Value

Pa
ra

m
et
er

estimate Value

1 α 3.5494 < 0.0005 α 3.5726 < 0.0005 α 3.5374 < 0.0005

log [bmii ] β1 0.2498 < 0.0005 β1 0.2509 < 0.0005 β1 0.2626 < 0.0005

agei β2 0.0035 < 0.0005 β2 0.0035 < 0.0005 β2 0.0035 < 0.0005

log [scli ] β3 0.0651 < 0.0005 β3 0.0601 < 0.0005 β3 0.0596 < 0.0005

womani β4 −0.2292 0.11 β4 −0.2715 0.004 β4 −0.2165 < 0.0005

womani × log [bmii ] β5 0.0189 0.52 β5 0.0176 0.55

womani × agei β6 0.0049 < 0.0005 β6 0.0048 < 0.0005 β5 0.0049 < 0.0005

womani × log [scli ] β7 −0.0090 0.70

term is not contributing much to our ability to predict log[SBP]. Dropping

this interaction term from the model gives

E[log[sbpi ] | xi ] = α + β1 × log [bmii ] + β2 × agei + β3 × log [scli ] + β4

× womani + β5 × womani × log [bmii ] + β6 × womani × agei . (3.18)

Model (3.18) gives parameter estimates for α, log[BMI], age, log[SCL]

and sex that are very similar to those of model (3.17). The R2 is un-

changed, indicating that we have not lost any explanatory power by drop-

ping the womani × log [scli ] interaction term. Dropping ineffectual terms

from the model not only clarifies the relationship between the response

variable and the covariates, but also increases the statistical power of our

analyses.

In model (3.18) the womani × log[bmii ] interaction term is small and

non-significant. Dropping this term gives

E[log[sbpi ] | xi ] = α + β1 × log[bmii ] + β2 × agei + β3 × log[scli ] + β4

× womani + β5 × womani × agei . (3.19)

This deletion has little effect on the remaining coefficient estimates, all of

whicharenowhighly statistically significant.The R2 statistic is 0.2549,which

is virtually unchanged from the previous two models. All of the remaining

terms in the model remain highly significant and should not be dropped.
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3.14. Intuitive Understanding of a Multiple Regression Model

3.14.1. The Framingham Example

When we did simple linear regressions of log[SBP] against log[BMI] for

men and women we obtained slope estimates of 0.273 and 0.399 for men

andwomen, respectively. Themultiple regressionmodel (3.19) gives a single

slope estimate of 0.2626 for both sexes, but finds that the effect of increas-

ing age on log[SBP] is twice as large in women than men. That is, for

women this slope is β2 + β5 = 0.0035 + 0.0049 = 0.0084 while for men it is

β2 = 0.0035. How reasonable is our model? In Section 3.2 we said that the

parameter for a covariate in a multiple regression model measures the slope

of the relationship between the response variable and this covariate when

all other covariates are held constant. One way to increase our intuitive un-

derstanding of the model is to plot separate simple linear regressions of SBP

against BMI in groups of patients who are homogeneous with respect to the

other variables in themodel. Figure 3.5 shows linear regressions of log[SBP]

against log[BMI] in subgroups defined by sex and 10-year age groups. These

regressions are restricted to subjectswhose log[SCL] lies in the inter-quartile

range for this variable,which is from5.28 to 5.42. The vertical andhorizontal

lines show the mean log[BMI] and log[SBP] in each panel. The black re-

gression lines plot the simple linear regression of log[SBP] against log[BMI]

for the patients in each panel. The thick gray lines are drawn through each

panel’s joint mean value for log[SBP] and log[BMI] and have slope 0.263

(the estimated parameter for log[BMI] from model (3.19)). A dashed line

is also drawn through the joint mean values in the panels for women and

has slope 0.399. This is the slope of the simple linear regression of log[SBP]

against log[BMI] restricted to women (see Section 2.19.1). Note that the

slopes of the black and gray lines are almost identical in all of the pan-

els except for women aged 30–40 and 40–50. For women aged 30–40 the

black simple regression slope for this panel is less than both the gray multi-

ple regression slope and the dashed simple regression slope for all women.

The gray multiple regression slope comes much closer to the simple regres-

sion slope for this panel than does the dashed simple regression line for

all women. For women aged 40–50 the simple regression slope exceeds the

multiple regression slope and comes close to the dashed line for all women.

However, by and large, this figure supports the finding that there is little

variation in the rate at which SBP increases with BMI among people of the

same sex and similar age and SCL.
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Figure 3.5 The black sloping lines in these panels are simple linear regressions of log systolic blood
pressure (SBP) against log body mass index (BMI) in men and women of similar age and serum
cholesterol (SCL) levels from the Framingham Heart Study. The thick gray lines have the slope of the
log[BMI] parameter in the multiple linear regression model (3.19). The dashed lines have the slope
of the simple linear regression of log[SBP] against log[BMI] among women in this study. This graph
confirms the finding of model (3.19) that the relationship between log[SBP] and log[BMI] is similar
among men and women of similar age and SCL levels (see text).
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Figure 3.6 The mean systolic blood pressure and body mass index of patients from the
Framingham Heart Study are indicated by horizontal and vertical lines in panels
defined by age and sex. This figure illustrates the marked interaction between
gender, body mass index, and age on systolic blood pressure.

The interrelationship between SBP, sex, BMI and age is better illustrated

in Figure 3.6. In this figure SBP and BMI are drawn on a linear scale. In

each panel the vertical and horizontal linesmark themean SBP and BMI for

all subjects with the gender and age range specified for the panel. In their

thirties men, on average, are fatter than women and have higher systolic
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blood pressures. The average increase in BMI with increasing age among

men, however, is modest. In contrast, the mean BMI increases in women

from 23.8 in their thirties to 27.5 in their sixties. This corresponds to an

average increase inweight of 9.5 kg (21 lb) for awoman160 cm (5 ft 3 in) tall.

Moreover, SBP increases much faster with age for women than men, and by

their sixties, women have a higher mean SBP than their male counterparts.

Thus, Figure 3.6 is consistent with our analysis model (3.19), which found

that there is a pronounced interaction of sex and age on log[SBP] but no

evidence of interaction between sex and log[BMI] on log[SBP].

A factor that should be considered in interpreting Figures 3.5 and 3.6. is

that these figures do not take differential mortality rates between men and

women into account. Hence, the comparativelymodest BMI ofmen in their

sixties is, in part, influenced by the fact that some of the fatter members

of their birth cohort died before age 60. We will discuss how to analyze

mortality data in the Chapters 6 and 7.

3.15. Calculating 95% Confidence and Prediction Intervals

Suppose we have a new female patient who is 60 years old, has a body

mass index of 40 kg/m2 and serum cholesterol of 400 mg/100ml. The pa-

rameter estimates from model (3.19) are α = 3.5374, β1 = 0.2626, β2 =
0.003 517,β3 = 0.059 59,β4 = −0.2165, andβ5 = 0.004 862. Substituting

these values into equation (3.19) gives that her expected log systolic

blood pressure (SBP) under thismodel is ŷ = 3.5374+ 0.2626 × log [40] +
0.003 517 × 60 + 0.059 59 × log [400] – 0.2165 × 1 + 0.004862 × 1 ×
60 = 5.15. Thus, our estimate of her SBP is e5.15 = 172 mm Hg. For these

data and this model, the root MSE is s = 0.1393. For this specific pa-

tient the leverage is h = 0.003 901 (s and h, together with the parameter

estimates are calculated for us by our regression software package). Hence,

from equation (3.10) we have that a 95% confidence interval for ŷ is 5.15 ±
1.96 × 0.1393 × √

0.003 901 = (5.132, 5.167). Substituting into equation

(3.12) gives that a 95% prediction interval for ŷ for this patient is 5.15 ±
1.96 × 0.1393 × √

0.003 901 + 1 = (4.876, 5.423). Hence, we can predict

with 95% confidence that her SBP will lie between e4.876 = 131 and e5.423 =
227 mm Hg.

3.16. Multiple Linear Regression with Stata

The 3.11.1.Framingham.log file continues as follows and illustrates how to

perform the analyses discussed in Sections 3.13, 3.14 and 3.15.
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. *

. * Use multiple regression models to analyze the effects of log(sbp),

. * log(bmi), age and log(scl) on log(sbp)

. *

. generate woman = sex -1

. generate wo_lbmi = woman * logbmi

(9 missing values generated)

. generate wo_age = woman * age

. generate wo_lscl = woman * logscl

(33 missing values generated)

. regress logsbp logbmi age logscl woman wo_lbmi wo_age wo_lscl {1}
{Output omitted. See Table 3.2}

. regress logsbp logbmi age logscl woman wo_lbmi wo_age {2}
{Output omitted. See Table 3.2}

. regress logsbp logbmi age logscl woman wo_age {3}

Source | SS df MS Number of obs = 4658

--------- +------------------------------- F( 5, 4652) = 318.33

Model | 30.8663845 5 6.1732769 Prob > F = 0.0000

Residual | 90.2160593 4652 .019392962 R-squared = 0.2549 {4}
--------- +------------------------------- Adj R-squared = 0.2541

Total | 121.082444 4657 .026000095 Root MSE = .13926

------------------------------------------------------------------------

logsbp | Coef. Std. Err. t P>|t| [95% Conf. Interval] {5}
-------- + -------------------------------------------------------------

logbmi | .262647 .0137549 19.095 0.000 .2356808 .2896131

age | .0035167 .0003644 9.650 0.000 .0028023 0042311 {6}
logscl | .0595923 .0114423 5.208 0.000 .0371599 .0820247

woman | -.2165261 .0233469 -9.274 0.000 -.2622971 -.1707551

wo_age | .0048624 .0004988 9.749 0.000 .0038846 .0058403

_cons | 3.537356 .0740649 47.760 0.000 3.392153 3.682558 {7}
------------------------------------------------------------------------

. *

. * Calculate 95% confidence and prediction intervals for a 60 year-old woman

. * with a SCL of 400 and a BMI of 40.

. *

.edit {8}
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- preserve

- set obs 4700

- replace scl = 400 in 4700

- replace age = 60 in 4700

- replace bmi = 40 in 4700

- replace woman = 1 in 4700

- replace id = 9999 in 4700

. replace logbmi = log(bmi) if id == 9999 {9}
(1 real change made)

. replace logscl = log(scl) if id == 9999

(1 real change made)

. replace wo_age = woman*age if id == 9999

(1 real change made)

. predict yhat,xb {10}
(41 missing values generated)

. predict h, leverage {11}
(41 missing values generated)

. predict std_yhat, stdp {12}
(41 missing values generated)

. predict std_f, stdf {13}
(41 missing values generated)

. generate cil_yhat = yhat - invt(4658-5-1,.95)*std_yhat {14}
(41 missing values generated)

. generate ciu_yhat = yhat + invt(4658-5-1,.95)*std_yhat

(41 missing values generated)

. generate cil_f = yhat - invt(4658-5-1,.95)*std_f {15}
(41 missing values generated)

. generate ciu_f = yhat + invt(4658-5-1,.95)*std_f

(41 missing values generated)

. generate cil_sbpf = exp(cil_f) {16}
(41 missing values generated)

. generate ciu_sbpf = exp(ciu_f)

(41 missing values generated)

. list bmi age scl woman logbmi logscl yhat h std_yhat std_f cil_yhat {17}
> ciu_yhat cil_f ciu_f cil_sbpf ciu_sbpf if id==9999
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Observation 4700

bmi 40 age 60 scl 400

woman 1 logbmi 3.688879 logscl 5.991465

yhat 5.149496 h .003901 std_yhat .0086978

std_f .13953 cil_yhat 5.132444 ciu_yhat 5.166547

cil_f 4.875951 ciu_f 5.42304 cil_sbpf 131.0987

ciu_sbpf 226.5669

. display invt(4652,.95)

1.960474

Comments
1 This command regresses logsbp against the other covariates given in the

command line. It evaluates model (3.17).

2 This command evaluates model (3.18).

3 This command evaluates model (3.19).

4 The output from the regress command for multiple linear regression

is similar to that for simple linear regression that was discussed in

Section 2.12. The R2 statistic = MSS/TSS = 30.866/121.08 = 0.2549.

The mean squared error (MSE) is s 2 = 0.019 392 962, which we defined

in equation (3.5). Taking the square root of this variance estimate gives

the Root MSE = s = 0.139 26.

5 For each covariate in the model, this table gives the estimate of the

associated regression coefficient, the standard error of this estimate, the t

statistic for testing thenull hypothesis that the truevalueof theparameter

equals zero, the P value that corresponds to this t statistic, and the 95%

confidence interval for the coefficient estimate. The coefficient estimates

in the second columnof this table are also given inTable 3.2 in the second

column on the right.

6 Note that although the age parameter estimate is small it is almost ten

times larger that its associated standard error. Hence this estimate dif-

fers from zero with high statistical significance. The large range of the

age of study subjects means that the influence of age on logsbp will be

appreciable even though this coefficient is small.

7 The estimate of the constant coefficient α is 3.537 356.

8 Use the Stata editor to create a new record with covariates scl, age, bmi

and women equal to 400, 60, 40 and 1 respectively. For subsequent

manipulation set id equal to 9999 (or any other identification number

that has not already been assigned).
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9 The replace command redefines those values of an existing variable for

which the if command qualifier is true. In this command, logbmi is only

calculated for the new patient with id = 9999. This and the following

two statements defines the covariates logbmi, logscl and wo_age for this

patient.

10 The variable yhat is set equal to ŷi for each record in memory. That

is, yhat equals the estimated expected value of logsbp for each patient.

This includes the new record that we have just created. Note that the

regression parameter estimates are unaffected by this new record since

it was created after the regress command was given.

11 The leverage option of the predict command creates a new variable called

h that equals the leverage for each patient. Note that h is defined for our

new patient even though no value of logsbp is given. This is because the

leverage is a function of the covariates and does not involve the response

variable.

12 The stdp option sets std_yhat equal to the standard error of yhat, which

equals s
√

hi .

13 The stdf option sets std_f equal to the standard deviation of logsbp given

the patient’s covariates. That is, std_f = s
√

hi + 1.

14 This command and the next define cil_yhat and ciu_yhat to be the

lower and upper bounds of the 95% confidence interval for yhat, re-

spectively. This interval is given by equation (3.10). Note that there are

4658 patients in our regression and there are 5 covariates in our model.

Hence the number of degrees of freedom equals 4658 − 5 − 1 = 4652.

15 This command and the next define cil_sbpf and ciu_sbpf to be the

lower and upper bounds of the 95% prediction interval for logsbp given

the patient’s covariates. This interval is given by equation (3.12).

16 This command and the next define the 95% prediction interval for the

SBP of a new patient having the specified covariates. We exponentiate

the prediction interval given by equation (3.12) to obtain the interval

for SBP as opposed to log[SBP].

17 This command lists the covariates and calculated values for the new

patient only (that is, for records for which id = 9999 is true). The

highlighted values in the output were also calculated by hand in

Section 3.15.

3.17. Automatic Methods of Model Selection

In Section 3.13we illustrated how to fit amultiple regressionmodel by hand.

When a large number of covariates are available, it can be useful to use an
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automatic model selection program for this task. There are four approaches

to automatic model selection that are commonly used.

3.17.1. Forward Selection using Stata

The forward selection algorithm involves the following steps:

(i) Fit all possible simple linear models of the response variable against

each separate covariate. Select the covariate with the lowest P value and

include it in the models of the subsequent steps.

(ii) Fit all possible models with the covariate(s) selected in the preceding

step(s) plus one other of the remaining covariates. Select the new co-

variate that has the lowest P value and add it to all subsequent models.

(iii) Repeat step (ii) to add additional variables, one variable at a time.

Continue this process until either none of the remaining covariates has

a P value less than some threshold or until all of the covariates have

been selected.

This algorithm is best understood by working through an example. We

do this with the Framingham data using Stata. The 3.11.1.Framingham.log

file continues as follows.

. *

. * Repeat the preceding analysis using an automatic forward

. * selection algorithm

. *

.drop if id == 9999 {1}
(1 observation deleted)

. sw regress logsbp logbmi age logscl woman wo_lbmi wo_age wo_lscl, {2}
> forward pe(.1)

begin with empty model

p = 0.0000 < 0.1000 adding age

p = 0.0000 < 0.1000 adding logbmi

p = 0.0000 < 0.1000 adding logscl

p = 0.0005 < 0.1000 adding wo_age

p = 0.0000 < 0.1000 adding woman

{3}
{4}
{5}

{6}
{Output omitted. See Section 3.16}

Comments
1 This drop command deletes all records for which id == 9999 is true. In

this instance the new patient added in Section 3.16 is deleted.

2 The sw prefix specifies that an automatic model selection algorithm is

to be used to fit a multiple regression model (sw stands for stepwise);
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regress specifies a linear regression model. The response variable is

logsbp. The covariates to be considered for inclusion in the model are

logbmi, age, logscl, woman, wo_lbmi, wo_age and wo_lscl. The forward

option specifies that a forward selection method is to be used; pe(.1) sets

the significance threshold for entering covariates into the model to be

0.1 (pe stands for P value for entry). At each step new variables will only

be considered for entry into the model if their P value after adjustment

for previously entered variables is < 0.1. Recall that earlier in the 3.11.1.

Framingham.log file we defined logbmi = log[bmii ], logscl = log[scl],

wolbmi = woman × log[bmi], woage = woman × age, and wolscl =
woman × log[scl].

The choice of the significance threshold is up to the user. The idea is that

we wish to include covariates that may have a real effect on the response

variable while excluding those that most likely do not. We could set this

value to 0.05, in which case only statistically significant covariates would

be included. However, this would prevent us from considering variables

that might be important, particularly in combination with other risk

factors. A threshold of 0.1 is often used as a reasonable compromise.

3 In the first step the program considers the following simple regression

models.

E[log[sbpi ] | xi ] = α + β1 × log[bmii ]

E[log[sbpi ] | xi ] = α + β1 × agei

E[log[sbpi ] | xi ] = α + β1 × log[scli ]

E[log[sbpi ] | xi ] = α + β1 × womani

E[log[sbpi ] | xi ] = α + β1 × womani × log[bmii ]

E[log[sbpi ] | xi ] = α + β1 × womani × agei

E[log[sbpi ] | xi ] = α + β1 × womani × log[scli ]

Of these models, the one with age has the most significant slope para-

meter. The P value associated with this parameter is < 0.000 05, which is

also < 0.1. Therefore, we select age for inclusion in our final model and

go on to step 2.

4 In step 2 we consider the following models.

E[log[sbpi ] | xi ] = α + β1 × agei + β2 × log[bmii ]

E[log[sbpi ] | xi ] = α + β1 × agei + β2 × log[scli ]

E[log[sbpi ] | xi ] = α + β1 × agei + β2 × womani

E[log[sbpi ] | xi ] = α + β1 × agei + β2 × womani × log[bmii ]

E[log[sbpi ] | xi ] = α + β1 × agei + β2 × womani × agei

E[log[sbpi ] | xi ] = α + β1 × agei + β2 × womani × log[scli ]
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The most significant new term in these models is log[bmii ], which is

selected.

5 In step 3 the evaluated models all contain the term α + β1 × agei + β2 ×
log[bmii ]. The new covariates that are considered are log[scli ], womani

and the three interaction terms involving log[bmii ], agei and log[scli ].

The most significant of these covariates is log[scli ], which is included in

the model.

6 This process is continued until at the end of step 5 we have model (3.19).

In step 6 we consider adding the remaining terms womani × log[bmii ]

and womani × log[scli ]. However, neither of these covariates have a P

value< 0.1. For this reasonwe stop and use (3.19) as our finalmodel. The

remaining output is identical to that given in Section 3.16 for this model.

It should also be noted that any stepwise regression analysis is restricted to

those patients who have non-missing values for all of the covariates consid-

ered for the model. If the final model does not contain all of the considered

covariates, it is possible that some patients with complete data for the final

model will have been excluded because they weremissing values for rejected

covariates. When this happens it is a good idea to rerun your final model as

a conventional regression analysis in order not to exclude these patients.

3.17.2. Backward Selection

The backward selection algorithm is similar to the forward method except

thatwe startwithall thevariables andeliminate thevariablewith the least sig-

nificance. The data are refitted with the remaining variables and the process

is repeateduntil all remainingvariableshave aP valuebelowsome threshold.

The Stata command to use backward selection for our Framingham

example is

sw regress logsbp logbmi age logscl woman wo_lbmi wo_age wo_lscl, pr(.1)

Here pr(.1) means that the program will consider variables for removal

from themodel if their associated P value is ≥ 0.1. If you run this command

in this example you will get the same answer as with forward selection,

which is reassuring. In general, however, there is no guarantee that this will

happen. The logic behind the choice of the removal threshold is the same

as for the entry threshold. We wish to discard variables that most likely are

unimportant while keeping those that may have a meaningful effect on the

response variable.
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3.17.3. Forward Stepwise Selection

The forwardstepwise selection algorithm is like the forwardmethod except

that at each step, previously selected variables whose P value has risen above

some threshold are dropped from the model. Suppose that x1 is the best

single predictor of the response variable y and is chosen in step 1. Suppose

that x2 and x3 are chosen next and together predict y better than x1. Then it

may make sense to keep x2 and x3 and drop x1 from the model.

In the Stata sw command this is done with the options forward pe(.1)

pr(.2), which would consider new variables for entry with P < 0.1 and pre-

viously selected variables for removal with P ≥ 0.2. In other words the

most significant covariate is entered into the model as long as the associ-

ated P value is < 0.1. Once selected it is kept in the model as long as its

associated P value is < 0.2.

3.17.4. Backward Stepwise Selection

Backward stepwise selection is similar to the backward selection in that

we start with all of the covariates in the model and then delete variables

with high P values. It differs from backward selection in that at each step

variables that have been previously deleted are also considered for reentry if

their associated P value has dropped to a sufficiently low level. In the Stata

sw command, backward stepwise selection is specified with the pe and pr

options. For example, pe(.1) pr(.2), would consider variables for removal

from the model if their P values are ≥ 0.2, and would reconsider previously

deleted variables for reentry if P < 0.1.

3.17.5. Pros and Cons of Automated Model Selection

Automatic selection methods are fast and easy to use. If you use them, it is a

good idea to use more than one method to see if you come up with the same

model. If, say, the forward and backward methods produce the same model

then you have some evidence that the selected model is not an artifact of

the selection procedure. A disadvantage of these methods is that covariates

are entered or discarded without regard to the biologic interpretation of

the model. For example, it is possible to include an interaction term but

exclude one or both of the individual covariates that define this interaction.

This may make the model difficult to interpret. Fitting models by hand is

sometimes worth the effort.
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3.18. Collinearity

Multiple linear regression can lead to inaccurate models if two or more of

the covariates are highly correlated. To understand this situation, consider

predicting a person’s height from the lengths of their arms. A simple linear

regressionof height against either left or right arm lengthwill show that both

variables are excellent predictors of height. If, however, we include both arm

lengths in the model we will either fail to get unique estimates of the model

parameters, or the confidence intervals for these parameters will be very

wide. This is because the arm lengths of most people are almost identical,

and the multiple regression model seeks to measure the predictive value of

the left arm length above and beyond that of the right, and vice versa. That

is, themodel measures the height versus left arm length slope among people

whose right arm lengths are identical. This slope can only be estimated if

there is variation in left arm lengths among people with identical right arm

lengths. Since this variation is small or non-existent, the model is unable to

estimate the separate effects of both left and right arm lengths on height.

This problem is called collinearity, and occurs whenever two covariate

are highly correlated. When this happens you should avoid putting both

variables in the model. Collinearity will also occur when there is a linear re-

lationshipbetween three ormoreof the covariates. This situation is harder to

detect than that of a pair of highly correlated variables. You should be aware,

however, that you may have a collinearity problem if adding a covariate to

a model results in a large increase in the standard error estimates for two or

more of the model parameters. When there is an exact linear relationship

between two ormore of the covariates, theminimum least squares estimates

of the parameters are not uniquely defined. In this situation, Stata will drop

one of these covariates from the model. Other software packages may abort

the analysis.

3.19. Residual Analyses

Residual analyses in multiple linear regression are analogous to those for

simple linear regression discussed in Section 2.15. Recall that the residual

for the i th patient is ei = yi − ŷi . The variance of ei is given by s 2(1 − hi ),

where s 2 is our estimate of σ 2 defined by equation (3.5). Dividing ei by its

standard deviation gives the standardized residual

zi = ei/(s
√

1 − hi ). (3.20)
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When the influence hi is large, the magnitude of ei will be reduced by the

observation’s ability to pull the expected response ŷi towards yi . In order to

avoidmissing large outliers with high influencewe calculate the studentized
residual

ti = ei/(s(i)

√
1 − hi ), (3.21)

where s(i) is the estimate of σ obtained from equation (3.5) with the i th case

deleted (ti is also called the jackknifedresidual). If themultiple linearmodel

is correct, then ti will have a t distribution with n – k – 2 degrees of freedom.

It is often helpful to plot the studentized residuals against the expected

value of the response variable as a graphical check of the model’s adequacy.

Figure 3.7 shows such a plot for model (3.19) of the Framingham data.

A lowess regression of the studentized residuals against the expected SBP

is also included in this graph. If our model fitted perfectly, the lowess re-

gression line would be flat and very close to zero. The studentized resid-

uals would be symmetric about zero, with 95% of them lying between

±tn−k−2,0.25 = ±t4658−5−2,0.25 = ±1.96. In this example, the residuals are

slightly skewed in a positive direction; 94.2% of the residuals lie between

±1.96. The regression line is very close to zero except for low values of the

expected log[SBP]. Hence, Figure 3.7 indicates that model (3.19) fits the
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Figure 3.7 Scatter plot of studentized residuals vs. expected log[SBP] for model (3.19) of
the Framingham Heart Study data. The thick black line is a lowess regression of
the studentized residual against the expected log[SBP]. This plot indicates that
model (3.19) provides a good, although not perfect, fit to these data.
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data quite well, although not perfectly. The very large sample size, how-

ever, should keep the mild departure from normality of our residuals from

adversely affecting our conclusions.

It is always a good idea to double-check observations with unusually

large studentized residuals. These residuals may be due to coding errors, to

anomalies in the way that the experiment was performed or the data was

collected, or to unusual attributes of the patient that may require comment

when the study is written up for publication.

3.20. Influence

We do not want our conclusions to be unduly influenced by any individual

unusual patient. For this reason, it is important to knowwhat effect individ-

ual subjects have on our parameter estimates. An observation can be very

influential if it has both high leverage and a large studentized residual.

3.20.1. ∆β Influence Statistic

The 	β̂ influence statistic estimates the change in the value of a parameter

due to the deletion of a single patient from the analysis. This change is ex-

pressed in terms of the parameter’s standard error. Specifically, the influence

of the i th patient on the j th parameter is estimated by

	β̂ i j = (b j − b j (i))/se[b j (i)], (3.22)

where b j is the least squares estimate of β j in equation (3.1), b j (i) is the

corresponding estimate of β j with the i th patient deleted from the analysis,

and se[b j (i)] is an estimate of the standard error of b j (i); this estimate differs

slightly from the usual one given with multiple linear regression output in

order to reduce the computation time needed to compute 	β̂ i j for every

patient in the analysis (Hamilton, 1992). A value of |	β̂ i j | that is greater

than one identifies a single observation that shifts the j th parameter estimate

by more than a standard error. Large values of 	β̂ i j indicate that either

special consideration is warranted for the j th patient or we have built a

model that is too complex for ourdata. Simplifying the regressionmodelwill

often lead tomore robust, although possiblymoremodest, inferences about

our data.

When considering the influence of an individual data point on a specific

parameter, it is important to consider the magnitude of the parameter’s

standard error as well as the magnitude of the 	β̂ statistic. If the standard

error is small and the data point does not change the significance of the
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parameter, then it may be best to leave the data point in the analysis. On

the other hand, if the standard error is large and the individual data point

changes a small and non-significant parameter estimate into a large and

significant one, then we may wish to either drop the data point from the

analysis or choose a simplermodel that is less affected by individual outliers.

Of course any time we delete a data point from a published analysis wemust

make it clear what we have done and why.

3.20.2. Cook’s Distance

Another measure of influence is Cook’s distance:

Di = z2
i hi

(k + 1)(1 − hi )
, (3.23)

which measures the influence of the i th patient on all of the regression

coefficients taken together (Cook, 1977). Note that the magnitude of Di

increases as both the standardized residual zi and the leverage hi increase.

Values of Di that are greater than one identify influential patients. Hamilton

(1992) recommends examining patients whose Cook’s distance is greater

than 4/n. This statistic can be useful in models with many parameters in

that it provides a single measure of influence for each patient. Its major

disadvantage is that it is not as easily interpreted as the 	β̂ statistic.

3.20.3. The Framingham Example

The entire Framingham data set is too large for any individual patient to

have substantial influence over the parameters of model (3.19). To illustrate

an analysis of influence, we look at 50 patients from this study. Applying

this model to these patients gives an estimate of the log[BMI] coefficient of

b1 = 0.1659. Figure 3.8 shows a scatterplot of 	β̂ i1 against the studentized

residuals ti for these data. If the model is correct, 95% of these residu-

als should have a t distribution with 50 − 5 − 2 = 43 degrees of freedom

and lie between ±t43,0.05 = ±2.02. There are three (6%) of these residu-

als that lie outside these bounds. Although this number is consistent with

our model, patient 49 has a very large residual, with t49 = 4.46. (Under

our model assumptions, we would only expect to see a residual of this size

less than once in every 20 000 patients.) For this patient, h49 = 0.155 and

	β̂49,1 = −1.42. Hence, this patient’s very large residual and moderate

leverage deflects b1, the log[BMI] coefficient estimate, by 1.42 standard

errors. In contrast, for patient 48 we have t48 = 2.58, h48 = 0.066 and
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Figure 3.8 Scatterplot of 	 β̂i 1 versus ti for 50 Framingham Heart Study patients using
model (3.19). Patient 49 has an enormous studentized residual that has great
influence on the log[BMI] parameter. The other patients have little influence
on this parameter. Patient 48 has a large residual but virtually no influence due
to the low leverage of this observation.

	β̂48,1 = −0.006. Thus, even though this patient has a large residual, his

small leverage results in a trivial influence on the the log[BMI] coefficient.

If we exclude patient 49 and apply model (3.19) to the remaining pa-

tients, we get an estimate of this coefficient of b1(49) = 0.3675 with standard

error 0.1489.Note that (b1 − b1(49))/ 0.1489 = (0.1659−0.3675)/0.1489=
−1.354, which agrees with 	β̂49,1 to two significant figures. Deleting this

single patient raises the estimate of β1 by 122%.

The standardized residual for patient 49 is 3.730, and the Cook’s dis-

tance is

D49 = 3.7302 × 0.1545

(5 + 1) (1 − 0.1545)
= 0.424.

This value, while less than one, is substantially greater than 4/n = 0.08. Had

we only investigated patients with Di > 1 we would have missed this very

influential patient.

Of course, we can always look for influential patients by visually scan-

ning scatterplots of the response variable and each individual covariate (see

Figure 2.10). In multivariate analyses, however, it is advisable to look also

at the influence statistics discussed above. This is because it is possible for

the combined effects of a patient’s multiple covariates to have a substantial

influence on the parameter estimates without appearing to be an influential

outlier on any particular 2 × 2 scatterplot.
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3.21. Residual and Influence Analyses Using Stata

The 3.11.1.Framingham.log file continues as follows and illustrates how

to perform the residual and influence analyses discussed in Section 3.20.3.

The output explicitly mentioned in these discussions is highlighted

below.

. *

. * Draw a scatterplot of studentized residuals against the estimated

. * expected value of logsbp together with the corresponding lowess

. * regression curve.

. *

. predict t, rstudent {1}
(41 missing values generated)

. ksm t yhat, lowess generate(t_hat) bwidth(.2)

{Graph omitted}
. label variable yhat "Expected log[SBP]"

. label variable t "Studentized Residual"

. sort yhat

. graph t t_hat yhat, symbol(oi) connect(.l) yline(-1.96,0,1.96)

> ylabel(-3,-2 to 5) xlabel(4.7,4.8 to 5.1) gap(2)

{Graph omitted. See Figure 3.7}
. generate out = t > 1.96 | t < -1.96 {2}
. tabulate out {3}

out | Freq. Percent Cum.

-------- +---------------------------

0 | 4425 94.17 94.17

1 | 274 5.83 100.00

-------- +---------------------------

Total | 4699 100.00

. *

. * Perform an influence analysis on patients 2000 through 2050

. *

. keep if id >= 2000 & id <= 2050

(4648 observations deleted)

. regress logsbp logbmi age logscl woman wo_age {4}
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Source | SS df MS Number of obs = 50

---------+---------------------------- F( 5, 44) = 2.49

Model | .381164541 5 .076232908 Prob > F = 0.0456

Residual | 1.34904491 44 .030660112 R-squared = 0.2203

---------+---------------------------- Adj R-squared = 0.1317

Total | 1.73020945 49 .035310397 Root MSE = .1751

---------------------------------------------------------------------

logsbp | Coef. Std. Err. t P>|t| [ 95% Conf. Interval]

-------- +-----------------------------------------------------------

logbmi | .1659182 .1696326 0.978 0.333 -.1759538 .5077902

age | -.0006515 .0048509 -0.134 0.894 -.0104278 .0091249

logscl | .0983239 .1321621 0.744 0.461 -.1680314 .3646791

woman | -.4856951 .294151 -1.651 0.106 -1.078517 .1071272

wo_age | .0116644 .0063781 1.829 0.074 -.0011899 .0245187

_cons | 3.816949 .9136773 4.178 0.000 1.975553 5.658344

---------------------------------------------------------------------

. drop t h {5}

. predict h, leverage

(1 missing value generated)

. predict z, rstandard {6}
(1 missing value generated)

. predict t, rstudent

(1 missing value generated)

. predict deltab1, dfbeta(logbmi) {7}
(1 missing value generated)

. predict cook, cooksd {8}
(1 missing value generated)

. display invttail(43,.025)

2.0166922

. label variable deltab1 "Delta Beta for log[BMI]"

. graph deltab1 t, xline(-2.017, 2.017) yline(0) xlabel(-2,-1 to 4)

> xtick(-2.5,-1.5 to 4.5) ylabel(-1.5,-1,-.5,0) symbol(O)

> gap(3)

{Graph omitted. See Figure 3.8}
. sort t

. list id h z t deltab1 cook in -3/-1 {9}
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id h z t deltab1 cook

49. 2048 .0655644 2.429988 2.581686 -.0063142 .069052

50. 2049 .1545165 3.730179 4.459472 -1.420916 .4238165

51. 2046 . . . . .

. regress logsbp logbmi age logscl woman wo_age if id ∼= 2049 {10}
Source | SS df MS Number of obs = 49

---------+--------------------------- F( 5, 43) = 3.13

Model | .336072673 5 .067214535 Prob > F = 0.0169

Residual | .922432819 43 .021451926 R-squared = 0.2670

---------+--------------------------- Adj R-squared = 0.1818

Total | 1.25850549 48 .026218864 Root MSE = .14646

----------------------------------------------------------------------

logsbp | Coef. Std. Err. t P>|t| [ 95% Conf. Interval]

---------+------------------------------------------------------------

logbmi | .3675337 .1489199 2.468 0.018 .0672082 .6678592

age | -.0006212 .0040576 -0.153 0.879 -.0088042 .0075617

logscl | .0843428 .110593 0.763 0.450 -.1386894 .3073749

woman | -.3053762 .2493465 -1.225 0.227 -.8082314 .197479

wo_age | .0072062 .0054279 1.328 0.191 -.0037403 .0181527

_cons | 3.244073 .7749778 4.186 0.000 1.681181 4.806965

----------------------------------------------------------------------

. display (.1659182 -.3675337)/.1489199 {11}
-1.353852

Comments
1 The rstudent option of the predict command defines t to equal the stu-

dentized residual for each patient.

2 The variable out is a logical variable that equals 1 when “t > 1.96 | t <

−1.96” is true and equals 0 otherwise. In other words, out equals 1 if

either t > 1.96 or t < −1.96, and equals 0 if –1.96 ≤ t ≤ 1.96.

3 The tabulate command lists the distinct values taken by out, together

with the frequency, percentage and cumulative percentage of these val-

ues. Note that 94.2% of the studentized residuals lie between ±1.96

(see Section 3.19).

4 Applymodel (3.19) to patients with id numbers between 2000 and 2050.

Note that one patient in this range has amissing serum cholesterol and is

excluded from this analysis. Thus, 50 patients are included in this linear

regression.
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5 The drop command deletes the t and h variables from memory. We do

this because we wish to redefine these variables as being the studentized

residual and leverage from the preceding linear regression

6 The rstandard option defines z to equal the standardized residuals for

each patient.

7 The dfbeta(logbmi) option defines deltab1 to equal the 	β̂ influence

statistic for the logbmi parameter.

8 The cooksd option defines cook to equal Cook’s distance for each patient.

9 The “in –3/–1” command qualifier restricts this listing to the last three

records in the file. As the previous command sorted the file by t, the

records with the three largest values of t are listed. Stata sorts missing

values after non-missing ones. The last record in the file is for patient

2046. This is the patient with the missing serum cholesterol who was ex-

cluded from the regression analysis; t is missing for this patient. The two

patients with the largest studentized residuals are patients 2048 and 2049

who have residuals t = 2.58 and t = 4.46, respectively. These patients

are referred to as patients 48 and 49 in Section 3.20.3, respectively.

10 Repeat the regression excluding patient 2049. Note the large change

in the logbmi coefficient that results from deleting this patient (see

Section 3.20.3).

11 The difference in the logbmi coefficient estimates that result from in-

cluding or excluding patient 2049 is –1.35 standard errors.

3.22. Additional Reading

Armitage and Berry (1994), and

Pagano and Gauvreau (2000) provide good introductions to multiple linear

regression.

Hamilton (1992) and

Cook andWeisberg (1999) aremore advanced texts that emphasize a graph-

ical approach to multiple linear regression. Hamilton (1992) provides a

brief introduction to non-linear regression.

Draper and Smith (1998) is a classic reference on multiple linear regression.

Cook (1977) is the original reference on Cook’s distance.

Levy (1999) reviews the findings of the Framingham Heart Study.

3.23. Exercises

1 Linear regression was applied to a large data set having age and weight

as covariates. The estimated coefficients for these two variables and their

standard errors are as follows:



106 3. Multiple linear regression

Estimated Estimated

Covariate coefficient standard error

Age 1.43 0.46

Weight 25.9 31.0

Can we reject the null hypothesis that the associated parameter equals

zero foreitherof thesevariables?Canwe infer anythingabout thebiologic

significance of these variables from the magnitudes of the estimated

coefficients? Justify your answers.

The following questions concern the study by Gross et al. (1999) about

the relationship between funding by the National Institutes of Health

and theburdenof29diseases.Thedata fromTable1of this studyaregiven

in a Stata data file called 3.ex.Funding.dta on the www.mc.vanderbilt.

edu/prevmed/wddtext.htm web page. The variable names and definitions

in this file are

disease = condition or disease,

id = a numeric disease identification number,

dollars = thousands of dollars of NIH research funds per year,

incid = disease incidence rate per 1000,

preval = disease prevalence rate per 1000,

hospdays = thousands of hospital-days,

mort = disease mortality rate per 1000,

yrslost = thousands of life-years lost,

disabil = thousands of disability-adjusted life-years lost.

2 Explore the relationship between dollars and the other covariates listed

above. Fit a model that you feel best captures this relationship.

3 Perform a forward stepwise linear regression of log[dollars] against

the following potential covariates: log[incid], log[preval], log[hospdays],

log[mort], log[yrslost] and log[disabil]. Use thresholds for entry and re-

moval of covariates into or from the model of 0.1 and 0.2, respectively.

Which covariates are selected by this procedure?

4 Repeat question 3 only now using a backward stepwise model selection

procedure. Use the same thresholds for entry and removal. Do you get

the same model as in question 3?

5 Regress log[dollars] against the same covariates chosen by the stepwise

procedure in question 4. Do you get the same parameter estimates? If

not, why not?

6 Regress log[dollars] against log[hospdays], log[mort], log[yrslost] and
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log[disabil]. Calculate the expected log[dollars] and studentized residu-

als for this regression. What bounds should contain 95% of the studen-

tized residuals under this model? Draw a scatterplot of these residuals

against expected log[dollars]. On the graph draw the lowess regression

curve of the residuals against the expected values. Draw horizontal lines

at zero and the 95% bounds for the studentized residuals. What does

this graph tell you about the quality of the fit of this model to these data?

7 In the model from question 6, calculate the 	β̂ influence statistic for

log[mort]. List the values of this statistic together with the disease name,

studentized residual and leverage for all diseases for which the absolute

value of this	β̂ statistic is greater than 0.5.Which disease has the largest

influence on the log[mort] parameter estimate? How many standard er-

rors does this data point shift the log[mort] parameter estimate? How

big is its studentized residual?

8 Drawscatterplotsof log[dollars] against theothercovariates in themodel

from question 6. Identify the disease in these plots that had the most in-

fluence on log[mort] in question 7. Does it appear to be particularly

influential in any of these scatterplots?

9 Repeat the regression fromquestion 6 excluding the observationonperi-

natal conditions. Compare your coefficient estimates with those from

question 6. What is the change in the estimate of the coefficient for

log[mort] that results from deleting this disease? Express this difference

as a percentage change and as a difference in standard errors.

10 Perform influence analyses on the other covariates in the model from

question 6. Are there any observations that you feel should be dropped

from the analysis? Do you think that a simpler model might be more

appropriate for these data?

11 Regress log[dollars] against log[disabil] and log[hospdays]. What is the

estimated expected amount of research funds budgeted for a disease that

causes a million hospital-days a year and the loss of a million disability-

adjusted life-years? Calculate a 95% confidence interval for this expected

value. Calculate a 95% prediction interval for the funding that would be

provided for a new disease that causes a million hospital-days a year and

the loss of a million disability-adjusted life-years.

12 In question 11, suppose that we increase the number of disability-

adjusted life-years lost by two million while keeping the number of

hospital-days constant. What will happen to the estimated expected

number of research funds spent on this disease under this model?

13 Performan influenceanalysis on themodel fromquestion11. Is this anal-

ysis more reassuring than the one that you performed in question 10?

Justify your answer.
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Simple Logistic Regression

In simple linear regression we fit a straight line to a scatterplot of two con-

tinuous variables that are measured on study subjects. Often, however, the

response variable of interest has dichotomous outcomes such as survival or

death.Wewish to be able to predict the probability of a patient’s death given

the value of an explanatory variable for the patient. Using linear regression

to estimate the probability of death is usually unsatisfactory since it can

result in probability estimates that are either greater than one (certainty)

or less than zero (impossibility). Logistic regression provides a simple and

plausible way to estimate such probabilities.

4.1. Example: APACHE Score and Mortality in Patients with Sepsis

Figure 4.1 shows 30-daymortality in a sample of septic patients as a function

of their baseline APACHE scores (see Section 1.2.1). Patients are coded as 1

or 0 depending onwhether they are dead or alive at 30 days, respectively.We

wish to predict death from baseline APACHE score in these patients. Note

that all patients with an APACHE score of less than 17 survived, while all

but one patient with a score greater than 27 died. Mortal outcome varied

for patients with scores between 17 and 27.

4.2. Sigmoidal Family of Logistic Regression Curves

Let π[x] be the probability that a patient with score x will die. In logistic

regression we fit probability functions of the form

π[x] = exp[α + βx]/(1+ exp[α + βx]), (4.1)

where α and β are unknown parameters that we will estimate from the data.

Equation (4.1) is the logistic probability function. This equation describes
a family of sigmoidal curves, four examples of which are given in Figure 4.2.

For now, assume that β > 0. For negative values of x, exp[α + βx] is very

close to zero when x is small (i.e. when−x is large). Hence π[x] approaches

0/(1+ 0) = 0 as x gets small. For positive values of x, exp[α + βx] is very

108
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30 Day Mortality in Patients with Sepsis

Figure 4.1 Scatter plot showing mortal outcome by baseline APACHE Score for 30 patients
admitted to an intensive care unit with sepsis.
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Figure 4.2 Four examples of logistic regression curves given by equation 4.1. The two solid
curves have the same value of the β parameter, which gives identical slopes.
The different values of the α parameter shifts the gray curve 10 units to the
right. The slopes of these curves increase as β gets larger.

large when x is big and hence π[x] = a big number/(1 + a big number)

approaches 1 as x gets large. The magnitude of β controls how quickly

π[x] rises from 0 to 1. When x = −α/β, α + βx = 0, e0 = 1, and hence

π[x] = 1/(1+ 1) = 0.5. Thus, for given β, α controls where the 50% sur-

vival point is located. In Figure 4.2, the solid black curve reachesπ[x] = 0.5

when x = −α/β = 4/0.4 = 10. The solid gray curve has the same slope as

the black curve but is shifted 10 units to the right. The solid gray curve and

the dotted curves all reach their midpoint at x = −α/β = 20. The slopes

of the dotted curves are greater than that of the solid gray curve because of

their larger value of β. It can be shown that the slope of a logistic regression

curve when π[x] = 0.5 equals β/4.

Wewish tochoose thebest curve tofitdata suchas that showninFigure4.1.

Suppose that there is a sharp survival threshold with deaths occurring only

in those patients whose x value is above this threshold. Then we would

want to fit a regression curve with a large value of β that will give a rapid

transition between estimated probabilities of death of 0 and 1. On the

other hand, if the observed mortality increases gradually with increasing
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x then we would want a curve with a much smaller value of β that will

predict a more gradual rise in the probability of death.

4.3. The Log Odds of Death Given a Logistic Probability Function

Equation (4.1) gives that the probability of death under a logistic probability

function is π[x] = exp[α + βx]/(1+ exp[α + βx]). Hence, the probabil-

ity of survival is

1− π[x] = 1+ exp[α + βx]− exp[α + βx]

1+ exp[α + βx]
= 1

1+ exp[α + βx]
.

The odds of death is

π[x]/(1− π[x]) = exp[α + βx], (4.2)

and the log odds of death equals

log

[
π[x]

1− π[x]

]
= α + βx. (4.3)

For any number π between 0 and 1 the logit function is defined by

logit[π] = log[π/(1− π)].

In the sepsis example let

di =
{
1: if the i th patient dies

0: if the i th patient lives, and

xi equal the APACHE score of the i th patient.

Then we can rewrite equation (4.3) as

logit[π[xi ]] = α + βxi . (4.4)

In simple linear regression we modeled a continuous response variable as a

linear function of a covariate (see equation 2.4). In simple logistic regression

we will model the logit of the probability of survival as a linear function of

a covariate.

4.4. The Binomial Distribution

Suppose that m people are at risk of death during some interval and that d

of these people die. Let each patient have probability π of dying during the

interval, and let the fate of each patient be independent of the fates of all

the others. Then d has a binomial distribution with parameters m and π .

Themean of this distribution ismπ, and its standard error is
√
mπ(1− π).
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The probability of observing d deaths among thesem patients is

Pr[d deaths] = m!

(m− d)!d!
πd(1− π)(m−d) : d = 0, 1, . . . , m. (4.5)

Equation (4.5) is an example of a probability distribution for a discrete
random variable, which gives the probability of each possible outcome.

The mean of any random variable x is also equal to its expected value

and is written E[x]. Also, if x is a random variable and k is a constant then

E[kx] = kE[x].Hence

E[d] = πm and E[d/m] = π.

For example, if we have m = 100 patients whose individual probability of

death is π = 1/2 then the expected number of deaths is E[d] = 0.5× 100=
50. That is, we would expect that one half of the patients will die. Of course,

the actual number of deaths may vary considerably from 50 although the

probability of observing anumber of deaths that is greatly different from this

value is small. Figure 4.3 shows the probability distribution for the number

of deaths observed in m = 12 patients with an individual probability of

death of π = 0.25. In this example the expected number of deaths is three.

The probability of observing three deaths is 0.258, which is higher than the

probability of any other outcome. The probability of observing nine ormore

deaths is very small.

A special case of the binomial distribution occurs when we have a single

patient who either does, or does not, die. In this casem = 1, and we observe

either d = 0 or d = 1 deaths with probability 1− π and π , respectively.

The expected value of d is E[d] = mπ = π . The random variable d is said

to have a Bernoulli distribution whenm = 1.
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Figure 4.3 Binomial probability distribution resulting from observing 12 patients with an
individual probability of death of 0.25.
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4.5. Simple Logistic Regression Model

Suppose we have an unbiased sample of n patients from a target population.

Let

di =
{
1: if the i th patient suffers some event of interest

0: otherwise, and

xi be a continuous covariate observed on the i th patient.

The simple logistic regression model assumes that di has a Bernoulli
distribution with

E[di | xi ] = π[xi ] = exp[α + βxi ]/(1+ exp[α + βxi ]), (4.6)

where α and β are unknown parameters associated with the target pop-

ulation. Equivalently, we can rewrite the logistic regression model using

equation (4.4) as

logit[E[di | xi ]] = α + βxi . (4.7)

4.6. Generalized Linear Model

Logistic regression is an example of a generalized linear model. Thesemod-
els are defined by three attributes: the distribution of the model’s random

component, its linear predictor, and its link function. For logistic regression

these are defined as follows:

1 The random component of the model is di , the patient’s fate. In simple
logistic regression, di has a Bernoulli distribution with expected value

E[di | xi ]. (In Section 4.14 we will generalize this definition to allow di to
have any binomial distribution.)

2 The linear predictor of the model is α + βxi .

3 The link function describes a functional relationship between the ex-
pected value of the random component and the linear predictor. Logistic

regression uses the logit link function logit[E[di | xi ]] = α + βxi .

4.7. Contrast Between Logistic and Linear Regression

Not surprisingly, linear regression is another example of a generalized linear

model. In linear regression, the expected value of yi given xi is

E[yi | xi ] = α + βxi for i = 1, 2, . . . , n .

The random component of the model, yi , has a normal distribution with

meanα + βxi andstandarddeviationσ .The linearpredictor isα + βxi , and
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the link function is the identity function I[x] = x . That is, I[E[yi | xi ]] =
E[yi | xi ] = α + βxi . The generalized linear model is useful in that it pro-

vides a commonapproach tofitting several importantmodels inbiostatistics

and epidemiology.

4.8. Maximum Likelihood Estimation

We have yet to discuss how to choose the best logistic regressionmodel to fit

a specific data set. In linear regression we used the method of least squares

to estimate regression coefficients. That is, we chose those estimates of α

and β that minimized the sum of the squared residuals. This approach does

not work well in logistic regression, or for the entire family of generalized

linearmodels. Insteadweuse another approach calledmaximum likelihood
estimation. The easiest way to explain this approach is through a simple
example.

Suppose that we observe an unbiased sample of 50 AIDS patients, and

that five of these patients die in one year. We wish to estimate π , the an-

nual probability of death for these patients. We assume that the number of

observed deaths has a binomial distribution obtained from m = 50 pa-

tients with probability of death π for each patient. Let L[π | d = 5] =
(50!/45!× 5!)π5(1− π)45 be the probability of the observed outcome (five

deaths) given different values of π . L[π | d = 5] is called a likelihood func-
tion and is plotted in Figure 4.4.
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Figure 4.4 Suppose that five of 50 AIDS patients die in a year and that these deaths have
a binomial distribution. Let π be the probability that an individual patient dies
in a given year. Then the likelihood function L[π | d = 5] for this observation
gives the probability of the observed outcome (d = 5 deaths) under different
hypothesized values of π .
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The maximum likelihood estimate of π is the value of π that assigns

the greatest probability to the observed outcome. In this example the max-

imum likelihood estimate, denoted π̂ , equals d/m = 0.1. This is a plausi-

ble estimate in that, if the observed mortality rate is 10%, our best guess

of the true mortality rate is also 10%. Note that if π = π̂ = 0.1 then

E[d] = 50π = 5 = d. Thus, in this example, the maximum likelihood es-

timate of π is also the value that sets the expected number of deaths equal

to the observed number of deaths.

In general, maximum likelihood estimates do not have simple closed

solutions, but must be solved iteratively using numerical methods. This,

however, is not a serious drawback given ubiquitous and powerful desktop

computers.

A likelihood function looks deceptively like a probability density func-

tion. It is important to realize that they are quite different. A probability

density function uses fixed values of themodel parameters and indicates the

probability of different outcomes under this model. A likelihood function

holds the observed outcome fixed and shows the probability of this outcome

for the different possible values of the parameters.

4.8.1. Variance of Maximum Likelihood Parameter Estimates

It can be shown that when amaximum likelihood estimate is based on large

number of patients, its variance is approximately equal to−1/C , whereC is
the curvatureof the logarithmof the likelihood functionat π̂ . (Inmathemat-

ical jargon, the curvature of a function is its second derivative. A function

that bends downward has a negative curvature. The more sharply it bends

the greater the absolute value of its curvature.) An intuitive explanation of

this result is as follows. If the likelihood function reaches a sharp peak at

π̂ that falls away rapidly as π moves away from π̂ , then the curvature C

at π̂ will have high magnitude and −1/C will be low. This means that the
data are consistent with only a small range of π and hence π̂ is likely to be

close to π . Thus, in a repeated sequence of similar experiments there will

be little variation in π̂ from experiment to experiment giving a low variance

for this statistic. On the other hand, if the likelihood function drops slowly

on both sides of π̂ then |C | will be small and −1/C will be large. The data
will be consistent with a wide range of π and a repeated sequence of similar

experiments will produce a wide variation in the values of π̂ . Hence, the

variance of π̂ will be large.

In the AIDS example from Section 4.8, C can be shown to equal

−m/(π̂(1− π̂)). Hence, the approximate variance of π̂ is
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var[π̂] = −1/C = π̂(1− π̂)/m. (4.8)

The true variance of π̂ is π(1− π)/m, and equation (4.8) converges to

this true value as m becomes large. Substituting π̂ = 0.1 and m = 50 into

equation (4.8) gives that the variance of π̂ is approximately 0.1× 0.9/50 =
0.0018. The corresponding standard error is se[π̂] = √

0.0018 = 0.0424.

4.9. Statistical Tests and Confidence Intervals

In this section we briefly introduce three fundamental types of statistical

tests, which we will use in this and later chapters: likelihood ratio tests, score

tests andWald tests. Each of these tests involves a statistic whose distribution

is approximately normal or chi-squared. The accuracy of these approxima-

tions increases with increasing study sample size. We will illustrate these

tests using the AIDS example from Section 4.8.

4.9.1. Likelihood Ratio Tests

Suppose that we wish to test the null hypothesis that π = π0. Let L [π]

denote the likelihood function for π given the observed data.We look at the

likelihood ratio L [π0]/L [π̂]. If this ratio is small then we would be much
more likely to have observed the data that was actually obtained if the true

value ofπ was π̂ rather thanπ0. Hence, small values of L [π0]/L [π̂] provide

evidence that π �= π0. Moreover, it can be shown that if the null hypothesis

is true, then

χ2 = −2 log[L [π0]/L [π̂]] (4.9)

has an approximately chi-squared distribution with one degree of freedom.

Equation (4.9) is an example of a likelihood ratio test. The P value asso-
ciated with this test is the probability that a chi-squared distribution with

one degree of freedom exceeds the value of this test statistic.

In our AIDS example, the likelihood ratio is

L [π0]/L [π̂] = (
π50 (1− π0)

45
)
/(π̂5(1− π̂)45).

Suppose that we wished to test the null hypothesis that π0 = 0.2. Now

since π̂ = 0.1, equation (4.9) gives us that

χ2 = −2 log[(0.25 × 0.845)/(0.15 × 0.945)] = 3.67.

The probability that a chi-squared distribution with one degree of

freedom exceeds 3.67 is P = 0.055.
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4.9.2. Quadratic Approximations to the Log Likelihood Ratio Function

Considerquadratic equationsof the form f [x] = −a(x − b)2,wherea ≥ 0.
Note that all equations of this form achieve a maximum value of 0 at x = b.

Suppose that g [x] is any smooth function that has negative curvature at

x0. Then it can be shown that there is a unique equation of the form

f [x] = −a(x − b)2 such that f and g have the same slope and curvature

at x0. Let

q[π] = log[L [π]/L [π̂]] (4.10)

equal the logarithm of the likelihood ratio at π relative to π̂ . Suppose

that we wish to test the null hypothesis that π = π0. Then the likelihood

ratio test is given by −2q[π0] (see equation (4.9)). In many practical sit-
uations, equation (4.10) is difficult to calculate. For this reason q[π] is

often approximated by a quadratic equation. The maximum value of q[π]

is q[π̂] = log[L [π̂]/L [π̂]] = 0. We will consider approximating q[π] by

quadratic equations that also have a maximum value of 0. Let

fs [π] be the quadratic equation that has the same slope and curvature as

q[π] at π0 and achieves a maximum value of 0,

fw[π] be the quadratic equation that has the same slope and curvature as

q[π] at π̂ and achieves a maximum value of 0.

Tests that approximate q[π] by fs [π] are called score tests. Tests that ap-

proximate q[π] by fw[π] are calledWald tests. We will introduce these two

types of tests in the next two sections.

4.9.3. Score Tests

Suppose we again wish to test the null hypothesis that π = π0. If the null

hypothesis is true then it can be shown that

χ2 = −2 fs [π0] (4.11)

has an approximately chi-squared distribution with one degree of freedom.

Equation (4.11) is an example of a score test. Score tests are identical to
likelihood ratio tests except that a likelihood ratio test is based on the true

log likelihood ratio function q[π] while a score test approximates q[π] by

fs [π].

In the AIDS example,

π̂ = 0.1 and q[π] = log((π/0.1)5((1− π)/0.9)45).



117 4.9. Statistical tests and confidence intervals

It can be shown that

q[π] has slope
5

π
− 45

1− π
and curvature− 5

π2
− 45

(1− π)2
.

We wish to test the null hypothesis that π0 = 0.2. The slope and curva-

ture of q[π] at π = 0.2 are −31.25 and −195.3125, respectively. It can be
shown that fs [π] = −97.656 25(π − 0.04)2 also has this slope and curva-

ture at π = 0.2. Therefore, if the true value of π = 0.2 then −2 fs [0.2] =
2× 97.656 25(0.2− 0.04)2 = 5 has an approximately chi-squared distri-

bution with one degree of freedom. The P value associated with this score

statistic is P = 0.025, which is lower than the corresponding likelihood

ratio test.

4.9.4. Wald Tests and Confidence Intervals

If the null hypothesis that π = π0 is true, then

χ2 = −2 fw [π0] (4.12)

also has an approximately chi-squared distribution with one degree of free-

dom. Equation (4.12) is an example of a Wald Test. It is identical to the
likelihood ratio test except that a likelihood ratio test is based on the true

log likelihood ratio function q[π], while a Wald test approximates q[π] by

fw[π]. In Section 4.8.1 we said that the variance of a maximum likelihood

estimate can be approximated by var[π̂] = −1/C . It can be shown that
−2 fw[π0] = (π0 − π̂)2/var[π̂]. (4.13)

The standard error of π̂ is approximated by se[π̂] = √−1/C . Recall that
a chi-squared statistic with one degree of freedom equals the square of a

standard normal random variable. Hence, an equivalent way of performing

a Wald test is to calculate

z = (π̂ − π0)/se[π̂], (4.14)

which has an approximately standard normal distribution. An approximate

95% confidence interval for π is given by

π̂ ± 1.96se[π̂]. (4.15)

Equations (4.15) is known as aWald confidence interval.
In the AIDS example, π̂ = 0.1 and se[π̂] = 0.0424.Consider the null hy-

pothesis thatπ0 = 0.2.Equation (4.14) gives that z = (0.1− 0.2)/0.0424 =
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−2.36.Theprobability that a z statistic is less than−2.36or greater than 2.36
is P = 0.018. The 95% confidence interval for π is 0.1± 1.96× 0.0424 =
(0.017, 0.183).

4.9.5. Which Test Should You Use?

The three tests outlined above all generalize tomore complicated situations.

Given a sufficiently large sample size all of these methods are equivalent.

However, likelihood ratio tests and score tests are more accurate than Wald

tests for most problems that are encountered in practice. For this reason,

you should use a likelihood ratio or score test whenever they are available.

The likelihood ratio test has the property that it is unaffected by transfor-

mations of the parameter of interest and is preferred over the score test for

this reason. The Wald test is much easier to calculate than the other two,

which are often not given by statistical software packages. It is common

practice to use Wald tests when they are the only ones that can be easily

calculated.

Wide divergence between these three tests can result when the log like-

lihood function is poorly approximated by a quadratic curve. In this case

it is desirable to transform the parameter is such a way as to give the log

likelihood function a more quadratic shape.

In this text, the most important example of a score test is the logrank test,

which is discussed inChapter 6. InChapters 5, 7 and9wewill look at changes

in model deviance as a means of selecting the best model for our data. Tests

based on these changes in deviance are an important example of likelihood

ratio tests. All of the confidence intervals in this text that are derived from

logistic regression, survival or Poisson regressionmodels areWald intervals.

Tests of statistical significance in these models that are derived directly from

the parameter estimates are Wald tests.

4.10. Sepsis Example

Let us use logistic regression to model the relationship between mortal

risk and APACHE score in the example from Section 4.1. Let di = 1 if the

i th patient dies within 30 days, and let di = 0 otherwise. Let xi be the i th

patient’s APACHE score at baseline. Applying the logistic regression model

(4.7) to these data we obtain maximum likelihood parameter estimates of

α̂ = −4.3478 and β̂ = 0.201 24. Inserting these estimates into equation

(4.6) gives the estimated probability of death associated with each APACHE
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Figure 4.5 The gray curve in this figure shows the estimated probability of death within
30 days for septic patients with the indicated APACHE score at baseline. This
curve is obtained by applying a logistic regression model to the observedmortal
outcomes of 38 septic patients.

score. For example, the estimated probability of death associated with an

APACHE score of 16 is

π̂[16] = exp[α̂ + β̂ × 16]/(1+ exp[α̂ + β̂ × 16])

= exp[−4.3478+ 0.201 24× 16]/(1+ exp[−4.3478
+ 0.201 24× 16])

= 0.2445.

Figure 4.5 shows a plot of this probability of death as a function of baseline

APACHE score.

4.11. Logistic Regression with Stata

The following logfile andcomments illustrateshow tofit a logistic regression

model to the sepsis data set given in Figure 4.1.

. * 4.11.Sepsis.log

. *

. * Simple logistic regression of mortal status at 30 days (fate) against

. * baseline APACHE score (apache) in a random sample of septic patients

. *

. use C:\WDDtext\4.11.Sepsis.dta, clear

. summarize fate apache {1}
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Variable | Obs Mean Std. Dev. Min Max

---------------------------------------------------------

fate | 38 .4473684 .5038966 0 1

apache | 38 19.55263 11.30343 0 41

. glm fate apache, family(binomial) link(logit) {2}
{Output omitted}

Variance function: V(u) = u*(1-u) [Bernoulli]

Link function : g(u) = ln(u/1-u)) [Logit]

{Output omitted}
------------------------------------------------------------------------

fate | Coef. Std. Err. z P>|z| [95% Conf. Interval]

------------------------------------------------------------------------

apache | .2012365 .0608998 3.304 0.001 .0818752 .3205979 {3}
_cons | -4.347807 1.371609 -3.170 0.002 -7.036111 -1.659503

------------------------------------------------------------------------

. predict logodds, xb {4}

. generate prob = exp(logodds)/(1 + exp(logodds)) {5}

. list apache fate logodds prob in 1/3

apache fate logodds prob

1. 16 Alive -1.128022 .2445263

2. 25 Dead .6831066 .6644317

3. 19 Alive -.5243126 .3718444

. set textsize 120

. sort apache

. graph fate prob apache, connect(.l) symbol(Oi) xlabel(0,10,20,30,40)

> ylabel(0,1) gap(3) r1title(Probability of Death) rlabel(0,.2,.4,.6,.8,1) {7}
{Graph omitted. See Figure 4.5}

Comments
1 This data set contains 38 observations. The variable fate equals 1 for pa-

tients who die within 30 days; fate equals 0 otherwise. Baseline APACHE

scores range from 0 to 41.

2 This glm command regresses fate against apacheusing a generalized linear

model. The family and link options specify that the random component

of the model is binomial and the link function is logit. In other words, a

logistic model is to be used. Stata has two commands that can perform
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logistic regression: glm, which can analyze any generalized linear model,

and logistic, which can only be used for logistic regression.We will intro-

duce the logistic command in Section 4.13.1.

3 The maximum likelihood parameter estimates are α̂ = −4.3478 and
β̂ = 0.201 24.

4 The xb option of this predict command specifies that the linear pre-

dictor will be estimated for each patient and stored in a variable named

logodds. Recall that predict is a post estimation commandwhosemeaning

is determined by the latest estimation command, which in this example

is glm.

5 This command defines prob to equal the estimated probability that a

patient will die. It is calculated using equation (4.6).

6 The first patient has an APACHE score of 16. Hence, the estimated

linear predictor for this patient is logodds= α̂ + β̂xi = cons+ apache×
16 = −4.3478+ 0.201 24× 16 = −1.128. The second patient has

APACHE= 25 giving logodds= −4.3478+ 0.201 24× 25 = 0.683. For

the first patient, prob= exp[logodds]/(1+ exp[logodds])= 0.2445, which
agrees with our calculation from Section 4.10.

7 This graph command produces a graph that is similar to Figure 4.5. The

rltitle and rlabel options provide a title and axis labels for a vertical axis

on the right of the graph.

4.12. Odds Ratios and the Logistic Regression Model

The log odds of death for patients with APACHE scores of x and x + 1 are

logit[π[x]] = α + βx (4.16)

and

logit[π[x + 1]] = α + β(x + 1) = α + βx + β (4.17)

respectively. Subtracting equation (4.16) from equation (4.17) gives

β = logit[π[x + 1]]− logit[π[x]]

= log

[
π[x + 1]

1− π[x + 1]

]
− log

[
π[x]

1− π[x]

]

= log

[
π[x + 1]/[1− π[x + 1]]

π[x]/[1− π[x]]

]
.

Hence exp[β] is the odds ratio for death associated with a unit increase in

x. A property of logistic regression is that this ratio remains constant for all

values of x.
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4.13. 95% Confidence Interval for the Odds Ratio Associated
with a Unit Increase in x

Let s β̂ denote the estimated standard error of β̂ from the logistic regression

model. Now β̂ has an approximately normal distribution. Therefore, a 95%

confidence interval for β is estimated by β̂ ± 1.96s β̂ , and a 95% confidence

interval for the odds ratio associated with a unit increase in x is

(exp[β̂ − 1.96s β̂], exp[β̂ + 1.96s β̂]). (4.18)

In the sepsis example in Section 4.10, the parameter estimate for apache

(that is, β) was 0.201 24 with a standard error of s β̂ = 0.060 90.Hence, the

95% confidence interval for β is 0.201 24± z0.025 × 0.060 90 = 0.201 24±
1.96× 0.060 90 = (0.0819, 0.3206). The odds ratio for death associated

with a unit rise in APACHE score is exp[0.2012]= 1.223 with a 95% confi-

dence interval of (exp[0.0819], exp[0.3206]) = (1.085, 1.378).

4.13.1. Calculating this Odds Ratio with Stata

Stata can perform these calculations automatically. The following log file

and comments illustrates how to do this using the logistic command:

. * 4.13.1.Sepsis.log

. *

. * Calculate the odds ratio associated with a unit rise in APACHE score

. *

. use C:\WDDtext\4.11.Sepsis.dta, clear

. logistic fate apache {1}
Logit estimates Number of obs = 38

LR chi2(1) = 22.35

Prob > chi2 = 0.0000

Log likelihood = -14.956085 Pseudo R2 = 0.4276

-------------------------------------------------------------------------

fate | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

----------+--------------------------------------------------------------

apache | 1.222914 .0744759 3.304 0.001 1.085319 1.377953 {2}
-------------------------------------------------------------------------

Comments
1 Regress fate against apache using logistic regression. This command per-

forms the same calculations as the glm command given in Section 4.11.
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However, the output is somewhat different. Also, there are some useful

post estimation commands that are available after running logistic that

are not available after running glm.

2 Thenumberunder theOddsRatioheading is the exponentiatedcoefficient

estimate for apache. As indicated above, this is the odds ratio associated

with a unit rise in APACHE score. The 95% confidence interval for this

odds ratio is identical to that calculated above.

4.14. Logistic Regression with Grouped Response Data

Thenumber of patients under study often exceeds the number of distinct co-

variates. For example, in the Ibuprofen in Sepsis Study there were 38 distinct

baseline APACHE scores observed on 454 patients (Bernard et al., 1997).

Suppose that {xi : i = 1, . . . , n} denote the distinct values of a covariate,
and there aremi patients who have the identical covariate value xi . Let di be

the number of deaths in these mi patients and let π[xi ] be the probability

that any one of them will die. Then di has a binomial distribution with

mean miπ[xi ], and hence E[di | xi ]/mi = π[xi ]. Thus, the logistic model

becomes

logit[E[di | xi ]/mi ] = α + βxi , (4.19)

or equivalently

E[di/mi | xi ] = π[xi ] = exp[α + βxi ]/(1+ exp[α + βxi ]). (4.20)

In equation (4.19) di is the random component of the model, which has a

binomial distribution. If i indexes patients rather than distinct values of the

covariate thenmi = 1 for all i and equation (4.19) reduces to equation (4.7).

4.15. 95% Confidence Interval for π[x]

Let σ 2α̂ and σ 2
β̂
denote the variance of α̂ and β̂, and let σα̂β̂ denote the

covariance between α̂ and β̂. Then it can be shown that the standard error

of α̂ + β̂x is

se[α̂ + β̂x] =
√

σ 2α̂ + 2xσα̂β̂ + x2σ 2
β̂

. (4.21)

Any logistic regression software that calculates themaximumlikelihoodesti-

mates of α and β can also provide estimates of σ 2α̂ , σ
2
β̂
and σα̂β̂ .We substitute

these estimates into equation (4.21) to obtain an estimate of the standard

error of α̂ + β̂x . This allows us to estimate the 95% confidence interval
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for α + βx to be α̂ + β̂x ± 1.96× se[α̂ + β̂x]. Hence, a 95% confidence

interval for π[x] is (π̂L [x], π̂U [x]), where

π̂L [x] = exp[α̂ + β̂x − 1.96× se[α̂ + β̂x]]

1+ exp[α̂ + β̂x − 1.96× se[α̂ + β̂x]]
(4.22)

and

π̂U [x] = exp[α̂ + β̂x + 1.96× se[α̂ + β̂x]]

1+ exp[α̂ + β̂x + 1.96× se[α̂ + β̂x]]
. (4.23)

4.16. 95% Confidence Intervals for Proportions

It is useful to be able to estimate a 95% confidence interval for the propor-

tion di /mi . Let d be the number of deaths observed inm patients. Let

p = d/m be the observed proportion of deaths,

q = 1− p, and

zα/2 = the critical value such that 100(α/2)% of observations from

standard normal distribution exceed zα/2.

Then Fleiss (1981) gives a 100(1−α)% confidence interval for p, which is

(PL, PU ), where

PL =
(
2mp+ z2α/2 − 1) − zα/2

√
z2α/2 − (2+ 1/m)+ 4p(mq + 1)

2
(
m+ z2α/2

) (4.24)

and

PU =
(
2mp+ z2α/2 + 1) + zα/2

√
z2α/2 + (2− 1/m)+ 4p(mq − 1)

2
(
m+ z2α/2

) . (4.25)

For a 95% confidence interval α = 0.05 and zα/2 = 1.96 in equations (4.24)
and(4.25).Theseequationsarevalidas longas0< d < m.Althoughsimpler

formulas exist that work well when p is, say, between 0.3 and 0.7, equations

(4.24) and (4.25) are recommended when p is close to either 0 or 1.

4.17. Example: The Ibuprofen in Sepsis Trial

The Ibuprofen and Sepsis Trial contained 454 patients with known baseline

APACHE scores. The 30-day mortality data for these patients is summa-

rized in Table 4.1. Let xi denote the distinct APACHE scores observed in this

study. Let mi be the number of patients with baseline score xi and let di be

the number of patients with this score who died within 30 days. Applying

the logistic regressionmodel (4.19) to these data yields parameter estimates
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Table 4.1. Survival data from the Ibuprofen in Sepsis Study. The number of
patients enrolled with the indicated baseline APACHE score is given together
with the number of subjects who died within 30 days of entry into the study
(Bernard et al., 1997).

Baseline Baseline

APACHE Number of Number of APACHE Number of Number of

score patients deaths score patients deaths

0 1 0 20 13 6

2 1 0 21 17 9

3 4 1 22 14 12

4 11 0 23 13 7

5 9 3 24 11 8

6 14 3 25 12 8

7 12 4 26 6 2

8 22 5 27 7 5

9 33 3 28 3 1

10 19 6 29 7 4

11 31 5 30 5 4

12 17 5 31 3 3

13 32 13 32 3 3

14 25 7 33 1 1

15 18 7 34 1 1

16 24 8 35 1 1

17 27 8 36 1 1

18 19 13 37 1 1

19 15 7 41 1 0

α̂ = −2.290 327 and β̂ = 0.115 627. The estimated variance of α̂ and β̂ is

s 2α̂ = 0.076 468 and s 2
β̂

= 0.000 256, respectively. The estimated covariance

between α̂ and β̂ is s α̂β̂ = −0.004 103. Substituting these values into equa-
tions (4.20) through (4.25) provides estimates of the probability of death

given a baseline score of x, 95% confidence intervals for these estimates, and

95% confidence intervals for the observed proportion of deaths at any given

score. For example, patients with a baseline score of 20will have a linear pre-

dictor of α̂ + β̂ × 20 = 0.0222. Substituting this value into equation (4.20)

gives π̂[20] = exp[0.0222]/(1+ exp[0.0222]) = 0.506. Equation (4.21)

gives us that

se[α̂ + β̂ × 20] =
√
0.076 468− 2× 20× 0.004 103+ 202 × 0.000 256

= 0.1214.
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Substituting into equations (4.22) and (4.23) gives

π̂L [20] = exp[0.0222− 1.96× 0.1214]/(1+ exp[0.0222

− 1.96× 0.1214]) = 0.446,

and

π̂U [20] = exp[0.0222 + 1.96× 0.1214]/(1+ exp[0.0222

+ 1.96× 0.1214]) = 0.565.

Hence a 95% confidence interval for π(20) is (0.446, 0.565).

There are m = 13 patients with an APACHE score of 20; d = 6 of these

subjects died. Hence the observed proportions of dying and surviving pa-

tients with this score are p= 6/13 and q = 7/13, respectively. Substituting

these values into equations (4.24) and (4.25) gives

PL =

(
2× 13× 6

13
+ 1.962 − 1

)
− 1.96

√
1.962 −

(
2+ 1

13

)
+ 4× 6

13

(
13× 7

13
+ 1

)
2 (13+ 1.962)

= 0.204

and

PU =

(
2× 13× 6

13
+ 1.962 + 1

)
+ 1.96

√
1.962 +

(
2− 1

13

)
+ 4× 6

13

(
13× 7

13
− 1

)
2 (13+ 1.962)

= 0.739

as the bounds of the 95% confidence interval for the true proportion of

deaths among people with an APACHE score of 20. Note that the difference

between (π̂L (20), π̂U (20)) and (PL , PU ) is that the former is based on all

454 patients and the logistic regressionmodel while the latter is based solely

on the 13 patients with APACHE scores of 20.

We can perform calculations similar to those given above to generate

Figure 4.6. The black dots in this figure give the observed mortality for

each APACHE score. The error bars give 95% confidence intervals for the

observed mortality at each score using equations (4.24) and (4.25). Confi-

dence intervals for scores associated with 100% survival or 100%mortality

are not given. The solid gray line gives the logistic regression curve using

equation (4.20). This curve depicts the expected 30-daymortality as a func-

tionof thebaselineAPACHEscore.Thedashed lines give the95%confidence

intervals for the regression curve using equations (4.22) and (4.23). These

intervals are analogous to the confidence intervals for the linear regression

line described in Section 2.10. Note that the expected mortality curve lies

within all of the 95% confidence intervals for the observed proportion of

deaths at each score. This indicates that the logistic regressionmodel fits the
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Figure 4.6 Observed and expected 30-day mortality by APACHE score in patients from
the Ibuprofen in Sepsis Study (Bernard et al., 1997). The solid gray line gives
the expected mortality based on a logistic regression model. The dashed lines
give the 95% confidence region for this regression line. The black dots give the
observed mortality for each APACHE score. The error bars give 95% confidence
intervals for the observed mortality at each score.

data quite well. The width of the 95% confidence intervals for the regression

curve depends on the number of patients studied, on the distance along

the x-axis from the central mass of observations and on the proximity of the

regression curve to either zero or one. Figure 4.7 shows a histogram of the

number of study subjects by baseline APACHE score. This figure shows

that the distribution of scores is skewed. The interquartile range is 10–20.

Note that the width of the confidence interval at a score of 30 in Figure 4.6

is considerably greater than it is at a score of 15. This reflects the fact that

30 is further from the central mass of observations than is 15, and that as

a consequence the accuracy of our estimate of π[30] is less than that of

π[15]. For very large values of the x variable, however, we know that π[x]

converges to one. Hence, π̂L [x] and π̂U [x] must also converge to one. In

Figure 4.6 the confidence intervals have started to narrow for this rea-

son for scores of 40 or more. We can think of the 95% confidence inter-

vals for the regression line as defining the region that most likely contains

the true regression line given that the logistic regression model is, in fact,

correct.

4.18. Logistic Regression with Grouped Data using Stata

The following log file and comments illustrates how to use Stata to perform

the calculations from the preceding section.
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Figure 4.7 Histogram of baseline APACHE scores for patients from the Ibuprofen in Sep-
sis Study. This distribution is skewed to the right, with few patients having
scores greater than 30. The estimate of the expected mortality rate in Figure 4.6
is most accurate over the range of scores that were most common in this study.

. * 4.18.Sepsis.log

. *

. * Simple logistic regression of mortality against APACHE score

. * in the Ibuprofen in Sepsis Study. Each record of 4.18.Sepsis.dta

. * gives the number of patients and number of deaths among subjects

. * with a specified APACHE score. These variables are named patients

. * deaths and apache, respectively.

. *

. use C:\WDDtext\4.18.Sepsis.dta, clear

. *

. * Calculate 95% confidence intervals for observed mortality rates

. *

. generate p = deaths/patients

. generate m = patients

. generate q = 1-p

. generate c = 1.96

. generate ci95lb = (2*m*p+cˆ2-1-c*sqrt(cˆ2-(2+1/m)+4*p*(m*q+1)))/(2*(m+cˆ2)) {1}
> if d ∼=0 & d∼= m

(11 missing values generated)

. generate ci95ub = (2*m*p+cˆ2+1+c*sqrt(cˆ2+(2-1/m)+4*p*(m*q-1)))/(2*(m+cˆ2)) {2}
> if d ∼=0 & d ∼= m
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(11 missing values generated)

. *

. * Regress deaths against APACHE score

. *

. glm deaths apache, family(binomial patients) link(logit) {3}
{output omitted}

Generalized linear models No. of obs = 38

{output omitted}
Variance function: V(u) = u*(1-u/patients) [Binomial]

Link function : g(u) = ln(u/(patients-u)) [Logit]

{output omitted}
-------------------------------------------------------------------------

deaths | Coef. Std. Err. z P>|z| [95% Conf. Interval]

----------+--------------------------------------------------------------

apache | .1156272 .0159997 7.227 0.000 .0842684 .146986 {4}
_cons | -2.290327 .2765283 -8.282 0.000 -2.832313 -1.748342

-------------------------------------------------------------------------

. vce {5}
| apache _cons

----------+-------------------

apache | .000256

_cons | -.004103 .076468

. predict logodds, xb {6}

. generate e_prob = exp(logodds)/(1+exp(logodds)) {7}

. label variable e_prob "Expected Mortality Rate"

. *

. * Calculate 95% confidence region for e_prob

. *

. predict stderr, stdp {8}

. generate lodds_lb = logodds - 1.96*stderr

. generate lodds_ub = logodds + 1.96*stderr

. generate prob_lb = exp(lodds_lb)/(1+exp(lodds_lb)) {9}

. generate prob_ub = exp(lodds_ub)/(1+exp(lodds_ub))

. label variable p "Observed Mortality Rate"
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. set textsize 120

. list p e_prob prob_lb prob_ub ci95lb ci95ub apache if apache == 20 {10}
p e_prob prob_lb prob_ub ci95lb ci95ub apache

20. .4615385 .505554 .4462291 .564723 .2040146 .7388 20

. graph p e_prob prob_lb prob_ub ci95lb ci95ub apache, symbol(Oiiiii) {11}
> connect(.ll[-#]l[-#]II) gap(3) xlabel(0 5 to 40) ylabel(0 .2 to 1.0)

> ytick(.1 .2 to .9) r1title(Expected Mortality Rate) rlabel(0,.2,.4,.6,.8,1.0)

{Graph omitted. See Figure 4.6}
. graph apache [freq=patients], bin(42) freq gap(3) l1title(Number of Patients)

> xlabel(0, 5 to 40) ylabel(0, 5 to 30) {12}
{Graph omitted. See Figure 4.7}

Comments
1 Calculate the lower bound for a 95%confidence interval for the observed

proportion of deaths using equation (4.24). This bound is not calculated

if all or none of the patients survive.

2 Calculate the corresponding upper bound using equation (4.25).

3 The family and link option of this glm command specify a binomial ran-

dom component and a logit link function. The family(binomial patients)

option indicates that each observation describes the outcomes of multi-

ple patients with the same value of apache ; patients records the number

of subjects with each apache value; deaths records the number of deaths

observed among these subjects. In other words, we are fitting a logistic

regression model using equation (4.20) with di = deaths,mi = patients

and xi = apache.

4 The estimated regression coefficients for apache and the constant term

_cons are β̂ = 0.115 627 and α̂ = −2.290 327, respectively.
5 The vce command prints the variance–covariance matrix for the es-

timated regression coefficients. This is a triangular array of numbers

that gives estimates of the variance of each coefficient estimate and the

covariance of each pair of coefficient estimates. In this example there

are only two coefficients. The estimated variance of the apache and cons

coefficient estimates are s 2
β̂

= 0.000 256 and s 2α̂ = 0.076 468, respectively.
The covariance between these estimates is s α̂β̂ = – 0.004 103. Note that

the square roots of s 2
β̂
and s 2α̂ equal 0.1600 and 0.2765, which are the

standard errors of β̂ and α̂ given in the output from the glm command.

We do not usually need to output the variance–covariance matrix in
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Stata because the predict and lincom post estimation commands can

usually derive all of the statistics that are of interest. We output these

terms here in order to corroborate the hand calculations performed in

Section 4.17. We will introduce the lincom command in Section 5.20.

The variance–covariance matrix is further discussed in Section 5.17.

6 This command sets logodds equal to the linear predictor α̂ + β̂×
apache.

7 The variable e prob equals π̂[apache], the estimated probability of

death for patients with the indicated APACHE score.

8 The stdp option of this predict command sets stderr equal to the standard

error of the linear predictor.

9 This generate command defines prob lb to equal π̂L [x] as defined by

equation (4.22). The next command sets prob ub to equal π̂U [x].

10 This list command outputs the values of variables calculated above for

the record with an APACHE score of 20. Note that these values agree

with the estimates that we calculated by hand in Section 4.17.

11 The graph produced by this command is similar to Figure 4.6. The two

“I”s in the connect option specify that the last two y-variables, ci95lb and

ci95ub, are to be connected by error bars. The 95% confidence region

for e prob= π̂[apache] are drawn with dashed lines that are specified by

the “l[−#]” code in the connect option.
12 This histogram is similar to Figure 4.7. The freq option specifies that

the y-axis will be the number of subjects; l1title specifies the title of the

y-axis.

4.19. Simple 2×2 Case-Control Studies

4.19.1. Example: The Ille-et-Vilaine Study of Esophageal Cancer and Alcohol

Tuyns et al. (1977) conducted a case-control study of alcohol, tobacco

and esophageal cancer in men from the Ille-et-Vilaine district of Brittany.

Breslow and Day (1980) subsequently published these data. The cases in

this study were 200 esophageal cancer patients who had been diagnosed at

a district hospital between January 1972 and April 1974. The controls were

775 men who were drawn from local electoral lists. Study subjects were in-

terviewed concerning their consumption of alcohol and tobacco as well as

other dietary risk factors. Table 4.2 shows these subjects divided by whether

they were moderate or heavy drinkers.
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Table 4.2. Cases and controls from the Ille-et-Vilaine study of esophageal
cancer, grouped by level of daily alcohol consumption. Subjects were
considered heavy drinkers if their daily consumption was ≥ 80 grams
(Breslow and Day, 1980).

Esophageal
Daily alcohol consumption

cancer ≥ 80g < 80g Total

Yes (cases) d1 = 96 c1 = 104 m1 = 200

No (controls) d0 = 109 c0 = 666 m0 = 775

Total n1 = 205 n0 = 770 N= 975

4.19.2. Review of Classical Case-Control Theory

Let π0 and π1 denote the prevalence of heavy drinking among controls and

cases in the Ille-et-Vilaine case-control study, respectively. That is, πi is the

probability that a control (i = 0) or a case (i = 1) is a heavy drinker. Then

the odds that a control patient is a heavy drinker is π0/(1− π0), and the

odds that a case is a heavy drinker is π1/(1− π1). The odds ratio for heavy
drinking among cases relative to controls is

ψ = (π1/ (1− π1)) / (π0/ (1− π0)) . (4.26)

Let m0 and m1 denote the number of controls and cases, respectively. Let

d0 and d1 denote the number of controls and cases who are heavy drinkers.

Let c0 and c1 denote the number of controls and cases who are moderate or

non-drinkers. (Note that mi = ci + di for i = 0 or 1.) Then the observed

prevalence of heavy drinkers is d0/m0 = 109/775 for controls and d1/m1 =
96/200 for cases. The observed prevalence of moderate or non-drinkers is

c0/m0= 666/775 forcontrols and c1/m1= 104/200 forcases.Theobserved
odds that a case or control will be a heavy drinker is

(di/mi )/ (ci/mi ) = di/ci

= 109/666 and 96/104 for controls and cases, respectively. The observed
odds ratio for heavy drinking in cases relative to controls is

ψ̂ = d1/c1
d0/c0

= 96/104

109/666
= 5.64.

If the cases and controls are representative samples from their respective

underlying populations then:

1 ψ̂ is an appropriate estimate of the true odds ratio ψ for heavy drinking

in cases relative to controls in the underlying population.
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2 This true odds ratio also equals the true odds ratio for esophageal cancer

in heavy drinkers relative to moderate drinkers.

3 If, in addition, the disease under study is rare (as is the case for esophageal

cancer) then ψ̂ also estimates the relative risk of esophageal cancer in

heavy drinkers relative to moderate drinkers.

It is the second of the three facts listed above thatmakes case-control studies

worth doing. We really are not particularly interested in the odds ratio for

heavy drinking among cases relative to controls. However, we are very inter-

ested in the relative risk of esophageal cancer in heavy drinkers compared

to moderate drinkers. It is, perhaps, somewhat surprising that we can esti-

mate this relative risk from the prevalence of heavy drinking among cases

and controls. Note that we are unable to estimate the incidence of cancer

in either heavy drinkers or moderate drinkers. See Hennekens and Buring

(1987) for an introduction to case-control studies. A more mathematical

explanation of this relationship is given in Breslow and Day (1980).

4.19.3. 95% Confidence Interval for the Odds Ratio: Woolf’s Method

An estimate of the standard error of the log odds ratio is

selog(ψ̂) =
√
1

d0
+ 1

c0
+ 1

d1
+ 1

c1
, (4.27)

and the distribution of log(ψ̂) is approximately normal. Hence, if we let

ψ̂ L = ψ̂ exp
[−1.96selog(ψ̂)] (4.28)

and

ψ̂U = ψ̂ exp
[
1.96selog(ψ̂)

]
, (4.29)

then (ψ̂ L , ψ̂U ) is a 95% confidence interval for ψ (Woolf, 1955). In the

esophageal cancer and alcohol analysis

selog(ψ̂) =
√
1

109
+ 1

666
+ 1

96
+ 1

104
= 0.1752.

Therefore, Woolf ’s estimate of the 95% confidence interval for the

odds ratio is (ψ̂ L , ψ̂U ) = (5.64 exp[−1.96× 0.1752], 5.64 exp[+1.96×
0.1752]) = (4.00, 7.95).

4.19.4. Test of the Null Hypothesis that the Odds Ratio Equals One

If there is no association between exposure and disease then the odds

ratio ψ will equal one. Let n j be the number of study subjects who are
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( j = 1) or are not ( j = 0) heavy drinkers and let N = n0 + n1 = m0 +m1
be the total number of cases and controls. Under the null hypothesis that

ψ = 1, the expected value and variance of d1 are

E[d1 | ψ = 1] = n1m1/N and

var [d1 | ψ = 1] = m0m1n0n1/N
3.

Hence,

χ21 = (|d1 − E[d1 j | ψ = 1]| − 0.5)2/var[d1 | ψ = 1] (4.30)

has aχ2 distributionwith one degree of freedom. In the Ille-et-Vilaine study

E[d1 | ψ = 1] = 205× 200/975 = 42.051 and

var [d1 | ψ = 1] = 775× 200× 770× 205/9753 = 26.397.

Therefore, χ21 = (|96− 42.051| − 0.5)2/(26.397) = 108.22. The P value

associated with this statistic is < 10−24, providing overwhelming evidence
that the observed association betweenheavy drinking and esophageal cancer

is not due to chance.

In equation (4.30) the constant 0.5 that is subtracted from the numerator

is known as Yates’ continuity correction (Yates, 1934). It adjusts for the

fact that we are approximating a discrete distribution with a continuous

normal distribution. There is an ancient controversy among statisticians as

to whether such corrections are appropriate (Dupont and Plummer, 1999).

Mantel and Greenhouse (1968), Fleiss (1981), Breslow and Day (1980) and

many others use this correction in calculating this statistic. However, Grizzle

(1967) and others, including the statisticians at Stata, do not. This leads to a

minor discrepancy between output from Stata and other statistical software.

Without the continuity correction the χ2 statistic equals 110.26.

4.19.5. Test of the Null Hypothesis that Two Proportions are Equal

We also need to be able to test the null hypothesis that two proportions are

equal. For example, wemight wish to test the hypothesis that the proportion

of heavy drinkers among cases and controls are the same. It is important

to realize that this hypothesis, H0 : π0 = π1, is true if and only if ψ = 1.

Hence equation (4.30) may also be used to test this null hypothesis.

4.20. Logistic Regression Models for 2×2 Contingency Tables

Consider the logistic regression model

logit[E[di | xi ]/mi ] = α + βxi : i = 0, 1, (4.31)
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where x0 = 0, x1 = 1 and E[di | xi ]/mi = πi is the probability of being

a heavy drinker for controls (i = 0) or cases (i = 1). Then (4.31) can be

rewritten as

logit [πi ] = log [πi/(1− πi )] = α + βxi . (4.32)

Hence,

log[π1/(1− π1)] = α + βx1 = α + β and (4.33)

log [π0/(1− π0)] = α + βx0 = α.

Subtracting these two equations gives

log[π1/(1− π1)]− log[π0/(1− π0)] = β, and hence

log

[
π1/(1− π1)

π0/(1− π0)

]
= log(ψ) = β. (4.34)

Thus, the true odds ratio ψ equals eβ . We will use logistic regression to

derive an estimate β̂ of β. We then can estimate the odds ratio by ψ̂ = e β̂ .

In the esophageal cancer and alcohol study β̂ = 1.730 and ψ̂ = e 1.730 =
5.64. This is identical to the classical odds ratio estimate obtained in

Section 4.19.2. The reader may wonder why we would go to the trouble

of calculating ψ̂ with logistic regression when the simple classical estimate

gives the same answer. The answer is that we will be able to generalize logis-

tic regression to adjust for multiple covariates; classical methods are much

more limited in their ability to adjust for confounding variables or effect

modifiers.

4.20.1. Nuisance Parameters

In equation (4.31) α is called a nuisance parameter. This is one that is
required by the model but is not used to calculate interesting statistics.

4.20.2. 95% Confidence Interval for the Odds Ratio: Logistic Regression

Logistic regression also provides an estimate of the standard error of β̂.

We use this estimate to approximate the 95% confidence interval for the

odds ratio in exactly the same way as for Woolf ’s confidence interval.

That is,

(ψ̂ L , ψ̂U ) = (exp[β̂ − 1.96s β̂], exp[β̂ + 1.96s β̂]). (4.35)
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4.21. Creating a Stata Data File

Up until now we have used previously created data sets in our Stata exam-

ples. We next wish to analyze the data in Table 4.2. As this is a very small

table, it provides a good opportunity to explain how to create a new Stata

data set. We do this in the following example.

. * 4.21.EsophagealCa.log

. *

. * Create a Stata data set from the Ille-et-Vilaine data on esophageal

. * cancer and alcohol given in Table 4.2.

. *

. edit {1}

. list {2}
var1 var2 var3

1. 0 0 666

2. 1 0 104

3. 0 1 109

4. 1 1 96

. rename var1 cancer {3}

. rename var2 alcohol

. rename var3 patients

. label define yesno 0 "No" 1 "Yes" {4}

. label values cancer yesno {5}

. label define dose 0 "< 80g" 1 ">= 80g"

. label values alcohol dose

. list {6}
cancer alcohol patients

1. No < 80g 666

2. Yes < 80g 104

3. No >= 80g 109

4. Yes >= 80g 96

. save C:\WDDtext\4.21.EsophagealCa.dta, replace {7}

Comments
1 Open the Stata Editor window. Enter three rows of values as shown in

Figure 4.8. Then, exit the edit window by clicking the “×” in the upper
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Figure 4.8 This figure shows the Stata Editor window after the data from Table 4.2 has
been entered by hand.

right hand corner of the window. This creates three variables with the

default names var1, var2 and var3. There are four observations corre-

sponding to the four cells in Table 4.2. The variable var1 classifies the

study subjects as either controls (var1= 0) or cases (var1= 1). Similarly,

var2 classifies subjects as either moderate (var2= 0) or heavy (var2= 1)

drinkers. The variable var3 gives the number of subjects in each of the

four possible disease–exposure groups.

2 This list command shows the values that we have just entered. With-

out arguments, this command shows all observations on all

variables.

3 This rename command changes the name of the first variable from var1

to cancer. The Stata Getting Started manual also explains how to do this

in the Stata Editor window.

4 The cancer variable takes the values 0 for controls and 1 for cases. It is

often useful to associate labels with the numeric values of such classifica-

tion variables. To do this we first define a value label called yesno that links

0 with “No” and 1 with “Yes”.

5 We then use the label values command to link the variable cancerwith the

values label yesno. Multiple variables can be assigned to the same values

label.

6 The list command now gives the value labels of the cancer and alcohol

variables instead of their numeric values. The numeric values are still

available for use in analysis commands.

7 This save command saves the data set that we have created in the

C:\WDDtext folder with the name 4.21.EsophagealCa.dta. If a file with
the same name already exists in this folder, the replace option will replace

the old file with the new version.
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4.22. Analyzing Case-Control Data with Stata

The Ille-et-Vilaine data set introduced in Section 4.19 may be analyzed as

follows:

. * 4.22.EsophagealCa.log

. *

. * Logistic regression analysis of 2x2 case-control data from

. * the Ille-et-Vilaine study of esophageal cancer and alcohol.

. *

. use C:\WDDtext\4.22.EsophagealCa.dta, clear

. cc cancer alcohol [freq=patients], woolf {1}

| alcohol Proportion

| Exposed Unexposed | Total Exposed

---------------+---------------------+----------------------------------

Cases | 96 104 | 200 0.4800

Controls | 109 666 | 775 0.1406

---------------+---------------------+----------------------------------

Total | 205 770 | 975 0.2103

| Point estimate | [95% Conf. Interval]

|----------------------+----------------------------------

Odds ratio | 5.640085 | 4.000589 7.951467 (Woolf){2}
Attr. frac. ex. | .8226977 | .7500368 .8742371 (Woolf)

Attr. frac. pop | .3948949 |

+---------------------------------------------------------

chi2(1) = 110.26 Pr>chi2 = 0.0000 {3}
. logistic alcohol cancer [freq=patients] {4}
Logit estimates Number of obs = 975

LR chi2(1) = 96.43

Prob > chi2 = 0.0000

Log likelihood = -453.2224 Pseudo R2 = 0.0962

--------------------------------------------------------------------------

alcohol | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+----------------------------------------------------------------

cancer | 5.640085 .9883491 9.872 0.000 4.000589 7.951467 {5}
--------------------------------------------------------------------------

Comments
1 This cc command performs a classical case-control analysis of the data

in the 2×2 table defined by cancer and alcohol. The command qualifier
[freq = patients] gives the number of patients who have the specified
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values of cancer and alcohol. The woolf option specifies that the 95%

confidence interval for the odds ratio is to be calculated using Woolf ’s

method.

An alternative way of performing the same analysis would have been

to create a data set with one record per patient. This would have given

666 records with cancer= 0 and alcohol= 0,

104 records with cancer= 1 and alcohol= 0,

109 records with cancer= 0 and alcohol= 1, and

96 records with cancer= 1 and alcohol= 1.

Then the command

cc cancer alcohol, woolf

would have given exactly the same results as those shown above.

2 The estimated odds ratio is ψ̂ = 5.64. Woolf ’s 95% confidence interval

for ψ̂ is (4.00, 7.95). These statistics agree with our hand calculations in

Sections 4.19.2 and 4.19.3.

3 The test of the null hypothesis thatψ = 1 gives an uncorrectedχ2 statistic

of 110.26. The P value associated with this statistic is (much) less than

0.000 05.

4 Regress alcohol against cancer using logistic regression. This command

fits equation (4.31) to the data. We would also have got the same result if

we had regressed cancer against alcohol.

5 The estimate of the odds ratio and its 95% confidence interval are identi-

cal to those obtained from the classical analysis. Recall that the logistic

command outputs ψ̂ = exp[β̂] rather than the parameter estimate β̂

itself.

4.23. Regressing Disease Against Exposure

The simplest explanation of simple logistic regression is the one given above.

Unfortunately, it does not generalize to multiple logistic regression where

we are considering several risk factors at once. In order to make the next

chapter easier to understand, let us return to simple logistic regression one

more time.

Suppose we have a population who either are or are not exposed to some

risk factor. Let π ′
j denote the true probability of disease in exposed ( j = 1)

and unexposed ( j = 0) people. We conduct a case-control study in which

we select a representative sample of diseased (case) and healthy (control)

subjects from the target population. That is, the selection is done in such a
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way that the probability that an individual is selected is unaffected by her

exposure status. Let

n j be the number of study subjects who are ( j = 1) or are not ( j = 0)

exposed,

d j be the number of cases who are ( j = 1) or are not ( j = 0) exposed,

x j = j denote exposure status, and

π j be the probability that a study subject is a case given that she is ( j = 1)

or is not ( j = 0) exposed.

Consider the logistic regression model

logit[E[d j | x j ]/n j ] = α + βx j : j = 0, 1. (4.36)

This is a legitimate logistic regression model with E[d j | x j ]/n j = π j . It

can be shown, however, that equation (4.36) can be rewritten as

logit[π ′
j ] = α′ + βx j : j = 0, 1, (4.37)

where α′ is a different constant. But, by exactly the same argument that we
used to derived equation (4.34) from equation (4.31), we can deduce from

equation (4.37) that

log

[
π ′
1/(1− π ′

1)

π ′
0/(1− π ′

0)

]
= log(ψ) = β. (4.38)

Hence, β also equals the log odds ratio for disease in exposed vs. unexposed

members of the target population, and β̂ from equation (4.36) estimates

this log odds ratio. Thus, in building logistic regression models it makes

sense to regress disease against exposure even though we have no estimate

of the probability of disease in the underlying population.

In the next chapter we will not always distinguish between terms like

π j and π ′
j . It is less awkward to talk about the probability of developing

cancer given a set of covariates than to talk about the probability that a study

subject with given covariates is also a case. This lack of precision is harmless

as long as you remember that in a case-control study we cannot estimate

the probability of disease given a patient’s exposure status. Moreover, when

estimates of π j are used in formulas for odds ratios, they provide valid odds

ratio estimates for the underlying population.

4.24. Additional Reading

McCullaghandNelder (1989) is a standard, if rathermathematical, reference

on Generalized Linear Models.
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Breslow and Day (1980) is somewhat easier to read, although it is tar-

geted at an audience with a solid statistical background. They provide an

informative contrast between classical methods for case-control studies

and logistic regression. This text also has an excellent and extensive dis-

cussion of the Ille-et-Vilaine data set thatmay be read in conjunctionwith

the discussion in this and the next chapter. They provide the complete

Ille-et-Vilaine data set in an appendix.

Fleiss (1981) provides a useful discussion of the analysis of rates and pro-

portions.

Hennekens and Buring (1987) provide a good introduction to case-control

studies.

Rothman and Greenland (1998) is a more advanced epidemiology text

with a worthwhile discussion of case-control studies. This text also has

a good discussion of likelihood ratio tests, score tests, and Wald tests.

Clayton and Hills (1993) provide an excellent discussion of the difference

between likelihood ratio, score, andWald tests that includes some helpful

graphs.

Wald (1943) is the original reference onWald tests and confidence intervals.

Yates (1934) is the original reference on the continuity correction for the

chi-squared statistic for 2×2 tables.
Dupont and Plummer (1999) provide a brief review of the controversy

surrounding continuity corrections in the statistical literature. They also

provide a Stata program that calculatesYates’ corrected chi-squared statis-

tic for 2×2 tables.
Tuyns et al. (1977) studied the effect of alcohol and tobacco on the risk of

esophageal cancer among men from the Ille-et-Vilaine district of France.

We used their data to illustrate classicalmethods of analyzing case control

studies as well as logistic regression.

4.25. Exercises

The following questions relate to the 4.ex.Sepsis.dta data set from my web

site, which you should download onto your computer. This data set contains

information on patients from the Ibuprofen in Sepsis trial. Variables in this

file include:

treat =
{
0: if patient received placebo

1: if patient received ibuprofen,

death30d =
{
0: if patient was alive 30 days after entry into the study

1: if patient was dead 30 days after entry,

race =
{
0: if patient is white

1: if patient is black,
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apache = baseline APACHE score, and

id = patient identification number.

1 Use logistic regression to estimate the probability of death in treated black

patients as a function of baseline APACHE score. Do a similar regression

for black patients on placebo. Plot these two curves on a single graph.

How would you interpret these curves?

2 What is the odds ratio associated with a unit rise in APACHE score in

untreated black patients? Give a 95% confidence interval for this odds

ratio.

3 What is the estimated expected mortality for a black control patient with

a baseline APACHE score of 10? Give the 95% confidence interval for

this expected mortality. How many black control patients had a baseline

APACHE score of 15 or less?What proportion of these patients died? Give

a 95% confidence interval for this proportion.
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Multiple Logistic Regression

Simple logistic regression generalizes to multiple logistic regression in

the same way that simple linear regression generalizes to multiple linear

regression. We regress a dichotomous response variable, such as survival,

against several covariates. This allows us to either adjust for confounding

variables or account for covariates that have a synergistic effect on the re-

sponse variable. We can add interaction terms to our model in exactly the

same way as in linear regression.

Before discussing multiple logistic regression we will first describe a tra-

ditional method for adjusting an odds ratio estimate for a confounding

variable.

5.1. Mantel—Haenszel Estimate of an Age-Adjusted Odds Ratio

InSection4.19.1we introduced the Ille-et-Vilaine studyof esophageal cancer

and alcohol (Breslow andDay, 1980). Table 5.1 shows these data stratified by

ten-year age groups. It is clear fromthis table that the incidenceof esophageal

cancer increases dramatically with age. There is also some evidence that

the prevalence of heavy drinking also increases with age; the prevalence of

heavy drinking among controls increases from 7.8% for men aged 25–30

to 17.3% for men aged 45–54. Thus, age may confound the alcohol–cancer

relationship, and it makes sense to calculate an age-adjusted odds ratio for

the effect of heavy drinking on esophageal cancer. Mantel and Haenszel

(1959) proposed the following method for adjusting an odds ratio in the

presence of a confounding variable.

Suppose that study subjects are subdivided into a number of strata by a

confounding variable. Let

ci j = the number of controls in the j th stratum who are (i = 1), or are

not (i = 0), exposed (i.e. who are, or are not, heavy drinkers),

di j = the number of cases in the j th stratum who are (i = 1), or are

not (i = 0), exposed,

m0 j = c0 j + c1 j = the number of controls in the j th stratum,

143
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Table 5.1. Ille-et-Vilaine data on alcohol consumption and esophageal
cancer stratified by age (Breslow and Day, 1980).

Daily alcohol
Odds

consumption
ratio

Age Cancer ≥80g <80g Total % ≥80g ψ̂ j

25–34 Yes 1 0 1 100.00% .

No 9 106 115 7.83%

Total 10 106 116 8.62%

35–44 Yes 4 5 9 44.44% 5.046

No 26 164 190 13.68%

Total 30 169 199 15.08%

45–54 Yes 25 21 46 54.35% 5.665

No 29 138 167 17.37%

Total 54 159 213 25.35%

55–64 Yes 42 34 76 55.26% 6.359

No 27 139 166 16.27%

Total 69 173 242 28.51%

65–74 Yes 19 36 55 34.55% 2.580

No 18 88 106 16.98%

Total 37 124 161 22.98%

≥75 Yes 5 8 13 38.46% .

No 0 31 31 0.00%

Total 5 39 44 11.36%

All ages Yes 96 104 200 48.00% 5.64

No 109 666 775 14.06%

Total 205 770 975 21.03%

m1 j = d0 j + d1 j = the number of cases in the j th stratum,

ni j = di j + ci j = the number of subjects in the j th stratum who are

(i = 1), or are not (i = 0), exposed,

Nj = n0 j + n1 j = m0 j + m1 j = the number of subjects in the j th

stratum,

ψ̂ j = the estimated odds ratio for members of the j th stratum,

w j = d0 j c1 j/Nj , and

W = ∑
w j .

Then theMantel–Haenszel estimate of the common odds ratio within these

strata is

ψ̂mh =
∑ (

d1 j c0 j/Nj

)
/W. (5.1)
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If ψ̂ j is estimable for all strata, then equation (5.1) can be rewritten

ψ̂mh =
∑

ψ̂ j w j/W. (5.2)

This implies that ψ̂mh is a weighted average of the odds ratio estimates

within each strata. The weight w j is approximately equal to the inverse

of the variance of ψ̂ j when ψ is near one. Thus, equation (5.2) gives the

greatest weight to those odds ratio estimates that are estimated with the

greatest precision.

In the Ille-et-Vilaine data given in Table 5.1 there are six age strata. We

apply equation (5.1) to these data to calculate the age-adjusted odds ratio

for esophageal cancer in heavy drinkers compared tomoderate drinkers. For

example, in Strata 2 we have w2 = d02c12/N2 = 5 × 26/199 = 0.653 and

d12c02/N2 = 4 × 164/199 = 3.296. Performing similar calculations for the

other strata and summing gives the W = 11.331 and ψ̂mh = 5.158. The

unadjusted odds ratio for this table is 5.640 (see Section 4.19.2). Thus there

is a suggestion that agemayhave amild confoundingeffect on this odds ratio.

5.2. Mantel—Haenszel χ2 Statistic for Multiple 2×2 Tables

Under the null hypothesis that the common odds ratio ψ = 1, the expected

value of d1 j is

E[d1 j | ψ = 1] = n1 jm1 j/Nj (5.3)

and the variance of d1 j is

var[d1 j | ψ = 1] = m0 jm1 j n0 j n1 j
N2

j (Nj − 1)
. (5.4)

The Mantel–Haenszel test statistic for this null hypothesis is

χ2
1 =

(∣∣∣∑ d1 j −
∑

E[d1 j | ψ = 1]
∣∣∣ − 0.5

)2 / ∑
var[d1 j | ψ = 1],

(5.5)

which has a χ2 distribution with one degree of freedom (Mantel and

Haenszel, 1959). In the Ille-et-Vilaine study
∑

d1 j = 96,
∑

E[d1 j | ψ = 1]=
48.891 and

∑
var[d1 j | ψ = 1]= 26.106. Therefore χ2

1 = (|96 − 48.891| −
0.5)2/(26.106)= 83.21. The P value associated with this statistic is < 1019,

providing overwhelming evidence that the observed association between

heavy drinking and esophageal cancer is not due to chance.

In equation (5.5), the constant 0.5 that is subtracted from the numerator

is a continuity correction that adjusts for the fact that we are approximating
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a discrete distribution with a continuous normal distribution (see Section

4.19.4). Without the continuity correction the χ2 statistic equals 85.01.

5.3. 95% Confidence Interval for the Age-Adjusted Odds Ratio

Let P j = (d1 j + c0 j )/Nj ,

Q j = (c1 j + d0 j )/Nj ,

R j = d1 j c0 j/Nj , and

S j = c1 j d0 j/Nj .

Then Robins et al. (1986) estimated the standard error of the log of ψ̂mh

to be

se[log ψ̂mh] =
√ ∑

Pj R j

2
(∑

R j

)2 +
∑

(Pj S j + Q j R j )

2
∑

R j
∑

S j
+

∑
Q j S j

2
(∑

S j

)2 . (5.6)

Hence, a 95% confidence interval for the common within-stratum odds

ratio ψ is

(ψ̂mh exp[−1.96 se[log ψ̂mh]], ψ̂mh exp[1.96 se[log ψ̂mh]]). (5.7)

In the Ille-et-Vilaine study,∑
R j = 58.439,

∑
S j = 11.331,

∑
Pj R j = 43.848,∑

(P j S j + Q j R j ) = 22.843,
∑

Q j S j = 3.079, and ψ̂mh = 5.158.

Therefore,

se(log ψ̂mh) =
√

43.848

2 (58.439)2
+ 22.843

2 × 58.439 × 11.331
+ 3.079

2 (11.331)2

= 0.189,

and a 95% confidence interval for the age-adjusted odds ratio ψ is

(5.158 exp[−1.96 × 0.189], 5.158 exp[1.96 × 0.189])= (3.56, 7.47).

5.4. Breslow and Day’s Test for Homogeneity

The derivation of the Mantel–Haenszel odds ratio assumes that there is

a single true odds ratio for subjects from each stratum. Breslow and Day
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Table 5.2. Observed and fitted values for the fifth stratum of the
Ille-et-Vilaine data set. The fitted values are chosen so that the resulting odds
ratio equals ψ̂mh = 5.158, and the total number of cases and controls and
heavy and moderate drinkers equal the observed totals for this stratum.
These calculations are needed for Breslow and Day’s test for homogeneity
of the common odds ratio (Breslow and Day, 1980).

Daily alcohol consumption
Esophageal

cancer ≥80g <80g Total

Observed values

Yes d15 = 19 d05 = 36 m15 = 55

No c15 = 18 c05 = 88 m05 = 106

Total n15 = 37 n05 = 124 N5 = 161

Fitted values

Yes d15[ψ̂mh] = 23.557 d05[ψ̂mh] = 31.443 m15 = 55

No c15[ψ̂mh] = 13.443 c05[ψ̂mh] = 92.557 m05 = 106

Total n15 = 37 n05 = 124 N5 = 161

(1980) proposed the following test of this assumption. First, we find fitted

values ci j [ψ̂mh] anddi j [ψ̂mh] for the j th stratumthat give ψ̂mh as thewithin-

stratumodds ratio andwhich add up to the actual number of cases and con-

trols and exposed and unexposed subjects for this stratum. For example, the

top and bottom halves of Table 5.2 show the actual and fitted values for the

fifth age stratum from the Ille-et-Vilaine study. Note that the fitted values

have been chosen so that (d15[ψ̂mh]/d05[ψ̂mh])/(c15[ψ̂mh]/c05[ψ̂mh]) =
(23.557/31.443)/(13.443/92.557) = ψ̂mh = 5.158 and the column and

row totals for the fitted and observed values are identical. The fitted value

d1 j [ψ̂mh] is obtained by solving for x in the equation

ψ̂mh = (x/(m1 j − x))

(n1 j − x)/(n0 j − m1 j + x)
. (5.8)

We then set

c1 j [ψ̂mh]= n1 j − x , d0 j [ψ̂mh]=m1 j − x , and c0 j [ψ̂mh]= n0 j − m1 j + x.

There is aunique solution to equation (5.8) forwhich ci j [ψ̂mh] anddi j [ψ̂mh]

are non-negative.
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The variance of d1 j given ψ = ψ̂mh is

var[d1 j | ψ̂mh] =
(

1

c0 j [ψ̂mh]
+ 1

d0 j [ψ̂mh]
+ 1

c1 j [ψ̂mh]
+ 1

d1 j [ψ̂mh]

)−1

.

(5.9)

For example, in the fifth stratum

var[d15 | ψ̂mh = 5.158] =
(

1

92.557
+ 1

31.443
+ 1

13.443
+ 1

23.557

)−1

= 6.272.

Let J be the number of strata. Then if the null hypothesis that ψ j = ψ for

all strata is true, and the total study size is large relative to the number of

strata,

χ2
J −1 =

∑ (d1 j − d1 j [ψ̂mh])2

var[d1 j | ψ̂mh]
(5.10)

has a χ2 distribution with J−1 degrees of freedom. This sum is performed

over all strata. We reject the null hypothesis when χ2
J −1 is too large. For

example, in the fifth stratum of the Ille-et-Vilaine study

(d15 − d15[ψ̂mh])2

var[d15 | ψ̂mh]
= (19 − 23.557)2

6.272
= 3.31.

Summing this term with analogous terms from the other strata gives χ2
5 =

9.32. As there are six strata, J = 5. The probability that a χ2 statistic with

five degrees of freedom exceeds 9.32 is P = 0.097. Hence, although we

cannot reject the null hypothesis of equal odds ratios across these strata,

there is some evidence to suggest that the odds ratio may vary with age.

In Table 5.1 these odds ratios are fairly similar for all strata except for age

65–74, where the odds ratio drops to 2.6. This may be due to chance, or

perhaps, to a hardy survivor effect. Youmust use your judgment in deciding

whether it is reasonable to report a single-ageadjustedodds ratio inyourown

work.

5.5. Calculating the Mantel—Haenszel Odds Ratio using Stata

The 5.5.EsophagealCa.dta data file contains the complete Ille-et-Vilaine

data set published by Breslow and Day (1980). The following log file and

comments illustrate how to use Stata to perform the calculations given

above.
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. * 5.5.EsophagealCa.log

. *

. * Calculate the Mantel-Haenszel age-adjusted odds ratio from

. * the Ille-et-Vilaine study of esophageal cancer and alcohol.

. *

. use C:\WDDtext\5.5.EsophagealCa.dta, clear

.table cancer heavy [freq=patients] {1}
------------+----------------------

| Heavy Alcohol

Esophagea | Consumption

l Cancer | <80 gm >= 80 gm

------------+----------------------

No | 666 109

Yes | 104 96

------------+----------------------

.table cancer heavy [freq=patients], by(age) {2}
------------+---------------------

Age |

(years) |

and | Heavy Alcohol

Esophagea | Consumption

l Cancer | <80 gm >= 80 gm

------------+---------------------

25-34 |

No | 106 9

Yes | 1

------------+---------------------

35-44 |

No | 164 26

Yes | 5 4

------------+---------------------

45-54 |

No | 138 29

Yes | 21 25

------------+---------------------

55-64 |

No | 139 27

Yes | 34 42
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------------+------------------

65-74 |

No | 88 18

Yes | 36 19

------------+------------------

>= 75 |

No | 31

Yes | 8 5

------------+------------------

. cc heavy cancer [freq=patients], by(age) {3}
Age (years) | OR [95% Conf. Interval] M-H Weight

-----------------+---------------------------------------------

25-34 | . 0 . 0 (exact)

35-44 | 5.046154 .9268664 24.86538 .6532663 (exact)

45-54 | 5.665025 2.632894 12.16536 2.859155 (exact)

55-64 | 6.359477 3.299319 12.28473 3.793388 (exact)

65-74 | 2.580247 1.131489 5.857261 4.024845 (exact)

>= 75 | . 2.761795 . 0 (exact)

-----------------+---------------------------------------------

Crude | 5.640085 3.937435 8.061794 (exact) {4}
M-H combined | 5.157623 3.562131 7.467743 {5}

-----------------+---------------------------------------------

Test of homogeneity (B-D) chi2(5) = 9.32 Pr>chi2= 0.0968 {6}
Test that combined OR = 1:

Mantel-Haenszel chi2(1) = 85.01 {7}
Pr>chi2 = 0.0000

Comments
1 This table command gives a cross tabulation of values of heavy by values

of cancer. The 5.5.EsophagealCa.dta data set contains one record for each

uniquecombinationof thecovariatevalues.Thepatientsvariable indicates

the number of subjects in the study with these values. The [freq=patients]

command qualifier tells Stata the number of subjects represented by each

record. The variable heavy takes the numeric values 0 and 1, which denote

daily alcohol consumption of<80 gmand≥80 gm, respectively. The table

shows the value labels that have been assigned to this variable rather than

its underlying numeric values. Similarly, cancer takes the numeric values 0

and 1, which have been assigned the value labelsNo and Yes, respectively.

2 The by(age) option of the table command produces a separate table of
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cancer by heavy for each distinct value of age. The age variable takes a

different value for each stratum in the study, producing six subtables.

3 The by(age) option of the cc command causes odds ratios to be calculated

for each age stratum. No estimate is given for the youngest strata because

there were no moderate drinking cases. This results in division by zero

when calculating the odds ratio. Similarly, no estimate is given for the

oldest strata because there were no heavy drinking controls.

4 The crude odds ratio is 5.640, which we derived in the last chapter. This

odds ratio is obtained by ignoring the age strata.

The exact 95% confidence interval consists of all values of the odds

ratio that cannot be rejected at theα = 0.05 level of statistical significance

(see Section 1.4.7). The derivation of this interval uses a rather complex

iterative formula (Dupont and Plummer, 1999).

5 The Mantel–Haenszel estimate of the common odds ratio within all age

strata is 5.158. This is slightly lower than the crude estimate, and is con-

sistent with a mild confounding of age and drinking habits on the risk

of esophageal cancer (see Section 5.1). Stata uses the method of Robins

et al. (1986) to estimate the 95% confidence interval for this common

odds ratio, which is (3.56, 7.47).

6 Breslow and Day’s test of homogeneity equals 9.32. This χ2 statistic has

five degrees of freedom giving a P value of 0.097.

7 We test the null hypothesis that the age-adjusted odds ratio equals 1. The

Mantel–Haenszel test of this hypothesis equals 85.01. Stata calculates this

statistic without the continuity correction. The associated P value is less

than 0.00005.

5.6. Multiple Logistic Regression Model

TheMantel–Haenszel method works well when we have a single confound-

ing variable that can be used to create fairly large strata. For a more general

approach to modeling dichotomous response data we will need to use lo-

gistic regression.

Suppose that we observe an unbiased sample of n patients from some

target population. Let

di =
{
1: if the i th patient suffers event of interest

0: otherwise,

and xi1, xi2, . . . , xiq be q covariates that are measured on the i th patient.

Let xi = (xi1, xi2, . . . , xiq ) denote the values of all of the covariates for



152 5. Multiple logistic regression

the i th patient. Then the multiple logistic regression model assumes that

di has a Bernoulli distribution, and

logit [E [di | xi ]] = α + β1xi1 + β2xi2 + · · · + βq xiq , (5.11)

where

α, β1, β2, . . . , and βq are unknown parameters.

The probability that di = 1 given the covariates xi is denoted π[xi1,

xi2, . . . , xiq ] = π[xi ] and equals E [di | xi ]. The only difference between

simple and multiple logistic regression is that the linear predictor is now

α + β1xi1 + β2xi2 + · · · + βkxiq . As in simple logistic regression, themodel

has a logit link function and a Bernoulli random component.

The data may also be organized as one record per unique combination of

covariate values. Suppose that there are n j patients with identical covariate

values x j1, x j2, . . . , x jq and that d j of these patients suffer the event of

interest. Then the logistic regression model (5.11) can be rewritten

logit[E[d j | x j ]/n j ] = α + β1x j1 + β2x j2 + · · · + βq x jq . (5.12)

(In equation (5.12) there is a different value of j for each distinct observed

pattern of covariates while in equation (5.11) there is a separate value of i

for each patient.) The statistic d j is assumed to have a binomial distribution

obtained from n j independent dichotomous experiments with probability

of successπ[x j1, x j2, . . . , x jq ] on each experiment. Equation (5.12) implies

that

π[x j1, x j2, . . . , x jq ] = exp[α + β1x j 1 + β2x j2 + · · · + βq x jq ]

1 + exp[α + β1x j 1 + β2x j2 + · · · + βq x jq ]
.

(5.13)

Choose any integer k between 1 and q. Suppose that we hold all of the co-

variates constant except x jk , whichwe allow to vary. Thenα′ = α + β1x j1 +
· · · + βk−1x j,k−1 + βk+1x j,k+1 + · · · + βq x jq is a constant and equation

(5.13) can be rewritten

π[x jk] = exp[α′ + βkx jk]

1 + exp[α′ + βkx jk]
, (5.14)

which is the equation for a simple logistic regression model. This implies

that βk is the log odds ratio associated with a unit rise in x jk while holding

the values of all the other covariates constant (see Section 4.12). Thus, the β

parameters inamultiple logistic regressionmodelhavean interpretation that
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is analogous to that formultiple linear regression. Each parameter equals the

log odds ratio associated with a unit rise of its associated covariate adjusted

for all of the other covariates in the model.

5.7. 95% Confidence Interval for an Adjusted Odds Ratio

Logistic regression provides maximum likelihood estimates of the model

parameters in equation (5.11) or (5.12) together with estimates of their

standard errors. Let β̂k and se[β̂k] denote themaximum likelihood estimate

of βk and its standard error, respectively. Then a 95% confidence interval

for the odds ratio associated with a unit rise in xik adjusted for the other

covariates in the model is

(exp[β̂k − 1.96se[β̂k]], exp[β̂k + 1.96se[β̂k]]). (5.15)

5.8. Logistic Regression for Multiple 2×2 Contingency Tables

We will first consider a model that gives results that are similar to those of

the Mantel–Haenszel method. Let us return to the Ille-et-Vilaine data from

Section 5.1. Let di j and ni j be defined as in Section 5.1 and let

J = the number of strata,

i =
{
1: for subjects who are heavy drinkers

0: for those who are not,

πi j = the probability that a study subject from the j th age stratum has

cancer given that he is (i = 1), or is not (i = 0), a heavy drinker,

and α, β and α j be model parameters.

Consider the logistic model

logit[E[di j | i j ]/ni j ] =
{

α + β × i : j = 1

α + α j + β × i : j = 2, 3, . . . , J ,
(5.16)

where di j has a binomial distribution obtained from ni j independent trials

with success probabilityπi j on each trial. For any age stratum j anddrinking

habit i E[di j | i j ]/ni j = πi j . For any j > 1,

logit[E[d0 j | i = 0, j ]/ni j ] = logit[π0 j ] = log[π0 j/(1 − π0 j )] = α + α j

(5.17)
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is the log odds that a study subject from the j thstratum who is a moderate

drinker will have cancer. Similarly,

logit[E [d1 j | i = 1, j ]/ni j ] = logit[π1 j ] = log[π1 j/(1 − π1 j )]

= α + α j + β (5.18)

is the log odds that a study subject from the j th stratum who is a heavy

drinker will have cancer. Subtracting equation (5.17) from equation (5.18)

gives us

log[π j1/(1 − π j1)] − log[π j0/(1 − π j0)] = β,

or

log

[
π j1/(1 − π j1)

π j0/(1 − π j0)

]
= logψ = β. (5.19)

A similar argument shows that equation (5.19) also holds when j = 1.

Hence, this model implies that the odds ratio for esophageal cancer among

heavy drinkers compared to moderate drinkers is the same in all strata and

equals ψ = exp[β]. Moreover, as explained in Section 4.23, ψ also equals

this odds ratio for members of the target population.

In practice we fit model (5.16) by defining indicator covariates

age j =
{
1: if subjects are from the j th age strata

0: otherwise.

Then (5.16) becomes

logit[E[di j | i j ]/ni j ] = α + α2 × age2 + α3 × age3 + α4 × age4

+ α5 × age5 + α6 × age6 + β × i. (5.20)

Note that this model places no restraints of the effect of age on the odds of

cancer and only requires that the within-strata odds ratio be constant. For

example, consider two study subjects from the first and j th age strata who

have similar drinking habits (i is the same for both men). Then the man

from the j th stratum has log odds

logit[E (di j | i j )/ni j ] = α + α j + β × i, (5.21)

while the man from the first age stratum has log odds

logit[E[di1 | i, j = 1]/ni1] = α + β × i. (5.22)

Subtracting equation (5.22) from equation (5.21) gives that the log odds

ratio for men with similar drinking habits from stratum j versus stratum

1 is α j . Hence, each of strata 2 through 6 has a separate parameter that
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determines the odds ratio for men in that stratum relative to men with the

same drinking habits from stratum 1.

An alternative model that we could have used is

logit[E[di j | i j ]/ni j ] = α × j + β × i. (5.23)

However, this model imposes a linear relationship between age and the log

odds for cancer. That is, the log odds ratio

for age stratum 2 vs. stratum 1 is 2α − α =α,

for age stratum 3 vs. stratum 1 is 3α − α = 2α, and

for age stratum 6 vs. stratum 1 is 6α − α = 5α.

As this linear relationship may not be valid, we are often better off using the

more general model given by equation (5.20).

Performing the logistic regression defined by equation (5.20) gives β̂ =
1.670 with a standard error of se[β̂] = 0.1896. Therefore, the age-adjusted

estimate of the odds ratio for esophageal cancer in heavy drinkers compared

to moderate drinkers is ψ̂ = exp[β̂]= e1.670 = 5.31. From equation (5.15)

we have that the 95% confidence interval for ψ is (exp[1.670− 1.96×
0.1896], exp[1.670+ 1.96 × 0.1896])= (3.66, 7.70). The results of this

logistic regression are similar to those obtained from the Mantel–Haenszel

analysis. The age-adjusted odds ratio from this latter test was ψ̂ = 5.16 as

compared to 5.31 from this logistic regression model.

5.9. Analyzing Multiple 2×2 Tables with Stata

The following log file and comments illustrate how to fit the logistic regres-

sion model (5.20) to the Ille-et-Vilaine data set.

. * 5.9.EsophagealCa.log

. *

. * Calculate age-adjusted odds ratio from the Ille-et-Vilaine study

. * of esophageal cancer and alcohol using logistic regression.

. *

. use C:\WDDtext\5.5.EsophagealCa.dta,clear

. *

. * First,define indicator variables for age strata 2 through 6

. *

. generate age2 = 0

. replace age2 = 1 if age == 2 {1}
(32 realchanges made)
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. generate age3 = 0

. replace age3 =1 if age == 3

(32 real changes made)

. generate age4 = 0

. replace age4 = 1 if age == 4

(32 real changes made)

. generate age5 = 0

. replace age5 = 1 if age == 5

(32 real changes made)

. generate age6 = 0

. replace age6 = 1 if age == 6

(32 real changes made)

. logistic cancer age2 age3 age4 age5 age6 heavy [freq=patients] {2}

Logit estimates Number of obs = 975

LR chi2(6) = 200.57

Prob > chi2 = 0.0000

Log likelihood = -394.46094 Pseudo R2 = 0.2027

--------------------------------------------------------------------------

cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+----------------------------------------------------------------

age2 | 4.675303 4.983382 1.447 0.148 .5787862 37.76602 {3}
age3 | 24.50217 25.06914 3.126 0.002 3.298423 182.0131

age4 | 40.99664 41.75634 3.646 0.000 5.56895 301.8028

age5 | 52.81958 54.03823 3.877 0.000 7.111389 392.3155

age6 | 52.57232 55.99081 3.720 0.000 6.519386 423.9432

heavy | 5.311584 1.007086 8.807 0.000 3.662981 7.702174 {4}
--------------------------------------------------------------------------

Comments
1 The numeric values of age are 1 through 6 anddenote the age strata 25–34,

35–44, 45–54, 55–64, 65–74 and ≥75, respectively. We define age2 = 1

for subjects from the second stratum and 0 otherwise; age3 through age6

are similarly defined for the other strata.

2 Regress cancer against age2, age3, age4, age5, age6 and heavy using logis-

tic regression. This command analyzes the model specified by equation

(5.20). (See also Comment 1 from Section 5.5.)
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3 The estimated cancer odds ratio for men from the second age stratum

relative to men from the first with the same drinking habits is 4.68. This

odds ratio equals exp[α̂2]. Note that the odds ratio rises steeply with

increasing age until the fourth age stratum and then levels off. Hence, the

model specified by equation (5.23) would do a poor job of modeling age

for these data.

4 The age-adjusted estimatedodds ratio for cancer inheavydrinkers relative

to moderate drinkers is ψ̂ = exp[β̂]= 5.312. Hence, β̂ = log[5.312]=
1.670. The logistic command does not give the value of se[β̂]. However,

the 95% confidence interval for ψ̂ is (3.66, 7.70), which agrees with our

hand calculations.

5.10. Handling Categorical Variables in Stata

In the Section 5.9 age is a categorical variable taking six values that are

recoded as five separate indicator variables. It is very common to recode

categorical variables in this way to avoid forcing a linear relationship on

the effect of a variable on the response outcome. In the preceding example

we did the recoding by hand. It can also be done much faster using the xi:

command prefix. We illustrate this by repeating the preceding analysis of

the model specified by equation (5.20).

. * 5.10.EsophagealCa.log

. *

. * Repeat the analysis in 5.9.EsophagealCa.log using

. * automatic recoding of the age classification variable

. *

. use C:\WDDtext\5.5.EsophagealCa.dta,clear

. xi: logistic cancer i.age heavy [freq=patients] {1}
i.age _Iage_1−6 (naturally coded; _Iage_1 omitted)

Logit estimates Number of obs = 975

LR chi2(6) = 200.57

Prob > chi2 = 0.0000

Log likelihood = -394.46094 Pseudo R2 = 0.2027

--------------------------------------------------------------------------

cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

----------+---------------------------------------------------------------

_Iage_2 | 4.675303 4.983382 1.447 0.148 .5787862 37.76602 {2}
_Iage_3 | 24.50217 25.06914 3.126 0.002 3.298423 182.0131
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_Iage_4 | 40.99664 41.75634 3.646 0.000 5.56895 301.8028

_Iage_5 | 52.81958 54.03823 3.877 0.000 7.111389 392.3155

_Iage_6 | 52.57232 55.99081 3.720 0.000 6.519386 423.9432

heavy | 5.311584 1.007086 8.807 0.000 3.662981 7.702174

--------------------------------------------------------------------------

Comments
1 The xi: prefix before an estimation command (like logistic) tells Stata that

indicator variables will be created and used in the model; i.age indicates

that a separate indicator variable is to be created for each distinct value of

age. These variables are named Iage 1, Iage 2, Iage 3, Iage 4, Iage 5

and Iage 6. Note that these variable names start with “ I”. When spec-

ifying these variables they must be capitalized in exactly the same way

they were defined. The variables Iage 2 through Iage 6 are identical to

the variables age2 through age6 in Section 5.9. By default, the new vari-

able associated with the smallest value of age (that is, Iage 1) is deleted

from the model. As a consequence, the model analyzed is that specified

by equation (5.20).

2 Note that the output of this logistic regression analysis is identical to that

in Section 5.9. The only difference is the names of the indicator variables

that define the age strata.

5.11. Effect of Dose of Alcohol on Esophageal Cancer Risk

The Ille-et-Vilaine data set provides four different levels of daily alcohol

consumption: 0–39 gm, 40–79 gm, 80–119 gm and≥120 gm. To investigate

the joint effects of dose of alcohol on esophageal cancer risk we analyze the

model

logit[E[di j | i j ]/ni j ] = α +
6∑

h=2

αh × ageh +
4∑

h=2

βh × alcoholih , (5.24)

where the terms are analogous to those in equation (5.20), only now

i denotes the drinking levels 1 through 4,

j denotes age strata 1 through 6, and

alcoholih =
{
1: if i = h

0: otherwise.

Deriving the age-adjusted cancer odds ratio for dose level k relative to dose

level 1 is done using an argument similar to that given in Section 5.8. From
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equation (5.24) we have that the cancer log odds for a man at the first

dose level is

logit[E (d1 j | i = 1, j )/n1 j ] = log

[
π1 j

1 − π1 j

]
= α +

6∑
h=2

αh × ageh

= α + α j . (5.25)

For a man from the same age stratum at the i th dose level, the log odds are

log

[
πi j

1 − πi j

]
= α +

6∑
h=2

αh × ageh +
4∑

h=2

βh × alcoholih = α + α j + βi .

(5.26)

Subtracting equation (5.25) fromequation (5.26) gives that the age-adjusted

log odds ratio for a man at the i th dose level relative to the first is

log

[
πi j/(1 − πi j )

π1 j/(1 − π1 j )

]
= log

[
πi j

1 − πi j

]
− log

[
π1 j

1 − π1 j

]
= βi . (5.27)

Hence, the age-adjusted odds ratio for dose level i versus dose level 1 is

exp[βi ]. Thismodelwas used to estimate the odds ratios given in the top half

of Table 5.3. For example, the odds ratio for the second dose level compared

Table 5.3. Effect of dose of alcohol and tobacco on the odds ratio for
esophageal cancer in the Ille-et-Vilaine study. These odds ratios associated
with alcohol are adjusted for age using the logistic regression model (5.24).
A similar model is used for tobacco. The risk of esophageal cancer increases
dramatically with increasing dose of both alcohol and tobacco.

Risk Dose Log odds Odds 95% confidence P

factor level i Daily dose ratio β̂ i ratio ψ̂ i interval for ψi value†

Alcohol

1 0–39 gm 1∗

2 40–79 gm 1.4343 4.20 2.6–6.8 <0.0005

3 80–119 gm 2.0071 7.44 4.3–13 <0.0005

4 ≥120 gm 3.6800 39.65 19–83 <0.0005

Tobacco

1 0–9 gm 1∗

2 10–19 gm 0.6073 1.84 1.2–2.7 0.003

3 20–29 gm 0.6653 1.95 1.2–3.2 0.008

4 ≥30 gm 1.7415 5.71 3.2–10 <0.0005

∗Denominator (reference group) of following odds ratios
†Associated with the two-sided test of the null hypothesis that ψi = 1
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to the first is exp[β̂2] = 4.20. Clearly, the risk of esophageal cancer increases

precipitously with increasing dose of alcohol.

5.11.1. Analyzing Model (5.24) with Stata

The following log file and comments explain how to analyze model (5.24)

with Stata.

. * 5.11.1.EsophagealCa.log

. *

. * Estimate age-adjusted risk of esophageal cancer due to dose of alcohol.

. *

. use C:\WDDtext\5.5.EsophagealCa.dta, clear

. *

. * Show frequency tables of effect of dose of alcohol on esophageal cancer.

. *

. tabulate cancer alcohol [freq=patients], column {1}

Esophageal | Alcohol (gm/day)

Cancer | 0-39 40-79 80-119 >= 120 | Total

------------+-------------------------------------------+----------

No | 386 280 87 22 | 775

| 93.01 78.87 63.04 32.84 | 79.49

------------+-------------------------------------------+----------

Yes | 29 75 51 45 | 200

| 6.99 23.13 36.96 67.16 | 20.51

------------+-------------------------------------------+----------

Total | 415 355 138 67 | 975

| 100.00 100.00 100.00 100.00 | 100.00

. *

. * Analyze the Ille-et-Vilaine data using logistic regression model (5.24)

. *

. xi: logistic cancer i. age i. alcohol [freq=patients]

i.age _Iage_1_6 (naturally coded; _Iage_1 omitted)

i.alcohol _Ialcohol_1−4 (naturally coded; _Ialcohol_1 omitted)

Logit estimates Number of obs = 975

LR chi2(8) = 274.07

Prob > chi2 = 0.0000

Log likelihood = -363.70808 Pseudo R2 = 0.2649
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--------------------------------------------------------------------------

cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------------------------------------------------------------------

_Iage_2 | 5.109602 5.518316 1.51 0.131 .6153163 42.43026

_Iage_3 | 30.74859 31.9451 3.30 0.001 4.013298 235.5858

_Iage_4 | 51.59663 53.38175 3.81 0.000 6.791573 391.9876

_Iage_5 | 78.00528 81.22778 4.18 0.000 10.13347 600.4678

_Iage_6 | 83.44844 91.07367 4.05 0.000 9.827359 708.5975

_Ialcohol_2 | 4.196747 1.027304 5.86 0.000 2.597472 6.780704 {2}
_Ialcohol_3 | 7.441782 2.065952 7.23 0.000 4.318873 12.82282

_Ialcohol_4 | 39.64689 14.92059 9.78 0.000 18.9614 82.8987

-------------------------------------------------------------------------

Comments
1 The tabulate command produces one- and two-way frequency tables. The

variable alcohol gives the dose level. The numeric values of this variable

are 1, 2, 3, and 4. The column option expresses the number of observations

in each cell as a percentage of the total number of observations in the

associated column.

It is always a good idea to produce such tables as a cross-check of the

results of our regression analyses. Note that the proportion of cancer cases

increase dramatically with increasing dose.

2 The indicator variables Ialcohol 2, Ialcohol 3 and Ialcohol 4 are the co-

variates alcoholi2, alcoholi3 and alcoholi4 in model (5.24). The shaded

odds ratios and confidence intervals that are associated with these covari-

ates are also given in Table 5.3.

5.12. Effect of Dose of Tobacco on Esophageal Cancer Risk

The Ille-et-Vilaine data set also provides four different levels of daily to-

bacco consumption: 0–9 gm, 10–19 gm, 20–29 gm and ≥30 gm. This risk

factor is modeled in exactly the same way as alcohol. The log file named

5.12.EsophagealCa.log on my web site illustrates how to perform this analy-

sis in Stata. The bottom panel of Table 5.3 shows the effect of increasing to-

bacco dose on esophageal cancer risk. This risk increases significantly with

increasing dose. Note, however, that the odds ratios associated with

10–19 gm and 20–29 gm are very similar. For this reason, it makes sense

to combine subjects with these two levels of tobacco consumption into a

single group. In subsequentmodels, wewill recode tobacco dosage to permit

tobacco to be modeled with two parameters rather than three. In general, it
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is a good idea to avoid having unnecessary parameters in our models as this

reduces their statistical power.

5.13. Deriving Odds Ratios from Multiple Parameters

Model (5.24) also permits us to calculate the age-adjusted odds ratio for,

say, alcohol dose level 4 relative to dose level 3. From equation (5.26) we

have that the log odds of cancer for two men from the j th age stratum who

are at dose levels 3 and 4 are

log

[
π3 j

1 − π3 j

]
= α + α j + β3

and

log

[
π4 j

1 − π4 j

]
= α + α j + β4.

Subtracting the first of these log odds from the second gives that the cancer

log odds ratio for men at dose level 4 relative to dose level 3 is

log

[
π4 j/

(
1 − π4 j

)
π3 j/

(
1 − π3 j

)
]

= log

[
π4 j

1 − π4 j

]
− log

[
π3 j

1 − π3 j

]
= β4 − β3,

and the corresponding odds ratio is exp[β4 − β3].

In more complex multiple logistic regression models we often need to

make inferences about odds ratios that are estimated frommultiple param-

eters. The preceding is a simple example of such an odds ratio. To derive

confidence intervals and perform hypothesis tests on these odds ratios we

need to be able to compute the standard errors of weighted sums of param-

eter estimates.

5.14. The Standard Error of a Weighted Sum
of Regression Coefficients

Suppose that we have a model with q parameters β1, β2, . . . , βq . Let

β̂1, β̂2, . . . , β̂q be estimates of these parameters,

c1, c2, . . . , cq be a set of known weights,

f =
∑

c jβ j be the weighted sum of the coefficients that equals some

log odds ratio of interest, and

f̂ =
∑

c j β̂ j be an estimate of f. (5.28)
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For example, in model (5.24) there is the constant parameter α, the five

age parameters α2, α3, . . . , α6, and the three alcohol parameters β2, β3, and

β4, giving a total of q = 9 parameters. Let us reassign α, α2, α3, α4, α5 and

α6 with the names β1, β5, β6, β7, β8 and β9. Let c4 = 1, c3 = −1, and c1 =
c2 = c5 = c6 = c7 = c8 = c9 = 0. Then f̂ = β̂4 − β̂3. From Table 5.3 we

have that β̂4 = 3.6800 and β̂3 = 2.0071. Therefore, f̂ = 3.6800 − 2.0071=
1.6729 and exp[ f̂ ] = exp[1.6729] = 5.33 is the estimated odds ratio of

level 4 drinkers relative to level 3 drinkers. Let

s j j be the estimated variance of β̂ j for j = 1, . . . , q , and

si j be the estimated covariance of β̂ i and β̂j for any i �= j.

Then it can be shown that the variance of f̂ may be estimated by

s 2f =
q∑

i=1

q∑
j=1

ci c j si j . (5.29)

5.15. Confidence Intervals for Weighted Sums of Coefficients

The estimated standard error of f̂ is sf . For large studies the 95% confidence

interval for f is approximated by

f̂ ± 1.96sf . (5.30)

A 95% confidence interval for the odds ratio exp[ f ] is given by

(exp[ f̂ − 1.96sf ], exp[ f̂ + 1.96sf ]). (5.31)

Equation (5.31) is an example of a Wald confidence interval (see

Section 4.9.4).

In our example comparing level 4 drinkers to level 3 drinkers, our logis-

tic regression program estimates s33 = 0.07707, s34 = s43 = 0.04224, and

s44 = 0.14163. Hence, s 2f = (−1)2s33 + (−1) × 1 × s34 + 1 × (−1)s43 +
12s44 = 0.07707 − 2 × 0.04224 + 0.14163 = 0.13422, which gives sf =
0.3664. This is the standard error of the log odds ratio for level 4 drink-

ing compared to level 3. Equation (5.31) gives the 95% confidence interval

for this odds ratio to be (exp[1.6729− 1.96× 0.3664], exp[1.6729+ 1.96×
0.3664])= (2.60, 10.9). Fortunately, Stata has a powerful post estimation

command called lincom, which rarely makes it necessary for us to calculate

equations (5.29) or (5.31) explicitly.
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5.16. Hypothesis Tests for Weighted Sums of Coefficients

For large studies

z = f̂ /sf (5.32)

has an approximately standard normal distribution. Equation (5.32) is an

example of aWald test (see Section 4.9.4).We use this statistic to test the null

hypothesis that f = ∑
c jβ j = 0, or equivalently, that exp[ f ]= 1. For ex-

ample, to test the null hypothesis that β4 − β3 = 0 we calculate z = (1.6729/

0.3664)= 4.57. The P value associated with a two-sided test of this null

hypothesis is P = 0.000 005. Note that this null hypothesis is equivalent

to the hypothesis that exp[β4 − β3]= 1 (i.e., that the odds ratio for level

4 drinkers relative to level 3 equals 1). Hence, we can reject the hypothesis

that these two consumption levels are associatedwith equivalent cancer risks

with overwhelming statistical significance.

5.17. The Estimated Variance—Covariance Matrix

The estimates of si j can be written in a square array

s11 s12 · · · s1q
s21 s22 · · · s2q
...

...
. . .

...

sq1 sq2 · · · sqq


 ,

which is called the estimated variance–covariance matrix. For any two vari-

ables x and y the covariance of x with y equals the covariance of y with x .

Hence, si j = s j i forany i and j between1andq , and thevariance–covariance

matrix is symmetric about the main diagonal that runs from s11 to sqq . For

this reason it is common to display this matrix in the lower triangular form



s11
s21 s22
...

...
. . .

sq1 sq2 · · · sqq


 .

The Stata vce post estimation command introduced in Section 4.18 uses this

format to display the variance–covariance matrix. We use this command

whenever we wish to print the variance and covariance estimates for the

parameters from our regression models.
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5.18. Multiplicative Models of Two Risk Factors

Suppose that subjects eitherwere orwerenot exposed to alcohol and tobacco

and we do not adjust for age. Consider the model

logit[E[di j | i j ]/ni j ] = logit[πi j ] = α + β1 × i + β2 × j, (5.33)

where i =
{
1: if subject drank

0: otherwise,

j =
{
1: if subject smoked

0: otherwise,

ni j = the number of subjects with drinking status i and smoking status j,

di j = the number of cancer cases with drinking status i and smoking

status j,

πi j = the probability that someone with drinking status i and smoking

status j develops cancer,

and α, β1 and β2 are model parameters.

Then the cancer log odds of a drinker with smoking status j is

logit[E[d1 j | i = 1, j ]/n1 j ] = logit[π1 j ] = α + β1 + β2 × j. (5.34)

The log-odds of a non-drinker with smoking status j is

logit[E[d0 j | i = 0, j ]/n0 j ] = logit[π0 j ] = α + β2 × j, (5.35)

Subtracting equation (5.35) from (5.34) gives

log

[
π1 j/(1 − π1 j )

π0 j/(1 − π0 j )

]
= β1.

In other words, exp[β1] is the cancer odds ratio in drinkers compared to

non-drinkers adjusted for smoking. Note that this implies that the relative

risk of drinking is the same in smokers and non-smokers. By an identical

argument, exp[β2] is the odds ratio for cancer in smokers compared to

non-smokers adjusted for drinking.

For people who both drink and smoke the model is

logit[E[d11 | i = 1, j = 1]/n11] = logit[π11] = α + β1 + β2, (5.36)

while for people who neither drink nor smoke it is

logit[E[d00 | i = 0, j = 0]/n00] = logit[π00] = α. (5.37)
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Subtracting equation (5.37) from (5.36) gives that the log odds ratio for

peoplewhoboth smokeanddrink relative to thosewhodoneither isβ1 + β2.

The corresponding odds ratio is exp[β1 + β2] = exp[β1] × exp[β2]. Thus,

our model implies that the odds ratio of having both risk factors equals the

product of the individual odds ratios for drinking and smoking. It is for this

reason that this is called a multiplicative model.

5.19. Multiplicative Model of Smoking, Alcohol, and
Esophageal Cancer

Themultiplicative assumption is a very strong one that is often not justified.

Let us see how it works with the Ille-et-Vilaine data set. The model that we

will use is

logit[E[di j k | i j k]/ni j k] = α +
6∑

h=2

αh × ageh +
4∑

h=2

βh × alcoholih

+
3∑

h=2

γh × smokekh , (5.38)

where

i is one of four dose levels of alcohol,

k is one of three dose levels of tobacco,

ni j k is the number of subjects from the j th age stratum who are at the i th

dose level of alcohol and the kth dose level of tobacco,

di j k is the number of cancer cases from the j th age stratum who are at the

i th dose level of alcohol and the kth dose level of tobacco,

α, αh , ageh , βh , and alcoholih are as defined in equation (5.24),

γh is a parameter associated with the hth dose level of tobacco, and

smokekh =
{
1: if k = h

0: otherwise.

In Table 5.3 we found that the middle two levels of tobacco consumption

were associated with similar risks of esophageal cancer. In this model we

combine these levels into one; dose levels k = 1, 2, and 3 correspond to daily

consumption levels 0–9 gm, 10–29 gm, and ≥30 gm, respectively.

Letψik be the odds ratio for men at alcohol dose level i and tobacco dose

level k relative to men at level 1 for both drugs. Then for i > 1 and j > 1

we have by the same argument used in Section 5.18 that

ψi1 = exp[βi ],
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Table 5.4. Effect of alcohol and tobacco on the risk of esophageal cancer in
the Ille-et-Vilaine study. These estimates are based on the multiplicative
model (5.38). This model requires that the odds ratio associated with the
joint effects of alcohol and tobacco equal the product of the odds ratios for
the individual effects of these risk factors.

Daily tobacco consumption

0–9 gm 10–29 gm ≥ 30 gm

95% 95% 95%

Daily alcohol Odds confidence Odds confidence Odds confidence

consumption ratio interval ratio interval ratio interval

0–39 gm 1.0∗ 1.59 (1.1–2.4) 5.16 (2.6–10)

40–79 gm 4.21 (2.6–6.9) 6.71 (3.6–12) 21.7 (9.2–51)

80–119 gm 7.22 (4.1–13) 11.5 (5.9–22) 37.3 (15–91)

≥120 gm 36.8 (17–78) 58.6 (25–140) 190 (67–540)

∗Denominator of odds ratios

ψ1k = exp[γk], and

ψik = exp[βi ] × exp[γk].

Solving model (5.38) yields maximum likelihood parameter estimates β̂ i

and γ̂k , which can be used to generate Table 5.4 using the preceding

formulas. For example, β̂4 = 3.6053 and γ̂3 = 1.6408. Therefore, ψ̂41 =
exp[3.6053]= 36.79, ψ̂13 = exp[1.6408]= 5.16,and ψ̂43 = 36.79× 5.16=
189.8. The confidence intervals in this table are derived using equation

(5.31).

If model (5.38) is to be believed, then the risk of esophageal cancer as-

sociated with the highest levels of alcohol and tobacco consumption are

extraordinary. There is no biologic reason, however, why the odds ratio

associated with the combined effects of two risk factors should equal the

product of the odds ratios for the individual risk factors. Indeed, the joint

risk is usually less than the product of the individual risks. To investigate

whether this is the case here we will need to analyze a more general model.

We will do this in Section 5.22.

5.20. Fitting a Multiplicative Model with Stata

In the following Stata log file we first combine subjects at smoking levels

2 and 3 into a single group.We thenfit the age-adjustedmultiplicativemodel

(5.38) to estimate the effect of dose of alcohol and tobacco on the risk of

esophageal cancer.
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. * 5.20.EsophagealCa.log

. *

. * Regress esophageal cancers against age and dose of alcohol

. * and tobacco using a multiplicative model.

. *

. use C:\WDDtext\5.5.EsophagealCa.dta,clear

. *

. * Combine tobacco levels 2 and 3 in a new variable called smoke

. *

. generate smoke = tobacco

. recode smoke 3=2 4=3 {1}
(96 changes made)

. label variable smoke "Smoking (gm/day)"

. label define smoke 1 "0−9" 2 "10−29"3">= 30"

. label values smoke smoke

. table smoke tobacco [freq=patients], row col {2}

----------+-----------------------------------

Smoking | Tobacco (gm/day)

(gm/day) | 0-9 10-19 20-29 >= 30 Total

----------+-----------------------------------

0-9 | 525 525

10-29 | 236 132 368

>= 30 | 82 82

|
Total | 525 236 132 82 975

----------+-----------------------------------

. *

. * Regress cancer against age, alcohol and smoke

. * using a multiplicative model

. *

. xi: logistic cancer i.age i.alcohol i.smoke [freq=patients] {3}
i.age _Iage_ 1−6 (naturally coded; _Iage_1 omitted)

i.alcohol _Ialcohol_1−4 (naturally coded; _Ialcohol_1 omitted)

i.smoke _Ismoke_1−3 (naturally coded; _Ismoke_1 omitted)

Logit estimates Number of obs = 975

LR chi2(10) = 285.55

Prob > chi2 = 0.0000
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Log likelihood = − 351.96823 Pseudo R2 = 0.2886 {4}
-----------------------------------------------------------------------

cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+---------------------------------------------------------

_Iage_2 | 7.262526 8.017364 1.796 0.072 .8344795 63.2062

_Iage_3 | 43.65627 46.6239 3.536 0.000 5.382485 354.0873

_Iage_4 | 76.3655 81.32909 4.071 0.000 9.470422 615.7792

_Iage_5 | 133.7632 143.9718 4.549 0.000 16.22455 1102.81

_Iage_6 | 124.4262 139.5027 4.302 0.000 13.82203 1120.088

_Ialcohol_2 | 4.213304 1.05191 5.761 0.000 2.582905 6.872853 {5}
_Ialcohol_3 | 7.222005 2.053956 6.952 0.000 4.135937 12.61077

_Ialcohol_4 | 36.7912 14.1701 9.361 0.000 17.29435 78.26787

_Ismoke_2 | 1.592701 .3200883 2.316 0.021 1.074154 2.361576

_Ismoke_3 | 5.159309 1.775205 4.769 0.000 2.628523 10.12678

-----------------------------------------------------------------------

. lincom _Ialcohol_2 + _Ismoke_2, or {See comment 6 below}
(1) _Ialcohol_2 + _Ismoke_2 = 0.0

-----------------------------------------------------------------------

cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+-------------------------------------------------------------

(1) | 6.710535 2.110331 6.053 0.000 3.623022 12.4292

-----------------------------------------------------------------------

. lincom _Ialcohol_ 3 + _Ismoke_ 2, or

(1) _Ialcohol_3 + _Ismoke_2 = 0.0

-----------------------------------------------------------------------

cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+-------------------------------------------------------------

(1) | 11.5025 3.877641 7.246 0.000 5.940747 22.27118

-----------------------------------------------------------------------

. lincom _Ialcohol_4 + _Ismoke_2, or

(1) _Ialcohol_4 + _Ismoke_2 = 0.0

-----------------------------------------------------------------------

cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+-------------------------------------------------------------

(1) | 58.59739 25.19568 9.467 0.000 25.22777 136.1061

-----------------------------------------------------------------------
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. lincom _Ialcohol_2 + _Ismoke_3, or

(1) _Ialcohol_2 + _Ismoke_3 = 0.0

-------------------------------------------------------------------------

cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+---------------------------------------------------------------

(1) | 21.73774 9.508636 7.039 0.000 9.223106 51.23319

-------------------------------------------------------------------------

. lincom _Ialcohol_3 + _Ismoke_3, or

(1) _Ialcohol_3 + _Ismoke_3 = 0.0

-------------------------------------------------------------------------

cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+---------------------------------------------------------------

(1) | 37.26056 17.06685 7.899 0.000 15.18324 91.43957

-------------------------------------------------------------------------

. lincom _Ialcohol_4 + _Ismoke_3, or {6}
(1) _Ialcohol_4 + _Ismoke_3 = 0.0

-------------------------------------------------------------------------

cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+---------------------------------------------------------------

(1) | 189.8171 100.9788 9.861 0.000 66.91353 538.4643

-------------------------------------------------------------------------

Comments
1 We want to combine the 2nd and 3rd levels of tobacco exposure. We do

this by defining a new variable called smoke that is identical to tobacco and

then using the recode statement, which, in this example, changes values

of smoke = 3 to smoke = 2, and values of smoke = 4 to smoke = 3.

2 This table statement gives a cross tabulation of values of smoke by values

of tobacco. The row and col options specify that row and column totals are

to be given. The resulting table shows that the previous recode statement

had the desired effect.

3 This statement performs the logistic regression specified bymodel (5.38).

4 The maximum value of the log likelihood function is −351.968 23. We

will discuss this statistic in Section 5.24.

5 The highlighted odds ratios and confidence intervals are also given in

Table 5.4. For example, Ialcohol 4 and Ismoke 3 are the covariates

alcoholi4 and smokek3, respectively, in model (5.38). The associated

parameter estimates are β̂4 and γ̂ 3, which give odds ratio estimates
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ψ̂41 = exp[β̂4] = 36.7912 and ψ̂13 = exp[γ̂ 3] = 5.159 309. Hence

β̂4 = log[36.7912] = 3.6053, and γ̂ 3 = log[5.159 309]= 1.6408. The

95% confidence intervals for these odds ratios are calculated using

equation (5.15).

6 The lincom post estimation command calculates any linear combination

of parameter estimates, tests the null hypothesis that the true value of

this combination equals zero, and gives a 95% confidence interval for

this estimate. In this example, the parameters associated with Ialcohol 4

and Ismoke 3 are β̂4 and γ̂ 3, respectively, and the linear combination

is β̂4 + γ̂3. When the or option is given, lincom exponentiates this sum

in its output, giving the odds ratio ψ̂43 = exp[β̂4 + γ̂ 3]= exp[3.6053 +
1.6408] = 189.8.The 95% confidence interval for ψ̂43 is (66.9–538). This

interval is calculatedusing equation (5.31).Theweights in equation (5.28)

are 1 for β̂4 and γ̂3 and 0 for the other parameters in the model. Thus, the

cancer odds ratio formenwho consumemore than 119 gmof alcohol and

29 gm of tobacco a day is 189.8 relative to men whose daily consumption

is less than 40 gm of alcohol and 10 gm of tobacco. The test of the null

hypothesis that this odds ratio equals 1 is done using the z statistic given in

equation (5.32). This hypothesis is rejected with overwhelming statistical

significance.

The results of this lincom command together with the other lincom

commands given above are used to complete Table 5.4.

5.21. Model of Two Risk Factors with Interaction

Let us first return to the simple model of Section 5.18 where people either

do, or do not, drink or smoke and where we do not adjust for age. Our

multiplicative model was

logit[E[di j | i j ]/ni j ] = log

[
πi j

1 − πi j

]
= α + β1 × i + β2 × j,

where

i = 1 or 0 for people who do, or do not, drink,

j = 1 or 0 for people who do, or do not, smoke, and

πi j = the probability that someone with drinking status i and smoking

status j develops cancer.

We next allow alcohol and tobacco to have a synergistic effect on cancer

odds by including a fourth parameter as follows:

logit[E[di j | i j ]/ni j ] = α + β1 × i + β2 × j + β3 × i × j. (5.39)
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Note that β3 only enters the model for people who both smoke and drink

since for everyone else i × j = 0. Under this model, subjects can be divided

into four categories determined by whether they do, or do not, drink and

whether they do, or do not, smoke. We can derive the cancer odds ratio

associated with any one of these categories relative to any other by the type

of argument that we have used in the preceding sections. Specifically, we

write down the log odds for people in the numerator of the odds ratio,

write down the log odds for people in the denominator of the odds ra-

tio, and then subtract the denominator log odds from the numerator log

odds. This gives us the desired log odds ratio. You should be able to show

that

β1 is the log odds ratio for cancer associated with alcohol among non-

smokers,

β2 is the log odds ratio for cancer associated with smoking among non-

drinkers,

β1 + β3 is the log odds ratio for cancer associated with alcohol among

smokers,

β2 + β3 is the log odds ratio for cancer associated with smoking among

drinkers, and

β1 + β2 + β3 is the log odds ratio for cancer associated with people who

both smoke and drink compared to those who do neither.

Letψi j be the odds ratio associated with someonewith drinking status i and

smoking status j relative to people who neither smoke nor drink. Then ψ10

= exp[β1], ψ01 = exp[β2] and ψ11 = exp[β1 + β2 + β3]= ψ10ψ01 exp[β3].

Hence, if β3 = 0, then the multiplicative model holds. We can test the valid-

ity of the multiplicative model by testing the null hypothesis that β3 = 0. If

β3 > 0, then the risk of both smoking and drinking will be greater than the

product of the risk of smoking but not drinking times that of drinking but

not smoking. If β3 < 0, then the risk of both habits will be less than that of

this product.

5.22. Model of Alcohol, Tobacco, and Esophageal Cancer
with Interaction Terms

In order to weaken the multiplicative assumption implied by model

(5.38) we add interaction terms to the model. Specifically, we use the

model
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logit[E[di j k | i j k]/ni j k] = α +
6∑

h=2

αh × ageh +
4∑

h=2

βh × alcoholih

+
3∑

h=2

γh × smokekh +
4∑

g=2

3∑
h=2

δgh × alcoholig × smokekh , (5.40)

where i, j, k, di j k , ni j k , α, αh , ag eh , βh , alcoholih , γh , and smokekh are as de-

fined in model (5.38), and δgh is one of six new parameters that we have

added to themodel. This parameter is an interaction term that only appears

in the model when both i = g and k = h. The log odds of cancer for a man

from the j th age stratum who consumes alcohol level i > 1 and tobacco

level k > 1 is

log

[
πi j k

1 − πi j k

]
= α + α j + βi + γk + δik , (5.41)

where πi j k is his probability of having cancer. The log odds of cancer for a

man from this age stratum who consumes both alcohol and tobacco at the

first level is

log

[
π1 j1

1 − π1 j1

]
= α + α j . (5.42)

Subtracting equation (5.42) from equation (5.41) gives that the age-

adjusted log odds ratio for men at the i th and kth levels of alcohol and

tobacco exposure relative to men at the lowest levels of these drugs is

log

[
πi j k/(1 − πi j k)

π1 j1/(1 − π1 j1)

]
= βi + γk + δik . (5.43)

It is the presence of the δik term in equation (5.43) that permits this log

odds ratio to be unaffected by the size of the other log odds ratios that can

be estimated by the model. By the usual argument, βi is the log odds ratio

for alcohol level i versus level 1 among men at tobacco level 1, and γk is

the log odds ratio for tobacco level k versus level 1 among men at alcohol

level 1.

Table 5.5 contains the age-adjusted odds ratios obtained by fitting model

(5.40) to the Ille-et-Vilaine data set and then applying equation (5.43). The

odds ratios in this table should be compared to those in Table 5.4. Note

that among men who smoke less than 10 gm a day the odds ratios increase

more rapidly with increasing dose of alcohol in Table 5.5 than in Table 5.4.

For example, ψ̂41 equals 65.1 in Table 5.5 but only 36.8 in Table 5.4.
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Table 5.5. Effect of alcohol and tobacco on the risk of esophageal cancer in
the Ille-et-Vilaine study. These estimates are based on model (5.40). This
model contains interaction terms that permit the joint effects of alcohol and
tobacco to vary from those dictated by the multiplicative model. Compare
these results with those of Table 5.4.

Daily tobacco consumption

0–9 gm 10–29 gm ≥ 30 gm

95% 95% 95%

Daily alcohol Odds confidence Odds confidence Odds confidence

consumption ratio interval ratio interval ratio interval

0–39 gm 1.0∗ 3.8 (1.6–9.2) 8.65 (2.4–31)

40–79 gm 7.55 (3.4–17) 9.34 (4.2–21) 32.9 (10–110)

80–119 gm 12.7 (5.2–31) 16.1 (6.8–38) 72.3 (15–350)

≥120 gm 65.1 (20–210) 92.3 (29–290) 196 (30–1300)

∗Denominator of odds ratios

A similar comparison can be made among men at the lowest level of al-

cohol consumption with regard to rising exposure to tobacco. In Table 5.5

the odds ratios associated with the combined effects of different levels of

alcohol and tobacco consumption are uniformly less than the product of

the corresponding odds ratios for alcohol and tobacco alone.Note, however,

that both models indicate a dramatic increase in cancer risk with increasing

dose of alcohol and tobacco. The confidence intervals are wider in Table 5.5

than in Table 5.4 because they are derived from a model with more param-

eters and because some of the interaction parameter estimates have large

standard errors due to the small number of subjects with the corresponding

combined levels of alcohol and tobacco consumption.

5.23. Fitting a Model with Interaction using Stata

We next fit model (5.40) to the Ille-et-Vilaine data set. The 5.20.Esophageal

Ca.log log file that was started in Section 5.20 continues as follows.

. *

. * Regress cancer against age, alcohol and smoke.

. * Include alcohol-smoke interaction terms.

. *
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. xi: logistic cancer i.age i.alcohol*i.smoke [freq=patients] {1}
i.age _Iage_1−6 (naturally coded; _Iage_1 omitted)

i.alcohol _Ialcohol_1−4 (naturally coded; _Ialcohol_1 omitted)

i.smoke _Ismoke_1−3 (naturally coded; _Ismoke_1 omitted)

i.alc∼l*i.smoke _IalcXsmo_#-# (coded as above)

Logit estimates Number of obs = 975

LR chi2(16) = 290.90

Prob > chi2 = 0.0000

Log likelihood = -349.29335 Pseudo R2 = 0.2940

------------------------------------------------------------------------

cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

------------------------------------------------------------------------

_Iage_2 | 6.697614 7.410168 1.719 0.086 .7658787 58.57068

_Iage_3 | 40.1626 42.67237 3.476 0.001 5.00528 322.2665

_Iage_4 | 69.55115 73.73317 4.001 0.000 8.708053 555.5044

_Iage_5 | 123.0645 131.6687 4.498 0.000 15.11535 1001.953

_Iage_6 | 118.8368 133.2476 4.261 0.000 13.19858 1069.977

_Ialcohol_2 | 7.554406 3.043768 5.019 0.000 3.429574 16.64027 {2}
_Ialcohol_3 | 12.71358 5.825001 5.550 0.000 5.179307 31.20787

_Ialcohol_4 | 65.07188 39.54144 6.871 0.000 19.77671 214.1079

_Ismoke_2 | 3.800862 1.703912 2.978 0.003 1.578671 9.151083 {3}
_Ismoke_3 | 8.651205 5.569299 3.352 0.001 2.449668 30.55245

_IalcXsm∼2_2 | .3251915 .1746668 -2.091 0.036 .1134859 .9318291 {4}
_IalcXsm∼2_3 | .5033299 .4154535 -0.832 0.406 .0998303 2.537716

_IalcXsm∼3_2 | .3341452 .2008274 -1.824 0.068 .1028839 1.085233

_IalcXsm∼3_3 | .657279 .6598906 -0.418 0.676 .0918684 4.70255

_IalcXsm∼4_2 | .3731549 .3018038 -1.219 0.223 .0764621 1.821093

_IalcXsm∼4_3 | .3489097 .4210271 -0.873 0.383 .0327773 3.714089

------------------------------------------------------------------------

lincom _Ialcohol_2 + _Ismoke_2 + _IalcXsmo_2_2, or {5}
( 1) _Ialcohol_2 + _Ismoke_2 + _IalcXsmo_2_2 = 0.0

-------------------------------------------------------------------------

cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+---------------------------------------------------------------

(1) | 9.337306 3.826162 5.452 0.000 4.182379 20.84586

-------------------------------------------------------------------------

. lincom _Ialcohol_2 + _Ismoke_3 + _IalcXsmo_2_3, or

( 1) _Ialcohol_2 + _Ismoke_3 + _IalcXsmo_2_3 = 0.0
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-------------------------------------------------------------------------

cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+---------------------------------------------------------------

(1) | 32.89498 19.73769 5.822 0.000 10.14824 106.6274

-------------------------------------------------------------------------

. lincom _Ialcohol_3 + _Ismoke_2 + _IalcXsmo_3_2, or

( 1) _Ialcohol_3 + _Ismoke_2 + _IalcXsmo_3_2 = 0.0

-------------------------------------------------------------------------

cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+---------------------------------------------------------------

(1) | 16.14675 7.152595 6.280 0.000 6.776802 38.47207

-------------------------------------------------------------------------

. lincom _Ialcohol_3 + _Ismoke_3 + _IalcXsmo_3_3, or

( 1) _Ialcohol_3 + _Ismoke_3 + _IalcXsmo_3_3 = 0.0

-------------------------------------------------------------------------

cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+---------------------------------------------------------------

(1) | 72.29267 57.80896 5.353 0.000 15.08098 346.5446

-------------------------------------------------------------------------

. lincom _Ialcohol_4 + _Ismoke_2 + _IalcXsmo_4_2, or

( 1) _Ialcohol_4 + _Ismoke_2 + _IalcXsmo_4_2 = 0.0

-------------------------------------------------------------------------

cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+---------------------------------------------------------------

(1) | 92.29212 53.97508 7.737 0.000 29.33307 290.3833

-------------------------------------------------------------------------

. lincom _Ialcohol_4 + _Ismoke_3 + _IalcXsmo_4_3, or

( 1) _Ialcohol_4 + _Ismoke_3 + _IalcXsmo_4_3 = 0.0

-------------------------------------------------------------------------

cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

---------+---------------------------------------------------------------

(1) | 196.4188 189.1684 5.483 0.000 29.74417 1297.072

-------------------------------------------------------------------------

Comments
1 This commandperforms the logistic regression specified bymodel (5.40).

The Stata variable age equals j in this model, alcohol = i , and smoke =
k. The syntax i.alcohol∗i.smoke defines the following categorical vari-

ables that are included in the model:
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Ialcohol 2 = alcoholi2 =
{
1: if alcohol = 2

0: otherwise,

Ialcohol 3 = alcoholi3 =
{
1: if alcohol = 3

0: otherwise,

Ialcohol 4 = alcoholi4 =
{
1: if alcohol = 4

0: otherwise,

Ismoke 2 = smokek2 =
{
1: if smoke = 2

0: otherwise,

Ismoke 3 = smokek3 =
{
1: if smoke = 3

0: otherwise,

IalcXsmo 2 2 = alcoholi2 × smokek2 = Ialcohol 2 × Ismoke 2,

IalcXsmo 2 3 = alcoholi2 × smokek3 = Ialcohol 2 × Ismoke 3,

IalcXsmo 3 2 = alcoholi3 × smokek2 = Ialcohol 3 × Ismoke 2,

IalcXsmo 3 3 = alcoholi3 × smokek3 = Ialcohol 3 × Ismoke 3,

IalcXsmo 4 2 = alcoholi4 × smokek2 = Ialcohol 4 × Ismoke 2, and

IalcXsmo 4 3 = alcoholi4 × smokek3 = Ialcohol 4 × Ismoke 3.

A separate parameter is fitted for each of these variables. In addition,

themodel specifies five parameters for the five age indicator variables and

a constant parameter.

2 The parameter associated with the covariate Ialcohol 2 = alcoholi2 is β2;

ψ̂21 = exp[β̂2] = 7.5544 is the estimated age-adjustedodds ratio formen

at alcohol level 2 and tobacco level 1 relative to men at alcohol level 1 and

tobacco level 1. The odds ratios and confidence intervals highlighted in

this output were used to produce Table 5.5.

3 The parameter associated with the covariate Ismoke 2 = smokek2 is γ2;

ψ̂12 = exp[γ̂2] = 3.8009 is the estimated age-adjusted odds ratio formen

at alcohol level 1 and tobacco level 2 relative to men at alcohol level 1 and

tobacco level 1.

4 The parameter associated with the covariate IalcXsmo 2 2 = alcoholi2×
smokek2 is δ22. Note that due to lack of room, Stata abbreviates this covari-

ate in the left hand column as _IalcXsmo∼2 2. This interaction param-

eter does not equal any specific odds ratio. Nevertheless, Stata outputs

exp[δ̂22] = 0.3252 in the odds ratio column.
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5 This statement uses equation (5.43) to calculate ψ̂22 = exp[β̂2 + γ̂2 +
δ̂22] = 9.3373. This is the age-adjusted odds ratio for men at the second

level of alcohol and tobacco consumption relative to men at the first level

of both of these variables.

5.24. Model Fitting: Nested Models and Model Deviance

A model is said to be nested within a second model if the first model is a

special case of the second. For example, the multiplicative model (5.34) was

logit[E[di j | i j ]/ni j ] = α + β1 × i + β2 × j,

while model (5.39), which contained an interaction term, was

logit[E[di j | i j ]/ni j ] = α + β1 × i + β2 × j + β3 × i × j.

Model (5.34) is nested within model (5.39) since model (5.34) is a special

case of model (5.39) with β3 = 0.

The model deviance D is a statistic derived from the likelihood func-

tion that measures goodness of fit of the data to the model. Suppose that

a model has parameters β1, β2, . . . , βq . Let L [β1, β2, . . . , βq ] denote the

likelihood function for this model and let L̂ = L [β̂1, β̂2, . . . , β̂q ] denote

themaximum value of the likelihood function over all possible values of the

parameters. Then the model deviance is

D = K − 2log[L̂ ], (5.44)

where K is a constant. The value of K is always the same for any twomodels

that are nested. D is always non-negative. Large values of D indicate poor

model fit; a perfect fit has D = 0.

Suppose that D1 and D2 are the deviances from two models and that

model 1 is nested within model 2. Let L̂ 1 and L̂ 2 denote the maximum

values of the likelihood functions for these models. Then it can be shown

that if model 1 is true,

�D = D1 − D2 = 2(log[L̂ 2] − log[L̂ 1]) (5.45)

has an approximatelyχ2 distributionwith thenumber of degrees of freedom

equal to the difference in the number of parameters between the twomodels.

We use this reduction in deviance as a guide to building reasonable models

for our data. Equation (5.45) is an example of a likelihood ratio test (see

Section 4.9.1).

To illustrate the use of this test consider the Ile-et-Villain data. The mul-

tiplicative model (5.38) of alcohol and tobacco levels is nested withinmodel
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(5.40). The log file given in Sections 5.20 and 5.23 show that the maximum

log likelihoods for models (5.38) and (5.40) are

log[L̂ 1] = −351.968 and log[L̂ 2] = −349.293, respectively.

Therefore, the reduction in deviance is

�D = 2(log[L̂ 2] − log[L̂ 1]) = 2(−349.293 + 351.968) = 5.35.

Since there are six more parameters in the interactive model than themulti-

plicative model,�D has a χ2 distribution with six degrees of freedom if the

multiplicative model is true. The probability that this χ2 statistic exceeds

5.35 is P = 0.50. Thus, there is no statistical evidence to suggest that the

multiplicative model is false, or that any meaningful improvement in the

model fit can be obtained by adding interaction terms to the model.

There are no hard and fast guidelines to model building other than that

it is best not to include uninteresting variables in the model that have a

trivial effect on the model deviance. In general, I am guided by deviance

reduction statistics when deciding whether to include variables that may, or

may not, be true confounders, but that are not intrinsically of interest. It is

important to bear inmind, however, that failure to reject the null hypothesis

that the nested model is true does not prove the validity of this model. We

will discuss this further in the next section.

5.25. Effect Modifiers and Confounding Variables

An effect modifier is a variable that influences the effect of a risk factor

on the outcome variable. In the preceding example, smoking is a powerful

effect modifier of alcohol and vice versa. The key difference between con-

founding variables and effect modifiers is that confounding variables are

not of primary interest in our study while effect modifiers are. A variable is

an important effect modifier if there is a meaningful interaction between it

and the exposure of interest on the risk of the event under study. Clearly,

any variable that requires an interaction term in a regression model is an

effect modifier. It is common practice to be fairly tolerant of the multiplica-

tive model assumption for confounding variables but less tolerant of this

assumption when we are considering variables of primary interest. For ex-

ample, model (5.40) assumes that age and either of the other two variables

have a multiplicative effect on the cancer odds ratio. Although this assump-

tion may not be precisely true, including age in the model in this way does

adjust to a considerable extent for the confounding effects of age on the

relationship between alcohol, smoking, and esophageal cancer. Similarly, if
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you only wanted to present the effects of alcohol on esophageal cancer ad-

justed for age and smoking, or the effects of smoking on esophageal cancer

adjusted for age and alcohol, then the multiplicative model (5.38) would do

just fine. The lack of significance of the deviance reduction statistic between

models (5.38) and (5.40) provides ample justification for usingmodel (5.38)

to adjust for the confounding effects of age and smoking on the cancer risk

associated with alcohol consumption. On the other hand, when we present

a table such as Table 5.5, we need to be careful to neither overestimate nor

underestimate the joint effects of two risk factors on the outcome of interest.

For this reason, I recommend that you include an interaction term when

presenting the joint effects of two variables unless there is strong evidence

that the multiplicative assumption is true. Hence, my personal preference

is for Table 5.5 over Table 5.4 even though we are unable to reject model

(5.38) in favor of model (5.40) with statistical significance.

5.26. Goodness-of-Fit Tests

We need to be able to determine whether our model gives a good fit to our

data, and todetect outliers that have anundue effect onour inferences.Many

of the concepts that we introduced for linear regression have counterparts

in logistic regression.

5.26.1. The Pearson χ2 Goodness-of-Fit Statistic

Let us return to the general multiple logistic regression model (5.12). Sup-

pose that there are J distinct covariate patterns and that d j events oc-

cur among n j patients with the covariate pattern x j1, x j2, . . . , x jq . Let

π j = π[x j1, x j2, . . . , x jq ] denote the probability that a patient with the

j th pattern of covariate values suffers an event, which is given by equation

(5.13). Then d j has a binomial distribution with expected value n jπ j and

standard error
√
n jπ j (1 − π j ). Hence

(d j − n jπ j )/
√
n jπ j (1 − π j ) (5.46)

will have a mean of 0 and a standard error of 1. Let

π̂ j = exp[α + β̂1x j 1 + β̂2x j2 + · · · + β̂q x jq ]

1 + exp[α̂ + β̂1x j 1 + β̂2x j2 + · · · + β̂q x jq ]
(5.47)

be the estimate of π j obtained by substituting the maximum likelihood

parameter estimates into equation (5.13). Then the residual for the j th
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covariate pattern is d j − n j π̂ j . Substituting π̂ j for π j in the equation (5.46)

gives the Pearson residual, which is

r j = (d j − n j π̂ j )/
√
n j π̂ j (1 − π̂ j ). (5.48)

If model (5.12) is correct and n j is sufficiently large, then

χ2 =
∑

r 2j (5.49)

will have a chi-squared distribution with J − (q + 1) degrees of freedom.

Equation (5.49) is the Pearson chi-squared goodness-of-fit statistic. It can
be used as a goodness-of-fit test of model (5.12) as long as J , the number of

distinct covariate patterns, is small in comparison to the number of study

subjects.A conservative rule of thumb is that the estimated expectednumber

of events n j π̂ j should be at least 5 and not greater than n j − 5 for each

distinct pattern of covariates. In this case, we can reject model (5.12) if the

P value associated with this chi-squared statistic is less than 0.05.

It should be noted that the meaning of π̂ j depends on whether we are

analyzing data from a prospective or case-control study. In an unbiased

prospective study, π̂ j estimates the probability that someone from the un-

derlying population with the j th covariate pattern will suffer the event of

interest. In a case-control study we are unable to estimate this probabil-

ity (see Sections 4.19.2 and 4.23). Nevertheless, we can still perform valid

goodness-of-fit tests and residual analyses even though the value of π̂ j

is greatly affected by our study design and is not directly related to the

probability of disease in the underlying population.

5.27. Hosmer—Lemeshow Goodness-of-Fit Test

When some of the covariates are continuouswemay have a unique covariate

pattern for each patient, and it is likely that the number of covariate patterns

will increase with increasing sample size. In this situation, equation (5.49)

will not provide a valid goodness-of-fit test. Hosmer and Lemeshow (1980,

1989) proposed the following test for this situation. First, sort the covariate

patterns by increasing values of π̂ j . Then, divide the patients into g groups

containing approximately equal numbers of subjects in such a way that

subjects with the lowest values of π̂ j are in group 1, subjects with the next

lowest values of π̂ j are in group 2, and so on – the last group consisting

of subjects with the largest values of π̂ j . Summing within each group, let

mk = ∑
n j and ok = ∑

d j be the total number of subjects and events in the

kth group, respectively. Let π̄k = ∑
n j π̂ j/mk be a weighted average of the
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values of π̂ j in the kth group. Then theHosmer–Lemeshowgoodness-of-fit
statistic is

Ĉ =
g∑

k=1

(ok − mkπ̄k)
2

mkπ̄k (1 − π̄k)
. (5.50)

Ifmodel (5.12) is true, then Ĉ has anapproximately chi-squareddistribution

with g − 2 degrees of freedom.We reject this model if Ĉ exceeds the critical

value associated with the 0.05 significance level of a chi-squared statistic

with g − 2 degrees of freedom. A value of g = 10 is often used in this test.

5.27.1. An Example: The Ille-et-Vilaine Cancer Data Set

InSection5.22wefittedmodel (5.40) to the Ille-et-Vilaine esophageal cancer

data set. Under thismodel there are 68 distinct covariate patterns in the data.

The number of patients associated with these patterns varies considerably

from pattern to pattern. For example, there is only one subject age 25–34

who drank 80–119 grams of alcohol and smoked 10–29 grams of tobacco

each day, while there were 34 subjects age 65–74 who drank 40–79 grams of

alcohol and smoked 0–9 grams of tobacco a day. Let’s designate this latter

group as having the j th covariate pattern. Then in this group there were

d j = 17 esophageal cancer cases among n j = 34 subjects. Under model

(5.40), the estimated probability that a subject in this group was a case is

π̂ j = 0.393 38.Hence, the expectednumberof esophageal cancers isn j π̂ j =
34× 0.393 38 = 13.375 and the residual for this pattern is

d j − n j π̂ j = 17 − 13.375 = 3.625.

The Pearson residual is

rj = (d j − n j π̂ j )/
√
n j π̂ j (1 − π̂ j )

= 3.625√
34 × 0.393 38 × (1 − 0.393 38)

= 1.2727.

Performing similar calculations for all of the other covariate patterns and

summing the square of these residuals gives

χ2 =
68∑
j=1

r 2j = 55.85.

As there are q = 16 covariates in model (5.40) this Pearson goodness-of-fit

statistic will have 68− 16− 1= 51 degrees of freedom. The probability that

such a statistic exceeds 55.85 equals 0.30.
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In this example there are 27 covariate patterns inwhich the expectednum-

ber of cancers is less than one and there are 51 patterns inwhich the expected

number of cancers is less than five. This raises serious doubts as to whether

we can assume that the Pearson goodness-of-fit statistic has a chi-squared

distribution under the null hypothesis thatmodel (5.40) is true. For this rea-

son, the Hosmer–Lemeshow goodness-of-fit test is a better statistic for this

model. Sorting the covariate patterns by the values of π̂ j gives probabilities

that range from π̂1 = 0.000 697 to π̂68 = 0.944 011. To calculate this test with

g = 10 we first divide the covariate patterns into ten groups with approxi-

mately equal numbers of patients in each group. There are 975 patients in

the study sowewould prefer to have 97 or 98 patients in each group.Wemay

be forced to deviate from this target in order to keep all patients with the

same pattern in the same group. For example, the three lowest cancer proba-

bilities associated with distinct covariate patterns are π̂1 = 0.000 697, π̂2 =
0.002 6442, and π̂3 = 0.004 65. The number of patients with these patterns

aren1 = 40,n2 = 16, andn3 = 60.Nown1 + n2 + n3 = 116 is closer to97.5

than n1 + n2 = 56. Hence, we choose the first of the ten groups to consist

of the 116 patients with the three lowest estimated cancer probabilities. The

remaining nine groups are chosen similarly. Among patients with the three

covariate patterns associated with the smallest cancer probabilities, there

were no cancer cases giving d1 = d2 = d3 = 0. Hence, for the first group

m1 = n1 + n2 + n3 = 116, o1 = d1 + d2 + d3 = 0,

π̄1 = (n1π̂1 + n2π̂2 + n3π̂3)/m1 = (40 × 0.000 697

+ 16 × 0.002 644 + 60 × 0.004 65)/116 = 0.003 01,

and

(o1 − m1π̄1)2

m1π̄1(1 − π̄1)
= (0 − 116 × 0.003 01)2/(116 × 0.003 01

× (1 − 0.003 01)) = 0.350.

Performing the analogous computations for the other nine groups and sum-

ming the standardized squared residuals gives

Ĉ =
10∑
k=1

(ok − mkπ̄k)2

mkπ̄k(1 − π̄k)
= 4.728.

This Hosmer–Lemeshow test statistic has eight degrees of freedom. The

probability that a chi-squared statistic with eight degrees of freedomexceeds

4.728 is P = 0.7862. Hence, this test provides no evidence to reject model

(5.40).
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5.28. Residual and Influence Analysis

Of course, the failure to reject a model by a goodness-of-fit test does not

prove that the model is true or fits the data well. For this reason, residual

analyses are always advisable for any results that are to be published. A

residual analysis for a logistic regressionmodel is analogous to one for linear

regression. Although the standard error of d j is se[d j ] = √
n jπ j (1 − π j ),

the standard error of the residual d j − n j π̂ j is less than se[d j ] due to the fact

that themaximum likelihood values of the parameter estimates tend to shift

n j π̂ j in the direction of d j . The ability of an individual covariate pattern

to reduce the standard deviation of its associated residual is measured by

the leverage h j (Pregibon, 1981). The formula for h j is complex and not

terribly edifying. For our purposes, we can define h j by the formula

var[d j − n j π̂ j ] = n j π̂ j (1 − π̂ j )(1 − h j ) ∼= var[d j − n jπ j ](1 − h j ).

(5.51)

In other words, 100(1 − h j ) is the percent reduction in the variance of the

j th residual due to the fact that the estimate of n j π̂ j is pulled towards d j .

The value of h j lies between 0 and 1. When h j is very small, d j has almost

no effect on its estimated expected value n j π̂ j .When h j is close to one, then

d j
∼= n j π̂ j . This implies that both the residual d j − n j π̂ j and its variance

will be close to zero. This definition of leverage is highly analogous to that

given for linear regression. See, in particular, equation (2.24).

5.28.1. Standardized Pearson Residual

The standardizedPearson residual for the j th covariate pattern is the resid-

ual divided by its standard error. That is,

rs j = d j − n jπ j√
n j π̂ j (1 − π̂ j )(1 − h j )

= r j√
1 − h j

. (5.52)

This residual is analogous to the standardized residual for linear regression

(see equation 2.25). The key difference between equation (2.25) and equa-

tion (5.52) is that the standardized residual has a known tdistribution under

the linearmodel. Although rs j hasmean zero and standard error one it does

not have a normally shaped distribution when n j is small. The square of the

standardized Pearson residual is denoted by

�X2
j = r 2s j = r 2j /(1 − h j ). (5.53)

We will use the critical value (z0.025)2 = 1.962 = 3.84 as a very rough guide
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to identifying large values of �X2
j . Approximately 95% of these squared

residuals should be less than 3.84 if the logistic regression model is

correct.

5.28.2. ∆β j Influence Statistic

Covariate patterns that are associated with both high leverage and large

residuals can have a substantial influence on the parameter estimates of the

model. The �β̂ j influence statistic is a measure of the influence of the j th

covariate pattern on all of the parameter estimates taken together (Pregibon,

1981), and equals

�β̂ j = r 2s j h j/(1 − h j ). (5.54)

Note that�β̂ j increases with both themagnitude of the standardized resid-

ual and the size of the leverage. It is analogous to Cook’s distance for linear

regression (see Section 3.20.2). Covariate patterns associated with large val-

ues of �X2
j and �β̂ j merit special attention.

5.28.3. Residual Plots of the Ille-et-Vilaine Data on Esophageal Cancer

Figure 5.1 shows a plot of the squared residuals �X2
j against the estimated

cancer probability formodel (5.40). Each circle represents the squared resid-

ual associated with a unique covariate pattern. The area of each circle is pro-

portional to �β̂ j . Black circles are used to indicate positive residuals while

gray circles indicate negative residuals. Hosmer and Lemeshow (1989) first

suggested this form of residual plot. They recommend that the area of the

plotted circles be 1.5 times themagnitude of�β̂ j . Figure 5.1 does not reveal

any obvious relationship between the magnitude of the residuals and the

values of π̂ j . There are 68 unique covariate patterns in this data set. Five

percent of 68 equals 3.4. Hence, if model (5.40) is correct we would expect

three or four squared residuals to be greater than 3.84. There are six such

residuals with two of them being close to 3.84. Thus, the magnitude of the

residuals is reasonably consistent with model (5.40).

There are two large squared residuals in Figure 5.1 that have high influ-

ence. These squared residuals are labeled A and B in this figure. Residual A

is associated with patients who are age 55–64 and consume, on a daily basis,

at least 120 gm of alcohol and 0–9 gm of tobacco. Residual B is associated

with patients who are age 55–64 and consume, on a daily basis, 0–39 gm of

alcohol and at least 30 gmof tobacco. The�β j influence statistics associated
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Figure 5.1 Squared residual plot of �X 2
j against π j for the esophageal cancer data ana-

lyzed with model (5.40). A separate circle is plotted for each distinct covariate

pattern. The area of each circle is proportional to the influence statistic �β̂ j .
�X j

2 is the squared standardized Pearson residual for the j th covariate pattern;
π j is the estimated probability that a study subject with this pattern is one of
the case patients. Black and gray circles indicate positive and negative resid-
uals, respectively. Two circles associated with covariate patterns having large
influence and big squared residuals are labeled A and B (see text).

with residuals A and B are 6.16 and 4.15, respectively. Table 5.6 shows the

effects of deleting patients with these covariate patterns from the analysis.

Column 3 of this table repeats the odds ratio given in Table 5.5. Columns 5

and 7 show the odds ratios that result when patients with covariate patterns

A and B are deleted from model (5.40). Deleting patients with pattern A

increases the odds ratio for men who smoke 0–9 gm and drink ≥120 gm
from 65.1 to 274. This is a 321% increase that places this odds ratio outside

of its 95% confidence interval based on the complete data. The other odds

ratios in Table 5.5 are not greatly changed by deleting these patients. Delet-

ing the patients associated with covariate pattern B causes a 78% reduction

in the odds ratio for men who smoke at least 30 gm and drink 0–39 gm a

day. Their deletion does not greatly affect the other odds ratios in this table.

How should these analyses guide the way in which we present these re-

sults? Here, reasonable investigators may disagree on the best way to pro-

ceed. My own inclination would be to publish Table 5.5. This table provides

compelling evidence that tobacco and alcohol are strong independent risk
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Table 5.6. Effects on odds ratios from model (5.40) due to deleting patients with covariates A and
B identified in Figure 5.1 (see text).

Deleted covariate pattern

Complete data A† B‡

Daily drug consumption 95% Percent change Percent change

Odds confidence Odds from Odds from
Tobacco Alcohol

ratio interval ratio complete data ratio complete data

0–9 gm 0–39 gm 1.0∗ 1.0∗ 1.0∗

0–9 gm 40–79 gm 7.55 (3.4–17) 7.53 −0.26% 7.70 2.0%

0–9 gm 80–119 gm 12.7 (5.2–31) 12.6 −0.79% 13.0 2.4%

0–9 gm ≥120 gm 65.1 (20–210) 274 321% 66.8 2.6%

10–29 gm 0–39 gm 3.80 (1.6–9.2) 3.77 −0.79% 3.86 1.6%

10–29 gm 40–79 gm 9.34 (4.2–21) 9.30 −0.43% 9.53 2.0%

10–29 gm 80–119 gm 16.1 (6.8–38) 16.0 −0.62% 16.6 3.1%

10–29 gm ≥120 gm 92.3 (29–290) 95.4 3.4% 94.0 1.8%

≥30 gm 0–39 gm 8.65 (2.4–31) 8.66 0.12% 1.88 −78%

≥30 gm 40–79 gm 32.9 (10–110) 33.7 2.4% 33.5 1.8%

≥30 gm 80–119 gm 72.3 (15–350) 73.0 0.97% 74.2 2.6%

≥30 gm ≥120 gm 196 (30–1300) 198 1.02% 203 3.6%

∗ Denominator of odds ratios
† Patients age 55–64 who drink at least 120 gm a day and smoke 0–9 gm a day deleted
‡ Patients age 55–64 who drink 0–39 gm a day and smoke at least 30 gm a day deleted

factors for esophageal cancer and indicates an impressive synergy between

these two risk factors. Deleting patients with covariate patterns A andB does

not greatly alter this conclusion, although it does profoundly alter the size

of two of these odds ratios. On the other hand, the size of some of the �β̂ j

influence statistics in Figure 5.1 and the width of the confidence intervals

in Table 5.5 provide a clear warning that model (5.40) is approaching the

upper limit of complexity that is reasonable for this data set. A more con-

servative approach would be to not report the combined effects of alcohol

and smoking, or to use just two levels of consumption for each drug rather

than three or four. Model (5.38) could be used to report the odds ratios

associated with different levels of alcohol consumption adjusted for tobacco

usage. This model could also be used to estimate odds ratios associated with

different tobacco levels adjusted for alcohol.

Residual analyses in logistic regression are in many ways similar to those

for linear regression. There is, however, one important difference. In linear
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regression, an influential observation is made on a single patient and there

is always the possibility that this result is invalid and should be discarded

from the analysis. In logistic regression, an influential observation usually is

due to the response frommultiple patients with the same covariate pattern.

Hence, deleting these observations is not an option. Nevertheless, residual

analyses are worthwhile in that they help us evaluate how well the model

fits the data and can indicate instabilities that can arise from excessively

complicated models.

5.29. Using Stata for Goodness-of-Fit Tests and Residual Analyses

We next perform the analyses discussed in the preceding sections. The

5.20.EsophagealCa.log thatwas discussed in Sections 5.20 and 5.23 continues

as follows:

. *

. * Perform Pearson chi-squared and Hosmer-Lemeshow tests of

. * goodness of fit.

. *

. lfit {1}
Logistic model for cancer, goodness-of-fit test

number of observations = 975

number of covariate patterns = 68

Pearson chi2(51) = 55.85

Prob > chi2 = 0.2977

. lfit, group(10) table {2}
Logistic model for cancer, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

_Group _Prob _Obs_1 _Exp_1 _Obs_0 _Exp_0 _Total

1 0.0046 0 0.3 116 115.7 116

2 0.0273 2 2.0 118 118.0 120

3 0.0418 4 3.1 76 76.9 80

4 0.0765 4 5.1 87 85.9 91

5 0.1332 5 7.8 81 78.2 86

6 0.2073 21 20.2 91 91.8 112

7 0.2682 22 22.5 65 64.5 87

8 0.3833 32 28.5 56 59.5 88

9 0.5131 46 41.6 52 56.4 98

10 0.9440 64 68.9 33 28.1 97
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number of observations = 975

number of groups = 10

Hosmer-Lemeshow chi2(8) = 4.73

Prob > chi2 = 0.7862

. *

. * Perform residual analysis

. *

. predict p, p {3}

. predict dx2, dx2 {4}
(57 missing values generated)

. predict rstandard, rstandard {5}
(57 missing values generated)

. generate dx2_pos = dx2 if rstandard >= 0 {6}
(137 missing values generated)

. generate dx2_neg = dx2 if rstandard < 0

(112 missing values generated)

. predict dbeta, dbeta {7}
(57 missing values generated)

. generate bubble= 1.5*dbeta

(57 missing values generated)

. graph dx2_pos dx2_neg p [weight=bubble], symbol(OO) xlabel(0.1 to 1.0) {8}
> xtick (0.05 0.1 to 0.95) ylabel(0 1 to 8) ytick (.5 1 to 7.5) yline(3.84)

. save temporary, replace {9}
file temporary.dta saved

. drop if patients == 0 {10}
(57 observations deleted)

. generate ca_no = cancer*patients

. collapse (sum) n = patients ca = ca_no, by(age alcohol smoke dbeta dx2 p)

{11}
. *

. * Identify covariate patterns associated with large squared residuals

. *

. list n ca age alcohol smoke dbeta dx2 p if dx2 > 3.84, nodisplay {12}
n ca age alcohol smoke dbeta dx2 p

11. 2 1 25-34 >= 120 10-29 1.335425 7.942312 .060482

17. 37 4 35-44 40-79 10-29 1.890465 5.466789 .041798

22. 3 2 35-44 >= 120 0-9 .9170162 3.896309 .2331274
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25. 28 0 45-54 0-39 10-29 1.564479 4.114906 .0962316

38. 6 4 55-64 0-39 >= 30 4.159096 6.503713 .2956251

45. 10 5 55-64 >= 120 0-9 6.159449 6.949361 .7594333

. *

. * Rerun analysis without the covariate pattern A

. *

. use temporary, clear {13}

. drop if age == 4 alcohol == 4 smoke == 1 {14}
(2 observations deleted)

. xi: logistic cancer i.age i.alcohol*i.smoke [freq=patients] {15}
{Output omitted}

-----------------------------------------------------------------------------

cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+---------------------------------------------------------------

{Output omitted}
_Ialcohol_2 | 7.525681 3.032792 5.008 0.000 3.416001 16.57958

_Ialcohol_3 | 12.62548 5.790079 5.529 0.000 5.139068 31.01781

_Ialcohol_4 | 273.8578 248.0885 6.196 0.000 46.38949 1616.705

_Ismoke_2 | 3.76567 1.6883 2.957 0.003 1.563921 9.067132

_Ismoke_3 | 8.65512 5.583627 3.345 0.001 2.444232 30.64811

{Output omitted}
. lincom _Ialcohol_2 + _Ismoke_2 + _IalcXsmo_2_2, or

{Output omitted}
------------------------------------------------------------------------------

cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

------------------------------------------------------------------------------

(1) | 9.298176 3.811849 5.439 0.000 4.163342 20.76603

------------------------------------------------------------------------------

. lincom _Ialcohol_2 +_Ismoke_3 + _IalcXsmo_2_3, or

{Output omitted}
(1) | 33.6871 20.40138 5.808 0.000 10.27932 110.3985

------------------------------------------------------------------------------

. lincom _Ialcohol_3 + _Ismoke_2 + _IalcXsmo_3_2, or

{Output omitted}
(1) | 16.01118 7.097924 6.256 0.000 6.715472 38.1742

------------------------------------------------------------------------------
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. lincom _Ialcohol_3 + _Ismoke_3 + _IalcXsmo_3_3, or

{Output omitted}
(1) | 73.00683 58.92606 5.316 0.000 15.00833 355.1358

-----------------------------------------------------------------------------

. lincom _Ialcohol_4 + _Ismoke_2 + _IalcXsmo_4_2, or

{Output omitted}
(1) | 95.43948 56.55247 7.693 0.000 29.87792 304.8638

----------------------------------------------------------------------------

. lincom _Ialcohol_4 + _Ismoke_3 + _IalcXsmo_4_3, or

{Output omitted}
(1) | 197.7124 192.6564 5.426 0.000 29.28192 1334.96

-----------------------------------------------------------------------------

. *

. * Rerun analysis without the covariate pattern B

. *

. use temporary, clear {16}

. drop if age == 4 & alcohol == 1 & smoke == 3 {17}
(2 observations deleted)

. xi: logistic cancer i.age i.alcohol*i.smoke [freq=patients] {18}
{Output omitted}

-----------------------------------------------------------------------------

cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+---------------------------------------------------------------

{Output omitted}
_Ialcohol_2 | 7.695185 3.109016 5.051 0.000 3.485907 16.98722

_Ialcohol_3 | 13.04068 5.992019 5.589 0.000 5.298882 32.09342

_Ialcohol_4 | 66.83578 40.63582 6.912 0.000 20.29938 220.057

_Ismoke_2 | 3.864114 1.735157 3.010 0.003 1.602592 9.317017

_Ismoke_3 | 1.875407 2.107209 0.560 0.576 .2073406 16.96315

{Output omitted}
. lincom _Ialcohol_2 + _Ismoke_2 + _IalcXsmo_2_2, or

{Output omitted}
------------------------------------------------------------------------------

cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

------------------------------------------------------------------------------

(1) | 9.526812 3.914527 5.486 0.000 4.25787 21.31586

------------------------------------------------------------------------------
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. lincom _Ialcohol_2 + _Ismoke_3 + _IalcXsmo_2_3, or

{Output omitted}
(1) | 33.48594 20.08865 5.853 0.000 10.33274 108.5199

----------------------------------------------------------------------------

. lincom _Ialcohol_3 + _Ismoke_2 + _IalcXsmo_3_2, or

{Output omitted}
(1) | 16.58352 7.369457 6.320 0.000 6.940903 39.62209

-----------------------------------------------------------------------------

. lincom _Ialcohol_3 + _Ismoke_3 + _IalcXsmo_3_3, or

{Output omitted}
(1) | 74.22997 59.24187 5.397 0.000 15.53272 354.7406

-----------------------------------------------------------------------------

. lincom _Ialcohol_4 + _Ismoke_2 + _IalcXsmo_4_2, or

{Output omitted}
(1) | 94.0049 54.92414 7.776 0.000 29.91024 295.448

-----------------------------------------------------------------------------

. lincom _Ialcohol_4 + _Ismoke_3 + _IalcXsmo_4_3, or

{Output omitted}
(1) | 202.6374 194.6184 5.530 0.000 30.84628 1331.179

----------------------------------------------------------------------------

Comments
1 The lfit command is a post-estimation command that can be used with

logistic regression.Without options it calculates the Pearson chi-squared

goodness-of-fit test for the preceding logistic regression analysis. In this

example, the preceding logistic command analyzed model (5.40) (see

Section 5.23). As indicated in Section 5.27.1, this statistic equals 55.85

and has 51 degrees of freedom. The associated P value is 0.30.

2 The group(10) option causes lfit to calculate the Hosmer–Lemeshow

goodness-of-fit testwith the studysubjects subdivided into g =10groups.

The table option displays information about these groups. The columns

in the subsequent table are defined as follows: Group = k is the group

number, Prob is themaximumvalue of π̂ j in the kth group, Obs 1= ok
is the observed number of events in the kth group, Exp 1 = ∑

n j π̂ j is

the expected number of events in the kth group, Obs 0 = mk − ok =
the number of subjects who did not have events in the kth group,

Exp 0 = mk − ∑
n j π̂j is the expected number of subjects who did not

have events in the kth group, and Total = mk is the total number of sub-

jects in the kth group. The Hosmer–Lemeshow goodness-of-fit statistic



193 5.29. Using stata for goodness-of-fit tests and residual analyses

equals 4.73 with eight degrees of freedom. The P value associated with

this test is 0.79.

3 The p option in this predict command defines the variable p to equal

π̂ j . In this and the next two predict commands the name of the newly

defined variable is the same as the command option.

4 Define thevariabledx2 to equal�X2
j .All recordswith the samecovariate

pattern are given the same value of dx2.

5 Define rstandard to equal the standardized Pearson residual rs j .

6 We are going to draw a scatterplot of �X2
j against π̂ j . We would like

to color code the plotting symbols to indicate whether the residual is

positive or negative. This command defines dx2 pos to equal�X2
j if and

only if rs j is non-negative. The next command defines dx2 neg to equal

�X2
j if rs j is negative. See comment 8 below.

7 Define the variable dbeta to equal �β̂ j . The values of dx2, dbeta and

rstandard are affected by the number of subjects with a given covariate

pattern, and the number of events that occur to these subjects. They are

not affected by the number of records used to record this information.

Hence, it makes no difference whether there is one record per patient

or just two records specifying the number of subjects with the specified

covariate pattern who did, or did not, suffer the event of interest.

8 This graph produces a scatterplot of �X2
j against π̂ j that is similar to

Figure 5.1. The [weight =bubble] commandmodifier causes the plotting

symbols to be circles whose area is proportional to the variable bubble.

(We set bubble equal to 1.5× �β̂ j following the recommendation of

Hosmer and Lemeshow (1989) for these residual plots.) We plot both

dx2 pos and dx2 neg against p in order to be able to assign different

pen colors to values of�X2
j that are associated with positive or negative

residuals.

9 We need to identify and delete patients with covariate patterns A and B

in Figure 5.1. Before doing this we save the current data file so that we

can restore it to its current formwhen needed. This save command saves

the data in a file called temporary, which is located in the Stata default

file folder.

10 Delete covariate patterns that do not pertain to any patients in the study.

11 The collapse (sum) command reduces the data to one record for each

unique combination of values for the variables listed in the by option.

This command defines n and ca to be the sum of patients and ca no,

respectively over all records with identical values of age, alcohol, smoke

dbeta, dx2 and p. In other words, for each specific pattern of these

covariates, n is the number of patients and ca is the number of cancer
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caseswith this pattern. All other covariates that are not included in the by

option are deleted from memory. The covariates age, alcohol and smoke

uniquely define the covariate pattern. The variables dbeta, dx2 and p are

the same for all patients with the same covariate pattern. However, we

include them in this by statement in order to be able to list them in the

following command.

12 List the covariate values and other variables for all covariate patterns for

which �X2
j > 3.84. The two largest values of �β j are highlighted. The

record with �β j = 6.16 corresponds to squared residual A in

Figure 5.1. Patients with the covariate pattern associated with this resid-

ual are age 55–64, drink at least 120 gmof alcohol and smoke less than 10

gm of tobacco a day. Squared residual B has�βj = 4.16. The associated

residual pattern is for patients aged 55–64 who drink 0–39 gm alcohol

and smoke ≥30 gm tobacco a day.

The nodisplay option forces the output to be given in tabular format

rather than display format. Display format looks better when there are

lots of variables but requires more lines per patient.

13 Restore the complete data file that we saved earlier.

14 Delete records with covariate pattern A. That is, the record is deleted

if age = 4 and alcohol = 4 and smoke = 1. These coded values corre-

spond to age 55–64, ≥120 gm alcohol, and 0–9 gm tobacco, respec-

tively.

15 Analyze the data with covariate pattern A deleted using model (5.40).

The highlighted odds ratios in the subsequent output are also given in

column 5 of Table 5.6.

16 Restore complete database.

17 Delete records with covariate pattern B.

18 Analyze the data with covariate pattern B deleted using model (5.40).

The highlighted odds ratios in the subsequent output are also given in

column 7 of Table 5.6.

5.30. Frequency Matched Case-Control Studies

We often have access to many more potential control patients than case

patients for case-control studies. If the distribution of some important con-

founding variable, such as age, differs markedly between cases and controls,

we may wish to adjust for this variable when designing the study. One way

to do this is through frequency matching. The cases and potential controls
are stratified into a number of groups based on, say, age. We then randomly
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select from each stratum the same number of controls as there are cases

in the stratum. The data can then be analyzed by logistic regression with a

classification variable to indicate these strata.

It is important, however, to keep the strata fairly large if logistic regression

is to be used for the analysis. Otherwise the estimates of the parameters of

real interest may be seriously biased. Breslow and Day (1980) recommend

that the strata be large enough so that each stratum contains at least ten

cases and ten controls when the true odds ratio is between one and two.

They show that even larger strata are needed to avoid appreciable bias when

the true odds ratio is greater than two.

5.31. Conditional Logistic Regression

Sometimes there ismore than one important confounder that wewould like

to adjust for in the design of our study. In this case we typically match each

case patient to one ormore controlswith the same values of the confounding

variables. This approach is often quite reasonable. However, it usually leads

to strata (matched pairs or sets of patients) that are too small to be analyzed

accurately with logistic regression. In this case, an alternative technique

called conditional logistic regression should be used. This technique is

discussed in Breslow and Day (1980). In Stata, the clogit command may

be used to implement these analyses. The syntax of the clogit command is

similar to that for logistic. A mandatory “option” for this command is

group(varname)

where varname is a variable that links cases to their matched controls. That

is, each case and her matched control share a unique value of varname.

5.32. Analyzing Data with Missing Values

Frequently, data sets will contain missing values of some covariates. Most

regression programs, including those of Stata, deal with missing values by

excluding all records with missing values in any of the covariates. This can

result in the discarding of substantial amounts of information and a consid-

erable loss of power. Some statisticians recommend using methods of data
imputation to estimate the values of missing covariates. The basic idea of

these methods is as follows. Suppose that xi j represents the j th covariate

value on the i th patient, and that xkj is missing for the kth patient. We first

identify all patients who have non-missing values of both the j th covariate
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and all other covariates that are available on the kth patient. Using this

patient subset, we regress xi j against these other covariates. We use the re-

sults of this regression to predict the value of xkj from the other known

covariate values of the kth patient. This predicted value is called the im-
puted value of xkj . This process is then repeated for all of the other missing

covariates in the data set. The imputed covariate values are then used in the

final regression in place of the missing values.

These methods work well if the values of xi j that are available are a

representative sample from the entire target population. Unfortunately, this

is often not the case in medical studies. Consider the following example.

5.32.1. Cardiac Output in the Ibuprofen in Sepsis Study

An important variable for assessing and managing severe pulmonary mor-

bidity is oxygen delivery, which is the rate at which oxygen is delivered to

the body by the lungs. Oxygen delivery is a function of cardiac output and

several other variables (Marini and Wheeler, 1997). Unfortunately, cardiac

output can only be reliably measured by inserting a catheter into the pul-

monary artery. This is an invasive procedure that is only performed in the

sickest patients. In the Ibuprofen in Sepsis study, baseline oxygen delivery

was measured in 37% of patients. However, we cannot assume that the oxy-

gen delivery was similar in patients who were, or were not, catheterized.

Hence, any analysis that assesses the influence of baseline oxygen delivery

on 30 day mortality must take into account the fact that this covariate is

only known on a biased sample of study subjects.

Let us restrict our analyses to patients who are either black or white.

Consider the model

logit[E[di | xi , yi ]] = α + β1xi + β2yi , (5.55)

where

di =
{
1: if the i th patient dies within 30 days

0: otherwise,

xi =
{
1: if the i th patient is black

0: otherwise,

and yi is the rate of oxygen delivery for the i th patient. The analysis of

model (5.55) excludes patients with missing oxygen delivery. This, together

with the exclusion of patients of other race, restricts this analysis to 161 of

the 455 subjects in the study. The results of this analysis are given in the
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Table 5.7. Effect of race and baseline oxygen delivery on mortality in the Ibuprofen in Sepsis
study. Oxygen delivery can only be reliably measured in patients with pulmonary artery catheters.
In the analysis of model (5.55) 262 patients were excluded because of missing oxygen delivery.
These patients were retained in the analysis of model (5.56). In this latter model, black patients
had a significantly higher mortality than white patients, and uncatheterized patients had a
significantly lower mortality than those who were catheterized. In contrast, race did not
significantly affect mortality in the analysis of model (5.55) (see text).

Model (5.55) Model (5.56)

Odds 95% confidence P Odds 95% confidence P

Risk factor ratio interval value ratio interval value

Race

White 1.0∗ 1.0∗

Black 1.38 0.60–3.2 0.45 1.85 1.2–2.9 0.006

Unit increase 0.9988 0.9979–0.9997 0.01 0.9988 0.9979–0.9997 0.01

in oxygen

delivery†

Pulmonary artery

catheter

Yes 1.0∗

No 0.236 0.087–0.64 0.005

∗Denominator of odds ratio
†Oxygen delivery is missing in patients who did not have a pulmonary artery catheter

left-hand side of Table 5.7. The mortality odds ratio for blacks of 1.38 is not

significantly different from one, and the confidence interval for this odds

ratio is wide. As onewould expect, survival improveswith increasing oxygen

delivery (P = 0.01).

In this study, oxygen delivery wasmeasured in every patient who received

a pulmonary artery catheter. Hence, a missing value for oxygen delivery

indicates that the patient was not catheterized. A problemwithmodel (5.55)

is that it excludes 262 patients of known race because they did not have their

oxygen delivery measured. A better model is

logit[E[di | xi , y ′
i , zi ]] = α + β1xi + β2y

′
i + β3zi , (5.56)

where

di and xi and are as in model(5.55),

y ′
i =

{
oxygen delivery for the i th patient if measured

0: if oxygen delivery was not measured, and
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zi =
{
1: if oxygen delivery was not measured for i th patient

0: otherwise.

An analysis of model (5.56) gives the odds ratio estimates in the right half of

Table 5.7. Note that the mortal odds ratio for blacks is higher than in model

(5.55) and is significantly different from one. The confidence interval for

this odds ratio is substantially smaller than in model (5.56) due to the fact

that it is based on all 423 subjects rather than just the 161 patients who

where catheterized. The odds ratio associated with oxygen delivery is the

same in both models. This is because β2 only enters the likelihood function

through the linear predictor, and y ′
i is always 0 when oxygen delivery is

missing. Hence, inmodel (5.56), patients withmissing oxygen delivery have

no influence on the maximum likelihood estimate of β2.

It is particularly noteworthy that the odds ratio associated with zi is both

highly significant and substantially less than one. This means that patients

who were not catheterized were far less likely to die than patients who

were catheterized. Thus, we need to be very cautious in interpreting the

meaning of the significant odds ratio for oxygen consumption.We can only

say that increased oxygen delivery was beneficial among those patients in

whom it was measured. The effect of oxygen delivery on mortality among

other uncatheterized patients may be quite different since this group had a

much better prognosis. For example, it is possible that oxygen delivery in

the uncatheterized is sufficiently good that variation in the rate of oxygen

delivery has little effect on mortality. Using a data imputation method for

these data would be highly inappropriate.

This analysis provides evidence that blacks have a higher mortality rate

from sepsis than whites and catheterized patients have higher mortality

than uncatheterized patients. It says nothing, however, about why these

rates differ. As a group, blacks may differ from whites with respect to the

etiologyof their sepsis and the timebetweenonset of illness andadmission to

hospital. Certainly, critical care physicians do not catheterize patients unless

they consider it necessary for their care, and it is plausible that patients who

are at the greatest risk of death are most likely to be monitored in this way.

5.32.2. Modeling Missing Values with Stata

The following Stata log file regresses death within 30 days against race and

baselineoxygendelivery in the Ibuprofen in Sepsis studyusingmodels (5.55)

and (5.56).
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. * 5.32.2.Sepsis.log

. *

. * Regress fate against race and oxygen delivery in black and

. * white patients from the Ibuprofen in Sepsis study (Bernard et al., 1997).

. *

. use C:\WDDtext\1.4.11.Sepsis.dta, clear

. keep if race <2 {1}
(32 observations deleted)

. logistic fate race o2del {2}
Logit estimates Number of obs = 161

LR chi2(2) = 7.56

Prob > chi2 = 0.0228

Log likelihood = -105.19119 Pseudo R2 = 0.0347

-----------------------------------------------------------------------------

fate | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------+---------------------------------------------------------------------

race | 1.384358 .5933089 0.759 0.448 .5976407 3.206689

o2del | .9988218 .0004675 -2.519 0.012 .9979059 .9997385

-----------------------------------------------------------------------------

. *

. * Let o2mis indicate whether o2del is missing. Set o2del1 = o2del when

. * oxygen delivery is available and = 0 when it is not.

. *

. generate o2mis = 0

. replace o2mis = 1 if o2del == . {3}
(262 real changes made)

. generate o2del1 = o2del

(262 missing values generated)

. replace o2del1 = 0 if o2del == .

(262 real changes made)

. logistic fate race o2del1 o2mis {4}
Logit estimates Number of obs = 423

LR chi2(3) = 14.87

Prob > chi2 = 0.0019

Log likelihood = -276.33062 Pseudo R2 = 0.0262
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-----------------------------------------------------------------------------

fate | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

--------+--------------------------------------------------------------------

race | 1.847489 .4110734 2.759 0.006 1.194501 2.857443

o2del1 | .9987949 .0004711 -2.557 0.011 .9978721 .9997186

o2mis | .2364569 .1205078 -2.829 0.005 .0870855 .6420338

-----------------------------------------------------------------------------

Comments
1 The values of race are 0 and 1 for whites and blacks, respectively. This

statement excludes patients of other races from our analyses.

2 The variable o2del denotes baseline oxygen delivery. We regress fate

against race and o2del using model (5.55).

3 Missing values are represented in Stata by a period; “o2del ==.” is true

when o2del is missing.

4 We regress fate against race, o2del1 and o2mis using model (5.56).

5.33. Additional Reading

Breslow and Day (1980) provide additional breadth and depth on logistic

regression in general and the analysis of the Ille-et-Vilaine data set in par-

ticular. They also provide an excellent presentation of classical methods

for case-control studies.

HosmerandLemeshow(1989) is another standardreferenceworkon logistic

regression. It provides an extensive discussion ofmodel fitting, goodness-

of-fit tests, residual analysis, and influence analysis for logistic regression.

Marini and Wheeler (1997) provide a good overview of the biology and

treatment of acute pulmonary disease.

Dupont and Plummer (1999) explain how to derive an exact confidence

interval for the odds ratio from a 2 × 2 case-control study.

Hosmer and Lemeshow (1980) is the original reference for the Hosmer–

Lemeshow goodness-of-fit test.

Mantel and Haenszel (1959) is another classic original reference that is

discussed by many authors, including Pagano and Gauvreau (2000).

Pregibon (1981) is the original reference for the �β̂ j influence statistic.

Tuyns et al. (1977) is the original reference on the Ille-et-Vilaine study.

Robins et al. (1986) derived the confidence interval for theMantel–Haenszel

odds ratio given in equation (5.7).



201 5.34. Exercises

5.34. Exercises

1 In Section 5.21 we said that β1 is the log odds ratio for cancer associated

with alcohol among non-smokers, β2 is the log odds ratio for cancer

associated with smoking among non-drinkers, β1 + β3 is the log odds

ratio for cancer associated with alcohol among smokers, β2 + β3 is the

log odds ratio for cancer associated with smoking among drinkers, and

β1 + β2 + β3 is the log odds ratio for cancer associated with people who

both smoke and drink compared to those who do neither. Write down

the log odds for the appropriate numerator and denominator groups for

each of these odds ratios. Subtract the denominator log odds from the

numerator log odds to show that these statements are all true.

The followingexercises arebasedonastudybyScholer et al. (1997).This

was a nested case-control study obtained from a cohort of children age

0 through 4 years in Tennessee between January 1, 1991 and December

31, 1995. Case patients consist of all cohort members who suffered in-

jury deaths. Control patients were frequency matched to case patients by

birth year. The data set that you will need for these exercises is posted

on my web site and is called 5.ex.InjuryDeath.dta. The variables in this

file are

byear = year of birth,

injflag =
{
1: if subject died of injuries

0: otherwise,

pnclate =



1: if no prenatal care was received in the first four months

of pregnancy

0: if such care was given, or if information is missing,

illegit =
{
1: if born out of wedlock

0: otherwise.

2 Calculate the Mantel–Haenszel estimate of the birth-year adjusted odds

ratio for injury death among childrenwith unmarriedmothers compared

to those with married mothers. Test the homogeneity of this odds ratio

across birth-year strata. Is it reasonable to estimate a common odds ratio

across these strata?

3 Using logistic regression, calculate the odds ratio for injury death of chil-

dren with unmarried mothers compared to married mothers, adjusted

for birth year. What is the 95% confidence interval for this odds ratio?

4 Fit a multiplicative model of the effect of illegitimacy and prenatal care

on injury death adjusted for birth year. Complete the following table.
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(Recall that for rare events the odds ratio is an excellent estimate of the

corresponding relative risk.)

Numerator of Denominator of Relative 95% confidence

relative risk relative risk risk interval

Unmarried mother Married mother

Inadequate Adequate

prenatal care prenatal care

Married mother Unmarried mother

5 Add an interaction term to your model in question 4 for the effect of

being illegitimate and not having adequate prenatal care. Complete the

following table.

Numerator of Denominator of Relative 95% confidence

relative risk relative risk risk interval

Married mother Married mother

without prenatal with prenatal

care care
Unmarried mother Married mother

with prenatal with prenatal

care care
Unmarried mother Married mother

without prenatal with prenatal

care care
Unmarried mother Unmarried mother

without prenatal with prenatal

care care
Unmarried mother Married mother

without prenatal without prenatal

care care

6 Are your models in questions 4 and 5 nested? Derive the difference in

deviance between them. Is this difference significant? If you were writing

a paper on the effects of illegitimacy and adequate prenatal care on the

risk of injury death, which model would you use?

7 Generate a squared residual plot similar to Figure 5.1 only using model

(5.38). What does this plot tell you about the adequacy of this model?
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Introduction to Survival Analysis

Survival analysis is concerned with prospective studies of patients. We start

with a cohort of patients and then follow them forwards in time todetermine

some clinical outcome.The covariates in a survival analysis are treatments or

attributes of the patient when they are first recruited. Follow-up continues

for each patient until either some event of interest occurs, the study ends, or

furtherobservationbecomes impossible.The responsevariables in a survival

analysis consist of the patient’s fate and length of follow-up at the end of

the study. A critical aspect of survival analysis is that the outcome of interest

may not occur to all patients during follow-up. For such patients, we know

only that this event did not occur while the patient was being followed. We

do not know whether or not it will occur at some later time.

6.1. Survival and Cumulative Mortality Functions

Suppose we have a cohort of n patients who we wish to follow. Let

ti be the time that the i th person dies,

m[t] be the number of patients for whom t < ti , and

d[t] be the number of patients for whom ti ≤ t.

Then m[t] is the number of patients who we know survived beyond time t

while d[t] is the number who are known to have died by this time. The

survival function is

S[t] = Pr[ti > t] = the probability of surviving until at least time t.

The cumulative mortality function is

D[t] = Pr[ti ≤ t] = the probability of dying by time t.

If ti is known for all members of the cohort we can estimate S(t) and D(t)

by

Ŝ[t] = m[t]/n, the proportion of subjects who are alive at time t, and

D̂[t] = d[t]/n, the proportion of subjects who have died by time t.

203



204 6. Introduction to survival analysis

Table 6.1. Survival and mortality in the Ibuprofen in Sepsis study. In this study, calculating the
proportion of patients who have survived a given number of days is facilitated by the fact that all
patients were followed until death or 30 days, and no patients were lost to follow-up before death.

Days since Number of patients Number of deaths Proportion alive Proportion dead

entry t alivem[t] since entry d[t] Ŝ[t] = m[t]/n D̂[t] = d[t]/n

0 455 0 1.00 0.00

1 431 24 0.95 0.05

2 416 39 0.91 0.09

. . . . .

. . . . .

. . . . .

28 284 171 0.62 0.38

29 282 173 0.62 0.38

30 279 176 0.61 0.39
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Figure 6.1 Estimated survival function Ŝ[t] for patients in the Ibuprofen in Sepsis trial.
In this study all patients were followed until death or thirty days. Hence, S[t] is
estimated by the number of patients alive at time t divided by the total number
of study subjects.

For example, Table 6.1 shows the values of Ŝ[t] and D̂[t] for patients from

the Ibuprofen in Sepsis study. Figure 6.1 shows a plot of the survival function

for this study.

Often the outcome of interest is some morbid event rather than death,

and ti is the time that the i th patient suffers this event. In this case, S[t] is
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called thedisease free survival curve and is the probability of survivinguntil
time t without suffering this event. D[t] is called the cumulative morbidity
curve and is the probability of suffering the event of interest by time t. The

equations used to estimate morbidity and mortality curves are the same.

6.2. Right Censored Data

In clinical studies, patients are typically recruited over a recruitment interval

and then followed for an additional period of time (see Figure 6.2). Patients

are followed forward in time until some event of interest, say death, occurs.

For each patient, the follow-up interval runs from her recruitment until

her death or the end of the study. Patients who are alive at the end of

follow-up are said to be right censored. This means that we know that

they survived their follow-up interval but do not know how much longer

they lived thereafter (further to the right on the survival graph). In survival

studies we are usually concerned with elapsed time since recruitment rather

than calendar time. Figure 6.3 shows the same patients as in Figure 6.2 only

with the x-axis showing time since recruitment. Note that the follow-up

time is highly variable, and that some patients are censored before others

die. With censored data, the proportion of patients who are known to have

died by time t underestimates the true cumulative mortality by this time.

This is because some patients may die after their censoring times but before

time t. In the next section, we will introduce a method of calculating the

survival function that provides unbiased estimates from censored survival

data. Patients who are censored are also said to be lost to follow-up.

Recruitment
Interval

0 Additional
Follow-up

A

B

C

D

E

Figure 6.2 Schematic diagram showing the time of recruitment and length of follow-up
for five patients in a hypothetical clinical trial. The and symbols denote
death or survival at the end of follow-up, respectively. The length of follow-up
can vary widely in these studies. Note that patient E, who dies, has a longer
follow-up time than patient D, who survives.
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Time Since Recruitment0

B

C

D

E

A

Figure 6.3 Figure 6.2 is redrawn with the x-axis denoting time since recruitment. Note
that patient D is censored before patients A and E die. Such censoring must be
taken into account when estimating the survival function since some censored
patients may die after their follow-up ends.

6.3. Kaplan—Meier Survival Curves

Suppose that we have censored survival data on a cohort of patients. We

divide the follow-up into short time intervals, say days, that are small enough

that few patients die in any one interval. Let

ni be the number of patients known to be at risk at the beginning of the

i th day, and

di be the number of patients who die on day i .

Then for the patients alive at the beginning of the i th day, the estimated

probability of surviving the day given that di of them will die is

pi = ni − di
ni

. (6.1)

The probability that a patient survives the first t days is the joint probability

of surviving days 1, 2, . . . , t – 1, and t. This probability is estimated by

Ŝ[t] = p1 p2 p3 · · · pt .
Note that pi = 1 on all days when no deaths are observed. Hence, if tk
denotes the kth death day then

Ŝ(t) =
∏

{k : tk<t}
pk . (6.2)

This estimate is the Kaplan–Meier survival function (Kaplan and Meier,

1958). It is also sometimes referred to as the product limit survival
function. The Kaplan–Meier cumulative mortality function is

D̂[t] = 1 − Ŝ[t]. (6.3)

The Kaplan–Meier survival and mortality functions avoid bias that might

be induced by censored patients because patients censored before the kth

day are not included in the denominator of equation (6.1).
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Equations (6.2) and (6.3) are also used to estimate disease free survival

and cumulative morbidity curves. The only difference is that ni is now the

number of patients who are known to have not suffered the event by the

beginning of the i th day, and di is the number of these patients who suffer

the event on day i .

Tabulated values of t j , n j , d j , and Ŝ[t j ] are often called life tables. These
tables are typically given for times ti at which patients die or are censored.

This term is slightly old fashioned but is still used.

6.4. An Example: Genetic Risk of Recurrent Intracerebral
Hemorrhage

O’Donnell et al. (2000) have studied the effect of the apolipoprotein E gene

on the risk of recurrent lobar intracerebral hemorrhage in patients who

have survived such a hemorrhage. Follow-up was obtained for 70 patients

who had survived a lobar intracerebral hemorrhage and whose genotype

was known. There are three common alleles for the apolipoprotein E gene:

ε2, ε3, and ε4. The genotype of all 70 patients was composed of these

three alleles. Patients were classified as either being homozygous for ε3

(Group 1), or as having at least one of the other two alleles (Group 2).

Table 6.2 shows the follow-up for these patients. There were four recurrent

hemorrhages among the 32 patients in Group 1 and 14 hemorrhages among

the 38 patients in Group 2. Figure 6.4 shows the Kaplan–Meier disease free

survival function for these two groups of patients. These curveswere derived

Table 6.2. Length of follow-up and fate for patients in the study by O’Donnell et al. (2000).
Patients are divided into two groups defined by their genotype for the apolipoprotein E gene.
Follow-up times marked with an asterisk indicate patients who had a recurrent lobar intracerebral
hemorrhage at the end of follow-up. All other patients did not suffer this event during follow-up

Length of follow-up (months)

Homozygous ε3/ε3 (Group 1)

0.23∗ 1.051 1.511 3.055∗ 8.082 12.32∗ 14.69 16.72 18.46 18.66

19.55 19.75 24.77∗ 25.56 25.63 26.32 26.81 32.95 33.05 34.99

35.06 36.24 37.03 37.75 38.97 39.16 42.22 42.41 45.24 46.29

47.57 53.88

At least one ε2 or ε4 allele (Group 2)

1.38 1.413∗ 1.577 1.577∗ 3.318∗ 3.515∗ 3.548∗ 4.041 4.632 4.764∗

8.444 9.528∗ 10.61 10.68 11.86 13.27 13.60 15.57∗ 17.84 18.04

18.46 18.46 19.15∗ 20.11 20.27 20.47 24.87∗ 28.09∗ 30.52 33.61∗

37.52∗ 38.54 40.61 42.78 42.87∗ 43.27 44.65 46.88
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Figure 6.4 Kaplan–Meier estimates of hemorrhage-free survival functions for patients who
had previously survived a lobular intracerebral hemorrhage. Patients are subdi-
vided according to their apolipoprotein E genotype. Patients who were homo-
zygous for the ε3 allele of this gene had a much better prognosis than other
patients (O’Donnell et al., 2000).

using equation (6.2). For example, suppose that we wish to calculate the

disease free survival function at 15 months for the 32 patients in Group 1.

Three hemorrhages occurred in this group before 15 months at 0.23, 3.055

and 12.32 months. Therefore,

Ŝ[15] = p1 p2 p3 =
3∏

k=1

pk ,

where pk is the probability of avoiding a hemorrhage on the kth day on

which hemorrhages occurred. At 12.3 months there are 27 patients at risk;

two of the original 32 have already had hemorrhages and three have been

censored. Hence,p3 = (27 –1)/27 = 0.9629. Similarly, p1 = (32 − 1)/32 =
0.9688 and p2 = (29 − 1)/29 = 0.9655. Therefore, Ŝ[15] = 0.9688 ×
0.9655 × 0.9629 = 0.9007. Ŝ[t] is constant and equals 0.9007 from

t = 12.32 until just before the next hemorrhage in Group 1, which occurs

at time 24.77.

In Figure 6.4, the estimated disease free survival functions are constant

over days when no hemorrhages are observed and drop abruptly on days

when hemorrhages occur. If the time interval is short enough that there

is rarely more than one death per interval, then the height of the drop at

each death day indicates the size of the cohort remaining on that day. The

accuracy of the survival curve gets less as we move towards the right, as it is

based on fewer and fewer patients. Large drops in these curves are warnings
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of decreasing accuracy of our survival estimates due todiminishingnumbers

of study subjects.

If there is no censoring and there are q death days before time t then

Ŝ(t) =
(
n1 − d1

n1

)(
n2 − d2
n1 − d1

)
. . . .

(
nq − dq
nq1 − dq1

)

= nq − dq
n1

= m(t)

n
.

Hence the Kaplan–Meier survival curve reduces to the proportion of

patients alive at time t if there is no censoring.

6.5. 95% Confidence Intervals for Survival Functions

The variance of Ŝ(t) is estimated by Greenwood’s formula (Kalbfleisch and

Prentice, 1980), which is

s 2
Ŝ(t)

= Ŝ(t)2
∑

{k : tk<t}

dk
nk(nk − dk)

. (6.4)

A 95% confidence interval for S(t) could be estimated by Ŝ(t) ± 1.96s Ŝ(t).

However, this interval is unsatisfactory when Ŝ(t) is near 0 or 1. This is

because Ŝ(t) has a skewed distribution near these extreme values. The true

survival curve is never less than zero or greater than one, and we want

our confidence intervals to never exceed these bounds. For this reason we

calculate the statistic log[− log[Ŝ(t)]], which has variance

σ̂ 2(t) =

∑
{k : tk< t}

dk
nk(nk − dk)[ ∑

{k : tk< t}
log

[
(nk − dk)

dk

]]2 (6.5)

(Kalbfleisch and Prentice, 1980). A 95% confidence interval for this statistic

is

log[− log[Ŝ(t)]] ± 1.96σ̂ (t). (6.6)

Exponentiating equation (6.6) twice gives a 95% confidence interval for

Ŝ(t) of

Ŝ(t)exp(∓1.96σ̂ (t)). (6.7)

Equation (6.7) provides reasonable confidence intervals for the entire range

of values of Ŝ(t). Figure 6.5 shows these confidence intervals plotted for

the hemorrhage-free survival curve of patients with an ε2 or ε4 allele in
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Figure 6.5 The thick black curve is the Kaplan–Meier survival function for patients with
an ε2 or ε4 allele in the study by O’Donnell et al. (2000). The gray lines give
95% confidence intervals for this curve. The digits near the survival curve indi-
cate numbers of patients who are lost to follow-up. Note that the confidence
intervals widen with increasing time. This indicates the reduced precision of
the estimated survival function due to the reduced numbers of patients with
lengthy follow-up.

O’Donnell et al. (2000). If we return to the homozygous ε3 patients in

Section 6.4 and let t = 15 then∑
{k : tk<15}

dk
nk(nk − dk)

= 1

32 × 31
+ 1

29 × 28
+ 1

27 × 26
= 0.003 66 and

∑
{k : tk< 15}

log

[
(nk − dk)

dk

]
= log

[
32 − 1

32

]
+ log

[
29 − 1

29

]
+ log

[
27 − 1

27

]

= −0.104 58.

Therefore, σ̂ 2(15) = 0.003 66/(−0.104 58)2 = 0.335, and a 95% confi-

dence interval for Ŝ[15] is 0.9007exp(∓1.96×√
0.335) = (0.722, 0.967). This in-

terval remains constant from the previous Group 1 hemorrhage recurrence

at time 12.32 until just before the next at time 24.77.

6.6. Cumulative Mortality Function

The 95% confidence interval for the cumulative mortality function D[t] =
1 − S(t) is estimated by

1 − Ŝ(t)exp(±1.96σ̂ (t)). (6.8)

Figure 6.6 shows the cumulative morbidity function for the homozygous

ε3/ε3 patients of O’Donnell et al. (2000). Plotting cumulative morbidity
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Figure 6.6 The black curve is the Kaplan–Meier cumulative morbidity function for homozy-
gous ε3/ε3 patients from the study of O’Donnell et al. (2000). The First black
dot on each horizontal segment of this line indicates a time that a patient suf-
fered a hemorrhage. Other dots indicate censoring times. The gray lines give
95% confidence intervals for this morbidity curve.

rather than disease-free survival is a good idea when the total morbidity is

low. This is because the y-axis can be plotted on a larger scale and need only

extend up to themaximumobservedmorbidity. An alternative to Figure 6.6

would have been to plot the hemorrhage free survival curve with the y-axis

ranging from 0.65 to 1.00. Although this would achieve the samemagnifica-

tion of the y-axis as Figure 6.6, it tends to exaggerate the extent of the mor-

bidity, particularly if the reader does not notice that the y-axis starts at 0.65.

6.7. Censoring and Bias

A Kaplan–Meier survival curve will provide an appropriate estimate of the

true survival curve as long as

1 the patients are representative of the underlying population, and

2 patients who are censored have the same risk of subsequently suffering

the event of interest as patients who are not.

If censored patients are more likely to die than uncensored patients with

equal follow-up, then our survival estimates will be biased. Such bias can

occur for many reasons, not the least of which is that dead patients do not

return for follow-up visits.

Survival curves are often derived for some endpoint other than death. In

this case, some deaths may be treated as censoring events. For example, if



212 6. Introduction to survival analysis

the event of interest is developing of breast cancer, then we may treat death

due to heart disease as a censoring event. This is reasonable as long as there

is no relationship between heart disease and breast cancer. That is, when

we censor a woman who died of heart disease, we are assuming that she

would have had the same subsequent risk of breast cancer as other women

if she had lived. If we were studying lung cancer and smoking, however,

then treating death from heart disease as a censoring event would bias our

results since smoking increases the risk of both lung cancer morbidity and

cardiovascular mortality.

6.8. Logrank Test

Suppose that two treatments have survival functions S1[t] and S2[t]. We

wish to know whether these functions are equal. One approach that we

could take is to test whether S1[t0] = S2[t0] at some specific time point t0.

The problem with doing this is that it is difficult to know how to chose

t0. It is tempting to choose the value of t0 where the estimated survival

functions are most different. However, this results in underestimating the

true P value of the test, and hence, overestimating the statistical significance

of the difference in survival curves. A better approach is to test the null

hypothesis

H0 : S1[t] = S2[t] for all t.

Suppose that on the kth death day there are n1k and n2k patients at risk on

treatments 1 and 2 and that d1k and d2k deaths occur in these groups on this

day. Let Nk = n1k + n2k and Dk = d1k + d2k denote the total number of

patients at risk and observed deaths on the kth death day. Then the observed

death rate on the kth death day is Dk/Nk . If the null hypothesis H0 is true,

then the expected number of deaths among patients on treatment 1 given

that Dk deaths occurred in both groups is

E[d1k | Dk] = n1k(Dk/Nk). (6.9)

The greater the difference between d1k and E[d1k | Dk], the greater the evi-

dence that the null hypothesis is false.

Mantel (1966) proposed the following test of this hypothesis. For each

death day, create a 2 × 2 table of the number of patients who die or survive

on each treatment (see Table 6.3). Then perform aMantel–Haenszel test on

these tables. In other words, apply equation (5.5) to strata defined by the
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Table 6.3. To test the null hypothesis of equal survivorship we form the
following 2 × 2 table for each day on which a death occurs. This table gives
the numbers of patients at risk and the number of deaths for each treatment
on that day. We then perform a Mantel–Haenszel chi-squared test on these
tables (see text).

kthdeath day Treatment 1 Treatment 2 Total

Died d1k d2k Dk

Survived n1k − d1k n2k − d2k Nk − Dk

Total at risk at the start of the day n1k n2k Nk

different death days. This gives

χ2
1 =

(∣∣∣∑ d1k −
∑

E[d1k | Dk]
∣∣∣ − 0.5

)2 / ∑
var[d1k | Dk], (6.10)

which has a chi-squared distribution with one degree of freedom if H0 is

true. In equation (6.10) the estimated variance of d1k given a total of Dk

deaths and assuming that H0 is true is

var[d1k | Dk] = n1kn2k Dk(Nk − Dk)

N2
k (Nk − 1)

. (6.11)

Equation (6.11) is equation (5.4) rewritten in the notation of this section.

In the intracerebral hemorrhage study the tenth hemorrhage among both

groups occurs at time 12.32 months. Prior to this time, two patients have

hemorrhages and three patients are lost to follow-up inGroup 1 (the homo-

zygous patients). In Group 2, seven patients have hemorrhages and eight

patients are lost to follow-up before time 12.32. Therefore, just prior to

the tenth hemorrhage there are n1,10 = 32 − 2 − 3 = 27 patients at risk in

Group 1, and n2,10 = 38 − 7 − 8 = 23 patients are at risk inGroup 2, giving

a total of N10 = 27 + 23 = 50 patients at risk of hemorrhage. The tenth

hemorrhage occurs in Group 1 and there are no hemorrhages in Group 2 at

the same time. Therefore d1,10 = 1, d2,10 = 0 and D10 = 1 + 0 = 1. Under

the null hypothesis H0 of equal risk in both groups,

E[d1,10 | D10] = n1,10(D10/N10) = 27 × 1/50 = 0.54

and var[d1,10 | D10] = n1,10n2,10D10(N10−D10)

N2
10(N10 − 1)

= 27 × 23 × 1 × 49

502 × (50 − 1)

= 0.2484.

Performing similar calculations for all of the other recurrence times and

summing over recurrence days gives that
∑

E[d1k | Dk] = 9.277 and
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∑
var[d1k | Dk] = 4.433. There are a total of

∑
d1k = 4 recurrences in

Group 1. Therefore, equation (6.10) gives us χ2
1 = (|4 − 9.277| − 0.5)2/

4.433 = 5.15. Without the continuity correction this statistic equals 6.28.

The probability that a chi-squared statistic with one degree of freedom ex-

ceeds 6.28 equals 0.01. Hence, Group 1 patients have significantly fewer

recurrent hemorrhages than Group 2 patients.

Equation (6.10) is sometimes called the Mantel–Haenszel test for sur-
vival data. It was renamed the logrank test by Peto and Peto (1972) who

studied its mathematical properties. If the time interval is short enough so

that dk ≤ 1 for each interval, then the test of H0 depends only on the order

in which the deaths occur and not on their time of occurrence. It is in this

sense that this statistic is a rank order test. It can also be shown that the

logrank test is a score test (see Section 4.9.4). Today, the most commonly

used name for this statistic is the logrank test.

It should also be noted that we could also perform a simple 2× 2 chi-

squared test on the total number of recurrences in the two patient groups

(see Section 4.19.4). However, differences in survivorship are affected by

time to death as well as the number of deaths, and the simple test does

not take time into consideration. Consider the hypothetical survival curves

shown in Figure 6.7. These curves are quite different, with Group 1 patients

dying sooner than Group 2 patients. However, the overall mortality at the

end of follow-up is the same in both groups. The 2× 2 chi-squared test

would not be able to detect this difference in survivorship. For a sufficiently

large study, the logrank test would be significant.
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Figure 6.7 In these hypothetical survival curves the total mortality at the end of follow-
up is the same in both groups. Mortality, however, tends to happen sooner in
Group 1 than in Group 2. This difference in time to death may be detected by
the logrank test but will not be detected by a 2×2 chi-squared test of overall
mortality in the two groups.
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6.9. Using Stata to Derive Survival Functions and the Logrank Test

The following log file and comments illustrate how to perform the preceding

analyses with Stata.

. * 6.9. Hemorrhage.do

. *

. * Plot Kaplan--Meier Survival functions for recurrent lobar intracerebral

. * hemorrhage in patients who are, or are not, homozygous for the epsilon3

. * allele of the apolipoprotein E gene (O’Donnell et al. 2000).

. *

. use C:\WDDtext\6.9.Hemorrhage.dta, clear

. summarize {1}
Variable | Obs Mean Std. Dev. Min Max

----------+-----------------------------------------------------------

genotype | 70 .5428571 .5017567 0 1

time | 71 22.50051 15.21965 .2299795 53.88091

recur | 71 .2676056 .4458618 0 1

. table genotype recur, col row {2}
------------+-------------------

Apolipopro |

tein E | Recurrence

Genotype | No yes Total

------------+--------------------

e3/e3 | 28 4 32

e2+ or e4+ | 24 14 38

Total | 52 18 70

------------+--------------------

. stset time, failure(recur) {3}
failure event: recur ~= 0 & recur ~= .

obs. time interval: (0, time]

exit on or before: failure

----------------------------------------------------------------------

71 total obs.

0 exclusions

----------------------------------------------------------------------

71 obs. remaining, representing

19 failures in single record/single failure data
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1597.536 total analysis time at risk, at risk from t = 0

earliest observed entry t = 0

last observed exit t = 53.88091

. set textsize 120

. *

. * Graph survival function by genotype

. *

. sts graph, by(genotype) ylabel(0 .2 to 1) ytick(.1 .3 to .9) {4}
> xlabel(0 10 to 50) xtick(5 15 to 45)

> l1title("Probability of Hemorrhage-Free Survival")

> b2title("Months of Follow-up") gap(2) noborder

{Graph omitted, see Figure 6.4}
failure_d: recur

analysis time_t: time

. *

. * List survival statistics

. *

. sts list, by(genotype) {5}
failure_d: recur

analysis time_t: time

Beg. Net Survivor Std.

Time Total Fail Lost Function Error [95% Conf. Int.]

----------------------------------------------------------------------------

e3/e3

.23 32 1 0 0.9688 0.0308 0.7982 0.9955

1.051 31 0 1 0.9688 0.0308 0.7982 0.9955

1.511 30 0 1 0.9688 0.0308 0.7982 0.9955

3.055 29 1 0 0.9353 0.0443 0.7651 0.9835

8.082 28 0 1 0.9353 0.0443 0.7651 0.9835

12.32 27 1 0 0.9007 0.0545 0.7224 0.9669

{Output omitted}
24.77 20 1 0 0.8557 0.0679 0.6553 0.9441

{Output omitted}
53.88 1 0 1 0.8557 0.0679 0.6553 0.9441

e2+ or e4+

1.38 38 0 1 1.0000 . . .

1.413 37 1 0 0.9730 0.0267 0.8232 0.9961

1.577 36 1 1 0.9459 0.0372 0.8007 0.9862

3.318 34 1 0 0.9181 0.0453 0.7672 0.9728

3.515 33 1 0 0.8903 0.0518 0.7335 0.9574
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3.548 32 1 0 0.8625 0.0571 0.7005 0.9404

4.041 31 0 1 0.8625 0.0571 0.7005 0.9404

4.632 30 0 1 0.8625 0.0571 0.7005 0.9404

4.764 29 1 0 0.8327 0.0624 0.6646 0.9213

8.444 28 0 1 0.8327 0.0624 0.6646 0.9213

9.528 27 1 0 0.8019 0.0673 0.6280 0.9005

10.61 26 0 1 0.8019 0.0673 0.6280 0.9005

10.68 25 0 1 0.8019 0.0673 0.6280 0.9005

11.86 24 0 1 0.8019 0.0673 0.6280 0.9005

13.27 23 0 1 0.8019 0.0673 0.6280 0.9005

{Output omitted}
46.88 1 0 1 0.3480 0.1327 0.1174 0.5946

----------------------------------------------------------------------------

. *

. * Graph survival functions by genotype with 95% confidence intervals.

. * Show loss to follow-up.

. *

. sts graph, by(genotype) lost gwood ylabel(0 .2 to 1) ytick(.1 .3 to .9) {6}
> xlabel(0 10 to 50) xtick(5 15 to 45)

> l1title("Probability of Hemorrhage-Free Survival")

> b2title("Months of Follow-up") gap(2) noborder

{Graph omitted, See Figure 6.5}
failure_d: recur

analysis time_t: time

. *

. * Calculate cumulative morbidity for homozygous epsilon3 patients

. * together with 95% confidence intervals for this morbidity.

. *

. sts generate s0 = s if genotype == 0 {7}

. sts generate lb_s0 = lb(s) if genotype == 0

. sts generate ub_s0 = ub(s) if genotype == 0

. generate d0 = 1 - s0 {8}
(39 missing values generated)

. generate lb_d0 = 1 - ub_s0 {9}
(39 missing values generated)

. generate ub_d0 = 1 - lb_s0

(39 missing values generated)
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. *

. * Plot cumulative morbidity for homozygous epsilon3 patients.

. * Show 95% confidence intervals and loss to follow-up

. *

. graph lb_d0 ub_d0 d0 time, symbol(iiO) connect(JJJ) ylabel(0 0.05 to 0.35) {10}
> xlabel(0 10 to 50) xtick(5 15 to 45) l1title("Probability of Hemorrhage") gap(3)

{Graph omitted, see Figure 6.6}
. *

. * Compare survival functions for the two genotypes using the logrank test.

. *

. sts test genotype {11}
failure_d: recur

analysis time_t: time

Log-rank test for equality of survivor functions

------------------------------------------------

| Events

genotype | observed expected

-----------+------------------------------

e3/e3 | 4 9.28

e2+ or e4+ | 14 8.72

-----------+------------------------------

Total | 18 18.00

chi2(1) = 6.28

Pr>chi2 = 0.0122

Comments
1 The hemorrhage data set contains three variables on 71 patients. The

variable time denotes length of follow-up in months; recur records

whether the patient had a hemorrhage (recur = 1) or was censored

(recur= 0) at the end of follow-up; genotype divides the patients into two

groups determined by their genotype. The value of genotype is missing

on one patient who did not give a blood sample.

2 This command tabulates study subjects by hemorrhage recurrence and

genotype. The value labels of these two variables are shown.

3 This stset command specifies that the data set contains survival data.

Each patient’s follow-up time is denoted by time; her fate at the end

of follow-up is denoted by recur. Stata interprets recur = 0 to mean

that the patient is censored and recur �= 0 to mean that she suffered

the event of interest at exit. A stset command must be specified
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before other survival commands such as sts list, sts graph, sts test or sts

generate.

4 The sts graph command plots Kaplan–Meier survival curves; by

(genotype) specifies that separate plots will be generated for each value

of genotype. By default, the sts graph command does not title the y-axis

and titles the x-axis “analysis time”. The l1title and b2title options pro-

vides the titles “Probability of Hemorrhage-Free Survival” and “Months

of Follow-up” for the y- and x-axes, respectively. The noborder option

prevents a border from being drawn on the top and right side of the

graph. The resulting graph is similar to Figure 6.4.

5 This command lists the values of the survival functions that are plotted

by the preceding command. The by(genotype) option specifies that a

separate survival function is to be calculated for each value of genotype.

The number of patients at risk prior to each failure or loss to follow-up

is also given, together with the 95% confidence interval for the survival

function. The highlighted values agree with the hand calculations in

Sections 6.4 and 6.5.

6 Stata also permits users to graph confidence bounds for Ŝ(t) and indicate

the number of subjects lost to follow-up. This is donewith the gwood and

lost options, respectively. In this example, a separate plot is generated for

each value of genotype. Figure 6.5 is similar to one of these two plots.

7 The sts generate command creates regular Stata variables from survival

analyses. Here, s0 = s defines s0, to equal the survival function for pa-

tients with genotype = 0 (i.e. homozygous ε3/ε3 patients). In the next

two commands lb s0 = lb(s) and ub s0 = ub(s) define lb s0 and ub s0 to

be the lower and upper bounds of the 95% confidence interval for s0.

8 Thevariabled0 is thecumulativemorbidity function(seeequation(6.3)).

9 The variables lb d0 and ub d0 are the lower and upper bounds of the

95% confidence interval for d0. Note the lower bound equals one minus

the upper bound for s0 and vice versa.

10 This command produces a graph that is similar to Figure 6.6. The J

symbol in the connect option produces the stepwise connections that

are needed for a morbidity or survival function. The O symbol in the

symbol option produces dots at times when patients have hemorrhages

or are censored.

11 Perform a logrank test for the equality of survivor functions in patient

groups defined by different values of genotype. In this example, patients

who are homozygous for the ε3 allele are compared to other patients.

The highlighted chi-squared statistic and P value agree with our hand

calculations for the uncorrected test.
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6.10. Logrank Test for Multiple Patient Groups

The logrank test generalizes to allow the comparison of survival in several

groups.The test statistichasanasymptotic chi-squareddistributionwithone

degree of freedom less than the number of patient groups being compared.

In Stata, these groups are defined by the number of distinct levels taken by

the variable specified in the sts test command. If, in the hemorrhage study, a

variable named geno6 indicated each of the six possible genotypes that can

result from three alleles for one gene, then sts test geno6 would compare the

six survival curves for these groups of patients; the test statistic would have

five degrees of freedom.

6.11. Hazard Functions

Our next topic is the estimation of relative risks in survival studies. Before

doing this we need to introduce the concept of a hazard function. Suppose

that a patient is alive at time t and that her probability of dying in the next

short time interval (t, t + �t) is λ[t]�t. Then λ[t] is said to be the hazard
function for the patient at time t. In other words

λ(t) = Pr[Patient dies by time t + �t | Patient alive at time t]

�t
. (6.12)

Of course, both the numerator and denominator of equation (6.12) ap-

proach zero as �t gets very small. However, the ratio of numerator to

denominator approaches λ[t] as �t approaches zero. For a very large

population,

λ[t]�t ∼= The number of deaths in the interval (t, t + �t)

Number of people alive at time t
.

The hazard function λ[t] is the instantaneous rate per unit time at which

people are dying at time t; λ[t] = 0 implies that there is no risk of death

and S[t] is flat at time t. Large values of λ[t] imply a rapid rate of decline

in S[t]. The hazard function is related to the survival function through the

equation S[t] = exp[− ∫ t
0 λ[x] dx], where

∫ t
0 λ[x] dx is the area under the

curveλ[t] between0 and t. The simplest hazard function is a constant,which

implies that a patients risk of death does not varywith time. Ifλ[t] = k, then

the area under the curve between 0 and t is kt and the survival function is

S[t] = e−kt . Examples of constant hazard functions and the corresponding

survival curves are given in Figure 6.8.
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Figure 6.8 The hazard function equals the rate of instantaneous mortality for study sub-
jects. This graph shows the relationship between different constant hazard
functions and the associated survival curves. If λ[t] = k then S[t] = exp[−kt].
The higher the hazard function themore rapidly the probability of survival drops
to zero with increasing time.

6.12. Proportional Hazards

Suppose that λ0[t] and λ1[t] are the hazard functions for patients on con-

trol and experimental treatments, respectively. Then these treatments have

proportional hazards if

λ1[t] = R λ0[t]

for some constant R. The proportional hazards assumption places no re-

strictions on the shape of λ0(t) but requires that

λ1[t]/λ0[t] = R

at all times t. Figure 6.9 provides an artificial example that may help to in-

crease your intuitive understanding of hazard functions, survival functions

and the proportional hazards assumption. In this figure, λ0[t] = 0.1 when

t = 0. It decreases linearly until it reaches 0 at t = 3; is constant at 0 from t = 3

until t = 6 and then increases linearly until it reaches 0.1 at t = 9. The haz-

ard functions λ0[t], λ1[t], λ2[t], and λ3[t] meet the proportional hazards

assumption in that λ1[t] = 2.5λ0[t], λ2[t] = 5λ0[t], and λ3[t] = 10λ0[t].
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Figure 6.9 Hypothetical example of hazard functions that meet the proportional hazards
assumption. Although the hazard functions themselves vary with time the ra-
tio of any two hazard functions is constant. The associated survival functions
are shown in the lower panel. The relative risks R of patients with hazards
λ1[t], λ2[t], and λ3[t] compared to λ0[t] are given in the lower panel.

The associated survival functions are also shown in Figure 6.9. The fact that

these hazard functions all equal zero between 3 and 6 imply that no one

may die in this interval. For this reason, the associated survival functions

are constant from 3 to 6. Regardless of the shape of the hazard function, the

survival curve is always non-increasing, and is always between one and zero.

The rate of decrease of the survival curve increases with increasing hazard

and with increasing size of the survival function itself.

6.13. Relative Risks and Hazard Ratios

Suppose that the risks of death by time t + �t for patients on control and

experimental treatments who are alive at time t are λ0[t]�t and λ1[t]�t,

respectively. Then the risk of experimental subjects at time t relative to

controls is
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λ1[t]�t

λ0[t]�t
= λ1[t]

λ0[t]
.

If λ1[t] = Rλ0[t] at all times, then this relative risk is

λ1[t]

λ0[t]
= Rλ0[t]

λ0[t]
= R.

Thus, the ratioof twohazard functions canbe thoughtof as an instantaneous

relative risk. If the proportional hazards assumption is true, then this hazard

ratio remains constant over time and equals the relative risk of experimental

subjects compared to controls. In Figure 6.9, the hazard ratios λ1[t]/λ0[t],

λ2[t]/λ0[t], and λ3[t]/λ0[t] equal 2.5, 5, and 10, respectively. Therefore,

the relative risks of patients with hazard functions λ1[t], λ2[t] and λ3[t]

relative to patients with hazard function λ0[t] are 2.5, 5, and 10.

6.14. Proportional Hazards Regression Analysis

Suppose that patients are randomized to an experimental or control therapy.

Let

λ0[t] be the hazard function for patients on the control therapy, and

xi =
{
1: if the i th patient receives the experimental therapy

0: if she receives the control therapy.

Then the simple proportional hazards model assumes that the i th patient

has hazard

λi [t] = λ0[t] exp[βxi ], (6.13)

where β is an unknown parameter. Note that if the i th patient is on the

control therapy then βxi = 0 and λi [t] = λ0[t]e0 = λ0[t]. If she is on the

experimental therapy, thenβxi = β andλi [t] = λ0[t]eβ . Thismodel is said

to be semi-nonparametric in that it makes no assumptions about the shape

of the control hazard function λ0[t]. Under this model, the relative risk

of experimental therapy relative to control therapy is λ0[t]eβ/λ0[t] = eβ .

Hence, β is the log relative risk of the experimental therapy relative to the

control therapy. Cox (1972) developed a regression method for survival

data that uses the proportional hazards model. This method is in many

ways similar to logistic regression. It provides an estimate, β̂, of β together

with an estimate, se [β̂], of the standard error of β̂. For large studies β̂ has an

approximately normal distribution. We use these estimates in the same way
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that we used the analogous estimates from logistic regression. The estimated

relative risk of experimental therapy relative to control therapy is

R̂ = exp[β̂]. (6.14)

A 95% confidence interval for this relative risk is

R̂ exp[±1.96se[β̂]]. (6.15)

The two therapies will be equally efficacious if R = 1, or equivalently, if

β = 0. Hence, testing the null hypothesis that β = 0 is equivalent to testing

the null hypothesis of equal treatment efficacy. Under this null hypothesis

z = β̂/se[β̂] (6.16)

has an approximately standard normal distribution. Equations (6.15) and

(6.16) are a Wald confidence interval and Wald test, respectively (see

Section 4.9.4).

6.15. Hazard Regression Analysis of the Intracerebral
Hemorrhage Data

Let λi [t] be the hemorrhage hazard function for the i th patient in the study

of O’Donnell et al. (2000). Let λ0[t] be the hazard for patients who are

homozygous for the ε3 allele, and let

xi =
{
1: if the i th patient has an ε2 or ε4 allele

0: otherwise.

We will assume the proportional hazards model λi [t] = λ0[t] exp[βxi ].

Performing a hazard regression analysis on these data gives an estimate of

β̂ = 1.3317 with a standard error of se[β̂] = 0.5699. Therefore, the relative

risk of recurrence for patients with an ε2 or ε4 allele relative to homozy-

gous ε3/ε3 patients is exp[1.3317] = 3.79. A 95% confidence interval for

this relative risk is 3.79exp[±1.96 × 0.5699] = (1.2, 12). To test the null

hypothesis that the two patient groups are at equal risk of recurrence, we

calculate z = 1.3317/0.5699 = 2.34. The probability that a standard nor-

mal random variable is less than −2.34 or more than 2.34 is P = 0.019.

Hence, the hemorrhage recurrence rate is significantly greater in patients

with an ε2 or ε4 allele compared with homozygous ε3/ε3 patients. This P

value is similar to that obtained from the logrank test, which is testing the

same null hypothesis.
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6.16. Proportional Hazards Regression Analysis with Stata

The following log file and comments illustrate a simple proportional haz-

ards regression analysis that compares two groups of patients

. * 6.16. Hemorrhage.log

. *

. * Perform a proportional hazards regression analysis of recurrent lobar

. * intracerebral hemorrhage in patients who are, or are not, homozygous for

. * the epsilon3 allele of the apolipoprotein E gene (O’Donnell et al., 2000).

. *

. use C:\WDDtext\6.9. Hemorrhage.dta, clear

. stset time, failure(recur)

{Output omitted, see 6.8.Hemorrhage.log}
. stcox genotype {1}

failure_d: recur

analysis time_t: time

{Output omitted}
Cox regression -- no ties

No. of subjects = 70 Number of obs = 70

No. of failures = 18

Time at risk = 1596.320341

LR chi2(1) = 6.61

Log likelihood = -63.370953 Prob > chi2 = 0.0102

-------------------------------------------------------------------------

_t |

_d | Haz. Ratio Std. Err. z P> |z| [95% Conf. Interval]

---------+---------------------------------------------------------------

genotype | 3.787366 2.158422 2.337 0.019 1.239473 11.57278 {2}
---------+----------------------------------------------------------------

Comments
1 This command fits the proportional hazards regression model

λ(t, genotype) = λ0(t) exp(β × genotype).

That is, we fit model (6.13) using genotype as the covariate xi . A stset

commandmust precede the stcox command to define the fate and follow-

up variables.

2 The stcox command outputs the hazard ratio exp[β̂] = 3.787 and the

associated 95% confidence interval using equation (6.15). This hazard
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ratio is the relative risk of patients with an ε2 or ε4 allele compared with

homozygous ε3/ε3 patients. The z statistic is calculated using equa-

tion (6.16). Note that the highlighted output agrees with our hand calcu-

lations given in the preceding section.

6.17. Tied Failure Times

Themost straightforward computational approach to the proportional haz-

ards model can produce biased parameter estimates if a large proportion of

the failure times are identical. For this reason, it is best to record failure times

as precisely as possible to avoid ties in this variable. If there are extensive ties

in the data, there are other approaches which are computationally intensive

butwhichcanreduce thisbias (seeStataCorp,2001).Analternativeapproach

is to use Poisson regression, which will be discussed in Chapters 8 and 9.

6.18. Additional Reading

Cox and Oakes (1984),

Kalbfleish and Prentice (1980), and

Lawless (1982) are three standard references on survival analysis. These texts

all assume that the reader has a solid grounding in statistics.

Cox (1972) is the original reference on proportional hazards regression.

Greenwood (1926) is the original reference on Greenwood’s formula for the

variance of the survival function.

O’Donnell et al. (2000) studied the relationship between apolipoprotein

E genotype and intracerebral hemorrhage.We used their data to illustrate

survival analysis in this chapter.

Kaplan and Meier (1958) is the original reference on the Kaplan–Meier

survival curve.

Mantel (1966) is the original reference on the Mantel–Haenszel test for

survival data that is also known as the logrank test.

Peto and Peto (1972) studied the mathematical properties of the Mantel–

Haenszel test for survival data, which they renamed the logrank test.

6.19. Exercises

The following exercises are based on a study by Dupont and Page (1985). A

cohort of 3303 Nashville women underwent benign breast biopsies between

1950 and 1968. We obtained follow-up information from these women or
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their next of kin. Youwill find adata set onmywebpage called 6.ex.breast.dta

that contains some of the information from this cohort. The variables in

this file are

id = patient identification number,

entage = age at entry biopsy,

follow = years of follow-up,

pd = diagnosis of entry biopsy

=



0: no proliferative disease (No PD)

1: proliferative disease without atypia (PDWA)

2: atypical hyperplasia (AH),

fate = fate at end of follow-up =
{
0: censored

1: invasive breast cancer,

fh = first degree family history of breast cancer =
{
0: no

1: yes.

1 Plot Kaplan–Meier breast cancer free survival curves for women with

entry diagnoses of AH, PDWA, and No PD as a function of years since

biopsy. Is this a useful graphic? If not, why not?

2 Plot the cumulative breast cancer morbidity in patient groups defined

by entry histology. What is the estimated probability that a woman with

PDWA will develop breast cancer within 15 years of her entry biopsy?

Give a 95% confidence interval for this probability.

3 Derive the logrank test to compare the cumulative morbidity curves for

women with these three diagnoses. Are these morbidity curves signifi-

cantly different from each other? Is the cumulative incidence curve for

women with AH significantly different from the curve for women with

PDWA? Is the curve for women with PDWA significantly different from

the curve for women without PD?

4 Calculate thebreast cancer riskofwomenwithAHrelative towomenwith-

out PD. Derive a 95% confidence interval for this relative risk. Calculate

this relative risk for womenwith PDWAcompared towomenwithout PD.

5 What are the mean ages of entry biopsy for these three diagnoses? Do

they differ significantly from each other? Does your answer complicate

the interpretation of the preceding results?
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Hazard Regression Analysis

In the last chapter we introduced the concept of proportional hazards re-

gression analysis to estimate the relative risk associated with a single risk

factor from survival data. In this chapter we generalize this technique. We

will regress survival outcome againstmultiple covariates. The technique can

be used to deal with multiple confounding variables or effect modifiers in

precisely the same way as in logistic or linear regression. Indeed, many of

the basic principles of multiple regression using the proportional hazards

model have already been covered in previous chapters.

7.1. Proportional Hazards Model

We expand the simple proportional hazards model to handle multiple co-

variates as follows. Suppose we have a cohort of n patients who we follow

forward in time as described in Chapter 6. Let

ti be the time from entry to exit for the i th patient,

fi =
{
1: if the i th patient dies at exit

0: if the i th patient is censored at exit, and

xi1, xi2, . . . , xiq be the value of q covariates for the i th patient.

Let λ0[t] be the hazard function for patients with covariates xi1 =
xi2 = · · · = xiq = 0. Then the proportional hazards model assumes that

the hazard function for the i th patient is

λi [t] = λ0 [t] exp[β1xi1 + β2xi2 + · · · + βq xiq ]. (7.1)

7.2. Relative Risks and Hazard Ratios

Suppose that patients in risk groups 1 and 2 have covariates x11, x12, . . . ,

x1q and x21, x22, . . . , x2q , respectively. Then the relative risk of patients in

Group 2 with respect to those in Group 1 in the time interval (t, t + �t) is

228
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λ2 [t]�t

λ1 [t]�t
= λ0[t] exp[x21β1 + x22β2 + · · · + x2qβq ]

λ0[t] exp[x11β1 + x12β2 + · · · + x1qβq ]

= exp[(x21 − x11)β1 + (x22 − x12)β2 + · · · + (x2q − x1q )βq ].

(7.2)

Note that λ0[t] drops out of this equation, and that this instantaneous

relative risk remains constant over time. Thus, if the proportional hazards

model is reasonable, we can interpret

(x21 − x11)β1 + (x22 − x12)β2 + · · · + (x2q − x1q )βq (7.3)

as being the log relative risk associated with Group 2 patients as compared

to Group 1 patients. Proportional hazards regression provides maximum

likelihood estimates β̂1, β̂2, . . . , β̂q of the model parameters β1, β2, . . .βq .

We use these estimates in equation (7.2) to estimate relative risks from the

model.

It should be noted that there are strong similarities between logistic re-

gression and proportional hazards regression. Indeed, if the patients in risk

groups i = 1 or 2 followed the multiple logistic model

logit[E[di | xi ]] = log[πi/(1 − πi )] = α + β1xi 1 + β2xi2 + · · · + βq xiq ,

then subtracting the log odds for Group 1 from Group 2 gives us

log

[
π2/(1 − π2)

π1/(1 − π1)

]
= (x21 − x11)β1 + (x22 − x12)β2 + · · ·

+ (x2q − x1q )βq .

Hence, the only difference in the interpretation of logistic and proportional

hazards regression models is that in logistic regression equation (7.3) is

interpreted as a log odds ratio while in proportional hazards regression it is

interpreted as a log relative risk.

Proportional hazards regressionalsoprovides an estimateof the variance–

covariance matrix for β̂1, β̂2, . . . , β̂q (see Sections 5.14 and 5.15). The ele-

ments of thismatrix are si j , the estimated covariance between β̂ i and β̂j and

si i , the estimated variance of β̂ i . These variance and covariance terms are

used in the same way as in Chapter 5 to calculate confidence intervals and

to test hypotheses. Changes in model deviance between nested models are

also used in the same way as in Chapter 5 as a guide to model building. I

recommend that you read Chapter 5 prior to this chapter.
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7.3. 95% Confidence Intervals and Hypothesis Tests

Suppose that f = �c jβ j is a weighted sum of the model coefficients and

that f̂ = �c j β̂j is as in equation (5.28). Then the variance of ˆf is estimated

by s 2f in equation (5.29). If exp[ f ] is a relative risk, then the 95% confidence

interval for this risk is given by equation (5.31). We test the null hypotheses

that exp[ f ] = 1 using the z statistic defined in equation (5.32).

7.4. Nested Models and Model Deviance

We fit appropriate models to the data by comparing the change in model

deviance betweennestedmodels. Themodel deviance is definedby equation

(5.44). Suppose that we are considering two models and that model 1 is

nested within model 2. Then the change in deviance �D between these

models is given by equation (5.45). Under the null hypothesis that model 1

is true, �D will have an approximately chi-squared distribution whose

degrees of freedom equal the difference in the number of parameters in the

two models.

7.5. An Example: The Framingham Heart Study

Let us return to the Framingham didactic data set introduced in Sections

2.19.1 and 3.10. This data set contains long-term follow-up and cardiovas-

cular outcome data on a large cohort ofmen andwomen.Wewill investigate

the effectsof gender andbaselinediastolicbloodpressure (DBP)oncoronary

heart disease (CHD) adjusted for other risk factors. Analyzing a complex

real data set involves a considerable degree of judgment, and there is no

single correct way to proceed. The following, however, includes the typical

components of such an analysis.

7.5.1. Univariate Analyses

The first step is to perform a univariate analysis on the effects of DBP on

CHD.Figure 7.1 shows ahistogramofbaselineDBP in this cohort. The range

of blood pressures is very wide. Ninety-five per cent of the observations lie

between 60 and 110 mm Hg. However, the data set is large enough that

there are still 150 subjects with DBP ≤60 and 105 patients with pressures

greater than 110.We subdivide the study subjects into seven groups based on

their DBPs. Group 1 consists of patients with DBP ≤60, Group 2 has DBPs

between 61 and 70, Group 3 has DBPs between 71 and 80, et cetera. The last
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Figure 7.1 Histogram of baseline diastolic blood pressure among subjects from the
Framingham Heart Study (Levy et al., 1999). These pressures were collected
prior to the era of effective medical control of hypertension.
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Figure 7.2 Effect of baseline diastolic blood pressure (DBP) on the risk of subsequent
coronary heart disease (CHD). The proportion of subjects who subsequently
develop CHD increases steadily with increasing DBP. This elevation in risk per-
sists for over 30 years (Framingham Heart Study, 1997).

group (Group 7) has DBPs greater than 110. Figure 7.2 shows the Kaplan–

Meier CHD free survival curves for these groups. The risk of CHD increases

markedly with increasing DBP. The logrank χ2 statistic equals 260 with

six degrees of freedom (P < 10−52). Hence, we can reject the hypothesis

that the survival curves for these groups are all equal with overwhelming
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statistical significance. Moreover, the logrank tests of each adjacent pair of

survival curves are also statistically significant. Hence, the data provides

clear evidence that even modest increases in baseline DBP are predictive of

increased risk of CHD.

Estimating the relative risks associated with different baseline blood pres-

suresproceeds in exactly the samewayas for estimatingodds ratios in logistic

regression. Let

dbpi j =
{
1: if the i th patient is in DBP Group j

0: otherwise.

Then a simple proportional hazards model for estimating the relative risks

associated with these blood pressures is

λi [t] = λ0[t] exp[β2 × dbpi2 + β3 × dbpi3 + β4 × dbpi4 + β5 × dbpi5

+ β6 × dbpi6 + β7 × dbpi7]. (7.4)

For a patient in DBP Group 1, the hazard equals λ0[t] exp[β2 × 0 + β3×
0 + · · · + β7 × 0] = λ0[t]. For a patient in Group j, the hazard is

λ0[t] exp[β j × 1] for 2 ≤ j ≤ 7. Dividing λ0[t] exp[β j ]�t by λ0[t]�t

gives the relative risk for patients in DBP Group j relative to Group 1, which

is exp[β j ]. The log relative risk for Group j compared to Group 1 is β j .

Let β̂ j denote the maximum likelihood estimate of β j and let se[β̂ j ] =√
s j j denote the estimated standard error of β̂ j . Then the estimated relative

risk for subjects in Group j relative to those in Group 1 is exp[β̂ j ]. The

95% confidence interval for this risk is

(exp[β̂ j − 1.96se[β̂ j ]], exp[β̂ j + 1.96se[β̂ j ]]). (7.5)

Table 7.1 shows the estimates of β j together with the corresponding

relative risk estimates and 95% confidence intervals that result from mo-

del (7.4). These estimates are consistent with Figure 7.2 and confirm the

importance of DBP as a predictor of subsequent risk of coronary heart

disease.

Figure 7.3 shows the Kaplan–Meier CHD morbidity curves for men and

women from the Framingham Heart Study. The logrank statistic for com-

paring these curves has one degree of freedom and equals 155. This statistic

is also highly significant (P < 10−34). Let

malei =
{
1: if i th subject is a man

0: if i th subject is a woman.

Then a simple hazard regression model for estimating the effects of gender
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Table 7.1. Effect of baseline diastolic blood pressure on coronary heart
disease. The Framingham Heart Study data were analyzed using model (7.4).

Baseline Cases of

diastolic blood Number of coronary heart Relative 95% confidence

pressure subjects disease β̂ j risk interval

≤60 mm Hg 150 18 1.0∗

61 – 70 mm Hg 774 182 0.677 1.97 (1.2 – 3.2)

71 – 80 mm Hg 1467 419 0.939 2.56 (1.6 – 4.1)

81 – 90 mm Hg 1267 404 1.117 3.06 (1.9 – 4.9)

91 –100 mm Hg 701 284 1.512 4.54 (2.8 – 7.3)

101 – 110 mm Hg 235 110 1.839 6.29 (3.8 – 10)

>110 mm Hg 105 56 2.247 9.46 (5.6 – 16)

Total 4699 1473

∗Denominator of relative risk
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Figure 7.3 Cumulative incidence of coronary heart disease (CHD) in men and women
from the Framingham Heart Study (Levy et al., 1999).

on CHD is

λi [t] = λ0[t] exp[β × malei ]. (7.6)

Thismodel gives β̂ = 0.642 with standard error se[β̂] = 0.0525.Therefore,

the estimated relative risk of CHD inmen relative towomen is exp[0.642] =
1.90.We calculate the 95% confidence interval for this risk to be (1.71–2.11)

using equation (7.5).
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7.5.2. Multiplicative Model of DBP and Gender on Risk of CHD

The next step is to fit a multiplicative model of DBP and gender on CHD

(see Section 5.18). Consider the model

λi [t] = λ0[t] exp

[
7∑

h = 2

βh × dbpih + γ × malei

]
. (7.7)

The interpretation of this model is precisely analogous to that for model

(5.38) in Section 5.19. To derive any relative risk under this model, write

down the hazards for patients in the numerator and denominator of the

desired relative risk. Then, divide the numerator hazard by the denominator

hazard. You should be able to convince yourself that
� βh is the log relative risk of women in DBP Group h relative to women in

DBP Group 1,
� γ is the log relative risk of men in DBPGroup 1 relative to women in DBP

Group 1, and
� βh + γ is the log relative risk of men in DBP Group h relative to women

in DBP Group 1.
� If Rh is the relative risk of being in Group h vs. Group 1 among women,

and Rm is the relative risk of men vs. women among people in Group 1,

then the relative risk of men in Group h relative to women in Group 1

equals Rh × Rm. In other words, the effects of gender and blood pressure

in model (7.7) are multiplicative.

Model (7.7) was used to produce the relative risk estimates in Table 7.2. Note

that model (7.4) is nested within model (7.7). That is, if γ = 0 then model

(7.7) reduces to model (7.4). This allows us to use the change in model

deviance to test whether adding gender improves the fit of the model to the

data. This change indeviance is�D = 133,whichhas an approximately chi-

squared distribution with one degree of freedom under the null hypothesis

that γ = 0. Hence, we can reject this null hypothesis with overwhelming

statistical significance (P < 10−30).

7.5.3. Using Interaction Terms to Model the Effects of Gender and DBP on CHD

We next add interaction terms to weaken the multiplicative assumption in

model (7.7) (see Sections 5.18 and 5.19). Let

λi [t] = λ0 [t] exp

[
7∑

h = 2

βh × dbpih + γ ×malei +
7∑

h=2

δh × dbpih ×malei

]
.

(7.8)

This model is analogous to model (5.40) for esophageal cancer. For men

in DBP Group h, the hazard is λ0[t] exp[βh + γ + δh]. For women in
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Table 7.2. Effect of gender and baseline diastolic blood pressure on coronary
heart disease. The Framingham Heart Study data are analyzed using the
multiplicative model (7.7).

Gender

Women Men

Baseline

diastolic blood Relative 95% confidence Relative 95% confidence

pressure risk interval risk interval

≤60 mm Hg 1.0* 1.83 (1.7–2.0)

61–70 mm Hg 1.91 (1.2–3.1) 3.51 (2.1–5.7)

71–80 mm Hg 2.43 (1.5–3.9) 4.46 (2.8–7.2)

81–90 mm Hg 2.78 (1.7–4.5) 5.09 (3.2–8.2)

91–100 mm Hg 4.06 (2.5–6.5) 7.45 (4.6–12)

101–110 mm Hg 5.96 (3.6–9.8) 10.9 (6.6–18)

>110 mm Hg 9.18 (5.4 – 15) 16.8 (9.8 – 29)

∗Denominator of relative risk

Group 1, the hazard is λ0[t]. Hence, the relative risk for men in DBP Group

h relative to women in DBP Group 1 is (λ0[t] exp[βh + γ + δh])/λ0[t] =
exp[βh + γ + δh]. This model was used to generate the relative risks in

Table 7.3. Note the marked differences between the estimates in Table 7.2

and 7.3. Model (7.8) indicates that the effect of gender on the risk of CHD is

greatest for people with low or moderate blood pressure and diminishes as

blood pressure rises. Gender has no effect on CHD for people with a DBP

above 110 mm Hg.

Model (7.7) is nestedwithinmodel (7.8). Hence, we can use the change in

themodeldeviance to test thenull hypothesis that themultiplicativemodel is

correct. This change in deviance is �D = 21.23. Model (7.8) has six more

parameters than model (7.7). Therefore, under the null hypothesis �D

has an approximately chi-squared distribution with six degrees of freedom.

The probability that this statistic exceeds 21.23 is P = 0.002. Thus, the

evidence of interaction betweenDBP and gender onCHD risk is statistically

significant.

7.5.4. Adjusting for Confounding Variables

So far we have not adjusted our results for other confounding variables. Of

particular importance is age at baseline exam. Figure 7.4 shows that this age

variedwidely among study subjects. As bothDBP and risk of CHD increases
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Table 7.3. Effect of gender and baseline diastolic blood pressure on coronary
heart disease. The Framingham Heart Study data are analyzed using model
(7.8), which includes interaction terms for the joint effects of gender and
blood pressure.

Gender

Women Men

Baseline

diastolic blood Relative 95% confidence Relative 95% confidence

pressure risk interval risk interval

≤60 mm Hg 1.0∗ 2.37 (0.94–6.0)

61–70 mm Hg 1.83 (0.92–3.6) 4.59 (2.3–9.1)

71–80 mm Hg 2.43 (1.2–4.7) 5.55 (2.9–11)

81–90 mm Hg 3.52 (1.8–6.9) 5.28 (2.7–10)

91 –100 mm Hg 4.69 (2.4–9.3) 8.28 (4.2–16)

101 – 110 mm Hg 7.64 (3.8–15) 10.9 (5.4–22)

>110 mm Hg 13.6 (6.6–28) 13.0 (5.9–29)

∗Denominator of relative risk
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Figure 7.4 Histogram showing the age at baseline exam of subjects in the Framingham
Heart Study (Levy et al., 1999).

markedly with age, we would expect age to strongly confound the effect of

DBP on CHD. Other potential confounding variables that we may wish to

consider include body mass index and serum cholesterol. Let agei , bmii ,

and scli denote the age, body mass index, and serum cholesterol of the i th

patient. We add these variables one at a time giving models
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λi [t] = λ0 [t] exp

[
7∑

h=2

βh × dbpih + γ × malei +
7∑

h=2

δh × dbpih

× malei + θ1 × agei

]
, (7.9)

λi [t] = λ0 [t] exp

[
7∑

h=2

βh × dbpih + γ × malei +
7∑

h=2

δh × dbpih

× malei + θ1 × agei + θ2 × bmii

]
, and (7.10)

λi [t] = λ0 [t] exp

[
7∑

h=2

βh × dbpih + γ × malei +
7∑

h=2

δh × dbpih

× malei + θ1 × agei + θ2 × bmii + θ3 × scli

]
. (7.11)

Note that model (7.8) is nested within model (7.9), model (7.9) is nested

withinmodel (7.10), andmodel (7.10) is nestedwithinmodel (7.11).Hence,

we can derive the change in model deviance with each successive model to

test whether each new term significantly improves the model fit. These tests

show that age, body mass index, and serum cholesterol all substantially

improve the model fit, and that the null hypotheses θ1 = 0, θ2 = 0, and

θ3 = 0 may all be rejected with overwhelming statistical significance. These

tests also show that these variables are important independent predictors of

CHD. Table 7.4 shows the estimated relative risks of CHD associated with

DBP and gender that are obtained from model (7.11).

7.5.5. Interpretation

Tables 7.2, 7.3, and 7.4 are all estimating similar relative risks from the same

data set. It is therefore sobering to see how different these estimates are. It is

very important to understand the implications of the models used to derive

these tables. Men in DBP Group 1 have a lower risk in Table 7.2 than in

Table 7.3 while the converse is true for men in DBPGroup 7. This is because

model (7.7) forces the relative risks in Table 7.2 to obey the multiplicative

assumption while model (7.8) permits the effect of gender on CHD to

diminish with increasing DBP.
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Table 7.4. Effect of gender and baseline diastolic blood pressure (DBP) on
coronary heart disease. The Framingham Heart Study data are analyzed using
model (7.11). This model includes gender–DBP interaction terms and adjusts
for age, body mass index and serum cholesterol.

Gender

Women Men

Baseline

diastolic blood Relative 95% confidence Relative 95% confidence

pressure risk interval risk interval

≤60 mm Hg 1.0* 1.98 (0.79–5.0)

61–70 mm Hg 1.51 (0.76–3.0) 3.53 (1.8–7.0)

71–80 mm Hg 1.65 (0.85–3.2) 3.88 (2.0–7.6)

81–90 mm Hg 1.91 (0.98–3.7) 3.33 (1.7–6.5)

91–100 mm Hg 1.94 (0.97–3.9) 4.86 (2.5–9.5)

101–110 mm Hg 3.10 (1.5–6.3) 6.29 (3.1–13)

>110 mm Hg 5.27 (2.5–11) 6.40 (2.9–14)

*Denominator of relative risk
†Adjusted for age, body mass index, and serum cholesterol.

The relative risks in Table 7.4 are substantially smaller than those in Table

7.3. It is important to realize that the relative risks in Table 7.4 compare

people of the same age, bodymass index, and serum cholesterol while those

of Table 7.3 compare people without regard to these three risk factors. Our

analyses show that age, body mass index, and serum cholesterol are risk

factors for CHD in their own right. Also, these risk factors are positively

correlated with DBP. Hence, it is not surprising that the unadjusted risks

of DBP and gender in Table 7.3 are inflated by confounding due to these

other variables. In general, the decision as to which variables to include as

confounding variables is affected by how the results are to be used and our

knowledge of the etiology of the disease being studied. For example, since it

is easier tomeasure blood pressure than serum cholesterol, it might bemore

clinically useful to know the effect of DBP on CHD without adjustment for

serum cholesterol. If we are trying to establish a causal link between a risk

factor and a disease, then it is important to avoid adjusting for any condition

that may be an intermediate outcome between the initial cause and the final

outcome.
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7.5.6. Alternative Models

Inmodel (7.11)we treat age, bodymass index, and serumcholesterol as con-

tinuous variables while DBP is recoded into seven dichotomous variables

involving six parameters.We could have treated these confounding variables

in the sameway asDBP. In our analysis of esophageal cancer in Chapter 5 we

treated age in precisely this way. In general, it is best to recode those continu-

ous variables that are of primary interest into several dichotomous variables

in order to avoid assuming a linear relationship between these risk factors

and the log relative risk. It may, however, be reasonable to treat confound-

ing variables as continuous. The advantage of putting a continuous variable

directly into the model is that it requires only one parameter. The cost of

making the linear assumptionmay not be too important for a variable that is

included in the model only because it is a confounder. A method for testing

the adequacy of the linearity assumption using orthogonal polynomials is

discussed in Hosmer and Lemeshow (1989).

7.6. Cox—Snell Generalized Residuals
and Proportional Hazards Models

We need to be able to verify that the proportional hazards model is appro-

priate for our data (see Section 7.1). Let

�i [t] =
∫ t

0
λi [u] du (7.12)

be the cumulative hazard function for the i th patient by time t. That is,

�i [t] is the area under the curve λi [u] between 0 and t. Let ti and fi be

defined as in Section 7.1, and let εi = �i [ti ] be the total cumulative haz-

ard for the i th patient at her exit time. It can be shown that if fi = 1,

then εi has a unit exponential distribution whose survival function is

given by

S [εi ] = exp [−εi ] . (7.13)

If fi = 0, then εi is a censored observation from this distribution. A Cox–
Snell generalized residual is an estimate ε̂i of εi . To check the validity

of the proportional hazards assumption, we can derive a Kaplan–Meier

survival curve for the event of interest using the Cox–Snell residuals as the

time variable. Figure 7.5 shows such a plot for model (7.11) applied to the

FraminghamHeart Study data. The black line on this plot is a Kaplan–Meier

survival plot using thismodel’s Cox–Snell residuals as the time variable. The
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Figure 7.5 Observed and expected Cox–Snell generalized residual plots for model (7.11)
applied to the Framingham Heart Study data. The black line is the observed
Kaplan–Meier survival curve for coronary heart disease (CHD) using the Cox-
Snell residual as the time variable. The gray line is the unit exponential distribu-
tion. If model (7.11) is correct, then the expected shape of the observed survival
plot is given by the gray line.

gray line is equation (7.13). The Kaplan–Meier curve is in close agreement

with the standard exponential distribution for most of these residuals (96%

of the residuals are less than 1). There is, however, some evidence that some

patients with large residuals are not suffering CHD at quite as high a rate as

model (7.11) predicts they should. Nevertheless, the proportional hazards

assumption of thismodel appears to be approximately correct. A patient can

obtain a residual of a given size either by being at high risk for a short time or

at lesser risk for a longer time. Since follow-up lasted for over 30 years, it is

reasonable to assume that most patients with large residuals were followed

for many years and were fairly old towards the end of their follow-up. In

Section 7.9.2 we will consider evidence that the protective effects of female

gender on CHD diminish after the menopause. It is likely that the mild

evidence of departure from the proportional hazards assumption indicated

by Figure 7.5 is due to the reduced risk of CHD in men relative to women

after age 60. This departure, however, is not large enough to invalidate the

inferences from this model.

There are a number of ways in which ε̂i may be estimated. The approach

that we will use was developed by Therneau et al. (1990) in the derivation of
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their martingale residual. The formula for this estimate is complicated but

readily derived by the Stata software package.

Taking logarithms of both sides of equation (7.13) gives that

− log[S[εi ]] = εi . Hence, if the model is correct, then the graph of

− log[S[ε̂i ]] against ε̂i should approximate a straight line going through

the origin that makes a 45˚ angle with the x-axis. This plot is the traditional

way of presenting Cox–Snell residual analyses. I personally prefer to present

them as in Figure 7.5 as it is easier in this figure to discern whether the

deviation from the proportional hazardsmodel is in the direction of too few

events or too many.

7.7. Proportional Hazards Regression Analysis using Stata

The following log file and comments illustrate how to perform the analyses

from the preceding sections using Stata.

. * 7.7.Framingham.log

. *

. * Proportional hazards regression analysis of the effect of gender and

. * baseline diastolic blood pressure (DBP) on coronary heart disease (CHD)

. * adjusted for age, body mass index (BMI) and serum cholesterol (SCL).

. *

. set memory 2000 {1}
(2000k)

. use C:\WDDtext\2.20.Framingham.dta, clear

. set textsize 120

. *

. * Univariate analysis of the effect of DBP on CHD

. *

. graph dbp, bin(50) freq xlabel(40,60 to 140) xtick(50,70 to 150) {2}
> ylabel(0,100 to 600) ytick(50,100 to 550) gap(4)

{Graph omitted. See Figure 7.1}
. generate dbpgr = recode(dbp,60,70,80,90,100,110,111) {3}
. tabulate dbpgr chdfate {4}
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| Coronary Heart

| Disease

dbpgr | Censored CHD | Total

---------+--------------------+-------

60 | 132 18 | 150

70 | 592 182 | 774

80 | 1048 419 | 1467

90 | 863 404 | 1267

100 | 417 284 | 701

110 | 125 110 | 235

111 | 49 56 | 105

---------+--------------------+-------

Total | 3226 1473 | 4699

. label define dbp 60 "DBP<= 60" 70 "60<DBP70" 80 "70<DBP80" 90 "80<DBP90" 100

> "90DBP100" 110 "100BP110" 111 "110< DBP"

. label values dbpgr dbp

. generate time = followup/365.25 {5}

. label variable time "Follow-up in Years"

. stset time, failure(chdfate)

failure event: chdfate ∼= 0 & chdfate ∼=.
obs. time interval: (0, time]

exit on or before: failure

--------------------------------------------------------------------

4699 total obs.

0 exclusions

--------------------------------------------------------------------

4699 obs. remaining, representing

1473 failures in single record/single failure data

103710.1 total analysis time at risk, at risk from t = 0

earliest observed entry t = 0

last observed exit t = 32

. sts graph , by(dbpgr) xlabel(0,5 to 30) ylabel(0,.2 to 1) {6}
> ytick(.1, .3 to .9) l1title(Proportion Without CHD) gap(6) noborder

{Graph omitted. See Figure 7.2}
failure _d: chdfate

analysis time _t: time

. sts test dbpgr {7}
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failure _d: chdfate

analysis time _t: time

Log-rank test for equality of survivor functions

------------------------------------------------

| Events

dbpgr | observed expected

---------+---------------------------

DBP<= 60 | 18 53.63

60<DBP70 | 182 275.72

70<DBP80 | 419 489.41

80<DBP90 | 404 395.62

90DBP100 | 284 187.97

100BP110 | 110 52.73

110< DBP | 56 17.94

---------+--------------------------

Total | 1473 1473.00

chi2(6) = 259.71

Pr>chi2 = 0.0000

. sts test dbpgr if dbpgr == 60 |dbpgr == 70 {8}

failure _d: chdfate

analysis time _t: time

Log-rank test for equality of survivor functions

------------------------------------------------

| Events

dbpgr | observed expected

---------+-------------------------

DBP<= 60 | 18 32.58

60<DBP70 | 182 167.42

---------+-------------------------

Total | 200 200.00

chi2(1) = 7.80

Pr>chi2 = 0.0052

. sts test dbpgr if dbpgr == 70 | dbpgr == 80 {9}
Pr>chi2 = 0.0028 {Output omitted}

. sts test dbpgr if dbpgr == 80 | dbpgr == 90 {Output omitted}



244 7. Hazard regression analysis

Pr>chi2 = 0.0090

. sts test dbpgr if dbpgr == 90 | dbpgr == 100 {Output omitted}
Pr>chi2 = 0.0000

. sts test dbpgr if dbpgr == 100 | dbpgr == 110 {Output omitted}
Pr>chi2 = 0.0053

. sts test dbpgr if dbpgr == 110 | dbpgr == 111 {Output omitted}
Pr>chi2 = 0.0215

. xi: stcox i.dbpgr {10}
i.dbpgr _Idbpgr_1-7 (_Idbpgr_1 for dbpgr==60 omitted)

failure _d: chdfate

analysis time _t: time

(Output omitted}
Cox regression -- Breslow method for ties

No. of subjects = 4699 Number of obs = 4699

No. of failures = 1473

Time at risk = 103710.0917

LR chi2(6) = 221.83

Log likelihood = −11723.942 Prob > chi2 = 0.0000 {11}
-------------------------------------------------------------------------

_t |

_d | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

----------+--------------------------------------------------------------

_Idbpgr_2 | 1.968764 .486453 2.742 0.006 1.213037 3.195312 {12}
_Idbpgr_3 | 2.557839 .6157326 3.901 0.000 1.595764 4.099941

_Idbpgr_4 | 3.056073 .7362768 4.637 0.000 1.905856 4.900466

_Idbpgr_5 | 4.53703 1.103093 6.220 0.000 2.817203 7.306767

_Idbpgr_6 | 6.291702 1.600738 7.229 0.000 3.821246 10.35932

_Idbpgr_7 | 9.462228 2.566611 8.285 0.000 5.560408 16.10201

-------------------------------------------------------------------------

. *

. * Univariate analysis of the effect of gender on CHD

. *

. sts graph, by(sex) xlabel(0,5,10,15,20,25,30) ylabel(0,.1,.2,.3,.4,.5) {13}
> failure l1title("Cumulative CHD Morbidity") gap(3) noborder

{Output omitted. See Figure 7.3}
failure _d: chdfate

analysis time _t: time
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. sts test sex {14}
failure _d: chdfate

analysis time _t: time

Log-rank test for equality of survivor functions

------------------------------------------------

| Events

sex | observed expected

------+-------------------------

Men | 823 589.47

Women | 650 883.53

------+-------------------------

Total | 1473 1473.00

chi2(1) = 154.57

Pr>chi2 = 0.0000

. generate male = sex == 1 {15}

. stcox male {16}
{Output omitted}

----------------------------------------------------------------------

_t |

_d | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-----+----------------------------------------------------------------

male | 1.900412 .0998308 12.223 0.000 1.714482 2.106504

----------------------------------------------------------------------

. *

. * Fit multiplicative model of DBP and gender on risk of CHD

. *

. xi: stcox i.dbpgr male {17}
i.dbpgr _Idbpgr_1-7 (_Idbpgr_1 for dbpgr==60 omitted)

{Output omitted}
Log likelihood = -11657.409 Prob > chi2 = 0.0000

---------------------------------------------------------------------------

_t |

_d | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

----------+----------------------------------------------------------------

_Idbpgr_2 | 1.911621 .4723633 2.622 0.009 1.177793 3.102662

_Idbpgr_3 | 2.429787 .585021 3.687 0.000 1.515737 3.895044

_Idbpgr_4 | 2.778377 .6697835 4.239 0.000 1.732176 4.456464
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_Idbpgr_5 | 4.060083 .9879333 5.758 0.000 2.520075 6.541184

_Idbpgr_6 | 5.960225 1.516627 7.015 0.000 3.619658 9.814262

_Idbpgr_7 | 9.181868 2.490468 8.174 0.000 5.395767 15.6246

male | 1.833729 .0968002 11.486 0.000 1.653489 2.033616

---------------------------------------------------------------------------

. lincom _Idbpgr_2 + male, hr {18}

(1) _Idbpgr_2 + male = 0.0

-------------------------------------------------------------------------

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

------+------------------------------------------------------------------

(1) | 3.505395 .8837535 4.975 0.000 2.138644 5.7456

-------------------------------------------------------------------------

. lincom _Idbpgr_3 + male, hr

{Output omitted. See Table 7.2}
. lincom _Idbpgr_4 + male, hr

{Output omitted. See Table 7.2}
. lincom_Idbpgr_5 + male, hr

{Output omitted. See Table 7.2}
. lincom _Idbpgr_6 + male, hr

{Output omitted. See Table 7.2}
. lincom _Idbpgr_7 + male, hr

{Output omitted. See Table 7.2}
. display 2*(11723.942 -11657.409) {19}
133.066

. display chi2tail(1,133.066) {20}
8.746e-31

. *

. * Fit model of DBP and gender on risk of CHD using interaction terms

. *

. xi: stcox i.dbpgr*i.male {21}
i.dbpgr _Idbpgr_1-7 (_Idbpgr_1 for dbpgr==60 omitted)

i.male _Imale_0-1 (naturally coded; _Imale_0 omitted)

i.dbpgr*i.male _IdbpXmal_#_# (coded as above)

{Output omitted}
Log likelihood = −11646.794 Prob > chi2 = 0.0000
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-----------------------------------------------------------------------------

_t |

_d | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+---------------------------------------------------------------

_Idbpgr_2 | 1.82731 .6428651 1.714 0.087 .9169625 3.64144

_Idbpgr_3 | 2.428115 .8298216 2.596 0.009 1.2427 4.744299

_Idbpgr_4 | 3.517929 1.201355 3.683 0.000 1.801384 6.870179

_Idbpgr_5 | 4.693559 1.628053 4.458 0.000 2.378188 9.263141

_Idbpgr_6 | 7.635131 2.736437 5.672 0.000 3.782205 15.41302

_Idbpgr_7 | 13.62563 5.067901 7.023 0.000 6.572973 28.24565

Imale_1 | 2.372645 1.118489 1.833 0.067 .9418198 5.977199

_IdbpXma∼2_1 | 1.058632 .5235583 0.115 0.908 .4015814 2.79072

_IdbpXma∼3_1 | .9628061 .4637697 −0.079 0.937 .3745652 2.474858

_IdbpXma∼4_1 | .6324678 .3047828 −0.951 0.342 .2459512 1.626402

_IdbpXma∼5_1 | .7437487 .3621623 −0.608 0.543 .2863787 1.931576

_IdbpXma∼6_1 | .6015939 .3059896 −0.999 0.318 .2220014 1.630239

_IdbpXma∼7_1 | .401376 .2205419 −1.661 0.097 .1367245 1.178302

-----------------------------------------------------------------------------

. display 2*(11657.409 -11646.794)

21.23

. display chi2tail(6, 21.23) {22}
00166794

. lincom _Idbpgr_2 + Imale_1 + _IdbpXmal_2_1, hr {23}
( 1) _Idbpgr_2 + Imale_1 + _IdbpXmal_2_1 = 0.0

-----------------------------------------------------------------------

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

----+------------------------------------------------------------------

(1) | 4.589761 1.595446 4.384 0.000 2.322223 9.071437

-----------------------------------------------------------------------

. lincom _Idbpgr_3 + Imale_1 + _IdbpXmal_3_1, hr

{Output omitted. See Table 7.3}
. lincom _Idbpgr_4 + Imale_1 + _IdbpXmal_4_1, hr

{Output omitted. See Table 7.3}
. lincom _Idbpgr_5 + Imale_1 + _IdbpXmal_5_1, hr

{Output omitted. See Table 7.3}
. lincom _Idbpgr_6 + Imale_1 + _IdbpXmal_6_1, hr

{Output omitted. See Table 7.3}
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. lincom _Idbpgr_7 + Imale_1 + _IdbpXmal_7_1, hr

{Output omitted. See Table 7.3}
. *

. * Adjust model for age, BMI and SCL

. *

. xi: stcox i.dbpgr*i.male age {24}
{Output omitted}

Log likelihood = −11517.247 Prob > chi2 = 0.0000

{Output omitted}
. display 2*(11646.794 −11517.247) {25}
259.094

. display chi2tail(1,259.094)

2.704e-58

. xi: stcox i.dbpgr*i.male age bmi {26}
{Output omitted}

Log likelihood = −11490.733 Prob > chi2 = 0.0000

{Output omitted}
. display 2*(11517.247 −11490.733)
53.028

. display chi2tail(1,53.028)

3.288e-13

. xi: stcox i.dbpgr*i.male age bmi scl, mgale(mg) {27}
{Output omitted}

Log likelihood = −11382.132 Prob > chi2 = 0.0000

----------------------------------------------------------------------------

_t |

_d | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------

_Idbpgr_2 | 1.514961 .5334695 1.180 0.238 .7597392 3.020916

_Idbpgr_3 | 1.654264 .5669665 1.469 0.142 .8450299 3.238451

_Idbpgr_4 | 1.911763 .6566924 1.887 0.059 .9750921 3.748199

_Idbpgr_5 | 1.936029 .6796612 1.882 0.060 .9729479 3.852425

_Idbpgr_6 | 3.097614 1.123672 3.117 0.002 1.521425 6.306727

_Idbpgr_7 | 5.269096 1.988701 4.403 0.000 2.514603 11.04086

Imale_1 | 1.984033 .9355668 1.453 0.146 .7873473 4.999554

_IdbpXma∼2_1 | 1.173058 .5802796 0.323 0.747 4448907 3.09304

_IdbpXma∼3_1 | 1.18152 .5693995 0.346 0.729 .4594405 3.038457

_IdbpXma∼4_1 | .8769476 .4230106 −0.272 0.785 .3407078 2.257175
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_IdbpXma∼5_1 | 1.265976 .6179759 0.483 0.629 .4863156 3.295585

_IdbpXma∼6_1 | 1.023429 .5215766 0.045 0.964 .3769245 2.778823

_IdbpXma∼7_1 | .6125694 .3371363 −0.890 0.373 .2082976 1.801467

age | 1.04863 .003559 13.991 0.000 1.041677 1.055628

bmi | 1.038651 .0070125 5.617 0.000 1.024998 1.052487

scl | 1.005788 .0005883 9.866 0.000 1.004635 1.006941

----------------------------------------------------------------------------

. display 2*(11490.733 −11382.132) {28}
217.202

. display chi2tail(1,217.202)

3.687e-49

. lincom _Idbpgr_2 + Imale_1 + _IdbpXmal_2_1, hr

{Output omitted. See Table 7.4}
. lincom _Idbpgr_3 + Imale_1 + _IdbpXmal_3_1, hr

{Output omitted. See Table 7.4}
. lincom _Idbpgr_4 + Imale_1 + _IdbpXmal_4_1, hr

{Output omitted. See Table 7.4}
. lincom _Idbpgr_5 + Imale_1 + _IdbpXmal_5_1, hr

{Output omitted. See Table 7.4}
. lincom _Idbpgr_6 + Imale_1 + _IdbpXmal_6_1, hr

{Output omitted. See Table 7.4}
. lincom _Idbpgr_7 + Imale_1 + _IdbpXmal_7_1, hr

{Output omitted. See Table 7.4}
. *

. * Perform Cox-Snell generalized residual analysis

. *

. predict cs, csnell {29}
(41 missing values generated)

. stset cs, failure(chdfate) {30}
failure event: chdfate ∼= 0 & chdfate ∼=.

obs. time interval: (0, cs]

exit on or before: failure

----------------------------------------------------------------------

4699 total obs.

41 event time missing (cs==.) PROBABLE ERROR {31}
----------------------------------------------------------------------

4658 obs. remaining, representing

1465 failures in single record/single failure data
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1465 total analysis time at risk, at risk from t = 0

earliest observed entry t = 0

last observed exit t = 2.833814

. sts generate km = s {32}

. generate es = exp(-cs) {33}
(41 missing values generated)

. sort cs

. graph km es cs, connect(ll) symbol(..) xlabel(0 .5 to 2.5)

> ylabel(0 .2 to 1.0) xtick(.25 .75 to 2.75) ytick(.1.2 to 1) {34}
{Graph omitted. See Figure 7.5}

Comments
1 By default, Stata reserves one megabyte of memory for its calculations.

Calculating some statistics on large data sets may require more than

this. The logrank test given below is an example of such a calculation.

The set memory command specifies the memory size in kilobytes. This

command may not be used when a data set is open.

2 This graph command draws a histogram of dbp with 50 bars (bins) that

is similar to Figure 7.1.

3 Define dbpgr to be a categorical variable based on dbp. The recode func-

tion sets

dbpgr =




60: if dbp ≤ 60

70: if 60 < dbp ≤ 70
...

110: if 100 < dbp ≤ 110

111: if 110 < dbp.

4 This command tabulates dbpgr by chdfate. Note that the proportion

of patients with subsequent CHD increases with increasing blood

pressure. I recommend that you produce simple tabulations of your

results frequently as a crosscheck on your more complicated

statistics.

5 In order tomake our graphsmore intelligiblewe define time to be patient

follow-up in years.

6 This command produces a Kaplan–Meier survival graph that is similar

to Figure 7.2.

7 This sts test command performs a logrank test on the groups of patients

defined by dbpgr. The highlighted P value for this test is < 0.000 05.
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8 This logrank test is restricted to patients with dbpgr equal to 60 or 70.

In other words, this command tests whether the survival curves for

patients with DBPs ≤60 and DBPs between 60 and 70 are equal. The P

value associated with this test equals 0.0052.

9 The next five commands test the equality of the other adjacent pairs of

survival curves in Figure 7.2.

10 The syntax of the xi: prefix for the stcox command works in exactly

the same way as in logistic regression. See Sections 5.10 and 5.23 for a

detailed explanation. This command performs the proportional hazards

regression analysis specified by model (7.4). The variables Idbpgr 2,

Idbpgr 3, . . . , Idbpgr 7 are dichotomous classification variables that

are created by this command. In model (7.4) dbpi2 = Idbpgr 2, dbpi3 =
Idbpgr 3, et cetera.

11 The maximum value of the log likelihood function is highlighted. We

will use this statistic in calculating change in model deviance.

12 The column titled Haz. Ratio contains relative risks under the propor-

tional hazards model. The relative risk estimates and 95% confidence

intervals presented in Table 7.1 are highlighted. For example, exp [β2]=
1.968 764, which is the relative risk of people in DBP Group 2 relative to

DBP Group 1.

13 The failure option of the sts graph command produces a cumulative

morbidity plot. The resulting graph is similar to Figure 7.3.

14 The logrank test of the CHDmorbidity curves for men and women is of

overwhelming statistical significance.

15 In the database, sex is coded as 1 for men and 2 for women. As men

have the higher risk of CHD we will treat male sex as a positive risk

factor. (Alternatively, we could have treated female sex as a protective

risk factor.) To do this in Stata, we need to give men a higher code than

women. The logical value sex== 1 is true (equals 1) when the subject is

a man (sex = 1), and is false (equals 0) when she is a woman (sex = 2).

Hence the effect of this generate command is to define the variablemale

as equaling 0 or 1 for women or men, respectively.

16 This command performs the simple proportional hazards regression

specified by model (7.6). It estimates that men have 1.90 times the risk

ofCHDaswomen.The 95%confidence interval for this risk is also given.

17 This command performs the proportional hazards regression specified

by model (7.7). In this command male specifies the covariate malei in

model (7.7). The highlighted relative risks and confidence intervals are

also given in Table 7.2. Note that since male is already dichotomous, it

is not necessary to create a new variable using the i.male syntax.
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18 The covariates Idbpgr 2 and male equal dbpi2 and malei , respectively

in model (7.7). The coefficients associated with these covariates are β2

and γ . The hr option of the lincom command has the same effect as

the or option. That is, it exponentiates the desired expression and then

calculates a confidence interval using equation (5.31). The only differ-

ence between the or and hr options is that in column heading of the

resulting output “Odds Ratio” is replaced by “Haz. Ratio”. This lincom

command calculates exp[β̂2 + γ̂ ] = exp[β̂2] × exp[γ̂ ] = 1.911 621 ×
1.833 729 = 3.505 395, which is the relative risk for aman inDBPGroup

2 relative to women in DBP Group 1. (See Comment 6 of Section 5.20

for additional explanation.) This and the next five lincom commands

provide the relative risks and confidence intervals needed to complete

Table 7.2.

19 This command calculates the change in model deviance between model

(7.4) and model (7.7), which equals 133.

20 The function chi2tail(df, chi2) calculates the probability that a chi-

squared statistic with df degrees of freedom exceeds chi2. The proba-

bility that a chi-squared statistic with one degree of freedom exceeds 133

is 8.7 × 10−31. This is the P value associated with the change in model

deviance between models (7.4) and (7.7).

21 This command regresses CHD free survival against DBP and gender

using model (7.8) See Section 5.23 for a detailed explanation of this

syntax. The names of the dichotomous classification variables created

by this command are indicated in the first three lines of output. For

example, in model (7.8) dbpi2 equals Idbpgr 2, malei equals Imale 1,

and dbpi2 × malei equals IdbpXmal 2 1. Note that the names of the

interaction covariates are truncated to 12 characters in the table of ha-

zard ratios. Hence, IdbpXma∼2 1 denotes IdbpXmal 2 1, et cetera.

The highlighted relative risks and confidence intervals are also given in

Table 7.3.

22 These calculations allow us to reject the multiplicative model (7.7) with

P = 0.0017.

23 This lincom command calculates exp[β̂2 + γ̂ + δ̂2] = 4.589 761, which

is the relative risk of men in DBP Group 2 relative to women from

DBP Group 1 under model (7.8). This and the following five lincom

commands calculate the relative risks needed to complete Table 7.3.

24 This command regresses CHD free survival against DBP and gender

adjusted for age using model (7.9).

25 Adding age to the model greatly reduces the model deviance.
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26 This command regresses CHD free survival against DBP and gender

adjusted for age and BMI using model (7.10). The model deviance is

again significantly reduced by adding BMI to the model.

27 This command regresses CHD free survival against DBP and gender

adjusted for age, BMI, and SCL usingmodel (7.11). The highlighted rel-

ative risks and confidence intervals are entered into Table 7.4. The sub-

sequent lincom commands are used to complete this table. The option

mgale(mg) creates a variable mg that contains the martingale residuals

for this model. These residuals are used by the subsequent predict com-

mand that calculates Cox–Snell residuals.

28 The change in model deviance between models (7.8), (7.9), (7.10), and

(7.11) indicate a marked improvement in model fit with each successive

model.

29 The csnell option of this predict command calculates Cox–Snell residuals

for the preceding Cox hazard regression.Martingale residuals must have

been calculated for this regression.

30 This stset command redefines the time variable to be the Cox–Snell

residual cs. The failure variable chdfate is not changed.

31 There are 41 patients who are missing at least one covariate frommodel

(7.11). These patients are excluded from the hazard regression analysis.

Consequently no value of cs is derived for these patients.

32 This sts generate command defines km to be the Kaplan–Meier CHD free

survival curve using cs as the time variable.

33 This command defines es to be the expected survival function for a unit

exponential distribution using cs as the time variable.

34 This command graphs km and es against cs. The resulting plot is similar

to Figure 7.5.

7.8. Stratified Proportional Hazards Models

In Section 7.1, we defined the hazard for the i th patient at time t by equation

(7.1). This hazard functionobeys theproportional hazards assumption.One

way to weaken this assumption is to subdivide the patients into j = 1, . . . , J

stratum defined by the patient’s covariates. We then define the hazard for

the i th patient from the j th stratum at time t to be

λi j [t] = λ0 j [t] exp[β1xi j1 + β2xi j2 + · · · + βq xi jq ], (7.14)

where xi j1, xi j2, . . ., xi jq , are the covariate values for this patient, andλ0 j [t]
is the baseline hazard for patients from the j th stratum. Model (7.14)
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makes no assumptions about the shapes of the J baseline hazard functions.

Withineach stratumtheproportionalhazards assumptionapplies.However,

patients from different strata need not have proportional hazards.

For example, suppose that we were interested in the risk of CHD due

to smoking in women and men. We might stratify the patients by gender,

letting j = 1 or 2 designate men or women, respectively. Let

xi j =
{
1: if i th patient from j th stratum smokes

0: otherwise, and

λi j [t] be the CHD hazard for the i th patient from the j th stratum.

Then model (7.14) reduces to

λi j [t] = λ0 j [t] exp[βxi j ]. (7.15)

In this model, λ01 [t] and λ02 [t] represent the CHD hazard for men and

women who do not smoke, while λ01 [t] eβ and λ02 [t] eβ represents this

hazard for men and women who do. By an argument similar to that given

in Section 7.2, the within-strata relative risk of CHD in smokers relative to

non-smokers is eβ . That is, smoking women have eβ times the CHD risk of

non-smoking women while smoking men have eβ times the CHD risk of

non-smoking men. Model (7.15) makes no assumptions about how CHD

risk varies with time among non-smokingmen or women. It does, however,

imply that the relative CHD risk of smoking is the same among men as it is

among women.

In Stata, a stratified proportional hazards model is indicated by the

strata(varnames) option of the stcox command. Model (7.15) might be im-

plemented by a command such as

stcox smoke, strata(sex)

where smoke equals 1 or 0 for patientswhodidordidnot smoke, respectively.

7.9. Survival Analysis with Ragged Study Entry

Usually the time variable in a survival analysis measures follow-up time

from some event. This event may be recruitment into a cohort, diagnosis

of cancer, et cetera. In such studies everyone is at risk at time zero, when

they enter the cohort. Sometimes, however, wemay wish to use the patient’s

age as the time variable rather than follow-up time. Both Kaplan–Meier

survival curves and hazard regression analyses can be easily adapted to this

situation. The key difference is that when age is the time variable, patients
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are not observed to fail until after they reach the age when they enter the

cohort. Hence, it is possible that no one will enter the study at age zero,

and that subjects will enter the analysis at different “times” when they reach

their age at recruitment. These analyses must be interpreted as the effect of

age and other covariates on the risk of failure conditioned on the fact that

each patient had not failed prior to her age of recruitment.

7.9.1. Kaplan—Meier Survival Curve and the Logrank Test with Ragged Entry

In Section 6.3, we defined the Kaplan–Meier survival curve Ŝ(t) to be a

product of probabilities pi on each death day prior to time t. Each proba-

bility pi = (ni − di ) /ni , where ni are the number of patients at risk at the

beginning of the i th death day and di are the number of deaths on this day.

In a traditional survival curve, ni must decrease with increasing i since the

entire cohort is at risk at time 0 and death or censoring can only decrease

this number with time. With ragged entry, Ŝ(t) is calculated in the same

way only now the number of patients at risk can increase as well as decrease;

ni equals the total number of people to be recruited before time t minus

the total number of people who die or are censored prior to this time. The

cumulativemortality curve is D̂[t] = 1− Ŝ[t] as was the case in Section 6.3.

The logrank test is performed in exactly the same way as in Section 6.8.

The only difference is that now the number of patients at risk at the be-

ginning of each death day equals the number of patients recruited prior to

that day minus the number of patients who have previously died or been

censored.

7.9.2. Age, Sex, and CHD in the Framingham Heart Study

Figure 7.4 shows that the distribution of age at entry in the Framingham

Heart Study was very wide. This means that at any specific follow-up time

in Figure 7.3, we are comparing men and women with a wide variation in

ages. Figure 7.6 shows the cumulative CHD mortality in men and women

as a function of age rather than years since recruitment. This figure reveals

an aspect of CHD epidemiology that is missed in Figure 7.3. The morbidity

curves formenandwomendivergemost rapidlyprior toage sixty.Thereafter,

they remain relatively parallel. This indicates that the protective effects of

female gender on CHD are greatest in the pre- and perimenopausal ages,

and that this protective effect is largely lost a decade or more after the

menopause. This interaction between age and sex on CHD is not apparent
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Figure 7.6 Cumulative coronary heart disease (CHD) morbidity with increasing age among
men and women from the Framingham Heart Study (Levy et al., 1999).

in the Kaplan–Meier curves in Figure 7.3 that were plotted as a function of

time since recruitment.

7.9.3. Proportional Hazards Regression Analysis with Ragged Entry

Proportional hazards regression analysis also focuses on the number of

patients at risk and the number of deaths on each death day. For this reason,

they are easily adapted for analyses of data with ragged study entry. A simple

example of such a proportional hazards model is

λi [age] = λ0[age] exp[β × malei ], (7.16)

where age is a specific age for the i th subject, λ0

[
age

]
is the CHD hazard for

women at this age,malei equals 1 if the i th subject is aman and equals 0 if she

is a woman, and λi

[
age

]
is the CHD hazard for the i th study subject at the

indicated age. Model (7.16) differs from model (7.6) only in that in model

(7.6) t represents time since entry while in model (7.16) age represents

the subject’s age. Under model (7.16), a man’s hazard is λ0

[
age

]
exp [β].

Hence, the age-adjusted relative risk of CHD in men compared to women

is exp [β]. Applying model (7.16) to the Framingham Heart Study data

gives this relative risk of CHD for men to be 2.01 with a 95% confidence

interval of (1.8–2.2). Note, however, that model (7.16) assumes that the

relative risk of CHD between men and women remains constant with

age. This assumption is rather unsatisfactory in view of the evidence from

Figure 7.6 that this relative risk diminishes after age 60.
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7.9.4. Survival Analysis with Ragged Entry using Stata

The following log file and comments illustrate how to perform the analyses

discussed above using Stata.

. * 7.9.4.Framingham.log

. *

. * Plot Kaplan-Meier cumulative CHD morbidity curves as a function of age.

. * Patients from the Framingham Heart Study enter the analysis when they

. * reach the age of their baseline exam.

. *

. set memory 2000

(2000k)

. use C:\WDDtext\2.20.Framingham.dta, clear

. set textsize 120

. graph age, bin(39) xlabel(30,35 to 65) ylabel(0,.01 to .04) gap(3)

{Graph omitted. See Figure 7.4}
. generate time = followup/365.25

. label variable time "Follow-up in Years"

. generate exitage = age + time {1}

. stset exitage, enter(time age) failure(chdfate) {2}
failure event: chdfate ∼= 0 & chdfate ∼=.

obs. time interval: (0, exitage]

enter on or after: time age

exit on or before: failure

----------------------------------------------------------

4699 total obs.

0 exclusions

----------------------------------------------------------

4699 obs. remaining, representing

1473 failures in single record/single failure data

103710.1 total analysis time at risk, at risk from t = 0

earliest observed entry t = 30

last observed exit t = 94

. sts graph , by(sex) tmin(30) xlabel(30 40 to 90) ylabel(0, .1 to .8) failure

> l1title("Cumulative CHD Morbidity") gap(3) noborder {3}
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failure _d: chdfate

analysis time _t: exitage

enter on or after: time age

. *

. * Calculate the logrank test corresponding to these morbidity functions

. *

. sts test sex {4}
failure _d: chdfate

analysis time _t: exitage

enter on or after: time age

Log-rank test for equality of survivor functions

---------------------------------------------------

| Events

sex | observed expected

------+----------------------

Men | 823 571.08

Women | 650 901.92

------+----------------------

Total | 1473 1473.00

chi2(1) = 182.91

Pr>chi2 = 0.0000

. *

. * Calculate the relative risk of CHD for men relative to women using age as

. * the time variable.

. *

. generate male = sex == 1

. stcox male {5}
failure _d: chdfate

analysis time _t: exitage

enter on or after: time age

{Output omitted}
Cox regression -- Breslow method for ties

No. of subjects = 4699 Number of obs = 4699

No. of failures = 1473

Time at risk = 103710.0914

LR chi2(1) = 177.15

Log likelihood = −11218.785 Prob > chi2 = 0.0000
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-----------------------------------------------------------------------

_t |
_d | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-----+-----------------------------------------------------------------

male | 2.011662 .1060464 13.259 0.000 1.814192 2.230626

-----------------------------------------------------------------------

Comments
1 We define exitage to be the patient’s age at exit. This is the age when she

either suffered CHD or was censored.

2 This command specifies the survival-time and fate variables for the sub-

sequent survival commands. It defines exitage to be the time (age) when

the subject’s follow-up ends, age to be the time (age) when she is recruited

into the cohort, and chdfate to be her fate at exit. Recall that age is the

patient’s age at her baseline exam and that she was free of CHD at that

time (see Section 3.10).

3 This command plots cumulative CHD morbidity as a function of age

for men and women. Strictly speaking, these plots are for people who

are free of CHD at age 30, since this is the earliest age at recruitment.

However, since CHD is rare before age 30, these plots closely approximate

the cumulative morbidity curves from birth.

4 The logrank text is performed in exactly the same way as in Section 7.7.

Changing the survival-time variable from years of follow-up to age in-

creases the statistical significance of this test.

5 This command performs the proportional hazards regression defined by

model (7.16).

7.10. Hazard Regression Models with Time-Dependent Covariates

Sometimes the relative risk between two groups varies appreciably with

time. In this case, the proportional hazards assumption is invalid. We can

weaken this assumption by using time-dependent covariates. That is, we
assume that the i th patient has q covariates xi1[t], xi2[t], . . . , xiq [t] that

are themselves functions of time t. The hazard function for this patient

is

λi [t] = λ0 [t] exp[xi1[t]β1 + xi2[t]β2 + · · · + xiq [t]βq ]. (7.17)

The simplest time-dependent covariates are step-functions. For example,

in Figure 7.6 we saw strong evidence that the protective effect for a woman
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against CHD was greatest prior to her menopause. Moreover, it appears

that the divergence of the morbidity curves diminishes at about age 57. To

estimate how the relative risk of being male varies with age we could define

the following covariate step functions:

malei1[age] =
{
1: i th patient is a man ≤ age 57

0: otherwise, and

malei2[age] =
{
1: i th patient is a man age > 57

0: otherwise.

They are called step-functions because they equal 1 on one age interval and

then step down to 0 for ages outside this interval. The boundary between

these intervals (age 57) is called a cut point. The hazard model is then

λi [age] = λ0[age] exp[malei1[age]β1 + malei2[age]β2]. (7.18)

The functions malei1[age] and malei2[age] are associated with two param-

eters β1 and β2 that assess the effect of male gender on CHD risk before

and after age 57. Note that β1 has no effect on CHD hazard after age 57

since, for age > 57, xi1[age] = 0 regardless of the patient’s sex. Similarly,

β2 has no effect on CHD hazard before time age 57. Hence, the hazard

for men is λ0[age] exp[β1] prior to age 57 and λ0[age] exp[β2] thereafter.

The hazard for women at any age is λ0[age]. Therefore, the age-adjusted

relative risk of CHD in men compared to women is exp[β1]before age

57 and exp[β2] afterwards. (If β1 = β2 = β then the hazard for men at

any age is λ0[age] exp[β] and the proportional hazards assumption holds.)

Of course, the true hazard undoubtedly is a continuous function of age.

However, hazard functions with step-function covariates are often useful

approximations that have the advantage of providing relevant relative risk

estimates.

Applying model (7.18) to the Framingham data set gives estimates of

β̂1 = 1.291 and β̂2 = 0.541. The standard errors of these estimates are

se[β̂1] = 0.1226 and se[β̂2] = 0.059 66. Hence, among people ≤ 57 years

old the age-adjusted relative risk of CHD for men relative to women is

exp[1.291] = 3.64, with a 95% confidence interval of (3.64 × exp[−1.96 ×
0.1226], 3.64× exp[1.96 × 0.1226]) = (2.9–4.6). For people older than 57,

this relative risk is reduced to exp[0.541] = 1.72, with a 95% confidence in-

terval of (1.72× exp[−1.96 × 0.059 66], 1.72 × exp[1.96 × 0.059 66])=
(1.5–1.9).
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7.10.1. Cox—Snell Residuals for Models with Time-Dependent Covariates

The validity of survival models with time-dependent covariates may also be

assessedusingCox–Snell residuals. This is done in the sameway as in Section

7.6. When calculating these residuals with Stata you should use the ccsnell

option rather than the csnell option of the predict post-estimation com-

mand. Stata handles time-dependent covariates by using multiple records

per patient in the data set (see Section 7.11). The ccsnell option writes the

Cox–Snell residual in the last record of each patient.

7.10.2. Testing the Proportional Hazards Assumption

If the proportional hazards assumption is true, then β1 will equal β2 in

model (7.18). That is, if β1 = β2 = β, then model (7.18) reduces to the

proportional hazards model (7.16). Hence, we can test the proportional

hazards assumption by testing the null hypothesis that β1 − β2 = 0. In the

Framingham study, this test yields a z statistic of 5.5 with P < 10−7. Thus,

the Framingham data set provides compelling evidence that the protection

women enjoy against CHD diminishes after the menopause.

7.10.3. Alternative Models

There are, of course, many ways that we might choose to model the data

using time-dependent covariates. For example, we could have several age

groups with a separate time-dependent covariate for each group. We must

also choose the cut points for our step functions. We could have chosen a

round number such as age 60 to mark the boundary between the two age

groups. I chose age 57, in part, by inspection of Figure 7.6. However, this age

also minimizes the model deviance among models similar to model (7.18)

only with other integer-valued ages for the cut point. Looking at the effect

of cut points on model deviance is a good systematic way of selecting these

values.

7.11. Modeling Time-Dependent Covariates with Stata

Stata can analyze hazard regression models with time-dependent covari-

ates that are step-functions. To do this, we must first define multiple data

records per patient in such a way that the covariate functions for the patient

are constant for the period covered by each record. This is best explained
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Table 7.5. Reformatting of the data for Framingham patient 18 needed to
analyze model (7.18). For time-dependent hazard regression models the data
must be split into multiple records per patient in such a way that the
covariates remain constant over the time period covered by each record (see
text).

id male1 male2 enter exit fate

18 1 0 42 57 0

18 0 1 57 63 1

by an example. Suppose that we wished to analyze model (7.18). In the

Framingham data set, patient 18 is a man who entered the study at age 42

and exits with CHD at age 63. For this patient id = 18, age = 42, exitage =
63, and chdfate = 1. We replace the record for this patient with two records.

The first of these records describes his covariates from age 42 to age 57 while

the other describes his covariates from age 57 to age 63.We define new vari-

ablesmale1, male2, enter, exit and fate whose values are shown in Table 7.5.

The variable enter equals his true entry age (42) in the first record and equals

57 in the second; exit equals 57 in the first record and equals his true exit

age (63) in the second. The variable fate denotes his CHD status at the age

given by exit. In the first record, fate = 0 indicating that he had not de-

veloped CHD by age 57. In the second record, fate = 1 indicating that he

did develop CHD at age 63. The variable male1 equals the age dependent

covariate malei1(age). In the first record male1 = 1 since malei1(age) = 1

from entry until age 57. In the second record male1= 0 sincemalei1(age)=
0 after age 57 even though patient 18 is a man. Similarly male2 equals

malei2(age), which equals 0 before age 57 and 1 afterwards.

We need two records only for patients whose follow-up spans age 57.

Patients who exit the study before age 57 or enter after age 57 will have a

single record. In this case, enter will equal the patient’s entry age and exit

will equal his or her age at the end of follow-up; fate will equal chdfate

and male1 and male2 will be defined according to the patient’s gender and

age during follow-up. Time-dependent analysesmust have an identification

variable that allows Stata to keep track of which records belong to which

patients. In this example, this variable is id.

The only tricky part of a time-dependent hazard regression analysis is

defining the data records as described above. Once this is done, the analysis

is straightforward. We illustrate how to modify the data file and do this

analysis below. The log file 7.9.4.Framingham.log continues as follows.
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. *

. * Perform hazard regression with time dependent covariates for sex

. *

. tabulate chdfate male {1}

Coronary |

Heart | male

Disease | 0 1 | Total

---------+--------------------------+----------

Censored | 2000 1226 | 3226

CHD | 650 823 | 1473

---------+--------------------------+----------

Total | 2650 2049 | 4699

. generate records = 1

. replace records = 2 if age < 57 & exitage > 57 {2}
(3331 real changes made)

. expand records {3}
(3331 observations created)

. sort id {4}

. generate enter = age

. replace enter = 57 if id == id[_n-1] {5}
(3331 real changes made)

. generate exit = exitage

. replace exit = 57 if id == id[_n+1] {6}
(3331 real changes made)

. generate fate = chdfate

. replace fate = 0 if id == id[_n+1] {7}
(855 real changes made)

. tabulate fate male {8}
| male

fate | 0 1 | Total

--------+------------------------+---------

0 | 3946 2611 | 6557

1 | 650 823 | 1473

--------+------------------------+---------

Total | 4596 3434 | 8030
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. generate male1 = male*(enter < 57) {9}

. generate male2= male*(exit > 57) {10}

. tabulate male1 male2 {11}

| male2

male1 | 0 1 | Total

----------+--------------------------+----------

0 | 4596 1672 | 6268

1 | 1762 0 | 1762

----------+--------------------------+----------

Total | 6358 1672 | 8030

. stset exit, id(id) enter(time enter) failure(fate) {12}
id: id

failure event: fate ∼= 0 & fate ∼=.
obs. time interval: (exit[_n-1], exit]

enter on or after: time enter

exit on or before: failure

------------------------------------------------------

8030 total obs.

0 exclusions

------------------------------------------------------

8030 obs. remaining, representing

4699 subjects

1473 failures in single failure-per-subject data

103710.1 total analysis time at risk, at risk from t = 0

earliest observed entry t = 30

last observed exit t = 94

. stcox male1 male2 {13}
failure _d: fate

analysis time _t: exit

enter on or after: time enter

id: id

{Output omitted}
Cox regression -- Breslow method for ties

No. of subjects = 4699 Number of obs = 8030

No. of failures = 1473

Time at risk = 103710.0914
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LR chi2(2) = 209.41

Log likelihood = −11202.652 Prob > chi2 = 0.0000

-------------------------------------------------------------------------

_t |

_d | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

------+------------------------------------------------------------------

male1 | 3.636365 .4457209 10.532 0.000 2.859782 4.623831

male2 | 1.718114 .1024969 9.072 0.000 1.528523 1.93122

-------------------------------------------------------------------------

. lincom male1 - male2 {14}
(1) male1 − male2 = 0.0

-----------------------------------------------------------------------

_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-----------------------------------------------------------------------

(1) | .7497575 .1363198 5.500 0.000 .4825755 1.01694

-----------------------------------------------------------------------

Comments
1 The next few commands will create the multiple records that we need. It

is prudent to be cautious doing this and to create before and after tables

to confirm that we have done what we intended to do.

2 Wedefine records to equal the number of records needed for eachpatient.

This is either 1 or 2. Two records are neededonly if the subject is recruited

before age 57 and exits after age 57.

3 The expand command creates identical copies of records in the active

data set. It creates one fewer new copy of each record than the value

of the variable records. Hence, after this command has been executed

there will be either 1 or 2 records in the file for each patient depending

on whether records equals 1 or 2. The new records are appended to the

bottom of the data set.

4 The 2.20.Framingham.dta data set contains a patient identification vari-

able called id. Sorting by id brings all of the records on each patient

together. It is prudent to open the Stata editor frequently during data

manipulations to make sure that your commands are having the desired

effect. You should also make sure that you have a back-up copy of your

original data as it is all too easy to replace the original file with one that

has been modified.
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5 Stata allows us to refer to the values of records adjacent to the cur-

rent record. The value n always equals the record number of the cur-

rent record; id[ n−1] equals the value of id in the record preceding the

current record, while id[ n+1] equals the value of id in the record fol-

lowing the current record.

If id == id[ n −1 ] is true then we are at the second of two records

for the current patient. The previous command defined enter to equal

age. This command replaces enter with the value 57 whenever we are at

a patient’s second record. Hence enter equals the patients entry age in

the first record for each patient, and equals 57 in the second. If there is

only one record for the patient, then enter equals the patient’s entry age.

6 Similarly exit is set equal to exitageunlesswe are at thefirst of two records

for the same patient, in which case exit equals 57.

7 The variable fate equals chdfate unless we are at the first of two records

for the same patient. If a second record exists, then the first record must

be for the first age interval and her follow-up must extend beyond age

57. Hence, the patient must not have developed CHD by age 57. For this

reason we set fate = 0 whenever we encounter the first of two records

for the same patient.

8 This table shows that there are 650 records for women showing CHD

and 823 such records for men. This is the same as the number of women

andmen who had CHD. Thus, we have not added or removed any CHD

events by the previous manipulations.

9 We set male1 = 1 if and only if the subject is male and the record de-

scribes a patient in the first age interval. Otherwise, male1 = 0. (Note

that if enter <57 then we must have that exit ≤57.)

10 Similarly, male2 = 1 if and only if the subject is male and the record

describes a patient in the second age interval.

11 No records have bothmale1 andmale2 equal to 1. There are 4596 records

of womenwith bothmale1 andmale2 equal 0, which agrees with the pre-

ceding table.

12 We define exit to be the exit time, id to be the patient identification

variable, enter to be the entry time, and fate to be the fate indicator. The

stset command also checks the data for errors or inconsistencies in the

definition of these variables. Note that the total number of subjects has

not been changed by our data manipulation.

13 Finally,weperformahazard regressionanalysiswith the time-dependent

covariates male1 and male2. The age-adjusted relative risks of CHD for

men prior to, and after, age 57 are highlighted and agree with those given

in Section 7.10.
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14 This lincom statement tests the null hypothesis that β1 = β2 in model

(7.18) (see Section 7.10.2).

7.12. Additional Reading

See Section 6.18 for some standard references on hazard regression analysis.

Fleming and Harrington (1991) is an advanced text on survival methods

with an extensive discussion of residual analysis.

Cox and Snell (1968) is the original reference on Cox–Snell generalized

residuals.

Kay (1977) applied the concept of Cox–Snell residuals to the analysis of

censored survival data.

Therneauet al. (1990) is theoriginal referenceonmartingale residuals.These

residuals are used by Stata to calculate the Cox–Snell residuals discussed

in this text.

7.13. Exercises

1 Using model (7.8) estimate the risk of CHD of men in each DBP group

relative to women in the same group. Calculate 95% confidence intervals

for these relative risks.

2 Fit amultiplicativemodel similar tomodel (7.11) butwithout the interac-

tion terms for sex and blood pressure. Do the interaction terms in model

(7.11) significantly improve the model fit over the multiplicative model

that you have just created? How does your answer affect whichmodel you

would use if you were publishing these results?

3 The relative risk obtained from model (7.16) is age-adjusted while the

relative risk derived from model (7.6) is not. Explain why this is so.

The following questions concern the 6.ex.breast.dta data set introduced

in the exercises for Chapter 6.

4 Calculate the relative risks of breast cancer among women with AH and

PDWA compared to women without PD. Adjust for age by including age

at entry biopsy as a covariate in yourmodel. Calculate the 95%confidence

intervals for these risks. Does this model give a better estimate of these

risks than the model used in Question 4 in Chapter 6? If so, why?

5 RepeatQuestion 4 only this time adjust for age using a categorical variable

that groups age at biopsy as follows: ≤30, 31–40, 41–50, 51–60, >60.

Compare your answers to these questions. What are the strengths and

weaknesses of these methods of age adjustment?
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6 Build aproportional hazardsmodel of the effects of entry biopsydiagnosis

and family history on the risk of breast cancer. Adjust for age at biopsy

by including entage as a covariate in your model. Treat PD and FH as

categorical variables and include appropriate interaction terms. Fill in

the following table. What is the risk of women with both AH and FH

relative to women with FH but without PD? What is a 95% confidence

interval for this risk?

First degree family history of breast cancer

No Yes

Entry Relative 95% confidence Relative 95% confidence

histology risk interval risk interval

No PD 1.0*

PDWA

AH

∗Denominator of relative risk

7 Plot the observed and expected breast cancer free survivorship curve

against the Cox–Snell residuals from the model you used in Question

6. Does this graph provide any evidence that the proportional hazards

assumption is invalid for this model? When assessing the overall ap-

propriateness of the model, you should pay attention to the region of

the graph that involves the vast majority of the residuals. What is the

95 percentile for these residuals?

8 What are the relative risks of AH and PDWA compared to No PD in

the first ten years after biopsy? What are these risks after ten years for

women who remain free of breast cancer for the first ten years following

biopsy? To answer this question, build the following hazard regression

modelwith time-dependent covariates.Define twostep functions: thefirst

should equal 1 on the interval 0–10 and 0 elsewhere; the second should

equal 0 on the interval 0–10 and 1 elsewhere. Adjust for age at biopsy by

including entage as a covariate in the model. Include two parameters to

model the risk of AH in the first ten years and thereafter. Include another

two parameters to model these risks for PDWA (reference: Dupont and

Page, 1989).

9 Use your model for Question 8 to test the proportional hazards assump-

tion for the model used in Question 6. Is this assumption reasonable?
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Introduction to Poisson Regression:
Inferences on Morbidity and
Mortality Rates

In previous chapters the basic unit of observation has been the individual

patient. Sometimes, however, it makes more sense to analyze events per

person-year of observation. This may be either because the data comes to

us in this form or because survival methods using suitable models are too

complex and numerically intensive. For example, analyzing large cohorts

with hazard regression models that have many time-dependent covariates

can require substantial computation time. In this situation, converting the

data to events per person-year of observation can greatly simplify the analy-

sis. If the event rate per unit of time is low, then an excellent approach to

consider is Poisson regression. We will introduce this technique in the next

two chapters.

8.1. Elementary Statistics Involving Rates

The incidence I of an event is the expected number of events during 100 000

person-years of follow-up. Suppose that we observe d independent events

during n person-years of observation, where d is small compared to n. Then

the observed incidence of the event is Î = 100 000 × d/n, which is the

observed number of events per 100 000 of patient-years of follow-up. For

example, Table 8.1 is derived from the 4699 patients in the didactic data set

fromtheFraminghamHeart Study (Levy, 1999).Thisdata set contains a total

of 104 461 person-years of follow-up. Let di be the number of CHD events

observed in ni person-years of follow-up among men (i = 1) and women

(i = 0), respectively. The observed incidence of coronary heart disease

(CHD)inmenis Î 1 = 100 000 × d1/n1 = 100 000 × 823/42 688 = 1927.9,

while the corresponding incidence in women is Î 0 = 100 000 × d0/n0 =
100 000 × 650/61 773 = 1052.2. Incidence rates are always expressed as the

observed or expected number of events in a specified number of patients

during a specified interval of time. For example, an incidence ratemight also

269
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Table 8.1. Coronary heart disease and patient-years of follow-up in the
Framingham Heart Study (Levy, 1999).

Men Women Total

Cases of coronary heart disease d1 = 823 d0 = 650 1 473

Person-years of follow-up n1 = 42 688 n0 = 61 773 104 461

be expressed as the expected number of events per thousand person-months

of observation.

Suppose that the incidences of some event are I0 and I1 in patients from

Groups 0 and 1, respectively. Then the relative risk of the event in Group 1

compared to Group 0 is

R = I1/I0, (8.1)

which is the ratio of the incidence rates in the two groups. We estimate this

relative risk by R̂ = Î 1/ Î 0. For example, the estimated relative risk of CHD

in men compared to women in Table 8.1 is R̂ = Î 1/ Î 0 = 1927.9/1052.2 =
1.832.

The logarithm of R̂ has an approximately normal distribution whose

variance is estimated by

s 2
log(R̂)

= 1

d0
+ 1

d1
. (8.2)

Hence, a 95% confidence interval for R is

R̂ exp[±1.96s log(R̂)]. (8.3)

For the patients from the Framingham Heart Study, s 2
log(R̂)

= 1
823 + 1

650 =
0.002 754. Hence, a 95% confidence interval for the risk of CHD in men

relative to women is

R̂ = (1.832 exp[−1.96 × √
0.002 754], 1.832 exp[1.96 × √

0.002 754])

= (1.65, 2.03).

8.2. Calculating Relative Risks from Incidence Data using Stata

The following log file and comments illustrate how to calculate relative risks

from incidence data using Stata.

. * 8.2.Framingham.log

. *

. * Estimate the crude (unadjusted) relative risk of
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. * coronary heart disease in men compared to women using

. * person-year data from the Framingham Heart Study.

. *

. iri 823 650 42688 61773 {1}

| Exposed Unexposed | Total

----------------+-----------------------+----------

Cases | 823 650 | 1473

Person-time | 42688 61773 | 104461

----------------+-----------------------+----------

| |

Incidence Rate | .0192794 .0105224 | .014101

| |

| Point estimate | [95% Conf. Interval]

|-----------------------+----------------------

Inc. rate diff. | .008757 | .0072113 .0103028

Inc. rate ratio | 1.832227 | 1.651129 2.033851 (exact)

Attr. frac. ex. | .4542162 | .3943538 .5083219 (exact)

Attr. frac. pop | .2537814 |

+----------------------------------------------

(midp) Pr(k>=823) = 0.0000 (exact)

(midp) 2*Pr(k>=823) = 0.0000 (exact)

Comment
1 The ir command isused for incidence ratedata. Shownhere is the immedi-

ate version of this command, called iri, which analyses the four data values

given in the command line. These data are the number of exposed and

unexposed cases together with the person-years of follow-up of exposed

and unexposed subjects. In this example, “exposed” patients aremale and

“unexposed” patients are female. Cases are peoplewhodevelopCHD.The

arguments of the iri command are the number of men with CHD (ex-

posed cases), the number of women with CHD (unexposed cases), and

the number of person-years of follow-up inmen andwomen, respectively.

The relative risk of CHD inmen compared to women is labeled “Inc. rate

ratio”. This relative risk, together with its 95% confidence interval, have

been highlighted. They agree with equations (8.1) and (8.3) to three sig-

nificant figures. Stata uses an exact confidence interval that has a more

complicated formula than equation (8.3) and provides slightly wider

intervals.
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8.3. The Binomial and Poisson Distributions

Suppose that d unrelated deaths are observed among n patients. Let π be

the probability that any individual patient dies. Then d has a binomial dis-

tribution with parameters n and π . The probability of observing d deaths is

Pr[d deaths] = n!

(n − d)!d!
πd(1 − π)(n−d). (8.4)

In equation (8.4) d can take any integer value between 0 and n. The ex-

pected number of deaths is E[di ] = nπ , and the variance of d is var[di ] =
nπ(1 − π) (see Section 4.4). Poisson (1781–1849) showed that when n is

large andπ is small thedistributionofd is closely approximatedby aPoisson
distribution. If nπ approaches λ as n gets very large then the distribution

of d approaches

Pr[d deaths] = e−λ(λ)d

d!
, (8.5)

where d can be any non-negative integer. Under a Poisson distribution the

expected value and variance of d both equal λ. Although it is not obvious

from these formulas, the convergence of the binomial distribution to the

Poisson is quite rapid. Figure 8.1 shows a Poisson distributionwith expected

Binomial: n = 10
Binomial: n = 20
Binomial: n = 50
Poisson
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Figure 8.1 This graph illustrates the convergence of the binomial distribution to the
Poisson distribution with increasing sample size (n) but constant expected
value. The depicted distributions all have expected value five. By the time
n = 50, the binomial distribution closely approximates the Poisson distribution
with the same expected value.
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value λ = 5. Binomial distributions are also shown with expected value

nπ = 5 for n = 10, 20, and 50. Note that the binomial distribution with

n = 50 and π = 0.1 is very similar to the Poisson distribution with λ = 5.

8.4. Simple Poisson Regression for 2×2 Tables

Suppose that we have two groups of subjects who either are, or are not,

exposed to some risk factor of interest. Let

ni be the number of patients or patient-years of observation of subjects who

are (i = 1) or are not (i = 0) exposed,

di be the number of deaths among exposed (i = 1) and unexposed (i = 0)

subjects,

πi be the true death rate in exposed (i = 1) and unexposed (i = 0) people,

and

xi = 1 or 0 be a covariate that indicates patients who are (i = 1) or are not

(i = 0) exposed.

Then

R = π1/π0 is the relative risk of death associated with exposure, and

π̂i = di/ni is the estimated death rate in exposed (i = 1) or unexposed

(i = 0) people.

The expected number of deaths in Group i is E[di | xi ] = niπi .

Also E[π̂i | xi ] = E[(di/ni ) | xi ] = E[di | xi ]/ni = πi , which implies that

log[π0]= log[E[d0|x0]]− log[n0] and log[π1]= log[E[d1|xi ]]− log[n1].

Now since R = π1/π0, we also have that log[π1] = log[R] + log[π0].

Hence,

log[E[d0 | x0]] = log[n0] + log[π0] and

log[E[d1 | x0]] = log[n1] + log[π0] + log[R].

Let α = log[π0] and β = log[R]. Then

log[E[di | xi ]] = log[ni ] + α + xiβ (8.6)

for i = 0 or 1. If πi is small we assume that di has a Poisson distribution.We

estimate the mean and variance of this distribution by di . Equation (8.6)

defines the simplest example of a Poisson regression model.
Our primary interest in model (8.6) is in β, which equals the log relative

risk for exposed patients compared to unexposed patients. We will use the

method of maximum likelihood to obtain an estimate β̂ of β. We then
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estimate the risk of exposed subjects relative to unexposed subjects by

R̂ = e β̂ . (8.7)

Themaximum likelihood technique also provides us with an estimate of the

standard error of β̂ which we will denote se[R̂]. A 95% confidence interval

for R̂ is therefore

(R̂ × exp[−1.96se[β̂]], R̂ × exp[1.96se[β̂]]). (8.8)

The α coefficient in model (8.6) is called a nuisance parameter. This is one
that is required by themodel but is not used to calculate interesting statistics.

An offset is a known quantity that must be included in a model. The term

log[ni ] in model (8.6) is an example of an offset.

Let us applymodel (8.6) to the FraminghamHeart Studydata inTable 8.1.

Let x0 = 0 and x1 = 1 for person-years of follow-up in women and men,

respectively. Regressing CHD against gender with thismodel gives estimates

β̂ = 0.6055 and se[β̂] = 0.052 47. Applying equations (8.7) and (8.8) to

these values gives a relative risk estimate of CHD in men relative to women

tobe R̂ = 1.832.The95%confidence interval for this risk is (1.65, 2.03).This

relative risk and confidence interval are identical to the classical estimates

obtained in Section 8.1.

8.5. Poisson Regression and the Generalized Linear Model

Poisson regression is another example of a generalized linear model. Recall

that any generalized linear model is characterized by a random component,

a linear predictor, and a link function (see Section 4.6). In Poisson regression

the random component is the number of events di in the i th group of ni

patients or patient-years of observation. The linear predictor is log[ni ] +
α + xiβ. The expected number of deaths in Group i, E[di | xi ], is related to
the linear predictor through a logarithmic link function.

8.6. Contrast Between Poisson, Logistic, and Linear Regression

Themodels for simple linear, logistic, and Poisson regression are as follows:

E[yi | xi ] = α + βxi for i = 1, 2, . . . , n defines the linear model;

logit[E[di | xi ]/ni ] = α + βxi for i = 1, 2, . . . , n defines the logistic

model; and

log[E[di | xi ]] = log[ni ] + α + βxi for i = 0 or 1 defines the Poisson

model.
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In linear regression, the random component is yi , which has a normal dis-

tribution. The standard deviation of yi given xi is σ . The linear predictor is

α + βxi and the link function is the identity function I[x] = x . The sample

size nmust be fairly large since wemust estimate σ before we can estimate α

or β. In logistic regression, the random component is di events observed in

ni trials. This random component has a binomial distribution. The linear

predictor is α + βxi and the model has a logit link function. In Poisson

regression, the random component is also di events observed in ni trials or

person-years of observation. This random component has a Poisson dis-

tribution. The linear predictor is log(ni ) + α + βxi and the model has a

logarithmic link function. In the simple Poisson regression i takes only two

values. This may also be the case for simple logistic regression. It is possible

to estimate β in these situations since we have reasonable estimates of the

mean and variance of di given xi for both of these models.

8.7. Simple Poisson Regression with Stata

We apply a simple Poisson regression model to the data in Table 8.1 as

follows.

. * 8.7.Framingham.log

. *

. * Simple Poisson regression analysis of the effect of gender on

. * coronary heart disease in the Framingham Heart Study.

. *

. use C:\WDDtext\8.7.Framingham.dta, clear

. list {1}
chd per_yrs male

1. 650 61773 0

2. 823 42688 1

. glm chd male, family(poisson) link(log) lnoffset(per_yrs) {2}
{Output omitted}

-----------------------------------------------------------------------

chd | Coef. Std. Err. z P>|z| [95% Conf. Interval]

--------+--------------------------------------------------------------

male | .6055324 .052474 11.540 0.000 .5026852 .7083796

_cons | -4.554249 .0392232 -116.111 0.000 -4.631125 -4.477373

per_yrs | (exposure)

-----------------------------------------------------------------------
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. lincom male, irr {3}
(1) [chd]male = 0.0

--------------------------------------------------------------------

chd | IRR Std. Err. z P>|z| [95% Conf. Interval]

-----+--------------------------------------------------------------

(1) | 1.832227 .0961444 11.540 0.000 1.653154 2.030698

--------------------------------------------------------------------

Comments
1 The data in Table 8.1 is stored in two records of 8.7.Framingham.dta.

These records contain thenumberofpatient-yearsof follow-up inwomen

(male = 0) andmen (male = 1), respectively. The variable chd records the

number of cases of coronary heart disease observed during follow-up.

2 This glm command regresses chd against male using model (8.6). The

family(poisson) and link(log) options specify that chd has a Poisson dis-

tribution and that a logarithmic link function is to be used. The lnoff-

set(per yrs) option specifies that the logarithm of per yrs is to be included

as an offset in the model.

3 The irr option of this lincom command has the same effect as the or and

hr options. That is, it exponentiates the coefficient associated with male

to obtain the estimated relative risk of CHD in men relative to women

(see Section 5.20). It differs only in that it labels the second column of

output IRR, which stands for incidence rate ratio. This rate ratio is our

estimated relative risk. It and its associated confidence interval are in exact

agreement with those obtained from equations (8.7) and (8.8).

8.8. Poisson Regression and Survival Analysis

For large data sets, Poisson regression is much faster than hazard regression

analysis with time dependent covariates. If we have reason to believe that

the proportional hazards assumption is false, it makes sense to do our ex-

ploratory analyses using Poisson regression. Before we can do this we must

first convert the data from survival format to person-year format.

8.8.1. Recoding Survival Data on Patients as Patient-Year Data

Table 8.2 shows a survival data set consisting of entry age, exit age, treat-

ment, and fate on five patients. The conversion of this survival data set

to a patient-year data set is illustrated in Figure 8.2. Individual patients
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Table 8.2. This table shows survival data for five hypothetical patients. Each
patient contributes person-years of follow-up to several strata defined by age
and treatment. The conversion of this data set into a person-year data set for
Poisson regression analysis is depicted in Figure 8.2.

Patient ID Entry age Exit age Treatment Fate

A 1 4 1 Alive

B 3 5 1 Dead

C 3 6 2 Alive

D 2 3 2 Dead

E 1 3 2 Dead

Years of Follow-up

0

1

2

3

4

5

6

0 1 2 3 4

B

C

D
E

L
L

L

J

Treatment 1

Person-
Years of

Follow-up
Deaths

Treatment 2

Person-
Years of

Follow-up
Deaths

0               0 1              0

1               1 1              0

2               0 1              0

2               0 3              2

1               0 2              0

1               0 1              0

Treatment 1
Treatment 2

L DeadL
J AliveJ 0               0 0              0

J
A

A
g

e

Figure 8.2 The survival data from Table 8.2 is depicted in the graph on the left of this figure.
As the study subjects age during follow-up, they contribute person-years of
observation to strata defined by age and treatment. Before performing Poisson
regression, the survival data must be converted into a table of person-year data
such as that given on the right of this figure. For example, three patients (B, C,
and A) contribute follow-up to four-year-old patients. Two of them (B and A)
are in Treatment 1 and one (C) is in Treatment 2. No deaths were observed at
this age. Patients D and E do not contribute to this age because they died at
age three.
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contribute person-years of follow-up to a number of different ages. For

example, Patient B enters the study at age 3 and dies at age 5. She contri-

butes one year of follow-up at age 3, one at age 4, and one at age 5. To create

the corresponding person-year data set we need to determine the number of

patient-years of follow-up and number of deaths for each age in each treat-

ment. This is done by summing across the rows of Figure 8.2. For example,

consider age 3. There are three person-years of follow-up in Treatment 2

at this age that are contributed by patients C, D, and E. Deaths occur in

two of these patient-years (Patients D and E). In Treatment 1 there are two

person-years of follow-up for age 3 and no deaths (Patients B and A). The

remainder of the table on the right side of Figure 8.2 is completed in a simi-

lar fashion. Note that the five patient survival records are converted into 14

records in the person-year file.

8.8.2. Converting Survival Records to Person-Years of Follow-Up using Stata

The following programmaybeused as a template to convert survival records

on individual patients into records giving person-years of follow-up. It also

demonstratesmanyof theways inwhichdatamaybemanipulatedwithStata.

. * 8.8.2.Survival_to_Person-Years.log

. *

. * Convert survival data to person-year data.

. * The survival data set must have the following variables:

. * id = patient id,

. * age_in = age at start of follow-up,

. * age_out = age at end of follow-up,

. * fate = fate at exit: censored = 0, dead = 1,

. * treat = treatment variable.

. *

. * The person-year data set created below will contain one

. * record per unique combination of treatment and age.

. *

. * Variables in the person-year data set that must not be in the

. * original survival data set are

. * age_now = an age of people in the cohort,

. * pt_yrs = number of patient-years of observations of people

. * who are age_now years old,

. * deaths = number of events (fate=1) occurring in pt_yrs of

. * follow-up for this group of patients.

. *
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. use C:\WDDtext\8.8.2.Survival.dta, clear

. list

id age_in age_out treat fate

1. A 1 4 1 0

2. B 3 5 1 1

3. C 3 6 2 0

4. D 2 3 2 1

5. E 1 3 2 1

. expand age_out - age_in + 1 {1}
(11 observations created)

. sort id {2}

. list if id == "B" {3}
id age_in age_out treat fate

5. B 3 5 1 1

6. B 3 5 1 1

7. B 3 5 1 1

. generate first = id[_n] ˜= id[_n-1] {4}

. generate age_now = age_in

. replace age_now = age_now[_n-1]+1 if ˜first {5}
(11 real changes made)

. generate last = id[_n] ˜= id[_n+1] {6}

. generate observed = fate*last {7}

. generate one = 1 {8}

. list id age_in age_out first age_now if id == "B" {9}
id age_in age_out first age_now

5. B 3 5 1 3

6. B 3 5 0 4

7. B 3 5 0 5

. list id treat fate last observed one if id == "B" {10}
id treat fate last observed one

5. B 1 1 0 0 1

6. B 1 1 0 0 1

7. B 1 1 1 1 1

. sort treat age_now {11}

. collapse (sum) pt_yrs = one deaths = observed, by(treat age_now) {12}

. list treat age_now pt_yrs deaths {13}
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treat age_now pt_yrs deaths

1. 1 1 1 0

2. 1 2 1 0

3. 1 3 2 0

4. 1 4 2 0

5. 1 5 1 1

6. 2 1 1 0

7. 2 2 2 0

8. 2 3 3 2

9. 2 4 1 0

10. 2 5 1 0

11. 2 6 1 0

. save C:\WDDtext\8.8.2.Person-Years.dta, replace {14}
file C:\WDDtext\8.8.2.Person-years.dta saved

Comments
1 We expand the number of records per patient so that each patient has as

many records as years of follow-up.

2 Thefile is sortedby id tomake all records on the samepatient contiguous.

3 For example, patient B enters the study at age 3 and exits at age 5. There-

fore we create three records for this patient corresponding to ages 3, 4,

and 5.

4 The variable first is set equal to 1 on the first record for each patient and

equals zero on subsequent records. This is done by setting first = TRUE

if the value of id in the preceding record is not equal to its value in the

current record; first = FALSE otherwise. Recall that the numeric values

for TRUE and FALSE are 1 and 0, respectively.

5 Increment the value of age now by 1 for all but the first record of each

patient. In the i th record for each patient, age now equals the patient’s

age in her i th year of follow-up.

6 Thevariable last =1 in the last record for eachpatient; last=0otherwise.

7 Thevariableobserved=1 if thepatientdiesduring thecurrentyear;obser-

ved= 0 otherwise. Since the patient must have survived the current year

if she has an additional record, observed = 1 if and only if the patient

dies in her last year of follow-up (fate = 1) and we have reached her last

year (last = 1).

8 We will use the variable one = 1 to count patient-years of follow-up.

9 For example, patient B is followed for three years. Her age in these years

is recorded in age now, which is 3, 4, and 5 years, respectively.

10 Patient B dies in her fifth year of life. She was alive at the end of her third
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and fourth year. Hence, observed equals 0 in her first two records and

equals 1 in her last.

11 We now sort by treat and age now to make all records of patients with

the same treatment and age contiguous.

12 This statement collapses all records with identical values of treat and

age now into a single record. The variable pt yrs is set equal to the

number of records collapsed (the sum of one over these records) and

deaths is set equal to thenumber of deaths (the sumof observedover these

records). All variables are deleted from memory except treat, age now,

pt yrs, and deaths.

13 The data set now corresponds to the right-hand side of Figure 8.2. Note,

however, that the program only creates records for which there is at least

one person-year of follow-up. The reason why there are 11 rather than

14 records in the file is that there are no person-years of follow-up for

6 year-old patients on treatment 1 or for patients on either treatment in

their first year of life.

14 The data set is saved for future Poisson regression analysis.

N.B. If you are working on a large data set with many covariates, you can

reduce the computing time by keeping only those covariates that you will

need in your model(s) before you start to convert to patient-year data. It is

a good idea to check that you have not changed the number of deaths or

number of years of follow-up in your program. See the 8.9.Framingham.log

file in the next section for an example of how this can be done.

8.9. Converting the Framingham Survival Data Set to
Person-Time Data

The following Stata log file and comments illustrate how to convert a real

survival data set for Poisson regression analysis.

. * 8.9.Framingham.log

. *

. * Convert Framingham survival data set to person-year data for

. * Poisson regression analysis.

. *

. set memory 11000 {1}
(11000k)

. use C:\WDDtext\2.20.Framingham.dta, clear

. *

. * Convert bmi, scl and dbp into categorical variables that subdivide

. * the data set into quartiles for each of these variables.
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. *

. centile bmi dbp scl, centile(25,50,75) {2}
-- Binom. Interp. --

Variable | Obs Percentile Centile [95% Conf. Interval]

---------+----------------------------------------------------

bmi | 4690 25 22.8 22.7 23

| 50 25.2 25.1 25.36161

| 75 28 27.9 28.1

dbp | 4699 25 74 74 74

| 50 80 80 82

| 75 90 90 90

scl | 4666 25 197 196 199

| 50 225 222 225

| 75 255 252 256

. generate bmi_gr = recode(bmi, 22.8, 25.2, 28, 29)

(9 missing values generated)

. generate dbp_gr = recode(dbp, 74,80,90,91)

. generate scl_gr = recode(scl, 197, 225, 255, 256)

(33 missing values generated)

. *

. * Calculate years of follow-up for each patient.

. * Round to nearest year for censored patients.

. * Round up to next year when patients exit with CHD

. *

. generate years = int(followup/365.25) + 1 if chdfate {3}
(3226 missing values generated)

. replace years = round(followup/365.25, 1) if ˜chdfate {4}
(3226 real changes made)

. table sex dbp_gr, contents(sum years) row col {5}
-------+----------------------------------------

| dbp_gr

Sex | 74 80 90 91 Total

-------+----------------------------------------

Men | 10663 10405 12795 8825 42688

Women | 21176 14680 15348 10569 61773

|

Total | 31839 25085 28143 19394 104461

-------+----------------------------------------

. table sex dbp_gr, contents(sum chdfate) row col {6}
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-------+---------------------------------

| dbp_gr

Sex | 74 80 90 91 Total

-------+---------------------------------

Men | 161 194 222 246 823

Women | 128 136 182 204 650

|

Total | 289 330 404 450 1473

-------+---------------------------------

. generate age_in = age

. generate age_out = age + years - 1

. generate age_now = age

. *

. * Transform data set so that there is one record per patient-year of

. * follow-up. Define age_now to be the patient’s age in each record.

. * Define fate = 1 for the last record of each patient who develops CHD,

. * = 0 otherwise.

. *

. expand years

(99762 observations created)

. sort id

. generate first = id[_n] ˜= id[_n-1]

. replace age_now = age_now[_n-1]+1 if ˜first

(99762 real changes made)

. generate last = id[_n] ˜= id[_n+1]

. generate fate = chdfate*last

. generate one = 1

. list id age_in age_out age_now first last chdfate fate in 20/26, nodisplay {7}
id age_in age_out age_now first last chdfate fate

20. 1 60 79 79 0 1 Censored 0

21. 2 46 50 46 1 0 CHD 0

22. 2 46 50 47 0 0 CHD 0

23. 2 46 50 48 0 0 CHD 0

24. 2 46 50 49 0 0 CHD 0

25. 2 46 50 50 0 1 CHD 1

26. 3 49 80 49 1 0 Censored 0

. generate age_gr = recode(age_now, 45,50,55,60,65,70,75,80,81) {8}
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. label define age 45 "<= 45" 50 "45-50" 55 "50-55" 60 "55-60" 65 "60-65" 70

> "65-70" 75 "70-75" 80 "75-80" 81 "> 80"

. label values age_gr age

. sort sex bmi_gr scl_gr dbp_gr age_gr

. *

. * Combine records with identical values of

. * sex bmi_gr scl_gr dbp_gr and age_gr.

. *

. collapse (sum) pt_yrs=one chd_cnt=fate, by(sex bmi_gr scl_gr dbp_gr age_gr) {9}

. list sex bmi_gr scl_gr dbp_gr age_gr pt_yrs chd_cnt in 310/315, nodisplay

sex bmi_gr scl_gr dbp_gr age_gr pt_yrs chd_cnt

310. Men 28 197 90 45-50 124 0

311. Men 28 197 90 50-55 150 1

312. Men 28 197 90 55-60 158 2

313. Men 28 197 90 60-65 161 4

314. Men 28 197 90 65-70 100 2

315. Men 28 197 90 70-75 55 1

. table sex dbp_gr, contents(sum pt_yrs) row col {10}
---------+-----------------------------------------------

| dbp_gr

Sex | 74 80 90 91 Total

---------+-----------------------------------------------

Men | 10663 10405 12795 8825 42688

Women | 21176 14680 15348 10569 61773

|

Total | 31839 25085 28143 19394 104461

---------+-----------------------------------------------

. table sex dbp_gr, contents(sum chd_cnt) row col {11}

--------+----------------------------------------------

| dbp_gr

Sex | 74 80 90 91 Total

--------+----------------------------------------------

Men | 161 194 222 246 823

Women | 128 136 182 204 650

|

Total | 289 330 404 450 1473

--------+----------------------------------------------
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. generate male = sex == 1 {12}

. display _N {13}
1267

. save C:\WDDtext\8.12.Framingham.dta {14}
file C:\WDDtext\8.12.Framingham.dta saved

Comments
1 The Framingham data set requires 11 megabytes for these calculations.

2 The centile command gives percentiles for the indicated variables. The

centile option specifies the percentiles of these variables that are to be

listed, which in this example are the 25th, 50th, and 75th. These are then

used as arguments in the recode function to define the categorical vari-

ables bmi gr, dbp gr, and scl gr.

In the next chapter we will consider body mass index, serum choles-

terol, and diastolic bloodpressure as confounding variables in our analy-

ses.We convert these data into categorical variables groupedbyquartiles.

3 The last follow-up interval for most patients is a fraction of a year. If the

patient’s follow-up was terminated because of a CHD event, we include

the patient’s entire last year as part of her follow-up. The int function

facilitates this by truncating follow-up in years to a whole integer. We

then add 1 to this number to include the entire last year of follow-up.

4 If the patient is censored at the end to follow-up, we round this number

to the nearest integer using the round function; round (x , 1) rounds x to

the nearest integer.

5 So far, we haven’t added any records or modified any of the original

variables. Before doing this it is a good idea to tabulate the number of

person-years of follow-up and CHD events in the data set. At the end

of the transformation we can recalculate these tables to ensure that we

have not lost or added any spurious years of follow-up or CHD events.

This tables show these data cross tabulated by sex and dbp gr. The con-

tents(sum years) option causes years to be summed over every unique

combination of values of sex and dbp gr and displayed in the table.

For example, the sum of the years variable for men with dbp gr = 90

is 12 795. This means that there are 12 795 person-years of follow-

up for men with baseline diastolic blood pressures between 80 and

90 mm Hg.

6 This table shows the number of CHD events by sex and DBP group.

7 The expansion of the data set, and the definitions of age now, fate, and

one are done in the same way as in Section 8.8.2. This list command
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shows the effects of these transformations. Note that patient 2 enters the

study at age 46 and exits at age 50 with CHD. The expanded data set

contains one record for each of these years; age now increases from 46

to 50 in these records, and fate equals 1 only in the final record for this

patient.

8 Recode age now into 5-year age groups.

9 Collapse records with identical values of sex, bmi gr, scl gr, dbp gr, and

age gr. The variable pt yrs records the number of patient-years of follow-

up associated with each record while chd cnt records the corresponding

number of CHD events. For example, the subsequent listing shows that

therewere 161 patient-years of follow-up inmen aged 61 to 65with body

mass indexes between 25.3 and 28, serum cholesterols less than or equal

to 197, and diastolic blood pressures between 81 and 90 on their baseline

exams. Four CHD events occurred in these patients during these years

of follow-up.

10 This table shows total person-years of follow-up cross-tabulated by sex

and dbp gr. Note that this table is identical to the one produced before

the data transformation.

11 This table shows CHD events of follow-up cross-tabulated by sex and

dbp gr. This table is also identical to its pre-transformation version and

provides evidence that we have successfully transformed the data in the

way we intended.

12 Definemale to equal 1 for men and 0 for women. In later analyses male

gender will be treated as a risk factor for coronary heart disease.

13 We have created a data set with 1267 records. There is one record for

eachunique combinationof covariate values for the variables sex,bmi gr,

scl gr, dbp gr, and age gr.

14 The person-year data set is stored away for future analysis. We will use

this data set in Section 8.12 and in Chapter 9.

N.B. It is very important that you specify a new name for the transformed

data set. If you use the original name, you will lose the original data set. It

is also a very good idea to always keep back-up copies of your original data

sets in case you accidentally destroy the copy that you are working with.

8.10. Simple Poisson Regression with Multiple Data Records

In Section 8.9, we created a data set from the FraminghamHeart Study with

1267 records. Each of these records describes a number of person-years of

follow-up and number of CHD events associated with study subjects with
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a specific value for each of the covariates. Suppose that we wanted to repeat

the analysis of the effect of gender on CHD from Section 8.4 using this data

set. The model for this analysis is

log[E[di | xi ]] = log[ni ] + α + xiβ, (8.9)

where where α and β are model parameters,

ni is the number of person-years of follow-up in the i th record of this data

set,
di is the number of CHD events observed in these ni person-years of follow-

up, and

xi =
{
1: if the i th record describes follow-up of men

0: if the i th record describes follow-up of women.

Note that models (8.9) and (8.6) are almost identical. In model (8.6) there

are only two records and n0 and n1equal the total number of person-years

of follow-up in women andmen, respectively. In model (8.9) there are 1267

records and ni equals the total number of person-years of follow-up in the

i th record. The person-years of follow-up and CHD events in women and

men frommodel (8.6) have been distributed over a much larger number of

records in model (8.9). This difference in data organization has no effect on

our estimate of the relative risk of CHD in men compared to women. Re-

gressing CHD against gender usingmodel (8.9) gives a relative risk estimate

of R̂ = 1.832, with a 95% confidence interval of (1.65, 2.03). This estimate

and confidence interval are identical to those obtained frommodel (8.6) in

Section 8.4. Model (8.9) will work as long as the division of person-years of

follow-up is done in such away that each recorddescribes follow-up in a sub-

group ofmen or a subgroup of women (but not of both genders combined).

8.11. Poisson Regression with a Classification Variable

Suppose that wewished to determine the crude relative risks of CHDamong

subjects whose body mass index (BMI) is in the second, third, and fourth

quartiles relative to subjects in the first BMI quartile. We do this in much

the same way as we did for logistic regression (see Section 5.11). Suppose

that the data are organized so that each record describes person-years of

follow-up and CHD events in subjects whose BMIs are in the same quartile.

Consider the model

log[E[di | i j ]] = log[ni ] + α + β2 × bmii2 + β3 × bmii3 + β4 × bmii4,

(8.10)
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where ni and di describe the number of person-years of follow-up andCHD

events in the i th record,

j is the BMI quartile of patients from the i th record,

bmiih =
{
1: if patients from the i th record are in the hth BMI quartile

0: otherwise.

Let π j be the CHD event rate of patients in the j th BMI quartile, and let

R j = π j/π1 be the relative risk of people in the j th quartile compared to the

first. Then for records describing patients in the first BMI quartile, model

(8.10) reduces to

log[E[di | i1]] = log[ni ] + α. (8.11)

Subtracting log [ni ] from both sides of equation (8.11) gives us

log[E[di | i1]] − log[ni ] = log[E[di/ni | i1]] = log[π1] = α. (8.12)

For records of patients from the fourth BMI quartile model (8.10) reduces

to

log[E[di | i4]] = log[ni ] + α + β4. (8.13)

Subtracting log[ni ] from both sides of equation (8.13) gives us

log[E[di | i4]]− log[ni ]= log[E[di/ni | i4]] = log[π4]= α + β4. (8.14)

Subtracting equation (8.12) from equation (8.14) gives us

log[π4] − log[π1] = log[π4/π1] = log[R4] = β4.

Hence,β4 is the log relative risk ofCHDforpeople in the fourthBMIquartile

relative to people in the first BMI quartile. By a similar argument, β2 and β3

estimate the log relative risks of people in the secondand thirdBMIquartiles,

Table 8.3. Effect of baseline body mass index on coronary heart disease. The Framingham Heart
Study data were analyzed using model (8.10).

Baseline body mass index

Quartile Range

Person-years of

follow-up

Patients with coronary

heart disease

Relative

risk

95% confidence

interval

1 ≤ 22.8 kg/m2 27 924 239 1*

2 22.8–25.2 kg/m2 26 696 337 1.47 (1.2–1.7)

3 25.2–28 kg/m2 26 729 443 1.94 (1.7–2.3)

4 > 28 kg/m2 22 977 453 2.30 (2.0–2.7)

Total 104 326 1472

* Denominator of relative risk
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respectively. Applying model (8.10) to the Framingham Heart Study data

reformatted in Section 8.9 gives the relative risk estimates and confidence

intervals presented in Table 8.3.

8.12. Applying Simple Poisson Regression to the
Framingham Data

The following log file and comments illustrate how to perform the analysis

of models (8.9) and (8.10) using Stata.

. * 8.12.Framingham.do

. *

. * Analysis of the effects of gender and body mass index

. * on coronary heart disease using person-year data from the

. * Framingham Heart Study.

. *

. use C:\WDDtext\8.12.Framingham.dta, clear

. *

. * Regress CHD against gender using model 8.9.

. *

. glm chd_cnt male, family(poisson) link(log) lnoffset(pt_yrs) eform {1}
{Output omitted}

----------------------------------------------------------------------------

chd_cnt | IRR Std. Err. z P> |z| [95% Conf. Interval]

--------+-------------------------------------------------------------------

male | 1.832227 .0961442 11.540 0.000 1.653154 2.030698

pt_yrs | (exposure)

----------------------------------------------------------------------------

. table bmi_gr, contents(sum pt_yrs) row {2}
--------+------------

bmi_gr | sum(pt_yrs)

--------+------------

22.8 | 27924

25.2 | 26696

28 | 26729

29 | 22977

|

Total | 104326

--------+------------

. table bmi_gr, contents(sum chd_cnt) row {3}
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---------+--------------

bmi_gr | sum(chd_cnt)

---------+--------------

22.8 | 239

25.2 | 337

28 | 443

29 | 453

|

Total | 1472

---------+--------------

. *

. * Regress CHD against BMI using model 8.10.

. *

. xi: glm chd_cnt i.bmi_gr, family(poisson) link(log) lnoffset(pt_yrs) eform {4}
i.bmi_gr _Ibmi_gr_1-4 (_Ibmi_gr_1 for bmi~r==22.79999923706054 omitted)

{Output omitted}
--------------------------------------------------------------------------

chd_cnt | IRR Std. Err. z P>|z| [95% Conf. Interval]

-----------+--------------------------------------------------------------

_Ibmi_gr_2 | 1.474903 .1247271 4.595 0.000 1.249627 1.74079 {5}
_Ibmi_gr_3 | 1.936425 .1554147 8.234 0.000 1.654568 2.266298

_Ibmi_gr_4 | 2.303481 .1841576 10.437 0.000 1.969396 2.694239

pt_yrs | (exposure)

--------------------------------------------------------------------------

Comments
1 SeeComment 2of Section 8.7 for an explanationof the syntax of this com-

mand. The number of CHD events in each record, chd cnt, is regressed

against male using model (8.9). The variable pt yrs gives the number of

patient-years of follow-up per record. The eform option specifies that the

estimate of the model coefficient for the covariatemale is to be exponen-

tiated. This gives an estimate of the relative risk of CHD in men without

having to use a lincom command. The heading IRR stands for incidence

rate ratio, which is a synonym for relative risk. The highlighted relative

risk and confidence interval are identical to those obtained in Section 8.7

from model (8.6).

2 Create a table of the number of patient-years of follow-up among patients

in each quartile of BMI. A separate row of the table is generated for each

distinct value of bmi gr. The contents(sum pt yrs) option sums and lists



291 8.14. Exercises

the value of pt yrs over all records with the same value of bmi gr. The row

option provides the total number of patient-years of follow-up among

patients whose BMI is known. This total is less than that given in Table 8.1

because some patients have missing BMIs.

3 This table sums the total number of CHDevents observed among patients

in each BMI quartile. The output from this and the preceding table is

entered in Table 8.3.

4 The xi prefix works exactly the same way for the glm command as for the

logistic command. The term i.bmi gr creates separate indicator variables

for all but the first value of the classification variable bmi gr. In Section

8.9, we defined dbp gr to take the values 22.8, 25.2, 28, and 29 for patients

whose BMI was in the first, second, third, and fourth quartile, respec-

tively. The indicator variables that are generated are called Ibmi gr 2,

Ibmi gr 3, and Ibmi gr 4. Ibmi gr 2 equals 1 for patients whose BMI is

in the second quartile and equals 0 otherwise. Ibmi gr 3 and Ibmi gr 4

are similarly defined for patients whose BMIs are in the third and fourth

quartiles, respectively. These covariates are entered into the model. In

other words, i.bmi gr enters the terms β2 × bmii2 + β3 × bmii3 + β4 ×
bmii4 from model (8.10). Thus, the entire command regresses CHD

against BMI using model (8.10).

5 The highlighted relative risks and confidence intervals were used to create

Table 8.3.

8.13. Additional Reading

Rothman and Greenland (1998) discuss classical methods of estimating

relative risks from incidence data.

Breslow and Day (1987) provides an excellent discussion of Poisson regres-

sion. I recommend this text to readers who are interested in the mathe-

matical underpinnings of this technique.

McCullagh and Nelder (1989) is a standard reference that discusses Poisson

regression within the framework of the generalized linear model.

8.14. Exercises

Scholer et al. (1997) studied a large cohort of children from Tennessee with

known risk factors for injuries (see also the exercises from Chapter 5). Chil-

dren were followed until their fifth birthday. Data from a subset of this

study is posted on my web site in a file called 8.ex.InjuryDeath.dta. There is



292 8. Introduction to Poisson regression

one record in this data file for each distinct combination of the following

covariates from the original file. These covariates are defined as follows:

age Child’s age in years

age mom Mother’s age in years when her child was born, categorized as

19: age < 20

24: 20 ≤ age ≤ 24

29: 25 ≤ age ≤ 29

30: age > 29

lbw Birth weight, categorized as

0: ≥ 2500 gm

1: < 2500 gm

educ mom Mother’s years of education, categorized as

11: < 12 years

12: 12 years

15: 13–15 years

16: >15 years

income Maternal neighborhood’s average income, categorized by

quintiles

illegit Maternal marital status at time of birth, categorized as

0: Married

1: Single

oth chld Number of other children, categorized as

0: No siblings

1: 1 sibling

2: 2 siblings

3: 3 siblings

4: 4 or more siblings

race mom Race of mother, categorized as

0: White

1: Black

pnclate Late or absent prenatal care, categorized as

0: Care in first 4 months of pregnancy

1: No care in first 4 months of pregnancy

Also included in each record is

childyrs Thenumberof child-yearsofobservationamongchildrenwith

the specified covariate values

inj dth The number of injury deaths observed in these child-years of

observation
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1 Using the 8.ex.InjuryDeath.dta data set, fill in the following table of

person-years of follow-up in the TennesseeChildren’s Cohort, subdivided

by the mother’s marital status and injury deaths in the first five years of

life.

Marital status of mother

Not married Married Total

Injury deaths

Child-years of

follow-up

2 Using classical methods, estimate the risk of injury deaths in children

born to unmarriedmothers relative to children born tomarriedmothers.

Calculate a 95% confidence interval for this relative risk. How does your

answer differ from the relative risk for illegitimacy that you calculated in

Question 4 of Chapter 5? Explain any differences you observe.

3 Use Poisson regression to complete the following table. How does your

estimate of the relative risk of injury death associated with illegitimacy

compare to your answer to Question 2?

Numerator of Denominator of Crude 95%

relative risk relative risk relative risk* confidence interval

Maternal age 25–29 Maternal age > 29

Maternal age 20–24 Maternal age > 29

Maternal age < 20 Maternal age > 29

Birth weight < 2500 gm Birth weight ≥ 2500 gm

Mother’s education. 13–15 yrs. Mother’s ed. > 15 yrs.

Mother’s education = 12 yrs. Mother’s ed. > 15 yrs.

Mothers education < 12 yrs. Mother’s ed. > 15 yrs.

Income in lowest quintile Income in highest quintile

Income in 2nd quintile Income in highest quintile

Income in 3rd quintile Income in highest quintile

Income in 4th quintile Income in highest quintile

Unmarried mother Married mother
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One sibling No siblings

Two siblings No siblings

Three siblings No siblings

> 3 siblings No siblings

Black mother White mother

Late/no prenatal care Adequate prenatal care

1st year of life 3 year old

1 year old 3 year old

2 year old 3 year old

4 year old 3 year old

* Unadjusted for other covariates
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Multiple Poisson Regression

Simple Poisson regression generalizes to multiple Poisson regression in the

same way that simple logistic regression generalizes to multiple logistic re-

gression. The response variable is a number of events observed in a given

number of person-years of observation. We regress this response variable

against several covariates, using the logarithm of the number of person-

years of observation as an offset in the model. This allows us to estimate

event rates that are adjusted for confounding variables or to determine how

specific variables interact to affect these rates. We can add interaction terms

to our model in exactly the same way as in the other regression techniques

discussed in this text.

Themethods used in this chapter are very similar to those used inChapter

5 for multiple logistic regression. You will find this chapter easier to read if

you have read Chapter 5 first.

9.1. Multiple Poisson Regression Model

Suppose that data on patient-years of follow-up can be logically grouped

into J strata based on age or other factors, and that there are K exposure

categories that affect morbidity or mortality in the population. For j =
1, . . . , J and k = 1, . . . , K let

n jk be the number of person-years of follow-up observed among patients

in the j th stratum who are in the kth exposure category,

d jk be the number ofmorbid ormortal events observed in these n jk person-

years of follow-up,

x jk1, x jk2, · · · , x jkq be explanatory variables that describe the kth exposure

group of patients in stratum j, and

x j k = (x jk1, x jk2, · · · , x jkq ) denote the values of all of the covariates for

patients in the j th stratum and kth exposure category.

Then the multiple Poisson regression model assumes that

log[E[d jk | x j k]]= log[n jk]+ α j + β1x jk1 + β2x jk2 + · · · +βq x jkq , (9.1)

295
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where

α1, . . . , αJ are unknown nuisance parameters, and

β1, β2, . . . , βq are unknown parameters of interest.

For example, suppose that there are J = 5 age strata, and that patients

are classified as light or heavy drinkers and light or heavy smokers in each

stratum. Then there are K = 4 exposure categories (two drinking categories

times two smoking categories). We might choose q = 2 and let

x jk1 =
{
1: for patients who are heavy drinkers

0: for patients who are light drinkers,

x jk2 =
{
1: for patients who are heavy smokers

0: for patients who are light smokers.

Then model (9.1) reduces to

log[E [d jk|x j k]] = log[n jk] + α j + β1x jk1 + β2x jk2. (9.2)

The relationship between the age strata, exposure categories, and covariates

of this model is clarified in Table 9.1.

Let λ j k = E [d jk/n jk | x j k] be the expected morbidity incidence rate for

people fromstratum j whoare in exposure category k. Ifwe subtract log(n jk)

from both sides of model (9.1) we get

log[E[d jk | x j k]/n jk] = log[E[d jk/n jk | x j k]] =
log[λ j k] = α j + β1x jk1 + β2x jk2 + · · · + βq x jkq · (9.3)

Table 9.1. This table shows the relationships between the age strata, the exposure categories and
the covariates of model (9.2).

Exposure Category

k = 1 k = 2 k = 3 k = 4

K = 4 Light drinker Light drinker Heavy drinker Heavy drinker

J = 5 light smoker heavy smoker light smoker heavy smoker

p = 2 x j11 = 0, x j12 = 0 x j21 = 0, x j22 = 1 x j31 = 1, x j32 = 0 x j41 = 1, x j42 = 1

j = 1 x111 = 0, x112 = 0 x121 = 0, x122 = 1 x131 = 1, x132 = 0 x141 = 1, x142 = 1

j = 2 x211 = 0, x212 = 0 x221 = 0, x222 = 1 x231 = 1, x232 = 0 x241 = 1, x242 = 1

j = 3 x311 = 0, x312 = 0 x321 = 0, x322 = 1 x331 = 1, x332 = 0 x341 = 1, x342 = 1

j = 4 x411 = 0, x412 = 0 x421 = 0, x422 = 1 x431 = 1, x432 = 0 x441 = 1, x442 = 1

A
ge

St
ra
tu
m

j = 5 x511 = 0, x512 = 0 x521 = 0, x522 = 1 x531 = 1, x532 = 0 x541 = 1, x542 = 1
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In other words, model (9.1) imposes a log linear relationship between the

expected morbidity rates and the model covariates. Note that this model

permits people in the same exposure category to have different morbidity

rates in different strata. This is one of the more powerful features of Poisson

regression in that it makes it easy to model incidence rates that vary with

time.

Suppose that two groups of patients from the j th stratum have been

subject to exposure categories f and g. Then the relative risk of an event

for patients in category f compared to category g is λ j f /λ j g . Equation (9.3)

gives us that

log[λ j f ] = α j + x j f 1β1 + x j f 2β2 + · · · + x j f qβq , and (9.4)

log[λ j g ] = α j + x jg1β1 + x jg2β2 + · · · + x jgqβq . (9.5)

Subtracting equation (9.5) fromequation (9.4) gives that thewithin-stratum

log relative risk of group f subjects relative to group g subjects is

log[λ j f /λ j g ] = (x j f 1 − x jg1)β1 + (x j f 2 − x jg2)β2 + · · · + (x j f q − x jgq )βq .

(9.6)

Thus, we can estimate log relative risks in Poisson regressionmodels in pre-

cisely the same way that we estimated log odds ratios in logistic regression.

Indeed, the only difference is that in logistic regression weighted sums of

model coefficients are interpreted as log odds ratios while in Poisson re-

gression they are interpreted as log relative risks. An important feature of

equation (9.6) is that the relative riskλ j f /λ j g mayvary between the different

strata.

The nuisance parameters α1, α2, . . . , αJ are handled in the same way that

we handle any parameters associated with a categorical variable. That is, for

any two values of j and h between 1 and J we let

strata jh =
{
1: if j = h

0: otherwise.

Then model (9.1) can be rewritten as

log[E[d jk | x j k]] = log[n jk] +
J∑

h = 1

αh × strata jh

+ β1x jk1 + β2x jk2 + · · · + βq x jkq . (9.7)

Models (9.1) and (9.7) are algebraically identical. We usually write the sim-

pler form (9.1)when the strata are defined by confounding variables that are
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not of primary interest. However, in Stata these models are always specified

in a way that is analogous to equation (9.7).

We derive maximum likelihood estimates α̂ j for α j and β̂1, . . . , β̂q for

β1, . . . , βq . Inferences about these parameter estimates are made in the

same way as in Section 5.13 through 5.15. Again the only difference is that

in Section 5.14 weighted sums of parameter estimates were interpreted as

estimates of log odds ratios, while here they are interpreted as log relative

risks. Suppose that f is a weighted sum of parameters that corresponds to a

logrelative riskof interest, ˆf is thecorrespondingweightedsumofparameter

estimates froma large study, and s f is the estimated standard errorof f̂ . Then

under the null hypothesis that the relative risk exp[ f ] = 1, the test statistic

z = ˆf /s f (9.8)

will have an approximately standard normal distribution if the sample size

is large. A 95% confidence interval for this relative risk is given by

(exp[ ˆf − 1.96s f ], exp[ ˆf + 1.96s f ]). (9.9)

9.2. An Example: The Framingham Heart Study

In Section 8.9 we created a person-year data set from the FraminghamHeart

Study for Poisson regression analysis. Patients were divided into strata based

on age, body mass index, serum cholesterol, and baseline diastolic blood

pressure. Age was classified into nine strata. The first and last consisted of

people ≤ 45 years of age, and people older than eighty years, respectively.

The inner strata consisted of people 46–50, 51–55, . . . , and 76–80 years of

age. The values of the other variables were divided into strata defined by

quartiles. Each record in this data set consists of a number of person-years

of follow-up of people of the same gender who are in the same strata for

age, body mass index, serum cholesterol, and diastolic blood pressure. Let

nk be the number of person-years of follow-up in the kth record of this file

and let dk be the number of cases of coronary heart disease observed during

these nk person-years of follow-up. Let

malek =
{
1: if record k describes men

0: if it describes women,

age jk =
{
1: if record k describes people from the j th age stratum

0: otherwise,
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bmi jk =
{
1: if record k describes people from the j th BMI quartile

0: otherwise,

scl j k =
{
1: if record k describes people from the j th SCL quartile

0: otherwise, and

dbp jk =
{
1: if record k describes people from the j th DBP quartile

0: otherwise.

For any model that we will consider let

xk = (x jk1, x jk2, . . . , x jkq ) denote the values of all of the covariates of people

in the kth record that are included in the model,

λk = E[dk/nk | xk] be the expected CHD incidence rate for people in the

kth record given their covariates xk . We will now build several models

with these data.

9.2.1. A Multiplicative Model of Gender, Age and Coronary Heart Disease

Consider the model

log[E[dk | xk]] = log[nk] + α +
9∑

j=2

β j × age jk + γ × malek , (9.10)

where α, β2, β3, . . . , β9 and γ are parameters in the model. Subtracting

log[nk] from both sides of equation (9.10) gives that

log[λk] = α +
9∑

j=2

β j × age jk + γ × malek . (9.11)

If record f describes women from the first age stratum then equation (9.11)

reduces to

log[λ f ] = α. (9.12)

If record gdescribesmen from the first stratum then equation (9.11) reduces

to

log[λg ] = α + γ. (9.13)

Subtracting equation (9.12) from equation (9.13) gives that

log[λg ] − log[λ f ] = log[λg/λ f ] = (α + γ ) − α = γ.
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In otherwords,γ is the log relative risk ofCHDformen compared towomen

within the first age stratum. Similarly, if records f and gnowdescribewomen

and men, respectively, from the j th age stratum with j > 1 then

log[λ f ] = α + β j and (9.14)

log[λg ] = α + β j + γ. (9.15)

Subtracting equation (9.14) from (9.15) again yields that

log[λg/λ f ] = γ.

Hence, γ is the within-stratum (i.e., age-adjusted) log relative risk of CHD

for men compared to women for all age strata. We have gone through vir-

tually identical arguments many times in previous chapters. By subtracting

appropriate pairs of log incidence rates you should also be able to show that

β j is the sex-adjusted log relative risk of CHD for people from the j th age

stratum compared to the first, and thatβ j + γ is the log relative risk of CHD

for men from the j th stratum compared to women from the first. Hence,

the age-adjusted risk for men relative to women is exp[γ ], the sex-adjusted

risk of people from the j th age stratum relative to the first is exp[β j ], and

the risk for men from the j th age stratum relative to women from the first

is exp[γ ] × exp[β j ]. Model (9.10) is called a multiplicative model because

this latter relative risk equals the risk for men relative to women times the

risk for people from the j th stratum relative to people from the first.

The maximum likelihood estimate of γ in (9.10) is γ̂ = 0.6912. Hence,

the age-adjusted estimate of the relative risk of CHD in men compared

to women from this model is exp[0.6912] = 2.00. The standard error of

γ̂ is 0.0527. Therefore, from equation (9.9), the 95% confidence interval

for this relative risk is (exp[0.6912 − 1.96 × 0.0527], exp[0.6912 + 1.96 ×
0.0527]) = (1.8, 2.2). This risk estimate is virtually identical to the estimate

we obtained from model (7.16), which was a proportional hazards model

with ragged entry.

Model (9.10) is not of great practical interest because we know from

Chapter 7 that the risk of CHD in men relative to women is greater for

premenopausal ages than for postmenopausal ages. The incidence of CHD

in women in the j th stratum is the sum of all CHD events in women from

this stratum divided by the total number of women-years of follow-up in

this strata. That is, this incidence is

Î 0 j =
∑

{k: malek = 0, agejk = 1}
dk

/ ∑
{k: malek = 0, agejk = 1}

nk . (9.16)
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Figure 9.1 Age–sex specific incidence of coronary heart disease (CHD) in people from the
Framingham Heart Study (Levy, 1999).

Similarly, the incidence of CHD in men from the j th age stratum can be

estimated by

Î 1 j =
∑

{k: malek = 1, agejk = 1}
dk

/ ∑
{k: malek = 1, agejk = 1}

nk . (9.17)

Equations (9.16) and (9.17) are used in Figure 9.1 to plot the age-specific

incidence of CHD in men and women from the Framingham Heart Study.

This figure shows dramatic differences in CHD rates between men and

women; theratioof these ratesat eachagediminishesaspeoplegrowolder.To

model these rates effectivelyweneed toadd interaction terms intoourmodel.

9.2.2. A Model of Age, Gender and CHD with Interaction Terms

Let us expand model (9.10) as follows:

log[E[dk | xk]] = log[nk] + α +
9∑

j=2

β j × age jk + γ × malek

+
9∑

j=2

δ j × age jk × malek . (9.18)

If record f describeswomen from the j th age stratumwith j > 1 thenmodel

(9.18) reduces to

log[λ f ] = α + β j . (9.19)
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Table 9.2. Age-specific relative risks of coronary heart disease (CHD) in men
compared to women from the Framingham Heart Study (Levy, 1999). These
relative risk estimates were obtained from model (9.18). Five-year age
intervals are used. Similar relative risks from contiguous age strata have been
highlighted.

Patient-years of

follow-up CHD events

Age Men Women Men Women Relative risk

95% confidence

interval

≤45 7370 9205 43 9 5.97 2.9–12

46–50 5835 7595 53 25 2.76 1.7–4.4

51–55 6814 9113 110 46 3.20 2.3–4.5

56–60 7184 10 139 155 105 2.08 1.6–2.7

61–65 6678 9946 178 148 1.79 1.4–2.2

66–70 4557 7385 121 120 1.63 1.3–2.1

71–75 2575 4579 94 88 1.90 1.4–2.5

76–80 1205 2428 50 59 1.71 1.2–2.5

≥81 470 1383 19 50 1.12 0.66–1.9

If record g describes men from the same age stratum then model (9.18)

reduces to

log[λg ] = α + β j + γ + δ j . (9.20)

Subtracting equation (9.19) from equation (9.20) gives the log relative risk

of CHD for men versus women in the j th age stratum to be

log[λg/.λ f ] = γ + δ j . (9.21)

Hence, we estimate this relative risk by

exp[γ̂ + δ̂ j ]. (9.22)

A similar argument gives that the estimated relative risk of men compared

to women in the first age stratum is

exp[γ̂ ]. (9.23)

Equations (9.22) and (9.23) are used in Table 9.2 to estimate the age-specific

relative risks of CHD inmen versus women. Ninety-five percent confidence

intervals are calculated for these estimates using equation (9.9).

When models (9.10) and (9.18) are fitted to the Framingham Heart data

they produce model deviances of 1391.3 and 1361.6, respectively. Note that

model (9.10) is nested withinmodel (9.18) (see Section 5.24). Hence, under

thenull hypothesis that themultiplicativemodel (9.10) is correct, the change
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Table 9.3. Age-specific relative risks of coronary heart disease (CHD) in men
compared to women from the Framingham Heart Study (Levy, 1999). Age
intervals from Table 9.2 that had similar relative risks have been combined in
this figure giving age intervals with variable widths.

Patient-years of

follow-up CHD events

Age Men Women Men Women Relative risk

95% confidence

interval

≤45 7370 9205 43 9 5.97 2.9–12

46–55 12 649 16 708 163 71 3.03 2.3–4.0

56–60 7184 10 139 155 105 2.08 1.6–2.7

61–80 15 015 24 338 443 415 1.73 1.5–2.0

≥81 470 1383 19 50 1.12 0.66–1.9

in deviance will have a chi-squared distribution with as many degrees of

freedom as there are extra parameters in model (9.18). As there are eight

moreparameters inmodel (9.18) thanmodel (9.10) this chi-squared statistic

will have eight degrees of freedom. The probability that this statistic will

exceed 1391.3 − 1361.6 = 29.7 is P = 0.0002. Hence, these data allow us

to reject the multiplicative model with a high level of statistical significance.

Table 9.2 shows a marked drop in the risk of CHD in men relative to

women with increasing age. Note, however, that the relative risks for ages

46–50 and ages 51–55 are similar, as are the relative risks for ages 61–65

through 76–80. Hence, we can reduce the number of age strata from nine

to five with little loss in explanatory power by lumping ages 46–55 into one

stratumandages 61–80 into another.This reduces thenumberof parameters

inmodel (9.18) by eight (four age parameters plus four interaction parame-

ters). Refittingmodel (9.18) with only these five condensed age strata rather

than the original nine gives the results presented in Table 9.3. Note that the

age-specific relative risk of men verses women in this table diminishes with

age but remains significantly different from one for all ages less than 80.

Gender does not have a significant influence on the risk of CHD in people

older than80.These data are consistentwith thehypothesis that endogenous

sex hormones play a cardioprotective role in premenopausal women.

9.2.3. Adding Confounding Variables to the Model

Let us now consider the effect of possibly confounding variables on our esti-

mates in Table 9.3. The variables that we will consider are body mass index,

serum cholesterol, and diastolic blood pressure. We will add these variables
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one at a time in order to gauge their influence on the model deviance. As

we will see in Section 9.3, all of these variables have an overwhelmingly

significant effect on the change in model deviance. The final model that we

will consider is

log[E[dk | xk]] = log[nk] + α +
5∑

j = 2

β j × age jk + γ × malek

+
5∑

j = 2

δ j × age jk × malek +
4∑

f =2

θ f × bmi f k

+
4∑

g = 2

φg × sclgk +
4∑

h = 2

ψh × dbphk , (9.24)

where the age strata are those given in Table 9.3 rather than those given

at the beginning of Section 9.2. Recall that bmi f k , sclgk , and dbphk are in-

dicator covariates corresponding to the four quartiles of body mass index,

serum cholesterol, and diastolic blood pressure, respectively. By the usual

argument, the age-specific CHD risk formen relative to women adjusted for

body mass index, serum cholesterol, and diastolic blood pressure is either

exp[γ ] (9.25)

for the first age stratum or

exp[γ + δ j ] (9.26)

for the other age strata. Substituting the maximum likelihood estimates of

γ and δ j into equations (9.25) and (9.26) gives the adjusted relative risk

estimates presented in Table 9.4. Comparing these results with those of

Table 9.4. Age-specific relative risks of coronary heart disease (CHD) in men
compared to women adjusted for body mass index, serum cholesterol, and
baseline diastolic blood pressure (Levy, 1999). These risks were derived using
model (9.24). They should be compared with those from Table 9.3.

Adjusted 95% confidence

Age relative risk interval

≤45 4.64 2.3–9.5

46–55 2.60 2.0–3.4

56–60 1.96 1.5–2.5

61–80 1.79 1.6–2.0

≥81 1.25 0.73–2.1
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Table 9.3 indicates that adjusting for body mass index, serum cholesterol,

and diastolic blood pressure does reduce the age-specific relative risk of

CHD in men versus women who are less than 56 years of age.

9.3. Using Stata to Perform Poisson Regression

The following log file and comments illustrate how to perform the Poisson

regressions of the Framingham Heart Study data that were described in

Section 9.2. You should be familiar with how to use the glm and logistic

commands to perform logistic regression before reading this section (see

Chapter 5).

. * 9.3.Framingham.log

. *

. * Estimate the effect of age and gender on coronary heart disease (CHD)

. * using several Poisson regression models

. *

. * use C:\WDDtext\8.12.Framingham.dta, clear

. *

. * Fit a multiplicative model of the effect of gender and age on CHD

. *

. xi: glm chd_cnt i.age_gr male, family(poisson) link(log)

>lnoffset(pt_yrs) eform {1}
i.age_gr _Iage_gr_45-81 (naturally coded; _Iage_gr_45 omitted)

{Output omitted}
Generalized linear models No. of obs = 1267

{Output omitted}
Deviance = 1391.341888 (1/df) Deviance = 1.106875

{Output omitted}

---------------------------------------------------------------------------

chd_cnt | IRR Std. Err. z P>|z| [95% Conf. Interval]

--------------+------------------------------------------------------------

_Iage_gr_50 | 1.864355 .3337745 3.48 0.001 1.312618 2.648005

_Iage_gr_55 | 3.158729 .5058088 7.18 0.000 2.307858 4.323303

_Iage_gr_60 | 4.885053 .7421312 10.44 0.000 3.627069 6.579347

_Iage_gr_65 | 6.44168 .9620181 12.47 0.000 4.807047 8.632168

_Iage_gr_70 | 6.725369 1.028591 12.46 0.000 4.983469 9.076127

_Iage_gr_75 | 8.612712 1.354852 13.69 0.000 6.327596 11.72306

_Iage_gr_80 | 10.37219 1.749287 13.87 0.000 7.452702 14.43534
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_Iage_gr_81 | 13.67189 2.515296 14.22 0.000 9.532967 19.60781

male | 1.996012 .1051841 13.12 0.000 1.800144 2.213192 {2}
pt_yrs | (exposure)

---------------------------------------------------------------------------

. *

. * Tabulate patient-years of follow-up and number of

. * CHD events by sex and age group.

. *

. table sex, contents(sum pt_yrs sum chd_cnt) by(age_gr) {3}
------------------------------------------

age_gr |

and Sex | sum(pt_yrs) sum(chd_cnt)

-------------+----------------------------

<= 45 |

Men | 7370 43

Women | 9205 9

-------------+----------------------------

45-50 |

Men | 5835 53

Women | 7595 25

-------------+----------------------------

{Output omitted. See Table 9.2}
75-80 |

Men | 1205 50

Women | 2428 59

-------------+----------------------------

> 80 |

Men | 470 19

Women | 1383 50

------------------------------------------

. *

. * Calculate age-sex specific incidence of CHD

. *

. collapse (sum) patients = pt_yrs chd = chd_cnt, by(age_gr sex)

. generate rate = 1000* chd/patients {4}

. generate men = rate if male == 1 {5}
(9 missing values generated)

. generate women = rate if male == 0

(9 missing values generated)
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. set textsize 120

. graph men women, bar by(age_gr) ylabel(0 5 to 40) gap(3) {6}
>11title(CHD Morbidity Rate per 1000) title(Age)

{Graph omitted. See Figure 9.1}
. use C:\WDDtext\8.12.Framingham.dta, clear {7}
. *

. * Add interaction terms to the model

. *

. xi: glm chd_cnt i.age_gr*male, family(poisson) link(log) lnoffset(pt_yrs) {8}
i.age_gr _Iage_gr_45-81 (naturally coded; _Iage_gr_45 omitted)

i.age_gr*male _IageXmale_# (coded as above)

{Output omitted}
Generalized linear models No. of obs = 1267

{Output omitted}
Deviance = 1361.574107 (1/df) Deviance = 1.090131

{Output omitted}
-----------------------------------------------------------------------------

chd_cnt | Coef. Std. Err. z P>|z| [95% Conf. Interval]

--------------+--------------------------------------------------------------

_Iage_gr_50 | 1.213908 .3887301 3.12 0.002 .4520112 1.975805

_Iage_gr_55 | 1.641462 .3644863 4.50 0.000 .9270817 2.355842

_Iage_gr_60 | 2.360093 .3473254 6.80 0.000 1.679348 3.040838

_Iage_gr_65 | 2.722564 .3433189 7.93 0.000 2.049671 3.395457

_Iage_gr_70 | 2.810563 .3456074 8.13 0.000 2.133185 3.487941

_Iage_gr_75 | 2.978378 .3499639 8.51 0.000 2.292462 3.664295

_Iage_gr_80 | 3.212992 .3578551 8.98 0.000 2.511609 3.914375

_Iage_gr_81 | 3.61029 .3620927 9.97 0.000 2.900602 4.319979

male | 1.786305 .3665609 4.87 0.000 1.067858 2.504751

_IageXmal~50 | -.771273 .4395848 -1.75 0.079 -1.632843 .0902975

_IageXmal~55 | -.623743 .4064443 -1.53 0.125 -1.420359 .1728731

_IageXmal~60 | -1.052307 .3877401 -2.71 0.007 -1.812263 -.2923503

_IageXmal~65 | -1.203381 .3830687 -3.14 0.002 -1.954182 -.4525805

_IageXmal~70 | -1.295219 .3885418 -3.33 0.001 -2.056747 -.5336915

_IageXmal~75 | -1.144716 .395435 -2.89 0.004 -1.919754 -.3696772

_IageXmal~80 | -1.251231 .4139035 -3.02 0.003 -2.062467 -.4399949

_IageXmal~81 | -1.674611 .4549709 -3.68 0.000 -2.566338 -.7828845

_cons | -6.930278 .3333333 -20.79 0.000 -7.583599 -6.276956

pt_yrs | (exposure)

-----------------------------------------------------------------------------
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. lincom male, irr

(1) [chd_cnt]male = 0.0

----------------------------------------------------------------------------

chd_cnt | IRR Std. Err. z P>|z| [95% Conf. Interval]

----------+-----------------------------------------------------------------

(1) | 5.96736 2.187401 4.87 0.000 2.909143 12.24051

----------------------------------------------------------------------------

. lincom male + _IageXmale_50, irr {9}
(1) [chd_cnt]male + [chd_cnt]_IageXmale_50 = 0.0

--------------------------------------------------------------------------

chd_cnt | IRR Std. Err. z P>|z| [95% Conf. Interval]

----------+---------------------------------------------------------------

(1) | 2.759451 .6695176 4.18 0.000 1.715134 4.439635

--------------------------------------------------------------------------

. lincom male + _IageXmale_55, irr

{Output omitted. See Table 9.2}
. lincom male + _IageXmale_60, irr

{Output omitted. See Table 9.2}
. lincom male + _IageXmale_65, irr

{Output omitted. See Table 9.2}
. lincom male + _IageXmale_70, irr

{Output omitted. See Table 9.2}
. lincom male + _IageXmale_75, irr

{Output omitted. See Table 9.2}
. lincom male + _IageXmale_80, irr

{Output omitted. See Table 9.2}
. lincom male + _IageXmale_81, irr

(1) [chd_cnt]male + [chd_cnt]_IageXmale_81 = 0.0

-----------------------------------------------------------------------------

chd_cnt | IRR Std. Err. z P>|z| [95% Conf. Interval]

----------+------------------------------------------------------------------

(1) | 1.11817 .3013496 0.41 0.679 .6593363 1.896308

-----------------------------------------------------------------------------

. display chi2tail(8, 1391.341888 - 1361.574107) {10}

.00023231

. *

. * Refit model with interaction terms using fewer parameters.

. *
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. generate age_gr2 = recode(age_gr, 45,55,60,80,81)

. xi: glm chd_cnt i.age_gr2*male, family(poisson) link(log) {11}
>lnoffset(pt_yrs) eform

i.age_gr2 _Iage_gr2_45-81 (naturally coded; _Iage_gr2_45 omitted)

i.age_gr2*male _IageXmale_# (coded as above)

{Output omitted}
Generalized linear models No. of obs = 1267

{Output omitted}
Deviance = 1400.582451 (1/df) Deviance = 1.114226

{Output omitted}
----------------------------------------------------------------------------

chd_cnt | IRR Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------

_Iage_gr2_55 | 4.346255 1.537835 4.15 0.000 2.172374 8.695524

_Iage_gr2_60 | 10.59194 3.678849 6.80 0.000 5.362059 20.92278

_Iage_gr2_80 | 17.43992 5.876004 8.48 0.000 9.010534 33.75503

_Iage_gr2_81 | 36.97678 13.38902 9.97 0.000 18.18508 75.18703

male | 5.96736 2.187401 4.87 0.000 2.909143 12.24051

_IageXmal~55 | .5081773 .1998025 −1.72 0.085 .2351496 1.098212

_IageXmal~60 | .3491314 .1353722 −2.71 0.007 .1632841 .746507

_IageXmal~80 | .2899566 .1081168 −3.32 0.001 .1396186 .6021748

_IageXmal~81 | .1873811 .0852529 −3.68 0.000 .0768164 .4570857

pt_yrs | (exposure)

-------------+--------------------------------------------------------------

. lincom male + _IageXmale_55, irr {12}
(1) [chd_cnt]male + [chd_cnt]_IageXmale_55 = 0.0

--------------------------------------------------------------------------

chd_cnt | IRR Std. Err. z P>|z| [95% Conf. Interval]

----------+---------------------------------------------------------------

(1) | 3.032477 .4312037 7.80 0.000 2.294884 4.007138

--------------------------------------------------------------------------

. lincom male + _IageXmale_60, irr

{Output omitted. See Table 9.3}
. lincom male + _IageXmale_80, irr

{Output omitted. See Table 9.3}
. lincom male + _IageXmale_81, irr

{Output omitted. See Table 9.3}
. *

. * Adjust analysis for body mass index (BMI)
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. *

. xi: glm chd_cnt i.age_gr2*male i.bmi_gr, family(poisson) link(log) {13}
>lnoffset(pt_yrs)

i.age_gr2 _Iage_gr2_45-81 (naturally coded; _Iage_gr2_45 omitted)

i.age_gr2*male _IageXmale_# (coded as above)

i.bmi_gr _Ibmi_gr_1-4 (_Ibmi_gr_1 for bmi~r==22.7999992370 omitted)

{Output omitted.}
Generalized linear models No. of obs = 1234

{Output omitted.}
Deviance = 1327.64597 (1/df) Deviance = 1.087343

{Output omitted.}
----------------------------------------------------------------------------

chd_cnt | Coef. Std. Err. z P>|z| [95% Conf. Interval]

----------------------------------------------------------------------------

_Iage_gr2_55 | 1.426595 .3538794 4.03 0.000 .7330038 2.120185

_Iage_gr2_60 | 2.293218 .3474423 6.60 0.000 1.612244 2.974192

_Iage_gr2_80 | 2.768015 .3371378 8.21 0.000 2.107237 3.428793

_Iage_gr2_81 | 3.473889 .3625129 9.58 0.000 2.763377 4.184401

male | 1.665895 .3669203 4.54 0.000 .9467445 2.385046

_IageXmal~55 | -.6387422 .3932103 -1.62 0.104 -1.40942 .1319358

_IageXmal~60 | -.9880222 .3878331 -2.55 0.011 -1.748161 -.2278834

_IageXmal~80 | -1.147882 .3730498 -3.08 0.002 -1.879046 -.4167177

_IageXmal~81 | -1.585361 .4584836 -3.46 0.001 -2.483972 -.6867492

_Ibmi_gr_2 | .231835 .08482 2.73 0.006 .0655909 .3980791

_Ibmi_gr_3 | .4071791 .0810946 5.02 0.000 .2482366 .5661216

_Ibmi_gr_4 | .6120817 .0803788 7.61 0.000 .4545421 .7696213

_cons | -7.165097 .3365738 -21.29 0.000 -7.824769 -6.505424

pt_yrs | (exposure)

----------------------------------------------------------------------------

. display chi2tail(3,1400.582451 - 1327.64597)

1.003e-15

. *

. * Adjust estimates for BMI and serum cholesterol

. *

. xi: glm chd_cnt i.age_gr2*male i.bmi_gr i.scl_gr, family(poisson) {14}
>link(log) lnoffset(pt_yrs)

i.age_gr2 _Iage_gr2_45-81 (naturally coded; _Iage_gr2_45 omitted)

i.age_gr2*male _IageXmale_# (coded as above)

i.bmi_gr _Ibmi_gr_1-4 (_Ibmi_gr_1 for bmi~r==22.7999992370 omitted)
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i.scl_gr _Iscl_gr_1-4 (_Iscl_gr_1 for scl_gr==197 omitted)

{Output omitted.}
Generalized linear models No. of obs = 1134

{Output omitted.}
Deviance = 1207.974985 (1/df) Deviance = 1.080479

{Output omitted.}
-----------------------------------------------------------------------------

chd_cnt | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+---------------------------------------------------------------

_Iage_gr2_55 | 1.355072 .3539895 3.83 0.000 .6612658 2.048879

_Iage_gr2_60 | 2.177981 .3477145 6.26 0.000 1.496473 2.859489

_Iage_gr2_80 | 2.606272 .3376428 7.72 0.000 1.944504 3.26804

_Iage_gr2_81 | 3.254865 .3634043 8.96 0.000 2.542605 3.967124

male | 1.569236 .3671219 4.27 0.000 .8496906 2.288782

_IageXmal~55 | -.5924132 .3933748 -1.51 0.132 -1.363414 .1785873

_IageXmal~60 | -.8886722 .3881045 -2.29 0.022 -1.649343 -.1280013

_IageXmal~80 | -.9948713 .3734882 -2.66 0.008 -1.726895 -.2628478

_IageXmal~81 | -1.400993 .4590465 -3.05 0.002 -2.300708 -.5012786

_Ibmi_gr_2 | .1929941 .0849164 2.27 0.023 .0265609 .3594273

_Ibmi_gr_3 | .334175 .0814824 4.10 0.000 .1744724 .4938776

_Ibmi_gr_4 | .5230984 .0809496 6.46 0.000 .3644401 .6817566

_Iscl_gr_2 | .192923 .0843228 2.29 0.022 .0276532 .3581927

_Iscl_gr_3 | .5262667 .0810581 6.49 0.000 .3673957 .6851377

_Iscl_gr_4 | .6128653 .0814661 7.52 0.000 .4531947 .7725359

_cons | -7.340659 .3392167 -21.64 0.000 -8.005512 -6.675807

pt_yrs | (exposure)

-----------------------------------------------------------------------------

. display chi2tail(3,1327.64597 - 1207.974985)

9.084e-26

. *

. * Adjust estimates for BMI, serum cholesterol and

. * diastolic blood pressure

. *

. xi: glm chd_cnt i.age_gr2*male i.bmi_gr i.scl_gr i.dbp_gr, family(poisson) {15}
>link(log) lnoffset(pt_yrs) eform

i.age_gr2 _Iage_gr2_45-81 (naturally coded; _Iage_gr2_45 omitted)

i.age_gr2*male _IageXmale_# (coded as above)

i.bmi_gr _Ibmi_gr_1-4 (_Ibmi_gr_1 for bmi~r==22.7999992370 omitted)

i.scl_gr _Iscl_gr_1-4 (_Iscl_gr_1 for scl_gr==197 omitted)
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i.dbp_gr _Idbp_gr_74-91 (naturally coded; _Idbp_gr_74 omitted

{Output omitted.}
Generalized linear models No. of obs = 1134

{Output omitted.}
Deviance = 1161.091086 (1/df) Deviance = 1.041337

{Output omitted.}
-----------------------------------------------------------------------------

chd_cnt | IRR Std. Err. z P>|z| [95% Conf. Interval]

-------------+---------------------------------------------------------------

_Iage_gr2_55 | 3.757544 1.330347 3.74 0.000 1.877322 7.520891

_Iage_gr2_60 | 8.411826 2.926018 6.12 0.000 4.254059 16.63325

_Iage_gr2_80 | 12.78983 4.320508 7.54 0.000 6.596628 24.79748

_Iage_gr2_81 | 23.92787 8.701246 8.73 0.000 11.73192 48.80217

male | 4.637662 1.703034 4.18 0.000 2.257991 9.525239

_IageXmal~55 | .5610101 .2207001 -1.47 0.142 .2594836 1.212918

_IageXmal~60 | .4230946 .1642325 -2.22 0.027 .1977092 .9054158

_IageXmal~80 | .3851572 .1438922 -2.55 0.011 .1851974 .8010161

_IageXmal~81 | .2688892 .1234925 -2.86 0.004 .1093058 .6614603

_Ibmi_gr_2 | 1.159495 .0991218 1.73 0.083 .9806235 1.370994

_Ibmi_gr_3 | 1.298532 .1077862 3.15 0.002 1.103564 1.527944

_Ibmi_gr_4 | 1.479603 .1251218 4.63 0.000 1.253614 1.746332

_Iscl_gr_2 | 1.189835 .1004557 2.06 0.040 1.008374 1.403952

_Iscl_gr_3 | 1.649807 .1339827 6.16 0.000 1.407039 1.934462

_Iscl_gr_4 | 1.793581 .1466507 7.15 0.000 1.527999 2.105323

_Idbp_gr_80 | 1.18517 .0962869 2.09 0.037 1.010709 1.389744

_Idbp_gr_90 | 1.122983 .0892217 1.46 0.144 .9610473 1.312205

_Idbp_gr_91 | 1.638383 .1302205 6.21 0.000 1.402041 1.914564

pt_yrs | (exposure)

-----------------------------------------------------------------------------

. lincom male + _IageXmale_55, irr {16}
(1) [chd_cnt]male + [chd_cnt]_IageXmale_55 = 0.0

---------------------------------------------------------------------------

chd_cnt | IRR Std. Err. z P>|z| [95% Conf. Interval]

----------+----------------------------------------------------------------

(1) | 2.601775 .3722797 6.68 0.000 1.965505 3.444019

---------------------------------------------------------------------------

. lincom male + _IageXmale_60, irr

{Output omitted. See Table 9.4}
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. lincom male + _IageXmale_80, irr

{Output omitted. See Table 9.4}
. lincom male + _IageXmale_81, irr

{Output omitted. See Table 9.4}
. display chi2tail(3,1207.974985 - 1161.091086)

3.679e-10

Comments
1 This glm command analyzes model (9.10). The family(poisson) and

link(log) options specify that a Poisson regression model is to be an-

alyzed. The variables chd cnt, male, and pt yrs give the values of dk ,

malek and nk , respectively. The syntax of i.age gr is explained in Section

5.10 and generates the indicator variables ag e jk in model (9.10). These

variables are called Iage gr 50, Iage gr 55, . . . , and Iage gr 81 by Stata.

2 The eform option in the glm command dictates that the estimates of the

model coefficients are to be exponentiated. The highlighted value in this

column equals exp[γ̂ ], which is the estimated age-adjustedCHD risk for

men relative to women. The other values in this column are sex-adjusted

risks of CHD in people of the indicated age strata relative to people from

the first age strata. The 95% confidence interval for the age-adjusted

relative risk for men is also highlighted.

3 This table command sums the number of patient-years of follow-up

and CHD events in groups of people defined by sex and age strata. The

values tabulated in this table are the denominators and numerators of

equations (9.16) and (9.17). They are also given in Table 9.2. The output

for ages 51–55, 56–60, 61–65, 66–70 and 71–75 have been deleted from

this log file.

4 This generate command calculates the age-gender-specific CHD inci-

dence rates using equations (9.16) and (9.17). They are expressed as

rates per thousand person-years of follow-up.

5 The variablemen is missing for records that describe women.

6 This command produces a grouped bar chart similar to Figure 9.1. The

bar and by(age gr) options specify that a bar chart is to be drawn with

separate bars for each value of age gr. The length of the bars is propor-

tional to the sumof the values of the variablesmen andwomen in records

with the same value of age gr. However, the preceding collapse and gen-

erate commands have ensured that there is only one non-missing value

ofmen and women for each age stratum. It is the lengths of these values

that are plotted. The title(age) option adds a title to the x-axis.



314 9. Multiple Poisson regression

7 The previous collapse command altered the data set.We reload the 8.12.-

Framingham.dta data set before proceeding with additional analyses.

8 This glm command specifies model (9.18). The syntax of i.age gr*male

is analogous to that used for the logistic command in Section 5.23. This

termspecifies the covariates andparameters to the right of theoffset term

in equation (9.18). Note that since male is already a zero–one indicator

variable, it is not necessary to write i.age gr*i.male to specify this part of

the model. This latter syntax would, however, have generated the same

model.

In this command I did not specify the eform option in order to out-

put the parameter estimates. Note that the interaction terms become

increasingly more negative with increasing age. This has the effect of

reducing the age-specific relative risk of CHD in men versus women as

their age increases.

9 This lincom statement calculates theCHDrisk formenrelative towomen

from the second age stratum (ages 46–50) using equation (9.21). The

following lincom commands calculate this relative risk for the other age

strata. The output from these commands has been omitted here but has

been entered into Table 9.2.

10 This command calculates the P value associated with the change in

model deviance between models (9.10) and (9.18).

11 This command analyzes the model used to produce Table 9.3. It differs

from model (9.18) only in that it uses five age strata rather than nine.

These five age strata are specified by age gr2. The highlighted relative

risk estimate and confidence interval is also given for the first stratum

in Table 9.3.

12 This and subsequent lincom commands provide the remaining relative

risk estimates in Table 9.3.

13 The term i.bmi gr adds

4∑
f = 2

θ f × bmi f k

to our model. It adjusts our risk estimates for the effect of body mass

index as a confounding variable.

14 The term i.scl gr adds

4∑
g = 2

φg × sclgk

to our model. It adjusts our risk estimates for the effect of serum choles-

terol as a confounding variable.
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15 This glm command implements model (9.24). The term i.dbp gr adds
4∑

h = 2

ψh × dbphk

to the precedingmodel. The highlighted relative risk in the output is that

for men versus women from the first stratum adjusted for body mass

index, serum cholesterol, and diastolic blood pressure. This risk and its

confidence interval are also given in Table 9.4.

16 This lincom commandcalculates theCHDrisk formenrelative towomen

fromthe secondage stratumadjusted forbodymass index, serumcholes-

terol, anddiastolic bloodpressure.Thehighlightedoutput is also given in

Table 9.4. The output from the subsequent lincom commands complete

this table.

9.4. Residual Analyses for Poisson Regression Models

A good way to check the adequacy of a Poisson regression model is to graph

a scatterplot of standardized residuals against estimated expected incidence

rates. As with logistic regression, such plots can identify covariate patterns

that fit themodel poorly. Inorder tobest identify outlying covariate patterns,

you should always condense your data set so that there is only one record per

covariate pattern. That is, you should sum the values of dk and nk over all

records for which the covariate patterns from your model are identical. We

will let di and ni denote the number of observed events and person-years of

follow-up associated with the i th distinct covariate pattern in the model

9.4.1. Deviance Residuals

An excellent residual for use with either Poisson or logistic regression is

the deviance residual. The model deviance can be written in the form D =∑
i c i , where ci is a non-negative value that represents the contribution to

the deviance of the i th group of patients with identical covariate values (see

Section 5.24). Let

ri = sign[di/ni − λ̂i ]
√
ci =

{ √
ci : if di/ni ≥ λ̂i

−√
ci : if di/ni < λ̂i ,

(9.27)

where λ̂i is the estimated incidence rate for people with the i th covariate

pattern under the model. Then ri is the deviance residual for this covariate
pattern and

D =
∑
i

r 2i .
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If the model is correct then the overwhelming majority of these residuals

should fall between ±2. The magnitude of ri increases as di/ni diverges

from λ̂i , and a large value of ri indicates a poor fit of the associated group

of patients to the model.

As with Pearson residuals, deviance residuals are affected by varying de-

grees of leverage associated with the different covariate patterns (see Sec-

tion 5.28). This leverage tends to shorten the residual by pulling the estimate

ofλi in the direction of di/ni .We can adjust for this shrinkage by calculating

the standardized deviance residual for the i th covariate pattern, which is

ds j = di/
√
1 − hi . (9.28)

In equation (9.28), hi is the leverage of the i th covariate pattern. If themodel

is correct, roughly 95% of these residuals should lie between ±2. A residual

plot provides evidence of poormodel fit if substantiallymore than 5%of the

residuals have an absolute value greater than two or if the average residual

value varies with the estimated incidence of the disease.

Figure9.2 showsaplotof standardizeddeviance residuals against expected

CHD incidence frommodel (9.24). A lowess regression curve of this residual

versus CHD incidence is also plotted in this figure. If the model is correct,

this curve should be flat and near zero for the great majority of residuals. In

Figure 9.2 the lowess regression curve is very close to zero for incidence
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Figure 9.2 Plot of standardized deviance residuals against expected incidence of coronary
heart disease (CHD) from model (9.24). The lowess regression line of these
residuals versus expected incidence of CHD is also plotted. This graph indicates
a good fit for these data. If model (9.24) is correct, we would expect that roughly
95% of the standardized deviance residuals would lie between ±2; the lowess
regression line should be flat and lie near zero.
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rates that range fromabout 10 to 35, and is never too far from zero outside of

this range. This figure indicates a good fit for this model to the Framingham

Heart Study data.

9.5. Residual Analysis of Poisson Regression Models using Stata

A residual analysis of model (9.24) is illustrated below. The Stata log file

9.3.Framingham.log continues as follows.

. *

. * Compress data set for residual plot

. *

. sort male bmi_gr scl_gr dbp_gr age_gr2

. collapse (sum) pt_yrs = pt_yrs chd_cnt = chd_cnt, by {1}
>(male bmi_gr scl_gr dbp_gr age_gr2)

. *

. * Re-analyze model (9.24)

. *

. xi: glm chd_cnt i.age_gr2*male i.bmi_gr i.scl_gr i.dbp_gr, {2}
>family(poisson) link(log) lnoffset(pt_yrs)

{Output omitted. See previous analysis of this model}
. *

. * Estimate the expected number of CHD events and the

. * standardized deviance residual for each record in the data set.

. *

. predict e_chd, mu {3}
(82 missing values generated)

. predict dev, standardized deviance {4}
(82 missing values generated)

. generate e_rate = 1000*e_chd/pt_yrs {5}
(82 missing values generated)

. label variable e_rate "Incidence of CHD per Thousand"

. *

. * Draw scatterplot of the standardized deviance residual versus the

. * incidence of CHD. Include lowess regression curve on this plot

. *

. ksm dev e_rate, lowess bwidth(.2) xlabel(0,10 to 80) ylabel(-3,-2 to 4) {6}
>xtick(5, 15 to 75) ytick(-2.5, -1.5 to 3.5) gap(3) yline(-2,0,2)
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Comments
1 This collapse commandproduces one record for eachunique combination

of the values of the covariates from model (9.24).

2 We need to repeat the analysis of this model in order to calculate the

standardized deviance residuals from the compressed data set. The pa-

rameter estimates from this model are identical to those of the previous

glm command.

3 This predict command calculates e chd to equal Ê[di | xi ], which is the

estimated expected number of CHD events in people with the i th combi-

nation of covariate values.

4 This command sets dev equal to the standardized deviance residual for

each combination of covariate values.

5 This command calculates e rate to be the estimated incidence of CHD

per thousand person-years among patients with the i th combination of

covariate values.

6 This command produces a scatter plot with a lowess regression curve that

is similar to Figure 9.2.

9.6. Additional Reading

Breslow and Day (1987) is an excellent reference on Poisson regression that

I highly recommend to readers with at least an intermediate level back-

ground in biostatistics. These authors provide an extensive theoretical

and practical discussion of this topic.

McCullagh and Nelder (1989) is a more theoretical reference that discusses

Poisson regression in the context of the generalized linear model. This

text also discusses deviance residuals.

Hosmer and Lemeshow (1989) also provide an excellent discussion of de-

viance residuals in the context of logistic regression.

Levy (1999) provides a thorough description of the Framingham Heart

Study.

9.7. Exercises

The following exercises are concerned with the child injury death data set

8.ex.InjuryDeath.dta from Chapter 8.

1 Fit a multiplicative Poisson regressionmodel that includes the covariates,

maternal age, birth weight, mother’s education, income,mother’smarital

status at time of birth, number of siblings, mother’s race, late or absent

prenatal care, and age of child. Complete the following table; each relative

risk should be adjusted for all of the other risk factors in your model.
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Numerator of Denominator of Adjusted relative 95% confidence

relative risk relative risk risk interval

Maternal age 25–29 Maternal age > 29

Maternal age 20–24 Maternal age > 29

Maternal age < 20 Maternal age > 29

Birth weight < 2500 gm Birth weight ≥ 2500 gm

Mom’s ed. 13–15 yrs. Mom’s education > 15 yrs.

Mom’s ed. = 12 yrs. Mom’s education > 15 yrs.

Mom’s ed. < 12 yrs. Mom’s education > 15 yrs.

Income in lowest quintile Income in highest quintile

Income in 2nd quintile Income in highest quintile

Income in 3rd quintile Income in highest quintile

Income in 4th quintile Income in highest quintile

Unmarried mom Married mom

One sibling No siblings

Two siblings No siblings

Three siblings No siblings

> 3 siblings No siblings

Black mom White mom

Late/no prenatal care Adequate prenatal care

1st year of life 3 year old

1 year old 3 year old

2 year old 3 year old

4 year old 3 year old

2 Contrast your answers to those of question 4 in Chapter 8. In particular,

what can you say about the relationship between race, prenatal care and

the risk of injury death?

3 Graph a scatterplot of the standardized deviance residuals against the cor-

responding expected incidence of injury deaths fromyourmodel. Plot the

lowess regression curve of the deviance residuals against the expected in-

cidence ofmortal injuries on this graph.What proportion of the residuals

have an absolute value greater than two? List the standardized deviance

residual, expected incidence of injury deaths, observed number of injury

deaths, and number of child-years of follow-up for all records with a de-

viance residual greater than two and at least two child injury deaths. Com-

ment on the adequacy of themodel.Whatmight youdo to improve thefit?
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Fixed Effects Analysis of Variance

The term analysis of variance refers to a very large body of statistical

methods for regressing a dependent variable against one or more classi-

fication variables. Much of the literature on this topic is concerned with

sophisticated study designs that could be evaluated using the electric cal-

culators of the last century. Today, these designs are of limited utility in

medical statistics. This is, in part, because the enormous computational

power of modern computers makes the computational simplicity of these

methods irrelevant, but also, because we are often unable to exert the level of

experimental control over human subjects that is needed by these methods.

As a consequence, regression methods using classification variables have

replaced classical analyses of variance in many medical experiments today.

In this chapter we introduce traditional analysis of variance from a re-

gression perspective. In these methods, each patient is observed only once.

As a result, it is reasonable to assume that the model errors for different pa-

tients are mutually independent. These techniques are called fixed-effects
methods because each observation is assumed to equal the sum of a fixed

expected value and an independent error term. Eachof these expected values

is a function of fixed population parameters and the patient’s covariates. In

Chapter 11, we will discuss more complex designs in which multiple obser-

vations are made on each patient, and it is no longer reasonable to assume

that different error terms for the same patient are independent.

10.1. One-Way Analysis of Variance

A one-way analysis of variance is a generalization of the independent t

test. Suppose that patients are divided into k groups on the basis of some

classification variable. Let ni be the number of subjects in the i th group,

n= ∑
ni be the total number of study subjects, and yi j be a continuous

response variable on the j th patient from the i th group. We assume for

i = 1, 2, . . . , k; j = 1, 2, . . . , ni that

yi j = βi + εi j , (10.1)

320
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where

β1, β2, . . . , βk are unknown parameters, and

εi j are mutually independent, normally distributed error terms with mean

0 and standard deviation σ .

Under this model, the expected value of yi j is E [yi j |i]= βi . Models like

(10.1) are calledfixed-effectsmodels because the parametersβ1, β2, . . . , βk
are fixed constants that are attributes of the underlying population. The

response yi j differs from βi only because of the error term εi j . Let

b1, b2, . . . , bk be the least squares estimates of β1, β2, . . . , βk , respectively,

yi =
ni∑
j=1

yi j/ni be the sample mean for the i th group, and

s 2 =
k∑
i=1

ni∑
j=1

(yi j − yi )
2/ (n − k) (10.2)

be the mean squared error (MSE) estimate of σ 2. Equation (10.2) is anal-

ogous to equation (3.5). We estimate σ by s , which is called the root MSE.

It can be shown that E[yi j |i]= bi = yi , and E[s 2]= σ 2. A 95% confidence

interval for βi is given by

yi ± tn−k,0.025(s/
√
ni ). (10.3)

Note that model (10.1) assumes that the standard deviation of εi j is the

same for all groups. If it appears that there is appreciable variation in this

standard deviation among groups then the 95% confidence interval for βi

should be estimated by

yi ± tni−1,0.025(si/
√
ni ), (10.4)

where si is the sample standard deviation of yi j within the i th group.

We wish to test the null hypothesis that the expected response is the same

in all groups. That is, we wish to test whether

β1 = β2 = . . . = βk . (10.5)

We can calculate a statistic that has an F distribution with k− 1 and n− k

degrees of freedom when this null hypothesis is true. The F distribution is

another family of standard distributions like the chi-squared family. How-

ever, while a chi-squared distribution is determined by a single variable that

gives its degrees of freedom, an F distribution is uniquely characterized

by two separate degrees of freedom. These are called the numerator and
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denominator degrees of freedom, respectively. We reject the null hypothesis

in favor of a multisided alternative hypothesis when the F statistic is suf-

ficiently large. The P value associated with this test is the probability that

this statistic exceeds the observed value when this null hypothesis is true.

Whenthereare just twogroups, the F statisticwillhave1andn− 2degrees

of freedom. In this case, the one-way analysis of variance is equivalent to an

independent t test. The square root of this F statistic equals the absolute

value of the t statistic given by equation (1.7). The square of a t statistic with

n degrees of freedom equals an F statistic with numerator and denominator

degrees of freedom of 1 and n, respectively.

A test due to Bartlett (1937) can be performed to test the assumption that

the standard deviation of εi j is constant within each group. If this test is

significant, or if there is considerable variation in the values of si , then you

should use equation (10.4) rather than equation (10.3) to calculate confi-

dence intervals for the group means. Armitage and Berry (1994) provide

additional details about Bartlett’s test.

10.2. Multiple Comparisons

In a one-way analysis of variance we are not only interested in knowing

if the group means are all equal, but also which means are different. For

example, we may wish to separately test whether β1 = β2, β2 = β3, . . . , or

βk−1 = βk . For any individual test, a P value of 0.05 means that we have

a 5% probability of false rejection of the null hypothesis. However, if we

have multiple tests, the probability of false rejection of at least one test

will be greater than 0.05. A mindless data dredging exercise that calculates

many P values is likely to produce some tests of spurious significance.

Various methods are available that adjust the P values of an experiment

in such a way that the probably of false rejection of one or more of the

associated null hypotheses is not greater than 0.05. Such P values are said

to be adjusted formultiple comparisons. Discussion of these methods can

be found in Armitage and Berry (1994), and Steel and Torrie (1980). An

alternative approach, which we will use, is known as Fisher’s protected
LSD procedure. (Here, LSD stands for “least significant difference” rather

than Fisher’s favorite psychotropic medicine – see Steel and Torrie, 1980.)

This approach proceeds as follows: first, we perform a one-way analysis of

variance to test if all of the means are equal. If this test is not significant,

we say that there is not sufficient statistical evidence to claim that there are

any differences in the group means. If, however, the analysis of variance F



323 10.2. Multiple comparisons

statistic is significant, then we have evidence from a single test that at least

some of thesemeansmust differ from some others.We can use this evidence

as justification for looking at pair-wise differences between the groupmeans

without adjusting formultiple comparisons. Comparisons between any two

groups are performed by calculating a t statistic. If the standard deviations

within the k groups appear similar we can increase the power of the test that

βi = β j by using the formula

tn−k = (
yi − y j

)
/

(
s

√
1

ni
+ 1

n j

)
, (10.6)

where s is the root MSE estimate of σ obtained from the analysis of vari-

ance. Under the null hypothesis that βi = β j , equation (10.6) will have a

t distribution with n− k degrees of freedom. This test is more powerful

than the independent t test because it uses all of the data to estimate σ (see

Section 1.4.12). On the other hand, the independent t test is more robust

than equation (10.6) since it makes no assumptions about the homogeneity

of the standard deviations of groups other than i and j .

A95%confidence interval for thedifference inpopulationmeansbetween

groups i and j is

yi − y j ± tn− k,0.025

(
s

√
1

ni
+ 1

n j

)
. (10.7)

Alternatively, a confidence interval based on the independent t test may be

used if it appears unreasonable to assume a uniform standard deviation in

all groups (see equations (1.8) and (1.11)).

There is considerable controversy about the best way to deal withmultiple

comparisons. Fisher’s protected LSD approachworks best when the hypoth-

esized differences between the groups are predicted before the experiment

is performed, when the number of groups is fairly small, or when there is

some natural ordering of the groups. It should be noted, however, that if

we are comparing groups receiving k unrelated treatments, then there are

k (k− 1) possible contrasts between pairs of treatments. If k is large then

the chance of false rejection of at least some of these null hypotheses may

be much greater than 0.05 even when the overall F statistic is significant. In

this situation, it is prudent to make a multiple comparisons adjustment to

these P values.

A problemwithmultiple comparisons adjustment relates to how P values

are used in medical science. Although a P value is, by definition, a prob-

ability, we use it as a measure of strength of evidence. That is, suppose we
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have two completely unrelated experiments comparing, say, survival among

breast cancer patients andbloodpressure reduction amonghypertensive pa-

tients. If the logrank and t test P values from these two studies are equal,

thenwewould like to conclude that the evidence against their respective null

hypotheses is similar. In a large clinical study, we typically have a small num-

ber of primary hypotheses that are stipulated in advance. Such studies are

very expensive and it makes sense to perform careful exploratory analyses

to learn as much as possible about the treatments under study. This typ-

ically involves many sub-analyses. If we performed multiple comparisons

adjustments on all of these analyses we would greatly reduce or eliminate

the statistical significance of our tests of the primary hypotheses of interest.

Moreover, these adjusted P valueswouldnotbe comparablewith P values of

similar magnitude from experiments with fewer comparisons. In my opin-

ion, it is usually best to report unadjusted P values and confidence intervals,

but to make it very clear which hypotheses were specified in advance and

which are the result of exploratory analyses. The latter results will need to

be confirmed by other studies but may be of great value in suggesting the

direction of future research. Also, investigators need to use good judgment

and common sense in deciding which sub-analyses to report. Investigators

are in no way obligated to report an implausible finding merely because its

unadjusted P value is less than 0.05.

Classical methods of statistical inference almost always lead to sensible

conclusions when applied with some common sense. There are, however,

some fundamental problems with the philosophical foundations of clas-

sical statistical inference. An excellent review of these problems is given

by Royall (1997), who discusses multiple comparisons in the context of

the deeper problems of classical statistical inference. Dupont (1983) and

Dupont (1986) give two examples of how classical inference can lead to

unsatisfactory conclusions.

10.3. Reformulating Analysis of Variance as a
Linear Regression Model

A one-way analysis of variance is, in fact, a special case of the multiple

regression model we considered in Chapter 3. Let

yh denote the response from the hth study subject, h= 1, 2, . . . , n, and let

xhi =
{
1: if the hth patient is in the i th group

0: otherwise.
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Then model (10.1) can be rewritten

yh = α + β2xh2 + β3xh3 + · · · + βkxhk + εh , (10.8)

where εh are mutually independent, normally distributed error terms with

mean 0 and standard deviation σ . Note that model (10.8) is a special

case of model (3.1). Thus, this analysis of variance is also a regression

analysis in which all of the covariates are zero–one indicator variables.

Also,

E [yh|xhi ] =
{

α if the hth patient is from group 1

α + βi if the hth patient is from group i > 1.

Thus, α is the expected response of patients in the first group and βi is the

expected difference in the response of patients in the i th andfirst groups. The

least squares estimates of α and βi are y1 and yi − y1, respectively. We can

use any multiple linear regression program to perform a one-way analysis

of variance, although most software packages have a separate procedure for

this task.

10.4. Non-parametric Methods

The methods that we have considered in this text so far assume a specific

form for the distribution of the response variable that is determined by one

or more parameters. These techniques are called parametric methods. For
example, in model (10.1) we assume that yi j is normally distributed with

mean βi and standard deviation σ . Our inferences are not greatly affected

by minor violations of these distributional assumptions. However, if the

truemodeldiffers radically fromtheone thatwehavechosenourconclusions

maybemisleading. InSection2.17wediscussed transforming thedependent

and independent variables in order to achieve a better model fit. Another

approach is to use a method that avoids making any assumptions about

the distribution of the response variable. These are called non-parametric
methods. They tend to be less powerful than their parametric counterparts

and are not useful for estimating attributes of the population of interest.

They do, however, lead to robust tests of statistical significance when the

distributional assumptions of the analogous parametricmethods arewrong.

They are particularly useful when there are extreme outliers in some of the

groups or when the within-group distribution of the response variable is

highly skewed.
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10.5. Kruskal—Wallis Test

TheKruskal–Wallis test is the non-parametric analog of the one-way anal-

ysis of variance (Kruskal and Wallis, 1952). Model (10.1) assumes that the

εi j terms are normally distributed and have the same standard deviation.

If either of these assumptions is badly violated then the Kruskal–Wallis test

should be used. Suppose that patients are divided into k groups as in model

(10.1) and that yi j is a continuous response variable on the j th patient from

the i th group. The null hypothesis of this test is that the distributions of the

response variables are the same in each group. Let ni be the number of sub-

jects in the i th group, and n= ∑
ni be the total number of study subjects.

We rank the values of yi j from lowest to highest and let Ri be the sum of

the ranks for the patients from the i th group. If all of the values of yi j are

distinct (no ties) then the Kruskal–Wallis test statistic is

H = 12

n (n + 1)

(∑ R2
i

ni

)
− 3 (n + 1) . (10.9)

When there are ties a slightly more complicated formula is used (see Steel

and Torrie, 1980). Under the null hypothesis, H will have a chi-squared

distribution with k− 1 degrees of freedom as long as the number of patients

in each group is reasonably large. Note that the value of H will be the same

for any twodata sets inwhich the data values have the same ranks. Increasing

the largest observation or decreasing the smallest observation will have no

effect on H . Hence, extreme outliers will not unduly affect this test. The

non-parametric analog of the independent t-test is theWilcoxon–Mann–
Whitney rank-sum test. This rank-sum test and the Kruskal–Wallis test are

equivalent when there are only two groups of patients.

10.6. Example: A Polymorphism in the Estrogen Receptor Gene

The human estrogen receptor gene contains a two-allele restriction frag-

ment length polymorphism that can be detected by Southern blots of DNA

digested with the PuvII restriction endonuclease. Bands at 1.6 kb and/or

0.7 kb identify the genotype for these alleles. Parl et al. (1989) studied the

relationship between this genotype and age of diagnosis among 59 breast

cancer patients. Table 10.1 shows the average age of breast cancer diagnosis

among these patients subdivided by genotype. The average age of diagnosis

for patients who are homozygous for the 0.7 kb pattern allele was about

14 years younger than that of patients who were homozygous for the 1.6 kb

pattern allele or who were heterozygous. To test the null hypothesis that the
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Table 10.1. Effect of estrogen receptor genotype on age at diagnosis among
59 breast cancer patients (Parl et al., 1989).

Genotype∗

1.6/1.6 1.6/0.7 0.7/0.7 Total

Number of patients 14 29 16 59

Age at breast cancer diagnosis

Mean 64.643 64.379 50.375 60.644

Standard deviation 11.18 13.26 10.64 13.49

95% confidence interval

Equation (10.3) (58.1–71.1) (59.9–68.9) (44.3–56.5)

Equation (10.4) (58.2–71.1) (59.3–69.4) (44.7–56.0) (57.1–4.2)

∗The numbers 0.7 and 1.6 identify the alleles of the estrogen receptor genes that were

studied (see text). Patients were either homozygous for the 1.6 kb pattern allele (had

two copies of the same allele), were heterozygous (had one copy of each allele), or were

homozygous for the 0.7 kb pattern allele.

age at diagnosis does not varywith genotype, we perform a one-way analysis

of variance on the ages of patients in these three groups using model (10.1).

In this analysis, n= 59, k= 3, and β1, β2 and β3 represent the expected

age of breast cancer diagnosis among patients with the 1.6/1.6, 1.6/0.7, and

0.7/0.7 genotypes, respectively. The estimates of these parameters are the av-

erage ages given in Table 10.1. The F test from this analysis equals 7.86. This

statistic has k− 1= 2 and n− k= 56 degrees of freedom. The P value as-

sociated with this test equals 0.001. Hence, we can reject the null hypothesis

that these three population means are equal.

The root MSE estimate of σ from this analysis of variance is s =√
147.25= 12.135. The critical value t56,0.025 equals 2.003. Substituting these

values into equation (10.3) gives that a 95%confidence interval for the age of

diagnosis of women with the 1.6/0.7 genotype is 64.38± 2.003× 12.135/√
29 = (59.9, 68.9). The within-group standard deviations shown in this

table are quite similar, and Bartlett’s test for equal standard deviations is not

significant (P = 0.58). Hence, it is reasonable to use equation (10.3) rather

than equation (10.4) to calculate the confidence intervals for the mean age

at diagnosis for each genotype. In Table 10.1, these intervals are calculated

for each genotype using both of these equations. Note that, in this example,

these equations produce similar estimates. If the equal standard deviation

assumption is true, then equation (10.3) will provide more accurate confi-

dence intervals than equation (10.4) since it uses all of the data to calculate



328 10. Fixed effects analysis of variance

Table 10.2. Comparison of mean age of breast cancer diagnosis among
patients with the three estrogen receptor genotypes studied by Parl et al.
(1989). The one-way analysis of variance of these data shows that there is a
significant difference between the mean age of diagnosis among women with
these three genotypes (P =0.001).

Difference in

mean age of 95% confidence

Comparison diagnosis interval

P value

Eq. (10.6) Rank-sum∗

1.6/0.7 vs. 1.6/1.6 −0.264 (−8.17 to 7.65) 0.95 0.96

0.7/0.7 vs. 1.6/1.6 −14.268 (−23.2 to −5.37) 0.002 0.003

0.7/0.7 vs. 1.6/0.7 −14.004 (−21.6 to −6.43) <0.0005 0.002

∗Wilcoxon–Mann–Whitney rank-sum test

the common standard deviation estimate s . However, equation (10.4) is

more robust than equation (10.3) since it does not make any assumptions

about the standard deviation within each patient group.

The F test from the analysis of variance permits us to reject the null hy-

pothesis that themean age of diagnosis is the same for each group. Hence, it

is reasonable to investigate if there are pair-wise differences in these ages (see

Section 10.2). This can be done using either independent t-tests or equa-

tion (10.6). For example, the difference in average age of diagnosis between

women with the 0.7/0.7 genotype and those with the 1.6/1.6 genotype is

–14.268. Fromequation (10.6), the t statistic to testwhether this difference is

significantly different from zero is t = −14.268/(12.135
√
1/14 + 1/16) =

−3.21. The P value for this statistic, which has 56 degrees of freedom, is

0.002. The 95% confidence interval for this difference using equa-

tion (10.7) is −14.268 ± 2.003 × 12.135 × √
1/14 + 1/16 = (−23.2,

−5.37). Table 10.2 gives estimates of the difference between the mean ages

of these three groups. In this table, confidence intervals are derived using

equation (10.7) and P values are calculated using equation (10.6). It is clear

that the age of diagnosis among women who are homozygous for the 0.7 kb

pattern allele is less that that of women with the other two genotypes.

Figure 10.1 shows box plots for the age at diagnoses for the three geno-

types. The vertical lines under these plots indicate the ages of diagnosis. The

number of line segments equals the number of women diagnosed at each

age. Although these plots are mildly asymmetric, they indicate that these

age distributions are sufficiently close to normal to justify the analysis of

variance given above. Of course, the Kruskal–Wallis analysis of variance is
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Age at Breast Cancer Diagnosis
35 40 45 50 55 60 65 75 8570 80

0.7/0.7

1.6/0.7

1.6/1.6

Figure 10.1 Box plots of age at breast cancer diagnosis subdivided by estrogen receptor
genotype in the study by Parl et al. (1989). The vertical lines under each box
plot mark the actual ages of diagnosis. The number of line segments equals the
number of women diagnosed at each age. Women who were homozygous for
the 0.7 pattern allele had a significantly younger age of breast cancer diagnosis
than did women in the other two groups.

also valid and avoids these normality assumptions. The Kruskal–Wallis test

statistic for these data is H = 12.1. Under the null hypothesis that the age

distributions of the three patient groups are the same, H will have a chi-

squared distribution with k− 1= 2 degrees of freedom. The P value for

this test is 0.0024, which allows us to reject this hypothesis. Note that this

P value is larger (less statistically significant) than that obtained from the

analogous conventional analysis of variance. This illustrates the slight loss of

statistical power of the Kruskal–Wallis test, which is the cost of avoiding the

normality assumptions of the conventional analysis of variance. Table 10.2

also gives the P values frompair-wise comparisons of the three groups using

the Wilcoxon–Mann–Whitney rank sum test. These tests lead to the same

conclusions that we obtained from the conventional analysis of variance.

10.7. One-Way Analyses of Variance using Stata

The following Stata log file and comments illustrate how to perform the

one-way analysis of variance discussed in the preceding section.

. * 10.7.ERpolymorphism.log

. *

. * Do a one-way analysis of variance to determine whether age

. * at breast cancer diagnosis varies with estrogen receptor (ER)

. * genotype using the data of Parl et al., 1989.
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. *

. use C:\WDDtext\10.7.ERpolymorphism.dta {1}

. ci age {2}
Variable | Obs Mean Std. Err. [95% Conf. Interval]

------------+-------------------------------------------------------

age | 59 60.64407 1.756804 57.12744 64.16069

. by genotype: ci age {3}

-> genotype = 1.6/1.6

Variable | Obs Mean Std. Err. [95% Conf. Interval]

-------------+------------------------------------------------------

age | 14 64.64286 2.988269 58.1871 71.09862

-> genotype = 1.6/0.7

Variable | Obs Mean Std. Err. [95% Conf. Interval]

-------------+------------------------------------------------------

age | 29 64.37931 2.462234 59.33565 69.42297

-> genotype = 0.7/0.7

Variable | Obs Mean Std. Err. [95% Conf. Interval]

-------------+------------------------------------------------------

age | 16 50.375 2.659691 44.706 56.044

. graph age, by(genotype) box oneway {4}
{Graph omitted. See Figure 10.1}

. oneway age genotype {5}
Analysis of Variance

Source SS df MS F Prob > F

--------------------------------------------------------------------

Between groups 2315.73355 2 1157.86678 7.86 0.0010 {6}
Within groups 8245.79187 56 147.246283 {7}

--------------------------------------------------------------------

Total 10561.5254 58 182.095266

Bartlett's test for equal variances: chi2(2) = 1.0798 Prob>chi2 = 0.583 {8}
. *

. * Repeat analysis using linear regression



331 10.7. One-way analyses of variance using Stata

. *

. xi: regress age i.genotype {9}
i.genotype _Igenotype_1-3 (naturally coded; _Igenotype_1 omitted)

Source | SS df MS Number of obs = 59

------------+----------------------------- F( 2, 56) = 7.86

Model | 2315.73355 2 1157.86678 Prob > F = 0.0010

Residual | 8245.79187 56 147.246283 R-squared = 0.2193

------------+----------------------------- Adj R-squared = 0.1914

Total | 10561.5254 58 182.095266 Root MSE = 12.135

------------------------------------------------------------------------

age | Coef. Std. Err. t P>|t| [95% Conf. Interval]

------------+-----------------------------------------------------------

_Igenotype_2| -.2635468 3.949057 -0.07 0.947 -8.174458 7.647365 {10}
_Igenotype_3| -14.26786 4.440775 -3.21 0.002 -23.1638 -5.371916

_cons| 64.64286 3.243084 19.93 0.000 58.14618 71.13953 {11}
------------------------------------------------------------------------

. lincom _cons + _Igenotype_2 {12}
( 1) _Igenotype_2 + _cons = 0.0

----------------------------------------------------------------------

age | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+------------------------------------------------------------

(1) | 64.37931 2.253322 28.57 0.000 59.86536 68.89326 {13}
----------------------------------------------------------------------

. lincom _cons + _Igenotype_3

( 1) _Igenotype_3 + _cons = 0.0

----------------------------------------------------------------------

age | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+------------------------------------------------------------

(1) | 50.375 3.033627 16.61 0.000 44.29791 56.45209

----------------------------------------------------------------------

. lincom _Igenotype_3 - _Igenotype_2 {14}
( 1) _Igenotype_3 - _Igenotype_2 = 0.0

----------------------------------------------------------------------

age | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+------------------------------------------------------------

(1) | -14.00431 3.778935 -3.71 0.000 -21.57443 -6.434194

----------------------------------------------------------------------



332 10. Fixed effects analysis of variance

. *

. * Perform a Kruskal-Wallis analysis of variance

. *

. kwallis age, by(genotype) {15}
Test: Equality of populations (Kruskal-Wallis test)

genotype _Obs _RankSum

1.6/1.6 14 494.00

1.6/0.7 29 999.50

0.7/0.7 16 276.50

chi-squared = 12.060 with 2 d.f.

probability = 0.0024

chi-squared with ties = 12.073 with 2 d.f.

probability = 0.0024

. ranksum age if genotype ˜=3, by(genotype) {16}
Two-sample Wilcoxon rank-sum (Mann-Whitney) test

genotype | obs rank sum expected

------------+-------------------------------

1.6/1.6 | 14 310 308

1.6/0.7 | 29 636 638

------------+-------------------------------

combined | 43 946 946

unadjusted variance 1488.67

adjustment for ties -2.70

------------

adjusted variance 1485.97

Ho: age(genotype==1.6/1.6) = age(genotype==1.6/0.7)

z = 0.052

Prob > |z|= 0.9586

. ranksum age if genotype ˜=2, by(genotype)

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

genotype | obs rank sum expected

-------------+--------------------------------

1.6/1.6 | 14 289 217

0.7/0.7 | 16 176 248

-------------+--------------------------------

combined | 30 465 465
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unadjusted variance 578.67

adjustment for ties -1.67

---------

adjusted variance 576.99

Ho: age(genotype==1.6/1.6) = age(genotype==0.7/0.7)

z = 2.997

Prob > |z| = 0.0027

. ranksum age if genotype ˜=1, by(genotype)

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

genotype | obs rank sum expected

------------+------------------------------

1.6/0.7 | 29 798.5 667

0.7/0.7 | 16 236.5 368

------------+------------------------------

combined | 45 1035 1035

unadjusted variance 1778.67

adjustment for ties -2.23

--------

adjusted variance 1776.44

Ho: age(genotype==1.6/0.7) = age(genotype==0.7/0.7)

z = 3.120

Prob > |z|= 0.0018

. kwallis age if genotype ˜=1, by(genotype) {17}
Test: Equality of populations (Kruskal-Wallis test)

genotype _Obs _RankSum

1.6/0.7 29 798.50

0.7/0.7 16 236.50

chi-squared = 9.722 with 1 d.f.

probability = 0.0018

chi-squared with ties = 9.734 with 1 d.f.

probability = 0.0018

Comments
1 This data set contains the age of diagnosis and estrogen receptor geno-

type of the 59 breast cancer patients studied by Parl et al. (1989). The

genotypes 1.6/1.6, 1.6/0.7 and 0.7/0.7 are coded 1, 2 and 3 in the variable

genotype, respectively.
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2 This ci command calculates the mean age of diagnosis (age) together

with the associated 95% confidence interval. This confidence interval is

calculated using equation (10.4). The estimated standard error of the

mean and the number of patients with non-missing ages is also given.

3 The command prefix by genotype: specifies that means and 95% confi-

dence intervals are to be calculated for each of the three genotypes. The

output from this and the preceding command are given in Table 10.1.

The sample standard deviations are obtained by multiplying each stan-

dard error estimate by the square root of its sample size. (Alternatively,

we could have used the summarize command.)

4 The box and oneway options of this graph command create a graph that

is similar to Figure 10.1. In this latter figure, I used a graphics editor to

add a common x-axis and to divide the vertical lines into line segments

equal to the number of patients diagnosed at each age.

5 This oneway command performs a one-way analysis of variance of age

with respect to the three distinct values of genotype.

6 The F statistic from this analysis equals 7.86. If the mean age of di-

agnosis in the target population is the same for all three genotypes,

this statistic will have an F distribution with k− 1= 3− 1= 2 and

n− k= 59− 3= 56 degrees of freedom. The probability that this statis-

tic exceeds 7.86 is 0.001.

7 The MSE estimate of σ 2 is s 2 = 147.246.

8 Bartlett’s test for equal variances (i.e. equal standard deviations) gives a

P value of 0.58.

9 This regress command preforms exactly the same one-way analysis of

variance as the oneway command given above. Note that the F statistic,

the P value for this statistic and the MSE estimate of σ 2 are identical

to that given by the oneway command. The syntax of the xi: prefix is

explained in Section 5.10. The model used by this command is equation

(10.8) with k= 3.

10 The estimates of β2 and β3 in this example are y2 − y1 = 64.379−
64.643 = −0.264 and y3 − y1 = 50.375 − 64.643 = −14.268, respec-

tively. They are highlighted in the column labeled Coef. The 95% confi-

dence intervals for β2 and β3 are calculated using equation (10.7). The t

statistics for testing the null hypotheses that β2 = 0 and β3 = 0 are−0.07

and −3.21, respectively. They are calculated using equation (10.6). The

highlighted values in this output are also given in Table 10.2.

11 The estimate of α is y1 = 64.643. The 95% confidence interval for α

is calculated using equation (10.3). These statistics are also given in

Table 10.1.
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12 This lincom command estimates α + β2 by α̂ + β̂2 = y2. A 95% con-

fidence interval for this estimate is also given. Note that α + β2 equals

the population mean age of diagnosis among women with the 1.6/0.7

genotype. Output from this and the next lincom command are also given

in Table 10.1.

13 This confidence interval is calculated using equation (10.3).

14 This command estimates β3 − β2 by β̂3 − β̂2 = y3 − y2 = 50.375−
64.379 = −14.004. The null hypothesis that β3 = β2 is the same as the

hypothesis that the mean age of diagnosis in Groups 2 and 3 are equal.

The confidence interval for β3 − β2 is calculated using equation (10.7).

The highlighted values are also given in Table 10.2.

15 This kwallis command performs aKruskal–Wallis test of age by genotype.

The test statistic, adjusted for ties, equals 12.073. The associated P value

equal 0.0024.

16 This command performs aWilcoxon–Mann–Whitney rank-sum test on

theageofdiagnosisofwomenwith the1.6/1.6genotypeversus the1.6/0.7

genotype. The P value for this test is 0.96. The next two commands

perform the other two pair-wise comparisons of age by genotype using

this rank-sum test. The highlighted P values are included in Table 10.2.

17 This command repeats the preceding command using the Kruskal–

Wallis test. This test is equivalent to the rank-sum test when only two

groups are being compared. Note that the P values from these tests both

equal 0.0018

10.8. Two-Way Analysis of Variance, Analysis of Covariance,
and Other Models

Fixed-effects analyses of variance generalize to a wide variety of complex

models. For example, suppose that hypertensive patients were treated with

either aplacebo, adiuretic alone, a beta-blocker alone, orwithboth adiuretic

andabeta-blocker.Thenamodel of the effect of treatmentondiastolic blood

pressure (DBP) might be

yi = α + β1xi1 + β2xi2 + εi , (10.10)

where

α, β1 and β2 are unknown parameters,

xi1 =
{
1: i th patient is on a diuretic

0: otherwise,
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xi2 =
{
1: i th patient is on a beta-blocker

0: otherwise,

yi is the DBP of the i th patient after some standard interval of therapy, and

εi are error terms that are independently and normally distributed with

mean zero and standard deviation σ .

Model (10.10) is an example of a fixed-effects, two-wayanalysisofvariance.
It is called two-way because each patient is simultaneously influenced by two

covariates – in this case whether she did, or did not, receive a diuretic or

a beta-blocker. A critical feature of this model is that each patient’s blood

pressure is only observed once. It is this feature thatmakes the independence

assumption for the error term reasonable and makes this a fixed-effects

model. In thismodel,α is themeanDBPof patients onplacebo,α + β1 is the

mean DBP of patients on the diuretic alone, and α + β2 is the mean DBP of

patientson thebeta-blockeralone.Themodel is additive since it assumes that

the mean DBP of patients on both drugs is α + β1 + β2. If this assumption

is unreasonable we can add an interaction term as in Section 3.12.

Another possibility is to mix continuous and indicator variables in the

same model. Inference from these models is called analysis of covariance.
For example, we could add the patient’s age to model (10.10). This gives

yi = α + β1xi1 + β2xi2 + β3 × agei + εi , (10.11)

where agei is the i
th patient’s age,β3 is the parameter associatedwith age, and

theother termsareasdefined inmodel (10.10).Theanalysisofmodel (10.11)

would be an example of analysis of covariance. There is a vast statistical

literature on the analysis of variance and covariance. The interested reader

will find references to some good texts on this topic in Section 10.9. Note,

however, that models (10.10) and (10.11) are both special cases of model

(3.1). Thus, we can usually reformulate any fixed-effects analysis of variance

or covarianceproblem into amultiple linear regressionproblemby choosing

suitably defined indicator and continuous covariates.

10.9. Additional Reading

Armitage and Berry (1994) and

Steel andTorrie (1980)provide additional discussionoffixed-effects analysis

of variance and covariance.

Cochran and Cox (1957) is a classic text that documents the extraordinary

ingenuity and effort thatwas devoted in the last century todevisemethods
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ofexperimentaldesignandanalysisofvariance that couldbe implemented

with electric calculators.

Searle (1987) is a more mathematically advanced text on linear models,

including analysis of variance.

Parl et al. (1989) studied the relationship between age of breast cancer diag-

nosis and a polymorphism in the estrogen receptor gene. We use their

data to illustrate fixed-effects one-way analysis of variance.

Royall (1997) provides an excellent introduction to the foundations of statis-

tical inference. This introduction is written from a likelihood perspective,

of which Royall is a leading advocate.

Cox and Hinkley (1974) provide a concise summary of the different funda-

mental approaches to statistical inference.

Dupont (1983) and

Dupont (1986) provide two examples of how classical inference can lead to

unsatisfactory conclusions.

Bartlett (1937) is the original reference for Bartlett’s test of equal standard

deviations.

Kruskal and Wallis (1952) is the original reference for the Kruskal–Wallis

test.

Wilcoxon (1945) and

Mann and Whitney (1947) are the original references on the Wilcoxon–

Mann–Whitney rank-sum test.

10.10. Exercises

1 Perform a one-way analysis of variance on the age of entry biopsy in

the three different diagnostic groups of women from the Nashville Breast

Cohort (seeSection6.19). Inquestion5ofChapter6youwerealsoasked to

compare these ages. If you answered this previous question by performing

t tests, what additional information does the analysis of variance provide

you that the individual t tests did not?

2 Draw box plots of the age of entry biopsy in the Nashville Breast Cohort

subdivided by diagnosis. In view of these plots, is a one-way analysis of

variance a reasonable approach to analyzing these data?

3 Perform a Kruskal–Wallis analysis of variance for the age of entry biopsy

in these three groups. Contrast your answer to that for question 1.

4 Perform Wilcoxon–Mann–Whitney rank-sum tests of the age of biopsy

for each pair of diagnostic groups in theNashville Breast Cohort. Contrast

your answer with that for question 5 of Chapter 6.
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Repeated-Measures Analysis
of Variance

Repeated-measures analysis of variance is concerned with study designs in

which the same patient is observed repeatedly over time. In analyzing these

data, we must take into consideration the fact that the error components of

repeated observations on the same patient are usually correlated. This is a

critical difference between repeated-measures and fixed-effects designs. In a

repeated-measures experiment, the fundamental unit of observation is the

patient. We seek to make inferences about members of a target population

who are treated in the same way as our study subjects. Using a fixed-effects

methodof analysis on repeated-measures data can lead towildly exaggerated

levels of statistical significance since we have many more observations than

patients. For this reason, it is essential that studies with repeated-measures

designs be always analyzed with methods that account for the repeated

measurements on study subjects.

11.1. Example: Effect of Race and Dose of Isoproterenol on
Blood Flow

Lang et al. (1995) studied the effect of isoproterenol, a β-adrenergic agonist,

on forearm blood flow in a group of 22 normotensive men. Nine of the

study subjects were black and 13 were white. Each subject’s blood flow

was measured at baseline and then at escalating doses of isoproterenol.

Figure 11.1 shows themean blood flow at each dose subdivided by race. The

standard deviations of these flows are also shown.

Atfirst glance, thedata inFigure11.1 lookverymuch like that fromafixed-

effects two-way analysis of variance in that each blood flow measurement

is simultaneously affected by the patient’s race and isoproterenol dose. The

fixed-effects model, however, provides a poor fit because each patient is

observed at each dose. Observations on the same patient are likely to be

correlated, and the closer the dose, the higher the correlation is likely to be.

In afixed-effectsmodel, all of the error termsare assumed tobe independent.

This implies that the probability that a patient’s response is greater than the

mean value for his race at the specified dose is in no way affected by his

338
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Figure 11.1 Mean rates of forearm blood flow in normotensive white and black men in
response to different doses of isoproterenol. The vertical bars indicate the es-
timated standard deviations within each racial group at each dose (Lang et al.,
1995).

response at an earlier dose. In fact, if a patient’s response at one dose is well

above average, his response at the next is more likely to be above average

than below. This invalidates the independence assumption of the fixed-

effects model. It is important to obtain an intuitive feel for the correlation

structure of data from individual patients. One way to do this is shown

in Figure 11.2. In this figure, straight lines connect observations from the

same patient. Note, that these lines usually do not cross, indicating a high

degree of correlation between observations from the same patient. Both

Figures 11.1 and 11.2 suggest that the response of men to escalating doses

of isoproterenol tends to be greater in whites than in blacks.

Graphs like Figure 11.2 can become unintelligible when the number of

subjects is large. In this situation, it is best to connect the observations from

a representative sub-sample of patients. For example, wemight calculate the

mean response for each patient. We could then identify those patients with

the lowest and highest mean response as well as those patients whose mean

response corresponds to the 5th, 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th,

90th and95th percentile of the entire sample.Connecting theobservations for

these13patients gives a feel for thedegreeof correlationofobservations from

the same subject without overwhelming the graph with interconnecting
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Figure 11.2 Plots of forearm blood flow against isoproterenol dose for white and black
men. Straight lines connect observations from the same study subjects. Note
that patients who have high, medium or low flows at one dose tend to have
high, medium or low flows at other doses, respectively. This indicates that blood
flows from the same patient are strongly correlated (Lang et al., 1995).

lines. Diggle et al. (1994) provide an excellent discussion of exploratory

methods of graphing repeated measures data.

11.2. Exploratory Analysis of Repeated Measures Data using Stata

The following log file and comments illustrates how to produce graphs

similar to Figures 11.1 and 11.2. It also reformats the data from one record

per patient to one record per observation. This latter format will facilitate

the analysis of these data.

. * 11.2.Isoproterenol.log

. *

. * Plot mean forearm blood flow by race and log dose of isoproterenol

. * using the data of Lang et al. (1995). Show standard deviation for

. * each race at each drug level.
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. *

. use C:\WDDtext\11.2.Isoproterenol.dta, clear

. table race, row {1}
--------------------

Race | Freq.

---------+----------

White | 13

Black | 9

|

Total | 22

--------------------

. list if id == 1 id == 22 {2}
id race fbf0 fbf10 fbf20 fbf60 fbf150 fbf300 fbf400

1. 1 White 1 1.4 6.4 19.1 25 24.6 28

22. 22 Black 2.1 1.9 3 4.8 7.4 16.7 21.2

. generate baseline = fbf0 {3}

. *

. * Convert data from one record per patient to one record per observation.

. *

. reshape long fbf, i(id) j(dose) {4}
(note: j = 0 10 20 60 150 300 400)

Data wide -> long

--------------------------------------------------------------

Number of obs. 22 -> 154

Number of variables 10 -> 5

j variable (7 values) -> dose

xij variables:

fbf0 fbf10 ... fbf400 -> fbf

--------------------------------------------------------------

. list if id == 1 | id == 22 {5}
id dose race fbf baseline

1. 1 0 White 1 1

2. 1 10 White 1.4 1

3. 1 20 White 6.4 1

4. 1 60 White 19.1 1

5. 1 150 White 25 1

6. 1 300 White 24.6 1
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7. 1 400 White 28 1

148. 22 0 Black 2.1 2.1

149. 22 10 Black 1.9 2.1

150. 22 20 Black 3 2.1

151. 22 60 Black 4.8 2.1

152. 22 150 Black 7.4 2.1

153. 22 300 Black 16.7 2.1

154. 22 400 Black 21.2 2.1

. generate delta_fbf = fbf - baseline

(4 missing values generated)

. label variable delta_fbf "Change in Forearm Blood Flow"

. label variable dose "Isoproterenol Dose (ng/min)"

. generate plotdose = dose

. replace plotdose = 6 if dose == 0 {6}
(22 real changes made)

. label variable plotdose "Isoproterenol Dose (ng/min)"

. generate logdose = log(dose)

(22 missing values generated)

. label variable logdose "Log Isoproterenol Dose"

. *

. * Save long format of data for subsequent analyses

. *

. save C:\WDDtext\11.2.Long.Isoproterenol.dta, replace

file C:\WDDtext\11.2.Long.Isoproterenol.dta saved

. *

. * Generate Figure 11.1

. *

. collapse (mean) fbfbar = fbf (sd) sd = fbf, by(race plotdose) {7}

. generate blackfbf = .

(14 missing values generated)

. generate whitefbf = .

(14 missing values generated)

. generate whitesd = .

(14 missing values generated)

. generate blacksd = .

(14 missing values generated)
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. replace whitefbf = fbfbar if race == 1 {8}
(7 real changes made)

. replace blackfbf = fbfbar if race == 2

(7 real changes made)

. replace blacksd = sd if race == 2

(7 real changes made)

. replace whitesd = sd if race == 1

(7 real changes made)

. label variable whitefbf "Forearm Blood Flow (ml/min/dl)"

. label variable blackfbf "Forearm Blood Flow (ml/min/dl)"

. generate wsdbar = whitefbf - whitesd {9}
(7 missing values generated)

. generate bsdbar = blackfbf - blacksd

(7 missing values generated)

. replace wsdbar = whitefbf + whitesd if plotdose < 20 {10}
(2 real changes made)

. graph whitefbf blackfbf wsdbar whitefbf bsdbar blackfbf plotdose, xlog {11}
> xlabel(10,20,60,100,150,200,300,400) xtick(6,30,40,50,70,80,90,250,300,350)

> ylabel(0 5 10 15 20 25) c(llIIII) s(OOiiii) l1title(Forearm Blood Flow)

> (ml/min/dl)) gap(3)

{Graph omitted. See Figure 11.1}
. *

. * Plot individual responses for white and black patients

. *

. use C:\WDDtext\11.2.Long.Isoproterenol.dta, clear {12}

. sort id plotdose

. *

. * Plot responses for white patients.

. *

. graph fbf plotdose if race==1, xlog xlabel(10,20,30,60,100,150,200,300,400)

> xtick(6,30,40,50,70,80,90,250,300,350) ylabel(0 5 to 40) connect(L) {13}
> symbol(O) lltitle(Forearm Blood Flow (ml/min/d1)) gap(3)

{Graph ommitted. See upper panel of Figure 11.2}
. *

. * Plot responses for black patients.

. *

. graph fbf plotdose if race==2, xlog xlabel(10,20,30,60,100,150,200,300,400)
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> xtick(6,30,40,50,70,80,90,250,300,350) ylabel(0 5 to 40) connect(L)

> symbol(O) l1title(Forearm Blood Flow (ml/min/dl)) gap(3)

{Graph ommitted. See lower panel of Figure 11.2}

Comments
1 11.2.Isoproterenol.dta contains one record per patient. Lang et al. (1995)

studied 13 white subjects and nine black subjects.

2 We list the variables in the first and last record of this file. In addition to

race and patient identification number there are seven variables record-

ing the patient’s forearm blood flow at different doses: fbf0 records the

baseline blood-flow, fbf10 the blood flow at 10 ng/min, fbf20 the blood

flow at 20 ng/min, et cetera.

3 We set baseline equal to fbf0 for use in subsequent calculations.

4 The reshape long command converts data from one record per patient to

one record per observation. In this command, i(id) specifies that the id

variable identifies observations from the same subject. The variable fbf

is the first three letters of variables fbf0, fbf10, . . . , fbf400; j(dose) defines

dose to be a new variable whose values are the trailing digits in the names

of the variables fbf0, fbf10, . . . , fbf400. That is, dose will take the values

0, 10, 20, . . . , 300, 400. One record will be created for each value of fbf0,

fbf10, . . . , fbf400. Other variables in the file that are not included in this

command (like race or baseline) are assumed not to vary with dose and

are replicated in each record for each specific patient.

5 This list command shows the effect of the preceding reshape long com-

mand. There are now seven records that record the data for the patient

with id = 1; fbf records the forearm blood pressure for this patient at the
different doses of isoproterenol. Note that the values of race and baseline

remain constant in all records with the same value of id.

6 We want to create Figures 11.1 and 11.2 that plot dose on a logarithmic

scale. We also want to include the baseline dose of zero on these figures.

Since the logarithm of zero is undefined, we create a new variable called

plotdose that equals dose for all values greater than zero and equals 6

when dose = 0. We will use a graphics editor to relabel this value zero
with a break in the x-axis when we create these figures.

7 This collapse command compresses the data to a single record for each

unique combination of race and dose. Two new variables called fbfbar

and sd are created. The variable fbfbar equals the mean of all values

of fbf that have identical values of race and plotdose; sd is the standard

deviation of these values. Hence, fbfbar and sd record the mean and

standard deviation of the forearm blood flow at each dose within each

race.
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8 The variable whitefbf equals the mean forearm blood flow for white

subjects and is missing for black subjects; blackfbf is similarly defined

for black subjects. The variables blacksd and whitesd give the standard

deviations for black and white subjects, respectively.

9 The distance between whitefbf and wsdbar equals the standard devia-

tion of the forearm blood flow for white subjects at each dose; bsdbar is

similarly defined for black patients.

10 In Figure 11.1 we will draw bars indicating standard deviations, which

will hang from the associated mean forearm blood flows. This works

well except for the baseline and 10 ng doses, where the mean values for

blacks and whites are very close. To avoid collisions between the stan-

dard deviation bars for the two races, we will draw the white standard

deviations extending above the means for these two doses. This replace

command accomplishes this task.

11 The xlog option of the graph command causes the x-axis to be drawn on

a logarithmic scale. This graph command creates a graph that is similar

to Figure 11.1. In this figure I used a graphic editor to relabel the baseline

dose 0, break the x-axis between 0 and 10, write the x-axis labels at a

slant for increased legibility, and label the two curvesWhite and Black.

12 We restore the long form of the data set. Note that this data set was

destroyed in memory by the preceding collapse command.

13 The connect(L)option specifies that straight lines are to connect consecu-

tive points as long as the values of the x-variable, plotdose, are increasing.

Otherwise the points are not connected. Note that in the preceding com-

mand we sorted the data set by id and plotdose. This has the effect of

grouping all observations on the same patient together and of ordering

the values on each patient by increasing values of plotdose. Hence, con-

nect(L) will connect the values for each patient but will not connected

the last value of one patient with the first value of the next. The result is

the upper panel of Figure 11.2.

11.3. Response Feature Analysis

The simplest approach to analyzing repeated measures data is a response
feature analysis (Crowder and Hand 1990). This approach is also called a
two-stage analysis (Diggle et al. 2002). The basic idea is to reduce themulti-
ple responses on each patient to a single biologically meaningful response

that captures the patient attribute of greatest interest. This responsemeasure

is then analyzed in a fixed-effects one-way analysis of variance. Examples of a

response feature thatmaybeuseful are anareaunder thecurveora regression

slope derived from the observations on an individual patient. The great



346 11. Repeated-measures analysis of variance

advantage of this approach is that since we analyze a single value per patient

we do not need to worry about the correlation structure on the multiple

observations on eachpatient.Wedoneed to assume that the observations on

separate patients are independent, but this is usually reasonable. Another

advantage is its simplicity. It is easy for non-statisticians to understand

a response feature analysis. More complex analyses may appear to your

colleagues as a black box from which P values and confidence intervals

magically arise. Also, more complex methods can be misleading if they are

based on models that fit the data poorly. Another advantage of this method

is that it can handle situations where some patients have missing values on

some observations. The disadvantage of the response feature analysis is that

we may lose some power by ignoring information that is available in the

correlation structure of observations from individual patients.

11.4. Example: The Isoproterenol Data Set

Figure 11.2 suggests that there is a linear relationship between forearm

blood flow and the log dose of isoproterenol in both blacks and whites. The

hypothesis of greatest interest in thisdata set iswhetherwhites are, ingeneral,

more responsive to increasing doses of isoproterenol than blacks. There is

a small degree of variation in the baseline blood flow levels and the average

baseline blood flow is slightly larger in whites than blacks (see Figure 11.1).

In order to keep these facts from complicating the interpretation of our

analysis, wewill use as our dependent variable the change in bloodflow from

baseline for each patient. Figure 11.3 shows a scatter plot of the responses for

the first patient (id = 1) together with the linear regression line for change
in blood flow against log dose of isoproterenol. As can be seen from this

figure, this model provides an excellent fit for this patient. The quality of

the model fit for the other patients is similar. The estimate of the regression

slope parameter for this patient is 7.18. We calculate the corresponding

slope estimates for all the other patients in this experiment. These slopes are

shown as vertical lines for black and white subjects in Figure 11.4. Box plots

for black and white patients are also shown. The difference in response of

blacks and whites is quite marked. There are only two black subjects whose

slopes are greater than the lowest slope for a white patient. There are outliers

in both the black and white subject groups. For this reason we will analyze

these slopes using theWilcoxon–Mann–Whitney rank-sum test. (Had there

been three or more racial groups we would have used a one-way analysis of

variance or a Kruskal–Wallis test.) TheWilcoxon–Mann–Whitney test gives

a P value of 0.0006. Hence, it is clear that the markedly stronger response of

whites to increasing doses of isoproterenol can not be explained by chance.
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Figure 11.3 Scatter plot of change from baseline forearm blood flow in response to escalat-
ing isoproterenol dose for a single patient (id = 1). Note that dose is plotted on
a logarithmic scale. The linear regression line of change in blood flow against
log dose is also plotted and fits these data well. The slope of this regression
line for this patient is 7.18. We calculate a similar slope for every patient in the
study. These slopes are plotted in Figure 11.4.
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Slope:  Change in Blood Flow per Unit Change in Log Dose
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Figure 11.4 Box plots of the individual regresson slopes in white and black patients treated
with escalating doses of isoproterenol by Lang et al. (1995). Each vertical bar
represents the regression slope of change in forearm blood flow against log
dose of isoproterenol for an individual subject. These slopes were analyzed
using the Wilcoxon–Mann–Whitney rank-sum test, which showed that slopes
for white study subjects were significantly higher than those for black study
subjects (P = 0.0006).

Of course, one needs to be very cautious about inferring that this difference

in response between blacks and whites is of genetic origin. This is because

genetic and environmental factors are highly confounded in our society.

Hence, it is possible that race may be a marker of some environmental

difference that explains these results. Interested readers can find additional

research on this topic in papers by Xie et al. (1999 and 2000).

Our response feature analysis establishes that there is a significant differ-

ence in the responseofblacks andwhites to increasingdosesof isoproterenol.
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Table 11.1. Effect of race and dose of isoproterenol on change from baseline in forearm blood
flow (Lang et al., 1995). Comparisons between black and white men at each dose were made
using t tests with unequal variances. A response feature analysis was used to demonstrate a
significant difference in the response of blacks and whites to escalating doses of isoproterenol (see
Section 11.4).

Dose of isoproterenol (ng/min)

10 20 60 150 300 400

White subjects

Mean change from baseline 0.734 3.78 11.9 14.6 17.5 21.7

Standard error 0.309 0.601 1.77 2.32 2.13 2.16

95% confidence interval 0.054 to 1.4 2.5 to 5.1 8.1 to 16 9.5 to 20 13 to 22 17 to 26

Black subjects

Mean change from baseline 0.397 1.03 3.12 4.05 6.88 5.59

Standard error 0.207 0.313 0.607 0.651 1.30 1.80

95% confidence interval −0.081 to 0.87 0.31 to 1.8 1.7 to 4.5 2.6 to 5.6 3.9 to 9.9 1.4 to 9.7

Mean difference

White – black 0.338 2.75 8.82 10.5 10.6 16.1

95% confidence interval −0.44 to 1.1 1.3 to 4.2 4.8 to 13 5.3 to 16 5.4 to 16 10 to 22

P value 0.38 0.0009 0.0003 0.0008 0.0005 <0.0001

This justifies determining which doses induce a significant effect using the

same logic as in Fisher’s protected LSD procedure (see Section 10.2). Table

11.1 shows the results of these sub-analyses. The differences in change from

baseline between blacks and whites at each dose in this table are assessed

using independent t tests. The standard errors for blacks tend to be lower

than for whites and Bartlett’s test for equal variances is significant at doses

20, 60, and 150. For this reason, we use Satterthwaite’s t test, which assumes

unequal variances (seeSection1.4.13). Equations (1.9) and (1.11) areused to

derive the P values and confidence intervals, respectively, for the differences

in change from baseline given in Table 11.1. This table provides convincing

evidence that the response to treatment is greater for whites than blacks at

all doses greater than or equal to 20 ng/min.

11.5. Response Feature Analysis using Stata

The following log file and comments illustrate how to perform the response

feature analysis described in the preceding section.

. * 11.5.Isoproterenol.log

. *
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. * Perform a response feature analysis of the effect of race and dose of

. * isoproterenol on blood flow using the data of Lang et al. (1995). For

. * each patient, we will perform separate linear regressions of change in

. * blood flow against log dose of isoproterenol. The response feature that

. * we will use is the slope of each individual regression curve.

. *

. use C:\WDDtext\11.2.Long.Isoproterenol.dta, clear

. *

. * Calculate the regression slope for the first patient

. *

. regress delta_fbf logdose if id == 1 {1}

Source | SS df MS Number of obs = 6

-------------+----------------------------- F( 1, 4) = 71.86

Model | 570.114431 1 570.114431 Prob > F = 0.0011

Residual | 31.7339077 4 7.93347694 R-squared = 0.9473

-------------+----------------------------- Adj R-squared = 0.9341

Total | 601.848339 5 120.369668 Root MSE = 2.8166

-----------------------------------------------------------------------------

delta_fbf | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+---------------------------------------------------------------

logdose | 7.181315 .8471392 8.48 0.001 4.82928 9.533351

_cons | -14.82031 3.860099 -3.84 0.018 -25.53767 -4.10296

-----------------------------------------------------------------------------

. predict yhat

(option xb assumed; fitted values)

(22 missing values generated)

. graph delta_fbf yhat dose if dose ˜= 0 & id == 1,s(Oi) c(.l) xlog {2}
> xlabel(10,20,30,60,100,150,200,300,400) xtick(30,40,50,70,80,90,250,300,350)

> ylabel(0 5 to 25) gap(3)

{Graph omitted. See Figure 11.3}
. *

. * Calculate some intra-patient statistics

. *

. sort id

. by id: egen ldmean = mean(logdose) {3}

. by id: egen delta_fbfmean = mean(delta_fbf) {4}

. by id: egen ldsd = sd(logdose) {5}

. by id: egen delta_fbfsd = sd(delta_fbf) {6}
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. by id: egen n = count(delta_fbf*logdose) {7}

. generate cross = (delta_fbf - delta_fbfmean)*(logdose - ldmean)/(n - 1) {8}
(26 missing values generated)

. *

. * cov is the within-patient covariance

. *

. by id: egen cov = sum(cross) {9}

. *

. * r is the within patient correlation coefficient

. *

. generate r = cov/(ldsd*delta_fbfsd) {10}

. *

. * Calculate slope coefficient for each patient

. *

. generate slope = r*delta_fbfsd/ldsd {11}

. *

. * Reduce the data set to the last record for each patient.

. *

. by id: keep if _n == _N {12}
(132 observations deleted)

. list id slope race {13}

id slope race

1. 1 7.181315 White

2. 2 6.539237 White

3. 3 3.999704 White

4. 4 4.665485 White

5. 5 4.557809 White

6. 6 6.252436 White

7. 7 2.385183 White

8. 8 11.03753 White

9. 9 9.590916 White

10. 10 6.515281 White

11. 11 3.280572 White

12. 12 3.434072 White

13. 13 5.004545 White

14. 14 .5887727 Black

15. 15 1.828892 Black
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16. 16 .3241574 Black

17. 17 1.31807 Black

18. 18 1.630882 Black

19. 19 .7392464 Black

20. 20 2.513615 Black

21. 21 1.031773 Black

22. 22 4.805953 Black

. set textsize 120

. graph slope, by(race) oneway box {14}
{Graph omitted. See Figure 11.4}

. *

. * Do ranksum test on slopes.

. *

. ranksum slope, by(race) {15}

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

race | obs rank sum expected

--------------+----------------------------

White | 13 201 149.5

Black | 9 52 103.5

--------------+----------------------------

combined | 22 253 253

unadjusted variance 224.25

adjustment for ties -0.00

----------

adjusted variance 224.25

Ho: slope(race==White) = slope(race==Black)

z = 3.439

Prob > |z| = 0.0006

. *

. * Do t tests comparing change in blood flow in blacks and whites at

. * different doses

. *

. use C:\WDDtext\11.2.Long.Isoproterenol.dta, clear {16}

. sort dose

. drop if dose == 0

(22 observations deleted)

. by dose: ttest delta_fbf, by(race) unequal {17}
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-> dose = 10

Two-sample t test with unequal variances

-----------------------------------------------------------------------------

Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

-----------+-----------------------------------------------------------------

White | 12 .7341667 .3088259 1.069804 .0544455 1.413888

Black | 9 .3966667 .2071634 .6214902 -.081053 .8743863

-----------+-----------------------------------------------------------------

combined | 21 .5895238 .1967903 .9018064 .1790265 1.000021

-----------+-----------------------------------------------------------------

diff | .3375 .3718737 -.4434982 1.118498

-----------------------------------------------------------------------------

Satterthwaite's degrees of freedom: 18.0903

Ho: mean(White) - mean(Black) = diff = 0

Ha: diff < 0 Ha: diff ~= 0 Ha: diff > 0

t = 0.9076 t = 0.9076 t = 0.9076

P < t = 0.8120 P > |t| = 0.3760 P > t = 0.1880

-> dose = 20

Two-sample t test with unequal variances

-----------------------------------------------------------------------------

Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

-----------+-----------------------------------------------------------------

White | 12 3.775833 .6011875 2.082575 2.452628 5.099038

Black | 9 1.03 .3130229 .9390686 .308168 1.751832

-----------+-----------------------------------------------------------------

combined | 21 2.599048 .4719216 2.162616 1.614636 3.583459

-----------+-----------------------------------------------------------------

diff | 2.745833 .6777977 1.309989 4.181677

-----------------------------------------------------------------------------

Satterthwaite's degrees of freedom: 16.1415

Ho: mean(White) - mean(Black) = diff = 0

Ha: diff < 0 Ha: diff ~= 0 Ha: diff > 0

t = 4.0511 t = 4.0511 t = 4.0511

P < t = 0.9995 P > |t| = 0.0009 P > t = 0.0005

{Output omitted. See Table 11.1}
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-> dose = 400

Two-sample t test with unequal variances

-----------------------------------------------------------------------------

Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

-----------+-----------------------------------------------------------------

White | 13 21.69308 2.163637 7.801104 16.97892 26.40724

Black | 9 5.586667 1.80355 5.410649 1.427673 9.74566

-----------+-----------------------------------------------------------------

combined | 22 15.10409 2.252517 10.56524 10.41972 19.78846

-----------+-----------------------------------------------------------------

diff | 16.10641 2.816756 10.2306 21.98222

-----------------------------------------------------------------------------

Satterthwaite's degrees of freedom: 19.9917

Ho: mean(White) - mean(Black) = diff = 0

Ha: diff < 0 Ha: diff ~= 0 Ha: diff > 0

t = 5.7181 t = 5.7181 t = 5.7181

P < t = 1.0000 P > |t| = 0.0000 P > t = 0.0000

Comments
1 We regress change in blood flow against log dose of isoproterenol for the

observations from the first patient. Note that logdose is missing when

dose = 0. Hence, only the six positive doses are included in this analysis.
The regression slope for this patient is 7.18. We could obtain the slopes

for all 22 patients with the command

by id: regress delta_fbf logdose

However, this would require extracting the slope estimates by hand and

re-entering them into Stata. This is somewhat tedious to do and is prone

to transcription error. Alternatively, we can calculate these slopes explic-

itly for each patient using equation (2.6), which we will do below.

2 This graph shows the regression line and individual data points for the

first patient. It is similar to Figure 11.3.

3 The command egen xbar = mean(x) creates a new variable xbar that

equals the mean of x over the entire data set. When preceded with the by

z: prefix, this command calculates separate means of x from subsamples

of thedata thathave identical valuesof z.Hence, this commandcalculates

ldmean to equal the mean log dose of isoproterenol for the i th subject.

Missing values are excluded from this mean. In the calculations given

below we will denote this mean x . The individual values of logdose for

the i th patient will be denoted x j .
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In this example, ldmean is constant for all patients except patient 8

who has missing blood flow values at several doses.

4 This command calculates delta fbfmean to equal the mean change in

forearm blood flow for the i th subject. We will denote this value y. The

individual values of delta fbf for the i th patient will be denoted y j .

5 This command calculates ldsd to equal the estimated standard deviation

of logdose for the i th patient, which we denote sx .

6 The variable delta fbfsd equals the standard deviation of delta fbf for the

i th patient, which we denote s y .

7 This command defines n to be the number of non-missing values of

delta fbf*logdose for the i th patient; delta fbf*logdose is missing if either

delta fbf or logdose is missing.

8 This generate command calculates cross to equal (y j − y)(x j − x)/

(n − 1).
9 This egen command calculates cov to equal the sum of cross over all

records with identical values of id. In other words, cov is the sample

covariance of delta fbf with logdose for the i th patient, whichwas defined

in equation (2.1) to be sxy = ∑
(y j − y)(x j − x)/(n − 1).

10 The variable r = sxy/(sx s y) is the sample correlation coefficient for the

i th patient (see equation (2.2)).

11 The variable slope = b = r s y/sx is the slope estimate of the regression

line for the i th patient (see equation (2.6)).

12 We still have one record per observation sorted by id. When used with

the by id: prefix, the system constant N equals the number of records

with the current value of id; n is set to 1 for the first record with a new

value of id and is incremented by 1 for each succeeding record with the

same id value. Hence, this keep command deletes all but the last record

corresponding to each patient. (Note that slope is constant for all records

corresponding to the same patient. Thus, it does notmatter which of the

available records we keep for each patient.)

13 We list the individual slope estimates for each patient. Note that the

highlighted slope estimate for the first patient is identical to the estimate

obtained earlier with the regress command.

14 This graph, which is similar to Figure 11.4, highlights the difference in

the distribution of slope estimates between blacks and whites.

15 This ranksum command performs a Wilcoxon–Mann–Whitney rank

sum test of the null hypothesis that the distribution of slopes is the

same for both races. The test is highly significant, giving a P value of

0.0006.
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16 The preceding keep command deleted most of the data. We must read

in the data set before performing t tests at the different doses.

17 This ttest command performs independent t tests of delta fbf in blacks

and whites at each dose of isoproterenol. The output for doses 60, 150

and 300 have been omitted. The highlighted output from this command

is also given in Table 11.1.

11.6. The Area-Under-the-Curve Response Feature

A response feature that is often useful in response feature analysis is the area
under the curve. Suppose that yi (t) is the response from the i th patient at

time t. Suppose further that we measure this response at times t1, t2, . . . , tn,

and that yi j = yi (t j ), for j = 1, 2, . . . , n. We can estimate the area under the

curve yi (t) between t1 and tn as follows. Draw a scatterplot of yi j against t j
for j = 1, 2, . . . , n. Then, draw straight lines connecting the points (t1, yi1),

(t2, yi2), . . . ,(tn, yin). We estimate the area under the curve to be the area

under these lines. Specifically, the area under the line from (t j , yi j ) to (t j+1,
yi, j+1) is( yi j + yi, j+1

2

)
(t j+1 − t j ).

Hence, the area under the entire curve is estimated by

n−1∑
j=1

( yi j + yi, j+1
2

)
(t j+1 − t j ). (11.1)

For example, if n = 3, t1= 0, t2= 1, t3= 3, yi1 = 4, yi2 = 8 and yi3 = 6 then
equation (11.1) reduces to(
4+ 8
2

)
(1− 0)+

(
8+ 6
2

)
(3− 1) = 20.

In a response feature analysis based on area under the curve, we use equation

(11.1) to calculate this area for each patient and then perform a one-way

analysis of variance on these areas.

Equation (11.1) can be implemented in Stata as follows. Suppose that a

Stata data set with repeated-measures data has one record per observation.

Let the variables id, time, and response indicate the patient’s identification

number, timeofobservation, andresponse, respectively.Then theareaunder

the response curve for study subjects canbe calculatedbyusing the following

Stata code:
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sort id time

*

* Delete records with missing values for time or response

*

drop if time == . | response == .

generate area=(response+response[_n+1])*(time[_n+1]-time)/2 if id==id[_n+1]

collapse (sum) area = area, by(id)

*

* The variable ‘area’ is now the area under the curve for each patient

* defined by equation (11.1). The data file contains one record per

* patient.

*

11.7. Generalized Estimating Equations

There are a number of excellent methods for analyzing repeated measures

data. One of these is generalized estimating equations (GEE) analysis. This
approach extends the generalized linearmodel so that it can handle repeated

measuresdata (Zeger andLiang, 1986). Suppose thatweobserve anunbiased

sample of n patients from some target population and that the i th patient is

observed on ni separate occasions. Let yi j be the response of the i th patient

at her j th observation and let xi j1, xi j2, . . . , xi jq be q covariates that are

measured on her at this time. Let xi j = (xi j1, xi j2, . . . , xi jq ) denote the

values of all of the covariates for the i th patient at her j th observation. Then

the model used by GEE analysis assumes that:

(i) The distribution of yi j belongs to the exponential family of distri-

butions. This is a large family that includes the normal, binomial, and

Poissondistributions; yi j is called the randomcomponentof themodel.

(ii) The expected value of yi j given the patient’s covariates xi j1, xi j2, . . . ,

xi jq is related to themodel parameters through an equation of the form

g [E [yi j | xi j ]] = α + β1xi j1 + β2xi j2 + · · · + βq xi jq . (11.2)

In equation (11.2), α, β1, β2, . . . , and βq are unknown parameters

and g is a smooth function that is either always increasing or always

decreasing over the range of yi j . The function g is the link function for

the model; α + β1xi j 1 + β2xi j2 + · · · + βq xi jq is the linear predictor.

(iii) Responses from different patients are mutually independent.

When there is only one observation per patient (ni = 1 for all i), model
(11.2) is, in fact, the generalized linear model. In this case, when g is the

identity function (g [y] = y), and yi j is normally distributed, (11.2) reduces
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to multiple linear regression; when g is the logit function and yi j has a

binomial distribution, (11.2) describes logistic regression; when g is the

logarithmic function and yi j has a Poisson distribution, thismodel becomes

Poisson regression. Model (11.2) differs from the generalized linear model

in that it does not make any assumptions about how observations on the

same patient are correlated.

11.8. Common Correlation Structures

Let ρ j k denote the population correlation coefficient between the j th and

kth observations on the same patient. If all patients have n observations,

we express the correlation structure for each patient’s observations as the

following square array of correlation coefficients:

R =




1 ρ12 ρ13 · · · ρ1n

ρ21 1 ρ23 · · · ρ2n

ρ31 ρ32 1 · · · ρ3n
...

...
...
. . .

...

ρn1 ρn2 ρn3 · · · 1




. (11.3)

R is called the correlation matrix for repeated observations on study sub-
jects. In this matrix, the coefficient in the j th row and kth column is the

correlation coefficient between the j th and kth observations. The diagonal

elements are always 1 since any observation will be perfectly correlated with

itself. Any correlation matrix will be symmetric about the diagonal that

runs from upper left to lower right. This is because the correlation between

the j th and kth observation equals the correlation between the kth and j th

observation.

There are a number of special correlation structures that come up in var-

ious models. However, we will only need to mention two of these here. The

first is the unstructured correlation matrix given by equation (11.3). Al-
though this matrix makes no assumptions about the correlation structure it

requiresn(n − 1)/2 correlationparameters. Estimating this large number of
parametersmaybedifficult if thenumberof observationsperpatient is large.

The second is the exchangeable correlation structure, which assumes that

R =




1 ρ ρ · · · ρ

ρ 1 ρ · · · ρ

ρ ρ 1 · · · ρ
...
...
...
. . .

...

ρ ρ ρ · · · 1




. (11.4)
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In other words, the exchangeable structure assumes that any two distinct

observations from the same patient have the same correlation coefficient

ρ. Many data sets have much more complicated correlation structures. In

particular, observations on a patient taken closer in time are often more

correlated than observations taken far apart. Also, the correlation structure

is not necessarily the same for all patients. Nevertheless, the exchangeable

correlation structure will meet our needs for GEE analysis. This is because a

GEE analysis requires only a rough estimate of this structure to get started.

Its final parameter estimates are not usually dependent on the accuracy of

our initial assumptions about the correlation matrix.

11.9. GEE Analysis and the Huber—White Sandwich Estimator

GEE analysis is computationally and methodologically complex (Diggle

et al., 1994). However, the basic idea of the analysis can be summarized as

follows:

1 We select a working correlation matrix Ri for each patient. Ri , the

matrix for the i th patient, can be quite complicated, but need not be.

An exchangeable correlation structure usually works just fine. From this,

we estimate the working variance–covariance matrix for the i th patient.

This is a function of both the working correlation matrix and the link

function g. For example, if we use an exchangeable correlation structure,

the identity link function, and a normal random component then the

working variance–covariance matrix specifies that yi j will have variance

σ 2 and that the covariance between any two distinct observations on the

i th patient will equal ρσ 2.

2 Using the working variance–covariance structure we obtain estimates

of the model parameters. This is done using a technique called quasi-
likelihood, which is related to maximum likelihood estimation but does
not require the likelihood function to be fully specified.

3 We estimate the variance–covariance matrix of our model parameters

using a technique called theHuber–White sandwich estimator.
4 We use our parameter estimates and the Huber–White variance–covari-

ance matrix to test hypotheses or construct confidence intervals from

relevant weighted sums of the parameter estimates (see Sections 5.14

through 5.16).

What is truly amazing about this technique is that, under mild regularity

conditions, theHuber–White variance–covariance estimate converges to the

true variance–covariance matrix of the parameter estimates as n gets large.
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This is so even when the working correlationmatrix is incorrectly specified.

Thus, we can specify a very simple workingmatrix such as the exchangeable

correlation matrix for models in which none of the observations obey this

structure and the correlation structuremay vary for different study subjects.

This result holds, however, “. . . only when there is a diminishing fraction of

missing data or when the data are missing completely at random” (Zeger

and Liang, 1986). For this reason, it is sometimes prudent to drop patients

with missing response values from the analysis.

When there is a large proportion of patients who have at least onemissing

response value, it may not be reasonable to delete all of these patients from

the analysis. In this case, if you include all of the patients in your analysis,

then the validity of your choice of working correlation matrix can become

important; if the truecorrelation structure cannotbe reasonablymodeledby

anyof theworking correlationmatrices providedby your statistical software,

then GEE may not be the best approach to analyzing your data.

11.10. Example: Analyzing the Isoproterenol Data with GEE

Suppose that in model (11.2), yi j is a normally distributed random compo-

nent and g [y] = y is the identity link function. Then model (11.2) reduces

to

E[yi j |xi j ] = α + β1xi j1 + β2xi j2 + · · · + βq xi jq . (11.5)

Model (11.5) is a special case of the GEE model (11.2). We now analyze the

blood flow, race and isoproterenol data set of Lang et al. (1995) using this

model. Let

yi j be the change from baseline in forearm blood flow for the i th patient at

the j th dose of isoproterenol,

whitei =
{
1: if the i th patient is white

0: if he is black, and

dose jk =
{
1: if j = k

0: otherwise.

We will assume that yi j is normally distributed and

E[yi j | whitei , j ] = α + β × whitei

+
6∑

k=2
(γkdose jk + δk × whitei × dose jk), (11.6)
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whereα,β, {γk , δk : k = 2, . . . , 6} are themodel parameters.Model (11.6) is
a special case ofmodel (11.5). Note that thismodel implies that the expected

change in blood flow is

α for a black man on the first dose, (11.7)

α + β for a white man on the first dose, (11.8)

α + γ j for a black man on the j th dose with j > 1, and (11.9)

α + β + γ j + δ j for a white man on the j th dose with j > 1. (11.10)

Itmust be noted that patient 8 in this study has fourmissing bloodflowmea-

surements. This concentration of missing values in one patient causes the

choice of theworking correlationmatrix to have an appreciable effect on our

model estimates. Regardless of the working correlation matrix, the work-

ing variance for yi j in model (11.5) is constant. Figure 11.2 suggests that

this variance is greater for whites than blacks and increases with increas-

ing dose. Hence, it is troubling to have our parameter estimates affected

by a working correlation matrix that we know is wrong. Also, the Huber–

White variance–covariance estimate is only valid when the missing values

are few and randomly distributed. For these reasons, we delete patient 8

from our analysis. This results in parameter estimates and a Huber–White

variance–covariance estimate that are unaffected by our choice of the work-

ing correlation matrix.

Let α̂, β̂, {γ̂k , δ̂k : k = 2, . . . , 6} denote the GEE parameter estimates from
the model. Then our estimates of the mean change in blood flow in blacks

and whites at the different doses are given by equations (11.7) through

(11.10) with the parameter estimates substituting for the true parameter

values. Subtracting the estimate of equation (11.7) from that for equation

(11.8) gives the estimatedmean difference in change in flow between whites

and blacks at dose 1, which is

(α̂ + β̂)− α̂ = β̂. (11.11)

Subtracting the estimate of equation (11.9) from that for equation (11.10)

gives the estimated mean difference in change in flow between whites and

blacks at dose j > 1, which is

(α̂ + β̂ + γ̂ j + δ̂ j )− (α̂ + γ̂ j ) = (β̂ + δ̂ j ). (11.12)

Tests of significance and 95% confidence intervals can be calculated for

these estimates using the Huber–White variance–covariance matrix. This is

done in the same way as was illustrated in Sections 5.14 through 5.16. These

estimates, standard errors, confidence intervals and P values are given in

Table 11.2.
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Table 11.2. Effect of race and dose of isoproterenol on change from baseline in forearm blood
flow (Lang et al., 1995). This table was produced using a generalized estimating equation (GEE)
analysis. Note that the confidence intervals in this table are slightly narrower than the
corresponding intervals in Table 11.1. This GEE analysis is slightly more powerful than the response
feature analysis that produced Table 11.1.

Dose of isoproterenol (ng/min)

10 20 60 150 300 400

White subjects

Mean change from baseline 0.734 3.78 11.9 14.6 17.5 21.2

Standard error 0.303 0.590 1.88 2.27 2.09 2.23

95% confidence interval 0.14 to 1.3 2.6 to 4.9 8.2 to 16 10 to 19 13 to 22 17 to 26

Black subjects

Mean change from baseline 0.397 1.03 3.12 4.05 6.88 5.59

Standard error 0.200 0.302 0.586 0.629 1.26 1.74

95% confidence interval 0.0044 to 0.79 0.44 to 1.6 2.0 to 4.3 2.8 to 5.3 4.4 to 9.3 2.2 to 9.0

Mean difference

White – black 0.338 2.75 8.79 10.5 10.6 15.6

95% confidence interval –0.37 to 1.0 1.4 to 4.0 4.9 to 13 5.9 to 15 5.9 to 15 10 to 21

P value 0.35 <0.0005 <0.0005 <0.0005 <0.0005 <0.0001

Testing the null hypothesis that there is no interaction between race and

dose on blood flow is equivalent to testing the null hypothesis that the effects

of race and dose on blood flow are additive. In other words, we test the null

hypothesis that δ2 = δ3 = δ4 = δ5 = δ6 = 0. Under this null hypothesis a
chi-squared statistic can be calculated that has as many degrees of freedom

as there are interaction parameters (in this case five). This statistic equals

40.41, which is highly significant (P < 0.00005). Hence, we can conclude

that the observed interaction is certainly not due to chance.

The GEE and response feature analysis (RFA) in Tables 11.2 and 11.1

should be compared. Note that the mean changes in blood flow in the two

races and six dose levels are very similar. They would be identical were

if not for the fact that patient 8 is excluded from the GEE analysis but

is included in the RFA. This is a challenging data set to analyze in view

of the fact that the standard deviation of the response variable increases

with dose and differs between the races. The GEE analysis does an excellent

job at modeling this variation. Note how the standard errors in Table 11.2

increase from black subjects to white subjects at any dose or from low dose

to high dose within either race. Figure 11.5 compares the mean difference

between blacks and whites at the six different doses. The white and gray
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Figure 11.5 This graph shows themean differences between black and white study subjects
given at the botton of Tables 11.1 and 11.2. The white and gray bars are from
the response feature analysis (RFA) and generalized estimating equation (GEE)
analysis, respectively. The vertical lines give the 95% confidence intervals for
these differences. These analyses give very similar results. The GEE analysis
is slighly more powerful than the RFA as is indicated by the slightly narrower
confidence intervals of the GEE results.

bars are from the RFA and GEE analyses, respectively. Note that these two

analyses provide very similar results for these data. The GEE analysis is

slightly more powerful than the RFA as is indicated by the slightly narrower

confidence intervals for its estimates. This increase in power is achieved at

a cost of considerable methodological complexity in the GEE model. The

GEE approach constitutes an impressive intellectual achievement and is a

valuable tool for advanced statistical analysis. Nevertheless, RFA is a simple

and easily understood approach to repeated measures analysis that can, as

in this example, approach the power of a GEE analysis. At the very least,

it is worth considering as a crosscheck against more sophisticated multiple

regression models for repeated measures data.

11.11. Using Stata to Analyze the Isoproterenol Data Set
Using GEE

The following log file and comments illustrate how to perform the GEE

analysis from Section 11.10 using Stata.
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. * 11.11.Isoproterenol.log

. *

. * Perform a GEE analyses of the effect of race and dose of isoproterenol

. * on blood flow using the data of Lang et al. (1995).

. *

. use C:\WDDtext\11.2.Long.Isoproterenol.dta, clear

. drop if dose == 0 | id == 8 {1}
(28 observations deleted)

. generate white = race == 1

. *

. * Analyze data using classification variables with interaction

. *

. xi: xtgee delta_fbf i.dose*white, i(id) robust {2}
i.dose _Idose_1-6 (_Idose_1 for dose==10 omitted)

i.dose*white _IdosXwhite_# (coded as above)

Iteration 1: tolerance = 2.061e-13

GEE population-averaged model Number of obs = 126

Group variable: id Number of groups = 21

Link: identity Obs per group: min = 6

Family: Gaussian avg = 6.0

Correlation: exchangeable max = 6

Wald chi2(11) = 506.86

Scale parameter: 23.50629 Prob > chi2 = 0.0000

(standard errors adjusted for clustering on id)

---------------------------------------------------------------------------

| Semi-robust

delta_fbf | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+-------------------------------------------------------------

_Idose_2 | .6333333 .2706638 2.34 0.019 .1028421 1.163825

_Idose_3 | 2.724445 .6585882 4.14 0.000 1.433635 4.015254

_Idose_4 | 3.656667 .7054437 5.18 0.000 2.274022 5.039311

_Idose_5 | 6.478889 1.360126 4.76 0.000 3.813091 9.144687

_Idose_6 | 5.19 1.830717 2.83 0.005 1.601861 8.77814

white | .3375 .363115 0.93 0.353 -.3741922 1.049192 {3}
_IdosXwhit~2 | 2.408333 .5090358 4.73 0.000 1.410642 3.406025

_IdosXwhit~3 | 8.450556 1.823352 4.63 0.000 4.876852 12.02426

_IdosXwhit~4 | 10.17667 2.20775 4.61 0.000 5.849557 14.50378

_IdosXwhit~5 | 10.30444 2.305474 4.47 0.000 5.785798 14.82309

_IdosXwhit~6 | 15.22667 2.748106 5.54 0.000 9.840479 20.61285

_cons | .3966667 .2001388 1.98 0.047 .0044017 .7889316 {4}
---------------------------------------------------------------------------
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. lincom _cons + white {5}
( 1) white + _cons = 0.0

------------------------------------------------------------------------

delta_fbf | Coef. Std. Err. z P>|z| [95% Conf. Interval]

----------+-------------------------------------------------------------

(1) | .7341667 .30298 2.42 0.015 .1403367 1.327997

------------------------------------------------------------------------

. lincom _cons + _Idose_2 {6}
( 1) _Idose_2 + _cons = 0.0

-----------------------------------------------------------------------

delta_fbf | Coef. Std. Err. z P>|z| [95% Conf. Interval]

----------+------------------------------------------------------------

(1) | 1.03 .3024088 3.41 0.001 .4372896 1.62271

-----------------------------------------------------------------------

. lincom _cons + _Idose_2 + white + _IdosXwhite_2 {7}
( 1) _Idose_2 + white + _IdosXwhite_2 + _cons = 0.0

-----------------------------------------------------------------------

delta_fbf | Coef. Std. Err. z P>|z| [95% Conf. Interval]

----------+------------------------------------------------------------

(1) | 3.775833 .5898076 6.40 0.000 2.619832 4.931835

-----------------------------------------------------------------------

. lincom white + _IdosXwhite_2 {8}
( 1) white + _IdosXwhite_2 = 0.0

-----------------------------------------------------------------------

delta_fbf | Coef. Std. Err. z P>|z| [95% Conf. Interval]

----------+-------------------------------------------------------------

(1) | 2.745833 .6628153 4.14 0.000 1.446739 4.044927

------------------------------------------------------------------------

. lincom _cons + _Idose_3

{output omitted. See Table 11.2}
. lincom _cons + _Idose_3 + white + _IdosXwhite_3

{output omitted. See Table 11.2}
. lincom white + _IdosXwhite_3

{output omitted. See Table 11.2}
. lincom _cons + _Idose_4

{output omitted. See Table 11.2}
. lincom _cons + _Idose_4 + white + _IdosXwhite_4

{output omitted. See Table 11.2}
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. lincom white + _IdosXwhite_4

{output omitted. See Table 11.2}
. lincom _cons + _Idose_5

{output omitted. See Table 11.2}
. lincom _cons + _Idose_5 + white + _IdosXwhite_5

{output omitted. See Table 11.2}
. lincom white + _IdosXwhite_5

{output omitted. See Table 11.2}
. lincom _cons + _Idose_6

( 1) _Idose_6 + _cons = 0.0

---------------------------------------------------------------------------

delta_fbf | Coef. Std. Err. z P>|z| [95% Conf. Interval]

----------+----------------------------------------------------------------

(1) | 5.586667 1.742395 3.21 0.001 2.171636 9.001698

---------------------------------------------------------------------------

. lincom _cons + _Idose_6 + white + _IdosXwhite_6

(1) _Idose_6 + white + _IdosXwhite_6 + _cons = 0.0

---------------------------------------------------------------------------

delta_fbf | Coef. Std. Err. z P>|z| [95% Conf. Interval]

----------+----------------------------------------------------------------

(1) | 21.15083 2.233954 9.47 0.000 16.77236 25.5293

---------------------------------------------------------------------------

. lincom white + _IdosXwhite_6

(1) white + _IdosXwhite_6 = 0.0

---------------------------------------------------------------------------

delta_fbf | Coef. Std. Err. z P>|z| [95% Conf. Interval]

----------+----------------------------------------------------------------

(1) | 15.56417 2.833106 5.49 0.000 10.01138 21.11695

---------------------------------------------------------------------------

. test _IdosXwhite_2 _IdosXwhite_3 _IdosXwhite_4 _IdosXwhite_5 _IdosXwhite_6

{9}
(1) _IdosXwhite_2 = 0.0

(2) _IdosXwhite_3 = 0.0

(3) _IdosXwhite_4 = 0.0

(4) _IdosXwhite_5 = 0.0

(5) _IdosXwhite_6 = 0.0

chi2( 5) = 40.41

Prob > chi2 = 0.0000
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Comments
1 We drop all records with dose = 0 or id = 8. When dose = 0, the change
from baseline, delta fbf, is, by definition, zero. We eliminate these records

as they provide no useful information to our analyses. Patient 8 has four

missingvalues.Thesemissingvalueshaveanadverse effectonouranalysis.

For this reason we eliminate all observations on this patient (see Sections

11.9 and 11.10).

2 This xtgee command analyzes model (11.6). The syntax of i.dose*white

is analogous to that used for the logistic command in Section 5.23 (see

also comment 8 of Section 9.3). The default link function is the identity

function. For the identity link function the default random component

is the normal distribution. Hence, we do not need to specify either of

these aspects of our model explicitly in this command. The i(id) option

specifies id to be the variable that identifies all observations made on the

same patient. The exchangeable correlation structure is the default work-

ing correlation structure, which we use here. The robust option specifies

that the Huber–White sandwich estimator is to be used. The table of co-

efficients generated by this command is similar to that produced by other

Stata regression commands.

Note that if we had not used the robust option the model would have

assumed that the exchangeable correlation structure was true. This would

have led to inaccurate confidence intervals for our estimates. I strongly

recommend that this option always be used in any GEE analysis.

3 The highlighted terms are the estimated mean, P value and 95% confi-

dence interval for the difference in response betweenwhite and blackmen

on the first dose of isoproterenol (10 ng/min). The parameter estimate

associated with the white covariate is β̂ = 0.3375 in model (11.6). The
highlighted values in this and in subsequent lines of output are entered

into Table 11.2.

4 The highlighted terms are the estimated mean, standard error and 95%

confidence interval for black men on the first dose of isoproterenol. The

parameter estimate associated with cons is α̂ = 0.3967.
5 This command calculates α̂ + β̂, the mean response for white men at the

first dose of isoproterenol, together with related statistics.

6 This command calculates α̂ + γ̂2, the mean response for blackmen at the

second dose of isoproterenol, together with related statistics.

7 This command calculates α̂ + β̂ + γ̂2 + δ̂2, the mean response for white

men at the second dose of isoproterenol, together with related statistics.

8 This commandcalculates β̂ + δ̂2, themeandifference in responsebetween

white and black men at the second dose of isoproterenol, together with
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related statistics. Analogous lincom commands are also given for dose 3,

4, 5, and 6.

9 This command tests the null hypothesis that the interaction parameters

δ2, δ3, δ4, δ5, and δ6 are simultaneously equal to zero.That is, it tests thenull

hypothesis that the effects of race and dose on change in blood flow are

additive. This test, which has five degrees of freedom, gives P < 0.00005,

which allows us to reject the null hypothesis with overwhelming statistical

significance.

11.12. GEE Analyses with Logistic or Poisson Models

GEE analyses can be applied to any generalized linear model with repeated

measures data. For logistic regression we use the logit link function and a

binomial randomcomponent. ForPoisson regressionweuse the logarithmic

link function and a Poisson random component. In Stata, the syntax for

specifying these terms is the same as in the glm command. For logistic

regression, we use the link(logit) and family(binomial) options to specify the

link function and random component, respectively. For Poisson regression,

these options are link(log) and family(poisson). Additional discussion on

these techniques is given by Diggle et al. (1994).

11.13. Additional Reading

Crowder and Hand (1990) and

Diggle et al. (2002) are excellent texts on repeated measures data analysis.

Diggle et al. (2002) is the definitive text on GEE analysis at this time.

Lang et al. (1995) studied the effects of race and dose of isoproterenol on

forearm blood flow. We used data from their study to illustrate repeated

measures analyses of variance.

Xie et al. (1999) and

Xie et al. (2000) have done additional research on the relationship between

blood flow and isoproterenol dose in different races.

Liang and Zeger (1986) and

Zeger and Liang (1986) are the original references on generalized estimating

equation analysis.

Huber (1967),

White (1980) and

White (1982) are the original references for the Huber–White sandwich

estimator.
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11.14. Exercises

1 Create a repeated measures data set in Stata with one record per patient.

Calculate the area under the curve for these patients using code similar

to that given in Section 11.6. Confirm by hand calculations that your

program calculates this area properly. Explain why this code correctly

calculates equation (11.1)

2 In the Ibuprofen in Sepsis clinical trial each patient’s temperature was

measured at baseline, after two and four hours, and then every four hours

until 44 hours after entry into the study. Ibuprofen treatment in the

intervention group was stopped at 44 hours. Three additional tempera-

tures were recorded at 72, 96 and 120 hours after baseline (see the 11.ex.-

Sepsis.dat data set). Draw exploratory graphs to investigate the relation-

ship between treatment and body temperature in this study.

3 Perform a response feature analysis of body temperature and treatment

in the Ibuprofen in Sepsis study. What response feature do you think is

most appropriate to use in this analysis?

4 For the response feature chosen in question 3, draw box plots of this

statistic for patients in the intervention and control groups. Calculate a

95% confidence interval for the difference in this response feature be-

tween patients in the ibuprofen and control groups. Can we conclude

that ibuprofen changes the body temperature profile in septic patients?

5 At what times can we conclude that body temperature was reduced in the

ibuprofen group compared to controls?

6 Repeat question 7 using a GEE analysis. Do you get similar answers? Note

that a sizable fraction of patients had at least one missing temperature

reading. How have you dealt with these missing values in your analysis?

What are the strengths and weaknesses of these two approaches?

7 Experiment with different working correlation structures in your answer

to question 6. Does your choice of working correlation structure affect

your answers?

8 Lang et al. (1995) reported impressive physiologic differences in the re-

sponse of a group of white and black men to escalating doses of isopro-

terenol. Suppose that you wanted to determine whether these differences

were due to genetic or environmental factors. What additional experi-

ments might you wish to perform to try to settle this question?What sort

of evidence would you consider to be conclusive that this difference has a

genetic etiology?



Appendix: Summary of Stata
Commands Used in this Text

The following tables list the Stata commands and command components

that are used in this text. A terse indication of the function of each command

is also given. See the Stata reference manuals for a complete explanation of

these commands. Section numbers show where the command is explained

or first illustrated in this text.

Data Manipulation

Command Function Section

* comment Any command that starts with an asteric is ignored. 1.3.2

by varlist: egen newvar =
function(expression)

Define newvar to equal some function of expression

within groups defined by varlist. Acceptable

functions include count, mean, sd, and sum.

11.5

codebook varlist Describe variables in the spreadsheet editor

(memory).

1.4.11

collapse (mean) newvar = varname,

by(varlist)

Make dataset with one record for each distinct

combination of values in varlist; newvar equals

the mean of all values of varname in records with

identical values of the variables in varlist.

11.2

collapse (sd) newvar = varname,

by(varlist)

This command is similar to the preceding one except

that now newvar equals the standard deviation of

varname in records with identical values of the

variables in varlist.

11.2

collapse (sum) newvar = varname,

by(varlist)

This command is similar to the preceding one except

that now newvar equals the sum of values of

varname.

5.29

describe varlist Summarize variables in memory (see also codebook). 1.3.2

drop varlist Drop variables in varlist from memory. 3.21

drop if expression Drop observations from memory where expression

is true.

3.17.1

369



370 Appendix: Summary of Stata commands used in this text

Data Manipulation (cont.)

Command Function Section

edit Edit data in memory. 1.3.2

egen newvar = count(expression) Define newvar to equal the number of records with

non-missing values of expression.

11.5

egen newvar = mean(expression) Define newvar to equal the mean value of expression. 11.5

egen newvar = sd(expression) Define newvar to equal the standard deviation of

expression.

11.5

egen newvar = sum(expression) Define newvar to equal the sum of expression. 11.5

expand expression Add max[expression −1, 0] duplicate observations for

each current observation.

7.11

format varlist %fmt Assign the %fmt display format to the variables in

varlist.

2.12

generate newvar = expression Define a new variable equal to expression. 1.4.14

keep varlist Keep varlist variables in memory. Drop all others. 1.4.11

keep if expression Keep only observations where expression is true. 1.3.11

label define lblname # “label ” #

“label ” . . . # “label ”

Define the label lblname. 4.21

label values varname lblname Assign a value label lblname to a variable varname. 4.21

label variable varname “label” Assign a label to the variable varname. 2.18

log close Close log file. 1.3.6

log using \ foldername\ filename Open a log file called filename in the foldername folder. 1.3.6

recode varname 1 3 = 10 5/7 =
11 * = 12

Recode varname values 1 and 3 as 10, 5 through 7 as

11 and all other values as 12.

5.20

rename oldvar newvar Change the name of the variable oldvar to newvar. 4.21

replace oldvar = expression1 if

expression2

Redefine an old variable if expression2 is true. 3.16

reshape long varlist, i(idvar) j(subvar) Convert data from wide to long format; idvar

identifies observations on the same patient; subvar

identifies sub-observations on each patient.

11.2

save filename, replace Store memory data set in a file called filename.

Overwrite any existing file with the same name.

4.21

set memory # Set memory size to # kilobytes. 7.7

set textsize # Set text to #% of normal on graphs. 3.11.1

sort varlist Sort data records in ascending order by values in

varlist.

1.3.6

use “stata data file”, clear Load new data file, purge old data from memory. 1.3.2
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Command Qualifiers (insert before comma)

Qualifier Function Section

if expression Apply command to observations where expression is

true.

1.4.11

in range Apply command to observations in range. 1.3.2

in 5/25 Apply command to observations 5 through 25. 1.3.2

in −5/−1 Apply command to 5th from last through last

observation.

3.21

[freq = varname] Weight each observation by the value of varname by

replacing each record with varname identical

records and doing an unweighted analysis.

4.18, 4.22

Analysis Commands

Command Function Section

centile varlist, centile(numlist) Produce a table of percentiles specified by numlist for the

variables in varlist.

8.9

cc var case var control Calculate simple odds-ratio for a case-control study. 4.22

cc var case var control, by(varcon) Calculate Mantel–Haenszel odds-ratio adjusted for

varcon.

5.5

cc var case var control, woolf Calculate odds-ratio for case-control study using Woolf ’s

method to derive a confidence interval.

4.22

ci varlist Calculate standard errors and confidence intervals for

variables in varlist.

10.7

display expression Calculate expression and show result. 2.12

dotplot varname, by(groupvar) center Draw centered dotplots of varname by groupvar. 1.3.2

glm depvar varlist, family(familyname)

link(linkname)

Generalized linear models. 4.11

glm depvar varlist, family(binomial)

link(logit)

Logistic regression: Bernoulli dependent variable. 4.11

glm depvar varlist, family(binomial

denom) link(logit)

Logistic regression with depvar events in denom trials. 4.18

glm depvar varlist, family(poisson)

link(log) lnoffset(patientyears)

Poisson regression with depvar events in patientyears

patient-years of observation.

8.7

glm depvar varlist, family(poisson)

link(log) lnoffset(patientyears)

eform

Poisson regression. Exponentiate the regression

coefficients in the output table.

8.12
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Analysis Commands (cont.)

Command Function Section

graph var, bin(#) Draw a histogram of var with # bars. y-axis is

proportion of subjects.

1.3.6

graph var, bin(#) freq Draw a histogram of var with # bars. y-axis is number

of subjects.

4.18

graph var, box by(groupvar) Draw boxplots of var for each distinct value of

groupvar.

1.3.6

graph var, box oneway by(groupvar) Draw horizontal boxplots and one-dimensional

scatterplots of var for each distinct value of groupvar.

10.7

graph var1 var2, bar by(varstrat) Grouped bar graph of var1 and var2 stratified by

varstrat.

9.3

graph y1 y2 x, connect(.l) symbol(oi) Draw scatter plot of y1 vs. x . Graph y2 vs. x , connect

points, no symbol.

2.12

graph y x, connect(l[–#]) Graph y vs. x . Connect points with a dashed line. 2.20

graph y x , connect(L) Graph y vs. x . Connect consecutive points with a

straight line if the values of x are increasing.

11.2

graph y1 y2 x, connect(II) symbol(ii) Draw error bars connecting y1 to y2 as a function of x. 4.18

graph y x, connect(J) symbol(i) Plot a step function of y against x. 6.9

graph y x, symbol(O) Scatter plot of y vs. x using large circles. 2.12

graph varlist, matrix label symbol(o)

connect(s) band(#)

Plot matrix scatterplot of variables in varlist. Estimate

regression lines with # median bands and cubic

splines.

3.11.1

iri #a #b #Na #Nb Calculate relative risk from incidence data; #a and #b

are the number of exposed and unexposed cases

observed during #Na and #Nb person-years of

follow-up.

8.2

ksm yvar xvar, lowess bwidth(#)

gen(newvar)

Plot lowess curve of yvar vs. xvar with bandwidth #.

Save lowess regression line as newvar.

2.14

kwallis var, by(groupvar) Perform a Kruskal–Wallis test of var by groupvar. 10.7

list varlist List values of variables in varlist. 1.3.2

list varlist, nodisplay List values of variables in varlist with tabular format. 5.29

logistic depvar varlist Logistic regression: regress depvar against variables in

varlist.

4.13.1, 5.9

oneway responsevar factorvar One-way analysis of variance of responsevar in groups

defined by factorvar.

10.7
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Analysis Commands (cont.)

Command Function Section

ranksum var, by(groupvar) Perform a Wilcoxon–Mann–Whitney rank sum test of

var by groupvar.

10.7

regress depvar varlist, level(#) Regress depvar against variables in varlist. 2.12,3.16

stcox varlist Proportional hazard regression analysis with

independent variables given by varlist. A stset

statement defines failure. Exponentiated model

coefficients are given.

6.16

stcox varlist1, strata(varlist2) Stratified proportional hazard regression analysis with

strata defined by the values of variables in varlist2.

7.8

stcox varlist, mgale(newvar) Cox hazard regression analysis. Define newvar to be the

martingale-residual for each patient.

7.7

stset timevar, failure(failvar) Declare timevar and failvar to be time and failure

variables, respectively. failvar �= 0 denotes failure.

6.9

stset exittime, id(idvar) enter(time

entrytime) failure(failvar)

Declare entrytime, exittime and failvar to be the entry

time, exit time and failure variables, respectively.

id(idvar) is a patient identification variable needed

for time-dependent hazard regression analysis.

7.9.4

7.11

sts generate var = survfcn Define var to equal one of several functions related to

survival analyses.

6.9

sts graph, by(varlist) Kaplan–Meier survival plots. Plot a separate curve for

each combination of distinct values of the variables

in varlist. Must be preceded by a stset statement.

6.9

sts graph, gwood lost Kaplan–Meier survival plots showing number of

patients censored with 95% confidence bands.

6.9

sts graph, by(varlist) failure Kaplan–Meier cumulative mortality plot. 7.7

sts list, by(varlist) List estimated survival function by patient groups

defined by unique combinations of values of varlist.

6.9

sts test varlist Perform logrank test on groups defined by the values

of varlist.

6.9

summarize varlist, detail Summarize variables in varlist. 1.3.6

sw regress depvar varlist, forward

pe(#)

Automatic linear regression: forward covariate

selection.

3.17.1

sw regress depvar varlist, pr(#) Automatic linear regression: backward covariate

selection.

3.17.2

sw regress depvar varlist, forward

pe(#) pr(#)

Automatic linear regression: stepwise forward

covariate selection.

3.17.3

sw regress depvar varlist, pe(#) pr(#) Automatic linear regression: stepwise backward

covariate selection.

3.17.4
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Analysis Commands (cont.)

Command Function Section

table rowvar colvar Two-way frequency tables of values of rowvar by colvar. 5.5

table rowvar colvar, row col Two-way frequency tables with row and column totals. 5.20

table rowvar colvar, by(varlist) Two-way frequency tables of values of rowvar by colvar

for each unique combination of values of varlist.

5.5

table rowvar colvar, contents(sum

varname)

Create a table of sums of varname cross-tabulated by

rowvar and colvar.

8.9

tabulate varname Frequency table of varname with percentages and

cumulative percentages.

3.21

tabulate varname1 varname2, column

row

Two-way frequency tables with row and column

percentages.

5.11.1

ttest var1 = var2 Paired t-test of var1 vs. var2 1.4.11

ttest var, by(groupvar) Independent t-test of var in groups defined by groupvar. 1.4.14

ttest var, by(groupvar) unequal Independent t-test of var in groups defined by groupvar.

Variances assumed unequal.

1.4.14

xi: glm depvar varlist i.catvar,

family(dist) link(linkfcn)

Glm with dichotomous indicator variables replacing a

categorical variable catvar.

8.12

xi: glm depvar varlist i.var1*i .var2,

family(dist) link(linkfcn)

Glm with dichotomous indicator variables replacing

categorical variables var1, var2. All two-way

interaction terms are also generated.

9.3

xi: logistic depvar varlist i.catvar Logistic regression with dichotomous indicator variables

replacing a categorical variable catvar.

5.10

xi: logistic depvar varlist i.var1*i .var2 Logistic regression with dichotomous indicator variables

replacing categorical variables var1 and var2. All

two-way interaction terms are also generated.

5.23

xi: stcox varlist i.varname Proportional hazards regression with dichotomous

indicator variables replacing categorical variable

varname.

7.7

xi: stcox varlist i.var1*i.var2 Proportional hazards regression with dichotomous

indicator variables replacing categorical variables var1

and var2. All two-way interaction terms are also

generated.

7.7

xtgee depvar varlist, family(family)

link(link) corr(correlation)

i(idname) t(tname)

Perform a generalized estimating equation analysis in

regressing depvar against the variables in varlist.

11.11
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Post Estimation Commands (affected by preceding regression command)

Command Function Section

lincom expression Calculate expression and a 95% CI associated with

expression.

5.20, 10.7

lincom expression, or Calculate exp[espression] with associated 95% CI.

The hr and irr options perform the same

calculations.

5.20, 7.7, 8.7

predict newvar, cooksd Set newvar = Cook’s D. 3.21

predict newvar, csnell Set newvar = Cox–Snell residual. 7.7

predict newvar, ccsnell Set newvar = Cox–Snell residual in the last record

for each patient – used with multiple records per

patient.

7.10.1

predict newvar, dfbeta(varname) Set newvar = delta beta statistic for the varname

covariate in the linear regression model.

3.21

predict newvar, h Set newvar = leverage. 3.16

predict newvar, rstudent Set newvar = studentized residual. 2.16, 3.21

predict newvar, standardized deviance Set newvar = standardized deviance residual. 9.5

predict newvar, stdp Set newvar = standard error of the linear predictor. 2.12, 3.16

predict newvar, stdf Set newvar = standard error of a forecasted value. 2.12, 3.16

predict newvar, xb Set newvar = linear predictor. 2.12, 3.16

vce Display variance–covariance matrix of last model. 4.18

Command Prefixes

Syntax Function Section

by varlist: Repeat following command for each unique value of

varlist.

1.3.6

sw Fit a model with either the forward, backward or

stepwise algorithm. N.B. sw is not followed by a

colon.

3.17.1

xi: Execute the following estimation command with

categorical variables like i.catvar and

i.catvar1* i.catvar2.

5.10, 5.23
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Logical and Relational Operators and System Variables (See Stata User’s Manual)

Operator or Variable Meaning Section

. missing value 5.32.2

1 true 7.7

0 false 7.7

> greater than 1.4.11

< less than 1.4.11

>= greater than or equal to 1.4.11

<= less than or equal to 1.4.11

== equal to 1.4.11

∼= not equal to 1.4.11

& and 1.4.11

| or 1.4.11

∼ not 1.4.11

n Record number of current observation. When used

with the by id: prefix, n is reset to 1 whenever the

value of id changes and equals k at the kth record

with the same value of id.

7.11, 11.5

N Total number of observations in the data set. When

used with the by id: prefix, N is the number of

records with the current value of id.

2.12, 11.5

varname[expression] The value of variable varname in observation

expression.

7.11

Functions (See Stata User’s Guide)

Operator etc. Meaning Section

chi2tail(df, var) Probability that a χ 2 statistic with df degrees of

freedom will exceed var.

7.7

int(var) Truncate var to an integer. 8.9

invttail(df, α) Critical value of size α for a t distribution with df

degrees of freedom.

2.12

recode(var, x1, x2, . . . , xn) Missing if var is missing; x1 if var ≤ x1; xi if xi−1 < var

≤ xi for 2 ≤ i < n; xn otherwise.

7.7

round(x , 1) Round x to nearest integer. 8.9

ttail(df, var) Probability that a t statistic with df degrees of freedom

exceeds var.

2.20
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Additional Options for the graph, ksm and sts graph Commands (insert after comma)

Option Function Section

b2title(“text ”) Add a title to the x-axis of a graph. (Recommended with sts

graph command.)

6.9

gap(#) Set the y axis # spaces from its title. 2.12

l1title(“text ”) Add “text ” as title for the y-axis. Note that the default titles for

both the x- and y-axes are given by the variable labels of the

plotted variables.

4.18

noborder Omit border from graph. 6.9

r1title(“text ”) Add “text ” as title to the right vertical axis. 4.11

rlabel(#, . . . ,#) Add numeric labels to a vertical axis on the right of the graph. 4.11

title(“text ”) Add “text ” as title to the x-axis of graph. 9.3

xlabel(#, . . . ,#) Add specific numeric labels #, . . . ,# to the x-axis. 2.12

xline(#, . . . ,#) Add vertical grid lines at values #, . . . , #. 2.12

xlog Plot the x-axis on a logarithmic scale. 11.2

xscale(#1,#2) Specify the range of the x-axis to be not less than from #1 to #2. 2.20

xtick(#, . . . ,#) Add tick marks to the x-axis at #, . . . , #. 2.18

ylabel(#, . . . ,#) Add specific numeric labels #, . . . ,# to the y-axis. 2.12

yline(#, . . . ,#) Add horizontal grid lines at values #, . . . , #. 2.12

yscale(#1,#2) Specify the range of the y-axis to be not less than from #1 to #2. 2.20

ytick(#, . . . ,#) Add tick marks to the y-axis at #, . . . , #. 2.18
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95% confidence interval, 20, 43–4, 76, 88, 230
for odds ratio, 133, 135
age-adjusted odds ratio, 146, 153
associated with a unit increase in x, 122–4
for survival functions, 209–10
null hypothesis test, 133–4

95% prediction interval, 44–5, 76–7, 88
100α% critical value, 23
Acute Physiology and Chronic Health

Evaluation (APACHE) score, 3, 108,
118–19, 124–7

additive models, 82
age-adjusted odds ratio
calculation using Stata program, 148–51
estimation, 143–5

alcohol and esophageal cancer risk, 131–4,
143–51, 153–94

effect of alcohol dose, 158–61
multiplicative model, 166–7
with interaction, 172–8

algebraic notation, 1–2
alternative hypothesis, 19
analysis of covariance, 335–6
analysis of variance, 320
Kruskal–Wallis test, 326
one-way, 320–2
using Stata program, 329–35
reformulation as a linear regression model,

324–5
two-way, 335–6
see also repeated-measures analysis

of variance
area-under-the-curve, 355–6

backward automatic model selection, 95
bandwidth, 50
Bernoulli distribution, 111
bias, 211–12
binomial distribution, 110–11
Poisson distribution and, 272–3

blood flow, isoproterenol effect, 338–45,
346–8, 359–67

box plot, 5–6

categorical variables, 157
in Stata program, 157–8

censoring, 211–12
chi-squared distribution, 31
multiple 2× 2 tables, 145–6

collinearity, 97

conditional expectation, 37
conditional logistic regression, 195
confidence intervals
for weighted sums of regression coefficients,

163
see also 95% confidence interval

confounding variables, 73, 179–80, 235–7
Cook’s distance, 100
coronary heart disease (CHD), 230–67
hazard regression models with

time-dependent covariates, 259–67
incidence, 269–70
relative risk calculation from, 270–1
multiplicative model, 299–305
confounding variables, 303–5
with interaction terms, 301–3
Poisson regression, 281–91
multiple Poisson regression, 298–305
with a classification variable, 287–9
with multiple data records, 286–7
proportional hazards models, 239–53
stratified, 253–4
survival analysis with ragged study entry,

254–9
see also Framingham Heart Study data

correlation coefficient, 35–6
population, 36–7

correlation matrix, 357
correlation structure, 357–8
exchangeable, 357–8
unstructured, 357

covariance
population, 36
sample, 34–5

Cox-Snell generalized residuals, 239–41
for models with time-dependent covariates,

261
cumulative hazard function, 239
cumulative morbidity curve, 205
cumulative mortality function, 203–5, 210–11
Kaplan–Meier, 206

cut points, 260

data imputation, 195–6
degrees of freedom, 22
dependent variables, 72
deviance, 178–9, 230
deviance residuals, 315–17
standardized, 316

382
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disease free survival curve, 205
dot plot, 2–3
creation with Stata program, 9–11

effect modifiers, 179
error, 38
mean squared (MSE), 41, 75
standard, 19, 162–3
type I, 21
type II, 21

error standard deviation, 38
error variance, 38
esophageal cancer
alcohol consumption and, 131–4, 143–51,

153–94
effect of alcohol dose, 158–61
multiplicative model, 166–7
with interaction, 172–8
residual analysis, 185–8
tobacco effect, 161–2

estimated variance–covariance matrix, 164
estrogen receptor gene polymorphism,

326–35
ethylene glycol poisoning, 6–7, 43–51
exchangeable correlation structure, 357–8
expected value, 18–19
explanatory variables, 72

F distribution, 321–2
failure times, 226
Fisher’s protected LSD procedure, 322
fixed-effects methods, 320, 321
forward automatic model selection, 93–5
Framingham Heart Study data
hazard regression analysis, 230–67
adjusting for confounding variables, 235–7
interaction, 234–5
interpretation, 237–8
multiplicative model, 234
proportional hazards models, 239–53
stratified proportional hazards models,

253–4
survival analysis with ragged study entry,

254–9
univariate analyses, 230–3
with time-dependent covariates, 259–67
multiple linear regression, 77–92, 100–5
influence analysis, 100–5
interaction modeling, 81–3
preliminary univariate analyses, 78–9
scatterplot matrix graphs, 79–81
Poisson regression, 275–6, 281–91
converting survival data to person-time

data, 281–6
multiple Poisson regression, 298–305
relative risk calculation from incidence

data, 270–1
with a classification variable, 287–9
with multiple data records, 286–7
simple linear regression, 63–8

frequency matching, 194–5

generalized estimating equations, 356–7,
359–62

Huber–White sandwich estimator and,
358–9

with logistic models, 367
with Poisson models, 367
with Stata program, 362–7

generalized linear model, 112
Poisson regression as, 274

goodness-of-fit tests, 180–2
Hosmer–Lemeshow goodness-of-fit test,

181–2
Pearson chi-squared goodness-of-fit

statistic, 180–1
using Stata program, 188–94

hazard functions, 220
cumulative, 239

hazard ratios, 222–3, 228–9
hazard regression analysis
Framingham Heart Study data, 230–9,

255–6
intracerebral hemorrhage, 224
proportional hazards, 223–4
with ragged entry, 256
with Stata program, 225–6, 241–53
with time-dependent covariates, 259–61
see also proportional hazards

heteroscedastic models, 38
histogram, 6
homogeneity test, 146–8
homoscedastic models, 38
Hosmer–Lemeshow goodness-of-fit test, 181–2
Huber–White sandwich estimator, 358–9
hypothesis tests, 164, 230
null hypothesis tests, 133–4

lbuprofen in Sepsis Trial, 124–7, 204
cardiac output, 196–8

Ille-et-Vilaine Study of Esophageal Cancer
alcohol consumption effect, 131–4, 143–51,

153–94
effect of alcohol dose, 158–61
multiplicative model, 166–7
goodness-of-fit tests, 182–3
with interaction, 172–8
residual analysis, 185–8
tobacco effect, 161–2

imputed value, 196
incidence, 269–70
observed, 269
relative risk calculation from, 270–1

independent variables, 16, 37
influence, 99–101
analysis, 184–8
using Stata program, 102–5
Cook’s distance, 100

influence statistic, 185
interaction, 82
modeling in multiple linear regression, 81–3
multiplicative model, 171–8, 234–5, 301–3
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interquartile range, 6
intracerebral hemorrhage, genetic riskof, 207–9
hazard regression analysis, 224

isoproterenol effect on blood flow, 338–45,
346–8, 359–67

jackknife residual, 53, 98

Kaplan–Meier survival curves, 206–7
with ragged entry, 255

Kruskal–Wallis test, 326, 328–9

least squares estimate, 39, 74
leverage, 52, 76, 184
life tables, 207
likelihood function, 113
likelihood ratio tests, 115, 118
quadratic approximations to the log

likelihood ratio function, 116
linear regression see multiple linear regression;

regression; simple linear regression
linear regression line, 39–40
logarithmic transformation, 56
logistic probability function, 108
logistic regression
2× 2 case-control studies, 131–4
2× 2 contingency tables, 134–5, 153–7
multiple, 153–5
with Stata program, 155–7
conditional, 195
generalized estimating equation analysis

and, 367
multiple logistic regression, 143, 151–3
odds ratios and, 121
simple logistic regression, 108, 112, 139–40
vs linear regression, 112–13
vs Poisson regression, 274–5
with grouped response data, 123, 127–31
with Stata program, 119–21, 127–31, 136–9
see also regression

logistic regression curves, 108–10, 110
logit function, 110
logrank test, 212–14
for multiple patient groups, 220
using Stata program, 215–19
with ragged entry, 255

lowess regression, 49–50
with Stata program, 51

Mantel–Haenszel test for multiple 2× 2 tables,
145–6

Mantel–Haenszel test for survival data, 214
maximum likelihood estimation, 113–15
variance of parameter estimates, 114–15

mean, 17
sample mean, 3–4

mean squared error (MSE), 41, 75
root MSE, 41, 75

median, 5
missing values, 195–6
modeling with Stata program, 198–200

model deviance, 178–9, 230
model sum of squares (MSS), 43
mortality
cumulative mortality function, 203–5, 206,

210–11
sepsis mortality, 108, 118–19

see also lbuprofen in Sepsis Trial
see also survival analysis

multiple comparisons, 322–4
multiple linear regression, 72
accuracy of parameter estimates, 75
automatic model selection methods, 92–6
backward selection, 95
backward stepwise selection, 96
forward selection, 93–5
forward stepwise selection, 96
expected response, 74–5
Framingham Heart Study data, 83–8
interaction modeling, 81–3
parameter estimation, 74
R2 statistic, 74
with Stata program, 88–92
see also regression

multiple logistic regression see logistic
regression

multiple Poisson regression see Poisson
regression

multiplicative models
FraminghamHeart Study data, 234, 299–305
using interaction terms, 234–6
of two risk factors, 165–6
smoking, alcohol, and esophageal cancer,

166–7, 172–8
with interaction, 171–8
with Stata program, 167–71, 174–8

nested models, 178, 230
non-linearity, correction for, 56–7
non-parametric methods, 325
normal distribution, 18
standardized, 22

nuisance parameters, 135
null hypothesis, 19
tests of, 133–4

odds ratios, 132
95% confidence interval, 133, 135
age-adjusted
calculation using Stata program, 148–51
Mantel–Haenszel estimate, 143–5
derivation from multiple parameters, 162
logistic regression and, 121
observed, 132

one-way analysis of variance, 320–2
using Stata program, 329–35

outliers, 6

P value, 19–20
multiple comparisons, 322–4

paired t test, 23–4
with Stata program, 24–6
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parameters, 17
accuracy of parameter estimates, 75
nuisance parameters, 135
variance of parameter estimates, 114–15

parametric methods, 325
Pearson chi-squared goodness-of-fit statistic,

180–1
Pearson residual, 181
standardized, 184–5

percentile, 5
Poisson distribution, 272–3
Poisson regression, 269, 273–91
as a generalized linear model, 274
generalized estimating equation analysis

and, 367
multiple Poisson regression, 295–318
residual analyses for, 315–18
survival analysis and, 276–81
vs logistic and linear regression, 274–5
with a classification variable, 287–9
with multiple data records, 286–7
with Stata program, 275–6, 305–15, 317–18

population correlation coefficient, 36–7
population covariance, 36
power, 21–2
power curves, 21
probability density function, 16–17
probability distribution, 111
product limit survival function, 206
proportional hazards, 221–2, 228, 239–41, 261
regression analysis, 223–4
with ragged entry, 256
with Stata program, 225–6, 241–53
stratified, 253–4

quartiles, 5–6
quasilikelihood, 358

R2 statistic, 74
ragged study entry, 254–9
random variable, 16
regression
linear regression, 40, 112
accuracy of estimates, 41–3, 75
vs logistic regression, 112–13
see also multiple linear regression; simple

linear regression
lowess regression, 49–50
with Stata program, 51
origin of term, 40–1
testing the equality of regression slopes,

62–5
see also logistic regression

regression coefficients, 72
weighted sum of
confidence intervals, 163
hypothesis tests, 164
standard error, 162–3

relative risks, 222–3, 228–9, 270
calculation from incidence data using Stata

program, 270–1

repeated-measures analysis of variance,
338–40

area-under-the-curve, 355–6
common correlation structures, 357–8
generalized estimating equations, 356–7,

358–9
Huber–White sandwich estimator,

358–9
response feature analysis, 345–6, 348–55
using Stata program, 340–5, 348–55

residual, 4, 39, 40, 74
Cox–Snell residual, 239–41
for models with time-dependent

covariates, 261
deviance residual, 315–17
standardized, 316
jackknife residual, 53, 98
Pearson residual, 181
standardized, 184–5
standardized residual, 53, 97
studentized residual, 53, 54–5, 98

residual analyses, 51–4, 97–9, 184–8
esophageal cancer data, 185–8
for Poisson regression, 315–18
using Stata program, 54–5, 102–5, 188–94,

317–18
response feature analysis, 345–6
area-under-the-curve, 355–6
using Stata program, 348–55

right censored data, 205
root mean squared error (MSE), 41, 75

sample correlation coefficient, 35–6
sample covariance, 34–5
sample mean, 3–4
sample standard deviation, 5
sample variance, 4–5
scatter plot, 6–7
scatterplot matrix graphs, 79–81
with Stata program, 80–1

score tests, 116–17, 118
semi-nonparametric model, 223
sepsis mortality, 108, 118–19
lbuprofen in Sepsis Trial, 124–7, 204
cardiac output, 196–8

significance level, 21
simple linear regression, 34, 37–40
vs Poisson regression, 274–5
with Stata program, 45–9
see also regression

simple logistic regression see logistic regression
skewed data sets, 6
smoking see tobacco smoking
square root transform, 56
standard deviation, 17
sample standard deviation, 5

standard error, 19
of a weighted sum of regression coefficients,

162–3
standardized residual, 53, 97
Pearson residual, 184–5
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Stata software package, 7–16
age-adjusted odds ratio calculation, 148–51
analysis of variance
one-way, 329–35
repeated measures, 340–5, 348–55
response feature analysis, 348–55
categorical variable handling, 157–8
command syntax, 11–13
capitalization, 12–13
punctuation, 12
commands, 369–77
dot plot creation, 9–11
downloading, 8
generalized estimating equations, 362–7
goodness-of-fit tests, 188–94
independent t tests, 28–30
influence analysis, 102–5
interactive help, 13
log files, 13
logistic regression, 119–21, 127–31, 136–9
case-control data analysis, 138–9
creating a Stata data file, 136–7
logrank test, 215–19
lowess regression, 51
modeling missing values, 198–200
multiple 2× 2 tables analysis, 155–7
multiple linear regression, 88–92
automatic model selection methods, 92–6
multiplicative model, 167–71
with interaction, 174–8
paired t tests, 24–6
Poisson regression, 289–91
converting survival data to patient-year

data, 278–86
multiple Poisson regression, 305–15
residual analyses, 317–18
proportional hazards regression analysis,

225–6, 241–53
relative risk calculation from incidence data,

270–1
residual analysis, 54–5, 102–5, 188–94,

317–18
scatterplot matrix graph production, 80–1
simple linear regression, 45–9
simple Poisson regression, 275–6
slope estimate comparisons, 65–8
survival analysis with ragged entry, 257–9
survival function derivation, 215–19
time-dependent covariate modeling, 261–7
transformed data analysis, 59–62

statistical power, 21–2
statistics, 17
descriptive, 2–7
inferential, 16–31

step-functions, 259–60
step-wise automatic model selection, 96
stratified proportional hazards models, 253–4
studentized residual, 53, 98
analysis using Stata program, 54–5

Student’s t distribution, 22–3
survival analysis
disease free survival curve, 205

Kaplan–Meier survival curves, 206–7, 255
patient-year data, 276–86
with Stata program, 278–86
Poisson regression and, 276–86
with ragged study entry, 254–9
using Stata program, 257–9

see also mortality
survival function, 203–5
95% confidence intervals, 209–10
derivation using Stata program, 215–19

t test
independent t test
using a pooled standard error estimate,

26–8
using separate standard error estimates, 28
using Stata program, 28–30
paired t test, 23–4
with Stata program, 24–6

target population, 16
tied failure times, 226
time-dependent covariates, 259–61
modeling with Stata program, 261–7

tobacco smoking, esophageal cancer risk and,
161–2

model with interaction terms, 172–8
multiplicative model, 166–7

total sum of squares (TSS), 43
transforming variables, 55–9
logarithmic transformation, 56
transformed data analysis with Stata

program, 59–62
two-stage analysis, 345
two-way analysis of variance, 335–6
type I error, 21
type II error, 21

unbiased estimate, 18
unbiased sample, 16
unstructured correlation structure, 357

variables
categorical, 157
in Stata program, 157–8
confounding, 73, 179–80
correlated, 37
dependent, 72
explanatory, 72
independent, 16, 37
random, 16
transforming, 55–9

variance, 17
sample variance, 4–5
stabilizing transforms, 55–6
see also analysis of variance

Wald confidence intervals, 117–18
Wald tests, 117–18
Wilcoxon–Mann–Whitney rank-sum test,

326

z distribution, 22–3


