
Theory of Three Dimensional Computer Graphics

Editor: Szirmay-Kalos, Laszlo

Authors:

 Szirmay-Kalos, Laszlo
 Marton, Gabor
 Dobos, Balazs
 Horvath, Tamas
 Risztics, Peter,
 Kovacs, Endre

Contents:

 1.Introduction
 2.Algorithmics for graphics
 3.Physical Model of 3D image synthesis
 4.Model decomposition
 5.Transformations, clipping and projection
 6.Visibility calculations
 7.Incremental shading techniques
 8.Z-buffer, Goraud shading workstations
 9.Recursive ray tracing
10.Radiosity method
11.Sampling and quantization artifacts
12.Texture mapping
13.Animation
14.Bibliography
15.Index

Chapter 1

INTRODUCTION

1.1 Synthetic camera model

Suppose that a man is sitting in front of a computer calculating a func-

tion over its domain. In its simplest realization the program keeps printing
out the samples of the domain with their respective function value in al-
phanumeric form. The user of the program who is mainly interested in
the shape of the function has a very hard time reading all the data before
they are scrolled o� the screen, interpreting numbers like 1:2345e12, and

constructing the shape in his mind. He would prefer the computer to cre-
ate the drawing of the function itself, and not to bother him with a list of
mind-boggling
oating point numbers. Assume that his dream comes true
immediately, and the computer draws horizontal rectangles proportional to
the function value, instead of printing them out in numeric form, making
a histogram-like picture moving up as new values are generated. The user

can now see the shape of a portion of the function. But is he satis�ed? No.
He also wants to have a look at the shape of larger parts of the function;
he is not happy with the reduced accuracy caused by the limited resolution
of the computer screen, meaning for example that two values that are very

close to each other would share the same rectangle, and very large values

generate rectangles that run o� the screen. It irritates him that if he turns
his head for just a second, he loses a great portion of the function, because

it has already been scrolled o�. The application of graphics instead of a
numeric display has not solved many problems.

1

2 1. INTRODUCTION

In order to satisfy our imaginary user, a di�erent approach must be cho-

sen; something more than the simple replacement of output commands by

drawing primitives. The complete data should be generated and stored

before being reviewed, thus making it possible to scale the rectangles adap-

tively in such a way that they would not run o� the screen, and allowing

for response to user control. Should the user desire to examine a very small

change in the function for example, he should be able to zoom in on that

region, and to move back and forth in the function reviewing that part as

he wishes, etc.

This approach makes a clear distinction between the three main stages of

the generation of the result, or image. These three stages can be identi�ed

as:

� Generation of the data

� Storage of the data

� Display of the data

The components of \data generation" and \data display" are not in any
hierarchical relationship; \data display" routines are not called from the
\data generation" module, but rather they respond to user commands and
read out \data storage" actively if the output of the \data generation" is

needed.
The concept which implements the above ideas is called the synthetic

camera model, and is fundamental in most graphics systems today, espe-
cially in the case of three-dimensional graphics. The main components of
the synthetic camera model are generalizations of the components in the
previous example:

� Modeling:

Modeling refers to a process whereby an internal representation of

an imaginary world is built up in the memory of the computer. The

modeler can either be an application program, or a user who develops
the model by communicating with an appropriate software package.
In both cases the model is de�ned by a �nite number of applications

of primitives selected from �nite sets.

1.1. SYNTHETIC CAMERA MODEL 3

� Virtual world representation:

This describes what the user intended to develop during the model-

ing phase. It can be modi�ed by him, or can be analyzed by other

programs capable of reading and interpreting it. In order to allow

for easy modi�cation and analysis by di�erent methods, the model

has to represent all relevant data stored in their natural dimensions.

For example, in an architectural program, the height of a house has

to be represented in meters, and not by the number of pixels, which

would be the length of the image of the house on the screen. This

use of natural metrics to represent data is known as the application of

a world coordinate system. It does not necessarily mean that all

objects are de�ned in the very same coordinate system. Sometimes it

is more convenient to de�ne an object in a separate, so-called local

coordinate system, appropriate to its geometry. A transformation,
associated with each object de�ning its relative position and orienta-
tion, is then used to arrange the objects in a common global world

coordinate system.

� Image synthesis:

Image synthesis is a special type of analysis of the internal model,

when a photo is taken of the model by a \software camera". The po-
sition and direction of the camera are determined by the user, and the
image thus generated is displayed on the computer screen. The user
is in control of the camera parameters, lightsources and other studio
objects. The ultimate objective of image synthesis is to provide the
illusion of watching the real objects for the user of the computer sys-

tem. Thus, the color sensation of an observer watching the arti�cial
image generated by the graphics system about the internal model of
a virtual world must be approximately equivalent to the color percep-
tion which would be obtained in the real world. The color perception

of humans depends on the shape and the optical properties of the

objects, on the illumination and on the properties and operation of
the eye itself. In order to model this complex phenomenon both the

physical-mathematical structure of the light-object interaction and
the operation of the eye must be understood. Computer screens can

produce controllable electromagnetic waves, or colored light for their

4 1. INTRODUCTION

observers. The calculation and control of this light distribution are

the basic tasks of image synthesis which uses an internal model of

the objects with their optical properties, and implements the laws of

physics and mathematics to simulate real world optical phenomena to

a given accuracy. The exact simulation of the light perceived by the

eye is impossible, since it would require endless computational process

on the one hand, and the possible distributions which can be produced

by computer screens are limited in contrast to the in�nite variety of

real world light distributions on the other hand. However, color per-

ception can be approximated instead of having a completely accurate

simulation. The accuracy of this approximation is determined by the

ability of the eye to make the distinction between two light distribu-

tions. There are optical phenomena to which the eye is extremely

sensitive, while others are poorly measured by it. (In fact, the struc-

ture of the human eye is a result of a long evolutionary process which
aimed to increase the chance of survival of our ancestors in the harsh
environment of the pre-historic times. Thus the eye has become sensi-
tive to those phenomena which were essential from that point of view.
Computer monitors have had no signi�cant e�ect on this process yet.)
Thus image synthesis must model accurately those phenomena which

are relevant but it can make signi�cant simpli�cations in simulating
those features for which the eye is not really sensitive.

This book discusses only the image synthesis step. However, the other
two components are reviewed brie
y, not only for the reader's general in-
formation, but also that model dependent aspects of image generation may
be understood.

1.2 Signal processing approach to graphics

From the information or signal processing point of view, the modeling and

image synthesis steps of the synthetic camera model can be regarded as

transformations (�gure 1.1). Modeling maps the continuous world which
the user intends to represent onto the discrete internal model. This is def-

initely an analog-digital conversion. The objective of image synthesis is
the generation of the data analogous to a photo of the model. This data

1.3. CLASSIFICATION OF GRAPHICS SYSTEMS 5

internal
 world
 model

 graphics
primitives

digital
picture

analog
image
 on
screen

intended
 world

A/D D/A re-sample
re-quantize

Figure 1.1: Data
ow model of computer graphics

is stored in the computer and is known as digital picture, which in turn is

converted to analog signals and sent to the display screen by the computer's

built in graphics hardware.

The digital picture represents the continuous two-dimensional image by
�nite, digital data; that is, it builds up the image from a �nite number of
building blocks. These building blocks can be either one-dimensional, such
as line segments (called vectors), or two-dimensional, such as small rect-
angles of uniform color (called pixels). The word \pixel" is a composition

of the words \picture" and \element".
The digital picture represented by either the set of line segments or the

pixels must determine the image seen on the display screen. In cathode

ray tube (CRT) display technology the color and the intensity of a display
point are controlled by three electron beams (exciting red, green and blue

phosphors respectively) scanning the surface of the display. Thus, the �nal
stage of graphics systems must convert the digital image stored either in
the form of vectors or pixels into analog voltage values used to control the
electron beams of the display. This requires a digital-analog conversion.

1.3 Classi�cation of graphics systems

The technique of implementing vectors as image building blocks is called
vector graphics. By the application of a �nite number of one-dimensional
primitives only curves can be generated. Filled regions can only be approx-

imated, and thus vector graphics is not suitable for realistic display of solid

objects. One-dimensional objects, such as lines and characters de�ned as

6 1. INTRODUCTION

a list of line segments and jumps between these segments, are represented

by relative coordinates and stored in a so-called display list in a vector

graphics system. The end coordinates of the line segments are interpreted

as voltage values by a vector generator hardware which integrates these

voltages for a given amount of time and controls the electron beam of the

cathode ray tube by these integrated voltage values. The beamwill draw the

sequence of line segments in this way similarly to electronic oscilloscopes.

Since if the surface of the display is excited by electrons then it can emit

light only for a short amount of time, the electron beam must draw the

image de�ned by the display list periodically about 30 times per second at

least to produce
icker-free images.

Raster graphics, on the other hand, implements pixels, that is two-

dimensional objects, as building blocks. The image of a raster display is

formed by a raster mesh or frame which is composed of horizontal raster

or scan-lines which in turn consist of rectangular pixels. The matrix of
pixel data representing the entire screen area is stored in a memory called
the frame bu�er. These pixel values are used to modulate the intensities of
the three electron beams which scan the display from left to right then from
top to bottom. In contrast to vector systems where the display list controls
the direction of the electron beams, in raster graphics systems the direction

of the movement of the beams is �xed, the pixel data are responsible only
for the modulation of their intensity. Since pixels cover a �nite 2D area
of the display, �lled regions and surfaces pose no problem to raster based
systems. The number of pixels is constant, thus the cycle time needed to
avoid
ickering does not depend on the complexity of the image unlike vector

systems. Considering these advantages the superiority of raster systems is
nowadays generally recognized, and it is these systems only that we shall
be considering in this book.
When comparing vector and raster graphics systems, we have to mention

two important disadvantages of raster systems. Raster graphics systems

store the image in the form of a pixel array, thus normal image elements,

such as polygons, lines, 3D surfaces, characters etc., must be transformed
to this pixel form. This step is generally called the scan conversion,
and it can easily be the bottleneck in high performance graphics systems.

In addition to this, due to the limitations of the resolution and storage

capability of the graphics hardware, the digital model has to be drastically
re-sampled and re-quantized during image generation. Since the real or

1.4. BASIC ARCHITECTURE OF RASTER GRAPHICS SYSTEMS 7

intended world is continuous and has in�nite bandwidth, the Shannon{

Nyquist criterion of correct digital sampling cannot be guaranteed, causing

arti�cial e�ects in the picture, which is called aliasing.

Note that scan-conversion of raster graphics systems transforms the geo-

metric information represented by the display list to pixels that are stored

in the frame bu�er. Thus, in contrast to vector graphics, the display list is

not needed for the periodic screen refresh.

1.4 Basic architecture of raster graphics

systems

A simple raster graphics system architecture is shown in �gure 1.2. The dis-

play processor unit is responsible for interfacing the frame bu�er memory

with the general part of the computer and taking and executing the drawing
commands. In personal computers the functions of this display processor
are realized by software components implemented in the form of a graph-
ics library which calculates the pixel colors for higher level primitives. The
programs of this graphics library are executed by the main CPU of the com-

puter which accesses the frame bu�er as a part of its operational memory.

DISPLAY

PROCESSOR

FRAME

BUFFER

� -

S

Y

S

T

E

M

B

U

S

� -

�

LUT---
-

6

VIDEO

REFRESH

CONTROLLER

?
???

��
�
�

? ?

&%
'$
MONITOR

-
-
-

R

G

B

?
Y

Figure 1.2: Raster system architecture with display processor

8 1. INTRODUCTION

In advanced systems, however, a special purpose CPU is allocated to deal

with pixel colors and to interface the frame bu�er with the central CPU.

This architecture increases the general performance because it relieves the

central CPU of executing time consuming scan-conversion tasks on the one

hand, and makes it possible to optimize this display processor for the graph-

ics tasks on the other hand. The central CPU and the display processor

communicate using drawing commands referring to higher level graphics

primitives. The level of these primitives and the coordinate system where

their geometry is de�ned is a design decision. These primitives are then

transformed into pixel colors by the display processor having executed the

image synthesis tasks including transformations, clipping, scan-conversion

etc., and �nally the generated pixel colors are written into the frame bu�er

memory. Display processors optimized for these graphics operations are

called graphics (co)processors. Many current graphics processor chips

combine the functions of the display processor with some of the functions
of the video refresh controller, as for example the TMS 34010/20 [Tex88]
from Texas Instruments and the HD63484 [Hit84] from Hitachi, allowing
for compact graphics architectures. Other chips, such as i860 [Int89] from
Intel, do not provide hardware support for screen refresh and timing, thus
they must be supplemented by external refresh logic.

The frame bu�er memory is a high-capacity, specially organized mem-
ory to store the digital image represented by the pixel matrix. For each el-
emental rectangle of the screen | that is for each pixel | a memory word
is assigned in the frame bu�er de�ning the color. Let the number of bits
in this word be n. The value of n is 1 for bi-level or black-and-white

devices, 4 for cheaper color and gray-shade systems, 8 for advanced per-
sonal computers, and 8, 12, 24 or 36 for graphics workstations. The color
is determined by the intensity of the electron beams exciting the red, green
and blue phosphors, thus this memory word must be used to modulate the
intensity of these beams. There are two di�erent alternatives to interpret

the binary information in a memory word as modulation parameters for the

beam intensities:

1. True color mode which breaks down the bits of memory word into

three sub�elds; one for each color component. Let the number of bits
used to represent red, green and blue intensities be nr, ng and nb
respectively, and assume that n = nr + ng + nb holds. The number of

1.4. BASIC ARCHITECTURE OF RASTER GRAPHICS SYSTEMS 9

producible pure red, green and blue colors are 2nr , 2ng and 2nb , and the

number of all possible colors is 2n. Since the human eye is less sensitive

to blue colors than to the other two components, we usually select nr,

ng and nb so that: nr � ng and nb � nr. True color mode displays

distribute the available bits among the three color components in a

static way, which has a disadvantage that the number of producible

red colors, for instance, is still 2nr even if no other colors are to be

shown on the display.

2. Indexed color or pseudo color mode which interprets the content

of the frame bu�er as indices into a color table called the lookup

table or LUT for short. An entry in this lookup table contains three

m-bit �elds containing the intensities of red, green and blue compo-

nents in this color. (Gray-shade systems have only a single �eld.)
The typical value of m is 8. This lookup table is also a read-write
memory whose content can be altered by the application program.

Since the number of possible indices is 2n, the number of simultane-
ously visible colors is still 2n in indexed color mode, but these colors
can be selected from a set of 23m colors. This selection is made by the
proper control of the content of the lookup table. If 3m >> n, this
seems to be a signi�cant advantage, thus the indexed color mode is
very common in low-cost graphics subsystems where n is small. The

lookup table must be read each time a pixel is sent to the display; that
is, about every 10 nanoseconds in a high resolution display. Thus the
lookup table must be made of very fast memory elements which have
relatively small capacity. This makes the indexed color mode not only
lose its comparative advantages when n is large, but also infeasible.

Concerning the color computation phase, the indexed color mode has
another important disadvantage. When a color is generated and is being
written into the frame bu�er, it must be decided which color index would

represent it in the most appropriate way. It generally requires a search of

the lookup table and the comparison of the colors stored there with the cal-
culated color, which is an unacceptable overhead. In special applications,
such as 2D image synthesis and 3D image generation assuming very simple

illumination models and only white lightsources, however, the potentially

calculated colors of the primitives can be determined before the actual com-
putation, and the actual colors can be replaced by the color indices in the

10 1. INTRODUCTION

color calculation. In 2D graphics, for example, the \visible color" of an ob-

ject is always the same as its \own color". (By de�nition the \own color"

is the \visible color" when the object is lit by the sun or by an equivalent

maximum intensity white lightsource.) Thus �lling up the lookup table by

the \own colors" of the potentially visible objects and replacing the color

of the object by the index of the lookup table location where this color

is stored makes it possible to use the indexed color mode. In 3D image

synthesis, however, the \visible color" of an object is a complex function

of the \own color" of the object, the properties of the lightsources and the

camera, and the color of other objects because of the light re
ection and

refraction. This means that advanced 3D image generation systems usually

apply true color mode, and therefore we shall only discuss true color systems

in this book. Nevertheless, it must be mentioned that if the illumination

models used are simpli�ed to exclude non-di�use re
ection, refraction and

shadows, and only white lightsources are allowed, then the visible color of
an object will be some attenuated version of the own color. Having �lled
up the lookup table by the attenuated versions of the own color (the same
hue and saturation but less intensity) of the potentially visible objects, and
having replaced the color information by this attenuation factor in visibility
computations, the color index can be calculated from the attenuation factor

applying a simple linear transformation which maps [0..1] onto the range of
indices corresponding to the attenuated color versions of the given object.
This technique is used in Tektronix graphics terminals and workstations.
Even if true color mode is used | that is, the color is directly represented

by the frame bu�er data | the �nal transformation o�ered by the lookup

tables can be useful because it can compensate for the non-linearities of the
graphics monitors, known as
-distortion. Since the individual color com-
ponents must be compensated separately, this method requires the lookup
table to be broken down into three parallelly addressable memory blocks,
each of them is responsible for compensating a single color component. This

method is called
-correction.

As the display list for vector graphics, the frame bu�er controls the in-
tensity of the three electron beams, but now the surface of the display is
scanned in the order of pixels left to right and from top to bottom in the

screen. The hardware unit responsible for taking out the pixels from the

frame bu�er in this order, transforming them by the lookup tables and
modulating the intensity of the electron beams is called the video refresh

1.4. BASIC ARCHITECTURE OF RASTER GRAPHICS SYSTEMS 11

controller. Since the intensity of the electron beams can be controlled by

analog voltage signals, the color values represented digitally in the lookup

tables or in the frame bu�er must be converted to three analog signals, one

for each color coordinate. This conversion is done by three digital-analog

(D/A) converters. In addition to periodically refreshing the screen with the

data from the frame bu�er, video refresh controllers must also generate spe-

cial synchronization signals for the monitors, which control the movement

of the electron beam, specifying when it has to return to the left side of

the screen to start scanning the next consecutive row (horizontal retrace)

and when it has return to the upper left corner to start the next image

(vertical retrace). In order to sustain the image on the screen, the video

refresh controller must generate periodically scanning electron beams which

excite the phosphors again before they start fading. The
icker-free display

requires the screen to be refreshed about 60 times a second.

0
1
2

2n � 1

?? ?

R

?? ?

G

?? ?

B

D/A D/A D/A

0

n� 1

A
D
D
R
E
S
S

color index
from
Frame Bu�er
(n bit)

High
Speed
Memory

�
�
�
�
-
-
-

MONITOR

'
&

$
%

intensity of electric guns

-

-

i:

3�m bit

m m m

B
G
R

Figure 1.3: Organization of a video lookup table

12 1. INTRODUCTION

The number of the pixel columns and rows is de�ned by the resolution

of the graphics system. Typical resolutions are 640 � 480, 1024 � 768 for

inexpensive systems and 1280 � 1024, 1600 � 1200 for advanced system.

Thus an advanced workstation has over 106 pixels, which means that the

time available to draw a single pixel, including reading it from the frame

bu�er and transforming it by the lookup table, is about 10 nanoseconds.

This speed requirement can only be met by special hardware solutions in the

video refresh controller and also by the parallel access of the frame bu�er,

because the required access time is much less than the cycle time of memory

chips used in frame bu�ers. (The size of frame bu�ers | 1280 � 1024 � 24

bits � 3 Mbyte | does not allow for the application of high speed memory

chips.) Fortunately, the parallelization of reading the pixel from the frame

bu�er is feasible because the display hardware needs the pixel data in a

coherent way, that is, pixels are accessed one after the other left to right,

and from top to bottom. Taking advantage of this property, when a pixel
color is modulating the electron beams, the following pixels of the frame
bu�er row can be loaded into a shift register which in turn rolls out the
pixels one-by-one at the required speed and without accessing the frame
bu�er. If the shift register is capable of storing N consecutive pixels, then
the frequency of frame bu�er accesses is decreased by N times.

A further problem arises from the fact that the frame bu�er is a double
access memory since the display processor writes new values into it, while
the video refresh controller reads it to modulate the electron beams. Con-
current requests of the display processor and the refresh controller to read
and write the frame bu�er must be resolved by inhibiting one request while

the other is being served. If N , the length of the shift register, is small,
then the cycle time of read requests of the video refresh controller is com-
parable with the minimum cycle time of the memory chips, which literally
leaves no time for display processor operations except during vertical and
horizontal retrace. This was the reason that in early graphics systems the

display processor was allowed to access the frame bu�er just for a very small

portion of time, which signi�cantly decreased the drawing performance of
the system. By increasing the length of the shift register, however, the time
between refresh accesses can be extended, making it possible to include sev-

eral drawing accesses between them. In current graphics systems, the shift

registers that are integrated into the memory chips developed for frame
bu�er applications (called Video RAMs, or VRAMs) can hold a complete

1.5. IMAGE SYNTHESIS 13

pixel row, thus the refresh circuit of these systems needs to read the frame

bu�er only once in each row, letting the display processor access the frame

bu�er almost one hundred percent of the time.

As mentioned above, the video-refresh controller reads the content of the

frame bu�er periodically from left to right and from top to bottom of the

screen. It uses counters to generate the consecutive pixel addresses. If the

frame bu�er is greater than the resolution of the screen, that is, only a

portion of the pixels can be seen on the screen, the \left" and the \top"

of the screen can be set dynamically by extending the counter network by

\left" and \top" initialization registers. In early systems, these initializa-

tion registers were controlled to produce panning and scrolling e�ects on

the display. Nowadays this method has less signi�cance, since the display

hardware is so fast that copying the whole frame bu�er content to simulate

scrolling and panning is also feasible.

There are two fundamental ways of refreshing the display: interlaced,
and non-interlaced.
Interlaced refresh is used in broadcast television when the display refresh

cycle is broken down into two phases, called �elds, each lasting about 1/60
second, while a full refresh takes 1/30 second. All odd-numbered scan lines
of the frame bu�er are displayed in the �rst �eld, and all even-numbered

lines in the second �eld. This method can reduce the speed requirements
of the refresh logic, including frame bu�er read, lookup transformation and
digital-analog conversion, without signi�cant
ickering of images which con-
sist of large homogeneous areas (as normal TV images do). However in
CAD applications where, for example, one pixel wide horizontal lines pos-

sibly appear on the screen, this would cause bad
ickering. TV images
are continuously changing, while CAD systems allow the users to look at
static images, and these static images even further emphasize the
ickering
e�ects. This is why advanced systems use non-interlaced refresh strategy
exclusively, where every single refresh cycle generates all the pixels on the

screen.

1.5 Image synthesis

Image synthesis is basically a transformation from model space to the color

distribution of the display de�ned by the digital image. Its techniques

14 1. INTRODUCTION

2D 3D
eye (camera)

window

window

modeling space

screen screen
viewport

picture space

Figure 1.4: Comparison of 2D and 3D graphics

greatly depend on the space where the geometry of the internal model is

represented, and we make a distinction between two- and three-dimensional
graphics (2D or 3D for short) according to whether this space is two- or
three-dimensional (see �gure 1.4). In 2D this transformation starts by plac-
ing a rectangle, called a 2D window, on a part of the plane of the 2D
modeling space, then maps a part of the model enclosed by this rectan-

gle to an also rectangular region of the display, called a viewport. In 3D
graphics, the window rectangle is placed into the 3D space of the virtual
world with arbitrary orientation, a camera or eye is placed behind the
window, and the photo is taken by projecting the model onto the window
plane having the camera as the center of projection, and ignoring those parts

mapped outside the window rectangle. As in 2D, the photo is displayed in a

viewport of the computer screen. Note that looking at the display only, it is
not possible to decide if the picture has been generated by a two- or three-
dimensional image generation method, since the resulting image is always

two-dimensional. An exceptional case is the holographic display, but this

topic is not covered in this book. On the other hand, a technique, called

stereovision, is the proper combination of two normal images for the two

eyes to emphasize the 3D illusion.

1.5. IMAGE SYNTHESIS 15

In both 2D and 3D graphics, the transformation from the model to the

color distribution of the screen involves the following characteristic steps:

� Object-primitive decomposition: As has been emphasized, the

internal world stores information in a natural way from the point

of view of the modeling process so as to allow for easy modi�cation

and not to restrict the analysis methods used. In an architectural

program, for example, a model of a house might contain building

blocks such as a door, a chimney, a room etc. A general purpose image

synthesis program, however, deals with primitives appropriate to its

own internal algorithms such as line segments, polygons, parametric

surfaces etc., and it cannot be expected to work directly on objects like

doors, chimneys etc. This means that the very �rst step of the image

generation process must be the decomposition of real objects used for
modeling into primitives suitable for the image synthesis algorithms.

� Modeling transformation: Objects are de�ned in a variety of lo-
cal coordinate systems: the nature of the system will depend on the
nature of the object. Thus, to consider their relative position and ori-
entation they have to be transferred to the global coordinate system

by a transformation associated with them.

� World-screen transformation: Once the modeling transformation

stage has been completed, the geometry of the model will be available
in the global world coordinate system. However, the generated image
is required in a coordinate system of the screen since eventually the
color distribution of the screen has to be determined. This requires
another geometric transformation which maps the 2D window onto
the viewport in the case of 2D, but also involving projection in the

case of 3D, since the dimension of the representation has to be reduced
from three to two.

� Clipping: Given the intuitive process of taking photos in 2D and

3D graphics, it is obvious that the photo will only reproduce those
portions of the model which lie inside the 2D window, or in the in�nite
pyramid de�ned by the camera as the apex, and the sides of the 3D

window. The 3D in�nite pyramid is usually limited to a �nite frustum

of pyramid to avoid over
ows, thus forming a front clipping plane

16 1. INTRODUCTION

and a back clipping plane parallel to the window. The process of

removing those invisible parts that fall outside either the 2D window

or the viewing frustum of pyramid is called clipping. It can either be

carried out before the world-screen transformation, or else during the

last step by inhibiting the modi�cation of those screen regions which

are outside the viewport. This latter process is called scissoring.

� Visibility computations: Window-screen transformations may pro-

ject several objects onto the same point on the screen if they either

overlap or if they are located behind each other. It should be decided

which object's color is to be used to set the color of the display. In

3D models the object selected should be the object which hides others

from the camera; i.e. of all those objects that project onto the same

point in the window the one which is closest to the camera. In 2D no

geometry information can be relied on to resolve the visibility problem
but instead an extra parameter, called priority, is used to select which
object will be visible. In both 2D and 3D the visibility computation
is basically a sorting problem based on the distance from the eye in
3D, and on the priority in 2D.

� Shading: Having decided which object will be visible at a point on
the display its color has to be calculated. This color calculation step is
called shading. In 2D this step poses no problem because the object's
own color should be used. An object's \own color" can be de�ned

as the perceived color when only the sun, or an equivalent lightsource
having the same energy distribution, illuminates the object. In 3D,
however, the perceived color of an object is a complex function of
the object's own color, the parameters of the lightsources and the
re
ections and refractions of the light. Theoretically the models and

laws of geometric and physical optics can be relied on to solve this
problem, but this would demand lengthy computational process. Thus
approximations of the physical models are used instead. The degree

of the approximation also de�nes the level of compromise in image
generation speed and quality.

Comparing the tasks required by 2D and 3D image generation we can

see that 3D graphics is more complex at every single stage, but the di�er-
ence really becomes signi�cant in visibility computations and especially in

1.6. MODELING AND WORLD REPRESENTATION 17

shading. That is why so much of this book will be devoted to these two

topics.

Image generation starts with the manipulation of objects in the virtual

world model, later comes the transformation, clipping etc. of graphics prim-

itives, and �nally, in raster graphics systems, it deals with pixels whose

constant color will approximate the continuous image.

Algorithms playing a part in image generation can thus be classi�ed ac-

cording to the basic type of data handled by them:

1. Model decomposition algorithms decompose the application ori-

ented model into graphics primitives suitable for use by the subse-

quent algorithms.

2. Geometric manipulations include transformations and clipping,
and may also include visibility and shading calculations. They work
on graphics primitives independently of the resolution of the raster

storage. By arbitrary de�nition all algorithms belong to this category
which are independent of both the application objects and the raster
resolution.

3. Scan conversion algorithms convert the graphics primitives into
pixel representations, that is, they �nd those pixels, and may deter-
mine the colors of those pixels which approximate the given primitive.

4. Pixel manipulations deal with individual pixels and eventually write
them to the raster memory (also called frame bu�er memory).

1.6 Modeling and world representation

From the point of view of image synthesis, modeling is a necessary pre-
liminary phase that generates a database called virtual world represen-

tation. Image synthesis operates on this database when taking \synthetic
photos" of it. From the point of view of modeling on the other hand, im-

age synthesis is only one possible analysis procedure that can be performed
on the database produced. In industrial computer-aided design and man-

ufacturing (CAD/CAM), for example, geometric models of products can
be used to calculate their volume, mass, center of mass, or to generate a

18 1. INTRODUCTION

sequence of commands for a numerically controlled (NC) machine in order

to produce the desired form from real material, etc. Thus image synthesis

cannot be treated separately from modeling, but rather its actual operation

highly depends on the way of representing the scene (collection of objects)

to be rendered. (This can be noticed when one meets such sentences in the

description of rendering algorithms: \Assume that the objects are described

by their bounding polygons : : :" or \If the objects are represented by means

of set operations performed on simple geometric forms, then the following

can be done : : :", etc.)

Image synthesis requires the following two sorts of information to be in-

cluded in the virtual world representation:

1. Geometric information. No computer program can render an object

without information about its shape. The shape of the objects must
be represented by numbers in the computer memory. The �eld of
geometric modeling (or solid modeling, shape modeling) draws on
many branches of mathematics (geometry, computer science, algebra).
It is a complicated subject in its own right. There is not su�cient

space in this book to fully acquaint the reader with this �eld, only
some basic notions are surveyed in this section.

2. Material properties. The image depends not only on the geometry of
the scene but also on those properties of the objects which in
uence
the interaction of the light between them and the lightsources and
the camera. Modeling these properties implies the characterization of
the object surfaces and interiors from an optical point of view and the
modeling of light itself. These aspects of image synthesis are explained

in chapter 3 (on physical modeling of 3D image synthesis).

1.6.1 Geometric modeling

The terminology proposed by Requicha [Req80] still seems to be general

enough to describe and characterize geometric modeling schemes and sys-

tems. This will be used in this brief survey.
Geometric and graphics algorithms manipulate data structures which

(may) represent physical solids. Let D be some domain of data structures.
We say that a data structure d 2 D represents a physical solid if there is a

1.6. MODELING AND WORLD REPRESENTATION 19

mapping m: D ! E3 (E3 is the 3D Euclidean space), for which m(d) mod-

els a physical solid. A subset of E3 models a physical solid if its shape can

be produced from some real material. Subsets of E3 which model physical

solids are called abstract solids. The class of abstract solids is very small

compared to the class of all subsets of E3.

Usually the following properties are required of abstract solids and rep-

resentation methods:

1. Homogeneous 3-dimensionality. The solid must have an interior of

positive volume and must not have isolated or \dangling" (lower di-

mensional) portions.

2. Finiteness. It must occupy a �nite portion of space.

3. Closure under certain Boolean operations. Operations that model
working on the solid (adding or removing material) must produce
other abstract solids.

4. Finite describability. The data structure describing an abstract solid

must have a �nite extent in order to �t into the computer's memory.

5. Boundary determinism. The boundary of the solid must unambigu-
ously determine which points of E3 belong to the solid.

6. (Realizability. The shape of the solid should be suitable for produc-
tion from real material. Note that this property is not required for
producing virtual reality.)

The mathematical implications of the above properties are the following.
Property 1 requires the abstract solid to belong to the class of regular sets.
In order to de�ne regular sets in a self-contained manner, some standard
notions of set theory (or set theoretical topology) must be recalled here
[KM76], [Men75], [Sim63]. A neighborhood of a point p, denoted by N(p),

can be any set for which p 2 N(p). For any set S, its complement (cS),

interior (iS), closure (kS) and boundary (bS) are de�ned using the notion
of neighborhood:

cS = fp j p 62 Sg ;
iS = fp j 9N(p):N(p) � Sg ;
kS = fp j 8N(p):9q 2 N(p): q 2 Sg ;

bS = fp j p 2 kS and p 2 kcSg :

(1:1)

20 1. INTRODUCTION

A

B

A B

U

A B = 0

U*

Figure 1.5: An example when regularized set operation (\�) is necessary

Then a set S is de�ned as regular, if:

S = kiS: (1:2)

Property 2 implies that the solid is bounded, that is, it can be enclosed
by a sphere of �nite volume. Property 3 requires the introduction of the
regularized set operations. They are derived from the ordinary set oper-
ations ([;\; n and the complement c) by abandoning non-3D (\dangling")
portions of the resulting set. Consider, for example, the situation sketched

in �gure 1.5, where two cubes, A and B, share a common face, and their
intersection A \B is taken. If \ is the ordinary set-theoretical intersection
operation, then the result is a dangling face which cannot correspond to a
real 3D object. The regularized intersection operation (\�) should give the
empty set in this case. Generally if � is a binary set operation ([;\ or n)

in the usual sense, then its regularized version �� is de�ned as:

A �� B = ki (A �B) : (1:3)

The unary complementing operation can be regularized in a similar way:

c�A = ki (cA) : (1:4)

The regular subsets of E3 together with the regularized set operations form

a Boolean algebra [Req80]. Regularized set operations are of great im-
portance in some representation schemes (see CSG schemes in subsection

1.6. MODELING AND WORLD REPRESENTATION 21

1.6.2). Property 4 implies that the shape of the solids is de�ned by some

formula (or a �nite system of formulae) F : those and only those points of

E3 which satisfy F belong to the solid. Property 5 has importance when

the solid is de�ned by its boundary because this boundary must be valid

(see B-rep schemes in subsection 1.6.2). Property 6 requires that the ab-

stract solid is a semianalytic set. It poses constraints on the formula F . A

function f : E3 ! R is said to be analytic (in a domain) if f(x; y; z) can be

expanded in a convergent power series about each point (of the domain). A

subset of analytic functions is the set of algebraic functions which are poly-

nomials (of �nite degree) in the coordinates x; y; z. A set is semianalytic

(semialgebraic) if it can be expressed as a �nite Boolean combination (using

the set operations [;\; n and c or their regularized version) of sets of the

form:

Si = fx; y; z: fi(x; y; z) � 0g ; (1:5)

where the functions fi are analytic (algebraic). In most practical cases,
semialgebraic sets give enough freedom in shape design.
The summary of this subsection is that suitable models for solids are

subsets of E3 that are bounded, closed, regular and semianalytic (semialge-

braic). Such sets are called r-sets.

1.6.2 Example representation schemes

A representation scheme is the correspondence between a data structure

and the abstract solid it represents. A given representation scheme is also
a given method for establishing this connection. Although there are several
such methods used in practical geometric modeling systems only the two
most important are surveyed here.

Boundary representations (B-rep)

The most straightforward way of representing an object is describing its

boundary. Students if asked about how they would represent a geometric
form by a computer usually choose this way.
A solid can be really well represented by describing its boundary. The

boundary of the solid is usually segmented into a �nite number of bounded

subsets called faces or patches and each face is represented separately. In
the case of polyhedra, for example, the faces are planar polygons and hence

22 1. INTRODUCTION

v1

v2

v4

v3

v1 v2 v4v3

f 1

f 3

f 2f 4

e12

e23

e34

e14

e13

e12 e23 e34e14e13 e24

f 1 f 2 f 4f 3

object

e24

Figure 1.6: B-rep scheme for a tetrahedron

can be represented by their bounding edges and vertices. Furthermore,

since the edges are straight line segments, they can be represented by their
bounding vertices. Figure 1.6 shows a tetrahedron and a possible B-rep
scheme. The representation is a directed graph containing object, face,
edge and vertex nodes. Note that although only the lowest level nodes
(the vertex nodes) carry geometric information and the others contain only
\pure topological' information in this case, it is not always true, since in

the general case, when the shape of the solid can be arbitrarily curved
(sculptured), the face and edge nodes must also contain shape information.
The validity of a B-rep scheme (cf. property 5 in the beginning of this

subsection) requires the scheme to meet certain conditions. We distinguish
two types of validity conditions:

1. combinatorial (topological) conditions: (1) each edge must have pre-
cisely two vertices; (2) each edge must belong to an even number of

faces;

2. metric (geometric) conditions: (1) each vertex must represent a dis-
tinct point of E3; (2) edges must either be disjoint or intersect at

a common vertex; (3) faces must either be disjoint or intersect at a

common edge or vertex.

1.6. MODELING AND WORLD REPRESENTATION 23

These conditions do not exclude the representation of so-called non-

manifold objects. Let a solid be denoted by S and its boundary by @S. The

solid S is said to be manifold if each of its boundary points p 2 @S has a

neighborhood N(p) (with positive volume) for which the set N(p)\@S (the

neighborhood of p on the boundary) is homeomorphic to a disk. (Two sets

are homeomorphic if there exists a continuous one-to-one mapping which

transforms one into the other.) The union of two cubes sharing a com-

mon edge is a typical example of a non-manifold object, since each point

on the common edge becomes a \non-manifold point". If only two faces

are allowed to meet at each edge (cf. combinatorial condition (2) above),

then the scheme is able to represent only manifold objects. The winged

edge data structure, introduced by Baumgart [Bau72], is a boundary rep-

resentation scheme which is capable of representing manifold objects and

inherently supports the automatic examination of the above listed combi-

natorial validity conditions. The same data structure is known as doubly
connected edge list (DCEL) in the context of computational geometry,
and is described in section 6.7.

Constructive solid geometry (CSG) representations

Constructive solid geometry (CSG) includes a family of schemes that rep-
resent solids as Boolean constructions or combinations of solid components

via the regularized set operations ([�;\�; n�; c�). CSG representations are
binary trees. See the example shown in �gure 1.7. Internal (nonterminal)
nodes represent set operations and leaf (terminal) nodes represent subsets
(r-sets) of E3. Leaf objects are also known as primitives. They are usually
simple bounded geometric forms such as blocks, spheres, cylinders, cones

or unbounded halfspaces (de�ned by formulae such as f(x; y; z) � 0). A
more general form of the CSG-tree is when the nonterminal nodes rep-
resent either set operations or rigid motions (orientation and translation

transformations) and the terminal nodes represent either primitives or the
parameters of rigid motions.
The validity of CSG-trees poses a smaller problem than that of B-rep

schemes: if the primitives are r-sets (that is general unbounded halfspaces

are not allowed), for example, then the tree always represents a valid solid.

24 1. INTRODUCTION

\

U

U \

*

*

**

Figure 1.7: A CSG scheme

Note that a B-rep model is usually closer to being ready for image synthe-
sis than a CSG representation since primarily surfaces can be drawn and not

volumes. Transforming a CSG model into a (approximate) B-rep scheme
will be discussed in section 4.2.2 in the context of model decomposition.

Chapter 2

ALGORITHMICS FOR

IMAGE GENERATION

Before going into the details of various image synthesis algorithms, it is
worth considering their general aspects, and establishing a basis for their

comparison in terms of e�ciency, ease of realization, image quality etc.,
because it is not possible to understand the speci�c steps, and evaluate the
merits or drawbacks of di�erent approaches without keeping in mind the
general objectives. This chapter is devoted to the examination of algorithms
in general, what has been called algorithmics after the excellent book of D.

Harel [Har87].
Recall that a complete image generation consists of model decomposition,

geometricmanipulation, scan conversion and pixel manipulation algorithms.
The resulting picture is their collective product, each of them is responsible
for the image quality and for the e�ciency of the generation.

Graphics algorithms can be compared, or evaluated by considering the
reality of the generated image, that is how well it provides the illusion of
photos of the real world. Although this criterion seems rather subjective, we
can accept that the more accurately the model used approximates the laws

of nature and the human perception, the more realistic the image which can

be expected. The applied laws of nature fall into the category of geometry
and optics. Geometrical accuracy regards how well the algorithm sustains

the original geometry of the model, as, for example, the image of a sphere
is expected to be worse if it is approximated by a polygon mesh during

synthesis than if it were treated as a mathematical object de�ned by the

25

26 2. ALGORITHMICS FOR IMAGE GENERATION

equation of the sphere. Physical, or optical accuracy, on the other hand, is

based on the degree of approximations of the laws of geometric and physical

optics. The quality of the image will be poorer, for example, if the re
ection

of the light of indirect lightsources is ignored, than if the laws of re
ection

and refraction of geometrical optics were correctly built into the algorithm.

Image synthesis algorithms are also expected to be fast and e�cient and

to �t into the memory constraints. In real-time animation the time allowed

to generate a complete image is less than 100 msec to provide the illusion of

continuous motion. In interactive systems this requirement is not much

less severe if the system has to allow the user to control the camera position

by an interactive device. At the other extreme end, high quality pictures

may require hours or even days on high-performance computers, thus only

20{30 % decrease of computational time would save a great amount of cost

and time for the user. To describe the time and storage requirements of an

algorithm independently of the computer platform, complexity measures

have been proposed by a relatively new �eld of science, called theory of
computation. Complexity measures express the rate of the increase of the
required time and space as the size of the problem grows by providing
upper and lower limits or asymptotic behavior. The problem size is usually
characterized by the number of the most important data elements involved

in the description and in the solution of the problem.
Complexity measures are good at estimating the applicability of an al-

gorithm as the size of the problem becomes really big, but they cannot
provide characteristic measures for a small or medium size problem, be-
cause they lack the information of the time unit of the computations. An

algorithm having const1 � n
2 computational time requirement in terms of

problem size n, denoted usually by �(n2), can be better than an algorithm
of const2 �n, or �(n), if const1 << const2 and n is small. Consequently, the
time required for the computation of a \unit size problem" is also critical
especially when the total time is limited and the allowed size of the problem

domain is determined from the overall time requirement. The unit calcu-

lation time can be reduced by the application of more powerful computers.
The power of general purpose processors, however, cannot meet the require-
ments of constantly increasing expectations of the graphics community. A

real-time animation system, for example, has to generate at least 15 images

per second to provide the illusion of continuous motion. Suppose that the
number of pixels on the screen is about 106 (advanced systems usually have

2.1. COMPLEXITY OF ALGORITHMS 27

1280�1024 resolution). The maximum average time taken to manipulate a

single pixel (tpixel), which might include visibility and shading calculations,

cannot exceed the following limit:

tpixel <
1

15 � 106
� 66 nsec: (2:1)

Since this value is less than a single commercial memory read or write

cycle, processors which execute programs by reading the instructions and

the data from memories are far too slow for this task, thus special solutions

are needed, including:

1. Parallelization meaning the application of many computing units

running parallelly, and allocating the computational burden between

the parallel processors. Parallelization can be carried out on the level
of processors, resulting in multiprocessor systems, or inside the pro-
cessor, which leads to special graphics chips capable of computing
several pixels parallelly and handling tasks such as instruction fetch,

execution and data transfer simultaneously.

2. Hardware realization meaning the design of a special digital net-

work instead of the application of general purpose processors with
information about the algorithm contained by the architecture of the
hardware, not by a separate software component as in general purpose
systems.

The study of the hardware implementation of algorithms is important not
only for hardware engineers but for everyone involved in computer graphics,
since the requirements of an e�ective software realization are quite similar to
those indispensable for hardware translation. It means that a transformed

algorithm ready for hardware realization can run faster on a general purpose
computer than a naive implementation of the mathematical formulae.

2.1 Complexity of algorithms

Two complexity measures are commonly used to evaluate the e�ectiveness

of algorithms: the time it spends on solving the problem (calculating the

result) and the size of storage (memory) it uses to store its own temporary

28 2. ALGORITHMICS FOR IMAGE GENERATION

data in order to accelerate the calculations. Of course, both the time and

storage spent on solving a given problem depend on the one hand on the

nature of the problem and on the other hand on the amount of the input

data. If, for example, the problem is to �nd the greatest number in a list of

numbers, then the size of the input data is obviously the length of the list,

say n. In this case, the time complexity is usually given as a function of n,

say T (n), and similarly the storage complexity is also a function of n, say

S(n). If no preliminary information is available about the list (whether the

numbers in it are ordered or not, etc.), then the algorithm must examine

each number in order to decide which is the greatest. It follows from this

that the time complexity of any algorithm �nding the greatest of n numbers

is at least proportional to n. It is expressed by the following notation:

T (n) =
(n): (2:2)

A rigorous de�nition of this and the other usual complexity notations can be
found in the next subsection. Note that such statements can be made with-
out having any algorithm for solving the given problem, thus such lower

bounds are related rather to the problems themselves than to the con-
crete algorithms. Let us then examine an obvious algorithm for solving the
maximum-search problem (the input list is denoted by k1; : : : ; kn):

FindMaximum(k1; : : : ; kn)
M = k1; // M : the greatest found so far

for i = 2 to n do

if ki > M then

M = ki;
endif

endfor

return M ;
end

Let the time required by the assignment operator (=) be denoted by

T=, the time required to perform the comparison (ki > M) by T> and the
time needed to prepare for a cycle by Tloop (the time of an addition and a

comparison).
The time T spent by the above algorithm can then be written as:

T = T= + (n� 1) � T> +m � T= + (n� 1) � Tloop (m � n� 1); (2:3)

2.1. COMPLEXITY OF ALGORITHMS 29

where m is number of situations when the variable M must be updated.

The value of m can be n� 1 in the worst case (that is when the numbers

in the input list are in ascending order). Thus:

T � T= + (n� 1) � (T> + T= + Tloop): (2:4)

The conclusion is that the time spent by the algorithm is at most propor-

tional to n. This is expressed by the following notation:

T (n) = O(n): (2:5)

This, in fact, gives an upper bound on the complexity of the maximum-

searching problem itself: it states that there exists an algorithm that can

solve it in time proportional to n. The lower bound (T (n) =
(n)) and the

worst-case time complexity of the proposed algorithm (T (n) = O(n)) coin-
cide in this case. Hence we say that the algorithm has an optimal (worst-
case optimal) time complexity. The storage requirement of the algorithm is
only one memory location that stores M , hence the storage complexity is
independent of n, that is constant:

S(n) = O(1): (2:6)

2.1.1 Complexity notations

In time complexity analysis usually not all operations are counted but rather
only those ones that correspond to a representative set of operations called

key operations, such as comparisons or assignments in the previous ex-
ample. (The key operations should always be chosen carefully. In the case
of matrix-matrix multiplication, as another example, the key operations are
multiplications and additions.) The number of the actually performed key
operations is expressed as a function of the input size. In doing so, one

must ensure that the number (execution time) of the unaccounted-for op-

erations is at most proportional to that of the key operations so that the
running time of the algorithm is within a constant factor of the estimated
time. In storage complexity analysis, the maximum amount of storage ever

required during the execution of the algorithm is measured, also expressed

as a function of the input size. However, instead of expressing these func-
tions exactly, rather their asymptotic behavior is analyzed, that is when

30 2. ALGORITHMICS FOR IMAGE GENERATION

the input size approaches in�nity, and expressed by the following special

notations.

The notations must be able to express both that the estimations are valid

only within a constant factor and that they re
ect the asymptotic behavior

of the functions. The so-called \big-O" and related notations were originally

suggested by Knuth [Knu76] and have since become standard complexity

notations [PS85].

Let f; g : N 7! R be two real-valued functions over the integer numbers.

The notation

f = O(g) (2:7)

denotes that we can �nd c > 0 and n0 2 N so that f(n) � c � g(n) if n > n0,

that is, the function f grows at most at the rate of g in asymptotic sense.

In other words, g is an upper bound of f . For example, n2 + 3n + 1 =
O(n2) = O(n3) = : : : but n2 + 3n+ 1 6= O(n). The notation

f =
(g) (2:8)

denotes that we can �nd c > 0 and n0 2 N so that f(n) � c � g(n) if n > n0,

that is, f grows at least at the rate of g. In other words, g is a lower bound
of f . For example, n2 + 3n + 1 =
(n2) =
(n). Note that f =
(g) is
equivalent with g = O(f). Finally, the notation

f = �(g) (2:9)

denotes that we can �nd c1 > 0; c2 > 0 and n0 2 N so that c1 � g(n) �
f(n) � c2 � g(n) if n > n0, that is, f grows exactly at the rate of g. Note
that f = �(g) is equivalent with f = O(g) and f =
(g) at the same time.
An interesting property of complexity classi�cation is that it is maximum

emphasizing with respect to weighted sums of functions, in the following
way. Let the function H(n) be de�ned as the positively weighted sum of
two functions that belong to di�erent classes:

H(n) = a � F (n) + b �G(n) (a; b > 0) (2:10)

where

F (n) = O(f(n)); G(n) = O(g(n)); g(n) 6= O(f(n)); (2:11)

2.1. COMPLEXITY OF ALGORITHMS 31

that is, G(n) belongs to a higher class than F (n). Then their combination,

H(n), belongs to the higher class:

H(n) = O(g(n)); H(n) 6= O(f(n)): (2:12)

Similar statements can be made about
 and �.

The main advantage of the notations introduced in this section is that

statements can be formulated about the complexity of algorithms in a

hardware-independent way.

2.1.2 Complexity of graphics algorithms

Having introduced the \big-O" the e�ectiveness of an algorithm can be

formalized. An alternative interpretation of the notation is that O(f(n))
denotes the class of all functions that grow not faster than f as n!1. It
de�nes a nested sequence of function classes:

O(1) � O(log n) � O(n) � O(n log n) � O(n2) � O(n3) � O(an) (2:13)

where the basis of the logarithm can be any number greater than one, since
the change of the basis can be compensated by a constant factor. Note,
however, that this is not true for the basis a of the power (a > 1).

Let the time complexity of an algorithm be T (n). Then the smaller the
smallest function class containing T (n) is, the faster the algorithm is. The
same is true for storage complexity (although this statement would require
more preparation, it would be so similar to that of time complexity that it
is left for the reader).

When analyzing an algorithm, the goal is always to �nd the smallest upper

bound, but it is not always possible. When constructing an algorithm, the
goal is always to reach the tightest known lower bound (that is to construct
an optimal algorithm), but it is neither always possible.
In algorithm theory, an algorithm is \good" if T (n) = O(nk) for some

�nite k. These are called polynomial algorithms because their running time

is at most proportional to a polynomial of the input size. A given compu-

tational problem is considered as practically tractable if a polynomial algo-
rithm exists that computes it. The practically non-tractable problems are

those for which no polynomial algorithm exists. Of course, these problems

32 2. ALGORITHMICS FOR IMAGE GENERATION

can also be solved computationally, but the running time of the possible

algorithms is at least O(an), that is exponentially grows with the input size.

In computer graphics or generally in CAD, where in many cases real-time

answers are expected by the user (interactive dialogs), the borderline be-

tween \good" and \bad" algorithms is drawn much lower. An algorithm

with a time complexity of O(n17), for example, can hardly be imagined as

a part of a CAD system, since just duplicating the input size would cause

the processing to require 217 (more than 100,000) times the original time

to perform the same task on the bigger input. Although there is no com-

monly accepted standard for distinguishing between acceptable and non-

acceptable algorithms, the authors' opinion is that the practical borderline

is somewhere about O(n2).

A further important question arises when estimating the e�ectiveness of

graphics or generally, geometric algorithms: what should be considered as

the input size? If, for example, triangles (polygons) are to be transformed
from one coordinate system into another one, then the total number of
vertices is a proper measure of the input size, since these shapes can be
transformed by transforming its vertices. If n is the number of vertices
then the complexity of the transformation is O(n) since the vertices can
be transformed independently. If n is the number of triangles then the

complexity is the same since each triangle has the same number of (three)
vertices. Generally the input size (problem size) is the number of (usually
simple) similar objects to be processed.
If the triangles must be drawn onto the screen, then the more pixels they

cover the more time is required to paint each triangle. In this case, the size

of the input is better characterized by the number of pixels covered than
by the total number of vertices, although the number of pixels covered is
related rather to the output size. If the number of triangles is n and they
cover p pixels altogether (counting overlappings) then the time complexity
of drawing them onto the screen is O(n + p) since each triangle must be

�rst transformed (and projected) and then painted. If the running time of

an algorithm depends not only on the size of the input but also on the size
of the output, then it is called an output sensitive algorithm.

2.1. COMPLEXITY OF ALGORITHMS 33

2.1.3 Average-case complexity

Sometimes the worst-case time and storage complexity of an algorithm is

very bad, although the situations responsible for the worst cases occur very

rarely compared to all the possible situations. In such cases, an average-

case estimation can give a better characterization than the standard worst-

case analysis. A certain probability distribution of the input data is assumed

and then the expected time complexity is calculated. Average-case analysis

is not as commonly used as worst-case analysis because of the following

reasons:

� The worst-case complexity and the average-case complexity for any

reasonable distribution of input data coincide in many cases (just as

for the maximum-search algorithm outlined above).

� The probability distribution of the input data is usually not known.

It makes the result of the analysis questionable.

� The calculation of the expected complexity involves hard mathemat-
ics, mainly integral calculus. Thus average-case analysis is usually not

easy to perform.

Although one must accept the above arguments (especially the second one),

the following argument puts average-case analysis into new light.
Consider the problem of computing the convex hull of a set of n distinct

points in the plane. (The convex hull is the smallest convex set containing
all the points. It is a convex polygon in the planar case with its vertices
coming from the point set.) It is known [D�ev93] that the lower bound of the
time complexity of any algorithm that solves this problem is
(n log n). Al-

though there are many algorithms computing the convex hull in the optimal
O(n log n) time (see Graham's pioneer work [Gra72], for example), let us
now consider another algorithm having a worse worst-case but an optimal
average-case time complexity. The algorithm is due to Jarvis [Jar73] and is

known as \gift wrapping". Let the input points be denoted by:

p1; : : : ; pn: (2:14)

The algorithm �rst searches for an extremal point in a given direction.

This point can be that with the smallest x-coordinate, for example. Let

34 2. ALGORITHMICS FOR IMAGE GENERATION

it be denoted by pi1 . This point is de�nitely a vertex of the convex hull.

Then a direction vector ~d is set so that the line having this direction and

going through pi1 is a supporting line of the convex hull, that is, it does not

intersect its interior. With the above choice for pi1 , the direction of
~d can be

the direction pointing vertically downwards. The next vertex of the convex

hull, pi2 , can then be found by searching for that point p 2 fp1; : : : ; pngnpi1
for which the angle between the direction of ~d and the direction of ~pi1p is

minimal. The further vertices can be found in a very similar way by �rst

setting ~d to ~pi1pi2 and pi2 playing the role of pi1, etc. The search continues

until the �rst vertex, pi1 , is discovered again. The output of the algorithm

is a sequence of points:

pi1 ; : : : ; pim (2:15)

where m � n is the size of the convex hull. The time complexity of the

algorithm is:
T (n) = O(mn) (2:16)

since �nding the smallest \left bend" takes O(n) time in each of the m main
steps. Note that the algorithm is output sensitive. The maximal value of m
is n, hence the worst-case time complexity of the algorithm is O(n2).
Let us now recall an early result in geometric probability, due to R�enyi

and Sulanke [RS63] (also in [GS88]): the average size of the convex hull of
n random points independently and uniformly distributed in a triangle
is:

E[m] = O(log n): (2:17)

This implies that the average-case time complexity of the \gift wrapping"

algorithm is:
E[T (n)] = O(n log n): (2:18)

The situation is very interesting: the average-case complexity belongs to a
lower function class than the worst-case complexity; the di�erence between

the two cases cannot be expressed by a constant factor but rather it grows

in�nitely as n approaches in�nity! What does this mean?
The n input objects of the algorithm can be considered as a point of a

multi-dimensional con�guration space, sayKn. In the case of the convex hull

problem, for example, Kn = R2n, since each planar point can be de�ned by
two coordinates. In average-case analysis, each point of the con�guration

space is given a non-zero probability (density). Since there is no reason

2.2. PARALLELIZATION OF ALGORITHMS 35

for giving di�erent probability to di�erent points, a uniform distribution is

assumed, that is, each point of Kn has the same probability (density). Of

course, the con�guration space Kn must be bounded in order to be able to

give non-zero probability to the points. This is why R�enyi and Sulanke chose

a triangle, say T , to contain the points and Kn was T � T � : : :� T = T n

in that case. Let the time spent by the algorithm on processing a given

con�guration K 2 Kn be denoted by � (K). Then, because of uniform

distribution, the expected time complexity can be calculated as:

E [T (n)] =
Z

Kn

1

jKnj
� (K)dK; (2:19)

where j � j denotes volume. The asymptotic behavior of E[T (n)] (as n!1)

characterizes the algorithm in the expected case. It belongs to a function
class, say O(f(n)). Let the smallest function class containing the worst-case
time complexity T (n) be denoted by O(g(n)). The interesting situation is
when O(f(n)) 6= O(g(n)), as in the case of \gift wrapping".
One more observation is worth mentioning here. It is in connection with

the maximum-emphasizing property of the \big-O" classi�cation, which was
shown earlier (section 2.1.1). The integral 2.19 is the continuous analogue
of a weighted sum, where the in�nitesimal probability dK=jKnj plays the
role of the weights a; b in equations 2.10{2.12. How can it then happen that,
although the weight is the same everywhere in Kn (analogous to a = b), the

result function belongs to a lower class than the worst-case function which
is inevitably present in the summation? The answer is that the ratio of the
situations \responsible for the worst-case" complexity and all the possible
situations tends to zero as n grows to in�nity. (A more rigorous discussion
is to appear in [M�ar94].)

2.2 Parallelization of algorithms

Parallelization is the application of several computing units running paral-
lelly to increase the overall computing speed by distributing the computa-

tional burden between the parallel processors.

As we have seen, image synthesis means the generation of pixel colors ap-
proximating an image of the graphics primitives from a given point of view.

36 2. ALGORITHMICS FOR IMAGE GENERATION

More precisely, the input of this image generation is a collection of graph-

ics primitives which are put through a series of operations identi�ed as

transformations, clipping, visibility calculations, shading, pixel manipula-

tions and frame bu�er access, and produce the pixel data stored in the

frame bu�er as output.

pixels

operations

primitives

?

memory
AA ���

?��� AA

Figure 2.1: Key concepts of image generation

The key concepts of image synthesis (�gure 2.1) | primitives, operations
and pixels | form a simple structure which can make us think that oper-

ations represent a machine into which the primitives are fed one after the
other and which generates the pixels, but this is not necessarily true. The
�nal image depends not only on the individual primitives but also on their
relationships used in visibility calculations and in shading. Thus, when a
primitive is processed the \machine" of operations should be aware of the

necessary properties of all other primitives to decide, for instance, whether
this primitive is visible in a given pixel. This problem can be solved by two
di�erent approaches:

1. When some information is needed about a primitive it is input again
into the machine of operations.

2. The image generation \machine" builds up an internal memory about
the already processed primitives and their relationships, and uses this

memory to answer questions referring to more than one primitives.

Although the second method requires redundant storage of information and

therefore has additional memory requirements, it has several signi�cant ad-

vantages over the �rst method. It does not require the model decomposition

phase to run more times than needed, nor does it generate random order

query requests to the model database. The records of the database can be

2.2. PARALLELIZATION OF ALGORITHMS 37

accessed once in their natural (most e�ective) order. The internal memory

of the image synthesis machine can apply clever data structures optimized

for its own algorithms, which makes its access much faster than the access of

modeling database. When it comes to parallel implementation, these advan-

tages become essential, thus only the second approach is worth considering

as a possible candidate for parallelization. This decision, in fact, adds a

fourth component to our key concepts, namely the internal memory of

primitive properties (�gure 2.1). The actual meaning of the \primitive

properties" will be a function of the algorithm used in image synthesis.

When we think about realizing these algorithms by parallel hardware,

the algorithms themselves must also be made suitable for parallel execu-

tion, which requires the decomposition of the original concept. This decom-

position can either be accomplished functionally | that is, the algorithm

is broken down into operations which can be executed parallelly | or be

done in data space when the algorithm is broken down into similar parallel
branches working with a smaller amount of data. Data decomposition can
be further classi�ed into input data decomposition where a parallel branch
deals with only a portion of the input primitives, and output data decom-
position where a parallel branch is responsible for producing the color of
only a portion of the pixels. We might consider the parallelization of the

memory of primitive properties as well, but that is not feasible because this
memory is primarily responsible for storing information needed to resolve
the dependence of primitives in visibility and shading calculations. Even
if visibility, for instance, is calculated by several computing units, all of
them need this information, thus it cannot be broken down into several

independent parts. If separation is needed, then this has to be done by
using redundant storage where each separate unit contains nearly the same
information. Thus, the three basic approaches of making image synthesis
algorithms parallel are:

1. Functional decomposition or operation based parallelization

which allocates a di�erent hardware unit for the di�erent phases of

the image synthesis. Since a primitive must go through every single

phase, these units pass their results to the subsequent units forming

a pipeline structure (�gure 2.2). When we analyzed the phases

needed for image synthesis (geometric manipulations, scan conversion
and pixel operations etc.), we concluded that the algorithms, the ba-

38 2. ALGORITHMICS FOR IMAGE GENERATION

frame bu�er

?

?

?

?

phase 1

phase 2

phase n

primitives

?

memory

AA

���

�
�
��

Figure 2.2: Pipeline architecture

sic data types and the speed requirements are very di�erent in these
phases, thus this pipeline architecture makes it possible to use hard-
ware units optimized for the operations of the actual phase. The

pipeline is really e�ective if the data are moving in a single direction
in it. Thus, when a primitive is processed by a given phase, subse-
quent primitives can be dealt with by the previous phases and the
previous primitives by the subsequent phases. This means that an n

phase pipeline can deal with n number of primitives at the same time.

If the di�erent phases require approximately the same amount of time
to process a single primitive, then the processing speed is increased
by n times in the pipeline architecture. If the di�erent phases need
a di�erent amount of time, then the slowest will determine the over-
all speed. Thus balancing the di�erent phases is a crucial problem.

This problem cannot be solved in an optimal way for all the di�erent
primitives because the \computational requirements" of a primitive
in the di�erent phases depend on di�erent factors. Concerning geo-
metric manipulations, the complexity of the calculation is determined

by the number of vertices in a polygon mesh representation, while the

complexity of pixel manipulations depends on the number of pixels
covered by the projected polygon mesh. Thus, the pipeline can only

be balanced for polygons of a given projected size. This optimal size
must be determined by analyzing the \real applications".

2.2. PARALLELIZATION OF ALGORITHMS 39

frame bu�er

branch 1 branch 2 branch n

? ? ?

primitives

�
��= ?

Z
ZZ~

Figure 2.3: Image parallel architecture

2. Image space or pixel oriented parallelization allocates di�erent
hardware units for those calculations which generate the color of a
given subset of pixels (�gure 2.3). Since any primitive may a�ect
any pixel, the parallel branches of computation must get all primi-
tives. The di�erent branches realize the very same algorithm including
all steps of image generation. Algorithms which have computational

complexity proportional to the number of pixels can bene�t from this
architecture, because each branch works on fewer pixels than the num-
ber of pixels in the frame bu�er. Those algorithms, however, whose
complexities are independent of the number of pixels (but usually pro-
portional to some polynomial of the number of primitives), cannot be

speeded up in this way, since the same algorithm should be carried
out in each branch for all the di�erent primitives, which require the
same time as the calculation of all primitives by a single branch. Con-
cerning only algorithms whose complexities depend on the number of
pixels, the balancing of the di�erent branches is also very important.

Balancing means that from the same set of primitives the di�erent

phases generate the same number of pixels and the di�culty of calcu-
lating pixels is also evenly distributed between the branches. This can
be achieved if the pixel space is partitioned in a way which orders ad-

jacent pixels into di�erent partitions, and the color of the pixels in the

di�erent partitions is generated by di�erent branches of the parallel
hardware.

40 2. ALGORITHMICS FOR IMAGE GENERATION

branch 1 branch 2 branch n

primitives

visibility/pixel op.

@
@
@R ?

�
�
�	

?

�
��/

C
CCW

S
SSw

frame bu�er

Figure 2.4: Object parallel architecture

3. Object space or primitive oriented parallelization allocates dif-
ferent hardware units for the calculation of di�erent subsets of prim-
itives (�gure 2.4). The di�erent branches now get only a portion

of the original primitives and process them independently. However,
the di�erent branches must meet sometimes because of the following
reasons: a) the image synthesis of the di�erent primitives cannot be
totally independent because their relative position is needed for visi-
bility calculations, and the color of a primitive may a�ect the color of

other primitives during shading; b) any primitive can a�ect the color
of a pixel, thus, any parallel branch may try to determine the color of
the same pixel, which generates a problem that must be resolved by
visibility considerations. Consequently, the parallel branches must be
bundled together into a single processing path for visibility, shading

and frame bu�er access operations. This common point can easily be
a bottleneck. This is why this approach is not as widely accepted and

used as the other two.

2.3. HARDWARE REALIZATION OF GRAPHICS ALGORITHMS 41

The three alternatives discussed above represent theoretically di�erent

approaches to build a parallel system for image synthesis. In practical appli-

cations, however, combination of the di�erent approaches can be expected

to provide the best solutions. This combination can be done in di�erent

ways, which lead to di�erent heterogeneous architectures. The image par-

allel architecture, for instance, was said to be ine�cient for those methods

which are independent of the number of pixels. The �rst steps of image

synthesis, including geometric manipulations, are typically such methods,

thus it is worth doing them before the parallel branching of the compu-

tation usually by an initial pipeline. Inside the parallel branches, on the

other hand, a sequence of di�erent operations must be executed, which can

be well done in a pipeline. The resulting architecture starts with a single

pipeline which breaks down into several pipelines at some stage.

The analysis of the speed requirements in the di�erent stages of a pipeline

can lead to a di�erent marriage between pipeline and image parallel ar-
chitectures. Due to the fact that a primitive usually covers many pixels
when projected, the time allowed for a single data element decreases dras-
tically between geometric manipulations, scan conversion, pixel operations
and frame bu�er access. As far as scan conversion and pixel operations
are concerned, their algorithms are usually simple and can be realized by

a special digital hardware that can cope with the high speed requirements.
The speed of the frame bu�er access step, however, is limited by the access
time of commercial memories, which is much less than needed by the per-
formance of other stages. Thus, frame bu�er access must be speeded up by
parallelization, which leads to an architecture that is basically a pipeline

but at some �nal stage it becomes an image parallel system.

2.3 Hardware realization of graphics

algorithms

In this section the general aspects of the hardware realization of graph-

ics, mostly scan conversion algorithms are discussed. Strictly speaking,

hardware realization means a special, usually synchronous, digital network
designed to determine the pixel data at the speed of its clock signal.

42 2. ALGORITHMICS FOR IMAGE GENERATION

In order to describe the di�culty of the realization of a function as a

combinational network by a given component set, the measure, called com-

binational complexity or combinational realizability complexity, is intro-

duced:

Let f be a �nite valued function on the domain of a subset of natural

numbers 0; 1 : : : N . By de�nition, the combinational complexity of f is D if

the minimal combinational realization of f , containing no feedback, consists

of D devices from the respective component set.

One possible respective component set contains NAND gates only, an-

other covers the functional elements of MSI and LSI circuits, including:

1. Adders, combinational arithmetic/logic units (say 32 bits)

which can execute arithmetical operations.

2. Multiplexers which are usually responsible for the then : : : else : : :

branching of conditional operations.

3. Comparators which generate logic values for if type decisions.

4. Logic gates which are used for simple logic operations and decisions.

5. Encoders, decoders and memories of reasonable size (say 16

address bits) which can realize arbitrary functions having small do-
mains.

The requirement that the function should be integer valued and should
have integer domain would appear to cause serious limitation from the point
of view of computer graphics, but in fact it does not, since negative, frac-
tional and
oating point numbers are also represented in computers by
binary combinations which can be interpreted as a positive integer code

word in a binary number system.

2.3.1 Single-variate functions

Suppose that functions f1(k); f2(k); : : : ; fn(k) having integer domain have
to be computed for the integers in an interval between ks and ke.

2.3. HARDWARE REALIZATION OF GRAPHICS ALGORITHMS 43

A computer program carrying out this task might look like this:

for k = ks to ke do

F1 = f1(k); F2 = f2(k); : : : Fn = fn(k);

write(k; F1; F2; : : : Fn);

endfor

If all the fi(k)-s had low combinational complexity, then an independent

combinational network would be devoted to each of them, and a separate

hardware counter would generate the consecutive k values, making the hard-

ware realization complete. This works for many pixel level operations, but

usually fails for scan conversion algorithms due to their high combinational

complexity.

Fortunately, there is a technique, called the incremental concept, which
has proven successful for many scan conversion algorithms. According to
the incremental concept, in many cases it is much simpler to calculate the
value f(k) from f(k�1) instead of using only k, by a function of increment,
F :

f(k) = F(f(k � 1); k): (2:20)

If this F has low complexity, it can be realized by a reasonably simple
combinational network. In order to store the previous value f(k � 1), a
register has to be allocated, and a counter has to be used to generate the
consecutive values of k and stop the network after the last value has been

computed. This consideration leads to an architecture of �gure 2.5.
What happens if even F has too high complexity inhibiting its realization

by an appropriate combinational circuit? The incremental concept might be
applied to F as well, increasing the number of necessary temporary registers,
but hopefully simplifying the combinatorial part, and that examination can

also be repeated recursively if the result is not satisfactory. Finally, if this
approach fails, we can turn to the simpli�cation of the algorithm, or can
select a di�erent algorithm altogether.
Generally, the derivation of F requires heuristics, the careful examina-

tion and possibly the transformation of the mathematical de�nition or the

computer program of f(k). Systematic approaches, however, are available

if f(k) can be regarded as the restriction of a di�erentiable real function

fr(r) to integers both in the domain and in the value set, since in this case

44 2. ALGORITHMICS FOR IMAGE GENERATION

-CLK
> k counter

6

6ks

>f1(k)reg.

6

MPX
stepload

6

f1(ks)
6

66

-SELECT

(load/step)

-

??ke

�
�A

A comp

�STOP <

>fn(k)reg.

6

MPX
stepload

6

6

66

-

-

k

F1 Fn

fn(ks)
6 6

F1 Fn

Figure 2.5: General architecture implementing the incremental concept

fr(k) can be approximated by Taylor's series around fr(k � 1):

fr(k) � fr(k � 1) +
dfr

dk
jk�1 ��k = fr(k � 1) + f 0r(k � 1) � 1 (2:21)

The only disappointing thing about this formula is that f 0r(k � 1) is usu-
ally not an integer, nor is fr(k � 1), and it is not possible to ignore the

fractional part, since the incremental formula will accumulate the error to
an unacceptable degree. The values of fr(k) should rather be stored tem-
porarily in a register as a real value, the computations should be carried out
on real numbers, and the �nal f(k) should be derived by �nding the nearest
integer from fr(k). The realization of
oating point arithmetic is not at

all simple; indeed its high combinational complexity makes it necessary to
get rid of the
oating point numbers. Non-integers, fortunately, can also be
represented in �xed point form where the low bF bits of the code word
represent the fractional part, and the high bI bits store the integer part.
From a di�erent point of view, a code word having binary code C repre-

sents the real number C � 2�bF . Since �xed point fractional numbers can be
handled in the same way as integers in addition, subtraction, comparison

and selection (not in division or multiplication where they have to be shifted

after the operation), and truncation is simple in the above component set,
they do not need any extra calculation.

Let us devote some time to the determination of the length of the register
needed to store fr(k). Concerning the integer part, f(k), the truncation of

2.3. HARDWARE REALIZATION OF GRAPHICS ALGORITHMS 45

fr(k) may generate integers from 0 to N , requiring bI > log2N . The number

of bits in the fractional part has to be set to avoid incorrect f(k) calculations

due to the cumulative error in fr(k). Since the maximum length of the

iteration is N if ks = 0 and ke = N , and the maximum error introduced

by a single step of the iteration is less than 2�bF , the cumulative error is

maximumN �2�bF . Incorrect calculation of f(k) is avoided if the cumulative

error is less than 1:

N � 2�bF < 1 =) bF > log2N: (2:22)

Since the results are expected in integer form they must be converted to

integers at the �nal stage of the calculation. The Round function �nding

the nearest integer for a real number, however, has high combinational

complexity. Fortunately, the Round function can be replaced by the Trunc
function generating the integer part of a real number if 0:5 is added to the
number to be converted. The implementation of the Trunc function poses
no problem for �xed point representation, since just the bits corresponding
to the fractional part must be neglected. This trick can generally be used

if we want to get rid of the Round function.
The proposed approach is especially e�cient if the functions to be cal-

culated are linear, since that makes f 0(k � 1) = �f a constant parameter,
resulting in the network of �gure 2.6. Note that the hardware consists of
similar blocks, called interpolators, which are responsible for the generation
of a single output variable.

The transformed program for linear functions is:

F1 = f1(ks) + 0:5; F2 = f2(ks) + 0:5; : : : Fn = fn(ks) + 0:5;

�f1 = f 01(k); �f2 = f 02(k); : : : �fn = f 0n(k);
for k = ks to ke do

write(k;Trunc(F1);Trunc(F2); : : : ;Trunc(Fn));
F1 += �f1; F2 += �f2; : : : Fn += �fn;

endfor

The simplest example of the application of this method is the DDA line

generator (DDA stands for Digital Di�erential Analyzer which means ap-
proximately the same as the incremental method in this context). For

notational simplicity, suppose that the generator has to work for those

46 2. ALGORITHMICS FOR IMAGE GENERATION

-CLK
> k counter

6

6ks

>fr1 register

6

MPX
stepload

6

6
�
� A

A
P6

66
�f1

-SELECT

(load/step)

-

??ke

�
�A

A comp

�STOP <

>fn1 register

6

MPX
stepload

6

6
�
� A

A
P6

66
�fn

-

-

k F1 Fn

fn(ks) + 0:5f1(ks) + 0:5

Figure 2.6: Hardware for linear functions

(x1; y1; x2; y2) line segments which satisfy:

x1 � x2; y1 � y2; x2 � x1 � y2 � y1: (2:23)

Line segments of this type can be approximated by n = x2�x1+1 pixels
having consecutive x coordinates. The y coordinate of the pixels can be

calculated from the equation of the line:

y =
y2 � y1

x2 � x1
� (x� x1) + x1 = m � x+ b: (2:24)

Based on this formula, the algorithm needed to draw a line segment is:

for x = x1 to x2 do

y = Round(m � x+ b);
write(x; y; color);

endfor

The function f(x) = Round(m�x+b) contains multiplication, non-integer
addition, and the Round operation to �nd the nearest integer, resulting

in a high value of combinational complexity. Fortunately the incremental

concept can be applied since it can be regarded as the truncation of the
real-valued, di�erentiable function:

fr(x) = m � x+ b+ 0:5 (2:25)

2.3. HARDWARE REALIZATION OF GRAPHICS ALGORITHMS 47

Since fr is di�erentiable, the incremental formula is:

fr(x) = fr(x) + f 0r(x� 1) = fr(x) +m: (2:26)

The register storing fr(x) in �xed point format has to have more than

log2N integer and more than log2N fractional bits, where N is the length

of the longest line segment. For a display of 1280 � 1024 pixel resolution

a 22 bit long register is required if it can be guaranteed by a previous

clipping algorithm that no line segments will have coordinates outside the

visible region of the display. From this point of view, clipping is not only

important in that it speeds up the image synthesis by removing invisible

parts, but it is also essential because it ensures the avoidance of over
ows

in scan conversion hardware working with �xed point numbers.

-CLK
> x counter

6

6x1

> m � x+ b

6

MPX
stepload

6

6
y1 + 0:5

�
� A

A
P6

66
m

-SELECT

(load/step)

-

??x2

�
�A

A comp

�STOP <

x y

Figure 2.7: DDA line generator

The slope of the line m = (y2 � y1)=(x2 � x1) has to be calculated only
once and before inputting it into the hardware.

This example has con�rmed that the hardware implementation of linear

functions is a straightforward process, since it could remove all the multipli-
cations and divisions from the inner cycle of the algorithm, and it requires
them in the initialization phase only. For those linear functions where the

fractional part is not relevant for the next phases of the image generation

and j�f j � 1, the method can be even further optimized by reducing the
computational burden of the initialization phase as well.

48 2. ALGORITHMICS FOR IMAGE GENERATION

If the fractional part is not used later on, its only purpose is to determine

when the integer part has to be incremented (or decremented) due to over-

ow caused by the cumulative increments �f . Since �f � 1, the maximum

increase or decrease in the integer part must necessarily also be 1. From this

perspective, the fractional part can also be regarded as an error value show-

ing how accurate the integer approximation is. The error value, however,

is not necessarily stored as a fractional number. Other representations, not

requiring divisions during the initialization, can be found, as suggested by

the method of decision variables.

Let the fractional part of fr be fract and assume that the increment �f

is generated as a rational number de�ned by a division whose elimination

is the goal of this approach:

�f =
K

D
: (2:27)

The over
ow of fract happens when fract + �f > 1. Let the new error
variable be E = 2D � (fract�1), requiring the following incremental formula

for each cycle:

E(k) = 2D � (fract(k)� 1) = 2D � ([fract(k� 1) + �f]� 1) = E(k� 1) +2K:
(2:28)

The recognition of over
ow is also easy:

fract(k) � 1:0 =) E(k) � 0 (2:29)

If over
ow happens, then the fractional part is decreased by one, since
the bit which has the �rst positional signi�cance over
owed to the integer
part:

fract(k) = [fract(k � 1) + �f]� 1 =) E(k) = E(k � 1) + 2(K �D):

(2:30)
Finally, the initial value of E comes from the fact that fract has to be

initialized to 0:5, resulting in:

fract(0) = 0:5 =) E(0) = �D: (2:31)

Examining the formulae of E, we can conclude that they contain inte-

ger additions and comparisons, eliminating all the non-integer operations.
Clearly, it is due to the multiplication by 2D, where D compensates for the

2.3. HARDWARE REALIZATION OF GRAPHICS ALGORITHMS 49

fractional property of �f = K=D and 2 compensates for the 0:5 initial value

responsible for replacing Round by Trunc.

The �rst line generator of this type has been proposed by Bresenham

[Bre65].

Having made the substitutions, K = y2 � y1 and D = x2 � x1, the code

of the algorithm in the �rst octant of the plane is:

BresenhamLine(x1; y1; x2; y2)

�x = x2 � x1; �y = y2 � y1;

E = ��x;

dE+ = 2(�y ��x); dE� = 2�y;

y = y1;

for x = x1 to x2 do

if E � 0 then E += dE�;

else E += dE+; y++;
write(x; y; color);

endfor

2.3.2 Multi-variate functions

The results of the previous section can be generalized to higher dimensions,
but, for the purposes of this book, only the two-variate case has any practical

importance, and this can be formulated as follows:

l

l

l

K (l) K (l)

k

e

s

s e

Figure 2.8: The domain of the two-variate functions

Let a set of two-variate functions be f1(k; l); f2(k; l); : : : ; fn(k; l) and sup-

pose we have to compute them for domain points (�gure 2.8):

S = f(k; l) j ls � l � le; Ks(l) � k � Ke(l)g: (2:32)

50 2. ALGORITHMICS FOR IMAGE GENERATION

A possible program for this computation is:

for l = ls to le do

for k = Ks(l) to Ke(l) do

F1 = f1(k; l); F2 = f2(k; l); : : : Fn = fn(k; l);

write(k; l; F1; F2; : : : Fn);

endfor

endfor

Functions f , Ks, Ke are assumed to be the truncations of real valued,

di�erentiable functions to integers. Incremental formulae can be derived for

these functions relying on Taylor's approximation:

fr(k + 1; l) � fr(k; l) +
@fr(k; l)

@k
� 1 = fr(k; l) + �fk(k; l); (2:33)

Ks(l+ 1) � Ks(l) +
dKs(l)

dl
� 1 = Ks(l) + �Ks(l); (2:34)

Ke(l+ 1) � Ke(l) +
dKe(l)

dl
� 1 = Ke(l) + �Ke(l): (2:35)

The increments of fr(k; l) along the boundary curve Ks(l) is:

fr(Ks(l+ 1); l + 1) � fr(Ks(l); l) +
dfr(Ks(l); l)

dl
= fr(Ks(l); l) + �f l;s(l):

(2:36)
These equations are used to transform the original program computing fi-s:

S = Ks(ls) + 0:5; E = Ke(ls) + 0:5;
F s
1 = f1(Ks(ls); ls) + 0.5; : : : F s

n = fn(Ks(ls); ls) + 0:5;
for l = ls to le do

F1 = F s
1 ; F2 = F s

2 ; : : : Fn = F s
n;

for k = Trunc(S) to Trunc(E) do
write(k; l;Trunc(F1);Trunc(F2); : : : ;Trunc(Fn));

F1 += �fk
1 ; F2 += �fk

2 ; : : : Fn += �fk
n ;

endfor

F s
1 += �f

l;s
1 ; F s

2 += �f
l;s
2 ; : : : F s

n += �f l;s
n ;

S += �Ks; E += �Ke;

endfor

2.3. HARDWARE REALIZATION OF GRAPHICS ALGORITHMS 51

l counter <

6ls

A
A�

�
comp

6 6 r

le

�STOP
<

Interpolator
<

6 6
�KsKs(ls)

Interpolator
<

6 6
�KeKe(ls)

> k counter

A
A�

�
comp

>

6 6

FS
1

Interpolator
>

6 6
�f

l;s
1

f1(Ks(ls); ls) fn(Ks(ls); ls)

Interpolator

>

�fk
1

�

-

load step

FS
n

Interpolator
>

6 6
�f l;sn

Interpolator

>

�fkn

load step

6 6f1(k; l) fn(k; l)

66 kl

6

CLK

-�

S K 6 6�

F1 Fn

6 6

r

r

- -r r rSEL

r r r

rrr

Figure 2.9: Hardware realization of two-variate functions

Concerning the hardware realization of this transformed program, a two
level hierarchy of interpolators should be built. On the lower level interpo-

lators have to be allocated for each Fi, which are initialized by a respective
higher level interpolator generating F s

i . The counters controlling the oper-
ation also form a two-level hierarchy. The higher level counter increments
two additional interpolators, one for start position S, and one for end con-
dition E, which, in turn, serve as start and stop control values for the lower

level counter. Note that in the modi�ed algorithm the longest path where
the round-o� errors can accumulate consists of

max
l
fl � ls +Ke(l)�Ks(l)g � Pk + Pl

steps, where Pk and Pl are the size of the domain of k and l respectively.

The minimum length of the fractional part can be calculated by:

bF > log2(Pk + Pl): (2:37)

A hardware implementation of the algorithm is shown in �gure 2.9.

52 2. ALGORITHMICS FOR IMAGE GENERATION

2.3.3 Alternating functions

Alternating functions have only two values in their value set, which al-

ternates according to a selector function. They form an important set of

non-di�erentiable functions in computer graphics, since pattern generators

responsible for drawing line and tile patterns and characters fall into this

category. Formally an alternating function is:

f(k) = F (s(k)); s(k) 2 f0; 1g: (2:38)

Function F may depend on other input parameters too, and it usually has

small combinational complexity. The selector s(k) may be periodic and is

usually de�ned by a table. The hardware realization should, consequently,

�nd the kth bit of the de�nition table to evaluate f(k). A straightforward

way to do that is to load the table into a shift register (or into a circular
shift register if the selector is periodic) during initialization, and in each
iteration select the �rst bit to provide s(k) and shift the register to prepare
for the next k value.

s(k) shift reg. �

6

F

6f(k)

s(k)
���
CLK

��

Figure 2.10: Hardware for alternating functions

Alternating functions can also be two-dimensional, for example, to gener-
ate tiles and characters. A possible architecture would require a horizontal
and a vertical counter, and a shift register for each row of the pattern. The

vertical counter selects the actual shift register, and the horizontal counter,

incremented simultaneously with the register shift, determines when the
vertical counter has to be incremented.

Chapter 3

PHYSICAL MODEL OF 3D

IMAGE SYNTHESIS

3.1 De�nition of color

Light is an electromagnetic wave, and its color is determined by the eye's

perception of its spectral energy distribution. In other words, the color

is determined by the frequency spectrum of the incoming light. Due to

its internal structure, the eye is a very poor spectrometer since it actually

samples and integrates the energy in three overlapping frequency ranges

by three types of photopigments according to a widely accepted (but also

argued) model of the eye. As a consequence of this, any color perception can

be represented by a point in a three-dimensional space, making it possible to

de�ne color perception by three scalars (called tristimulus values) instead

of complete functions.

A convenient way to de�ne the axes of a coordinate system in the space

of color sensations is to select three wavelengths where one type of pho-

topigment is signi�cantly more sensitive than the other two. This is the

method devised by Grassmann, who also speci�ed a criterion for separating

the three representative wavelengths. He states in his famous laws that the

representative wavelengths should be selected such that no one of them can

be matched by the mixture of the other two in terms of color sensation.

(This criterion is similar to the concept of linear independence.)

53

54 3. PHYSICAL MODEL OF 3D IMAGE SYNTHESIS

An appropriate collection of representative wavelengths is:

�red = 700 nm; �green = 561 nm; �blue = 436 nm: (3:1)

Now let us suppose that monochromatic light of wavelength � is perceived

by the eye. The equivalent portions of red, green and blue light, or (r, g, b)

tristimulus values, can be generated by three color matching functions

(r(�), g(�) and b(�)) which are based on physiological measurements.

-0.2

Tristimulus
values

400 500 600 700

λ

λ

λ

λ λ

Wavelength, (nm)

0.4

0.2

0

b()

g()

r()

Figure 3.1: Color matching functions r(�), g(�) and b(�)

If the perceived color is not monochromatic, but is described by an L(�)

distribution, the tristimulus coordinates are computed using the assump-

tion that the sensation is produced by an additive mixture of elemental

monochromatic components:

r =

Z

�

L(�) �r(�) d�; g =

Z

�

L(�) �g(�) d�; b =

Z

�

L(�) �b(�) d�: (3:2)

Note the negative section of r(�) in �gure 3.1. It means that not all the

colors can be represented by positive (r, g, b) values, hence there are colors

which cannot be produced, only approximated, on the computer screen.

This negative matching function can be avoided by careful selection of the

axes in the color coordinate system, and in fact, in 1931 another standard,

called the CIE XYZ system, was de�ned which has only positive weights

[WS82].

3.1. DEFINITION OF COLOR 55

For computer generated images, the color sensation of an observer watch-

ing a virtual world on the screen must be approximately equivalent to the

color sensation obtained in the real world. If two energy distributions are

associated with the same tristimulus coordinates, they produce the same

color sensation, and are called metamers.

In computer monitors and on television screens red, green and blue phos-

phors can be stimulated to produce red, green and blue light. The objective,

then, is to �nd the necessary stimulus to produce a metamer of the real en-

ergy distribution of the light. This stimulus can be controlled by the (R,

G, B) values of the actual pixel. These values are usually positive numbers

in the range of [0...255] if 8 bits are available to represent them.

Let the distribution of the energy emitted by red, green and blue phos-

phors be PR(�;R), PG(�;G) and PB(�;B), respectively, for a given (R, G,

B) pixel color. Since the energy distribution of a type of phosphor is con-

centrated around wavelength �red, �green or �blue, the tristimulus coordinates

of the produced light will look like this:

r =

Z

�

(PR + PG + PB) � r(�) d� �
Z

�

PR(�;R) � r(�) d� = pR(R); (3:3)

g =
Z

�

(PR + PG + PB) � g(�) d� �
Z

�

PG(�;G) � g(�) d� = pG(G); (3:4)

b =

Z

�

(PR + PG + PB) � b(�) d� �
Z

�

PB(�;B) � b(�) d� = pB(B): (3:5)

Expressing the necessary R, G, B values, we get:

R = p�1R (r); G = p�1G (g); B = p�1B (b): (3:6)

Unfortunately pR, pG and pB are not exactly linear functions of the cal-

culated R, G and B values, due to the non-linearity known as
-distortion

of color monitors, but follow a const �N
 function, where N is the respective

R;G or B value. In most cases this non-linearity can be ignored, allowing

R = r, G = g and B = b. Special applications, however, require compensa-

tion for this e�ect, which can be achieved by rescaling the R, G, B values

by appropriate lookup tables according to functions p�1R , p�1G and p�1B . This

method is called
-correction.

56 3. PHYSICAL MODEL OF 3D IMAGE SYNTHESIS

Now we can focus on the calculation of the (r, g, b) values of the color

perceived by the eye or camera through an (X,Y) point in the window.

According to the laws of optics, the virtual world can be regarded as a

system that transforms a part of the light energy of the lightsources (Pin(�))

into a light beam having energy distribution PXY (�) and going to the camera

through pixel (X,Y). Let us denote the transformation by functional L:

PXY (�) = L(Pin(�)): (3:7)

A tristimulus color coordinate, say r, can be determined by applying the

appropriate matching function:

rXY =

Z

�

PXY (�) � r(�) d� =

Z

�

L(Pin(�)) � r(�) d�: (3:8)

In order to evaluate this formula numerically, L(Pin(�)) is calculated in

discrete points �1; �2; :::; �n, and rectangular or trapezoidal integration rule

is used:

rXY �
nX
i=1

L(Pin(�i)) � r(�i) ���i: (3:9)

Similar equations can be derived for the other two tristimulus values, g

and b. These equations mean that the calculation of the pixel colors re-

quires the solution of the shading problem, or evaluating the L functional,

for n di�erent wavelengths independently, then the r, g and b values can

be determined by summation of the results weighted by their respective

matching functions. Examining the shape of matching functions, however,

we can conclude that for many applications an even more drastic approxi-

mation is reasonable, where the matching function is replaced by a function

of rectangular shape:

r(�) � r̂(�) =

8<
:
rmax if �red ���red=2 � � � �red +��red=2

0 otherwise

(3:10)

Using this approximation, and assuming L to be linear in terms of the

energy (as it really is) and L(0) = 0, we get:

rXY �
Z

�

L(Pin(�)) � r̂(�) d� = L(

Z

�

Pin(�) � r̂(�) d�) = L(rin); (3:11)

3.2. LIGHT AND SURFACE INTERACTION 57

where rin is the �rst tristimulus coordinate of the energy distribution of the

lightsources (Pin(�)).

This means that the tristimulus values of the pixel can be determined from

the tristimulus values of the lightsources. Since there are three tristimulus

coordinates (blue and green can be handled exactly the same way as red)

the complete shading requires independent calculations for only three wave-

lengths. If more accurate color reproduction is needed, equation 3.9 should

be applied to calculate r, g and b coordinates.

3.2 Light and surface interaction

Having separated the color into several (mainly three) representative fre-

quencies, the problem to be solved is the calculation of the energy reaching

the camera from a given direction, i.e. through a given pixel, taking into

account the optical properties of the surfaces and the lightsources in the

virtual world. Hereinafter, monochromatic light of a representative wave-

length � will be assumed, since the complete color calculation can be broken

down to these representative wavelengths. The parameters of the equations

usually depend on the wavelength, but for notational simplicity, we do not

always include the � variable in them.

φ

dA

ωd

r

Figure 3.2: De�nition of the solid angle

The directional property of the energy emission is described in a so-called

illumination hemisphere which contains those solid angles to where the

surface point can emit energy. By de�nition, a solid angle is a cone or

a pyramid, with its size determined by its subtended area of a unit sphere

58 3. PHYSICAL MODEL OF 3D IMAGE SYNTHESIS

centered around the apex (�gure 3.2). The solid angle, in which a di�erential

dA surface can be seen from point ~p, is obviously the projected area per the

square of the distance of the surface. If the angle between the surface normal

of dA and the directional vector from dA to ~p is �, and the distance from

dA to ~p is r, then this solid angle is:

d! =
dA � cos�

r2
: (3:12)

The intensity of the energy transfer is characterized by several metrics in

computer graphics depending on whether or not the directional and posi-

tional properties are taken into account.

The light power or
ux � is the energy radiated through a boundary per

unit time over a given range of the spectrum (say [�; �+ d�]).

The radiant intensity, or intensity I for short, is the di�erential light

ux leaving a surface element dA in a di�erential solid angle d! per the

projected area of the surface element and the size of the solid angle. If

the angle of the surface normal and the direction of interest is �, then the

projected area is dA � cos �, hence the intensity is:

I =
d�(d!)

dA � d! � cos �
: (3:13)

The total light
ux radiated through the hemisphere centered over the

surface element dA per the area of the surface element is called the radios-

ity B of surface element dA.

dA

ωφ φ’
d

r

dA’

..

Figure 3.3: Energy transfer between two di�erential surface elements

Having introduced the most important metrics, we turn to their deter-

mination in the simplest case, where there are only two di�erential surface

3.2. LIGHT AND SURFACE INTERACTION 59

elements in the 3D space, one (dA) emits light energy and the other (dA0)

absorbs it (�gure 3.3). If dA0 is visible from dA in solid angle d! and the

radiant intensity of the surface element dA is I(d!) in this direction, then

the
ux leaving dA and reaching dA0 is:

d� = I(d!) � dA � d! � cos �: (3:14)

according to the de�nition of the radiant intensity. Expressing the solid

angle by the projected area of dA0, we get:

d� = I �
dA � cos � � dA0 � cos �0

r2
: (3:15)

This formula is called the fundamental law of photometry.

dA’

)

d

d

ω

ω
Φ

A(d

φ

φ

’

r

’

’

Figure 3.4: Radiation of non-di�erential surfaces

Real situations containing not di�erential, but �nite surfaces can be dis-

cussed using as a basis this very simple case (�gure 3.4). Suppose there is

a �nite radiating surface (A), and we are interested in its energy reaching

a dA0 element of another surface in the solid angle d!0. The area of the

radiating surface visible in the solid angle d!0 is A(d!0) = r2 � d!0=cos �,
so the
ux radiating dA0 from the given direction will be independent of

the position and orientation of the radiating surface and will depend on its

intensity only, since:

d� = I �
A(d!0) � cos� � dA0 � cos�0

r2
= I � dA0 � cos�0 � d!0 = const � I: (3:16)

60 3. PHYSICAL MODEL OF 3D IMAGE SYNTHESIS

Similarly, if the
ux going through a pixel to the camera has to be calcu-

lated (�gure 3.5), the respective solid angle is:

d!pix =
dApix � cos�pix

r2pix
: (3:17)

The area of the surface fragment visible through this pixel is:

A(d!pix) =
r2 � d!pix
cos �

: (3:18)

Thus, the energy de�ning the color of the pixel is:

d�pix = I�
A(d!pix) � cos� � dApix � cos �pix

r2
= I�dApix�cos�pix�d!pix = const�I:

(3:19)

dA A(d

dd

ω

ω

φ

Φ

pix

pix

pix) pixφ

window

pixels

eyepix

Figure 3.5: Energy transfer from a surface to the camera

Note that the intensity of a surface in a scene remains constant to an

observer as he moves towards or away from the surface, since the inverse

square law of the energy
ux is compensated for by the square law of the

solid angle subtended by the surface. Considering this property, the inten-

sity is the best metric to work with in synthetic image generation, and we

shall almost exclusively use it in this book.

In light-surface interaction the surface illuminated by an incident beam

may re
ect a portion of the incoming energy in various directions or it may

absorb the rest. It has to be emphasized that a physically correct model

must maintain energy equilibrium, that is, the re
ected and the transmitted

(or absorbed) energy must be equal to the incident energy.

3.2. LIGHT AND SURFACE INTERACTION 61

Suppose the surface is illuminated by a beam having energy
ux � from

the di�erential solid angle d!. The surface splits this energy into re
ected

and transmitted components, which are also divided into coherent and

incoherent parts.

Φ
Φ

Φ

t

r

Figure 3.6: Transformation of the incident light by a surface

Optically perfect or smooth surfaces will re
ect or transmit only coherent

components governed by the laws of geometric optics, including the law

of re
ection and the Snellius{Descartes law of refraction. If the surface

is optically perfect, the portions of re
ection (�r) and transmission (�t)

(�gure 3.6) can be de�ned by the Fresnel coe�cients Fr; Ft, namely:

�r = Fr � �; �t = Ft � �: (3:20)

The energy equilibrium requires Ft + Fr = 1.

The incoherent components are caused by the surface irregularities re-

ecting or refracting the incident light in any direction. Since the exact

nature of these irregularities is not known, the incoherent component is

modeled by means of probability theory. Assume that a photon comes from

the direction denoted by unit vector ~L. The event that this photon will

leave the surface in the re
ection or in the refraction direction being in the

solid angle d! around unit vector ~V can be broken down into the following

mutually exclusive events:

62 3. PHYSICAL MODEL OF 3D IMAGE SYNTHESIS

1. if ~L and ~V obey the re
ection law of geometric optics, the probability

of the photon leaving the surface exactly at ~V is denoted by kr.

2. if ~L and ~V obey the Snellius{Descartes law of refraction | that is

sin�in

sin �out
= �;

where �in and �out are the incident and refraction angles respectively

and � is the refractive index of the material | then the probability

of the photon leaving the surface exactly at ~V is denoted by kt.

3. The probability of incoherent re
ection and refraction onto the solid

angle d! at ~V is expressed by the bi-directional re
ection and

refraction functions R(~L; ~V) and T (~L; ~V) respectively:

R(~L; ~V) � d! = Prfphoton is re
ected to d! around ~V j it comes from ~Lg;
(3:21)

T (~L; ~V) � d! = Prfphoton is refracted to d! around ~V j it comes from ~Lg:
(3:22)

Note that the total bi-directional probability distribution is a mixed,

discrete-continuous distribution, since the probability that the light may

obey the laws of geometric optics is non-zero. The energy equilibrium guar-

antees that the integration of the bi-directional probability density over the

whole sphere is 1.

Now we are ready to consider the inverse problem of light-surface inter-

action. In fact, computer graphics is interested in the radiant intensity of

surfaces from various directions due to the light energy reaching the surface

from remaining part of the 3D space (�gure 3.7).

The light
ux (�out) leaving the surface at the solid angle d! around ~V

consists of the following incident light components:

1. That portion of a light beam coming from incident direction corre-

sponding to the ~V re
ection direction, which is coherently re
ected.

If that beam has
ux �r, then the contribution to �out is kr � �in
r .

2. That portion of a light beam coming from the incident direction corre-

sponding to the ~V refraction direction, which is coherently refracted.

If that beam has
ux �in
t , then the contribution to �out is kt � �in

t .

3.2. LIGHT AND SURFACE INTERACTION 63

Φ
Φ

Φ

t

r
in

in

inΦ

Figure 3.7: Perceived color of a surface due to incident light beams

3. The energy of light beams coming from any direction above the surface

(or outside the object) and being re
ected incoherently onto the given

solid angle. This contribution is expressed as the integration of all the

possible incoming directions ~L over the hemisphere above the surface:

2�Z
(R(~L; ~V) d!)�in(~L; d!in): (3:23)

4. The energy of light beams coming from any direction under the surface

(or from inside the object) and being refracted incoherently onto the

given solid angle. This contribution is expressed as the integration of

all the possible incoming directions ~L over the hemisphere under the

surface:
2�Z
(T (~L; ~V) d!)�in(~L; d!in): (3:24)

5. If the surface itself emits energy, that is, if it is a lightsource, then the

emission also contributes to the output
ux:

�e(~V): (3:25)

64 3. PHYSICAL MODEL OF 3D IMAGE SYNTHESIS

Adding the possible contributions we get:

�out = �e + kr ��
in
r + kt � �

in
t +

2�Z
(R(~L; ~V) d!)�in(~L; d!in) +

2�Z
(T (~L; ~V) d!)�in(~L; d!in): (3:26)

φ

φ

Φ
Φ

ω
ω

out

out

in

in

in

in

d

d

I

dA

V

L

outI

Figure 3.8: Interdependence of intensity of surfaces and the energy
ux

Recall that the radiant intensity is the best metric to deal with, so this

equation is converted to contain the intensities of surfaces involved. Using

the notations of �gure 3.8 and relying on equation 3.16, the
ux of the

incident light beam can be expressed by the radiant intensity of the other

surface (I in) and the parameters of the actual surface thus:

�in(~L; d!in) = I in � dA � cos�in � d!in: (3:27)

Applying this equation for �in
r and �in

t the intensities of surfaces in the re-

ection direction (I inr) and in the refraction direction (I int) can be expressed.

The de�nition of the radiant intensity (equation 3.13) expresses the in-

tensity of the actual surface:

�out(~V ; d!) = Iout � dA � cos �out � d!: (3:28)

3.3. LAMBERT'S MODEL OF INCOHERENT REFLECTION 65

Substituting these terms into equation 3.26 and dividing both sides by

dA � d! � cos �out we get:

Iout = Ie + kr � Ir �
cos �r � d!r
cos �out � d!

+ kt � It �
cos�t � d!t
cos �out � d!

+

2�Z
I in(~L) � cos �in �

R(~L; ~V)

cos �out
d!in +

2�Z
I in(~L) � cos �in �

T (~L; ~V)

cos �out
d!in: (3:29)

According to the re
ection law, �out = �r and d! = d!r. If the refraction

coe�cient � is about 1, then cos �out � d! � cos �t � d!t holds.
Using these equations and introducing R�(~L; ~V) = R(~L; ~V)=cos �out and

T �(~L; ~V) = T (~L; ~V)=cos �out, we can generate the following fundamental

formula, called the shading, rendering or illumination equation:

Iout = Ie + krIr + ktIt+

2�Z
I in(~L) � cos�in �R

�(~L; ~V) d!in +

2�Z
I in(~L) � cos�in � T

�(~L; ~V) d!in: (3:30)

Formulae of this type are calledHall equations. In fact, every color calcu-

lation problem consists of several Hall equations, one for each representative

frequency. Surface parameters (Ie; kr; kt; R
�(~L; ~V); T �(~L; ~V)) obviously vary

in the di�erent equations.

3.3 Lambert's model of incoherent

re
ection

The incoherent components are modeled by bi-directional densities in the

Hall equation, but they are di�cult to derive for real materials. Thus, we

describe these bi-directional densities by some simple functions containing a

few free parameters instead. These free parameters can be used to tune the

surface properties to provide an appearance similar to that of real objects.

First of all, consider di�use | optically very rough | surfaces re
ecting

a portion of the incoming light with radiant intensity uniformly distributed

in all directions. The constant radiant intensity (Id) of the di�use surface

lit by a collimated beam from the angle �in can be calculated thus:

Id =

2�Z
I in(~L) � cos�in �R

�(~L; ~V) d!in: (3:31)

66 3. PHYSICAL MODEL OF 3D IMAGE SYNTHESIS

L

N
V I

in

outφ
φ

Figure 3.9: Di�use re
ection

The collimated beam is expressed as a directional delta function, I in��(~L),
simplifying the integral as:

Id = I in � cos�in �R
�(~L; ~V): (3:32)

Since Id does not depend on ~V or �out, the last term is constant and is called

the di�use re
ection coe�cient kd:

kd = R�(~L; ~V) =
R(~L; ~V)

cos�out
: (3:33)

The radiant intensity of a di�use surface is:

Id(�) = I in(�) � cos �in � kd(�): (3:34)

This is Lambert's law of di�use re
ection. The term cos �in can be

calculated as the dot product of unit vectors ~N and ~L. Should ~N � ~L be

negative, the light is incident to the back of the surface, meaning it is blocked

by the object. This can be formulated by the following rule:

Id(�) = I in(�) � kd(�) �maxf(~N � ~L); 0g: (3:35)

This rule makes the orientation of the surface normals essential, since they

always have to point outward from the object.

It is interesting to examine the properties of the di�use coe�cient kd.

Suppose the di�use surface re
ects a fraction r of the incoming energy,

while the rest is absorbed.

3.4. PHONG'S MODEL OF INCOHERENT REFLECTION 67

The following interdependence holds between kd and r:

r =
�out

�in
=

dA �
2�R
Id � cos�out d!

dA �
2�R
I in � �(~Lin) � cos �in d!in

=

2�R
I in � cos �in � kd � cos �out d!

I in � cos �in
= kd �

2�Z
cos �out d! = kd � �: (3:36)

Note that di�use surfaces do not distribute the light
ux evenly in dif-

ferent directions, but follow a cos �out function, which is eventually com-

pensated for by its inverse in the projected area of the expression of the

radiant intensity. According to equation 3.36, the kd coe�cient cannot ex-

ceed 1=� for physically correct models. In practical computations however,

it is usually nearly 1, since in the applied models, as we shall see, so many

phenomena are ignored that overemphasizing the computationally tractable

features becomes acceptable.

Since di�use surfaces cannot generate mirror images, they present their

\own color" if they are lit by white light. Thus, the spectral dependence

of the di�use coe�cient kd, or the relation of kredd , k
green
d and kblued in the

simpli�ed case, is primarily responsible for the surface's \own color" even

in the case of surfaces which also provide non-di�use re
ections.

3.4 Phong's model of incoherent re
ection

A more complex approximation of the incoherent re
ection has been pro-

posed by Phong [Pho75]. The model is important in that it also covers

shiny surfaces. Shiny surfaces do not radiate the incident light by uniform

intensity, but tend to distribute most of their re
ected energy around the

direction de�ned by the re
ection law of geometric optics.

It would seem convenient to break down the re
ected light and the bi-

directional re
ection into two terms; a) the di�use term that satis�es Lam-

bert's law and b) the specular term that is responsible for the glossy re
ec-

tion concentrated around the mirror direction:

R(~L; ~V) = Rd(~L; ~V) +Rs(~L; ~V); (3:37)

Iout = Id + Is = I in � kd � cos�in + I in � cos�in �
Rs(~L; ~V)

cos�out
: (3:38)

68 3. PHYSICAL MODEL OF 3D IMAGE SYNTHESIS

ψ L

NH

mirror of

V

IL

Figure 3.10: Specular re
ection

Since Rs(~L; ~V) is relevant only when ~V is close to the mirror direction of ~L:

cos�in �
Rs(~L; ~V)

cos�out
� Rs(~L; ~V): (3:39)

To describe the intensity peak mathematically, a bi-directional function

had to be proposed, which is relatively smooth, easy to control and simple

to compute. Phong used the ks � cosn function for this purpose, where

is the angle between the direction of interest and the mirror direction, n

is a constant describing how shiny the surface is, and ks is the specular

coe�cient representing the fraction of the specular re
ection in the total

re
ected light.

Comparing this model to real world measurements we can conclude that

the specular coe�cient ks does not depend on the object's \own color" (in

the highlights we can see the color of the lightsource rather than the color

of the object), but that it does depend on the angle between the mirror

direction and the surface normal, as we shall see in the next section.

The simpli�ed illumination formula is then:

Iout(�) = I in(�) � kd(�) � cos�in + I in(�) � ks(�; �in) � cos
n : (3:40)

Let the halfway unit vector of ~L and ~V be ~H = (~L+ ~V)=j~L+ ~V j. The

term cos can be calculated from the dot product of unit vectors ~V and
~H, since according to the law of re
ection:

 = 2 � angle(~N; ~H): (3:41)

3.5. PROBABILISTIC MODELING OF SPECULAR REFLECTION 69

By trigonometric considerations:

cos = cos(2 � angle(~N; ~H)) = 2 � cos2(angle(~N; ~H))� 1 = 2 � (~N � ~H)2 � 1

(3:42)

Should the result turn out to be a negative number, the observer and

the lightsource are obviously on di�erent sides of the surface, and thus the

specular term is zero. If the surface is lit not only by a single collimated

beam, the right side of this expression has to be integrated over the hemi-

sphere, or if several collimated beams target the surface, their contribution

should simply be added up. It is important to note that, unlike Lambert's

law, this model has no physical interpretation, but it follows nature in an

empirical way only.

3.5 Probabilistic modeling of specular

re
ection

Specular re
ection can be more rigorously analyzed by modeling the surface

irregularities by probability distributions, as has been proposed by Torrance,

Sparrow, Cook and Blinn. In their model, the surface is assumed to consist

of randomly oriented perfect mirrors, so-called microfacets. As in the

previous section, the re
ected light is broken down into di�use and specular

components. The di�use component is believed to be generated by multiple

re
ections on the microfacets and also by emission of the absorbed light

by the material of the surface. The di�use component is well described by

Lambert's law. The specular component, on the other hand, is produced

by the direct re
ections of the microfacets. The bi-directional re
ection

function is also broken down accordingly, and we will discuss the derivation

of the specular bi-directional re
ection function Rs(~L; ~V):

R(~L; ~V) = Rd(~L; ~V) +Rs(~L; ~V) = kd � cos �out +Rs(~L; ~V): (3:43)

Returning to the original de�nition, the bi-directional re
ection function

is, in fact, an additive component of a probability density function, which

is true for Rs as well.

Rs(~L; ~V) � d! =

Prfphoton is re
ected directly to d! around ~V j coming from ~Lg: (3:44)

70 3. PHYSICAL MODEL OF 3D IMAGE SYNTHESIS

Concerning this type of re
ection from direction ~L to d! around direction
~V , only those facets can contribute whose normal is in d!H around the

halfway unit vector ~H . If re
ection is to happen, the facet must obviously

be facing in the right direction. It should not be hidden by other facets,

nor should its re
ection run into other facets, and it should not absorb the

photon for the possible contribution.

N

Figure 3.11: Microfacet model of the re
ecting surface

Considering these facts, the event that \a photon is re
ected directly

to d! around ~V " can be expressed as the logical AND connection of the

following stochastically independent events:

1. Orientation: In the path of the photon there is a microfacet having

its normal in d!H around ~H.

2. No shadowing or masking: The given microfacet is not hidden by

other microfacets from the photon coming from the lightsource, and

the re
ected photon does not run into another microfacet.

3. Re
ection: The photon is not absorbed by the perfect mirror.

Since these events are believed to be stochastically independent, their

probability can be calculated independently, and the probability of the com-

posed event will be their product.

Concerning the probability of the microfacet normal being in d!H , we

can suppose that all facets have equal area f . Let the probability density of

the number of facets per unit area surface, per solid angle of facet normal

3.5. PROBABILISTIC MODELING OF SPECULAR REFLECTION 71

be P (~H). Blinn [Bli77] proposed Gaussian distribution for P (~H), since

it seemed reasonable due to the central value theorem of probability theory:

P (~H) = const � e�(�=m)2: (3:45)

where � is the angle of the microfacet with respect to the normal of the

mean surface, that is the angle between ~N and ~H , and m is the root mean

square of the slope, i.e. a measure of the roughness.

Later Torrance and Sparrow showed that the results of the early work

of Beckmann [BS63] and Davies [Dav54], who discussed the scattering of

electromagnetic waves theoretically, can also be used here and thus Torrance

proposed the Beckmann distribution function instead of the Gaussian:

P (~H) =
1

m2 cos4 �
� e�(

tan
2
�

m
2
)
: (3:46)

If a photon arrives from direction ~L to a surface element dA, the visible

area of the surface element will be dA � (~N � ~L), while the total visible area
of the microfacets having their normal in the direction around ~H will be

f � P (~H) � d!H � dA � (~H � ~L):

The probability of �nding an appropriate microfacet aligned with the photon

can be worked out as follows:

Prforientationg =
f � P (~H) � d!H � dA � (~H � ~L)

dA � (~N � ~L)
=
f � P (~H) � d!H � (~H � ~L)

(~N � ~L)
:

(3:47)

The visibility of the microfacets from direction ~V means that the re
ected

photon does not run into another microfacet. The collision is often referred

to as masking. Looking at �gure 3.12, we can easily recognize that the

probability of masking is l1=l2, where l2 is the one-dimensional length of

the microfacet, and l1 describes the boundary case from where the beam is

masked. The angles of the triangle formed by the bottom of the microfacet

wedge and the beam in the boundary case can be expressed by the angles

� = angle(~N; ~H) and � = angle(~V ; ~H) = angle(~L; ~H) by geometric consid-

erations and by using the law of re
ection. Applying the sine law for this

triangle, and some trigonometric formulae:

Prfnot maskingg = 1�
l1

l2
= 1�

sin(� + 2� � �=2)

sin(�=2� �)
= 2 �

cos� � cos(� + �)

cos �
:

(3:48)

72 3. PHYSICAL MODEL OF 3D IMAGE SYNTHESIS

β+2α−π/2

π/2−β

β
α

L
N

H

V

l l1 2

l2

Figure 3.12: Geometry of masking

According to the de�nitions of the angles cos� = ~N � ~H, cos(�+�) = ~N �~V
and cos� = ~V � ~H.

If the angle of incident light and the facet normal do not allow the triangle

to be formed, the probability of no masking taking place is obviously 1.

This situation can be recognized by evaluating the formula without any

previous considerations and checking whether the result is greater than 1,

then limiting the result to 1. The �nal result is:

Prfnot maskingg = minf2 �
(~N � ~H) � (~N � ~V)

(~V � ~H)
; 1g: (3:49)

The probability of shadowing can be derived in exactly the same way,

only ~L should be substituted for ~V :

Prfnot shadowingg = minf2 �
(~N � ~H) � (~N � ~L)

(~L � ~H)
; 1g: (3:50)

The probability of neither shadowing nor masking taking place can be

approximated by the minimum of the two probabilities:

Prfno shadow and maskg �

minf2 �
(~N � ~H) � (~N � ~V)

(~V � ~H)
; 2 �

(~N � ~H) � (~N � ~L)

(~L � ~H)
; 1g = G(~N; ~L; ~V): (3:51)

3.5. PROBABILISTIC MODELING OF SPECULAR REFLECTION 73

φ

Θ

in

Figure 3.13: Re
ection and refraction of a surface

Even perfect mirrors absorb some portion of the incident light, as is de-

scribed by the Fresnel equations of physical optics, expressing the re
ec-

tion (F) of a perfectly smooth mirror in terms of the refractive index of the

material, �, the extinction coe�cient, � which describes the conductivity of

the material (for nonmetals � = 0), and the angle of the incidence of the

light beam, �in. Using the notations of �gure 3.13, where �in is the incident

angle and � is the angle of refraction, the Fresnel equation expressing the

ratio of the energy of the re
ected beam and the energy of the incident

beam for the directions parallel and perpendicular to the electric �eld is:

F?(�; �in) = j
cos � � (� + �|) � cos �in
cos � + (� + �|) � cos �in

j2; (3:52)

Fk(�; �in) = j
cos �in � (� + �|) � cos �)

cos �in + (� + �|) � cos �
j2; (3:53)

where | =
p
�1. These equations can be derived from Maxwell's funda-

mental formulae describing the basic laws of electric waves. If the light is

unpolarized, that is, the parallel (~Ek) and the perpendicular (E?) electric

�elds have the same amplitude, the total re
ectivity is:

F (�; �in) =
jF 1=2

k � ~Ek + F
1=2
? � ~E?j2

j ~Ek + ~E?j2
=
Fk + F?

2
: (3:54)

Note that F is wavelength dependent, since n and � are functions of the

wavelength.

74 3. PHYSICAL MODEL OF 3D IMAGE SYNTHESIS

Parameters � and � are often not available, so they should be estimated

from measurements, or from the value of the normal re
ection if the extinc-

tion is small. At normal incidence (�in = 0), the re
ection is:

F0(�) = j
1� (� + �|)

1 + (� + �|)
j2=

(� � 1)2 + �2

(� + 1)2 + �2
� [

� � 1

� + 1
]
2
: (3:55)

Solving for � gives the following equation:

�(�) =
1 +

q
F0(�)

1�
q
F0(�)

: (3:56)

F0 can easily be measured, thus this simple formula is used to compute the

values of the index of refraction �. Values of �(�) can then be substituted

into the Fresnel equations (3.52 and 3.53) to obtain re
ection parameter F

for other angles of incidence.

Since F is the fraction of the re
ected energy, it also describes the prob-

ability of a photon being re
ected, giving:

Prfre
ectiong = F (�; ~N � ~L)

where variable �in has been replaced by ~N � ~L.
Now we can summarize the results by multiplying the probabilities of the

independent events to express Rs(~L; ~V):

Rs(~L; ~V) =
1

d!
Prforientationg � Prfno mask and shadowg � Prfre
ectiong =

d!H

d!

f � P (~H) � (~H � ~L)

(~N � ~L)
�G(~N; ~L; ~V) � F (�; ~N � ~L): (3:57)

The last problem left is the determination of d!H=d! [JGMHe88]. De�n-

ing a spherical coordinate system (�; �), with the north pole in the direction

of ~L (�gure 3.14), the solid angles are expressed by the product of vertical

and horizontal arcs:

d! = dVhor � dVvert; d!H = dHhor � dHvert: (3:58)

3.5. PROBABILISTIC MODELING OF SPECULAR REFLECTION 75

L

H

V

dH

dH

dV

dV

d

d

hor

vert

hor

vert

ω

ω

θd

φ

φ
H

V

H

Figure 3.14: Calculation of d!H=d!

By using geometric considerations and applying the law of re
ection, we

get:

dVhor = d� � sin�V ; dHhor = d� � sin�H; dVvert = 2dHvert: (3:59)

This in turn yields:

d!H

d!
=

sin�H

2 sin �V
=

sin �H

2 sin 2�H
=

1

4 cos �H
=

1

4(~L � ~H)
: (3:60)

since �V = 2 � �H.
The �nal form of the specular term is:

Rs(~L; ~V) =
f � P (~H)

4(~N � ~L)
�G(~N; ~L; ~V) � F (�; ~N � ~L): (3:61)

76 3. PHYSICAL MODEL OF 3D IMAGE SYNTHESIS

3.6 Abstract lightsource models

Up to now we have dealt with lightsources as ordinary surfaces with pos-

itive emission Ie. Simpli�ed illumination models, however, often make a

distinction between \normal" surfaces, and some abstract objects called

\lightsources". These abstract lightsources cannot be seen on the image

directly, they are only responsible for feeding energy into the system and

thus making the normal surfaces visible for the camera.

The most common types of such lightsources are the following:

1. Ambient light is assumed to be constant in all directions and to

be present everywhere in 3D space. Its role in restoring the energy

equilibrium is highlighted in the next section.

2. Directional lightsources are supposed to be at in�nity. Thus the

light beams coming from a directional lightsource are parallel and

their energy does not depend on the position of the surface. (The sun

behaves like a directional lightsource.)

3. Positional or point lightsources are located at a given point in

the 3D space and are concentrated on a single point. The intensity of

the light at distance d is Il(d) = I0 � f(d). If it really were a point-like
source, f(d) = 1=d2 should hold, but to avoid numerical instability for

small distances, we use f(d) = 1=(a � d + b) instead, or to emphasize

atmospheric e�ects, such as fog f(d) = 1=(a � dm + b) might also be

useful (m;a and b are constants).

4. Flood lightsources are basically positional ligthsources with radi-

ant intensity varying with the direction of interest. They have a main

radiant direction, and as the angle (�) of the main and actual direc-

tions increases the intensity decreases signi�cantly. As for the Phong

model, the function cosn � seems appropriate:

Il(d; �) = I0 � f(d) � cos
n �: (3:62)

These abstract lightsources have some attractive properties which ease

color computations. Concerning a point on a surface, an abstract light-

source may only generate a collimated beam onto the surface point, with

3.7. STEPS FOR IMAGE SYNTHESIS 77

the exception of ambient light. This means that the integral of the ren-

dering equation can be simpli�ed to a summation with respect to di�erent

lightsources, if the indirect light re
ected from other surfaces is ignored.

The direction of the collimated beam can also be easily derived, since for

a directional lightsource it is a constant parameter of the lightsource itself,

and for positional and
ood lightsources it is the vector pointing from the

point-like lightsource to the surface point. The re
ection of ambient light,

however, can be expressed in closed form, since only a constant function

has to be integrated over the hemisphere.

3.7 Steps for image synthesis

The �nal objective of graphics algorithms is the calculation of pixel colors, or

their respective (R, G, B) values. According to our model of the camera (or

eye), this color is de�ned by the energy
ux leaving the surface of the visible

object and passing through the pixel area of the window towards the camera.

As has been proven in the previous section, this
ux is proportional to the

intensity of the surface in the direction of the camera and the projected area

of the pixel, and is independent of the distance of the surface if it is �nite

(equation 3.19).

Intensity I(�) has to be evaluated for that surface which is visible through

the given pixel, that is the nearest of the surfaces located along the line

from the camera towards the center of the pixel. The determination of this

surface is called the hidden surface problem or visibility calculation

(chapter 6). The computation required by the visibility calculation is highly

dependent on the coordinate system used to specify the surfaces, the camera

and the window. That makes it worth transforming the virtual world to a

coordinate system �xed to the camera, where this calculation can be more

e�cient. This step is called viewing transformation (chapter 5). Even

in a carefully selected coordinate system, the visibility calculation can be

time-consuming if there are many surfaces, so it is often carried out after

a preprocessing step, called clipping (section 5.5) which eliminates those

surface parts which cannot be projected onto the window.

Having solved the visibility problem, the surface visible in the given pixel

is known, and the radiant intensity may be calculated on the representative

wavelengths by the following shading equation (the terms of di�use and

78 3. PHYSICAL MODEL OF 3D IMAGE SYNTHESIS

specular re
ections have already been substituted into equation 3.30):

Iout = Ie+kr �Ir+kt �It+

2�Z
kd �I

in�cos�in d!in+

2�Z
ks �I

in�cosn d!in: (3:63)

eye
pixel

surface 1

surface 2

surface 3

Figure 3.15: Multiple re
ections of light

Due to multiple re
ections of light beams, the calculation of the intensity

of the light leaving a point on a surface in a given direction requires the

intensities of other surfaces visible from this point, which of course gener-

ates new visibility and shading problems to solve (�gure 3.15). It must be

emphasized that these other surfaces are not necessarily inside the clipping

region. To calculate those intensities, other surfaces should be evaluated,

and our original point on the given surface might contribute to those in-

tensities. As a consequence of that, the formula has complicated coupling

between its left and right sides, making the evaluation di�cult.

There are three general and widely accepted approaches to solve this

integral equation in 3D continuous space.

1. The analytical solution

Analytical methods rely on numerical techniques to solve the integral

equation in its original or simpli�ed form. One of the most popu-

lar numerical techniques is the �nite element method. Its �rst step

is the subdivision of the continuous surfaces into elemental surface

patches, making it possible to approximate their intensity distribution

3.7. STEPS FOR IMAGE SYNTHESIS 79

by constant values independent of the position on the surface. Taking

advantage of this homogeneous property of the elemental patches, a

stepwise constant function should be integrated in our formula, which

can be substituted by a weighted sum of the unknown patch parame-

ters. This step transforms the integral equation into a linear equation

which can be solved by straightforward methods. It must be admitted

that this solution is not at all simple because of the size of the result-

ing linear system, but at least we can turn to the rich toolset of the

numerical methods of linear algebra. The application of the analytical

approach to solve the integral equation of the shading formula in 3D

space leads to the family of analytical shading models, or as it is

usually called, the radiosity method.

2. Constraining the possible coupling

Another alternative is to eliminate from the rendering equation those

energy contributions which cause the di�culties, and thus give our-

selves a simpler problem to solve. For example, if coherent coupling

of limited depth, say n, were allowed, and we were to ignore the in-

coherent component coming from non-abstract lightsources, then the

number of surface points which would need to be evaluated to calculate

a pixel color can be kept under control. Since the illumination formula

contains two terms regarding the coherent components (re
ective and

refracting lights), the maximum number of surfaces involved in the

color calculation of a pixel is two to the power of the given depth,

i.e. 2n. The implementation of this approach is called recursive ray

tracing.

3. Ignoring the coupling

An even more drastic approach is to simplify or disregard completely

all the terms causing problems, and to take into account only the

incoherent re
ection of the light coming from the abstract lightsources,

and the coherent transmission supposing the index of refraction to

be equal to 1. Mirrors and refracting objects cannot be described

in this model. Since the method is particularly e�cient when used

with incremental hidden surface methods and can also be implemented

using the incremental concept, it is called the incremental shading

method.

80 3. PHYSICAL MODEL OF 3D IMAGE SYNTHESIS

The three di�erent approaches represent three levels of the compromise

between image generation speed and quality. By ignoring more and more

terms in the illumination formula, its calculation can be speeded up, but

the result inevitably becomes more and more arti�cial. The shading meth-

ods based on radiosity and ray tracing techniques or on the combination

of the two form the family of photorealistic image generation. Simple,

incremental shading algorithms, on the other hand, are suitable for very

fast hardware implementation, making it possible to generate real-time an-

imated sequences.

The simpli�cation of the illumination formula has been achieved by ignor-

ing some of its di�cult-to-calculate terms. Doing this, however, violates the

energy equilibrium, and causes portions of objects to come out extremely

dark, sometimes unexpectedly so. These artifacts can be reduced by rein-

troducing the ignored terms in simpli�ed form, called ambient light. The

ambient light represents the ignored energy contribution in such a way as

to satisfy the energy equilibrium. Since this ignored part is not calculated,

nothing can be said of its positional and directional variation, hence it is

supposed to be constant in all directions and everywhere in the 3D space.

From this aspect, the role of ambient light also shows the quality of the

shading algorithm. The more important a role it has, the poorer quality

picture it will generate.

Chapter 4

MODEL DECOMPOSITION

The termmodel decomposition refers to the operation when the database
describing an object scene is processed in order to produce simple geometric
entities which are suitable for image synthesis. The question of which sorts
of geometric entity are suitable for picture generation can be answered only
if one is aware of the nature of the image synthesis algorithm to be used.

Usually these algorithms cannot operate directly with the world representa-
tion. The only important exception is the ray tracing method (see chapter
9 and section 6.1 in chapter 6) which works with practically all types of
representation scheme. Other types of image synthesis algorithm, however,
require special types of geometric entity as their input. These geometric

entities are very simple and are called graphics primitives. Thus model
decomposition produces low level graphics primitives from a higher level
representation scheme. Usually these primitives are polygons or simply tri-
angles. Since many algorithms require triangles only as their input, and
polygons can be handled similarly, this chapter will examine that case of

model decomposition in which the graphics primitives are triangles. The
problem is the following: a solid object given by a representation scheme,
approximate its boundary by a set of triangles.

The most straightforward approach to this task is to generate a number of
surface points so that they can be taken as triangle vertices. Each triangle

then becomes a linear interpolation of the surface between the three vertices.

81

82 4. MODEL DECOMPOSITION

The resulting set of triangles is a valid mesh if for each triangle:

� each of its vertices is one of the generated surface points

� each of its edges is shared by exactly one other (neighboring) triangle

except for those that correspond to the boundary curve of the surface

� there is no other triangle which intersects it, except for neighboring

triangles sharing common edges or vertices

Some image synthesis algorithms also require their input to contain topo-

logical information (references from the triangles to their neighbors); some

do not, depending on the nature of the algorithm. It is generally true, how-

ever, that a consistent and redundancy-free mesh structure that stores each

geometric entity once only (triangle vertices, for example, are not stored as
many times as there are triangles that contain them) is usually much less
cumbersome than a stack of triangles stored individually. For the sake of
simplicity, however, we will concentrate here only on generating the trian-

gles and omit topological relationships between them.

4.1 Simple geometric objects

A geometric object is usually considered to be simple if it can be described

by one main formula characterizing its shape and (possibly) some additional
formulae characterizing its actual boundary. In other words, a simple ge-
ometric object has a uniform shape. A sphere with center c 2 E3 and of
radius r is a good example, because its points p satisfy the formula:

jp � cj � r (4:1)

where j � j denotes vector length.
Simple objects are also called geometric primitives. The task is to approx-

imate the surface of a primitive by a triangular mesh, that is, a number of

surface points must be generated and then proper triangles must be formed.
In order to produce surface points, the formula describing the surface must
have a special form called explicit form, as will soon become apparent.

4.1. SIMPLE GEOMETRIC OBJECTS 83

4.1.1 Explicit surface patches

The formula describing a surface is in (biparametric) explicit form if it

characterizes the coordinates (x; y; z) of the surface points in the following

way:
x = fx(u; v);

y = fy(u; v);

z = fz(u; v); (u; v) 2 D

(4:2)

where D is the 2D parameter domain (it is usually the rectangular box

de�ned by the inequalities 0 � u � umax and 0 � v � vmax for the most

commonly used 4-sided patches). The formula \generates" a surface point

at each parameter value (u; v), and the continuity of the functions fx; fy; fz
ensures that each surface point is generated at some parameter value (the

formulae used in solid modeling are analytic or more often algebraic which
implies continuity; see subsection 1.6.1). This is exactly what is required

in model decomposition: the surface points can be generated (sampled) to
any desired resolution.
In order to generate a valid triangular mesh, the 2D parameter domain,D,

must be sampled and then proper triangles must be formed from the sample
points. We distinguish between the following types of faces (patches) with

respect to the shape of D.

Quadrilateral surface patches

The most commonly used form of the parameter domain D is a rectangular

box in the parameter plane, de�ned by the following inequalities:

0 � u � umax; 0 � v � vmax: (4:3)

The resulting patch is 4-sided in this case, and the four boundary curves cor-
respond to the boundary edges of the parameter rectangle (� stands for any
value of the domain): (0; �), (umax; �), (�; 0), (�; vmax). The curves de�ned by

parameter ranges (u; �) or (�; v), that is, where one of the parameters is �xed,

are called isoparametric curves. Let us consider the two sets of isoparamet-

ric curves de�ned by the following parameter ranges (the subdivision is not
necessarily uniform):

(0; �); (u1; �); : : : ; (un�1; �); (umax; �);
(�; 0); (�; v1); : : : ; (�; vm�1); (�; vmax):

(4:4)

84 4. MODEL DECOMPOSITION

The two sets of curves form a quadrilateral mesh on the surface. The

vertices of each quadrilateral correspond to parameter values of the form

(ui; vj), (ui+1; vj), (ui+1; vj+1), (ui; vj+1). Each quadrilateral can easily be

cut into two triangles and thus the surface patch can be approximated by

2nm number of triangles using the following simple algorithm (note that it

realizes a uniform subdivision):

DecomposeQuad(~f, n, m) // ~f = (fx; fy; fz)

S = fg; ui = 0; // S: resulting set of triangles

for i = 1 to n do

ui+1 = umax � i=n; vj = 0;

for j = 1 to m do

vj+1 = vmax � j=m;

add the triangle ~f(ui; vj), ~f (ui+1; vj), ~f(ui+1; vj+1) to S;

add the triangle ~f(ui; vj), ~f (ui+1; vj+1), ~f(ui; vj+1) to S;
vj = vj+1;

endfor

ui = ui+1;
endfor

return S;
end

v

v

v

max

’

u maxu’u

Figure 4.1: Subdivision of a rectangular parameter domain

Note that the quadrilateral (triangular) subdivision of the patch corre-
sponds to a quadrilateral (triangular) subdivision of the parameter domain

4.1. SIMPLE GEOMETRIC OBJECTS 85

D, as illustrated in �gure 4.1. This is not surprising, since the mapping

f(u; v) is a continuous and one-to-one mapping, and as such, preserves

topological invariances, for example neighborhood relationships.

Triangular surface patches

Triangular | and more generally; non-quadrilateral | surface patches were

introduced into geometric modeling because the �xed topology of surfaces

based on 4-sided patches restricted the designer's freedom in many cases

(non-quadrilateral patches are typically necessary for modeling rounded cor-

ners where three or more other patches meet and must be blended). The

parameter domain D is usually triangle-shaped. The Steiner patch [SA87],

for example, is de�ned over the following parameter domain:

u � 0; v � 0; u+ v � 1 (4:5)

It often occurs, however, that the triangular patch is parameterized via
three parameters, that is having the form f(u; v; w), but then the three
parameters are not mutually independent. The Bezier triangle is an example
of this (see any textbook on surfaces in computer aided geometric design,
such as [Yam88]). Its parameter domain is de�ned as:

u � 0; v � 0; w � 0; u+ v + w = 1 (4:6)

It is also a triangle, but de�ned in a 3D coordinate system. In order to

discuss the above two types of parameter domain in a uni�ed way, the
parameter will be handled as a vector ~u which is either a 2D or a 3D
vector, that is a point of a 2D or 3D parameter space U . The parameter
domain D � U is then de�ned as a triangle spanned by the three vertices
~u1; ~u2; ~u3 2 U .

The task is to subdivide the triangular domain D into smaller triangles.
Of all the imaginable variations on this theme, the neatest is perhaps the

following, which is based on recursive subdivision of the triangle into similar

smaller ones using the middle points of the triangle sides. As illustrated in
�gure 4.2, the three middle points, ~m1; ~m2; ~m3, are generated �rst:

~m1 =
1

2
(~u2 + ~u3); ~m2 =

1

2
(~u3 + ~u1); ~m3 =

1

2
(~u1 + ~u2): (4:7)

86 4. MODEL DECOMPOSITION

u1
u

2

u3

m2 m1

m
3

Figure 4.2: Subdivision of a triangular parameter domain

The resulting four smaller triangles are then further subdivided in a similar

way. The subdivision continues until a prede�ned \depth of recurrence",
say d, is reached. The corresponding recursive algorithm is the following:

DecomposeTriang(~f, ~u1, ~u2, ~u3, d) // ~f = (fx; fy; fz)

if d � 0 then return the triangle of vertices ~f (~u1), ~f(~u2), ~f(~u3);
S = fg;

~m1 =
1
2(~u2 + ~u3); ~m2 =

1
2(~u3 + ~u1); ~m3 =

1
2(~u1 + ~u2);

add DecomposeTriang(~f, ~u1, ~m3, ~m2, d� 1) to S;

add DecomposeTriang(~f, ~u2, ~m1, ~m3, d� 1) to S;

add DecomposeTriang(~f, ~u3, ~m2, ~m1, d� 1) to S;

add DecomposeTriang(~f, ~m1, ~m2, ~m3, d� 1) to S;
return S;

end

General n-sided surface patches

Surface patches suitable for interpolating curve networks with general (ir-

regular) topology are one of the most recent achievements in geometric
modeling (see [V�ar87] or [HRV92] for a survey). The parameter domain

corresponding to an n-sided patch is usually an n-sided convex polygon (or
even a regular n-sided polygon with sides of unit length as in the case of

4.1. SIMPLE GEOMETRIC OBJECTS 87

the so-called overlap patches [V�ar91]). A convex polygon can easily be bro-

ken down into triangles, as will be shown in subsection 4.2.1, and then the

triangles can be further divided into smaller ones.

4.1.2 Implicit surface patches

The formula describing a surface is said to be in implicit form if it charac-

terizes the coordinates (x; y; z) of the surface points in the following way:

f(x; y; z) = 0: (4:8)

This form is especially suitable for tests that decide whether a given point is

on the surface: the coordinates of the point are simply substituted and the

value of f gives the result. Model decomposition, however, yields something
of a contrary problem: points which are on the surface must be generated.
The implicit equation does not give any help in this, it allows us only to
check whether a given point does in fact lie on the surface. As we have seen
in the previous subsection, explicit forms are much more suitable for model

decomposition than implicit forms. We can conclude without doubt that
the implicit form in itself is not suitable for model decomposition.
Two ways of avoiding the problems arising from the implicit form seem

to exist. These are the following:

1. Avoiding model decomposition. It has been mentioned that ray trac-
ing is an image synthesis method that can operate directly on the
world representation. The only operation that ray tracing performs
on the geometric database is the calculation of the intersection point

between a light ray (directed semi-line) and the surface of an object.
In addition, this calculation is easier to perform if the surface formula
is given in implicit form (see subsection 6.1.2 about intersection with
implicit surfaces).

2. Explicitization. One can try to �nd an explicit form which is equiva-
lent to the given implicit form, that is, which characterizes the same

surface. No general method is known, however, for solving the explic-

itization problem. The desired formulae can be obtained heuristically.

Explicit formulae for simple surfaces, such as sphere or cylinder sur-

faces, can easily be constructed (examples can be found in subsection

88 4. MODEL DECOMPOSITION

12.1.2, where the problem is examined within the context of texture

mapping).

The conclusion is that implicit surfaces are generally not suited to being

broken down into triangular meshes, except for simple types, but this prob-

lem can be avoided by selecting an image synthesis algorithm (ray tracing)

which does not require preliminary model decomposition.

4.2 Compound objects

Compound objects are created via special operations performed on simpler

objects. The simpler objects themselves can also be compound objects, but

the bottom level of this hierarchy always contains geometric primitives only.

The operations by which compound objects can be created usually belong
to one of the following two types:

1. Regularized Boolean set operations. We met these in subsection 1.6.1
on the general aspects of geometric modeling. Set operations are typ-
ically used in CSG representation schemes.

2. Euler operators. These are special operations that modify the bound-
ary of a solid so that its combinatorial (topological) validity is left
unchanged. The name relates to Euler's famous formula which states
that the alternating sum of the number of vertices, edges and faces

of a simply connected polyhedron is always two. This formula was
then extended to more general polyhedra by geometric modelers. The
Euler operators | which can create or remove vertices, edges and
faces | are de�ned in such a way that performing them does not vi-
olate the formula [M�an88], [FvDFH90]. Euler operators are typically

used in B-rep schemes.

Although often not just one of the two most important representation
schemes, CSG and B-rep, is used exclusively, that is, practical modeling

systems use instead a hybrid representation, it is worth discussing the two

schemes separately here.

4.2. COMPOUND OBJECTS 89

4.2.1 Decomposing B-rep schemes

Breaking down a B-rep scheme into a triangular mesh is relatively simple.

The faces of the objects are well described in B-rep, that is, not only their

shapes but also their boundary edges and vertices are usually explicitly

represented.

(a) (b) (c)

Figure 4.3: Polygon decompositions

If the object is a planar polyhedron, that is if it contains planar faces only,

then each face can be individually retrieved and triangulated. Once the
polygon has been broken down into triangles, generating a �ner subdivision
poses no real problem, since each triangle can be divided separately by
the algorithm for triangular patches given in subsection 4.1.1. However the
crucial question is: how to decompose a polygon | which is generally either
convex or concave and may contain holes (that is multiply connected) |

into triangles that perfectly cover its area and only its area. This polygon
triangulation problem, like many others arising in computer graphics, has
been studied in computational geometry. Without going into detail, let
us distinguish between the following three cases (n denotes the number of
vertices of the polygon):

1. Convex polygons. A convex polygon can easily be triangulated, as
illustrated in part (a) of �gure 4.3. First an inner point is calculated

| for example the center of mass | and then each side of the polygon

makes a triangle with this inner point. The time complexity of this

operation is O(n).

2. Concave polygons without holes. Such polygons cannot be triangulated

in the previous way. A problem solving approach called divide-and-

conquer can be utilized here in the following way. First two vertices of

90 4. MODEL DECOMPOSITION

the polygon must be found so that the straight line segment connecting

them cuts the polygon into two parts (see part (b) of �gure 4.3). This

diagonal is called a separator. Each of the two resulting polygons is

either a triangle, in which case it need not be divided further, or else

has more than three vertices, so it can be divided further in a similar

way. If it can be ensured that the two resulting polygons are of the

same size (up to a ratio of two) with respect to the number of their

vertices at each subdivision step, then this balanced recurrence results

in a very good, O(n log n), time complexity. (Consult [Cha82] to see

that the above property of the separator can always be ensured in not

more than O(n) time.)

3. General polygons. Polygons of this type may contain holes. A general

method of triangulating a polygon with holes is to generate a con-

strained triangulation of its vertices, as illustrated in part (c) of �gure
4.3. A triangulation of a set of points is an aggregate of triangles,
where the vertices of the triangles are from the point set, no trian-
gles overlap and they completely cover the convex hull of the point

set. A triangulation is constrained if there are some prede�ned edges
(point pairs) that must be triangle edges in the triangulation. Now
the point set is the set of vertices and the constrained edges are the
polygon edges. Having computed the triangulation, only those trian-
gles which are inside the face need be retained. (Seidel [Sei88] shows,

for example, how such a triangulation can be computed in O(n log n)
time.)

Finally, if the object has curved faces, then their shape is usually described

by (or their representation can be transformed to) explicit formulae. Since
the faces of a compound object are the result of operations on primitive face
elements (patches), and since usually their boundaries are curves resulting
from intersections between surfaces, it cannot be assumed that the param-

eter domain corresponding to the face is anything as simple as a square or

a triangle. It is generally a territory with a curved boundary, which can,
however, be approximated by a polygon to within some desired tolerance.

Having triangulated the original face the triangular faces can then be de-
composed further until the approximation is su�ciently close to the original

face.

4.2. COMPOUND OBJECTS 91

4.2.2 Boundary evaluation for CSG schemes

As described in section 1.6.2 CSG schemes do not explicitly contain the faces

of the objects, shapes are produced by combining half-spaces or primitives

de�ning point sets in space. The boundary of the solid is unevaluated in

such a representation. The operation that produces the faces of a solid

represented by a CSG-tree is called boundary evaluation.

Set membership classi�cation: the uni�ed approach

Tilove has pointed out [Til80] that a paradigm called set membership

classi�cation can be a uni�ed approach to geometric intersection problems

arising in constructive solid geometry and related �elds such as computer

graphics. The classi�cation of a candidate set X with respect to a reference

set S maps X into the following three disjoint sets:

Cin(X;S) = X \ iS;

Cout(X;S) = X \ cS;

Con(X;S) = X \ bS;

(4:9)

where iS; cS; bS are the interior, complement and boundary of S, respec-
tively. Note that if X is the union of boundaries of the primitive objects
in the CSG-tree, and S is the solid represented by the tree, then boundary
evaluation is no else but the computation of Con(X;S). The exact computa-
tion of this set, however, will not be demonstrated here. An approximation

method will be shown instead, which blindly generates all the patches that
may fall onto the boundary of S and then tests each one whether to keep
it or not. For this reason, the following binary relations can be de�ned
between a candidate set X and a reference set S:

X in S if X � iS;

X out S if X � cS;

X on S if X � bS

(4:10)

(note that either one or none of these can be true at a time for a pair X;S).

In constructive solid geometry, S is either a primitive object or is of the
form S = A �� B, where �� is one of the operations [�;\�; n�. A divide-

and-conquer approach can now help us to simplify the problem.

92 4. MODEL DECOMPOSITION

The following relations are straightforward results:

X in (A [B) if X in A _ X in B

X out (A [B) if X out A ^ X out B

X on (A [B) if (X on A ^ : X in B) _ (X on B ^ : X in A)

X in (A \B) if X in A ^ X in B

X out (A \B) if X out A _ X out B

X on (A \B) if (X on A ^ : X in cB) _ (X on B ^ : X in cA)

X in (A nB) if X in A ^ X in cB

X out (A nB) if X out A _ X out cB

X on (A nB) if (X on A ^ : X in B):
(4:11)

That is, the classi�cation with respect to a compound object of the form
S = A�B can be traced back to simple logical combinations of classi�cation

results with respect to the argument objects A;B.

X

B

A

S=A BU

X

B
A

S=A B

U

X on ?S X on ?S

Figure 4.4: Some problematic situations in set membership classi�cation

There are two problems, however:

1. The events on the right hand side are not equivalent with the events

on the left hand side. The event X in (A [B) can happen if X in A

or X in B or (this is not contained by the expression) X1 in A and
X2 in B where X1 [X2 = X. This latter event, however, is much

more di�cult to detect than the previous two.

4.2. COMPOUND OBJECTS 93

S=A * B

p

B

A

S=A * BU

p
B

A

U

U

U

*

*

p

N(p,A,)ε

N(p,A,)ε N(p,B,)ε

N(p,B,)ε

p in*S

p out *S

Figure 4.5: Regularizing set membership classi�cations

2. There are problematic cases when the above expressions are extended
to regular sets and regularized set operations. Figure 4.4 illustrates
two such problematic situations (the candidate set X is a single point
in both cases).

Problem 1 can be overridden by a nice combination of a generate-and-test
and a divide-and-conquer strategy, as will soon be shown in the subsequent
sections.
The perfect theoretical solution to problem 2 is that each point p 2 X of

the candidate set is examined by considering a (su�ciently small) neighbor-
hood of p. Let us �rst consider the idea without worrying about implemen-
tation di�culties. Let B(p; ") denote a ball around p with a (small) radius
", and let N(p; S; ") be de�ned as the "-neighborhood of p in S (see �gure
4.5):

N(p; S; ") = B(p; ") \� S: (4:12)

Then the regularized set membership relations are the following:

p in� (A �� B) if 9" > 0: N(p;A; ") �� N(p;B; ") = B(p; ");

pout� (A �� B) if 9" > 0: N(p;A; ") �� N(p;B; ") = ;;

pon� (A �� B) if 8" > 0: ; 6= N(p;A; ") �� N(p;B; ") 6= B(p; "):
(4:13)

Figure 4.5 shows some typical situations. One might suspect disappointing

computational di�culties in actually performing the above tests:

94 4. MODEL DECOMPOSITION

1. It is impossible to examine each point of a point set since their num-

ber is generally in�nite. Intersection between point sets can be well

computed by �rst checking whether one contains the other and if not,

then intersecting their boundaries. If the point sets are polyhedra (as

in the method to be introduced in the next part), then intersecting

their boundaries requires simple computations (face/face, edge/face).

Ensuring regularity implies careful handling of degenerate cases.

2. If a single point is to be classi�ed then the ball of radius " can, however,

be substituted by a simple line segment of length 2" and then the same

operations performed on that as were performed on the ball in the

above formulae. Onemust ensure then that " is small enough, and that

the line segment has a \general" orientation, that is, if it intersects the

boundary of an object then the angle between the segment and tangent
plane at the intersection point must be large enough to avoid problems
arising from numerical inaccuracy of
oating point calculations.

The conclusion is that the practical implementation of regularization does
not mean the perfect imitation of the theoretical solution, but rather that
simpli�ed solutions are used and degeneracies are handled by keeping the
theory in mind.

Generate-and-test

Beacon et al. [BDH+89] proposed the following algorithm which approx-

imates the boundary of a CSG solid, that is, generates surface patches
the aggregate of which makes the boundary of the solid \almost perfectly"
within a prede�ned tolerance. The basic idea is that the union of the bound-
aries of the primitive objects is a superset of the boundary of the compound

solid, since each boundary point lies on some primitive. The approach based
on this idea is a generate-and-test strategy:

1. The boundary of each primitive is roughly subdivided into patches in

a preliminary phase and put onto a list L called the candidate list.

2. The patches on L are taken one by one and each patch P is classi�ed

with respect to the solid S, that is, the relations P in�S, P out�S and

P on�S are evaluated.

4.2. COMPOUND OBJECTS 95

3. If P on�S then P is put onto a list B called the de�nitive boundary

list. This list will contain the result. If P in�S or P out�S then P is

discarded since it cannot contribute to the boundary of S.

4. Finally, if none of the three relations holds, then P intersects the

boundary of S somewhere, although it is not contained totally by it.

In this case P should not be discarded but rather it is subdivided into

smaller patches, say P1; : : : ; Pn, which are put back onto the candidate

list L. If, however, the size of P is below the prede�ned tolerance, then

it is not subdivided further but placed onto a third list T called the

tentative boundary list.

5. The process is continued until the candidate list L becomes empty.

The (approximate) boundary of S can be found in list B. The other output

list, T , contains some \garbage" patches which may be the subject of further
geometric calculations or may simply be discarded.
The crucial point is how to classify the patches with respect to the solid.

The cited authors propose a computationally not too expensive approximate
solution to this problem, which they call the method of inner sets and outer

sets; the ISOS method.

P

P

P

i

i

i

-

β

B

Figure 4.6: Inner and outer segments

Each primitive object P is approximated by two polyhedra: an inner

polyhedron P� and an outer polyhedron P+:

P� � P � P+: (4:14)

96 4. MODEL DECOMPOSITION

Both polyhedra are constructed from polyhedral segments. The segments

of P� and P+, however, are not independent of each other, as illustrated

in �gure 4.6. The outer polyhedron P+ consists of the outer segments,

say P+

1 ; : : : ; P
+

n . An outer segment P+

i is the union of two subsegments:

the inner segment P�

i , which is totally contained by the primitive, and the

boundary segment PB
i , which contains a boundary patch, say �i (a part of

the boundary of the primitive). The thinner the boundary segments the

better the approximation of the primitive boundary by the union of the

boundary segments. A coarse decomposition of each primitive is created in

a preliminary phase according to point 1 of the above outlined strategy.

Set membership classi�cation of a boundary patch � with respect to the

compound solid S (point 2) is approximated by means of the inner, outer

and boundary segments corresponding to the primitives. According to the

divide-and-conquer approach, two di�erent cases can be distinguished:

one in which S is primitive and the second is in which S is compound.

Case 1: Classi�cation of � with respect to a primitive P

β

P

β

β

β out*

β part*

β in* P

P

P

Figure 4.7: Relations between a boundary segment and a primitive

The following examinations must be made on the boundary segment PB

containing the boundary patch � with respect to P in this order (it is
assumed that � is not a boundary patch of P because this case can be

detected straightforwardly):

1. Test whether PB intersects any of the outer segments P+

1 ; : : : ; P
+

n

corresponding to P . If the answer is negative, then PB out�P holds,

4.2. COMPOUND OBJECTS 97

that is � out�P (see �gure 4.7). Otherwise go to examination 2 (� is

either totally or partially contained by P).

2. Test whether PB intersects any of the boundary segments PB
1
; : : : ; PB

n

corresponding to P . If the answer is negative, then PB in�P holds,

that is � in�P (see �gure 4.7). Otherwise go to examination 3.

3. In this case, due to the polyhedral approximation, nothing more can

be stated about �, that is, either one or none of the relations � in�P ,

� out�P and (accidentally) � on�P could hold (�gure 4.7 shows a sit-

uation where none of them holds). � is classi�ed as partial in this

case. This is expressed by the notation �part�P (according to point

4 of the generate-and-test strategy outlined previously, � will then be

subdivided).

Classi�cation results with respect to two primitives connected by a set op-
eration can then be combined.

Case 2: Classi�cation of � with respect to S = A �� B

B

S=A *B

on*
part*

U
β
β

β tnon*

A

β

SA
B

Figure 4.8: A boundary segment classi�ed as a tentative boundary

98 4. MODEL DECOMPOSITION

After computing the classi�cation of � with respect to A and B, the two

results can be combined according to the following tables (new notations

are de�ned after):

S = A [� B � in�B � out�B � on�B � part�B � tnon�B

� in�A � in�S � in�S � in�S � in�S � in�S

� out�A � in�S � out�S � on�S � part�S � tnon�S

� on�A � in�S � on�S � � tnon�S �

�part�A � in�S � part�S � tnon�S � part�S � tnon�S

� tnon�A � in�S � tnon�S � � tnon�S �

S = A \� B � in�B � out�B � on�B � part�B � tnon�B

� in�A � in�S � out�S � on�S � part�S � tnon�S
� out�A � out�S � out�S � out�S � out�S � out�S
� on�A � on�S � out�S � � tnon�S �

�part�A � part�S � out�S � tnon�S � part�S � tnon�S
� tnon�A � tnon�S � out�S � � tnon�S �

S = A n� B � in�B � out�B � on�B � part�B � tnon�B

� in�A � out�S � in�S � on�S � part�S � tnon�S
� out�A � out�S � out�S � out�S � out�S � out�S
� on�A � out�S � on�S � � tnon�S �

�part�A � out�S � part�S � tnon�S � part�S � tnon�S
� tnon�A � out�S � tnon�S � � tnon�S �

Two new notations are used here in addition to those already introduced.
The notation � tnon�S is used to express that � is a tentative boundary patch
(see �gure 4.8). The use of this result in the classi�cation scheme always
happens at a stage where one of the classi�cation results to be combined

is \on� " and the other is \part� ", in which case the relation of � with

respect to S cannot be ascertained. The patch can then be the subject of
subdivision and some of the subpatches may come out as boundary patches.

The other notation, the asterisk (�), denotes that the situation can occur in

case of degeneracies, and that special care should then be taken in order to
resolve degeneracies so that regularity of the set operations is not violated

(this requires further geometric calculations).

Chapter 5

TRANSFORMATIONS,

CLIPPING AND

PROJECTION

5.1 Geometric transformations

Three-dimensional graphics aims at producing an image of 3D objects. This
means that the geometrical representation of the image is generated from
the geometrical data of the objects. This change of geometrical description
is called the geometric transformation. In computers the world is repre-
sented by numbers; thus geometrical properties and transformations must
also be given by numbers in computer graphics. Cartesian coordinates pro-
vide this algebraic establishment for the Euclidean geometry, which de�ne
a 3D point by three component distances along three, non-coplanar axes
from the origin of the coordinate system.
The selection of the origin and the axes of this coordinate system may

have a signi�cant e�ect on the complexity of the de�nition and various cal-
culations. As mentioned earlier, the world coordinate system is usually not
suitable for the de�nition of all objects, because here we are not only con-
cerned with the geometry of the objects, but also with their relative position
and orientation. A brick, for example, can be simplistically de�ned in a co-
ordinate system having axes parallel to its edges, but the description of the
box is quite complicated if arbitrary orientation is required. This consid-

99

100 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

eration necessitated the application of local coordinate systems. Viewing
and visibility calculations, on the other hand, have special requirements
from a coordinate system where the objects are represented, to facilitate
simple operations. This means that the de�nition and the photographing
of the objects may involve several di�erent coordinate systems suitable for
the di�erent speci�c operations. The transportation of objects from one
coordinate system to another also requires geometric transformations.
Working in several coordinate systems can simplify the various phases

of modeling and image synthesis, but it requires additional transformation
steps. Thus, this approach is advantageous only if the computation needed
for geometric transformations is less than the decrease of the computation
of the various steps due to the speci�cally selected coordinate systems. Rep-
resentations invariant of the transformations are the primary candidates for
methods working in several coordinate systems, since they can easily be
transformed by transforming the control or de�nition points. Polygon mesh
models, Bezier and B-spline surfaces are invariant for linear transformation,
since their transformation will also be polygon meshes, Bezier or B-spline
surfaces, and the vertices or the control points of the transformed surface
will be those coming from the transformation of the original vertices and
control points.
Other representations, sustaining non-planar geometry, and containing,

for example, spheres, are not easily transformable, thus they require all the
calculations to be done in a single coordinate system.
Since computer graphics generates 2D images of 3D objects, some kind

of projection is always involved in image synthesis. Central projection,
however, creates problems (singularities) in Euclidean geometry, it is thus
worthwhile considering another geometry, namely the projective geome-

try, to be used for some phases of image generation. Projective geometry is
a classical branch of mathematics which cannot be discussed here in detail.
A short introduction, however, is given to highlight those features that are
widely used in computer graphics. Beyond this elementary introduction,
the interested reader is referred to [Her91] [Cox74].
Projective geometry can be approached from the analysis of central pro-

jection as shown in �gure 5.1.
For those points to which the projectors are parallel with the image plane

no projected image can be de�ned in Euclidean geometry. Intuitively speak-
ing these image points would be at \in�nity" which is not part of the Eu-

5.1. GEOMETRIC TRANSFORMATIONS 101

center of projection
"ideal points"

vanishing line

affine lines
projection plane

Figure 5.1: Central projection of objects on a plane

clidean space. Projective geometry �lls these holes by extending the Eu-
clidean space by new points, called ideal points, that can serve as the
image of points causing singularities in Euclidean space. These ideal points
can be regarded as \intersections" of parallel lines and planes, which are at
\in�nity". These ideal points form a plane of the projective space, which is
called the ideal plane.
Since there is a one-to-one correspondence between the points of Eu-

clidean space and the coordinate triples of a Cartesian coordinate system,
the new elements obviously cannot be represented in this coordinate system,
but a new algebraic establishment is needed for projective geometry. This
establishment is based on homogeneous coordinates.
For example, by the method of homogeneous coordinates a point of space

can be speci�ed as the center of gravity of the structure containing mass
Xh at reference point p1, mass Yh at point p2, mass Zh at point p3 and mass
w at point p4. Weights are not required to be positive, thus the center of
gravity can really be any point of the space if the four reference points are
not co-planar. Alternatively, if the total mass, that is h = Xh+Yh+Zh+w,
is not zero and the reference points are in Euclidean space, then the center
of gravity will also be in the Euclidean space.
Let us call the quadruple (Xh; Yh; Zh; h), where h = Xh + Yh + Zh + w,

the homogeneous coordinates of the center of gravity.
Note that if all weights are multiplied by the same (non-zero) factor,

the center of gravity, that is the point de�ned by the homogeneous coordi-

102 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

nates, does not change. Thus a point (Xh; Yh; Zh; h) is equivalent to points
(�Xh; �Yh; �Zh; �h), where � is a non-zero number.
The center of gravity analogy used to illustrate the homogeneous coor-

dinates is not really important from a mathematical point of view. What
should be remembered, however, is that a 3D point represented by homoge-
neous coordinates is a four-vector of real numbers and all scalar multiples
of these vectors are equivalent.
Points of the projective space, that is the points of the Euclidean space

(also called a�ne points) plus the ideal points, can be represented by
homogeneous coordinates. First the representation of a�ne points which
can establish a correspondence between the Cartesian and the homogeneous
coordinate systems is discussed. Let us de�ne the four reference points of
the homogeneous coordinate system in points [1,0,0], [0,1,0], [0,0,1] and in
[0,0,0] respectively. If h = Xh + Yh + Zh +w is not zero, then the center of
gravity in Cartesian coordinate system de�ned by axes i; j;k is:

r(Xh; Yh; Zh; h) =
1

h
(Xh � [1; 0; 0] + Yh � [0; 1; 0] +Zh � [0; 0; 1] +w � [0; 0; 0]) =

Xh

h
� i+

Yh

h
� j+

Zh

h
� k: (5:1)

Thus with the above selection of reference points the correspondence be-
tween the homogeneous coordinates (Xh; Yh; Zh; h) and Cartesian coordi-
nates (x; y; z) of a�ne points (h 6= 0) is:

x =
Xh

h
; y =

Yh

h
; z =

Zh

h
: (5:2)

Homogeneous coordinates can also be used to characterize planes. In the
Cartesian system a plane is de�ned by the following equation:

a � x+ b � y + c � z + d = 0 (5:3)

Applying the correspondence between the homogeneous and Cartesian co-
ordinates, we get:

a �Xh + b � Yh + c � Zh + d � h = 0 (5:4)

Note that the set of points that satisfy this plane equation remains the same
if this equation is multiplied by a scalar factor. Thus a quadruple [a; b; c; d]

5.1. GEOMETRIC TRANSFORMATIONS 103

of homogeneous coordinates can represent not only single points but planes
as well. In fact all theorems valid for points can be formulated for planes
as well in 3D projective space. This symmetry is often referred to as the
duality principle. The intersection of two planes (which is a line) can be
calculated as the solution of the linear system of equations. Suppose that
we have two parallel planes given by quadruples [a; b; c; d] and [a; b; c; d0]
(d 6= d0) and let us calculate their intersection. Formally all points satisfy
the resulting equations for which

a �Xh + b � Yh + c � Zh = 0 and h = 0 (5:5)

In Euclidean geometry parallel planes do not have intersection, thus the
points calculated in this way cannot be in Euclidean space, but form a subset
of the ideal points of the projective space. This means that ideal points
correspond to those homogeneous quadruples where h = 0. As mentioned,
these ideal points represent the in�nity, but they make a clear distinction
between the \in�nities" in di�erent directions that are represented by the
�rst three coordinates of the homogeneous form.
Returning to the equation of a projective plane or considering the equa-

tion of a projective line, we can realize that ideal points may also satisfy
these equations. Therefore, projective planes and lines are a little bit more
than their Euclidean counterparts. In addition to all Euclidean points, they
also include some ideal points. This may cause problems when we want to
return to Euclidean space because these ideal points have no counterparts.
Homogeneous coordinates can be visualized by regarding them as Carte-

sian coordinates of a higher dimensional space (note that 3D points are
de�ned by 4 homogeneous coordinates). This procedure is called the em-
bedding of the 3D projective space into the 4D Euclidean space or the
straight model [Her91] (�gure 5.2). Since it is impossible to create 4D
drawings, this visualization uses a trick of reducing the dimensionality and
displays the 4D space as a 3D one, the real 3D subspace as a 2D plane and
relies on the reader's imagination to interpret the resulting image.
A homogeneous point is represented by a set of equivalent quadruples

f(�Xh; �Yh; �Zh; �h) j � 6= 0g;

thus a point is described as a 4D line crossing the origin, [0,0,0,0], in the
straight model. Ideal points are in the h = 0 plane and a�ne points are
represented by those lines that are not parallel to the h = 0 plane.

104 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

h

h

z

affine points

ideal point

embedded Euclidean space

h

=1 plane

=0 plane

Figure 5.2: Embedding of projective space into a higher dimensional Euclidean

space

Since points are represented by a set of quadruples that are equivalent
in homogeneous terms, a point may be represented by any of them. Still,
it is worth selecting a single representative from this set to identify points
unambiguously. For a�ne points, this representative quadruple is found
by making the fourth (h) coordinate equal to 1, which has a nice property
that the �rst three homogeneous coordinates are equal to the Cartesian
coordinates of the same point taking equation 5.2 into account, that is:

(
Xh

h
;
Yh

h
;
Zh

h
; 1) = (x; y; z; 1): (5:6)

In the straight model thus the representatives of a�ne points correspond
to the h = 1 hyperplane (a 3D set of the 4D space), where they can be
identi�ed by Cartesian coordinates. This can be interpreted as the 3D
Euclidean space and for a�ne points the homogeneous to Cartesian conver-
sion of coordinates can be accomplished by projecting the 4D point onto
the h = 1 hyperplane using the origin as the center of projection. This
projection means the division of the �rst three coordinates by the fourth
and is usually called homogeneous division.
Using the algebraic establishment of Euclidean and projective geometries,

that is the system of Cartesian and homogeneous coordinates, geometric
transformations can be regarded as functions that map tuples of coordi-
nates onto tuples of coordinates. In computer graphics linear functions are

5.1. GEOMETRIC TRANSFORMATIONS 105

preferred that can conveniently be expressed as a vector-matrix multiplica-
tion and a vector addition. In Euclidean geometry this linear function has
the following general form:

[x0; y0; z0] = [x; y; z] �A3�3 + [px; py; pz]: (5:7)

Linear transformations of this kind map a�ne points onto a�ne points,
therefore they are also a�ne transformations.
When using homogeneous representation, however, it must be taken into

account that equivalent quadruples di�ering only by a scalar multiplication
must be transformed to equivalent quadruples, thus no additive constant is
allowed:

[X 0

h; Y
0

h; Z
0

h; h
0] = [Xh; Yh; Zh; h] �T4�4: (5:8)

Matrix T4�4 de�nes the transformation uniquely in homogeneous sense;
that is, matrices di�ering in a multiplicative factor are equivalent.
Note that in equations 5.7 and 5.8 row vectors are used to identify points

unlike the usual mathematical notation. The preference for row vectors
in computer graphics has partly historical reasons, partly stems from the
property that in this way the concatenation of transformations corresponds
to matrix multiplication in \normal", that is left to right, order. For column
vectors, it would be the reverse order. Using the straight model, equation 5.7
can be reformulated for homogeneous coordinates:

[x0; y0; z0; 1] = [x; y; z; 1] �

2
6664
A3�3

0
0
0

pT 1

3
7775 : (5:9)

Note that the 3�3 matrixA is accommodated inT as its upper left minor
matrix, while p is placed in the last row and the fourth column vector of
T is set to constant [0,0,0,1]. This means that the linear transformations
of Euclidean space form a subset of homogeneous linear transformations.
This is a real subset since, as we shall see, by setting the fourth column to
a vector di�erent from [0,0,0,1] the resulting transformation does not have
an a�ne equivalent, that is, it is not linear in the Euclidean space.
Using the algebraic treatment of homogeneous (linear) transformations,

which identi�es them by a 4 � 4 matrix multiplication, we can de�ne the
concatenation of transformations as the product of transformation matrices

106 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

and the inverse of a homogeneous transformation as the inverse of its trans-
formation matrix if it exists, i.e. its determinant is not zero. Taking into
account the properties of matrix operations we can see that the concatena-
tion of homogeneous transformations is also a homogeneous transformation
and the inverse of a homogeneous transformation is also a homogeneous
transformation if the transformation matrix is invertible. Since matrix mul-
tiplication is an associative operation, consecutive transformations can al-
ways be replaced by a single transformation by computing the product of
the matrices of di�erent transformation steps. Thus, any number of linear
transformations can be expressed by a single 4 � 4 matrix multiplication.
The transformation of a single point of the projective space requires 16
multiplications and 12 additions. If the point must be mapped back to the
Cartesian coordinate system, then 3 divisions by the fourth homogeneous
coordinate may be necessary in addition to the matrix multiplication. Since
linear transformations of Euclidean space have a [0; 0; 0; 1] fourth column
in the transformation matrix, which is preserved by multiplications with
matrices of the same property, any linear transformation can be calculated
by 9 multiplications and 9 additions.
According to the theory of projective geometry, transformations de�ned

by 4 � 4 matrix multiplication map points onto points, lines onto lines,
planes onto planes and intersection points onto intersection points, and
therefore are called collinearities [Her91]. The reverse of this statement
is also true; each collinearity corresponds to a homogeneous transformation
matrix. Instead of proving this statement in projective space, a special
case that has importance in computer graphics is investigated in detail. In
computer graphics the geometry is given in 3D Euclidean space and having
applied some homogeneous transformation the results are also required in
Euclidean space. From this point of view, the homogeneous transformation
of a 3D point involves:

1. A 4� 4 matrix multiplication of the coordinates extended by a fourth
coordinate of value 1.

2. A homogeneous division of all coordinates in the result by the fourth
coordinate if it is di�erent from 1, meaning that the transformation
forced the point out of 3D space.

It is important to note that a clear distinction must be made between the

5.1. GEOMETRIC TRANSFORMATIONS 107

central or parallel projection de�ned earlier which maps 3D points onto 2D
points on a plane and projective transformations which map projective space
onto projective space. Now let us start the discussion of the homogeneous
transformation of a special set of geometric primitives. A Euclidean line
can be de�ned by the following equation:

~r(t) = ~r0 + ~v � t; where t is a real parameter. (5:10)

Assuming that vectors ~v1 and ~v2 are not parallel, a Euclidean plane, on the
other hand, can be de�ned as follows:

~r(t1; t2) = ~r0 + ~v1 � t1 + ~v2 � t2; where t1; t2 are real parameters. (5:11)

Generally, lines and planes are special cases of a wider range of geometric
structures called linear sets. By de�nition, a linear set is de�ned by a
position vector ~r0 and some axes ~v1; ~v2; : : : ; ~vn by the following equation:

~r(t1; : : : ; tn) = ~r0 +
nX

i=1

ti � ~vi: (5:12)

First of all, the above de�nition is converted to a di�erent one that uses
homogeneous-like coordinates. Let us de�ne the so-called spanning vectors
~p0; : : : ; ~pn of the linear set as:

~p0 = ~r0;

~p1 = ~r0 + ~v1;
...
~pn = ~r0 + ~vn:

(5:13)

The equation of the linear set is then:

~r(t1; : : : ; tn) = (1� t1 � : : :� tn) � ~p0 +
nX

i=1

ti � ~pi: (5:14)

Introducing the new coordinates as

�0 = 1� t1 � : : :� tn; �1 = t1; �2 = t2; : : : ; �n = tn; (5:15)

the linear set can be written in the following form:

S = f~p j ~p =
nX

i=0

�i � ~pi ^
nX

i=0

�i = 1g: (5:16)

108 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

The weights (�i) are also called the baricentric coordinates of the point
~p with respect to ~p0, ~p1,: : : ,~pn. This name re
ects the interpretation that ~p
would be the center of gravity of a structure of weights (�0; �1; : : : ; �n) at
points ~p0; ~p1; : : : ; ~pn.
The homogeneous transformation of such a point ~p is:

[~p; 1] �T = [
nX

i=0

�i � ~pi; 1] �T = [
nX

i=0

�i � ~pi;
nX
i=0

�i] �T =

(
nX

i=0

�i � [~pi; 1]) �T =
nX

i=0

�i � ([~pi; 1] �T) (5:17)

since
Pn

i=0 �i = 1. Denoting [~pi; 1] �T by [~Pi; hi] we get:

[~p; 1] �T =
nX
i=0

�i � [~Pi; hi] = [
nX

i=0

�i � ~Pi;
nX

i=0

�i � hi]: (5:18)

If the resulting fourth coordinate
Pn

i=0 �i � hi is zero, then the point ~p is
mapped onto an ideal point, therefore it cannot be converted back to Eu-
clidean space. These ideal points must be eliminated before the homoge-
neous division (see section 5.5 on clipping).
After homogeneous division we are left with:

[
nX

i=0

�i � hiPn
j=1 �j � hj

�
~Pi

hi
; 1] = [

nX
i=0

��i � ~p
�

i ; 1] (5:19)

where ~p �

i is the homogeneous transformation of ~pi. The derivation of ��i
guarantees that

Pn
i=0 �

�

i = 1. Thus, the transformation of the linear set is
also linear. Examining the expression of the weights (��i), we can conclude
that generally �i 6= ��i meaning the homogeneous transformation may de-
stroy equal spacing. In other words the division ratio is not projective
invariant. In the special case when the transformation is a�ne, coordinates
hi will be 1, thus �i = ��i , which means that equal spacing (or division
ratio) is a�ne invariant.
A special type of linear set is the convex hull. The convex hull is de�ned

by equation 5.16 with the provision that the baricentric coordinates must
be non-negative.

5.1. GEOMETRIC TRANSFORMATIONS 109

To avoid the problems of mapping onto ideal points, let us assume the
spanning vectors to be mapped onto the same side of the h = 0 hyper-
plane, meaning that the hi-s must have the same sign. This, with �i � 0,
guarantees that no points are mapped onto ideal points and

��i =
nX

i=0

�i � hiPn
i=0 �i � hi

� 0 (5:20)

Thus, baricentric coordinates of the image will also be non-negative, that
is, convex hulls are also mapped onto convex hulls by homogeneous trans-
formations if their transformed image does not contain ideal points. An
arbitrary planar polygon can be broken down into triangles that are convex
hulls of three spanning vectors. The transformation of this polygon will
be the composition of the transformed triangles. This means that a planar
polygon will also be preserved by homogeneous transformations if its image
does not intersect with the h = 0 plane.
As mentioned earlier, in computer graphics the objects are de�ned in

Euclidean space by Cartesian coordinates and the image is required in a 2D
pixel space that is also Euclidean with its coordinates which correspond to
the physical pixels of the frame bu�er. Projective geometry may be needed
only for speci�c stages of the transformation from modeling to pixel space.
Since projective space can be regarded as an extension of the Euclidean
space, the theory of transformations could be discussed generally only in
projective space. For pedagogical reasons, however, we will use the more
complicated homogeneous representations if they are really necessary for
computer graphics algorithms, and deal with the Cartesian coordinates in
simpler cases. This combined view of Euclidean and projective geometries
may be questionable from a purely mathematical point of view, but it is
accepted by the computer graphics community because of its clarity and its
elimination of unnecessary abstractions.
We shall consider the transformation of points in this section, which will

lead on to the transformation of planar polygons as well.

110 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

5.1.1 Elementary transformations

Translation

Translation is a very simple transformation that adds the translation vector
~p to the position vector ~r of the point to be transformed:

~r 0 = ~r + ~p: (5:21)

Scaling along the coordinate axes

Scaling modi�es the distances and the size of the object independently along
the three coordinate axes. If a point originally has [x; y; z] coordinates, for
example, after scaling the respective coordinates are:

x0 = Sx � x; y0 = Sy � y; z0 = Sz � z: (5:22)

This transformation can also be expressed by a matrix multiplication:

~r 0 = ~r �

2
64
Sx 0 0
0 Sy 0
0 0 Sz

3
75 : (5:23)

Rotation around the coordinate axes

Rotating around the z axis by an angle �, the x and y coordinates of a point
are transformed according to �gure 5.3, leaving coordinate z una�ected.

y

φ

(x’,y’)

(x,y)

xz

Figure 5.3: Rotation around the z axis

By geometric considerations, the new x; y coordinates can be expressed
as:

x0 = x � cos �� y � sin �; y0 = x � sin�+ y � cos�: (5:24)

5.1. GEOMETRIC TRANSFORMATIONS 111

Rotations around the y and x axes have similar form, just the roles of x; y
and z must be exchanged. These formulae can also be expressed in matrix
form:

~r 0(x; �) = ~r �

2
64
1 0 0
0 cos � sin�
0 � sin � cos �

3
75

~r 0(y; �) = ~r �

2
64
cos � 0 � sin �
0 1 0

sin� 0 cos �

3
75

~r 0(z; �) = ~r �

2
64

cos � sin � 0
� sin� cos� 0

0 0 1

3
75 :

(5:25)

These rotations can be used to express any orientation [Lan91]. Suppose
that K and K 000 are two Cartesian coordinate systems sharing a common
origin but having di�erent orientations. In order to determine three special
rotations around the coordinate axes which transform K into K 000, let us
de�ne a new Cartesian system K 0 such that its z0 axis is coincident with z

and its y0 axis is on the intersection line of planes [x; y] and [x000; y000]. To
transform axis y onto axis y0 a rotation is needed around z by angle �. Then
a new rotation around y0 by angle � has to be applied that transforms x0

into x000 resulting in a coordinate system K 00. Finally the coordinate system
K 00 is rotated around axis x00 = x000 by an angle
 to transform y00 into y000.
The three angles, de�ning the �nal orientation, are called roll, pitch and

yaw angles. If the roll, pitch and yaw angles are �, � and
 respectively,
the transformation to the new orientation is:

~r 0 = ~r �

2
64

cos� sin� 0
� sin� cos� 0

0 0 1

3
75 �
2
64
cos� 0 � sin�
0 1 0

sin � 0 cos�

3
75 �
2
64
1 0 0
0 cos
 sin

0 � sin
 cos

3
75 :

(5:26)

Rotation around an arbitrary axis

Let us examine a linear transformation that corresponds to a rotation by
angle � around an arbitrary unit axis ~t going through the origin. The origi-
nal and the transformed points are denoted by vectors ~u and ~v respectively.

112 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

Let us decompose vectors ~u and ~v into perpendicular (~u?; ~v?) and parallel
(~uk; ~vk) components with respect to ~t. By geometrical considerations we can
write:

~uk = ~t(~t � ~u)

~u? = ~u� ~uk = ~u� ~t(~t � ~u) (5.27)

Since the rotation does not a�ect the parallel component, ~vk = ~uk.

φ
u

t

t

||u ||

u

v

v

=v

x u

Figure 5.4: Rotating around ~t by angle �

Since vectors ~u?; ~v? and ~t � ~u? = ~t � ~u are in the plane perpendicular
to ~t, and ~u? and ~t � ~u? are perpendicular vectors (�gure 5.4), ~v? can be
expressed as:

~v? = ~u? � cos�+ ~t� ~u? � sin�: (5:28)

Vector ~v, that is the rotation of ~u, can then be expressed as follows:

~v = ~vk + ~v? = ~u � cos �+ ~t� ~u � sin�+ ~t(~t � ~u)(1 � cos �): (5:29)

This equation, also called theRodrigues formula, can also be expressed
in matrix form. Denoting cos� and sin� by C� and S� respectively and
assuming ~t to be a unit vector, we get:

~v = ~u �

2
64

C�(1 � t2x) + t2x txty(1� C�) + S�tz txtz(1 � C�)� S�ty
tytx(1 �C�)� S�tz C�(1 � t2y) + t2y txtz(1 �C�) + S�tx
tztx(1� C�) + S�ty tzty(1� C�)� S�tx C�(1 � t2z) + t2z

3
75 :

(5:30)

5.2. TRANSFORMATION TO CHANGE THE COORDINATE SYSTEM 113

It is important to note that any orientation can also be expressed as
a rotation around an appropriate axis. Thus, there is a correspondence
between roll-pitch-yaw angles and the axis and angle of �nal rotation, which
can be given bymaking the two transformation matrices de�ned in equations
5.26 and 5.30 equal and solving the equation for unknown parameters.

Shearing

Suppose a shearing stress acts on a block �xed on the xy face of �gure 5.5,
deforming the block to a parallepiped. The transformation representing the
distortion of the block leaves the z coordinate una�ected, and modi�es the
x and y coordinates proportionally to the z coordinate.

x

y

z

Figure 5.5: Shearing of a block

In matrix form the shearing transformation is:

~r 0 = ~r �

2
64
1 0 0
0 1 0
a b 1

3
75 : (5:31)

5.2 Transformation to change the

coordinate system

Objects de�ned in one coordinate system are often needed in another co-
ordinate system. When we decide to work in several coordinate systems
and to make every calculation in the coordinate system in which it is the

114 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

simplest, the coordinate system must be changed for each di�erent phase of
the calculation.
Suppose unit coordinate vectors ~u, ~v and ~w and the origin ~o of the new

coordinate system are de�ned in the original x; y; z coordinate system:

~u = [ux; uy; uz]; ~v = [vx; vy; vz]; ~w = [wx; wy; wz]; ~o = [ox; oy; oz]: (5:32)

Let a point ~p have x; y; z and �; �;
 coordinates in the x; y; z and in the
u; v; w coordinate systems respectively. Since the coordinate vectors ~u;~v; ~w
as well as their origin, ~o, are known in the x; y; z coordinate system, ~p can
be expressed in two di�erent forms:

~p = � � ~u+ � � ~v +
 � ~w + ~o = [x; y; z]: (5:33)

This equation can also be written in homogeneous matrix form, having
introduced the matrix formed by the coordinates of the vectors de�ning the
u; v; w coordinate system:

Tc =

2
6664
ux uy uz 0
vx vy vz 0
wx wy wz 0
ox oy oz 1

3
7775 ; (5:34)

[x; y; z; 1] = [�; �;
; 1] �Tc: (5:35)

Since Tc is always invertible, the coordinates of a point of the x; y; z

coordinate system can be expressed in the u; v; w coordinate system as well:

[�; �;
; 1] = [x; y; z; 1] �Tc
�1: (5:36)

Note that the inversion of matrixTc can be calculated quite e�ectively since
its upper-left minor matrix is orthonormal, that is, its inverse is given by
mirroring the matrix elements onto the diagonal of the matrix, thus:

T�1
c =

2
6664

1 0 0 0
0 1 0 0
0 0 1 0
�ox �oy �oz 1

3
7775 �
2
6664
ux vx wx 0
uy vy wy 0
uz vz wz 0
0 0 0 1

3
7775 : (5:37)

5.3. DEFINITION OF THE CAMERA 115

5.3 De�nition of the camera

Having de�ned transformation matrices we can now look at their use in
image generation, but �rst some basic de�nitions.
In 3D image generation, a window rectangle is placed into the 3D space

of the virtual world with arbitrary orientation, a camera or eye is put
behind the window, and a photo is taken by projecting the model onto the
window plane, supposing the camera to be the center of projection, and
ignoring the parts mapped outside the window rectangle or those which are
not in the speci�ed region in front of the camera. The data, which de�ne
how the virtual world is looked at, are called camera parameters, and
include:

vrp

x

y

z

u
v

w

bp

fb

eye

window

front clipping plane

vpn

Figure 5.6: De�nition of the camera

� Position and orientation of the window. The center of the win-
dow, called the view reference point, is de�ned as a point, or a
vector ~vrp, in the world coordinate system. The orientation is de�ned
by a u; v; w orthogonal coordinate system, which is also called the
window coordinate system, centered at the view reference point,
with ~u and ~v specifying the direction of the horizontal and vertical
sides of the window rectangle, and ~w determining the normal of the
plane of the window. Unit coordinate vectors ~u;~v; ~w are obviously

116 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

not independent, because each of them is perpendicular to the other
two, thus that dependence has also to be taken care of during the
setting of camera parameters. To ease the parameter setting phase,
instead of specifying the coordinate vector triple, two almost inde-
pendent vectors are used for the de�nition of the orientation, which
are the normal vector to the plane of the window, called the view
plane normal, or ~vpn for short, and a so-called view up vector, or
~vup, whose component that is perpendicular to the normal and is in
the plane of ~vpn and ~vup de�nes the direction of the vertical edge of
the window. There is a slight dependence between them, since they
should not be parallel, that is, it must always hold that ~vup� ~vpn 6= 0.
The ~u;~v; ~w coordinate vectors can easily be calculated from the view
plane normal and the view up vectors:

~w =
~vpn

j ~vpnj
; ~u =

~w � ~vup

j~w � ~vupj
; ~v = ~u� ~w: (5:38)

Note that unlike the x; y; z world coordinate system, the u; v; w system
has been de�ned left handed to meet the user's expectations that ~u
points to the right, ~v points upwards and ~w points away from the
camera located behind the window.

� Size of the window. The length of the edges of the window rectangle
are de�ned by two positive numbers, the width by wwidth, the height
by wheight. Photographic operations, such as zooming in and out,
can be realized by proper control of the size of the window. To avoid
distortions, the width/height ratio has to be equal to width/height
ratio of the viewport on the screen.

� Type of projection. The image is the projection of the virtual world
onto the window. Two di�erent types of projection are usually used
in computer graphics, the parallel projection (if the projectors are
parallel), and the perspective projection (if all the projectors go
through a given point, called the center of projection). Parallel pro-
jections are further classi�ed into orthographic and oblique projec-
tions depending on whether or not the projectors are perpendicular to
the plane of projection (window plane). The attribute \oblique" may
also refer to perspective projection if the projector from the center of

5.3. DEFINITION OF THE CAMERA 117

the window is not perpendicular to the plane of the window. Oblique
projections may cause distortion of the image.

� Location of the camera or eye. The camera is placed behind
the window in our conceptual model. For perspective projection, the
camera position is, in fact, the center of projection, which can be
de�ned by a point ~eye in the u; v; w coordinate system. For parallel
projection, the direction of the projectors has to be given by the u; v; w
coordinates of the direction vector. Both in parallel and perspective
projections the depth coordinate w is required to be negative in order
to place the camera \behind" the window. It also makes sense to
consider parallel projection as a special perspective projection, when
the camera is at an in�nite distance from the window.

� Front and back clipping planes. According to the conceptual
model of taking photos of the virtual world, it is obvious that only
those portions of the model which lie in the in�nite pyramid de�ned
by the camera as the apex, and the sides of the 3D window (for per-
spective projection), and in a half-open, in�nite parallelepiped (for
parallel projection) can a�ect the photo. These in�nite regions are
usually limited to a �nite frustum of a pyramid, or to a �nite par-
allelepiped respectively, to avoid over
ows and also to ease the pro-
jection task by eliminating the parts located behind the camera, by
de�ning two clipping planes called the front clipping plane and the
back clipping plane. These planes are parallel with the window
and thus have constant w coordinates appropriate for the de�nition.
Thus the front plane is speci�ed by an fp value, meaning the plane
w = fp, and the back plane is de�ned by a bp value. Considering
the objectives of the clipping planes, their w coordinates have to be
greater than the w coordinate of the eye, and fp < bp should also
hold.

118 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

5.4 Viewing transformation

Image generation involves:

1. the projection of the virtual world onto the window rectangle,

2. the determination of the closest surface at each point (visibility calcu-
lation) by depth comparisons if more than one surface can be projected
onto the same point in the window, and

3. the placement of the result in the viewport rectangle of the screen.

Obviously, the visibility calculation has to be done prior to the projection of
the 3D space onto the 2D window rectangle, since this projection destroys
the depth information.
These calculations could also be done in the world coordinate system,

but each projection would require the evaluation of the intersection of an
arbitrary line and rectangle (window), and the visibility problem would
require the determination of the distance of the surface points along the
projectors. The large number of multiplications and divisions required by
such geometric computations makes the selection of the world coordinate
system disadvantageous even if the required calculations can be reduced by
the application of the incremental concept, and forces us to look for other
coordinate systems where these computations are simple and e�ective to
perform.
In the optimal case the points should be transformed to a coordinate

system where X;Y coordinates would represent the pixel location through
which the given point is visible, and a third Z coordinate could be used to
decide which point is visible, i.e. closest to the eye, if several points could
be transformed to the same X;Y pixel. Note that Z is not necessarily pro-
portional to the distance from the eye, it should only be a monotonously
increasing function of the distance. The appropriate transformation is also
expected to map lines onto lines and planes onto planes, allowing simple
representations and linear interpolations during clipping and visibility cal-
culations. Coordinate systems meeting all the above requirements are called
screen coordinate systems. In a coordinate system of this type, the visi-
bility calculations are simple, since should two or more points have the same
X;Y pixel coordinates, then the visible one has the smallest Z coordinate.

5.4. VIEWING TRANSFORMATION 119

From a di�erent perspective, if it has to be decided whether one point will
hide another, two comparisons are needed to check whether they project
onto the same pixel, that is, whether they have the same X;Y coordinates,
and a third comparison must be used to select the closest. The projection
is very simple, because the projected point has, in fact, X;Y coordinates
due to the de�nition of the screen space.
For pedagogical reasons, the complete transformation is de�ned through

several intermediate coordinate systems, although eventually it can be ac-
complished by a single matrix multiplication. For both parallel and perspec-
tive cases, the �rst step of the transformation is to change the coordinate
system to u; v; w from x; y; z, but after that there will be di�erences de-
pending on the projection type.

5.4.1 World to window coordinate system

transformation

First, the world is transformed to the u; v; w coordinate system �xed to the
center of the window. Since the coordinate vectors ~u, ~v, ~w and the origin
~vrp are de�ned in the x; y; z coordinate system, the necessary transforma-
tion can be developed based on the results of section 5.2 of this chapter.
The matrix formed by the coordinates of the vectors de�ning the u; v; w

coordinate system is:

Tuvw =

2
6664

ux uy uz 0
vx vy vz 0
wx wy wz 0
vrpx vrpy vrpz 1

3
7775 ; (5:39)

[x; y; z; 1] = [�; �;
; 1] �Tuvw: (5:40)

Since ~u, ~v, ~w are perpendicular vectors, Tuvw is always invertible. Thus,
the coordinates of an arbitrary point of the world coordinate system can be
expressed in the u; v; w coordinate system as well:

[�; �;
; 1] = [x; y; z; 1] �T�1
uvw: (5:41)

120 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

5.4.2 Window to screen coordinate system

transformation for parallel projection

Shearing transformation

For oblique transformations, that is when eyeu or eyev is not zero, the pro-
jectors are not perpendicular to the window plane, thus complicating visi-
bility calculations and projection (�gure 5.7). This problem can be solved
by distortion of the object space, applying a shearing transformation in
such a way that the non-oblique projection of the distorted objects should
provide the same images as the oblique projection of the original scene,
and the depth coordinate of the points should not be a�ected. A general

w

(0,0,eye)w

P=eyewindow

Figure 5.7: Shearing

shearing transformation which does not a�ect the w coordinate is:

Tshear =

2
6664

1 0 0 0
0 1 0 0
su sv 1 0
0 0 0 1

3
7775 : (5:42)

The unknown elements, su and sv, can be determined by examining the
transformation of the projector ~P = [eyeu; eyev; eyew; 1]. The transformed
projector is expected to be perpendicular to the window and to have depth
coordinate eyew, that is:

~P �Tshear = [0; 0; eyew; 1]: (5:43)

5.4. VIEWING TRANSFORMATION 121

Using the de�nition of the shearing transformation, we get:

su = �
eyeu

eyew
; sv = �

eyev

eyew
: (5:44)

Normalizing transformation

Having accomplished the shearing transformation, the objects for parallel
projection are in a space shown in �gure 5.8. The subspace which can be
projected onto the window is a rectangular box between the front and back
clipping plane, having side faces coincident to the edges of the window.
To allow uniform treatment, a normalizing transformation can be applied,
which maps the box onto a normalized block, called the canonical view
volume, moving the front clipping plane to 0, the back clipping plane to
1, the other boundaries to x = 1, y = 1, x = �1 and y = �1 planes
respectively.

fp

window

bp

w 1

-1

1
v

Figure 5.8: Normalizing transformation for parallel projection

The normalizing transformation can also be expressed in matrix form:

Tnorm =

2
6664
2=wwidth 0 0 0

0 2=wheight 0 0
0 0 1=(bp � fp) 0
0 0 �fp=(bp � fp) 1

3
7775 : (5:45)

The projection in the canonical view volume is very simple, since the
projection does not a�ect the (X;Y) coordinates of an arbitrary point, but
only its depth coordinate.

122 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

Viewport transformation

The space inside the clipping volume has been projected onto a 2� 2 rect-
angle. Finally, the image has to be placed into the speci�ed viewport of
the screen, de�ned by the center point, (Vx; Vy) and by the horizontal and
vertical sizes, Vsx and Vsy. For parallel projection, the necessary viewport
transformation is:

Tviewport =

2
6664
Vsx=2 0 0 0
0 Vsy=2 0 0
0 0 1 0
Vx Vy 0 1

3
7775 : (5:46)

Summarizing the results, the complete viewing transformation for parallel
projection can be generated. The screen space coordinates formed by the
(X;Y) pixel addresses and the Z depth value mapped into the range of
[0::1] can be determined by the following transformation:

TV = T�1
uvw �Tshear �Tnorm �Tviewport;

[X;Y;Z; 1] = [x; y; z; 1] �TV: (5.47)

Matrix TV, called the viewing transformation, is the concatenation of
the transformations representing the di�erent steps towards the screen co-
ordinate system. Since TV is a�ne, it obviously meets the requirements of
preserving lines and planes, making both the visibility calculation and the
projection easy to accomplish.

5.4.3 Window to screen coordinate system

transformation for perspective projection

As in the case of parallel projection, objects are �rst transformed from the
world coordinate system to the window, that is u; v; w, coordinate system
by applying T�1

uvw.

View-eye transformation

For perspective projection, the center of the u; v; w coordinate system is
translated to the camera position without altering the direction of the axes.

5.4. VIEWING TRANSFORMATION 123

Since the camera is de�ned in the u; v; w coordinate system by a vector
~eye, this transformation is a translation by vector � ~eye, which can also be
expressed by a homogeneous matrix:

Teye =

2
6664

1 0 0 0
0 1 0 0
0 0 1 0

�eyeu �eyev �eyew 1

3
7775 : (5:48)

Shearing transformation

As for parallel projection, if eyeu or eyev is not zero, the projector from the
center of the window is not perpendicular to the window plane, requiring
the distortion of the object space by a shearing transformation in such
a way that the non-oblique projection of the distorted objects provides the
same images as the oblique projection of the original scene and the depth
coordinate of the points is not a�ected. Since the projector from the center
of the window (~P = [eyeu; eyev; eyew; 1]) is the same as all the projectors
for parallel transformation, the shearing transformation matrix will have
the same form, independently of the projection type:

Tshear =

2
6664

1 0 0 0
0 1 0 0

�eyeu=eyew �eyev=eyew 1 0
0 0 0 1

3
7775 : (5:49)

Normalizing transformation

After shearing transformation the region which can be projected onto the
window is a symmetrical, �nite frustum of the pyramid in �gure 5.9. By
normalizing this pyramid, the back clipping plane is moved to 1, and the
angle at its apex is set to 90 degrees. This is a simple scaling transformation,
with scales Su, Sv and Sw determined by the consideration that the back
clipping plane goes to w = 1, and the window goes to the position d which
is equal to half the height and half the width of the normalized window:

Su �wwidth=2 = d; Sv �wheight=2 = d; eyew �Sw = d; Sw �bp = 1 (5:50)

124 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

fp window bp

w

1

bp

fp

window

d

w

Figure 5.9: Normalizing transformation for perspective projection

Solving these equations and expressing the transformation in a homoge-
neous matrix form, we get:

Tnorm =

2
6664
2 � eyew=(wwidth � bp) 0 0 0

0 2 � eyew=(wheight � bp) 0 0
0 0 1=bp 0
0 0 0 1

3
7775 :

(5:51)
In the canonical view volume, the central projection of a point Xc; Yc; Zc

onto the window plane is:

Xp = d �
Xc

Zc

; Yp = d �
Yc

Zc

: (5:52)

Perspective transformation

The projection and the visibility calculations are more di�cult in the canon-
ical view volume for central projection than they are for parallel projection
because of the division required by the projection. When calculating vis-
ibility, it has to be decided if one point (X1

c ; Y
1
c ; Z

1
c) hides another point

(X2
c ; Y

2
c ; Z

2
c). This involves the check for relations

[X1
c =Z

1
c ; Y

1
c =Z

1
c] = [X2

c =Z
2
c ; Y

2
c =Z

2
c] and Z1

c < Z2
c

which requires division in a way that the visibility check for parallel projec-
tion does not. To avoid division during the visibility calculation, a transfor-
mation is needed which transforms the canonical view volume to meet the

5.4. VIEWING TRANSFORMATION 125

requirements of the screen coordinate systems, that is, X and Y coordinates
are the pixel addresses in which the point is visible, and Z is a monotonous
function of the original distance from the camera (see �gure 5.10).

1

1

V ,Vx y
V ,Vsx sy

canonical view volume screen coordinate system

eye

Figure 5.10: Canonical view volume to screen coordinate system transformation

Considering the expectations for the X and Y coordinates:

X =
Xc

Zc

�
Vsx

2
+ Vx; Y =

Yc

Zc

�
Vsy

2
+ Vy : (5:53)

The unknown function Z(Zc) can be determined by forcing the transforma-
tion to preserve planes and lines. Suppose a set of points of the canonical
view volume are on a plane with the equation:

a �Xc + b � Yc + c � Zc + d = 0 (5:54)

The transformation of this set is also expected to lie in a plane, that is, there
are parameters a0; b;0 c;0 d0 satisfying the equation of the plane for trans-
formed points:

a0 �X + b0 � Y + c0 � Z + d0 = 0 (5:55)

Inserting formula 5.53 into this plane equation and multiplying both sides
by Zc, we get:

a0 �
Vsx

2
�Xc+ b0 �

Vsy

2
�Yc+ c0 �Z(Zc) �Zc+(a0 �Vx+ b0 �Vy+d0) �Zc = 0 (5:56)

126 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

Comparing this with equation 5.54, we can conclude that both Z(Zc) � Zc

and Zc are linear functions of Xc and Yc, requiring Z(Zc) �Zc to be a linear
function of Zc also. Consequently:

Z(Zc) � Zc = � � Zc + � =) Z(Zc) = �+
�

Zc

: (5:57)

Unknown parameters � and � are set to map the front clipping plane of
the canonical view volume (fp0 = fp=bp) to 0 and the back clipping plane
(1) to 1:

� � fp0 + � = 0; � � 1 + � = 1
+

� = bp=(bp � fp); � = �fp=(bp � fp)
(5:58)

The complete transformation, called the perspective transformation,
is:

X =
Xc

Zc

�
Vsx

2
+ Vx; Y =

Yc

Zc

�
Vsy

2
+ Vy; Z =

Zc � bp � fp

(bp� fp) � Zc

: (5:59)

Examining equation 5.59, we can see that X �Zc, Y �Zc and Z �Zc can be
expressed as a linear transformation of Xc; Yc; Zc, that is, in homogeneous
coordinates [Xh; Yh; Zh; h] = [X �Zc; Y �Zc, Z �Zc; Zc] can be calculated with
a single matrix product by Tpersp:

Tpersp =

2
6664
Vsx=2 0 0 0
0 Vsy=2 0 0
Vx Vy bp=(bp � fp) 1
0 0 �fp=(bp � fp) 0

3
7775 : (5:60)

The complete perspective transformation, involving homogeneous divi-
sion to get real 3D coordinates, is:

[Xh; Yh; Zh; h] = [Xc; Yc; Zc; 1] �Tpersp;

[X;Y;Z; 1] = [
Xh

h
;
Yh

h
;
Zh

h
; 1]: (5:61)

The division by coordinate h is meaningful only if h 6= 0. Note that the
complete transformation is a homogeneous linear transformation which con-
sists of a matrix multiplication and a homogeneous division to convert the
homogeneous coordinates back to Cartesian ones.

5.4. VIEWING TRANSFORMATION 127

This is not at all surprising, since one reason for the emergence of projec-
tive geometry has been the need to handle central projection somehow by
linear means. In fact, the result of equation 5.61 could have been derived
easily if it had been realized �rst that a homogeneous linear transformation
would solve the problem (�gure 5.10). This transformation would transform
the eye onto an ideal point and make the side faces of the viewing pyramid
parallel. Using homogeneous coordinates this transformation means that:

T : [0; 0; 0; 1] 7! �1[0; 0;�1; 0]: (5:62)

Multiplicative factor �1 indicates that all homogeneous points di�ering by
a scalar factor are equivalent. In addition, the corner points where the side
faces and the back clipping plane meet should be mapped onto the corner
points of the viewport rectangle on the Z = 1 plane and the front clipping
plane must be moved to the origin, thus:

T : [1; 1; 1; 1] 7! �2[Vx + Vsx=2; Vy + Vsy=2; 1; 1];
T : [1;�1; 1; 1] 7! �3[Vx + Vsx=2; Vy � Vsy=2; 1; 1];
T : [�1; 1; 1; 1] 7! �4[Vx � Vsx=2; Vy + Vsy=2; 1; 1];
T : [0; 0; fp0; 1] 7! �5[Vx; Vy; 0; 1]:

(5:63)

Transformation T is de�ned by a matrix multiplication with T4�4. Its
unknown elements can be determined by solving the linear system of equa-
tions generated by equations 5.62 and 5.63. The problem is not determinant
since the number of equations (20) is one less than the number of variables
(21). In fact, it is natural, since scalar multiples of homogeneous matrices
are equivalent. By setting �2 to 1, however, the problem will be determinant
and the resulting matrix will be the same as derived in equation 5.60.
As has been proven, homogeneous transformation preserves linear sets

such as lines and planes, thus deriving this transformation from the re-
quirement that it should preserve planes also guaranteed the preservation
of lines.
However, when working with �nite structures, such as line segments, poly-

gons, convex hulls, etc., homogeneous transformations can cause serious
problems if the transformed objects intersect the h = 0 hyperplane. (Note
that the preservation of convex hulls could be proven for only those cases
when the image of transformation has no such intersection.)
To demonstrate this problem and how perspective transformation works,

consider an example when Vx = Vy = 0; Vsx = Vsy = 2; fp = 0:5; bp = 1 and

128 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

x

h=

h

z

h

z

x

h

z

x

1. Canonical view volume in 3D Euclidean space

an Euclidean line segment

2. After the perspective transformation

3. After the homogenous division

line segment with wrap-around

eye

eye’

eye’’

intersection with

8

"points"

AB

A’

B’

B’’
A’’

1

h=1

h=1

h=0 plane

Figure 5.11: Steps of the perspective transformation and the wrap-around

problem

5.4. VIEWING TRANSFORMATION 129

examine what happens with the clipping region and with a line segment
de�ned by endpoints [0.3,0,0.6] and [0.3,0,-0.6] in the Cartesian coordinate
system (see �gure 5.11). This line segment starts in front of the eye and goes
behind it. When the homogeneous representation of this line is transformed
by multiplying the perspective transformation matrix, the line will intersect
the h = 0 plane, since originally it intersects the Zc = 0 plane (which is
parallel with the window and contains the eye) and the matrixmultiplication
sets h = Zc. Recall that the h = 0 plane corresponds to the ideal points in
the straight model, which have no equivalent in Euclidean geometry.
The conversion of the homogeneous coordinates to Cartesian ones by ho-

mogeneous division maps the upper part corresponding to positive h values
onto a Euclidean half-line and maps the lower part corresponding to neg-
ative h values onto another half-line. This means that the line segment
falls into two half-lines, a phenomenon which is usually referred to as the
wrap-around problem.
Line segments are identi�ed by their two endpoints in computer graph-

ics. If wrap-around phenomena may occur we do not know whether the
transformation of the two endpoints really de�ne the new segment, or these
are the starting points of two half-lines that form the complement of the
Euclidean segment. This is not surprising in projective geometry, since a
projective version of a Euclidean line, for example, also includes an ideal
point in addition to all a�ne points, which glues the two \ends" of the line
at in�nity. From this point of view projective lines are similar (more pre-
cisely isomorphic) to circles. As two points on a circle cannot identify an arc
unambiguously, two points on a projective line cannot de�ne a segment ei-
ther without further information. By knowing, however, that the projective
line segment does not contain ideal points, this de�nition is unambiguous.
The elimination of ideal points from the homogeneous representation be-

fore homogeneous division obviously solves the problem. Before the homo-
geneous division, this procedure cuts the objects represented by homoge-
neous coordinates into two parts corresponding to the positive and negative
h values respectively, then projects these parts back to the Cartesian co-
ordinates separately and generates the �nal representation as the union of
the two cases. Recall that a clipping that removes object parts located
outside of the viewing pyramid must be accomplished somewhere in the
viewing pipeline. The cutting proposed above is worth combining with this
clipping step, meaning that the clipping (or at least the so-called depth clip-

130 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

ping phase that can remove the vanishing plane which is transformed onto
ideal points) must be carried out before homogeneous division. Clipping is
accomplished by appropriate algorithms discussed in the next section.
Summarizing the transformation steps of viewing for the perspective case,

the complete viewing transformation is:

TV = T�1
uvw �Teye �Tshear �Tnorm �Tpersp;

[Xh; Yh; Zh; h] = [x; y; z; 1] �TV;

[X;Y;Z; 1] = [
Xh

h
;
Yh

h
;
Zh

h
; 1]: (5.64)

5.5 Clipping

Clipping is responsible for eliminating those parts of the scene which do not
project onto the window rectangle, because they are outside the viewing
volume. It consists of depth | front and back plane | clipping and clipping
at the side faces of the volume. For perspective projection, depth clipping is
also necessary to solve the wrap-around problem, because it eliminates the
objects in the plane parallel to the window and incident to the eye, which
are mapped onto the ideal plane by the perspective transformation.
For parallel projection, depth clipping can be accomplished in any co-

ordinate system before the projection, where the depth information is still
available. The selection of the coordinate system in which the clipping is
done may depend on e�ciency considerations, or more precisely:

1. The geometry of the clipping region has to be simple in the selected
coordinate system in order to minimize the number of necessary op-
erations.

2. The transformation to the selected coordinate system from the world
coordinate system and from the selected coordinate system to pixel
space should involve the minimum number of operations.

Considering the �rst requirement, for parallel projection, the brick shaped
canonical view volume of the normalized eye coordinate system and the
screen coordinate system are the best, but, unlike the screen coordinate
system, the normalized eye coordinate system requires a new transformation
after clipping to get to pixel space. The screen coordinate system thus ranks

5.5. CLIPPING 131

as the better option. Similarly, for perspective projection, the pyramid
shaped canonical view volume of the normalized eye and the homogeneous
coordinate systems require the simplest clipping calculations, but the latter
does not require extra transformation before homogeneous division. For side
face clipping, the screen coordinate system needs the fewest operations, but
separating the depth and side face clipping phases might be disadvantageous
for speci�c hardware realizations. In the next section, the most general case,
clipping in homogeneous coordinates, will be discussed. The algorithms
for other 3D coordinate systems can be derived from this general case by
assuming the homogeneous coordinate h to be constant.

5.5.1 Clipping in homogeneous coordinates

The boundaries of the clipping region can be derived by transforming the re-
quirements of the screen coordinate system to the homogeneous coordinate
system. After homogeneous division, in the screen coordinate system the
boundaries are Xmin = Vx � Vsx=2, Xmax = Vx + Vsx=2, Ymin = Vy � Vsy=2
and Ymax = Vy + Vsy=2. The points internal to the clipping region must
satisfy:

Xmin � Xh=h � Xmax;

Ymin � Yh=h � Ymax;

0 � Zh=h � 1
(5:65)

The visible parts of objects de�ned in an Euclidean world coordinate
system must have positive Zc coordinates in the canonical view coordinate
system, that is, they must be in front of the eye. Since multiplication by
the perspective transformation matrix sets h = Zc, for visible parts, the
fourth homogeneous coordinate must be positive. Adding h > 0 to the
set of inequalities 5.65 and multiplying both sides by this positive h, an
equivalent system of inequalities can be derived as:

Xmin � h � Xh � Xmax � h;

Ymin � h � Yh � Ymax � h;

0 � Zh � h:

(5:66)

Note that inequality h > 0 does not explicitly appear in the requirements,
since it comes from 0 � Zh � h. Inequality h > 0, on the other hand,
guarantees that all points are eliminated that are on the h = 0 ideal plane,
which solves the wrap-around problem.

132 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

h=
h

Z

X

h

Z

X

Z =

X = h Xmin

internal point

external point

h

h

h

h

Embedded screen coordinate system

4D homogenous space clipping plane:

clipping plane: 0

Z =hhclipping plane:

1

h=1

Figure 5.12: Transforming the clipping region back to projective space

Notice that the derivation of the homogeneous form of clipping has been
achieved by transforming the clipping box de�ned in the screen coordinate
system back to the projective space represented by homogeneous coordi-
nates (�gure 5.12).
When the de�nition of the clipping region was elaborated, we supposed

that the objects are de�ned in a Cartesian coordinate system and relied
on the camera construction discussed in section 5.3. There are �elds of
computer graphics, however, where none of these is true. Sometimes it is
more convenient to de�ne the objects directly in the projective space by
homogeneous coordinates. A rational B-spline, for example, can be de�ned
as a non-rational B-spline in homogeneous space, since the homogeneous to
Cartesian mapping will carry out the division automatically. When dealing
with homogeneous coordinates directly, scalar multiples of the coordinates

5.5. CLIPPING 133

are equivalent, thus both positive and negative h regions can contribute to
the visible section of the �nal space. Thus, equation 5.65 must be converted
to two system of inequalities, one supposing h > 0, the other h < 0.

Case 1: h > 0 Case 2: h < 0
Xmin � h � Xh � Xmax � h Xmin � h � Xh � Xmax � h

Ymin � h � Yh � Ymax � h Ymin � h � Yh � Ymax � h

0 � Zh � h 0 � Zh � h

(5:67)

Clipping must be carried out for the two regions separately. After homo-
geneous division these two parts will meet in the screen coordinate system.
Even this formulation | which de�ned a front clipping plane in front

of the eye to remove points in the vanishing plane | may not be general
enough for systems where the clipping region is independent of the viewing
transformation like in PHIGS [ISO90]. In the more general case the image
of the clipping box in the homogeneous space may have intersection with
the ideal plane, which can cause wrap-around. The basic idea remains the
same in the general case; we must get rid of ideal points by some kind of
clipping. The interested reader is referred to the detailed discussion of this
approach in [Kra89],[Her91].
Now the clipping step is investigated in detail. Let us assume that the

clipping region is de�ned by equation 5.66 (the more general case of equa-
tion 5.67 can be handled similarly by carrying out two clipping procedures).
Based on equation 5.66 the clipping of points is very simple, since their

homogeneous coordinates must be examined to see if they satisfy all the
equations. For more complex primitives, such as line segments and planar
polygons, the intersection of the primitive and the planes bounding the clip-
ping region has to be calculated, and that part of the primitive should be
preserved where all points satisfy equation 5.66. The intersection calcula-
tion of bounding planes with line segments and planar polygons requires the
solution of a linear equation involving multiplications and divisions. The
case when there is no intersection happens when the solution for a parameter
is outside the range of the primitive. The number of divisions and multi-
plications necessary can be reduced by eliminating those primitive-plane
intersection calculations which do not provide intersection, assuming that
there is a simple way to decide which these are. Clipping algorithms contain
special geometric considerations to decide if there might be an intersection
without solving the linear equation.

134 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

Clipping of line segments

One of the simplest algorithms for clipping line segments with fewer in-
tersection calculations is the 3D extension of the Cohen and Sutherland
clipping algorithm.
Each bounding plane of the clipping region divides the 3D space into two

half-spaces. Points in 3D space can be characterized by a 6-bit code, where
each bit corresponds to a respective plane de�ning whether the given point
and the convex view volume are on opposite sides of the plane by 1 (or true)
value, or on the same side of the plane, by 0 (or false) value. Formally the
code bits C[0] : : :C[5] of a point are de�ned by:

C[0] =
�
1 if Xh < Xmin � h

0 otherwise
C[1] =

�
1 if Xh > Xmax � h

0 otherwise

C[2] =
�
1 if Yh < Ymin � h

0 otherwise
C[3] =

�
1 if Yh > Ymax � h

0 otherwise

C[4] =
�
1 if Zh < 0
0 otherwise

C[5] =
�
1 if Zh > h

0 otherwise

(5:68)

Obviously, points coded by 000000 have to be preserved, while all other
codes correspond to regions outside the view volume (�gure 5.13).

000000

100010

101000101000

010100

000000

Figure 5.13: Clipping of line segments

Let the codes of the two endpoints of a line segment be C1 and C2 re-
spectively. If both C1 and C2 are zero, the endpoints, as well as all inner

5.5. CLIPPING 135

points of the line segment, are inside the view volume, thus the whole line
segment has to be preserved by clipping. If the corresponding bits of both
C1 and C2 are non-zero at some position, then the endpoints, and the inner
points too, are on the same side of the respective bounding plane, external
to the view volume, thus requiring the whole line segment to be eliminated
by clipping. These are the trivial cases where clipping can be accomplished
without any intersection calculation.
If this is not the case | that is if at least one bit pair in the two codes are

not equal, and for those bits where they are the same, they have a value of 0,
then the intersection between the line and that plane which corresponds to
the bit where the two codes are di�erent has to be calculated, and the part
of the line segment which is outside must be eliminated by replacing the
endpoint having 1 code bit by the intersection point. Let the two endpoints
have coordinates [X

(1)

h ; Y
(1)

h ; Z
(1)

h ; h(1)] and [X
(2)

h ; Y
(2)

h ; Z
(2)

h ; h(2)] respectively.
The parametric representation of the line segment, supposing parameter
range [0::1] for t, is:

Xh(t) = X
(1)

h � t+X
(2)

h � (1� t)

Yh(t) = Y
(1)

h � t+ Y
(2)

h � (1 � t)

Zh(t) = Z
(1)

h � t+ Z
(2)

h � (1� t)

h(t) = h(1) � t+ h(2) � (1 � t)

(5.69)

Note that this representation expresses the line segment as a linear set
spanned by the two endpoints. Special care has to be taken when the h

coordinates of the two endpoints have di�erent sign because this means
that the linear set contains an ideal point as well.
Now let us consider the intersection of this line segment with a clipping

plane (�gure 5.14). If, for example, the code bits are di�erent in the �rst bit
corresponding to Xmin, then the intersection with the plane Xh = Xmin � h

has to be calculated thus:

X
(1)

h � t+X
(2)

h � (1 � t) = Xmin � (h
(1) � t+ h(2) � (1� t)): (5:70)

Solving for parameter t� of the intersection point, we get:

t� =
Xmin � h

(2) �X
(2)

h

X
(1)

h �X
(2)

h �Xmin � (h(1) � h(2))
: (5:71)

136 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

X h.
minXh

X
(2)
h

(t),*
t = t =

hyperplane=

Y
(2)
h Z

(2)
h h

(2)
X

(1)
h Y

(1)
h Z

(1)
h h

(1)

X h Yh Z h h(t),* (t),* (t)*

, , ,, , ,

10

Figure 5.14: Clipping by a homogeneous plane

Substituting t� back to the equation of the line segment, the homogeneous
coordinates of the intersection point are [Xh(t

�); Yh(t
�); Zh(t

�); h(t�)]. For
other bounding planes, the algorithm is similar. The steps discussed can
be converted into an algorithm which takes and modi�es the two endpoints
and returns TRUE if some inner section of the line segment is found, and
FALSE if the segment is totally outside the viewing volume, thus:

LineClipping(P
(1)

h , P
(2)

h)

C1 = Calculate code bits for P
(1)

h ;

C2 = Calculate code bits for P
(2)

h ;
loop

if (C1 = 0 AND C2 = 0) then return TRUE; // Accept

if (C1 & C2 6= 0) then return FALSE; // Reject

f = Index of clipping face, where bit of C1 di�ers from C2;

P �

h = Intersection of line (P
(1)

h , P
(2)

h) and plane f ;
C� = Calculate code bits for P �

h ;

if C1[f] = 1 then P
(1)

h = P �

h ; C1 = C�;

else P
(2)

h = P �

h ; C2 = C�;
endloop

The previously discussed Cohen{Sutherland algorithm replaces a lot of
intersection calculations by simple arithmetics of endpoint codes, increasing
the e�ciency of clipping, but may still calculate intersections which later

5.5. CLIPPING 137

turn out to be outside the clipping region. This means that it is not optimal
for the number of calculated intersections. Other algorithms make use of
a di�erent compromise in the number of intersection calculations and the
complexity of other geometric considerations [CB78], [LB84], [Duv90].

Clipping of polygons

Unfortunately, polygons cannot be clipped by simply clipping the edges,
because this may generate false results (see �gure 5.15). The core of the
problem is the fact that the edges of a polygon can go around the faces
of the bounding box, and return through a face di�erent from where they
left the inner section, or they may not intersect the faces at all, when the
polygon itself encloses or is enclosed by the bounding box.

Figure 5.15: Cases of polygon clipping

This problem can be solved if clipping against a bounding box is replaced
by six clipping steps to the planes of the faces of the bounding box, as
has been proposed for the 2D equivalent of this problem by Hodgman and
Sutherland [SH74]. Since planes are in�nite objects, polygon edges cannot
go around them, and a polygon, clipped against all the six boundary planes,
is guaranteed to be inside the view volume.
When clipping against a plane, consecutive vertices have to be examined

to determine whether they are on the same side of the plane. If both of
them are on the same side of the plane as the region, then the edge is also
the edge of the clipped polygon. If both are on the opposite side of the
plane from the region, the edge has to be ignored. If one vertex is on the
same side and one on the opposite side, the intersection of the edge and the
plane has to be calculated, and a new edge formed from that to the point
where the polygon returns back through the plane (�gure 5.16).

138 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

p

p

p

p

p
p

q

q

q

q

q

clipping plane

[2]

[5]

[4]

[6]

[5]
[1]

[1]

[4]

[2]

[3]

[3]

Figure 5.16: Clipping of a polygon against a plane

Suppose the vertices of the polygon are in an array p[0]; : : : ; p[n� 1], and
the clipped polygon is expected in q[0]; : : : ; q[m� 1], while the number of
vertices of the clipped polygon in variable m. The clipping algorithm, using
the notation � for modulo n addition, is:

m = 0;
for i = 0 to n� 1 do

if p[i] is inside then f

q[m++] = p[i];
if p[i� 1] is outside then
q[m++] = Intersection of edge (p[i]; p[i� 1]);

g else if p[i� 1] is inside then
q[m++] = Intersection of edge (p[i]; p[i� 1]);

endif

endfor

Running this algorithm for concave polygons that should fall into several
pieces due to clipping (�gure 5.17) may result in an even number of edges
where no edges should have been generated and the parts that are expected
to fall apart are still connected by these even number of boundary lines.
For the correct interpretation of the inside of these polygons, the GKS

concept must be used, that is, to test whether a point is inside or outside
a polygon, a half-line is extended from the point to in�nity and the num-

5.6. VIEWING PIPELINE 139

double boundary

even number
of boundaries

Figure 5.17: Clipping of concave polygons

ber of intersections with polygon boundaries counted. If the line cuts the
boundary an odd number of times the point is inside the polygon, if there
are even number of intersections the point is outside the polygon. Thus the
super�cial even number of boundaries connecting the separated parts do
not a�ect the interpretation of inside and outside regions of the polygon.
The idea of Sutherland{Hodgman clipping can be used without modi�-

cation to clip a polygon against a convex polyhedron de�ned by planes. A
common technique of CAD systems requiring the clipping against an arbi-
trary convex polyhedron is called sectioning, when sections of objects have
to be displayed on the screen.

5.6 Viewing pipeline

The discussed phases of transforming the primitives from the world coor-
dinate system to a pixel space are often said to form a so-called viewing

pipeline. The viewing pipeline is a data
ow model representing the trans-
formations that the primitives have to go through.
Examining �gure 5.18, we can see that these viewing pipelines are some-

how di�erent from the pipelines discussed by other computer graphics text-
books [FvDFH90], [NS79], because here the screen coordinates contain in-
formation about the viewport, in contrast to many authors who de�ne the
screen coordinate system as a normalized system independent of the �nal
physical coordinates. For parallel projection, it makes no di�erence which
of the two interpretations is chosen, because the transformations are eventu-

140 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

T�1
uvw

Teye

Tshear

Tnorm

Tpersp

Depth clipping

Homogenous
division

Side clipping

Projection

?

?

?

?

T�1
uvw

Tshear

Tnorm

Tviewport

Clipping

Projection

?

?

?

? ?

Tv Tv

Screen coordinate
system

2D pixel space 2D pixel space

4D homogenous
system

Screen coordinate
system

World coordinate system

?

?

?

?

?

?

?

?

Figure 5.18: Viewing pipeline for parallel and perspective projection

5.7. COMPLEXITY OF TRANSFORMATION AND CLIPPING 141

ally concatenated to the same �nal matrix. For perspective transformation,
however, the method discussed here is more e�cient, although more di�-
cult to understand, because it does not need an extra transformation to the
viewport after the homogeneous division, unlike the approach based on the
concept of normalized screen coordinates.
Concerning the coordinate system where the clipping has to be done,

�gure 5.18 represents only one of many possible alternatives. Nevertheless,
this alternative is optimal in terms of the total number of multiplications
and divisions required in the clipping and the transformation phases.
At the end of the viewing pipeline the clipped primitives are available

in the screen coordinate system which is the primary place of visibility
calculations, since here, as has been emphasized, the decision about whether
one point hides another requires just three comparisons. Projection is also
trivial in the screen coordinate system, since the X and Y coordinates are
in fact the projected values.
The angles needed by shading are not invariant to the viewing transfor-

mation from the shearing transformation phase. Thus, color computation
by the evaluation of the shading equation must be done before this phase.
Most commonly, the shading equation is evaluated in the world coordinate
system.

5.7 Complexity of transformation and

clipping

Let the number of vertices, edges and faces of a polygon mesh model be v,
e and f respectively. In order to transform a polygon mesh model from its
local coordinate system to the screen coordinate system for parallel projec-
tion or to the homogeneous coordinate system for perspective projection,
the vector of the coordinates of each vertex must be multiplied by the com-
posite transformation matrix. Thus the time and the space required by this
transformation are obviously proportional to the number of vertices, that
is, the transformation is an O(v) algorithm.
Clipping may alter the position and the number of vertices of the repre-

sentation. For wireframe display, line clipping is accomplished, which can
return a line with its original or new endpoints, or it can return no line at

142 5. TRANSFORMATIONS, CLIPPING AND PROJECTION

all. The time for clipping is O(e), and it returns 2e number of points in
the worst case. Projection processes these points or the resulting clipped
edges independently, thus it is also an O(e) process. For wireframe image
synthesis, the complexity of the complete viewing pipeline operation is then
O(v + e). According to Euler's theorem, for normal solids, it holds that:

f + v = e+ 2 (5:72)

Thus, e = v + f � 2 > v for normal objects, which means that pipeline
operation has O(e) complexity.
For shaded image synthesis, the polygonal faces of the objects must be

clipped. Let us consider the intersection problem of polygon i having ei
edges and a clipping plane. In the worst case all edges intersect the plane,
which can generate e new vertices on the clipping plane. The discussed
clipping algorithm connects these new vertices by edges, which results in at
most ei=2 new edges. If all the original edges are preserved (partially) by
the clipping, then the maximal number of edges of the clipped polygon is
ei + ei=2. Thus an upper bound for the number of edges clipped by the 6
clipping plane is (3=2)6 � ei = const � ei.
Since in the polygon mesh model an edge is adjacent to two faces, an

upper bound for the number of points which must be projected is:

2 � const � (e1 + : : :+ ef) = 4 � const � e: (5:73)

Hence the pipeline also requires O(e) time for the polygon clipping mode.
In order to increase the e�ciency of the pipeline operation, the method

of bounding boxes can be used. For objects or group of objects, bound-
ing boxes that completely include these objects are de�ned in the local or
in the world coordinate system, and before transforming the objects their
bounding boxes are checked whether or not their image is inside the clip-
ping region. If it is outside, then the complete group of objects is rejected
without further calculations.

Chapter 6

VISIBILITY

CALCULATIONS

In order to be able to calculate the color of a pixel we must know from

where the light ray through the pixel comes. Of course, as a pixel has

�nite dimensions, there can be an in�nite number of light rays going into

the eye through it. In contrast to this fact, an individual color has to be

assigned to each pixel, so it will be assumed, at least in this chapter, that

each pixel has a speci�ed point, for example its center, and only a single

light ray through this point is to be considered. The origin of the ray | if

any | is a point on the surface of an object. The main problem is �nding

this object. This is a geometric searching problem at discrete positions on

the image plane. The problem of �nding the visible surface points can be

solved in one of two ways. Either the pixels can be taken �rst and then the

objects for the individual pixels. In this case, for each pixel of the image,

the object which can be seen in it at the special point is determined; the

object which is closest to the eye will be selected from those falling onto

the pixel point after projection. Alternatively, the objects can be examined

before the pixels. Then for the whole scene the parts of the projected

image of the objects which are visible on the screen are determined, and

then the result is sampled according to the resolution of the raster image.

The �rst approach can solve the visibility problem only at discrete points

and the accuracy of the solution depends on the resolution of the screen.

This is why it is called an image-precision method, also known as an

image-space, approximate, �nite-resolution or discrete method. The second

143

144 6. VISIBILITY CALCULATIONS

approach handles the visible parts of object projections at the precision of

the object description, which is limited only by the �nite precision of
oating

point calculations in the computer. The algorithms falling into this class are

categorized as object-precision algorithms, alternatively as object-space,

exact, in�nite-resolution or continuous methods [SSS74].

The following pseudo-codes give a preliminary comparison to emphasize

the di�erences between the two main categories of visibility calculation al-

gorithms. An image-precision algorithm typically appears as follows:

ImagePrecisionAlgorithm

do

select a set P of pixels on the screen;

determine visible objects in P ;

for each pixel p 2 P do

draw the object determined as visible at p;

endfor

while not all pixels computed

end

The set of pixels (P) selected in the outer loop depends on the nature

of the algorithm: it can be a single pixel (ray tracing) or a row of pixels

(scan-line algorithm) or the pixels covered by a given object (z-bu�er algo-

rithm). An object-precision algorithm, on the other hand, typically appears

as follows:

ObjectPrecisionAlgorithm

determine the set S of visible objects;

for each object o 2 S do

for each pixel p covered by o do

draw o at p;

endfor

endfor

end

If N;R2 are the number of objects and the number of pixels respectively,

then an image-precision algorithm always has a lower bound of
(R2) for

its running time, since every pixel has to be considered at least once. An

6. VISIBILITY CALCULATIONS 145

object-precision algorithm, on the other hand, has a lower bound of
(N)

for its time complexity. But these bounds are very optimistic; the �rst one

does not consider that �nding the visible object in a pixel requires more

and more time as the number of objects grows. The other does not give any

indication of how complicated the objects and hence the �nal image can be.

Unfortunately, we cannot expect our algorithms to reach these lower limits.

In the case of image-space algorithms, in order to complete the visibility

calculations in a time period proportional to the number of pixels and in-

dependent of the number of objects, we would have to be able to determine

the closest object along a ray from the eye in a time period independent

of the number of objects. But if we had an algorithm that could do this,

this algorithm could, let us say, be used for reporting the smallest number

in a non-ordered list within time period independent of the number of list

elements, which is theoretically impossible. The only way of speeding this

up is by preprocessing the objects into some clever data structure before

the calculations but there are still theoretical limits.

N/2

N/2

Figure 6.1: Large number of visible parts

In the case of object-space algorithms, let us �rst consider an extreme

example, as shown in �gure 6.1. The object scene is a grid consisting of N=2

horizontal slabs and N=2 vertical slabs in front of the horizontal ones. If the

projections of the two groups fall onto each other on the image plane, then

the number of the separated visible parts is �(N2). This simple example

shows that an object-precision visibility algorithmwith a worst-case running

time proportional to the number of objects is impossible, simply because of

the potential size of the output.

146 6. VISIBILITY CALCULATIONS

Since the time spent on visibility calculations is usually overwhelming in

3D rendering, the speed of these algorithms is of great importance. There

is no optimal method in either of the two classes (possessing the above-

mentioned lower limit speed). This statement, however, holds only if the

examinations are performed for the worst case. There are algorithms that

have optimal speed in most cases (average case optimal algorithms).

6.1 Simple ray tracing

Perhaps the most straightforward method of �nding the point on the surface

of an object from where the light ray through a given pixel comes, is to take

a half-line starting from the eye and going through (the center of) the pixel,

and test it with each object for intersection. Such a ray can be represented

by a pair (~s; ~d), where ~s is the starting point of the ray and ~d is its direction

vector. The starting point is usually the eye position, while the direction

vector is determined by the relative positions of the eye and the actual pixel.

Of all the intersection points the one closest to the eye is kept. Following this

image-precision approach, we can obtain the simplest ray tracing algorithm:

for each pixel p do

~r = ray from the eye through p;

visible object = null;

for each object o do

if ~r intersects o then

if intersection point is closer than previous ones then

visible object = o;

endif

endif

endfor

if visible object 6= null then

color of p = color of visible object at intersection point;

else

color of p = background color;

endif

endfor

6.1. SIMPLE RAY TRACING 147

When a ray is to be tested for intersection with objects, each object

is taken one by one, hence the algorithm requires O(R2N) time (both in

worst and average case) to complete the rendering. This is the worst that

we can imagine, but the possibilities of this algorithm are so good | we

will examine it again in chapter 9 on recursive ray tracing | that despite

its slowness ray tracing is popular and it is worth making the e�ort to

accelerate it. The algorithm shown above is the \brute force" form of ray

tracing.

The method has a great advantage compared to all the other visible sur-

face algorithms. It works directly in the world coordinate system, it can

realize any type of projection, either perspective or parallel, without using

transformation matrices and homogeneous division, and �nally, clipping

is also done automatically (note, however, that if there are many objects

falling outside of the viewport then it is worth doing clipping before ray

tracing). The �rst advantage is the most important. A special character-

istic of the perspective transformation | including homogeneous division

| is that the geometric nature of the object is generally not preserved af-

ter the transformation. This means that line segments and polygons, for

example, can be represented in the same way as before the transformation,

but a sphere will no longer be a sphere. Almost all types of object are

sensitive to perspective transformation, and such objects must always be

approximated by transformation-insensitive objects, usually by polygons,

before the transformation. This leads to loss of geometric information, and

adversely a�ects the quality of the image.

The key problem in ray tracing is to �nd the intersection between a ray

~r(~s; ~d) and the surface of a geometric object o. Of all the intersection

points we are mainly interested in the �rst intersection along the ray (the

one closest the origin of the ray). In order to �nd the closest one, we

usually have to calculate all the intersections between ~r and the surface of

o, and then select the one closest to the starting point of ~r. During these

calculations the following parametric representation of the ray is used:

~r(t) = ~s+ t � ~d (t 2 [0;1)): (6:1)

The parameter t refers to the the distance of the actual ray point ~r(t)

from the starting point ~s. The closest intersection can then be found by

comparing the t values corresponding to the intersection points computed.

148 6. VISIBILITY CALCULATIONS

6.1.1 Intersection with simple geometric primitives

If object o is a sphere, for example, with its center at ~c and of radius R,

then the equation of the surface points ~p is:

j~p� ~cj = R (6:2)

where j � j denotes vector length. The condition for intersection between the

sphere and a ray ~r is that ~p = ~r for some ~p. Substituting the parametric

expression 6.1 of ray points for ~p into 6.2, the following quadratic equation

is derived with parameter t as the only unknown:

(~d)2 � t2 + 2 � ~d � (~s� ~c) � t+ (~s� ~c)2 �R2 = 0 (6:3)

This equation can be solved using the resolution formula for quadratic equa-

tions. It gives zero, one or two di�erent solutions for t, corresponding to

the cases of zero, one or two intersection points between the ray and the

surface of the sphere, respectively. An intersection point itself can be de-

rived by substituting the value or values of t into expression 6.1 of the ray

points. Similar equations to 6.2 can be used for further quadratic primitive

surfaces, such as cylinders and cones.

The other type of simple primitive that one often meets is the planar

polygon. Since every polygon can be broken down into triangles, the case

of a triangle is examined, which is given by its vertices ~a;~b and ~c. One

possibility of calculating the intersection point is taking an implicit equation

| as in the case of spheres | for the points ~p of the (plane of the) triangle.

Such an equation could look like this:

((~b� ~a)� (~c� ~a)) � (~p � ~a) = 0 (6:4)

which, in fact, describes the plane containing the triangle. Substituting

the expression of the ray into it, a linear equation is constructed for the

unknown ray parameter t. This can be solved easily, and always yields a

solution, except in cases where the ray is parallel to the plane of the triangle.

But there is a further problem. Since equation 6.4 describes not only the

points of the triangle, but all the points of the plane containing the triangle,

we have to check whether the intersection point is inside the triangle. This

leads to further geometric considerations about the intersection point ~p. We

6.1. SIMPLE RAY TRACING 149

can check, for example, that for each side of the triangle, ~p and the third

vertex fall onto the same side of it, that is:

((~b� ~a)� (~p � ~a)) � ((~b� ~a)� (~c� ~a)) � 0;

((~c�~b)� (~p �~b)) � ((~b� ~a)� (~c� ~a)) � 0;

((~a� ~c)� (~p� ~c)) � ((~b� ~a)� (~c� ~a)) � 0

(6:5)

The point ~p falls into the triangle if and only if all the three inequalities

hold.

An alternative approach is to use an explicit expression of the inner points

of the triangle. These points can be considered as positive-weighted linear

combinations of the three vertices, with a unit sum of weights:

~p(�; �;
) = � � ~a+ � �~b+
 � ~c;

�; �;
 � 0;

� + � +
 = 1

(6:6)

The coe�cients �; � and
 are also known as the baricentric coordinates

of point ~p with respect to the spanning vectors ~a;~b and ~c (as already de-

scribed in section 5.1). For the intersection with a ray, the condition ~p = ~r

must hold, giving a linear equation for the four unknowns �; �;
 and t:

� � ~a+ � �~b+
 � ~c = ~s + t � ~d;

�+ � +
 = 1
(6:7)

The number of unknowns can be reduced by merging the second equation

into the �rst one. Having solved the merged equation, we have to check

whether the resulting intersection point is inside the triangle. In this case,

however, we only have to check that � � 0; � � 0 and
 � 0.

The two solutions for the case of the triangle represent the two main

classes of intersection calculation approaches. In the �rst case, the sur-

face of the object is given by an implicit equation F (x; y; z) = 0 of the

spatial coordinates of the surface. In this case, we can always substitute

expression 6.1 of the ray into the equation, getting a single equation for the

unknown ray parameter t. In the other case, the surface points of the ob-

ject are given explicitly by a parametric expression ~p = ~p(u; v), where u; v

are the surface parameters. In this case, we can always derive an equation

system ~p(u; v) � ~r(t) = ~0 for the unknowns, u; v and t. In the �rst case,

150 6. VISIBILITY CALCULATIONS

the equation is only a single one (although usually non-linear), but objects

usually only use a portion of the surface described by the implicit equation

and checking that the point is in the part used causes extra di�culties.

In the second case, the equation is more complicated (usually a non-linear

equation system), but checking the validity of the intersection point requires

only comparisons in parameter space.

6.1.2 Intersection with implicit surfaces

In the case where the surface is given by an implicit equation F (x; y; z) = 0,

the parametric expression 6.1 of the ray can be substituted into it to arrive

at the equation f(t) = F (x(t); y(t); z(t)) = 0, thus what has to be solved is:

f(t) = 0 (6:8)

This is generally non-linear, and we cannot expect to derive the roots in

analytic form, except in special cases.

One more thing should be emphasized here. From all the roots of f(t),

we are interested only in its real roots (complex roots have no geometric

meaning). Therefore the problem of �nding the real roots will come to the

front from now on.

Approximation methods

Generally some approximation methodmust be used in order to compute

the roots with any desired accuracy. The problem of approximate solutions

to non-linear equations is one of the most extensively studied topics in

computational mathematics. We cannot give here more than a collection

of related theorems and techniques (mainly taken from the textbook by

Demidovich and Maron [DM87]). It will be assumed throughout this section

that the function f is continuous and continuously di�erentiable.

A basic observation is that if f(a) � f(b) < 0 for two real numbers a and

b, then the interval [a; b] contains at least one root of f(t). This condition

of changing the sign is su�cient but not necessary. A counter example is

an interval containing an even number of roots. Another counter example

is a root where the function has a local minimum or maximum of 0 at the

root, that is, the �rst derivative f 0(t) also has a root at the same place as

f(t). The reason for the �rst situation is that the interval contains more

6.1. SIMPLE RAY TRACING 151

than one root instead of an isolated one. The reason for the second case is

that the root has a multiplicity of more than one. Techniques are known for

both isolating the roots and reducing their multiplicity, as we will see later.

a 1 2 bb

a3

3 12

t

f(t) f(t)
(a)

a 1

2

b b a3 31 2

t

f(t) f(t)
(b)

a

t 1t3

t

f(t) f(t)
(c)

t 2a b b = = = =

Figure 6.2: Illustrations for the halving (a), chord (b) and Newton's (c) method

If f(a) �f(b) < 0 and we know that the interval [a; b] contains exactly one

root of f(t), then we can use a number of techniques for approximating this

root t� as closely as desired. Probably the simplest technique is known as the

halving method. First the interval is divided in half. If f((a+ b)=2) = 0,

then t� = (a+ b)=2 and we stop. Otherwise we keep that half, [a; (a+ b)=2]

or [(a + b)=2; b], at the endpoints of which f(t) has opposite signs. This

reduced interval [a1; b1] will contain the root. Then this interval is halved

in the same way as the original one and the same investigations are made,

etc. Continuing this process, we either �nd the exact value of the root or

produce a nested sequence f[ai; bi]g of intervals of rapidly decreasing width:

bi � ai =
1

2i
(b� a): (6:9)

The sequence contracts into a single value in the limiting case i!1, which

value is the desired root:

t� = lim
i!1

ai = lim
i!1

bi: (6:10)

Another simple technique is the method of chords, also known as the

method of proportional parts. Instead of simply halving the interval [a; b],

it is divided at the point where the function would have a root if it were

linear (a chord) between a; f(a) and b; f(b). If | without loss of generality

152 6. VISIBILITY CALCULATIONS

| we assume that f(a) < 0 and f(b) > 0, then the ratio of the division will

be �f(a)=f(b), giving an approximate root value thus:

t1 = a�
f(a)

f(b)� f(a)
(b� a): (6:11)

If f(t1) = 0, then we stop, otherwise we take the interval [a; t1] or [t1; b],

depending on that at which endpoints the function f(t) has opposite signs,

and produce a second approximation t2 of the root, etc. The convergence

speed of this method is generally faster than that of the halving method.

A more sophisticated technique isNewton's method, also known as the

method of tangents. It takes more of the local nature of the function into

consideration during consecutive approximations. The basic idea is that if

we have an approximation t1 close to the root t
�, and the di�erence between

them is �t, then f(t�) = 0 implies f(t1 + �t) = 0. Using the �rst two terms

of Taylor's formula for the latter equation, we get:

f(t1 + �t) � f(t1) + f 0(t1) � �t = 0 (6:12)

Solving this for �t gives �t � �f(t1)=f
0(t1). Adding this to t1 results in a

new (probably closer) approximation of the root t�. The general scheme of

the iteration is:

ti+1 = ti �
f(ti)

f 0(ti)
(i = 1; 2; 3; : : :): (6:13)

The geometric interpretation of the method (see �gure 6.2) is that at each

approximation ti the function f(t) is replaced by the tangent line to the

curve at ti; f(ti) in order to �nd the next approximation value ti+1. Newton's

method is the most rapidly convergent of the three techniques we have

looked at so far, but only if the iteration sequence 6.13 is convergent. If we

are not careful, it can become divergent. The result can easily depart from

the initial interval [a; b] if for some ti the value of f
0(ti) is much less than that

of f(ti). There are many theorems about \good" initial approximations,

from which the approximation sequence is guaranteed to be convergent.

One of these is as follows. If f(a) � f(b) < 0, and f 0(t) and f 00(t) are non-

zero and preserve signs over a � t � b, then, proceeding from an initial

approximation t1 2 [a; b] which satis�es f 0(t1) � f
00(t1) > 0, it is possible to

compute the sole root t� of f(t) in [a; b] to any degree of accuracy by using

6.1. SIMPLE RAY TRACING 153

Newton's iteration scheme (6.13). Checking these conditions is by no means

a small matter computationally. One possibility is to use interval arithmetic

(see section 6.1.3). There are many further approximation methods beyond

the three basic ones that we have outlined, but they are beyond the scope

of this book.

Reducing the multiplicity of roots of algebraic equations

The function f(t) is algebraic in most practical cases of shape modeling

and also in computer graphics. This comes from the fact that surfaces are

usually de�ned by algebraic equations, and the substitution of the linear

expression of the ray coordinates also gives an algebraic equation. The

term algebraic means that the function is a polynomial (rational) function

of its variable. Although the function may have a denominator, the problem

of solving the equation f(t) = 0 is equivalent with the problem of �nding

the roots of the numerator of f(t) and then checking that the denominator

is non-zero at the roots. That is, we can restrict ourselves to equations

having the following form:

f(t) = a0t
n + a1t

n�1 + : : :+ an = 0 (6:14)

The fundamental theorem of algebra says that a polynomial of degree n (see

equation 6.14 with a0 6= 0) has exactly n roots, real or complex, provided

that each root is counted according to its multiplicity. We say that a root

t� has multiplicity m if the following holds:

f(t�) = f 0(t�) = f 00(t�) = : : : = f (m�1)(t�) = 0 and f (m)(t�) 6= 0 (6:15)

We will restrict ourselves to algebraic equations in the rest of the subsection,

because this special property can be exploited in many ways.

Multiplicity of roots can cause problems in the approximation of the roots,

as we pointed out earlier. Fortunately, any algebraic equation can be re-

duced to another equation of lower or equal degree, which has the same

roots, each having a multiplicity of one. If t�1; t
�
2; : : : ; t

�
k are the distinct

roots of f(t) with multiplicities of m1;m2; : : : ;mk, respectively, then the

polynomial can be expressed by the following product of terms:

f(t) = a0(t� t�1)
m1(t� t�2)

m2 � � � (t� t�k)
mk ; where m1+m2+ : : :+mk = n:

(6:16)

154 6. VISIBILITY CALCULATIONS

The �rst derivative f 0(t) can be expressed by the following product:

f 0(t) = a0(t� t�1)
m1�1(t� t�2)

m2�1 � � � (t� t�k)
mk�1p(t) (6:17)

where

p(t) = m1(t� t�2) � � � (t� t�k) + : : :+ (t� t�1) � � � (t� t�k�1)mk: (6:18)

Note that the polynomial p(t) has a non-zero value at each of the roots

t�1; t
�

2; : : : ; t
�

k of f(t). As a consequence of this, the polynomial:

d(t) = a0(t� t�1)
m1�1(t� t�2)

m2�1 � � � (t� t�k)
mk�1 (6:19)

is the greatest common divisor of the polynomials f(t) and f 0(t), that is:

d(t) = gcd(f(t); f 0(t)): (6:20)

This can be computed using Euclid's algorithm. Dividing f(t) by d(t) yields

the following result:

g(t) =
f(t)

d(t)
= (t� t�1)(t� t�2) � � � (t� t�k) (6:21)

(compare the terms in expression 6.16 of f(t) with those in the expression of

d(t)). All the roots of g(t) are distinct, have a multiplicity of 1 and coincide

with the roots of f(t).

Root isolation

The problem of root isolation is to �nd appropriate disjoint intervals

[a1; b1]; [a2; b2]; : : : ; [ak; bk], each containing exactly one of the distinct real

roots t�1; t
�

2; : : : ; t
�

k, respectively, for the polynomial f(t).

An appropriate �rst step is to �nd a �nite interval containing all the roots,

because it can then be recursively subdivided. Lagrange's theorem helps in

this. It states the following about the upper bound R of the positive roots

of the equation: Suppose that a0 > 0 in expression 6.14 of the polynomial

and ak (k � 1) is the �rst of the negative coe�cients (if there is no such

coe�cient, then f(t) has no positive roots). Then for the upper bound of

the positive roots of f(t) we can take the number:

R = 1 + k

s
B

a0
(6:22)

6.1. SIMPLE RAY TRACING 155

where B is the largest absolute value of the negative coe�cients of the

polynomial f(t). Using a little trick, this single theorem will be enough to

give both upper and lower bounds for the positive and negative roots as

well. Let us create the following three equations from our original f(t):

f1(t) = tnf
�
1
t

�
= 0;

f2(t) = f(�t) = 0;

f3(t) = tnf
�
�1
t

�
= 0

(6:23)

Let the upper bound of their positive roots be R1; R2 and R3, respectively.

Then any positive root t+ and negative root t� of f(t) will satisfy (R comes

from equation 6.22):
1
R1

� t+ � R;

�R2 � t� � � 1
R3

:

(6:24)

Thus we have at most two �nite intervals containing all possible roots. Then

we can search for subintervals, each containing exactly one real root. There

are a number of theorems of numerical analysis useful for determining the

number of real roots in a given interval, such as the one based on Sturm-

sequences [Ral65, Ral69] or the Budan{Fourier theorem [DM87]. Instead of

reviewing any of these here, a simple method will be shown which is easy

to implement and e�cient if the degree of the polynomial f(t) is not too

large.

The basic observation is that if t�i and t�j are two distinct roots of of the

polynomial f(t) and t�i < t�j , then there is de�nitely a value t�i < � � < t�j
between them for which f 0(� �) = 0. This implies that each pair t�i ; t

�

i+1

of consecutive roots are separated by a value (or more than one values) � �i
(t�i < � �i < t�i+1) for which f

0(� �i) = 0 (1 � i � k�1 where k is the number of

distinct roots of f(t)). This is illustrated in �gure 6.3. Note, however, that

the contrary is not true: if � �i and � �j are two distinct roots of f 0(t) then

there is not necessarily a root of f(t) between them. These observations

lead to a recursive method:

� Determine the approximate distinct real roots of f 0(t). This yields the

values � �1 < : : : < � �n0 , where n0 < n (n is the degree of f(t)). Then

156 6. VISIBILITY CALCULATIONS

f(t)

ttt

τ

i i+1

i

Figure 6.3: Roots isolated by the roots of derivative

each of the n0+1 intervals [�1; � �1]; [�
�

1 ; �
�

2]; : : : ; [�
�

n0 ;1] contains either

exactly one root or no roots of f(t). If it is ensured that all the roots

of f(t) are of multiplicity 1 (see previous subsection) then it is easy

to distinguish between the two cases: if f(� �i) � f(�
�

i+1) < 0 then the

interval [� �i ; �
�

i+1] contains one root, otherwise it contains no roots. If

there is a root in the interval, then an appropriate method can be

used to approximate it.

� The approximate distinct real roots of f 0(t) can be found recursively.

Since the degree of f 0(t) is one less than that of f(t) the recursion

always terminates.

� At the point where the degree of f(t) becomes 2 (at the bottom of the

recursion) the second order equation can be solved easily.

Note that instead of the intervals [�1; � �1] and [� �n0;1] the narrower in-

tervals [�R2; �
�

1] and [� �n0; R] can be used, where R2 and R are de�ned by

equations 6.23 and 6.22.

An example algorithm

As a summary of this section, a possible algorithm is given for approximat-

ing all the real roots of a polynomial f(t). It maintains a list L for storing

the approximate roots of f(t) and a list L0 for storing the approximate roots

6.1. SIMPLE RAY TRACING 157

of f 0(t). The lists are assumed to be sorted in increasing order. The nota-

tion deg(f(t)) denotes the degree of the polynomial f(t) (the value of n in

expression 6.14):

Solve(f(t))

L = fg;

if deg(f(t)) < 3 then

add roots of f(t) to L // 0, 1 or 2 roots

return L;

endif

calculate g(t) = f(t)/ gcd(f(t); f 0(t)); // eq. 6.21 and 6.20

L0 = Solve(g0(t)); // roots of derivative

add �R2 and R to L0; // eq. 6.22 and 6.23

a = �rst item from L0;

while L0 not empty do

b = next item from L0;

if g(a) � g(b) < 0 // [a; b] contains one root

t = approximation of the root in [a; b];

add t to L;

endif

a = b;

endwhile

return L;

end

6.1.3 Intersection with explicit surfaces

If we are to �nd the intersection point between a ray ~r(t) and an explicitly

given free-form surface ~s(u; v), then, in fact, the following equation is to be

solved:
~f(~x) = ~0; (6:25)

where ~f (~x) = ~f(u; v; t) = ~s(u; v) � ~r(t), and the mapping ~f is usually

non-linear. We can dispose of the problem of solving a non-linear equa-

tion system if we approximate the surface ~s by a �nite number of planar

polygons and then solve the linear equation systems corresponding to the

individual polygons one by one. This method is often used, because it is

158 6. VISIBILITY CALCULATIONS

straightforward and easy to implement, but if we do not allow such anoma-

lies as jagged contours of smooth surfaces on the picture, then we either

have to use a huge number of polygons for the approximation with the snag

of having to check all of them for intersection, or we have to use a numer-

ical root-�nding method for computing the intersection point within some

tolerance.

Newton's method is a classical numerical method for approximating any

real root of a non-linear equation system ~f(~x) = ~0. If [@ ~f=@~x] is the Jaco-

bian matrix of ~f at ~x, then the recurrence formula is:

~xk+1 = ~xk �

2
4@ ~f
@~x

3
5
�1

~f (~xk): (6:26)

If our initial guess ~x0 is close enough to a root ~x�, then the sequence ~xk is

convergent, and lim
k!1

~xk = ~x�. The main problem is how to produce such

a good initial guess for each root. A method is needed which always leads

to reasonable starting points before performing the iterations. We need,

however, computationally performable tests.

One possible method will be introduced in this chapter. The considera-

tions leading to the solution are valid in the n-dimensional real space Rn.

For the sake of notational simplicity, the superscript (~) above vector vari-

ables will be omitted. They will be reintroduced when returning to our

three-dimensional object space.

The method is based on a fundamental theorem of topology: Schauder's

�xpoint theorem [Sch30, KKM29]. It states that if X � Rn is a convex

and compact set and g:Rn ! Rn is a continuous mapping, then g(X) � X

implies that g has a �xed point x 2 X (that is for which g(x) = x). Let

the mapping g be de�ned as:

g(x) = x�Yf(x); (6:27)

whereY is a non-singular n�nmatrix. Then, as a consequence of Schauder's

theorem, g(X) � X implies that there is a point x� 2 X for which:

g(x�) = x� �Yf(x�) = x�: (6:28)

6.1. SIMPLE RAY TRACING 159

Since Y is non-singular, it implies that f(x�) = 0. In other words, if

g(X) � X, then there is at least one solution to f(x�) = 0 in X. Another

important property of the mapping g is that if x� 2 X is such a root of

f , then g(x�) 2 X. This is so because if f(x�) = 0 then g(x�) = x� 2 X.

Thus we have a test for the existence of roots of f in a given set X. It is

based on the comparison of the set X and its image g(X):

� if g(X) � X then the answer is positive, that is, X contains at least

one root

� if g(X) \ X = ; then the answer is negative, that is, X contains no

roots, since if it contained one, then this root would also be contained

by g(X), but this would be a contradiction

� if none of the above two conditions holds then the answer is neither

positive nor negative; in this latter case, however, the set X can be

divided into two or more subsets and these smaller pieces can be ex-

amined similarly, leading to a recursive algorithm

An important question, if one intends to use this test, is that how the image

g(X) and its intersection with X can be computed. Another important

problem, if the test gives a positive answer for X, is to decide where to

start the Newton-iteration from. A numerical technique, called interval

arithmetic, gives a possible solution to the �rst problem. We will survey it

here. What it o�ers is its simplicity, but the price we have to pay is that

we never get more than rough estimations for the ranges of mappings. The

second problem will be solved by an interval arithmetic based modi�cation

of the Newton-iteration scheme.

Interval arithmetic

A branch of numerical analysis, called interval analysis, basically deals with

real intervals, vectors of real intervals, and mappings from and into such

objects. Moore's textbook [Moo66] gives a good introduction to it. Our

overview contains only those results, which are relevant from the point of

view of our problem. Interval objects will be denoted by capital letters.

160 6. VISIBILITY CALCULATIONS

Let us start with algebraic operations on intervals (addition, subtraction,

multiplication and division). Generally, if a binary operation � is to be

extended to work on two real intervals X1 = [a1; b1] and X2 = [a2; b2], then

the rule is:

X1 �X2 = fx1 � x2 j x1 2 X1 and x2 2 X2g (6:29)

that is, the resulting interval should contain the results coming from all

the possible pairings. In the case of subtraction, for example, X1 � X2 =

[a1 � b2; b1 � a2]. Such an interval extension of an operation is inclusion

monotonic, that is, if X 0

1 � X1 then X 0

1 �X2 � X1 � X2. Based on these

operations, the interval extension of an algebraic function can easily be

derived by substituting each of its operations by the corresponding interval

extension. The (inclusion monotonic) interval extension of a function f(x)

will be denoted by F (X). If f(x) is a multidimensional mapping (where x is

a vector) then F (X) operates on vectors of intervals called interval vectors.

The interval extension of a linear mapping can be represented by an interval

matrix (matrix of intervals).

An interesting fact is that the Lagrangean mean-value theorem extends to

the interval extension of functions (although it does not extend to ordinary

vector-vector functions). It implies that if f is a continuously di�erentiable

mapping, and F is its interval extension, then for all x;y 2 X:

f(x)� f(y) 2 F 0(X)(x� y); (6:30)

where X is an interval vector (box), x;y are real vectors, and F 0 is the

interval extension of the Jacobian matrix of f .

Let us now see some useful de�nitions. If X = [a; b] is a real interval,

then its absolute value, width and middle are de�ned as:

jXj = max(jaj; jbj) (absolute value);

w (X) = b� a (width);

m(X) = (a+ b)=2 (middle)

(6:31)

If X = (X1; : : : ;Xn) is an interval vector, then its respective vector norm,

width and middle vector are de�ned as:

jXj = max
i
fjXijg ;

w (X) = max
i
fw (Xi)g ; (6.32)

m(X) = (m(X1); : : : ;m(Xn))

6.1. SIMPLE RAY TRACING 161

For an interval matrix A = [Aij] the row norm and middle matrix are

de�ned as:

kAk = max
i

8<
:

nX
j=1

jAijj

9=
; ;

m(A) = [m(Aij)] (6.33)

The above de�ned norm for interval matrices is very useful. We will use

the following corollary of this de�nition later: it can be derived from the

de�nitions [Moo77] that, for any interval matrix A and interval vector X:

w (A(X �m(X))) � kAk � w (X): (6:34)

That is, we can estimate the width of the interval vector containing all the

possible images of an interval vector (X � m(X)) if transformed by any

of the linear transformations contained in a bundle of matrices (interval

matrix A), and we can do this by simple calculations. Note, however, that

this inequality can be used only for a special class of interval vectors (origin

centered boxes).

Interval arithmetic and the Newton-iteration

We are now in position to perform the test g(X) � X (equation 6.27) in

order to check whether X contains a root (provided that X is a rectangular

box): if the interval extension of g(x) is G(X), then g(X) � G(X), and

hence G(X) � X implies g(X) � X.

Now the question is the following: provided that X contains a root, is

the Newton-iteration convergent from any point of X? Another question

is that how many roots are in X: only one (a unique root) or more than

one? Although it is also possible to answer these questions based on interval

arithmetic, the interested reader is referred to Toth's article [Tot85] about

this subject. We will present here another method which can be called an

interval version of the Newton-iteration, �rst published by Moore [Moo77].

In fact, Toth's work is also based on this method.

The goal of the following argument will be to create an iteration formula,

based on the Newton-iteration, which produces a nested sequence of interval

vectors:

X � X1 � X2 � : : : (6:35)

162 6. VISIBILITY CALCULATIONS

converging to the unique solution x� 2 X if it exists. A test scheme suitable

for checking in advance whether a unique x� exists will also be provided.

Based on the interval extension G(X) of the mapping g(x) (equation

6.27), consider now the following iteration scheme:

Xk+1 = G(Xk) where X0 = X: (6:36)

We know that if G(X) � X then there is at least one root x� of f in X.

It is also sure that for each such x�, x� 2 Xk (for all k � 0), that is, the

sequence of interval boxes contains each root. If, furthermore, there exists

a positive real number r < 1 so that w (Xk+1) � r � w (Xk) for all k � 0,

then lim
k!1

w (Xk) = 0, that is, the sequence of interval vectors contracts

onto a single point. This implies that if the above conditions hold then X

contains a unique solution x� and iteration 6.36 converges to x�. How can

the existence of such a number r (the \contraction factor") be veri�ed in

advance?

Inequality 6.34 is suitable for estimating the width of an interval vector

resulting from (the interval extension of) a linear mapping performed on a

symmetric interval vector. In order to exploit this inequality, the mapping

should be made linear and the interval vector should be made symmetric.

Let the expression of mapping g be rewritten as:

g(x) = x�Y (f(m(X)) + f(x)� f(m(X))) (6:37)

where X can be any interval vector. Following from the Lagrangean mean-

value theorem:

g(x) 2 x�Yf(m (X))�YF 0(X) (x�m(X)) (6:38)

provided that x 2 X. Following from this, the interval extension of g will

satisfy (decomposing the right-hand side into a real and an interval term):

G(X) � m(X)�Yf(m (X)) + [1�YF 0(X)] (X �m(X)) (6:39)

where 1 is the unit matrix. Note that the interval mapping on the right-

hand side is a linear mapping performed on a symmetric interval vector.

Applying now inequality 6.34 (and because w (X �m(X)) = w (X)):

w (G(X)) � k1�YF 0(X)k � w (X) (6:40)

6.1. SIMPLE RAY TRACING 163

that is, checking whether iteration 6.36 is convergent has become possible.

One question is still open: how should the matrix Y be chosen. Since the

structure of the mapping g (equation 6.27) is similar to that of the Newton-

step (equation 6.26 with Y = [@ ~f=@~x]�1), intuition tells that Y should be

related to the inverse Jacobian matrix of f (hoping that the convergence

speed of the iteration can then be as high as that of the Newton-iteration).

Taking the inverse middle of the interval Jacobian F 0(X) seems to be a good

choice.

In fact, Moore [Moo77] introduced the mapping on the right-hand side of

equation 6.39 as a special case of a mapping which he called theKrawczyk

operator. Let us introduce it for notational simplicity:

K(X;y;Y) = y �Yf(y) + [1�YF 0(X)](X � y); (6:41)

whereX is an interval vector, y 2 X is a real vector,Y is a non-singular real

matrix and f is assumed to be continuously di�erentiable. The following

two properties of this mapping are no more surprising. The �rst is that if

K(X;y;Y) � X for some y 2 X, then there exists an x 2 X for which

f(x) = 0. The second property is that if x� is such a root with f(x�) = 0,

then x� 2 K(X;y;Y).

We are now ready to obtain the interval version of Newton's iteration

scheme in terms of the Krawczyk operator. Note that this scheme is no else

but iteration 6.36 modi�ed so that detecting whether it contracts onto a

single point become possible. Setting

X0 = X;

Y0 = [m(F 0(X0))]
�1; (6.42)

ri = k1�YiF
0(Xi)k

the iteration is de�ned as follows:

Xi+1 = K(Xi;m(Xi);Yi) \Xi; (6.43)

Yi+1 =

8><
>:
[m(F 0(Xi+1))]

�1; if ri+1 � ri;

Yi; otherwise

The initial condition that should be checked before starting the iteration is:

K(X0;m(X0);Y0) � X0 and r0 < 1 (6:44)

164 6. VISIBILITY CALCULATIONS

If these two conditions hold, then iteration 6.43 will produce a sequence

of nested interval boxes converging to the unique solution x� 2 X of the

equation system f(x) = 0.

Let us return to our original problem of �nding the intersection point (or

all the intersection points) between a ray ~r(t) and an explicitly given surface

~s(u; v). Setting ~f (~x) = ~f (u; v; t) = ~s(u; v)� ~r(t), the domain X where we

have to �nd all the roots is bounded by someminimumand maximumvalues

of u; v and t respectively. The basic idea of a possible algorithm is that we

�rst check if initial condition 6.44 holds for X. If it does, then we start the

iteration process, otherwise we subdivide X into smaller pieces and try to

solve the problem on these. The algorithm maintains a list L for storing the

approximate roots of ~f(~x) and a list C for storing the candidate interval

boxes which may contain solutions:

C = fXg; // candidate list

L = fg; // solution list

while C not empty do

X0 = next item on C;

if condition 6.44 holds for X0 then

perform iteration 6.43 until w (Xk) is small enough;

add m(Xk) to L;

else if w (X0) is not too small then

subdivide X0 into pieces X1; : : : ;Xs;

add X1; : : : ;Xs to C;

endif

endwhile

6.1.4 Intersection with compound objects

In constructive solid geometry (CSG) (see subsection 1.6.2) compound ob-

jects are given by set operations ([;\; n) performed on primitive geometric

objects such as blocks, spheres, cylinders, cones or even halfspaces bounded

by non-linear surfaces. The representation of CSG objects is usually a

binary tree with the set operations in its internal nodes and the primitive

objects in the leaf nodes. The root of the tree corresponds to the compound

object, and its two children represent less complicated objects. If the tree

6.1. SIMPLE RAY TRACING 165

possesses only a single leaf (and no internal nodes), then the intersection

calculation poses no problem; we have only to compute the intersection be-

tween the ray and a primitive object. On the other hand, if two objects

are combined by a single set operation, and all the intersection points are

known to be on the surface of the two objects, then, considering the opera-

tion, one can easily decide whether any intersection point is on the surface

of the resulting object. For example, if one of the intersection points on the

�rst object is contained in the interior of the second one, and the combined

object is the union ([) of the two, then the intersection point is not on its

surface | it is internal to it | hence it can be discarded. Similar argu-

ments can be made for any of the set operations and the possible in/out/on

relationships between a point and an object.

These considerations lead us to a simple divide-and-conquer approach:

if the tree has only a single leaf, then the intersection points between the

ray and the primitive object are easily calculated, otherwise | when the

root of the tree is an internal node | the intersection points are recursively

calculated for the left child of the root, taking this child node as the root,

and then the same is done with the right child of the root, and �nally the

two sets of intersection points are combined according the set operation at

the root.

r

S

S
l

r

S l U

*

Sr

r

S

S
l

r

S l

U
*

S r

r

S

S
l

r

S l \

*

Sr

r
A

B

A U

*

B
A

U*

B
A \

*

B

Figure 6.4: Ray spans and their combinations

A slight modi�cation of this approach will help us in considering regu-

larized set operations in ray-object intersection calculations. Recall that

it was necessary to introduce regularized set operations in solid modeling

166 6. VISIBILITY CALCULATIONS

in order to avoid possible anomalies resulting from an operation (see sub-

section 1.6.1 and �gure 1.5). That is, the problem is to �nd the closest

intersection point between a ray and a compound object, provided that the

object is built by the use of regularized set operations. Instead of the iso-

lated ray-surface intersection points, we had better deal with line segments

resulting from the intersection of the ray and the solid object (more pre-

cisely, the closure of the object is to be considered, which is the complement

of its exterior). The sequence of consecutive ray segments corresponding to

an object will be called a ray span. If we take a look at �gure 6.4, then

we will see how the two ray spans calculated for the two child objects of a

node can be combined by means of the set operation of the node. In fact,

the result of the combination of the left span Sl and the right span Sr is

Sl �
� Sr, where �

� is the set operation ([�;\� or n�). If we really implement

the operation �� in the regularized way, then the result will be valid for

regularized set operations. This means practically that all segments in a

ray span must form a closed set with positive length. There are three cases

when regularization takes place. The �rst is when the result span Sl �
� Sr

contains an isolated point (�� is \�). This point has to be omitted because

it would belong to a dangling face, edge or vertex. The second case is when

the span contains two consecutive segments, and the endpoint of the �rst

one coincides with the starting point of the second one (�� is [�). The

two segments have to be merged into one and the double point omitted,

because it would belong to a face, edge or vertex (walled-up) in the interior

of a solid object. Finally, the third case is when a segment becomes open,

that is when one of its endpoints is missing (�� is n�). The segment has to

be closed by an endpoint. The algorithm based on the concepts sketched in

this subsection is the following:

CSGIntersec(ray, node)

if node is compound then

left span = CSGIntersec(ray, left child of node);

right span = CSGIntersec(ray, right child of node);

return CSGCombine(left span, right span, operation);

else (node is a primitive object)

return PrimitiveIntersec(ray, node);

endif

end

6.2. BACK-FACE CULLING 167

The intersection point that we are looking for will appear as the starting

point of the �rst segment of the span.

6.2 Back-face culling

It will be assumed in this and all the consecutive sections of this chapter

that objects are transformed into the screen coordinate system, and that in

the case of perspective projection the homogeneous division has also been

performed. This means that objects have to be projected orthographically

onto the image plane spanned by the coordinate axes X;Y , and the coor-

dinate axis Z coincides with the direction of view.

eye

X,Y

Z

front-faces
back-faces

Figure 6.5: Normal vectors and back-faces

A usual agreement is, furthermore, that the normal vector at any object

surface point (the normal vector of the tangent plane at that point) is

de�ned so that it always points outwards from the object, as illustrated

in �gure 6.5. What can be stated about a surface point where the surface

normal vector has a positive Z-coordinate (in the screen coordinate system)?

It is de�nitely hidden from the eye since no light can depart from that point

towards the eye! Roughly one half of the object surfaces is hidden because

of this reason | and independently from other objects |, hence it is worth

eliminating them from visibility calculations in advance. Object surfaces are

usually decomposed into smaller parts called faces. If the normal vector at

each point of a face has a positive Z-coordinate then it is called a back-face

(see �gure 6.5).

168 6. VISIBILITY CALCULATIONS

If a face is planar, then it has a unique normal vector, and the back-face

culling (deciding whether it is a back-face) is not too expensive compu-

tationally. De�ning one more convention, the vertices of planar polygonal

faces can be numbered in counter-clockwise order, for example, looking from

outside the object. If the vertices of this polygon appear in clockwise order

on the image plane then the polygon is a back-face. How can it be detected?

If ~r1; ~r2; ~r3 are three consecutive and non-collinear vertices of the polygon,

then its normal vector, ~n, can be calculated as:

~n = (�1)c � (~r2 � ~r1)� (~r3 � ~r1) (6:45)

where c = 0 if the inner angle at vertex ~r2 is less than � and c = 1 otherwise.

If the Z-coordinate of ~n is positive, then the polygon is a back-face and can

be discarded. If it is zero, then the projection of the polygon degenerates to

a line segment and can also be discarded. A more tricky way of computing ~n

is calculating the projected areas Ax; Ay; Az of the polygon onto the planes

perpendicular to the x-, y- and z-axes, respectively, and then taking ~n as

the vector of components Ax; Ay; Az. If the polygon vertices are given by

the coordinates (x1; y1; z1); : : : ; (xm; ym; zm) then the projected area Az, for

example, can be calculated as:

Az =
1

2

mX
i=1

(xi�1 � xi)(yi + yi�1) (6:46)

where i� 1 = i+1 if i < m and m� 1 = 1. This method is not sensitive to

collinear vertices and averages the errors coming from possible non-planarity

of the polygon.

Note that if the object scene consists of nothing more than a single convex

polyhedron, then the visibility problem can completely be solved by back-

face culling: back-faces are discarded and non-back-faces are painted.

6.3 z-bu�er algorithm

Another possible method for �nding the visible object in individual pixels

is that, for each object, all the pixels forming the image of the object on

the screen are identi�ed, and then, if a collision occurs at a given pixel due

to overlapping, it is decided which object must be retained. The objects

6.3. Z-BUFFER ALGORITHM 169

are taken one by one. To generate all the pixels that the projection of an

object covers, scan conversion methods can be used to convert the area

of the projections �rst into (horizontal) spans corresponding to the rows of

the raster image, and then split up the spans into pixels according to the

columns. Imagine another array behind the raster image (raster bu�er),

with the same dimensions, but containing distance information instead of

color values. This array is called z-bu�er. Each pixel in the raster bu�er

has a corresponding cell in the z-bu�er. This contains the distance (depth)

information of the surface point from the eye which is used to decide which

pixel is visible. Whenever a new color value is to be written into a pixel

during the raster conversion of the objects, the value already in the z-bu�er

is compared with that of the actual surface point. If the value in the z-bu�er

is greater, then the pixel can be overwritten, both the corresponding color

and depth information, because the actual surface point is closer to the eye.

Otherwise the values are left untouched.

The basic form of the z-bu�er algorithm is then:

Initialize raster bu�er to background color;

Initialize each cell of zbu�er[] to 1;

for each object o do

for each pixel p covered by the projection of o do

if Z-coordinate of the surface point < zbu�er[p] then

color of p = color of surface point;

zbu�er[p] = depth of surface point;

endif

endfor

endfor

The value1 loaded into each cell of the z-bu�er in the initialization step

symbolizes the greatest possible Z value that can occur during the visibility

calculations, and it is always a �nite number in practice. This is also an

image-precision algorithm, just like ray tracing. Its e�ectiveness can be |

and usually is | increased by combining it with back-face culling.

The z-bu�er algorithm is not expensive computationally. Each object is

taken only once, and the number of operations performed on one object is

proportional to the number of pixels it covers on the image plane. Having

N objects o1; : : : ; oN , each covering Pi number of pixels individually on the

170 6. VISIBILITY CALCULATIONS

image plane, the time complexity T of the z-bu�er algorithm is:

T = O

N +

NX
i=1

Pi

!
: (6:47)

Since the z-bu�er algorithm is usually preceded by a clipping operation

discarding parts of objects outside the viewing volume, the number of pixels

covered by the input objects o1; : : : ; oN is Pi = O(R2) (R2 is the resolution

of the screen), and hence the time complexity of the z-bu�er algorithm can

also be written as:

T = O(R2N): (6:48)

6.3.1 Hardware implementation of the z-bu�er

algorithm

Having approximated the surface by a polygon mesh, the surface is given by

the set of mesh vertices, which should have been transformed to the screen

coordinate system. Without loss of generality, we can assume that the

polygon mesh consists of triangles only (this assumption has the important

advantage that three points are always on a plane and the triangle formed by

the points is convex). The visibility calculation of a surface is thus a series

of visibility computations for screen coordinate system triangles, allowing

us to consider only the problem of the scan conversion of a single triangle.

Let the vertices of the triangle in screen coordinates be ~r1 = [X1; Y1; Z1],

~r2 = [X2; Y2; Z2] and ~r3 = [X3; Y3; Z3] respectively. The scan conversion

algorithms should determine theX;Y pixel addresses and the corresponding

Z coordinates of those pixels which belong to this triangle (�gure 6.6). If

the X;Y pixel addresses are already available, then the calculation of the

corresponding Z coordinate can exploit the fact that the triangle is on a

plane, thus the Z coordinate is some linear function of theX;Y coordinates.

This linear function can be derived from the equation of the plane, using

the notation ~n and ~r to represent the normal vector and the points of the

plane respectively:

~n � ~r = ~n � ~r1 where ~n = (~r2 � ~r1)� (~r3 � ~r1): (6:49)

Let us denote the constant ~n �~r1 by C, and express the equation in scalar

form, substituting the coordinates of the vertices (~r = [X;Y;Z(X;Y)]) and

6.3. Z-BUFFER ALGORITHM 171

n
r =(X , Y , Z)3 3 33

r =(X , Y , Z)2 2 2 2r =(X , Y , Z)1 1 11

Z(X,Y)

X

 Y

Figure 6.6: Screen space triangle

the normal of the plane (~n = [nX ; nY ; nZ]). The function of Z(X;Y) is

then:

Z(X;Y) =
C � nX �X � nY � Y

nZ
: (6:50)

This linear function must be evaluated for those pixels which cover the

pixel space triangle de�ned by the vertices [X1; Y1], [X2; Y2] and [X3; Y3].

Equation 6.50 is suitable for the application of the incremental concept

discussed in subsection 2.3.2 on multi-variate functions. In order to make

the boundary curve di�erentiable and simple to compute, the triangle is

split into two parts by a horizontal line at the position of the vertex which

is in between the other two vertices in the Y direction.

As can be seen in �gure 6.7, two di�erent orientations (called left and right

orientations respectively) are possible, in addition to the di�erent order of

the vertices in the Y direction. Since the di�erent cases require almost

similar solutions, we shall discuss only the scan conversion of the lower part

of a left oriented triangle, supposing that the Y order of the vertices is:

Y1 < Y2 < Y3.

The solution of the subsection 2.3.2 (on multi-variate functions) can read-

ily be applied for the scan conversion of this part. The computational bur-

den for the evaluation of the linear expression of the Z coordinate and for the

calculation of the starting and ending coordinates of the horizontal spans of

pixels covering the triangle can be signi�cantly reduced by the incremental

concept (�gure 6.8).

172 6. VISIBILITY CALCULATIONS

[
3 3

Y

X

X Y,]

[
1 1X Y,]

[
2 2X Y,]

[
3 3X Y,]

[
1 1X Y,]

[
2 2X Y,]

Figure 6.7: Breaking down the triangle

Expressing Z(X + 1; Y) as a function of Z(X;Y), we get:

Z(X +1; Y) = Z(X;Y)+
@Z(X;Y)

@X
� 1 = Z(X;Y)�

nX

nZ
= Z(X;Y)+ �ZX:

(6:51)

Since �ZX does not depend on the actualX;Y coordinates, it has to be eval-

uated once for the polygon. In a scan-line, the calculation of a Z coordinate

requires a single addition according to equation 6.51.

Since Z and X vary linearly along the left and right edges of the triangle,

equations 2.33, 2.34 and 2.35 result in the following simple expressions in

the range of Y1 � Y � Y2, denoting the Ks and Ke variables used in the

general discussion by Xstart and Xend respectively:

Xstart(Y + 1) = Xstart(Y) +
X2 �X1

Y2 � Y1
= Xstart(Y) + �Xs

Y

Xend(Y + 1) = Xend(Y) +
X3 �X1

Y3 � Y1
= Xend(Y) + �Xe

Y

Zstart(Y + 1) = Zstart(Y) +
Z2 � Z1

Y2 � Y1
= Zstart(Y) + �Zs

Y (6.52)

6.3. Z-BUFFER ALGORITHM 173

(X ,Y ,Z)1 1 1

(X ,Y ,Z)

(X ,Y ,Z)2

3

22

3 3

X

Y

Z

Z = Z(X,Y)

YZsδ

Y
X eδ

X Zδ

Y
Xsδ

Figure 6.8: Incremental concept in Z-bu�er calculations

The complete incremental algorithm is then:

Xstart = X1 + 0:5; Xend = X1 + 0:5; Zstart = Z1 + 0:5;

for Y = Y1 to Y2 do

Z = Zstart;

for X = Trunc(Xstart) to Trunc(Xend) do

z = Trunc(Z);

if z < Zbu�er[X;Y] then

raster bu�er[X;Y] = computed color;

Zbu�er[X;Y] = z;

endif

Z += �ZX;

endfor

Xstart += �Xs
Y ; Xend += �Xe

Y ; Zstart += �Zs
Y ;

endfor

Having represented the numbers in a �xed point format, the derivation

of the executing hardware for this algorithm is straightforward following

the methods outlined in section 2.3 on hardware realization of graphics

algorithms.

174 6. VISIBILITY CALCULATIONS

6.4 Scan-line algorithm

The visibility problem can be solved separately for each horizontal row of

the image. This approach is a hybrid one, half way between image-precision

and object-precision methods. On the one hand, the so-called scan-lines

are discrete rows of the image, on the other hand, continuous calculations

are used at object-precision within the individual scan-lines. Such a hori-

zontal line corresponds to a horizontal plane in the screen coordinate system

(see left side of �gure 6.9). For each such plane, we have to consider the

intersection of the objects with it. This gives two-dimensional objects on

the scan plane. If our object space consists of planar polygons, then a set of

line segments will appear on the plane. Those parts of these line segments

which are visible from the line Z = 0 have to be kept and drawn (see right

side of �gure 6.9). If the endpoints of the segments are ordered by their X

coordinate, then the visibility problem is simply a matter of �nding the line

segment with the minimal Z coordinate in each of the quadrilateral strips

between two consecutive X values. If the line segments can intersect, then

the X coordinates of the intersection points have also to be inserted into

the list of segment endpoints in order to get strips that are homogeneous

with respect to visibility, that is, with at most one segment visible in each.

Y

X

Z

X

Z

Figure 6.9: Scan-line algorithm

6.4. SCAN-LINE ALGORITHM 175

The basic outline of the algorithm is the following:

for Y = Ymin to Ymax do

for each polygon P do

compute intersection segments between P and plane at Y ;

endfor

sort endpoints of segments by their x coordinate;

compute and insert segment-segment intersection points;

for each strip s between two consecutive x values do

�nd segment in s closest to axis x;

draw segment;

endfor

endfor

If a given polygon intersects the horizontal plane at Y , it will probably

intersect the next scan plane at Y + 1, as well. This is one of the guises

of the phenomenon called object coherence. The origin of it is the basic

fact that objects usually occupy compact and connected parts of space.

Object coherence can be exploited in many ways in order to accelerate the

calculations. In the case of the scan-line algorithm we can do the following.

Before starting the calculation, we sort the maximal and minimal Y values

of the polygons into a list called the event list. Another list, called the

active polygon list, will contain only those polygons which really intersect

the horizontal plane at the actual height Y . A Y coordinate on the event

list corresponds either to the event of a new polygon being inserted into

the active polygon list, or to the event of a polygon being deleted from it.

These two lists will then be considered when going through the consecutive

Y values in the outermost loop of the above algorithm. This idea can be

re�ned by managing an active edge list (and the corresponding event list)

instead of the active polygon list. A further acceleration can be the use of

di�erential line generators for calculating the intersection point of a given

segment with the plane at Y + 1 if the point at Y is known.

The time complexity of the algorithm in its \brute-force" form, as sketched

above, is proportional to the number of rows in the picture on the one hand,

and to the number of objects on the other hand. If the resolution of the

screen is R2, and the object scene consists of disjoint polygons having a

176 6. VISIBILITY CALCULATIONS

total of n edges, then:

T = O(R � n): (6:53)

If the proposed event list is used, and consecutive intersection points (the

X values at Y + 1) are computed by di�erential line generators, then the

time complexity is reduced:

T = O(n log n+R log n): (6:54)

The O(n log n) term appears because of the sorting step before building the

event list, the origin of theO(R log n) term is that the calculated intersection

points must be inserted into an ordered list of length O(n).

6.5 Area subdivision methods

If a pixel of the image corresponds to a given object, then its neighbors

usually correspond to the same object, that is, visible parts of objects appear

as connected territories on the screen. This is a consequence of object

coherence and is called image coherence.

W

P

W W W

P

P

P

(a) (b) (c) (d)

Figure 6.10: Polygon-window relations: distinct (a), surrounding (b),

intersecting (c), contained (d)

If the situation is so fortunate | from a labor saving point of view | that

a polygon in the object scene obscures all the others and its projection onto

the image plane covers the image window completely, then we have to do no

6.5. AREA SUBDIVISION METHODS 177

more than simply �ll the image with the color of the polygon. This is the

basic idea of Warnock's algorithm [War69]. If no polygon edge falls into

the window, then either there is no visible polygon, or some polygon covers

it completely. The window is �lled with the background color in the �rst

case, and with the color of the closest polygon in the second case. If at least

one polygon edge falls into the window, then the solution is not so simple. In

this case, using a divide-and-conquer approach, the window is subdivided

into four quarters, and each subwindow is searched recursively for a simple

solution. The basic form of the algorithm rendering a rectangular window

with screen (pixel) coordinates X1; Y1 (lower left corner) and X2; Y2 (upper

right corner) is this:

Warnock(X1; Y1;X2; Y2)

if X1 6= X2 or Y1 6= Y2 then

if at least one edge falls into the window then

Xm = (X1 +X2)=2;

Ym = (Y1 + Y2)=2;

Warnock(X1; Y1;Xm; Ym);

Warnock(X1; Ym;Xm; Y2);

Warnock(Xm; Y1;X2; Ym);

Warnock(Xm; Ym;X2; Y2);

return ;

endif

endif

// rectangle X1; Y1;X2; Y2 is homogeneous

polygon = nearest to pixel (X1 +X2)=2; (Y1 + Y2)=2;

if no polygon then

�ll rectangle X1; Y1;X2; Y2 with background color;

else

�ll rectangle X1; Y1;X2; Y2 with color of polygon;

endif

end

It falls into the category of image-precision algorithms. Note that it can

handle non-intersecting polygons only. The algorithm can be accelerated

by �ltering out those polygons which can de�nitely not be seen in a given

subwindow at a given step. Generally, a polygon can be in one of the fol-

178 6. VISIBILITY CALCULATIONS

lowing four kinds of relation with respect to the window, as shown in �gure

6.10. A distinct polygon has no common part with the window; a sur-

rounding polygon contains the window; at least one edge of an intersecting

polygon intersects the border of the window; and a contained polygon falls

completely within the window. Distinct polygons should be �ltered out at

each step of recurrence. Furthermore, if a surrounding polygon appears at

a given stage, then all the others behind it can be discarded, that is all

those which fall onto the opposite side of it from the eye. Finally, if there

is only one contained or intersecting polygon, then the window does not

have to be subdivided further, but the polygon (or rather the clipped part

of it) is simply drawn. The price of saving further recurrence is the use of

a scan-conversion algorithm to �ll the polygon.

The time complexity of the Warnock algorithm is not easy to analyze,

even for its initial form (sketched above). It is strongly a�ected by the

actual arrangement of the polygons. It is easy to imagine a scene where

each image pixel is intersected by at least one (projected) edge, from where

the algorithm would go down to the pixel level at each recurrence. It gives

a very poor worst-case characteristic to the algorithm, which is not worth

demonstrating here. A better characterization would be an average-case

analysis for some proper distribution of input polygons, which again length

constraints of this book do not permit us to explore.

The Warnock algorithm recursively subdivides the screen into rectangular

regions, irrespective of the actual shape of the polygons. It introduces

super
uous vertical and horizontal edges. Weiler and Atherton [WA77]

(also in [JGMHe88]) re�ned Warnock's idea from this point of view. The

Weiler{Atherton algorithm also subdivides the image area recursively,

but using the boundaries of the actual polygons instead of rectangles. The

calculations begin with a rough initial depth sort. It puts the list of input

polygons into a rough depth priority order, so that the \closest" polygons are

in the beginning of the list, and the \farthest" ones at the end of it. At this

step, any reasonable criterion for a sorting key is acceptable. The resulting

order is not at all mandatory but increases the e�ciency of the algorithm.

Such a sorting criterion can be, for example, the smallest Z-value (Zmin)

for each polygon (or Zmax, as used by the Newell{Newell{Sancha algorithm,

see later). This sorting step is performed only once, at the beginning of the

calculations, and is not repeated.

6.5. AREA SUBDIVISION METHODS 179

Let the resulting list of polygons be denoted by L = fP1; : : : ; Png. Having

done the sorting, the �rst polygon on the list (P1) is selected. It is used to

clip the remainder of the list into two new lists of polygons: the �rst list,

say I = fP I
1 ; : : : ; P

I
mg (m � n), will contain those polygons | or parts of

polygons | that fall inside the clip polygon P1, and the second list, say

O = fPO
1 ; : : : ; P

O
Mg (M � n), will contain those ones that fall outside P1.

Then the algorithm examines the inside list I and removes all polygons

located behind the current clip polygon since they are hidden from view. If

the remaining list I 0 contains no polygon (the clip polygon obscures all of

I), then the clip polygon is drawn and the initial list L is replaced by the

outside list O and examined in a similar way to L. If the remaining list I 0

contains at least one polygon | that is, at least one polygon falls in front of

the clip polygon | then it means that there was an error in the initial rough

depth sort. In this case the (closest) o�ending polygon is selected as the clip

polygon, and the same process is performed on list I 0 recursively, as on the

initially ordered list L. Note that although the original polygons may be

split into several pieces during the recursive subdivision, the clipping step

(generating the lists I and O from L) can always be performed by using

the original polygon corresponding to the actual clip polygon (which itself

may be a clipped part of the original polygon). Maintaining a copy of each

original polygon needs extra storage, but it reduces time.

There is, however, a more serious danger of clipping to the original copy

of the polygons instead of their remainders! If there is cyclic overlapping

between the original polygons, see �gure 6.11 for example, then it can cause

in�nite recurrence of the algorithm. In order to avoid this, a set S of polygon

names (references) is maintained during the process. Whenever a polygon

P is selected as the clip polygon, its name (a reference to it) is inserted into

S, and if it is processed (drawn or removed), its name is deleted from S.

The insertion is done, however, only if P is not already in S, because if it

is, then a cyclic overlap has been detected, and no additional recurrence is

necessary because all polygons behind P have already been removed.

There is another crucial point of the algorithm: even if the scene consists

only of convex polygons, the clipping step can quickly yield non-convex

areas and holes (�rst when producing an outside list and then concavity is

inherited by polygons in the later inside lists, as well). Thus, the polygon

clipper has to be capable of clipping concave polygons with holes to both

the inside and outside of a concave polygon with holes. Without going

180 6. VISIBILITY CALCULATIONS

into further details here, the interested reader is referred to the cited work

[WA77], and only the above sketched ideas are summarized in the following

pseudo-code:

WeilerAtherton(L)

P = the �rst item on L;

if P 2 S then draw P ; return ; endif

insert P into S;

I = Clip(L, P);

O = Clip(L, P); // P : complement of P

for each polygon Q 2 I;

if Q is behind P then

remove Q from I;

if Q 2 S then remove Q from S; endif

endif

endfor

if I = fg then

draw P ;

delete P from S;

else

WeilerAtherton(I);

endif

WeilerAtherton(O);

end

The recursive algorithm is called with the initially sorted list L of input

polygons at the \top" level after initializing the set S to fg.

6.6 List-priority methods

Assume that the object space consists of planar polygons. If we simply scan

convert them into pixels and draw the pixels onto the screen without any

examination of distances from the eye, then each pixel will contain the color

of the last polygon falling onto that pixel. If the polygons were ordered by

their distance from the eye, and we took the farthest one �rst and the closest

one last, then the �nal picture would be correct. Closer polygons would

6.6. LIST-PRIORITY METHODS 181

obscure farther ones | just as if they were painted an opaque color. This

(object-precision) method, is really known as the painter's algorithm.

Q

Q

Q

P
1

2

P

R

Q

P P
1 2

Figure 6.11: Examples for cyclic overlapping

The only problem is that the order of the polygons necessary for perform-

ing the painter's algorithm, the so-called depth order or priority relation

between the polygons, is not always simple to compute.

We say that a polygon P obscures another polygon Q, if at least one

point of Q is obscured by P . Let us de�ne the relation � between two

polygons P and Q so that P � Q if Q does not obscure P . If the relations

P1 � P2 � : : : � Pn hold for a sequence of polygons, then this order

coincides with the priority order required by the painter's algorithm. Indeed,

if we drew the polygons by starting with the one furthest to the right (having

the lowest priority) and �nishing with the one furthest to the left, then the

picture would be correct. However, we have to contend with the following

problems with the relation � de�ned this way:

1. If the projection of polygons P and Q do not overlap on the image

plane, then P � Q and P � Q, both at the same time, that is, the

relation � is not antisymmetric.

2. Many situations can be imagined, when P 6� Q and Q 6� P at the

same time (see �gure 6.11 for an example), that is, the relation � is

not de�ned for each pair of polygons.

3. Many situations can be imagined when a cycle P � Q � R � P

occurs (see �gure 6.11 again), that is, the relation � is not transitive.

182 6. VISIBILITY CALCULATIONS

The above facts prevent the relation � from being an ordering relation,

that is, the depth order is generally impossible to compute (at least if the

polygons are not allowed to be cut). The �rst problem is not a real problem

since polygons that do not overlap on the image plane can be painted in any

order. What the second and third problems have in common is that both

of them are caused by cyclic overlapping on the image plane. Cycles can be

resolved by properly cutting some of the polygons, as shown by dashed lines

in �gure 6.11. Having cut the \problematic" polygons, the relation between

resulting polygons will be cycle-free (transitive), that is Q2 � P � Q1 and

P1 � Q � R � P2 respectively.

P
Q

z (P)

z (Q)max

max

Z

X,Y

Figure 6.12: A situation when zmax(P) > zmax(Q) yet P 6� Q

TheNewell{Newell{Sancha algorithm [NNS72], [NS79] is one approach

for exploiting the ideas sketched above. The �rst step is the calculation of

an initial depth order. This is done by sorting the polygons according

to their maximal z value, zmax, into a list L. If there are no two polygons

whose z ranges overlap, the resulting list will re
ect the correct depth or-

der. Otherwise, and this is the general case except for very special scenes

such as those consisting of polygons all perpendicular to the z direction, the

calculations need more care. Let us �rst take the polygon P which is the

last item on the resulting list. If the z range of P does not overlap with any

of the preceding polygons, then P is correctly positioned, and the polygon

preceding P can be taken instead of P for a similar examination. Otherwise

(and this is the general case) P overlaps a set fQ1; : : : ; Qmg of polygons.

This set can be found by scanning L from P backwards and taking the

6.6. LIST-PRIORITY METHODS 183

consecutive polygons Q while zmax(Q) > zmin(P). The next step is to try

to check that P does not obscure any of the polygons in fQ1; : : : ; Qmg, that

is, that P is at its right position despite the overlapping. A polygon P

does not obscure another polygon Q, that is Q � P , if any of the following

conditions holds:

1. zmin(P) > zmax(Q) (they do not overlap in z range, this is the so-called

z minimax check);

2. the bounding rectangle of P on the x; y plane does not overlap with

that of Q (x; y minimax check);

3. each vertex of P is farther from the viewpoint than the plane contain-

ing Q;

4. each vertex of Q is closer to the viewpoint than the plane containing

P ;

5. the projections of P and Q do not overlap on the x; y plane.

The order of the conditions re
ects the complexity of the check, hence it

is worth following this order in practice. If it turns out that P obscures Q

(Q 6� P) for a polygon in the set fQ1; : : : ; Qmg, then Q has to be moved

behind P in L. This situation is illustrated in �gure 6.12. Naturally, if P

intersects Q, then one of them has to be cut into two parts by the plane of

the other one. Cycles can also be resolved by cutting. In order to accomplish

this, whenever a polygon is moved to another position in L, we mark it. If

a marked polygon Q is about to be moved again because, say Q 6� P , then

| assuming that Q is a part of a cycle | Q is cut into two pieces Q1; Q2,

so that Q1 6� P and Q2 � P , and only Q1 is moved behind P . A proper

cutting plane is the plane of P , as illustrated in �gure 6.11.

Considering the Newell{Newell{Sancha algorithm, the following observa-

tion is worth mentioning here. For any polygon P , let us examine the two

halfspaces, say H+
P and H�

P , determined by the plane containing P . If the

viewing position is in H+
P , then for all p 2 H+

P , P cannot obscure p, and for

all p 2 H�

P , p cannot obscure P . On the other hand, if the viewing position

is contained by H�

P , similar observations can be made with the roles of H+
P

and H�

P interchanged. A complete algorithm for computing the depth or-

der of a set S = fP1; : : : ; Png of polygons can be constructed based on this

184 6. VISIBILITY CALCULATIONS

idea, as proposed by Fuchs et al. [FKN80]. First Pi, one of the polygons, is

selected. Then the following two sets are computed:

S+
i = (S n Pi) \H

+
i ; S�i = (S n Pi) \H

�

i ; (jS+
i j; jS

�

i j � jSj � 1 = n� 1):

(6:55)

Note that some (if not all) polygons may be cut into two parts during the

construction of the sets. If the viewing point is in H+
i , then Pi cannot

obscure any of the polygons in S+
i , and no polygon in S�i can obstruct Pi.

If the viewing point is in H�

i , then the case is analogous with the roles of

S+
i and S�i interchanged. That is, the position of Pi in the depth order is

between those of the polygons in S+
i and S�i . The depth order in S+

i and

S�i can then be recursively computed: a polygon Pj is selected from S+
i

and the two sets S+
j ; S

�

j are created, and a polygon Pk is selected from S�i
and the two sets S+

k ; S
�

k are created, etc. The subdivision is continued until

the resulting set S�
�
contains not more than one polygon (the depth order is

then obvious in S�� ; the dots in the subscript and superscript places stand

for any possible value). This stop condition will de�nitely hold, since the

size of both resultant sets S+
� ; S

�

� is always at least one smaller than that

of S�
�
, from which they are created (cf. equation 6.55).

P1

P2

P4

P3 P1

P2 P3

P4 0

Figure 6.13: A binary space partitioning and its BSP-tree representation

The creation of the sets induces a subdivision of the object space, the so-

called binary space partitioning (BSP) as illustrated in �gure 6.13: the

�rst plane divides the space into two halfspaces, the second plane divides the

�rst halfspace, the third plane divides the second halfspace, further planes

split the resulting volumes, etc. The subdivision can well be represented by

a binary tree, the so-called BSP-tree, also illustrated in �gure 6.13: the

6.6. LIST-PRIORITY METHODS 185

�rst plane is associated with the root node, the second and third planes are

associated with the two children of the root, etc. For our application, not so

much the planes, but rather the polygons de�ning them, will be assigned to

the nodes of the tree, and the set S�
�
of polygons contained by the volume is

also necessarily associated with each node. Each leaf node will then contain

either no polygon or one polygon in the associated set S �� (and no partition-

ing plane, since it has no child). The algorithm for creating the BSP-tree

for a set S of polygons can be the following, where S(N); P (N); L(N) and

R(N) denote the set of polygons, the \cutting" polygon and the left and

right children respectively, associated with a node N :

BSPTree(S)

create a new node N ;

S(N) = S;

if jSj � 1 then

P (N) = null; L(N) = null; R(N) = null;

else

P = Select(S); P (N) = P ;

create sets S+
P and S�P ;

L(N) = BSPTree(S+
P);

R(N) = BSPTree(S�P);

endif

return N ;

end

The size of the BSP-tree, that is, the number of polygons stored in it, is

on the one hand highly dependent on the nature of the object scene, and

on the other hand on the \choice strategy" used by the routine Select.

We can a�ect only the latter. The creators of the algorithm also proposed

a heuristic choice criterion (without a formal proof) [FKN80], [JGMHe88]

for minimizing the number of polygons in the BSP-tree. The strategy is

two-fold: it minimizes the number of polygons that are split, and at the

same time tries to maximize the number of \polygon con
icts" eliminated

by the choice. Two polygons are in con
ict if they are in the same set,

and the plane of one polygon intersects the other polygon. What hoped for

when maximizing the elimination of polygon con
icts is that the number

of polygons which will need to be split in the descendent subtrees can be

186 6. VISIBILITY CALCULATIONS

reduced. In order to accomplish this, the following three sets are associated

with each polygon P in the actual (to-be-split) set S:

S1 =
n
Q 2 S j Q is entirely in H+

P

o
;

S2 = fQ 2 S j Q is intersected by the plane of Pg ;

S3 =
n
Q 2 S j Q is entirely in H�

P

o
:

(6:56)

Furthermore, the following functions are de�ned:

f(P;Q) =

8<
:
1; if the plane of P intersects Q;

0; otherwise;

Ii;j =
P

P2Si

P
Q2Sj

f(P;Q)

(6:57)

Then the routine Select(S) will return that polygon P 2 S, for which the

expression I1;3+ I3;1 +w � jS2j is maximal, where w is a weight factor. The

actual value of the weight factor w can be set based on practical experiments.

Note that the BSP-tree computed by the algorithm is view-independent,

that is it contains the proper depth order for any viewing position. Dif-

ferences caused by di�erent viewing positions will appear in the manner

of traversing the tree for retrieving the actual depth order. Following the

characteristics of the BSP-tree, the traversal will always be an inorder

traversal. Supposing that some action is to be performed on each node

of a binary tree, the inorder traversal means that for each node, �rst one

of its children is traversed (recursively), then the action is performed on

the node, and �nally the other child is traversed. This is in contrast to

what happens with preorder or postorder traversals, where the action is

performed before or after traversing the children respectively. The action

for each node N here is the drawing of the polygon P (N) associated with

it. If the viewing position is in H+
P (N), then �rst the right subtree is drawn,

then the polygon P (N), and �nally the left subtree, otherwise the order of

the left and right children is back to front.

6.7. PLANAR GRAPH BASED ALGORITHMS 187

The following algorithm draws the polygons of a BSP-tree N in their

proper depth order:

BSPDraw(N)

if N is empty then return ;

if the viewing position is in H+
P (N) then

BSPDraw(R(N)); Draw(P (N)); BSPDraw(L(N));

else

BSPDraw(L(N)); Draw(P (N)); BSPDraw(R(N));

endif

end

Once the BSP-tree has been created by the algorithm BSPTree, subse-

quent images for subsequent viewing positions can be generated by subse-

quent calls to the algorithm BSPDraw.

6.7 Planar graph based algorithms

A graph G is a pair G(V;E) in its most general form, where V is the set

of vertices or nodes, and E is the set of edges or arcs, each connecting two

nodes. A graph is planar if it can be drawn onto the plane so that no

two arcs cross each other. A straight line planar graph (SLPG) is a

concrete embedding of a planar graph in the plane where all the arcs are

mapped to (non-crossing) straight line segments. Provided that the graph

is connected, the \empty" regions surrounded by an alternating chain of

vertices and edges, and containing no more of them in the interior, are

called faces. (Some aspects of these concepts were introduced brie
y in

section 1.6.2 on B-rep modeling.)

One of the characteristics of image coherence is that visible parts of ob-

jects appear as connected territories on the screen. If we have calculated

these territories exactly, then we have only to paint each of them with the

color of the corresponding object. Note that although the calculations are

made on the image plane, this is an object-precision approach, because the

accuracy of the result | at least in the �rst step | does not depend on

the resolution of the �nal image. If the object scene consists of planar poly-

gons, then the graph of visible parts will be a straight line planar graph,

188 6. VISIBILITY CALCULATIONS

also called the visibility map of the objects on the image plane. Its nodes

and arcs correspond to the vertices and edges of polygons and intersections

between polygons, and the faces represent homogeneous visible parts. We

use the terms nodes and arcs of G in order to distinguish them from the

vertices and edges of the polyhedra in the scene.

Let us assume in this section that the polygons of the scene do not in-

tersect, except in cases when two or more of them share a common edge

or vertex. This assumption makes the treatment easier, and it is still gen-

eral enough, because scenes consisting of disjoint polyhedra fall into this

category. The interested reader is recommended to study the very recent

work of Mark de Berg [dB92], where the proposed algorithms can handle

scenes of arbitrary (possibly intersecting) polygons. A consequence of our

assumption is that the set of projected edges of the polygons is a superset

of the set of edges contained in the visibility map. This is not so for the

vertices, because a new vertex can occur on the image plane if a polygon

partially obscures an edge. But the set of such new vertices is contained

in the set of all intersection points between the projected edges. Thus we

can �rst project all the polygon vertices and edges onto the image plane,

then determine all the intersection points between the projected edges, and

�nally determine the parts that remain visible.

Y

X

Z

G:

G’
G’’

Y

X

Figure 6.14: Example scene and the corresponding planar subdivision

In actual fact what we will do is to compute the graph G corresponding to

the subdivision of the image plane induced by the projected vertices, edges

6.7. PLANAR GRAPH BASED ALGORITHMS 189

and the intersection between the edges. This graph will not be exactly

the visibility map as we de�ned above, but will possess the property that

the visibility will not change within the regions of the subdivision (that is

the faces of the graph). Once we have computed the graph G, then all we

have to do is visit its regions one by one, and for each region, we select the

polygon closest to the image plane and use its color to paint the region.

Thus the draft of the drawing algorithm for rendering a set P1; : : : ; PN of

polygons is the following:

1. project vertices and edges of P1; : : : ; PN onto image plane;

2. calculate all intersection points between projected edges;

3. compute G, the graph of the induced planar subdivision;

4. for each region R of G do

5. P = the polygon visible in R;

6. for each pixel p covered by R do

7. color of p = color of P ;

8. endfor

9. endfor

The speed of the algorithm is considerably a�ected by how well its steps

are implemented. In fact, all of them are critical, except for steps 1 and 7.

A simplistic implementation of step 2, for example, would test each pair of

edges for possible intersection. If the total number of edges is n, then the

time complexity of this calculation would be O(n2). Having calculated the

intersection points, the structure of the subdivision graph G has to be built,

that is, incident nodes and arcs have to be assigned to each other somehow.

The number of intersection points is O(n2), hence both the number of nodes

and the number of arcs fall into this order. A simplistic implementation of

step 3 would search for the possible incident arcs for each node, giving a time

complexity of O(n4). This itself is inadmissible in practice, not to mention

the possible time complexity of the further steps. (This was a simplistic

analysis of simplistic approaches.)

We will take the steps of the visibility algorithm sketched above one by

one, and also give a worst-case analysis of the complexity of the solution

used. The approach and techniques used in the solutions are taken from

[D�ev93].

190 6. VISIBILITY CALCULATIONS

Representing straight line planar graphs

First of all, we have to devote some time to a consideration of what data

structures can be used for representing a straight line planar graph, say

G(V;E). If the \topology" of the graph is known, then the location of the

vertices determines unambiguously all other geometric characteristics of the

graph. But if we intend to manipulate a graph quickly, then the matter of

\topological" representation is crucial, and it may well be useful to include

some geometric information too. Let us examine two examples where the

di�erent methods of representation allow di�erent types of manipulations

to be performed quickly.

v2 v3

v1

v4

v1

v4

v3v2

(similarly for rest of vertices) (similarly for rest of edges)

Figure 6.15: Adjacency lists and doubly connected edge list

The �rst scheme stores the structure by means of adjacency lists. Each

vertex v 2 V has an adjacency list associated with it, which contains a

reference to another vertex w, if there is an edge from v to w, that is

(v;w) 2 E. This is illustrated in �gure 6.15. In the case of undirected

graphs, each edge is stored twice, once at each of its endpoints. If we

would like to \walk along" the boundary of a face easily (that is retrieve

its boundary vertices and edges), for instance, then it is worth storing some

extra information beyond that of the position of the vertices, namely the

order of the adjacent vertices w around v. If adjacent vertices appear in

counter clockwise order, for example, on the adjacency lists then walking

around a face is easily achievable. Suppose that we start from a given vertex

v of the face, and we know that the edge (v;w) is an edge of the face with

6.7. PLANAR GRAPH BASED ALGORITHMS 191

the face falling onto the right-hand side of it, where w is one of the vertices

on the adjacency list of v. Then we search for the position of v on the

adjacency list of w, and take the vertex next to v on this list as w0, and

w as v0. The edge (v0; w0) will be the edge next to (v;w) on the boundary

of the face, still having the face on its right-hand side. Then we examine

(v0; w0) in the same way as we did with (v;w), and step on, etc. We stop

the walk once we reach our original (v;w) again. This walk would have

been very complicated to perform without having stored the order of the

adjacent vertices.

An alternative way of representing a straight line planar graph is the use

of doubly connected edge lists (DCELs), also shown in �gure 6.15.

The basic entity is now the edge. Each edge e has two vertex references,

v1(e) and v2(e), to its endpoints, two edge references, e1(e) and e2(e), to the

next edge (in counter clockwise order, for instance) around its two endpoints

v1(e) and v2(e), and two face references, f1(e) and f2(e), to the faces sharing

e. This type of representation is useful if the faces of the graph carry some

speci�c information (for example: which polygon of the scene is visible in

that region). It also makes it possible to traverse all the faces of the graph.

The chain of boundary edges of a face can be easily retrieved from the

edge references e1(e) and e2(e). This fact will be exploited by the following

algorithm, which traverses the faces of a graph, and performs an action

on each face f by calling a routine Action(f). It is assumed that each

face has an associated mark �eld, which is initialized to non-traversed. The

algorithm can be called with any edge e and one of its two neighboring faces

f (f = f1(e) or f = f2(e)).

Traverse(e, f)

if f is marked as traversed then return ; endif

Action(f); mark f as traversed;

for each edge e0 on the boundary of f do

if f1(e
0) = f then Traverse(e0, f2(e

0));

else Traverse(e0, f1(e
0));

endfor

end

Note that the algorithm can be used only if the faces of the graph contain

no holes | that is the boundary edges of each face form a connected chain,

192 6. VISIBILITY CALCULATIONS

or, what is equivalent, the graph is connected. The running time T of

the algorithm is proportional to the number of edges, that is T = O(jEj),

because each edge e is taken twice: once when we are on face f1(e) and

again when we are on face f2(e).

If the graph has more than one connected component as the one shown

in �gure 6.14, then the treatment needs more care (faces can have holes,

for example). In order to handle non-connected and connected graphs in a

uni�ed way, some modi�cations will be made on the DCEL structure. The

unbounded part of the plane surrounding the graph will also be considered

and represented by a face. Let this special face be called the surrounding

face. Note that the surrounding face is always multiply connected (if the

graph is non-empty), that is it contains at least one hole (in fact the edges of

the hole border form the boundary edges of the graph), but has no boundary.

We have already de�ned the structure of an edge of a DCEL structure, but

no attention was paid to the structure of a face, although each edge has two

explicit references to two faces. A face f will have a reference e(f) to one

of its boundary edges. The other boundary edges (except for those of the

holes) can be retrieved by stepping through them using the DCEL structure.

For the boundary of the holes, f will have the references h1(f); : : : ; hm(f),

where m � 0 is the number holes in f , each pointing to one boundary edge

of them di�erent holes. Due to this modi�cation, non-connected graphs will

become connected from a computational point of view, and the algorithm

Traverse will correctly visit all its faces, provided that the enumeration

\for each edge e0 on the boundary of f do" implies both the outer and the

hole boundary edges. A proper call to visit each face of a possibly multiply

connected graph is Traverse(h1(F), F), where F is the surrounding face.

Step 1: Projecting the edges

Let the object scene be a set of polyhedra, that is, where the faces of the

objects are planar polygons. Assume furthermore that the boundary of

the polyhedra (the structure of the vertices, edges and faces) is given by

DCEL structures. (The DCEL structure used for boundary representation

is known as the winged edge data structure for people familiar with shape

modeling techniques.) This assumption is important because during the

traversal of the computed visibility graph we will enter a new region by

crossing one of its boundary edges, and we will have to know the polygon(s)

6.7. PLANAR GRAPH BASED ALGORITHMS 193

of the object scene the projection of which we leave or enter when crossing

the edge on the image plane.

If the total number of edges is n, then the time T1 required by this step

is proportional to the number of edges, that is:

T1 = O(n): (6:58)

Step 2: Calculating the intersection points

The second step is the calculation of the intersection points between the

projected edges on the image plane. In the worst case the number of inter-

section points between n line segments can be as high as O(n2) (imagine, for

instance, a grid of n=2 horizontal and n=2 vertical segments, where each of

the horizontal ones intersects each of the vertical ones). In this worst case,

therefore, calculation time cannot be better than O(n2), and an algorithm

that compares each segment with all other ones would accomplish the task

in optimal worst-case time. The running time of this algorithm would be

O(n2), independently of the real number of intersections. We can create

algorithms, however, the running time of which is \not too much" if there

are \not too many" intersections. Here we give the draft of such an output

sensitive algorithm, based on [D�ev93] and [BO79]. Let us assume that no

three line segments intersect at the same point and all the 2n endpoints of

the n segments have distinct x-coordinates on the plane, a consequence of

the latter being that no segments are vertical. Resolving these assumptions

would cause an increase only in the length of the algorithm but not in its

asymptotic complexity. See [BO79] for further details. Consider a vertical

line L(x) on the plane at a given abscissa x. L(x) may or may not intersect

some of our segments, depending on x. The segments e1; : : : ; ek intersecting

L(x) at points (x; y1); : : : ; (x; yk) appear in an ordered sequence if we walk

along L(x). A segment ei is said to be above ej at x if yi > yj. This relation

is a total order for any set of segments intersecting a given vertical line. A

necessary condition in order for two segments ei and ej to intersect is that

there be some x at which ei and ej appear as neighbors in the order. All

intersection points can be found by sweeping a vertical line in the horizontal

direction on the plane and always comparing the neighbors in the order for

intersection. The order along L(x) can change when the abscissa x corre-

sponds to one of the following: the left endpoint (beginning) of a segment,

194 6. VISIBILITY CALCULATIONS

the right endpoint (end) of a segment, and/or the intersection point of two

segments. Thus our sweep can be implemented by stepping through only

these speci�c positions, called events. The following algorithm is based on

these ideas, which we can call as the sweep-line approach. It maintains a

set Q for the event positions, a set R for the intersection points found and

a set S for storing the order of segments along L(x) at the actual position.

All three sets are ordered, and for set S, succ(s) and prec(s) denote the

successor and the predecessor of s 2 S, respectively.

Q = the set of all the 2n segment endpoints;

R = fg; S = fg;

sort Q by increasing x-values;

for each point p 2 Q in increasing x-order do

if p is the left endpoint of a segment s then

insert s into S;

if s intersects succ(s) at any point q then insert q into Q;

if s intersects prec(s) at any point q then insert q into Q;

else if p is the right endpoint of a segment s then

if succ(s) and prec(s) intersect at any point q then

if q 62 Q then insert q into Q;

endif

delete s from S

else // p is the intersection of segments s and t, say

add p to R; swap s and t in S; //say s is above t

if s intersects succ(s) at any point q then

if q 62 Q then insert q into Q;

endif

if t intersects prec(t) at any q then

if q 62 Q then insert q into Q;

endif

endif

endfor

Note that the examinations \if q 62 Q" are really necessary, because the

intersection of two segments can be found to occur many times (the appear-

ance and disappearance of another segment between two segments can even

occur n � 2 times!). The �rst three steps can be performed in O(n log n)

6.7. PLANAR GRAPH BASED ALGORITHMS 195

time because of sorting. The main loop is executed exactly 2n + k times,

where k is the number of intersection points found. The time complex-

ity of one cycle depends on how sophisticated the data structures used for

implementing the sets Q and S are, because insertions and deletions have

to be performed on them. R is not crucial, a simple array will do. Since

the elements of both Q and S have to be in order, an optimal solution is

the use of balanced binary trees. Insertions, deletions and searching can

be performed in O(logN) time on a balanced tree storing N elements (see

[Knu73], for instance). Now N = O(n2) for Q and N = O(n) for S, hence

logN = O(log n) for both. We can conclude that the time complexity of

our algorithm for �nding the intersection of n line segments in the plane,

that is the time T2 required by step 2 of the visibility algorithm is:

T2 = O((n+ k) log n): (6:59)

Such an algorithm is called an output sensitive algorithm, because its

complexity depends on the actual size of the output. It is generally worth

mentioning that if we have a problem with a very bad worst-case complexity

due to the possible size of the output, although the usual size of the output

is far less, then we have to examine whether an output sensitive algorithm

can be constructed.

Step 3: Constructing the subdivision graph G

In step 3 of the proposed visibility algorithm we have to produce the sub-

division graph G so that its faces can be traversed e�ciently in step 4. A

proper representation of G, as we have seen earlier, is a DCEL structure.

It will be computed in two steps, �rst producing an intermediate structure

which is then easily converted to a DCEL representation. We can assume

that the calculations in steps 1 and 2 have been performed so that all the

points | that is the projections of the 2n vertices and the k intersection

points | have references to the edge(s) they lie on. First of all, for each

edge we sort the intersection points lying on it (sorting is done along each

edge, individually). Since O(N logN) time is su�cient (and also necessary)

for sorting N numbers, the time consumed by the sorting along an edge ei
is O(Ni logNi), where Ni is the number of intersection points to be sorted

on ei. Following from the general relation that if N1 + : : :+Nn = N , then

N1 logN1+ : : :+Nn logNn � N1 logN + : : :+Nn logN = N logN; (6:60)

196 6. VISIBILITY CALCULATIONS

the sum of the sorting time at the edges is O(k log k) = O(k log n), since

N = 2k = O(n2) (one intersection point appears on two segments). Having

sorted the points along the edges, we divide the segments into subsegments

at the intersection points. Practically speaking this means that the represen-

tation of each edge will be transformed into a doubly linked list, illustrated

in �gure 6.16. Such a list begins with a record describing its starting point.

Figure 6.16: Representation of a subdivided segment

It is (doubly) linked to a record describing the �rst subsegment, which is

further linked to its other endpoint, etc. The last element of the list stores

the end point of the edge. The total time needed for this computation is

O(n + k), since there are n + 2k subsegments. Note that each intersec-

tion point is duplicated although this could be avoided by modifying the

representation a little. Note furthermore that if the real spatial edges cor-

responding to the projected edges ei1; : : : ; eim meet at a common vertex on

the boundary of a polyhedron, then the projection of this common vertex

is represented m times in our present structure. So we merge the di�er-

ent occurrences of each vertex into one. This can be done by �rst sorting

the vertices in lexicographic order with respect to their x; y coordinates and

then merging equal ones. Lexicographic ordering means that a vertex with

coordinates x1; y1 precedes another one with coordinates x2; y2, if x1 < x2
or x1 = x2 ^ y1 < y2. They are equal if x1 = x2 ^ y1 = y2. The merging

operation can be performed in O((n+k) log(n+k)) = O((n+k) log n) time

because of the sorting step. Having done this, we have a data structure for

the subdivision graph G, which is similar to an adjacency list representation

with the di�erence that there are not only vertices but edges too, and the

neighbors (edges, vertices) are not ordered around the vertices. Ordering

adjacent edges around the vertices can be done separately for each vertex.

For a vertex vi with Ni edges around it, this can be done in O(Ni logNi)

time. The total time required by the m vertices will be O((n + k) log n),

using relation 6.60 again with N1 + : : :+Nm = n+ 2k. The data structure

obtained in this way is halfway between the adjacency list and the DCEL

6.7. PLANAR GRAPH BASED ALGORITHMS 197

representation of G. It is \almost" DCEL, since edges appear explicitly,

and each edge has references to its endpoints. The two reasons for incom-

pleteness are that no explicit representation of faces appears, and the edges

have no explicit reference to the edges next to them around the endpoints

| the references exist, however, but only implicitly through the vertices.

Since the edges are already ordered about the vertices, these references can

be made explicit by scanning all the edges around each vertex, which re-

quires O(n+ k) time. The faces can be constructed by �rst generating the

faces of the connected components of G separately, and then merging the

DCEL structure of the components into one DCEL structure. The �rst step

can be realized by using an algorithm very similar to Traverse, since the

outer boundary of each face can be easily retrieved from our structure, be-

cause edges are ordered around vertices. Assuming that the face references

f1(e); f2(e) of each edge e are initialized to null, the following algorithm

constructs the faces of G and links them into the DCEL structure:

for each edge e do MakeFaces(e); endfor

MakeFaces(e)

for i = 1 to 2 do

if fi(e) = null then

construct a new face f ;

e(f) = e; set m (the number of holes in f) to 0;

for each edge e0 on the boundary of f do

if f1(e
0) corresponds to the side of f then

f1(e
0) = f ;

else

f2(e
0) = f ;

endif

MakeFaces(e0);

endfor

endif

endfor

end

Note that the recursive subroutine MakeFaces(e) traverses that con-

nected component of G which contains the argument edge e. The time

complexity of the algorithm is proportional to the number of edges, that

198 6. VISIBILITY CALCULATIONS

is O(n + k), because each edge is taken at most three times (once in the

main loop and twice when traversing the connected component containing

the edge).

The resulting structure generally consists of more than one DCEL struc-

ture corresponding to the connected components of G. Note furthermore

that the surrounding faces contain no holes. Another observation is that

for any connected component G0 of G the following two cases are possible:

(1) G0 falls onto the territory of at least one component (as in �gure 6.14)

and then it is contained by at least one face. (2) G0 falls outside any other

components (it falls into their surrounding face). In case (1) the faces con-

taining G0 form a nested sequence. Let the smallest one be denoted by f .

Then for each boundary edge of G0, the reference to the surrounding face

of G0 has to be substituted by a reference to f . Moreover, the boundary

edges of G0 will form the boundary of a hole in the face f , hence a new hole

edge reference hm+1(f) (assuming that f has had m holes so far) has to be

created for f , and hm+1(f) is to be set to one of the boundary edges of G0.

In case (2) the situation is very similar, the only di�erence being that the

surrounding face F corresponding to the resulting graph G plays the role

of f . Thus the problem is �rst creating F , the \united" surrounding face

of G, and then locating and linking the connected components of G in its

faces. In order to accomplish this task e�ciently, a sweep-line approach

will be used.

X

Y

Figure 6.17: Slabs

6.7. PLANAR GRAPH BASED ALGORITHMS 199

The problem of locating a component, that is �nding the face containing

it, is equivalent to the problem of locating one of its vertices, that is, our

problem is a point location problem. Imagine a set of vertical lines through

each vertex of the graph G, as shown in �gure 6.17. These parallel lines

divide the plane into unbounded territories, called slabs. The number of

slabs is O(n + k). Each slab is divided into O(n + k) parts by the crossing

edges, and the crossing edges always have the same order along any ver-

tical line in the interior of the slab. Given e�cient data structures (with

O(log(n+k)) search time) for storing the slabs and for the subdivision inside

the slabs, the problem of locating a point can be performed e�ciently (in

O(log(n+ k)) time). This is the basic idea behind the following algorithm

which �rst determines the order of slabs, and then scans the slabs in order

(from left to right) and incrementally constructs the data structure storing

the subdivision. This data structure is a balanced binary tree, which allows

e�cient insertion and deletion operations on it. In order that the algorithm

may be understood, two more notions must be de�ned. Each vertical line

(beginning of a slab) corresponds to a vertex. The edges incident to this

vertex are divided into two parts: the edges on the left side of the line are

called incoming edges, while those on the right side are outgoing edges. If

we imagine a vertical line sweeping the plane from left to right, then the

names are quite apt. The vertex which is �rst encountered during the sweep

| that is, the vertex furthest to the left | de�nitely corresponds to the

boundary of the (�rst) hole of the surrounding face F , hence F can be con-

structed at this stage. (Note that this is so because the line segments are

assumed to be straight.) Generally, if a vertex v with no incoming edges

is encountered during the sweep (this is the case for the furthest left ver-

tex too), it always denotes the appearance of a new connected component,

which then has to be linked into the structure. The structure storing the

subdivision of the actual slab (that is the edges crossing the actual slab)

will be a balanced tree T .

200 6. VISIBILITY CALCULATIONS

The algorithm is the following:

sort all the vertices of G by their (increasing) x coordinates;

create F (the surrounding face);

T = fg;

for each vertex v in increasing x-order do

if v has only outgoing edges (a new component appears) then

f = the face containing v (search in T);

mutually link f and the boundary chain containing v;

endif

for all the incoming edges ein at v do

delete ein from T ;

endfor

for all the outgoing edges eout at v do

insert eout into T ;

endfor

endfor

The face f containing a given vertex v can be found by �rst searching

for the place where v could be inserted into T , and then f can be retrieved

from the edge either above or below the position of v in T . If T is empty,

then f = F .

The sorting (�rst) step can be done in O((n + k) log(n + k)) = O((n +

k) log n) time; the main cycle is executed O(n + k) times; the insertions

into and deletions from T need only O(log(n + k)) = O(log n) time. The

time required to link the boundary of a connected component into the face

containing it is proportional to the number of edges in the boundary chain,

but each component is linked only once (when encountering its leftmost

vertex), hence the total time required by linking is O(n + k). Thus the

running time of the algorithm is O((n + k) log n).

We have come up with a DCEL representation of the subdivision graph

G, and we can conclude that the time T3 consumed by step 3 of the visibility

algorithm is:

T3 = O((n+ k) log n): (6:61)

6.7. PLANAR GRAPH BASED ALGORITHMS 201

Steps 4{9: Traversing the subdivision graph G

Note that it causes no extra di�culties in steps 1{3 to maintain two more

references F1(e); F2(e) for each edge e, pointing to the spatial faces incident

to the original edge from which e has been projected (these are boundary

faces of polyhedra in the object scene).

Steps 4{9 of the algorithm will be examined together. The problem is to

visit each face of G, retrieve the spatial polygon closest to the image plane

for the face, and then draw it. We have already proposed the algorithm

Traverse for visiting the faces of a DCEL structure. Its time complexity

is linearly proportional to the number of edges in the graph, if the action

performed on the faces takes only a constant amount of time. We will

modify this algorithm a little bit and examine the time complexity of the

action. The basic idea is the following: for each face f of G, there are

some spatial polygons, the projection of which completely covers f . Let

us call them candidates. The projections of all the other polygons have

empty intersection with f , hence they cannot be visible in f . Candidate

polygons are always in a unique order with respect to their distance from

the image plane (that is from f). The candidate polygon must always be

retrieved at the �rst position. The candidate-set changes if we cross an edge

of G. If we cross some edge e, then for each of the two spatial faces F1(e)

and F2(e) pointed to by e there are two possibilities: either it appears as a

new member in the set of candidates or it disappears from it, depending on

which direction we cross e. Thus we need a data structure which is capable

of storing the actual candidates in order, on which insertions and deletions

can be performed e�ciently, and where retrieving the �rst element can be

done as fast as possible. The balanced binary tree would be a very good

candidate were there not a better one: the heap. An N -element heap is a

1-dimensional array H[1; : : : ; N], possessing the property:

H[i] � H[2i] and H[i] � H[2i+ 1]: (6:62)

Insertions and deletions can be done in O(logN) time [Knu73], just as for

balanced binary trees, but retrieving the �rst element (which is alwaysH[1])

requires only constant time. Initializing a heap H for storing the candidate

polygons at any face f can be done inO(n log n) time, sinceN = O(n) in our

case (from Euler's law concerning the number of faces, edges and vertices

of polyhedra). This has to be done only once before the traversal, because

202 6. VISIBILITY CALCULATIONS

H can be updated during the traversal when crossing the edges. Hence the

time required for retrieving the closest polygon to any of the faces (except

for the �rst one) will not be more than O(log n). The �nal step is the

drawing (�lling the interior) of the face with the color of the corresponding

polygon. Basic 2D scan conversion algorithms can be used for this task. An

arbitrary face fi with Ni edges can be raster converted in O(Ni logNi+Pi)

time, where Pi is the number of pixels it covers (see [NS79]). The total

time spent on raster converting the faces of G is O((n+k) log n+R2), since

N1 + : : : + Nm = 2(n + 2k), and P1 + : : : + Pm � R2 (no pixel is drawn

twice), where R2 is the resolution (number of pixels) of the screen. Thus

the time T4 required by steps 4{9 of the visibility algorithm is:

T4 = O((n + k) log n +R2): (6:63)

This four-step analysis shows that the time complexity of the proposed

visibility algorithm, which �rst computes the visibility map induced by a set

of non-intersecting polyhedra having n edges altogether, and then traverses

its faces and �lls them with the proper color, is:

T1 + T2 + T3 + T4 = O((n+ k) log n+R2); (6:64)

where k is the number of intersections between the projected edges on the

image plane. It is not really an output sensitive algorithm, since many of

the k intersection points may be hidden in the �nal image, but it can be

called an intersection sensitive algorithm.

Chapter 7

INCREMENTAL SHADING

TECHNIQUES

Incremental shading models take a very drastic approach to simplifying

the rendering equation, namely eliminating all the factors which can cause

multiple interdependence of the radiant intensities of di�erent surfaces. To

achieve this, they allow only coherent transmission (where the refraction

index is 1), and incoherent re
ection of the light from abstract lightsources,

while ignoring the coherent and incoherent re
ection of the light coming

from other surfaces.

The re
ection of the light from abstract lightsources can be evaluated

without the intensity of other surfaces being known, so the dependence

between them has been eliminated. In fact, coherent transmission is the

only feature left which can introduce dependence, but only in one way,

since only those objects can alter the image of a given object which are

behind it, looking at the scene from the camera.

Suppose there are nl abstract lightsources (either directional, positional

or
ood type) and that ambient light is also present in the virtual world.

Since the
ux of the abstract lightsources incident to a surface point can

be easily calculated, simplifying the integrals to sums, the shading equation

has the following form:

Iout = Ie+ ka � Ia+ kt � It+
nlX
l

rl � Il � kd � cos �in+
nlX
l

rl � Il � ks � cos
n (7:1)

where ka is the re
ection coe�cient of the ambient light, kt, kd and ks are the

203

204 7. INCREMENTAL SHADING TECHNIQUES

transmission, di�use and specular coe�cients respectively, �in is the angle

between the direction of the lightsource and the surface normal, is the

angle between the viewing vector and the mirror direction of the incident

light beam, n is the specular exponent, Il and Ia are the incident intensities

of the normal and ambient lightsources at the given point, It is the intensity

of the surface behind a transmissive object, Ie is the own emission, and rl
is the shadow factor representing whether a lightsource can radiate light

onto the given point, or whether the energy of the beam is attenuated by

transparent objects, or whether the point is in shadow, because another

opaque object is hiding it from the lightsource:

rl =

8>>>>><
>>>>>:

1 if the lightsource l is visible from this point

Q
i

k
(i)
t if the lightsource is masked by transparent objects

0 if the lightsource is hidden by an opaque object

(7:2)

where k
(1)
t ; k

(2)
t ; : : : ; k

(n)
t are the transmission coe�cients of the transparent

objects between the surface point and lightsource l.

The factor rl is primarily responsible for the generation of shadows on

the image.

7.1 Shadow calculation

The determination of rl is basically a visibility problem considering whether

a lightsource is visible from the given surface point, or equally, whether

the surface point is visible from the lightsource. Additionally, if there are

transparent objects, the solution also has to determine the objects lying in

the path of the beam from the lightsource to the surface point.

The second, more general case can be solved by ray-tracing, generating

a ray from the surface point to the lightsource and calculating the intersec-

tions, if any, with other objects. In a simpli�ed solution, however, where

transparency is ignored in shadow calculations, that is where rl can be ei-

ther 0 or 1, theoretically any other visible surface algorithm can be applied

setting the eye position to the lightsource, then determining the surface

parts visible from there, and declaring the rest to be in shadow. The main

di�culty of shadow algorithms is that they have to store the information

7.1. SHADOW CALCULATION 205

regarding which surface parts are in shadow until the shading calculation,

or else that question has to be answered during shading of each surface

point visible in a given pixel, preventing the use of coherence techniques

and therefore limiting the possible visibility calculation alternatives to ex-

pensive ray-tracing.

An attractive alternative algorithm is based on the application of the z-

bu�er method, requiring additional z-bu�ers, so-called shadow maps, one

for each lightsource (�gure 7.1).

eye
pixel

visible object

possible hiding object

X,Y,Z
X Y Zl l l

* * *, ,

lightsource zlight

Zbuffer

Figure 7.1: Shadow map method

The algorithm consists of a z-bu�er step from each lightsource l setting

the eye position to it and �lling its shadow map zlightl[X;Y], then a single

modi�ed z-bu�er step for the observer's eye position �lling Zbuffer[X;Y].

From the observer's eye position, having checked the visibility of the sur-

face in the given pixel by the Zsurface[X;Y] < Zbuffer[X;Y] inequality, the

algorithm transforms the 3D point (X;Y;Zsurface[X;Y]) from the observer's

eye coordinate system (screen coordinate system) to each lightsource coor-

dinate system, resulting in:

(X;Y;Zsurface[X;Y])
T

=) (X�

l
; Y �

l
; Z�

l
): (7:3)

If Z�

l
> zlight[X�

l
; Y �

l
], then the surface point was not visible from the

lightsource l, hence, with respect to this lightsource, it is in shadow (rl = 0).

The calculation of shadows seems time consuming, as indeed it is. In

many applications, especially in CAD, shadows are not vital, and they can

206 7. INCREMENTAL SHADING TECHNIQUES

even confuse the observer, making it possible to speed up image generation

by ignoring the shadows and assuming that rl = 1.

7.2 Transparency

If there are no transparent objects image generation is quite straightforward

for incremental shading models. By applying a hidden-surface algorithm,

the surface visible in a pixel is determined, then the simpli�ed shading

equation is used to calculate the intensity of that surface, de�ning the color

or (R;G;B) values of the pixel.

Should transparent objects exist, the surfaces have to be ordered in de-

creasing distance from the eye, and the shading equations have to be eval-

uated according to that order. Suppose the color of a \front" surface is

being calculated, when the intensity of the \back" surface next to it is al-

ready available (Iback), as is the intensity of the front surface, taking only

re
ections into account (Ireffront). The overall intensity of the front surface,

containing both the re
ective and transmissive components, is:

Ifront[X;Y] = Ireffront + kt � Iback[X;Y]: (7:4)

The transmission coe�cient, kt, and the re
ection coe�cients are obvi-

ously not independent. If, for example, kt were 1, all the re
ection param-

eters should be 0. One way of eliminating that dependence is to introduce

corrected re
ection coe�cients by dividing them by (1�kt), and calculating

the re
ection I�front with these corrected parameters. The overall intensity

is then:

Ifront[X;Y] = (1 � kt) � I
�

front + kt � Iback[X;Y]: (7:5)

This formula can be supported by a pixel level trick. The surfaces can be

rendered independently in order of their distance from the eye, and their

images written into the frame bu�er, making a weighted sum of the re
ective

surface color, and the color value already stored in the frame bu�er (see also

subsection 8.5.3 on support for translucency and dithering).

7.3. APPLICATION OF THE INCREMENTAL CONCEPT IN SHADING 207

7.3 Application of the incremental concept

in shading

So far, the simpli�ed shading equation has been assumed to have been eval-

uated for each pixel and for the surface visible in this pixel, necessitating the

determination of the surface normals to calculate the angles in the shading

equation.

The speed of the shading could be signi�cantly increased if it were possible

to carry out the expensive computation just for a few points or pixels, and

the rest could be approximated from these representative points by much

simpler expressions. These techniques are based on linear (or in extreme

case constant) approximation requiring a value and the derivatives of the

function to be approximated, which leads to the incremental concept. These

methods are e�cient if the geometric properties can also be determined in

a similar way, connecting incremental shading to the incremental visibil-

ity calculations of polygon mesh models. Only polygon mesh models are

considered in this chapter, and should the geometry be given in a di�erent

form, it has to be approximated by a polygon mesh before the algorithms

can be used. It is assumed that the geometry will be transformed to the

screen coordinate system suitable for visibility calculations and projection.

There are three accepted degrees of approximation used in this problem:

1. Constant shading where the color of a polygon is approximated by a

constant value, requiring the evaluation of the shading equation once

for each polygon.

2. Gouraud shading where the color of a polygon is approximated by

a linear function, requiring the evaluation of the shading equation at

the vertices of the polygon. The color of the inner points is determined

by incremental techniques suitable for linear approximation.

3. Phong shading where the normal vector of the surface is approx-

imated by a linear function, requiring the calculation of the surface

normal at the vertices of the polygon, and the evaluation of the shad-

ing equation for each pixel. Since the color of the pixels is a non-linear

function of the surface normal, Phong shading is, in fact, a non-linear

approximation of color.

208 7. INCREMENTAL SHADING TECHNIQUES

ambient

diffuse

specular

Figure 7.2: Typical functions of ambient, di�use and specular components

In �gure 7.2 the intensity distribution of a surface lit by positional and

ambient lightsources is described in terms of ambient, di�use and specular

re
ection components. It can be seen that ambient and di�use components

can be fairly well approximated by linear functions, but the specular term

tends to show strong non-linearity if a highlight is detected on the surface.

That means that constant shading is acceptable if the ambient lightsource is

dominant, and Gouraud shading is satisfactory if ks is negligible compared

with kd and ka, or if there are no highlights on the surface due to the relative

arrangement of the lightsources, the eye and the surface. If these conditions

do not apply, then only Phong shading will be able to provide acceptable

image free from artifacts.

Other features, such as shadow calculation, texture or bump mapping (see

chapter 12), also introduce strong non-linearity of the intensity distribution

over the surface, requiring the use of Phong shading to render the image.

7.4 Constant shading

When applying constant shading, the simpli�ed rendering equation miss-

ing out the factors causing strong non-linearity is evaluated once for each

polygon:

Iout = Ie + ka � Ia +
nlX
l

Il � kd �maxf(~N � ~L); 0g: (7:6)

7.5. GOURAUD SHADING 209

In order to generate the unit surface normal ~N for the formula, two

alternatives are available. It can either be the \average" normal of the real

surface over this polygon estimated from the normals of the real surface in

the vertices of the polygon, or else the normal of the approximating polygon.

7.5 Gouraud shading

Having approximated the surface by a polygon mesh, Gouraud shading re-

quires the evaluation of the rendering equation at the vertices for polygons,

using the normals of the real surface in the formula. For the sake of sim-

plicity, let us assume that the polygon mesh consists of triangles only (this

assumption has an important advantage in that three points are always on

a plane). Suppose we have already evaluated the shading equation for the

vertices having resultant intensities I1, I2 and I3, usually on representative

wavelengths of red, green and blue light. The color or (R;G;B) values of the

inner pixels are determined by linear approximation from the vertex colors.

This approximation should be carried out separately for each wavelength.

n r =(X , Y , i)3 3 33

r =(X , Y , i)2 2 2 2
r =(X , Y , i)1 1 11

i(X,Y)

X

 Y

Figure 7.3: Linear interpolation in color space

Let i be the alias of any of Ired, Igreen or Iblue. The function i(X;Y) of the

pixel coordinates described in �gure 7.3 forms a plane through the vertex

points ~r1 = (X1; Y1; i1), ~r2 = (X2; Y2; i2) and ~r3 = (X3; Y3; i3) in (X;Y; i)

space. For notational convenience, we shall assume that Y1 � Y2 � Y3
and (X2; Y2) is on the left side of the [(X1; Y1); (X3; Y3)] line, looking at the

triangle from the camera position. The equation of this plane is:

~n � ~r = ~n � ~r1 where ~n = (~r2 � ~r1)� (~r3 � ~r1): (7:7)

210 7. INCREMENTAL SHADING TECHNIQUES

Denoting the constant ~n � ~r1 by C, and expressing the equation in scalar

form substituting the coordinates of the normal of the plane, ~n = (nX ; nY ; ni),

the function i(X;Y) has the following form:

i(X;Y) =
C � nX �X � nY � Y

ni
: (7:8)

The computational requirement of two multiplications, two additions and

a division can further be decreased by the incremental concept (recall section

2.3 on hardware realization of graphics algorithms).

Expressing i(X + 1; Y) as a function of i(X;Y) we get:

i(X+1; Y) = i(X;Y)+
@i(X;Y)

@X
�1 = i(X;Y)�

nX

ni
= i(X;Y)+�iX : (7:9)

(X ,Y ,i)1 1 1

(X ,Y ,i)

(X ,Y ,i)2

3

22

3 3

X

Y

i

i = i(X,Y)

Y
i sδ

Y X eδ

X iδ

YX sδ

Figure 7.4: Incremental concept in Gouraud shading

Since �iX does not depend on the actual X;Y coordinates, it has to be

evaluated once for the polygon. Inside a scan-line, the calculation of a

pixel color requires a single addition for each color coordinate according

to equation 7.9. Concerning the X and i coordinates of the boundaries of

the scan-lines, the incremental concept can also be applied to express the

starting and ending pixels.

7.5. GOURAUD SHADING 211

Since i and X vary linearly along the edge of the polygon, equations

2.33, 2.34 and 2.35 result in the following simple expressions in the range

of Y1 � Y � Y2, denoting Ks by Xstart and Ke by Xend, and assuming that

the triangle is left oriented as shown in �gure 7.4:

Xstart(Y + 1) = Xstart(Y) +
X2 �X1

Y2 � Y1
= Xstart(Y) + �Xs

Y

Xend(Y + 1) = Xend(Y) +
X3 �X1

Y3 � Y1
= Xend(Y) + �Xe

Y

istart(Y + 1) = istart(Y) +
i2 � i1

Y2 � Y1
= istart(Y) + �is

Y
(7.10)

The last equation represents in fact three equations, one for each color

coordinate, (R;G;B). For the lower part of the triangle in �gure 7.4, the

incremental algorithm is then:

Xstart = X1 + 0:5; Xend = X1 + 0:5;

Rstart = R1 + 0:5; Gstart = G1 + 0:5; Bstart = B1 + 0:5;

for Y = Y1 to Y2 do

R = Rstart; G = Gstart; B = Bstart;

for X = Trunc(Xstart) to Trunc(Xend) do

write(X;Y;Trunc(R);Trunc(G);Trunc(B));

R += �RX ; G += �GX ; B += �BX;

endfor

Xstart += �Xs

Y
; Xend += �Xe

Y
;

Rstart += �Rs

Y
; Gstart += �Gs

Y
; Bstart += �Bs

Y
;

endfor

Having represented the numbers in a �xed point format, the derivation

of the executing hardware of this algorithm is straightforward by the meth-

ods outlined in section 2.3 (on hardware realization of graphics algorithms).

Note that this algorithm generates a part of the triangle below Y2 coordi-

nates. The same method has to be applied again for the upper part.

Recall that the very same approach was applied to calculate the Z coor-

dinate in the z-bu�er method. Because of their algorithmic similarity, the

same hardware implementation can be used to compute the Z coordinate,

and the R, G, B color coordinates.

The possibility of hardware implementation makes Gouraud shading very

attractive and popular in advanced graphics workstations, although it has

212 7. INCREMENTAL SHADING TECHNIQUES

surface

polygon mesh approximation

perceived color

calculated color

Figure 7.5: Mach banding

several severe drawbacks. It does not allow shadows, texture and bump

mapping in its original form, and introduces an annoying artifact called

Mach banding (�gure 7.5). Due to linear approximation in color space,

the color is a continuous, but not di�erentiable function. The human eye,

however, is sensitive to the drastic changes of the derivative of the color,

overemphasizing the edges of the polygon mesh, where the derivative is not

continuous.

7.6 Phong shading

In Phong shading only the surface normal is approximated from the real

surface normals in the vertices of the approximating polygon; the shad-

ing equation is evaluated for each pixel. The interpolating function of the

normal vectors is linear:

nX = aX �X + bX � Y + cX;

nY = aY �X + bY � Y + cY ;

nZ = aZ �X + bZ � Y + cZ :

(7:11)

Constants aX; : : : ; cZ can be determined by similar considerations as in

Gouraud shading from the normal vectors at the vertices of the polygon

(triangle). Although the incremental concept could be used again to reduce

the number of multiplications in this equation, it is not always worth doing,

since the shading equation requires many expensive computational steps

7.6. PHONG SHADING 213

which mean that this computation is negligible in terms of the total time

required.

Having generated the approximation of the normal to a surface visible in

a given pixel, the complete rendering equation is applied:

Iout = Ie + ka � Ia +
nlX
l

rl � Il � kd �maxf(~N � ~L); 0g+

nlX
l

rl � Il � ks �maxf[2(~N � ~H)2 � 1]n; 0g (7:12)

Recall that dot products, such as ~N � ~L, must be evaluated for vectors in

the world coordinate system, since the viewing transformation may alter the

angle between vectors. For directional lightsources this poses no problem,

but for positional and
ood types the point corresponding to the pixel in

the world coordinate systemmust be derived for each pixel. To avoid screen

and world coordinate system mappings on the pixel level, the corresponding

(x; y; z) world coordinates of the pixels inside the polygon are determined

by a parallel and independent linear interpolation in world space. Note that

this is not accurate for perspective transformation, since the homogeneous

division of perspective transformation destroys equal spacing, but this error

is usually not noticeable on the images.

Assuming only ambient and directional lightsources to be present, the

incremental algorithm for half of a triangle is:

Xstart = X1 + 0:5; Xend = X1 + 0:5;
~Nstart = ~N1;

for Y = Y1 to Y2 do
~N = ~Nstart;

for X = Trunc(Xstart) to Trunc(Xend) do

(R;G;B) = ShadingModel(~N);

write(X;Y;Trunc(R);Trunc(G);Trunc(B));
~N += � ~NX;

endfor

Xstart += �Xs

Y
; Xend += �Xe

Y
;

~Nstart += � ~N s

Y
;

endfor

214 7. INCREMENTAL SHADING TECHNIQUES

The rendering equation used for Phong shading is not appropriate for

incremental evaluation in its original form. For directional and ambient

lightsources, however, it can be approximated by a two-dimensional Taylor

series, as proposed by Bishop [BW86], which in turn can be calculated incre-

mentally with �ve additions and a non-linear function evaluation typically

implemented by a pre-computed table in the computer memory.

The coe�cients of the shading equation, ka, kd, ks and n can also be

a function of the point on the surface, allowing textured surfaces to be

rendered by Phong shading. In addition it is possible for the approximated

surface normal to be perturbed by a normal vector variation function caus-

ing the e�ect of bump mapping (see chapter 12).

Chapter 8

z-BUFFER,

GOURAUD-SHADING

WORKSTATIONS

As di�erent shading methods and visibility calculations have diversi�ed the
image generation, many di�erent alternatives have come into existence for
their implementation. This chapter will focus on a very popular solution us-
ing the z-bu�er technique for hidden surface removal, and Gouraud shading

for color computation.
The main requirements of an advanced workstation of this category are:

� The workstation has to generate both 2D and 3D graphics at the speed

required for interactive manipulation and real-time animation.

� At least wire-frame, hidden-line and solid | Gouraud and constant

shaded | display of 3D objects broken down into polygon lists must
be supported. Some technique has to be applied to ease interpretation
of wire frame images.

� Both parallel and perspective projections are to be supported.

� Methods reducing the artifacts of sampling and quantization are needed.

� The required resolution is over 1000 � 1000 pixels, the frame bu�er

must have at least 12, but preferably 24 bits/pixel to allow for true

215

216 8. Z-BUFFER, GOURAUD-SHADING WORKSTATIONS

color mode and double bu�ering for animation. The z-bu�er must

have at least 16 bits/pixel.

8.1 Survey of wire frame image generation

The data
ow model of the wire frame image generation in a system applying

z-bu�er and Gouraud shading is described in �gure 8.1. The decompo-

sition reads the internal model and converts it to a wire-frame represen-

tation providing a list of edges de�ned by the two endpoints in the local

modeling coordinate system for each object. The points are transformed

�rst by the modeling transformation TM to generate the points in the

common world coordinate system. The modeling transformation is set be-

fore processing each object. From the world coordinate system the points
are transformed again to the screen coordinate system for parallel projec-

tion and to the 4D homogeneous coordinate system for perspective projec-
tion by a viewing transformation TV. Since the matrix multiplications
needed by the modeling and viewing transformations can be concatenated,
the transformation from the local modeling coordinates to the screen or to
the 4D homogeneous coordinate system can be realized by a single matrix

multiplication by a composite transformation matrix TC = TM �TV.
For parallel projection, the complete clipping is to be done in the screen

coordinate system by, for example, the 3D version of the Cohen{Sutherland
clipping algorithm. For perspective projection, however, at least the depth
clipping phase must be carried out before the homogeneous division, that

is in the 4D homogeneous coordinate system, then the real 3D coordinates
have to be generated by the homogeneous division, and clipping against

the side faces should be accomplished if this was not done in the 4D
homogeneous space.
The structure of the screen coordinate system is independent of the type

of projection, the X;Y coordinates of a point refer to the projected coor-
dinates in pixel space, and Z is a monotonously increasing function of the

distance from the camera. Thus the projection is trivial, only the X;Y

coordinates have to be extracted.
The next phase of the image generation is scan conversion, meaning the

selection of those pixels which approximate the given line segment and also

the color calculation of those pixels. Since pixels correspond to the integer

8.1. SURVEY OF WIRE FRAME IMAGE GENERATION 217

frame bu�er write

pixel operations

Pixel series: (X;Y; i)j1;2;:::n

scan conversion / depth cueuing

side face clipping

homogenous division

X = Xh=h; Y = Yh=h; Z = Zh=h

depth clipping

Line segment: (Xh; Yh; Zh; h)1;2 in 4D homogenous system

�TVIEW= T�1

uvw �Teye �Tshear �Tnorm

?

�TM
TC =

pixel data in frame bu�er

?

?

?

?

?

?

?

?

?

?

Line segments (xL; yL; zL; 1)1;2 in local coordinates
?

model decomposition

internal model

?

Figure 8.1: Data
ow of wire frame image synthesis (perspective projection)

218 8. Z-BUFFER, GOURAUD-SHADING WORKSTATIONS

grid of pixel space, and scan conversion algorithms usually rely on the in-

teger representation of endpoint coordinates, the coordinates are truncated

or rounded to integers.

Concerning color calculation, or shading, it is not worth working with

sophisticated shading and illumination models when the �nal image is wire-

frame. The simple assumption that all pixels of the vectors have the same

color, however, is often not satisfactory, because many lines crossing each

other may confuse the observer, inhibiting reconstruction of the 3D shape

in his mind. The understandability of wire-frame images, however, can be

improved by a useful trick, called depth cueing, which uses more intense

colors for points closer to the camera, while the color decays into the back-

ground as the distance of the line segments increases, corresponding to a

simpli�ed shading model de�ning a single lightsource in the camera position.

The outcome of scan-conversion is a series of pixels de�ned by the integer

coordinatesXp; Yp and the pixel color i. Before writing the color information
of the addressed pixel into the raster memory various operations can be
applied to the individual pixels. These pixel level operationsmay include
the reduction of the quantization e�ects by the means of dithering, or
arithmetic and logic operations with the pixel data already stored at the
Xp; Yp location. This latter procedure is called the raster operation.

Anti-aliasing techniques, for example, require the weighted addition of the
new and the already stored colors. A simple exclusive OR (XOR) operation,
on the other hand, allows the later erasure of a part of the wire-frame image
without a�ecting the other part, based on the identity (A� B) � B = A.
Raster operations need not only the generated color information, but also

the color stored in the frame bu�er at the given pixel location, thus an extra
frame bu�er read cycle is required by them.
The result of pixel level operations is �nally written into the frame bu�er

memory which is periodically scanned by the video display circuits which
generate the color distribution of the display according to the stored frame

bu�er data.

8.2 Survey of shaded image generation

The data
ow model of the shaded image generation in a z-bu�er,Gouraud

shading system is described in �gure 8.2.

8.2. SURVEY OF SHADED IMAGE GENERATION 219

scan converter

vertices of triangular facets
(xl; yl; zl; 1)1;2;3 +

normals
~n1; ~n2; ~n3

?
�TM

�TVIEW

?
4D homogenous coord:

(Xh; Yh; Zh; h)1;2;3
?

depth clipping

?

?
side face clipping

?
screen coordinates

(X; Y; Z)

?
�TM

?
Illumination model

?
i(R;G;B)1;2;3

?

? ?

i

i

linear interpolation
of the color in
the new vertices

linear interpolation
of the color in
the new vertices

x; y counters Z R G B
interpolator interpolator interpolator interpolator

?
Z-bu�er n n nR G B

? ? ?

? ? ?
dither / pixel operations

? ? ???
address enable data

Frame bu�er

? ? ? ? ?

homogenous division

-

-

?

internal model

model decomposition

? ?

Figure 8.2: Data
ow of shaded image synthesis

220 8. Z-BUFFER, GOURAUD-SHADING WORKSTATIONS

Now the decomposition reads the internal model and converts it to

a polygon list representation de�ning each polygon by its vertices in the

local modeling coordinate system for each object. To provide the neces-

sary information for shading, the real normals of the surfaces approximated

by polygon meshes are also computed at polygon vertices. The vertices

are transformed �rst by the modeling transformation then by the viewing

transformation by a single matrix multiplication with the composite trans-

formation matrix. Normal vectors, however, are transformed to the world

coordinate system, because that is a proper place for illumination calcula-

tion. Coordinate systems after shearing and perspective transformation are

not suitable, since they do not preserve angles, causing incorrect calcula-

tion of dot products. According to the concept of Gouraud shading, the

illumination equation is evaluated for each vertex of the polygon mesh

approximating the real surfaces, using the real surface normals at these

points. Depth cueing can also be applied to shaded image generation if
the illumination equation is modi�ed to attenuate the intensity proportion-
ally to the distance from the camera. The linear decay of the color at the
internal pixels will be guaranteed by linear interpolation of the Gouraud
shading.
Similarly to wire frame image generation, the complete clipping is to be

done in the screen coordinate system for parallel projection. An applicable
clipping algorithm is the 3D version of the Sutherland-Hodgman polygon
clipping algorithm. For perspective projection, however, at least the depth
clipping phase must be done before homogeneous division, that is in the
4D homogeneous coordinate system, then the real 3D coordinates have to be

generated by homogeneous division, and clipping against the side faces
should be accomplished if this was not done in 4D homogeneous space.
After the trivial projection in the screen coordinate system, the next

phase of image generation is scan conversion meaning the selection of
those pixels which approximate the given polygon and also the interpolation

of pixel colors from the vertex colors coming from the illumination formulae

evaluated in the world coordinate system. Since pixels correspond to the
integer grid of the pixel space, and scan conversion algorithms usually rely
on the integer representation of endpoint coordinates, the coordinates are

truncated or rounded to integers. The z-bu�er visibility calculation method

resolves the hidden surface problem during the scan conversion comparing
the Z-coordinate of each pixel and the value already stored in the z-bu�er

8.3. GENERAL SYSTEM ARCHITECTURE 221

memory. Since the transformation to the screen coordinate system has

been carefully selected to preserve planes, the Z-coordinate of an inner

point can be determined by linear interpolation of the Z-coordinates of the

vertices. This Z-interpolation and the color interpolation for the R;G and

B components are usually executed by a digital network. Since in hardware

implementations the number of variables is not
exible, polygons must be

decomposed into triangles de�ned by three vertices before the interpolation.

The pixel series resulting from the polygon or facet scan conversion can

also go through pixel level operations before being written into the frame

bu�er. In addition to dithering and arithmetic and logic raster operations,

the illusion of transparency can also be generated by an appropriate pixel

level method which is regarded as the application of translucency pat-

terns. The �nal colors are eventually written into the frame bu�er memory.

8.3 General system architecture

Examining the tasks to be executed during image generation from the point
of view of data types, operations, speed requirements and the allocated
hardware resources, the complete pipeline can be broken down into the
following main stages:

1. Internal model access and primitive decomposition. This stage should
be as
exible as possible to incorporate a wide range of models. The
algorithms are also general, thus some general purpose processor must
be used to run the executing programs. This processor will be called

the model access processor which is a sort of interface between
the graphics subsystem and the rest of the system. The model access
and primitive decomposition step needs to be executed once for an
interactive manipulation sequence and for animation which are the
most time critical applications. Thus, if there is a temporary mem-

ory to store the primitives generated from the internal model, then
the speed requirement of this stage is relatively modest. This bu�er

memory storing graphics primitives is usually called the display list

memory. The display list is the low level representation of the model
to be rendered on the computer screen in conjunction with the camera

and display parameters. Display lists are interpreted and processed
by a so-called display list processor which controls the functional

222 8. Z-BUFFER, GOURAUD-SHADING WORKSTATIONS

elements taking part in the image synthesis. Thus, the records of dis-

play lists can often be regarded as operation codes or instructions to a

special purpose processor, and the content of the display list memory

as an executable program which generates the desired image.

2. Geometric manipulations including transformation, clipping, projec-

tion and illumination calculation. This stage deals with geometric

primitives de�ned by points represented by coordinate triples. The

coordinates are usually
oating point numbers to allow
exibility and

to avoid rounding errors. At this stage fast, but simple
oating point

arithmetic is needed, including addition, multiplication, division and

also square roots for shading calculations, but the control
ow is very

simple and there is no need for accessing large data structures. A cost

e�ective realization of this stage may contain
oating point signal pro-
cessors, bit-slice ALUs or
oating point co-processors. The hardware
unit responsible for these tasks is usually called the geometry en-

gine, although one of its tasks, the illumination calculation, is not a
geometric problem. The geometry engines of advanced workstations

can process about 1 million points per second.

3. Scan-conversion, z-bu�ering and pixel level operations. These tasks

process individual pixels whose number can exceed 1 million for a
single image. This means that the time available for a single pixel is
very small, usually several tens of nanoseconds. Up to now commercial
programmable devices have not been capable of coping with such a
speed, thus the only alternatives were special purpose digital networks,
or high degree parallelization. However, recently very fast RISC pro-

cessors optimized for graphics have appeared, implementing internal
parallelization and using large cache memories to decrease signi�cantly
the number of memory cycles to fetch instructions. A successful rep-
resentative of this class of processors is the intel 860 microprocessor

[Int89] [DRSK92] which can be used not only for scan conversion,

but also as a geometry engine because of its appealing
oating point
performance. At the level of scan-conversion, z-bu�ering and pixel

operations, four sub-stages can be identi�ed. Scan conversion is re-
sponsible for the change of the representation from geometric to pixel.

The hardware unit executing this task is called the scan converter.

8.3. GENERAL SYSTEM ARCHITECTURE 223

The z-bu�ering hardware includes both the comparator logic and

the z-bu�er memory, and generates an enabling signal to overwrite

the color stored in the frame bu�er while it is updating the z-value for

the actual pixel. Thus, to process a single pixel, the z-bu�er memory

needs to be accessed for a read and an optional write cycle. Compar-

ing the speed requirements | several tens of nanosecond for a single

pixel |, and the cycle time of the memories which are suitable to

realize several megabytes of storage | about a hundred nanoseconds

|, it becomes obvious that some special architecture is needed to

allow the read and write cycles to be accomplished in time. The so-

lutions applicable are similar to those used for frame bu�er memory

design. Pixel level operations can be classi�ed according to their need

of color information already stored in the frame bu�er. Units carry-

ing out dithering and generating translucency patterns do not use

the colors already stored at all. Raster operations, on the other
hand, produce a new color value as a result of an operation on the
calculated and the already stored colors, thus they need to access the
frame bu�er.

4. Frame bu�er storage. Writing the generated pixels into the frame

bu�er memory also poses di�cult problems, since the cycle time
of commercial memories are several times greater than the expected
few tens of nanoseconds, but the size of the frame bu�er | several

megabytes | does not allow for the usage of very high speed mem-
ories. Fortunately, we can take advantage of the fact that pixels are
generated in a coherent way by image synthesis algorithms; that is
if a pixel is written into the memory the next one will probably be
that one which is adjacent to it. The frame bu�er memory must be

separated into channels, allocating a separate bus for each of them
in such a way that on a scan line adjacent pixels correspond to dif-
ferent channels. Since this organization allows for the parallel access
of those pixels that correspond to di�erent channels, this architecture

approximately decreases the access time by a factor of the number of

channels for coherent accesses.

5. The display of the content of the frame bu�er needs video display

hardware which scans the frame bu�er 50, 60 or 70 times each second

224 8. Z-BUFFER, GOURAUD-SHADING WORKSTATIONS

and produces the analog R, G and B signals for the color monitor.

Since the frame bu�er contains about 106 number of pixels, the time

available for a single pixel is about 10 nanoseconds. This speed re-

quirement can only be met by special hardware solutions. A further

problem arises from the fact that the frame bu�er is a double access

memory, since the image synthesis is continuously writing new val-

ues into it while the video hardware is reading it to send its content

to the color monitor. Both directions have critical timing require-

ments | ten nanoseconds and several tens of nanoseconds | higher

than would be provided by a conventional memory architecture. For-

tunately, the display hardware needs the pixel data very coherently,

that is, pixels are accessed one after the other from left to right, and

from top to bottom. Using this property, the frame bu�er row being

displayed can be loaded into a shift register which in turn rolls out

the pixels one-by-one at the required speed and without accessing the
frame bu�er until the end of the current row. The series of consecu-
tive pixels may be regarded as addresses of a color lookup table to
allow a last transformation before digital-analog conversion. For
indexed color mode, this lookup table converts the color indices (also
called pseudo-colors) into R;G;B values. For true color mode,

on the other hand, the R;G;B values stored in the frame bu�er are
used as three separate addresses in three lookup tables which are re-
sponsible for
-correction. The size of these lookup tables is usually
modest | typically 3 � 256 � 8 bits | thus very high speed memo-
ries having access times less than 10 nanoseconds can be used. The

outputs of the lookup tables are converted to analog signals by three
digital-to-analog converters.

Summarizing, the following hardware units can be identi�ed in the graph-
ics subsystem of an advanced workstation of the discussed category: model
access processor, display list memory, display list processor, geometry en-
gine, scan converter, z-bu�er comparator and controller, z-bu�er memory,

dithering and translucency unit, raster operation ALUs, frame bu�er

memory, video display hardware, lookup tables, D/A converters. Since each

of these units is responsible for a speci�c stage of the process of the image

generation, they should form a pipe-line structure. Graphics subsystems
generating the images are thus called as the output or image generation

8.3. GENERAL SYSTEM ARCHITECTURE 225

modeling
processor

display list
memory

display list
processor

geometry
 engine

 scan
converter z-buffer

controller
z-buffer
memory

translucency+
scissoringdithering

 pixel
operations

 pixel
operations

 pixel
operations

internal
model
of virtual
world

enable

comparison: <

pixel data X,Y,Z

write_enable

pixel address

pixel data
pixel bus

frame
buffer
channel

frame
buffer
channel

frame
buffer
channel

 shift
register

 shift
register

 shift
register

lookup table

D/A D/A D/A

R G B

X,Y

z

Figure 8.3: Architecture of z-bu�er, Gouraud-shading graphics systems

226 8. Z-BUFFER, GOURAUD-SHADING WORKSTATIONS

pipelines. Interaction devices usually form a similar structure, which is

called the input pipeline.

In the output pipeline the units can be grouped into two main subsystems:

a high-level subsystem which works with geometric information and a low-

level subsystem which deals with pixel information.

8.4 High-level subsystem

The high-level subsystem consists of the model access and display list pro-

cessors, the display list memory and the geometry engine.

The model access processor is always, the display processor is often, a

general purpose processor. The display list processor which is responsible

for controlling the rest of the display pipeline can also be implemented as
a special purpose processor executing the program of the display list. The

display list memory is the interface between the model access processor and
the display list processor, and thus it must have double access organization.
The advantages of display list memories can be understood if the case of
an animation sequence is considered. The geometric models of the objects
need to be converted to display list records or instructions only once before

the �rst image. The same data represented in an optimal way can be used
again for each frame of the whole sequence, the model access processor
just modi�es the transformation matrices and viewing parameters before
triggering the display list processor. Thus, both the computational burden
of the model access processor and the communication between the model

access and display list processors are modest, allowing the special purpose
elements to utilize their maximum performance.
The display list processor interprets and executes the display lists by ei-

ther realizing the necessary operations or by providing control to the other
hardware units. A lookup table set instruction, for example, is executed by

the display list processor. Encountering a DRAWLINE instruction, on the
other hand, it gets the geometry engine to carry out the necessary transfor-

mation and clipping steps, and forces the scan converter to draw the screen

space line at the points received from the geometry engine. Thus, the ge-
ometry engine can be regarded as the
oating-point and special instruction
set co-processor of the display list processor.

8.5. LOW-LEVEL SUBSYSTEM 227

8.5 Low-level subsystem

8.5.1 Scan conversion hardware

Scan conversion of lines

The most often used line generators are the implementations of Bresenham's

incremental algorithm that uses simple operations that can be directly im-

plemented by combinational elements and does not need division and other

complicated operations during initialization. The basic algorithm can gen-

erate the pixel addresses of a 2D digital line, therefore it must be extended

to produce the Z coordinates of the internal pixels and also their color

intensities if depth cueing is required. The Z coordinates and the pixel

colors ought to be generated by an incremental algorithm to allow for easy

hardware implementation. In order to derive such an incremental formula,

the increment of the Z coordinate and the color is determined. Let the 3D
screen space coordinates of the two end points of the line be [X1; Y1; Z1] and
[X2; Y2; Z2], respectively and suppose that the z-bu�er can hold values in
the range [0 : : : Zmax]. Depth cueing requires the attenuation of the colors
by a factor proportional to the distance from the camera, which is repre-

sented by the Z coordinate of the point. Assume that the intensity factor
of depth cueing is Cmax for Z = 0 and Cmin for Zmax. The number of pixels
composing this digital line is:

L = maxfjX2 �X1j; jY2 � Y1jg: (8:1)

Since Z varies linearly along the line, the di�erence of the Z coordinates of
two consecutive pixel centers is:

�Z =
Z2 � Z1

L
: (8:2)

Let I stand for any of the line's three color coordinates R;G;B. The

perceived color, taking into account the e�ect of depth cueing, is:

I�(Z) = I � C(Z) = I � (Cmax �
Cmax �Cmin

Zmax

� Z): (8:3)

The di�erence in color of the two pixel centers is:

�I =
I�(Z2)� I�(Z1)

L
: (8:4)

228 8. Z-BUFFER, GOURAUD-SHADING WORKSTATIONS

line
Bresenham

generator

>Clk
6 6

X Y

I
- -

Z> >

T
T�

�

6

66

�I

T
T�

�

6

66

�Z

P P

6 6

I Z (to z-bu�er)

-

Figure 8.4: Hardware to draw depth cueing lines

For easy hardware realization, Z and I� should be computed by integer
additions. Examining the formulae for �Z and �I�, we will see that they

are non-integers and not necessarily positive. Thus, some signed �xed point
representation must be selected for storing Z and I�. The calculation of the
Z coordinate and color I� can thus be integrated into the internal loop of
the Bresenham's algorithm:

3D BresenhamLine (X1; Y1; Z1;X2; Y2; Z2; I)
Initialize a 2D Bresenham's line generator(X1; Y1;X2; Y2);
L = maxfjX2 �X1j; jY2 � Y1jg;
�Z = (Z2 � Z1)=L;

�I = I � ((Cmin� Cmax) � (Z2 � Z1))=(Zmax � L);
Z = Z1 + 0:5;
I� = I � (Cmax� (Z1 � (Cmax � Cmin))=Zmax) + 0:5;
for X = X1 to X2 do

Iterate Bresenham's algorithm(X;Y);
I� += �I; Z += �Z; z = Trunc(Z);

if Zbu�er[X;Y] > z then

Write Zbu�er(X;Y; z);

Write frame bu�er(X;Y;Trunc(I�));

endif

endfor

8.5. LOW-LEVEL SUBSYSTEM 229

The z-bu�er check is only necessary if the line drawing is mixed with

shaded image generation, and it can be neglected when the complete image

is wire frame.

Scan-conversion of triangles

For hidden surface elimination the z-bu�er method can be used together

withGouraud shading if a shaded image is needed or with constant shad-

ing if a hidden-line picture is generated. The latter is based on the recog-

nition that hidden lines can be eliminated by a special version of the z-bu�er

hidden surface algorithm which draws polygons generating their edges with

the line color and �lling their interior with the color of the background. In

the �nal result the edges of the visible polygons will be seen, which are,

in fact, the visible edges of the object. Constant shading, on the other
hand, is a special version of the linear interpolation used in Gouraud shad-
ing with zero color increments. Thus the linear color interpolator can also
be used for the generation of constant shaded and hidden-line images. The

linear interpolation over a triangle is a two-dimensional interpolation over
the pixel coordinates X and Y , which can be realized by a digital network
as discussed in subsection 2.3.2 on hardware realization of multi-variate
functions. Since a color value consists of three scalar components | the
R, G and B coordinates | and the internal pixels' Z coordinates used for

z-bu�er checks are also produced by a linear interpolation, the interpola-
tor must generate four two-variate functions. The applicable incremental
algorithms have been discussed in section 6.3 (z-bu�er method) and in sec-
tion 7.5 (Gouraud shading). The complete hardware system is shown in
�gure 8.5.

8.5.2 z-bu�er

The z-bu�er consists of a Z-comparator logic and the memory subsystem.

As has been mentioned, the memory must have a special organization to

allow higher access speed than provided by individual memory chips when

they are accessed coherently; that is in the order of subsequent pixels in a

single pixel row. The same memory design problem arises in the context
of the frame bu�er, thus its solution will be discussed in the section of the

frame bu�er.

230 8. Z-BUFFER, GOURAUD-SHADING WORKSTATIONS

Y counter <

6Y1

AA��
comp

6 6 r
Y2

�STOP
>

Interpolator
<

6 6
�Xs

yX1 + 0:5 X1 + 0:5

Z1 + 0:5 R1 + 0:5

Interpolator
<

6 6
�Xe

y

> X counter

AA��
comp

<

6 6

Zstart

Interpolator
>

6 6
�Zs

y

Interpolator

>

�Zx

�

- Rstart

Interpolator
>

6 6
�Rs

y

Interpolator

>

�Rx

Z R66 XY

6

CLK

-�

Xstart Xend 6 6�

Z R

6 6

r

r
- -

G B

r r r
-SELECT

6 6 66

SEL

load step load step

load step load step

r r r

Figure 8.5: Scan converter for rendering triangles

The Z-comparator consists of a comparator element and a temporary
register to hold the Z value already stored in the z-bu�er. A comparison
starts by loading the Z value stored at the X;Y location of the z-bu�er into
the temporary register. This is compared with the new Z value, resulting in

an enabling signal that is true (enabled) if the new Z value is smaller than
the one already stored. The Z-comparator then tries to write the new value
into the z-bu�er controlled by the enabling signal. If the enabling signal is
true, then the write operation will succeed, otherwise the write operation
will not alter the content of the z-bu�er. The same enabling signal is used

to enable or disable rewriting the content of the frame bu�er to make the
z-bu�er algorithm complete.

8.5.3 Pixel-level operation

There are two categories of pixel-level operations: those which belong to
the �rst category are based on only the new color values, and those which
generate the �nal color from the color coming from the scan converter and

the color stored in the frame bu�er fall into the second category. The �rst

category is a post-processing step of the scan conversion, while the second

8.5. LOW-LEVEL SUBSYSTEM 231

is a part of the frame bu�er operation. Important examples of the post-

processing class are the transparency support, called the translucency

generator, the dithering hardware and the overlay management.

Support of translucency and dithering

As has been stated, transparency can be simulated if the surfaces are written

into the frame bu�er in order of decreasing distance from the camera and

when a new pixel color is calculated, a weighted sum is computed from the

new color and the color already stored in the frame bu�er. The weight is

de�ned by the transparency coe�cient of the object. This is obviously a

pixel operation. The dependence on the already stored color value, however,

can be eliminated if the weighting summation is not restricted to a single

pixel, and the low-pass �ltering property of the human eye is also taken into
consideration.
Suppose that when a new surface is rendered some of its spatially uni-

formly selected pixels are not written into the frame bu�er memory. The

image will contain pixel colors from the new surface and from the previously
rendered surface | which is behind the last surface | that are mixed to-
gether. The human eye will �lter this image and will produce the perception
of some mixed color from the high frequency variations due to alternating
the colors of several surfaces.

This is similar to looking through a �ne net. Since in the holes of the net
the world behind the net is visible, if the net is �ne enough, the observer will
have the feeling that he perceives the world through a transparent object
whose color is determined by the color of the net, and whose transparency
is given by the relative size of the holes in the net.

The implementation of this idea is straightforward. Masks, called translu-
cency patterns, are de�ned to control the e�ective degree of transparency
(the density of the net), and when a surface is written into the frame bu�er,

the X;Y coordinates of the actual pixel are checked whether or not they
select a 0 (a hole) in the mask (net), and the frame bu�er write operation
is enabled or disabled according to the mask value.

This check is especially easy if the mask is de�ned as a 4 � 4 periodic

pattern. Let us denote the low 2 bits of X and Y coordinates by Xj2 and
Y j2 respectively. If the 4 � 4 translucency pattern is T [x; y], then the bit

enabling the frame bu�er write is T [Xj2; Y j2].

232 8. Z-BUFFER, GOURAUD-SHADING WORKSTATIONS

The hardware generating this can readily be combined with the dithering

hardware discussed in subsection 11.5.2 (ordered dithers), as described in

�gure 8.6.

color

X

Y

dither
RAM

data

dithered colorn

d

n+d

2

2

address

d
Σ

translucency
 pattern
 RAM

write enable

Figure 8.6: Dither and translucency pattern generator

8.5.4 Frame bu�er

The frame bu�er memory is responsible for storing the generated image
in digital form and for allowing the video display hardware to scan it at
the speed required for
icker-free display. As stated, the frame bu�er is a

double access memory, since it must be modi�ed by the drawing engine on
the one hand, while it is being scanned by the video display hardware on
the other hand. Both access types have very critical speed requirements
which exceed the speed of commercial memory chips, necessitating special
architectural solutions. These solutions increase the e�ective access speed

for \coherent" accesses, that is for those consecutive accesses which need

data from di�erent parts of the memory. The problem of the video refresh
access is solved by the application of temporary shift registers which are

loaded parallelly, and are usually capable of storing a single row of the

image. These shift registers can then be used to produce the pixels at the
speed of the display scan (approx. 10 nsec/pixel) without blocking memory

access from the drawing engine.

8.5. LOW-LEVEL SUBSYSTEM 233

address decoder

FIFO

ALU

pixel planes

row shift

VRAM
channel

pixel mask

address decoder

FIFO

ALU

VRAM
channel

address decoder

FIFO

ALU

row shift

VRAM
channel

row shift

X,Y R,G,B write_enable

...

channel multiplexer

lookup table

D/A D/AD/A

R G B

address data

Figure 8.7: Frame bu�er architecture

234 8. Z-BUFFER, GOURAUD-SHADING WORKSTATIONS

The problem of high speed drawing accesses can be addressed by parti-

tioning the memory into independent channels and adding high-speed tem-

porary registers or FIFOs to these channels. The write operation of these

FIFOs needs very little time, and having written the new data into it, a

separate control logic loads the data into the frame bu�er memory at the

speed allowed by the memory chips. If a channel is not accessed very often,

then the e�ective access speed will be the speed of accessing the temporary

register of FIFO, but if the pixels of a single channel are accessed repeatedly,

then the access time will degrade to that of the memory chips. That is why

adjacent pixels are assigned to di�erent channels, because this decreases the

probability of repeated accesses for normal drawing algorithms. FIFOs can

compensate for the uneven load of di�erent channels up to their capacity.

In addition to these, the frame bu�er is also expected to execute arith-

metic and logic operations on the new and the stored data before modifying

its content. This can be done without signi�cant performance sacri�ce if
the di�erent channels are given independent ALUs, usually integrated with
the FIFOs.
The resulting frame bu�er architecture is shown in �gure 8.7.

Chapter 9

RECURSIVE RAY

TRACING

9.1 Simpli�cation of the illumination

model

The light that reaches the eye through a given pixel comes from the surface
of an object. The smaller the pixel is, the higher the probability that

only one object a�ects its color, and the smaller the surface element that
contributes to the light ray. The energy of this ray consists of three main
components. The �rst component comes from the own emission of the
surface. The second component is the energy that the surface re
ects into
the solid angle corresponding the the pixel, while the third is the light energy

propagated by refraction. The origin of the re
ective component is either a
lightsource (primary re
ection) or the surface of another object (secondary,
ternary, etc. re
ections). The origin of the refracted component is always
on the surface of the same object, because this component is going through
its interior. We have seen in chapter 3 that the intensity of the re
ected

light can be approximated by accumulating the following components:

� an ambient intensity I0, which is the product of the ambient re
ection

coe�cient ka of the surface and a global ambient intensity Ia assumed

to be the same at each spatial point

235

236 9. RECURSIVE RAY TRACING

� a di�use intensity Id, which depends on the di�use re
ection coe�cient

kd of the surface and the intensity and incidence angle of the light

reaching the surface element from any direction

� a specular intensity Is, which depends on the specular re
ection co-

e�cient ks of the surface and the intensity of the light. In addition,

the value is multiplied by a term depending on the angle between the

theoretical direction of re
ection and the direction of interest and a

further parameter n called the specular exponent

� a re
ection intensity Ir, which is the product of the (coherent) re
ec-

tive coe�cient kr of the surface and the intensity of the light coming

from the inverse direction of re
ection.

Refracted light can be handled similarly.

The following simpli�cations will be made in the calculations:

� Light rays are assumed to have zero width. This means that they
can be treated as lines, and are governed by the laws of geometric
optics. The ray corresponding to a pixel of the image can be a line
going through any of its points, in practice the ray is taken through

its center. A consequence of this simpli�cation is that the intersection
of a ray and the surface of an object becomes a single point instead
of a �nite surface element.

� Di�use and specular components in the re
ected light are considered
only for primary re
ections; that is, secondary, ternary, etc. inco-
herent re
ections are ignored (these can be handled by the radiosity
method). This means that if the di�use and specular components are

to be calculated for a ray leaving a given surface point, then the pos-
sible origins are not searched for on the surfaces of other objects, but
only the lightsources will be considered.

� When calculating the coherent re
ective and refractive components
for a ray leaving a given surface point, its origin is searched for on the

surface of the objects. Two rays are shot towards the inverse direction

of re
ection and refraction, respectively, and the �rst surface points

that they intersect are calculated. These rays are called the children

of our original ray. Due to multiple re
ections and refractions, child

9.1. SIMPLIFICATION OF THE ILLUMINATION MODEL 237

rays can have their own children, and the family of rays corresponding

to a pixel forms a binary tree. In order to avoid in�nite recurrence,

the depth of the tree is limited.

� Incoherent refraction is completely ignored. Implying this would cause

no extra di�culties | we could use a very similar model to that for

incoherent re
ection | but usually there is no practical need for it.

lightsource

eye

image
plane

s

s
r

r

t

t
r

pixel

Figure 9.1: Recursive ray tracing

These concepts lead us to recursive ray tracing. Light rays will be traced

backwards (contrary to their natural direction), that is from the eye back to
the lightsources. For each pixel of the image, a ray is shot through it from

the eye, as illustrated in �gure 9.1. The problem is the computation of its
color (intensity). First we have to �nd the �rst surface point intersected by
the ray. If no object is intersected, then the pixel will either take the color

of the background, the color of the ambient light or else it will be black. If
a surface point is found, then its color has to be calculated. This usually

means the calculation of the intensity components at the three representa-
tive wavelengths (R;G;B), that is, the illumination equation is evaluated in

order to obtain the intensity values. The intensity corresponding to a wave-
length is composed of ambient, di�use, specular, coherent re
ective and

coherent refractive components. For calculating the di�use and specular

238 9. RECURSIVE RAY TRACING

components, a ray is sent towards each lightsource (denoted by s in �gure

9.1). If the ray does not hit any object before reaching the lightsource, then

the lightsource illuminates the surface point, and the re
ected intensity is

computed, otherwise the surface point is in shadow with respect to that

lightsource. The rays emanated from the surface point towards the light-

sources are really called shadow rays. For calculating coherent re
ective

and refractive components, two rays are sent towards the inverse direction

of re
ection and refraction, respectively (denoted by r and t in �gure 9.1).

The problem of computing the color of these child rays is the same as for

the main ray corresponding to the pixel, so we calculate them recursively:

for each pixel p do

r = ray from the eye through p;

color of p = Trace(r, 0);
endfor

The subroutine Trace(r, d) computes the color of the ray r (a dth order
re
ective or refractive ray) by recursively tracing its re
ective and refractive

child rays:

Trace(r, d)

if d > dmax then return background color; endif
q = Intersect(r); // q: object surface point

if q = null then

return background color;
endif

c = AccLightSource(q); // c: color

if object (q) is re
ective (coherently) then
rr = ray towards inverse direction of re
ection;
c += Trace(rr, d + 1);

endif

if object (q) is refractive (coherently) then

rt = ray towards inverse direction of refraction;
c += Trace(rt, d+ 1);

endif

return c;

end

9.1. SIMPLIFICATION OF THE ILLUMINATION MODEL 239

The conditional return at the beginning of the routine is needed in order to

avoid in�nite recurrence (due to total re
ection, for example, in the interior

of a glass ball). The parameter dmax represents the necessary \depth" limit.

It also prevents the calculation of too \distant" generations of rays, since

they usually hardly contribute to the color of the pixel due to attenuation

at object surfaces. The function Intersect(r) gives the intersection point

between the ray r and the surface closest to the origin of r if it �nds it, and

null otherwise. The function AccLightSource(q) computes the accumu-

lated light intensities coming from the individual lightsources and reaching

the surface point q. Usually it is also based on function Intersect(r), just

like Trace(r):

AccLightSource(q)
c = ambient intensity + own emission; // c: color

for each lightsource l do
r = ray from q towards l;
if Intersect(r) = null then

c += di�use intensity;
c += specular intensity;

endif

endfor

return c;
end

The above routine does not consider the illumination of the surface point
if the light coming from a lightsource goes through one or more transpar-
ent objects. Such situations can be approximated in the following way.
If the ray r in the above routine intersects only transparent objects with

transmission coe�cients k
(1)
t ; k

(2)
t ; : : : ; k

(N)
t along its path, then the di�use

and specular components are calculated using a lightsource intensity of

k
(1)
t � k(2)t � : : : � k(N)

t � I instead of I, where I is the intensity of the light-

source considered. This is yet another simpli�cation, because refraction on
the surface of the transparent objects is ignored here.
It can be seen that the function Intersect(r) is the key to recursive

ray tracing. Practical observations show that 75{95% of calculation time

240 9. RECURSIVE RAY TRACING

is spent on intersection calculations during ray tracing. A brute force

approach would take each object one by one in order to check for possible

intersection and keep the one with the intersection point closest to the origin

of r. The calculation time would be proportional to the number of objects in

this case. Note furthermore that the function Intersect(r) is the only step

in ray tracing where the complexity of the calculation is inferred from the

number of objects. Hence optimizing the time complexity of the intersection

calculation would optimize the time complexity of ray tracing | at least

with respect to the number of objects.

9.2 Acceleration of intersection

calculations

Let us use the notation Q(n) for the time complexity (\query time") of
the routine Intersect(r), where n is the number of objects. The brute
force approach, which tests each object one by one, requires a query time
proportional to n, that is Q(n) = O(n). It is not necessary, however, to test
each object for each ray. An object lying \behind" the origin of the ray, for

example, will de�nitely not be intersected by it. But in order to be able to
exploit such situations for saving computation for the queries, we must have
in store some preliminary information about the spatial relations of objects,
because if we do not have such information in advance, all the objects will
have to be checked| we can never know whether the closest one intersected

is the one that we have not yet checked. The required preprocessing will
need computation, and its time complexity, say P (n), will appear. The
question is whether Q(n) can be reduced without having to pay too much
in P (n).
Working on intuition, we can presume that the best achievable (worst-

case) time complexity of the ray query is Q(n) = O(log n), as it is demon-

strated by the following argument. The query can give us n + 1 \combi-
natorially" di�erent answers: the ray either intersects one of the n objects

or does not intersect any of them. Let us consider a weaker version of our

original query: we do not have to calculate the intersection point exactly,
but we only have to report the index of the intersected object (calculating

the intersection would require only a constant amount of time if this index

9.2. ACCELERATION OF INTERSECTION CALCULATIONS 241

is known). A computer program can be regarded as a numbered list of in-

structions. The computation for a given input can be characterized by the

sequence i1; i2; : : : ; im of numbers corresponding to the instructions that the

program executed, where m is the total number of steps. An instruction

can be of one of two types: it either takes the form X f(X), where X is

the set of variables and f is an algebraic function, or else it takes the form

\IF f(X) � 0 THEN GOTO iyes ELSE GOTO ino", where � is one of the

binary relations =; <;>;�;�. The �rst is called a decision instruction; the

former is called a calculational instruction. Computational instructions do

not a�ect the sequence i1; i2; : : : ; im directly, that is, if ij is a calculational

instruction, then ij+1 is always the same. The sequence is changed directly

by the decision instructions: the next one is either iyes or ino. Thus, the

computation can be characterized by the sequence iD1 ; i
D
2 ; : : : ; i

D
d of deci-

sion instructions, where d is the number of decisions executed. Since there

are two possible further instructions (iyes and ino) for each decision, all the
possible sequences can be represented by a binary tree, the root of which
represents the �rst decision instruction, the internal nodes represent inter-
mediate decisions and the leaves correspond to terminations. This model
is known as the algebraic decision tree model of computation. Since
di�erent leaves correspond to di�erent answers, and there are n+1 of them,

the length dmax of the longest path from the root to any leaf cannot be
smaller than the depth of a balanced binary tree with n + 1 leaves, that is
dmax =
(log n).
The problem of intersection has been studied within the framework of

computational geometry, a �eld of mathematics. It is called the ray shoot-

ing problem by computational geometers and is formulated as \given n

objects in 3D-space, with preprocessing allowed, report the closest object
intersected by any given query ray". Mark de Berg [dB92] has recently
developed e�cient ray shooting algorithms. He considered the problem for
di�erent types of objects (arbitrary and axis parallel polyhedra, triangles

with angles greater than some given value, etc.) and di�erent types of

rays (rays with �xed origin or direction, arbitrary rays). His most general
algorithm can shoot arbitrary rays into a set of arbitrary polyhedra with
n edges altogether, with a query time of O(log n) and preprocessing time

and storage of O(n4+"), where " is a positive constant that can be made

as small as desired. The question of whether the preprocessing and storage
complexity are optimal is an open problem. Unfortunately, the complexity

242 9. RECURSIVE RAY TRACING

of the preprocessing and storage makes the algorithm not too attractive for

practical use.

There are a number of techniques, however, developed for accelerating

intersection queries which are suitable for practical use. We can consider

them as heuristic methods for two reasons. The �rst is that their ap-

proach is not based on complexity considerations, that is, the goal is not a

worst-case optimization, but rather to achieve a speed-up for the majority of

situations. The second reason is that these algorithms really do not reduce

the query time for the worst case, that is Q(n) = O(n). The achievement

is that average-case analyses show that they are better than that. We will

overview a few of them in the following subsections.

9.2.1 Regular partitioning of object space

Object coherence implies that if a spatial point p is contained by a given
object (objects), then other spatial points close enough to p are probably
contained by the same object(s). On the other hand, the number of objects
intersecting a neighborhood �p of p is small compared with the total number
of objects, if the volume of �p is small enough. It gives the following idea

for accelerating ray queries. Partition the object space into disjoint cells
C1; C2; : : : ; Cm, and make a list Li for each cell Ci containing references to
objects having non-empty intersection with the cell. If a ray is to be tested,
then the cells along its path must be scanned in order until an intersection
with an object is found:

Intersect(r)
for each cell Ck along r in order do

if r intersects at least one object on list Lk then

q = the closest intersection point;
return q;

endif

endfor

return null;

end

Perhaps the simplest realization of this idea is that the set of cells,
C1; C2; : : : ; Cm, consists of congruent axis parallel cubes, forming a regular

9.2. ACCELERATION OF INTERSECTION CALCULATIONS 243

r

r

r
r

1 2 R

1

2

R

}b

}b

}b

a

Figure 9.2: Regular partitioning of object space

spatial grid. The outer cycle of the above routine can then be implemented
by an incremental line drawing algorithm; Fujimoto et al. [FTK86], for
instance, used a 3D version of DDA (digital di�erential analyzer) for this
task. If the resolution of the grid is the same, say R, in each of the three

spatial directions, then m = R3. The number of cells, k, intersected by a
given ray is bounded by:

k � 1 + 7(R � 1) (9:1)

where equality holds for a ray going diagonally (from one corner to the
opposite one) through the \big cube", which is the union of the small cells.

Thus:
k = O(R) = O(3

p
m): (9:2)

If we set m = O(n), where n is the number of objects, and the objects are so

nicely distributed that the length of the lists Li remains under a constant

value (jLij = O(1)), then the query time Q(n) can be as low as O(3
p
n).

In fact, if we allow the objects to be only spheres with a �xed radius r,

and assume that their centers are uniformly distributed in the interior of

a cube of width a, then we can prove that the expected complexity of the

query time can be reduced to the above value by choosing the resolution R

properly, as will be shown by the following stochastic analysis. One more

244 9. RECURSIVE RAY TRACING

assumption will obviously be needed: r must be small compared with a. It

will be considered by examining the limiting case a!1 with r �xed and

n proportional to a3. The reason for choosing spheres as the objects is that

spheres are relatively easy to handle mathematically.

b

b

b

rr

r

r
r r

r

D

C

i

i

:

Figure 9.3: Center of spheres intersecting a cell

If points p1; : : : ; pn are independently and uniformly distributed in the
interior of a set X, then the probability of the event that pi 2 Y � X is:

Prfpi 2 Y g = jY jjXj (9:3)

where j � j denotes volume. Let X be a cube of width a, and the resolution of
the grid of cells be R in all three spatial directions. The cells C1; C2; : : : ; Cm

will be congruent cubes of width b = a=R and their number is m = R3, as
shown in �gure 9.2. A sphere will appear on the list Li corresponding to
cell Ci if it intersects the cell. The condition of this is that the center of

the sphere falls into a rounded cube shaped region Di around the cell Ci,
as shown in �gure 9.3. Its volume is:

jDij = b3 + 6b2r + 3br2� +
4r3�

3
: (9:4)

The probability of the event that a list Li will contain exactly k elements

| exploiting the assumption of uniform distribution | is:

PrfjLij = kg =

n

k

!
Prfp1; : : : ; pk 2 Di ^ pk+1; : : : ; pn 62 Dig

=

n

k

! jDi \Xj
jXj

!k jX nDij
jXj

!n�k

:

(9:5)

9.2. ACCELERATION OF INTERSECTION CALCULATIONS 245

If Di is completely contained by X, then:

PrfjLij = kg =

n

k

! jDij
jXj

!k
1� jDij
jXj

!n�k

: (9:6)

Let us consider the limiting behavior of this probability for n ! 1 by

setting a ! 1 (jXj ! 1) and forcing n=jXj ! �, where � is a positive

real number characterizing the density of the spheres. Note that our uniform

distribution has been extended to a Poisson point process of intensity

�. Taking the above limits into consideration, one can derive the following

limiting behavior of the desired probability:

Pr0fjLij = kg = lim
jXj!1

n=jXj!�

PrfjLij = kg = (�jDij)k
k!

e��jDij: (9:7)

Note that the rightmost expression characterizes a Poisson distribution with
parameter �jDij, as the limit value of the binomial distribution on the right-
hand side of expression 9.6 for n!1 and n=jXj ! �. The expected length
of list Li is then given by the following formula:

E[jLij] =
1X
k=1

k � Pr0fjLij = kg = �jDij: (9:8)

Substituting expression 9.4 of the volume jDij, and bearing in mind that
n=jXj ! � and jXj = a3 = R3b3 hence b3 ! n=�R3, we can get:

E[jLij] = n

R3 + 6�1=3r
n2=3

R2 + 3�2=3r2�
n1=3

R
+ �

4r3�

3
(1 � i � R3): (9:9)

for the expected asymptotic behavior of the list length. This quantity can
be kept independent of n (it can be O(1)) if is R chosen properly. The
last term tends to be constant, independently of R. The �rst term of the

sum requires R3 =
(n), at least. The two middle terms will also converge
to a constant with this choice, since then R2 =
(n2=3) and R =
(n1=3).

The conclusion is the following: if our object space X is partitioned into

congruent cubes with an equal resolution R along all three spatial directions,
and R is kept R =
(3

p
n), then the expected number of spheres intersecting

any of the cells will be O(1), independent of n in the asymptotic sense. This
implies furthermore (cf. expression 9.1) that the number of cells along the

246 9. RECURSIVE RAY TRACING

path of an arbitrary ray is also bounded by O(3
p
n). The actual choice

for R can modify the constant factor hidden by the \big O", but the last

term of the sum does not allow us to make it arbitrarily small. The value

R = d 3
p
ne seems to be appropriate in practice (d�e denotes \ceiling", that

is the smallest integer above or equal). We can conclude that the expected

query time and expected storage requirements of the method are:

E[Q(n)] = O(R(n)) = O(3
p
n) and E[S(n)] = O(n) (9:10)

respectively, for the examined distribution of sphere centers. The behavior

b b b
b
b

b

0 - cell

1 - cell

 2 - cell

Figure 9.4: j-cells

of the preprocessing time P (n) depends on the e�ciency of the algorithm
used for �nding the intersecting objects (spheres) for the individual cells.
Let us consider the 8 neighboring cells of width b around their common
vertex. Their union is a cube of width 2b. An object can intersect any of

the 8 cells only if it intersects the cube of width 2b. Furthermore, considering
the union of 8 such cubes, which is a cube of width 4b, a similar statement
can be made, etc. In order to exploit this idea, let us choose R = 2K with
K = d(log2 n)/3e, in order to satisfy the requirementR =
(3

p
n). The term

j-cell will be used to denote the cubes of width 2jb containing 23j cells of

width b, as shown in �gure 9.4. Thus, the smallest cells Ci become 0-cells,
denoted by C

(0)
i (1 � i � 23K), and the object space X itself will appear

as the sole K-cell. The preprocessing algorithm will progressively re�ne the

partitioning of the object space, which will consist of one K-cell in the �rst

9.2. ACCELERATION OF INTERSECTION CALCULATIONS 247

step, 8 (K � 1)-cells in the second step, and 23K = O(n) 0-cells in the last

step.

The algorithm is best shown as a recursive algorithm, which prepro-

cesses a list L(j) of objects with respect to a j-cell C
(j)
i . Provided that

the object scene containing the objects o1; : : : ; on is enclosed by a cube

(or rectangular box) X, it can be preprocessed by invoking a subroutine

call Preprocess(fo1; : : : ; ong(K), X(K)) (with K = d(log2 n)/3e), where the
subroutine Preprocess is the following:

Preprocess(L(j), C
(j)
i)

if j = 0 then Li = L(j); return ;

for each subcell C
(j�1)
k (1 � k � 8) contained by C

(j)
i do

L(j�1) = fg;
for each object o on list L(j) do

if o intersects C
(j�1)
k then

add o to L(j�1);
endif

endfor

Preprocess(L(j�1), C
(j�1)
k);

endfor

end

The algorithm can be speeded up by using the trick that if the input list

corresponding to a j-cell becomes empty (jL(j)j = 0) at some stage, then we
do not process the \child" cells further but return instead. The maximal
depth of recurrence is K, because j is decremented by 1 at each recursive
call, hence we can distinguish between K + 1 di�erent levels of execution.
Let the level of executing the uppermost call be K, and generally, the level

of execution be j if the superscript (j) appears in the input arguments. The
execution time T = P (n) of the preprocessing can be taken as the sum
T = T0 + T1 + : : :+ TK, where the time Tj is spent at level j of execution.

The routine is executed only once at level K, 8 times at level K � 1, and
generally:

Nj = 23(K�j) K � j � 0 (9:11)

times at level j. The time taken for a given instance of execution at level
j is proportional to the actual length of the list L(j) to be processed. Its

248 9. RECURSIVE RAY TRACING

expected length is equal to the expected number of objects intersecting the

corresponding j-cell C
(j)
i . Its value is:

E[jL(j)j] = �jD(j)
i j (9:12)

where D
(j)
i is the rounded cube shaped region around the j-cell C

(j)
i , very

similar to that shown in �gure 9.3, with the di�erence that the side of the

\base cube" is 2j�Ka. Its volume is given by the formula:

jD(j)
i j = 23(j�K)a3 + 6 � 22(j�K)a2r + 3 � 2j�Kar2� + 4r3�

3
(9:13)

which is the same for each j-cell. Thus, the total time Tj spent at level j

of execution is proportional to:

Nj�jD(j)
i j = �a3 + 6 � 2K�j�a2r + 3 � 22(K�j)�ar2� + 23(K�j)�

4r3�

3
: (9:14)

Let us sum these values for 1 � j � K � 1, taking the following identity
into consideration:

2i + 2i�2 + : : :+ 2i�(K�1) =
2i�K � 2i

2i � 1
(i � 1); (9:15)

where i refers to the position of the terms on the right-hand side of expres-
sion 9.14 (i = 1 for the second term, i = 2 for the third etc.). Thus the
value T1 + : : :+ TK�1 is proportional to:

(K � 1)�a3 + 6 � 2
K � 2

1
�a2r + 3 � 2

2K � 4

3
�ar2� +

23K � 8

7
�
4r3�

3
: (9:16)

Since K = O(log n) and a3 ! n=�, the �rst term is in the order of
O(n log n), and since ni=3 � 2iK < 2ni=3, the rest of the terms are only

of O(n) (actually, this is in connection with the fact that the center of the
majority of the spheres intersecting a cube lies also in the cube as the width

of the cube increases). Finally, it can easily be seen that the times T0 and

TK are both proportional to n, hence the expected preprocessing time of
the method is:

E[P (n)] = O(n log n) (9:17)

for the examined Poisson distribution of sphere centers.

9.2. ACCELERATION OF INTERSECTION CALCULATIONS 249

We intended only to demonstrate here how a stochastic average case anal-

ysis can be performed. Although the algorithm examined here is relatively

simple compared to those coming in the following subsections, performing

the analysis was rather complicated. This is the reason why we will not

undertake such analyses for the other algorithms (they are to appear in

[M�ar94]).

9.2.2 Adaptive partitioning of object space

The regular cell grid is very attractive for the task of object space subdivi-

sion, because it is simple, and the problem of enumerating the cells along

the path of a ray is easy to implement by means of a 3D incremental line

generator. The cells are of the same size, wherever they are. Note that

we are solely interested in �nding the intersection point between a ray and

the surface of the closest object. The number of cells falling totally into
the interior of an object (or outside all the objects) can be very large, but
the individual cells do not yield that much information: each of them tells
us that there is no ray-surface intersection inside. Thus, the union of such
cells carries the same information as any of them do individually | it is

not worth storing them separately. The notion and techniques used in the
previous subsection form a good basis for showing how this idea can be
exploited.

P: partial
E: empty
F: full

P
1 2 3 4

1 2

3 4

E P P E

P P P P E P E E

P P P E

Figure 9.5: The octree structure for space partitioning

250 9. RECURSIVE RAY TRACING

If our object space is enclosed by a cube of width a, then the resolution of

subdivision, R, means that the object space was subdivided into congruent

cubes of width b = a=R in the previous subsection. We should remind the

reader that a cube of width 2jb is called a j-cell, and that a j-cell is the

union of exactly 23j 0-cells. Let us distinguish between three types of j-cell:

an empty cell has no intersection with any object, a full cell is completely

contained in one or more objects, and a partial cell contains a part of the

surface of at least one object. If a j-cell is empty or full, then we do not have

to divide it further into (j � 1)-cells, because the child cells would also be

empty or full, respectively. We subdivide only partial cells. Such an uneven

subdivision can be represented by an octree (octal tree) structure, each

node of which has either 8 or no children. The two-dimensional analogue of

the octree (the quadtree) is shown in �gure 9.5. A node corresponds to a

j-cell in general, and has 8 children ((j � 1)-cells) if the j-cell is partial, or

has no children if it is empty or full. If we use it for ray-surface intersection
calculations, then only partial cells need have references to objects, and only
to those objects whose surface intersects the cell.
The preprocessing routine that builds this structure is similar to the one

shown in the previous subsection but with the above mentioned di�erences.
If the objects of the scene X are o1; : : : ; on, then the forthcoming algorithm

must be invoked in the following form: Preprocess(fo1; : : : ; ong(K), X(K)),
where K denotes the allowed number of subdivision steps at the current
recurrence level. The initial value K = d(log2 n)/3e is proper again, since
our subdivision can become a regular grid in the worst case. The algorithm
will return the octree structure corresponding to X. The notation L(C

(j)
i)

in the algorithm stands for the object reference list corresponding to the j-
cell C

(j)
i (if it is partial), while Rk(C

(j)
i) (1 � k � 8) stands for the reference

to its kth child (null denotes no child).

9.2. ACCELERATION OF INTERSECTION CALCULATIONS 251

The algorithm is then the following:

Preprocess(L(j), C
(j)
i)

if j = 0 then // bottom of recurrence

R1(C
(j)
i) = : : : = R8(C

(j)
i) = null;

L(C
(j)
i) = L(j); return C

(j)
i ;

endif

for each subcell C
(j�1)
k (1 � k � 8) contained by C

(j)
i do

L(j�1) = fg;
for each object o on list L(j) do

if surface of o intersects C
(j�1)
k then add o to L(j�1);

endfor

if L(j�1) = fg then // empty or full

Rk(C
(j)
i) = null;

else // partial

Rk(C
(j)
i) = Preprocess(L(j�1), C

(j�1)
k);

endif

endfor

return C
(j)
i ;

end

The method saves storage by its adaptive operation, but raises a new

problem, namely the enumeration of cells along the path of a ray during ray
tracing.
The problem of visiting all the cells along the path of a ray is known

as voxel walking (voxel stands for \volume cell" such as pixel is \picture
cell"). The solution is almost facile if the subdivision is a regular grid, but

what can we do with our octree? The method commonly used in practice is
based on a generate-and-test approach, originally proposed by Glassner
[Gla84]. The �rst cell the ray visits is the cell containing the origin of the

ray. In general, if a point p is given, then the cell containing it can be found
by recursively traversing the octree structure from its root down to the leaf
containing the point.

252 9. RECURSIVE RAY TRACING

This is what the following routine does:

Classify(p, C
(j)
i)

if C
(j)
i is a leaf (Rk(C

(j)
i)=null) then return C

(j)
i ;

for each child Rk(C
(j)
i) (1 � k � 8) do

if subcell Rk(C
(j)
i) contains p then

return Classify(p, Rk(C
(j)
i));

endif

endfor

return null;

end

The result of the function call Classify(p, X(K))) is the cell containing

a point p 2 X. It is null if p falls outside the object space X. The worst
case time required by the classi�cation of a point will be proportional to the
depth of the octree, which is K = d(log2 n)/3e, as suggested earlier. Once
the cell containing the origin of the ray is known, the next cell visited can be
determined by �rst generating a point q which de�nitely falls in the interior

of the next cell, and then by testing to �nd which cell contains q. Thus, the
intersection algorithm will appear as follows (the problem of generating a
point falling into the next cell will be solved afterwards):

Intersect(r)
omin = null; // omin: closest intersected object

p = origin of ray;

C = Classify(p, X(K));

while C 6= null do

for each object o on list L(C) do
if r intersects o closer than omin then omin = o;

endfor

if omin 6= null then return omin;
q = a point falling into the next cell;

C = Classify(q, X(K));

endwhile

return null;
end

9.2. ACCELERATION OF INTERSECTION CALCULATIONS 253

There is only one step to work out, namely how to generate a point q

which falls de�nitely into the neighbor cell. The point where the ray r exits

the actual cell can easily be found by intersecting it with the six faces of the

cell. Without loss of generality, we can assume that the direction vector of

r has nonnegative x; y and z components, and its exit point e either falls in

the interior of a face with a normal vector incident with the x coordinate

axis, or is located on an edge of direction incident with the z axis, or is a

vertex of the cell | all the other combinations can be handled similarly. A

proper q can be calculated by the following vector sums, where ~x; ~y and ~z

represent the (unit) direction vectors of the coordinate axes, and b = a2�K

is the side of the smallest possible cell, and the subscripts of q distinguish

between the three above cases in order:

q1 = e+
b

2
~x; q2 = e+

b

2
~x+

b

2
~y and q3 = e+

b

2
~x+

b

2
~y +

b

2
~z: (9:18)

For the suggested value of the subdivision parameterK, the expected query
time will be E[Q(n)] = O(3

p
n log n) per ray if we take into consideration

that the maximumnumber of cells a ray intersects is proportional to R = 2K

(cf. expression 9.1), and the maximum time we need for stepping into the

next cell is proportional to K.

9.2.3 Partitioning of ray space

A ray can be represented by �ve coordinates, x; y; z; #; ' for instance, the

�rst three of which give the origin of the ray in the 3D space, and the
last two de�ne the direction vector of the ray as a point on the 2D surface
of the unit sphere (in polar coordinates). Thus, we can say that a ray r

can be considered as a point of the 5D ray-space <5 = E3 � O2, where
the �rst space is a Euclidean space, the second is a spherical one, and
their Cartesian product is a cylinder-like space. If our object space, on

the other hand, contains the objects o1; : : : ; on, then for each point (ray)
r 2 <5, there is exactly one i(r) 2 f0; 1; : : : ; ng assigned, where i(r) = 0 if

r intersects no object, and i(r) = j if r intersects object oj �rst. We can

notice furthermore that the set of rays intersecting a given object oj | that
is the regions R(j) = fr j i(r) = jg | form connected subsets of <5, and

R(0) [R(1)[: : :[R(n) = <5, that is, the n+1 regions form a subdivision
of the ray space. This leads us to hope that we can construct a ray-object

254 9. RECURSIVE RAY TRACING

intersection algorithm with a good (theoretically optimal O(log n)) query

time based on the following locus approach: �rst we build the above

mentioned subdivision of the ray space in a preprocessing step, and then,

whenever a ray r is to be tested, we classify it into one of the n+1 regions,

and if the region containing r is R(j), then the intersection point will be on

the surface of oj . The only problem is that this subdivision is so di�cult to

calculate that nobody has even tried it yet. Approximations, however, can

be carried out, which Arvo and Kirk in fact did [AK87] when they worked

out their method called ray classi�cation. We shall outline their main

ideas here.

z

x

y

D(z)

D(y)

D(x)

Figure 9.6: The direction cube

A crucial problem is that the ray space <5 is not Euclidean (but cylinder-
like), hence it is rather di�cult to treat computationally. It is very in-
convenient namely, that the points representing the direction of the rays
are located on the surface of a sphere. We can, however, use a more suit-
able representation of direction vectors which is not \curved". Directions

will be represented as points on the surface of the unit cube, instead of

the unit sphere, as shown in �gure 9.6. There are discontinuities along
the edges of the cube, so the direction space will be considered as a col-
lection D(x);D(�x);D(y);D(�y);D(z);D(�z) of six spaces (faces of the unit

cube), each containing the directions with the main component (the one

with the greatest absolute value) being in the same coordinate direction

(x;�x; y;�y; z;�z). If the object scene can be enclosed by a cube E |

containing the eye as well | then any ray occurring during ray tracing must

9.2. ACCELERATION OF INTERSECTION CALCULATIONS 255

fall within one of the sets in the collection:

H = fE�D(x); E�D(�x); E�D(y); E�D(�y); E�D(z); E�D(�z)g: (9:19)
Each of the above six sets is a 5D hypercube. Let us refer to this collection

H as the bounding hyperset of our object scene.

Figure 9.7: Beams of rays in 3D space

The hyperset H will be recursively subdivided into cells H(1); : : : ; H(m)

(each being an axis parallel hypercube), and a candidate list L(H(i)) will
be associated with each cell H(i) containing references to objects that are
intersected by any ray r 2 H(i). Each such hypercube H(i) is a collection
of rays with their origin in a 3D rectangular box and their direction falling
into an axis parallel 2D rectangle embedded in the 3D space. These rays

form an unbounded polyhedral volume in the 3D space, called a beam,
as shown in �gure 9.7. An object appears on the list associated with the
5D hypercube if and only if it intersects the 3D beam corresponding to the
hypercube. At each step of subdivision a cell will be divided into two halves
along one of the �ve directions. If we normalize the object scene so that the

enclosing cube E becomes a unit cube, then we can decide to subdivide a
5D cell along one of its longest edges. Such a subdivision can be represented
by a binary tree, the root of which corresponds to H itself, the two children
correspond to the two halves of H, etc. In order to save computation, the
subdivision will not be built completely by a separate preprocessing step,

but rather the hierarchy will be constructed adaptively during ray tracing

by lazy evaluation. Arvo and Kirk suggested [AK87] terminating this
subdivision when either the candidate list or the hypercube fall below a
�xed size threshold. The heuristic reasoning is that \a small candidate

set indicates that we have achieved the goal of making the associated rays

inexpensive to intersect with the environment", while \the hypercube size
constraint is imposed to allow the cost of creating a candidate set to be

256 9. RECURSIVE RAY TRACING

amortized over many rays" (cited from [AK87]). The intersection algorithm

then appears as follows, where Rl(H
0) and Rr(H

0) denote the left and right

children of cell H 0 in the tree structure, nmin is the number under which

the length of an object list is considered to be as \small enough", and wmin

denotes the minimal width of a cell (width of cells is taken as the smallest

width along the �ve axes).

Intersect(r)

H 0 = Classify(r, H);

while jL(H 0)j > nmin and jH 0j > wmin do

H 0

l , H
0

r = two halves of H 0; L(H 0

l) = fg; L(H 0

r) = fg;
for each object o on list L(H 0) do

if o intersects the beam of H 0

l then add o to L(H 0

l);

if o intersects the beam of H 0

r then add o to L(H 0

r);
endfor

Rl(H
0) = H 0

l; Rr(H
0) = H 0

r; H
0 = Classify(r, H 0);

endwhile

omin = null; // omin: closest intersected object

for each object o on list L(H 0) do
if r intersects o closer than omin then omin = o; endif

endfor

return omin;
end

The routine Classify(r, H 0) called from the algorithm �nds the smallest
5D hypercube containing the ray r by performing a binary search in the
tree with root at H 0.

9.2.4 Ray coherence theorems

Two rays with the same origin and slightly di�ering directions probably
intersect the same object, or more generally, if two rays are close to each

other in the 5D ray space then they probably intersect the same object.

This is yet another guise of object coherence, and we refer to it as ray
coherence. Closeness here means that both the origins and the directions

are close. The ray classi�cation method described in the previous section
used a 5D subdivision along all the �ve ray parameters, the �rst three of

9.2. ACCELERATION OF INTERSECTION CALCULATIONS 257

which represented the origin of the ray in the 3D object space, hence every

ray originating in the object scene is contained in the structure, even those

that have their origins neither on the surface of an object nor in the eye

position. These rays will de�nitely not occur during ray tracing. We will

de�ne equivalence classes of rays in an alternative way: two rays will be

considered to be equivalent if their origins are on the surface of the same

object and their directions fall in the same class of a given partition of the

direction space. This is the main idea behind the method of Ohta and

Maekawa [OM87]. We will describe it here in some detail.

Let the object scene consist of n objects, including those that we would

like to render, the lightsources and the eye. Some, say m, of these n objects

are considered to be ray origins, these are the eye, the lightsources and the

re
ective/refractive objects. The direction space is partitioned into d num-

ber of classes. This subdivision can be performed by subdividing each face

of the direction cube (�gure 9.6) into small squares at the desired resolution.
The preprocessing step will build a two-dimensional array O[1 : : :m; 1 : : : d],
containing lists of references to objects. An object ok will appear on the list
at O[i; j] if there exists a ray intersecting ok with its origin on oi and direc-
tion in the jth direction class. Note that the cells of the array O correspond
to the \equivalence classes" of rays de�ned in the previous paragraph. If this

array is computed, then the intersection algorithm becomes very simple:

Intersect(r)

i = index of object where r originates;
j = index of direction class containing the direction of r;
omin = null; // omin: closest intersected object

for each object o on list O[i; j] do
if r intersects o closer than omin then

omin = o;
endif

endfor

return omin;

end

The computation of the array O is based on the following geometric con-

siderations. We are given two objects, o1 and o2. Let us de�ne a set V (o1; o2)
of directions, so that V contains a given direction � if and only if there exists

258 9. RECURSIVE RAY TRACING

a ray of direction � with its origin on o1 and intersecting o2, that is:

V (o1; o2) = f� j 9r : org(r) 2 o1 ^ dir(r) = � ^ r \ o2 6= ;g (9:20)

where org(r) and dir(r) denote the origin and direction of ray r, respectively.

We will call the set V (o1; o2) the visibility set of o2 with respect to o1 (in

this order). If we are able to calculate the visibility set V (oi; ok) for a pair of

objects oi and ok, then we have to add ok to the list of those cells in the row

O[i; 1 : : : d] of our two-dimensional array which have non-empty intersection

with V (oi; ok). Thus, the preprocessing algorithm can be the following:

Preprocess(o1; : : : ; on)

initialize each list O[i; j] to fg;
for each ray origin oi (1 � i � m) do

for each object ok (1 � k � n) do

compute the visibility set V (oi; ok);
for each direction class �j with �j \ V (oi; ok) 6= ; do

add ok to list O[i; j];
endfor

endfor

endfor

end

α
α c

2

r
2

r1
c1

Figure 9.8: Visibility set of two spheres

The problem is that the exact visibility sets can be computed only for a
narrow range of objects. These sets are subsets of the surface of the unit

9.2. ACCELERATION OF INTERSECTION CALCULATIONS 259

P

Q

p
1

p
2

p
3

p
4

q
1

q2

q
3

q4

q
5

q6

Figure 9.9: Visibility set of two convex hulls

sphere | or alternatively the direction cube. Ohta and Maekawa [OM87]
gave the formula for a pair of spheres, and a pair of convex polyhedra. If
S1 and S2 are spheres with centers c1; c2 and radii r1; r2, respectively, then
V (S1; S2) will be a spherical circle. Its center is at the spherical point cor-
responding to the direction ~c1c2 and its (spherical) radius is given by the
expression arcsinf(r1 + r2)=jc1 � c2jg, as illustrated in �gure 9.8. If P and

Q are convex polyhedra with vertices p1; : : : ; pn and q1; : : : ; qm, respectively,
then V (P;Q) will be the spherical convex hull of n�m spherical points corre-
sponding to the directions ~p1q1; : : : ; ~p1qm; : : : ; ~pnq1; : : : ; ~pnqm (see �gure 9.9).
It can be shown [HMSK92] that for a mixed pair of a convex polyhedron P
with vertices p1; : : : ; pn and a sphere S with center c and radius r, V (P; S)

is the spherical convex hull of n circles with centers at ~p1c; : : : ; ~pnc and radii
arcsinfr=jp1 � cjg; : : : ; arcsinfr=jpn � cjg. In fact, these circles are nothing
else than the visibility sets V (p1; S); : : : ; V (pn; S), corresponding to the ver-
tices of P . This gives the idea of a generalization of the above results in the
following way [MRSK92]: If A and B are convex hulls of the sets A1; : : : ; An

and B1; : : : ; Bm, respectively, then V (A;B) will be the spherical convex hull

of the visibility sets V (A1B1); : : : ; V (A1Bm); : : : ; V (AnB1); : : : ; V (AnBm).

Note that disjointness for the pairs of objects was assumed so far, because
if the objects intersect then the visibility set is the whole sphere surface
(direction space).

Unfortunately, exact expression of visibility sets is not known for further

types of objects. We can use approximations, however. Any object can be

260 9. RECURSIVE RAY TRACING

enclosed by a large enough sphere, or a convex polyhedron, or a convex hull

of some sets. The simpler the enclosing shell is, the easier the calculations

are, but the greater the di�erence is between the real and the computed

visibility set. We always have to �nd a trade-o� between accuracy and

computation time.

9.3 Distributed ray tracing

Recursive ray tracing is a very elegant method for simulating phenomena

such as shadows, mirror-like re
ections, and refractions. The simpli�cations

in the illumination model | point-like lightsources and point-sampling (in-

�nitely narrow light rays) | assumed so far, however, cause sharp shadows,

re
ections and refractions, although these phenomena usually occur in a
blurred form in reality.

Perhaps the most elegant method among all the proposed approaches to
handle the above mentioned blurred (fuzzy) phenomena is the so-called dis-
tributed ray tracing due to Cook et al. [CPC84]. The main advantage of
the method is that phenomena like motion blur, depth of �eld, penumbras,
translucency and fuzzy re
ections are handled in an easy and somewhat

uni�ed way with no additional computational cost beyond those required
by spatially oversampled ray tracing. The basic ideas can be summarized
as follows. Ray tracing is a kind of point sampling and, as such, is a
subject to aliasing artifacts (see chapter 11 on Sampling and Quantization
Artifacts). The usual way of reducing these artifacts is the use of some post-

�ltering technique on an oversampled picture (that is, more image rays are
generated than the actual number of pixels).
The key idea is, that oversampling can be made not only in space but

also in the time (motion sampling), on the area of the camera lens or the
entire shading function. Furthermore, \not everything must be sampled

everywhere" but rather the rays can be distributed. In the case of motion
sampling, for example, instead of taking multiple time samples at every

spatial location, the rays are distributed in time so that rays at di�erent

spatial locations trace the object scene at di�erent instants of time.

9.3. DISTRIBUTED RAY TRACING 261

Distributing the rays o�ers the following bene�ts at little additional cost:

� Distributing re
ected rays according to the specular distribution func-

tion produces gloss (fuzzy re
ection).

� Distributing transmitted rays produces blurred transparency.

� Distributing shadow rays in the solid angle of the lightsources pro-

duces penumbras.

� Distributing rays on the area of the camera lens produces depth of

�eld.

� Distributing rays in time produces motion blur.

Oversampled ray traced images are generated by emanating more than one
ray through the individual pixels. The rays corresponding to a given pixel
are usually given the same origin (the eye position) and di�erent direction
vectors, and because of the di�erent direction vectors, the second and fur-
ther generation rays will generally have di�erent origins and directions, as

well. This spatial oversampling is generalized by the idea of distributing
the rays. Let us overview what distributing the rays means in concrete
situations.

Fuzzy shading

We have seen in chapter 3 that the intensity Iout of the re
ected light
coming from a surface point towards the viewing position can be expressed

by an integral of an illumination function I in(~L) (~L is the incidence direction
vector) and a re
ection function over the hemisphere about the surface point
(cf. equation 3.30):

Ioutr = kr � I inr +

2�Z
I in(~L) � cos �in �R�(~L; ~V) d!in (9:21)

where ~V is the viewing direction vector and the integration is taken over

all the possible values of ~L. The coherent re
ection coe�cient kr is in

fact a �-function, that is, its value is non-zero only at the re
ective inverse

of the viewing direction ~V . Sources of second or higher order re
ections

262 9. RECURSIVE RAY TRACING

are considered only from this single direction (the incoming intensity I inr is

computed recursively). A similar equation can be given for the intensity of

the refracted light:

Ioutt = kt � I int +

2�Z
I in(~L) � cos �in � T �(~L; ~V) d!in (9:22)

where the integration is taken over the hemisphere below the surface point

(in the interior of the object), I int is the intensity of the coherent refractive

(transmissive) illumination and kt is the coherent transmission coe�cient

(also a �-function).

The integrals in the above expressions are usually replaced by �nite sums

according to the �nite number of (usually) point-like or directional light-

sources. The e�ects produced by �nite extent lightsources can be consid-
ered by distributing more than one shadow ray over the solid angle of the
visible portion of each lightsource. This technique can produce penum-

bras. Furthermore, second and higher order re
ections need no longer be
restricted to single directions but rather the re
ection coe�cient kr can be
treated as non-zero over the whole hemisphere and more than one rays can

be distributed according to its function. This can model gloss. Finally,
distributing the refracted rays in a similar manner can produce blurred
translucency.

Depth of �eld

Note that the usual projection technique used in computer graphics in fact
realizes a pinhole camera model with each object in sharp focus. It is an
idealization, however, of a real camera, where the ratio of the focal length
F and the diameter D of the lens is a �nite positive number, the so-called
aperture number a:

a =
F

D
: (9:23)

The �nite aperture causes the e�ect called depth of �eld which means
that object points at a given distance appear in sharp focus on the image

and other points beyond this distance or closer than that are confused, that

is, they are mapped to �nite extent patches instead of points.

It is known from geometric optics (see �gure 9.10) that if the focal length

of a lens is F and an object point is at a distance T from the lens, then

9.3. DISTRIBUTED RAY TRACING 263

F/n

image
plane

lens focal
plane

K

K’

T

P

p

r
r

Figure 9.10: Geometry of lens

the corresponding image point will be in sharp focus on an image plane at
a distance K behind the lens, where F; T and K satisfy the equation:

1

F
=

1

K
+

1

T
: (9:24)

If the image plane is not at the proper distance K behind the lens but at
a distance K 0, as in �gure 9.10, then the object point maps onto a circle of
radius r:

r =
1

K
jK �K 0j F

n
: (9:25)

This circle is called the circle of confusion corresponding to the given
object point. It expresses that the color of the object point a�ects the color
of not only a single pixel but all the pixels falling into the circle.
A given camera setting can be speci�ed in the same way as in real life by

the aperture number a and the focal distance, say P (see �gure 9.10), which

is the distance of those objects from the lens, which appear in sharp focus on
the image (not to be confused with the focal length of the lens). The focal
length F is handled as a constant. The plane at distance P from the lens is

called the focal plane. Both the distance of the image plane from the lens

and the diameter (D) of the lens can be calculated from these parameters
using equations 9.24 and 9.23, respectively.

264 9. RECURSIVE RAY TRACING

In depth of �eld calculations, the eye position is imagined to be in the

center of the lens. First a ray is emanated from the pixel on the image

plane through the eye position, as in usual ray tracing, and its color, say

I0 is computed. Let the point where this \traditional" ray intersects the

focal plane be denoted by p. Then some further points are selected on the

surface of the lens, and a ray is emanated from each of them through point

p. Their colors, say I1; : : : ; Im, are also computed. The color of the pixel

will be the average of the intensities I0; I1; : : : ; Im. In fact, it approximates

an integral over the lens area.

Motion blur

Real cameras have a �nite exposure time, that is, the �lm is illuminated

during a time interval of nonzero width. If some objects are in motion,
then their image will be blurred on the picture, and the higher the speed
of an object is, the longer is its trace on the image. Moreover, the trace

of an object is translucent, that is, the objects behind it become partially
visible. This e�ect is known as motion blur. This is yet another kind of
integration, but now in time. Distributing the rays in time can easily be
used for approximating (sampling) this integral. It means that the di�erent
rays corresponding to a given pixel will correspond to di�erent time instants.

The path of motion can be arbitrarily complex, the only requirement is the
ability to calculate the position of any object at any time instant.

We have seen that distributed ray tracing is a uni�ed approach to mod-
eling realistic e�ects such as fuzzy shading, depth of �eld or motion blur.
It approximates the analytic function describing the intensity of the image
pixels at a higher level than usual ray tracing algorithms do. Generally this
function involves several nested integrals: integrals of illumination functions

multiplied by re
ection or refraction functions over the re
ection or trans-
mission hemisphere, integrals over the surface of the lens, integrals over
time, integrals over pixel area. This integral is so complicated that only
approximation techniques can be used in practice. Distributing the rays is

in fact a point sampling method performed on a multi-dimensional param-

eter space. In order to keep the computational time at an acceptably low

level, the number of rays is not increased \orthogonally", that is, instead of

adding more rays in each dimension, the existing rays are distributed with
respect to this parameter space.

Chapter 10

RADIOSITY METHOD

The radiosity method is based on the numerical solution of the shading
equation by the �nite element method. It subdivides the surfaces into
small elemental surface patches. Supposing these patches are small, their
intensity distribution over the surface can be approximated by a constant
value which depends on the surface and the direction of the emission. We

can get rid of this directional dependency if only di�use surfaces are allowed,
since di�use surfaces generate the same intensity in all directions. This is
exactly the initial assumption of the simplest radiosity model, so we are also
going to consider this limited case �rst. Let the energy leaving a unit area
of surface i in a unit time in all directions be Bi, and assume that the light

density is homogeneous over the surface. This light density plays a crucial
role in this model and is also called the radiosity of surface i.
The dependence of the intensity on Bi can be expressed by the following

argument:

1. Consider a di�erential dA element of surface A. The total energy
leaving the surface dA in unit time is B � dA, while the
ux in the
solid angle d! is d� = I � dA � cos � � d! if � is the angle between the
surface normal and the direction concerned.

2. Expressing the total energy as the integration of the energy contribu-
tions over the surface in all directions and assuming di�use re
ection

265

266 10. RADIOSITY METHOD

only, we get:

B =
1

dA
�
2�Z
d�

d!
d! =

2�Z
I �cos � d! = I �

2�Z
�=0

�=2Z
�=0

cos� sin � d�d� = I ��

(10:1)

since d! = sin� d�d�.

Consider the energy transfer of a single surface on a given wavelength.

The total energy leaving the surface (Bi � dAi) can be divided into its own

emission and the di�use re
ection of the radiance coming from other surfaces

(�gure 10.1).

dA

dA E

B
B

j

j

ii

i

E

Φji

j

Figure 10.1: Calculation of the radiosity

The emission term is Ei � dAi if Ei is the emission density which is also
assumed to be constant on the surface.

The di�use re
ection is the multiplication of the di�use coe�cient %i and
that part of the energy of other surfaces which actually reaches surface i.
Let Fji be a factor, called the form factor, which determines that fraction
of the total energy leaving surface j which actually reaches surface i.

Considering all the surfaces, their contributions should be integrated,

which leads to the following formula of the radiosity of surface i:

Bi � dAi = Ei � dAi + %i �
Z
Bj � Fji � dAj: (10:2)

10. RADIOSITY METHOD 267

Before analyzing this formula any further, some time will be devoted to

the meaning and the properties of the form factors.

The fundamental law of photometry (equation 3.15) expresses the en-

ergy transfer between two di�erential surfaces if they are visible from one

another. Replacing the intensity by the radiosity using equation 10.1, we

get:

d� = I � dAi � cos �i � dAj � cos�j
r2

= Bj � dAi � cos �i � dAj � cos �j
� � r2 : (10:3)

If dAi is not visible from dAj, that is, another surface is obscuring it from

dAj or it is visible only from the \inner side" of the surface, the energy
ux

is obviously zero. These two cases can be handled similarly if an indicator

variable Hij is introduced:

Hij =

8<
:
1 if dAi is visible from dAj

0 otherwise

(10:4)

Since our goal is to calculate the energy transferred from one �nite sur-
face (�Aj) to another (�Ai) in unit time, both surfaces are divided into

in�nitesimal elements and their energy transfer is summed or integrated,
thus:

��ji =
Z

�Ai

Z
�Aj

Bj �Hij � dAi � cos �i � dAj � cos �j
� � r2 : (10:5)

By de�nition, the form factor Fji is a fraction of this energy and the total
energy leaving surface j (Bj ��Aj):

Fji =
1

�Aj

�
Z

�Ai

Z
�Aj

Hij � dAi � cos �i � dAj � cos �j
� � r2 : (10:6)

It is important to note that the expression of Fji ��Aj is symmetrical with
the exchange of i and j, which is known as the reciprocity relationship:

Fji ��Aj = Fij ��Ai: (10:7)

We can now return to the basic radiosity equation. Taking advantage

of the homogeneous property of the surface patches, the integral can be
replaced by a �nite sum:

Bi ��Ai = Ei ��Ai + %i �
X
j

Bj � Fji ��Aj: (10:8)

268 10. RADIOSITY METHOD

Applying the reciprocity relationship, the term Fji � �Aj can be replaced

by Fij ��Ai:

Bi ��Ai = Ei ��Ai + %i �
X
j

Bj � Fij ��Ai: (10:9)

Dividing by the area of surface i, we get:

Bi = Ei + %i �
X
j

Bj � Fij: (10:10)

This equation can be written for all surfaces, yielding a linear equation

where the unknown components are the surface radiosities (Bi):

2
666666664

1� %1F11 �%1F12 ::: �%1F1N

�%2F21 1 � %2F22 ::: �%2F2N

:

:

:

�%NFN1 �%NFN2 ::: 1 � %NFNN

3
777777775

2
666666664

B1

B2

:

:

:

BN

3
777777775
=

2
666666664

E1

E2

:

:

:

EN

3
777777775

(10:11)

or in matrix form, having introduced matrix Rij = %i � Fij:

(1�R) �B = E (10:12)

(1 stands for the unit matrix).
The meaning of Fii is the fraction of the energy reaching the very same

surface. Since in practical applications the elemental surface patches are
planar polygons, Fii is 0.
Both the number of unknown variables and the number of equations are

equal to the number of surfaces (N). The solution of this linear equation
is, at least theoretically, straightforward (we shall consider its numerical as-
pects and di�culties later). The calculated Bi radiosities represent the light
density of the surface on a given wavelength. Recalling Grassman's laws,

to generate color pictures at least three independent wavelengths should be

selected (say red, green and blue), and the color information will come from
the results of the three di�erent calculations.

10. RADIOSITY METHOD 269

Thus, to sum up, the basic steps of the radiosity method are these:

1. Fij form factor calculation.

2. Describe the light emission (Ei) on the representative wavelengths, or

in the simpli�ed case on the wavelength of red, green and blue colors.

Solve the linear equation for each representative wavelength, yielding

B�1
i , B�2

i ... B�n
i .

3. Generate the picture taking into account the camera parameters by

any known hidden surface algorithm. If it turns out that surface i is

visible in a pixel, the color of the pixel will be proportional to the cal-

culated radiosity, since the intensity of a di�use surface is proportional

to its radiosity (equation 10.1) and is independent of the direction of

the camera.

Constant color of surfaces results in the annoying e�ect of faceted objects,
since the eye psychologically accentuates the discontinuities of the color

distribution. To create the appearance of smooth surfaces, the tricks of
Gouraud shading can be applied to replace the jumps of color by linear
changes. In contrast to Gouraud shading as used in incremental methods,
in this case vertex colors are not available to form a set of knot points
for interpolation. These vertex colors, however, can be approximated by

averaging the colors of adjacent polygons (see �gure 10.2).

B B B B2 3 41

B B

B
B

2

3
4

1

+ + +

4
Bv =

Figure 10.2: Color interpolation for images created by the radiosity method

Note that the �rst two steps of the radiosity method are independent
of the actual view, and the form factor calculation depends only on the

270 10. RADIOSITY METHOD

geometry of the surface elements. In camera animation, or when the scene

is viewed from di�erent perspectives, only the third step has to be repeated;

the computationally expensive form factor calculation and the solution of

the linear equation should be carried out only once for a whole sequence.

In addition to this, the same form factor matrix can be used for sequences,

when the lightsources have time varying characteristics.

10.1 Form factor calculation

The most critical issue in the radiosity method is e�cient form factor cal-

culation, and thus it is not surprising that considerable research e�ort has

gone into various algorithms to evaluate or approximate the formula which

de�nes the form factors:

Fij =
1

�Ai

�
Z

�Ai

Z
�Aj

Hij � dAi � cos�i � dAj � cos �j
� � r2 : (10:13)

As in the solution of the shading problem, the di�erent solutions represent
di�erent compromises between the con
icting objectives of high calculation
speed, accuracy and algorithmic simplicity.

In our survey the various approaches are considered in order of increasing
algorithmic complexity, which, interestingly, does not follow the chronolog-
ical sequence of their publication.

10.1.1 Randomized form factor calculation

The randomized approach is based on the recognition that the formula
de�ning the form factors can be taken to represent the probability of a

quite simple event if the underlying probability distributions are de�ned
properly.
An appropriate such event would be a surface j being hit by a particle

leaving surface i. Let us denote the event that a particle leaves surface dAi

by PLS(dAi). Expressing the probability of the \hit" of surface j by the

total probability theorem we get:

Prfhit �Ajg =
Z

�Ai

Prfhit �Aj j PLS(dAi)g � PrfPLS(dAi)g: (10:14)

10.1. FORM FACTOR CALCULATION 271

The hitting of surface j can be broken down into the separate events of

hitting the various di�erential elements dAj composing �Aj. Since hitting

of dAk and hitting of dAl are exclusive events if dAk 6= dAl:

Prfhit �Aj j PLS(dAi)g =
Z

�Aj

Prfhit dAj j PLS(dAi)g: (10:15)

Now the probability distributions involved in the equations are de�ned:

1. Assume the origin of the particle to be selected randomly by uniform

distribution:

PrfPLS(dAi)g = 1

�Ai

� dAi: (10:16)

2. Let the direction in which the particle leaves the surface be selected
by a distribution proportional to the cosine of the angle between the
direction and the surface normal:

Prfparticle leaves in solid angle d!g = cos�i � d!
�

: (10:17)

The denominator � guarantees that the integration of the probability over
the whole hemisphere yields 1, hence it deserves the name of probability
density function. Since the solid angle of dAj from dAi is dAj � cos �j=r2
where r is the distance between dAi and dAj, and �j is the angle of the
surface normal of dAj and the direction of dAi, the probability of equa-

tion 10.15 is:
Prfhit dAj j PLS(dAi)g =

PrfdAj is not hidden from dAi ^ particle leaves in the solid angle of dAjg

=
Hij � dAj � cos�j � cos�i

r2 � � (10:18)

where Hij is the indicator function of the event \dAj is visible from dAi".
Substituting these into the original probability formula:

Prfhitg = 1

�Ai

�
Z

�Ai

Z
�Aj

Hij � dAi � cos�i � dAj � cos �j
� � r2 : (10:19)

This is exactly the same as the formula for form factor Fij. This proba-
bility, however, can be estimated by random simulation. Let us generate n

272 10. RADIOSITY METHOD

particles randomly using uniform distribution on the surface i to select the

origin, and a cosine density function to determine the direction. The origin

and the direction de�ne a ray which may intersect other surfaces. That

surface will be hit whose intersection point is the closest to the surface from

which the particle comes. If shooting n rays randomly surface j has been

hit kj times, then the probability or the form factor can be estimated by

the relative frequency:

Fij � kj

n
: (10:20)

Two problems have been left unsolved:

� How can we select n to minimize the calculations but to sustain a

given level of accuracy?

� How can we generate uniform distribution on a surface and cosine

density function in the direction?

Addressing the problem of the determination of the necessary number of

attempts, we can use the laws of large numbers.
The inequality of Bernstein and Chebyshev [R�en81] states that if the

absolute value of the di�erence of the event frequency and the probability
is expected not to exceed � with probability �, then the minimum number
of attempts (n) is:

n � 9 log 2=�

8�2
: (10:21)

The generation of random distributions can rely on random numbers of
uniform distribution in [0::1] produced by the pseudo-random algorithm of
programming language libraries. Let the probability distribution function of
the desired distribution be P (x). A random variable x which has P (x) prob-
ability distribution can be generated by transforming the random variable r

that is uniformly distributed in [0::1] applying the following transformation:

x = P�1(r): (10:22)

10.1. FORM FACTOR CALCULATION 273

10.1.2 Analytic and geometric methods

The following algorithms focus �rst on the inner section of the double in-

tegration, then estimate the outer integration. The inner integration is

given some geometric interpretation which is going to be the base of the

calculation. This inner integration has the following form:

diFij =
Z

�Aj

Hij � cos�i � cos �j
� � r2 dAj: (10:23)

r

dA

1

N

dA

dA cos
j

j

φφ jj

i

iφ
dA cos cos

j
φ j iφ

r

r

2

2

 A j∆

Figure 10.3: Geometric interpretation of hemisphere form factor algorithm

Nusselt [SH81] has realized that this formula can be interpreted as pro-
jecting the visible parts of �Aj onto the unit hemisphere centered above

dAi, then projecting the result orthographically onto the base circle of this
hemisphere in the plane of dAi (see �gure 10.3), and �nally calculating
the ratio of the doubly projected area and the area of the unit circle (�).
Due to the central role of the unit hemisphere, this method is called the

hemisphere algorithm.

Later Cohen and Greenberg [CG85] have shown that the projection cal-
culation can be simpli�ed, and more importantly, supported by image syn-

thesis hardware, if the hemisphere is replaced by a half cube. Their method
is called the hemicube algorithm.

274 10. RADIOSITY METHOD

Beran-Koehn and Pavicic have demonstrated in their recent publication

[BKP91] that the necessary calculations can be signi�cantly decreased if a

cubic tetrahedron is used instead of the hemicube.

Having calculated the inner section of the integral, the outer part must

be evaluated. The simplest way is to suppose that it is nearly constant on

�Ai, so the outer integral is estimated as the multiplication of the inner

integral at the middle of �Ai and the area of this surface element:

Fij =
1

�Ai

Z
�Ai

diFij dAi � diFij =
Z

�Aj

Hij � cos �i � cos�j
� � r2 dAj: (10:24)

More accurate computations require the evaluation of the inner integral

in several points on �Ai and some sort of numerical integration technique

should be used for the integral calculation.

10.1.3 Analytic form factor computation

The inner section of the form factor integral, or as it is called the form factor
between a �nite and di�erential area, can be written as a surface integral
in a vector space, denoting the vector between dAi and dAj by ~r, the unit

normal to dAi by ~ni, and the surface element vector ~nj � dAj by d ~Aj:

diFij =
Z

�Aj

Hij � cos �i � cos�j
� � r2 dAj = �

Z
�Aj

Hij � (~ni � ~r)
� � j~rj4 �~r d

~Aj =
Z

�Aj

~w d ~Aj:

(10:25)

If we could �nd a vector �eld ~v, such that rot ~v = ~w, the area integral
could be transformed into the contour integral

R
~vd~l by Stoke's theorem.

This idea has been followed by Hottel and Saro�n [HS67], and they were
successful in providing a formula for the case when there are no occlusions,
or the visibility term Hij is everywhere 1:

diFij =
1

2�

L�1X
l=0

angle(~Rl; ~Rl�1)

j~Rl � ~Rl�1j
(~Rl � ~Rl�1) � ~ni (10:26)

where

1. angle(~a;~b) is the signed angle between two vectors. The sign is pos-

itive if ~b is rotated clockwise from ~a looking at them in the opposite
direction to ~ni,

10.1. FORM FACTOR CALCULATION 275

2. � represents addition modulo L. It is a circular next operator for

vertices,

3. L is the number of vertices of surface element j,

4. ~Rl is the vector from the di�erential surface i to the lth vertex of the

surface element j.

We do not aim to go into the details of the original derivation of this

formula based on the theory of vector �elds, because it can also be proven

relying on geometric considerations of the hemispherical projection.

10.1.4 Hemisphere algorithm

First of all the result of Nusselt is proven using �gure 10.3, which shows
that the inner form factor integral can be calculated by a double projection
of �Aj, �rst onto the unit hemisphere centered above dAi, then to the base
circle of this hemisphere in the plane of dAi, and �nally by calculating the
ratio of the double projected area and the area of the unit circle (�). By
geometric arguments, or by the de�nition of solid angles, the projected area

of a di�erential area dAj on the surface of the hemisphere is dAj � cos�j=r2.
This area is orthographically projected onto the plane of dAi, multiplying
the area by factor cos �i. The ratio of the double projected area and the
area of the base circle is:

cos�i � cos �j
� � r2 � dAj: (10:27)

Since the double projection is a one-to-one mapping, if surface �Aj is
above the plane of Ai, the portion, taking the whole �Aj surface into ac-
count, is: Z

�Aj

Hij � cos�i � cos �j
� � r2 dAj = diFij: (10:28)

This is exactly the formula of an inner form factor integral.

Now we turn to the problem of the hemispherical projection of a

planar polygon. To simplify the problem, consider only one edge line of
the polygon �rst, and two vertices, ~Rl and ~Rl�1, on it (�gure 10.4). The

hemispherical projection of this line is a half great circle. Since the radius

276 10. RADIOSITY METHOD

-

+

+

R l R l 1+

ni

Figure 10.4: Hemispherical projection of a planar polygon

of this great circle is 1, the area of the sector formed by the projections
of ~Rl and ~Rl�1 and the center of the hemisphere is simply half the angle
of ~Rl and ~Rl�1. Projecting this sector orthographically onto the equatorial
plane, an ellipse sector is generated, having the area of the great circle sector
multiplied by the cosine of the angle of the surface normal ~ni and the normal
of the segment (~Rl � ~Rl�1).

The area of the doubly projected polygon can be obtained by adding
and subtracting the areas of the ellipse sectors of the di�erent edges, as
is demonstrated in �gure 10.4, depending on whether the projections of
vectors ~Rl and ~Rl�1 follow each other clockwise. This sign value can also
be represented by a signed angle of the two vectors, expressing the area of

the double projected polygon as a summation:

L�1X
l=0

1

2
� angle(~Rl; ~Rl�1)

(~Rl � ~Rl�1)

j~Rl � ~Rl�1j
� ~ni: (10:29)

Having divided this by � to calculate the ratio of the area of the double

projected polygon and the area of the equatorial circle, equation 10.26 can
be generated.

These methods have supposed that surface �Aj is above the plane of

dAi and is totally visible. Surfaces below the equatorial plane do not pose
any problems, since we can get rid of them by the application of a clipping
algorithm. Total visibility, that is when visibility term Hij is everywhere 1,

10.1. FORM FACTOR CALCULATION 277

however, is only an extreme case in the possible arrangements. The other

extreme case is when the visibility term is everywhere 0, and thus the form

factor will obviously be zero.

When partial occlusion occurs, the computation can make use of these

two extreme cases according to the following approaches:

1. A continuous (object precision) visibility algorithm is used in the form

factor computation to select the visible parts of the surfaces. Having

executed this step, the parts are either totally visible or hidden from

the given point on surface i.

2. The visibility term is estimated by �ring several rays to surface el-

ement j and averaging their 0/1 associated visibilities. If the result

is about 1, no occlusion is assumed; if it is about 0, the surface is
assumed to be obscured; otherwise the surface i has to be subdivided,
and the whole step repeated recursively [Tam92].

10.1.5 Hemicube algorithm

The hemicube algorithm is based on the fact that it is easier to project onto
a planar rectangle than onto a spherical surface. Due to the change of the
underlying geometry, the double projection cannot be expected to provide
the same results as for a hemisphere, so in order to evaluate the inner form

factor integral some corrections must be made during the calculation. These
correction parameters are generated by comparing the needed terms and the
terms resulting from the hemicube projections.
Let us examine the projection onto the top of the hemicube. Using geo-

metric arguments and the notations of �gure 10.5, the projected area of a

di�erential patch dAj is:

T (dAj) = Hij �
�
R

r

�2
� dAj � cos �j

cos �i
= Hij � dAj � cos �j � cos�i

� � r2 � �

(cos �i)4

(10:30)
since R = 1= cos �i.

Looking at the form factor formula, we notice that a weighted area is to

be calculated, where the weight function compensates for the unexpected

�=(cos�i)
4 term. Introducing the compensating function wz valid on the top

of the hemicube, and expressing it by geometric considerations of �gure 10.5

278 10. RADIOSITY METHOD

R

r

dA

1

z

dA

dA cos
cos

R
j

j

φφ j

i

j
φr

2

i

i
φ

x

Figure 10.5: Form factor calculation by hemicube algorithm

which supposes an (x; y; z) coordinate system attached to the dAi, with axes
parallel with the sides of the hemicube, we get:

wz(x; y) =
(cos �i)

4

�
=

1

�(x2 + y2 + 1)2
: (10:31)

Similar considerations can lead to the calculation of the correction terms
of the projection on the side faces of the hemicube:
If the side face is perpendicular to the y axis, then:

wy(x; z) =
z

�(x2 + z2 + 1)2
(10:32)

or if the side face is perpendicular to the x axis:

wx(y; z) =
z

�(z2 + y2 + 1)2
: (10:33)

The weighted area de�ning the inner form factor is an area integral of a
weight function. If �Aj has a projection onto the top of the hemicube only,

then:

diFij =
Z

�Aj

T (dAj) � cos
4 �i

�
: (10:34)

10.1. FORM FACTOR CALCULATION 279

Instead of integrating over �Aj, the same integral can also be calculated

on the top of the hemicube in an x; y; z coordinate system:

diF
top
ij =

Z
T (�Aj)

Hij(x; y) � 1

�(x2 + y2 + 1)2
dxdy (10:35)

since cos �i = 1=(x2 + y2 + 1)1=2. Indicator Hij(x; y) shows whether �Aj is

really visible through hemicube point (x; y; 1) from �Ai or if it is obscured.

This integral is approximated by a �nite sum having generated a P � P

raster mesh on the top of the hemicube.

diF
top
ij =

Z
T (�Aj)

Hij(x; y) � wz(x; y)dxdy �

P=2�1X
X=�P=2

P=2�1X
Y=�P=2

Hij(X;Y) � wz(X;Y)
1

P 2
: (10:36)

The only unknown term here is Hij, which tells us whether or not surface

j is visible through the raster cell called \pixel" (X;Y). Thanks to the
research that has been carried out into hidden surface problems there are
many e�ective algorithms available which can also be used here. An obvious
solution is the application of simple ray tracing. The center of dAi and the
pixel de�nes a ray which may intersect several other surfaces. If the closest
intersection is on the surface j, then Hij(X;Y) is 1, otherwise it is 0.

A faster solution is provided by the z-bu�er method. Assume the color
of the surface �Aj to be j, the center of the camera to be dAi and the
3D window to be a given face of the hemicube. Having run the z-bu�er
algorithm, the pixels are set to the \color" of the surfaces visible in them.
Taking advantage of the above de�nition of color (color is the index of the

surface), each pixel will provide information as to which surface is visible in
it. We just have to add up the weights of those pixels which contain \color"

j in order to calculate the di�erential form factor diF
top
ij .

The projections on the side faces can be handled in exactly the same
way, except that the weight function has to be selected di�erently (wx or

wy depending on the actual side face). The form factors are calculated as a

sum of contributions of the top and side faces.

280 10. RADIOSITY METHOD

The complete algorithm, to calculate the Fij form factors using the z-

bu�er method, is:

for i = 1 to N do for j = 1 to N do Fij = 0;

for i = 1 to N do

camera = center of �Ai;

for k = 1 to 5 do // consider each face of the hemicube

window = kth face of the hemicube;

for x = 0 to P � 1 do

for y = 0 to P � 1 do pixel[x; y] = 0;

Z-BUFFER ALGORITHM (color of surface j is j)

for x = 0 to P � 1 do for y = 0 to P � 1 do

if (pixel[x; y] > 0) then

Fi;pixel[x;y] += wk(x� P=2; y � P=2)=P 2;
endfor

endfor

endfor

In the above algorithm the weight function wk(x�P=2; y�P=2)=P 2 must
be evaluated for those pixels through which other surfaces are visible and
must be added to that form factor which corresponds to the visible surface.
This is why values of weight functions at pixel centers are called delta form
factors. Since the formula for weight functions contains many multiplica-

tions and a division, its calculation in the inner loop of the algorithm can
slow down the form factor computation. However, these weight functions
are common to all hemicubes, thus they must be calculated only once and
then stored in a table which can be re-used whenever a value of the weight
function is needed.

Since the z-bu�er algorithm has O(N � P 2) worst case complexity, the
computation of the form factors, embedding 5N z-bu�er steps, is obviously
O(N2 �P 2), where N is the number of surface elements and P 2 is the number

of pixels in the z-bu�er. It is important to note that P can be much less
than the resolution of the screen, since now the \pixels" are used only to
approximate an integral �nitely. Typical values of P are 50 : : : 200.

Since the z-bu�er step can be supported by a hardware algorithm this

approach is quite e�ective on workstations supported by graphics accelera-
tors.

10.1. FORM FACTOR CALCULATION 281

10.1.6 Cubic tetrahedral algorithm

The hemicube algorithm replaced the hemisphere by a half cube, allowing

the projection to be carried out on �ve planar rectangles, or side faces of

the cube, instead of on a spherical surface. The number of planar surfaces

can be decreased by using a cubic tetrahedron as an intermediate surface

[BKP91], [BKP92].

z

x
y dA

i

Figure 10.6: Cubic tetrahedral method

An appropriate cubic tetrahedron may be constructed by slicing a cube by
a plane that passes through three of its vertices, and placing the generated
pyramid on surface i (see �gure 10.6). A convenient coordinate system is

de�ned with axes perpendicular to the faces of the tetrahedron, and setting
scales to place the apex in point [1; 1; 1]. The base of the tetrahedron will
be a triangle having vertices at [1; 1;�2], [1;�2; 1] and [�2; 1; 1].
Consider the projection of a di�erential surface dAj on a side face per-

pendicular to x axis, using the notations of �gure 10.7. The projected area

is:

dA0j =
dAj � cos�j

cos�
� j
~Rj2
r2

: (10:37)

The correction term, to provide the internal variable in the form factor
integral, is:

dAj � cos�j � cos �i
� � r2 = dA0j �

cos�i � cos �
� � j~Rj2

= dA0j � w(~R): (10:38)

282 10. RADIOSITY METHOD

[0,0,0]

[1,1,1]

r

dA j

dA j’

R

x

φ

φ

Θ
i

j

tetrahedron face

surface
dA i

Figure 10.7: Projection to the cubic tetrahedron

Expressing the cosine of angles by a scalar product with ~R pointing to the
projected area:

cos � =
~R � [1; 0; 0]

j~Rj ; cos �i =
~R � [1; 1; 1]

j~Rj � j[1; 1; 1]j : (10:39)

Vector ~R can also be de�ned as the sum of the vector pointing to the
apex of the pyramid ([1; 1; 1]) and a linear combination of side vectors of
pyramid face perpendicular to x axis:

~R = [1; 1; 1] + (1 � u) � [0;�1; 0] + (1� v) � [0; 0;�1] = [1; u; v]: (10:40)

This can be turned to the previous equation �rst, then to the formula of
the correction term:

w(u; v) =
u+ v + 1

� � p3 � (u2 + v2 + 1)2
: (10:41)

Because of symmetry, the values of this weight function | that is the
delta form factors | need to be computed and stored for only one-half

of any face when the delta form factor table is generated. It should be
mentioned that cells located along the base of the tetrahedron need special

10.2. SOLUTION OF THE LINEAR EQUATION 283

treatment, since they have triangular shape. They can either be simply

ignored, because their delta form factors are usually very small, or they

can be evaluated for the center of the triangle instead of the center of the

rectangular pixel.

10.2 Solution of the linear equation

The most obvious way to solve a linear equation is to apply the Gauss

elimination method [PFTV88]. Unfortunately it fails to solve the radiosity

equation for more complex models e�ectively, since it has O(N3) complex-

ity, and also it accumulates the round of errors of digital computers and

magni�es these errors to the extent that the matrix is close to singular.

Fortunately another technique, called iteration, can overcome both prob-
lems. Examining the radiosity equation,

Bi = Ei + %i
X
j

Bj � Fij

we will see that it gives the equality of the energy which has to be radiated
due to emission and re
ection (right side) and the energy really emitted
(left side). Suppose that only estimates are available for Bj radiosities,
not exact values. These estimates can be regarded as right side values,
thus having substituted them into the radiosity equation, better estimates
can be expected on the left sides. If these estimates were exact | that is

they satis�ed the radiosity equation |, then the iteration would not alter
the radiosity values. Thus, if this iteration converges, its limit will be the
solution of the original radiosity equation.
In order to examine the method formally, the matrix version of the ra-

diosity equation is used to describe a single step of the iteration:

B(m+ 1) = R �B(m) +E: (10:42)

A similar equation holds for the previous iteration too. Subtracting the

two equations, and applying the same consideration recursively, we get:

B(m+1)�B(m) = R � (B(m)�B(m�1)) = R
m � (B(1)�B(0)): (10:43)

The iteration converges if

lim
m!1

kB(m+ 1) �B(m)k = 0; that is if lim
m!1

kRmk = 0

284 10. RADIOSITY METHOD

for some matrix norm. Let us use the kRk1 norm de�ned as the maximum

of absolute row sums

kRk1 = max
i
fX

j

Fij � %ig (10:44)

and a vector norm that is compatible with it:

kbk1 = max
i
fjbijg: (10:45)

Denoting kRk by q, we have:
kB(m+ 1)�B(m)k = kRm � (B(1)�B(0))k � kRkm � kB(1)�B(0)k =

qm � kB(1)�B(0)k (10:46)

according to the properties of matrix norms. Since Fij represents the portion
of the radiated energy of surface i, which actually reaches surface j,

P
j Fij

is that portion which is radiated towards any other surface. This obviously
cannot exceed 1, and for physically correct models, di�use re
ectance %i < 1,

giving a norm that is de�nitely less than 1. Consequently q < 1, which
provides the convergence with, at least, the speed of a geometric series.
The complexity of the iteration solution depends on the operations needed

for a single step and the number of iterations providing convergence. A
single step of the iteration requires the multiplication of an N dimensional

vector and an N�N dimensional matrix, which requires O(N2) operations.
Concerning the number of necessary steps, we concluded that the speed

of the convergence is at least geometric by a factor q = kRk1. The in�nite
norm of R is close to being independent of the number of surface elements,
since as the number of surface elements increases, the value of form fac-

tors decreases, sustaining a constant sum of rows, representing that portion
of the energy radiated by surface i, which is gathered by other surfaces,
multiplied by the di�use coe�cient of surface i. Consequently, the number
of necessary iterations is independent of the number of surface elements,

making the iteration solution an O(N2) process.

10.2.1 Gauss{Seidel iteration

The convergence of the iteration can be improved by the method of Gauss{

Seidel iteration. Its basic idea is to use the new iterated values immediately

10.3. PROGRESSIVE REFINEMENT 285

when they are available, and not to postpone their usage until the next

iteration step. Consider the calculation of Bi in the normal iteration:

Bi(m+ 1) = Ei +Ri;1 �B1(m) +Ri;2 �B2(m) + :::+Ri;N �BN(m): (10:47)

During the calculation of Bi(m + 1), values B1(m + 1); :::; Bi�1(m + 1)

have already been calculated, so they can be used instead of their previous

value, modifying the iteration, thus:

Bi(m+ 1) = Ei +Ri;1 �B1(m+ 1) + : : :+Ri;i�1 �Bi�1(m+ 1)+

Ri;i+1 �Bi+1(m) + : : :+ Ri;N �BN (m) (10:48)

(recall that Ri;i = 0 in the radiosity equation).

A trick, called successive relaxation, can further improve the speed of
convergence. Suppose that during themth step of the iteration the radiosity
vector B(m+ 1) was computed. The di�erence from the previous estimate
is:

�B = B(m+ 1)�B(m) (10:49)

showing the magnitude of di�erence, as well as the direction of the im-
provement in N dimensional space. According to practical experience, the

direction is quite accurate, but the magnitude is underestimated, requiring
the correction by a relaxation factor !:

B
�(m+ 1) = B(m) + ! ��B: (10:50)

The determination of ! is a crucial problem. If it is too small, the con-
vergence will be slow; if it is too great, the system will be unstable and
divergent. For many special matrices, the optimal relaxation factors have

already been determined, but concerning our radiosity matrix, only practi-
cal experiences can be relied on. Cohen [CGIB86] suggests that relaxation
factor 1.1 is usually satisfactory.

10.3 Progressive re�nement

The previously discussed radiosity method determined the form factor ma-

trix �rst, then solved the linear equation by iteration. Both steps require
O(N2) time and space, restricting the use of this algorithm in commercial

286 10. RADIOSITY METHOD

applications. Most of the form factors, however, have very little e�ect on

the �nal image, thus, if they were taken to be 0, a great amount of time

and space could be gained for the price of a negligible deterioration of the

image quality. A criterion for selecting unimportant form factors can be

established by the careful analysis of the iteration solution of the radiosity

equation:

Bi(m+ 1) = Ei + %i
X
j

Bj(m) � Fij = Ei +
X
j

(Bi due to Bj(m))

(Bi due to Bj) = %i �Bj � Fij: (10:51)

If Bj is small, then the whole column i of R will not make too much

di�erence, thus it is not worth computing and storing its elements. This

seems acceptable, but how can we decide which radiosities will be small, or
which part of matrix R should be calculated, before starting the iteration?
We certainly cannot make the decision before knowing something about the
radiosities, but we can de�nitely do it during the iteration by calculating a

column of the form factor matrix only when it turns out that it is needed,
since the corresponding surface has signi�cant radiosity.
Suppose we have an estimateBj allowing for the calculation of the contri-

bution of this surface to all the others, and for determining a better estimate
for other surfaces by adding this new contribution to their estimated value.

If an estimateBj increases by �Bj, due to the contribution of other surfaces
to this radiosity, other surface radiosities should also be corrected accord-
ing to the new contribution of Bj, resulting in an iterative and progressive
re�nement of surface radiosities:

Bnew
i = Bold

i + %i � (�Bj) � Fij: (10:52)

Note that, in contrast to the previous radiosity method when we were
interested in how a surface gathers energy from other surfaces, now the di-

rection of the light is followed focusing on how surfaces shoot light to other

surfaces. A radiosity increment of a surface, which has not yet been used
to update other surface radiosities, is called unshot radiosity. In fact, in
equation 10.52, the radiosity of other surfaces should be corrected according

to the unshot radiosity of surface j. It seems reasonable to select for shoot-

ing that surface which has the highest unshot radiosity. Having selected a

10.3. PROGRESSIVE REFINEMENT 287

surface, the corresponding column of the form factor matrix should be calcu-

lated. We can do that on every occasion when a surface is selected to shoot

its radiosity. This reduces the burden of the storage of the N �N matrix

elements to only a single column containing N elements, but necessitates

the recalculation of the form factors. Another alternative is to store the al-

ready generated columns, allowing for reduction of the storage requirements

by omitting those columns whose surfaces are never selected, due to their

low radiosity. Let us realize that equation 10.52 requires F1j; F2j; : : : ; FNj,

that is a single column of the form factor matrix, to calculate the radiosity

updates due to �Bj. The hemicube method, however, supports \parallel"

generation of the rows of the form factor matrix, not of the columns. For

di�erent rows, di�erent hemicubes have to be built around the surfaces.

Fortunately, the reciprocity relationship can be applied to evaluate a single

column of the matrix based on a single hemicube:

Fji ��Aj = Fij ��Ai =) Fij = Fji � �Aj

�Ai

(i = 1; :::; N) (10:53)

These considerations have formulated an iterative algorithm, called pro-

gressive re�nement. The algorithm starts by initializing the total (Bi)
and unshot (Ui) radiosities of the surfaces to their emission, and stops if the
unshot radiosity is less than an acceptable threshold for all the surfaces:

for j = 1 to N do Bj = Ej; Uj = Ej

do

j = Index of the surface of maximum Uj;

Calculate Fj1, Fj2 ,..., FjN by a single hemicube;
for i = 1 to N do

�Bi = %i � Uj � Fji ��Aj=�Ai;
Ui += �Bi;
Bi += �Bi;

endfor

Uj = 0;

error = maxfU1; U2; :::; UNg;
while error > threshold;

This algorithm is always convergent, since the total amount of unshot
energy decreases in each step by an attenuation factor of less than 1. This

288 10. RADIOSITY METHOD

statement can be proven by examining the total unshot radiosities during

the iteration, supposing that Uj was maximal in step m, and using the

notation q = kRk1 again:

NX
i

Ui(m+1) =
NX
i6=j

Ui(m)+Uj �
NX
i

%i �Fij = (
NX
i

Ui(m))�Uj+Uj

NX
i

%i �Fij �

� (
NX
i

Ui(m))�(1�q)�Uj � (1� 1� q

N
)�

NX
i

Ui(m) = q� �
NX
i

Ui(m) (10:54)

since q = maxifPN
i %i � Fijg < 1 and Uj � PN

i Ui=N , because it is the

maximal value among Ui-s.

Note that, in contrast to the normal iteration, the attenuation factor q�

de�ning the speed of convergence now does depend on N , slowing down the
convergence by approximatelyN times, and making the number of necessary
iterations proportional to N . A single iteration contains a single loop of
length N in progressive re�nement, resulting in O(N2) overall complexity,
taking into account the expected number of iterations as well. Interestingly,

progressive re�nement does not decrease the O(N2) time complexity, but in
its simpler form when the form factor matrix is not stored, it can achieve
O(N) space complexity instead of the O(N2) behavior obtained by the
original method.

10.3.1 Application of vertex-surface form factors

In the traditional radiosity and the discussed progressive re�nement meth-
ods, the radiosity distributions of the elemental surfaces were assumed to be
constant, as were the normal vectors. This is obviously far from accurate,
and the e�ects need to be reduced by a bilinear interpolation of Gouraud

shading at the last step of the image generation. In progressive re�nement,

however, the linear radiosity approximation can be introduced earlier, even
during the phase of the calculation of radiosities. Besides, the real surface
normals in the vertices of the approximating polygons can be used resulting

in a more accurate computation.

This method is based on the examination of energy transfer between a
di�erential area (dAi) around a vertex of a surface and another �nite surface

(�Aj), and concentrates on the radiosity of vertices of polygons instead of

10.3. PROGRESSIVE REFINEMENT 289

the radiosities of the polygons themselves. The normal of dAi is assumed

to be equal to the normal of the real surface in this point. The portion

of the energy landing on the �nite surface and the energy radiated by the

di�erential surface element is called the vertex-surface form factor (or

vertex-patch form factor).

The vertex-surface form factor, based on equation 10.6, is:

F v
ij =

1

dAi

�
Z
dAi

Z
�Aj

Hij �dAi � cos �i � dAj � cos �j
� � r2 =

Z
�Aj

Hij �cos �i � cos�j
� � r2 dAj:

(10:55)

This expression can either be evaluated by any discussed method or by

simply �ring several rays from dAi towards the centers of the patches gen-

erated by the subdivision of surface element �Aj. Each ray results in a

visibility factor of either 0 or 1, and an area-weighted summation has to be
carried out for those patches which have visibility 1 associated with them.

Suppose that in progressive re�nement total and unshot radiosity esti-
mates are available for all vertices of surface elements. Unshot surface ra-
diosities can be approximated as the average of their unshot vertex radiosi-
ties. Having selected the surface element with the highest unshot radiosity
(Uj), and having also determined the vertex-surface form factors from all

the vertices to the selected surface (note that this is the reverse direction),
the new contributions to the total and unshot radiosities of vertices are:

�Bv
i = %i � Uj � F v

ij: (10:56)

This has modi�ed the total and unshot radiosities of the vertices. Thus,
estimating the surface radiosities, the last step can be repeated until con-
vergence, when the unshot radiosities of vertices become negligible. The
radiosity of the vertices can be directly turned to intensity and color in-

formation, enabling Gouraud's algorithm to complete the shading for the
internal pixels of the polygons.

10.3.2 Probabilistic progressive re�nement

In probabilistic form factor computation, rays were �red from surfaces to

determine which other surfaces can absorb their radiosity. In progressive

re�nement, on the other hand, the radiosity is shot proportionally to the

290 10. RADIOSITY METHOD

precomputed form factors. These approaches can be merged in a method

which randomly shoots photons carrying a given portion of energy. As in

progressive re�nement, the unshot and total radiosities are initialized to the

emission of the surfaces. At each step of the iteration a point is selected at

random on the surface which has the highest unshot radiosity, a direction

is generated according to the directional distribution of the radiation (co-

sine distribution), and a given portion, say 1=nth, of the unshot energy is

delivered to that surface which the photon encounters �rst on its way.

The program of this algorithm is then:

for j = 1 to N do Bj = Uj = Ej

do

j = Index of the surface of maximum Uj

~p = a random point on surface j by uniform distribution
~d = a random direction from ~p by cosine distribution

if ray(~p; ~d) hits surface i �rst then
Ui += %i � Uj=n;
Bi += %i � Uj=n;

endif

Uj -= Uj=n;
error = maxfU1; U2; :::; UNg;

while error > threshold;

This is possibly the simplest algorithm for radiosity calculation. Since it
does not rely on form factors, shading models other than di�use re
ection
can also be incorporated.

10.4 Extensions to non-di�use

environments

The traditional radiosity methods discussed so far consider only di�use re-

ections, having made it possible to ignore directional variation of the radia-
tion of surfaces, since di�use re
ection generates the same radiant intensity

in all directions. To extend the basic method taking into account more

10.4. EXTENSIONS TO NON-DIFFUSE ENVIRONMENTS 291

terms in the general shading equation, directional dependence has to be

built into the model.

The most obvious approach is to place a partitioned sphere on each ele-

mental surface, and to calculate and store the intensity in each solid angle

derived from the partition [ICG86]. This partitioning also transforms the

integrals of the shading equations to �nite sums, and limits the accuracy

of the direction of the incoming light beams. Deriving a shading equa-

tion for each surface element and elemental solid angle, a linear equation

is established, where the unknown variables are the radiant intensities of

the surfaces in various solid angles. This linear equation can be solved by

similar techniques to those discussed so far. The greatest disadvantage of

this approach is that it increases the number of equations and the unknown

variables by a factor of the number of partitioning solid angles, making the

method prohibitively expensive.

More promising is the combination of the radiosity method with ray trac-
ing, since the respective strong and weak points of the two methods tend
to complement each other.

10.4.1 Combination of radiosity and ray tracing

In its simplest approach, the �nal, view-dependent step of the radiosity
method involving Gouraud shading and usually z-bu�ering can be replaced
by a recursive ray tracing algorithm, where the di�use component is deter-
mined by the surface radiosities, instead of taking into consideration the
abstract lightsources, while the surface radiosities are calculated by the

methods we have discussed, ignoring all non-di�use phenomena. The result
is much better than the outcome of a simple recursive ray tracing, since the
shadows lose their sharpness. The method still neglects some types of cou-
pling, since, for example, it cannot consider the di�use re
ection of a light
beam coherently re
ected or refracted onto other surfaces. In �gure 10.8,

for example, the vase should have been illuminated by the light coherently

re
ected o� the mirror, but the algorithm in question makes it dark, since
the radiosity method ignores non-di�use components. A possible solution
to this problem is the introduction and usage of extended form factors

[SP89].

A simpli�ed shading model is used which breaks down the energy radiated
by a surface into di�use and coherently re
ected or refracted components.

292 10. RADIOSITY METHOD

lightsource
mirror

object

eye

Figure 10.8: Coherent-di�use coupling: The vase should have been illuminated

by the light re
ected o� the mirror

An extended form factor F �
ij, by de�nition represents that portion of the

energy radiated di�usely by surface i which actually reaches surface j ei-
ther by direct transmission or by single or multiple coherent re
ections or

refractions. The use of extended form factors allows for the calculation of
the di�use radiance of patches which takes into account not only di�use but
also coherent interre
ections. Suppose di�use radiance Bi of surface i needs
to be calculated. Di�use radiance Bi is determined by the di�use radiation
of other surfaces which reaches surface i and by those light components

which are coherently re
ected or refracted onto surface i. These coherent
components can be broken down into di�use radiances and emissions which
are later coherently re
ected or refracted several times, thus similar expres-
sion holds for the di�use radiance in the improved model as for the original,
only the normal form factors must be replaced by the extended ones. The

extended radiosity equation de�ning the di�use radiance of the surfaces in

a non-di�use environment is then:

Bi � dAi = Ei � dAi + %i �
Z
Bj � F �

ji � dAj: (10:57)

Recursive ray tracing can be used to calculate the extended form factors.

For each pixel of the hemicube a ray is generated which is traced backward

10.5. HIGHER ORDER RADIOSITY APPROXIMATION 293

�nding those surfaces which can be visited along this ray. For each surface

found that portion of its di�usely radiated energy which reaches the previous

surface along the ray should be computed | this is a di�erential form factor

| then the attenuation of subsequent coherent re
ections and refractions

must be taken into consideration by multiplying the di�erential form factor

by the product of the refractive and re
ective coe�cients of the surfaces

visited by the ray between the di�use source and surface i. Adding these

portions of possible contribution for each pixel of the hemicube also taking

the hemicube weighting function into account, the extended form factors can

be generated. Having calculated the extended form factors, the radiosity

equation can be solved by the method discussed, resulting in the di�use

radiosities of the surfaces.

Expensive ray-tracing can be avoided and normal form factors can be

worked with if only single, ideal, mirror-like coherent re
ections are allowed,

because this case can be supported by mirroring every single surface onto
the re
ective surfaces. We can treat these re
ective surfaces as windows
onto a \mirror world", and the normal form factor between the mirrored
surface and another surface will be responsible for representing that part of
energy transfer which would be represented by the di�erence of the extended
and normal form factors [WCG87].

If the di�use radiosities of the surfaces are generated, then in the second,
view-dependent phase another recursive ray-tracing algorithm can be ap-
plied to generate the picture. Whenever a di�use intensity is needed this
second pass ray-tracing will use the radiosities computed in the �rst pass.
In contrast to the naive combination of ray-tracing and radiosity, the dif-

fuse radiosities are now correct, since the �rst pass took not only the di�use
interre
ections but also the coherent interre
ections and refractions into
consideration.

10.5 Higher order radiosity approximation

The original radiosity method is based on �nite element techniques. In
other words, the radiosity distribution is searched in a piecewise constant

function form, reducing the original problem to the calculation of the values

of the steps.

294 10. RADIOSITY METHOD

The idea of piecewise constant approximation is theoretically simple and

easy to accomplish, but an accurate solution would require a large number

of steps, making the solution of the linear equation di�cult. Besides, the

constant approximation can introduce unexpected artifacts in the picture

even if it is softened by Gouraud shading.

This section addresses this problem by applying a variational method for

the solution of the integral equation [SK93].

The variational solution consists of the following steps [Mih70]:

1. It establishes a functional which is extreme for a function (radiosity

distribution) if and only if the function satis�es the original integral

equation (the basic radiosity equation).

2. It generates the extreme solution of the functional byRitz's method,
that is, it approximates the function to be found by a function series,
where the coe�cients are unknown parameters, and the extremum is

calculated by making the partial derivatives of the functional (which
is a function of the unknown coe�cients) equal to zero. This results
in a linear equation which is solved for the coe�cients de�ning the
radiosity distribution function.

Note the similarities between the second step and the original radiosity
method. The proposed variational method can, in fact, be regarded as a
generalization of the �nite element method, and, as we shall see, it contains
that method if the basis functions of the function series are selected as

piecewise constant functions being equal to zero except for a small portion
of the surfaces. Nevertheless, we are not restricted to these basis functions,
and can select other function bases, which can approximate the radiosity
distribution more accurately and by fewer basis functions, resulting in a
better solution and requiring the calculation of a signi�cantly smaller linear

equation.
Let the di�use coe�cient be %(p) at point p and the visibility indicator

between points p and p0 be H(p; p0). Using the notations of �gure 10.9, and

denoting the radiosity and emission at point p by B(p) and E(p) respec-
tively, the basic radiosity equation is:

B(p) � dA = E(p) � dA+ %(p) �
Z
A

B(p0) f(p; p0) dA0 � dA (10:58)

10.5. HIGHER ORDER RADIOSITY APPROXIMATION 295

r

dA

dA’

p

p’

φ

φ(

(p’)

p)

A

Figure 10.9: Geometry of the radiosity calculation

where f(p; p0) is the point-to-point form factor:

f(p; p0) = H(p; p0)
cos �(p) � cos�(p0)

r2�
: (10:59)

Dividing both sides by dA, the radiosity equation is then:

B(p) = E(p) + %(p) �
Z
A

B(p0) f(p; p0) dA0: (10:60)

Let us de�ne a linear operator L:

LB(p) = B(p)� %(p) �
Z
A

B(p0) f(p; p0) dA0: (10:61)

Then the radiosity equation can also be written as follows:

LB(p) = E(p): (10:62)

The solution of the radiosity problem means to �nd a function B satisfying
this equation. The domain of possible functions can obviously be restricted

to functions whose square has �nite integration over surface A. This func-

tion space is usually called L2(A) space where the scalar product is de�ned
as:

hu; vi =
Z
A

u(p) � v(p) dA: (10:63)

296 10. RADIOSITY METHOD

If L were a symmetric and positive operator, that is, for any u; v in L2(A),

hLu; vi = hu;Lvi (10:64)

were an identity and

hLu; ui � 0 ^ hLu; ui = 0 if and only if u = 0; (10:65)

then according to the minimal theorem of quadratic functionals [Ode76] the

solution of equation 10.62 could also be found as the stationary point of the

following functional:

hLB;Bi � 2hE;Bi+ hE;Ei: (10:66)

Note that hE;Ei makes no di�erence in the stationary point, since it does
not depend on B, but it simpli�es the resulting formula.

To prove that if and only if some B0 satis�es

LB0 = E (10:67)

for a symmetric and positive operator L, then B0 is extreme for the func-
tional of equation 10.66, a sequence of identity relations based on the as-
sumption that L is positive and symmetric can be used:

hLB;Bi � 2hE;Bi + hE;Ei = hLB;Bi � 2hLB0; Bi+ hE;Ei =

hLB;Bi � hLB0; Bi � hB0;LBi+ hE;Ei =
hLB;Bi � hLB0; Bi � hLB;B0i+ hLB0; B0i � hLB0; B0i+ hE;Ei =

hL(B �B0); (B �B0)i � hLB0; B0i + hE;Ei: (10:68)

Since only the term hL(B � B0); (B � B0)i depends on B and this term
is minimal if and only if B � B0 is zero due to the assumption that L is

positive, therefore the functional is really extreme for that B0 which satis�es

equation 10.62.
Unfortunately L is not symmetric in its original form (equation 10.61)

due to the asymmetry of the radiosity equation which depends on %(p) but
not on %(p0). One possible approach to this problem is the subdivision of

surfaces into �nite patches having constant di�use coe�cients, and working

10.5. HIGHER ORDER RADIOSITY APPROXIMATION 297

with multi-variate functionals, but this results in a signi�cant computational

overhead.

Now another solution is proposed that eliminates the asymmetry by cal-

culating B(p) indirectly through the generation of B(p)=
q
%(p). In order to

do this, both sides of the radiosity equation are divided by
q
%(p):

E(p)q
%(p)

=
B(p)q
%(p)

�
q
%(p)

Z
A

B(p0)q
%(p0)

q
%(p0) f(p; p0) dA0: (10:69)

Let us de�ne B�(p), E�(p) and g(p; p0) by the following formulae:

B�(p) =
B(p)q
%(p)

; E�(p) =
E(p)q
%(p)

; g(p; p0) = f(p; p0)
q
%(p)%(p0):

(10:70)

Using these de�nitions, we get the following form of the original radiosity

equation:

E�(p) = B�(p) �
Z
A

B�(p0) g(p; p0) dA0: (10:71)

Since g(p; p0) = g(p0; p), this integral equation is de�ned by a symmetric

linear operator L�:
L�B�(p) = B�(p)�

Z
A

B�(p0) g(p; p0) dA0: (10:72)

As can easily be proven, operator L� is not only symmetric but also
positive taking into account that for physically correct models:Z

A

Z
A

B(p0)g(p; p0) dA0dA �
Z
A

B(p) dA: (10:73)

This means that the solution of the modi�ed radiosity equation is equiv-
alent to �nding the stationary point of the following functional:

I(B�) = hL�B�; B�i � 2hE�; B�i+ hE�; E�i =Z
A

(E�(p) �B�(p))
2
dA�

Z
A

Z
A

B�(p) B�(p0) g(p; p0) dA dA0: (10:74)

This extreme property of functional I can also be proven by generating

the functional's �rst variation and making it equal to zero:

0 = �I =
@I(B�+ � �B)

@�
j�=0: (10:75)

298 10. RADIOSITY METHOD

Using elementary derivation rules and taking into account the following

symmetry relation:

Z
A

Z
A

B�(p) �B(p0) g(p; p0) dAdA0 =
Z
A

Z
A

�B(p) B�(p0) g(p; p0) dAdA0

(10:76)

the formula of the �rst variation is transformed to:

0 = �I =
Z
A

[E�(p) �B�(p) +
Z
A

B�(p0) � g(p; p0) dA0] � �B dA: (10:77)

The term closed in brackets should be zero to make the expression zero for

any �B variation. That is exactly the original radiosity equation, hence

�nding the stationary point of functional I is really equivalent to solving

integral equation 10.71.
In order to �nd the extremum of functional I(B�), Ritz's method is used.

Assume that the unknown function B� is approximated by a function series:

B�(p) �
nX

k=1

ak � bk(p) (10:78)

where (b1; b2; :::; bn) form a complete function system (that is, any piecewise
continuous function can be approximated by their linear combination), and

(a1; a2; :::; an) are unknown coe�cients. This assumption makes functional
I(B�) an n-variate function I(a1; :::; an), which is extreme if all the partial
derivatives are zero. Having made every @I=@ak equal to zero, a linear
equation system can be derived for the unknown ak-s (k = f1; 2; :::; ng):

nX
i=0

ai[
Z
A

bi(p)bk(p)dA�
Z
A

Z
A

bk(p)bi(p
0)g(p; p0) dAdA0] =

Z
A

E�(p)bk(p)dA:

(10:79)
This general formula provides a linear equation for any kind of complete

function system b1; :::; bn, thus it can be regarded as a basis of many dif-

ferent radiosity approximation techniques, because the di�erent selection of

basis functions, bi, results in di�erent methods of determining the radiosity
distribution.

10.5. HIGHER ORDER RADIOSITY APPROXIMATION 299

Three types of function bases are discussed:

� piecewise constant functions which lead to the traditional method,

proving that the original approach is a special case of this general

framework,

� piecewise linear functions which, as we shall see, are not more di�cult

than the piecewise constant approximations, but they can provide

more accurate solutions. It is, in fact, a re�ned version of the method

of \vertex-surface form factors",

� harmonic (cosine) functions where the basis functions are not of �nite

element type because they can approximate the radiosity distribution

everywhere not just in a restricted part of the domain, and thus fall

into the category of global element methods.

piecewise constant

piecewise linear

harmonic (cosine)

Figure 10.10: One-dimensional analogy of proposed basis functions

10.5.1 Piecewise constant radiosity approximation

Following a �nite element approach, an appropriate set of bk functions can

be de�ned having broken down the surface into �A1, �A2,...,�An surface
elements:

bk(p) =

8<
:
1 if p is on �Ak

0 otherwise

(10:80)

300 10. RADIOSITY METHOD

If the emission E and the di�use coe�cient % are assumed to be con-

stant on the elemental surface �Ak and equal to Ek and %k respectively,

equation 10.79 will have the following form:

ak�Ak �
nX
i=0

ai[
Z

�Ak

Z
�Ai

g(p; p0) dAdA0] =
Ekp
%k
�Ak: (10:81)

According to the de�nition of basis function bk, the radiosity of patch k is:

Bk = B�
k

p
%k = ak

p
%k: (10:82)

Substituting this into equation 10.81 and using the de�nition of g(p; p0) in

equation 10.70, we get:

Bk�Ak � %k

nX
i=0

Bi[
Z

�Ak

Z
�Ai

f(p; p0) dAdA0] = Ek�Ak: (10:83)

Let us introduce the patch-to-patch form factor as follows:

Fki =
1

�Ak

Z
�Ak

Z
�Ai

f(p; p0) dAdA0: (10:84)

Note that this is the usual de�nition taking into account the interpretation
of f(p; p0) in equation 10.59.
Dividing both sides by �Ak, the linear equation is then:

Bk � %k

nX
i=0

BiFki = Ek: (10:85)

This is exactly the well known linear equation of original radiosity method
(equation 10.10). Now let us begin to discuss how to de�ne and use other,
more e�ective function bases.

10.5.2 Linear �nite element techniques

Let us decompose the surface into planar triangles and assume that the

radiosity variation is linear on these triangles. Thus, each vertex i of the

triangle mesh will correspond to a \tent shaped" basis function bi that is 1

10.5. HIGHER ORDER RADIOSITY APPROXIMATION 301

at this vertex and linearly decreases to 0 on the triangles incident to this

vertex.

Placing the center of the coordinate system into vertex i, the position

vector of points on an incident triangle can be expressed by a linear combi-

nation of the edge vectors ~a;~b:

~p = �~a+ �~b (10:86)

with �; � � 0 ^ � + � � 1.

1

b (p)i basis function

Figure 10.11: Linear basis function in three dimensions

Thus, the surface integral of some function F on a triangle can be written
as follows: Z

�A

F (~p)dA =

1Z
�=0

1��Z
�=0

F (�; �)j~a�~bjd�d� =

2�A

1Z
�=0

1��Z
�=0

F (�; �) d�d�: (10:87)

If F (�; �) is a polynomial function, then its surface integration can be de-
termined in closed form by this formula.

302 10. RADIOSITY METHOD

The basis function which is linearly decreasing on the triangles can be

conveniently expressed by �; � coordinates:

bk(�; �) = 1� �� �;

bk0(�; �) = �;

bk00(�; �) = �;

bi = 0 if i 6= k; k0; k00

(10:88)

where k, k0 and k00 are the three vertices of the triangle.

Let us consider the general equation (equation 10.79) de�ning the weights

of basis functions; that is the radiosities at triangle vertices for linear �nite

elements. Although its integrals can be evaluated directly, it is worth ex-

amining whether further simpli�cation is possible. Equation 10.79 can also

be written as follows:Z
A

[
nX
i=0

aifbi(p) �
Z
A

bi(p
0)g(p; p0) dA0g �E�(p)] � bk(p) dA = 0 (10:89)

The term enclosed in brackets is a piecewise linear expression according to
our assumption if E� is also linear. The integration of the product of this
expression and any linear basis function is zero. That is possible if the term

in brackets is constantly zero, thus an equivalent system of linear equations
can be derived by requiring the closed term to be zero in each vertex k (this
implies that the function will be zero everywhere because of linearity):

ak �
nX
i=0

ai

Z
A

bi(p
0)g(pk; p

0) dA0 = E�
k ; k = f1; 2; :::ng (10:90)

As in the case of piecewise constant approximation, the di�use coe�cient
%(p) is assumed to be equal to %k at vertex k, and using the de�nitions of

the normalized radiosities we can conclude that:

ak = B�
k =

Bkp
%k
; E�

k =
Ekp
%k
: (10:91)

Substituting this into equation 10.90 and taking into account that bi is zero

outside �Ai, we get:

Bk � %k

nX
i=0

Bi[
Z

�Ai

bi(p
0)f(pk; p

0)

s
%(p0)

%i
dA0] = Ek: (10:92)

10.5. HIGHER ORDER RADIOSITY APPROXIMATION 303

Let us introduce the vertex-patch form factor Pki:

Pki =
Z

�Ai

bi(p
0)f(pk; p

0)

s
%(p0)

%i
dA0: (10:93)

If the di�use coe�cient can be assumed to be (approximately) constant on

the triangles adjacent to vertex i, then:

Pki �
Z

�Ai

bi(p
0)f(pk; p

0) dA0: (10:94)

The linear equation of the vertex radiosities is then:

Bk � %k

nX
i=0

BiPki = Ek: (10:95)

This is almost the same as the linear equation describing the piecewise
constant approximation (equation 10.85), except that:

� Unknown parametersB1; :::; Bk represent now vertex radiosities rather

than patch radiosities. According to Euler's law, the number of ver-
tices of a triangular faced polyhedron is half of the number of its faces
plus two. Thus the size of the linear equation is almost the same as
for the number of quadrilaterals used in the original method.

� There is no need for double integration and thus the linear approxi-
mation requires a simpler numerical integration to calculate the form
factors than constant approximation.

The vertex-patch form factor can be evaluated by the techniques devel-

oped for patch-to-patch form factors taking account also the linear variation
due to bi. This integration can be avoided, however, if linear approxima-
tion of f(pk; p

0) is acceptable. One way of achieving this is to select the
subdivision criterion of surfaces into triangles accordingly.

A linear approximation can be based on point-to-point form factors be-

tween vertex k and the vertices of triangle �A0. Let the f(pk; p) values of

the possible combinations of point pk and the vertices be F1; F2; F3 respec-
tively. A linear interpolation of the point-to-point form factor between pk
and p0 = �0~a0 + �0~b0 is:

f(pk; p
0) = �0F1 + �0F2 + (1 � �0 � �0)F3: (10:96)

304 10. RADIOSITY METHOD

Using this assumption the surface integral de�ning Pki can be expressed

in closed form.

10.5.3 Global element approach | harmonic

functions

In contrast to previous cases, the application of harmonic functions does

not require the subdivision of surfaces into planar polygons, but deals with

the original geometry. This property makes it especially useful when the

view-dependent rendering phase uses ray-tracing.

Suppose surface A is de�ned parametrically by a position vector function,

~r(u; v), where parameters u and v are in the range of [0; 1].

Let a representative of the basis functions be:

bij = cos(i�u) � cos(j�v) = C i
uC

j
v (10:97)

(C i
u substitutes cos(i�u) for notational simplicity). Note that the basis

functions have two indices, hence the sums should also be replaced by double
summation in equation 10.79. Examining the basis functions carefully, we
can see that the goal is the calculation of the Fourier series of the radiosity
distribution.
In contrast to the �nite element method, the basis functions are now non-

zero almost everywhere in the domain, so they can approximate the radiosity

distribution in a wider range. For that reason, approaches applying this kind
of basis function are called global element methods.
In the radiosity method the most time consuming step is the evalua-

tion of the integrals appearing as coe�cients of the linear equation sys-
tem (equation 10.79). By the application of cosine functions, however, the

computational time can be reduced signi�cantly, because of the orthogonal
properties of the trigonometric functions, and also by taking advantage of
e�ective algorithms, such as Fast Fourier Transform (FFT).

In order to illustrate the idea, the calculation ofZ
A

E�(p)bkl(p) dA

for each k; l is discussed. Since E�(p) = E�(~r(u; v)), it can be regarded

as a function de�ned over the square [0; 1]2. Using the equalities of surface

10.5. HIGHER ORDER RADIOSITY APPROXIMATION 305

integrals, and introducing the notation J(u; v) = j@~r=@u�@~r=@vj for surface
element magni�cation, we get:

Z
A

E�(p)bkl(p) dA =

1Z
0

1Z
0

E�(~r(u; v))bkl(u; v)J(u; v) dudv: (10:98)

Let us mirror the function E�(~r) � J(u; v) onto coordinate system axes

u and v, and repeat the resulting function having its domain in [�1; 1]2
in�nitely in both directions with period 2. Due to mirroring and periodic

repetition, the �nal function Ê(u; v) will be even and periodic with period

2 in both directions. According to the theory of the Fourier series, the

function can be approximated by the following sum:

Ê(u; v) �
mX
i=0

mX
j=0

EijC
i
uC

j
v : (10:99)

All the Fourier coe�cientsEij can be calculated by a single, two-dimensional
FFT. (A D-dimensional FFT of N samples can be computed by taking
DND�1 number of one-dimensional FFTs [Nus82] [PFTV88].)
Since Ê(u; v) = E�(~r) � J(u; v) if 0 � u; v � 1, this Fourier series and the

de�nition of the basis functions can be applied to equation 10.98, resulting

in: Z
A

E�(p)bkl(p) dA =

1Z
u=0

1Z
v=0

mX
i=0

mX
j=0

EijC
i
uC

j
v � bkl(u; v) dudv =

mX
i=0

mX
j=0

Eij

1Z
0

C i
uC

k
udu

1Z
0

Cj
vC

l
vdv =

8>>>>>>>>>><
>>>>>>>>>>:

E0;0 if k = 0 and l = 0

E0;l=2 if k = 0 and l 6= 0

Ek;0=2 if k 6= 0 and l = 0

Ek;l=4 if k 6= 0 and l 6= 0

(10:100)

Consequently, the integral can be calculated in closed form, having re-

placed the original function by Fourier series. Similar methods can be used
to evaluate the other integrals. In order to computeZ

A

bij(p)bkl(p)dA

J(u; v) must be Fast Fourier Transformed.

306 10. RADIOSITY METHOD

To calculate Z
A

Z
A

bk(p)b
0
i(p)g(p; p

0) dAdA0

the Fourier transform of

g(p(u; v); p0(u0; v0)) � J(u; v)J(u0; v0)

is needed. Unfortunately the latter requires a 4D FFT which involves

many operations. Nevertheless, this transform can be realized by two two-

dimensional FFTs if g(p; p0) can be assumed to be nearly independent of

either p or p0, or it can be approximated by a product form of p and p0

independent functions.

Finally, it should be mentioned that other global function bases can

also be useful. For example, Chebyshev polynomials are e�ective in ap-
proximation, and similar techniques to FFT can be developed for their

computation.

Chapter 11

SAMPLING AND

QUANTIZATION

ARTIFACTS

From the information or signal processing point of view, modeling can be

regarded as the de�nition of the intended world by digital and discrete

data which are processed later by image synthesis. Since the intended

world model, like the real world, is continuous, modeling always involves

an analog-digital conversion to the internal representation of the digital

computer. Later in image synthesis, the digital model is resampled and re-

quantized to meet the requirements of the display hardware, which is much

more drastic than the sampling of modeling, making this step responsible

for the generation of artifacts due to the approximation error in the sam-

pling process. In this chapter, the problems of discrete sampling will be

discussed �rst, then the issue of quantization will be addressed.

The sampling of a two-dimensional color distribution, I(x; y), can be

described mathematically as a multiplication by a \comb function" which

keeps the value of the sampled function in the sampling points, but makes

it zero elsewhere:

Is(x; y) = I(x; y) �
X
i

X
j

�(x� i ��x; y � j ��y): (11:1)

307

308 11. SAMPLING AND QUANTIZATION ARTIFACTS

The 2D Fourier transformation of this signal is:

I�s (�; �) =

1Z

�1

1Z

�1

Is(x; y) � e�|x� � e�|y�dxdy =

1

�x ��y
X
i

X
j

I�(�� 2�i

�x
; � � 2�j

�y
): (11:2)

The sampling would be correct if the requirements of the sampling the-

orem could be met. The sampling theorem states that a continuous signal

can be reconstructed exactly from its samples by an ideal low-pass �lter only

if it is band-limited to a maximum frequency which is less than half of the

sampling frequency. That is also obvious from equation 11.2, since it repeats

the spectrum of the signal in�nitely by periods 2�=�x and 2�=�y, which

means that the spectrum of non-band-limited signals will be destroyed by

their repeated copies.

spectrum of the original signal

repeated spectra due to sampling

reconstruction by a non-ideal
low pass filter

reconstructed signal

α

α

α

α

2π/∆x

frequency

Figure 11.1: Analysis of the spectrum of the sampled color distribution

The real world is never band-limited, because objects appear suddenly

(like step functions) as we move along a path, introducing in�nitely high

frequencies. Thus, the sampling theorem can never be satis�ed in computer

graphics, causing the repeated spectra of the color distribution to overlap,

and destroying even the low frequency components of the �nal spectrum.

11. SAMPLING AND QUANTIZATION ARTIFACTS 309

The phenomenon of the appearance of high frequency components in the

lower frequency ranges due to incorrect sampling is called aliasing (�g-

ure 11.1). The situation is made even worse by the method of reconstruc-

tion of the continuous signal. As has been discussed, raster systems use a

0-order hold circuit in their D/A converter to generate a continuous signal,

which is far from being an ideal low-pass �lter.

The results of the unsatisfactory sampling and reconstruction are well-

known in computer graphics. Polygon edges will have stairsteps or jaggies

which are aliases of unwanted high frequency components. The sharp cor-

ners of the jaggies are caused by the inadequate low-pass �lter not suppress-

ing those higher components. The situation is even worse for small objects

of a size comparable with pixels, such as small characters or textures, be-

cause they can totally disappear from the screen depending on the actual

sampling grid. In order to reduce the irritating e�ects of aliasing, three

di�erent approaches can be taken:

1. Increasing the resolution of the displays. This approach has not only

clear technological constraints, but has proven ine�cient for eliminat-

ing the e�ects of aliasing, since the human eye is very sensitive to the

regular patterns that aliasing causes.

2. Band-limiting the image by applying a low pass �lter before sam-

pling. Although the high frequency behavior of the image will not

be accurate, at least the more important low frequency range will

not be destroyed by aliases. This anti-aliasing approach is called

pre-�ltering, since the �ltering is done before the sampling.

3. The method which �lters the generated image after sampling is called

post-�ltering. Since the signal being sampled is not band-limited,

the aliases will inevitably occur on the image, and cannot be removed

by a late �ltering process. If the sampling uses the resolution of the

�nal image, the same aliases occur, and post-�ltering can only re-

duce the sharp edges of jaggies, improving the reconstruction process.

The �ltering cannot make a distinction between aliases and normal

image patterns, causing a decrease in the sharpness of the picture.

Thus, post-�ltering is only e�ective if it is combined with higher reso-

lution sampling, called supersampling, because the higher sampling

frequency will reduce the inevitable aliasing if the spectrum energy

310 11. SAMPLING AND QUANTIZATION ARTIFACTS

falls o� with increasing frequency, since higher sampling frequency

increases the periods of repetition of the spectrum by factors 2�=�x

and 2�=�y. Supersampling generates the image at a higher resolu-

tion than is needed by the display hardware, the �nal image is then

produced by sophisticated digital �ltering methods which produce the

�ltered image at the required resolution.

Comparing the last two basic approaches, we can conclude that pre-

�ltering works in continuous space allowing for the elimination of aliases

in theory, but that e�ciency considerations usually inhibit the use of accu-

rate low-pass �lters in practice. Post-�ltering, on the other hand, samples

the non-band-limited signal at a higher sampling rate and reduces, but does

not eliminate aliasing, and allows a fairly sophisticated and accurate low-

pass �lter to be used for the reconstruction of the continuous image at the

normal resolution.

11.1 Low-pass �ltering

According to the sampling theorem, the Nyquist limits of a 2D signal

sampled at �x;�y periodicity are �=�x and �=�y respectively, requiring a

low-pass �lter suppressing all frequency components above the Nyquist lim-

its, but leaving those below the cut-o� point untouched. The �lter function

in the frequency domain is:

F (�; �) =

8<
:
1 if j�j < �=�x and j�j < �=�y

0 otherwise

(11:3)

The �ltering process is a multiplication by the �lter function in the fre-

quency domain, or equivalently, a convolution in the spatial domain by the

pulse response of the �lter (f(x; y)) which is the inverse Fourier transform

of the �lter function:

I�f (�; �) = I�(�; �) � F (�; �);

If(x; y) = I(x; y) � f(x; y) =
1Z

�1

1Z

�1

I(t; �) � f(x� t; y � �) dtd�: (11:4)

11.1. LOW-PASS FILTERING 311

The pulse response of the ideal low-pass �lter is based on the well-known

sinc function:

f(x; y) =
sin(x � �=�x)
x � �=�x � sin(y � �=�y)

y � �=�y = sinc(
x � �
�x

) � sinc(y � �
�y

): (11:5)

The realization of the low-pass �ltering as a convolution with the 2D sinc

function has some serious disadvantages. The sinc function decays very

slowly, thus a great portion of the image can a�ect the color on a single

point of the �ltered picture, making the �ltering complicated to accomplish.

In addition to that, the sinc function has negative portions, which may

result in negative colors in the �ltered image. Sharp transitions of color in

the original image cause noticeable ringing, called the Gibbs phenomenon,

in the �ltered picture. In order to overcome these problems, all positive,

smooth, �nite extent or nearly �nite extent approximations of the ideal sinc

function are used for �ltering instead. These �lters are expected to have

unit gain for � = 0; � = 0 frequencies, thus the integral of their impulse

response must also be 1:

F (0; 0) =

1Z

�1

1Z

�1

f(x; y) dxdy = 1 (11:6)

Some of the most widely used �lters (�gure 11.2) are:

1. Box �lter: In the spatial domain:

f(x; y) =

8<
:
1 if jxj < �x=2 and jyj < �y=2

0 otherwise

(11:7)

In the frequency domain the box �lter is a sinc function which is not

at all accurate approximation of the ideal low-pass �lters.

2. Cone �lter: In the spatial domain, letting the normalized distance

from the point (0,0) be r(x; y) =
q
(x=�x)2 + (y=�y)2 :

f(x; y) =

8<
:
(1� r) � 3=� if r < 1

0 otherwise

(11:8)

312 11. SAMPLING AND QUANTIZATION ARTIFACTS

π
∆x ∆x ∆x2 ∆x3

2π
∆x

π
∆x
2

π
∆x

-2

π
∆x
2-

∆x-
π

∆x
-

∆ /2∆-

∆ x∆x-

∆x1/

∆x1/

∆x1/1

1

1

Frequency domain Spatial domain

ideal

box

cone

x/2x

Figure 11.2: Frequency and spatial behavior of ideal and approximate low-pass

�lters

The coe�cient 3=� guarantees that the total volume of the cone, that

is the integral of the impulse response of the �lter, is 1. The Fourier

transformation of this impulse response is a sinc2 type function which

provides better high frequency suppression than the box �lter.

3. Gaussian �lter: This �lter uses the Gaussian distribution function

e�r
2

to approximate the sinc function by a positive, smooth function,

where r =
q
(x=�x)2 + (y=�y)2 as for the cone �lter. Although the

Gaussian is not a �nite extent function, it decays quickly making the

contribution of distant points negligible.

Having de�ned the �lter either in the frequency or in the spatial domain,

there are basically two ways to accomplish the �ltering. It can be done

either in the spatial domain by evaluating the convolution of the original

image and the impulse response of the �lter, or in the frequency domain by

multiplying the frequency distributions of the image by the �lter function.

Since the original image is available in spatial coordinates, and the �ltered

image is also expected in spatial coordinates, the latter approach requires

a transformation of the image to the frequency domain before the �ltering,

11.2. PRE-FILTERING ANTI-ALIASING TECHNIQUES 313

then a transformation back to the spatial domain after the �ltering. The

computational burden of the two Fourier transformations makes frequency

domain �ltering acceptable only for special applications, even if e�ective

methods, such as Fast Fourier Transform (FFT), are used.

11.2 Pre-�ltering anti-aliasing techniques

Pre-�ltering methods sample the image after �ltering at the sample rate

de�ned by the resolution of the display hardware (�x = 1;�y = 1). If the

�ltering has been accomplished in the spatial domain, then the �ltered and

sampled signal is:

Isf (x; y) = [I(x; y) � f(x; y)] �
X
i

X
j

�(x� i; y � j): (11:9)

For a given pixel of X;Y integer coordinates:

Isf (X;Y) = I(x; y)�f(x; y)��(x�X; y�Y) =
1Z

�1

1Z

�1

I(t; �)�f(X�t; Y��) dtd�:

(11:10)

For �nite extent impulse response (FIR) �lters, the in�nite range of the

above integral is replaced by a �nite interval. For a box �lter:

Is;box(X;Y) =

X+0:5Z

X�0:5

Y +0:5Z

Y�0:5

I(t; �) dtd�: (11:11)

Suppose P number of constant color primitives have intersection with the

1 � 1 rectangle of X;Y pixel. Let the color and the area of intersection of

a primitive p be Ip and Ap, respectively. The integral 11.11 is then:

Is;box(X;Y) =
PX
p=1

Ip �Ap: (11:12)

For a cone �lter, assuming a polar coordinate system (r; �) centered

around (X;Y), the �ltered signal is:

Is;cone(X;Y) =
3

�

Z

x2+y2

Z

�1

I(x; y)�(1�r) dxdy = 3

�

1Z

r=0

2�Z

�=0

I(r; �)�(1�r)�r d�dr:

(11:13)

314 11. SAMPLING AND QUANTIZATION ARTIFACTS

As for the box �lter, the special case is examined when P constant color

primitives can contribute to a pixel, that is, they have intersection with the

unit radius circle around the (X;Y) pixel, assuming the color and the area

of intersection of primitive p to be Ip and Ap, respectively:

Is;cone(X;Y) =
3

�

PX
p=1

Ip

Z

Ap

(1� r) dA (11:14)

where
R
Ap

(1� r) dA is the volume above the Ap area bounded by the surface

of the cone.

11.2.1 Pre-�ltering regions

An algorithm which uses a box �lter needs to evaluate the area of the inter-

section of a given pixel and the surfaces visible in it. The visible intersections

can be generated by an appropriate object precision visibility calculation

technique (Catmull used the Weiler{Atherton method in his anti-aliasing

algorithm [Cat78]) if the window is set such that it covers a single pixel.

The color of the resulting pixel is then simply the weighted average of all vis-

ible polygon fragments. Although this is a very clear approach theoretically,

it is computationally enormously expensive.

A more e�ective method can take advantage of the fact that regions tend

to produce aliases along their edges where the color gradient is high. Thus an

anti-aliased polygon generation method can be composed of an anti-aliasing

line drawing algorithms to produce the edges, and a normal polygon �lling

method to draw all the internal pixels. Note that edge drawing must precede

interior �lling, since only the outer side of the edges should be �ltered.

11.2.2 Pre-�ltering lines

Recall that non-anti-aliased line segments with a slant of between 0 and 45

degrees are drawn by setting the color of those pixels in each column which

are the closest to the line. This method can also be regarded as the point

sampling of a one-pixel wide line segment.

Anti-aliasing line drawing algorithms, on the other hand, have to calculate

an integral over the intersection of the one-pixel wide line and a �nite region

centered around the pixel concerned depending on the selected �lter type.

11.2. PRE-FILTERING ANTI-ALIASING TECHNIQUES 315

Box-�ltering lines

For box �ltering, the intersection of the one-pixel wide line segment and the

pixel concerned has to calculated. Looking at �gure 11.3, we can see that a

maximum of three pixels may intersect a pixel rectangle in each column if

the slant is between 0 and 45 degrees. Let the vertical distance of the three

closest pixels to the center of the line be r,s and t respectively, and suppose

s < t � r. By geometric considerations s; t < 1, s+ t = 1 and r � 1 should

also hold.

one pixel wide
line segment

Figure 11.3: Box �ltering of a line segment

Unfortunately, the areas of intersection, As; At and Ar, depend not only

on r,s and t, but also on the slant of the line segment. This dependence,

however, can be rendered unimportant by using the following approxima-

tion:

As � (1 � s); At � (1 � t); Ar � 0 (11:15)

These equations are accurate only if the line segment is horizontal, but

can be accepted as fair approximations for lines with a slant from 0 to 45

degrees. Variables s and t are calculated for a line y = m � x+ b:

s = m � x+ b� Round(m � x+ b) = Error(x) and t = 1� s (11:16)

where Error(x) is, in fact, the accuracy of the digital approximation of the

line for vertical coordinate x. The color contribution of the two closest

pixels in this pixel column is:

Is = I � (1� Error(x)); It = I � Error(x) (11:17)

(I stands for any color coordinate R;G or B).

316 11. SAMPLING AND QUANTIZATION ARTIFACTS

These formulae are also primary candidates for incremental evaluation,

since if the closest pixel has the same y coordinate for an x+ 1 as for x:

Is(x+ 1) = Is(x)� I �m; It(x+ 1) = It(x) + I �m: (11:18)

If the y coordinate has been incremented when stepping from x to x + 1,

then:

Is(x+ 1) = Is(x)� I �m+ I; It(x+ 1) = It(x) + I �m� I: (11:19)

The color computation can be combined with an incremental y coordinate

calculation algorithm, such as the Bresenham's line generator:

AntiAliasedBresenhamLine(x1; y1; x2; y2; I)

�x = x2 � x1; �y = y2 � y1;

E = �2�x;
dE+ = 2(�y ��x); dE� = 2�y;

dI� = �y=�x � I; dI+ = I � dI�;

Is = I + dI�; It = �dI�;
y = y1;

for x = x1 to x2 do

if E � 0 then E += dE�; Is -= dI�; It += dI�;

else E += dE+; Is += dI+; It -= dI+; y++;

Add Frame Bu�er(x; y; Is);

Add Frame Bu�er(x; y + 1; It);

endfor

This algorithm assumes that the frame bu�er is initialized such that each

pixel has the color derived without taking this new line into account, and

thus the new contribution can simply be added to it. This is true only if

the frame bu�er is initialized to the color of a black background and lines

do not cross each other. The artifact resulting from crossed lines is usually

negligible.

In general cases I must rather be regarded as a weight value determining

the portions of the new line color and the color already stored in the frame

bu�er, which corresponds to the color of objects behind the new line.

11.2. PRE-FILTERING ANTI-ALIASING TECHNIQUES 317

The program line \Add Frame Bu�er(x; y; I)" should be replaced by the

following:

colorold = frame bu�er[x; y];

frame bu�er[x; y] = colorline � I + colorold � (1� I);

These statements must be executed for each color coordinate R;G;B.

Cone �ltering lines

For cone �ltering, the volume of the intersection between the one-pixel wide

line segment and the one pixel radius cone centered around the pixel con-

cerned has to be calculated. The height of the cone must be selected to

guarantee that the volume of the cone is 1. Looking at �gure 11.4, we can

see that a maximum of three pixels may have intersection with a base circle

of the cone in each column if the slant is between 0 and 45 degrees.

D

Figure 11.4: Cone �ltering of a line segment

Let the distance between the pixel center and the center of the line be D.

For possible intersection, D must be in the range of [�1:5::1:5]. For a pixel
center (X;Y), the convolution integral | that is the volume of the cone

segment above a pixel | depends only on the value of D, thus it can be

computed for discrete D values and stored in a lookup table V (D) during

the design of the algorithm. The number of table entries depends on the

number of intensity levels available to render lines, which in turn determines

the necessary precision of the representation ofD. Since 8{16 intensity levels

318 11. SAMPLING AND QUANTIZATION ARTIFACTS

are enough to eliminate the aliasing, the lookup table is de�ned here for

three and four fractional bits. Since function V (D) is obviously symmetrical,

the number of necessary table entries for three and four fractional bits is

1:5 � 23 = 12 and 1:5 � 24 = 24 respectively. The precomputed V (D) tables,

for 3 and 4 fractional bits, are shown in �gure 11.5.

0 1 2 3 4 5 6 7 8 9 10 11

7 6 6 5 4 3 2 1 1 0 0 0

D3

V (D3)

0 1 2 3 4 5 6 7 8 9 10 11

14 14 13 13 12 12 11 10 9 8 7 6

D4

V (D4)

12 13 14 15 16 17 18 19 20 21 22 23

5 4 3 3 2 2 1 1 0 0 0 0

Figure 11.5: Precomputed V (D) weight tables

Now the business of the generation of D and the subsequent pixel co-

ordinates must be discussed. Gupta and Sproull [GSS81] proposed the

Bresenham algorithm to produce the pixel addresses and introduced an

incremental scheme to generate the subsequent D distances.

∆

∆

φ

φ
d

D

D

D

H

L

y

x

Figure 11.6: Incremental calculation of distance D

Let the obliqueness of the line be �, and the vertical distance between

the center of the line and the closest pixel be d (note that for the sake of

11.2. PRE-FILTERING ANTI-ALIASING TECHNIQUES 319

simplicity only lines with obliquities in the range of [0::45] are considered

as in the previous sections).

For geometric reasons, illustrated by �gure 11.6, the D values for the

three vertically arranged pixels are:

D = d � cos� =
d ��xq

(�x)2 + (�y)2
;

DH = (1 � d) � cos � = �D +
�xq

(�x)2 + (�y)2
;

DL = (1 + d) � cos � = D +
�xq

(�x)2 + (�y)2
: (11.20)

A direct correspondence can be established between the distance variable d

and the integer error variable E of the Bresenham line drawing algorithm

that generates the y coordinates of the subsequent pixels (see section 2.3).

The k fractional error variable of the Bresenham algorithm is the required

distance plus 0.5 to replace the rounding operation by a simpler truncation,

thus d = k � 0:5. If over
ow happens in k, then d = k � 1:5. Using the

de�nition of the integer error variable E, and supposing that there is no

over
ow in k, the correspondence between E and d is:

E = 2�x � (k � 1) = 2�x � (d� 0:5) =) 2d ��x = E +�x: (11:21)

If over
ow happens in k, then:

E = 2�x � (k � 1) = 2�x � (d+ 0:5) =) 2d ��x = E ��x: (11:22)

These formulae allow the incremental calculation of 2d ��x; thus in equa-

tion 11.20 the numerators and denominators must be multiplied by two.

The complicated operations including divisions and a square root should

be executed once for the whole line, thus the pixel level algorithms con-

tain just simple instructions and a single multiplication not counting the

averaging with the colors already stored in the frame bu�er. In the subse-

quent program, expressions that are di�cult to calculate are evaluated at

the beginning, and stored in the following variables:

denom =
1

2
q
(�x)2 + (�y)2

; �D =
2�x

2
q
(�x)2 + (�y)2

: (11:23)

In each cycle nume = 2d ��x is determined by the incremental formulae.

320 11. SAMPLING AND QUANTIZATION ARTIFACTS

The complete algorithm is:

GuptaSproullLine(x1; y1; x2; y2; I)

�x = x2 � x1; �y = y2 � y1;

E = ��x;
dE+ = 2(�y ��x); dE� = 2�y;

denom = 1=(2
q
(�x)2 + (�y)2);

�D = 2 ��x � denom;

y = y1;

for x = x1 to x2 do

if E � 0 then nume = E +�x; E += dE�;

else nume = E ��x; E += dE+; y++;

D = nume � denom;

DL = D +�D; DH = �D +�D;

Add Frame Bu�er(x; y; V (D));

Add Frame Bu�er(x; y + 1; V (DH));

Add Frame Bu�er(x; y � 1; V (DL));

endfor

Figure 11.7: Comparison of normal, box-�ltered and cone-�ltered lines

11.3. POST-FILTERING ANTI-ALIASING TECHNIQUES 321

11.3 Post-�ltering anti-aliasing techniques

Post-�ltering methods sample the image at a higher sample rate than needed

by the resolution of the display hardware (�x = 1=N;�y = 1=N), then

some digital �ltering algorithm is used to calculate pixel colors.

For digital �ltering, the spatial integrals of convolution are replaced by

in�nite sums:

Isf (X;Y) = [I(x; y)
X
i

X
j

�(x� i ��x; y� j ��y)] � f(x; y)jx=X;y=Y =

X
i

X
j

I(i ��x; j ��y) � f(X � i ��x; Y � j ��y): (11:24)

Finite extent digital �lters simplify the in�nite sums to �nite expressions.

One of the simplest digital �lters is the discrete equivalent of the continuous

box �lter:

Is;box(X;Y) =
1

(N + 1)2

N=2X
i=�N=2

N=2X
j=�N=2

I(X � i ��x; Y � j ��y): (11:25)

This expression states that the average of subpixel colors must be taken

to produce the color of the real pixel. The color of the subpixels can be de-

termined by a normal, non-anti-aliasing image generation algorithm. Thus,

ordinary image synthesis methods can be used, but at a higher resolution,

to produce anti-aliased pictures since the anti-aliasing is provided by the

�nal step reducing the resolution to meet the requirements of the display

hardware. One may think that this method has the serious drawback of re-

quiring a great amount of additional memory to store the image at a higher

resolution, but that is not necessarily true. Ray tracing, for example, gener-

ates the image on a pixel-by-pixel basis. When all the subpixels a�ecting a

pixel have been calculated, the pixel color can be evaluated and written into

the raster memory, and the very same extra memory can be used again for

the subpixels of other pixels. Scan-line methods, on the other hand, require

those subpixels which may contribute to the real pixels in the scan-line to

be calculated and stored. For the next scan-line, the same subpixel memory

can be used again.

As has been stated, discrete algorithms have linear complexity in terms

of the pixel number of the image. From that perspective, supersampling

322 11. SAMPLING AND QUANTIZATION ARTIFACTS

may increase the computational time by a factor of the number of subpixels

a�ecting a real pixel, which is usually not justi�ed by the improvement of

image quality, because aliasing is concentrated mainly around sharp edges,

and the �ltering does not make any signi�cant di�erence in great homoge-

neous areas. Therefore, it is worth examining whether the color gradient is

great in the neighborhood of a pixel, or whether instead the color is nearly

constant, and thus dividing the pixels into subpixels only if required by a

high color gradient. This method is called adaptive supersampling.

Finally, it is worth mentioning that jaggies can be greatly reduced without

increasing the sample frequency at all, simply by moving the sample points

from the middle of pixels to the corner of pixels, and generating the color

of the pixel as the average of the colors of its corners. Since pixels have four

corners, and each internal corner point belongs to four pixels, the number

of corner points is only slightly greater than the number of pixel centers.

Although this method is not superior in eliminating aliases, it does have a

better reconstruction �lter for reducing the sharp edges of jaggies.

11.4 Stochastic sampling

Sampling methods applying regular grids produce regularly spaced artifacts

that are easily detected by the human eye, since it is especially sensitive to

regular and periodic signals. Random placement of sample locations can

break up the periodicity of the aliasing artifacts, converting the aliasing

e�ects to random noise which is more tolerable for human observers. Two

types of random sampling patterns have been proposed [Coo86], namely the

Poisson disk distribution and the jittered sampling.

11.4.1 Poisson disk distribution

Poisson disk distribution is, in fact, the simulation of the sampling process

of the human eye [Yel83]. In e�ect, it places the sample points randomly

with the restriction that the distances of the samples are greater than a

speci�ed minimum. Poisson disk distribution has a characteristic distribu-

tion in the frequency domain consisting of a spike at zero frequency and

a uniform noise beyond the Nyquist limit. Signals having white-noise-like

spectrum at higher frequencies, but low-frequency attenuation, are usually

11.4. STOCHASTIC SAMPLING 323

regarded as blue noise. This low-frequency attenuation is responsible for

the approximation of the minimal distance constraint of Poisson disk dis-

tribution.

The sampling process by a Poisson disk distributed grid can be under-

stood as follows: Sampling is, in fact, a multiplication by a \comb function"

of the sampling grid. In the frequency domain it is equivalent to convolution

by the Fourier transform of this \comb function", which is a blue-noise-like

spectrum for Poisson disk distribution except for the spike at 0. Signal com-

ponents below the Nyquist limit are not a�ected by this convolution, but

components above this limit are turned to a wide range spectrum of noise.

Signal components not meeting the requirements of the sampling theorem

have been traded o� for noise, and thus aliasing in the form of periodic

signals can be avoided.

Sampling by Poisson disk distribution is very expensive computationally.

One way of approximating appropriate sampling points is based on error

di�usion dithering algorithms (see section 11.5 on reduction of quantization

e�ects), since dithering is somehow similar to this process [Mit87], but now

the sampling position must be dithered.

11.4.2 Jittered sampling

Jittered sampling is based on a regular sampling grid which is perturbed

slightly by random noise [Bal62]. Unlike the application of dithering al-

gorithms, the perturbations are now assumed to be independent random

variables. Compared to Poisson disk sampling its result is admittedly not

quite as good, but it is less expensive computationally and is well suited to

image generation algorithms designed for regular sampling grids.

For notational simplicity, the theory of jittered sampling will be discussed

in one-dimension. Suppose function g(t) is sampled and then reconstructed

by an ideal low-pass �lter. The perturbations of the various sample locations

are assumed to be uncorrelated random variables de�ned by the probability

density function p(x). The e�ect of jittering can be simulated by replacing

g(t) by g(t � �(t)), and sampling it by a regular grid, where function �(t)

is an independent stochastic process whose probability density function, for

any t, is p(x) (�gure 11.8).

Jittered sampling can be analyzed by comparing the spectral power dis-

tributions of g(t� �(t)) and g(t).

324 11. SAMPLING AND QUANTIZATION ARTIFACTS

g(t)

g(t- (t))ξ

g
s

g
s

sample points

jittered sampling

regular sampling of time-perturbed signal

(t)

(t)

Figure 11.8: Signal processing model of jittered sampling

Since g(t � �(t)) is a random process, if it were stationary and ergodic

[Lam72], then its frequency distribution would be best described by the

power density spectrum which is the Fourier transform of its autocorrelation

function.

The autocorrelation function of g(t � �(t)) is derived as an expectation

value for any � 6= 0, taking into account that �(t) and �(t+ �) are stochas-

tically independent random variables:

R(t; �) = E[g(t� �(t)) � g(t+ � � �(t+ �))] =Z
x

Z
y

g(t� x) � g(t+ � � y) � p(x) � p(y) dx dy = (g � p)jt � (g � p)jt+� (11:26)

where g � p is the convolution of the two functions. If � = 0, then:

R(t; 0) = E[g(t� �(t))2] =
Z
x

g2(t� x) � p(x) dx = (g2 � p)jt: (11:27)

Thus the autocorrelation function of g(t� �(t)) for any � is:

R(t; �) = (g � p)jt � (g � p)jt+� + [(g2 � p)� (g � p)2]jt � �(�) (11:28)

where �(�) is the delta function which is 1 for � = 0 and 0 for � 6= 0. This

delta function introduces an \impulse" in the autocorrelation function at

� = 0.

11.4. STOCHASTIC SAMPLING 325

Assuming t = 0 the size of the impulse at � = 0 can be given an interesting

interpretation if p(x) is an even function (p(x) = p(�x)).

[(g2 � p)� (g � p)2]jt=0 =
Z

x

g2(�x) � p(x)dx� [

Z

x

g(�x) � p(x)dx]2 =

E[g2(�)]� E2[g(�)] = �2

g(�): (11:29)

Hence, the size of the impulse in the autocorrelation function is the variance

of the random variable g(�). Moving the origin of the coordinate system to

t we can conclude that the size of the impulse is generally the variance of

the random variable g(t� �(t)).

Unfortunately g(t��(t)) is usually not a stationary process, thus in order

to analyze its spectral properties, the power density spectrum is calculated

from the \average" autocorrelation function which is de�ned as:

R̂(�) = lim
T!1

1

2T

TZ

�T

R(t; �) dt: (11:30)

The \average" power density of g(t � �(t)), supposing p(x) to be even,

can be expressed using the de�nition of the Fourier transform and some

identity relations:

Ŝ(f) = FR̂(�) = lim
T!1

1

2T
[FT (g � p)]� � [F(g � p)] + �2

g(�) (11:31)

where superscript � means the conjugate complex pair of a number, �2

g(�) is

the average variance of the random variable g(t� �(t)) for di�erent t values,

and FT stands for the limited Fourier transform de�ned by the following

equation:

FT x(t) =

TZ

�T

x(t) � e�2�|ft dt; | =
p
�1 (11:32)

Let us compare this power density (Ŝ(f)) of the time perturbed signal

with the power density of the original function g(t), which can be de�ned

as follows:

Sg(f) = lim
T!1

1

2T
jFT g(t)j2: (11:33)

326 11. SAMPLING AND QUANTIZATION ARTIFACTS

This can be substituted into equation 11.31 yielding:

Ŝ(f) =
jF(g � p)j2
jFgj2 � Sg(f) + �2

g(�): (11:34)

The spectrum consists of a part proportional to the spectrum of the un-

perturbed g(t) signal and an additive noise carrying �2

g(�) power in a unit

frequency range. Thus the perturbation of time can, in fact, be modeled by

a linear network or �lter and some additive noise (Figure 11.9).

The gain of the �lter perturbing the time variable by an independent ran-

dom process can be calculated as the ratio of the power density distributions

of g(t) and g(t� �(t)) ignoring the additive noise:

Gain(f) =
jF(g � p)j2
jFgj2 =

jFgj2 � jFpj2
jFgj2 = jFpj2: (11:35)

Thus, the gain is the Fourier transform of the probability density used

for jittering the time.

noise
generator

[Fp](f)- -�

��

6

-

-

g(t)
+

g(t� �(t))

��
S
S

��

Figure 11.9: System model of time perturbation

Two types of jitters are often used in practice:

1. White noise jitter, which distributes the values uniformly between

�T=2 and T=2, where T is the periodicity of the regular sampling

grid. The gain of the white noise jitter is:

Gainwn(f) = [
sin�fT

�fT
]
2
: (11:36)

11.5. REDUCTION OF QUANTIZATION EFFECTS 327

2. Gaussian jitter, which selects the sample points by Gaussian distri-

bution with variance �2.

Gaingauss(f) = e�(2�f�)
2

: (11:37)

Both the white noise jitter and the Gaussian jitter (if � � T=6) are fairly

good low-pass �lters suppressing the spectrum of the sampled signal above

the Nyquist limit, and thus greatly reducing aliasing artifacts.

Jittering trades o� aliasing for noise. In order to intuitively explain this

result, let us consider the time perturbation for a sine wave. If the extent

of the possible perturbations is less than the length of half a period of the

sine wave, the perturbation does not change the basic shape of the signal,

just distorts it a little bit. The level of distortion depends on the extent of

the perturbation and the \average derivative" of the perturbed function as

suggested by the formula of the noise intensity de�ning it as the variance

�2

g(�). If the extent of the perturbations exceeds the length of period, the

result is an almost random value in place of the amplitude. The sine wave

has disappeared from the signal, only the noise remains.

11.5 Reduction of quantization e�ects

In digital data processing, not only the number of data must be �nite,

but also the information represented by a single data element. Thus in

computer graphics we have to deal with problems posed by the fact that

color information can be represented by a few discrete levels in addition to

the �nite sampling which allows for the calculation of this color at discrete

points only.

In �gure 11.10 the color distribution of a shaded sphere is shown. The

ideal continuous color is sampled and quantized according to the pixel res-

olution and the number of quantization levels resulting in a stair-like func-

tion in the color space. (Note that aliasing caused stair-like jaggies in pixel

space.) The width of these stair-steps is usually equal to the size of many

pixels if there are not too many quantization levels, which makes the ef-

fect clearly noticeable in the form of quasi-concentric circles on the surface

of our sphere. Cheaper graphics systems use eight bits for the representa-

tion of a single pixel allowing R;G;B color coordinates to be described by

328 11. SAMPLING AND QUANTIZATION ARTIFACTS

color

pixels

calculated color

re-quantized color
quantization
 levels

Figure 11.10: Quantization e�ects

three, three and two bits respectively in true color mode, which is far from

adequate. Expensive workstations provide eight bits for every single color

coordinate, that is 24 bits for a pixel, making it possible to produce over

sixteen million colors simultaneously on the computer screen, but this is

still less than the number of colors that can be distinguished by the human

eye.

If we have just a limited set of colors but want to produce more, the

obvious solution is to try to mix new ones from the available set. At �rst

we might think that this mixing is beyond the capabilities of computer

graphics, because the available set of colors is on the computer screen,

and thus the mixing should happen when the eye perceives these colors,

something which seemingly cannot be controlled from inside the computer.

This is fortunately not exactly true. Mixing means a weighted average

which can be realized by a low-pass �lter, and the eye is known to be a

fairly good low-pass �lter. Thus, if the color information is provided in

such a way that high frequency variation of color is generated where mixing

is required, the eye will �lter these variations and \compute" its average

which exactly amounts to a mixed color.

These high-frequency variations can be produced by either sacri�cing the

resolution or without decreasing it at all. The respective methods are called

halftoning and dithering.

11.5. REDUCTION OF QUANTIZATION EFFECTS 329

11.5.1 Halftoning

Halftoning is a well-known technique in the printing industry where gray-

level images are produced by placing black points onto the paper, keeping

the density of these points proportional to the desired gray level. On the

computer screen the same e�ect can be simulated if adjacent pixels are

grouped together to form logical pixels. The color of a logical pixel is gen-

erated by the pattern of the colors of its physical pixels. Using an n � n

array of bi-level physical pixels, the number of producible colors is n2 + 1

for the price of reducing the resolution by a factor of n in both directions

(�gure 11.11). This idea can be applied to interpolate between any two

subsequent quantization levels (even for any two colors, but this is not used

in practice).

Figure 11.11: Halftone patterns for n = 4

11.5.2 Dithering

Unlike halftoning, dithering does not reduce the e�ective resolution of the

display. This technique was originated in measuring theory where the goal

was the improvement of the e�ective resolution of A/D converters. Suppose

we have a one-bit quantization unit (a comparator), and a slowly changing

signal needs to be measured. Is it possible to say more about the signal

than to determine whether it is above or below the threshold level of the

comparator?

In fact, the value of the slowly changing signal can be measured accu-

rately if another symmetrical signal, called a dither, having a mean of 0

and appropriate peak value, is added to the signal before quantization. The

perturbed signal will spend some of the time below, while the rest remains

above the threshold level of the comparator (�gure 11.12). The respective

times | that is the average or the �ltered composite signal | will show

330 11. SAMPLING AND QUANTIZATION ARTIFACTS

signal signal+dither
quantized
signal+dither

averaged
 signal

0-mean
noise

comparator low-pass filter

Figure 11.12: Measuring the mean value of a signal by a one-bit quantizer

the mean value of the original signal accurately if the �ltering process elim-

inates the higher frequencies of the dither signal but does not interfere with

the low frequency range of the original signal. Thus the frequency charac-

teristic of the dither must be carefully de�ned: it should contain only high

frequency components; that is, it should be blue noise.

This idea can readily be applied in computer graphics as well. Suppose

the color coordinates of pixels are calculated at a higher level of accuracy

than is needed by the frame bu�er storage. Let us assume that the frame

bu�er represents each R;G;B value by n bits and the color computation

results in values of n + d bit precision. This can be regarded as a �xed

point representation of the colors with d number of fractional bits. Simple

truncation would cut o� the low d bits, but before truncation a dither

signal is added, which is uniformly distributed in the range of [0..1]; that is,

it eventually produces distribution in the range of [-0.5..0.5] if truncation

is also taken into consideration. This added signal can either be a random

or a deterministic function. Periodic deterministic dither functions are also

called ordered dithers. Taking into account the blue noise criterion, the

dither must be a high frequency signal. The maximal frequency dithers are

those which have di�erent values on adjacent pixels, and are preferably not

periodic. In this context, ordered dithers are not optimal, but they allow

for simple hardware implementation, and thus they are the most frequently

used methods of reducing the quantization e�ects in computer graphics.

11.5. REDUCTION OF QUANTIZATION EFFECTS 331

The averaging of the dithered colors to produce mixed colors is left to the

human eye as in halftoning.

Ordered dithers

The behavior of ordered dithers is de�ned by a periodic function D(i; j)

which must be added to the color computed at higher precision. Let the

periodicity of this function be N in both vertical and horizontal directions,

so D can thus conveniently be described by an N�N matrix called a dither

table. The dithering operation for any color coordinate I is then:

I[X;Y](Trunc(I[X;Y] +D[X mod N , Y mod N]): (11:38)

The expectations of a \good" dither can be summarized as follows:

1. It should approximate blue noise, that is, neighboring values should

not be too close.

2. It should prevent periodic e�ects.

3. It must contain uniformly distributed values in the range of [0::1]. If

�xed point representation is used with d fractional bits, the decimal

equivalents of the codes must be uniformly distributed in the range of

[0::2d].

4. The computation of the dithered color must be simple, fast and ap-

propriate for hardware realization. This requirement has two conse-

quences. First, the precision of the fractional representation should

correspond to the number of elements in the dither matrix to avoid

super
uous bits in the representation. Secondly, dithering requires

two modulo N divisions which are easy to accomplish if N is a power

of two.

A dither which meets the above requirements would be:

D(4) =

2
6664

0 8 2 10

12 4 14 6

3 11 1 9

15 7 13 5

3
7775 (11:39)

332 11. SAMPLING AND QUANTIZATION ARTIFACTS

where a four-bit fractional representation was assumed, that is, to calculate

the real value equivalents of the dither, the matrix elements must be divided

by 16.

Let us denote the low k bits and the high k bits of a binary number B

by Bjk and Bjk respectively. The complete dithering algorithm is then:

Calculate the (R;G;B) color of pixel (X;Y) and

represent it in an n-integer-bit + 4-fractional-bit form;

R = (R +D[Xj2; Y j2])jn;
G = (G +D[Xj2; Y j2])jn;
B = (B +D[Xj2; Y j2])jn;

color

X

Y

dither
RAM

data

dithered colorn

d

n+d

2

2

address

d

Σ

|

|

Figure 11.13: Dithering hardware

This expression can readily be implemented in hardware as is shown in

�gure 11.13.

Chapter 12

TEXTURE MAPPING

The shading equation contains several parameters referring to the optical

properties of the surface interacting with the light, including ka ambient,

kd di�use, ks specular, kr re
ective, kt transmissive coe�cients, � index

of refraction etc. These parameters are not necessarily constant over the

surface, thus allowing surface details, called textures, to appear on com-

puter generated images. Texture mapping requires the determination of

the surface parameters each time the shading equation is calculated for a

point on the surface. Recall that for ray tracing, the ray-object intersec-

tion calculation provides the visible surface point in the world coordinate

system. For incremental methods, however, the surfaces are transformed

to the screen coordinate system where the visibility problem is solved, and

thus the surface points to be shaded are de�ned in screen coordinates.

Recall, too, that the shading equation is evaluated in the world coordi-

nate system even if the visible surface points are generated in screen space,

because the world-screen transformation usually modi�es the angle vectors

needed for the shading equation. For directional and ambient lightsource

only models, the shading equation can also be evaluated in screen space, but

the normal vectors de�ned in the world coordinate system must be used.

The varying optical parameters required by the shading equation, on the

other hand, are usually de�ned and stored in a separate coordinate system,

called texture space. The texture information can be represented by some

data stored in an array or by a function that returns the value needed for

the points of the texture space. In order for there to be a correspondence

between texture space data and the points of the surface, a transformation

333

334 12. TEXTURE MAPPING

is associated with the texture, which maps texture space onto the surface

de�ned in its local coordinate system. This transformation is called pa-

rameterization.

Modeling transformation maps this local coordinate system point to the

world coordinate system where the shading is calculated. In ray tracing

the visibility problem is also solved here. Incremental shading models, how-

ever, need another transformation from world coordinates to screen space

where the hidden surface elimination and simpli�ed color computation take

place. This latter mapping is regarded as projection in texture mapping

(�gure 12.1).

Texture
 space

local modeling
 system

parametrization

world coordinate
 system pixel space

projection

texture order mapping

screen order mapping

u

v

x
y

z

X

Y

Figure 12.1: Survey of texture mapping

Since the parameters of the shading equation are required in screen space,

but available only in texture space, the mapping between the two spaces

must be evaluated for each pixel to be shaded.

Generally two major implementations are possible:

1. Texture order or direct mapping which scans the data in texture

space and maps from texture space to screen space.

2. Screen order or inverse mapping which scans the pixels in screen

space and uses the mapping from screen space to texture space.

12. TEXTURE MAPPING 335

Texture order mapping seems more e�ective, especially for large textures

stored in �les, since they access the texture sequentially. Unfortunately,

there is no guarantee that, having transformed uniformly sampled data

from texture space to screen space, all pixels belonging to a given sur-

face will be produced. Holes and overlaps may occur on the image. The

correct sampling of texture space, which produces all pixels needed, is a

di�cult problem if the transformation is not linear. Since texture order

methods access texture elements one after the other they also process sur-

faces sequentially, making themselves similar to and appropriate for object

precision hidden surface algorithms.

Image precision algorithms, on the other hand, evaluate pixels sequen-

tially and thus require screen order techniques and random access of tex-

ture maps. A screen order mapping can be very slow if texture elements are

stored on a sequential medium, and it needs the calculation of the inverse

parameterization which can be rather di�cult. Nevertheless, screen order is

more popular, because it is appropriate for image precision hidden surface

algorithms.

Interestingly, although the z-bu�er method is an image precision tech-

nique, it is also suitable for texture order mapping, because it processes

polygons sequentially.

The texture space can be either one-dimensional, two-dimensional or

three-dimensional. A one-dimensional texture has been proposed, for ex-

ample, to simulate the thin �lm interference produced on a soap bubble, oil

and water [Wat89].

Two-dimensional textures can be generated from frame-grabbed or com-

puter synthesized images and are glued or \wallpapered" onto a three-

dimensional object surface. The \wallpapers" will certainly have to be

distorted to meet topological requirements. The 2D texture space can gen-

erally be regarded as a unit square in the center of a u; v texture coordinate

system. Two-dimensional texturing re
ects our subjective concept of sur-

face painting, and that is one of the main reasons why it is the most popular

texturing method.

Three-dimensional textures, also called solid textures, neatly circum-

vent the parameterization problem, since they de�ne the texture data in the

3D local coordinate system| that is in the same space where the geometry

is de�ned | simplifying the parameterization into an identity transforma-

tion. The memory requirements of this approach may be prohibitive, how-

336 12. TEXTURE MAPPING

ever, and thus three-dimensional textures are commonly limited to func-

tionally de�ned types only. Solid texturing is basically the equivalent of

carving the object out of a block of material. It places the texture onto the

object coherently, not producing discontinuities of texture where two faces

meet, as 2D texturing does. The simulation of wood grain on a cube, for

example, is only possible by solid texturing in order to avoid discontinuities

of the grain along the edges of the cube.

12.1 Parameterization for two-dimensional

textures

Parameterization connects the unit square of 2D texture space to the 3D

object surface de�ned in the local modeling coordinate system.

12.1.1 Parameterization of parametric surfaces

The derivation of this transformation is straightforward if the surface is

de�ned parametrically over the unit square by a positional vector function:

~r(u; v) =

2
64 x(u; v)

y(u; v)

z(u; v)

3
75 : (12:1)

Bezier and bicubic parametric patches fall into this category. For other

parametric surfaces, such as B-spline surfaces, or in cases where only a

portion of a Bezier surface is worked with, the de�nition is similar, but

texture coordinates come from a rectangle instead of a unit square. These

surfaces can also be easily parameterized, since only a linear mapping which

transforms the rectangle onto the unit square before applying the parametric

functions is required.

For texture order mapping, these formulae can readily be applied in order

to obtain corresponding ~r(u; v) 3D points for u; v texture coordinates. For

scan order mapping, however, the inverse of ~r(u; v) has to be determined,

which requires the solution of a non-linear equation.

12.1. PARAMETERIZATION FOR TWO-DIMENSIONAL TEXTURES 337

12.1.2 Parameterization of implicit surfaces

Parameterization of an implicitly de�ned surface means the derivation of

an explicit equation for that surface. The ranges of the natural parameters

may not fall into a unit square, thus making an additional linear mapping

necessary. To explain this idea, the examples of the sphere and cylinder are

taken.

Parameterization of a sphere

The implicit de�nition of a sphere around a point (xc; yc; zc) with radius r

is:

(x� xc)
2 + (y � yc)

2 + (z � zc)
2 = r2: (12:2)

An appropriate parameterization can be derived using a spherical coor-

dinate system with spherical coordinates � and �.

x(�; �) = xc + r � cos � � cos �;

y(�; �) = yc + r � cos � � sin�;

z(�; �) = zc + r � sin �:

(12:3)

The spherical coordinate � covers the range [0::2�], and � covers the range

[��=2::�=2], thus, the appropriate (u; v) texture coordinates are derived as

follows:

u =
�

2�
; v =

(� + �=2)

�
: (12:4)

The complete transformation from texture space to modeling space is:

x(u; v) = xc + r � cos �(v � 0:5) � cos 2�u;

y(u; v) = yc + r � cos �(v � 0:5) � sin 2�u;

z(u; v) = zc + r � sin�(v � 0:5):

(12:5)

For texture order mapping, the inverse transformation is:

u(x; y; z) =
1

2�
� arctan�(y � yc; x� xc);

v(x; y; z) =
1

�
� (arcsin

z � zc

r
+ �=2); (12:6)

where arctan�(a; b) is the extended arctan function, that is, it produces an

angle � in [0::2�] if sin � = a and cos � = b.

338 12. TEXTURE MAPPING

Parameterization of a cylinder

A cylinder of height H located around the z axis has the following implicit

equation:

X2 + Y 2 = r2; 0 � z � H: (12:7)

The same cylinder can be conveniently expressed by cylindrical coordi-

nates (� 2 [0::2�]; h 2 [0::H]):

X(�; h) = r � cos �;

Y (�; h) = r � sin �;

Z(�; h) = h:

(12:8)

To produce an arbitrary cylinder, this is rotated and translated by an

appropriate a�ne transformation:

[x(�; h); y(�; h); z(�; h); 1] = [X(�; h); Y (�; h); Z(�; h); 1] �

2
6664 A3�3

0

0

0

pT 1

3
7775

(12:9)

where A must be an orthonormal matrix; that is, its row vectors must be

unit vectors and must form a perpendicular triple. Matrices of this type do

not alter the shape of the object and thus preserve cylinders.

Since cylindrical coordinates � and h expand over the ranges [0::2�] and

[0;H] respectively, the domain of cylindrical coordinates can thus be easily

mapped onto a unit square:

u =
�

2�
; v =

h

H
: (12:10)

The complete transformation from texture space to modeling space is:

[x(u; v); y(u; v); z(u; v); 1] = [r � cos 2�u; r � sin 2�u; v �H; 1] �

2
6664 A3�3

0

0

0

pT 1

3
7775 :

(12:11)

12.1. PARAMETERIZATION FOR TWO-DIMENSIONAL TEXTURES 339

The inverse transformation is:

[�; �; h; 1] = [x(u; v); y(u; v); z(u; v); 1] �

2
6664 A3�3

0

0

0

pT 1

3
7775
�1

u(x; y; z) = u(�; �) =
1

2�
� arctan�(�; �); v(x; y; z) =

h

H
(12:12)

where arctan�(a; b) is the extended arctan function as before.

12.1.3 Parameterization of polygons

Image generation algorithms, except in the case of ray tracing, suppose ob-

ject surfaces to be broken down into polygons. This is why texturing and

parameterization of polygons are so essential in computer graphics. The

parameterization, as a transformation, must map a 2D polygon given by

vertices v1(u; v); v2(u; v); :::; vn(u; v) onto a polygon in the 3D space, de-

�ned by vertex points ~V1(x; y; z); ~V2(x; y; z); :::; ~Vn(x; y; z). Let this trans-

formation be P. As stated, it must transform the vertices to the given

points:

~V1(x; y; z) = Pv1(u; v); ~V2(x; y; z) = Pv2(u; v); : : : ; ~Vn(x; y; z) = Pvn(u; v):

(12:13)

Since each vertex ~Vi is represented by three coordinates, equation 12.13

consists of 3n equations. These equations, however, are not totally inde-

pendent, since the polygon is assumed to be on a plane; that is, the plane

equation de�ned by the �rst three non-collinear vertices

(~r � ~V1) � (~V3 � ~V1)� (~V2 � ~V1) = 0

should hold, where ~r is any of the other vertices, ~V4, ~V5,...,~Vn. The number of

these equations is n�3. Thus, if P guarantees the preservation of polygons,

it should have 3n � (n � 3) free, independently controllable parameters in

order to be able to map a 2D n-sided polygon onto an arbitrary 3D n-sided

planar polygon. The number of independently controllable parameters is

also called the degree of freedom.

340 12. TEXTURE MAPPING

Function P must also preserve lines, planes and polygons to be suitable

for parameterization. The most simple transformation which meets this

requirement is the linear mapping:

x = Ax�u+Bx�v+Cx; y = Ay�u+By �v+Cy; z = Az �u+Bz �v+Cz: (12:14)

The degree of freedom (number of parameters) of this linear transformation

is 9, requiring 3n � (n � 3) � 9, or equivalently n � 3 to hold. Thus, only

triangles (n = 3) can be parameterized by linear transformations.

Triangles

[x; y; z] = [u; v; 1] �

2
64
Ax Ay Az

Bx By Bz

Cx Cy Cz

3
75 = [u; v; 1] �P: (12:15)

The unknown matrix elements can be derived from the solution of a 9 � 9

system of linear equations developed by putting the coordinates of ~V1, ~V2
and ~V3 into this equation.

For screen order, the inverse transformation is used:

[u; v; 1] = [x; y; z] �

2
64 Ax Ay Az

Bx By Bz

Cx Cy Cz

3
75
�1

= [x; y; z] �P�1: (12:16)

Quadrilaterals

As has been stated, a transformation mapping a quadrilateral from the 2D

texture space to the 3D modeling space is generally non-linear, because

the degree of freedom of a 2D to 3D linear transformation is less than

is required by the placement of four arbitrary points. When looking for

an appropriate non-linear transformation, however, the requirement stating

that the transformation must preserve polygons has also to be kept in mind.

As for other cases, where the problem outgrows the capabilities of 3D

space, 4D homogeneous representation can be relied on again [Hec86], since

the number of free parameters is 12 for a linear 2D to 4D transformation,

which is more than the necessary limit of 11 derived by inserting n=4 into

formula 3n � (n � 3). Thus, a linear transformation can be established

between a 2D and a 4D polygon.

12.1. PARAMETERIZATION FOR TWO-DIMENSIONAL TEXTURES 341

From 4D space, however, we can get back to real 3D coordinates by a

homogeneous division. Although this division reduces the degree of freedom

by 1 | scalar multiples of homogeneous matrices are equivalent | the

number of free parameters, 11, is still enough. The overall transformation

consisting of a matrix multiplication and a homogeneous division has been

proven to preserve polygons if the matrix multiplication maps no part of the

quadrilateral onto the ideal points (see section 5.1). In order to avoid the

wrap-around problem of projective transformations, convex quadrilaterals

should not be mapped on concave ones and vice versa.

Using matrix notation, the parameterization transformation is:

[x � h; y � h; z � h; h] = [u; v; 1] �

2
64
Ux Uy Uz Uh

Vx Vy Vz Vh
Wx Wy Wz Wh

3
75 = [u; v; 1] �P3�4:

(12:17)

We arbitrarily choose Wh = 1 to select one matrix from the equivalent set.

After homogeneous division, we get:

x(u; v) =
Ux � u+ Vx � v +Wx

Uh � u+ Vh � v + 1
;

y(u; v) =
Uy � u+ Vy � v +Wy

Uh � u+ Vh � v + 1
;

z(u; v) =
Uz � u+ Vz � v +Wz

Uh � u+ Vh � v + 1
: (12:18)

The inverse transformation, assuming Dw = 1, is:

[u �w; v �w;w] = [x; y; z; 1] �

2
6664
Au Av Aw

Bu Bv Bw

Cu Cv Cw

Du Dv Dw

3
7775 = [x; y; z; 1] �Q4�3; (12:19)

u(x; y; z) =
Au � x+Bu � y + Cu � z +Du

Aw � x+Bw � y + Cw � z + 1
;

v(x; y; z) =
Av � x+Bv � y + Cv � z +Dv

Aw � x+Bw � y + Cw � z + 1
: (12:20)

342 12. TEXTURE MAPPING

General polygons

The recommended method of parameterization of general polygons subdi-

vides the polygon into triangles (or less probably into quadrilaterals) and

generates a parameterization for the separate triangles by the previously

discussed method. This method is pretty straightforward, although it maps

line segments onto staggered lines, which may cause noticeable artifacts on

the image. This e�ect can be greatly reduced by decreasing the size of the

triangles composing the polygon.

Polygon mesh models

The natural way of reducing the dimensionality of a polygon mesh model

from three to two is by unfolding it into a two-dimensional folding plane,

having separated some of its adjacent faces along the common edges [SSW86].

If the faces are broken down into triangles and quadrilaterals, the texture

space can easily be projected onto the folding space, taking into account

which texture points should correspond to the vertices of the 2D unfolded

object. The edges that must be separated to allow the unfolding of the

polygon mesh model can be determined by topological considerations. The

adjacency of the faces of a polyhedron can be de�ned by a graph where the

nodes represent the faces or polygons, and the arcs of the graph represent

the adjacency relationship of the two faces.

1
2

345

6

1

2

3

4

5

6

object adjacency graph

1

2

3

4

5 6

minimal spanning tree

Figure 12.2: Face adjacency graph of a polyhedron

Polygon mesh models whose adjacency graphs are tree-graphs can obvi-

ously be unfolded. Thus, in order to prepare for the unfolding operation,

those adjacent faces must be separated whose tearing will guarantee that

the resulting adjacency graph is a tree. A graph usually has many spanning

12.1. PARAMETERIZATION FOR TWO-DIMENSIONAL TEXTURES 343

trees, thus the preprocessing step can have many solutions. By adding cost

information to the various edges, an \optimal" unfolding can be achieved.

There are several alternative ways to de�ne the cost values:

� The user speci�es which edges are to be preserved as the border of

two adjacent polygons. These edges are given 0 unit cost, while the

rest are given 1.

� The cost can be de�ned by the di�erence between the angle of the

adjacent polygons and �. This approach aims to minimize the total

rotations in order to keep the 2D unfolded model compact.

There are several straightforward algorithms which are suitable for the

generation of a minimal total cost spanning tree of a general graph [Har69].

A possible algorithm builds up the graph incrementally and adds that new

edge which has lowest cost from the remaining unused edges and does not

cause a cycle to be generated in each step.

The unfolding operation starts at the root of the tree, and the polygons

adjacent to it are pivoted about the common edge with the root polygon.

When a polygon is rotated around the edge, all polygons adjacent to it must

also be rotated (these polygons are the descendants of the given polygon in

the tree). Having unfolded all the polygons adjacent to the root polygon,

these polygons come to be regarded as roots and the algorithm is repeated

for them recursively. The unfolding program is:

UnfoldPolygon(poly, edge, �);

Rotate poly and all its children around edge by � � �;

for each child of poly

UnfoldPolygon(child, edge(poly; child), angle(poly; child));

endfor

end

Main program

for each child of root

UnfoldPolygon(child, edge(root; child), angle(root; child));

endfor

end

344 12. TEXTURE MAPPING

The information regarding the orientation and position of polygons is

usually stored in transformation matrices. A new rotation of a polygon

means the concatenation of a new transformation matrix to the already

developed matrix of the polygon. One of the serious limitations of this

approach is that it partly destroys polygonal adjacency; that is, the unfolded

surface will have a di�erent topology from the original surface. A common

edge of two polygons may be mapped onto two di�erent locations of the

texture space, causing discontinuities in texture along polygon boundaries.

This problem can be overcome by the method discussed in the subsequent

section.

General surfaces

A general technique developed by Bier and Sloan [BS86] uses an interme-

diate surface to establish a mapping between the surface and the texture

space. When mapping from the texture space to the surface, �rst the tex-

ture point is mapped onto the intermediate surface by its parameterization,

then some \natural" projection is used to map the point onto the target sur-

face. The texturing transformation is thus de�ned by a two-phase mapping.

object normal object centroid intermediate surface normal

Figure 12.3: Natural projections

The intermediate surface must be easy to parameterize and therefore

usually belongs to one of the following categories:

1. Planar polygon

2. Sphere

3. Cylinder

4. Faces of a cube.

12.2. TEXTURE MAPPING IN RAY TRACING 345

The possibilities of the \natural" projection between the intermediate

and target surfaces are shown in �gure 12.3.

12.2 Texture mapping in ray tracing

Ray tracing determines which surface points must be shaded in the world

coordinate system; that is, only the modeling transformation is needed to

connect the shading space with the space where the textures are stored. Ray

tracing is a typical image precision technique which generates the color of

pixels sequentially, thus necessitating a scan order texture mapping method.

Having calculated the object visible along either a primary or secondary

ray | that is, having found the nearest intersection of the ray and the

objects | the shading equation must be evaluated, which may require the

access of texture maps for varying parameters. The derivation of texture

coordinates depends not only on the type of texturing, but also on the

surface to be rendered.

For parametrically de�ned patches, such as Bezier and B-spline surfaces,

the intersection calculation has already determined the parameters of the

surface point to be shaded, thus this information is readily available to fetch

the necessary values from 2D texture maps.

For other surface types and for solid texturing, the point should be trans-

formed to local modeling space from the world coordinate system. Solid

texture value is generated here usually by calling a function with the local

coordinates which returns the required parameters. Two-dimensional tex-

tures require the inverse parameterization to be calculated, which can be

done by any of the methods so far discussed.

12.3 Texture mapping for incremental

shading models

In incremental shading the polygons are supposed to be in the screen coor-

dinate system, and a surface point is thus represented by the (X;Y) pixel

coordinates with the depth value Z which is only important for hidden sur-

face elimination, but not necessarily for texture mapping since the de�nition

of the surface, viewing, and the (X;Y) pair of pixel coordinates completely

346 12. TEXTURE MAPPING

identify where the point is located on the surface. Incrementalmethods deal

with polygon mesh approximations, never directly with the real equations

of explicit or implicit surfaces. Texturing transformations, however, may

refer either to the original surfaces or to polygons.

12.3.1 Real surface oriented texturing

If the texture mapping has parameterized the original surfaces rather than

their polygon mesh approximations, an applicable scan-order algorithm is

very similar to that used for ray tracing. First the point is mapped from

screen space to the local modeling coordinate system by the inverse of the

composite transformation. Since the composite transformation is homoge-

neous (or in special cases linear if the projection is orthographic), its inverse

is also homogeneous (or linear), as has been proven in section 5.1 on proper-

ties of homogeneous transformations. From the modeling space, any of the

discussed methods can be used to inversely parameterize the surface and to

obtain the corresponding texture space coordinates.

Unlike ray tracing, parametric surfaces may pose serious problems, when

the inverse parameterization is calculated, since this requires the solution

of a two-variate, non-linear equation ~r(u; v) = ~p, where ~p is that point in

the modeling space which maps to the actual pixel.

To solve this problem, the extension of the iterative root searching method

based on the re�nement of the subdivision of the parametric patch into

planar polygons can be used here.

Some degree of subdivision has also been necessary for polygon mesh ap-

proximation. Subdivision of a parametric patch means dividing it along its

isoparametric curves. Selecting uniformly distributed u and v parameters,

the subdivision yields a mesh of points at the intersection of these curves.

Then a mesh of planar polygons (quadrilaterals) can be de�ned by these

points, which will approximate the original surface at a level determined by

how exact the isoparametric division was.

When it turns out that a point of a polygon approximating the paramet-

ric surface is mapped onto a pixel, a rough approximation of the u; v surface

parameters can be derived by looking at which isoparametric lines de�ned

this polygon. This does not necessitate the solution of the non-linear equa-

tion if the data of the original subdivision which de�nes the polygon vertices

at the intersection of isoparametric lines are stored somewhere. The inverse

12.3. TEXTURE MAPPING FOR INCREMENTAL SHADING MODELS 347

problem for a quadrilateral requires the search for this data only. The search

will provide the isoparametric values along the boundaries of the quadrilat-

eral. In order to �nd the accurate u; v parameters for an inner point, the

subdivision must be continued, but without altering or further re�ning the

shape of the approximation of the surface, as proposed by Catmull [Cat74].

In his method, the re�nement of the subdivision is a parallel procedure in

parameter space and screen space. Each time the quadrilateral in screen

space is divided into four similar polygons, the rectangle in the parameter

space is also broken down into four rectangles. By a simple comparison it

is decided which screen space quadrilateral maps onto the actual pixel, and

the algorithm proceeds for the resulted quadrilateral and its corresponding

texture space rectangle until the polygon coming from the subdivision cov-

ers a single pixel. When the subdivision terminates, the required texture

value is obtained from the texture map. Note that it is not an accurate

method, since the original surface and the viewing transformation are not

linear, but the parallel subdivision used linear interpolation. However, if

the original interpolation is not too inexact, then it is usually acceptable.

12.3.2 Polygon based texturing

When discussing parameterization, a correspondence was established be-

tween the texture space and the local modeling space. For polygons subdi-

vided into triangles and quadrilaterals, the parameterization and its inverse

can be expressed by a homogeneous transformation. The local modeling

space, on the other hand, is mapped to the world coordinate system, then

to the screen space by modeling and viewing transformations respectively.

The concatenation of the modeling and viewing transformations is an a�ne

mapping for orthographic projection and is a homogeneous transformation

for perspective projection.

Since both the parameterization and the projection are given by homoge-

neous transformations, their composition directly connecting texture space

with screen space will also be a homogeneous transformation. The matrix

representation of this mapping for quadrilaterals and perspective transfor-

mation is derived as follows. The parameterization is:

[x � h; y � h; z � h; h] = [u; v; 1] �P3�4: (12:21)

348 12. TEXTURE MAPPING

The composite modeling and viewing transformation is:

[X � q; Y � q; Z � q; q] = [x � h; y � h; z � h; h] �TV(4�4): (12:22)

Projection will simply ignore the Z coordinate if it is executed in screen

space, and thus it is not even worth computing in texture mapping. Since

the third column of matrix TV(4�4) is responsible for generating Z, it can

be removed from the matrix:

[X �q; Y �q; q] = [x�h; y�h; z�h; h]�TV(4�3) = [u; v; 1]�P3�4�TV(4�3): (12:23)

Denoting P3�4 �TV(4�3) by C3�3, the composition of parameterization and

projection is:

[X � q; Y � q; q] = [u; v; 1] �C3�3: (12:24)

The inverse transformation for scan order mapping is:

[u � w; v � w;w] = [X;Y; 1] �C�1

3�3
: (12:25)

Let the element of C3�3 and C�1

3�3 in ith row and in jth column be cij
and Cij respectively. Expressing the texture coordinates directly, we can

conclude that u and v are quotients of linear expressions of X and Y , while

X and Y have similar formulae containing u and v.

The texture order mapping is:

X(u; v) =
c11 � u+ c21 � v + c31

c13 � u+ c23 � v + c33
; Y (u; v) =

c12 � u+ c22 � v + c32

c13 � u+ c23 � v + c33
: (12:26)

The screen order mapping is:

u(X;Y) =
C11 �X + C21 � Y + C31

C13 �X + C23 � Y + C33

; v(X;Y) =
C12 �X + C22 � Y + C32

C13 �X + C23 � Y + C33

:

(12:27)

If triangles are parameterized and orthographic projection is used, both

transformations are linear requiring their composite texturing transforma-

tion to be linear also. Linearity means that:

c13; c23 = 0; c33 = 1; C13; C23 = 0; C33 = 1 (12:28)

12.3. TEXTURE MAPPING FOR INCREMENTAL SHADING MODELS 349

Scan order polygon texturing

When pixel X;Y is shaded in screen space, its corresponding texture coor-

dinates can be derived by evaluating a rational equation 12.27. This can be

further optimized by the incremental concept. Let the numerator and the

denominator of quotients de�ning u(X) be uw(X) and w(X) respectively.

Although the division cannot be eliminated, u(X + 1) can be calculated

from u(X) by two additions and a single division if uw(X) and w(X) are

evaluated incrementally:

uw(X+1) = uw(X)+C11; w(X+1) = w(X)+C13; u(X+1) =
uw(X + 1)

w(X + 1)
:

(12:29)

A similar expression holds for the incremental calculation of v. In addition

to the incremental calculation of texture coordinates inside the horizontal

spans, the incremental concept can also be applied on the starting edge of

the screen space triangle. Thus, the main loop of the polygon rendering of

Phong shading is made appropriate for incremental texture mapping:

Xstart = X1 + 0:5; Xend = X1 + 0:5; ~Nstart = ~N1;

uws = uw1; vws = vw1; ws = w1;

for Y = Y1 to Y2 do

uw = uws; vw = vws; w = ws;
~N = ~Nstart;

for X = Trunc(Xstart) to Trunc(Xend) do

u = uw=w; v = vw=w;

(R;G;B) = ShadingModel(~N , u, v);

write(X;Y;Trunc(R);Trunc(G);Trunc(B));
~N += � ~NX;

uw += C11; vw += C12; w += C13;

endfor

Xstart += �Xs
Y ; Xend += �Xe

Y ;
~Nstart += � ~N s

Y ;

uws += �uws
Y ; vws += �vws

Y ; ws += �ws
Y ;

endfor

350 12. TEXTURE MAPPING

If the texturing transformation is linear, that is if triangles are parame-

terized and orthographic projection is used, the denominator is always 1,

thus simplifying the incremental formula to a single addition:

Xstart = X1 + 0:5; Xend = X1 + 0:5; ~Nstart = ~N1;

us = u1; vs = v1;

for Y = Y1 to Y2 do

u = us; v = vs;
~N = ~Nstart;

for X = Trunc(Xstart) to Trunc(Xend) do

(R;G;B) = ShadingModel(~N , u, v);

write(X;Y;Trunc(R);Trunc(G);Trunc(B));
~N += � ~NX;

u += C11; v += C12;

endfor

Xstart += �Xs
Y ; Xend += �Xe

Y ;
~Nstart += � ~N s

Y ;

us += �usY ; vs += �vsY ;

endfor

Texture order polygon texturing

The inherent problem of texture order methods | i.e., that the uniform

sampling of texture space does not guarantee the uniform sampling of screen

space, and therefore may leave holes in the image or may generate pixels

redundantly in an unexpected way | does not exist if the entire texture

mapping is linear. Thus, we shall consider the simpli�ed case when triangles

are parameterized and orthographic projection is used, producing a linear

texturing transformation.

The isoparametric lines of the texture space may be rotated and scaled

by the texturing transformation, requiring the shaded polygons to be �lled

by possibly diagonal lines. Suppose the texture is de�ned by an N �M

array T of \texture space pixels" or texels, and the complete texturing

transformation is linear and has the following form:

X(u; v) = c11 � u+ c21 � v + c31; Y (u; v) = c12 � u+ c22 � v + c32: (12:30)

12.3. TEXTURE MAPPING FOR INCREMENTAL SHADING MODELS 351

The triangle being textured is de�ned both in 2D texture space and in

the 3D screen space (�gure 12.4). In texture order methods those texels

must be found which cover the texture space triangle, and the correspond-

ing screen space pixels should be shaded using the parameters found in the

given location of the texture array. The determination of the covering texels

in the texture space triangle is, in fact, a two-dimensional polygon-�ll prob-

lem that has straightforward algorithms. The direct application of these

algorithms, however, cannot circumvent the problem of di�erent texture

and pixel sampling grids, and thus can produce holes and overlapping in

screen space. The complete isoparametric line of v from u = 0 to u = 1 is

v

u

Y

X

texture space screen space

Figure 12.4: Texture order mapping

a digital line consisting of du = Trunc(max[c11; c12]) pixels in screen space.

Thus, the N number of texture pixels should be re-distributed to du screen

pixels, which is equivalent to obtaining the texture array in �u = du=N

steps. Note that �u is not necessarily an integer, requiring a non-integer

U coordinate which accumulates the �u increments. The integer index to

the texture array is de�ned by the integer part of this U value. Neverthe-

less, U and �u can be represented in a �xed point format and calculated

only by �xed point additions. Note that the emerging algorithm is similar

to incremental line drawing methods, and eventually the distribution of N

texture pixels onto du screen pixels is equivalent to drawing an incremental

line with a slope N=du.

352 12. TEXTURE MAPPING

The complete isoparametric lines of u from v = 0 to v = 1 are similarly

dv = Trunc(max[c21; c22]) pixel long digital lines in screen space. The re-

quired increment of the v coordinate is �v = dv=M when the next pixel is

generated on this digital line. Thus, a modi�ed polygon-�lling algorithm

must be used in texture space to generate the texture values of the inner

points, and it must be one which moves along the horizontal and vertical

axes at du and dv increments instead of jumping to integer points as in

normal �lling.

isoparametric lines

wholes

Figure 12.5: Holes between adjacent lines

This incremental technique must be combinedwith the �lling of the screen

space triangle. Since the isoparametric lines corresponding to constant v val-

ues are generally not horizontal but can have any slant, the necessary �lling

algorithm produces the internal pixels as a sequence of diagonal span lines.

As in normal �lling algorithms, two line generators are needed to produce

the start and end points of the internal spans. A third line generator, on

the other hand, generates the pixels between the start and end points.

The main problem of this approach is that using all pixels along the two

parallel edges does not guarantee that all internal pixels will be covered

by the connecting digital lines. Holes may appear between adjacent lines

as shown in �gure 12.5. Even linear texture transformation fails to avoid

generating holes, but at least it does it in a well de�ned manner. Braccini

and Marino [BG86] proposed drawing an extra pixel at each bend in the

pixel space digital line to �ll in any gaps that might be present. This is

obviously a drastic approach and may result in redundancy, but it solves

the inherent problem of texture order methods.

12.4. FILTERING OF TEXTURES 353

12.3.3 Texture mapping in the radiosity method

The general radiosity method consists of two steps: a view-independent

radiosity calculation step, and a view-dependent rendering step where either

an incremental shading technique is used, such as Gouraud shading, or else

the shading is accomplished by ray-tracing. During the radiosity calculation

step, the surfaces are broken down into planar elemental polygons which are

assumed to have uniform radiosity, emission and di�use coe�cients. These

assumptions can be made even if texture mapping is used, by calculating the

\average" di�use coe�cient for each elemental surface, because the results

of this approximation are usually acceptable. In the second, view-dependent

step, however, textures can be handled as discussed for incremental shading

and ray tracing.

12.4 Filtering of textures

Texture mapping establishes a correspondence between texture space and

screen space. This mapping may magnify or shrink texture space regions

when they are eventually projected onto pixels. Since raster based systems

use regular sampling in pixel space, texture mapping can cause extremely

uneven sampling of texture space, which inevitably results in strong aliasing

artifacts. The methods discussed in chapter 11 (on sampling and quantiza-

tion artifacts) must be applied to �lter the texture in order to avoid aliasing.

The applicable �ltering techniques fall into two categories: pre-�ltering, and

post-�ltering with supersampling.

12.4.1 Pre-�ltering of textures

The di�culty of pre-�ltering methods is that the mapping between texture

and pixel spaces is usually non-linear, thus the shape of the convolution

�lter is distorted. The requirement for box �ltering, for example, is the

pre-image of a pixel, which is a curvilinear quadrilateral, and thus the tex-

els lying inside this curvilinear quadrilateral must be summed to produce

the pixel color. In order to ease the �ltering computation, this curvilinear

quadrilateral is approximated by some simpler geometric object; the pos-

sible alternatives are a square or a rectangle lying parallel to the texture

coordinate axes, a normal quadrilateral or an ellipse (�gure 12.6).

354 12. TEXTURE MAPPING

pixel spacetexture space texture space

ellipse

rectangle

square

quadrilateral

Y

X

v

u

v

u

v

v

u

u

pixel

Figure 12.6: Approximations of the pre-image of the pixel rectangle

Rectangle approximation of the pre-image

The approximation by a rectangle is particularly suited to the Catmull tex-

turing algorithm based on parallel subdivision in screen and texture space.

Recall that in his method a patch is subdivided until the resulting polygon

covers a single pixel. At the end of the process the corresponding texture do-

main subdivision takes the form of a square or a rectangle in texture space.

Texels enclosed by this rectangle are added up, or the texture function is

integrated here, to approximate a box �lter. A conical or pyramidal �lter

can also be applied if the texels are weighted by a linear function increasing

from the edges towards the center of the rectangle.

The calculation of the color of a single pixel requires integration or sum-

mation of the texels lying in its pre-image, and thus the computational

burden is proportional to the size of the pre-image of the actual pixel. This

can be disadvantageous if large textures are mapped onto a small area of

the screen. Nevertheless, texture mapping can be speeded up, and this

linear dependence on the size of the pixel's pre-image can be obviated if

pre-integrated tables, or so-called pyramids, are used.

12.4. FILTERING OF TEXTURES 355

The image pyramid of pre-�ltered data

Pyramids are multi-resolution data structures which contain the succes-

sively band-limited and subsampled versions of the same original image.

These versions correspond to di�erent sampling resolutions of the image.

The resolution of the successive levels usually decrease by a factor of two.

Conceptually, the subsequent images can be thought of as forming a pyra-

mid, with the original image at the base and the crudest approximation

at the apex, which provides some explanation of the name of this method.

Versions are usually generated by box �ltering and resampling the previous

version of the image; that is, by averaging the color of four texels from one

image, we arrive at the color of a texel for the subsequent level.

u

v

R G

B
R G

B R G

B

D

Figure 12.7: Mip-map organization of the memory

The collection of texture images can be organized into amip-map scheme,

as proposed by Williams [Wil83] (�gure 12.7). (\mip" is an acronym of

\multum in parvo" | \many things in a small space".) The mip-map

scheme has a modest memory requirement. If the size of the original image

is 1, then the cost of the mip-map organization is 1+2�2+2�4+ ::: � 1:33.

The texture stored in a mip-map scheme is accessed using three indices:

u; v texture coordinates and D for level of the pyramid. Looking up a

texel de�ned by this three-index directory in the two-dimensional M �M

mip-map array (MM) is a straightforward process:

R(u; v;D) = MM [(1 � 2�D) �M + u � 2�D; (1 � 2�D) �M + v � 2�D];

G(u; v;D) = MM [(1 � 2�(D+1)) �M + u � 2�D; (1� 2�D) �M + v � 2�D];

B(u; v;D) = MM [(1 � 2�D) �M + u � 2�D; (1 � 2�(D+1)) �M + v � 2�D]:
(12:31)

356 12. TEXTURE MAPPING

The application of the mip-map organization makes it possible to calcu-

late the �ltered color of the pixel in constant time and independently of the

number of texels involved if D is selected appropriately. Level parameter D

must obviously be derived from the span of the pre-image of the pixel area,

d, which can be approximated as follows:

d = maxfj[u(x+1); v(x+1)]�[u(x); v(x)]j; j[u(y+1); v(y+1)]�[u(y); v(y)]jg

� maxf

vuut @u
@x

!2

+

@v

@x

!2

;

vuut @u
@y

!2

+

@v

@y

!2

g: (12:32)

The appropriate image version is that which composes approximately d2

pixels together, thus the required pyramid level is:

D = log2(maxfd; 1g): (12:33)

The minimum 1 value in the above equation is justi�ed by the fact that

if the inverse texture mapping maps a pixel onto a part of a texel, then no

�ltering is necessary. The resultingD parameter is a continuous value which

must be made discrete in order to generate an index for accessing the mip-

map array. Simple truncation or rounding might result in discontinuities

where the span size of the pixel pre-image changes, and thus would require

some inter-level blending or interpolation. Linear interpolation is suitable

for this task, thus the �nal expression of color values is:

R(u; v;Trunc(D)) � (1� Fract(D)) +R(u; v;Trunc(D) + 1) � Fract(D);

G(u; v;Trunc(D)) � (1� Fract(D)) +G(u; v;Trunc(D) + 1) � Fract(D);

B(u; v;Trunc(D)) � (1� Fract(D)) +B(u; v;Trunc(D) + 1) � Fract(D):
(12:34)

The image pyramid relies on the assumption that the pre-image of the

pixel can be approximated by a square in texture space. An alternative

discussed by the next section, however, allows for rectangular areas oriented

parallel to the coordinate axes.

Summed-area tables

A summed-area table (SA) is an array-like data structure which contains

the running sum of colors as the image is scanned along successive scan-

lines; that is, at [i; j] position of this SA table there is a triple of R;G;B

12.4. FILTERING OF TEXTURES 357

values, each of them generated from the respective T texel array as follows:

SAI[i; j] =
iX

u=0

jX
v=0

T [u; v]I (12:35)

where the subscript I stands for any of R, G or B.

This data structure makes it possible to calculate the box �ltered or area

summed value of any rectangle oriented parallel to the axes, since the sum

of pixel colors in a rectangle given by corner points [u0; v0;u1; v1] is:

I([u0; v0;u1; v1]) =
u1X

u=u0

v1X
v=v0

T [u; v]I =

SAI[u1; v1]� SAI[u1; v0]� SAI[u0; v1] + SAI[u0; v0]: (12:36)

Image pyramids and summed-area tables allow for constant time �ltering,

but require set-up overhead to build the data structure. Thus they are

suitable for textures which are used many times.

Rectangle approximation of the pixel's pre-image

Deeming the curvilinear region to be a normal quadrilateral provides a more

accurate method [Cat74]. Theoretically the generation of internal texels

poses no problem, because polygon �lling algorithms are e�ective tools for

this, but the implementation is not so simple as for a square parallel to

the axes. Pyramidal �lters are also available if an appropriate weighting

function is applied [BN76].

EWA | Elliptical Weighted Average

Gangnet, Perny and Coueignoux [GPC82] came up with an interesting idea

which considers pixels as circles rather than squares. The pre-image of a

pixel is then an ellipse even for homogeneous transformations, or else can

be quite well approximated by an ellipse even for arbitrary transforma-

tions. Ellipses thus form a uniform class of pixel pre-images, which can

conveniently be represented by few parameters. The idea has been further

re�ned by Greene and Heckbert [GH86] who proposed distorting the �lter

kernel according to the resulting ellipse in texture space.

358 12. TEXTURE MAPPING

Let us consider a circle with radius r at the origin of pixel space. Assuming

the center of the texture coordinate system to have been translated to the

inverse projection of the pixel center, the pre-image can be approximated

by the following ellipse:

F (r) = Au2 +Buv + Cv2: (12:37)

Applying Taylor's approximation for the functions u(x; y) and v(x; y), we

get:

u(x; y) �
@u

@x
� x+

@u

@y
� y = ux � x+ uy � y;

v(x; y) �
@v

@x
� x+

@v

@y
� y = vx � x+ vy � y: (12:38)

Substituting these terms into the equation of the ellipse, then:

F = x2 � (u2xA+ uxvxB + v2xC) + y2 � (u2yA+ uyvyB + v2yC)+

xy � (2uxuyA+ (uxvy + uyvx)B + 2vxvyC): (12:39)

The original points in pixel space are known to be on a circle; that is

the coordinates must satisfy the equation x2 + y2 = r2. Comparing this to

the previous equation, a linear system of equations can be established for

A;B;C and F respectively. To solve these equations, one solution from the

possible ones di�ering in a constant multiplicative factor is:

A = v2x + v2y;

B = �2(uxvx + uyvy);

C = u2x + u2y;

F = (uxvy � uyvx)
2 � r2:

(12:40)

Once these parameters are determined, they can be used to test for point-

inclusion in the ellipse by incrementally computing

f(u; v) = A � u2 +B � u � v + C � v2

and deciding whether its absolute value is less than F . If a point satis�es

the f(u; v) � F inequality | that is, it is located inside the ellipse | then

the actual f(u; v) shows how close the point is to the center of the pixel,

or which concentric circle corresponds to this point as shown by the above

12.4. FILTERING OF TEXTURES 359

expression of F . Thus, the f(u; v) value can be directly used to generate

the weighting factor of the selected �lter. For a cone �lter, for example, the

weighting function is:

w(f) =

q
f(u; v)

juxvy � uyvxj
: (12:41)

The square root compensates for the square of r in the expression of F .

Apart from for cone �lters, almost any kind of �lter kernel (Gaussian, B-

spline, sinc etc.) can be realized in this way, making the EWA approach a

versatile and e�ective technique.

12.4.2 Post-�ltering of textures

Post-�ltering combined with supersampling means calculating the image at

a higher resolution. The pixel colors are then computed by averaging the

colors of subpixels belonging to any given pixel. The determination of the

necessary subpixel resolution poses a critical problem when texture mapped

surfaces are present, because it depends on both the texel resolution and the

size of the areas mapped onto a single pixel, that is on the level of compres-

sion of the texturing, modeling and viewing transformations. By breaking

down a pixel into a given number of subpixels, it is still not guaranteed

that the corresponding texture space sampling will meet, at least approx-

imately, the requirements of the sampling theorem. Clearly, the level of

pixel subdivision must be determined by examination of all the factors in-

volved. An interesting solution is given to this problem in the REYES Image

Rendering System [CCC87] (REYES stands for \Renders Everything You

Ever Saw"), where supersampling has been combined with stochastic sam-

pling. In REYES surfaces are broken down into so-called micropolygons

such that a micropolygon will have the size of about half a pixel when it

goes through the transformations of image synthesis. Micropolygons have

constant color determined by evaluation of the shading equation for co-

e�cients coming from pre-�ltered textures. Thus, at micropolygon level,

the system applies a pre-�ltering strategy. Constant color micropolygons

are projected onto the pixel space, where at each pixel several subpixels

are placed randomly, and the pixel color is computed by averaging those

subpixels. Hence, on surface level a stochastic supersampling approach is

used with post-�ltering. The adaptivity of the whole method is provided

360 12. TEXTURE MAPPING

by the subdivision criterion of micropolygons; that is, they must have ap-

proximately half a pixel size after projection. The half pixel size is in fact

the Nyquist limit of sampling on the pixel grid.

12.5 Bump mapping

Examining the formulae of shading equations we can see that the surface

normal plays a crucial part in the computation of the color of the surface.

Bumpy surfaces, such as the moon with its craters, have darker and brighter

patches on them, since the modi�ed normal of bumps can turn towards or

away from the lightsources. Suppose that the image of a slightly bumpy

surface has to be generated, where the height of the bumps is considerably

smaller than the size of the object. The development of a geometric model

to represent the surface and its bumps would be an algebraic nightmare,

not to mention the di�culties of the generation of its image. Fortunately,

we can apply a deft and convenient approximation method called bump

mapping. The geometry used in transformations and visibility calculations

is not intended to take the bumps into account | the moon, for example,

is assumed to be a sphere | but during shading calculations a perturbed

normal vector, taking into account the geometry and the bumps as well, is

used in the shading equation. The necessary perturbation function is stored

in texture maps, called bump maps, making bump mapping a special type

of texture mapping. An appropriate perturbation of the normal vector

gives the illusion of small valleys, providing the expected image without the

computational burden of the geometry of the bumps. Now the derivation

of the perturbations of the normal vectors is discussed, based on the work

of Blinn [Bli78].

Suppose that the surface incorporating bumps is de�ned by a function

~r(u; v), and its smooth approximation is de�ned by ~s(u; v), that is, ~r(u; v)

can be expressed by adding a small displacement d(u; v) to the surface

~s(u; v) in the direction of its surface normal (�gure 12.8). Since the surface

normal ~ns of ~s(u; v) can be expressed as the cross product of the partial

derivatives (~su; ~sv) of the surface in two parameter directions, we can write:

~r(u; v) = ~s(u; v)+d(u; v)�[~su(u; v)�~sv(u; v)]
0 = ~s(u; v)+d(u; v)�~n0s (12:42)

(the 0 superscript stands for unit vectors).

12.5. BUMP MAPPING 361

n

s(u,v)

r(u,v)

d(u,v)

s

Figure 12.8: Description of bumps

The partial derivatives of ~r(u; v) are:

~ru = ~su + du � ~n
0
s + d �

@~n0s
@u

;

~rv = ~sv + dv � ~n
0
s + d �

@~n0s
@v

: (12:43)

The last terms can be ignored, since the normal vector variation is small

for smooth surfaces, as is the d(u; v) bump displacement, thus:

~ru � ~su + du � ~n
0
s;

~rv � ~sv + dv � ~n
0
s: (12:44)

The surface normal of r(u; v), that is the perturbed normal, is then:

~nr = ~ru� ~rv = ~su � ~sv + du � ~n
0
s � ~sv + dv � ~su � ~n0s + dudv � ~n

0
s � ~n0s: (12:45)

Since the last term of this expression is identically zero because of the axioms

of the vector product, and

~ns = ~su � ~sv; ~su � ~n0s = �~n0s � ~su;

thus we get:

~nr = ~ns + du � ~n
0
s � ~sv � dv � ~n

0
s � ~su: (12:46)

This formula allows for the computation of the perturbed normal using

the derivatives of the displacement function. The displacement function

d(u; v) must be de�ned by similar techniques as for texture maps; they

362 12. TEXTURE MAPPING

can be given either by functions or by pre-computed arrays called bump

maps. Each time a normal vector is needed, the (u; v) coordinates have to

be determined, and then the derivatives of the displacement function must

be evaluated and substituted into the formula of the perturbation vector.

The formula of the perturbated vector requires the derivatives of the

bump displacement function, not its value. Thus, we can either store the

derivatives of the displacement function in two bump maps, or calculate

them each time using �nite di�erences. Suppose the displacement function

is de�ned by an N �N bump map array, B. The calculated derivatives are

then:

U = Trunc(u �N); V = Trunc(v �N);

if U < 1 then U = 1; if U > N � 2 then U = N � 2;

if V < 1 then V = 1; if V > N � 2 then V = N � 2;

du(u; v) = (B[U + 1; V]�B[U � 1; V]) �N=2;

dv(u; v) = (B[U; V + 1]�B[U; V � 1]) �N=2;

The displacement function, d(u; v), can be derived from frame-grabbed

photos or hand-drawn digital pictures generated by painting programs, as-

suming color information to be depth values, or from z-bu�er memory values

of computer synthesized images. With the latter method, an arbitrary ar-

rangement of 3D objects can be used for de�nition of the displacement of

the bump-mapped surface.

Blinn [Bli78] has noticed that bump maps de�ned in this way are not

invariant to scaling of the object. Suppose two di�erently scaled objects

with the same bump map are displayed on the screen. One might expect

the bigger object to have bigger wrinkles proportionally to the size of the

object, but that will not be the case, since

j~nr � ~nsj

j~nsj
=
jdu � ~n

0
s � ~sv � dv � ~n

0
s � ~suj

j~su � ~svj

is not invariant with the scaling of ~s(u; v) and consequently of ~ns, but it is

actually inversely proportional to it. If it generates unwanted e�ects, then

a compensation is needed for eliminating this dependence.

12.6. REFLECTION MAPPING 363

12.5.1 Filtering for bump mapping

The same problems may arise in the context of bump mapping as for tex-

ture mapping if point sampling is used for image generation. The applicable

solution methods are also similar and include pre-�ltering and post-�ltering

with supersampling. The pre-�ltering technique | that is, the averaging

of displacement values stored in the bump map | contains, however, the

theoretical di�culty that the dependence of surface colors on bump displace-

ments is strongly non-linear. In e�ect, pre-�ltering will tend to smooth out

not only high-frequency aliases, but also bumps.

12.6 Re
ection mapping

Reading the section on bump mapping, we can see that texture mapping is

a tool which can re-introduce features which were previously eliminated be-

cause of algorithmic complexity considerations. The description of bumps

by their true geometric characteristics is prohibitively expensive compu-

tationally, but this special type of texture mapping, bump mapping, can

provide nearly the same e�ect without increasing the geometric complexity

of the model. Thus it is no surprise that attempts have been made to deal

with other otherwise complex phenomena within the framework of texture

mapping. The most important class of these approaches addresses the prob-

lem of coherent re
ection which could otherwise be solved only by expensive

ray tracing.

A re
ective object re
ects the image of its environment into the direction

of the camera. Thus, the pre-computed image visible from the center of the

re
ective object can be used later, when the color visible from the camera

is calculated. These pre-computed images with respect to re
ective objects

are called re
ection maps [BN76]. Originally Blinn and Newell proposed

a sphere as an intermediate object onto which the environment is projected.

Cubes, however, are more convenient [MH84], since to generate the pictures

seen through the six sides of the cube, the same methods can be used as for

computing the normal images from the camera.

Having generated the images visible from the center of re
ective objects,

a normal image synthesis algorithm can be started using the real camera.

Re
ective surfaces are treated as texture mapped ones with the texture

364 12. TEXTURE MAPPING

reflective
object

environment maps

Figure 12.9: Re
ection mapping

coordinates calculated by taking into account not only the surface point,

but the viewing direction and the surface normal as well. By re
ecting the

viewing direction | that is, the vector pointing to the surface point from

the camera | onto the surface normal, the re
ection direction vector is

derived, which unambiguously de�nes a point on the intermediate cube (or

sphere), which must be used to provide the color of the re
ection direction.

This generally requires a cube-ray intersection. However, if the cube is

signi�cantly greater than the object itself, the dependence on the surface

point can be ignored, which allows for the access of the environment map

by the coordinates of the re
ection vector only.

Suppose the cube is oriented parallel to the coordinate axes and the im-

ages visible from the center of the object through its six sides are stored

in texture maps R[0; u; v]; R[1; u; v]; : : : ; R[5; u; v]. Let the re
ected view

vector be ~Vr = [Vx; Vy; Vz].

The color of the light coming from the re
ection direction is then:

if jVxj = maxfjVxj; jVyj; jVzjg then

if Vx > 0 then color = R[0; 0:5 + Vy=Vx; 0:5 + Vz=Vx];

else color = R[3; 0:5 + Vy=Vx; 0:5 + Vz=Vx];

if jVyj = maxfjVxj; jVyj; jVzjg then

if Vy > 0 then color = R[1; 0:5 + Vx=Vy ; 0:5 + Vz=Vy];

else color = R[4; 0:5 + Vx=Vy ; 0:5 + Vz=Vy];

if jVzj = maxfjVxj; jVyj; jVzjg then

if Vz > 0 then color = R[2; 0:5 + Vx=Vz ; 0:5 + Vy=Vz];

else color = R[5; 0:5 + Vx=Vz ; 0:5 + Vy=Vz];

Chapter 13

ANIMATION

Animation introduces time-varying features into computer graphics, most
importantly the motion of objects and the camera. Theoretically, all the
parameters de�ning a scene in the virtual world model can be functions of
time, including color, size, shape, optical coe�cients, etc., but these are
rarely animated, thus we shall mainly concentrate on motion and camera

animation. In order to illustrate motion and other time-varying phenomena,
animation systems generate not a single image of a virtual world, but a
sequence of them, where each image represents a di�erent point of time.
The images are shown one by one on the screen allowing a short time for
the user to have a look at each one before the next is displayed.

Supposing that the objects are de�ned in their respective local coordinate
system, the position and orientation of the particular object is given by its
modeling transformation. Recall that this modeling transformation places
the objects in the global world coordinate system determining the relative
position and orientation from other objects and the camera.

The camera parameters, on the other hand, which include the position
and orientation of the 3D window and the relative location of the camera,
are given in the global coordinate system thus de�ning the viewing trans-

formation which takes us from the world to the screen coordinate system.
Both transformations can be characterized by 4�4 homogeneous matrices.

Let the time-varying modeling transformation of object o be TM;o(t) and
the viewing transformation be TV(t).

A simplistic algorithm of the generation of an animation sequence, as-
suming a built-in timer, is:

365

366 13. ANIMATION

Initialize Timer(tstart);

do

t = Read Timer;

for each object o do Set modeling transformation: TM;o = TM;o(t);

Set viewing transformation: TV = TV(t);

Generate Image;

while t < tend;

In order to provide the e�ect of continuous motion, a new static image

should be generated at least every 60 msec. If the computer is capable of

producing the sequence at such a speed, we call this real-time animation,

since now the timer can provide real time values. With less powerful com-

puters we are still able to generate continuous looking sequences by storing
the computed image sequence on mass storage, such as a video recorder, and
replaying them later. This technique, called non-real-time animation,

requires the calculation of subsequent images in uniformly distributed time
samples. The time gap between the samples has to exceed the load time
of the image from the mass storage, and should meet the requirements of
continuous motion as well. The general sequence of this type of animation
is:

t = tstart; // preprocessing phase: recording

do

for each object o do Set modeling transformation: TM;o = TM;o(t);

Set viewing transformation: TV = TV(t);
Generate Image;
Store Image;
t += �t;

while t < tend ;

Initialize Timer(tstart) ; // animation phase: replay

do

t = Read Timer;
Load next image;

t += �t;

while (t > Read Timer) Wait;

while t < tend;

13. ANIMATION 367

Note that the only responsibility of the animation phase is the loading

and the display of the subsequent images at each time interval �t. The

simplest way to do this is to use a commercial VCR and television set,

having recorded the images computed for arbitrary time on a video tape

frame-by-frame in analog signal form. In this way computers are used only

for the preprocessing phase, the real-time display of the animation sequence

is generated by other equipments developed for this purpose.

As in traditional computer graphics, the objective of animation is to

generate realistic motion. Motion is realistic if it is similar to what observers

are used to in their everyday lives. The motion of natural objects obeys the

laws of physics, speci�cally, Newton's law stating that the acceleration of

masses is proportional to the resultant driving force. Let a point of object

mass have positional vector ~r(t) at time t, and assume that the resultant

driving force on this mass is ~D. The position vector can be expressed by
the modeling transformation and the position in the local coordinates (~rL):

~r(t) = ~rL �TM(t): (13:1)

x

y

z
m

D

r(t)

Figure 13.1: Dynamics of a single point of mass in an object

Newton's law expresses the second derivative (acceleration) of ~r(t) using

the driving force ~D and the mass m:

~D

m
=

d2~r(t)

dt2
= ~rL �

d2TM(t)

dt2
: (13:2)

368 13. ANIMATION

Since there are only �nite forces in nature, the second derivative of all el-

ements of the transformation matrix must be �nite. More precisely, the sec-

ond derivative has to be continuous, since mechanical forces cannot change

abruptly, because they act on some elastic mechanism, making ~D(t) contin-

uous. To summarize, the illusion of realistic motion requires the elements

of the transformation matrices to have �nite and continuous second deriva-

tives. Functions meeting these requirements belong to the C2 family (C

stands for parametric continuity, and superscript 2 denotes that the second

derivatives are regarded). The C2 property implies that the function is also

of type C1 and C0.

The crucial problem of animation is the de�nition of the appropriate

matrices TM(t) and TV(t) to re
ect user intention and also to give the

illusion of realistic motion. This task is called motion control.

To allow maximum
exibility, interpolation and approximation techniques

applied in the design of free form curves are recommended here. The de-
signer of the motion de�nes the position and the orientation of the objects
just at a few knot points of time, and the computer interpolates or approx-
imates a function depending on these knot points taking into account the
requirements of realistic motion. The interpolated function is then sampled
in points required by the animation loop.

t
t∆

T

knot points

motion parameter

sample points

Figure 13.2: Motion control by interpolation

13.1. INTERPOLATION OF POSITION-ORIENTATIONMATRICES 369

13.1 Interpolation of position-orientation

matrices

As we know, arbitrary position and orientation can be de�ned by a matrix

of the following form:

2
6664
A3�3

0

0

0

qT 1

3
7775 =

2
6664

a11 a12 a13 0

a21 a22 a23 0

a31 a32 a33 0

qx qy qz 1

3
7775 : (13:3)

Vector qT sets the position and A3�3 is responsible for de�ning the ori-

entation of the object. The elements of qT can be controlled independently,

adjusting the x, y and z coordinates of the position. Matrix elements
a11; : : : a33, however, are not independent, since the degree of freedom in
orientation is 3, not 9, the number of elements in the matrix. In fact, a

matrix representing a valid orientation must not change the size and the
shape of the object, thus requiring the row vectors of A to be unit vectors
forming a perpendicular triple. Matrices having this property are called
orthonormal.
Concerning the interpolation, the elements of the position vector can be

interpolated independently, but independent interpolation is not permitted
for the elements of the orientation matrix, since the interpolated elements
would make non-orthonormal matrices. A possible solution to this problem
is to interpolate in the space of the roll/pitch/yaw (�; �;
) angles (see
section 5.1.1), since they form a basis in the space of the orientations, that

is, any roll-pitch-yaw triple represents an orientation, and all orientations
can be expressed in this way. Consequently, the time functions describing
the motion are:

p(t) = [x(t); y(t); z(t); �(t); �(t);
(t)] (13:4)

(p(t) is called parameter vector).
In image generation the homogeneous matrix form of transformation is

needed, and thus, having calculated the position value and orientation an-

gles, the transformation matrix has to be expressed.

370 13. ANIMATION

Using the de�nitions of the roll, pitch and yaw angles:

A =

2
64

cos� sin� 0

� sin� cos� 0

0 0 1

3
75 �

2
64
cos � 0 � sin�

0 1 0

sin� 0 cos �

3
75 �

2
64
1 0 0

0 cos
 sin

0 � sin
 cos

3
75 :

(13:5)

The position vector is obviously:

qT = [x; y; z]: (13:6)

We concluded that in order to generate realistic motion, T should have

continuous second derivatives. The interpolation is executed, however, in

the space of the parameter vectors, meaning that this requirement must

be replaced by another one concerning the position values and orientation
angles.

The modeling transformation depends on time indirectly, through the
parameter vector:

T = T(p(t)): (13:7)

Expressing the second derivative of a matrix element Tij:

dTij

dt
= gradpTij � _p; (13:8)

d2Tij

dt2
= (

d

dt
gradpTij) � _p+ gradpTij � �p = h(p; _p) +H(p) � �p: (13:9)

In order to guarantee that d2Tij=dt
2 is �nite and continuous, �p should also

be �nite and continuous. This means that the interpolation method used

for the elements of the parameter vector has to generate functions which
have continuous second derivatives, or in other words, has to provide C2

continuity.
There are several alternative interpolation methods which satisfy the

above criterion. We shall consider a very popular method which is based

on cubic B-splines.

13.2. INTERPOLATION OF THE CAMERA PARAMETERS 371

13.2 Interpolation of the camera

parameters

Interpolation along the path of the camera is a little bit more di�cult,

since a complete camera setting contains more parameters than a position

and orientation. Recall that the setting has been de�ned by the following

independent values:

1. ~vrp, view reference point, de�ning the center of the window,

2. ~vpn, view plane normal, concerning the normal of the plane of the

window,

3. ~vup, view up vector, showing the directions of the edges of the window,

4. wheight; wwidth, horizontal and vertical sizes of the window,

5. ~eye, the location of the camera in the u; v; w coordinate system �xed
to the center of the window,

6. fp; bp, front and back clipping plane,

7. Type of projection.

Theoretically all of these parameters can be interpolated, except for the
type of projection. The position of clipping planes, however, is not often
varied with time, since clipping planes do not correspond to any natural
phenomena, but are used to avoid over
ows in the computations and to
simplify the projection.

Some of the above parameters are not completely independent. Vectors
~vpn and ~vup ought to be perpendicular unit vectors. Fortunately, the algo-
rithm generating the viewing transformation matrix TV takes care of these
requirements, and should the two vectors not be perpendicular or of unit

length, it adjusts them. Consequently, an appropriate space of indepen-

dently adjustable parameters is:

pcam(t) = [~vrp; ~vpn; ~vup;wheight; wwidth; ~eye; fp; bp]: (13:10)

372 13. ANIMATION

As has been discussed in chapter 5 (on transformations, clipping and

projection), these parameters de�ne a viewing transformation matrix TV if

the following conditions hold:

~vpn� ~vup 6= 0; wheight � 0; wwidth � 0; eyew < 0; eyew < fp < bp:

(13:11)

This means that the interpolation method has to take account not only

of the existence of continuous derivatives of these parameters, but also of

the requirements of the above inequalities for any possible point of time.

In practical cases, the above conditions are checked in the knot points

(keyframes) only, and then animation is attempted. Should it be that the

path fails to provide these conditions, the animation systemwill then require

the designer to modify the keyframes accordingly.

13.3 Motion design

The design of the animation sequence starts by specifying the knot points
of the interpolation. The designer sets several time points, say t1; t2 : : : tn,
and de�nes the position and orientation of objects and the camera in these
points of time. This information could be expressed in the form of the
parameter vector, or of the transformation matrix. In the latter case, the

parameter vector should be derived from the transformation matrix for the
interpolation. This task, called the inverse geometric problem, involves
the solution of several trigonometric equations and is quite straightforward
due to the formulation of the orientation matrix based on the roll, pitch
and yaw angles.

Arranging the objects in ti, we de�ne a knot point for a parameter vector
po(ti) for each object o. These knot points will be used to interpolate a C2

function (e.g. a B-spline) for each parameter of each object, completing the

design phase.
In the animation phase, the parameter functions are sampled in the actual

time instant, and the respective transformation matrices are set. Then the
image is generated.

13.3. MOTION DESIGN 373

These steps are summarized in the following algorithm:

De�ne the time of knot points: t1; : : : ; tn; // design phase

for each knot point k do

for each object o do

Arrange object o:

po(tk) = [x(tk); y(tk); z(tk); �(tk); �(tk);
(tk)]o;

endfor

Set camera parameters: pcam(tk);

endfor

for each object o do

Interpolate a C2 function for:

po(t) = [x(t); y(t); z(t); �(t); �(t);
(t)]o;

endfor

Interpolate a C2 function for: pcam(t);

Initialize Timer(tstart); // animation phase

do

t = Read Timer;
for each object o do

Sample parameters of object o:
po = [x(t); y(t); z(t); �(t); �(t);
(t)]o;

TM;o = TM;o(po);

endfor

Sample parameters of camera: pcam = pcam(t);
TV = TV(pcam);
Generate Image;

while t < tend ;

This approach has several disadvantages. Suppose that having designed

and animated a sequence, we are not satis�ed with the result, because we
�nd that a particular part of the �lm is too slow, and we want to speed it up.
The only thing we can do is to re-start the motion design from scratch and

re-de�ne all the knot points. This seems unreasonable, since it was not our

aim to change the path of the objects, but only to modify the kinematics

of the motion. Unfortunately, in the above approach both the geometry of

374 13. ANIMATION

the trajectories and the kinematics (that is the speed and acceleration along

the trajectories) are speci�ed by the same transformation matrices. That

is why this approach does not allow for simple kinematic modi�cation.

This problem is not a new one for actors and actresses in theaters, since

a performance is very similar to an animation sequence, where the objects

are the actors themselves. Assume a performance were directed in the same

fashion as the above algorithm. The actors need to know the exact time

when they are supposed to come on the stage. What would happen if the

schedule were slightly modi�ed, because of a small delay in the �rst part of

the performance? Every single actor would have to be given a new schedule.

That would be a nightmare, would it not. Fortunately, theaters do not work

that way. Dramas are broken down into scenes. Actors are aware of the

scene when they have to come on, not the time, and there is a special person,

called a stage manager, who keeps an eye on the performance and informs

the actors when they are due on (all of them at once). If there is a delay,
or the timing has to be modi�ed, only the stage manager's schedule has to
change, the actors' schedules are una�ected. The geometry of the trajectory
(movement of actors) and the kinematics (timing) has been successfully
separated.
The very same approach can be applied to computer animation as well.

Now the sequence is broken down into frames (this is the analogy of scenes),
and the geometry of the trajectories is de�ned in terms of frames (F),
not in terms of time. The knot points of frames are called keyframes,
and conveniently the �rst keyframe de�nes the arrangement at F = 1, the
second at F = 2 etc. The kinematics (stage manager) is introduced to the

system by de�ning the sequence of frames in terms of time, resulting in a
function F(t).
Concerning the animation phase, in order to generate an image in time t,

�rst F(t) is evaluated, then the result is used to calculateT(p(F)) matrices.
Tasks, such as modifying the timing of the sequence, or even reversing the

whole animation, can be accomplished by the proper modi�cation of the

frame function F(t) without a�ecting the transformation matrices.
Now the transformation matrices are de�ned indirectly, through F . Thus

special attention is needed to guarantee the continuity of second derivatives

13.3. MOTION DESIGN 375

frame

(frame)1

1 2 3

frame

(frame)
2

1 2 3

 frame

geometry

kinematics

T (t)
1

T (t)
2

t t t
1 2 3

t t t
1 2 3

t t t
1 2 3

time

time

time

motion trajectories

T

T

Figure 13.3: Keyframe animation

of the complete function. Expressing the second derivatives of Tij, we get:

d2Tij

dt2
=

d2Tij

dF2
� (_F)2 + dTij

dF � �F : (13:12)

A su�cient condition for the continuous second derivatives of Tij(t) is
that both F(t) and Tij(F) are C2 functions. The latter condition requires
that the parameter vector p is a C2 type function of the frame variable F .

376 13. ANIMATION

The concept of keyframe animation is summarized in the following

algorithm:

// Design of the geometry

for each keyframe kf do

for each object o do

Arrange object o:

po(kf) = [x(kf); y(kf); z(kf); �(kf); �(kf);
(kf)]o;

endfor

Set camera parameters: pcam(kf);

endfor

for each object o do

Interpolate a C2 function for:

po(f) = [x(f); y(f); z(f); �(f); �(f);
(f)]o;
endfor

Interpolate a C2 function for: pcam(f);

// Design of the kinematics

for each keyframe kf do De�ne tkf , when F(tkf) = kf ;
Interpolate a C2 function for F(t);

// Animation phase

Initialize Timer(tstart);

do

t = Read Timer;
f = F(t);
for each object o do

Sample parameters of object o:

po = [x(f); y(f); z(f); �(f); �(f);
(f)]o;
TM;o = TM;o(po);

endfor

Sample parameters of camera: pcam(f);
TV = TV(pcam);
Generate Image;

while t < tend;

13.4. PARAMETER TRAJECTORY CALCULATION 377

13.4 Parameter trajectory calculation

We concluded in the previous sections that the modeling (TM) and viewing

(TV) transformation matrices should be controlled or animated via param-

eter vectors. Additionally, the elements of these parameter vectors and the

frame function for keyframe animation must be C2 functions | that is, they

must have continuous second derivatives | to satisfy Newton's law which

is essential if the motion is to be realistic. In fact, the second derivatives of

these parameters are proportional to the force components, which must be

continuous in real-life situations, and which in turn require the parameters

to have this C2 property.

We also stated that in order to allow for easy and
exible trajectory

design, the designer of the motion de�nes the position and the orientation

of the objects | that is indirectly the values of the motion parameters | in
just a few knot points of time, and lets the computer interpolate a function
relying on these knot points taking into account the requirements of C2

continuity. The interpolated function is then sampled in points required by

the animation loop.
This section focuses on this interpolation process which can be formu-

lated for a single parameter as follows:
Suppose that points [p0; p1; : : : ; pn] are given with their respective time

values [t0; t1; : : : ; tn], and we must �nd a function p(t) that satis�es:

p(ti) = pi; i = 0; : : : ; n; (13:13)

and that the second derivative of p(t) is continuous (C2 type). Function p(t)

must be easily represented and computed numerically, thus it is usually
selected from the family of polynomials or the piecewise combination of
polynomials. Whatever family is used, the number of its independently
controllable parameters, called the degree of freedom, must be at least n,
to allow the function to satisfy n number of independent equations.
Function p(t) that satis�es equation 13.13 is called the interpolation

function or curve of knot or control points [t0; p0; t1; p1; : : : ; tn; pn]. In-

terpolation functions are thus required to pass through its knot points.
In many cases this is not an essential requirement, however, and it seems

advantageous that a function should just follow the general directions pro-
vided by the knot points | that is, that it should only approximate the

378 13. ANIMATION

knot points | if by thus eliminating the \passing through" constraint we

improve other, more important, properties of the generated function. This

latter function type is called the approximation function. This section

considers interpolation functions �rst, then discusses the possibilities of ap-

proximation functions in computer animation.

A possible approach to interpolation can take a single, minimal order

polynomial which satis�es the above criterion. The degree of the polyno-

mial should be at least n � 1 to have n independent coe�cients, thus the

interpolation polynomial is:

p(t) =
n�1X
i=0

ai � ti: (13:14)

The method that makes use of this approach is called Lagrange interpo-

lation. It can be easily shown that the polynomial which is incident to the
given knot points can be expressed as:

p(t) =
nX

i=0

pi � L(n)

i (t); (13:15)

where L
(n)

i (t), called the Lagrange base polynomial, is:

L
(n)

i (t) =

nQ
j=0

j 6=i

(t� tj)

nQ
j=0

j 6=i

(ti � tj)
: (13:16)

Equation 13.15 gives an interesting geometric interpretation to this schema.
The Lagrange base polynomials are in fact weight functions which give
a certain weight to the knot points in the linear combination de�ning p(t).
Thus, the value of p(t) comes from the time-varying blend of the control

points. The roots of blending functions L
(n)
i (t) are t0; : : : ; ti�1; ti+1; : : : tn,

and the function gives positive or negative values in the subsequent ranges
[tj; tj+1], resulting in an oscillating shape. Due to the oscillating blending

functions, the interpolated polynomial also tends to oscillate between even

reasonably arranged knot points, thus the motion exhibits wild wiggles that
are not inherent in the de�nition data. The greater the number of knot

13.4. PARAMETER TRAJECTORY CALCULATION 379

points, the more noticeable the oscillations become since the degree of the

base polynomials is one less that the number of knot points. Thus, although

single polynomial based interpolation meets the requirement of continuous

second derivatives and easy de�nition and calculation, it is acceptable for

animation only if the degree, that is the number of knot points, is small.

A possible and promising direction of the re�nement of the polynomial

interpolation is the application of several polynomials of low degree instead

of a single high-degree polynomial. This means that in order to interpolate

through knot points [t0; p0; t1; p1; : : : ; tn; pn], a di�erent polynomial pi(t) is

found for each range [ti; ti+1] between the subsequent knot points. The

complete interpolated function p(t) will be the composition of the segment

polynomials responsible for de�ning it in the di�erent [ti; ti+1] intervals, that

is:

p(t) =

8>>>>>>><
>>>>>>>:

p0(t) if t0 � t < t1
...
pi(t) if ti � t < ti+1

...
pn�1(t) if tn�1 � t � tn

(13:17)

In order to guarantee that p(t) is a C2 function, the segments must be

carefully connected to provide C2 continuity at the joints. Since this may
mean di�erent second derivatives required at the two endpoints of the seg-
ment, the polynomial must not have a constant second derivative, that is,
at least cubic (3-degree) polynomials should be used for these segments. A
composite function of di�erent segments connected together to guarantee

C2 continuity is called a spline [RA89]. The simplest, but practically the
most important, spline consists of 3-degree polynomials, and is therefore
called the cubic spline. A cubic spline segment valid in [ti; ti+1] can be
written as:

pi(t) = a3 � (t� ti)
3 + a2 � (t� ti)

2 + a1 � (t� ti) + a0: (13:18)

The coe�cients (a3; a2; a1; a0) de�ne the function unambiguously, but
they cannot be given a direct geometrical interpretation. Thus an alterna-

tive representation is selected, which de�nes the values and the derivatives

of the segment at the two endpoints, forming a quadruple (pi; pi+1; p
0
i; p

0
i+1).

The correspondence between the coe�cients of the polynomial can be es-

tablished by calculating the values and the derivatives of equation 13.18.

380 13. ANIMATION

Using the simplifying notation Ti = ti+1 � ti, we get:

pi = pi(ti) = a0;

pi+1 = pi(ti+1) = a3 � T 3
i + a2 � T 2

i + a1 � Ti + a0;

p0i = p0i(ti) = a1;

p0i+1 = p0i(ti+1) = 3a3 � T 2
i + 2a2 � Ti + a1:

(13:19)

These equations can be used to express pi(t) by the endpoint values and

derivatives, proving that this is also an unambiguous representation:

pi(t) = [2(pi � pi+1) + (p0i + p0i+1)Ti] � (
t� ti

Ti

)
3
+

[3(pi+1 � pi)� (2p0i + p0i+1)Ti] � (
t� ti

Ti

)
2
+ p0i � (t� ti) + pi: (13:20)

p (0)
i

p (0)
i+1p’ (0)

i

p’ (0)
i+1

p (T)
i i-1

p (T)
i i

p’ (T)i i

p’ (T)
i i-1

Figure 13.4: Cubic B-spline interpolation

The continuous connection of consecutive cubic segments expressed in
this way is easy because C0 and C1 continuity is automatically provided
if the value and the derivative of the endpoint of one segment is used as
the starting point of the next segment. Only the continuity of the second

derivative (p00(t)) must somehow be obtained. The �rst two elements in
the quadruple (pi; pi+1; p

0
i; p

0
i+1) are the knot points which are known before

the calculation. The derivatives at these points, however, are usually not
available, thus they must be determined from the requirement of C2 contin-

uous connection. Expressing the second derivative of the function de�ned

by equation 13.20 for any k and k + 1, and requiring p00k(tk+1) = p00k+1(tk+1),
we get:

Tk+1p
0
k+2(Tk+Tk+1)p

0
k+1+Tkp

0
k+2 = 3[

Tk

Tk+1

(pk+2�pk+1)+
Tk+1

Tk

(pk+1�pk)]:

(13:21)

13.4. PARAMETER TRAJECTORY CALCULATION 381

Applying this equation for each joint (k = 1; 2; : : : ; n�2) of the composite

curve yields n � 2 equations, which is less than the number of unknown

derivatives (n). By specifying the derivatives | that is the \speed" |

at the endpoints of the composite curve by assigning p00(t0) = vstart and

p0n�1(tn) = vend (we usually expect objects to be at a standstill before their

movement and to stop after accomplishing it, which requires vstart; vend = 0),

however, the problem becomes determinant. The linear equation in matrix

form is:
2
6666666664

1 0 : : :

T1 2(T0 + T1) T0 0 : : :

0 T2 2(T1 + T2) T1 0 : : :
...

: : : 0 Tn�1 2(Tn�1 + Tn�2) Tn�2

: : : 0 1

3
7777777775

2
6666666664

p00
p01
p02
...

p0n�1
p0n

3
7777777775

=

2
6666666664

vstart
3[T0=T1(p2 � p1) + T1=T0(p1 � p0)]
3[T1=T2(p3 � p2) + T2=T1(p2 � p1)]

...

3[Tn�2=Tn�1(pn � pn�1) + Tn�1=Tn�2(pn�1 � pn�2)]
vend

3
7777777775

: (13:22)

By solving this linear equation, the unknown derivatives [p00; : : : ; p
0
n] can

be determined, which in turn can be substituted into equation 13.20 to
de�ne the segments and consequently the composite function p(t).
Cubic spline interpolation produces a C2 curve from piecewise 3-degree

polynomials, thus neither the complexity of the calculations nor the ten-
dency to oscillate increases as the number of knot points increases. The
result is a smooth curve exhibiting no variations that are not inherent in

the series of knot points, and therefore it can provide realistic animation se-

quences. This method, however, still has a drawback which appears during
the design phase, namely the lack of local control. When the animator
desires to change a small part of the animation sequence, he will modify a

knot point nearest to the timing parameter of the given part. The modi�-

cation of a single point (either its value or its derivative), however, a�ects
the whole trajectory, since in order to guarantee second order continuity,

382 13. ANIMATION

the derivatives at the knot points must be recalculated by solving equa-

tion 13.22. This may lead to unwanted changes in a part of the trajectory

far from the modi�ed knot point, which makes the design process di�cult

to execute in cases where very �ne control is needed. This is why we prefer

methods which have this \local control" property, where the modi�cation

of a knot point alters only a limited part of the function.

Recall that the representation of cubic polynomials was changed from the

set of coe�cients to the values and the derivatives at the endpoints when

the cubic spline interpolation was introduced. This representation change

had a signi�cant advantage in that by forcing two consecutive segments to

share two parameters from the four (namely the value and derivative at one

endpoint), C0 and C1 continuity was automatically guaranteed, and only

the continuity of the second derivative had to be taken care of by additional

equations. We might ask whether there is another representation of cubic

segments which guarantees even C2 continuity by simply sharing 3 control
values from the possible four. There is, namely, the cubic B-spline.
The cubic B-spline is a member of a more general family of k-order B-

splines which are based on a set of k-order (degree k�1) blending functions
that can be used to de�ne a p(t) function by the linear combination of its
knot points [t0; p0; t1; p1; : : : ; tn; pn]:

p(t) =
nX

i=0

pi �Ni;k(t); k = 2; : : : n; (13:23)

where the blending functions Ni;k are usually de�ned by the Cox-deBoor
recursion formulae:

Ni;1(t) =

8<
:
1 if ti � t < ti+1

0 otherwise

(13:24)

Ni;k(t) =
(t� ti)Ni;k�1(t)

ti+k�1 � ti
+

(ti+k � t)Ni+1;k�1(t)

ti+k � ti+1

; if k > 1: (13:25)

The construction of these blending functions can be interpreted geometri-
cally. At each level of the recursion two subsequent blending functions are

taken and they are blended together by linear weighting (see �gure 13.5).

13.4. PARAMETER TRAJECTORY CALCULATION 383

linear basis functions

quadratic basis functions

cubic basis functions

linear blending

linear blending

basis function
linear blending function

N (t)i,2

N (t)i,3

N (t)i,4

1

1

1

Figure 13.5: Construction of B-spline blending functions

It is obvious from the construction process that Ni;k(t) is non-zero only
in [ti; ti+k]. Thus a control point pi can a�ect the generated

p(t) =
nX

i=0

pi �Ni;k(t)

only in [ti; ti+k], and therefore the B-spline method has the local control

property. The function p(t) is a piecewise polynomial of degree k�1, and it
can be proven that its derivatives of order 0; 1; : : : ; k � 2 are all continuous
at the joints. For animation purposes C2 continuity is required, thus 4-order
(degree 3, that is cubic) B-splines are used.
Examining the cubic B-spline method more carefully, we can see that the

interpolation requirement, that is p(ti) = pi, is not provided, because at ti
more than one blending functions are di�erent from zero. Thus the cubic

B-spline o�ers an approximation method. The four blending functions

a�ecting a single point, however, are all positive and their sum is 1, that
is, the point is always in the convex hull of the 4 nearest control points,

and thus the resulting function will follow the polygon of the control points
quite reasonably.

384 13. ANIMATION

The fact that the B-splines o�er an approximation method does not mean

that they cannot be used for interpolation. If a B-spline which passes

through points [t0; p0; t1; p1; : : : ; tn; pn] is needed, then a set of control points

[c�1; c0; c1 : : : cn+1] must be found so that:

p(tj) =
n+1X
i=�1

ci �Ni;k(tj) = pj : (13:26)

This is a linear system of n equations which have n+2 unknown variables.

To make the problem determinant the derivatives at the beginning and at

the end of the function must be de�ned. The resulting linear equation can

be solved for the unknown control points.

13.5 Interpolation with quaternions

The previous section discussed several trajectory interpolation techniques

which determined a time function for each independently controllable mo-
tion parameter. These parameters can be used later on to derive the trans-
formation matrix. This two-step method guarantees that the \inbetweened"
samples are really valid transformations which do not destroy the shape of
the animated objects.

Interpolating in the motion parameter space, however, generates new
problems which need to be addressed in animation. Suppose, for the sake of
simplicity, that an object is to be animated between two di�erent positions
and orientations with uniform speed. In parameter space straight line seg-
ments are the shortest paths between the two knot points. Unfortunately

these line segments do not necessarily correspond to the shortest \natural"
path in the space of orientations, only in the space of positions. The core of
the problem is the selection of the orientation parameters, that is the roll-

pitch-yaw angles, since real objects rotate around a single (time-varying)
direction instead of around three super�cial coordinate axes, and the de-

pendence of the angle of the single rotation on the roll-pitch-yaw angles is
not linear (compare equations 5.26 and 5.30). When rotating by angle �

around a given direction in time t, for instance, the linearly interpolated
roll-pitch-yaw angles will not necessarily correspond to a rotation by � � �
in � � t (� 2 [0::1]), which inevitably results in uneven and \non-natural"

13.5. INTERPOLATION WITH QUATERNIONS 385

motion. In order to demonstrate this problem, suppose that an object lo-

cated in [1,0,0] has to be rotated around vector [1,1,1] by 240 degrees and

the motion is de�ned by three knot points representing rotation by 0, 120

and 240 degrees respectively (�gure 13.6). Rotation by 120 degrees moves

the x axis to the z axis and rotation by 240 degrees transforms the x axis to

y axis. These transformations, however, are realized by 90 degree rotations

around the y axis then around the x axis if the roll-pitch-yaw representation

is used. Thus the interpolation in roll-pitch-yaw angles forces the object to

rotate �rst around the y axis by 90 degrees then around the x axis instead

of rotating continuously around [1,1,1]. This obviously results in uneven

and unrealistic motion even if this e�ect is decreased by a C2 interpolation.

x

y

z

x y

z

[1,1,1]

axis of rotation

desired trajectory

trajectory generated by roll-pitch-yaw interpolation

Figure 13.6: Problems of interpolation in roll-pitch-yaw angles

This means that a certain orientation change cannot be inbetweened by
independently interpolating the roll-pitch-yaw angles in cases when these
e�ects are not tolerable. Rather the axis of the �nal rotation is required, and

the 2D rotation around this single axis must be interpolated and sampled in
the di�erent frames. Unfortunately, neither the roll-pitch-yaw parameters

nor the transformation matrix supply this required information including

the axis and the angle of rotation. Another representation is needed which
explicitly refers to the axis and the angle of rotation.

In the mid-eighties several publications appeared promoting quaternions
as a mathematical tool to describe and handle rotations and orientations in

386 13. ANIMATION

graphics and robotics [Bra82]. Not only did quaternions solve the problem of

natural rotation interpolation, but they also simpli�ed the calculations and

out-performed the standard roll-pitch-yaw angle based matrix operations.

Like a matrix, a quaternion q can be regarded as a tool for changing one

vector ~u into another ~v:

~u
q

=) ~v: (13:27)

Matrices do this change with a certain element of redundancy, that is, there

is an in�nite number of matrices which can transform one vector to another

given vector. For 3D vectors, the matrices have 9 elements, although 4 real

numbers can de�ne this change unambiguously, namely:

1. The change of the length of the vector.

2. The plane of rotation, which can be de�ned by 2 angles from two given
axes.

3. The angle of rotation.

A quaternion q, on the other hand, consists only of the necessary 4 num-
bers, which are usually partitioned into a pair consisting of a scalar element
and a vector of 3 scalars, that is:

q = [s; x; y; z] = [s; ~w]: (13:28)

Quaternions are four-vectors (this is why they were given this name),
and inherit vector operations including addition, scalar multiplication, dot
product and norm, but their multiplication is de�ned specially, in a way

somehow similar to the arithmetic of complex numbers, because quaternions
can also be interpreted as a generalization of the complex numbers with s

as the real part and x; y; z as the imaginary part. Denoting the imaginary
axes by i, j and k yields:

q = s+ xi+ yj+ zk: (13:29)

In fact, Sir Hamilton introduced the quaternions more than a hundred years
ago to generalize complex numbers, which can be regarded as pairs with
special algebraic rules. He failed to �nd the rules for triples, but realized

that the generalization is possible for quadruples with the rules:

i2 = j2 = k2 = ijk = �1; ij = k; etc.

13.5. INTERPOLATION WITH QUATERNIONS 387

To summarize, the de�nitions of the operations on quaternions are:

q1 + q2 = [s1; ~w1] + [s2; ~w2] = [s1 + s2; ~w1 + ~w2];

�q = �[s; ~w] = [�s; �~w];

q1 � q2 = [s1; ~w1] � [s2; ~w2] = [s1s2 � ~w1 � ~w2; s1 ~w2 + s2 ~w1 + ~w1 � ~w2];

hq1; q2i = h[s1; x1; y1; z1]; [s2; x2; y2; z2]i = s1s2 + x1x2 + y1y2 + z1z2;

jjqjj = jj[s; x; y; z]jj=
q
hq; qi =

p
s2 + x2 + y2 + z2:

(13:30)

Quaternion multiplication and addition satis�es the distributive law. Ad-

dition is commutative and associative. Multiplication is associative but is
not commutative. It can easily be shown that the multiplicative identity is
I = [1;~0]. With respect to quaternion multiplication the inverse quaternion
is:

q�1 =
[s;�~w]

jjqjj2
(13:31)

since
[s; ~w] � [s;�~w] = [s2 + j~wj2;~0] = jjqjj2 � [1;~0]: (13:32)

As for matrices, the inverse reverses the order of multiplication, that is:

(q2 � q1)�1 = q�11 � q�12 : (13:33)

Our original goal, the rotation of 3D vectors using quaternions, can be
achieved relying on quaternion multiplication by having extended the 3D
vector by an s = 0 fourth parameter to make it, too, a quaternion:

~u
q

=) ~v : [0; ~v] = q � [0; ~u] � q�1 =
[0; s2~u+ 2s(~w � ~u) + (~w � ~u)~w + ~w � (~w � ~u)]

jjqjj2 : (13:34)

Note that a scaling in quaternion q = [s; ~w] makes no di�erence to the

resulting vector v, since scaling of [s; ~w] and [s;�~w] in q�1 is compensated
for by the attenuation of jjqjj2. Thus, without the loss of generality, we
assume that q is a unit quaternion, that is

jjqjj2 = s2 + j~wj2 = 1 (13:35)

388 13. ANIMATION

For unit quaternions, equation 13.34 can also be written as:

[0; ~v] = q � [0; ~u] � q�1 = [0; ~u+ 2s(~w � ~u) + 2~w � (~w � ~u)] (13:36)

since

s2~u = ~u� j~wj2~u and (~w � ~u)~w � j~wj2~u = ~w � (~w � ~u): (13:37)

In order to examine the e�ects of the above de�ned transformation, vector

~u is �rst supposed to be perpendicular to vector ~w, then the parallel case

will be analyzed.

If vector ~u is perpendicular to quaternion element ~w, then for unit quater-

nions equation 13.36 yields:

q � [0; ~u] � q�1 = [0; ~u(1 � 2j~wj2) + 2s(~w � ~u)] = [0; ~v]: (13:38)

u

w

α
2

v = u(1−2|w|) + 2s w ux

w x u
s w ux2

Figure 13.7: Geometry of quaternion rotation for the perpendicular case

That is, ~v is a linear combination of perpendicular vectors ~u and ~w � ~u

(�gure 13.7), it thus lies in the plane of ~u and ~w � ~u, and its length is:

j~vj = j~uj
q
(1� 2j~wj2)2 + (2sj~wj)2 = j~uj

q
(1 + 4j~wj2(s2 + j~wj2 � 1) = j~uj:

(13:39)

Since ~w is perpendicular to the plane of ~u and the resulting vector ~v, and
the transformation does not alter the length of the vector, vector ~v is, in
fact, a rotation of ~u around ~w. The cosine of the rotation angle (�) can be

expressed by the dot product of ~u and ~v, that is:

cos� =
~u � ~v
j~uj � j~vj =

(~u � ~u)(1 � 2j~wj2) + 2s~u � (~w � ~u)

j~uj2 = 1� 2j~wj2: (13:40)

13.5. INTERPOLATION WITH QUATERNIONS 389

If vector ~u is parallel to quaternion element ~w, then for unit quaternions

equation 13.36 yields:

[0; ~v] = q � [0; ~u] � q�1 = [0; ~u]: (13:41)

Thus the parallel vectors are not a�ected by quaternion multiplication as

rotation does not alter the axis parallel vectors.

General vectors can be broken down into a parallel and a perpendicular

component with respect to ~w because of the distributive property. As has

been demonstrated, the quaternion transformation rotates the perpendicu-

lar component by an angle that satis�es cos� = 1� 2j~wj2 and the parallel

component is una�ected, thus the transformed components will de�ne the

rotated version of the original vector ~u by angle � around the vector part

of the quaternion.
Let us apply this concept in the reverse direction and determine the ro-

tating quaternion for a required rotation axis ~d and angle �. We concluded
that the quaternion transformation rotates the vector around its vector part,
thus a unit quaternion rotating around unit vector ~d has the following form:

q = [s; r � ~d]; s2 + r2 = 1 (13:42)

Parameters s and r have to be selected according to the requirement that

quaternion q must rotate by angle �. Using equations 13.40 and 13.42, we
get:

cos� = 1� 2r2; s =
p
1� r2: (13:43)

Expressing parameters s and r, then quaternion q that represents a rotation
by angle � around a unit vector ~d, we get:

q = [cos
�

2
; sin

�

2
� ~d]: (13:44)

The special case when sin�=2 = 0, that is � = 2k� and q = [�1;~0], poses
no problem, since a rotation of an even multiple of � does not a�ect the

object, and the axis is irrelevant.

Composition of rotations is the \concatenation" of quaternions as in ma-
trix representation since:

q2 � (q1 � [0; ~u] � q�11) � q�12 = (q2 � q1) � [0; ~u] � (q2 � q1)�1: (13:45)

390 13. ANIMATION

Let us focus on the interpolation of orientations between two knot points

in the framework of quaternions. Suppose that the orientations are de-

scribed in the two knot points by quaternions q1 and q2 respectively. For

the sake of simplicity, we suppose �rst that q1 and q2 represent rotations

around the same unit axis ~d, that is:

q1 = [cos
�1

2
; sin

�1

2
� ~d]; q2 = [cos

�2

2
; sin

�2

2
� ~d]: (13:46)

Calculating the dot product of q1 and q2,

hq1; q2i = cos
�1

2
� cos �2

2
+ sin

�1

2
� sin �2

2
= cos

�2 � �1

2
;

we come to the interesting conclusion that the angle of rotation between

the two orientations represented by the quaternions is, in fact, half of the
angle between the two quaternions in 4D space.

q1 q2 q1 q2

Figure 13.8: Linear versus spherical interpolation of orientations

Our ultimate objective is to move an object from an orientation repre-
sented by q1 to a new orientation of q2 by an even and uniform motion. If
linear interpolation is used to generate the path of orientations between q1
and q2, then the angles of the subsequent quaternions will not be constant,
as is demonstrated in �gure 13.8. Thus the speed of the rotation will not
be uniform, and the motion will give an e�ect of acceleration followed by

deceleration, which is usually undesirable.
Instead of linear interpolation, a non-linear interpolation must be found

that guarantees the constant angle between the subsequent interpolated
quaternions. Spherical interpolation obviously meets this requirement,where

the interpolated quaternions are selected uniformly from the arc between q1
and q2. If q1 and q2 are unit quaternions, then all the interpolated quater-

nions will also be of unit length. Unit-size quaternions can be regarded

13.5. INTERPOLATION WITH QUATERNIONS 391

as unit-size four-vectors which correspond to a 4D unit-radius sphere. An

appropriate interpolation method must generate the great arc between q1
and q2, and as can easily be shown, this great arc has the following form:

q(t) =
sin(1� t)�

sin �
� q1 +

sin t�

sin �
� q2; (13:47)

where cos � = hq1; q2i (�gure 13.9).

θ

4D sphere
q

q

1

2

Figure 13.9: Interpolation of unit quaternions on a 4D unit sphere

In order to demonstrate that this really results in a uniform interpolation,
the following equations must be proven for q(t):

jjq(t)jj = 1; hq1; q(t)i = cos(t�); hq2; q(t)i = cos((1� t)�): (13:48)

That is, the interpolant is really on the surface of the sphere, and the angle

of rotation is a linear function of the time t.
Let us �rst prove the second assertion (the third can be proven similarly):

hq1; q(t)i =
sin(1 � t)�

sin �
+

sin t�

sin �
� cos � =

sin � � cos t�
sin �

� sin t� � cos �
sin �

+
sin t�

sin �
� cos � = cos(t�): (13:49)

Concerning the norm of the interpolant, we can use the de�nition of the

norm and the previous results, thus:

jjq(t)jj2 = hq(t); q(t)i = hsin(1� t)�

sin �
� q1 +

sin t�

sin �
� q2; q(t)i =

sin(1� t)�

sin �
�cos(t�)+ sin t�

sin �
�cos((1� t)�) =

sin ((1� t)� + t�)

sin �
= 1 (13:50)

392 13. ANIMATION

If there is a series of consecutive quaternions q1; q2; : : : ; qn to follow dur-

ing the animation, this interpolation can be executed in a similar way to

that discussed in the previous section. The blending function approach

can be used, but here the constraints are slightly modi�ed. Supposing

b1(t); b2(t); : : : ; bn(t) are blending functions, for any t, they must satisfy

that:

jjb1(t)q1 + b2(t)q2 + : : :+ bn(t)qnjj = 1 (13:51)

which means that the curve must lie on the sphere. This is certainly more

di�cult than generating a curve in the plane of the control points, which

was done in the previous section. Selecting bi(t)s as piecewise curves de�ned

by equation 13.47 would solve this problem, but the resulting curve would

not be of C1 and C2 type.

Shoemake [Sho85] proposed a successive linear blending technique on the
surface of the sphere to enforce the continuous derivatives. Suppose that
a curve segment adjacent to q1; q2; : : : qn is to be constructed. In the �rst
phase, piecewise curves are generated between q1 and q2, q2 and q3, etc.:

q(1)(t1) =
sin(1 � t1)�1

sin �1
q1 +

sin t1�1

sin �1
q2;

q(2)(t2) =
sin(1 � t2)�2

sin �2
q2 +

sin t2�2

sin �2
q3;

...

q(n�1)(tn�1) =
sin(1� tn�1)�n�1

sin �n�1
qn�1 +

sin tn�1�n�1

sin �n�1
qn: (13:52)

In the second phase these piecewise segments are blended to provide a
higher order continuity at the joints. Let us mirror qi�1 with respect to qi
on the sphere generating q�i�1, and determine the point ai that bisects the
great arc between qi+1 and q�i�1 (see �gure 13.10). Let us form another great

arc by mirroring ai with respect to qi generating a�i as the other endpoint.
Having done this, a C2 approximating path g(t) has been produced from the

neighborhood of qi�1 (since qi�1 � a�i) through qi to the neighborhood of qi+1

(since qi+1 � ai). This great arc is subdivided into two segments producing

g(i�1)(t) between a�i and qi and g(i)(t) between qi and ai respectively.

In order to guarantee that the �nal curve goes through qi�1 and qi+1

without losing its smoothness, a linear blending is applied between the

13.5. INTERPOLATION WITH QUATERNIONS 393

piecewise curves q(i�1)(t), q(i)(t) and the new approximation arcs g(i�1)(t),

gi(t) in such a way that the blending gives weight 1 to q(i�1)(t) at ti�1 = 0,

to q(i+1)(t) at ti = 1 and to the approximation arcs g(i�1) and g(i) at ti�1 = 1

and ti = 0 respectively, that is:

q̂(i�1)(ti�1) = (1� ti�1) � q(i�1)(ti�1) + ti�1 � g(i�1)(ti�1)
q̂(i)(ti) = (1 � ti) � g(i)(ti) + ti � q(i)(ti):

(13:53)

This method requires uniform timing between the successive knot points.

By applying a linear transformation in the time domain, however, any kind

of timing can be speci�ed.

approximating
curve

qi-1

qi-1

qi+1

qi *

ai

ai*

original curve

blended curve

4D sphere

^

q(t)

q(t)

g(t)

Figure 13.10: Shoemake's algorithm for interpolation of unit quaternions on a

4D unit sphere

Once the corresponding quaternion of the interpolated orientation is de-

termined for a given time parameter t, it can be used for rotating the objects
in the model. Comparing the number of instructions needed for (spherical)
quaternion interpolation and rotation of the objects by quaternion multipli-
cation, we can see that the method of quaternions not only provides more
realistic motion but is slightly more e�ective computationally.

However, the traditional transformation method based on matrices can
be combined with this new approach using quaternions. Using the inter-

polated quaternion a corresponding transformation matrix can be set up.

More precisely this is the upper-left minor matrix of the transformation ma-
trix, which is responsible for the rotation, and the last row is the position

vector which is interpolated by the usual techniques. In order to identify
the transformation matrix from a quaternion, the way the basis vectors are

394 13. ANIMATION

transformed when multiplied by the quaternion must be examined. By ap-

plying unit quaternion q = [s; x; y; z] to the �rst, second and third standard

basis vectors [1,0,0], [0,1,0] and [0,0,1], the �rst, second and the third rows

of the matrix can be determined, thus:

A3�3 =

2
64
1� 2y2 � 2z2 2xy + 2sz 2xz � 2sy

2xy � 2sz 1 � 2x2 � 2z2 2yz + 2sx

2xz + 2sy 2yz � 2sx 1� 2x2 � 2y2

3
75 : (13:54)

During the interactive design phase of the animation sequence, we may

need the inverse conversion which generates the quaternion from the (or-

thonormal) upper-left part of the transformation matrix or from the roll-

pitch-yaw angles. Expressing [s; x; y; z] from equation 13.54 we get:

s =
q
1� (x2 + y2 + z2) =

1

2

p
a11 + a22 + a33 + 1;

x =
a23 � a32

4s
; y =

a31 � a13

4s
; z =

a12 � a21

4s
: (13:55)

The roll-pitch-yaw (�; �;
) description can also be easily transformed into
a quaternion if the quaternions corresponding to the elementary rotations
are combined:

q(�; �;
) = [cos
�

2
; (0; 0; sin

�

2
)] � [cos �

2
; (0; sin

�

2
; 0)] � [cos

2
; (sin

2
; 0; 0)]:

(13:56)

13.6 Hierarchical motion

So far we have been discussing the animation of individual rigid objects
whose paths could be de�ned separately taking just several collision con-
straints into consideration. To avoid unexpected collisions in these cases, the

animation sequence should be reviewed and the de�nition of the keyframes

must be altered iteratively until the animation sequence is satisfactory.
Real objects usually consist of several linked segments, as for example

a human body is composed of a trunk, a head, two arms and two legs.

The arms can in turn be broken down into an upper arm, a lower arm,

hand, �ngers etc. A car, on the other hand, is an assembly of its body
and the four wheels (�gure 13.11). The segments of a composed object (an

13.6. HIERARCHICAL MOTION 395

assembly) do not move independently, because they are linked together by

joints which restrict the relative motion of linked segments. Revolute joints,

such as human joints and the coupling between the wheel and the body of

the car, allow for speci�c rotations about a �xed common point of the

two linked segments. Prismatic joints, common in robots and in machines

[Lan91], however, allow the parts to translate in a given direction. When

these assembly structures are animated, the constraints generated by the

features of the links must be satis�ed in every single frame of the animation

sequence. Unfortunately, it is not enough to meet this requirement in the

keyframes only and animate the segments separately. A running human

body, for instance, can result in frames when the trunk, legs, and the arms

are separated even if they are properly connected in the keyframes. In

order to avoid these annoying e�ects, the constraints and relationships of

the various segments must continuously be taken into consideration during

the interpolation, not just in the knot points. This can be achieved if the
segments are not animated separately but their relative motion is speci�ed.

Figure 13.11: Examples of multi-segment objects

Recall that the motion of an individual object is de�ned by a time-varying

modeling transformation matrix which places the object in the common
world coordinate system. If the relative motion of object i must be de�ned
with respect to object j, then the relative modeling transformation Tij of
object i must place it in the local coordinate system of object j. Since

object j is �xed in its own modeling coordinate system, Tij will determine

the relative position and orientation of object i with respect to object j. A
point ~ri in object i's coordinate system will be transformed to point:

[~rj; 1] = [~ri; 1] �Tij =) ~rj = ~ri �Aij + ~pij (13:57)

396 13. ANIMATION

in the local modeling system of object j if Aij and ~pij are the orientation

matrix and translation vector of matrix Tij respectively. While animating

this object, matrix Tij is a function of time. If only orientation matrix Aij

varies with time, the relative position of object i and object j will be �xed,

that is, the two objects will be linked together by a revolute joint at point

~pij of object j and at the center of its own local coordinate system of object

i. Similarly, if the orientation matrix is constant in time, but the position

vector is not, then a prismatic joint is simulated which allows object i to

move anywhere but keeps its orientation constant with respect to object j.

Transformation Tij places object i in the local modeling coordinate sys-

tem of object j. Thus, the world coordinate points of object i can be

generated if another transformation | object j's modeling transformation

Tj which maps the local modeling space of object j onto world space | is

applied:

[~rw; 1] = [~rj; 1] �Tj = [~ri; 1] �Tij �Tj: (13:58)

In this way, whenever object j is moved, object i will follow it with a given
relative orientation and position since object j's local modeling transforma-
tion will a�ect object i as well. Therefore, object j is usually called the
parent segment of object i and object i is called the child segment of
object j. A child segment can also be a parent of other segments. In a sim-

ulated human body, for instance, the upper arm is the child of the trunk, in
turn is the parent of the lower arm (�gure 13.12). The lower arm has a child,
the hand, which is in turn the parent of the �ngers. The parent-child rela-
tionships form a hierarchy of segments which is responsible for determining
the types of motion the assembly structure can accomplish. This hierarchy

usually corresponds to a tree-structure where a child has only one parent,
as in the examples of the human body or the car. The motion of an assem-
bly having a tree-like hierarchy can be controlled by de�ning the modeling
transformation of the complete structure and the relative modeling transfor-
mation for every single parent-child pair (joints in the assembly). In order

to set these transformations, the normal interactive techniques can be used.

First we move the complete human body (including the trunk, arms, legs
etc.), then we arrange the arms (including the lower arms, hand etc.) and
legs, then the lower arms, hands, �ngers etc. by interactive manipulation.

In the animation design program, this interactive manipulation updates the

modeling transformation of the body �rst, then the relative modeling trans-

13.6. HIERARCHICAL MOTION 397

....

Tbody

head

arm 1,2

leg 1,2

finger 1,5 foot1

T T

T

T

T

lower arm lower leg

T T

world coordinate
 system

head

finger 1 finger 5 foot 1

Figure 13.12: Transformation tree of the human body

398 13. ANIMATION

formation of the arms and legs, then the relative transformation of the lower

arms etc. Thus, in each keyframe, the modeling transformation in the joints

of hierarchy can be de�ned. During interpolation, these transformations are

interpolated independently and meeting the requirements of the individual

joints (in a revolute joint the relative position is constant), but the overall

transformation of a segment is generated by the concatenation of the rel-

ative transformations of its ancestors and the modeling transformation of

the complete assembly structure. This will guarantee that the constraints

imposed by the joints in the assembly will be satis�ed.

Figure 13.13: Assemblies having non tree-like segment structure

13.6.1 Constraint-based systems

In tree-like assemblies independent interpolation is made possible by the
assumption that each joint enjoys independent degree(s) of freedom in its
motion. Unfortunately, this assumption is not always correct, and this can
cause, for example, the leg to go through the trunk which is certainly not

\realistic". Most of these collision problems can be resolved by reviewing the
animation sequence that was generated without taking care of the collisions

and the interdependence of various joints, and modifying the keyframes until

a satisfactory result is generated. This try-and-check method may still work
for problems where there are several objects in the scene and their collision

must be avoided, but this can be very tiresome, so we would prefer methods
which resolve these collision and interdependence problems automatically.

The application of these automatic constraint resolution methods is essential

13.6. HIERARCHICAL MOTION 399

for non tree-like assemblies (�gure 13.13), where the degree of freedom is

less than the individually controllable parameters of the joints, because the

independent interpolation of a subset of joint parameters may cause other

joints to fall apart even if all requirements are met in the keyframes.

Such an automatic constraint resolution algorithm basically does the same

as the user who interactively tries to modify the de�nition of the sequence

and checks whether or not the result satis�ed the constraints. The algo-

rithm is controlled by an error function which is non-zero if a constraint

is not satis�ed and usually increases as we move away from the allowed

arrangements. The motion algorithm tries to minimize this function by in-

terpolating a C2 function for each controllable parameter, calculating the

maximum of this error function along the path and then modifying the knot

points of the C2 function around the parameters where the error value is

large. Whenever a knot point is modi�ed, the trajectory is evaluated again

and a check is made to see the error value has decreased or not. If it has
decreased, then the previous modi�cation is repeated; if it has increased,
the previous modi�cation is inverted. The new parameter knot point should
be randomly perturbed to avoid in�nite oscillations and to reduce the prob-
ability of reaching a local minimum of the error function. The algorithm
keeps repeating this step until either it can generate zero error or it decides

that no convergence can be achieved possibly because of overconstraining
the system. This method is also called the relaxation technique.
When animating complex structures, such as the model of the human

body, producing the e�ect of realistic motion can be extremely di�cult and
can require a lot of expertise and experience of traditional cartoon designers.

The C2 interpolation of the parameters is a necessary but not a su�cient
requirement for this. Generally, the real behavior and the internal structure
of the simulated objects must be understood in order to imitate their mo-
tion. Fortunately, the most important rule governing the motion of animals
and humans is very simple: Living objects always try to minimize the energy

needed for a given change of position and orientation and the motion must

satisfy the geometric constraints of the body and the dynamic constraints of

the muscles. Thus, when the motion parameters are interpolated between
the keyframe positions, the force needed in the di�erent joints as well as

the potential and kinetic energy must be calculated. This seems simple, but

the actual calculation can be very complex. Fortunately, the same problems
have arisen in the control of robots, and therefore the solution methods de-

400 13. ANIMATION

veloped for robotics can also be used here [Lan91]. The previous relaxation

technique must be extended to �nd not only a trajectory where the error

including the geometric and dynamic constraints is zero, but one where the

energy generated by the \muscles" in the joints is minimal.

Finally it must be mentioned that an important �eld of animation, called

the scienti�c visualization, focuses on the behavior of systems that are

described by a set of physical laws. The objective is to �nd an arrangement

or movement that satis�es these laws.

13.7 Double bu�ering

Animation means the fast generation of images shown one after the other

on the computer screen. If the display of these static images takes a very
short time, the human eye is unable to identify them as separate pictures,
but rather interprets them as a continuously changing sequence. This phe-

nomenon is well known and is exploited in the motion picture industry.

Display
processor

frame
buffer 1

frame
buffer 2

Exchange

Video
refresh

R
G
B

Figure 13.14: Double bu�er animation systems

When an image is generated on the computer screen, it usually evolves

gradually, depending on the actual visibility algorithm. Painter's algorithm,

for example, draws the polygons in order of distance from the camera; thus
even those polygons that turn out to be invisible later on will be seen on
the screen for a very short time during the image generation. The z-bu�er

algorithm, on the other hand, draws a polygon point if the previously dis-

played polygons do not hide it, which can also cause the temporary display
of invisible polygons. The evolution of the images, even if it takes a very

13.8. TEMPORAL ALIASING 401

short time, may cause noticeable and objectionable e�ects which need to

be eliminated. We must prevent the observer from seeing the generation

process of the images and present to him the �nal result only. This problem

had to be solved in traditional motion pictures as well. The usual way of

doing it is via the application of two frame bu�ers, which leads to a method

of double-bu�er animation (�gure 13.14). In each frame of the anima-

tion sequence, the content of one of the frame bu�ers is displayed, while the

other is being �lled up by the image generation algorithm. Once the image

is complete, the roles of the two frame bu�ers are exchanged. Since it takes

practically no time | being only a switch of two multiplexers during the

vertical retrace | only complete images are displayed on the screen.

13.8 Temporal aliasing

As has been mentioned, animation is a fast display of static image sequences
providing the illusion of continuous motion. This means that the motion
must be sampled in discrete time instances and then the \continuous" mo-
tion produced by showing these static images until the next sampling point.
Thus, sampling artifacts, called temporal aliasing, can occur if the sam-

pling frequency and the frequency range of the motion do not satisfy the
sampling theorem. Well-known examples of temporal aliasing are backward
rotating wheels and the jerky motion which can be seen in old movies.
These kinds of temporal aliasing phenomena are usually called strobing.
Since the core of the problem is the same as spatial aliasing due to the

�nite resolution raster grid, similar approaches can be applied to solve it,
including either post-�ltering with supersampling, which generates several
images in each frame time and produces the �nal one as their average, or
pre-�ltering, which solves the visibility and shading problems as a function
of time and calculates the convolution of the time-varying image with an

appropriate �lter function. The �ltering process will produce motion blur

for fast moving objects just as moving objects cause blur on normal �lms

because of �nite exposure time. Since visibility and shading algorithms have

been developed to deal with static object spaces and images, and most of
them are not appropriate for a generalization to take time-varying phenom-
ena into account, temporal anti-aliasing methods usually use a combination

of post-�ltering and supersampling. (An exceptional case is a kind of ray

402 13. ANIMATION

tracing which allows for some degree of dynamic generalization as proposed

by Cook [CPC84] creating a method called distributed ray tracing.)

Let �T be the interval during which the images, called subframes, are

averaged. This time is analogous to the exposure time when the shutter is

open in a normal camera. If n number of subframes are generated and box

�ltering is used, then the averaged color at some point of the image is:

I =
1

n

n�1X
i=0

I(t0 +
i ��T

n
): (13:59)

The averaging calculation can be executed in the frame bu�er. Before

writing a pixel value into the frame bu�er, its red, green and blue compo-

nents must be divided by n, and the actual pixel operation must be set to

\arithmetic addition". The number of samples, n, must be determined to

meet (at least approximately) the requirements of the sampling theorem,
taking the temporal frequencies of the motion into consideration. Large
n values, however, are disadvantageous because temporal supersampling

increases the generation time of the animation sequence considerably. For-
tunately, acceptable results can be generated with relatively small n if this
method is combined with stochastic sampling (see section 11.4), that is,
if the sample times of the subframes are selected randomly rather than uni-
formly in the frame interval. Stochastic sampling will transform temporal

aliasing into noise appearing as motion blur. Let � be a random variable
distributed in [0,1] to perturb the uniform sample locations. The modi�ed
equation to calculate the averaged color is:

I =
1

n

n�1X
i=0

I(t0+
(i+ �) ��T

n
): (13:60)

Temporal �ltering can be combined with spatial �ltering used to elimi-
nate the \jaggies" [SR92]. Now an image (frame) is averaged from n static
images. If these static images are rendered assuming a slightly shifting pixel
grid, then the averaging will e�ectively cause the static parts of the image
to be box �ltered. The shift of the pixel grid must be evenly distributed

in [(0; 0) : : : (1; 1)] assuming pixel coordinates. This can be achieved by the

proper control of the real to integer conversion during image generation.
Recall that we used the Trunc function to produce this, having added 0.5

to the values in the initialization phase. By modifying this 0.5 value in the
range of [0,1], the shift of the pixel grid can be simulated.

BIBLIOGRAPHY 413

Bibliography

[AB87] S. Abhyankar and C. Bajaj. Automatic parametrization of rational

curves and surfaces II: conics and conicoids. Computer News, 25(3),

1987.

[Ae91] James Arvo (editor). Graphics Gems II. Academic Press, San Diego,

CA., 1991.

[AK87] James Arvo and David Kirk. Fast ray tracing by ray classi�cation. In

Proceedings of SIGGRAPH '87, Computer Graphics, pages 55{64,

1987.

[ANW67] J. Ahlberg, E. Nilson, and J. Walsh. The Theory of Splines and

their Applications. Academic Press, 1967.

[Arv91a] James Arvo. Linear-time voxel walking for octrees. Ray Trac-

ing News, 1(2), 1991. available under anonymous ftp from

weedeater.math.yale.edu.

[Arv91b] James Arvo. Random rotation matrices. In James Arvo, editor,

Graphics Gems II, pages 355{356. Academic Press, Boston, 1991.

[Ath83] Peter R. Atherton. A scan-line hidden surface removal for construc-

tive solid geometry. In Proceedings of SIGGRAPH '83, Computer

Graphics, pages 73{82, 1983.

[AW87] John Amanatides and AndrewWoo. A fast voxel traversal algorithm

for ray tracing. In Proceedings of Eurographics '87, pages 3{10, 1987.

[AWG78] P. Atherton, K. Weiler, and D. Greenberg. Polygon shadow gener-

ation. Computer Graphics, 12(3):275{281, 1978.

[Bal62] A.V. Balakrishnan. On the problem of time jitter in sampling. IRE

Trans. Inf. Theory, Apr:226{236, 1962.

414 BIBLIOGRAPHY

[Bar86] Alan H. Barr. Ray tracing deformed surfaces. In Proceedings of

SIGGRAPH '86, Computer Graphics, pages 287{296, 1986.

[Bau72] B.G. Baumgart. Winged-edge polyhedron representation. Techni-

cal Report STAN-CS-320, Computer Science Department, Stanford

University, Palo Alto, CA, 1972.

[BBB87] R. Bartels, J. Beatty, and B. Barsky. An Introduction on Splines

for Use in Computer Graphics and Geometric Modeling. Morgan

Kaufmann, Los Altos, CA, 1987.

[BC87] Ezekiel Bahar and Swapan Chakrabarti. Full wave theory applied to

computer-aided graphics for 3d objects. IEEE Computer Graphics

and Applications, 7(7):11{23, 1987.

[BDH+89] G. R. Beacon, S. E. Dodsworth, S. E. Howe, R. G. Oliver, and

A. Saia. Boundary evaluation using inner and outer sets: The isos

method. IEEE Computer Graphics and Applications, 9(March):39{

51, 1989.

[Bez72] P. Bezier. Numerical Control: Mathematics and Applications. Wiley,

Chichester, 1972.

[Bez74] P. Bezier. Mathematical and Practical Possibilities of UNISURF.

Academic Press, New York, 1974.

[BG86] Carlo Braccini and Marino Giuseppe. Fast geometrical manipula-

tions of digital images. Computer Graphics and Image Processing,

13:127{141, 1986.

[BG89] Peter Burger and Duncan Gillies. Interactive Computer Graphics:

Functional, Procedural and Device-Level Methods. Addison-Wesley,

Wokingham, England, 1989.

[Bia90] Buming Bian. Accurate Simulation of Scene Luminances. PhD

thesis, Worcester Polytechnic Institute, Worcester, Mass., 1990.

[Bia92] Buming Bian. Hemispherical projection of a triangle. In David Kirk,

editor, Graphics Gems III, pages 314{317. Academic Press, Boston,

1992.

[BKP92a] Je�rey C. Beran-Koehn and Mark J. Pavicic. A cubic tetrahedra

adaption of the hemicube algorithm. In David Kirk, editor, Graphics

Gems II, pages 324{328. Academic Press, Boston, 1992.

BIBLIOGRAPHY 415

[BKP92b] Je�rey C. Beran-Koehn and Mark J. Pavicic. Delta form-factor cal-

culation for the cubic tetrahedral algorithm. In David Kirk, editor,

Graphics Gems III, pages 324{328. Academic Press, Boston, 1992.

[Bli77] James F. Blinn. Models of light re
ection for computer synthe-

sized pictures. In SIGGRAPH 1977 Proceedings, Computer Graph-

ics, pages 192{198, 1977.

[Bli78] James F. Blinn. Simulation of wrinkled faces. In Proceedings of

SIGGRAPH '78, Computer Graphics, pages 286{292, 1978.

[Bli84] James F. Blinn. Homogeneous properties of second order surfaces,

1984. course notes, ACM SIGGRAPH '87, Vol. 12, July 1984.

[BM65] G. Birkho� and S. MacLane. A Survey of Modern Algebra. MacMil-

lan, New York, 3rd edition, 1965. Exercise 15, Section IX-3, p. 240;

also corollary, Section IX-14, pp. 277{278.

[BN76] James F. Blinn and Martin E. Newell. Texture and re
ection in com-

puter generated images. Communications of the ACM, 19(10):542{

547, 1976.

[BO79] J. L. Bentley and T. Ottmann. Algorithms for reporting and count-

ing geometric intersections. IEEE Transactions on Computers, C-

28(September):643{647, 1979.

[Bra82] M Brady. Trajectory planning. In M. Brady, M. Hollerback, T.L.

Johnson, T. Lozano-Perez, and M.T. Mason, editors, Robot Motion:

Planning and Control. MIT Press, 1982.

[Bre65] J.E. Bresenham. Algorithm for computer control of a digital plotter.

IBM Systems Journal, 4(1):25{30, 1965.

[BS63] Petr Beckmann and Andre Spizzichino. The Scattering of Electro-

magnetic Waves from Rough Surfaces. MacMillan, 1963.

[BS86] Eric Bier and Ken R. Sloan. Two-part texture mapping. IEEE

Computer Graphics and Applications, 6(9):40{53, 1986.

[BT75] Phong Bui-Tuong. Illumination for computer generated pictures.

Communications of the ACM, 18(6):311{317, 1975.

416 BIBLIOGRAPHY

[BW76] N. Burtnyk and M. Wein. Interactive skeleton techniques for en-

hancing motion dynamics in key frame animation. Communications

of the ACM, 19:564{569, 1976.

[BW86] G. Bishop and D.M.Weimar. Fast phong shading. Computer Graph-

ics, 20(4):103{106, 1986.

[Car84] Loren Carpenter. The a-bu�er, an atialiased hidden surface method.

In Proceedings of SIGGRAPH '84, Computer Graphics, pages 103{

108, 1984.

[Cat74] E.E. Catmull. A subdivision algorithm for computer display and

curved surfaces, 1974. Ph.D. Dissertation.

[Cat75] E.E. Catmull. Computer display of curved surfaces. In Proceedings

of the IEEE Conference on Computer Graphics, Pattern Recognition

and Data Structures, 1975.

[Cat78] Edwin Catmull. A hidden-surface algorithm with anti-aliasing. In

Proceedings of SIGGRAPH '78, pages 6{11, 1978.

[CCC87] Robert L. Cook, , Loren Carpenter, and Edwin Catmull. The reyes

image rendering architecture. In Proceedings of SIGGRAPH '87,

pages 95{102, 1987.

[CCWG88] M.F. Cohen, S.E. Chen, J.R. Wallace, and D.P. Greenberg. A

progressive re�nement approach to fast radiosity image generation.

In SIGGRAPH '88 Proceedings, Computer Graphics, pages 75{84,

1988.

[CF89] N. Chin and S. Feiner. Near real-time object-precision shadow gen-

eration using bsp trees. In SIGGRAPH '89 Proceedings, Computer

Graphics, pages 99{106, 1989.

[CG85a] R.J. Carey and D.P. Greenberg. Textures for realistic image syn-

thesis. Computers and Graphics, 9(2):125{138, 1985.

[CG85b] Michael Cohen and Donald Greenberg. The hemi-cube, a radiosity

solution for complex environments. In Proceedings of SIGGRAPH

'85, pages 31{40, 1985.

[CGIB86] Michael F. Cohen, Donald P. Greenberg, David S. Immel, and

Phillip J. Brock. An e�cient radiosity approach for realistic image

BIBLIOGRAPHY 417

synthesis. IEEE Computer Graphics and Applications, 6(3):26{35,

1986.

[Cha82] Bernard Chazelle. A theorem on polygon cutting with applications.

In Proc. 23rd Annual IEEE Symp. on Foundations of Computer

Science, pages 339{349, 1982.

[Chi88] Hiroaki Chiyokura. Solid Modelling with DESIGNBASE. Addision

Wesley, 1988.

[CJ78] M. Cyrus and Beck J. Generalized two- and three-dimensional clip-

ping. Computers and Graphics, 3(1):23{28, 1978.

[Coo86] Robert L. Cook. Stochastic sampling in computer graphics. ACM

Transactions on Graphics, 5(1):51{72, 1986.

[Cox74] H.S.M. Coxeter. Projective Geometry. University of Toronto Press,

Toronto, 1974.

[CPC84] Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed

ray tracing. In Proceedings of SIGGRAPH '84, Computer Graphics,

pages 137{145, 1984.

[Cro77a] Franklin C. Crow. The aliasing problem in computer-generated

shaded images. Communications of the ACM, 20(11):799{805, 1977.

[Cro77b] Franklin C. Crow. Shadow algorithm for computer graphics. In

Proceedings of SIGGRAPH '77, Computer Graphics, pages 242{248,

1977.

[Cro81] Franklin C. Crow. A comparison of antialiasing techniques. Com-

puter Graphics and Applications, 1(1):40{48, 1981.

[Cro84] Franklin C. Crow. Summed area tables for texture mapping. In Pro-

ceedings of SIGGRAPH '84, Computer Graphics, volume 18, pages

207{212, 1984.

[CT81] Robert Cook and Kenneth Torrance. A re
ectance model for com-

puter graphics. Computer Graphics, 15(3), 1981.

[Dav54] H Davis. The re
ection of electromagnetic waves from a rough sur-

face. In Proceedings of the Institution of Electrical Engineers, v,

volume 101, pages 209{214, 1954.

418 BIBLIOGRAPHY

[dB92] Mark de Berg. E�cient Algorithms for Ray Shooting and Hidden

Surface Removal. PhD thesis, Rijksuniversiteit te Utrecht, Neder-

lands, 1992.

[D�ev93] Ferenc D�evai. Computational Geometry and Image Synthesis. PhD

thesis, Computer and Automation Institute, Hungarian Academy of

Sciences, Budapest, Hungary, 1993.

[DM87] B. P. Demidovich and I. A. Maron. Computational Mathematics.

MIR Publishers, Moscow, 1987.

[DRSK92] B. Dobos, P. Risztics, and L. Szirmay-Kalos. Fine-grained parallel

processing of scan conversion with i860 microprocessor. In 7th Symp.

on Microcomputer Appl., Budapest, 1992.

[Duf79] Tom Du�. Smoothly shaded rendering of polyhedral objects on

raster displays. In Proceedings of SIGGRAPH '79, Computer Graph-

ics, 1979.

[Duv90] V. Duvanenko. Improved line segment clipping. Dr. Dobb's Journal,

july, 1990.

[EWe89] R.A. Earnshaw and B. Wyvill (editors). New Advances in Computer

Graphics. Springer-Verlag, Tokyo, 1989.

[Far88] G. Farin. Curves and Surfaces for Computer Aided Geometric De-

sign. Academic Press, New York, 1988.

[FFC82] Alain Fournier, Don Fussel, and Loren C. Carpenter. Computer

rendering of stochastic models. Communications of the ACM,

25(6):371{384, 1982.

[FG85] Cohen. Michael F. and Donald B. Greenberg. The hemi-cube: A

radiosity solution for complex environments. In Proceedings of SIG-

GRAPH '85, Computer Graphics, pages 31{40, 1985.

[FKN80] Henry Fuchs, Zvi M. Kedem, and Bruce F. Naylor. On visible surface

generation by a priory tree structures. In Proceedings of SIGGRAPH

'80, pages 124{133, 1980.

[FLC80] E.A. Feibush, M. Levoy, and R.L. Cook. Syntetic texturing using

digital �lters. In SIGGRAPH '80 Proceedings, Computer Graphics,

pages 294{301, 1980.

BIBLIOGRAPHY 419

[FP81] H. Fuchs and J. Poulton. Pixel-planes: A vlsi-oriented design for a

raster graphics engine. VLSI Design, 3(3):20{28, 1981.

[Fra80] William Randolph Franklin. A linear time exact hidden surface

algorithm. In Proceedings of SIGGRAPH '80, Computer Graphics,

pages 117{123, 1980.

[FS75] R. Floyd and L. Steinberg. An adaptive algorithm for spatial gray

scale. In Society for Information Display 1975 Symposium Digest of

Tecnical Papers, page 36, 1975.

[FTK86] Akira Fujimoto, Tanaka Takayuki, and Iwata Kansei. Arts: Accel-

erated ray-tracing system. IEEE Computer Graphics and Applica-

tions, 6(4):16{26, 1986.

[FvD82] J.D. Foley and A. van Dam. Fundamentals of Interactive Computer

Graphics. Addison-Wesley,, Reading, Mass., 1982.

[FvDFH90] J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes. Computer

Graphics: Principles and Practice. Addison-Wesley, Reading, Mass.,

1990.

[GCT86] D.P. Greenberg, M.F. Cohen, and K.E. Torrance. Radiosity: A

method for computing global illumination. The Visual Computer 2,

pages 291{297, 1986.

[Ge89] A.S. Glassner (editor). An Introduction to Ray Tracing. Academic

Press, London, 1989.

[GH86] N. Greene and P. S. Heckbert. Creating raster omnimax images us-

ing the elliptically weighted average �lter. IEEE Computer Graphics

and Applications, 6(6):21{27, 1986.

[Gla84] Andrew S. Glassner. Space subdivision for fast ray tracing. IEEE

Computer Graphics and Applications, 4(10):15{22, 1984.

[Gou71] H. Gouraud. Computer display of curved surfaces. ACM Transac-

tions on Computers, C-20(6):623{629, 1971.

[GPC82] M. Gangnet, P. Perny, and P. Coueignoux. Perspective mapping of

planar textures. In EUROGRAPHICS '82, pages 57{71, 1982.

420 BIBLIOGRAPHY

[Gra72] R. L. Graham. An e�cient algorithm for determining the convex

hull of a �nite planar set. Information Processing Letters, (1):132{

133, 1972.

[Gre84] N. Greene. Environment mapping and other applications of world

projections. IEEE Computer Graphics and Applications, 6(11):21{

29, 1984.

[Gre86] N. Greene. Environment mapping and other applications of world

projections. IEEE Computer Graphics and Applications, 6(11):21{

29, 1986.

[GS88] Leonidas J. Guibas and Jorge Stol�. Ruler, compass and computer.

the design and analysis of geometric algorithms. In R. A. Earnshow,

editor, Theoretical Foundations of Computer Graphics and CAD.

Springer-Verlag, Berlin Heidelberg, 1988. NATO ASI Series, Vol.

F40.

[GSS81] S. Gupta, R. Sproull, and I. Sutherland. Filtering edges for gray-

scale displays. In SIGGRAPH '81 Proceedings, Computer Graphics,

pages 1{5, 1981.

[GTG84] Cindy M. Goral, Kenneth E. Torrance, and Donald P. Greenberg.

Modeling the interaction of light between di�use surfaces. In Pro-

ceedings of SIGGRAPH '84, Computer Graphics, pages 213{222,

1984.

[Hal86] R. Hall. A characterization of illumination models and shading tech-

niques. The Visual Computer 2, pages 268{277, 1986.

[Hal89] R. Hall. Illumination and Color in Computer Generated Imagery.

Springer-Verlag, New York, 1989.

[Har69] F. Harary. Graph Theory. Addison-Wesley, Massachusetts, 1969.

[Har87] David Harel. Algoritmics - The Spirit of Computing. MacMillan,

1987.

[Hec86] Paul S. Heckbert. Survey of texture mapping. IEEE Computer

Graphics and Applications, 6(11):56{67, 1986.

[Her91] Ivan Herman. The Use of Projective Geometry in Computer Graph-

ics. Spinger-Verlag, Berlin, 1991.

BIBLIOGRAPHY 421

[Hit84] Hitachi. HD63484 ACRTC Advanced CRT Controller. MSC Ver-

triebs Gmbh, 1984.

[HKRSK91] T. Horv�ath, E. Kov�acs, P. Risztics, and L. Szirmay-Kalos.

Hardware-software-�rmware decomposition of high-performace 3d

graphics systems. In 6th Symp. on Microcomputer Appl., Budapest,

1991.

[HMSK92] T. Horv�ath, P. M�arton, G. Risztics, and L. Szirmay-Kalos. Ray co-

herence between sphere and a convex polyhedron. Computer Graph-

ics Forum, 2(2):163{172, 1992.

[HRV92] Tam�as Hermann, G�abor Renner, and Tam�as V�arady. Mathematical

techniques for interpolating surfaces with general topology. Tech-

nical Report GML{1992/1, Computer and Automation Institute,

Hungarian Academy of Sciences, Budapest, Hungary, 1992.

[HS67] Hoyt C. Hottel and Adel F. Saro�n. Radiative Transfer. McGraw-

Hill, New-York, 1967.

[HS79] B.K.P. Horn and R.W. Sjoberg. Calculating the re
ectance map.

Applied Optics, 18(11):1170{1179, 1979.

[Hun87] R.W. Hunt. The Reproduction of Colour. Fountain Press, Tolworth,

England, 1987.

[ICG86] David S. Immel, Michael F. Cohen, and Donald P. Greenberg. A

radiosity method for non-di�use environments. In Proceedings of

SIGGRAPH '86, Computer Graphics, pages 133{142, 1986.

[Ins86] American National Standard Institute. Nomenclature and de�ni-

tions for illumination engineering. Technical Report RP-16-1986,

ANSI/IES, 1986.

[Int89a] Intel. i860 64-bit microprocessor: Hardware reference manual. Intel

Corporation, Mt. Prospect, IL, 1989.

[Int89b] Intel. i860 64-bit microprocessor: Programmer's reference manual.

Intel Corporation, Mt. Prospect, IL, 1989.

[ISO90] ISO/IEC-9592. Information processing systems - Computer

graphics, Programmers's Hierarchical Interactive Graphics System

(PHIGS). 1990.

422 BIBLIOGRAPHY

[Jar73] R. A. Jarvis. On the identi�cation of the convex hull of a �nite set

of points in the plane. Information Processing Letters, (2):18{21,

1973.

[JGMHe88] Kenneth I. Joy, Charles W. Grant, Nelson L. Max, and Lansing

Hat�eld (editors). Computer Graphics: Image Synthesis. IEEE

Computer Society Press, Los Alamitos, CA., 1988.

[Kaj82] James T. Kajiya. Ray tracing parametric patches. In Proceedings

of SIGGRAPH '82, Computer Graphics, pages 245{254, 1982.

[Kaj83] James T. Kajiya. New techniques for ray tracing procedurally de-

�ned objects. In Proceedings of SIGGRAPH '83, Computer Graph-

ics, pages 91{102, 1983.

[Kaj86] James T. Kajiya. The rendering equation. In Proceedings of SIG-

GRAPH '86, Computer Graphics, pages 143{150, 1986.

[KG79] D.S. Kay and D. Greenberg. Transparency for computer synthesized

pictures. In SIGGRAPH '79 Proceedings, Computer Graphics, pages

158{164, 1979.

[KK75] Granino A. Korn and Theresa M. Korn. Mathematical Handbook for

Scientist and Engineers. McGraw-Hill, 1975.

[KKM29] B. Knaster, C. Kuratowski, and S. Mazurkiewicz. Ein beweis des

�xpunktsatzes f�ur n-dimensionale simplexe. Fund. Math., (14):132{

137, 1929.

[KM76] K. Kuratowski and A. Mostowski. Set Theory. North-Hollands,

Amsterdam, The Netherlands, 1976.

[Knu73] Donald Ervin Knuth. The art of computer programming. Volume

3 (Sorting and searching). Addison-Wesley, Reading, Mass. USA,

1973.

[Knu76] Donald Ervin Knuth. Big omicron and big omega and big theta.

SIGACT News, 8(2):18{24, 1976.

[Kra89] G. Krammer. Notes on the mathematics of the phigs output pipeline.

Computer Graphics Forum, 8(8):219{226, 1989.

[Lam72] John Lamperti. Stochastic Processes. Spinger-Verlag, 1972.

BIBLIOGRAPHY 423

[Lan91] B�ela Lantos. Robotok Ir�anyit�asa. Akad�emiai Kiad�o, Budapest, 1991.

in Hungarian.

[LB83] Y-D. Liang and B.A. Barsky. An analysis and algorithm for polygon

clipping. Communications of the ACM, 26:868{877, 1983.

[LB84] Y.D. Lian and B. Barsky. A new concept and method for line clip-

ping. ACM TOG, 3(1):1{22, 1984.

[LRU85] M.E. Lee, R.A. Redner, and S.P. Uselton. Statistically optimized

sampling for distributed ray tracing. In SIGGRAPH '85 Proceed-

ings, Computer Graphics, pages 61{67, 1985.

[LSe89] Tom Lyche and Larry L. Schumaker (editors). Mathematical Meth-

ods in Computer Aided Geometric Design. Academic Press, San

Diego, 1989.

[M�an88] M. M�antyl�a. Introduction to Solid Modeling. Computer Science

Press, Rockville, MD., 1988.

[M�ar94] G�abor M�arton. Stochastic Analysis of Ray Tracing Algorithms. PhD

thesis, Department of Process Control, Budapest University of Tech-

nology, Budapest, Hungary, 1994. to appear, in Hungarian.

[Max46] E.A. Maxwell. Methods of Plane Projective Geometry Based on the

Use of General Homogenous Coordinates. Cambridge University

Press, Cambridge, England, 1946.

[Max51] E.A. Maxwell. General Homogenous Coordinates in Space of Three

Dimensions. Cambridge University Press, Cambridge, England,

1951.

[McK87] Michael McKenna. Worst-case optimal hidden-surface removal.

ACM Transactions on Graphics, 6(1):19{28, 1987.

[Men75] B. Mendelson. Introduction to Topology, 3rd ed. Allyn & Bacon,

Boston, MA, USA, 1975.

[MH84] G.S. Milller and C.R. Ho�man. Illumination and re
ection maps:

Simulated objects in simulated and real environment. In Proceedings

of SIGGRAPH '84, 1984.

[Mih70] Sz.G. Mihlin. Variational methods in mathematical physics. Nauka,

Moscow, 1970.

424 BIBLIOGRAPHY

[Mit87] D.P. Mitchell. Generating aliased images at low sampling densities.

In SIGGRAPH '87 Proceedings, Computer Graphics, pages 221{228,

1987.

[Moo66] R. E. Moore. Interval Analysis. Prentice Hall, Englewood Cli�s,

NJ., 1966.

[Moo77] R. E. Moore. A test for existence of solutions to nonlinear systems.

SIAM J. Numer. Anal., 14(4 September):611{615, 1977.

[MRSK92] G. M�arton, P. Risztics, and L. Szirmay-Kalos. Quick ray-tracing

exploiting ray coherence theorems. In 7th Symp. on Microcomputer

Appl., Budapest, 1992.

[MTT85] N Magnenat-Thallman and D. Thallman. Principles of Computer

Animation. Springer, Tokyo, 1985.

[NNS72] M.E. Newell, R.G. Newell, and T.L. Sancha. A new approach to

the shaded picture problem. In Proceedings of the ACM National

Conference, page 443, 1972.

[NS79] W.M. Newman and R.F. Sproull. Principles of Interactive Computer

Graphics, Second Edition. McGraw-Hill Publishers, New York, 1979.

[Nus82] H.J. Nussbauer. Fast Fourier Transform and Convolution Algo-

rithms. Spinger-Verlag, New York, 1982.

[Ode76] J.T. Oden. An Introduction to the Mathematical Theory of Finite

Elements. Wiley Interscience, New York, 1976.

[OM87] Masataka Ohta and Mamoru Maekawa. Ray coherence theorem

and constant time ray tracing algorithm. In T. L. Kunii, editor,

Computer Graphics 1987. Proc. CG International '87, pages 303{

314, 1987.

[PC83] Michael Potmesil and Indranil Chakravarty. Modeling motion blur

in computer generated images. In Proceedings of SIGGRAPH '83,

Computer Graphics, pages 389{399, 1983.

[PD84] Thomas Porter and Tom Du�. Compositing digital images. In Pro-

ceedings of SIGGRAPH '84, Computer Graphics, pages 253{259,

1984.

BIBLIOGRAPHY 425

[Pea85] Darwyn R. Peachey. Solid texturing of complex surfaces. In Pro-

ceedings of SIGGRAPH '85, Computer Graphics, pages 279{286,

1985.

[Per85] Ken Perlin. An image synthetisizer. In Proceedings of SIGGRAPH

'85, Computer Graphics, pages 287{296, 1985.

[PFTV88] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and

William T. Vetterling. Numerical Recipes in C. Cambridge Uni-

versity Press, Cambridge, USA, 1988.

[Pho75] Bui Thong Phong. Illumination for computer generated images.

Communications of the ACM, 18:311{317, 1975.

[PS85] Franco P. Preparata and Michael Ian Shamos. Computational Ge-

ometry: An Introduction. Springer-Verlag, New York, 1985.

[PSe88] Franz-Otto Peitgen and Dietmar Saupe (editors). The Science of

Fractal Images. Pringer-Verlag, New York, 1988.

[RA89] David F. Rogers and J. Alan Adams. Mathematical Elements for

Computer Graphics. McGraw-Hill, New York, 1989.

[Ree81] William T. Reeves. Inbetweening for computer animation utilizing

moving point constraints. In Proceedings of SIGGRAPH '81, Com-

puter Graphics, pages 263{269, 1981.

[Ree83] William T. Reeves. Particle systems - a tecniques for modelling a

class of fuzzy objects. In Proceedings of SIGGRAPH '83, Computer

Graphics, pages 359{376, 1983.

[R�en81] Alfr�ed R�enyi. Val�oszin}us�egsz�amit�as. Tank�onyvkiad�o, Budapest,

1981. in Hungarian.

[Req80] Aristides A. G. Requicha. Representations for rigid solids: Theory,

methods and systems. Computing Surveys, 12(4):437{464, 1980.

[Rog85] D.F. Rogers. Procedural Elements for Computer Graphics. McGraw

Hill, New York, 1985.

[RS63] A. R�enyi and R. Sulanke. �Uber die konvexe h�ulle von n zuf�allig

gew�ahlten punkten. Z. Wahrscheinlichkeitstheorie, 2:75{84, 1963.

426 BIBLIOGRAPHY

[SA87] T. W. Sederberg and D. C. Anderson. Steiner surface patches. IEEE

Computer Graphics and Applications, 5(May):23{36, 1987.

[Sam89] H. Samet. Implementing ray tracing with octrees and neighbor �nd-

ing. Computers and Graphics, 13(4):445{460, 1989.

[Sch30] Julius Pawel Schauder. Der �xpunktsatz in funktionalr�aumen. Stu-

dia Mathematica, (2):171{180, 1930.

[Sei88] R. Seidel. Constrained delaunay triangulations and voronoi dia-

grams with obstacles. In 1978{1988, 10-Years IIG., pages 178{191.

Inst. Inform. Process., Techn. Univ. Graz, 1988.

[SF73] G. Strang and G. J. Fix. An analysis of the �nite element method.

Englewood Cli�s, Prentice Hall, 1973.

[SH74] I.E. Sutherland and G.W. Hodgman. Reentrant polygon clipping.

Communications of the ACM, 17(1):32{42, 1974.

[SH81] Robert Siegel and John R. Howell. Thermal Radiation Heat Trans-

fer. Hemisphere Publishing Corp., Washington, D.C., 1981.

[Sho85a] K. Shoemake. Animating rotation with quaternion curves. Com-

puter Graphics, 19(3):245{254, 1985.

[Sho85b] K. Shoemake. Animating rotation with quaternion curves. Com-

puter Graphics, 16(3):157{166, 1985.

[Sim63] G. F. Simmons. Introduction to Topology and Modern Analysis.

McGraw-Hill, New York, 1963.

[SK88] L. Szirmay-Kalos. �Arnyal�asi modellek a h�aromdimenzi�os raszter

gra�k�aban (Szakszemin�ariumi F�uzetek 30). BME, Folyamat-

szab�alyoz�asi Tansz�ek, 1988. in Hungarian.

[SK93] L. Szirmay-Kalos. Global element method in radiosity calculation.

In COMPUGRAPHICS '93, Alvor, Portugal, 1993.

[SPL88] M.Z. Shao, Q.S. Peng, and Y.D. Liang. A new radiosity approach by

procedural re�nements for realistic image synthesis. In Proceedings

of SIGGRAPH '86, Computer Graphics, pages 93{101, 1988.

[SR92] John Snyder and Barzel Ronen. Motion blur on graphics worksta-

tions. In David Kirk, editor, Graphics Gems III, pages 374{382.

Academic Press, Boston, 1992.

BIBLIOGRAPHY 427

[SSS74] I.E. Sutherland, R.F. Sproull, and R.A. Schumacker. A characteri-

zation of ten hidden-surface algorithms. Computing Surveys, 6(1):1{

55, 1974.

[SSW86] Marcel Samek, Chery Slean, and Hank Weghorst. Texture map-

ping and distortion in digital graphics. Visual Computer, 3:313{320,

1986.

[Tam92] Filippo Tampieri. Accurate form-factor computation. In David Kirk,

editor, Graphics Gems III, pages 329{333. Academic Press, Boston,

1992.

[Tex88] Texas. TMS34010: User's Guide. Texas Instruments, 1988.

[Til80] R. B. Tilove. Set membership classi�cation: A uni�ed approach to

geometric intersection problems. IEEE Transactions on Computers,

C-29(10):874{883, 1980.

[Tot85] Daniel L. Toth. On ray tracing parametric surfaces. In Proceedings

of SIGGRAPH '85, Computer Graphics, pages 171{179, 1985.

[Uli87] R. Ulichney. Digital Halftoning. Mit Press, Cambridge, MA, 1987.

[V�ar87] Tam�as V�arady. Survey and new results in n-sided patch generation.

In R. R. Martin, editor, The Mathematics of Surfaces II. Clarendon

Press, Oxford, 1987.

[V�ar91] Tam�as V�arady. Overlap patches: a new scheme for interpolating

curve networks with n-sided regions. Computer Aided Geometric

Design, 8:7{27, 1991.

[WA77] Kevin Weiler and Peter Atherton. Hidden surface removal using

polygon area sorting. In Proceedings of SIGGRAPH '77, Computer

Graphics, pages 214{222, 1977.

[War69] J.E. Warnock. A hidden line algorithm for halftone picture represen-

tation. Technical Report TR 4-15, Computer Science Department,

University of Utah, Salt Lake City, Utah, 1969.

[Wat70] G. Watkins. A Real Time Hidden Surface Algorithm. PhD thesis,

Computer Science Department, University of Utah, Salt Lake City,

Utah, 1970.

428 BIBLIOGRAPHY

[Wat89] A. Watt. Fundamentals of Three-dimensional Computer Graphics.

Addision-Wesley, 1989.

[WCG87] John R. Wallace, Michael F. Cohen, and Donald P. Greenberg. A

two-pass solution to the rendering equation: A synthesis of ray trac-

ing and radiosity methods. In Proceedings of SIGGRAPH '87, Com-

puter Graphics, pages 311{324, 1987.

[WEH89] John R. Wallace, K.A. Elmquist, and E.A. Haines. A ray tracing

algorithm for progressive radiosity. In Proceedings of SIGGRAPH

'89, Computer Graphics, pages 315{324, 1989.

[Whi80] Turner Whitted. An improved illumination model for shaded dis-

play. Communications of the ACM, 23(6):343{349, 1980.

[Wil78] Lance Williams. Casting curved shadows on curved surfaces. In

Proceedings of SIGGRAPH '78, Computer Graphics, pages 270{274,

1978.

[Wil83] Lance Williams. Pyramidal parametric. In Proceedings of SIG-

GRAPH '83, Computer Graphics, volume 17, pages 1{11, 1983.

[WMEe88] M.J. Wozny, H.W. McLaughlin, and J.L. Encarnacao (editors). Geo-

metric Modeling for CAD Applications. North Holland, Amsterdam,

1988.

[Wol90] G. Wolberg. Digital Image Warping. IEEE Computer Society Press,

Washington, DC., 1990.

[WS82] G. Wyszecki and W. Stiles. Color Science: Concepts and Methods,

Quantitative Data and Formulae. Wiley, New York, 1982.

[Yam88] Fujio Yamaguchi. Curves and Surfaces in Computer Aided Geomet-

ric Design. Springer-Verlag, Berlin Heidelberg, 1988.

[Yel83] John I.Jr. Yellot. Spectral consequences of photoreceptor sampling

in the rhesus retina. Science, 221:382{385, 1983.

[YKFT84] K. Yamaguchi, T. L. Kunii, K. Fujimura, and H. Toriya. Octree

related data structures and algorithms. IEEE Computer Graphics

and Applications, 4(1):53{59, 1984.

SUBJECT INDEX

A

abstract lightsource models 76

abstract solids 19

acceleration of ray tracing

adaptive space partitioning 249

heuristic methods 242

partitioning of ray space 253

ray classi�cation 254

ray coherence 256

regular space partitioning 242

adaptive supersampling 322

a�ne point 102

a�ne transformation 105

algorithm theory 31

aliasing 7, 309

temporal 401

ambient light 76, 80

analytical shading models 78

animation 365

non real-time 366

real time 366

anti-aliasing 218, 309

lines 314, 317

post-�ltering 321

regions 314

temporal 401

aperture 262

approximation function 378

approximation of roots 151

algebraic equations 153

halving method 151

isolation 154

method of chords 151

Newton's method 152

reducing multiplicity 153

B

B-spline

cubic 382

back clipping plane 16, 117

baricentric coordinates 108, 149

beam 6

beam of rays 255

Beckmann distribution 71

bi-directional re
ection function 62

bi-directional refraction function 62

bi-level devices 8

binary space partitioning 184

black-and-white devices 8

blue noise 323, 330

blur 401

boundary evaluation 91

boundary representations (B-rep) 21

bounding box 142

box �lter 311

bp 117

Bresenham's line generator 49

BSP-tree 184

bump mapping 360, 362

�ltering 363

viii

SUBJECT INDEX ix

C

camera 14, 115

camera parameters 115

canonical view volume 121

cathode ray tube (CRT) 5

channels 223

child segment 396

CIE XYZ 54

circle of confusion 263

clipping 15, 77, 130

Cohen-Sutherland 134

coordinate system 141

in homogeneous coordinates 131

line segments 134

points 133

polygons 137

Sutherland{Hodgman 137

clipping against convex polyhedron

139

Cohen-Sutherland clipping 134

coherent light-surface interaction 61

coherent re
ection 62

coherent refraction 62

collinearities 106

color 53

color index 224

color matching functions 54

comb function 307

combinational complexity 42

complexity 26

complexity measures 26

complexity of algorithms 27

algebraic decision tree model 241

asymptotic analysis 29

average-case 33

graphics algorithms 31

input size 32

key operations 29

linear equation 284

lower bounds 28, 30

notations 29

optimal algorithms 29

output size 32

progressive re�nement 288

radiosity method 280

storage 27

time 27

upper bounds 29, 30

viewing pipeline 141

worst-case 29

cone �lter 311

constant shading 229

constraint-based systems 398

constructive solid geometry (CSG) 23

continuity

C2; C1; C0 368

control point 377

convex hull 108, 383

transformation 109

CPU 7

CRT 5

cubic B-spline 382

cubic spline 379

D

DDA line generator 45

decision variables 48

decomposition 220

delta form factor

cubic tetrahedron 282

hemicube 280

depth cueing 218, 220

depth of �eld 262

di�use re
ection coe�cient 66

digital-analog conversion 224

directional lightsource 76

display list 6

x SUBJECT INDEX

display list memory 221

display list processor 221

display processor 7

dither

ordered 330

random 330

dithering 218, 223, 231, 328, 329

division ratio 108

double-bu�er animation 401

duality principle 103

E

environment mapping 363

Euler's theorem 142

EWA

elliptical weighted average 357

extended form factor 291, 292

eye 14, 115

F

face 21

facet 221

FFT 313

�eld 13

�lter

box 311

cone 311

Gaussian 312

ideal low pass 311

low-pass 310

pulse response 311

�nite element method 265, 293

�nite elements

constant 294

linear 299, 300

�xed point form 44

icker-free 6

ood lightsource 76

ux 58

form factor 266

extended 291, 292

vertex-patch 289

vertex-surface 288, 289

form factor calculation 270

analytical 274

geometric 273

hemicube 277

hemisphere 275

randomized 270

tetrahedron 281

z-bu�er 280

Fourier transform 308

fp 117

frame 6, 374

frame bu�er 6, 223

coherent access 223

double access 224

frame bu�er channels 223

frame bu�er memory 8, 218, 232

Fresnel coe�cients 61

parallel 73

perpendicular 73

Fresnel equations 73

front clipping plane 15, 117

functional decomposition 37

fundamental law of photometry 59

G

Gauss elimination 283

Gaussian distribution 71

Gaussian �lter 312

geometric manipulation 17

geometric modeling 18

geometric transformation 99, 100

geometry engine 222

global element method 299, 304

global function bases 306

SUBJECT INDEX xi

Gouraud shading 211, 218, 229

in radiosity method 269

graph 187

straight line planar (SLPG) 187

graphics

2D 14

3D 14

graphics (co)processors 8

graphics primitives 17, 81

gray-shade systems 9

H

halftoning 328, 329

halfway vector (~H) 68

Hall equation 65

hardware realization 41

heap 201

hemicube 277

hemisphere 275

hidden surface algorithms

! visibility algorithms 143

hidden surface problem 77

hidden-line elimination

z-bu�er 229

high-level subsystem 226

homogeneous coordinates 101

homogeneous division 104

human eye 3

I

ideal plane 101

ideal points 101

illumination equation 65, 220

illumination hemisphere 57

image generation pipeline 226

image reality 25

incoherent light-surface interaction 61

incremental concept 43

formula 44

line generator 46

polygon texturing 349

shading 79, 203

indexed color mode 9, 224

input pipeline 226

intensity 58

interactive systems 26

interlaced 13

interpolation 377

Lagrange 378

spline 379

interpolation function 377

intersection calculations

acceleration 240

approximation methods 150

CSG-objects 164

explicit surfaces 157

implicit surfaces 150

ray span 166

regularized set operations 165

simple primitives 148

interval arithmetic 159

interval extension 160

inverse geometric problem 372

J

jitter 322

Gaussian 327

white noise 326

K

keyframe 374

keyframe animation 376

kinematics 373

knot point 377

Krawczyk operator 163

xii SUBJECT INDEX

kr= coherent re
ection coe�cient 62

kt= coherent refraction coe�cient 62

kd= di�use re
ection coe�cient 66

ks= specular re
ection coe�cient 68

L

Lagrange interpolation 378

Lambert's law 66

lightsource 76

abstract 76

ambient 76

directional 76

ood 76

positional 76

lightsource vector (~L) 61

line generator

3D 228

anti-aliased 314

box-�ltered 315

Bresenham 49

cone-�ltered 317

DDA 45

depth cueing 228

Gupta-Sproull 320

linear equation

Gauss elimination 283

Gauss{Seidel iteration 284

iteration 283

linear set 107

linked segments 394

local control 381

local coordinate system 3

lookup table (LUT) 9, 224

M

Mach banding 212

manifold objects 23

metamers 55

microfacets 69

micropolygons 359

mip-map scheme 355

model access processor 221

model decomposition 17, 81

B-rep 89

CSG-tree 91

explicit surfaces 83

implicit surfaces 87

modeling 17

modeling transformation 15, 216

motion

hierarchical 394

interpolation 368

motion blur 264, 401

motion design 372

multiplicity of roots 153

N

Newton's law 367

non-interlaced 13

non-manifold objects 23

normalizing transformation

parallel projection 121

perspective projection 123

Nyquist limit 310

O

O(�) (the big-O) 30

object coherence 242

object-primitive decomposition 15

octree 250

ordered dithers 330

orthonormal matrix 369

output pipeline 226

output sensitive algorithm 32, 193

overlay management 231

own color 10, 16, 67

SUBJECT INDEX xiii

P

parallelization 35

image space 39

object space 40

operation based 37

primitive oriented 40

parameterization 334

cylinder 338

general polygons 342

implicit surfaces 337

parametric surfaces 336

polygon mesh 342

polygons 339

quadrilaterals 340

sphere 337

triangles 340

two-phase 344

unfolding 342

parent segment 396

patch 21

perspective transformation 126

Phong shading 212

Phong's specular re
ection 67

photorealistic image generation 80

pipeline

input 226

output 226

viewing 139

pixel 5

pixel level operations 218

pixel manipulation 17

point sampling 260

Poisson disk distribution 322

positional lightsource 76

post-�ltering 309

pre-�ltering 309

primitives 17

priority 16

problem solving techniques

brute force 240

divide-and-conquer 89, 91, 96, 165,

177

event list 175

generate-and-test 94, 251

lazy evaluation 255

locus approach 254

output sensitive 195

sweep-line 194, 198

progressive re�nement 285

probabilistic 289

projection 119, 124

oblique 116

orthographic 116

parallel 116

perspective 116

spherical 275

projective geometry 100

pseudo color mode 9, 224

PSLG representations

DCELs 23

Q

quantization 327

quaternions 385

R

r-sets 21

radiant intensity 58

radiosity 58, 265

equation 267

method 79, 269

non-di�use 290

random dither 330

raster graphics 6

raster line 6

raster mesh 6

xiv SUBJECT INDEX

raster operation ALUs 224

raster operations 218, 223

XOR 218

ray coherence 256

ray shooting problem 241

ray tracing 235

aperture 262

blurred (fuzzy) phenomena 260

blurred translucency 262

circle of confusion 263

depth of �eld 262

distributed 260, 402

gloss 262

illumination model 235

motion blur 264

penumbras 262

recursive 235

shadow rays 238

simple (�rst-order) 146

real-time animation 366

reciprocity relationship 267

recursive ray tracing 79

re
ection mapping 363

refresh

interlaced 13

non-interlaced 13

regular sets 19

regularized set operations 20

relaxation technique 399

rendering equation 65

representation schemes 21

B-rep 21

CSG 23

resolution 12

Ritz's method 294

Rodrigues formula 112

roll-pitch-yaw angles 111, 369

rotation 110

S

sampling theorem 308, 310

scaling 110

scan conversion 6, 17, 220, 222

3D lines 227

triangle 229

scan converter 222

scan-lines 6, 174

scene 18

Schauder's �xpoint theorem 158

scienti�c visualization 400

scissoring 16

screen coordinate system 118

sectioning 139

segment 394

hierarchy 396

linked 394

parent 396

set membership classi�cation 91

shading 16, 77, 78

coordinate system 141

Gouraud 211

incremental 79, 203, 211

Phong 212

shading equation 65

shadow 204

shadow maps 205

shearing 113

shearing transformation 120, 123

SLPG representations

adjacency lists 190

DCELs 191

Snellius{Descartes law 62

solid angle 57

solid textures 335

SUBJECT INDEX xv

specular re
ection

Phong's model 67

probabilistic treatment 69

Torrance-Sparrow model 69

specular re
ection coe�cient 68

spline 379

cubic 379

stereovision 14

stochastic analysis of algorithms

Poisson point process 245

regular object space partitioning

243

uniformly distributed points 34,

244

stochastic sampling 322, 402

jitter 322, 323

Poisson disk 322

straight model 103

strobing 401

subdivision 346

subframes 402

subpixel 321

successive relaxation 285

summed-area table 356

supersampling 309

adaptive 322

surface normal (~N) 66

Sutherland{Hodgman clipping 137

synthetic camera model 2

T

Taylor's series 44

Tektronix 10

texel 350

texture �lter

EWA 357

pyramid 355

summed-area table 356

texture map

1D, 2D 335

solid 335

texture mapping 214, 333

Catmull algorithm 354

direct 334

incremental models 345

indirect 334

parametric surface 345

radiosity method 353

ray tracing 345

screen order 334

solid textures 345

texture order 334

texture space 333

Torrance{Sparrow specular re
. 69

transformation

a�ne 105

coordinate system change 113

geometric 100

normalizing for parallel projec-

tion 121

normalizing for perspective pro-

jection 123

perspective 126

rotation 110

scaling 110

shearing 113, 120, 123

translation 110

viewing 122

viewport 122

transformation matrix

composite 216, 220

modeling 216

viewing 216

translation 110

translucency 221, 231

translucency patterns 221, 231

transparency 206, 231

xvi SUBJECT INDEX

tree traversal

inorder 186

postorder 186

preorder 186

tristimulus 53

true color mode 8, 224

Trunc 45

U

u; v; w coordinate system 115

V

variational method 294

vector generator 6

vector graphics 5

vertex-surface form factors 288, 299

video display hardware 223

video refresh controller 10

view plane normal 116

view reference point 115

view up vector 116

view vector (~V) 61

viewing pipeline 139

viewing transformation 77, 122, 216

viewport 14

viewport transformation 122

virtual world representation 17

visibility 77

visibility algorithms 143

area subdivision 176

back-face culling 167, 169

BSP-tree 184

depth order 181

image coherence 176

image-precision 143

initial depth order 178, 182

list-priority 180

Newell{Newell{Sancha 182

object coherence 175

object-precision 144

painter's algorithm 181

planar graph based 187

ray tracing 146

scan conversion 169

scan-line 174

visibility maps 188

Warnock's algorithm 177

Weiler{Atherton algorithm 178

z-bu�er 168

visibility computation 16

coordinate system 141

visibility sets 258

visible color 10

voxel walking 251

W

weight functions 378

white noise 326

window 14, 115

height 116

width 116

window coordinate system 115

winged edge structure 23, 192

wire-frame image generation 216

world coordinate system 3

world-screen transformation 15

wrap-around problem 129

Z

z-bu�er 218, 223

z-bu�er algorithm

hardware implementation 170

zoom 116

-correction 10, 55, 224

(�) (the big-
) 30

�(�) (the big-�) 30

	00_TOC.pdf
	01-intro.pdf
	02-alg.pdf
	03-shading.pdf
	04-model.pdf
	05-view.pdf
	06-visibili.pdf
	07-incr.pdf
	08-zbuff.pdf
	09-ray.pdf
	10-radiosit.pdf
	11-antial.pdf
	12-texture.pdf
	13-ani.pdf
	99-bibl.pdf
	99-bookidx.pdf

