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GLOSSARY

BASIC Name of any of a large number of simple
programming languages that are similar and ulti-
mately derived from the original Dartmouth BASIC of
1964.

Keyword Word in a computer language that has a special
meaning. (Keywords in BASIC include, for instance,
LET, PRINT, FOR, NEXT, TO, and STEP.)

Language In computing, a programming language. Pro-
gramming languages like human languages, consist of
words and symbols together with grammatical rules
that govern how they can be put together.

Line Same as a line of text, beginning with a line number
in original BASIC.

Line number Integer (whole number) that begins each
line of a BASIC program and serves as a kind of
“serial number” for that line. Line numbers also serve
as “targets” for GOTO statements.

List A list of a program is a “printout” on the screen of
a computer or on a hard-copy printer, of the text of the
program (i.e., its lines).

Program Collection of statements, formed according to

the rules of the language and with the purpose of car-
rying out a particular computing task.

Run Actual carrying out of the instructions of the pro-
gram by the computer.

Statement Instruction to the computer. In BASIC, state-
ments are virtually synonymous with lines and usually
begin with a keyword.

Subroutine Portion of a program, usually set off from the
rest of the program, that carries out some specific task.
Subroutines are usually invoked by special instructions,
such as GOSUB and RETURN in original BASIC, or
CALL in modern versions.

Variable Word in a program, usually different from a
keyword, that stands for a quantity, just as in ordinary
algebra.

BASIC (Beginner’s All-Purpose Simplified Instruction
Code) began as an interactive computer programming lan-
guage especially easy to learn. Invented in 1964, it now
exists in many widely different versions. Students learn-
ing programming for the first time may know BASIC as
the simple language found on most personal computers.
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Others know BASIC as a development language on
personal computers and workstations. This article ex-
plores the history and development of BASIC, at least
some of the versions of BASIC, and explains why this
language has become so diverse and yet so popular.

I. BRIEF DESCRIPTION

Nearly everyonewho hasheard about computershasheard
about the BASIC language. Many of these people can read
and write simple programs in BASIC. Note that, in 1964,
long before personal computers or display terminals, one
entered a program by typing (as now) and the computer
responded by typing back onto yellow paper (rather than
displaying results on a screen):

100 LET X =
110 LET Y =
120 LET Z
130 PRINT 2
140 END

Mo W

Almost anyone who has taken high school algebra will
understand what this program does and understand it well
enough to make changes in it. (When run, it prints the
number 7.)

BASIC was invented for an interactive environment
(time-sharing or personal computers). The user could start
and stop the program at will and could interact with the
running program. For instance, the INPUT statement in
the following program allowed the user to enter the num-
bers to be added after typing RUN (remember, al com-
mands had to be typed; there were no mouses or menus):

100 INPUT X, Y
110 LET 2 = X + Y
120 PRINT Z

130 END

After the user typed RUN, the program stopped (temporar-
ily), printed a question mark (?), and waited for the user
to respond. The user then typed two numbers, separated
by a comma, and followed by hitting the RETURN or
ENTER key. The program then commenced, calculated Z
(as the sum of the two numbers), and printed the answer.
The result might look like this on the yellow paper, or on
the screen of an early microcompulter:

RUN
? 3.4
7

A user who wished to make several additions could
arrange for the program to continue indefinitely, asin:
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100 INPUT X, Y
110 LET 2 = X + Y
120 PRINT Z

125 GOTO 100

130 END

Thistime, the result might look like this:

RUN

? 3, 4

7

? 1.23, 4.56

5.79

? — 17.5, 5.3
12.2

O

The user continued in this fashion until all additional
problems had been “solved.” The user then stopped the
program by some method that varied from machine to
machine.

Theaboveexampleswill betrivial toanyonewhoknows
BASIC but should be understandable even to someone
who has not used BASIC. It is not the purpose of this ar-
ticle, however, to teach the language through such sim-
ple examples. The purpose is rather to use these and
later examples to illustrate an important point: BASIC
is not just a single computer language; it is actually a
collection of many languages or dialects, perhaps hun-
dreds that have evolved since the mid-1960s. As a re-
sult, versions that run on different brands of computers
are different. It has even been the case that different mod-
els of the same brand have sported different versions of
BASIC.

For example, someversions of BASIC allowed the user
to omit the word LET, to omit the END statement, or to
employ either uppercase |etters or lowercase letters inter-
changeably. For example, the first program above might
be allowed to appear on some computers as:

100 x = 3

110 v = 4

120 z = x + vy
130 print z

One more important way in which versions of BASIC
developed is that some allow “‘structured programming”
(discussed later.) Recall an earlier example:

100 INPUT X, Y
110 LET 2 = X + Y
120 PRINT Z

125 GOTO 100

130 END
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One of the tenets of structured programming is that
GOTO statements (asin line 125 above), used carelessly,
are the cause of many programming errors. All modern
versions of BASIC alow the user to rewrite the above
program without using GOTO statements as.

100 DO

110 INPUT x, Yy
120 LET z = X + Vv
130 PRINT =z

125 LOOP

130 END

The coallection of lines starting with 100 DO and end-
ingwith 125 LOOP isknown asaloop. Theinterior lines
of the loop are carried out repeatedly, as in the example
by using a GOTO statement. Notice, in addition, that the
program is written in mixed case (using both upper- and
lowercase letters), and the interior lines of the loop arein-
dented. All modernversionsof BASIC allow thesestylistic
improvements.

Eliminatingthe GOTO statement (line 125) removesthe
need to reference line numbers in the program. The line
numbers themselves, no longer serving a useful purpose,
can now be eliminated to get:

DO
INPUT x, vy
LET z = xXx + y
PRINT z

LOOP

END

We could not have removed the line numbers from the
version that used a GOTO statement “GOTO 100 be-
cause there would no longer be a line numbered 100 in
the program. Some earlier versions of BASIC allowed re-
moving some lines except for those used as GOTO targets,
in which case the line numbers became statement labels,
aconcept not present in the original BASIC.

Il. EARLY HISTORY OF BASIC

BASIC wasinvented at Dartmouth Collegein 1963-1964
by John G. Kemeny and Thomas E. Kurtz, both professors
of mathematics, assisted by agroup of undergraduate stu-
dent programmers. Computers then were huge, slow, and
expensive; there were no personal computers. Their goal
wasto bring easy and accessible computing to a/l students,
not just science or engineering students. The method they
chose called for developing a time-shared operating sys-
tem, which would allow many userssimultaneously. (This
operating system was developed entirely by Dartmouth
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undergraduate students.) The new language, BASIC, easy
tolearn and easy to use, wasan essentia part of thiseffort.
BASIC wasthus developed originally for alarge multiple-
user, time-shared system and nor for personal computers,
which did not appear widely until the early 1980s.

It hasbeen asked why BASIC wasinvented. Couldn’t an
existing language have been used for the purpose? The an-
swer to the second question is no, which also answers the
first question. Other computer languagesdid existin 1963,
athough there were not nearly as many asthere are today.
The principal ones were FORTRAN and Algol; most of
the others are long since forgotten. Some of the common
languages used today—C, C++, and Java—had not even
been conceived. FORTRAN and Algol were each consid-
ered briefly. These languages were designed for produc-
tion use on big machines or for scientific research, using
punched cards. But neither was suitable for use by begin-
ners, neither was particularly well suited for atime-shared
environment, and neither permitted speedy handling of
short programs. Kemeny and Kurtz had experimented with
other simple computer languages as early as 1956, but
with only modest success. So, in 1963, when they began
building a time-shared system for students, they quickly
realized that a new language had to be invented—BASIC.

A. Design Goals
The new language had to satisfy these properties:

1. It had to be easy to learn for ail students.

2. It had to work well in amultiple-user, time-sharing
system.

3. It had to allow students to get answers quickly,
usually within 5 or 10 sec.

In the years since BASIC was invented the importance of
time sharing has been overshadowed by the invention of
persona computers. Who needs to time-share a big ex-
pensive computer when one can have a big (in power)
but inexpensive computer on one’s desk top? For a long
time, no such dramatic improvement has been made on
the programming side. Thus, while the impact of time
sharing has been largely forgotten, the importance of
BASIC has increased. The ideals that forced the inven-
tion of BASIC—simplicity and ease of use—lead many
to choose BASIC today.

B. The First Dartmouth BASIC

BASIC cameinto existencein theearly morning of May 1,
1964, when two BASIC programs were run on the Dart-
mouth time-sharing system at the same time, both giving
the correct answer. That early version of BASIC offered
14 different statements:
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LET PRINT END
READ DATA

GOTO IF-THEN

FOR NEXT

GOSUB RETURN

DIM DEF REM

LET, PRINT, and END were illustrated in the first ex-
ample program. READ and DATA were used to supply
data to the program other than through LET statements.
(It is a strange fact that the first version of BASIC did
not have the INPUT statement.) GOTO and IF-THEN
provided the ability to transfer to other locations in the
program, either unconditionally or conditionally on the
result of some comparison. FOR and NEXT were used
together and formed a loop. GOSUB and RETURN pro-
vided a crude subroutine capability. DTM allowed the user
to specify the size of avector or matrix. DEF allowed the
user to define a new function (in addition to the functions
such as SQR, SIN, and COS that BASIC included au-
tomatically). REM allowed the user to add comments or
other explanatory information to programs.

We shall illustrate al 14 statement types in two short
programs. The first program uses eight of the statement
types and prints atable of the values of the common loga-
rithms (logarithmsto the base 10) for arange of arguments
and a spacing given in aDATA statement:

100 REM PRINTS TABLE OF COMMON LOGS
110 READ A, B, S
120 pATA 1, 2, 0.1

130 DEF FNF (X) = LOG(X)/LOG(10)
140 FOR X = A TO B STEP S

150 PRINT X, FNF (X)

160 NEXT X

170 END

(Common logarithmscan be computed from “natural” log-
arithmswith theformulashownin line 130. The program,
whenrun, printsatable of values of thecommonlogarithm
for arguments 1, 1.1, 1.2, 1.3, etc., up to 2.)

The second program computes, stores in a vector, and
prints the Fibonacci numbers up to the first that exceeds
100. (The Fibonacci numbersare 1, 1, 2, 3,5, 8,13, ...
The first two, 1 and 1, are given; each succeeding oneis
obtained by adding the previous two.)

100 REM FIBONACCI NUMBERS
110 DIM F(20)
120 LET F(1) =
130 LET F(2) =
140 LET N = 2

1
1
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150 IF F(N) > 100 THEN 999

160 GOSUB 500

170 PRINT F(N),

180 GOTO 150

500 REM SUBROUTINE TO COMPUTE
NEXT NUMBER

510 LET N = N + 1

520 LET F(N) =F(N-1) +F(N-2)

530 RETURN

999 END

The DIM statement (line 110) establishes a vector named
F having 20 components. Lines 120 and 130 establish
the first two numbers of the Fibonacci sequence. The
IF-THEN statement (line 150) checksto seeif the most
recently computed Fibonacci number is greater than 100;
if itis, the program jumpsto the END statement and stops.
If that is not the case, it computes the next number. Lines
150-180 are another example of a loop. The subroutine
(lines 500-530) contains the formula for computing the
next Fibonacci number. The subroutine is “called on” or
“invoked” by the GOSUB statement in line 160, which
refers to the subroutine by the line number of its first
statement. When the subroutine has finished its work, the
RETURN statement (line 530) “returns” control back
to the line following the line containing the GOSUB
statement.

Even in the earliest days, it was considered good form
to use REM statements to explain what the program did
and what each of the subroutinesin the program did. The
use of indentation following the line number to display
the extent of the loop aso began to appear around the
time BASIC was invented. The reason is that people, in
addition to computers, have to read computer programs;
remarks and indentation help. Two other stylistic features
were not common in 1964: lowercase letters (most ter-
minals did not even have them) and completely blank
lines.

C. Major Design Decisions

We now consider the mgjor design decisionsmadein 1964
and why they were made.

1. A Number is a Number is a Number; That is,
There is Only One Kind of Number in BASIC

In 1964, as today, most machines could do arithmetic us-
ing severa kinds of numbers. The two common kinds
were, and still are, integer numbers and floating-point
numbers. Integer numbersare simply whole numberssuch
as 0, 17, —239, and 12345678. Floating-point numbers
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can bethought of asnumbersin “scientific” notation, asin
1.234 x 10— 3. Althougharithmetic usinginteger numbers
was usually faster, Dartmouth BASIC did all arithmetic
in floating point. While some programs might run more
slowly, lifewasmade considerably easier for the beginner.

2. BASIC Should Read and Print Numbers
Without Requiring Special “Formats”

FORTRAN, the most widely used language at that time,
used a complicated format control statement for all input
or output in the program, a requirement too complicated
for most students, particularly for those not taking science
or engineering.

3. One Should be Able to Create, Change, and
Run a BASIC Program from a Typewriter

Video screen terminalswere not widely availablein 1964.
Theonly aternativewasthe Teletype™ Model 33. It typed
in uppercase only and was very slow—10 characters per
second. The line numbers of a BASIC program allowed
users to change the program without retyping the entire
program; they needed merely to retype the corrected line,
including the line number.

4. BASIC Should have no Mysterious
Punctuation Rules; Thus, a Statement
and a Line are Synonymous

Other languages alowed statements to extend over sev-
eral lines and allowed several statements to appear on the
same line. Many used semicolons to separate statements,
regardless of the lines on which the statements appeared,
an unnecessarily complicated rule for beginners.

5. All BASIC Statements Should Commence,
After the Line Number, with a Keyword

Most languages begin statementswith akeyword. A com-
mon exception isthe assignment statement, wherein vari-
ables receive the results of computations. Different lan-
guages treat the assignment statement in different ways:

FORTRAN N = N+1
Algol N := N + 1;

The FORTRAN method is confusing to the beginner; it
looks like an assertion that N isequal to N + 1, whichiis
nonsense. The := symbol of the Algol method is supposed
to represent an arrow pointing to theleft, but thismay also
confuse most beginners. It was decided to usethe keyword
LET to make the intention clear:
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BASIC LET N =N + 1

Three other design features in the original BASIC have
not withstood the test of time.

6. BASIC Should not Require Unnecessary
Declarations, Suchas Supplying
Dimensions for Arrays

The original BASIC allowed the use of single letters as
array names (arrays are also called lists and tables or, in
mathematical circles, vectors and matrices). A singleletter
with an attached subscript in parentheses represented an
array element. The following complete program, which
prints the squares of the whole numbers from 1-8, uses a
singly subscripted array (i.e., alist or vector):

100 FOR I = 1 TO 8
110 LET X(I) = I*I
120 NEXT T

130 FOR I = 1 TO 8
140 PRINT I, X(I)
150 NEXT T

160 END

It was not necessary to include aDIM statement to estab-
lish that X stood for avector, asin:

99 DIM X(8)

Such a DIM statement could be included, to be sure, but
if one were satisfied to work with elements X(1) through
X(10), the DIM statement would not be required. While
supplying sensible default values is still a cornerstone of
BASIC, default dimensioning of arrays has given way to
multi-character function names.

7. BASIC Should be Blank Insensitive; That is,
a User Should be Able to Type in a Program
Without Regard to Blank Spaces

Thisfeaturewasintended to easelifefor beginning typists.
The idea was that:

100 LET N = N + 1

could be typed as

100LETN=N+1

Thisdecision meant that only simplevariable namescould

be used. The allowable variable names consisted of either
single letters or single letters followed by single digits.
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With this rule, the following program fragment was un-
ambiguous:

100FORI=1TON
110LETX1=X1+Y9—-I*SQR (N)
120NEXTI

It later became abundantly clear that permitting multi-
character variable names was far more important than
blank insensitivity. The reason that multi-character vari-
able names and blank insensitivity cannot coexist isillus-
trated in the following example:

FOR I = A TO B STEP C
might be written, ignoring blanks, as:
FOR I = A TO B STEP C

If multi-character variable names were allowed, BASIC
wasin aquandary. It cannot distinguish the first form (the
variable | starts at the value of the variable A, finishes at
the value of the variable B, and is incremented with a
step size given by the value of the variable C) from the
second (the variable | starts at the value of the variable A
and finishes at the value of the variable BSTEPC, with the
step sizeunderstood to be 1). Giving up blank insensitivity
in favor of multi-character variable names resolves the
ambiguity (in favor of the second form).

8. Line Numbers Should Double as Editing
Aids and Targets of GOTO and IF-THEN
Statements

For the first 10 years of BASIC, this design decision
remained valid, but eventually video terminals replaced
Teletypes and soon supported screen editors. (A screen
editor permits making changes in the program simply
by moving the cursor around; with a screen editor, What
You See IsWhat You Get.) Line numbers were no longer
needed as editing aids. This period aso saw the birth of
structured programming. One of the tenets of structured
programming is that the GOTO statements are simply not
needed, provided that one can usean IF-THEN-ELSE
structure and ageneral loop structure. If al old-fashioned
GOTO and IF-THEN statements are eliminated, line
numbers are not needed as “targets” for those statements.
Line numbers, no longer serving a useful purpose, can

quietly disappear.

D. BASIC Starts To Grow

BASIC quickly grew in response to the needs of its users.
By 1969, which saw the appearance of the fifth version of
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BASIC at Dartmouth, features had been added for dealing
with strings, arrays as entities, files, and overlays.

1. Strings are Added

The earliest computers dealt solely with numbers, while
modern computers deal mostly with text information. By
1965, it had become evident that text processing was as
important as numerical processing. The basic ingredient
in any text processing is a string of characters. Strings
and string variables were quickly added to BASIC. String
variable names looked like numerical variable names ex-
cept that the final character was a dollar sign ($). String
constants were strings of characters enclosed in quotation
marks:

LET AS= “Hello, out there.”
PRINT AS
END

The dollar sign was chosen because, of al the characters
available on the keyboard, it most suggested the letter s
in the word string. (Note that strings were always a prim-
itive data type and not an array of characters, asin the C
programming language.)

The early versions of BASIC also alowed string com-
parisons (e.g., “A” < “B” means that “A” occurs earlier
in the ASCII character sequence than “B”). Other string
operations were not covered. Instead, early BASIC pro-
vided away to convert astring of charactersto avector of
numbers, and vice versa. Called the CHANGE statement,
it allowed any manipulation of strings whatsoever, since
it was easy to carry out the corresponding operation of the
numerical values of the characters. As an example, sup-
pose the string N$ contains the name “John Smith” and
we want to put the first name (“John”) into the string F$:

CHANGE N$ TO N

FOR I = 1 TO N(O0)
IF N(1) = 32 THEN GOTO 250
LET F(1l) = N(I)

NEXT I

LET F(O) = I - 1

CHANGE F TO F$

The first CHANGE statement put the following numbers
into the list N:

(74, 111, 104, 110, 32, 83, 109,
105, 116, 104)

The numbers correspond to the letters in the name “John
Smith;” in particular, the number 32 corresponds to the
space. The FOR-NEXT loop copies the entries from
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the list N to the list F until it encounters a space (32).
The 0-th entries, N(0) and F(0), contain the number of
characters in the string. While the use of the CHANGE
statement wasawkward, it did allow aprogrammer to carry
out any conceivable operation or manipulation on strings
until more sophisticated string-handling features were
added.

2. MAT Statements are Added

Almost immediately after BASIC was invented, opera-
tions on arrays (vectors and matrices) as entities were
added. For example, suppose the user wished to set each
element of anumerical array to thevalue 17. Without ma-
trix operations, this might be done with:

DIM T(10, 10)
FORi =1 to 10
FORj =1 to 10
LET T(i, j) = 17
NEXT j
NEXT i

With MAT operations, it might be as simple as:

CON stood for avector or matrix consisting of all ones (1)
and of the same size asthe vector or matrix being assigned
to.

Another operation of importance was “inverting” ama-
trix. It was too much to expect that most users would be
able to program their own matrix inversion routines. So
BASIC allowed:

MAT T = I NV(A)

where A and T both stood for square matrices having the
same size.

3. Files are Added

When aprogramisto processonly asmall number of data,
it isreasonable to provide those datain DATA statements
included in the program. But when the number of datais
large, the program and the data should be separate. By the
late 1960s, most versions of BASIC had added the capa-
bility for working with data files. The following example
wastypica (the#1 in lines 120 and 150 refersto the first
file named in the Fl LES statements):
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100 FI LES GRADES
110 FOR S =1 TO 3

120 I NPUT #1. N$

130 LET T =20

140 FORJ =1 TO 4
150 I NPUT #1. G
160 LETT=T+ G
170 NEXT J

180 LET A =T/4

190 PRINT N$, A

200 NEXT S

210 END

The data file named GRADES might contain:

JONES
78
86
61
90
SM TH
66
87
88
91
VH TE
56
77
81
85

The purpose of the program was to average the grades of
several students. This example illustrates the type of file
caledtheterminal-format file, now called azext file. These
filesconsist entirely of printablecharacters. Many versions
of BASIC also included random-access files. That term
did not mean that the files contained random numbers;
it meant that any record in the file could be accessed in
roughly the same amount of time. Although the details
varied, those versions of BASIC that included files also
included the capabilitiesfor erasing them, determining the
current position in the file, determining the file’s length,
and so on.

4. Overlays are Added

The original BASIC alowed subroutines, using the
GOSUB and RETURN statements. As early as the late
1960s, however, it wasevident that all owing only GOSUB-
type subroutines was limiting if one needed to write large
programs. One early effort provided an overlay mecha-
nism. While not a true subroutine in the sense we use the
term today, it provided a way to get around the limited
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memory sizes of the computers of the day. The following
trivial example illustrates the method:

100 SUB NEG PCS
110 | NPUT X
120 LET N = (SGN(X) +3)/2
130 GOSUB #N

140 PRINT Y
150 GOTO 110
160 END

The two subroutines in the example are named NEG and
POS, and they are numbered 1 and 2, respectively. Which
onewill be called by the GOSUB statement inline 130 is
determined by the value of N as calculated in line 120. If
X isnegative, N will be 1; if X is positive, N will be 2.
The two subroutines, NEG and POS, look like this:

100 LET Y = SQR(-X)
110 RETURN
120 END

100 LET Y = SQR(X)
110 RETURN
120 END

The purpose of this program is to compute the square
root of the absolute value of a number. (The program is
displayed only to illustrate overlays and is not intended
to be a good solution to the square-root problem.) The
important points are that the line numbers in the main
program and in each of the overlays are private but all
variables are shared (similar capabilitiesin other versions
of BASIC were caled chaining with common).

The overlay technique is one way to fit alarge program
into a small memory, but it did not address the need to
allow subroutineswhose variablesaswell asline numbers
were private. Such subroutines could then be treated as
black boxes and used without regard to possible conflicts
in variable names between the subroutine and the main
program. Since thiskind of subroutine could not sharethe
variablesof themain program, information must be passed
to the subroutine, and answers returned, through a set of
special variables called parameters. Dartmouth BASIC
in 1970 was one of the first versions to include external
subroutines with parameters. For many years it remained
almost the only version to include this capability.

lll. GROWTH OF BASIC

BASIC began proliferating in the outsideworld. Whilethe
first versions were clearly based on Dartmouth’s BASIC,
later versions were not. The profusion of versions of
BASIC can be explained by this early history. Dartmouth
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did not patent or copyright BASIC, nor did it attempt to
trademark thename BASIC. Peoplewerethusfreeto mod-
ify thelanguagein any way they felt wasjustified for their
purposes and till call it BASIC. In addition, there was no
standard, either real or de facto. (A real standard called
Minimal Basic did appear in 1978, but it has had little
influence because the language it defined was too small
even for then. A standard, full BASIC appeared in 1987
and is discussed later.) Nor was there an official standard
for FORTRAN inthe early days. But the de facto standard
was IBM FORTRAN, because anyone wishing to pro-
vide a FORTRAN compiler would almost certainly base
it directly on IBM’s FORTRAN. Dartmouth enjoyed no
similar preeminence with respect to BASIC.

A. Commercial Time Sharing

Outside of Dartmouth, thefirst provider of BASIC wasthe
commercial time-sharing system operated by the General
Electric Corporation. At first, in 1965, GE used Dartmouth
BASIC virtually unchanged. It later added features differ-
ent from the ones added at Dartmouth to meet the needs of
their commercial customers. After 1969, GE BASIC and
Dartmouth BASIC diverged. Other companies patterned
commercial time-sharing services after GE’s and almost
alwaysincluded someversion of BASIC, but these second-
generation versions of BASIC were patterned after GE’s
rather than Dartmouth’s.

Most of the early minicomputer versions of BASIC
were also patterned on GE’s BASIC. While there were
many similaritieswith Dartmouth’s BASIC, these second-
and third-generation devel opers were largely unaware of
the original Dartmouth design criteria for BASIC, and
wider divergences appeared. The end result was a pro-
fusion of versions of BASIC, with almost no possibil-
ity of checking the tide of divergence and bringing them
together.

B. Personal Computers Appear

The decade of the 1970s was an astounding period in the
history of technology. Theinvention of integrated circuits
(asareplacement for individual transistors, whichin turn
replaced vacuum tubes) brought about truly inexpensive
computing, which paved the way for personal microcom-
puters. By 1980, one could purchase for a few thousand
dollars a computer having the power of a million dollar
machine 10 years earlie—and no end wasin sight.
Makers of these new microcomputers needed a sim-
ple language that could be fit into the tiny memories then
available. BASIC was invariably chosen, because: (1) it
was a small language, (2) it was a simple language, and
(3) it already could be found on numerous commercial
time-sharing systems and on other microcomputers. The
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first microcomputer versions of BASIC were very sim-
ple. They were similar in most ways to 1964 Dartmouth
BASIC, but since they were not based directly on
Dartmouth’s BASIC, they were invariably different from
it, and from each other. The explosivetechnological devel-
opment which spawned personal computers carried with
it two other major developments. The first was structured
programming, which, in simplest terms, made it possible
to write programs without using GOT O statements. The
second was the sudden availability of graphic displays.
Features taking advantage of these two developments
were added to amost every version of BASIC, and rarely
were the features alike, or even similar, anong different
versions.

C. Incompatible Versions of BASIC Appear

During the 1970s, BA SIC became one of the most widely
used computer languages in the world and one of the im-
portant languages for applications development on per-
sonal computers. People who wished to sell or give away
programs for personal computers invariably wrote such
programs in BASIC. By 1979, however, the incompati-
bility between the different versions of BASIC had be-
come such a serious problem that one software organi-
zation advised its programmers to use only the simplest
features of BASIC. Twenty-one versions of BASIC were
studied, only five of which existed on personal comput-
ers; they were compared with respect to a number of
features.

1. Disadvantages of Tiny Memories

These first microcomputer versions of BASIC were sim-
ple, but they were unfortunately also the victims of cor-
ner cutting. The first microcomputers had tiny memo-
ries, some as small as 4k bytes. Space saving was thus
paramount. (A byte consists of 8 bits. In more familiar
terms, abyteisroughly the same as a character, such asa
letter or adigit. Theletter “k” standsfor 2raised tothetenth
power, or 1024. Thus, 4k, or 4096, bytes can contain just a
bit more information than one single-spaced typed page.)
One commonly used space-saving technique was com-
pression. Aseach lineof aBASIC programwastypedin, it
was checked for correctness and then converted to amore
concise internal format. For instance, the statement:

100 IF X < Y THEN 300

which contains 21 characters(bytes), could be compressed
into about 11 or 12 bytes—two for each line number (if
we allow line numbers to be no larger than 65535), two
for each variable name, and one for each keyword (I F,
THEN) and relational operator (<). A by-product of such
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space saving was that blank spaceswereignored, asin the
original Dartmouth BASIC. When a program was listed,
it was decompressed back to a readabl e form with spaces.
To be more specific, whether the user typed in:

100 IF X < Y THEN 300
or

100 IF X < Y THEN 300
listing the program would show:
100 IF X < Y THEN 300

with exactly one space between the parts. This prevented,
for example, the use of indentation to reveal the program’s
structure.

2. Optional LET

Space can be saved, and typing time reduced, by omitting
the keyword LET ina LET statement, as with:

100 X = 3

Allowing the omission of the keyword LET violated one
of the original premises of Dartmouth BASIC (that all
statements begin with a keyword so that the assignment
statement looks different from an assertion of equality),
but this feature is nonetheless quite popular among per-
sonal computer users, and most, but not all, versions of
BASIC allowed this feature.

3. Multiple Statements on a Line

Another featuremotivated partially by thelimited memory
available was putting several statementson aline, aswith:

100 LET X =3: LET Y =4: LET Z =5

The trouble was that not al versions of BASIC alowed
thisfeature; about half did but the other half did not. Those
that did allow multiple statements used different symbols
as separators—a colon (;), a solidus (/), or a comma ().
As popular as this feature is, it can become a user trap
in at least one version of BASIC that appeared in the late
1970s. (A user trap isafeature whose interpretation is not
self-evident and that may induce mistakes.) A concrete
example is this: Many versions of BASIC extended the
| F- THEN statement to allow more than line numbers to
appear after the word THEN. For example,

100 IF X < YTHEN Z = 4: Q=5
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meant that, if X wereinfact lessthan Y, thetwo statements
following the THEN were executed. But, a programmer
who followed the usual rules of putting several statements
on asingle line might believe that:

100 IF X < YTHEN Z = 4. Q=5
and
100 IF X < Y THEN Z = 4

101 Q=5

were equivalent, which they were decidedly not. Contrast
this with:

100 X =3: Y=4 Z =25
and

100 X = 3: Y =4
101 Zz = 5

which are equivalent.

4. Commenting Conventions

All versions of BASIC have aways allowed the REM
statement, which allows including remarks or comments
in the program. Such comments might include the pro-
grammer’s name, brief descriptions of how the program
works, or adetailed explanation of someparticularly tricky
section of code. Many versions of BASIC also alowed
comments on the same line as other BASIC statements.
For instance, in

100 LET balance = 0! Starting
bank bal ance

the comment, which starts with an exclamation point (!),
explainsthe purposeof the LET statement and thevariable
“balance.” Of the 21 versions of BA SIC mentioned above,
severa used the “1” to start the online (on the same line)
comment, others usesd an apostrophe, still others used
other symbols, and some did not allow online comments
at all.

5. Raising to a Power

In BASIC, the symbols “+,” “—,” “*” and “/” stand for
addition, subtraction, multiplication, and division, respec-
tively. The choice of “+” and “—”" is obvious. The choice

of “/” isless obvious but is natural asit is almost impos-
sible to type built-up fractions on a keyboard. The choice
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of “*” for multiplication is more difficult to see. One can
represent multiplication in several waysin arithmetic and
algebra. For example, if a and b are variabl es, the product
of a and b could be denoted by:

ab, axb,ora-b

in algebra. The trouble is that the first and second look
like variable names. If a or b were numbers, asin 2.3, the
third option might look like a decimal number rather than
aproduct. That left the “*” to indicate multiplication. This
choice is universal, not only with BASIC, but with other
languages as well.

That leaves the symbol for exponentiation or “raising
to apower.” Some usethe caret (*) which isnow standard.
Others used the up arrow (available on the keyboards at
that time). Still others used the double asterisk (**) (taken
from FORTRAN), while still others allowed more than
one.

6. Number Types Reappear

One of the design goalsin the original BASIC wasto pre-
vent the beginner from having to know the difference be-
tween integer and floating-point numbers. Programs were
simpler, even though some of them might run moresiowly.
Many versions of BASIC on minicomputers and personal
computers gave up this simplicity and provided integer-
valued variables. The purpose wasto allow programs that
used mostly integer numbers, such as prime number sieve
programs, to run faster. The most common approach was
to have a “%” be the last symbol of the variable name.
Thus,

Xyz stands for a floating-point-valued variable.
Xyz% standsfor an integer-valued variable.

Another common approach was to include, somewhere
near the beginning of the program, a statement like one
of the following:

200 DEFI NT | =N
200 DECLARE | NTEGER | —N

where the I-N means that al variables with names that
beginwith I, J, K, L, M, or N are to be treated as integer
variables.

7. Strings Proliferate

Most versions of BASIC added string concatenation,
which is simply the joining of two strings, end to end.
For example,
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“Now is the tinme” & “for all good
rr'en n”

resultsin

“Now is the tinme for all good nmen~

Thetroublewasthat only afew used an ampersand (&) for
this operation. The other versions used a plus sign (+) or
paralel lines (||); one used a comma, and two used other
methods.

Most versions aso provided severa string functions,
such as LEN( s$) , which gave the length of the string
(i.e., the number of characters in it). Also provided
were functions are cutting a string into pieces. For ex-
ample, SEGs(a$, 5, 7) gave a new string con-
sisting of the three characters of the string a$, starting
with character number 5 and ending with character
number 7. Other versions of BASIC included such
functions as LEFT$(a$, 7), which gave the left-
most seven characters of the string a$; Rl GHT$( a$,
7), which gave the rightmost seven characters of
the string; and M D$(a$, 5, 7), which gave the
middle seven characters of a$, starting with character
number 5.

One of the problems with having different versions of
BASIC isthat, although M D$ and SEGS$ provideasim-
ilar function, the meaning of the third argument differs.
For instance, if:

a$ = “abcdef ghijkl m~

then

M Ds$(a$, 5, 7) = “efghijk”
while

SEGs(a$, 5, 7) = vefg”

Inasmuch as M D$(a$, 1, 5) does give the same
result as SEGs(a$, 1, 5), this caused confusion
when users switched from one version of BASIC to
another.

Most BASICs also provided ways to locate or find var-
ious patternsin astring. For example, if:

a$ = “Nowis the tine for al
good nen”

and one wished to locate where the word ‘the” appeared,
one would use:
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LET p = POS(a$, “the”)

after which the variable p would have the value 8, which
isthe character number of the first character of “the” asit
appearsinthestring a$. If thelooked-for string was not to
be found, POS gave the value 0. Most of the versions of
BASIC named thisfunction POS, some used other names
(e.g.,]| NSTR, 1 DX, SCN, CNT, or I NDEX), whileothers
did not even include the capability.

D. New Influences

AsBASIC was growing during the 1970s, threeimportant
new ideasin programming theory and practice came into
being: structured programming, subroutines, and interac-
tive graphics. Each of the three was to have a profound
effect on al computer languages, and particularly BASIC.

1. Structured Programming

One of the major contributions to the theory of program-
ming wastheintroduction of structured programming dur-
ing the 1970s. Edsgar Dijkstra, the Dutch computer scien-
tist, isusually credited with having gotten the ball rolling.
He pointed out, in the late 1960s, that the undisciplined
use of GOTO statements seemed to be correlated with
programsthat contained agreater number of errorsor that
weredifficult to modify. In simplest terms, structured pro-
gramminginvolvesadding two constructsto programming
languages so that programmers can write programs with-
out using GOT Ostatements. (A programming construct is
acollection of statementsthat aretreasted asasingle entity.
For instance, the FOR- NEXT combination isaloop con-
struct.) Of course, that isnot thewholestory, becausethese
new constructs can be misused, just as GOT O statements
can be.

Thetwo required constructsare (1) thegeneral loop, and
(2) the | F- THEN- ELSE. Neither of these constructs
was included in the original BASIC. The FOR- NEXT is
not a general loop because the conditions that determine
its completion must be known ahead of time. Thus, with

100 FOR'I =1 TO 10
110 ...
120 NEXT |

we know that the insides of the loop (line 110) will be ex-
ecuted exactly 10 times. This construct is not adequate for
situations where we want to carry out the loop until, for
example, some accuracy requirement has been met. Some
programmers used FOR- NEXT loops with the TOvalue
set sufficiently high and then used a GOT O statement to
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jump out of the loop when the completion test was met.
(Thistrick isless desirable than using a general loop con-
struct.) Other programmers fiddled with the loop variable
(thevariable | in the above fragment) to force completion
of the loop when the completion test was met; this prac-
ticewas even less desirable. Furthermore, thel F- THEN
statement in the original BASIC, based asit was on jumps
to other statements, did not provide the capability found
inthel F- THEN- ELSE.

To be sure, both the genera loop and the genera
| F- THEN- ELSE can be “constructed” using GOTO
and | F- THEN statements, but that is not the point. Pro-
grammers tend to make fewer errors when the language
they are using provides the constructs they need to carry
out their work.

As an illustration of the weaknesses of the original
I F- THEN and GOTO statements, suppose we want to
check a student’s answer to a question in adrill program
(the correct answer is 17):

300 IF a <> 17 then 330
310 PRINT “Right~
320 GOTO 340

330 PRINT “Wong”

340 ...

Besides relying on line numbers as targets for the GOTO
and | F- THEN statements, this construction is difficult
to follow because the test (line 300) checks for a wrong
answer rather than a right answer. Contrast this with a
more modern way to make this choice:

300 |F a = 17 then
310 PRI NT “Ri ght ”
320 ELSE

330 PRI NT “Wong”
340 END | F

(Indentation isused for clarity in both examplesandis not
essential.)

Asthe acceptance of structured programming grew, the
reputation of BASIC declined. This was a fair assess-
ment of most microcomputer versionsof BASIC. Many of
them added abbreviated constructs, such asthesingle-line
| F- THENand| F- THEN- EL SE discussed earlier, but
these additions were often made with little thought as to
how they would fit with other language features, such as
multiple statements on aline.

2. Subroutines

Another limitation of early versions of BASIC wasthe a-
most compl ete dependence of the GOSUB and RETURN
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statements to provide a subroutine capability. (It must be
remembered that even as late as 1980 only a few large-
machine versions of BASIC allowed the externa subrou-
tines described earlier.) There are three major flaws with
the GOSUB- RETURN approach. The beginning of the
subroutine must be associated with aline number. Chang-
ing theline numbersof aprogram also changesthe starting
line numbers of each subroutine. While automatic renum-
bering programs usually change both the line humbers
and the statements that refer to line numbers, program-
mers have to remember where their subroutines begin.

The second flaw with the GOSUB- RETURN approach
is that there is no way to pass arguments to subroutines.
For example, a subroutine to add two numbers might be
written:

1000 REM SUBRQUTI NE TO ADD TWD
NUMBERS
1010 LET Z = X + Y 1020 RETURN

To add A and B to get C, one must do something likethis:

200 LET X = A
210 LET Y = B
220 GOSUB 1000
230 LET C = Z

How much more convenient it would be to replace these
lines with the more modern:

CALL ADD (a, b, c¢)

SUB Add (x, vy, 2)
LET z = x + vy
END SUB

The third flaw with GOSUB- RETURN subroutinesis
that they are inherently part of the main program. They
share line numbers and variables with the main program.
A programmer might accidentally chooseto useavariable
| inthe subroutine, forgetting that | was also being used in
another part of the program. Such confusions were a fre-
guent source of error, to put it mildly. Some other modern
languages allow subroutinesto be separate fromtherest of
the program; if thisisthe case, such subroutinesare called
external. External subroutines can use variables that have
the same names as variables used in the main program
without confusion. External subroutines can aso be col-
lected into libraries for general use. All one has to know
is the subroutine’s name and calling sequence, the latter
being the number and type of its arguments. The lack of
adequate modul ari zation tool s contributed to thedeclining
reputation of BASIC in the early 1970s.
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3. Graphics

The last big innovation that occurred during BASIC’s
teenage yearswasthe explosionin graphics. It isundoubt-
edly truethat, while BASIC fell behind other languagesin
adapting to structured programming, it led al other lan-
guages in embracing graphics.

Microcomputers are particularly adept at drawing pic-
tures. We might even assert that they are better at that than
they are at printing numbers. Contrast that with big ma-
chines, which did better at “number crunching.” Drawing
a picture with a big machine entailed much more work
and much longer periods of waiting than it did with mi-
crocomputers. Since BASIC was the only language on
most early microcomputers, it was natural to includeline-
drawing and other graphics commandsin the language. If
onewanted to draw pictures on amicrocomputer, we may
safely assert that one would prefer to use BASIC.

Surprisingly, the first interactive graphics versions of
BASIC were not on personal microcomputers—they were
on big time-sharing systems. Some of the early work was
done on the Dartmouth time-sharing system in the late
1960s, before the first personal computers became com-
mercialy available. There was one big problem in using
graphics with BASIC on most personal computers. Each
computer was different and alowed a different number
of pixels on the screen. (A pixel is apoint on the screen.
A commercial television set has about 250,000 pixels, ar-
ranged in 500 rows of 500 pixelseach.) Drawing apicture
on the screen of a different brand of personal computer,
or adifferent model of the same brand, required learning
how many pixels there were.

An example should make this clear. Suppose the screen
allowed 40 pixelsin the horizontal direction and 48 pixels
in the vertical direction. Suppose that aversion of BASIC
had line-drawing commands as follows:

HLI'N 10, 20 AT 30
VLI N 25, 35 AT 20

(These conventions correspond to medium-resolution
color graphics in one popular early microcomputer
BASIC.) The first would draw a horizontal line 30 pix-
elsbelow the upper edge of the screen and extending from
the 10th pixel from the left edge of the screen to the 20th
pixel. The second would draw a vertical line 20 pixels
from the left edge of the screen and from the 25th pixel
below the top to the 35th pixel.

Itiseasier to understand these commandsin termsof the
coordinates of the Cartesian plane (most personal comput-
ers, however, turned the vertical axis upside down). The
first draws the line given by the two end points (10, 30),
(20, 30), whilethe second drawsthe linewhose end points
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are (20, 25), (20, 35). Todraw asmall rectanglein the cen-
ter of the screen, one might use:

HLIN 20, 28 AT 16
VLIN 16, 24 AT 20
HLIN 20, 28 AT 24
VLIN 16, 24 AT 28

Although this might seem a bit cryptic to most, it does
work. The trouble comes when the user wishes to use a
different graphics mode or to move to a machine that has
adifferent number of pixels. The small rectangle will no
longer beinthe center of the screen (worseyet, these state-
mentsmight not evenbelegal). Thekey ideaisthat theuser
should be able to specify what coordinates to use, inde-
pendently of the number of pixelson aparticular machine.
To be concrete, suppose the user wantsto use coordinates
that go from 0 to 1 in the horizontal (x) direction and O to
linthevertical (y) direction. The user would first specify
thisusing:

SET WNDOWO, 1, O, 1

The rectangle-drawing code might then be reduced to a
single statement such as the following:

PLOT LINES: .4,.4; .4,.6; .6,.6;
.6,.4;, .4,.4

BASIC should figure out which pixels correspond to the
four corners of the rectangle, and then draw it. Running
the program on a different computer, which might have
a different number of pixels, would still result in a small
rectangle in the middle of the screen.

E. BASIC Loses Favor

Microcomputers quickly became the dominant force in
computing in the late 1970s and early 1980s. BASIC was
the predominant |anguage found on these machines. More-
over, BASIC was about the only language availableif one
wanted to use the graphic capabilities of these machines.
Despite al this, BASIC began to lose favor with com-
puter scientists and educators. Why? There are severa
reasons.

Many of the shortcut features described above, which
arose because of thelimited power and limited memory of
theearly microcomputers, were continuedinlater versions
of the language, even when more powerful computersand
more spacious memories were available. Another reason
was the lack of structured programming constructs. Still
another was the primitive GOSUB- RETURN subroutine
mechanisms still used by most BASICS. Educators began
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to wonder how they could teach good program construc-
tion and modularization using a language that essentially
doesnot alow either. True, some “better” versions of BA-
SIC were available, but only on certain larger machines
such as larger computer-based, time-sharing systems.
These were used in secondary schools and colleges, but
the total number of students who could be trained using
these “better” versions of BASIC was smaller than the
number who learned BASIC on a microcomputer. For
example, BASIC at Dartmouth College continued to grow
until, by the end of the 1970s, it contained many features
found only in more sophisticated languages. It alowed
external subroutines, for example, to be precompiled (pre-
processed to save time) and placed in libraries for general
use. But, the work done at such isolated locations did not
find itsway into general practice, and there was no way to
curb theindividuality that dictated that different manufac-
turers have different versions of BASIC or that the same
manufacturer might have as many as 5 or 10 different
versions of BASIC on its different lines of computers.
That is, there was no way until an official standardization
activity commenced. We describe that activity in the next
section.

IV. STANDARDIZATION AND ITS FAILURE

By 1974, BASIC had become the dominant programming
language for time-sharing systems. But, aswe have noted,
the differences were so great that users of BASIC could
move from one machine to another only with difficulty. It
was thus evident to many that the computer community
should develop a standard for BASIC.

In the early days of computing there were few offi-
cial standards, especially with programming languages.
But there were de facto standards. Typically, they were
descriptions of a programming language as provided by
a dominant manufacturer. Other vendors would provide
the “same” language in the hope that some of the cus-
tomers might switch from the dominant manufacturer
to them. This informal approach has been largely re-
placed in recent years by an increased reliance on official
standards.

In the United States, standards are prepared under the
auspices of the American National Standards Institute
(ANSI). Authority is delegated to voluntary technical
committees, which prepare a description of the standard.
In the case of the BASIC programming language, stan-
dardswork beganin 1974. A standardfor asmall version of
BASIC was completed in 1976 and published by ANSI in
1978. A standard for “full” BASIC wasbegun around 1976
and was published in 1987. An addendum wasreleased in
1991. These standards were subsequently adopted by the
International Standards Organization (1SO).
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A. Standard BASIC

The ANSI standard for BASIC differsfrom the 1964 orig-
inal BASIC in anumber of ways. The first isthat variable
names can contain any number of charactersup to 31, in-
stead of just one or two. The standard also allows general
namesfor new functionsintroduced by the DEF statement.
In the original BASIC, al such functions had names that
started with FN. Anytime one saw something like FNF(x,
y), one could be quite certain that it stood for a function
with two arguments. Standard BASIC allows more gen-
eral names, such as cuberoot(x), instead of requiring the
name to begin with fn, such as fncuberoot(x).

Standard BASIC includes several |oop constructs. The
general loop construct can havethe exit condition attached
to the DO statement, attached to the L OOP statement, or
located somewhere in between. The following program
fragment illustrates the middle exit from a DO loop:

DO
PRI NT “Enter x, n:” : X, n
If n=1int(n) then EXIT DO
PRI NT “n nust be an integer;
pl ease reenter.
LOOP
PRINT “x to the n-th power is”; x”n

Alternativewaysof coding that fragment without using the
EXI T DO statement are either longer or more obscure.
Standard BASIC also alows exiting from the middle of a
FOR- NEXT loop. Standard BASIC includes a variety of
constructs for making choices; for example:

IF x <y and x < z then

PRINT “x is the snallest”
ELSE IF y < z then

PRINT “y is the smallest”
ELSE

PRINT “z is the snmallest”
END | F

and

SELECT CASE roll

CASE 7, 11
PRINT “I wn”

CASE 2, 3, 12

PRINT I | ose”
CASE el se

PRINT “I ‘'mstill in”
END SELECT

Standard BASIC retains one of the origina design
features—namely, that there be but one type of number. It
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merely specifies that numerical calculations be done with
at least ten significant figures of precision, without spec-
ifying how thisis to be done. Standard BASIC specifies
variable-length strings, which are the easiest for the be-
ginner to handle. To extract a piece of a string, Standard
BASIC uses the notation:

lines$ [2:5]

which gives the second through fifth characters of the
string of characters contained in the string variable, line$.
Such specia functionsas SEG$, LEFTS$, Rl GHT$, and
M D$ are no longer needed.

Standard BASIC includes provision for both new func-
tion definitions and named subroutines with arguments.
The function definitions can contain multiple lines, asin:

FUNCTI ON answer (response$)
SELECT CASE ucase$ (response$)

CASE “VYES”

LET answer =1
CASE “NO~

LET answer = 2
CASE el se

LET answer = 3
END SELECT

END FUNCTI ON

Standard BASIC allows both the function definitions
and the named subroutines to be either internal or exter-
nal. Internal defined functions and subroutines are use-
ful in breaking up large programs into more easily man-
aged pieces. External defined functions and subroutines
are necessary for building libraries of routines that can
be used as “black boxes,” without worrying about the
details.

External subroutines (and defined functions) are iden-
tified by the keyword EXTERNAL and also appear after
the END statement of the program or within modules:

I Main program

| NPUT pronpt “Enter two
nunbers”: x, y
CALL sum (x, vy, S)
PRINT “The sumis
PRI NT
LOOP
END
I Ext er nal Subroutine
EXTERNAL SUB sum (a, b, c¢)
LETC=a+b
END SUB
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Except for the calling sequence, external subroutines are
entirely independent of the main program. If a particular
computer allows it, they can even be separated from the
main program and kept in library files.

Standard BASIC a so includes a specification for mod-
ules, which are a way of packaging several subroutines
together with the data upon which they operate. (This ca-
pability istheessential requirement of object-oriented pro-
gramming.) Standard BASIC offers several types of files,
the most common of which consists solely of text charac-
ters. They are called text filesand can be printed, just asif
they had been created with a screen editor (several other
filetypesare aso included in Standard BASIC). Filesare
opened in atypical fashion:

OPEN #2: nane “testdata, " access
i nput

will “open” the file whose nameis “testdata’ for inputting
only and will allow the program to refer to it by number
(#2). Other options are possible, but they are al provided
through English keywords (e.g., “name” and “access”)
and not through special punctuation, which is easy to
forget.

Most versions of BASIC alow detection and recov-
ery from errors through the use of an ON ERROR
GOTO 200 typeof statement. Standard BASIC provides
the equivalent capability, but in a structured form. For
example,

DO
| NPUT pronpt “Fil enamne: f nanes$
VWHEN EXCEPTI ON I N
OPEN #1: name fnane$
EXIT DO
USE
PRINT “File~”; fnane$;
“not there: retry.”
END WHEN
LOOP

This represents a typical need in a program: to alow the
user to give the name of afile to be used but to allow the
program to continue gracefully if that file happens to not
exist. (Modern versions of BASIC use a “file open dialog
box,” which presents in visual form alist of file names
from which to choose.)

Perhaps the single most important contribution of stan-
dard BASIC is its provision for graphics. The man-
ner in which graphics is done is based on the GKS
(Graphics Kernel System) International Standard, with
a few exceptions and additions. The user always works
in user coordinates (sometimes called problem or world
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coordinates) regardless of how many pixels the screen
contains. An example of how the user specifies these co-
ordinatesis

SET W NDOW x| ow, xhi gh yl ow, yhigh
The user can then draw lines with:
PLOT LINES: x0, yO; x1, yl; x2, y2

which obviously draws a line segment from the point
(x0, y0) to the point (x1,y1), and then on to the point
(x2,y2).

If drawing dotsis preferred, the user would use:

PLOT PO NTS: x0, yO0; x1, yl; x2, y2

Standard BASIC allows the lines to be drawn in avariety
of line styles and the points to be plotted in a variety of
point styles.

Another variation:

PLOT AREA: x0, yO0O; x1, yl; x2, y2

will draw atriangular region, theinterior being filled with
the color currently in effect.

B. Impact of the Standard

While not perfect, ANSI standard BASIC defined aclean
programming language. Not only would it be as easy to
use as the original Dartmouth BASIC, but it also pro-
vided the MODULE feature, which would permit aform
of object-oriented programming. If the computing world
in 1987 and 1991, when the standards appeared, had
even remotely resembled the computing world of 1974,
when work on the standards commenced, the standard for
BASIC might have had a major impact, but it has been
largely ignored. Why? Because of the microcomputer
revolution.

V. THE MICROCOMPUTER REVOLUTION

The original microcomputerswere small and slow. At first
they could not compete with larger, time-shared com-
puter for sophistication. But the growth was so rapid
that microcomputers, sometimes called personal com-
puters, and work stations have now taken over almost
al the computer applications once the province of large
machines.
Consider the following approximate comparisons:
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Early M odern personal
microcomputers computers
Speed 4 MHz per byte 500 MHz per 8 bytes
Memory (RAM) 4096 bytes 64 megabytes
Disks Lessthan amillion More than 16 billion
bytes bytes
Monitors Crude character only, Excellent resolution,
monocolor monocolor
Interaction Keystrokes only Keystrokes, mouse,
voice-actuated
Modes Simple computations Mouvies, voice, internet
Application Several thousand lines  Millions of line of code
size of code

(The above numbers do not represent any actual computer
but aretypical. The early microcomputer numbersaretyp-
ical for machinesin the mid-1970s. The modern numbers
are typical for machines in the year 2000.) With this al-
most unbelievable increase in power, it was only natura
that applications had to grow as well.

What about BASIC? The versions of BASIC on the
small microcomputers of the 1970s were also small and
were hardly more powerful than the original Dartmouth
BASIC in 1964. But, as microcomputer power rapidly
grew, so did theseversionsof BASIC. Featureswereadded
rapidly to alow accessing the specific features of these
machines. For example, most versionsincluded the PEEK
and POKE commands to get at the underlying details of
the crude operating systems.

Except in rare instances, these developments ignored
the standard. While most vendors attempted to make
their new versions upward compatible with their previ-
ous versions, there were significant incompatibilities as
time went on. The incompatibities were more marked be-
tween versions of BASIC from different vendors. Thus,
the various versions of BASIC grew to provide program-
mersof applications accessto theincreased capabilities of
computers.

VI. PRESENT AND FUTURE

In this section, we make general observations about pro-
gramming language environments existing in the year
2000. Since these are commercia products, we refrain
from identifying any of them by name lest we appear to
endorse one or more of them, or lest we omit a version
that deserves mention.

A. Basic as a Major Application Language

The modern personal computers with their large and col-
orful screen displays, high speed, and use of mouse or
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mouse-like pointing devices dictated far more sophisti-
cated applicationsthan those of afew yearsearlier. Rather
than dropping BASIC, the vendors rapidly added new
features to handle the new capabilities. For example, the
new applications required sophisticated treatment of ob-
jects such as windows and controls such as push but-
tons. For atime, these featureswere made availablein the
usua way, by adding statements or subroutine librariesto
the language, but more programmer-friendly ways were
devised.

B. Visual Interface Building Tools

One major devel opment was the introduction of graphical
toolsto build the user interfaces. These interfaces, called
graphical user interfaces (GUI), replaced the old typed
commands of the origina BASIC and the early micro-
computer versions. With these tools, application devel op-
ers can build their application’s user interface by clicking
and dragging the mouse. The mouse is used to select the
control (i.e., push button) and to moveit to anew location
or resize it. Once the interface has been built, the pro-
grammer proceeds to supply substance to the application
by filling in the callback subroutines. Initialy, the call-
back subroutines are empty, so the programmer must fill
them using atraditional programming language—BASIC,
in this case.

C. Object-Oriented Programming

Object-oriented programming provides ahigher level way
for programmers to envision and develop their applica
tions. Without attempting to definethe concept, we merely
note that one deals with objects and methods. For exam-
ple, an object might be a window, and a method might
be to display the window (make it visible.) As applied
to BASIC, the concepts of object-oriented programming
are partly substantial and partly nomenclature. Dealing
with windows, movies, sound strips, internet access, and
soonismadesimpler, at |east conceptually, by thinking of
them asobjects. At the other end of the spectrum, aBASIC
variable, such as X, can be thought of as an object, while
PRI NT can be thought of asamethod that can be applied
to that object. This is not to diminish the importance of
object-oriented programming. Its most important aspect
is that the detailed coding, which must exist at the lower
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level, is hidden. This detailed coding can be enormously
complicated in itself, but the application developer need
not be concerned with it.

The developer must be familiar with the details of the
BASIClanguageavailableto him, ashemust fill inthesub-
stance of the callback subroutines. This BASIC language,
while a descendant of the original Dartmouth BASIC,
would hardly be recognized as such. A few keywords re-
main, but many have been changed, and many moreadded.
In one popular version, there are over 250 keywords and
function names. (Contrast this with the original Dart-
mouth BASIC that had 14 statements and a small handful
of built-in functions.) Another popular version uses so
many different keywords that it is hardly recognizable
as BASIC. still, one can trace their genealogy from the
Dartmouth BASIC of 1964, and they al retain a measure
of the ease of use that was the magjor goal underlying its
invention.

SEE ALSO THE FOLLOWING ARTICLES

C AND C++ PROGRAMMING LANGUAGE e COMPUTER
ALGORITHMS e MICROCOMPUTER DESIGN e PROLOG
PROGRAMMING LANGUAGE e SOFTWARE ENGINEERING
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I. The Evolution of C and C++
Il. Standard C Features
lll. Key C Features
IV. Key C++ Features

GLOSSARY

ANSI C Version of C standardized by the ANSI (Amer-
ican National Standards Institute) X3J11 committee.

Array Data type that has multiple elements, all of the
same type. Individual elements are accessed using a
numeric index expression. C array elements are num-
bered from zero to one less than the number of array
elements.

Base class Class from which another can be created by
adding and/or redefining elements.

Cast C operation that converts an expression from one
type to another.

Class C++ data type whose members (elements) may
consist of both procedures and data (information). C++
classes are syntactically based on C structures.

Declaration Description of the name and characteristics
of a variable or procedure.

Dereference To access the value that a pointer expression
points toward.

Derived class Class that has been created from a base
class.

Language

Embedded assignment Assignment statement that ap-
pears in a context where many people would expect
simple expressions, such as in the control expression
of an if or while statement.

Enumeration C data type that allows you to create sym-
bolic names for constants.

Inheritance Capability of a programming language that
allows new data types to be created from existing types
by adding and/or redefining capabilities.

Iterate To perform a task repeatedly.

K&R C The first version of C, which was specified in
the book The C Programming Language by Kernighan
and Ritchie.

Multipleinheritance Similar to inheritance, but a capa-
bility in which new data types can be created simulta-
neously from sev

Object An instance of a class. An object occupies a re-
gion of storage, is interpreted according to the conven-
tions of the class, and is operated on by class member
functions.

Object-oriented programming Style of programming
in which classes are used to create software objects
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whose use and function corresponds to real world
objects.

Operand Value or expression that is acted on by an op-
erator.

Operator Something that can combine and modify ex-
pressions, according to conventional rules, such asthe
+ (add) operator that addsits operands, or the* (deref-
erence) operator that can access a value pointed at by
apointer expression.

Pointer Constant or variable whose value is used to ac-
cessavalueor afunction. Thetypeof apointer indicates
what item the pointer accesses. The accessed item can
itself be a pointer.

Polymorphism Ability of a routine or operator to have
variousbehaviorsbased on the dynamically determined
(runtime) type of the operand.

Standard I/O library (stdio) Set of routines that pro-
vides input/output (1/0) facilities that are usable on
most systems that support C.

Strongly typed Said of a programming language that
only allows operations between variables of the same
(or similar) type.

Structure C data type that has multiple elements, each
with its own type and name.

Type Characteristic of avalue (avariable, a constant, or
thereturn value of aprocedure) that specifieswhat val-
uesit can attain and what operations can be performed
onit.

Type checking Checking performed by most languages
to make sure that operations are only performed be-
tween compatible data types.

Union C datatype that has multiple elements, each with
its own type and name, but all of which are stored at
the same location.

Usual arithmetic conversions Conversions that C per-
formsto allow expressionsinvolving different types of
operands.

Weakly typed Said of a programming language that al-
lows operations between various types.

WG21 1SO committee that devel oped a C++ standard.

X3J11 ANSI committee that developed a C standard.

X3J16 ANSI committee that developed a C++ standard.

C IS A FLEXIBLE computer programming language—
it has a combination of low- and high-level features that
make it a powerful language for a wide range of applica-
tions. Thelow-level aspectsof C help programmersaccess
machine-specific features and write efficient programs,
while the high-level features promote clear and concise
expression of a programmer’s ideas. | mplementations of
C areavailableon nearly every computer architecture, and
it is the only programming language that is available for
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controlling many computer-like devices, such as graphics
processors, signal processors, and other special-purpose
programmable machines.

C++ isan extension to C that adds support for object-
oriented programming and for generic programming. Its
major new feature, the class, is a customizable data type
that combines data elements with procedures. Classes al-
low C++ programmers to create objects, so that the struc-
ture of programs can reflect the structure of the original
problem. C++ alsoincludestemplates sothat you canwrite
software that generically adaptsto different types of data,
iostreams, which is a new input/output library, and the
standard template library that implements containers and
many standard algorithms.

I. THE EVOLUTION OF C AND C++

During the early 1970s, Ken Thompson created the first
version of the UNIX’ system on an obsolete PDP-7 com-
puter. The system showed promise, but it was written in
assembly language, which made it impossible to move
it to a more modern computer. In 1973, Dennis Ritchie
developed the C language, and then he and Thompson
rewrote the UNIX system in C, and moved it to more
up-to-date computers. The advantage of C over assem-
bler isthat it can operate on many different computer ar-
chitectures, but like assembler, C gives the programmer
fine-grained control of the computer hardware. This key
step demonstrated that an operating system could be writ-
ten in a higher level language, and it also proved that C
was a powerful and efficient language that could be used
for applications once thought to require arduous assembly
language devel opment.

Cispart of the FORTRAN and ALGOL family of pro-
gramming languages. In this family, programs are speci-
fied as a series of operations upon data using a notation
that resembles algebraic notation. Individua steps in a
program can be executed based on alogical condition, ex-
ecuted repetitively, or grouped together and executed as
a unit. Most data items are named, and data items have
specific types, such as character, whole number, or real
number.

Within this general family of programming languages,
C owes the most to two specific forerunners, BCPL and
B. BCPL is a systems programming language that was
developed by Martin Richards, while B is alanguage de-
veloped by Ken Thompson; its most interesting feature is
its scarcity of datatypes.

Thefirst book on Cwas The C Programming Language
by Kernighan and Ritchie. It included an appendix that
compactly specified the language. The version of C speci-
fied inthebook isoften called K&R C. Nearly all versions
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of C, even if they contain additional features, will at min-
imum contain all of the features of K&R C.

In 1979, AT&T disseminated a paper written by B. R.
Rowland that specified afew minor changesto the C lan-
guage. Someof thesefeatureswereanticipatedintheorigi-
nal K& R definition, otherswerearesult of experiencewith
the language. A more formal description of these changes
appeared in the 1984 AT& T Bell Laboratories Technical
Journal. Most of these features have been in widespread
use since the early 1980s.

Although C was awidely used language by 1980, there
was no attempt to forge an official standard until 1984,
when the ANSI (American National Standards Institute)
committee X 3J11 wasconvened. Thusby thetimethecom-
mittee started work there was already over adecade of ex-
perience with the language, and there was a huge existing
body of Clanguage software that the committee wanted to
preserve. The role of the X3J11 committee was primarily
to codify existing practice, and only secondarily to add
new features or to fix existing problems.

During the early 1980s, while C’s position as a lead-
ing devel opment language was being consolidated, Bjarne
Stroustrup of AT& T Bell Laboratories developed aC lan-
guage extension called C with Classes. The goa of C
with Classes was to create a more productive language
by adding higher level abstractions, such as those found
in Simula, to C. The major enhancement was the class, a
user definable data type that combines traditional data el-
ements with procedures to create and manipulate the data
elements. Classes enable one to adopt an object-oriented
programming style, in which programs are composed of
software objects whose design and use mirrorsthat of real
world objects.

By 1985, C with Classes had evolved into C++ (pro-
nounced “C plus plus”), and it began to be used outside
of AT& T Bell Laboratories. The most important reference
for C++ at that time was The Annotated C++ Reference
Manual by Ellis and Stroustrup. In 1987 the International
Standards Organization (1SO) formed Working Group 21
(WG21) to investigate standardization of C++, while at
about the same time ANSI convened committee X3J16 to
create a standard for the C++ programming language. In
late 1998 the standards efforts concluded with the publi-
cation of ISO/IEC 14882-1998, a standard for C++.

Building C++ on top of C hasworked well for avariety
of reasons. First, C’s relatively low-level approach pro-
vided a reasonable foundation upon which to add higher
level features. A language that aready had higher level
features would have been a far less hospitable host. Sec-
ond, programmers have found that C++’s compatibility
with C has smoothed the transition, making it easier to
move to a new programming paradigm. Third, one of
Stroustrup’s most important goals was to provide ad-
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vanced features with roughly similar efficiency to that
of C. This goal, which has been largely attained, gives
C++ major efficiency advantages over most other object-
oriented languages.

Il. STANDARD C FEATURES

C like most programming languages, is based on a core
feature set that is common and uncontroversial. The core
features deal with therulesfor storing and managing data,
and with control statements (control structures) that let a
programmer specify a sequence of operations on data.

A. Data Types

C’s basic data types include single characters, short and
long integers (signed and unsigned), enumerations, and
single and double precision floating-point numbers. Typ-
ical precisions and ranges for the numeric types on 32-bit
computersare shownin Tablel. C aso hasone other basic
type, void, which will be discussed in Section I11.G.

C has a cavalier attitude toward operations involving
different numeric types. It allows you to perform mixed
operations involving any of the numeric types, such as
adding acharacter to afloating-point value. Thereisastan-
dard set of rules, called the usual arithmetic conversions,
that specifies how operations will be performed when the
operands are of different types. Without going into detail,
theusua arithmetic conversionstypically direct that when
two operands have a different precision, the less precise
operand is promoted to match the more precise operand,
and signed types are (when necessary) converted to
unsigned.

C enumerations allow the programmer to create a data
type whose values are a set of named numeric constants.
Unfortunately, support for enumerationsin the popular C
compilers has been inconsistent and unreliable, and they

TABLE | Basic C Data Types?

Type Size (bytes) Range
char 1 —128 ... 127
unsigned char 1 0..255
short 2 —32768 ... 32767
unsigned short 2 0... 65535
int 4 —2,147,483,648 ... 2,147,483,647
unsigned int 4 0... 4,294,967,295
long 4 —2,147,483,648 ... 2,147,483,647
unsigned long 4 0...4,294,967,295
float 4 —34x10738 .34 x 10%®
double 8 —1.7x10738 1.7 x 10%%8

¢ On typical 32-bit computers.
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are not widely used. Instead of enumerations, most pro-
grammers usethe preprocessor #define statement to create
named constants. This approach lacks some of the merit
of enumerations, such as strong type checking, but pre-
processor definitions, unlike enumerations, are available
on al implementations of C.

In addition to its basic data types, C has four more
sophisticated data types: structures, unions, bitfields, and
arrays.

A structure isaway of grouping data. For example, an
employee’srecord might contain hisor her name, address,
title, salary, department, telephone number, and hiring
date. A programmer could create astructureto store all of
thisinformation, thereby makingit easier to store, retrieve,
and manipulate each employee’s data. Each element in a
structure has aname. C language structures are anal ogous
to records in a database.

A union is a way of storing different types of items
in asingle place. Of course, only one of those types can
be there at any one time. Unions are sometimes used to
providean alternate accessto adatatype, such asaccessing
the bytesin along integer, but the most common useisto
save space in alarge data set by storing only one of a set
of mutually exclusive pieces of information.

A bitfieldissomewhat likeastructure, but each member
of a hitfield is one or more bits of a word. Bitfields are
a compact way to store small values, and they are al'so a
convenient way to refer to specific bitsin computer control
registers.

An array is a sequence of dataitems. Each item in an
array is the same type as al the other items, though they
all may have different values. Each array has a name, but
the individual elements of an array do not. Instead, the
elementsin an array are accessed using anindex, whichis
anumeric value. Thefirst elementinaC array isaccessed
using the index 0, the next using the index 1, and so on
up to the highest index (which is aways one less than the
number of elementsin the array).

Whereas there are many operations that can be per-
formed on C’s numeric data types, there are only a few
operations that are applicable to the four more complex
data types. These operations are summarized in Table 1.

TABLE Il Operations on C’s Advanced Data Types

Array Compute its address
Access an individual element using index expression
Structure, Accessit as awhole unit, such as assign one to another,
union, or or supply one as a parameter to a procedure
bitfield Accessindividual elements by name
Compute its address
Each type of structure, union, or bitfield is only
compatible with others of the same type.
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TABLE Ill Arithmetical and Logical Operators

Arithmetical

+ Addition (binary) - Subtraction (binary)
+ Force order of - Negation (unary)
evaluation (unary)

++ Increment - Decrement

* Multiplication / Division

% Remainder

Logical
== Equality 1= Not equal

< Lessthan >  Greater than
<= Less than or equal >=  Greater than or equal
&& Logica AND || Logica OR

! Logica NOT

B. Operators

Cisknownasan operator-richlanguagefor good reason. It
has many operators, and they can be used in waysthat are
not allowed in tamer languages, such as Pascal. The basic
arithmetical and logical operators, detailed in Table I,
are present in most programming languages. The only un-
usual operatorsin Table Il are increment and decrement.
For ordinary numeric variables, increment or decrement is
simply addition or subtraction of one. Thusthe expression

i++;

(i is a variable; the expression is read aloud as “i plus
plus’) is the same as the expression

i =1+ 1;

(againi isavariable; the expressionisread aloud as “i is
assigned the value i plus on€e”). However, the increment
and decrement operators can aso be used inside a larger
expression, which provides a capability not provided by
an assignment statement. More on this specia capability
in Section 111.D.

C’sbit manipulation operators, shownin Table |V, pro-
vide a powerful facility for programming computer hard-
ware. They provide the same capabilities asthetraditional
logical operatorsbut onindividual bitsor setsof bits. There
are also two shift operators, which allow the bitsin anin-
teger or character to be shifted left or right.

TABLE IV Bit Manipulation Operators

& Bitwise AND \ Bitwise OR
~ Bitwise complement A Bitwise exclusive OR
< Left shift > Right shift
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TABLE V Assignment Operators

= Assign A= Assign bitwise exclusive OR
&= Assign bitwiss AND |=  Assign bitwise OR
<<= Assignleft shift >>=  Assignright shift
+=  Assign sum —=  Assign difference
* = Assign product /= Assign quotient

%= Assign remainder

The assignment operators, shown in Table V, begin to
hint at C’s operator-rich capahilities. In a traditional as-
signment statement, an expression is evaluated to produce
aresult, and then that result isstored in avariable. Assign-
ment operators reflect the fact that the initial value of the
result variableis often used in the expression. One simple
exampleis

i=1* 2;

(i isavariable; this statement means that i is multiplied
by two, and then the result isstored ini.)

Using the multiplication assignment operator, this can
be written

In simple situations assignment operators do not provide
much advantage. However, in more complex situations
they can be very important. One advantage is that the
address calculation (to access the variable) only needs to
be performed once. For example, the statement
x[2*1] [j/100] [k%10] += 100;

adds 100 to one element of athree-dimensional array. The
work in this expression is the elaborate indexing calcu-
lation on the left side, which only needs to be done once
because the addition assignment operator isused. Another
advantage is that the assignment operators can provide
clarity, by emphasizing the dual role of the variable on the
|eft of the assignment operator.

In a computer, all datais stored in memory locations
which are identified by unique numeric addresses. Most
programming languagestry to present aconceptual frame-
work at a high enough level to avoid the low details, such
aswhereavariableisstored. C, however, makes easy and
common use of address information, and it contains a set
of operatorsfor working with addresses, which are shown
in Table VI. For storing addresses, C contains pointer
variables, which are variables that contain the addressess
of other variables (or occasionally the addresses of func-
tions).
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Theindirection operator (*) takesthe address generated
by an address-valued expression, and accesses the value
stored at that address. For example, if pisavariablewhose
typeis pointer to a character, then writing

p

in a program symbolizes an expression that contains the
address of a character, while the expressions

*p
accesses that character. The expression
*(p + 1)

accesses the following character in memory, and so on.

The address-of operator (&) does the opposite. It takes
a reference to a variable, and converts it to an address
expression. For example, if f isafloating-point variable,
the expression

f
accesses the floating-point variable, while the expression
&f

isthe address of the floating-point variable. Used together,
these two have anull effect. Thus, the expression

*&f

isequivalent to f by itself.

The sequential evaluation operator is used to sneak two
or more expressionsinto aplacewhere, syntactically, only
oneexpressionisexpected. For example, Cwhileloopsuse
a control expression to control the repetition of the loop.
While loops execute so long as the control expression is
true. A typical while statement is

i=0;
while (i1++ < 10)
processDatal() ;

TABLE VI Miscellaneous Operators

*  Indirection & Addressof
" Sequential evaluation ?: Conditiona (tertiary)
si zeof  Sizeof typeor variable (type) Typecast
Member of —> Member pointed
toward
[ Element of array () Parentheses (grouping)
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In this loop, the repetition will continue as long as the
value of thei variableislessthan 10. The ++ increments
the value of i after each test is made, and the body of
the loop is a call of the function named processData. If
we want to have the control expression also increment a
variable named k each time, we can use

while (k++, 1++ <10)
processData () ;

The comma following k++ is the sequential evalua-
tion operator. It specifies that the k++ expression should
be evaluated, and then the i ++<10 expression should be
evaluated. The value result is always that of the rightmost
expression.

C’s conditional operator, which is also called the ter-
tiary operator, lets one use the logic of an if statement
inside an expression. The syntax of the conditional oper-
ator is difficult. The control expression is followed by a
guestion mark, followed by two variant expressions sepa-
rated by a colon:

controlexpr ? exprl expr?2

If the control expression is true, the result is exprl,
otherwise, the result is expr2. For example, one might
want to use a variable called index to select a specific
element of an array named stheta. If index is 0, we want
to access the zeroth element, if indexis 1 or —1, we want
to access the first element of the array, if it is 2 or —2,
we want to access the second element, and so on. Thisis
easily written using a conventional if statement:

if (index > 0)

sx = sthetal[index];
else

sx = stheta[-index];

Instead of thisfour-lineif statement, we can use aone-
line conditional expression:

sx = sthetal[index > 0 ? index
-index] ;

The biggest advantage of the conditional operator isnot
in simple examples, like that above, but in more compli-
cated settings, in which it allows one to avoid duplication
of complicated expressions.

Thesizeof operator isoneof C’smostimportant features
for writing portable programs. It helps a program adapt to
whatever computer architecture it is running on by pro-
ducing the size (in bytes) of its operand. The operand may
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either be avariable or the name of a data type. For exam-
ple, sizeof is often used in conjunction with the standard
C memory allocation routine, malloc(), which must be
passed the number of bytesto allocate. The statement

iptr = malloc(1000*sizeof (int)) ;

(iptr is a pointer to an integer) allocates enough space
to store an array of 1000 integers. This statement will
work correctly onall machinesthat support C, eventhough
different machines have different sized integers, and thus
need to allocate different amountsof memory for thearray.

C, as originally designed, was a very weakly type-
checked language. In the earliest versions, pointers and
integers were (in many situations) treated equivalently,
and pointersto different types of structures could be used
interchangeably. Since that time, stronger and stronger
type checking has become the norm. By the time of the
ANSI C committee (mid-1980s), most implementations of
C encouraged programmers to pay much more attention
to issues of type compatibility.

One of the most important tools for managing types
is the cast operator. It allows a programmer to specify
that an expression should be converted to a given type.
For example, if variables named thow and tzero are long
integers, the natural type of the expression tnow-tzero is
also a long integer. If you need another type, you can
specify the conversion using a cast operator:

(unsigned int) (tnow-—tzero)

The parenthesized type name, which is (unsigned int) in
this case, specifies that the value of the following item
should be converted to the given type.

The member-of (.) and member-pointed-toward (—>)
operatorsareused to accessmembersof structures. For ex-
ample, if box isastructure variable with amember named
TopRight, then the reference box. TopRight (the period in
the expression is the member-of operator) accesses the
TopRight member of the box structure. The difference be-
tween these two operatorsis that the member-of operator
expectstheitem to itsleft to be a structure variable, while
the member-pointed-toward operator expects the item to
itsleft to be apointer to astructure. Both operators expect
that the item to the right is the name of a member of the
structure.

The member-pointed-toward operator is actually a
shortcut. For example, if pBox is a pointer to abox struc-
ture (with the TopRight member mentioned previously),
then the expression

pBox->TopRight
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accesses the TopRight member of the structure. This is
actually a shortcut for writing

(*pBox) .TopRight

which usestheindirection operator (*) to dereferencethe
pointer-to-structure and then uses the member-of operator
to access the given member.

The last two operators in Table VI are square brack-
ets (for array subscripting) and parentheses (for group-
ing). These two operators, together with the assignment
operator, are familiar features from other programming
languages, but they are not considered operators in most
languages. However, in C these elements are considered
to be operators to make the expression syntax as regular,
powerful, and complete as possible.

C. Control Structures

In contrast to its eclectic set of operators, C has an un-
remarkable collection of control structures. One possible
exception is the C for loop, which is more compact and
flexible than its analogs in other languages. The purpose
of the C control structures, like those in other languages,
is to provide alternatives to strictly sequential program
execution. The control structures make it easy to provide
aternate branches, multi-way branches, and repeated exe-
cution of partsof aprogram. (Of course, themaost profound
control structure is the subroutine, which is discussed in
Section 11.D.)

A compound statement is simply a group of statements
surrounded by curly braces. It can be used anywhere that
asimple statement can be used to make a group of state-
ments into a single entity.

for (i=0; i<10; i++) {

x[1] = 0;
y[i]l = 0;
z[1] = 0;

In the example above, the three assignment statements
form a compound statement because they are enclosed in
the curly braces. (Thefor statement will be discussed later
in this section.)

The goto statement is the simplest, the oldest, and the
most general control statement. Unfortunately, it is also
one of the most easily abused statements, and its use is
discouraged. It is seldom used by people who write C
programs, but it is often used extensively in C programs
that are generated by (written by) other programs. In pro-
grams written by people, the goto is usually reserved for
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handling exceptional conditions, such as branching to an
error-handling block of code.

Theif statement isused to provide alternative execution
pathsinaprogram. Inanif statement, one of two aternate
possibilitiesistaken, based on thetrue/false value of atest
expression. The syntax isthe following.

if (expr)

st at enent 1;
else

st at enent 2;

The else part isoptional, and either statement may be a
compound statement. (The expression and the statement
above are shown in italics, to indicate that they may be
any C expression or C statement. The words if and else
are keywords, which must appear exactly as shown, which
iswhy they are not shown in italics.) It is very common
for the else part of the if statement to contain another if
statement, which createsachain of if-statement tests. This
is sometimes called a cascaded if statement:

if (code == 10)
statenent 1;

else 1f (code < 0)
st at enent 2;

else if (code > 100)
st at enent 3;

else
st at enent 4;

In the series of tests shown here, only one of the four
statements will be executed.

An alternative multi-way branch can be created by a
C switch statement. In a switch statement, one of severa
aternatives is executed, depending on the value of atest
expression. Each of the alternatives is tagged by a con-
stant value. When the test expression matches one of the
constant values, then that aternative is executed.

The syntax of the switch statement is somewhat com-
plicated.

switch (expr) {
case const 1:
st at enent 1;
break;
case const 2:
st at enent 2;
break;
default:
st at enent 3;
break;
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In this skeleton switch statement, expr is the test ex-
pression and constl and const2 symbolize the constants
that identify the alternatives. In this example, each ater-
native is shown terminated by abreak statement, whichis
common but not required. Without these break statements,
flow of control would meander from the end of each alter-
native into the beginning of the following. This behavior
is not usually what the programmer wants, but it is one
of the possibilitiesthat is present in C’s switch statement.
The bresk statement will be discussed further later.

The switch statement is less general than the cascaded
if statement, becausein acascaded if statement each alter-
native can be associated with acomplex expression, while
in aswitch statement each alternative is associated with a
constant value (or with several constant values, multiple
case |labels are allowed).

The switch statement has two advantages over the more
flexible cascaded if statement. The first is clarity; when a
solution can be expressed by a switch statement, then that
solution is probably the clearest solution. The second is
efficiency. In acascaded if statement, each test expression
must be evaluated in turn until one of the expressions is
true. In a switch statement, it is often possible for the C
compiler to generate code that branches directly to the
target case.

A while loop lets you repeatedly execute a statement
(or group of statements) while some condition is true. It
isthe simplest iterative statement in C, but it is also very
general.

while (ch != EOF)
st at enent ;

The body of this loop (the statement) will be executed
repeatedly until thevalue of the ch variable becomesequal
to the value of the standard predefined constant EOF (end
of file). Presumably, something in the statement will alter
the value of ch so the loop will end. Also, it is presumed
that ch is assigned a value prior to the execution of the
while statement. (Note that the statement will not be exe-
cuted if theinitial value of ch is EOF.)

It is easy to use a while loop to step through a series
of values. For example, the following while loop zeroes
the first ten elements of an array named x. (An integer
variablenamed i isused asthe array index and astheloop
counter.)

i=0;
while (i < 10) {
x[1i++] = 0;

}

A close relative of the while loop is C’s do loop. It
repeats a statement (or a group of statements) while a
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condition istrue, but the condition istested at the bottom
of theloop, not at the top of theloop. Thisensuresthat the
body of the loop will always be executed at least once.

x[1i] = 0;
while (++1 < 10);

As with a while loop, something in the body of the
loop or the control expression presumably changes the
valueof thetest expression, sothat theloopwill eventually
terminate.

C’s most elaborate loop is the for loop. Here is the
general form of the for loop:

for (init_expr; test_expr;
inc_expr)
st at ement ;

Asin the previous examples, the statement will be re-
peatedly executed, based on the values of thethree control
expressions. Theinit_expr isan initialization expression.
It isexecuted just once—before the body of the loop starts
to execute. The test_expr is executed before each itera-
tion of the loop. If it istrue, the next iteration will occur,
otherwise the loop will be terminated. The inc_expr is
executed at the conclusion of every iteration, typically to
increment aloop counter.

Hereisatypical for loop. It performs the same task as
before, setting the first ten elements of an array named x
to zero, using aloop counter named i :

for

( 1<10; 1++)
x[1i :

i=0;
1 = 0;

Note that the while version of thisloop was four lines,
whilethe for version of theloop isjust two. Thisfor loop
is an example of what Kernighan and Ritchie, authors
of the seminal reference book on C, call “economy of
expression,” which isone of C’'s most distinctive traits.

C has two additional flow of control statements, break
and continue, that augment the capabilities of the loops
that have just been described. The break statement is used
to break out of (to immediately terminate) the enclosing
do, while, for, or switch statement. Its use is routine in
switch statements, to terminate the switch statement at
the conclusion of each individual case. In do, while, and
for loops, break is often used to terminate the loop pre-
maturely when an error or special condition occurs. Using
a break in the body of aloop often simplifies the control
expression of theloop, becauseit allows special case code
to be placed elsewhere.
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The continue statement is used to immediately start the
next iteration of the surrounding do, while, or for loop. It
issomewhat like ajump to the end of aloop. For example,
suppose a program is reading alist of words from a file.
Certain processing must occur for most words, but a few
wordsarejust ignored. Hereisapseudocode sketch (pseu-
docode isn’t true C; it merely expresses an idea without
following strict syntax) of how that could be written using
the continue statement.

while (readaword ()) {
if (word is in the ignore list)
continue;
process a word;

}

The effect of the continue statement is to skip the pro-
cess aword part of the loop body for words that arein the
ignore list.

D. Procedures

Procedures aretoolsfor packaging agroup of instructions
together with agroup of local variablesto perform agiven
task. You define a procedure by specifying what informa-
tion is passed to the procedure each time it is activated,
listing its local variables, and writing its statements. As
discussed in Section 11.B, the statements inside a proce-
dure can access global data that are declared outside the
procedure, but it isnot possiblefor other proceduresto ac-
cess the data that are declared within a procedure (unless
the procedure exportsthe address of alocal variable). This
insularity is the most important feature of procedures. It
helps the programmer to create small, easily understand-
able routines.

Figure 1 contains a procedure to solve the quadratic
equation

Ax?4+Bx+C =0
using the well-known quadratic equation:

—B++vB2—-4x AxC
2x A

For example,
2x*+3x+1=0

is a quadratic equation (A is 2; B is 3; C is 1) whose
solutionis

—3+v3F-4x2x1
2x2 ’
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which simplifiesto
—-3+4/9-8
4
which has two solutions, —1 and —0.5.

The first part of solve specifies the procedure name,
parameter names, and parameter types. The header of the
solve procedure indicates that it expects three parameters,
whichitasocallsa, b, and c. The body of solve calculates
the solution’s discriminant, which isthe expression inside
the square root symbol, and then calculates the answers,
based on whether the discriminant is positive, zero, or
negative. Most of the body of solveisalargeif statement
that handles each of the three types of disciriminants.

In a program, you can invoke the solve procedure as
follows:

solve (2.0, 3.0, 1.0);

In the example above solve is invoked using constant
numerical values, but you could also use humerical vari-
ables.

/*

* golve the quadratic equation
ax**2 + b*x + ¢ = 0

* using the formula x = ( -b

+/- sqgrt (b**2 - 4*a*c))/2*a
*/
void solve (double a, double b,
double c)
{
double d; // the discriminant
double rl, r2;
d=Db*Db -4 *a* c;
if (d > 0) { // two real roots
rl = (-b - sgrt (d))/(2 * a);
r2 = (-b + sgrt (d))/(2 * a);
printf ("x1 = %g, x2 = %9,
sg\n”, rl, r2);
} else if (d == 0.0) { // one
real root
rl = -b/(2 * a);
printf (”x1 = x2 = %g\n”, rl);
} else { // two real/imaginary
roots
rl = -b/(2 * a);
r2 = sqgrt (abs(d))/(2 * a);
printf ("x1 = %g + %gi,
x2 = %g - %gi\n”, rl,
r2, rl, r2);

}

FIGURE 1 A program to solve the quadratic equation.
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I1l. KEY C FEATURES

The features of C that are discussed in the following sub-
sections set C apart from many other languages. Many
of these features are found in some form in other lan-
guages, but only C combines them within a consistent
framework.

A. Separate Compilation

Separate compilationistheability to develop aprogramin
several independent pieces. Each pieceisstoredinitsown
file in the computer, and each can be edited and worked
on separately. Each source fileisindependently translated
(compiled) into amachinelanguagefile, whichiscalled an
object file. After theindividual partshave beenwritten and
compiled, they are combined to form acomplete program
inaprocess called linking.

C’s support for separate compilation has allowed it to
provide many vital servicesin external software libraries.
For example, many programming languages have built-in
facilities for assigning one text string to ancther, raising
a number to a power (exponentiation), or for performing
data input and output. C has all of these capabilities, but
they are provided by external 1/O libraries. This feature
of C has the benefit of making the compiler smaller and
easier to maintain, and it also increases the flexibility of
C, becauseit allows programmersto rework some of these
features to fit specia circumstances. However, it has the
disadvantage that some of these vital features are not inte-
grated into the language as closely as in other languages,
and it forces the programmer to endure the overhead of
subroutine calls more than might otherwise be necessary.

C has several features that facilitate separate compila-
tion. The static and extern storage classes are used to or-
ganize programs. The static storage classis used to create
local data or procedures. This means that things declared
static cannot be accessed from outside the current file (un-
less a procedure in the file broadcasts their address). The
extern storage class is used to reference data (or proce-
dures) that are declared in other files. By default, you can
reference procedures from other files simply by writing
their name, but for data in other files, you must declare it
with the extern storage class before it can be referenced.

B. The C Preprocessor

Another feature that facilitates separate compilation isthe
C preprocessor. It makes it easy for a group of files to
all reference a common set of definitions and extern dec-
larations. The C preprocessor is an early stage of the C
compiler that makes several aterationsto program source
codefiles, in preparation for the more traditional compila-
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tion phase. The preprocessor makesit easier to createlarge
programs that are stored in several files, because separate
files can reference common include files that contain def-
initions and external declarations. It also performs, just
prior to the true compilation phase, some of the chores of
a traditional text editor, making it easier to avoid keep-
ing different versions of a program’s source code files for
different systems or circumstances.

Traditionally, the C preprocessor hasprovided threema-
jor features of the C language: asimple macro facility, file
inclusion, and conditional compilation.

File inclusion is controlled by the #include C prepro-
cessor mechanism. When a#include statement is encoun-
tered, the preprocessor replacesit with the contents of the
referenced file. For example, the file named stdio.h con-
tains definitions and references that are required by pro-
gramsthat are using the standard 1/O library. It isincluded
by the following statement.

#i ncl ude <stdi o. h>

During the preprocessing phase, this statement will be
replaced by the contents of the stdio.h file, so that the later
phasesof the compiler will only seethe contentsof stdio.h.

The macro feature of the C preprocessor allows you to
replace one item by another throughout a program. This
has many uses, such as creating named constants, cre-
ating in-line subroutines, hiding complicated constructs,
and making minor adjustmentsto the syntax of C. Macros
can have parameters, or they can simply replace one item
of text with another. Macros are created using the #define
mechanism. The first word following #define is the name
of the macro, and following names are the replacement
text.

Thereare several ubiquitous C macrosincluding NULL,
an impossible value for pointers; EOF, the standard end
marker for stdio input streams; and the single character
I/O routines, getc() and putc(). NULL and EOF aresimply
named constants. In most versions of C, they are defined
asfollows:

# define EOF (-1)
# define NULL O

Conditional compilation, the third traditional function
of the C preprocessor, alows a programmer to specify
parts of a program that may or may not be compiled.
This feature is used for many purposes, such as writing
programsthat can be compiled on different computer sys-
tems. The conditional compilationletsprogrammersmake
small adjustments to the program to adapt to the various
computer systems. In addition, conditional compilationis
often used to manage debugging features, which should
be omitted once the program is finished.
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C. Novel Declaration Style

In somelanguages, the major datatypesare simplethings,
such asnumbersor characters, and arraysof simplethings.
C is more complicated because C also has pointers to
simple things, pointersto pointers, and functions that can
return complicated items, such as a pointer to afunction.
To declare one of these hybrid data types, you must have
away of describing what you are declaring. Rather than
develop anew syntax for describing this large assortment
of data types, the approach in C is to make declarations
mirror the use of an item. This straightforward idea has
not proven to be simplefor most peopleto understand, but
it must be understood to work with C.

Declaring simple things is easy. For example, the dec-
laration

int a;

statesthat a is an integer. The next simplest declaration is
to declare an array of something, for example, an array of
integers.

int b[10];

Thisdeclaration statesthat b isan array of ten integers.
b[Q] is the first element in the array, b[1] is the next,
and so on. Notice that the declaration does not contain a
keyword stating that b is an array. Instead, C’s standard
array notation, b[ subscript], is used in the declaration.

The next simplest declaration createsapointer toasim-
ple type, such as a pointer to an integer.

int *c;

This declaration states that * ¢ is an integer. Remember
that * isthe Cindirection operator, which isused to deref-
erenceapointer. Thus, if *cisaninteger, then citself must
be a pointer to an integer.

Another thing that can be declared is the return type
of afunction. The following declaration states that d isa
function returning an integer.

int d();

The () in the declaration indicate that d is a function.
When d isinvoked in the program, it can be used in any
situation where an integer variable is used. For example,
you could write

i =2 * d() + 10;
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to indicate that the integer variable i should be assigned
twice the value returned by the d procedure plus ten.

The simplest rule for understanding a declaration is to
remember that if you use the item just as it is declared it
will have the smple type mentioned in the left part of the
declaration. The next step isto learn the meanings of the
three operatorsthat are used in many declarations: apair of
parentheses indicates a function, square brackets indicate
an array, and the asterisk indicates a pointer. Also remem-
ber that thingsto theright of avariable name (parentheses
and square brackets) bind more tightly than things to the
left.

The following declaration specifies afunction named e
that returns a pointer to an integer

int *e();

Note that the above declaration does not declare a pointer
eto afunction returning an integer, because the parenthe-
ses to the right of e take precedence over the indirection
operator to the left.

When you are verbalizing a declaration, start from the
inside and work out, and remember that it is helpful to
read () as “function returning,” [] as “array of,” and * as
“pointer to.” Thus, this declaration above could beread “e
isafunction returning a pointer to an int.”

There are afew restrictions on what you can declarein
C. For example, you can declare afunction, apointer to a
function, or an array of pointersto functions, but you are
not allowed to declare an array of functions.

D. Operator-Rich Syntax

C hastheusual assortment of numeric operators, plussome
additional operators, such asthe operatorsfor pointers, the
assignment operators, theincrement/decrement operators,
the comma operator, and the conditional operator. With
just this rich set of operators, C could be considered to
have an operator-rich syntax.

But C goes one step further. it considers the expression
to beatype of statement, which makesit possibleto put an
expression any placeastatement isexpected. For example,
c++ is a complete statement that applies the increment
operator (the ++ operator) to the variable named c.

C programs take on a very dense appearance when as-
signment statements are used in the control expressions
of loops and if statements. For example, the following
snippet of code is extremely common.

int ch;
while ((ch = getchar()) != EOF)



346

The control expression of thiswhile loop calls getchar
to read in acharacter, assignsthat character to the ch vari-
able, and then runs the body of the loop (which in the
above example is empty, causing the above code to read
in and ignore all of the input). The loop terminates when
getchar returns the value EOF (end of file; a symbolic
constant that is defined in the stdio.h include file).

Another common technique is to use the pointer incre-
ment and decrement operatorsinaloop control expression.
For example, the following loop copies the string pointed
to by p to the location pointed at by g (p and g are both
pointersto characters).

while (*g++ = *p++)

Note that the actual body of the loop is empty, the only
action isin the control expression of the while statement.
When the terminating null of the string is copied, the con-
trol expression becomes fal se, which terminates the loop.

Another aspect of C that makes it possible to construct
rich expressions is short-circuit expression evaluation.
Most C operators have aguaranteed expression eval uation
order, which is left to right for most arithmetic and com-
parison operators. In addition, C guarantees that logical
expressions will only be evaluated far enough to deter-
mine the outcome. As shown in Table I11, the operator | |
means OR and the operator && means AND. Thus, the
expression

p && q

means p AND g. According to the rules of Boolean logic,
the result will be TRUE only if both p and g are TRUE.
When the program is running, if the p part turns out to
be FALSE, then the result of the whole expression isim-
mediately known to be FALSE, and in this case the g part
will not be evaluated.

Similarly, the expression

p Il q

means p OR g. In this case, according to the rules of
Boolean logic, the result will be TRUE if either the p
or g part is TRUE. When the program is running, if the
p part turns out to be TRUE, then the result is immedi-
ately known to be TRUE, and in this case the g part will
not be evaluated, because C uses short circuit expression
evaluation.

The following code fragment is an example of how
short-circuit evaluation is often used. In it, a pointer is
compared with the address of the end of an array to make
sure that the pointer has not advanced past the end of the
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array. If the pointer is in bounds, only then is it used to
access an itemin the array.

if ((p < é&[20]) && (*p != 0))

Without the short-circuit expression guarantee made by
the C language, this expression would have to be written
astwo expressions, so that the pointer would not be deref-
erenced when it was pointing outside the bounds of the
array. (Dereferencing an out-of-bounds pointer can cause
disastrous program failures.)

In all of these examples (and in the examples of the
conditional operator and comma operator in Section |.C),
C’s operator-rich syntax has made it possible to express
several thingsin just one or two lines, a benefit or short-
coming depending upon your viewpoint.

E. Explicit Pointer Usage

Inall traditional computer architectures, at thelowest level
themachineisconstantly working with addresses, because
it cannot store or retrieve information without knowing its
address. However, most computer languages have tried to
manage addresses automatically, to relieve programmers
of this burden.

C hastaken a best of both worlds approach. If you pre-
fer, you can write programs that avoid working with ad-
dresses, which meansavoi ding the use of pointersasmuch
aspossible. Programmers can’t completely avoid pointers
when working in C, because many of the standard library
routines expect pointer arguments.

Many programmers want to work with addresses, be-
cause of the control and efficiency that it yields. In addi-
tion, programmers writing software that directly accesses
computer hardware often are forced to work with ad-
dresses. Fortunately, when these needs arise the C lan-
guage is read with a complete set of features for working
with addresses.

Oneof theareaswhere C pushesyou toward using point-
ersiswith subroutine parameters. In somelanguages, such
as Pascal, you can specify whether subroutine parame-
ters are passed by value or by reference. With Pascal’s
value parameters, changes inside the subroutine do not
change the caller’s copy of the parameter, while with ref-
erence parameters, thereisonly onecopy of the parameter,
and changes made inside a subroutine do alter the caller’s
value.

In C, all subroutine parameters are (in a strict techni-
cal sense) value parameters, but it is extremely common
to pass pointers to the actual parameters to subroutines,
thereby achieving the effect of reference parameters. For
example, thefollowing brief subroutine exchangesitstwo
arguments (the first argument takes on the value of the
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second and vice versa). If the two arguments were passed
by value, this subroutine would have no effect, but instead
the arguments are passed by address so that the swap can
take place.

iswap(int *a, int *b) /* swap a
and b (integers) */
{

int tenp;
tenmp = *a;
*q = *b;

*b = tenp;

}

Inside the iswap procedure the * operator is used to
access the values that a and b point toward. The iswap
procedureis called with two pointerstoint (integer), asin
the following:

int i, j;
i = 50;
j = 20;
iswap(& , &);

When you call iswap you need to put the & (address-of)
operator in front of the variablesi and j so that you pass
the addresses of the two variables to iswap. After iswap
completes its work, the variable i will have the value 20
and the variable j will have the value 50.

F. Function Pointers

A function pointer is a pointer variable, but it holds the
address of a function, not the address of a dataitem. The
only things you can do with afunction pointer areread its
value, assign its value, or call the function that it points
toward. You cannot increment or decrement the address
storedinafunction pointer or perform any other arithmetic
operations.

Function pointersmakeit possibleto write very general
programs. For example, if you have a data structure that
contains several different types of items, each item might
containafunction pointer that could beusedto print, order,
or otherwisemanipulatetheinformation. Each typeof data
item would contain a function pointer to the appropriate
function. Function pointers provide a very tedious way
to build an object, a data structure that combines a set of
values with a collection of appropriate behaviors.

Function pointers are declared using the syntax de-
scribed in Section 111.C. In that section, it was mentioned
that the declaration

int *fn();
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declares a function named fn that returns a pointer to an
integer. If we want instead to declare a pointer to a func-
tion, wemust use parenthesesto indicate that what isbeing
declared is primarily a pointer:

int (*fnptr)();

The parentheses around *fnptr are necessary; they bind
the* (the indirection operator) to the fnptr, overriding the
normal precedence of the parentheses over the*. Thisdec-
laration should be read aloud as “fnptr is a pointer to a
function returning an integer.”

G. Void

One of the innovations of ANSI C is the creation of the
void datatype, which isadatatype that does not have any
values or operations, and that cannot be used in an expres-
sion. One important use of void is to state that a function
does not have a return value. Before ANSI, the best you
could do was avoid using procedures in expressions when
they did not return avalue.

For example, the procedure iswap() in Section I11.E,
doesnot returnavalue. It works correctly if used as shown
in that section, but it also can be used incorrectly.

X =2 * iswap(&, &);

Inthisexpression, thevaluestoredin x isunpredictable,
because iswap does not return avalue. Most pre-ANSI C
compilers will not object to this statement, because by
default all procedures were presumed to return an integer.
With ANSI C, you can specify that iswap has the type
void, thereby assuring that erroneously using iswap in an
arithmetic expression will be flagged as an error.

Another use of void is to create a generic pointer. On
some machines, different types of pointers have differ-
ent formats, and on most machines different data types
have different alignment requirements, which impose re-
strictions on legitimate pointer values. Until the ANS
standardization, C lacked a generic pointer type that was
guaranteed to meet al of the requirements on any ma
chine, that is, a pointer that would be compatible with all
of the other pointer types. This need is met by specifying
that something is a pointer to void.

IV. KEY C++ FEATURES

From ahistorical perspective, C++ isaset of featuresthat
Bjarne Stroustrup added to C to facilitate object-oriented
programming, plus an additional set of features added
during the ANSI and ISO standardization process. C++
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contains al of C, essentially unchanged, plus additional
features for working with objects. But from the perspec-
tive of someone learning to program in C++, it’s simply
a language, containing a mix of traditional features and
object-oriented features.

The major new C++ feature, the class, supports the
idea of object-oriented programming. Objects either in
the real world or in computer programs have two as-
pects. physical features, which are represented in com-
puter programs by information storage, and operational
features (actions), which are represented in software by
procedures. In traditional (non-object-oriented) program-
ming languages much attention has been paid to both data
structures and to algorithms, but little attention was paid
to combining the two, so that software can model entities
found in the world. The general idea of object-oriented
programming and the C++ class data type are intended to
remedy this omission.

C++ dso contains various other improvements, includ-
ing references, which arerelated to pointers, and function
overloading. Thesetwo additionsaredescribed in Sections
A and B, below, and then the remaining sections detail the
class datatype, which is the focus of object-oriented pro-
gramming using C++.

A. References

A reference is a data type that creates a new name for an
existing variable. For example, if x is an existing integer
variable, areferenceto x can be created with the statement

int &Xx = Xx;

The ampersand in the above declaration is the syntactical
indicator that rx is a reference to an int variable, rather
than atrue int variable. After r x has been declared a ref-
erence to X, it can be used in any situation where x itself
could be used. The simple-minded form shown above is
rarely used, but references are extensively used as proce-
dure parameters and as return values from functions.
One of the simplest practical uses of references is to
write a dlightly cleaner version of the iswap routine. (A
pointer version of iswap was shown in Section I11.E.)

/1l swap integers a and b,
usi ng reference paraneters void
iswap(int& a, int& b)
{

int tenp = a;

a = b;

b = tenp;
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Because this version of iswap uses reference-to-int pa-
rameters, it isused somewhat differently than the previous
version.

int i, j;
i 50;
j = 30;
i swap(i, j);

In addition to demonstrating references, this example
also shows several aspects of C++, including the position-
ing of parameter declarationsin the procedure header, the
more thorough declaration of function return types (void
in this example), and the new // syntax (on the first line of
the example) to indicate a comment to the end of line.

B. Function Overloading

Programmers often need to create afamily of procedures
to perform the sametask on various data types. For exam-
ple, theiswap procedure shownin SectionslIl.E and IV.A
works only for integers. It would also be useful to have
swap procedures for doubles, characters, and so forth. Al-
though each could be given aunique name (e.g., iswap for
integers, dswap for doubles, etc.), unique names quickly
become tedious and error prone. Instead, in C++ one can
create afamily of proceduresthat have the same name but
that accept different parameter types. This lets the pro-
grammer use a single name, while it gives the compiler
the job of choosing the correct procedure, based on the
parameter types.

The following example shows how one could overload
the swap procedure, creating versions for characters, in-
tegers, and doubles.

voi d swap(char & a,
{char tenp = a;
}voi d swap(inté& a,
{int tenp = a; a = b; b = tenp;
}voi d swap(doubl e& a, doubl e& b)
{double tenp = a; a=Db; b=

} tenp;

char & b)
a=>b;, b=tenp;

int& b)

When the compiler sees the statement swap(x, y) it will
choose a version of swap based on the types of the vari-
ables x and y. For example, if x and y are doubles, the
compiler will choose the third function shown above.
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C. Classes

Classes are the major new feature that C++ adds to C.
They are the C++ language feature that facilitates object-
oriented programming. The key idea of object-oriented
programming is that the fundamental components of pro-
grams should be a objects—adata structure that combines
data (information storage) and procedures. Software ob-
jects are analogous to the raw parts that are used in other
creative disciplines. They make it possible to build more
complex entities than would otherwise be possible, they
may be modified and specialized as necessary, and they
alow the programmer to build software whose structure
parallels the structure of the problem domain.

It’s important to understand the difference between a
class and an object. A class is what programmers work
with; it’s a concept that is expressed in a program. An
object (also called an instance) istherealization of aclass
when aprogram is executing. A programmer might write
a program that defines a class to represent, say, complex
numbers. When a program that uses that classis running,
then each complex number in the program is an object. If,
for example, the program is using 100 complex numbers,
then there are 100 objects, each following the blueprint
established in the complex number class that was written
by a programmer.

Although their syntax is based on C structures, classes
go far beyond the capabilities of ordinary C structures.

* Classes may have both data elements and procedure
elements. The procedure elements, which are called
member functions, can perform standard operations on
the class, such as changing the values of its data
elements, or reporting the values of the data el ements

* Classes are the basis of inheritance, which allows
programmers to create class hierarchies, and which
reduces code duplication by enabling programmersto
modify (specialize) existing classes. When you create a
new class from an existing class, the original classis
called the base class and the new one, which adds
additional features or modifies the original behavior, is
called the derived class.

* Class data elements may be static, which means a
single copy of theitem is shared among al instances of
the class, or nonstatic, which means one copy of the
item exists for each classinstance.

* Classes may have public, private, and protected
elements, which allow a programmer to control access
to theindividual parts of the class. Private el ements
can be accessed only by class member functions,
protected elements can be accessed by class member
functions and by member functions of derived classes,
while public elements are generally available. The
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public part of aclassis often called its interface
because it defines the set of operations that are used to
work with the class.

* Classes may have routines, called constructors and
destructors, that are called automatically when a class
instance is created or destroyed. Constructors are
responsible for initializing a class, while destructors
perform any necessary cleanup. Constructors are also
used to convert items of another type to the class type.
For example, a class that represents complex numbers
might have a constructor that would convert adouble
into a complex.

* Classes may have operator functions, so that objects
can be manipulated using algebraic notation.

The following class declaration describes a data type
that represents complex numbers, which are numbers de-
fined as having both real and imaginary parts. In algebraic
notation the letter i indicatestheimaginary part of anum-
ber, thus 50 + 100i represents a complex with real part
of 50 and imaginary part of 100. A more realistic com-
plex number class would have many more facilities; the
simplifications imposed in this simple example are for
clarity.

cl ass Conpl ex {
pr ot ect ed:
doubl e real part,
publi c:
/] constructors
Conpl ex(voi d) ;
Conpl ex(doubl e r);
Conmpl ex(doubl e r, doubl e i)
Compl ex( Conpl ex &c);
[/ ADD OP - add a conpl ex
or a double to a conpl ex
voi d operat or +=( Conpl ex&
rhs);
voi d operat or +=(doubl e d);
/] extract the real and
i magi nary parts of a
conpl ex
doubl e getReal () { return
real part; }
doubl e getlmag() { return
i magpart; }

i magpart;

I8

The classshown above containstwo datael ements, dou-
blesnamed real part and imagpart, and six operations. The
classis divided into two parts, the protected part and the
public part. The public elements of complex are univer-
sally accessible, while the elements in the protected part,
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which in this case are the data elements, can only be ac-
cessed by derived classes.

The first four operations, the constructors, are used to
create new complex numbers. The first creates a Complex
object that isinitialized to zero, the second createsa Com-
plex from asingle number (thereal part), thethird creates
aComplex fromapair of numbers (thereal and imaginary
parts), and the fourth creates a new Complex object from
an existing Complex object. Inthe classdeclaration shown
above, the four construction operations are described but
not defined. Hereisthedefinition of the second constructor
(the others are similar, hence not shown).

/1 Construct a conplex froma

si ngl e nunber.

Compl ex: : Conpl ex(doubl e r):
real part(r), // init the
real part data nenber
i magpart(0) // init the
i magpart data menber

/1l The body of the
constructor,

/1 but there is nothing left
to do.

}

Although this member function definition resemblesan
ordinary C procedure, there are some important differ-
ences that should be discussed. The definition starts with
the notation Complex:: which is a way of reopening the
context of the class declaration. The pair of colons, which
is called the scope resolution operator, is placed after the
name of a class to indicate a definition of something in
the class. After the constructor header is a pair of ini-
tialization expressions. The first initialization expression
is realpart(r), which states that the class member named
realpart should haveitsinitial valuetaken from the paren-
thesized expression, r. The second initialization expres-
sion sets the imagpart member to zero. The body of the
constructor, like the body of all C procedures, is delimited
by a pair of curly braces, but in this particular example
there is nothing to do in the constructor body because all
the work has been donein the initialization section of the
constructor.

The constructors mentioned in the Complex class dec-
laration allow us to create Complex numbers using the
following declarations:

Compl ex a;
Compl ex b(50,
Conpl ex c¢c(b);

100) ;
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The Complex named a isinitialized to zero, the Com-
plex named b isinitialized to 50 + 100, and the Complex
named cisinitialized to the value of b. To understand how
the above works, you must remember that the compiler
will call the appropriate version of the constructor, based
on thearguments. In the example, Complex variablesa, b,
and ¢ will be constructed using the first, third, and fourth
forms, respectively, of the constructors shown previously
in the class declaration.

Thetwo procedures named operator+ = inthe Complex
classdeclaration allow you to use the + = operator (the as-
sign sum operator) to manipulate Complex numbers. (The
bodies of these procedures are not shown here.) This ca-
pability, which is known as operator overloading, is pri-
marily anotational conveniencethat allowsmanipulations
of class objectsto be expressed algebraically. C++ alows
nearly all of its rich set of operators to be overloaded.
Thelimitations of C++ operator overloading are that user-
defined operator overloading must involve at least one
user-defined type (class) and that the standard precedence
and associativity may not be altered.

The first operator+ = procedure in the Complex class
letsyou add one complex to another, the second all owsyou
to add adouble (areal number) to acomplex. For example,
the following two expressions automatically invoke the
first and second operator+ = functions. (Objectsa and b
are complex.)

a += b;
b += 5;

The last two procedures shown in the Complex class
declaration are used to extract thereal and imaginary parts
of a complex number. For example, the following state-
ment assignstheimaginary part of a, whichisaComplex,
to X, which is a double number.

X = a.getlmg();

Note that ordinary C “member of”” notation (the dot) is
used to access the getlmag member function.

D. Inheritance

Inheritanceisafacility that allows aprogrammer to create
anew class by specializing or extending an existing class.
In C++ the original class s called the base class and the
newly created classis called the derived class. Inheritance
isalso caled classderivation. Derivation can do two types
of things to a base class: new features can be added, and
existing features can be redefined. Derivation does not
allow for the removal of existing class features.
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Derivation is usually used to create specialized classes
from more general classes. It often expresses “kind of”
relationships. For example, one might derive a HighVolt-
ageMotor classfrom aMotor base class. Notethat aHigh
Voltage Motor isakind of Motor; the converseis not true.

All motors have a power rating, a maximum speed of
rotation, etc. These characteristicscan beexpressedin C++
asfollows. First let uslook at a partial declaration of the
Motor class.

class Motor |

doubl e power

doubl e speed;

/1l other Mdtor characteristics
|8

Note that only afew of the Motor class’s members are
sketched above. Next let’s ook at the class declaration of
HighVoltageMotor. The notation in the class header states
that a HighVoltageMotor is derived from the Motor base
class. Thebody of HighVoltageMotor only liststhingsthat
are added to the base class; the existing elements, such as
power, need not be restated:

cl ass Hi ghVol t ageMbt or
Mot or {
doubl e maxi nunVol t age;
[/ other characteristics of
H gh Vol tage Mtors

public

18

Each HighVoltageM otor object will containall the char-
acteristics(elements) of aMotor, such aspower and speed,
plus al the additional characteristics that pertain only to
a High Voltage Motor, such as the maximumVoltage.

E. Polymorphism

Polymorphism is the ability of something to have vari-
ous forms. In C++, polymorphism refers to the ability of
a class member function to have different forms for re-
lated classes. Asan example, consider afamily of classes
that represent shapes that can be displayed (on a screen)
or printed. We would probably create a base class called
Shape, and then derive specialized classes such as Cir-
cleShape, SquareShape, and OblongShape. All of these
classeswould contain amember function called Draw that
would actually draw the given shape. Given an object of
one of these shape types, you could call Draw to draw the
given shape. This isn’t difficult or mysterious when the
compiler is able to tell, while analyzing and trandating a
source program, what type of data object is being used.
For example, given an object whose type is CircleShape,
calling Draw would obviously draw acircle.
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However, the situation is more complex if al that’s
known during compilation is that the object is a mem-
ber of the Shape family of objects, In this case, polymor-
phism comes into effect. Given an object whose type is
only known to be in the Shape family, calling Draw will
till call the correct version for the given object, even if
it’s not known in advance (i.e, during compilation) what
type of shape object exists.

In C++ you engage polymorphism by declaring amem-
ber function to be virtual. When a class member function
isdeclared to be virtual, then the compiler makes arrange-
ments to call the correct version of the member function
based on the type of the object that’s present when the
program runs. Without virtual, the compiler’sjob is a bit
easier, asit uses the information in the program’s source
code to determine what member function to call.

Moving beyond the details of what the compiler does,
the importance of polymorphism isthat it lets a program-
mer create powerful families of classes, in which each
family member behaves differently, yet uniformly. Poly-
morphism means that you can count on an object, known
only asamember of afamily, to behave asit should when
you call one of its virtual member functions.

F. Exceptions

In practical situations, it’s important to write robust soft-
ware that operates reliably in the face of great difficulty.
For example, a user might try to write a file to a floppy
disk drive that doesn’t contain a diskette, or a calculation
might inadvertently try to divide some value by zero. Pro-
fessional software must be ableto handletheseand myriad
other problems as intelligently and reliably as possible.

The traditional approach to handling errors is to write
proceduressothat they returnaspecificvaluetoindicatean
error. For example, the proceduretowritedatato adisk file
might return —1 if afailure occurs, and O if the operation
isasuccess. Thereare severd difficultieswith thissimple,
traditional approach. The first is that programmers often
write software that ignores error return codes. In an ideal
world, programmers would not be so careless, but in the
real world of deadlines and other pressures, error return
va ues often are unused.

Another problem isthat using error codes makesit hard
to design and implement an error handling strategy. If
every error hasto be detected and handled on the spot, the
code starts consist of large amounts of hard to debug code
managing the problems. Soon, the bulk of code dealing
with problems starts to overwhelm and burden the code
that is focused on the actual task.

A better way to handle problems is to use exceptions.
When a problem occurs, the subroutine that detects the
problem then throws an exception, which transfers control
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towhatever calling routine hasarranged to handlethat type
of problem. For exampl e, consider afunction named Athat
manages the task of writing adocument to disk. Naturally
A will cal numerous other routines to do all the chores
necessary to accomplish the overall task. Before actualy
calling its helper routines, A will enter a try/catch block
so that it can catch any input/output exceptions that occur
at any point in the operation. Any of the called subroutines
that detects a problem can simply throw an input/output
exception, knowing that it will be handled elsewhere (in
Ain this example).

Another advantage of handling errors using exceptions
isthat you canuseahierarchy of exceptionsin order to pro-
vide amore fine-grained approach to handling errors. For
example, in addition to a generic input/output exception
that indicates something failed during an I/O operation,
you can aso derive more specialized exceptions to indi-
cate the precise failure, such as a file open error or afile
write error. Catching the generic I/O exception will catch
all of the I/O errors, which is probably what function A
(from our example) would want to do, but the more fo-
cused subroutines that A calls might want to handle one
of the more specialized exceptions localy.

G. lostream Library

One of the more demanding tasks that must be handled
by any software development environment is input and
output. There are severa difficultiesin handling 1/0, such
as the need to input and output any conceivable type of
data, and the fact that different computer systems provide
very different low-level primitivesfor performing 1/0. Be-
cause of these difficulties, many programming languages
providel/Ofacilitiesthat arebuilt into thelanguage, tacitly
admitting that the languageitself isn’t powerful enough or
flexible enough to meet the needs of 1/O operations.

One of the C language’s innovations was its Standard
I/O Library (stdio), which is a flexible group of subrou-
tines, writtenin C, that | et aprogrammer performinput and
output operations. One problem with the C standard 1/0
library isthat itisn’t type safe. For example, you can easily
(but erroneously) output or input a floating point number
using the format intended for integers. For example, the
following snippet of C code does just that, producing a
nonsense output:

double d = 5. 0;
printf( “The variable d has the
val ue, %\n», d);

(The problem withthe aboveisthe %gl format code, which
calls for an integer to output, but which is handed the
variabled, adouble.)
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Another problem is that the standard C library can’t
easily be extended to handle user-defined class types. For
example, the C stdio library knows how to work with all
the built-in types, such as integers, strings, and floating
point values, but it doesn’t know how to work with, say,
the Complex type that was defined earlier in this article.

In C++ there is an 1/O facility called the iostream li-
brary. lostream is type-safe and extensible, which means
that it addresses the main deficiencies of the C stdio li-
brary. The key idea in iostreams is that input and output
isaccomplished using functionsthat are crafted to handle
each different type of object. lostream contains a built-
in group of functions to input and output all the standard
types, plusyou can implement your own functionsto han-
dle your own class types.

For example, you could use iostreams to output the
value of adouble variable as follows:

double d = 5. 0;
cout << “The variable d has the
value “ << d << *\n’;

Asyou can seein the above statement, iostreams hijack
the << operator to create output expressions. Similarly, it
uses the >> operator to form input expressions.

Besides the advantage of being type-safe, iostream is
extensible. If you create a function to insert a Complex
into an output stream, then you can use Complex objects
with the iostream library as conveniently as you can use
the built-in types:

Compl ex ¢(10, 20); // create a
conplex initialized to 10+20i
cout << “The Conplex c¢ has the
value“ << ¢ << *\n’;

H. Namespaces

One of the original goals of the C language was to be use-
ful for writing large programs, such as operating systems.
Large software projects often involve groups of tens to
hundreds of programmers, often working for several com-
panies, who then produce programs that contain hundreds
of thousands of individual program statements. One prob-
lem with large programs is that they contain many thou-
sandsof names—aobject names, procedure names, variable
names—that all have to be unique. Even students writing
their first program can encounter this problem; students
often create a subroutine called read, which is quickly
flagged as an error because the standard C library already
containsasubroutine called read. Unfortunately, therejust
aren’t enough descriptive names to meet the demand.
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The solution adopted in C++ isthe namespace, whichis
away to create separate spaces for each group of names.
If you have a namespace named A then it can have a sub-
routine named read that doesn’t conflict with asubroutine
named read that is housed inside the B namespace. Using
namespaces makes it much easier to create large software
projects.

I. Templates

In general usage, atemplateisapattern that you useto cre-
atethings. For example, inawoodworking classyou might
useatemplateto guideyou when you are sawing aparticu-
larly tricky curvein aproject. Similarly, in C++ atemplate
is aset of generic instructions for performing some task.
For example, the task might be storing a collection of ob-
jects. The template would contain generic instructionsfor
storing and retrieving, plusit would include aparameter to
indicate what type of object should be managed. Then the
C++ compiler would actually create the C++ code to im-
plement the storing operation on the given type of object.
Thisis often referred to as generic programming because
you are writing software that appliesto any type of object.

For example, you might want to create a vector of ob-
jects, inwhich the objectswoul d be accessed by anumeric
index. The first step would be to create a template that
would incorporate all the details of creating a vector of
some type of object. The template itself wouldn’t be spe-
cific to a given type of object, rather it would be generic,
simply aset of instructions that could apply to storing any
object typein avector. Then if the program contained ob-
ject types Pt, Rect, and Sphere, then you could use the
vector template to create a vector of Pt, a vector of Rect,
and a vector of Sohere.

In addition to creating containers, templates are often
used to implement generic algorithm. An earlier example
in this article showed how to create an overloaded family
of functionsto swap the valuesheld in apair of variables.
Sinceit would betediousto create such functionsfor every
type of object in a large project, you could instead use
templatesto create the function.

tenpl at e<cl ass T> void swap(T& a,
T& b)
{
Ttemp =a, a =Db; b = tenp;
}

The template declaration shown above doesn’t actually
create a swap function, but the compiler will follow the
recipe given in the template if you actually try to use a
swap function
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Compl ex a(50);
Compl ex b(10, 20);

swap(a, b);

The code shown above first creates a pair of initialized
complex variables. When the compiler encountersthe call
to swap with the two Complex arguments, it usesthe tem-
plate recipe for swap to create a version of swap appro-
priate for Complex arguments, and then it uses that newly
minted swap function to actually perform the operation.

J. Standard Template Library

The addition of templates to C++ created an opportunity
to create new, generic software to address common pro-
gramming tasks. The most adept solution, which has now
become a standard part of C++, isthe Standard Template
Library (STL), which was primarily the work of Alexan-
der Stepanov at Hewlett Packard. The STL addresses two
broad facilities, containers (also called collections) and
algorithms that apply to collections, such as finding an
element or counting elements. Because it isimplemented
using templates, all of the operationsinthe STL can be ap-
plied to any type, the built-in types and user-defined types.
And because it is based on templates, the compiler gen-
erates versions of al the facilities that work specifically
with whatever type is used within the program, ensuring
that the implementation is as efficient as possible.
Historically, containers such as lists, queues, vectors,
and matriceswere created as hecessary each time the need
arose. If you wanted to store, for example, information
about Complex numbersin a list, you'd specially create
anew list type designed to store Complex objects. With
templates, you can simply createafully featuredlist, ready
to store the Complex objects, with asingle line of code:

| i st <Compl ex> conpl exNumber s;

Given the above declaration, individual Complex ob-
jects can be added to the list in many ways, such asadding
them to the front of the list:

Conpl ex a(50);
Compl ex b(10, 20);

conmpl exNunber s. push_front (a);
conpl exNunber s. push_front (b);

Other elements of the STL include vectors, stacks, and
queues. The emergence of the STL as a standard, key
component of C++ has greatly expanded the breadth of
tasksthat areaddressed by thelibraries supplied with C++.
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GLOSSARY

Algorithm Sequence of well-defined instructions the ex-
ecution of which results in the solution of a specific
problem. The instructions are unambiguous and each
can be performed in a finite amount of time. Further-
more, the execution of all the instructions together takes
only a finite amount of time.

Approximation algorithm Algorithm that is guaranteed
to produce solutions whose value is within some pre-
specified amount of the value of an optimal solution.

Asymptotic analysis Analysis of the performance of an
algorithm for large problem instances. Typically the
time and space requirements are analyzed and provided
as a function of parameters that reflect properties of the
problem instance to be solved. Asymptotic notation
(e.g., big “oh,” theta, omega) is used.

Deterministic algorithm Algorithm in which the out-
come of each step is well defined and determined by
the values of the variables (if any) involved in the step.

For example, the value of x + y is determined by the
values of x and y.

Heuristic Rule of thumb employed in an algorithm to
improve its performance (time and space requirements
or quality of solution produced). This rule may be very
effective in certain instances and ineffective in others.

Lower bound Defined with respect to a problem. A lower
bound on the resources (time or space) needed to solve
a specified problem has the property that the problem
cannot be solved by any algorithm that uses less re-
sources than the lower bound.

Nondeterministic algorithm Algorithm that may con-
tain some steps whose outcome is determined by se-
lecting from a set of permissible outcomes. There are
no rules determining how the selection is to be made.
Rather, such an algorithm terminates in one of two
modes: success and failure. It is required that, when-
ever possible, the selection of the outcomes of indi-
vidual steps be done in such a way that the algorithm
terminates successfully.
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NP-Complete problem Decision problem (one for
which the solution is “yes” or “no”) that has the fol-
lowing property: Thedecision problem canbesolvedin
polynomial deterministic timeif all decision problems
that can be solved in nondeterministic polynomial time
are also solvable in deterministic polynomial time.

Performance Amount of resources (i.e., amount of com-
puter time and memory) required by an algorithm. If
the algorithm does not guarantee optimal solutions, the
term “performance” is also used to include some mea-
sure of the quality of the solutions produced.

Probabilistically good algorithm Algorithm that does
not guarantee optimal solutions but generally does pro-
vide them.

Simulated annealing Combinatorial optimization tech-
nique adapted from statistical mechanics. The tech-
nique attemptsto find solutionsthat have value closeto
optimal. It does so by simulating the physical process
of annealing ametal.

Stepwise refinement Program development methods in
which the final computer program is arrived at in a
sequence of steps. The first step begins close to the
problem specification. Each step is arefinement of the
preceding one and gets one closer to the final program.
This technique simplifies both the programming task
and the task of proving the final program correct.

Usually good algorithm Algorithm that generally pro-
vides optimal solutions using a small amount of com-
puting resources. At other time, the resources required
may be prohibitively large.

IN ORDER to get acomputer to solveaproblem, itisnec-
essary to provide it with a sequence of instructions that if
followed faithfully will result in the desired solution. This
sequence of instructions is called a computer agorithm.
When a computer algorithm is specified in alanguage the
computer understands (i.e., aprogramming language), itis
called aprogram. The topic of computer algorithms deals
with methodsof devel oping algorithmsaswell asmethods
of analyzing algorithmsto determine the amount of com-
puter resources (time and memory) required by them to
solve aproblem and methods of deriving lower bounds on
the resources required by any algorithm to solve aspecific
problem. Finaly, for certain problems that are difficult
to solve (e.g., when the computer resources required are
impractically large), heuristic methods are used.

I. ALGORITHMS AND PROGRAMS

An algorithm can take many forms of detail. Often the
level of detail required depends on the target of the algo-
rithm. For example, if one were to describe an algorithm

Computer Algorithms

on how to make a cup of tea to a human, one could use
arelatively coarse (high) level of detail. This is because
it is reasonable to assume that the human in question can
fill in any gaps in the instructions, and also will be able
to carry out certain taskswithout further instructions, e.g.,
if the human is required to get a cup from a cupboard, it
would be fair to assume that he/she knows how to do this
without elaboration on the task.

On the other hand, a program is generaly a computer
program, and consists of a set of instructions at a very
fine level of detail. A fine level of detail is required be-
cause computer programs are always written in a partic-
ular language, e.g., Basic, C++, Pascal, etc. Furthermore,
every step in atask must be specified, because no back-
ground knowledge can be assumed. An often used dis-
tinction is that an algorithm specifies what a process is
doing, whileaprogram specifieshow theprocessshould be
done. Thetruth is probably somewhere between these two
extremes—while an algorithm should be aclear statement
of what a processis doing, it is often useful to have some
level of specification of functionality in an algorithm.

It is not very natural for humans to describe tasks with
the kind of level of detail usually demanded by a pro-
gramming language. It is often more natural to think in a
top-down manner, that is, describe the problem in a high
level manner, and then rewriteit in more detail, or evenin
aspecific computer language. This can often help the per-
son concerned to get aproblem clear in his’/her own mind,
before committing it to computer. Much of this chapter
is concerned with the process of refinement. Refinement
of algorithmsis (usually) an iterative process, where one
begins with a very high level—that is, the whar—and by
repeatedly modifying the algorithm by adding more detail
(the how) brings the algorithm closer and closer to being
code, until the final coding of the algorithm becomes a
very clear task. ldeally, when one is writing a program,
one should not have to figure out any logic problems; all
of these should be taken care of in the algorithm.

Algorithmsarenot just used asan aid for programmers.
They are adso a very convenient way to describe what a
task does, to help people conceptualize it at a high level,
without having to go through masses of computer code
line by line.

Consider the following problem, which we will state
first in English:

Mary intends to open abank account with aninitial de-
posit of $100. She intends to deposit an additional $100
into this account on the first day of each of the next
19 months for a total of 20 deposits (including the ini-
tial deposit). The account paysinterest at arate of 5% per
annum compounded monthly. Her initial deposit is also
on the first day of the month. Mary would like to know
what the balance in her account will be at the end of the
20 months in which she will be making a deposit.



Computer Algorithms

In order to solve this problem, we need to know how
much interest is earned each month. Since the annual in-
terest rate 5%, the monthly interest rate is 5/12%. Conse-
quently, the balance of the end of amonthis

(initialbalance + interest)
= (initialbalance)*(1+5/1200)
=241/240 (initialbalance)

Having performed thisanalysis, we can proceed to com-
pute the balance at the end of each month using the fol-
lowing steps:

1. Let balance denote the current balance. The starting
balance is $100, so set balance = 100.

2. The balance at the end of the month is 241/240 *
balance. Update balance.

3. If 20 months have not elapsed, then add 100 to
balance to reflect the deposit for the next month. Go
to step 2. Otherwise, we are done.

This, then, is an algorithm for calculating the monthly
bal ances. Torefinethea gorithm further, we must consider
what kind of machinewewishtoimplement our algorithm
on. Supposethat we haveto compute the monthly balances
using a computing device that cannot store the computa-
tional steps and associated data. A nonprogrammable cal-
culator isone such device. The above stepsawill trandate
into the following process:

Turn the calculator on.

Enter theinitial balance as the number 100.

Multiply by 241 and then divide by 240.

Note the result down as a monthly balance.

If the number of monthly balances noted down is 20,
then stop.

Otherwise, add 100 to the previous result.

7. Goto step 3.

ghrowpdPE

o

If we tried this process on an electronic calculator, we
would notice that the total time spent is not determined
by the speed of the calculator. Rather, it is determined by
how fast we can enter the required numbers and opera-
tors (add, multiply, etc.) and how fast we can copy the
monthly balances. Even if the calculator could perform
ahillion computations per second, we would not be able
to solve the above problem any faster. When a stored-
program computing device is used, the above instructions
need be entered into the computer only once. The com-
puter can then sequence through these instructions at its
own speed. Since the instructions are entered only once
(rather than 20 times), we get almost a 20 fold speed up
in the computation. If the balance for 1000 monthsis re-
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quired, the speedup isby afactor of almost 1000. We have
achieved this speedup without making our computing de-
vice any faster. We have simply cut down on the input
work required by the slow human!

A different approach would have been to write program
for the algorithm. The seven-step computational process
stated above trandlates into the Basic program shown in
Program 1.

PROGRAM 1

10 balance =100

20 month =1

30 balance = 241*balance/240

40 print month, ”$”;balance

50 if month =20 then stop 60 month
=month +1

70 balance = balance + 100

80 go to 30

PROGRAM 2: Pascal Program for Mary'’s
Problem

lineprogram account (input, output)

1 {computer the account balance at
the end of each month}

2 const InitialBalance = 100;

3 MonthlyDeposit = 100;

4 TotalMonths = 20;

5 AnnualInterestRate =5;

6 var balance, interest, MonthlyRate:

real

7 month:integer ;

8  begin

9 MonthlyRate := AnnualInterest-

Rate/1200;

10 balance := InitialBalance;

11 writeln ( Month Balance’);

12 for month :=1 to TotalMonths

do

13 begin

14 interest := balance *
MonthlyRage;

15 balance := balance
+ interest;

16 writeln (month:10, * /,
balance:10:2);

17 balance .= balance +
MonthlyDeposit;

18 end; of for

19 writeln;

18 end; of account

In Pascal, this takes the form shown in Program 2.
Apart from the fact that these two programs have been
written in different languages, they represent different



510

programming styles. The Pascal program has been writ-
ten in such away asto permit one to make changes with
ease. The number of months, interest rate, initial balance,
and monthly additionsare moreeasily changed into Pascal
program.

Each of the three approaches is valid, and the one
that should eventualy be used will depend on the user.
If the task only needs to be carried out occasionaly,
then a calculator would probably suffice, but if it is to
be executed hundreds or thousands of times a day, then
clearly one of the computer programs would be more
suitable.

II. ALGORITHM DESIGN

There are several design techniques available to the de-
signer of a computer algorithm. Some of the most suc-
cessful techniques are the following:

* Divide and conquer

* Greedy method

¢ Dynamic programming
* Branch and bound

» Backtracking

While we do not have the space here to elaborate each
of these, we shall develop two algorithms using the divide
and conqguer technique. The essential idea in divide and
conquer is to decompose a large problem instance into
several smaller instances, solve the smaller instances, and
combinetheresults (if necessary) to obtain the solution of
the original problem instance. The problem we shall in-
vestigate isthat of sorting asequence x[1], xX[2], ..., S[Nn]
of n, n > 0 numbers; where n is the size of the instance.
We wish to rearrange these numbers so that they are in
nondecreasing order (i.e., x[1] < x[2], ..., X[n]).

For example, if n=5, and (x[1], ..., x[5]) = (10,18,
8,12,19), then after the sort, the numbers are in order
(8,9,10,12,18). Even before we attempt an algorithm to
solve this problem, we can write down and English ver-
sion of the solution, as in Program 3. The correctness of
this version of the algorithm isimmediate.

PROGRAM 3: First Version of Sort
Al gorithm

Procedure sort;

Sort x[I], 1<l <n into nondecreasing
order;

End; {of sort}

Using the divide and conquer methodol ogy, we first de-
compose the sort instance into several smaller instances.
At this point, we must determine the size and number
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of these smaller instances. Some possibilities are the
following:

(@ Oneof sizen — 1 and another of size 1

(b) Two of approximately equal size

() K of size approximately n/k each, for some integer
k,k>2

We shall pursue the first two possibilities. In each
of these, we have two smaller instances created. Us-
ing the first possibility, we can decompose the instance
(10,18,8,12,9) into any of thefollowing pairsof instances:

(8 (10,18,8,12) (9)
(b) (10) (18,8,12,9)
(©) (10,18,8,9) (12)
(d) (10,18,12,9) (8)

and so on. Suppose we choose the first option. Having
decomposed the initial instance into two, we must sort
the two instances and then combine the two-sorted se-
guences into one. When (10,18,8,12) is sorted, the re-
sult is (8,10,12,18). Since the second sequence is of size
1, it is dready in sorted order. To combine the two se-
guences, the number 9 must be inserted into the first se-
guence to get the desired five-number sorted sequence.
The preceding discussion raisestwo questions. How isthe
four-number sequence sorted? How isthe one-number se-
guence inserted into the sorted four-number sequence?
The answer to the first is that this, too, can be sorted
using the divide and conquer approach. That is, we de-
compose it into two sequences: one of size 3 and the
other of size 1. We then sort the sequence of size 3 and
then insert the 1 element sequence. To sort the three-
element sequence, we decompose it into two sequences
of size 2 and size 1, respectively. To sort the sequence
of size 2, we decompose it into two of size 1 each. At
this point, we need merely insert one into the other. Be-
fore attempting to answer the second question, we refine
Program 3, incorporating the above discussion. The result
is Program 4.

PROGRAM 4: Refinenent of Program 3

line proceduresort (n)
1 {sort n nunbers into nondecreasing

order}

2 if n>1 then begin

3 sort(n-1); sort the first
sequence

4 insert(n-1,x[n]);

5 end; {of if}

6 writeln;

7 end; {of sort}
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Program 4 isarecursive statement of the sort algorithm
being developed. In arecursive statement of an algorithm,
the solution for an instance of sizen isdefined in terms of
solutions for instances of smaller size. In Program 4, the
sorting of nitems, for n >1items, isdefined intermsof the
sorting of n — 1 items. Thisjust meansthat to sort n items
using procedure sort, we must first use this procedure to
sort n— 1 items. This in turn means that the procedure
must first be used to sort n— 2 items, and so on. This
use of recursive generally poses no problems, as most
contemporary programming languages support recursive
programs. To refine Program 4, we must determine how an
insert is performed. L et us consider an example. Consider
theinsertion of 9into (8,10,12,18). We begin by moving 9
from position 5 of the sequence and then comparing 9 and
18, since 18 islarger, it must be brought to the right of 9.
So 18 ismoved to position 5. The resulting sequenceisas
follows (“— denoted an empty position in the sequence):

81012 —18

Next, 9 is compared with 12, and 12 is moved to position
4. Thisresultsin the following sequence:

810—1218

Then 9iscompared with 10 and 10ismoved to position
3. At thistime we have the sequence:

8—101218

Finaly, 9 is compared with 8. Since 9 is not smaller
than 8, it is inserted into position 2. This results in the
sequence (8,9,10,12,18). With this discussion, we can re-
fine Program 4 to get Program 5. Program 5 isthen easily
refined to get the Pascal-like code of Program 6. Thiscode
usesposition 0 of the sequenceto handleinsertionsinto po-
sition 1. Therecursion in this procedure can be eliminated
to get Program 7. The algorithm we have just devel oped
for sorting is called insertion sort. This algorithm was ob-
tained using the stepwise refinement process beginning
with Program 3. Asaresult of using this process, we have
confidence in the correctness of the resulting algorithm.
Formal correctness proofs can be obtained using mathe-
matical induction or other program verification methods.

PROGRAM 5: Refinement of Program 4

line proceduresort (n)
1 {sort n nunbers into nondecreasing

order}
2 if n >1 then begin
3 sort(n-1); sort the first
sequence
4 assign t the value x[n];
5 conpare t with the xs

begi nning at x[n - 1];
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6 nove thezs up until the
correct place for t is
f ound

7 insert t into this place

8 end; {of if}

9 end; {of sort}

PROGRAM 6: Refinenment of Program5

line proceduresort (n)
1 {sort n nunbers into nondecreasing

order}

2 if n >1 then begin

3 sort(n-1); sort the first
sequence

4 assign t and x[0]the val ue
x[ n];

5 assign i the value n- 1;

6 whilet <x[i] do{find correct
pl ace for t};

7 begin

8 move x[i] to x[i +1];

9 reduce i by 1;

10 end; {of while}

11 put t into x[i +1]

12 end; {of if}

13 end; {of sort}

PROGRAM 7: Refinement of Program 6

line proceduresort (n)

1 {sort n nunbers into nondecreasing
order}

2 for j:=2to n do

3 begin{insert x[j] into x[1:j - 1]}

4 assign t and x[0] the value Xx[j];

5 assign i the value j - 1;

6 whilet <x[i] do{find correct place
for t}

7 begin

8 move x[i] to x[i +1];

9 reduce i by 1;

10 end; {of while}

11 put t into x[i +1]

12 end; {of if}

13 end; {of sort}

Program 7 is quite close to being a Pascal program.
Onelast refinement gives us acorrect Pascal procedureto
sort. Thisis given in Program 8. This procedure assumes
that the numbers to be sorted are of type integer. In case
numbers of a different type are to be sorted, the type of
declaration of t should be changed. Another improvement
of Program 8 can be made. Thisinvolvestaking the state-
ment x[0] :=t out of the for loop and initializing x[0] to
avery small number before the loop.
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PROGRAM 8: Refi nement of Program 7

lineproceduresort (n)
1 {sort n nunbers into nondecreasing

order}

2 for j:=2to n do

3 begin {insert x[j] into x[1:j - 1]}

4 assign t and x[0] the val ue
x[j];

5 assign i the value j - 1;

6 whilet <x[i] do{find correct
pl ace for t}

7 begin

8 nmove x[i] to x[i +1];

9 reduce i by 1;

10 end; {of while}

11 put t into x[i +1]

12 end; {of sort}

Let us consider the route our development process
would have taken if we had decided to decompose sort
instancesinto two smaller instances of roughly equal size.
Let us further suppose that the left half of the sequenceis
one of theinstances created and the right half isthe other.
For our examplewe get theinstances (10,18) and (8,12,9).
Theseare sorted independently to get the sequence (10,18)
and (8.9,12). Next, the two sorted sequence are combined
to get the sequence (8,9,10,12,18). This combination pro-
cess is caled merging. The resulting sort algorithm is
called merge sort.

PROGRAM 9: Fi nal version of Program 8

line proceduresort ( n)
1 {sort n nunbers into nondecreasing

order}

2 vart, i, j :integer;

2 begin

2 for j:=2to n do

3 begin{insert x[j] into x[1:]j -1]}

4 t:=x[j];x[0]:=t;i:= -1,

6 whilet <x[i] do{find correct
pl ace for t}

7 begin

8 x[1 +1] :=x[i];

9 ic=i-1;

10 end; {of while}

11 x[i +1] : =t

12 end; {of for}
13 end; {of sort}

PROGRAM 9: Merge Sort

line procedure Mer geSor t ( X, n)
1 {sort n nunbers in X}

2 ifn >1then

3 begin
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N

Divide X into two sequences A and B
such that A contains |[n/2]
nunbers, and B the rest

5 MergeSort (A, | n/2])

6 MergeSort (A, n- | n/2)])
7 merge (A, B);

8 end; {of if}

9

end; {of MergeSort }

Program 9 is the refinement of Program 3 that results
for merge sort. We shall not refine this further here. The
reader will find complete programs for this algorithm in
severa of the references sited later. In Program 9, the
notation[x] isused. Thisiscalledthefloor of x and denotes
the largest integer less than or equal to x. For example,
[25]=2,|—6.3|=—7,5/3] =1, and [n/2] denotes
the largest integer less than or equal to n/2.

IIl. PERFORMANCE ANALYSIS
AND MEASUREMENT

In the preceding section, we devel oped two a gorithmsfor
sorting. Which of these should we use? The answer to this
dependsontherel ative performance of thetwo algorithms.
The performance of an algorithm is measured in terms of
the space and time needed by the algorithm to completeits
task. Let us concentrate on time here. In order to answer
the question “How much time does insertion sort take?’
we must ask ourselves the following:

1. What istheinstance size? The sort time clearly
depends on how many numbers are being sorted.

2. What istheinitia order? An examination of Program
7 meansthat it takes less time to sort n numbers that
are aready in nondecreasing order than when they are
not.

3. What computer isthe program going to be run on?
Thetimeisless on afast computer and moreon a
slow one.

4. What programming language and compiler will be
used? These influence the quality of the computer
code generated for the algorithm.

To resolve the first two question, we ask for the worst
case or average time as a function on instance size. The
worst case size for any instance size n is defined as

Tw(n) = max{t(l)| | isaninstance of size n}.

Heret(l) denotesthe timerequired for instance | . The
average timeis defined as:

1
(TA)m=NZt(I).
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where the sum is taken over all instances of sizen and N
is the number of such instances. In the sorting problem,
we can restrict ourselves to the n! different permutations
of any n distinct numbers. So N =n!.

A. Analysis

We can avoid answering the last two questions by acquir-
ing arough count of the number of steps executed in the
worst or average case rather than an exact time. When
this is done, a paper and pencil analysis of the algorithm
is performed. Thisis called performance analysis. Let us
carry out a performance analysis on our two sorting algo-
rithms. Assume that we wish to determine the worst-case
step count for each. Before we can start we must decide
the parameters with respect to which we shall perform the
analysis. In our case, we shall obtain times as a function
of the number n of numbers to be sorted. First consider
insertion sort. Let t(n) denote the worst-case step count of
Program 6. If n < 1, then only one step is executed (verify
that n < 1). When n > 1, the recursive call to sort (n — 1)
requirest(n — 1) stepsin theworst case and the remaining
steps count for some linear function of n step executions
in the worst case. The worst case is seen to arise when
X[N] is to be inserted into position 1. As aresult of this
analysis, we obtain the following recurrence for insertion
sort:

a, n<=1,

tn= {t(n—1)+bn+c, n>1,

where a, b, and c are constants. This recurrence can be
solved by standard methodsfor thesolution of recurrences.
For merge sort, we see from Program 9 that whenn < 1,
only aconstant number of stepsareexecuted. When N > 1,
two callsto merge sort and one to merge are made. While
we have not said much about the divisioninto A and B is
to be performed, this can be done in a constant amount of
time. The recurrence for Merge Sort is now seen to be

R L n<=1,
(= {t([n/ZJ)-H(n—Ln/2j)+m(n)+b, n>1,

where a and b are constants and m(n) denotes the worst-
case number of steps needed to merge n numbers. Solving
thisrecurrenceis complicated by the presence of the floor
function. A solution for the case n isapower of 2 iseasily
obtained using standard methods. In this case, the floor
function can be dropped to get the recurrence:

a, n<=1,

tn = {2t(n/2) +mn)+b, n>1

The notion of astep is still quite imprecise. It denotes
any amount of computing that is not a function of the
parameters (in our case n). Consequently, a good approx-
imate solution to the recurrences is as meaningful as an
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exact solution. Since approximate solutions are often eas-
ier to obtain than exact ones, we develop a notation for
approximate solutions.

Definition [Big “oh”]. f(n)= O(g(n)) (read as “f of
n is big oh of g of n”) iff there exist positive constants c
and ng suchthat f (n) <cg(n)forall n, n > ne. Intuitively,
O(g(n)) representsall functions f (n) whoserate of growth
is no more than that of g(n).

Thus, the statement f(n)=0(g(n)) states only that
g(n) isanupper bound onthevalueof f(n)foraln, n> n.
It does not say anything about how good this bound is.
Notice that n = O(n?), n= 0O(n%®), n=0(n®)n= 0(2"),
and so on. In order for the statement f (n) = 0(g(n)) to be
informative, g(n) should be a small function of n as one
can come up with for which f (n) = O(g(n)). Sowhilewe
oftensay 3n 4+ 3= O(n2), eventhoughthelatter statement
iscorrect. From the definition of O, it should be clear that
f(n) = O(g(n)) isnot thesame as0(g(n)) = f (n). Infact,
it is meaningless to say that O(g(n)) = f(n). The use of
the symbol = isunfortunate becauseit commonly denoted
the “equals” relation. Some of the confusion that results
from the use of this symbol (which is standard terminol-
ogy) can be avoided by reading the symbol = as “is” and
not as “equals.” The recurrence for insertion sort can be
solved to obtain

t(n) = O(n?).

To solve the recurrence for merge sort, we must use the
fact m(n) = O(n). Using this, we obtain

t(n) = O(nlogn).

It can be shown that the average number of steps ex-
ecuted by insertion sort and merge sort are, respectively,
0(n?) and O(nlogn). Analyses such as those performed
above for the worst-case and the average times are called
asymptotic analyses. 0(n2) and O(nlogn) are, respec-
tively, the worst-case asymptotic time complexities of in-
sertion and merge sort. Both represent the behavior of the
agorithmswhen nissuitably large. From thisanalysiswe
|earn that the growth rate of the computing time for merge
sort islessthan that for insertion sort. So even if insertion
sort is faster for small n, when n becomes suitably large,
merge sort will be faster. While most asymptotic analysis
is carried out using the big “oh” notation, analysts have
available to them three other notations. These are defined
below.

Definition [Omega, Theta, and Little “oh”]. f(n)=
Q(g(n)) read as “f of n is omega of g of n”) iff there
exist positive constants ¢ and ng such that f(n) > cg(n)
for al n,n>nq. f(n) is ®(g(n)) (read as “f of n is
theta of g of n”) iff there exist positive constants c;, C;,
and ng such that c;g(n) < f(n) < cog(n) for al n, n> ng.
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f(n)=0(g(n)) (read as “f of nislittle oh of g of n”) iff
limn_. o f(n)/g(n)=1.

Example. 3n+2=Q(n);3n+2=06(n);3n+2—
0(3n); 3n® = Q(n?); 2n? + 4n = O(n?); and 4n°+3n’=
o(4n3).

The omega notation is used to provide a lower bound,
while the theta notation is used when the obtained bound
is both alower and an upper bound. The little “oh” nota-
tion isavery precise notation that does not find much use
in the asymptotic analysis of algorithms. With these ad-
ditional notations available, the solution to the recurrence
for insertion and merge sort are, respectively, ©(n?) and
®(nlogn). The definitions of O, 2, ©, and o0 are easily
extended to include functions of more than one variable.
For example, f(n, m)= O(g(n, m)) if there exist posi-
tive constants ¢, ng and mg such that f (n, m) < cg(n, m)
for al n>ng and al m> mg. Asin the case of the big
“oh” notation, there are several functions g(n) for which
f(n) =Q(g(n)). The g(n) isonly alower bound on f (n).
The 6 notation is more precise that both the big “oh” and
omega notations. The following theorem obtains a very
useful result about the order of f (n) when f (n) isapoly-
nomial inn.

Theorem 1. Let f(n)=ann™+an_1n™ 1+ +ao,
am #0.

(@ f(n)=0(n")
(b) f(n)=(n")
(© f(n)=06(n")
(d) f(n)=o(amn™)

Asymptotic analysis can also be used for space com-
plexity. While asymptotic analysis does not tell us how
many seconds an algorithm will run for or how many
words of memory it will require, it does characterize the
growth rate of the complexity. If an ©(n?) procedure takes
2 sec when n = 10, then we expect it to take 8 sec when
n=20 (i.e, each doubling of n will increase the time
by a factor of 4). We have seen that the time complex-
ity of an algorithm is generally some function of the in-
stance characteristics. Asnoted above, thisfunctionisvery
useful in determining how the time requirements vary as
the instance characteristics change. The complexity func-
tion can also be used to compare two agorithms A and
B that perform the same task. Assume that algorithm A
has complexity ®(n) and algorithm B ist of complexity
©(n?). We can assert that algorithm A is faster than al-
gorithm B for “sufficiently large” n. To see the validity
of this assertion, observe that the actual computing time
of A isbounded from above by ¢ n for some constant ¢
and for al n, n> ny, while that of B is bounded from be-
low by d x n? for some constant d and al n, n > n,. Since
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TABLE | Values of Selected Asymptotic Functions

logn n nlogn n2 nd 2n
0 1 1 1 2
1 2 2 4 8
2 4 16 64 16
3 8 24 64 512 256
4 16 64 256 4,096 65,536
5 32 160 1,024 32,768 4,294,967,296

cn <dn?forn> c/d, adgorithm A isfaster than algorithm
B whenever n > max{ni, ny, c/d}.

We should always be cautiously aware of the presence
of the phrase “sufficiently large” in the assertion of the
preceding discussion. When deciding which of the two
algorithms to use, we must know whether the n we are
dealing with is in fact “sufficiently large” If agorithm
A actualy runs in 10°n msec while algorithm B runs in
n? msec and if we always have n < 106, then algorithm B
isthe oneto use.

Tablel and Fig. 1 indicate how variousasymptotic func-
tionsgrow withn. Asisevident, thefunction2" growsvery
rapidly with n. In fact, if aprogram needs 2" stepsfor ex-
ecution, then when n = 40 the number of steps needed is
~1.1 x 10*. On a computer performing 1 billion steps
per second, this would require ~18.3 min (Table I1). If
n = 50, the same program would run for ~13 dayson this
computer. When n = 60, ~310.56 years will be reguired
to executethe program, and whenn = 100 ~ 4x1013years
will be needed. So we may concludethat the utility of pro-
grams with exponential complexity is limited to small n
(typically n~ 40). Programs that have a complexity that
isapolynomial of high degree are also of limited utility.

FIGURE 1 Plot of selected asymptotic functions.
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TABLE Il Times on a 1 Billion Instruction per Second Computer?
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Timefor f(n) instructions on a 10° instr uction/sec computer

n f(n)=n f(n)=nlogz n f(n)=n? f(n)=ns f(n)=n* f(n)=n10 f(n)=n"
10 0.01 usec 0.03 usec 0.1 usec 1 usec 10 pusec 10 sec 1psec
20 0.02 usec 0.09 usec 0.4 pusec 8 usec 160 pusec 2.84hr 1 msec
30 0.03 psec 0.15 psec 0.9 usec 27 jusec 810 psec 6.83 day 1lsec
40 0.04 usec 0.21 usec 1.6 usec 64 usec 2.56 msec 121.36 day 18.3 min
50 0.05 pusec 0.28 usec 2.5 usec 125 pusec 6.25 msec 31yr 13 day
100 0.10 pusec 0.66 pusec 10 psec 1 msec 100 msec 3171yr 4% 103 yr
1,000 1.00 usec 9.96 j1sec 1 msec 1sec 16.67 min 3.17 x 103 yr 32 x 10283 yr
10,000 10.00 usec  130.3 usec 100 msec 16.67 min 115.7 day 3.17 x 108 yr —
100,000  100.00 psec 1.66 msec 10 sec 11.57 day 3171yr 3.17x 108 yr —
1,000,000 1.00 msec 19.92 msec 16.67 min 31L.71yr 3.17 x 107 yr 3.17 x 10® yr —

a1 usec = 1078 sec; 1 msec = 1073 sec.

For example, if a program needs n'° steps, then using
our 1 billion steps per second computer (Table 11) wewill
need 10 sec when n = 10; 3171 years when n = 100; and
3.17 % 10" years when n = 1000. If the program’s com-
plexity were n® steps instead, we would need 1 sec when
n = 1000; 110.67 min when n = 10,000; and 11.57 days
when n =100,000. From a practical standpoint, it is ev-
ident that for reasonably large n (say n > 100) only pro-
gramsof small complexity (suchasn, nlogn, n?, n3, etc.)
are feasible. Furthermore, this would be the case even if
one could build a computer capable of executing 102 in-
structions per second. In this case, the computing times of
Table |1 would decrease by a factor of 1000. Now, when
n=100, it would take 3.17 years to execute n° instruc-
tions, and 4 x 10 years to execute 2" instructions.

B. Measurement

In aperformance measurement, actual times are obtained.
To do this, we must refine our algorithms into computer
programs written in aspecific programming language and
compile these on a specific computer using a specific
compiler. When this is done, the two programs can be
given worst-case data (if worst-case times are desired) or
average-case data (if average times are desired) and the
actua time taken to sort measured for different instance
sizes. The generation of worst-case and averagetest datais
itself quiteachallenge. Fromtheanalysisof Program 7, we
know that the worst case for insertion sort arises when the
number inserted on each iteration of the for loop getsinto
position 1. Theinitial sequence(n,n—1, ..., 2, 1) causes
thisto happen. Thisisthe worst-case data for Program 7.
How about average-case data? This is somewhat harder
to arrive at. For the case of merge sort, even the worst-
case dataare difficult to devise. When it becomes difficult
to generate the worst-case or average data, one resorts to

simulations. Suppose we wish to measure the average per-
formance of our two sort algorithms using the program-
ming language Pascal and the TURBO Pascal (TURBO
is a trademark of Borland International) compiler on an
IBM-PC. We must first design the experiment. This de-
sign process involves determining the different values of
n for which the times are to be measured. In addition, we
must generate representative data for each n. Since there
are n! different permutations of n distinct numbers, it is
impractical to determine the average run time for any n
(other than small n’s, say n < 9) by measuring the time
for al n! permutations and then computing the average.
Hence, we must use areasonable number of permutations
and average over these. The measured average sort times
obtained from such experiments are shown in Table I11.
As predicted by our earlier analysis, merge sort is faster
than insertion sort. In fact, on the average, merge sort will
sort 1000 numbersin lesstimethan insertion sort will take
for 300! Once we have these measured times, we can fit
a curve (a quadratic in the case of insertion sort and an
nlogn in the case of merge sort) through them and then
use the equation of the curve to predict the average times
for valuesof n for whichthetimeshave not been measured.
The quadratic growth rate of the insertion sort time and
the nlog n growth rate of the merge sort times can be seen
clearly by plotting these times as in Fig. 2. By perform-
ing additional experiments, we can determine the effects
of the compiler and computer used on the relative perfor-
mance of the two sort algorithms. We shall provide some
comparative times using the VAX 11780 as the second
computer. This popular computer is considerably faster
than the IBM-PC and costs ~100 times as much. Our
first experiment obtains the average run time of Program
8 (the Pascal program for insertion sort). The times for
the V AX linso were obtained using the combined trans-
lator and interpretive executer, pix. These are shown in
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TABLE Il Average Times for Merge and Inser-

tion Sort?
n Merge Insert
0 0.027 0.032
10 1.524 0.775
20 3.700 2.253
30 5.587 4.430
40 7.800 7.275
50 9.892 10.892
60 11.947 15.013
70 15.893 20.000
80 18.217 25.450
90 20.417 31.767
100 22.950 38.325
200 48.475 148.300
300 81.600 319.657
400 109.829 567.629
500 138.033 874.600
600 171.167 —
700 199.240 —
800 230.480 —
900 260.100 —
1000 289.450 —

2 Times are in hundredths of a second.

Table IV. As can be seen, the IBM-PC outperformed the
V AX eventhoughtheV AX ismany timesfaster. Thisis
because of theinterpreter pix. Thiscomparison is perhaps
unfair in that in one case a compiler was used and in the
other an interpreter. However, the experiment does point
out the potentially devastating effects of using a compiler
that generates poor code or of using an interpreter. In our
second experiment, we used the Pascal compiler, pc, onthe

40 —

30—

Insert sort

Merge sort

120—

0 1 1 1 | | 1 1 1
0 10 20 30 40 50 60 70 80 90 100

n —

FIGURE 2 Plot of times of Table Ill.
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TABLE IV Average Times for Insertion Sort?

n IBM-PC turbo VAX pix
50 10.9 221
100 383 90.47
200 148.3 353.9
300 319.7 805.6
400 567.6 1404.5

2 Times are in hundredths of a second.

V AX. Thistime our insertion sort program ran faster on
theV AX. However, asexpected, when n becomessuitably
large, insertion sort ontheV AX isslower than merge sort
on an IBM-PC. Sample times are given in Table V. This
experiment points out the importance of designing good
algorithms. No increase in computer speed can make up
for a poor algorithm. An asymptotically faster algorithm
will outperform a slower one (when the problem size is
suitably large); no matter how fast a computer the slower
algorithm is run on and no matter how slow a computer
the faster algorithm isrun on.

IV. LOWER BOUNDS

The search for asymptotically fast algorithms is a chal-
lenging aspect of algorithm design. Once we have de-
signed an algorithm for a particular problem, we would
like to know if thisis the asymptotically best algorithm.
If not, we would like to know how close we are to the
asymptotically best algorithm. To answer these questions,
we must determine a function f(n) with the following
property:

Pl: Let A be any algorithm that solves the given prob-
lem. Let its asymptotic complexity be O(g(n)). f(n) is
such that g(n) = Q2(f (n)).

That is, f(n) is a lower bound on the complexity of
every algorithm for the given problem. If we develop an

TABLE V Comparison between IBM-PC and

VAX@
IBM-PC merge VAX insertion

n sort turbo sort pc
400 109.8 64.1
500 138.0 106.1
600 171.2 161.8
700 199.2 217.9
800 230.5 263.5
900 260.1 341.9

1000 289.5 418.8

2 Times are in hundredths of a second.
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algorithm whose complexity is equal to the lower bound
for the problem being solved, then the developed ago-
rithm is optimal. The number of input and output data
often provides a trivial lower bound on the complexity
of many problems. For example, to sort n numbers it is
necessary to examine each number at least once. So every
sort algorithm must have complexity 2(n). This lower
boundisnot avery good lower bound and can beimproved
with stronger arguments than the one just used. Some of
the methods for obtaining nontrivial lower bounds are the
following:

Information-theoretic arguments
State space arguments
Adversary constructions
Reducibility constructions

PODNPRE

A. Information-Theoretic Arguments

In an information-theoretic argument, one determines the
number of different behaviors the algorithm must exhibit
in order to work correctly for the given problem. For ex-
ample, if an agorithm is to sort n numbers, it must be
capable of generating n! different permutations of the n
input numbers. Thisis because depending on the particu-
lar values of the n numbers to be sorted, any of these n!
permutations could represent the right sorted order. The
next step is to determine how much time every algorithm
that has this many behaviors must spend in the solution
of the problem. To determine this quantity, one normally
places restrictions on the kinds of computations the algo-
rithm is allowed to perform. For instance, for the sorting
problem, we may restrict our attention to algorithms that
are permitted to compare the numbersto be sorted but not
permitted to perform arithmetic on these numbers. Un-
der these restrictions, it can be shown that nlogn is a
lower bound on the average and worst-case compl exity of
sorting. Since the average and worst-case complexities of
merge sort is®(nlog n), we conclude that merge sortisan
asymptotically optimal sorting algorithm under both the
average and worst-case measures. Note that it is possible
for a problem to have several different algorithmsthat are
asymptatically optimal. Some of these may actually run
faster than others. For example, under the above restric-
tions, there may be two optimal sorting algorithms. Both
will haveasymptotic complexity ®(nlog n). However, one
may runin 10nlogn timeand the otherin20nlog n time.
A lower bound f (n) is atight lower bound for a certain
problem if this problem is, in fact, solvable by an ago-
rithm of complexity O( f (n)). The lower bound obtained
above for the sorting problem is a tight lower bound for
agorithmsthat arerestricted to perform only comparisons
among the numbers to be sorted.

517

B. State Space Arguments

In the case of a state space argument, we define a set
of states that any algorithm for a particular problem can
be in. For example, suppose we wish to determine the
largest of n numbers. Once again, assumewearerestricted
to agorithms that can perform comparisons among these
numbers but cannot perform any arithmetic on them. An
algorithm state can be described by atuple (i, j). An a-
gorithm in this state “knows” that j of the numbers are
not candidates for the largest number and that i =n — j
of them are. When the agorithm begins, it isin the state
(n, 0), and when it terminates, it isin the state (1, n — 1).
Let A denotethe set of numbersthat are candidatesfor the
largest and let B denote the set of numbers that are not.
When an algorithmisinstate (i, j), therearei numbersin
Aand j numbersin B. Thetypes of comparisons one can
perform are A: A (“compare one number in A with an-
otherin A”), A: B, and B : B. The possible state changes
are asfollows:

A: A Thisresultsin atransformation from the state
(i,j)tothestate (i — 1, j +1)

B:B Thestate(i, j) isunchanged as aresult of this
type of comparison.

A: B Depending on the outcome of the comparison,
the state either will be unchanged or will become
(i—-1,j+12).

Having identified the possible state transitions, we must
now find the minimum number of transitions needed to go
from the initial stateto the final state. Thisisreadily seen
toben — 1. So every algorithm (that isrestricted as above)
to find the largest of n numbers must make at least n — 1
comparisons.

C. Adversary and Reducibility Constructions

In an adversary construction, one obtains a problem in-
stance on which the purported algorithm must do at least
a certain amount of work if it is to obtain the right an-
swer. This amount of work becomes the lower bound. A
reducibility construction is used to show that, employing
an algorithm for one problem (A), one can solve another
problem (B). If we have a lower bound for problem B,
then a lower bound for problem A can be obtained as a
result of the above construction.

V. NP-HARD AND NP-COMPLETE
PROBLEMS

Obtaining good lower bounds on the complexity of aprob-
lem is avery difficult task. Such bounds are known for a
handful of problems only. It is somewhat easier to relate



518

the complexity of one problemto that of another using the
notion of reducibility that we briefly mentioned in the last
section. Two very important classes of reducible problems
are NP-hard and NP-complete. Informally, al problemsin
the class NP-compl ete have the property that, if one can be
solved by an algorithm of polynomia complexity, then all
of them can. If an NP-hard problem can be solved by anal-
gorithm of polynomia complexity, then all NP-complete
problems can be so solved. The importance of these two
classes comes from the following facts:

1. No NP-hard or NP-complete problem is known to be
polynomially solvable.

2. Thetwo classes contain more than a thousand
problems that have significant application.

3. Algorithmsthat are not of low-order polynomial
complexity are of limited value.

4. Itisunlikely that any NP-complete or NP-hard
problem is polynomially solvable because of the
relationship between these classes and the class of
decision problems that can be solved in polynomial
nondeterministic time.

We shall elaborate the last item in the following
subsections.

VI. NONDETERMINISM

According to the common notion of an algorithm, the re-
sult of every stepisuniquely defined. Algorithmswiththis
property are called deterministic algorithms. From a the-
oretical framework, we can remove this restriction on the
outcome of every operation. We can alow algorithms to
contain an operation whose outcome is not uniquely de-
fined but islimited to aspecific set of possibilities. A com-
puter that executes these operations are allowed to choose
anyone of these outcomes. This leads to the concept of
anondeterministic algorithm. To specify such algorithms
we introduce three new functions:

» choice(S): Arbitrarily choose one of the elements of
Set S.

« failure: Signals an unsuccessful completion.

* success: Signals a successful completion.

Thus the assignment statement x = choice(1: n) could
result in x being assigned anyone of the integers in the
range [1, n]. There is no rule specifying how this choice
isto be made. The failure and success signals are used to
define a computation of the algorithm. The computation
of a nondeterministic algorithm proceeds in such a way
that, whenever there is a set of choices that leads to a
successful completion, onesuch set of choicesismadeand
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the algorithm terminates successfully. A nondeterministic
agorithm terminates unsuccessfully if there exists no set
of choicesleading to asuccesssignal. A computer capable
of executing a nondeterministic algorithm in this way is
called anondeterministic computer. (The notion of such a
nondeterministic computer is purely theoretical, because
no one knows how to build a computer that will execute
nondeterministic algorithmsin the way just described.)

Consider the problem of searching for an element x in
agiven set of lementsa[l...n], n> 1. We are required
to determine an index j such that a[ j] =x. If no such j
exists (i.e., x isnot one of thea’s), then j isto besetto 0.
A nondeterministic algorithm for thisis the following:

j = choice(1l:n)
if a[j] =x then print U); success endif
print (707); failure.

From the way a nondeterministic computation is de-
fined, it followsthat the number O can be output if thereis
no j such that a[ j] = x. The computing times for choice,
success, and failure are taken to be O(1). Thusthe above
agorithm is of nondeterministic complexity O(1). Note
that sincea isnot ordered, every deterministic search algo-
rithmisof complexity (n). Sincemany choi ce sequences
may lead to a successful termination of a nondeterminis-
tic algorithm, the output of such an algorithm working on
a given data set may not be uniquely defined. To over-
comethisdifficulty, one normally considers only decision
problems, that is, problems with answer 0 or 1 (or true or
false). A successful termination yields the output 1, while
an unsuccessful termination yields the output 0. Thetime
required by a nondeterministic algorithm performing on
any giveninput dependsonwhether thereexistsasequence
of choicesthat leads to a successful completion. If such a
seguence exists, the time required is the minimum num-
ber of steps leading to such a completion. If no choice
sequence leads to a successful completion, the algorithm
takes O(1) time to make afailure termination. Nondeter-
minism appearsto beapowerful tool. Program 10isanon-
deterministic algorithm for the sum of subsetsproblem. In
thisproblem, wearegivenamultiset w(1. . . n) of n natural
numbers and another natural number M. We are required
to determine whether thereis asub multiset of these n nat-
ural numbersthat sumsto M. The complexity of thisnon-
deterministic algorithmis O(n). The fastest deterministic
algorithm known for thisproblem hascomplexity O(2"/2).

PROGRAM 10: Nondet er m ni stic Sum of
Subset s
line procedure NonDet er ni ni st i cSumOf Sub-

sets(Wn, M
2 fori :=1 tondo
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3 x(i) : = choice( {0, 1});
4 endfor

5 if 7', wW(i)x(i) = Mthen success
6 elsefailure;

7 endif;

7 end,

A. NP-Hard and NP-Complete Problems

The size of a problem instance is the number of digits
needed to represent that instance. Aninstance of thesum of
subsets problem is given by (w(l), w(2), ..., w(n), M).
If each of these numbersis apositiveinteger, the instance
sizeis

{Z log,(w(i) + 1)—‘ + Mog,(M + 1)]

i=1

if binary digits are used. An algorithm is of polynomial
timecomplexity if itscomputingtimeis O( p(m)) for every
input of size m and some fixed polynomial p(—).

Let P be the set of all decision problems that can be
solved in deterministic polynomial time. Let NP be the
set of decision problems solvable in polynomial time by
nondeterministic algorithms. Clearly, P C NP. It is not
known whether P =NP or P £ NP. The P = NP prob-
lem is important because it is related to the complexity
of many interesting problems. There exist many problems
that cannot be solved in polynomial time unless P = NP.
Since, intuitively, one expects that P C NP, these prob-
lems are in “all probability” not solvable in polynomial
time. The first problem that was shown to be related
to the P =NP problem, in this way, was the problem
of determining whether a propositional formula is sat-
isfiable. This problem is referred to as the satisfiability
problem.

Theorem 2. Satisfiability isin P iff P =NP.

Let A and B be two problems. Problem A is polynomi-
aly reducible to problem B (abbreviated A reducesto B,
and written as A « B) if the existence of a deterministic
polynomial time algorithm for B implies the existence of
adeterministic polynomial time algorithm for A. Thus if
A « B and B is polynomially solvable, then so dsois A.
A problem AisNP-hard iff satisfiability « A. An NP-hard
problem A is NP-complete if Ae NP. Observe that the
relation « is transitive (i.e., if A« B and B o C, then A
a C). Consequently, if A a B and satisfiabilitya A then B
is NP-hard. So, to show that any problem B is NP-hard,
we need merely show that A o B, where A is any known
NP-hard problem. Some of the known NP-hard problems
are asfollows:
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NP1: Sum of Subsets

Input: Multiset W = {w; | 1 <i < n} of natural numbers
and another natural number M.

Output: “Yes” if thereisasubmultiset of What sumsto
M; “No” otherwise.

NP2: 0/1-Knapsack

Input: Multisets P={PR, |1<i <n}and W= {W|1<
i <n} of natural numbers and another natural number
M.

Output: x; € {0, 1} such that ), i s maxim zed
and iWIXi M.

NP3: Traveling Salesman

Input: A set of n pointsand distancesd(i, j). Thed(i, j)
is the distance between the pointsi and j.

Output: A minimum-length tour that goes through each
of the n points exactly once and returns to the start of the
tour. The length of atour is the sum of the distances be-
tween consecutive pointson thetour. For example, thetour
1—-3—2—4—1 has the length d(1, 3)+d(3, 2) +
d(2,4) +d(4,1).

NP4: Chromatic Number

Input: An undirected graph G = (V, E).

Output: A natural number k such that k is the smallest
number of colors needed to color the graph. A coloring of
agraph is an assignment of colors to the vertices in such
away that no two vertices that are connected by an edge
are assigned the same color.

NP5: Clique

Input: An undirected graph G =(V, E) and a natura
number k.

Output: “Yes” if G contains a clique of sizek (i.e, a
subset U C V of size k such that every two verticesin U
are connected by an edgein E) or more. “N0” otherwise.

NP6: Independent Set

Input: An undirected graph G =(V, E) and a natural
number k.

Output: “Yes” if G contains an independent set of size
k (i.e, asubset U CV of size k such that no two ver-
ticesin U are connected by an edgein E) or more. “No0”
otherwise.
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NP7: Hamiltonian Cycle

Input: An undirected graph G = (V, E).

Output: “Yes” if G containsaHamiltoniancycle(i.e, a
path that goes through each vertex of G exactly once and
thenreturnsto the start vertex of the path). “No” otherwise.

NP8: Bin Packing

Input: A set of n objects, each of sizes(i),1<i <n
[s(i) isapositive number], and two natural numbersk and
C.

Output: “Yes” if then objectscan be packed into at most
k bins of size c. “No” otherwise. When packing objects
into bins, it is not permissible to split an object over two
or more bins.

NP9: Set Packing

Input: A collection Sof finite sets and anatural number
K.

Output: “Yes” if Scontains at least k mutualy digoint
sets. “No” otherwise.

NP10: Hitting Set.

Input: A collection S of subsets of afiniteset U and a
natural number k.

Output: “Yes” if thereis asubset V of U such that V
hasat most k elementsand V containsat | east one element
from each of the subsetsin S. “No” otherwise.

The importance of showing that a problem A is NP-
hard liesin the P = NP problem. Since we do not expect
that P = NP, we do not expect. NP-hard problems to be
solvable by agorithms with a worst-case complexity that
is polynomial in the size of the problem instance. From
Tablell, it isapparent that, if a problem cannot be solved
in polynomial time (in particular, low-order polynomial
time), it is intractable, for all practical purposes. If A is
NP-complete and if it does turn out that P = NP, then A
will be polynomially solvable. However, if A isonly NP-
hard, it is possible for P to equal NP and for A not to be
inP.

VII. COPING WITH COMPLEXITY

An optimization problemisaprobleminwhich onewishes
to optimize (i.e., maximize or minimize) an optimization
function f (x) subject to certain constraints C(x). For ex-
ample, the NP-hard problem NP2 (0/1-knapsack) is an
optimization problem. Here, we wish to optimize (in this
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case maximize) thefunction f(x) = 3", pix subjectto
the following constraints:

(@ x €{0,1},1<i<n
(b) Y wixi <M

A feasible solution isany solution that satisfiesthe con-
straints C(x). For the 0/1-knapsack problem, any assign-
ment of valuesto the x;” Sthat satisfies constraints (a) and
(b) above is afeasible solution. An optimal solution is a
feasible solution that results in an optimal (maximum in
the case of the 0/1-knapsack problem) value for the op-
timization function. There are many interesting and im-
portant optimization problems for which the fastest algo-
rithms known are impractical. Many of these problems
are, in fact, known to be NP-hard. The following are some
of the common strategies adopted when one is unable to
develop a practically useful agorithm for a given opti-
mization:

1. Arrive at an algorithm that always finds optimal
solutions. The complexity of thisagorithm is such
that it is computationally feasible for “most” of the
instances people want to solve. Such an agorithmis
called a usually good algorithm. The simplex
algorithm for linear programming is agood example
of ausually good algorithm. Its worst-case
complexity is exponential. However, it can solve most
of the instances given it in a “reasonable” amount of
time (much less than the worst-case time).

2. Obtain acomputationally feasible algorithm that
“amost” always finds optimal solutions. At other
times, the solution found may have avalue very
distant from the optimal value. An agorithm with this
property is called a probabilistically good algorithm.

3. Obtain acomputationally feasible algorithm that
obtains “reasonably” good feasible solutions.
Algorithms with this property are called heuristic
algorithms. If the heuristic algorithm is guaranteed to
find feasible solutions that have value within a
prespecified amount of the optimal value, the
algorithm is called an approximation algorithm. In
the remainder of this section, we elaborate on
approximation algorithms and other heuristics.

A. Approximation Algorithms

When eval uating an approximation algorithm, one consid-
ers two measures. algorithm complexity and the quality
of the answer (i.e., how closeit isto being optimal). Asin
the case of complexity, the second measure may refer to
the worst case or the average case. There are several cate-
goriesof approximation algorithms. Let Abeanalgorithm
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that generates a feasible solution to every instance | of a
problem P. Let F*(1) bethe value of an optimal solution,
and let F’(1) be the value of the solution generated by A.

Definition. A is a k-absolute approximation a gori-
thm for P iff |F*(1) — F/(1)| <k for al instances | . k is
aconstant. Alisan f(n)-approximate algorithm for p iff
[F*(1)—=F'(D]/F*(1) < f(n)foral |.Thenisthesizeof
| and we assume that |F*(1)| > 0. An f(n)-approximate
agorithm with f(n) <& for al n and some constant ¢ is
an g-approximate algorithm.

Definition. Let A(e) be a family of algorithms that
obtain a feasible solution for every instance | of P. Let
n be the size of . A(e) is an approximation scheme for
P if for every A(e) >0 and every instance |, |F*(1) —
F'(1]F*(l) <e. An approximation scheme whose time
complexity is polynomial in n is a polynomial time ap-
proximation scheme. A fully polynomia time approxi-
mation scheme is an approximation scheme whose time
complexity is polynomial innand 1/¢.

For most NP-hard problems, the problem of finding
k-absolute approximations is also NP-hard. As an exam-
ple, consider problem NP2 (01 I-knapsack). From any in-
stance (P, Wi, 1<i <n, M), we can construct, in linear
time, theinstance (k + 1) pi, wj, <i <n, M). Thisnewin-
stance has the same feasible solutions as the old. How-
ever, the values of the feasible solutions to the new in-
stance are multiples of k+ 1. Consequently, every k-
absolute approximate solution to the new instance is an
optimal solution for both the new and the old instance.
Hence, k-absolute approximate solutions to the 0/1-
knapsack problem cannot befound any faster than optimal
solutions.

For several NP-hard problems, the e-approximation
problem is also known to be NP-hard. For others fast
g-approximation algorithms are known. As an example,
we consider the optimization version of the bin-packing
problem (NP8). This differsfrom NP8 in that the number
of bins k is not part of the input. Instead, we are to find
a packing of the n objects into bins of size C using the
fewest number of bins. Some fast heuristics that are also
g-approximation algorithms are the following:

First Fit (FF). Objects are considered for packing in
theorder 1, 2, ..., n. We assume a large number of bins
arranged left to right. Object i is packed into the leftmost
bin into which it fits.

Best Fit (BF ). Let cAvail[ j] denotethe capacity avail-
ablein bin j. Initialy, thisis C for al bins. Object i is
packed into the bin with the least cAvail that is at least
s(i).

First Fit Decreasing (FFD). This is the same as
FF except that the objects are first reordered so that
s(i)>s(i +1)1<ilegn.
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Best Fit Decreasing (BFD). Thisisthe same as BF ex-
cept that the objects are reordered asfor FFD. It should be
possible to show that none of these methods guarantees
optimal packings. All four are intuitively appealing and
can be expected to perform well in practice. Let | be any
instance of the bin packing problem. Let b(l ) be the num-
ber of bins used by an optimal packing. It can be shown
that the number of bins used by FF and BF never exceeds
(17/10)b(1) + 2, while that used by FFD and BFD does
not exceed (11/9)b(1) + 4.

Example. Four objects with s(1:4) =(3,5, 2, 4) are
to be packed in bins of size 7. When FF is used, object
1 goes into bin 1 and object 2 into bin 2. Object 3 fits
into the first bin and is placed there. Object 4 does not
fit into either of the two bins used so far and a new bin
is used. The solution produced utilizes 3 bins and has
objects1and 3in binl, object 2 in bin 2, and object 4 in
bin 3.

When BF isused, objects 1 and 2 get into bins 1 and 2,
respectively. Object 3 getsinto bin 2, since this provides
a better fit than bin I. Object 4 now fits into bin I. The
packing obtained uses only two bins and has objects 1 and
4inbin1andobjects2 and 3inbin 2. For FFD and BFD,
the objects are packed in the order 2,4, 1,3. In both cases,
two-bin packing is obtained. Objects2 and 3 arein bin 1
and objects 1 and 4 in bin 2. Approximation schemes (in
particular fully polynomial time approximation schemes)
are al'so known for several NP-hard problems. Wewill not
provide any examples here.

B. Other Heuristics
PROGRAM 12: General Form of an Exchange Heuristic

1. Let j bearandom feasible solution [i.e., C(j) is
satisfied] to the given problem.

2. Perform perturbations (i.e., exchanges) oni until it is
not possible to improve j by such a perturbation.

3. Outputi.

Often, the heuristics oneis able to devise for aproblem
arenot guaranteed to produce sol utionswith value closeto
optimal. Thevirtue of these heuristicsliesin their capacity
to produce good solutions most of the time. A general
category of heuristicsthat enjoysthis property isthe class
of exchange heuristics. In an exchange heuristic for an
optimization problem, we generally begin with afeasible
solution and change parts of it in an attempt to improve
its value. This change in the feasible solution is called a
perturbation. The initial feasible solution can be obtained
using some other heuristic method or may be a randomly
generated solution. Suppose that we wish to minimize the
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objective function f (i) subject to the constraints C. Here,
i denotes a feasible solution (i.e., one that satisfies C).
Classical exchange heuristics follow the steps given in
Program 12. This assumes that we start with a random
feasible solution. We may, at times, start with a solution
constructed by some other heuristic. The quality of the
solution obtained using Program 12 can be improved by
running this program several times. Each time, adifferent
starting solutionisused. Thebest of the sol utionsproduced
by the program is used as the final solution.

1. A Monte Carlo Improvement Method

In practice, the quality of the solution produced by an ex-
change heuristic is enhanced if the heuristic occasionally
accepts exchanges that produce a feasible solution with
increased f( ). (Recal that f is the function we wish
to minimize.) Thisis justified on the grounds that a bad
exchange now may lead to a better solution later. In or-
der to implement this strategy of occasionally accepting
bad exchanges, we need a probability function prob(i, j)
that provides the probability with which an exchange that
transformssolutioni intotheinferior solution j istobeac-
cepted. Once we have this probability function, the Monte
Carlo improvement method resultsin exchange heuristics
taking the form given in Program 13. This form was pro-
posed by N. Metropolisin 1953. Thevariablescounter and
n are used to stop the procedure. If n successive attempts
to perform an exchange on i are regjected, then an opti-
mum with respect to the exchange heuristic is assumed to
have been reached and the algorithm terminates. Several
modifications of the basic Metropolis scheme have been
proposed. One of these is to use a sequence of different
probability functions. The first in this sequence is used
initially, then we move to the next function, and so on.
The transition from one function to the next can be made
whenever sufficient computer time has been spent at one
function or when asufficient number of perturbationshave
failed to improve the current solution.

PROGRAM 13: Metropolis Monte Carlo Method

1. Leti bearandom feasible solution to the given
problem. Set counter = 0.

2. Let j beafeasible solution that is obtained fromi as
aresult of arandom perturbation.

3. If f(j)< f(i),then[i = j, update best solution found
sofar in casei isbest, counter =0, go to Step 2].

4. If f(j)> (i) If counter = n then output best
solution found and stop. Otherwise, r = random
number in the range (O, 1).

If r <prob(i, j), then[i = j, counter = 0] else
[counter = counter + 1].
go to Step 2.
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The Metropolis Monte Carlo Method could also be re-
ferred to as a metaheuristic, that is, a heuristic that is
genera enough to apply to a broad range of problems.
Similar to heuristics, these are not guaranteed to produce
an optimal solution, so are often used in situations either
where thisis not crucial, or a suboptimal solution can be
modified.

VIIl. THE FUTURE OF ALGORITHMS

Computer algorithm design will always remain a crucial
part of computer science. Current research has a number
of focuses, from the optimization of existing, classic a-
gorithms, such as the sorting algorithms described here,
to the development of more efficient approximation algo-
rithms. The latter is becoming an increasingly important
area as computers are applied to more and more difficult
problems.

Thisresearch itself can be divided into two main areas,
the development of approximation algorithms for partic-
ular problems, e.g. Traveling salesman problem, and into
the area of metaheuristics, which is more concerned with
the development of general problem solvers.

IX. SUMMARY

Inorder to solve difficult problemsin areasonable amount
of time, it is necessary to use a good algorithm, a good
compiler, and a fast computer. A typical user, generally,
does not have much choice regarding the last two of these.
The choice islimited to the compilers and computers the
user has access to. However, one has considerable flexi-
bility in the design of the algorithm. Several techniques
areavailablefor designing good a gorithms and determin-
ing how good these are. For the latter, one can carry out
an asymptotic analysis. One can aso obtain actua run
times on the target computer.When one is unable to ob-
tain a low-order polynomia time algorithm for a given
problem, one can attempt to show that the problem is NP-
hard or is related to some other problem that is known
to be computationally difficult. Regardless of whether
one succeeds in this endeavor, it is necessary to develop
a practical agorithm to solve the problem. One of the
suggested strategies for coping with complexity can be
adopted.

SEE ALSO THE FOLLOWING ARTICLES

BASIC PROGRAMMING LANGUAGE e C AND C++ ProO-
GRAMMING LANGUAGE e COMPUTER ARCHITECTURE e
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Ill. Prevention and Detection
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GLOSSARY

Data integrity Measure of the ability of a (computer)
system to prevent unwanted (unauthorized) changes or
destruction of data and software.

Datasecurity Measure of the ability of a (computer) sys-
tem to prevent unwanted (unauthorized) access to data
and software.

Logical bomb Code embedded in software whose execu-
tion will cause undesired, possibly damaging, actions.

Subversion Any action that results in the circumvention
of violation of security principles.

Worm Self-contained program that is usually not per-
manently stored as a file and has the capacity of self-
replication and of causing damage to data and software.

Virus Logical bomb with the ability of self-replication. It
usually is a permanent part of an existing, permanently
stored file and has the capability of causing damage to
data and software.

. BACKGROUND AND MOTIVATION

In the years before 1988, a number of incidents suggested
the potential for major problems related to the organized
and widespread subversion of (networked) computer sys-
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tems, accompanied by the possibility of massive destruc-
tion of data and software. While until then these con-
cerns were considered rather remote, the Internet attack
of 1988 shattered this complacency. In the intervening
decade, computer viruses have attained significant vis-
ibility in the computer-literate population, rivalling the
notoriety of Y2K-related problems but with substantially
greater staying power.

The reason for the attention attracted by these intruders
lies in their potential for destruction of data and software.
With the exception of some highly secured systems re-
lated to defense and national security, virtually all larger
computer systems are connected via computer networks,
commonly referred to as the Internet. Personal computers,
if they are not permanently linked into these networks,
have at least the capability of linking up to them inter-
mittently through a variety of Internet service providers.
Networks are systems that allow the transmission of dig-
itally encoded information (data, software, messages, as
well as still images, video, and audio) at relatively high
speeds and in relatively convenient ways from one system
to another. Subverting the function of a network may there-
fore result in the subversion of the computers linked by it.
Consequently, a scenario is very plausible in which a pro-
gram may be transmitted that is capable of destroying large
amounts of data in all the computers in a given network.
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The case that such a scenario is plausible has been made
for many years, starting with F. Cohen’s demonstration of
acomputer virusin 1983.

In 1988, such ascenario was played out for thefirst time
onaworldwidescale. Sincethen, numerousincidentshave
reinforced the public’s sense of vulnerability to attacks by
insidious codefragments on softwareand datastoredinall
kinds of computers. While earlier virus attacks spread via
diskettes and later via electronic bulletin boards (in ways
that required some user participation through loading in-
fected programs), inrecent years, the World Wide Web and
more sophisticated e-mail systems have provided trans-
mission channels that facilitated the worldwide spread of
the attackers at a unprecedented speed. Moreover, infec-
tion which earlier required some explicit action by the
victim has become much more stealthy, with the advent
of viruses that become activated through the opening (or
even previewing) of an apparently innocent attachment to
an e-mail document.

The destruction of data and software has obvious eco-
nomicimplications. The resulting malfunctioning of com-
puter systemsmay also affect safety-critical systems, such
asair-traffic control systemsor control systemsfor hydro-
electric dams or nuclear power plants. Futhermore, the
potential for disruption can be damaging: a bomb threat
can conceivably be more paralyzing that the explosion of
asmall bomb itself. Protection against such treats may be
either impossible or unacceptable to usesrs in the neces-
sarily resulting reduction of functionality and ease of use
of computer systems. It must be borne in mind that by
necessity, the notion of user friendliness of a computer
system of communications network is antithetical to the
notions of data security and data integrity.

II. VIRUSES, WORMS, AND SO FORTH

Fromatechnical point of view, the most a arming aspect of
the attackersunder discussioninthisarticleisthat they are
self-replicating. In other words, the piece of software that
performs the subversion has the ability of making copies
of itself and transmitting those copies to other programs
in the computer or to other computers in the network.
Obviously, each of these copies can now wresk havoc
where it is and replicate itself as well! Thus, it may be
sufficient to set one such program loose in one computer
in order to affect all computersin a given network. Since
more and more computers, including personal computers,
are interconnected, the threat of subversion can assume
literally global dimensions. Let uslook at thisin greater
detail. First, we define a few important terms.

A logica bomb isapiece of code, usually embedded in
other software, that isonly activated (executed) if acertain

Computer Viruses

condition is met. It does not have the capability of self-
replication. Activation of the logical bomb may abort a
program run or erasedataor program files. If the condition
for executionisnot satisfied at all times, it may beregarded
asalogical timebomb. Logical bombsthat areactivatedin
every invocation are usually not as harmful astime bombs
since their actions can be observed in every execution of
the affected software. A typical time bomb is one where
adisgruntled employee insertsinto complex software that
is frequently used (a compiler or a payroll system, for
example) codethat will abort theexecution of the software,
for instance, after a certain date, naturally chosen to fall
after the date of the employee’s resignation or dismissal.

While some programming errors may appear to betime
bombs (theinfamous'Y 2k problem certainly being the best
known and most costly of these), virtually all intentional
logical bombs are malicious.

A computer virusisalogical bomb that is able to self-
replicate, to subvert a computer system in some way, and
to transmit copies of itself to other hardware and software
systems. Each of these copies in turn may self-replicate
and affect yet other systems. A computer virus usually
attaches itself to an existing program and thereby is per-
manently stored.

A worm is very similar to a computer virus in that it
is self-replicating and subverts a system; however, it usu-
ally is a self-contained program that enters a system via
regular communication channels in a network and then
generates its own commands. Therefore, it is frequently
not permanently stored asafilebut rather existsonly inthe
main memory of the computer. Note that alogical bomb
resident in a piece of software that is explicitly copied to
another system may appear as a virus to the users, even
though it is not.

Each of the three types of subversion mechanisms,
bombs, viruses, and worms, can, but need not, cause dam-
age. Instances are known in which bombs and viruses
merely printed out some brief message on the screen and
then erased themselves, without destroying data or caus-
ing other disruptions. These can be considered as rela
tively harmless pranks. However, it must be clearly un-
derstood that these subversion mechanisms, especially the
self-replicating ones, most definitely have enormous po-
tential for damage. This may be due to deliberate and
explicit erasure of data and software, or it may be due to
far less obvious secondary effects. To give one example,
consider aworm that arrives at some system viaelectronic
mail, thereby activating a process that handles the receiv-
ing of mail. Typically, thisprocess hasahigh priority; that
is, if there are any other processes executing, they will
be suspended until the mail handler is finished. Thus, if
the system receives many mail messages, a user may get
the impression that the system is greatly slowed down. If
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these mail messages are all copies of the sameworm, it is
clear that the system can easily be saturated and thereby
damage can be done, even though no data or programsare
erased.

This is what happened in the historic case study cited
above. On November 2, 1988, when aworm invaded over
6000 computers linked together by a major U.S. network
that was the precursor to the present-day Internet, includ-
ing Arpanet, Milnet, and NSFnet. Affected were comput-
ers running the operating system Berkeley Unix 4.3. The
worm took advantage of two different flaws, namely, ade-
bugging device in the mail handler (that most centers left
in place even though it was not required any longer after
successful installation of the mail handler) and a similar
problem in a communications program. The worm ex-
ploited these flaws by causing the mail handler to circum-
vent theusual accesscontrolsinafairly sophisticated way;
it also searched users’ files for lists of trusted users (who
have higher levels of authority) and used them to infil-
trate other programs. The worm’s means of transmission
between computer was the network. Because infiltrated
sites could be reinfiltrated arbitrarily often, systems (es-
pecially thosethat werefavoritereci pientsof mail) became
saturated and stopped performing useful work. This was
how usersdiscovered theinfiltration, and thiswas also the
primary damage that the worm caused. (While it did not
erase or modify any data, it certainly was capable of doing
thishad it been so designed.) The secondary damage was
caused by the efforts to remove the worm. Because of the
large number of sites affected, this cost was estimated to
have amounted to many years of work, even though it was
relatively easy to eliminate the worm by rebooting each
system because the worm was never permanently stored.

One reason this worm made great waves was that it
caused the first mgjor infiltration of mainframe comput-
ers. Prior to thisincident, various computer viruses (caus-
ing various degrees of damage) had been reported, but
only for personal computers. Personal computers are typ-
ically less sophisticated and originally had been designed
for personal use only, not for networking; for these rea-
sonsthey had been considered more susceptibleto attacks
from viruses. Thus, threats to mainframes from viruses
were thought to be far less likely than threats to personal
computers. TheNovember 2, 1988, incident destroyed this
myth in less than half aday, the time it took to shut down
Internet and many computer systems on it.

Since then, a wide variety of attackers have appeared
on the scene, substantially aided by the explosive growth
of the World Wide Web. Not surprisingly, given the domi-
nance that Microsoft’s operating systems have in the mar-
ket, most recent viruses exist within the context of that
company’s operating systems. Many of these viruses use
the increasingly common use of attachments to be trans-
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mitted surreptitiously; in this case, opening an attachment
may beall that isrequiredto getinfected. Infact, usersmay
not even be awarethat an attachment was opened, because
it occurred automatically (to support more sophisticated
mail functions, such as previewing or mail sorting ac-
cording to some user-specified criterion). Frequently, the
resulting subversion of the mail system facilitates further
distribution of thevirus, using mailing lists maintained by
the system.

[ll. PREVENTION AND DETECTION

There are two different approaches to defending against
viruses and worms. Oneis aimed at the prevention or de-
tection of the transmission of theinfiltrator; the other tries
to prevent or detect damage that the infiltrator may cause
by erasing or modifying files. The notable 1988 worm
incident illustrates, however, that even an infiltrator that
does not alter any files can be very disruptive.

Several defense mechanisms have been identified in
the literature; below some of the more easily imple-
mentable defenses are listed. One should, however, keep
in mind that most of them will be implemented by more
software, which in turn could be subject to infiltration.
First, however, it is necessary to state two fundamental
principles:

1. Noinfection without execution.
2. Detection is undecidable.

The first principle refers to the fact that infection cannot
occur unless sometype of (infected) softwareis executed.
In other words, merely looking at an infected program
will not transmit avirus. Thus, simple-minded e-mail pro-
grams that handle only flat ASCII files are safe since no
execution takes place. Aswe pointed out earlier, the exe-
cutioninvolved can bevirtually hidden from the user (e.g.,
in the case of previewing attachments), but in every case,
the user either enabled the execution or could explicitly
turn it off. The second principle has major implications.
Essentiadly, it states that it is probably impossible to de-
sign atechnique that would examine an arbitrary program
and determine whether it contains a virus. This imme-
diately raises the question of how virus detections soft-
ware functions. Let us make a small excursion first. We
claim that any half-way effective virus must have the abil-
ity of determining whether a program has aready been
infected by it. If it did not have this capability,it would
reinfect an already infected program. However, since a
virusis acode fragment of a certain length, inserting that
same code fragment over and over into the same program
would result in a program that keeps on growing until it
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eventually exceeds any available storage capacity, result-
ing in immediate detection of the virus. Returning now to
our question of how virus detection software works, we
can say that it does exactly the same that each virus does.
This ofcourse implies trivially that that test can be car-
ried out only if the virus is known. In other words, virus
detection software will never be able to find any virus;
it will only be able to detect viruses that were known to
the authors of the detection software at the time it was
written. The upshot is that old virus detection software
is virtually worthless since it will not be able to detect
any viruses that appeared since the software was written.
Consequently, it is crucial to update one’s virus detection
software frequently and consistently.

While many virus detection programs will attempt to
remove avirusonceit isdetected, removal issignificantly
trickier and can result in the corruption of programs. Since
viruses and wormstypically have all the access privileges
that the user has, but no more, it is possible to set the
permissions for al files so that writing is not permitted,
evenfor theowner of thefiles. Inthisway, theviruswill not
be ableto writethefiles, something that would berequired
to insert the virus. It is true that the virus could subvert
the software that controls the setting of protections, but
to date (February 2000), no virus has ever achieved this.
(Whenever auser legitimately wantstowriteafile, the user
would have to change the protection first, then write the
file, and then change the protection back.) The primary
advantage of this method is that it is quite simple and
very effective. Its primary disadvantageisthat users might
find it inconvenient. Other, more complicated approaches
include the following:

1. Requirement of separate and explicit approval (from
the user) for certain operations: this assumes as
interactive environment and is probably far too
combersome for most practical use. Technically, this
can be implemented either as software that requires
the user to enter an approval code or as hardware
addendum to the disk drive that prevents any
unapproved writes to that disk. Note, however, that a
good deal of software, for example, compilers,
legitimately write to disk, even though what is written
may be aready infiltrated.

2. Comparison with protected copy: another way of
preventing unauthorized writes isto have a protected
copy (encrypted or on awrite-once disk, see method
6) of a program and to compare that copy with the
conventionally stored program about to be executed.

3. Control key: acontrol key can be computed for each
file. This may be atype of check sum, the length of
the file, or some other function of the file. Again, itis
important that this control key be stored incorruptible.
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4. Time stamping: many operating systems store a date
of last modification for each file. If a user separately
and incorruptibly stores the date of last modification
for important files, discrepancies can indicate
possibleinfiltrations.

5. Encryption: files are stored in encrypted format (that
is, as cipher text). Before usage, afile must be
decrypted. Any insertion of unencrypted code (asit
would be done by avirustrying to infiltrate a
program) will give garbage when the resulting fileis
decrypted.

6. Write-once disks: certain codes (immutable codes,
balanced codes) can be used to prevent (physically)
the change of any information stored on write once
(or laser) disks.

All methods attempt to prevent unauthorized changesin
programs or data. Methods 2 (protected copy), 3 (control
key), and 6 (write-once disk) work primarily if no changes
at all are permitted. Methods 4 (time stamping) and 5
(encryption) work if changes are to be possible.

None of these methods guarantees that attempted infil-
trationswill befoiled. However, these methods may make
it very difficult for avirus to defeat the security defenses
of acomputer system. Note, however, that all areaimed at
permanently stored files. Thus, aworm asin the Novem-
ber 2, 1988, incident may not be affected at all by any of
them. Asindicated, this worm took advantage of certain
flawsin the mail handler and a communications program.

IV. CONCLUSION

Viruses and worms are a threat to data integrity and have
the potential for endangering data security; the danger of
these attackersismagnified substantially by their ability of
self-replication. While the general mechanisms of viruses
have not changed significantly over the past decade, the
useage patterns of computers have, providing seemingly
new ways of attacking data and software. Certain defense
mechanisms are available; however, they do not guarantee
that all attackswill be repulsed. Infact, technical meansin
general areinsufficient to deal withthethreatsarisingfrom
viruses and worms as they use commonly accepted and
convenient means of communication to infiltrate systems.

Using reasonable precautions such as restricting ac-
cess; preventing users from running unfamiliar, possi-
bly infiltrated software; centralizing software develop-
ment and maintenance; acquiring software only from rep-
utable vendors; avoiding opening attachments (at least
from unknown senders); using virus detection software
in a systematic and automated way (e.g., every log-on
triggers a virus scan); and most importantly, preparing,
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internally disseminating, and strictly adhering to a care-
fully thought-out disaster recovery plan (which must func-
tion even if the usual computer networks are not opera-
tional!), itislikely that major damage can be minimized.
SEE ALSO THE FOLLOWING ARTICLE
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GLOSSARY

Ciphertext All or part of an encrypted message or file.

Computationally infeasible A computation is computa-
tionally infeasible if it is not practical to compute, for
example if it would take millions of years for current
computers.

Cryptosystem A cryptosystem or cryptographic system
consists of an encryption algorithm and the correspond-
ing decryption algorithm.

Digital signature Cryptographic means of authenticating
the content and sender of a message, like a handwritten
signature is to physical documents.

Encryption The process of transforming information to
hide its meaning. An encryption algorithm is also called
a cipher or code.

Decryption The process of recovering information that
has been encrypted.

Key A parameter to encryption and decryption that con-
trols how the information is transformed.

Plaintext The plaintext or cleartext is the data to be
encrypted.

Cryptography

Public key cryptosystem A two-key cryptosystem in
which the encryption key is made public, and the de-
cryption key is kept secret.

Symmetric key cryptosystem A traditional single-key
cryptosystem, in which the same key is used for en-
cryption and decryption.

CRYPTOGRAPHY, from the Greek krypt-, meaning
hidden or secret, and grdph-, meaning to write, is the sci-
ence of secret communication. Cryptography consists of
encryption or enciphering, in which a plaintext message
is transformed using an encryption key and an encryption
algorithm into a ciphertext message, and decryption or de-
ciphering, in which the ciphertext is transformed using the
decryption key and the decryption algorithm back into the
original plaintext. Cryptography protects the privacy and
sometimes the authenticity of messages in a hostile en-
vironment. For an encryption algorithm to be considered
secure, it should be difficult or impossible to determine
the plaintext from the ciphertext without knowledge of
the decryption key.
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Historically, cryptography has been used to safeguard
military and diplomatic communicationsand hastherefore
been of interest mainly to the government. Now, asthe use
of computers and computer networks grows, there is an
increasing amount of information that is stored el ectroni-
cally, on computers that can be accessed from around the
world viacomputer networks. Asthis happens, businesses
and individuals are finding more of a need for protection
of information that is proprietary, sensitive or expensive
to obtain.

Traditionally, encryption was used for a sender to send
a message to a receiver in such a way that others could
not read or undetectably tamper with the message. Today,
encryption protects the privacy and authenticity of data
in transit and stored data, prevents unauthorized access
to computer resources, and more. Cryptography is com-
monly used by almost everyone, often unknowingly, asit
isincreasingly embedded into ubiquitous systems, such as
automated bank teller machines, cellular telephones, and
World Wide Web browsers.

I. INTRODUCTION

Cryptography probably dates back closeto the beginnings
of writing. One of the earliest known examplesisthe Cae-
sar cipher, named for its purported use by Julius Caesar in
ancient Rome. The Caesar cipher, which can not be con-
sidered secure today, replaced each letter of the alphabet
with the letter occurring three positions later or 23 posi-
tions earlier in the aphabet: A becomes D, B becomes
E, X becomes A, and so forth. A generalized version of
the Caesar cipher is an alphabetic substitution cipher. As
an example, a simple substitution cipher might use the
following secret key to provide a substitution between
characters of the original message and characters of the
encrypted message.

ABCDEFGHI JKLMNOPQRSTUVWXYZ
FROAHI CWTZXLUYNKEBPMVGDSQJ

Using this key, a sample encrypted message is:
| EQ | BQDXMBQ FX RVBFQW MOWQB | EQ QLT | BQQ

As is evident from even such a short example, this sim-
ple method does not disguise patterns in the text such as
repeated letters and common combinations of letters. In
fact, if the encrypted message isknown to be English text,
it isusually quite easy to determine the original message,
even without the knowledge of the secret key, by using let-
ter frequency analysis, guessing and checking, and maybe
a little intuition and luck. Such substitution ciphers are
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commonly used today as puzzles in newspapers and puz-
Zle books, but are not secure when used alone as cryp-
tosystems. Polyal phabetic substitution ciphers, devel oped
by Len Battista in 1568, improved on regular substitu-
tion ciphers by changing the substitution scheme partway
through a message. Although substitution is not secure
when used alone, it can be useful when usedin conjunction
with other techniques, and in fact, many cryptosystems
used today benefit from substitution when it is carefully
used as part of their encryption algorithms.

Another simple technique that is not secure alone, but
can be secure when used as part of a cryptosystem, is
transposition Or permutation. A simple transposition ci-
pher might rearrange the message

WE MEET AT DAWN I N THE MJUSEUM

by removing spaces, writing it in columnsof letterswhose
length is determined by the key, and then reading across
the columns

WEDI EE
ETANMU
MAWT UM
ETNHS

yielding the ciphertext
VEDI EE ETANMJ MAWTUM ETNHS.

Inthissimpleexample, itiseasy to seethat an attacker can
fairly easily determinethe column length by seeing which
pairs of letters are most likely to be adjacent in English
words.

Used together, repeated combinations of substitution
and transpositions can make the job of an attacker who is
trying to break the system without knowing the key harder
by more thoroughly obscuring the relationship between
the plaintext and the ciphertext, requiring an attacker to
explore many more possibilities. Many of the mechanical
and electrical ciphersused in World Wars | and |1, such as
the Enigmarotor machine, relied on various combinations
of substitutions and permutations.

Cryptanalysis is the process of trying to determine the
plaintext of a ciphertext message without the decryption
key, aswell as possibly trying to determine the decryption
key itself. Together, cryptography and cryptanalysis com-
prisethe field of cryptology. Thejob of the cryptographer
isto devise systemsfaster than the cryptanal ysts can break
them. Until early the 20th century, cryptanalysts gener-
ally had aclear upper hand over cryptographers, and most
known ciphers or cryptosystems could easily be broken.

The transition to modern cryptography began with
the invention of computers, and continued with the
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development of ciphers such as the Data Encryption
Standard (DES) and the exciting discovery of public
key cryptography. The use of computers means more
possibilities for ciphers, as sophisticated and lengthy
computations that would have error-prone if done by
hand and expensive if done by mechanical devices have
now become possible.

A. Cryptosystems: A Mathematical Definition

Mathematically, a cryptosystem is defined as three algo-
rithms—a (randomized) key generation algorithm key-
Gen, a (possibly randomized) encryption algorithm Enc,
and a (usually deterministic) decryption agorithm Dec.
More specificaly, we define the following sets.

M = set of plaintext messages
C = set of encrypted messages
Kg = set of encryption keys
Kp = set of decryption keys
R = set of random values for encryption
R’ = set of random values for key generation.

M is caled the message space, and Kg UK}y is caled
the key space. In computerized algorithms, the key space
and message space are typically sets of al bit strings of
particular lengths. As a notational convention, we denote
sets by boldface letters and elements of a set by the same
letter in italic typeface. The functions KeyGen, Enc, and
Dec are defined as follows.

KeyGen: R' — Kg x Kp
Enc: MxKgxR—C
Dec: CxKp—> M,
such that for every r e Rand ' e R/,
Dec(Enc(M, Kg,r), Kp) =M,

where KeyGen(r') = (Kg, Kp). We usually suppress ex-
plicit mention of the randomization used by Enc, and in-
stead write Enc(M, K ¢) to donate Enc(M, K¢, r), where
r is chosen randomly as specified by an algorithmic de-
scription of Enc.

Often, Kg = K p; that is, the encryption and decryption
keysareidentical, and in this case werefer to it smply as
thekey or the secret key. Thisiscalled symmetric or secret
key cryptography. In contrast, in asymmetric or public key
cryptography, the encryption keys and decryption keys
are different from each other, and only the decryption key
needs to be kept secret. In public key cryptography, the
decryption key is also sometimes called the secrer key.
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l Kg l Kp

— FEne Dec

FIGURE 1 Diagram of a cryptosystem.

In order for acryptosystem to be useful, all three func-
tions KeyGen, Enc, and Dec must be efficiently com-
putable. Sincekey generationisgenerally doneonly infre-
quently and can often be done in advance, it is acceptable
for KeyGen to be somewhat less efficient, perhaps even
taking many minutes to compute. In contrast, encryption
and decryption are usually done more frequently and in
real time, so Enc and Dec should be more efficient, mea-
suring on the order of milliseconds or less.

We would also like additional requirements to capture
the security of the cryptosystem—for example, that it is
difficult todetermineany information about K , or M from
Enc(M, K ,) alone. However, the specific meaning of this
reguirement depends the computational power available
to an attacker, the abilities of the attacker to learn the en-
cryptions of various messages, and other such factors, so
there is not one single definition that can capture secu-
rity in all settings. A rather strong, and desirable, notion
of security isthat of semantic security: from the cipher-
text only, it should be computationally infeasible to learn
anything about the plaintext except its length. The cipher-
text should not reveal, for example, any of the bits of the
ciphertext, nor should it suggest that some plaintext mes-
sages are more probably than others. Semantic security is
much stronger than simply stating that an attacker does
not learn the plaintext.

To seetheimportanceof thekey generationfunctionina
cryptosystem, consider again the Caesar cipher presented
previously. This can be thought of as encryption function
that rotates charactersin the al phabet according to the key,
with akey generation function that always choosesthe key
3. Itisintuitively easy to see that an attacker who knows
that the key is always 3, or infers it by seeing a num-
ber of plaintext/ciphertext pairs, clearly has an advantage
over an attacker in a system where the key is chosen ran-
domly from 1 to 26. In a system with a large key space,
the key generation function can help to formally express
the security of the cryptosystem by quantifying the a pri-
ori uncertainty the attacker has about the decryption key.
In some implemented systems, key generation is left to
the user, but this can be problematic because users are a
bad source of randomness, and therefore this effectively
reduces the size of the key space.
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B. Goals of Cryptosystems: What Cryptography
Can and Cannot Provide

Cryptography can be used to provide avariety of security-
related properties. Wewill usetheterm “message” to refer
either to a message or any other kind of data, either in
transit or stored. Cryptography is often used to provide
the following important properties.

Confidentiality: protectsthe contentsof datafrom being
read by unauthorized parties.

Authentication: allowstherecipient of amessageto pos-
itively determine the identity of the sender.

Integrity: ensures the recipient that a message has not
been altered fromits original contents.

Nonrepudiation: allows the recipient of a message to
prove to a third party that the sender sent the

message.

There are anumber of additional security-related prop-
erties that cryptography does not directly provide, but for
which cryptography can be part of a solution. These in-
clude anonymous communication, in which the receiver
of a message is prevented from learning the identity of
the sender; fair exchange, in which Alice should receive
a valid message from Bob if and only if Bob receives a
valid message from Alice; privacy from spam (unwanted
bulk electronic mail); preventing the recipient of a mes-
sage from further distributing the message; and protection
against message traffic analysis.

Although cryptography isan important tool in securing
computer systems, it aloneisnot sufficient. Evenif astrong
cryptosystem is used to authenticate users of a computer
system before allowing them access, this authentication
procedure can be easily subverted if there are other ways
for attackers to access the system, whether through mis-
takenly installed, poorly configured, or just plain buggy
software.

II. ATTACKS ON CRYPTOGRAPHIC
SYSTEMS

Itisgenerally assumed that an attacker on a cryptographic
system knows everything about the specification of the
system: that is, the key generation function, the encryp-
tion function, and the decryption function. Thus, the se-
curity of the system depends only on the fact that the at-
tacker does not know the key, and on the degree to which
the ciphertexts produced by the system hide the keys and
plaintexts that were used. Thisis called Kerckhoff’s prin-
ciple, named for Auguste Kerckhoff who advocated it in
a book he wrote in 1883. While the attacker may not in
fact always know this much information, it is a conser-
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vative assumption and avoids “security by obscurity,” or
basing security on the assumption that the attacker does
not know the encryption function. Captured equipment or
documentation have frequently played arolein the break-
ing of military ciphers. Intheindustrial world, disgruntled
employees can often be induced to reveal which ciphers
their employers’ systems use. If a cryptosystem isimple-
mented in widely distributed software, the algorithm will
almost certainly be discovered by reverse engineering, as
happened with the RC4 cryptosystem, or leaked, as hap-
pened with the A5 cryptosystem. In practice, security by
obscurity often turns out not to be security at all because
cryptosystems that have not withstood public scrutiny are
far more likely to have flaws in their design than those
that were heavily scrutinized. Due to these factors, secu-
rity by obscurity is generally frowned on by the scientific
community.

In addition to knowing the specification of the system,
an attacker may also know some additional information,
such as what kinds of messages will be encrypted. The
attacker may also have access to some pairs of plaintext
and their corresponding ciphertexts, possibly chosen by
the attacker.

A. Types of Attacks and Attackers

There are anumber of types of attacks and attackers. One
measurement of an attack is how much the attacker is
ableto learn, described here from weakest to strongest as
categorized by Lars Knudsen.

Information deduction: The attacker learns partia in-
formation about the plaintext of an intercepted ci-
phertext or about the secret key.

Instance deduction: The attacker |earns the plaintext of
an intercepted ciphertext.

Global deduction: Theattacker discoversanalternateal-
gorithm for deciphering ciphertexts without the se-
cret key.

Total break: The attacker |earns the secret key.

In both global deductions and total breaks, the attacker
can then decrypt any ciphertext.

The attacker may have different messages available to
analyzeinmounting an attack, again described fromweak-
est to strongest.

Ciphertext-only attack: the attacker has access to a
number of ciphertexts.

Known-plaintext attack: the attacker has access to a
number of plaintext/ciphertext pairs.

Chosen-plaintext attack: theattacker canchooseanum-
ber of plaintexts and learn their ciphertexts.

Adaptive chosen-plaintext attack: a chosen-plaintext
attack in which the attacker can choose which
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plaintext message to see the ciphertext of next
based on all the messages he has seen so far.
Chosen-ciphertext attack: the attacker can choose a
number of ciphertexts and learn their plaintexts.
Adaptive chosen-ciphertext attack: a chosen-cipher-
text attack in which the attacker can choose which
ciphertext message to see the plaintext of next
based on all the messages he or she has seen so far.

In the types of attacks just described, it is usualy as-
sumed that all the ciphertexts were generated with the
same encryption key. In addition, some cryptosystems
aresusceptibleto related-message and rel ated-key attacks,
in which the attacker has access to ciphertexts or plain-
text/ciphertext pairs for keys or plaintext messages with
certain known relationships.

One measure of the practicality of an attack isthe num-
ber and type of ciphertexts or plaintext/ciphertext pairs it
requires. Other measures include the computational com-
plexity, also called the work factor, and the storage re-
quirements of the attack.

Inthe casethat encryptionisbeing used to provide prop-
erties other than just secrecy, there are additional types of
attacks. For example, if encryptionisbeing usedto provide
authentication and integrity through digital signatures, an
attacker may attempt to forge signatures. As above, suc-
cessful attacks can range from an existential forgery, in
which one signed message is forged, to atotal break, and
attacks can use any number and type of signed messages.

Cryptanalysis describes attacks that directly attack the
cryptosystem itself. The main two classes of cryptanalytic
attacks, described below, are bruteforce attacks and struc-
tural attacks. We also describe some non-cryptanalytic
attacks.

B. Brute Force Attacks

Brute force attacks are ciphertext-only attacks or known-
plaintext attacksin which the decryption algorithm is used
as a‘““black box” to try decrypting a given ciphertext with
al possible keys until, in the case of a ciphertext-only
attack, a meaningful message is found (if here is a way
to determine in the context under attack whether a mes-
sage is “meaningful”), or in the case of known-plaintext
attacks, until the ciphertext decryptsto the corresponding
plaintext. On average, abruteforcewill haveto check half
the key space before finding the correct key. While such
attacksare exponential in thelength of thekey, they can be
successfully carried out if the key space is small enough.

C. Structural Attacks

Brute force attacks simply use then encryption algorithm
as a black box. It is often possible to mount more effi-
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cient attacks by exploiting the structure of the cipher. For
example, in attacking the alphabetic substitution cipher,
an efficient attacker makes use of the fact that different
occurrences of the same letter is always substituted by the
same substitute. More examples of structural attacks are
given in the discussion of current cryptosystems.

D. Non-Cryptanalytic Attacks

When strong cryptographic systemswith sufficiently long
key lengths are used, brute force and other cryptanalytic
attacks will not have a high probability of success. How-
ever, there anumber of attacks that exploit the implemen-
tation and deployment of cryptosystems that can be tried
instead and indeed are often successful in practice. These
attacks usually have the goal of learning a user’s secret
key, though they also may be carried out only to learn a
particular plaintext message. Asin the case of cryptana
lytic attacks, the attacker may or may not have access to
plaintext/ciphertext pairs.

1. Social Attacks

Sacial attacks describe a broad range of attacks that use
social factorstolearn auser’ssecret key. Theserangefrom
attempting to guess a secret key chosen by auser by using
information known about the user to calling a user on
the telephone pretending to be a system administrator and
asking to be given information that will allow the attacker
to gain access to the user’s private keys. Alternately, the
target of asocial attack can be the contents of a particular
sensitive message, again by fooling the sender or recipient
into divulging information about it. Bribery and coercion
areal so considered social attacks. Thebest defenseagainst
social attacksisacombination of user education and legal
remedies.

2. System Attacks

System attacks are attacks in which an attacker attempts
to gain accessto stored secret keys or stored unencrypted
documentsby attacking through non-cryptographic means
the computer systems on which they are stored. Common
waysthat thisis done are:

» Exploiting known, publicized holesin common
programs such as sendmail or World Wide Web
browsers.

e Computer viruses (usually distributed through e-mail).

* Trojan horse programs (usually downloaded from the
Web by unsuspecting users).

In many cases, there are existing and easily availabletools
to carry out these types of attacks.
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Edward Felten and others have described a number of
strong attacksthat arepartially system attacksand partially
social attacks, in which they take advantage of certain
features in the way systems such as Web browsers are
designed, combined with expected user behavior.

Thebest defensesagainst system attacksare prevention,
detection, and punishment, achieved by a combination of
good system administration, good firewalls, user educa-
tion, and legal remedies.

3. Timing Attacks

Timing attacks were publicized by Paul Kocher in 1996.
They attack theimplementation of cryptosystems by mea-
suring observable differences in the timing of the algo-
rithm based on the particular value of the key. They then
use statistical methods to determine the bits of key by
observing many operations using the same key. Timing
attacks typically require a significant number of chosen
ciphertexts.

Related attacks can use any measure of differencesin
the performance of the encryption and decryption func-
tions such as power consumption and heat dissipation.

Timing attacks and related attacks can be protected
against to some degree by “blinding” the devices perform-
ing encryption and decryption computations so that all
computations have the same performance, regardless of
the particular key and message being used. However, this
can have a substantial performance cost, as it requires al
computations to have worst-case performance. Such at-
tacks can aso be protected against by designing systems
sothat they will not act asan “oracle” by decryptingandre-
turning all and any messagesthat come their way, thereby
preventing an attacker from obtaining the necessary data
to carry out the attack. However, thisisnot always possible
without interfering with the purpose of the system.

[ll. DESIGN AND USE OF
CRYPTOGRAPHIC SYSTEMS

A good cryptosystem should satisfy several properties.
It must be efficient to perform encryption and decryp-
tion, the encryption and decryption algorithms should be
easy to implement, and the system should be resistant to
attacks. Earlier, Kerckhoff’s principle was noted, it says
that the security of acryptosystem should depend only on
the secrecy of the secret key.

A. Provable Versus Heuristic Security

In some cases, it is possible to actually prove that a cryp-
tosystem is secure, usualy relative to certain hardness
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assumptions about the difficulty of breaking some of its
components. In other cases, the security of acryptosystem
isonly heuristic: the system appearsto be secure based on
resistance to known types of attacks and scrutiny by ex-
perts, but no proof of security is known. While provable
security is certainly desirable, most of today’s cryptosys-
tems are not in fact provably secure.

B. Confusion and Diffusion

Two important properties that can be used to help in
guiding the design of a secure cryptosystem, identified
by Claude Shannon in 1949, are confusion and diffusion.
Confusion measuresthe complexity of therelationship be-
tween the key and the ciphertext. Diffusion measures the
degree to which small changesin the plaintext have large
changesin the ciphertext.

For example, substitution creates confusion, while
transpositions create diffusion. While confusion alone
can be enough for astrong cipher, diffusion and confusion
are most effective and efficient when used in conjunction.

C. Modes of Encryption

A block cipher encrypts messages of a small, fixed size,
such as 128 hits. A stream cipher operates on a message
stream, encrypting asmall unit of data, say abit or byte, at
atime. While stream ciphers can bedesigned from scratch,
itisalso possible to use a block cipher as a stream cipher,
aswe will see below.

To encrypt a large message or data file using a block
cipher, it must first be broken into blocks. A mode of en-
cryption describes how the block cipher is applied to dif-
ferent blocks, usualy by applying some sort of feedback
so that, for example, repeated occurrences of the same
block within a message do not encrypt to the same ci-
phertext. The main modes of block cipher encryption are
electronic codebook mode (ECB), cipher block chaining
mode (CBC), cipher feedback mode (CFB), output feed-
back mode (OFB), and counter mode (CTR).

1. Electronic Codebook Mode (ECB)

In electronic codebook mode, the block cipher is applied
independently (with the same key) to each block of a
message. While this is the easiest mode to implement,
it does not obscure the existence of repeated blocks of
plaintext. Furthermore, if an attacker can learn known
plaintext/ciphertext pairs, these will allow him or her to
decrypt any additional occurrences of the same block.
Additionally, the attacker can replay selected blocks of
previously sent ciphertexts, and an attacker may be able
to use collected ciphertext blocks to replace blocks of a
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new ciphertext message and change its meaning. For ex-
ample, alucky attacker might be able to change an elec-
tronic funds transfer to a different amount or a different
payee.

The other modes discussed as follows avoid this prob-
lem by incorporating some feedback that causes different
occurrences of the same plaintext block to encrypt to dif-
ferent ciphertexts.

2. Cipher Block Chaining Mode (CBC)

In cipher block chaining mode, the plaintext of ablock is
combined with the ciphertext of the previous block viaan
exclusive or (xor) operation, and the result is encrypted.
The result is the ciphertext of that block, and will also be
used in the encryption of the following block. An initial-
ization vector (1V) acts asthe “previous ciphertext block”
for the first plaintext block. The initialization vector can
be madepublic (i.e., can be sent in the clear along with the
ciphertext), but ideally should not be reused for encryption
of different messagesto avoid having the same ciphertext
prefix for two messages with the same plaintext prefix.

Decryption reverses the process. The first block of ci-
phertext isdecrypted and then xored with theinitialization
vector; the result is the first plaintext block. Subsequent
ciphertext blocks are decrypted and then xored with the
ciphertext of the previous block.

One concern in feedback modes is synchronization af-
ter transmission errors. Cipher block chaining is self-
synchronizing: atransmission error in one block will result
in an error in that block and the following block, but will
not affect subsequent blocks.

Plaintext block chaining is also possible.

3. Cipher Feedback Mode (CFB)

Cipher feedback mode allows a block cipher with block
size n hits to be used as a stream cipher with a data en-
cryption unit of m bits, for any m < n.

In CFB mode, the block cipher operates on aregister of
n bits. The register isinitidly filled with an initiaization
vector. To encrypt m bits of data, the block cipher is used
to encrypt the contents of the register, the leftmost m bits
of theresult arexored withthem bitsof data, and theresult
ism bits of ciphertext. In addition, the register is shifted
left by m bits, and those m ciphertext bits are inserted in
the right-most m register bitsto be used in processing the
next m bits of plaintext.

Decryption reverses the process. The register initialy
contains the initialization vector. To decrypt m bits of ci-
phertext, the block cipher is used to encrypt the contents
of the register, and the resulting leftmost m bits are xored
with the m ciphertext bitsto recover m plaintext bits. The
m ciphertext bits are then shifted left into the register.
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Note that the encryption function of the block cipher is
used in encryption and decryption of CFB mode, and the
decryption function of the block cipher is not used at all.

As in CBC mode, an initialization vector is needed
to get things started, and can be made public. In CBC
mode, however, the initialization vector must be unique
for each message encrypted with the same key, or else
an eavesdropper can recover the xor of the corresponding
plaintexts.

A single transmission error in the ciphertext will cause
an error in n/m+ 1 blocks as the affected ciphertext
block is shifted through the register, and then the system
recovers.

4. Output Feedback Mode (OFB)

Output feedback modeis similar to CFB mode, except that
instead of theleftmost m bitsof theciphertext being shifted
|eft into the register, the leftmost m bits of the output of
the block cipher are used. As in CBC mode, encryption
proceeds by encrypting the contents of the register using
theblock cipher and xoring theleftmost m bitsof theresult
with the current m plaintext bits. However, OFB mode
introduces insecurity unless m =n. As with CFB mode,
Theinitialization vector can be made public and must be
unique for each message encrypted with the same key.

In OFB mode, the key stream—the sequences of m bits
that will be xored with the plaintext (by the sender) or
the ciphertext (by the receiver)—depend only on the ini-
tialization vector, not on the plaintext or the ciphertext.
Hence OFB mode has the efficiency advantage that, pro-
vided the sender and receiver agree in advance about what
initialization vector their next message will use, the key
stream can be computed in advance, rather than having to
be computed while a message is being encrypted or de-
crypted. Since xor isamuch more efficient operation than
most block ciphers, this can be a substantial gain in the
time between the receipt of an encrypted message and its
decryption.

In OFB mode, the key must be changed before the key
stream repeats, on average after 2" — 1 bits are encrypted
if m=n.

5. Counter Mode (CTR)

Counter mode is similar in structure to the feedback
modes, CFB and OFB, except that the register contents
are determined by a simple counter modulo 2™, or some
other method for generating unique registers for each ap-
plication of the block cipher. Asin OFB mode, the key
stream can be computed in advance. Despite the apparent
simplicity of CTR mode, it has been shown to be in some
sense at least as secure as CBC mode.
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IV. SYMMETRIC KEY CRYPTOGRAPHY

Traditionally, al cryptography was symmetric key cryp-
tography. Inasymmetrickey cryptosystem, theencryption
key K and the decryption key K p, are the same, denoted
simply by K. Thekey K must be kept secret, anditisalso
important that an eavesdropper who seesrepeated encryp-
tions using the same key can not learn the key. Thesimple
substitution cipher described earlier is an example of a
symmetric key cryptosystem.

A. The One-Time Pad

Invented by Gilbert Vernam and M gjor Joseph M auborgne
in 1917, the one time pad is a provably secure cryptosys-
tem. It isalso perfectly secure, in the sense that the proof
of security does not depend on any hardness assumptions.
In the one-time pad, the message space M can be the
set of al n-bit strings. The space of keys and cipher-
texts are also the set of al n-bit strings. The key gen-
eration function chooses an n-bit key uniformly at ran-
dom. Given a message M and a key K, the encryption
Enc(M, K)=M & K, thexor of M and K. The decryp-
tion of a ciphertext C is Dec(C,K)=C & K. It fol-
lows that Dec(Enc(M,K), K)=(M & K) 8 K=M &
(K®K)=M.

A given ciphertext C can correspond to any plaintext
message M, specifically when the key is K =M @ C.
Hence, since the K is random and is never reused, it is
impossible to learn anything about M from C without the
secret key. That is, the one-time pad is perfectly secure.

One-time pads are impractical in most settings because
the secret key must be as long as the message that is to
be sent and cannot be reused. If the key is reused for
two different messages M and M’, then the corresponding
ciphertexts can be xored to learn M & M'. If additional
informationisknown about the plaintexts, such asthey are
Englishtext, or that itisabit string with afixed header, this
isusually sufficient toreveal M and M’, whichinturnalso
revealsthekey K. Nonetheless, if itispossibleto exchange
a sufficiently long random key stream in advance, which
can then be used to encrypt messages until it runs out, the
one-time pad still can be useful.

B. Pseudorandom Number Generators

A pseudorandom number generator isafunction that takes
a short random seed and outputs a longer bit sequence
that “appears random.” To be cryptographically secure,
the output of apseudorandom number generator should be
computationally indistinguishable from a random string.
In particular, given ashort prefix of the sequence, it should
be computationally infeasible to predict the rest of the se-
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guencewithout knowing the seed. Many so-called random
number generators, such as those based on linear feed-
back shift registers (LFSR) or linear congruences, are not
cryptographically secure, as it is possible to predict the
seguence from a short prefix of the sequence. Despite the
fact that LFSRs are not secure, a large number of stream
ciphers have been developed using them. Most of these
have themselves since been shown to be insecure.

The secure Blum-Blum-Shub generator, developed by
Lenore Blum, Manuel Blum, and Michael Shub in 1986,
isbased on the believed computational difficulty of distin-
guishing quadratic residues modulo n from certain kinds
of nonquadratic residues modulo .

A cryptographically secure pseudorandom number gen-
erator can be used to make a stream cipher by using the
seed as a key and treating the generator output as a long
key for a pseudorandom one-time pad.

C. Data Encryption Standard (DES)

The Data Encryption Standard (DES) was issued by the
United StatesNational Bureau of Standards(NBS) in 1977
as a government standard to be used in the encryption of
data. The DESalgorithmisbased onacryptosystem called
L ucifer that wasproposedtothe NBShby thel BM Corpora-
tion. The standard includes the data encryption algorithm
itself, as well as instructions for its implementation in
hardware and an order for U.S. federal government agen-
ciesto useit for protection of sensitive but non-classified
information. Since its initial standardization, DES was
heavily used for encryption both for government and non-
government applications, both in the United States and
elsewhere. Although itskey length is short enough to now
be susceptible to brute force attacks, DES lived a long
lifetime and served its function well.

DES is a block cipher with a 56-bit key and 64-bit
blocks. DES is an example of a Feistel cipher, so named
for one of its designers, Horst Feistel. In the Feistel struc-
ture, encryption proceeds in rounds on an intermediate
64-bit result. Each round divides the intermediate result
into a left half and a right half. The right half then un-
dergoes a substitution followed by a permutation, chosen
based on the key and the round. This output is xored with
the left half to make the right half of the next interme-
diate result; the right half of the old intermediate result
becomes the left half of the new intermediate result. In
DES, there are 16 such rounds. An initial permutation of
the plaintext is performed before the first round, and the
output from the last round is transformed by the inverse
permutation before the last round. This structure has the
advantage that the encryption and decryption algorithms
are almost identical, an important advantage for efficient
hardware implementations.
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As approved as a standard, DES can be used in any of
ECB, CBC, CFB, and OFB modes of encryption.

1. Stronger Variants of DES

Although the key length of DESisnow short enough to be
susceptibleto bruteforceattacks, therearevariantsof DES
that effectively have alonger key length. It isimportant to
note that even though these constructions are more resis-
tant to brute force attacks, it is theoretically possible that
they are more susceptible to structural attacks. However,
no structural attacks are known on the two constructions
presented here that are more efficient than structural at-
tacks on DES itself.

a. Triple-DES. Triple-DESusestwo DESencryption
keys, K3 and K. Thetriple-DES encryption C of aplain-
text block M is

C = Enc(Dec(Enc(M, K1), K3), K1),

where Enc and Dec denote regular DES encryption and
decryption. Decryption is

M = Dec(Enc(Dec(C, K1), K3), K1).

The reason for the encrypt/decrypt/encrypt pattern is for
compatibility with regular DES: triple-DESwith K1 = K>
is identical to regular DES. With independently chosen
keys, triple-DES has an effective key length of 128 hits.

b. DESX. DESKX, suggested by Ronald Rivest, has
an effective key length of 184 bits, and is much more
efficient that triple-DES because it only requires asingle
DES encryption. In DESX, K isa56-bit key and K; and
K, are 64-bit keys. The DESX encryption C of aplaintext
block M is

C=K,®Enc(K1® M, K),
where Enc denotesregular DES encryption. Decryptionis
M = K; @DEC(KZ @& C, K)

DES compatibility isobtained by taking K3 = K, = 0. Joe
Kilian and Phillip Rogaway proved that the DESX con-
struction is sound, in that it is in fact more resistant to
brute force attacks than DES.

2. Brute Force Attacks on DES

Even at thetime of DES’s standardization, there was some
concern expressed about the relatively short key length,
which was shortened from IBM’soriginal proposal. Given
aciphertext/plaintext pair, or from several ciphertextsand
a notion of a meaningful message, a brute force attack
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would on average need to try 2% keys before finding the
right key.

Sinceitsintroduction, anumber of estimates have been
given of the cost and speed of doing a brute force DES
attack, and a handful of such attacks have actually been
performed. Since computers tend to double in speed and
halvein price every 18 months, both the cost and the time
of these attacks has steadily declined. Furthermore, since
DES key search is completely paralelizable, it is possi-
ble to find keys twice as fast by spending twice as much
money.

When DES was standardized, Whitfield Diffie and
Martin Hellman estimated that it would be possible to
build aDES-cracking computer for $20 million that would
crack a DES key in a day. In 1993, Michael Wiener
designed on paper a special purpose brute force DES-
cracking computer that he estimated could be built for $1
million and would crack an average DES key in about
three and ahalf hours. In 1997, Wiener updated hisanaly-
sis based on then-current computers, estimating that a $1
million machine would crack keysin 35 minutes.

In 1998, the Electronic Frontier Foundation (EFF) ac-
tually built a DES-cracking computer, at the cost of
$200,000, consisting of an ordinary personal computer
with a large array of custom-designed chips. It cracks a
DESkey in an average of four and a half days.

3. Differential and Linear Cryptanalysis of DES

a. Differential cryptanalysis. In 1990, Eli Biham
and Adi Shamir introduced differential cryptanalysis, a
chosen-plaintext attack for cryptanalyzing ciphers based
on substitutions and permutations. Applied to DES, the
attack is more efficient than brute force, but it isalargely
theoretical attack because of the large number of chosen
plaintextsrequired. As compared to brute force, which re-
quires a single known plaintext/ciphertext pair and takes
time 2%, differential cryptanalysis requires 2% chosen
plaintext/ciphertext pairs and takes time 257

Differential cryptanalysisoperatesby taking many pairs
of plaintexts with fixed xor difference, and looking at the
differencesintheresulting ciphertext pairs. Based on these
differences, probabilities are assigned to possible keys.
As more pairs are analyzed, the probability concentrates
around a smaller number of keys. One can continue until
the single correct key emerges as the most probable, or
stop early and perform areduced brute force search on the
remaining keys.

Sincethe publication of differential cryptanaysis, Don
Coppersmith, one of DES’s designers at IBM, revealed
that the DES design team in fact knew about differen-
tial cryptanalysis, but had to keep it secret for reasons
of national security. He also revealed that they chose the
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specific substitution and permutation parameters of DES
to provide as much resistance to differential cryptanalysis
aspossible.

b. Linear cryptanalysis. Linear cryptanalysis was
invented by Mitsuru Matsui and Atsuhiro Yamagishi in
1992, and applied by Matsui to DES in 1993. Like dif-
ferentia cryptanalysis, linear cryptanalysis also requires
alarge number of plaintext/ciphertext pairs. Linear crypt-
analysis uses plaintext/ciphertext pairsto generatealinear
approximation to each round, that is, a function that ap-
proximates the key for each round as an xor of some of
the rounds input bits and output bits. An approximation
to DES can be obtained by combining the 16 1-round ap-
proximations. The more plaintext/ciphertext pairsthat are
used, the more accurate the approximation will be. With
2% plaintext/ciphertext pairs, linear cryptanalysisrequires
time 212 and has success probability .85 of recovering the
key.

D. Advanced Encryption Standard

In 1997, the United States National Institute of Standards
(NIST) began the process of finding a replacement for
DES. Thenew advanced encryption standard (AES) would
need to be an unpatented, publicly disclosed, symmetric
key block cipher, operating on 128 hit blocks, and sup-
porting key sizes of 128, 192, and 256 bhits, large enough
to resist brute force attacks well beyond the foreseeable
future. Several candidates were submitted, and were con-
sidered for security, efficiency, and ease of implementa-
tion. Fifteen submitted algorithms from twelve countries
were considered in the first round of the selection process,
narrowed to fivein the second round. On October 2, 2000,
NIST announced that it had selected Rijndael, a block
cipher developed by Belgian cryptographers Joan Dae-
men and Vincent Rijmen, asthe proposed AES agorithm.
Rijndael was chosen for its security, performance, effi-
ciency, implementability, and flexibility. Before Rijndagl
can actually become the standard, it must first undergo a
period of publicreview asaDraft Federal I nformation Pro-
cessing Standard (FIPS) and then be officially approved
by the United States Secretary of Commerce. Thisprocess
is expected to be completed by the middle of 2001.

TheRijndagl a gorithm supportsavariablekey sizeand
variableblock sizeof 128, 192, or 256 hits, but the standard
isexpected to allow only block size 128, and key size 128,
192, or 256. Rijndael proceeds in rounds. For a 128-hit
block, the total number of rounds performed is 10 if the
key length is 128 bits, 12 if the key length is 192 bits, and
14 if the key length is 256 bits.

Unlike the Feistel structure of DES, Rijndael’s rounds
are divided into three “layers,” in each of which each bit
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of an intermediate result is treated in the same way. (In
contrast, the left half and the right half of intermediate
results are treated differently in each round of aFiestel ci-
pher.) Thelayered structureisdesigned to resist linear and
differential cryptanaysis, and consists of the following.

¢ Linear mixing layer: adds diffusion.

¢ non-Linear layer: adds confusion.

e Key addition layer: adds feedback between rounds by
xoring a current round key with an intermediate
encryption result.

The Rijndael algorithm considers bytes as elements of
the finite field GF(28), represented as degree 8 polyno-
mials. For example, the byte with decimal representation
105, or binary representation 01101001, is represented as

1

The sum of two such elementsisthe polynomial obtained
by summing the coefficients modulo 2. The product of
two such elementsis the multiplication of the polynomial
modul o the irreducible polynomial

mx) =x8+x*+x3+ 1.

Let b be the block length in bits. Throughout the en-
cryption process, a matrix of bytes containing containing
apartial result ismaintained. It is called the State, and has
b/32 columns and four rows. The State initialy consists
of ablock of plaintext, written “vertically” into the arrays,
column by column. At theend, the ciphertext for the block
will be taken by reading the State in the same order.

A diagram illustrating the structure of around is given
in Fig. 2. Each round (except the last) consists of four
transformations on the State.

ByteSub: Thisisthe non-linear layer. The ByteSub trans-
formation consists of anon-linear byte substitution op-
erating independently on each of the bytes of the State.
The substitution is done using an “S-box” determined
by taking for each element itsinverseelement in GF(28)
followed by some additional algebraic operations. The
resulting S-box satisfies several properties including
invertibility, minimization of certain kinds of corre-
lation to provide resistance to linear and differential
cryptanalysis, and simplicity of description. In anim-
plementation, the entire S-box can either be calcul ated
once and stored as a table, or S-box transformations
can be calculated as needed.

ShiftRow: Together, the ShiftRow transformation and
the MixColumn operation are the linear mixing layer.
The ShiftRow transformation cyclically shifts each
rows of the State. For 128-bit blocks, the first row is
not shifted, the second row is shifted left by 1 byte,
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FIGURE 2 A round of Rijndael. (lllustration by John Savard.)

the third row is shifted by 2 bytes, and the last row
shifted by 3 bytes.

MixColumn: In the MixColumn transformation, each
column of the Stateisconsidered asthe coefficientsof a
degree 4 polynomial over GF(28), which isthen multi-
plied by the fixed polynomial ¢(x) =3x3 +x24+x + 2
modulo x* + 1, where the sum and products of coeffi-
cients are as described above.

AddRoundKey: Thisisthekey addition layer. Inthe Ad-
dRoundKey transformation, the Stateistransformed by
being xored with the Round Key, which is obtained as
follows. Initialy, the encryption key isexpanded into a
longer key using aK ey Expansiontransformation. Each
AddRoundKey usesthe next b bits of the expanded key
asits Round Key.

The final round eliminates the MixColumn transforma-
tion, consisting only of ByteSub, ShiftRow, and Ad-
dRoundKey. Thisis done to make decryption more struc-
turally similar to encryption, which is desirable for ease
of implementation. An additional AddRound-Key is per-
formed before the first round.

Decryption in Rijndael consists of inverting each step.
Due to the agebraic properties of Rijndael, the order of
steps does not need to be changed for decryption. In-
vByteSub describes the application of the inverse S-box
calculation. InvShiftRow shifts the rows right instead of

left, by the same offsets as ShiftRow. InvMixColumn re-
places the polynomial by its inverse in GF(28). Since xor
isits own inverse, AddRoundKey remains the same, ex-
cept that in decryption the Round keys must be used in
the reverse order. Hence, Rijndael decryption starts with
an AddRoundKey step, and then operates in rounds con-
sisting of InvByteSub, InvShiftRow, InvMixColumn, and
AddRoundKey, followed by afinal round of InvByteSub,
InvShiftRow, and InvMixColumn.

At the time of this writing, encryption modes for AES
are being determined, and will probably consist of ECB,
CBC, CFB, OFB, and counter modes, as well as possibly
others.

V. PUBLIC KEY CRYPTOGRAPHY

The concept of public key cryptography was originaly
proposed in 1976 by Whitfield Diffieand Martin Hellman,
and independently by Ralph Merkle. In 1997, Britain’s
Government Communications Headquarters (GCHQ)
released previously classified documents revealing three
British government employees, James Ellis, Clifford
Cocks, and Malcolm Williamson, devel oped these same
ideas several years earlier, but kept them secret for
reasons of national security. There is some evidence
that the United States’ National Security Agency (NSA)
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also secretly developed similar ideas as early as the
1960’s.

In public key systems, the encryption key Kg, aso
caled the public key, and the decryption key Kp, aso
called the secret key, are different from each other. Fur-
thermore, itiscomputationally infeasibleto determine K p
from K ;. Therefore, the encryption key can be made pub-
lic. This has two advantages for key management. First,
instead of each pair of users requiring a different secret
key, as in the case of symmetric key cryptography (for
atotal of n?> —n encryption keys for n users), each user
can have a single encryption key that all the other users
can use to send her encrypted messages (for a total of n
encryption keysfor n users). Second, keys no longer need
to be exchanged privately before encrypted messages can
be sent.

Although the public keys in a public key cryptosys-
tem need not be communicated secretly, they still must
be communicated in an authenticated manner. Otherwise,
an attacker Marvin could try convince Bob into accept-
ing Marvin’s public key in place of Alice’s public key. If
Marvin succeeds, then encrypted messages from Bob to
Alice will actually be readable by Marvin instead of by
Alice. If Marvin has sufficient control over the communi-
cation network, he can even prevent detection by Alice by
intercepting the messages from Bob and then reencrypt-
ing the messages with Alice’sreal public key and sending
them to her. In order to avoid such “man-in-the-middle”
attacks, public keysareusualy certified by being digitally
signed by other entities.

Assumingthat Aliceand Bob already know each other’s
public keys, they can communicate privately as follows.
To send her message M4 to Bob, Alice encrypts it with
Bob’spublic key and sendstheresulting ciphertext to Bob.
Bob uses his private key to decrypt the ciphertext and ob-
tain M 4. To send hisresponse M to Alice, Bob encryptsit
with Alice’s public key and sends the resulting ciphertext
to Alice. Alice uses her private key to decrypt the cipher-
text and obtain M. An eavesdropper who overhears the
ciphertexts does not learn anything about M, and M3
because she does not have the necessary decryption keys.

The fundamental mathematical idea behind public key
cryptosystemsaretrapdoor one-way functions. A function
isone-way if itishardtoinvertit: that is, givenavalue y it
iscomputationally infeasibleto find x suchthat f(x) =y.
A one-way function is said to have the rrapdoor property
if given the trapdoor information, it becomes easy to in-
vert the function. To use a trapdoor one-way function as
a public key cryptosystem, the one-way function is used
as the encryption algorithm, parametrized by its public
key. The trapdoor information is the secret key. Trapdoor
one-way functions are conjectured, but not proven, to ex-
ist. As such, al known public key cryptosystems are in
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fact based on widely believed but unproven assumptions.
The famous and widely believed conjecture in theoretical
computer science, P # NP, is a necessary but not suffi-
cient condition for most of these assumptions to be true.
It isan active area of research in public key cryptography
to determine minimal assumptions on which public key
cryptosystems can be based.

Theearliest proposed public key systemswerebased on
NP-compl ete problems such asthe knapsack problem, but
these were quickly found to be insecure. Some variants
are still considered secure, but are not efficient enough
to be practical. The most widely used public key cryp-
tosystems, the RSA and El Gamal systems, are based on
number theoretic and algebraic properties. Some newer
systemsare based on elliptic curves and | attices. Recently,
Ronald Cramer and Victor Shoup developed a public key
cryptosystem that is both practical and provably secure
against adaptive chosen ciphertext attacks, the strongest
kind of attack. The RSA system is described in detail
below.

A. Using Public Key Cryptosystems
1. Hybrid Systems

Since public key cryptosystems are considerable less ef-
ficient than comparably secure symmetric key systems,
public key cryptosystems are almost always used in con-
junction with symmetric key systems, called hybrid sys-
tems. Inahybrid system, when Aliceand Bob areinitiating
anew communication session, they first use a public key
cryptosystem to authenticate each other and privately ex-
change a new symmetric key, called a session key. For
the remainder of the session, they use the symmetric ses-
sion key to encrypt their messages. Hybrid systems enjoy
the key management benefits of public key cryptography,
most of the efficiency benefits of symmetric key cryptog-
raphy, as well as gaining additional security from the use
of afrequently changing session key.

2. Probabilistic Encryption

Itiscrucial tothesecurity of apublickey cryptosystemthat
messages are somehow randomized before encryption. To
see this, suppose that encryption were deterministic and
that an attacker knows that an encrypted message sent to
Alice is either “Yes” or “No,” but wants to learn which.
Since Alice’s public key K¢ is public, the attacker can
simply compute Enc(“Yes’, Kg) and Enc(“N0”, Kg) to
see which one actually corresponds to the ciphertext.

To avoid this problem, Shafi Goldwasser and Silvio
Micali introduced probabilistic encryption. In probabilis-
tic encryption, the encryption function is randomized
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rather than deterministic, and ciphertexts of one message
should be computationally indistinguishable from cipher-
texts of another message. The same plaintext will encrypt
to different ciphertextsif different randomization is used,
so an attacker who performs trial encryptions as above
will only get the same result as the sender of a message
if he also used the same randomness. Provably secure
probabilistic encryption schemes have been developed
based on the Blum-Blum-Shub pseudorandom number
generator.

In practice, randomization is achieved by randomly
padding the plaintext before encryption, which isthen re-
moved as part of decryption. However, this padding must
be done carefully, asthere have been attacks that success-
fully exploit padding.

3. Digital Signatures

Some public key cryptosystems can be used to digitally
sign messages. Here, the private key is used to sign the
message by applying the Dec function. The signature is
appended to the plaintext message. Anyone can verify Al-
ice’ssignature on adocument by applying theEncfunction
with her public key to the signature part of the message
and checking that the result matches the plaintext. If the
public key system is secure, digital signatures providethe
following.

* Authenticity: only Alice knows her private key and
could create the signature.

e Integrity: if the plaintext is changed in transit, the
signature will not match.

* Non-repudiation: athird party who knows Alice’s
public key can also verify that the signatureis Alice’s.

Unlike handwritten signatures, digital signatures are a
function of the document they sign, so itisnot possible to
undetectably copy the signature from one document onto
another.

If Alice and Bob wish to communicate using both en-
cryption and digital signatures, Alice signs messageswith
her private signature key then encrypts with Bob’s public
encryption key. Bob decrypts with his private decryption
key and then checks the digital signature using Alice’s
public signature verification key. If the encryption and de-
cryption functions are commutative, as in the case with
RSA, the same key pair could be used for both encryp-
tion and signatures. However, this is not recommended
as it unnecessarily creates scenarios that provide chosen
ciphertext and/or chosen plaintext to a potential attacker.

Since public key operations are expensive, often ahash
function—a cryptographic compression function—is ap-
plied to along message or file before it is signed. In this

73

case, the signature consists of plaintext appended to the
signature of the hash. The signature is verified by apply-
ing the hash to the plaintext and applying the decryption
function to the signature, and checking whether these two
results are identical.

Some public key systems, such asthe Digital Signature
Algorithm (DSA), can only be used for digital signatures,
and not for encryption.

B. RSA

Thefirst concrete public key system proposed with asecu-
rity that haswithstood thetest of timewasthe RSA system,
named for its inventors Ronald Rivest, Adi Shamir, and
Leonard Adleman. RSA isbased on the computational dif-
ficulty of factoring the product of large primes. The public
key consists of an n-bit modulus N, which is the product
of two primes p and g each of length n/2 bits, and an ele-
ment e of the multiplicative group Z;;. N iscalled the RSA
modulus and e is called the encryption exponent. The de-
cryption exponent is d such that ed = 1 mod ¢(n), where
o(N)=(p—1)(g—1) is the Euler totient function. The
private key isthe pair (N, d). Once the public and private
keys have been generated, p and g are no longer needed.
They can be discarded, but should not be disclosed.

Based on the current state of the art for factoring and
other attacks on RSA, current security recommendations
as of 2001 usually stipulate that n should be 1024 bits,
or 309 decimal digits. Although any efficient algorithm
for factoring translates into an efficient attack on RSA,
the reverse is not known to be true. Indeed, Boneh and
Venkatesan have given some evidence that factoring may
be harder than breaking RSA.

Suppose we have amessage M that we want to encrypt,
and further suppose that it has already been padded with
appropriate random padding (which is necessary for
security reasons) and represented as an element me Z;..
If M is too large to represent in Z}, it must first be
broken into blocks, each of which will be encrypted
as described here. To encrypt the resulting message
meZ;, it is raised to the eth power modulo N, that
is, Enc(m, (N, e)) =m® mod N. Decryption is done by
reversing the process: Dec(c, (N, d)) =c mod N. There-
fore, Dec(Enc(m, (N, €)), (N, d)) =m* mod N =m.

1. An RSA Example

Weillustratetheuseof RSA by anexample. Let p=23and
g = 31. Whilethesevaluesaremuchtoo small to producea
secure cryptosystem, they suffice to demonstrate the RSA
algorithm. Thenn= pq =713 and

#(n) = ¢(713) = 22 30 = 660.
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Theencryption exponent emust bechosenrelatively prime
to 660, say e= 97. The decryption exponent isd = e~1
mod ¢(n) = 313. It can be found using the extended eu-
clidean agorithm.

To encrypt the plaintext message m = 542, we have

¢ = m® mod 437 = 302.

Note that if we attempt to compute m€ as an integer first,
and then reduce modulo n, the intermediate result will be
quitelarge, even for such small values of m and e. For this
reason, it is important for RSA implementations to use
modular exponentiation algorithms that reduce partial re-
sultsasthey go and to usemoreefficient techniquessuch as
squaring and multiply rather than iterated multiplications.
Even with these improvements, modular exponentiationis
still somewhat inefficient, particularly for thelarge moduli
that security demands. To speed up encryption, theencryp-
tion exponent is often chosen to be of the form 2X + 1, to
allow for the most efficient use of repeated squarings. To
speed up decryption, the Chinese Remainder Theorem can
be used provided p and g are remembered as part of the
private key.

2. Choosing the RSA Parameters
and Attacks Against RSA

Despite a number of interesting attacks on it that have
been discovered over theyears, itisstill generally believed
securetoday provided certainguidelinesarefollowedinits
implementation: the keys are large enough, certain kinds
of keys are avoided, and messages are randomly padded
prior to encryption in a “safe” way.

The key generation function for RSA specfies how
to generate N, e, and d. The usual method is to first
choose p and g, compute N = pq, choose e, and com-
pute d =e~! mod N. There are several additional steps
left to specify: how are p and q chosen, and how is e cho-
sen. Both steps areinfluenced by the need to avoid certain
attacks, which are described below. A careful choice of
the RSA parameters proceeds as follows.

1. Choose the modulus size n large enough, and restrict
p and g to be n/2 bits (to avoid factoring attacks).

2. Choose p and q to be “safe” primes of length n/2 (to
avoid re-encryption attacks), and compute N = pqg.

3. Choose e large enough (to avoid small public
exponent attacks), either randomly or according to a
specified calculation, and compute d = e~ *mod N.

4. If theresulting d istoo small, go back to the previous
step and choose a new e and compute anew d (to
avoid small private exponent attacks).
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a. Breaking RSA by factoring N.  |If an attacker can
factor N to obtain p and g, then he or she can compute
¢(N) and usethe extended euclidean algorithm to compute
the private exponent d = e"*mod¢(N). Sinceitiseasy for
abrute force search algorithm to find small factors of any
integer by trial division, itisclear that p and g should be
taken of roughly equal size.

When RSA was first introduced, the continued fraction
factoring algorithm could factor numbers up to about 50
digits (around 200 bits). Since that time, spurred by the
application of breaking RSA as well as by the inherent
mathematical interest, factoring has been a much stud-
ied problem. By 1990, the quadratic sieve factoring algo-
rithm could routinley factor numbers around 100 digits,
the record being a 116-digit number (385 bits). In 1994,
the quadratic sieve agorithm factored a 129-digit hum-
ber (428 bits), and in 1996, the number field sieve algo-
rithm factored a 130-digit number (431 bits)in less than a
quarter of the time the quadratic sieve would have taken.
The general number field sieve algorithm is currently the
fastest factoring agorithm, with a running time less than
e3m1og”*n \where n isthe length in bits.

At thetime of thiswriting, security experts usually rec-
ommend taking n = 1024 (or 309 decimal digits) for gen-
eral use of RSA. This recommendation usually increases
every fiveto ten years as computing technology improves
and factoring algorithm become more sophisticated.

b. Re-encryption attacks and safe primes. Gus
Simmons and Robert Morris describe ageneral attack that
can be applied to any deterministic public key cryptosys-
tem, or as a chosen plaintext attack on any deterministic
symmetric key cryptosystem. Given aciphertext C, an at-
tacker should re-encrypt C under the same key, re-encrypt
that results, and so forth, until the result is the original
ciphertext C. Then the previous result must be the origi-
nal plaintext M. The success of the attack is determined
by the length of such cycles. Although public key sys-
tems should not be, and are not, generally used without
randomization, it is still desirable to avoid small cycles.
Rivest recommends the following procedure for choosing
safe primes.

=

Select arandom n/2-bit number. Call it r.

2. Test2r +1,2r +3,...for primality until aprimeis
found. Call it p”.

3. Test2p” +1,4p” +1,...for primality until aprime
isfound. Call it p”.

4. Test2p'+1,4p + 1, ... for primality until aprimeis
found. Thisis p.

5. Repeat steps 1-4 to find g.
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c. Small public exponent attacks. In order to im-
prove efficiency of encryption, it hasbeen suggested toin-
stead fix e = 3. However, certain attacks have been demon-
strated when either e is too small. The most powerful of
these attacks is based on lattice basis reduction and is due
to Don Coppersmith. Coppersmith’s attack is not a total
break. However, if the public exponent is small enough
and certain rel ationships between messages are known, it
alows the attacker to succeed in learning the actual mes-
sages. If theencryption key issmall enough and some bits
of the decryption key are known, it allows the attacker to
learn the compl ete decryption key. To avoid these attacks,
itisimportant that the public exponent is chosen to be suf-
ficiently large. It is till believed secure, and is desirable
for efficiency reasons, to choose e to be of theform 2¢ + 1
for somek > 16.

d. Small private exponent attacks. An atack of
Michael Wiener showsthat if d < (1/3)N*/4, than attacker
can efficiently recover the private exponent d from the
public key < N, e). The attack is based on continued
fraction approximations.

Inadditiontotheattacksjust described that rel ateto how
the RSA parameters are chosen, there are a'so a number
of attacks on RSA that relate to how RSA is used. As
mentioned earlier, if the message space is small and no
randomization is used, an attacker can learn the plaintext
of aciphertext C by encrypting each message in the mes-
sage space and see which one gives the target ciphertext
C. Some additional usage attacks on RSA are described
below. RSA isal so susceptibleto timing attacks, described
earlier.

e. Bleichenbachers padding attack. Daniel
Bleichenbacher showed a adaptive chosen-ciphertext
attack on RSA as implemented in the PKCS1 standard,
which uses the approach of appending random bits
to a short message M before encrypting it to make it
n bits long. In PKCS1, a padded message looks like
this:

| 02 | randompad [ 00 [ M |,

which is then encrypted using RSA. The recipient of the
message decrypts it, checks that the structure is correct,
and strips of the random pad. However, some applications
using PKCSL1 then responded with an “invalid ciphertext”
message if theinitial “02” was not present. Given atarget
ciphertext C, the attacker sends related ciphertexts of un-
known plaintexts to the recipient, and waits to see if the
response indicates that the plaintexts start with “02” or
not. Bleichenbacher showed how this information can be
used to learn the target ciphertext C.
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This attack demonstrates that the way randomizationis
added to a message before encryption is very important.

f. Multiplication attacks. When used for signatures,
the mathematical properties of exponentiation creates the
possibilities for forgery. For example,

MZ mod N - MY mod N = (M; M) mod N,

so an attacker who sees the signature of My and M, can
compute the signature of M; M2, Similarly, if the attacker
wants to obtain Alice’s signature on a message M that
Aliceisnot willing to sign, he or she can try to “blind” it
by producing a message that she would bewilling to sign.
To do this, the attacker chooses arandomr and computes
M’= M -r& If Aliceiswillingtosign M’, itssignatureis
MY .r mod N, and the attacker divide by r to obtain the
signature for M.

In practice, signatures are generated on hashes of mes-
sages, rather than the messages themselves, so this attack
is not a problem. Furthermore, it is a useful property for
alowing digital signatureswherethe signer doesnot learn
the contents of a message, which can be useful in desig-
ing systems that require both anonymity of participants
and certification by aparticular entity, such asanonymous
digital cash systems and electronic voting systems.

g. Common modulus attacks. In a system with
many users, a system administrator might try to use the
same modulus for all users, and give each user their own
encryption and decryption exponents. However, Alicecan
use the Chinese Remainder theorem together with her pri-
vate key d to factor the modulus. Once she has done that,
she can invert other users public exponents to learn their
decryption exponents.

VI. KEY DISTRIBUTION AND MANAGEMENT

In order for encryption to protect the privacy of amessage,
it is crucial that the secret keys remain secret. Similarly,
in order for a digital signature to protect the authenticity
and integrity of a message, it is important that the sign-
ing key remains secret and that the public key is properly
identified as the public key of the reputed sender. There-
foreisit of paramount importancethat the distribution and
management of public and private keys be done securely.

Historicaly, keys were hand delived, either directly or
through a trusted courier. When keys had to be changed,
replacement keyswere a so hand delivered. However, this
is often difficult or dangerous, for the very same reasons
that motivated the need for encryption in the first place.
While the initial key may need to be communicated by
hand, it is desirable to use encryption to communicate
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additional keys, rather than communi cating them by hand.
Method to do this are called key exchange protocols, and
are described below.

With public key cryptography, some of the key manage-
ment problems are solved. However, in order for Alice’s
publickey tobeuseful, itisimportant that othersknow that
it is her key, and not someone else masquerading as her
for the purpose of receiving her secret messages. Hence,
it isimportant that the binding between a public key and
an identity is authenticated. Wide-scale methods for do-
ing this are called public key infrastructures, and are also
described bel ow.

A. Key Exchange Protocols

The simplest key exchange protocol would be to use one
secret key for awhile, then use it to communicate a new
secret key, and switch to that key. However, thisis not a
satisfactory solution because if one key is compromised
(i.e., discovered by an attacker), then al futurekeyswill be
compromised aswell. Instead, session keys are commonly
used. A long-term key is exchanged securely (possibly by
hand). A session key protocol is used to generate a short-
term session key that will be used to encrypt messages for
aperiod of timeuntil the next timethe session key protocol
isrun. Although exposure of thelong-term key still results
incompromise of al session keys, exposure of one session
key does not reveal anything about past or future session
keys. Long-term keys can be chosen to optimize security
over efficiency, since they are only infrequently used, and
long-term keys are less exposed because fewer messages
are encrypted with them. Often the long-term key is the
public key and private key of a public key cryptosystem,
while the session keys are symmetric cryptosystem keys.

B. Diffie—-Hellman Key Exchange

Diffie-Hellman key exchangeisbased on the assumed dif-
ficulty of the discrete logarithm problem modulo a prime
number—that is, that it is difficult to compute z from
g” mod p. Diffie-Hellman allows to parties who have not
previously exchanged any keys to agree on a secret key.
Aliceand Bob agree on aprimemodulus p and aprimitive
element g. Alice picks arandom number x and sends

a=g“mod p
toBob. Similarly, Bob picksarandom number y and sends
b =g mod p

to Alice. Alice then computes b* mod p=g*¥ mod p and
Bob computes a¥ mod p=g*¥ mod p. The computed
value g®¥ mod p isthen used as a secret key.
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Assuming that the discrete logarithm problem is com-
putationally infeasible, an attacker overhearing the con-
versation between Alice and Bob can not learn g*¥Ymodp.
However, it is subject to the kind of man-in-the-middle
attack discussed earlier.

C. Key Distribution Centers

In akey distribution center (KDC) solution, a key distri-
bution center shares a secret key with all participants and
istrusted to communicate keys from one user to another.
If Alice wants to exchange a key with Bob, she asks the
KDC to choose akey for Alice and Bob to use and send
it securely to each of them. While it may be possible to
have such solutions within a particular business, they do
not scale well to large systems or systems that cross ad-
ministrative boundaries.

D. Public Key Infrastructures

Inapublic key infrastructure (PK1), any user Alice should
be able to determine the public key of any other user Bob,
and to be certain that it is really Bob’s public key. This
is done by having different entities digitally sign the pair:
(Bob, Kg), consisting of Bob’sidentity and public key. In
practice, a certificate will also contain other information,
such as an expiration date, the algorithm used, and the
identity of the signer. Now, Bob can present his certificate
to Alice, and if she can verify the signature and trusts
the signer to tell the truth, she knows K is Bob’s public
key. Aswith other key exchange solutions, thisis simply
moving the need for secrecy or authentication from one
place to another, but can sometimes be useful.

The two main approaches to building a large-scale
PK1 are the hierarchical approach and the “web of trust”
approach. In either model, a participant authenticates
user/key bindings by determining one or more paths of
certificates such that the user trusts the first entity in the
path, certificates after the first are signed by the previous
entity, and the final certificate contains the user/key bind-
ing in question. The difference between thetwo modelsis
in the way trust is conveyed on the path.

In the hierarchical model, a certificate is signed by a
certificate authority (CA). Besides a key binding, a CA
certificate authorizes a role or privilege for the certified
entity, by virtue of its status as an “authority” within its
domain. For example, a company can certify its employ-
ees’ keysbecause it hired those employees; acommercial
certificate authority (CA) can certify its customer’s keys
because it generated them; a government or commercial
CA can certify keys of hierarchically subordinate CAs by
its powers of delegation; government agencies can certify
keys of government agencies and licensed businesses, as
empowered by law; and an international trade bureau can
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certify government keys by international agreement. An
individual is assumed to know and trust the key of a CA
within its domain. A CA is assumed to know and trust
the key of the CA who certifies its own keys, and it has
aresponsibility for accuracy when signing certificates of
a principal in its domain. In summary, the hierarchical
model conveys trust transitively, but only within a pre-
scribed domain of control and authority.

In the web of trust model, individuals act as introduc-
ers, by certifying the keys of other individuals whom they
have personally authenticated. In order for Aliceto deter-
mine whether akey K¢ belongsto Bob, she considersthe
signature(s) certifying the binding of Kg to Bob, and must
ask whether any of the users who signed Bob certificates
are considered trusted to verify and sign someone else’s
certificate. In other words, trust is not conveyed along the
path of certificates, but rather it is awarded by the user
of the certificate. Belief in the final certificate is possible
only if the user trusts al of the certifying users on a path.

VII. APPLICATIONS OF CRYPTOGRAPHY

Cryptography has found a wide range of applications.
Many cryptographic tools use cryptography to create
building blocks that provide privacy, authentication,
anonymity, and other such properties. In turn, these tools
can be used to create secure applications for users. One
strong and very general tool, called secure multiparty
computation, allows a group of parties each holding a
private input to jointly compute an output dependent on
their private inputs without revealing their private inputs
to each other. Secure multiparty computation can be
used to solve problems like electronic voting, electronic
auctions, and many other such problems.

Cryptography and cryptographic tools are particularly
important for providing security in communications net-
works and on computer systems. Link encryption, which
encryptsalong asinglelink of acommunication network,
and end-to-end encryption, which encrypts al the way
from the start to the end of a path in a communication
network, are both used to protect the privacy of messages
intransit. In computer systems, cryptography can be used
to provide access control and prevent unwanted intrud-
ers from reading files, changing files, or accessing other
resources.
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Cryptography can also be used to provide important
security propertiesin electronic commerce. A now famil-
iar example is the use of cryptography to authenticate a
merchant and encrypt a credit card number when buy-
ing goods over the World Wide Web. Cryptography can
also protect the provider of digital content such as music
or video by ensuring that recipients cannot widely redis-
tribute the content without being detected. In the future,
more advanced applications of cryptography in electronic
commerce may be seen, where credit cards are replaced
by digital cash and automated agents securely participate
in auctions on a user’s behalf.

SEE ALSO THE FOLLOWING ARTICLES

COMPUTER ALGORITHMS e COMPUTER NETWORKS e
COMPUTER VIRUSES e SOFTWARE RELIABILITY ¢ WWW
(WORLD-WIDE WEB)
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GLOSSARY

Association rules link the values of a group of attributes,
or variables, with the value of a particular attribute of
interest which is not included in the group.

Data mining process takes place in four main stages:
Data Pre-processing, Exploratory Data Analysis, Data
Selection, and Knowledge Discovery.

Data mining tools are software products; a growing
number of such products are becoming commercially
available. They may use just one approach (single
paradigm), or they may employ a variety of different
methods (multi-paradigm).

Deviation detection is carried out in order to discover
Interestingness in the data. Deviations may be detected
either for categorical or numerical data.

Interestingness is central to Data Mining where we are
looking for new knowledge which is nontrivial. It al-
lows the separation of novel and useful patterns from
the mass of dull and trivial ones.

Discovery

Knowledge discovery in databases (KDD) is the main
objective in Data Mining. The two terms are often used
synonymously, although some authors define Knowl-
edge Discovery as being carried out at a higher level
than Data Mining.

DATA MINING is the process by which computer pro-
grams are used to repeatedly search huge amounts of data,
usually stored in a Database, looking for useful new pat-
terns. The main developments that have led to the emer-
gence of Data Mining have been in the increased volume
of data now being collected and stored electronically, and
an accompanying maturing of Database Technology. Such
developments have meant that traditional Statistical Meth-
ods and Machine Learning Technologies have had to be
extended to incorporate increased demands for fast and
scaleable algorithms.

In recent years, Database Technology has developed in-
creasingly more efficient methods for data processing and
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data access. Simultaneously there has been a convergence
between Machine Learning Methods and Database Tech-
nology to create value-added databases with an increased
capability for intelligence. There has also been a conver-
gence between Statistics and Database Technology.

I. DATA MINING AND
KNOWLEDGE DISCOVERY

A. Background

The main devel opments that have led to the emergence of
Data Mining as a promising new areafor the discovery of
knowledge have been in the increased amount of datanow
available, with an accompanying maturing of Database
Technology. In recent years Database Technology has de-
veloped efficient methods for data processing and data
access such as parallel and distributed computing, im-
proved middleware tools, and Open Database Connectiv-
ity (ODBC) to facilitate access to multi-databases.

Various Data Mining products have now been devel-
oped and agrowing number of such productsare becoming
commercialy available. Increasingly, Data Mining sys-
tems are coming onto the market. Such systems ideally
should provide an integrated environment for carrying out
the whole Data Mining process thereby facilitating end-
user Mining, carried out automatically, with an interactive
user interface.

B. The Disciplines

Data Mining brings together the three disciplines of Ma-
chine Learning, Statistics, and Database Technology. In
the Machine Learning field, many complex problems are
now being tackled by the development of intelligent sys-
tems. These systems may combine Neural Networks, Ge-
netic Algorithms, Fuzzy Logic systems, Case-Based Rea-
soning, and Expert Systems. Statistical Techniques have
become well established as the basis for the study of Un-
certainty. Statistics embracesavast array of methods used
to gather, process, and interpret quantitative data. Statisti-
cal Technigues may be employed to identify the key fea-
tures of the data in order to explain phenomena, and to
identify subsets of the data that are interesting by virtue
of being significantly different from the rest. Statistics can
also assi st with prediction, by buildingamodel fromwhich
some attribute values can be reliably predicted from oth-
ers in the presence of uncertainty. Probability Theory is
concerned with measuring the likelihood of events under
uncertainty, and underpins much of Statistics. It may also
beappliedin new areas such asBayesian Belief Networks,
Evidence Theory, Fuzzy Logic systems and Rough Sets.
Database manipulation and access techniques are
essential to efficient Data Mining; these include Data Vi-
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sualizationand Sliceand Dicefacilities. It isoften the case
that it isnecessary to carry out avery large number of data
manipulations of various types. Thisinvolvesthe use of a
structured query language (SQL) to perform basic oper-
ations such as selecting, updating, deleting, and inserting
data items. Data selection frequently involves complex
conditions containing Boolean operators and statistical
functions, which thus require to be supported by SQL.
Alsotheability tojoin two or more databasesisapowerful
feature that can provide opportunities for Knowledge
Discovery.

C. Data Mining Objectives and Outcomes

Data Mining is concerned with the search for new knowl-
edge in data. Such knowledge is usually obtained in the
form of rules which were previously unknown to the user
and may well prove useful inthefuture. These rulesmight
take the form of specific rules induced by means of a
rule induction algorithm or may be more general statisti-
cal rules such as those found in predictive modeling. The
derivation of such rulesis specified in terms of DataMin-
ing tasks where typical tasks might involve classifying or
clustering the data.

A highly desirable feature of Data Mining is that there
be some high-level user interface that allows the end-user
to specify problems and obtain results in as friendly as
matter as possible. Although it is possible, and in fact
common, for Data Mining to be carried out by an expert
and the results then explained to the user, it isalso highly
desirable that the user be empowered to carry out his own
Data Mining and draw his own conclusions from the new
knowledge. An appropriate user interface is therefore of
great importance.

Another secondary objective isthe use of efficient data
access and data processing methods. Since DataMiningis
increasingly being appliedtolargeand complex databases,
we are rapidly approaching the situation where efficient
methods become a sine qua non. Such methods include
Distributed and Parallel Processing, the employment of
Data Warehousing and accompanying technologies, and
the use of Open Database Connectivity (ODBC) to facil-
itate access to multi-databases.

D. The Data Mining Process

The DataMining process may be regarded astaking place
in four main stages (Fig. 1):

* Data Pre-processing

* Exploratory Dataanalysis
» Data Selection

¢ Knowledge Discovery
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FIGURE 1 The Data Mining Process.

Data Pre-processing is concerned with data cleansing
and reformatting, so that the data are now held in aform
that is appropriate to the Mining algorithms and facili-
tates the use of efficient access methods. Reformatting
typically involves employing missing value handling and
presenting the datain multidimensional views suitablefor
the multidimensional servers used in Data Warehousing.

In Exploratory Data Analysis (EDA), the miner has
a preliminary look at the data to determine which at-
tributes and which technol ogies should be utilized. Typi-
cally, Summarization and Visualization M ethods are used
at this stage.

For Data Selection, we may choose to focus on certain
attributes or groups of attributes since using all attributes
at onceis likely to be too complex and time consuming.
Alternatively, for large amounts of data, we may chooseto
sample certain tuples, usually chosen at random. We may
then carry out Knowledge Discovery using the sample,
rather than the compl ete data, thus speeding up the process
enormously. Variablereductiontechniquesor new variable
definition are alternative methods for circumventing the
problems caused by such large data sets.

Knowledge Discovery is the main objective in Data
Mining and many different technologies have been em-
ployed in this context. In the Data Mining Process we
frequently need to iterate round the EDA, Data Selection,
Knowledge Discovery part of the process, as once we dis-
cover some new knowledge, we often then want to go back
to the data and look for new or more detailed patterns.

Once new knowledge has been mined from the
database, it is then reported to the user either in verbal,
tabular or graphical format. Indeed the output from the
Mining process might be an Expert System. Whatever
formthe output takes, it isfrequently the casethat suchin-
formation is really the specification for anew system that
will use the knowledge gained to best advantage for the
user and domain in question. New knowledge may feed

into the business process which in turn feeds back into the
Data Mining process.

E. Data Mining Tasks
1. Rule Induction

Ruleinductionusesanumber of specific beliefsintheform
of database tuples as evidence to support a general belief
that is consistent with these specific beliefs. A collection
of tuplesinthe database may form arelation that isdefined
by the values of particular attributes, and relations in the
database form the basis of rules. Evidencefrom withinthe
database in support of aruleisthus used to induce arule
which may be generally applied.

Rules tend to be based on sets of attribute values, par-
titioned into an antecedent and a consequent. A typical
“if then” rule, of the form “if antecedent=true, then
consequent =true,” is given by “if a male employee is
aged over 50 and isin amanagement position, then hewill
hold an additional pension plan.” Support for sucharuleis
based on the proportion of tuplesin the database that have
the specified attribute values in both the antecedent and
the consequent. The degree of confidencein arule isthe
proportion of those tuples that have the specified attribute
values in the antecedent, which also have the specified
attribute values in the consequent.

Rule induction must then be combined with rule selec-
tion in terms of interestingness if it is to be of real value
in Data Mining. Rule-finding and evaluation typically re-
quire only standard database functionality, and they may
be carried out using embedded SQL. Often, if a database
is very large, it is possible to induce a very large num-
ber of rules. Some may merely correspond to well-known
domain knowledge, whilst others may simply be of lit-
tle interest to the user. Data Mining tools must therefore
support the selection of interesting rules.
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2. Classification

A commonly occurring task in Data Mining is that of
classifying cases from a dataset into one of a number
of well-defined categories. The categories are defined by
sets of attribute values, and cases are alocated to cate-
gories according to the attribute values that they possess.
The selected combinations of attribute values that define
the classes represent features within the particular con-
text of the classification problem. In the simplest cases,
classification could be on asingle binary-valued attribute,
and the dataset is partitioned into two groups, namely,
those cases with a particular property, and those without
it. In general it may only be possible to say which class
the case is “closest to,” or to say how likely it is that the
caseisin aparticular category.

Classification is often carried out by supervised Ma-
chine Learning, in which anumber of training examples
(tupleswhose classification is known) are presented to the
system. The system “learns” from these how to classify
other casesinthedatabasewhich arenot inthetraining set.
Such classification may be probabilistic in the sensethat it
ispossibleto provide the probability that acaseisany one
of the predefined categories. Neural Networks are one
of the main Machine Learning technologies used to carry
out classification. A probabilistic approach to classifica-
tion may beadopted by theuse of discriminant functions.

3. Clustering

Inthe previoussection, theclassification problemwascon-
sidered to be essentially that of learning how to make de-
cisions about assigning casesto known classes. There are,
however, different forms of classification problem, which
may be tackled by unsupervised learning, or clustering.
Unsupervised classification is appropriate when the def-
initions of the classes, and perhaps even the number of
classes, are not known in advance, e.g., market segmen-
tation of customers into similar groups who can then be
targeted separately.

One approach to the task of defining the classes is to
identify clusters of cases. In genera terms, clusters are
groups of cases which are in some way similar to each
other according to some measure of similarity. Clustering
algorithms are usually iterative in nature, with an initial
classification being modified progressively in terms of the
class definitions. In this way, some class definitions are
discarded, whilst new ones are formed, and others are
modified, all with the objective of achieving an overall
goal of separating the database tuplesinto aset of cohesive
categories. As these categories are not predetermined, it
isclear that clustering has much to offer in the process of
Data Mining in terms of discovering concepts, possibly
within a concept hierarchy.
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4. Summarization

Summarization aims to present concise measures of the
data both to assist in user comprehension of the underly-
ing structures in the data and to provide the necessary in-
putsto further analysis. Summarization may taketheform
of the production of graphical representations such as bar
charts, histograms, and plots, all of whichfacilitateavisual
overview of the data, from which sufficient insight might
be derived to both inspire and focus appropriate DataMin-
ing activity. As well as assisting the analyst to focus on
those areasin alarge database that are worthy of detailed
analysis, such visualization can be used to help with the
analysis itself. Visualization can provide a “drill-down”
and “drill-up” capability for repeated transition between
summary datalevels and detailed data exploration.

5. Pattern Recognition

Pattern recognition aims to classify objects of interest
into one of a number of categories or classes. The ob-
jectsof interest arereferred to as patterns, and may range
from printed characters and shapesin imagesto electronic
waveformsand digital signals, in accordance withthe data
under consideration. Pattern recognition algorithms are
designed to provide automatic identification of patterns,
without the need for human intervention. Pattern recogni-
tion may be supervised, or unsupervised.

The relationships between the observations that de-
scribe a pattern and the classification of the pattern are
used to design decision rules to assist the recognition
process. The observationsare often combined to form fea-
tures, with the aim that the features, which are smaller in
number than the observations, will be more reliable than
the observations in forming the decision rules. Such fea-
ture extraction processes may be application dependent,
or they may be general and mathematically based.

6. Discovery of Interestingness

The idea of interestingness is central to Data Mining
where we are looking for new knowledge that is non-
trivial. Since, typically, we may be dealing with very large
amountsof data, the potential isenormousbut sotooisthe
capacity to be swamped with so many patterns and rules
that it is impossible to make any sense out of them. It is
the concept of interestingness that provides a framework
for separating out the novel and useful patterns from the
myriad of dull and trivial ones.

Interestingness may be defi