
P1: FPP Revised Pages Qu: 00, 00, 00, 00

Encyclopedia of Physical Science and Technology EN002-838 May 17, 2001 20:12

BASIC Programming Language
Thomas E. Kurtz
Dartmouth College

I. Brief Description
II. Early History of BASIC
III. Growth of BASIC
IV. Standardization and its Failure
V. The Microcomputer Revolution

VI. Present and Future

GLOSSARY

BASIC Name of any of a large number of simple
programming languages that are similar and ulti-
mately derived from the original Dartmouth BASIC of
1964.

Keyword Word in a computer language that has a special
meaning. (Keywords in BASIC include, for instance,
LET, PRINT, FOR, NEXT, TO, and STEP.)

Language In computing, a programming language. Pro-
gramming languages like human languages, consist of
words and symbols together with grammatical rules
that govern how they can be put together.

Line Same as a line of text, beginning with a line number
in original BASIC.

Line number Integer (whole number) that begins each
line of a BASIC program and serves as a kind of
“serial number” for that line. Line numbers also serve
as “targets” for GOTO statements.

List A list of a program is a “printout” on the screen of
a computer or on a hard-copy printer, of the text of the
program (i.e., its lines).

Program Collection of statements, formed according to

the rules of the language and with the purpose of car-
rying out a particular computing task.

Run Actual carrying out of the instructions of the pro-
gram by the computer.

Statement Instruction to the computer. In BASIC, state-
ments are virtually synonymous with lines and usually
begin with a keyword.

Subroutine Portion of a program, usually set off from the
rest of the program, that carries out some specific task.
Subroutines are usually invoked by special instructions,
such as GOSUB and RETURN in original BASIC, or
CALL in modern versions.

Variable Word in a program, usually different from a
keyword, that stands for a quantity, just as in ordinary
algebra.

BASIC (Beginner’s All-Purpose Simplified Instruction
Code) began as an interactive computer programming lan-
guage especially easy to learn. Invented in 1964, it now
exists in many widely different versions. Students learn-
ing programming for the first time may know BASIC as
the simple language found on most personal computers.

 23

P1: FPP Revised Pages

Encyclopedia of Physical Science and Technology EN002-838 May 17, 2001 20:12

24 BASIC Programming Language

Others know BASIC as a development language on
personal computers and workstations. This article ex-
plores the history and development of BASIC, at least
some of the versions of BASIC, and explains why this
language has become so diverse and yet so popular.

I. BRIEF DESCRIPTION

Nearly everyone who has heard about computers has heard
about the BASIC language. Many of these people can read
and write simple programs in BASIC. Note that, in 1964,
long before personal computers or display terminals, one
entered a program by typing (as now) and the computer
responded by typing back onto yellow paper (rather than
displaying results on a screen):

100 LET X = 3
110 LET Y = 4
120 LET Z = X + Y
130 PRINT Z
140 END

Almost anyone who has taken high school algebra will
understand what this program does and understand it well
enough to make changes in it. (When run, it prints the
number 7.)

BASIC was invented for an interactive environment
(time-sharing or personal computers). The user could start
and stop the program at will and could interact with the
running program. For instance, the INPUT statement in
the following program allowed the user to enter the num-
bers to be added after typing RUN (remember, all com-
mands had to be typed; there were no mouses or menus):

100 INPUT X, Y
110 LET Z = X + Y
120 PRINT Z
130 END

After the user typedRUN, the program stopped (temporar-
ily), printed a question mark (?), and waited for the user
to respond. The user then typed two numbers, separated
by a comma, and followed by hitting the RETURN or
ENTER key. The program then commenced, calculated Z
(as the sum of the two numbers), and printed the answer.
The result might look like this on the yellow paper, or on
the screen of an early microcomputer:

RUN
? 3.4
7

A user who wished to make several additions could
arrange for the program to continue indefinitely, as in:

100 INPUT X, Y
110 LET Z = X + Y
120 PRINT Z
125 GOTO 100
130 END

This time, the result might look like this:

RUN
? 3, 4
7
? 1.23, 4.56
5.79
? − 17.5, 5.3
− 12.2
?

The user continued in this fashion until all additional
problems had been “solved.” The user then stopped the
program by some method that varied from machine to
machine.

The above examples will be trivial to anyone who knows
BASIC but should be understandable even to someone
who has not used BASIC. It is not the purpose of this ar-
ticle, however, to teach the language through such sim-
ple examples. The purpose is rather to use these and
later examples to illustrate an important point: BASIC
is not just a single computer language; it is actually a
collection of many languages or dialects, perhaps hun-
dreds that have evolved since the mid-1960s. As a re-
sult, versions that run on different brands of computers
are different. It has even been the case that different mod-
els of the same brand have sported different versions of
BASIC.

For example, some versions of BASIC allowed the user
to omit the word LET, to omit the END statement, or to
employ either uppercase letters or lowercase letters inter-
changeably. For example, the first program above might
be allowed to appear on some computers as:

100 x = 3
110 y = 4
120 z = x + y
130 print z

One more important way in which versions of BASIC
developed is that some allow “structured programming”
(discussed later.) Recall an earlier example:

100 INPUT X, Y
110 LET Z = X + Y
120 PRINT Z
125 GOTO 100
130 END

P1: FPP Revised Pages

Encyclopedia of Physical Science and Technology EN002-838 May 17, 2001 20:12

BASIC Programming Language 25

One of the tenets of structured programming is that
GOTO statements (as in line 125 above), used carelessly,
are the cause of many programming errors. All modern
versions of BASIC allow the user to rewrite the above
program without using GOTO statements as:

100 DO
110 INPUT x, y
120 LET z = x + y
130 PRINT z
125 LOOP
130 END

The collection of lines starting with 100 DO and end-
ing with125LOOP is known as a loop. The interior lines
of the loop are carried out repeatedly, as in the example
by using a GOTO statement. Notice, in addition, that the
program is written in mixed case (using both upper- and
lowercase letters), and the interior lines of the loop are in-
dented. All modern versions of BASIC allow these stylistic
improvements.

Eliminating theGOTO statement (line 125) removes the
need to reference line numbers in the program. The line
numbers themselves, no longer serving a useful purpose,
can now be eliminated to get:

DO
INPUT x, y
LET z = x + y
PRINT z

LOOP
END

We could not have removed the line numbers from the
version that used a GOTO statement “GOTO 100” be-
cause there would no longer be a line numbered 100 in
the program. Some earlier versions of BASIC allowed re-
moving some lines except for those used asGOTO targets,
in which case the line numbers became statement labels,
a concept not present in the original BASIC.

II. EARLY HISTORY OF BASIC

BASIC was invented at Dartmouth College in 1963–1964
by John G. Kemeny and Thomas E. Kurtz, both professors
of mathematics, assisted by a group of undergraduate stu-
dent programmers. Computers then were huge, slow, and
expensive; there were no personal computers. Their goal
was to bring easy and accessible computing to all students,
not just science or engineering students. The method they
chose called for developing a time-shared operating sys-
tem, which would allow many users simultaneously. (This
operating system was developed entirely by Dartmouth

undergraduate students.) The new language, BASIC, easy
to learn and easy to use, was an essential part of this effort.
BASIC was thus developed originally for a large multiple-
user, time-shared system and not for personal computers,
which did not appear widely until the early 1980s.

It has been asked why BASIC was invented. Couldn’t an
existing language have been used for the purpose? The an-
swer to the second question is no, which also answers the
first question. Other computer languages did exist in 1963,
although there were not nearly as many as there are today.
The principal ones were FORTRAN and Algol; most of
the others are long since forgotten. Some of the common
languages used today—C, C++, and Java—had not even
been conceived. FORTRAN and Algol were each consid-
ered briefly. These languages were designed for produc-
tion use on big machines or for scientific research, using
punched cards. But neither was suitable for use by begin-
ners, neither was particularly well suited for a time-shared
environment, and neither permitted speedy handling of
short programs. Kemeny and Kurtz had experimented with
other simple computer languages as early as 1956, but
with only modest success. So, in 1963, when they began
building a time-shared system for students, they quickly
realized that a new language had to be invented—BASIC.

A. Design Goals

The new language had to satisfy these properties:

1. It had to be easy to learn for all students.
2. It had to work well in a multiple-user, time-sharing

system.
3. It had to allow students to get answers quickly,

usually within 5 or 10 sec.

In the years since BASIC was invented the importance of
time sharing has been overshadowed by the invention of
personal computers: Who needs to time-share a big ex-
pensive computer when one can have a big (in power)
but inexpensive computer on one’s desk top? For a long
time, no such dramatic improvement has been made on
the programming side. Thus, while the impact of time
sharing has been largely forgotten, the importance of
BASIC has increased. The ideals that forced the inven-
tion of BASIC—simplicity and ease of use—lead many
to choose BASIC today.

B. The First Dartmouth BASIC

BASIC came into existence in the early morning of May 1,
1964, when two BASIC programs were run on the Dart-
mouth time-sharing system at the same time, both giving
the correct answer. That early version of BASIC offered
14 different statements:

P1: FPP Revised Pages

Encyclopedia of Physical Science and Technology EN002-838 May 17, 2001 20:12

26 BASIC Programming Language

LET PRINT END

READ DATA

GOTO IF-THEN

FOR NEXT

GOSUB RETURN

DIM DEF REM

LET, PRINT, and END were illustrated in the first ex-
ample program. READ and DATA were used to supply
data to the program other than through LET statements.
(It is a strange fact that the first version of BASIC did
not have the INPUT statement.) GOTO and IF-THEN
provided the ability to transfer to other locations in the
program, either unconditionally or conditionally on the
result of some comparison. FOR and NEXT were used
together and formed a loop. GOSUB and RETURN pro-
vided a crude subroutine capability.DIM allowed the user
to specify the size of a vector or matrix. DEF allowed the
user to define a new function (in addition to the functions
such as SQR, SIN, and COS that BASIC included au-
tomatically). REM allowed the user to add comments or
other explanatory information to programs.

We shall illustrate all 14 statement types in two short
programs. The first program uses eight of the statement
types and prints a table of the values of the common loga-
rithms (logarithms to the base 10) for a range of arguments
and a spacing given in a DATA statement:

100 REM PRINTS TABLE OF COMMON LOGS
110 READ A, B, S
120 DATA 1, 2, 0.1
130 DEF FNF(X) = LOG(X)/LOG(10)
140 FOR X = A TO B STEP S
150 PRINT X, FNF(X)
160 NEXT X
170 END

(Common logarithms can be computed from “natural” log-
arithms with the formula shown in line 130. The program,
when run, prints a table of values of the common logarithm
for arguments 1, 1.1, 1.2, 1.3, etc., up to 2.)

The second program computes, stores in a vector, and
prints the Fibonacci numbers up to the first that exceeds
100. (The Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13,

The first two, 1 and 1, are given; each succeeding one is
obtained by adding the previous two.)

100 REM FIBONACCI NUMBERS
110 DIM F(20)
120 LET F(1) = 1
130 LET F(2) = 1
140 LET N = 2

150 IF F(N) > 100 THEN 999
160 GOSUB 500
170 PRINT F(N),
180 GOTO 150
500 REM SUBROUTINE TO COMPUTE

NEXT NUMBER
510 LET N = N + 1
520 LET F(N) = F(N - 1) + F(N - 2)
530 RETURN
999 END

The DIM statement (line 110) establishes a vector named
F having 20 components. Lines 120 and 130 establish
the first two numbers of the Fibonacci sequence. The
IF-THEN statement (line 150) checks to see if the most
recently computed Fibonacci number is greater than 100;
if it is, the program jumps to theEND statement and stops.
If that is not the case, it computes the next number. Lines
150–180 are another example of a loop. The subroutine
(lines 500–530) contains the formula for computing the
next Fibonacci number. The subroutine is “called on” or
“invoked” by the GOSUB statement in line 160, which
refers to the subroutine by the line number of its first
statement. When the subroutine has finished its work, the
RETURN statement (line 530) “returns” control back
to the line following the line containing the GOSUB
statement.

Even in the earliest days, it was considered good form
to use REM statements to explain what the program did
and what each of the subroutines in the program did. The
use of indentation following the line number to display
the extent of the loop also began to appear around the
time BASIC was invented. The reason is that people, in
addition to computers, have to read computer programs;
remarks and indentation help. Two other stylistic features
were not common in 1964: lowercase letters (most ter-
minals did not even have them) and completely blank
lines.

C. Major Design Decisions

We now consider the major design decisions made in 1964
and why they were made.

1. A Number is a Number is a Number; That is,
There is Only One Kind of Number in BASIC

In 1964, as today, most machines could do arithmetic us-
ing several kinds of numbers. The two common kinds
were, and still are, integer numbers and floating-point
numbers. Integer numbers are simply whole numbers such
as 0, 17, −239, and 12345678. Floating-point numbers

P1: FPP Revised Pages

Encyclopedia of Physical Science and Technology EN002-838 May 17, 2001 20:12

BASIC Programming Language 27

can be thought of as numbers in “scientific” notation, as in
1.234 × 10−3. Although arithmetic using integer numbers
was usually faster, Dartmouth BASIC did all arithmetic
in floating point. While some programs might run more
slowly, life was made considerably easier for the beginner.

2. BASIC Should Read and Print Numbers
Without Requiring Special “Formats”

FORTRAN, the most widely used language at that time,
used a complicated format control statement for all input
or output in the program, a requirement too complicated
for most students, particularly for those not taking science
or engineering.

3. One Should be Able to Create, Change, and
Run a BASIC Program from a Typewriter

Video screen terminals were not widely available in 1964.
The only alternative was the TeletypeTM Model 33. It typed
in uppercase only and was very slow—10 characters per
second. The line numbers of a BASIC program allowed
users to change the program without retyping the entire
program; they needed merely to retype the corrected line,
including the line number.

4. BASIC Should have no Mysterious
Punctuation Rules; Thus, a Statement
and a Line are Synonymous

Other languages allowed statements to extend over sev-
eral lines and allowed several statements to appear on the
same line. Many used semicolons to separate statements,
regardless of the lines on which the statements appeared,
an unnecessarily complicated rule for beginners.

5. All BASIC Statements Should Commence,
After the Line Number, with a Keyword

Most languages begin statements with a keyword. A com-
mon exception is the assignment statement, wherein vari-
ables receive the results of computations. Different lan-
guages treat the assignment statement in different ways:

FORTRAN N = N+1

Algol N := N + 1;

The FORTRAN method is confusing to the beginner; it
looks like an assertion that N is equal to N + 1, which is
nonsense. The := symbol of the Algol method is supposed
to represent an arrow pointing to the left, but this may also
confuse most beginners. It was decided to use the keyword
LET to make the intention clear:

BASIC LET N = N + 1

Three other design features in the original BASIC have
not withstood the test of time.

6. BASIC Should not Require Unnecessary
Declarations, Suchas Supplying
Dimensions for Arrays

The original BASIC allowed the use of single letters as
array names (arrays are also called lists and tables or, in
mathematical circles, vectors and matrices). A single letter
with an attached subscript in parentheses represented an
array element. The following complete program, which
prints the squares of the whole numbers from 1–8, uses a
singly subscripted array (i.e., a list or vector):

100 FOR I = 1 TO 8
110 LET X(I) = I*I
120 NEXT I
130 FOR I = 1 TO 8
140 PRINT I, X(I)
150 NEXT I
160 END

It was not necessary to include a DIM statement to estab-
lish that X stood for a vector, as in:

99 DIM X(8)

Such a DIM statement could be included, to be sure, but
if one were satisfied to work with elements X(1) through
X(10), the DIM statement would not be required. While
supplying sensible default values is still a cornerstone of
BASIC, default dimensioning of arrays has given way to
multi-character function names.

7. BASIC Should be Blank Insensitive; That is,
a User Should be Able to Type in a Program
Without Regard to Blank Spaces

This feature was intended to ease life for beginning typists.
The idea was that:

100 LET N = N + 1

could be typed as

100LETN=N+1

This decision meant that only simple variable names could
be used. The allowable variable names consisted of either
single letters or single letters followed by single digits.

P1: FPP Revised Pages

Encyclopedia of Physical Science and Technology EN002-838 May 17, 2001 20:12

28 BASIC Programming Language

With this rule, the following program fragment was un-
ambiguous:

100FORI=1TON
110LETX1=X1+Y9−I*SQR(N)
120NEXTI

It later became abundantly clear that permitting multi-
character variable names was far more important than
blank insensitivity. The reason that multi-character vari-
able names and blank insensitivity cannot coexist is illus-
trated in the following example:

FOR I = A TO B STEP C

might be written, ignoring blanks, as:

FOR I = A TO B STEP C

If multi-character variable names were allowed, BASIC
was in a quandary. It cannot distinguish the first form (the
variable I starts at the value of the variable A, finishes at
the value of the variable B, and is incremented with a
step size given by the value of the variable C) from the
second (the variable I starts at the value of the variable A
and finishes at the value of the variable BSTEPC, with the
step size understood to be 1). Giving up blank insensitivity
in favor of multi-character variable names resolves the
ambiguity (in favor of the second form).

8. Line Numbers Should Double as Editing
Aids and Targets of GOTO and IF-THEN
Statements

For the first 10 years of BASIC, this design decision
remained valid, but eventually video terminals replaced
Teletypes and soon supported screen editors. (A screen
editor permits making changes in the program simply
by moving the cursor around; with a screen editor, What
You See Is What You Get.) Line numbers were no longer
needed as editing aids. This period also saw the birth of
structured programming. One of the tenets of structured
programming is that the GOTO statements are simply not
needed, provided that one can use an IF-THEN-ELSE
structure and a general loop structure. If all old-fashioned
GOTO and IF-THEN statements are eliminated, line
numbers are not needed as “targets” for those statements.
Line numbers, no longer serving a useful purpose, can
quietly disappear.

D. BASIC Starts To Grow

BASIC quickly grew in response to the needs of its users.
By 1969, which saw the appearance of the fifth version of

BASIC at Dartmouth, features had been added for dealing
with strings, arrays as entities, files, and overlays.

1. Strings are Added

The earliest computers dealt solely with numbers, while
modern computers deal mostly with text information. By
1965, it had become evident that text processing was as
important as numerical processing. The basic ingredient
in any text processing is a string of characters. Strings
and string variables were quickly added to BASIC. String
variable names looked like numerical variable names ex-
cept that the final character was a dollar sign ($). String
constants were strings of characters enclosed in quotation
marks:

LET A$ = ‘‘Hello, out there.”
PRINT A$
END

The dollar sign was chosen because, of all the characters
available on the keyboard, it most suggested the letter s
in the word string. (Note that strings were always a prim-
itive data type and not an array of characters, as in the C
programming language.)

The early versions of BASIC also allowed string com-
parisons (e.g., “A” < “B” means that “A” occurs earlier
in the ASCII character sequence than “B”). Other string
operations were not covered. Instead, early BASIC pro-
vided a way to convert a string of characters to a vector of
numbers, and vice versa. Called the CHANGE statement,
it allowed any manipulation of strings whatsoever, since
it was easy to carry out the corresponding operation of the
numerical values of the characters. As an example, sup-
pose the string N$ contains the name “John Smith” and
we want to put the first name (“John”) into the string F$:

CHANGE N$ TO N
FOR I = 1 TO N(0)

IF N(1) = 32 THEN GOTO 250
LET F(1) = N(I)

NEXT I
LET F(O) = I - 1
CHANGE F TO F$

The first CHANGE statement put the following numbers
into the list N:

(74, 111, 104, 110, 32, 83, 109,
105, 116, 104)

The numbers correspond to the letters in the name “John
Smith;” in particular, the number 32 corresponds to the
space. The FOR-NEXT loop copies the entries from

P1: FPP Revised Pages

Encyclopedia of Physical Science and Technology EN002-838 May 17, 2001 20:12

BASIC Programming Language 29

the list N to the list F until it encounters a space (32).
The 0-th entries, N(0) and F(0), contain the number of
characters in the string. While the use of the CHANGE
statement was awkward, it did allow a programmer to carry
out any conceivable operation or manipulation on strings
until more sophisticated string-handling features were
added.

2. MAT Statements are Added

Almost immediately after BASIC was invented, opera-
tions on arrays (vectors and matrices) as entities were
added. For example, suppose the user wished to set each
element of a numerical array to the value 17. Without ma-
trix operations, this might be done with:

DIM T(10, 10)
FOR i = I to 10

FOR j = I to 10
LET T(i, j) = 17

NEXT j
NEXT i

With MAT operations, it might be as simple as:

DIM T(10, 10)
MAT T = 17*CON

CON stood for a vector or matrix consisting of all ones (1)
and of the same size as the vector or matrix being assigned
to.

Another operation of importance was “inverting” a ma-
trix. It was too much to expect that most users would be
able to program their own matrix inversion routines. So
BASIC allowed:

MAT T = INV(A)

where A and T both stood for square matrices having the
same size.

3. Files are Added

When a program is to process only a small number of data,
it is reasonable to provide those data in DATA statements
included in the program. But when the number of data is
large, the program and the data should be separate. By the
late 1960s, most versions of BASIC had added the capa-
bility for working with data files. The following example
was typical (the #1 in lines 120 and 150 refers to the first
file named in the FILES statements):

100 FILES GRADES
110 FOR S = 1 TO 3
120 INPUT #1:N$
130 LET T = 0
140 FOR J = 1 TO 4
150 INPUT #1:G
160 LET T = T + G
170 NEXT J
180 LET A = T/4
190 PRINT N$, A
200 NEXT S
210 END

The data file named GRADES might contain:

JONES
78
86
61
90
SMITH
66
87
88
91
WHITE
56
77
81
85

The purpose of the program was to average the grades of
several students. This example illustrates the type of file
called the terminal-format file, now called a text file. These
files consist entirely of printable characters. Many versions
of BASIC also included random-access files. That term
did not mean that the files contained random numbers;
it meant that any record in the file could be accessed in
roughly the same amount of time. Although the details
varied, those versions of BASIC that included files also
included the capabilities for erasing them, determining the
current position in the file, determining the file’s length,
and so on.

4. Overlays are Added

The original BASIC allowed subroutines, using the
GOSUB and RETURN statements. As early as the late
1960s, however, it was evident that allowing onlyGOSUB-
type subroutines was limiting if one needed to write large
programs. One early effort provided an overlay mecha-
nism. While not a true subroutine in the sense we use the
term today, it provided a way to get around the limited

P1: FPP Revised Pages

Encyclopedia of Physical Science and Technology EN002-838 May 17, 2001 20:12

30 BASIC Programming Language

memory sizes of the computers of the day. The following
trivial example illustrates the method:

100 SUB NEG; POS
110 INPUT X
120 LET N = (SGN(X)+3)/2
130 GOSUB #N
140 PRINT Y
150 GOTO 110
160 END

The two subroutines in the example are named NEG and
POS, and they are numbered 1 and 2, respectively. Which
one will be called by the GOSUB statement in line 130 is
determined by the value of N as calculated in line 120. If
X is negative, N will be 1; if X is positive, N will be 2.

The two subroutines, NEG and POS, look like this:

100 LET Y = SQR(-X)
110 RETURN
120 END

100 LET Y = SQR(X)
110 RETURN
120 END

The purpose of this program is to compute the square
root of the absolute value of a number. (The program is
displayed only to illustrate overlays and is not intended
to be a good solution to the square-root problem.) The
important points are that the line numbers in the main
program and in each of the overlays are private but all
variables are shared (similar capabilities in other versions
of BASIC were called chaining with common).

The overlay technique is one way to fit a large program
into a small memory, but it did not address the need to
allow subroutines whose variables as well as line numbers
were private. Such subroutines could then be treated as
black boxes and used without regard to possible conflicts
in variable names between the subroutine and the main
program. Since this kind of subroutine could not share the
variables of the main program, information must be passed
to the subroutine, and answers returned, through a set of
special variables called parameters. Dartmouth BASIC
in 1970 was one of the first versions to include external
subroutines with parameters. For many years it remained
almost the only version to include this capability.

III. GROWTH OF BASIC

BASIC began proliferating in the outside world. While the
first versions were clearly based on Dartmouth’s BASIC,
later versions were not. The profusion of versions of
BASIC can be explained by this early history. Dartmouth

did not patent or copyright BASIC, nor did it attempt to
trademark the name BASIC. People were thus free to mod-
ify the language in any way they felt was justified for their
purposes and still call it BASIC. In addition, there was no
standard, either real or de facto. (A real standard called
Minimal Basic did appear in 1978, but it has had little
influence because the language it defined was too small
even for then. A standard, full BASIC appeared in 1987
and is discussed later.) Nor was there an official standard
for FORTRAN in the early days. But the de facto standard
was IBM FORTRAN, because anyone wishing to pro-
vide a FORTRAN compiler would almost certainly base
it directly on IBM’s FORTRAN. Dartmouth enjoyed no
similar preeminence with respect to BASIC.

A. Commercial Time Sharing

Outside of Dartmouth, the first provider of BASIC was the
commercial time-sharing system operated by the General
Electric Corporation. At first, in 1965, GE used Dartmouth
BASIC virtually unchanged. It later added features differ-
ent from the ones added at Dartmouth to meet the needs of
their commercial customers. After 1969, GE BASIC and
Dartmouth BASIC diverged. Other companies patterned
commercial time-sharing services after GE’s and almost
always included some version of BASIC, but these second-
generation versions of BASIC were patterned after GE’s
rather than Dartmouth’s.

Most of the early minicomputer versions of BASIC
were also patterned on GE’s BASIC. While there were
many similarities with Dartmouth’s BASIC, these second-
and third-generation developers were largely unaware of
the original Dartmouth design criteria for BASIC, and
wider divergences appeared. The end result was a pro-
fusion of versions of BASIC, with almost no possibil-
ity of checking the tide of divergence and bringing them
together.

B. Personal Computers Appear

The decade of the 1970s was an astounding period in the
history of technology. The invention of integrated circuits
(as a replacement for individual transistors, which in turn
replaced vacuum tubes) brought about truly inexpensive
computing, which paved the way for personal microcom-
puters. By 1980, one could purchase for a few thousand
dollars a computer having the power of a million dollar
machine 10 years earlier—and no end was in sight.

Makers of these new microcomputers needed a sim-
ple language that could be fit into the tiny memories then
available. BASIC was invariably chosen, because: (1) it
was a small language, (2) it was a simple language, and
(3) it already could be found on numerous commercial
time-sharing systems and on other microcomputers. The

P1: FPP Revised Pages

Encyclopedia of Physical Science and Technology EN002-838 May 17, 2001 20:12

BASIC Programming Language 31

first microcomputer versions of BASIC were very sim-
ple. They were similar in most ways to 1964 Dartmouth
BASIC, but since they were not based directly on
Dartmouth’s BASIC, they were invariably different from
it, and from each other. The explosive technological devel-
opment which spawned personal computers carried with
it two other major developments. The first was structured
programming, which, in simplest terms, made it possible
to write programs without using GOTO statements. The
second was the sudden availability of graphic displays.
Features taking advantage of these two developments
were added to almost every version of BASIC, and rarely
were the features alike, or even similar, among different
versions.

C. Incompatible Versions of BASIC Appear

During the 1970s, BASIC became one of the most widely
used computer languages in the world and one of the im-
portant languages for applications development on per-
sonal computers. People who wished to sell or give away
programs for personal computers invariably wrote such
programs in BASIC. By 1979, however, the incompati-
bility between the different versions of BASIC had be-
come such a serious problem that one software organi-
zation advised its programmers to use only the simplest
features of BASIC. Twenty-one versions of BASIC were
studied, only five of which existed on personal comput-
ers; they were compared with respect to a number of
features.

1. Disadvantages of Tiny Memories

These first microcomputer versions of BASIC were sim-
ple, but they were unfortunately also the victims of cor-
ner cutting. The first microcomputers had tiny memo-
ries, some as small as 4k bytes. Space saving was thus
paramount. (A byte consists of 8 bits. In more familiar
terms, a byte is roughly the same as a character, such as a
letter or a digit. The letter “k” stands for 2 raised to the tenth
power, or 1024. Thus, 4k, or 4096, bytes can contain just a
bit more information than one single-spaced typed page.)

One commonly used space-saving technique was com-
pression. As each line of a BASIC program was typed in, it
was checked for correctness and then converted to a more
concise internal format. For instance, the statement:

100 IF X < Y THEN 300

which contains 21 characters (bytes), could be compressed
into about 11 or 12 bytes—two for each line number (if
we allow line numbers to be no larger than 65535), two
for each variable name, and one for each keyword (IF,
THEN) and relational operator (<). A by-product of such

space saving was that blank spaces were ignored, as in the
original Dartmouth BASIC. When a program was listed,
it was decompressed back to a readable form with spaces.
To be more specific, whether the user typed in:

100 IF X < Y THEN 300

or

100 IF X < Y THEN 300

listing the program would show:

100 IF X < Y THEN 300

with exactly one space between the parts. This prevented,
for example, the use of indentation to reveal the program’s
structure.

2. Optional LET

Space can be saved, and typing time reduced, by omitting
the keyword LET in a LET statement, as with:

100 X = 3

Allowing the omission of the keyword LET violated one
of the original premises of Dartmouth BASIC (that all
statements begin with a keyword so that the assignment
statement looks different from an assertion of equality),
but this feature is nonetheless quite popular among per-
sonal computer users, and most, but not all, versions of
BASIC allowed this feature.

3. Multiple Statements on a Line

Another feature motivated partially by the limited memory
available was putting several statements on a line, as with:

100 LET X = 3: LET Y = 4: LET Z = 5

The trouble was that not all versions of BASIC allowed
this feature; about half did but the other half did not. Those
that did allow multiple statements used different symbols
as separators—a colon (:), a solidus (/), or a comma (,).
As popular as this feature is, it can become a user trap
in at least one version of BASIC that appeared in the late
1970s. (A user trap is a feature whose interpretation is not
self-evident and that may induce mistakes.) A concrete
example is this: Many versions of BASIC extended the
IF-THEN statement to allow more than line numbers to
appear after the word THEN. For example,

100 IF X < Y THEN Z = 4: Q = 5

P1: FPP Revised Pages

Encyclopedia of Physical Science and Technology EN002-838 May 17, 2001 20:12

32 BASIC Programming Language

meant that, if X were in fact less than Y, the two statements
following the THEN were executed. But, a programmer
who followed the usual rules of putting several statements
on a single line might believe that:

100 IF X < Y THEN Z = 4: Q = 5

and

100 IF X < Y THEN Z = 4
101 Q = 5

were equivalent, which they were decidedly not. Contrast
this with:

100 X = 3: Y = 4: Z = 5

and

100 X = 3: Y = 4
101 Z = 5

which are equivalent.

4. Commenting Conventions

All versions of BASIC have always allowed the REM
statement, which allows including remarks or comments
in the program. Such comments might include the pro-
grammer’s name, brief descriptions of how the program
works, or a detailed explanation of some particularly tricky
section of code. Many versions of BASIC also allowed
comments on the same line as other BASIC statements.
For instance, in

100 LET balance = 0 ! Starting
bank balance

the comment, which starts with an exclamation point (!),
explains the purpose of the LET statement and the variable
“balance.” Of the 21 versions of BASIC mentioned above,
several used the “!” to start the online (on the same line)
comment, others usesd an apostrophe, still others used
other symbols, and some did not allow online comments
at all.

5. Raising to a Power

In BASIC, the symbols “+,” “−,” “*,” and “/” stand for
addition, subtraction, multiplication, and division, respec-
tively. The choice of “+” and “−” is obvious. The choice
of “/” is less obvious but is natural as it is almost impos-
sible to type built-up fractions on a keyboard. The choice

of “*” for multiplication is more difficult to see. One can
represent multiplication in several ways in arithmetic and
algebra. For example, if a and b are variables, the product
of a and b could be denoted by:

ab, a × b, or a · b

in algebra. The trouble is that the first and second look
like variable names. If a or b were numbers, as in 2.3, the
third option might look like a decimal number rather than
a product. That left the “*” to indicate multiplication. This
choice is universal, not only with BASIC, but with other
languages as well.

That leaves the symbol for exponentiation or “raising
to a power.” Some use the caret (∧) which is now standard.
Others used the up arrow (available on the keyboards at
that time). Still others used the double asterisk (**) (taken
from FORTRAN), while still others allowed more than
one.

6. Number Types Reappear

One of the design goals in the original BASIC was to pre-
vent the beginner from having to know the difference be-
tween integer and floating-point numbers. Programs were
simpler, even though some of them might run more slowly.
Many versions of BASIC on minicomputers and personal
computers gave up this simplicity and provided integer-
valued variables. The purpose was to allow programs that
used mostly integer numbers, such as prime number sieve
programs, to run faster. The most common approach was
to have a “%” be the last symbol of the variable name.
Thus,

xyz stands for a floating-point-valued variable.
xyz% stands for an integer-valued variable.

Another common approach was to include, somewhere
near the beginning of the program, a statement like one
of the following:

200 DEFINT I−N
200 DECLARE INTEGER I−N

where the I–N means that all variables with names that
begin with I, J, K, L, M, or N are to be treated as integer
variables.

7. Strings Proliferate

Most versions of BASIC added string concatenation,
which is simply the joining of two strings, end to end.
For example,

P1: FPP Revised Pages

Encyclopedia of Physical Science and Technology EN002-838 May 17, 2001 20:12

BASIC Programming Language 33

‘‘Now is the time” & ‘‘for all good
men”

results in

‘‘Now is the time for all good men”

The trouble was that only a few used an ampersand (&) for
this operation. The other versions used a plus sign (+) or
parallel lines (‖); one used a comma, and two used other
methods.

Most versions also provided several string functions,
such as LEN(s$), which gave the length of the string
(i.e., the number of characters in it). Also provided
were functions are cutting a string into pieces. For ex-
ample, SEG$(a$, 5, 7) gave a new string con-
sisting of the three characters of the string a$, starting
with character number 5 and ending with character
number 7. Other versions of BASIC included such
functions as LEFT$(a$, 7), which gave the left-
most seven characters of the string a$; RIGHT$(a$,
7), which gave the rightmost seven characters of
the string; and MID$(a$, 5, 7), which gave the
middle seven characters of a$, starting with character
number 5.

One of the problems with having different versions of
BASIC is that, although MID$ and SEG$ provide a sim-
ilar function, the meaning of the third argument differs.
For instance, if:

a$ = ‘‘abcdefghijklmn”

then

MID$(a$, 5, 7) = ‘‘efghijk”

while

SEG$(a$, 5, 7) = ‘‘efg”

Inasmuch as MID$(a$, 1, 5) does give the same
result as SEG$(a$, 1, 5), this caused confusion
when users switched from one version of BASIC to
another.

Most BASICs also provided ways to locate or find var-
ious patterns in a string. For example, if:

a$ = ‘‘Now is the time for all
good men”

and one wished to locate where the word ‘‘the” appeared,
one would use:

LET p = POS(a$, ‘‘the”)

after which the variable p would have the value 8, which
is the character number of the first character of “the” as it
appears in the string a$. If the looked-for string was not to
be found, POS gave the value 0. Most of the versions of
BASIC named this function POS, some used other names
(e.g.,INSTR,IDX,SCN,CNT, orINDEX), while others
did not even include the capability.

D. New Influences

As BASIC was growing during the 1970s, three important
new ideas in programming theory and practice came into
being: structured programming, subroutines, and interac-
tive graphics. Each of the three was to have a profound
effect on all computer languages, and particularly BASIC.

1. Structured Programming

One of the major contributions to the theory of program-
ming was the introduction of structured programming dur-
ing the 1970s. Edsgar Dijkstra, the Dutch computer scien-
tist, is usually credited with having gotten the ball rolling.
He pointed out, in the late 1960s, that the undisciplined
use of GOTO statements seemed to be correlated with
programs that contained a greater number of errors or that
were difficult to modify. In simplest terms, structured pro-
gramming involves adding two constructs to programming
languages so that programmers can write programs with-
out using GOTO statements. (A programming construct is
a collection of statements that are treated as a single entity.
For instance, the FOR-NEXT combination is a loop con-
struct.) Of course, that is not the whole story, because these
new constructs can be misused, just as GOTO statements
can be.

The two required constructs are (1) the general loop, and
(2) the IF-THEN-ELSE. Neither of these constructs
was included in the original BASIC. The FOR-NEXT is
not a general loop because the conditions that determine
its completion must be known ahead of time. Thus, with

100 FOR I = I TO 10
110 . . .

120 NEXT I

we know that the insides of the loop (line 110) will be ex-
ecuted exactly 10 times. This construct is not adequate for
situations where we want to carry out the loop until, for
example, some accuracy requirement has been met. Some
programmers used FOR-NEXT loops with the TO value
set sufficiently high and then used a GOTO statement to

P1: FPP Revised Pages

Encyclopedia of Physical Science and Technology EN002-838 May 17, 2001 20:12

34 BASIC Programming Language

jump out of the loop when the completion test was met.
(This trick is less desirable than using a general loop con-
struct.) Other programmers fiddled with the loop variable
(the variable I in the above fragment) to force completion
of the loop when the completion test was met; this prac-
tice was even less desirable. Furthermore, the IF-THEN
statement in the original BASIC, based as it was on jumps
to other statements, did not provide the capability found
in the IF-THEN-ELSE.

To be sure, both the general loop and the general
IF-THEN-ELSE can be “constructed” using GOTO
and IF-THEN statements, but that is not the point. Pro-
grammers tend to make fewer errors when the language
they are using provides the constructs they need to carry
out their work.

As an illustration of the weaknesses of the original
IF-THEN and GOTO statements, suppose we want to
check a student’s answer to a question in a drill program
(the correct answer is 17):

300 IF a <> 17 then 330
310 PRINT ‘‘Right”
320 GOTO 340
330 PRINT ‘‘Wrong”
340 . . .

Besides relying on line numbers as targets for the GOTO
and IF-THEN statements, this construction is difficult
to follow because the test (line 300) checks for a wrong
answer rather than a right answer. Contrast this with a
more modern way to make this choice:

300 IF a = 17 then
310 PRINT ‘‘Right”
320 ELSE
330 PRINT ‘‘Wrong”
340 END IF

(Indentation is used for clarity in both examples and is not
essential.)

As the acceptance of structured programming grew, the
reputation of BASIC declined. This was a fair assess-
ment of most microcomputer versions of BASIC. Many of
them added abbreviated constructs, such as the single-line
IF-THEN andIF-THEN-ELSE discussed earlier, but
these additions were often made with little thought as to
how they would fit with other language features, such as
multiple statements on a line.

2. Subroutines

Another limitation of early versions of BASIC was the al-
most complete dependence of the GOSUB and RETURN

statements to provide a subroutine capability. (It must be
remembered that even as late as 1980 only a few large-
machine versions of BASIC allowed the external subrou-
tines described earlier.) There are three major flaws with
the GOSUB-RETURN approach. The beginning of the
subroutine must be associated with a line number. Chang-
ing the line numbers of a program also changes the starting
line numbers of each subroutine. While automatic renum-
bering programs usually change both the line numbers
and the statements that refer to line numbers, program-
mers have to remember where their subroutines begin.

The second flaw with theGOSUB-RETURN approach
is that there is no way to pass arguments to subroutines.
For example, a subroutine to add two numbers might be
written:

1000 REM SUBROUTINE TO ADD TWO
NUMBERS

1010 LET Z = X + Y 1020 RETURN

To add A and B to get C, one must do something like this:

200 LET X = A
210 LET Y = B
220 GOSUB 1000
230 LET C = Z

How much more convenient it would be to replace these
lines with the more modern:

CALL ADD (a, b, c)

SUB Add (x, y, z)
LET z = x + y

END SUB

The third flaw with GOSUB-RETURN subroutines is
that they are inherently part of the main program. They
share line numbers and variables with the main program.
A programmer might accidentally choose to use a variable
I in the subroutine, forgetting that I was also being used in
another part of the program. Such confusions were a fre-
quent source of error, to put it mildly. Some other modern
languages allow subroutines to be separate from the rest of
the program; if this is the case, such subroutines are called
external. External subroutines can use variables that have
the same names as variables used in the main program
without confusion. External subroutines can also be col-
lected into libraries for general use. All one has to know
is the subroutine’s name and calling sequence, the latter
being the number and type of its arguments. The lack of
adequate modularization tools contributed to the declining
reputation of BASIC in the early 1970s.

P1: FPP Revised Pages

Encyclopedia of Physical Science and Technology EN002-838 May 17, 2001 20:12

BASIC Programming Language 35

3. Graphics

The last big innovation that occurred during BASIC’s
teenage years was the explosion in graphics. It is undoubt-
edly true that, while BASIC fell behind other languages in
adapting to structured programming, it led all other lan-
guages in embracing graphics.

Microcomputers are particularly adept at drawing pic-
tures. We might even assert that they are better at that than
they are at printing numbers. Contrast that with big ma-
chines, which did better at “number crunching.” Drawing
a picture with a big machine entailed much more work
and much longer periods of waiting than it did with mi-
crocomputers. Since BASIC was the only language on
most early microcomputers, it was natural to include line-
drawing and other graphics commands in the language. If
one wanted to draw pictures on a microcomputer, we may
safely assert that one would prefer to use BASIC.

Surprisingly, the first interactive graphics versions of
BASIC were not on personal microcomputers—they were
on big time-sharing systems. Some of the early work was
done on the Dartmouth time-sharing system in the late
1960s, before the first personal computers became com-
mercially available. There was one big problem in using
graphics with BASIC on most personal computers. Each
computer was different and allowed a different number
of pixels on the screen. (A pixel is a point on the screen.
A commercial television set has about 250,000 pixels, ar-
ranged in 500 rows of 500 pixels each.) Drawing a picture
on the screen of a different brand of personal computer,
or a different model of the same brand, required learning
how many pixels there were.

An example should make this clear. Suppose the screen
allowed 40 pixels in the horizontal direction and 48 pixels
in the vertical direction. Suppose that a version of BASIC
had line-drawing commands as follows:

HLIN 10, 20 AT 30
VLIN 25, 35 AT 20

(These conventions correspond to medium-resolution
color graphics in one popular early microcomputer
BASIC.) The first would draw a horizontal line 30 pix-
els below the upper edge of the screen and extending from
the 10th pixel from the left edge of the screen to the 20th
pixel. The second would draw a vertical line 20 pixels
from the left edge of the screen and from the 25th pixel
below the top to the 35th pixel.

It is easier to understand these commands in terms of the
coordinates of the Cartesian plane (most personal comput-
ers, however, turned the vertical axis upside down). The
first draws the line given by the two end points (10, 30),
(20, 30), while the second draws the line whose end points

are (20, 25), (20, 35). To draw a small rectangle in the cen-
ter of the screen, one might use:

HLIN 20, 28 AT 16
VLIN 16, 24 AT 20
HLIN 20, 28 AT 24
VLIN 16, 24 AT 28

Although this might seem a bit cryptic to most, it does
work. The trouble comes when the user wishes to use a
different graphics mode or to move to a machine that has
a different number of pixels. The small rectangle will no
longer be in the center of the screen (worse yet, these state-
ments might not even be legal). The key idea is that the user
should be able to specify what coordinates to use, inde-
pendently of the number of pixels on a particular machine.
To be concrete, suppose the user wants to use coordinates
that go from 0 to 1 in the horizontal (x) direction and 0 to
1 in the vertical (y) direction. The user would first specify
this using:

SET WINDOW 0, 1, 0, 1

The rectangle-drawing code might then be reduced to a
single statement such as the following:

PLOT LINES: .4,.4; .4,.6; .6,.6;
.6,.4; .4,.4

BASIC should figure out which pixels correspond to the
four corners of the rectangle, and then draw it. Running
the program on a different computer, which might have
a different number of pixels, would still result in a small
rectangle in the middle of the screen.

E. BASIC Loses Favor

Microcomputers quickly became the dominant force in
computing in the late 1970s and early 1980s. BASIC was
the predominant language found on these machines. More-
over, BASIC was about the only language available if one
wanted to use the graphic capabilities of these machines.
Despite all this, BASIC began to lose favor with com-
puter scientists and educators. Why? There are several
reasons.

Many of the shortcut features described above, which
arose because of the limited power and limited memory of
the early microcomputers, were continued in later versions
of the language, even when more powerful computers and
more spacious memories were available. Another reason
was the lack of structured programming constructs. Still
another was the primitive GOSUB-RETURN subroutine
mechanisms still used by most BASICS. Educators began

P1: FPP Revised Pages

Encyclopedia of Physical Science and Technology EN002-838 May 17, 2001 20:12

36 BASIC Programming Language

to wonder how they could teach good program construc-
tion and modularization using a language that essentially
does not allow either. True, some “better” versions of BA-
SIC were available, but only on certain larger machines
such as larger computer-based, time-sharing systems.
These were used in secondary schools and colleges, but
the total number of students who could be trained using
these “better” versions of BASIC was smaller than the
number who learned BASIC on a microcomputer. For
example, BASIC at Dartmouth College continued to grow
until, by the end of the 1970s, it contained many features
found only in more sophisticated languages. It allowed
external subroutines, for example, to be precompiled (pre-
processed to save time) and placed in libraries for general
use. But, the work done at such isolated locations did not
find its way into general practice, and there was no way to
curb the individuality that dictated that different manufac-
turers have different versions of BASIC or that the same
manufacturer might have as many as 5 or 10 different
versions of BASIC on its different lines of computers.
That is, there was no way until an official standardization
activity commenced. We describe that activity in the next
section.

IV. STANDARDIZATION AND ITS FAILURE

By 1974, BASIC had become the dominant programming
language for time-sharing systems. But, as we have noted,
the differences were so great that users of BASIC could
move from one machine to another only with difficulty. It
was thus evident to many that the computer community
should develop a standard for BASIC.

In the early days of computing there were few offi-
cial standards, especially with programming languages.
But there were de facto standards. Typically, they were
descriptions of a programming language as provided by
a dominant manufacturer. Other vendors would provide
the “same” language in the hope that some of the cus-
tomers might switch from the dominant manufacturer
to them. This informal approach has been largely re-
placed in recent years by an increased reliance on official
standards.

In the United States, standards are prepared under the
auspices of the American National Standards Institute
(ANSI). Authority is delegated to voluntary technical
committees, which prepare a description of the standard.
In the case of the BASIC programming language, stan-
dards work began in 1974. A standard for a small version of
BASIC was completed in 1976 and published by ANSI in
1978. A standard for “full” BASIC was begun around 1976
and was published in 1987. An addendum was released in
1991. These standards were subsequently adopted by the
International Standards Organization (ISO).

A. Standard BASIC

The ANSI standard for BASIC differs from the 1964 orig-
inal BASIC in a number of ways. The first is that variable
names can contain any number of characters up to 31, in-
stead of just one or two. The standard also allows general
names for new functions introduced by theDEF statement.
In the original BASIC, all such functions had names that
started with FN. Anytime one saw something like FNF(x,
y), one could be quite certain that it stood for a function
with two arguments. Standard BASIC allows more gen-
eral names, such as cuberoot(x), instead of requiring the
name to begin with fn, such as fncuberoot(x).

Standard BASIC includes several loop constructs. The
general loop construct can have the exit condition attached
to the DO statement, attached to the LOOP statement, or
located somewhere in between. The following program
fragment illustrates the middle exit from a DO loop:

DO
PRINT ‘‘Enter x, n:” : x, n
If n = int(n) then EXIT DO
PRINT ‘‘n must be an integer;
please reenter.

LOOP
PRINT ‘‘x to the n-th power is”; x∧n

Alternative ways of coding that fragment without using the
EXIT DO statement are either longer or more obscure.
Standard BASIC also allows exiting from the middle of a
FOR-NEXT loop. Standard BASIC includes a variety of
constructs for making choices; for example:

IF x < y and x < z then
PRINT ‘‘x is the smallest”

ELSE IF y < z then
PRINT ‘‘y is the smallest”

ELSE
PRINT ‘‘z is the smallest”

END IF

and

SELECT CASE roll
CASE 7, 11

PRINT ‘‘I win”
CASE 2, 3, 12

PRINT ‘‘I lose”
CASE else

PRINT ‘‘I’m still in”
END SELECT

Standard BASIC retains one of the original design
features—namely, that there be but one type of number. It

P1: FPP Revised Pages

Encyclopedia of Physical Science and Technology EN002-838 May 17, 2001 20:12

BASIC Programming Language 37

merely specifies that numerical calculations be done with
at least ten significant figures of precision, without spec-
ifying how this is to be done. Standard BASIC specifies
variable-length strings, which are the easiest for the be-
ginner to handle. To extract a piece of a string, Standard
BASIC uses the notation:

line$ [2:5]

which gives the second through fifth characters of the
string of characters contained in the string variable, line$.
Such special functions as SEG$, LEFT$, RIGHT$, and
MID$ are no longer needed.

Standard BASIC includes provision for both new func-
tion definitions and named subroutines with arguments.
The function definitions can contain multiple lines, as in:

FUNCTION answer (response$)
SELECT CASE ucase$ (response$)
CASE ‘‘YES”

LET answer = 1
CASE ‘‘NO”

LET answer = 2
CASE else

LET answer = 3
END SELECT

END FUNCTION

Standard BASIC allows both the function definitions
and the named subroutines to be either internal or exter-
nal. Internal defined functions and subroutines are use-
ful in breaking up large programs into more easily man-
aged pieces. External defined functions and subroutines
are necessary for building libraries of routines that can
be used as “black boxes,” without worrying about the
details.

External subroutines (and defined functions) are iden-
tified by the keyword EXTERNAL and also appear after
the END statement of the program or within modules:

! Main program
DO

INPUT prompt ‘‘Enter two
numbers”: x, y

CALL sum (x, y, s)
PRINT ‘‘The sum is
PRINT

LOOP
END
!External Subroutine
EXTERNAL SUB sum (a, b, c)

LET C = a + b
END SUB

Except for the calling sequence, external subroutines are
entirely independent of the main program. If a particular
computer allows it, they can even be separated from the
main program and kept in library files.

Standard BASIC also includes a specification for mod-
ules, which are a way of packaging several subroutines
together with the data upon which they operate. (This ca-
pability is the essential requirement of object-oriented pro-
gramming.) Standard BASIC offers several types of files,
the most common of which consists solely of text charac-
ters. They are called text files and can be printed, just as if
they had been created with a screen editor (several other
file types are also included in Standard BASIC). Files are
opened in a typical fashion:

OPEN #2: name ‘‘testdata,” access
input

will “open” the file whose name is “testdata” for inputting
only and will allow the program to refer to it by number
(#2). Other options are possible, but they are all provided
through English keywords (e.g., “name” and “access”)
and not through special punctuation, which is easy to
forget.

Most versions of BASIC allow detection and recov-
ery from errors through the use of an ON ERROR
GOTO 200 type of statement. Standard BASIC provides
the equivalent capability, but in a structured form. For
example,

DO
INPUT prompt ‘‘Filename:fname$
WHEN EXCEPTION IN

OPEN #1: name fname$
EXIT DO

USE
PRINT ‘‘File”; fname$;

‘‘not there: retry.”
END WHEN

LOOP

This represents a typical need in a program: to allow the
user to give the name of a file to be used but to allow the
program to continue gracefully if that file happens to not
exist. (Modern versions of BASIC use a “file open dialog
box,” which presents in visual form a list of file names
from which to choose.)

Perhaps the single most important contribution of stan-
dard BASIC is its provision for graphics. The man-
ner in which graphics is done is based on the GKS
(Graphics Kernel System) International Standard, with
a few exceptions and additions. The user always works
in user coordinates (sometimes called problem or world

P1: FPP Revised Pages

Encyclopedia of Physical Science and Technology EN002-838 May 17, 2001 20:12

38 BASIC Programming Language

coordinates) regardless of how many pixels the screen
contains. An example of how the user specifies these co-
ordinates is

SET WINDOW xlow, xhigh, ylow, yhigh

The user can then draw lines with:

PLOT LINES: x0, y0; x1, y1; x2, y2

which obviously draws a line segment from the point
(x0, y0) to the point (x1,y1), and then on to the point
(x2,y2).

If drawing dots is preferred, the user would use:

PLOT POINTS: x0, y0; x1, y1; x2, y2

Standard BASIC allows the lines to be drawn in a variety
of line styles and the points to be plotted in a variety of
point styles.

Another variation:

PLOT AREA: x0, y0; x1, y1; x2, y2

will draw a triangular region, the interior being filled with
the color currently in effect.

B. Impact of the Standard

While not perfect, ANSI standard BASIC defined a clean
programming language. Not only would it be as easy to
use as the original Dartmouth BASIC, but it also pro-
vided the MODULE feature, which would permit a form
of object-oriented programming. If the computing world
in 1987 and 1991, when the standards appeared, had
even remotely resembled the computing world of 1974,
when work on the standards commenced, the standard for
BASIC might have had a major impact, but it has been
largely ignored. Why? Because of the microcomputer
revolution.

V. THE MICROCOMPUTER REVOLUTION

The original microcomputers were small and slow. At first
they could not compete with larger, time-shared com-
puter for sophistication. But the growth was so rapid
that microcomputers, sometimes called personal com-
puters, and work stations have now taken over almost
all the computer applications once the province of large
machines.

Consider the following approximate comparisons:

Early Modern personal
microcomputers computers

Speed 4 MHz per byte 500 MHz per 8 bytes

Memory (RAM) 4096 bytes 64 megabytes

Disks Less than a million More than 16 billion
bytes bytes

Monitors Crude character only, Excellent resolution,
monocolor monocolor

Interaction Keystrokes only Keystrokes, mouse,
voice-actuated

Modes Simple computations Movies, voice, internet

Application Several thousand lines Millions of line of code
size of code

(The above numbers do not represent any actual computer
but are typical. The early microcomputer numbers are typ-
ical for machines in the mid-1970s. The modern numbers
are typical for machines in the year 2000.) With this al-
most unbelievable increase in power, it was only natural
that applications had to grow as well.

What about BASIC? The versions of BASIC on the
small microcomputers of the 1970s were also small and
were hardly more powerful than the original Dartmouth
BASIC in 1964. But, as microcomputer power rapidly
grew, so did these versions of BASIC. Features were added
rapidly to allow accessing the specific features of these
machines. For example, most versions included thePEEK
and POKE commands to get at the underlying details of
the crude operating systems.

Except in rare instances, these developments ignored
the standard. While most vendors attempted to make
their new versions upward compatible with their previ-
ous versions, there were significant incompatibilities as
time went on. The incompatibities were more marked be-
tween versions of BASIC from different vendors. Thus,
the various versions of BASIC grew to provide program-
mers of applications access to the increased capabilities of
computers.

VI. PRESENT AND FUTURE

In this section, we make general observations about pro-
gramming language environments existing in the year
2000. Since these are commercial products, we refrain
from identifying any of them by name lest we appear to
endorse one or more of them, or lest we omit a version
that deserves mention.

A. Basic as a Major Application Language

The modern personal computers with their large and col-
orful screen displays, high speed, and use of mouse or

P1: FPP Revised Pages

Encyclopedia of Physical Science and Technology EN002-838 May 17, 2001 20:12

BASIC Programming Language 39

mouse-like pointing devices dictated far more sophisti-
cated applications than those of a few years earlier. Rather
than dropping BASIC, the vendors rapidly added new
features to handle the new capabilities. For example, the
new applications required sophisticated treatment of ob-
jects such as windows and controls such as push but-
tons. For a time, these features were made available in the
usual way, by adding statements or subroutine libraries to
the language, but more programmer-friendly ways were
devised.

B. Visual Interface Building Tools

One major development was the introduction of graphical
tools to build the user interfaces. These interfaces, called
graphical user interfaces (GUI), replaced the old typed
commands of the original BASIC and the early micro-
computer versions. With these tools, application develop-
ers can build their application’s user interface by clicking
and dragging the mouse. The mouse is used to select the
control (i.e., push button) and to move it to a new location
or resize it. Once the interface has been built, the pro-
grammer proceeds to supply substance to the application
by filling in the callback subroutines. Initially, the call-
back subroutines are empty, so the programmer must fill
them using a traditional programming language—BASIC,
in this case.

C. Object-Oriented Programming

Object-oriented programming provides a higher level way
for programmers to envision and develop their applica-
tions. Without attempting to define the concept, we merely
note that one deals with objects and methods. For exam-
ple, an object might be a window, and a method might
be to display the window (make it visible.) As applied
to BASIC, the concepts of object-oriented programming
are partly substantial and partly nomenclature. Dealing
with windows, movies, sound strips, internet access, and
so on is made simpler, at least conceptually, by thinking of
them as objects. At the other end of the spectrum, a BASIC
variable, such as x, can be thought of as an object, while
PRINT can be thought of as a method that can be applied
to that object. This is not to diminish the importance of
object-oriented programming. Its most important aspect
is that the detailed coding, which must exist at the lower

level, is hidden. This detailed coding can be enormously
complicated in itself, but the application developer need
not be concerned with it.

The developer must be familiar with the details of the
BASIC language available to him, as he must fill in the sub-
stance of the callback subroutines. This BASIC language,
while a descendant of the original Dartmouth BASIC,
would hardly be recognized as such. A few keywords re-
main, but many have been changed, and many more added.
In one popular version, there are over 250 keywords and
function names. (Contrast this with the original Dart-
mouth BASIC that had 14 statements and a small handful
of built-in functions.) Another popular version uses so
many different keywords that it is hardly recognizable
as BASIC. Still, one can trace their genealogy from the
Dartmouth BASIC of 1964, and they all retain a measure
of the ease of use that was the major goal underlying its
invention.

SEE ALSO THE FOLLOWING ARTICLES

C AND C++ PROGRAMMING LANGUAGE • COMPUTER

ALGORITHMS • MICROCOMPUTER DESIGN • PROLOG

PROGRAMMING LANGUAGE • SOFTWARE ENGINEERING

BIBLIOGRAPHY

American National Standards Institute. (1978). “American National
Standard for the Programming Language Minimal BASIC,” X3.60-
1978, ANSI, New York.

American National Standards Institute. (1987). “American National
Standard for the Programming Language BASIC,” X3.113-1987,
ANSI, New York.

American National Standards Institute. (1991). “American National
Standard for the Programming Language BASIC, Addendum,”
X3.113A-1991, ANSI, New York.

Frederichk, J., ed. (1979). “Conduit Basic Guide,” Project: CONDUIT,
Universihty of Iowa Press, Iowa City.

Kemeny, J. G., and Kurtz, T. E. (1968). “Dartmouth time sharing,”
Science, 162, 223–228.

Kemeny, J. G., and Kurtz, T. E. (1985). “Back to Basic,” Addison-Wesley,
Reading, PA.

Kurtz, T. E. (1980). In “History of Programming Languages” (R. L.
Wexelblatt, ed.), pp. 515–549. Academic Press, New York.

Sammet, J. (1969). “Programming Languages, History and Fundamen-
tals,” Prentice-Hall, Englewood Cliffs, NJ.

P1: GLM Revised Pages Qu: 00, 00, 00, 00

Encyclopedia of Physical Science and Technology EN002C-839 May 17, 2001 20:27

C and C++ Programming
Language

Kaare Christian
Optical Imaging Inc.

I. The Evolution of C and C++
II. Standard C Features

III. Key C Features
IV. Key C++ Features

GLOSSARY

ANSI C Version of C standardized by the ANSI (Amer-
ican National Standards Institute) X3J11 committee.

Array Data type that has multiple elements, all of the
same type. Individual elements are accessed using a
numeric index expression. C array elements are num-
bered from zero to one less than the number of array
elements.

Base class Class from which another can be created by
adding and/or redefining elements.

Cast C operation that converts an expression from one
type to another.

Class C++ data type whose members (elements) may
consist of both procedures and data (information). C++
classes are syntactically based on C structures.

Declaration Description of the name and characteristics
of a variable or procedure.

Dereference To access the value that a pointer expression
points toward.

Derived class Class that has been created from a base
class.

Embedded assignment Assignment statement that ap-
pears in a context where many people would expect
simple expressions, such as in the control expression
of an if or while statement.

Enumeration C data type that allows you to create sym-
bolic names for constants.

Inheritance Capability of a programming Ianguage that
allows new data types to be created from existing types
by adding and/or redefining capabilities.

Iterate To perform a task repeatedly.
K&R C The first version of C, which was specified in

the book The C Programming Language by Kernighan
and Ritchie.

Multiple inheritance Similar to inheritance, but a capa-
bility in which new data types can be created simulta-
neously from sev

Object An instance of a class. An object occupies a re-
gion of storage, is interpreted according to the conven-
tions of the class, and is operated on by class member
functions.

Object-oriented programming Style of programming
in which classes are used to create software objects

 335

P1: GLM Revised Pages

Encyclopedia of Physical Science and Technology EN002C-839 May 17, 2001 20:27

336 C and C++ Programming Language

whose use and function corresponds to real world
objects.

Operand Value or expression that is acted on by an op-
erator.

Operator Something that can combine and modify ex-
pressions, according to conventional rules, such as the
+ (add) operator that adds its operands, or the ∗ (deref-
erence) operator that can access a value pointed at by
a pointer expression.

Pointer Constant or variable whose value is used to ac-
cess a value or a function. The type of a pointer indicates
what item the pointer accesses. The accessed item can
itself be a pointer.

Polymorphism Ability of a routine or operator to have
various behaviors based on the dynamically determined
(runtime) type of the operand.

Standard I/O library (stdio) Set of routines that pro-
vides input/output (I/O) facilities that are usable on
most systems that support C.

Strongly typed Said of a programming language that
only allows operations between variables of the same
(or similar) type.

Structure C data type that has multiple elements, each
with its own type and name.

Type Characteristic of a value (a variable, a constant, or
the return value of a procedure) that specifies what val-
ues it can attain and what operations can be performed
on it.

Type checking Checking performed by most languages
to make sure that operations are only performed be-
tween compatible data types.

Union C data type that has multiple elements, each with
its own type and name, but all of which are stored at
the same location.

Usual arithmetic conversions Conversions that C per-
forms to allow expressions involving different types of
operands.

Weakly typed Said of a programming language that al-
lows operations between various types.

WG21 ISO committee that developed a C++ standard.
X3J11 ANSI committee that developed a C standard.
X3J16 ANSI committee that developed a C++ standard.

C IS A FLEXIBLE computer programming language—
it has a combination of low- and high-level features that
make it a powerful language for a wide range of applica-
tions. The low-level aspects of C help programmers access
machine-specific features and write efficient programs,
while the high-level features promote clear and concise
expression of a programmer’s ideas. Implementations of
C are available on nearly every computer architecture, and
it is the only programming language that is available for

controlling many computer-like devices, such as graphics
processors, signal processors, and other special-purpose
programmable machines.

C++ is an extension to C that adds support for object-
oriented programming and for generic programming. Its
major new feature, the class, is a customizable data type
that combines data elements with procedures. Classes al-
low C++ programmers to create objects, so that the struc-
ture of programs can reflect the structure of the original
problem. C++ also includes templates so that you can write
software that generically adapts to different types of data,
iostreams, which is a new input/output library, and the
standard template library that implements containers and
many standard algorithms.

I. THE EVOLUTION OF C AND C++

During the early 1970s, Ken Thompson created the first
version of the UNIX’ system on an obsolete PDP-7 com-
puter. The system showed promise, but it was written in
assembly language, which made it impossible to move
it to a more modern computer. In 1973, Dennis Ritchie
developed the C language, and then he and Thompson
rewrote the UNIX system in C, and moved it to more
up-to-date computers. The advantage of C over assem-
bler is that it can operate on many different computer ar-
chitectures, but like assembler, C gives the programmer
fine-grained control of the computer hardware. This key
step demonstrated that an operating system could be writ-
ten in a higher level language, and it also proved that C
was a powerful and efficient language that could be used
for applications once thought to require arduous assembly
language development.

C is part of the FORTRAN and ALGOL family of pro-
gramming languages. In this family, programs are speci-
fied as a series of operations upon data using a notation
that resembles algebraic notation. Individual steps in a
program can be executed based on a logical condition, ex-
ecuted repetitively, or grouped together and executed as
a unit. Most data items are named, and data items have
specific types, such as character, whole number, or real
number.

Within this general family of programming languages,
C owes the most to two specific forerunners, BCPL and
B. BCPL is a systems programming language that was
developed by Martin Richards, while B is a language de-
veloped by Ken Thompson; its most interesting feature is
its scarcity of data types.

The first book on C was The C Programming Language
by Kernighan and Ritchie. It included an appendix that
compactly specified the language. The version of C speci-
fied in the book is often called K&R C. Nearly all versions

P1: GLM Revised Pages

Encyclopedia of Physical Science and Technology EN002C-839 May 17, 2001 20:27

C and C++ Programming Language 337

of C, even if they contain additional features, will at min-
imum contain all of the features of K&R C.

In 1979, AT&T disseminated a paper written by B. R.
Rowland that specified a few minor changes to the C lan-
guage. Some of these features were anticipated in the origi-
nal K&R definition, others were a result of experience with
the language. A more formal description of these changes
appeared in the 1984 AT&T Bell Laboratories Technical
Journal. Most of these features have been in widespread
use since the early 1980s.

Although C was a widely used language by 1980, there
was no attempt to forge an official standard until 1984,
when the ANSI (American National Standards Institute)
committee X3J1I was convened. Thus by the time the com-
mittee started work there was already over a decade of ex-
perience with the language, and there was a huge existing
body of C language software that the committee wanted to
preserve. The role of the X3J11 committee was primarily
to codify existing practice, and only secondarily to add
new features or to fix existing problems.

During the early l980s, while C’s position as a lead-
ing development language was being consolidated, Bjarne
Stroustrup of AT&T Bell Laboratories developed a C lan-
guage extension called C with Classes. The goal of C
with Classes was to create a more productive language
by adding higher level abstractions, such as those found
in Simula, to C. The major enhancement was the class, a
user definable data type that combines traditional data el-
ements with procedures to create and manipulate the data
elements. Classes enable one to adopt an object-oriented
programming style, in which programs are composed of
software objects whose design and use mirrors that of real
world objects.

By 1985, C with Classes had evolved into C++ (pro-
nounced “C plus plus”), and it began to be used outside
of AT&T Bell Laboratories. The most important reference
for C++ at that time was The Annotated C++ Reference
Manual by Ellis and Stroustrup. In 1987 the International
Standards Organization (ISO) formed Working Group 21
(WG21) to investigate standardization of C++, while at
about the same time ANSI convened committee X3JI6 to
create a standard for the C++ programming language. In
late 1998 the standards efforts concluded with the publi-
cation of ISO/IEC 14882-1998, a standard for C++.

Building C++ on top of C has worked well for a variety
of reasons. First, C’s relatively low-level approach pro-
vided a reasonable foundation upon which to add higher
level features. A language that already had higher level
features would have been a far less hospitable host. Sec-
ond, programmers have found that C++’s compatibility
with C has smoothed the transition, making it easier to
move to a new programming paradigm. Third, one of
Stroustrup’s most important goals was to provide ad-

vanced features with roughly similar efficiency to that
of C. This goal, which has been largely attained, gives
C++ major efficiency advantages over most other object-
oriented languages.

II. STANDARD C FEATURES

C like most programming languages, is based on a core
feature set that is common and uncontroversial. The core
features deal with the rules for storing and managing data,
and with control statements (control structures) that let a
programmer specify a sequence of operations on data.

A. Data Types

C’s basic data types include single characters, short and
long integers (signed and unsigned), enumerations, and
single and double precision floating-point numbers. Typ-
ical precisions and ranges for the numeric types on 32-bit
computers are shown in Table I. C also has one other basic
type, void, which will be discussed in Section III.G.

C has a cavalier attitude toward operations involving
different numeric types. It allows you to perform mixed
operations involving any of the numeric types, such as
adding a character to a floating-point value. There is a stan-
dard set of rules, called the usual arithmetic conversions,
that specifies how operations will be performed when the
operands are of different types. Without going into detail,
the usual arithmetic conversions typically direct that when
two operands have a different precision, the less precise
operand is promoted to match the more precise operand,
and signed types are (when necessary) converted to
unsigned.

C enumerations allow the programmer to create a data
type whose values are a set of named numeric constants.
Unfortunately, support for enumerations in the popular C
compilers has been inconsistent and unreliable, and they

TABLE I Basic C Data Typesa

Type Size (bytes) Range

char 1 −128 ... 127

unsigned char 1 0 ... 255

short 2 −32768 ... 32767

unsigned short 2 0 ... 65535

int 4 −2,147,483,648 ... 2,147,483,647

unsigned int 4 0 ... 4,294,967,295

long 4 −2,147,483,648 ... 2,147,483,647

unsigned long 4 0 ... 4,294,967,295

float 4 −3.4 x 10−38 ... 3.4 × 1038

double 8 −1.7 x 10−308 ... 1.7 × 10308

a On typical 32-bit computers.

P1: GLM Revised Pages

Encyclopedia of Physical Science and Technology EN002C-839 May 17, 2001 20:27

338 C and C++ Programming Language

are not widely used. Instead of enumerations, most pro-
grammers use the preprocessor #define statement to create
named constants. This approach lacks some of the merit
of enumerations, such as strong type checking, but pre-
processor definitions, unlike enumerations, are available
on all implementations of C.

In addition to its basic data types, C has four more
sophisticated data types: structures, unions, bitfields, and
arrays.

A structure is a way of grouping data. For example, an
employee’s record might contain his or her name, address,
title, salary, department, telephone number, and hiring
date. A programmer could create a structure to store all of
this information, thereby making it easier to store, retrieve,
and manipulate each employee’s data. Each element in a
structure has a name. C language structures are analogous
to records in a database.

A union is a way of storing different types of items
in a single place. Of course, only one of those types can
be there at any one time. Unions are sometimes used to
provide an alternate access to a data type, such as accessing
the bytes in a long integer, but the most common use is to
save space in a large data set by storing only one of a set
of mutually exclusive pieces of information.

A bitfield is somewhat like a structure, but each member
of a bitfield is one or more bits of a word. Bitfields are
a compact way to store small values, and they are also a
convenient way to refer to specific bits in computer control
registers.

An array is a sequence of data items. Each item in an
array is the same type as all the other items, though they
all may have different values. Each array has a name, but
the individual elements of an array do not. Instead, the
elements in an array are accessed using an index, which is
a numeric value. The first element in a C array is accessed
using the index 0, the next using the index 1, and so on
up to the highest index (which is always one less than the
number of elements in the array).

Whereas there are many operations that can be per-
formed on C’s numeric data types, there are only a few
operations that are applicable to the four more complex
data types. These operations are summarized in Table II.

TABLE II Operations on C’s Advanced Data Types

Array Compute its address

Access an individual element using index expression

Structure, Access it as a whole unit, such as assign one to another,
union, or or supply one as a parameter to a procedure
bitfield Access individual elements by name

Compute its address

Each type of structure, union, or bitfield is only
compatible with others of the same type.

TABLE III Arithmetical and Logical Operators

Arithmetical
+ Addition (binary) – Subtraction (binary)

+ Force order of – Negation (unary)
evaluation (unary)

++ Increment – – Decrement

∗ Multiplication / Division

% Remainder

Logical
= = Equality != Not equal

< Less than > Greater than

<= Less than or equal >= Greater than or equal

&& Logical AND || Logical OR

! Logical NOT

B. Operators

C is known as an operator-rich language for good reason. It
has many operators, and they can be used in ways that are
not allowed in tamer languages, such as Pascal. The basic
arithmetical and logical operators, detailed in Table III,
are present in most programming languages. The only un-
usual operators in Table III are increment and decrement.
For ordinary numeric variables, increment or decrement is
simply addition or subtraction of one. Thus the expression

i++;

(i is a variable; the expression is read aloud as “i plus
plus”) is the same as the expression

i = i + 1;

(again i is a variable; the expression is read aloud as “i is
assigned the value i plus one”). However, the increment
and decrement operators can also be used inside a larger
expression, which provides a capability not provided by
an assignment statement. More on this special capability
in Section III.D.

C’s bit manipulation operators, shown in Table IV, pro-
vide a powerful facility for programming computer hard-
ware. They provide the same capabilities as the traditional
logical operators but on individual bits or sets of bits. There
are also two shift operators, which allow the bits in an in-
teger or character to be shifted left or right.

TABLE IV Bit Manipulation Operators

& Bitwise AND | Bitwise OR
∼ Bitwise complement ∧ Bitwise exclusive OR

� Left shift � Right shift

P1: GLM Revised Pages

Encyclopedia of Physical Science and Technology EN002C-839 May 17, 2001 20:27

C and C++ Programming Language 339

TABLE V Assignment Operators

= Assign ∧= Assign bitwise exclusive OR

&= Assign bitwise AND | = Assign bitwise OR

<<= Assign left shift >>= Assign right shift

+= Assign sum −= Assign difference

∗ = Assign product /= Assign quotient

%= Assign remainder

The assignment operators, shown in Table V, begin to
hint at C’s operator-rich capabilities. In a traditional as-
signment statement, an expression is evaluated to produce
a result, and then that result is stored in a variable. Assign-
ment operators reflect the fact that the initial value of the
result variable is often used in the expression. One simple
example is

i = i * 2;

(i is a variable; this statement means that i is multiplied
by two, and then the result is stored in i .)

Using the multiplication assignment operator, this can
be written

i *= 2;

In simple situations assignment operators do not provide
much advantage. However, in more complex situations
they can be very important. One advantage is that the
address calculation (to access the variable) only needs to
be performed once. For example, the statement

x[2*i] [j/100] [k%10] += 100;

adds 100 to one element of a three-dimensional array. The
work in this expression is the elaborate indexing calcu-
lation on the left side, which only needs to be done once
because the addition assignment operator is used. Another
advantage is that the assignment operators can provide
clarity, by emphasizing the dual role of the variable on the
left of the assignment operator.

In a computer, all data is stored in memory locations
which are identified by unique numeric addresses. Most
programming languages try to present a conceptual frame-
work at a high enough level to avoid the low details, such
as where a variable is stored. C, however, makes easy and
common use of address information, and it contains a set
of operators for working with addresses, which are shown
in Table VI. For storing addresses, C contains pointer
variables, which are variables that contain the addressess
of other variables (or occasionally the addresses of func-
tions).

The indirection operator (*) takes the address generated
by an address-valued expression, and accesses the value
stored at that address. For example, if p is a variable whose
type is pointer to a character, then writing

p

in a program symbolizes an expression that contains the
address of a character, while the expressions

*p

accesses that character. The expression

*(p + 1)

accesses the following character in memory, and so on.
The address-of operator (&) does the opposite. It takes

a reference to a variable, and converts it to an address
expression. For example, if f is a floating-point variable,
the expression

f

accesses the floating-point variable, while the expression

&f

is the address of the floating-point variable. Used together,
these two have a null effect. Thus, the expression

*&f

is equivalent to f by itself.
The sequential evaluation operator is used to sneak two

or more expressions into a place where, syntactically, only
one expression is expected. For example, C while loops use
a control expression to control the repetition of the loop.
While loops execute so long as the control expression is
true. A typical while statement is

i = 0;
while (i++ < 10)

processData();

TABLE VI Miscellaneous Operators

* Indirection & Address of
′ Sequential evaluation ? : Conditional (tertiary)

sizeof Size of type or variable (type) Type cast
. Member of −> Member pointed

toward
[] Element of array () Parentheses (grouping)

P1: GLM Revised Pages

Encyclopedia of Physical Science and Technology EN002C-839 May 17, 2001 20:27

340 C and C++ Programming Language

In this loop, the repetition will continue as long as the
value of the i variable is less than 10. The ++ increments
the value of i after each test is made, and the body of
the loop is a call of the function named processData. If
we want to have the control expression also increment a
variable named k each time, we can use

while (k++, i++ <10)
processData();

The comma following k++ is the sequential evalua-
tion operator. It specifies that the k++ expression should
be evaluated, and then the i++<10 expression should be
evaluated. The value result is always that of the rightmost
expression.

C’s conditional operator, which is also called the ter-
tiary operator, lets one use the logic of an if statement
inside an expression. The syntax of the conditional oper-
ator is difficult. The control expression is followed by a
question mark, followed by two variant expressions sepa-
rated by a colon:

controlexpr ? expr1 : expr2

If the control expression is true, the result is expr1,
otherwise, the result is expr2. For example, one might
want to use a variable called index to select a specific
element of an array named stheta. If index is 0, we want
to access the zeroth element, if index is 1 or −1, we want
to access the first element of the array, if it is 2 or −2,
we want to access the second element, and so on. This is
easily written using a conventional if statement:

if (index > 0)
sx = stheta[index];

else
sx = stheta[-index];

Instead of this four-line if statement, we can use a one-
line conditional expression:

sx = stheta[index > 0 ? index :
-index];

The biggest advantage of the conditional operator is not
in simple examples, like that above, but in more compli-
cated settings, in which it allows one to avoid duplication
of complicated expressions.

The sizeof operator is one of C’s most important features
for writing portable programs. It helps a program adapt to
whatever computer architecture it is running on by pro-
ducing the size (in bytes) of its operand. The operand may

either be a variable or the name of a data type. For exam-
ple, sizeof is often used in conjunction with the standard
C memory allocation routine, malloc(), which must be
passed the number of bytes to allocate. The statement

iptr = malloc(1000*sizeof(int));

(iptr is a pointer to an integer) allocates enough space
to store an array of 1000 integers. This statement will
work correctly on all machines that support C, even though
different machines have different sized integers, and thus
need to allocate different amounts of memory for the array.

C, as originally designed, was a very weakly type-
checked language. In the earliest versions, pointers and
integers were (in many situations) treated equivalently,
and pointers to different types of structures could be used
interchangeably. Since that time, stronger and stronger
type checking has become the norm. By the time of the
ANSI C committee (mid-l980s), most implementations of
C encouraged programmers to pay much more attention
to issues of type compatibility.

One of the most important tools for managing types
is the cast operator. It allows a programmer to specify
that an expression should be converted to a given type.
For example, if variables named tnow and tzero are long
integers, the natural type of the expression tnow-tzero is
also a long integer. If you need another type, you can
specify the conversion using a cast operator:

(unsigned int) (tnow−tzero)

The parenthesized type name, which is (unsigned int) in
this case, specifies that the value of the following item
should be converted to the given type.

The member-of (.) and member-pointed-toward (−>)
operators are used to access members of structures. For ex-
ample, if box is a structure variable with a member named
TopRight, then the reference box.TopRight (the period in
the expression is the member-of operator) accesses the
TopRight member of the box structure. The difference be-
tween these two operators is that the member-of operator
expects the item to its left to be a structure variable, while
the member-pointed-toward operator expects the item to
its left to be a pointer to a structure. Both operators expect
that the item to the right is the name of a member of the
structure.

The member-pointed-toward operator is actually a
shortcut. For example, if pBox is a pointer to a box struc-
ture (with the TopRight member mentioned previously),
then the expression

pBox->TopRight

P1: GLM Revised Pages

Encyclopedia of Physical Science and Technology EN002C-839 May 17, 2001 20:27

C and C++ Programming Language 341

accesses the TopRight member of the structure. This is
actually a shortcut for writing

(*pBox).TopRight

which uses the indirection operator (*) to dereference the
pointer-to-structure and then uses the member-of operator
to access the given member.

The last two operators in Table VI are square brack-
ets (for array subscripting) and parentheses (for group-
ing). These two operators, together with the assignment
operator, are familiar features from other programming
languages, but they are not considered operators in most
languages. However, in C these elements are considered
to be operators to make the expression syntax as regular,
powerful, and complete as possible.

C. Control Structures

In contrast to its eclectic set of operators, C has an un-
remarkable collection of control structures. One possible
exception is the C for loop, which is more compact and
flexible than its analogs in other languages. The purpose
of the C control structures, like those in other languages,
is to provide alternatives to strictly sequential program
execution. The control structures make it easy to provide
alternate branches, multi-way branches, and repeated exe-
cution of parts of a program. (Of course, the most profound
control structure is the subroutine, which is discussed in
Section II.D.)

A compound statement is simply a group of statements
surrounded by curly braces. It can be used anywhere that
a simple statement can be used to make a group of state-
ments into a single entity.

for (i=0; i<l0; i++) {
x[i] = 0;
y[i] = 0;
z[i] = 0;

}

In the example above, the three assignment statements
form a compound statement because they are enclosed in
the curly braces. (The for statement will be discussed later
in this section.)

The goto statement is the simplest, the oldest, and the
most general control statement. Unfortunately, it is also
one of the most easily abused statements, and its use is
discouraged. It is seldom used by people who write C
programs, but it is often used extensively in C programs
that are generated by (written by) other programs. In pro-
grams written by people, the goto is usually reserved for

handling exceptional conditions, such as branching to an
error-handling block of code.

The if statement is used to provide alternative execution
paths in a program. In an if statement, one of two alternate
possibilities is taken, based on the true/false value of a test
expression. The syntax is the following.

if (expr)
statement1;

else
statement2;

The else part is optional, and either statement may be a
compound statement. (The expression and the statement
above are shown in italics, to indicate that they may be
any C expression or C statement. The words if and else
are keywords, which must appear exactly as shown, which
is why they are not shown in italics.) It is very common
for the else part of the if statement to contain another if
statement, which creates a chain of if-statement tests. This
is sometimes called a cascaded if statement:

if (code == 10)
statement1;

else if (code < 0)
statement2;

else if (code > 100)
statement3;

else
statement4;

In the series of tests shown here, only one of the four
statements will be executed.

An alternative multi-way branch can be created by a
C switch statement. In a switch statement, one of several
alternatives is executed, depending on the value of a test
expression. Each of the alternatives is tagged by a con-
stant value. When the test expression matches one of the
constant values, then that alternative is executed.

The syntax of the switch statement is somewhat com-
plicated.

switch (expr) {
case const1:

statement1;
break;

case const2:
statement2;
break;

default:
statement3;
break;

}

P1: GLM Revised Pages

Encyclopedia of Physical Science and Technology EN002C-839 May 17, 2001 20:27

342 C and C++ Programming Language

In this skeleton switch statement, expr is the test ex-
pression and const1 and const2 symbolize the constants
that identify the alternatives. In this example, each alter-
native is shown terminated by a break statement, which is
common but not required. Without these break statements,
flow of control would meander from the end of each alter-
native into the beginning of the following. This behavior
is not usually what the programmer wants, but it is one
of the possibilities that is present in C’s switch statement.
The break statement will be discussed further later.

The switch statement is less general than the cascaded
if statement, because in a cascaded if statement each alter-
native can be associated with a complex expression, while
in a switch statement each alternative is associated with a
constant value (or with several constant values; multiple
case labels are allowed).

The switch statement has two advantages over the more
flexible cascaded if statement. The first is clarity; when a
solution can be expressed by a switch statement, then that
solution is probably the clearest solution. The second is
efficiency. In a cascaded if statement, each test expression
must be evaluated in turn until one of the expressions is
true. In a switch statement, it is often possible for the C
compiler to generate code that branches directly to the
target case.

A while loop lets you repeatedly execute a statement
(or group of statements) while some condition is true. It
is the simplest iterative statement in C, but it is also very
general.

while (ch != EOF)
statement;

The body of this loop (the statement) will be executed
repeatedly until the value of the ch variable becomes equal
to the value of the standard predefined constant EOF (end
of file). Presumably, something in the statement will alter
the value of ch so the loop will end. Also, it is presumed
that ch is assigned a value prior to the execution of the
while statement. (Note that the statement will not be exe-
cuted if the initial value of ch is EOF.)

It is easy to use a while loop to step through a series
of values. For example, the following while loop zeroes
the first ten elements of an array named x . (An integer
variable named i is used as the array index and as the loop
counter.)

i = 0;
while (i < 10) {

x[i++] = 0;
}

A close relative of the while loop is C’s do loop. It
repeats a statement (or a group of statements) while a

condition is true, but the condition is tested at the bottom
of the loop, not at the top of the loop. This ensures that the
body of the loop will always be executed at least once.

i = 0;
do

x[i] = 0;
while (++i < 10);

As with a while loop, something in the body of the
loop or the control expression presumably changes the
value of the test expression, so that the loop will eventually
terminate.

C’s most elaborate loop is the for loop. Here is the
general form of the for loop:

for (init−expr; test−expr;
inc−expr)
statement;

As in the previous examples, the statement will be re-
peatedly executed, based on the values of the three control
expressions. The init−expr is an initialization expression.
It is executed just once—before the body of the loop starts
to execute. The test−expr is executed before each itera-
tion of the loop. If it is true, the next iteration will occur,
otherwise the loop will be terminated. The inc−expr is
executed at the conclusion of every iteration, typically to
increment a loop counter.

Here is a typical for loop. It performs the same task as
before, setting the first ten elements of an array named x
to zero, using a loop counter named i :

for (i=0; i<l0; i++)
x[i] = 0;

Note that the while version of this loop was four lines,
while the for version of the loop is just two. This for loop
is an example of what Kernighan and Ritchie, authors
of the seminal reference book on C, call “economy of
expression,” which is one of C’s most distinctive traits.

C has two additional flow of control statements, break
and continue, that augment the capabilities of the loops
that have just been described. The break statement is used
to break out of (to immediately terminate) the enclosing
do, while, for, or switch statement. Its use is routine in
switch statements, to terminate the switch statement at
the conclusion of each individual case. In do, while, and
for loops, break is often used to terminate the loop pre-
maturely when an error or special condition occurs. Using
a break in the body of a loop often simplifies the control
expression of the loop, because it allows special case code
to be placed elsewhere.

P1: GLM Revised Pages

Encyclopedia of Physical Science and Technology EN002C-839 May 17, 2001 20:27

C and C++ Programming Language 343

The continue statement is used to immediately start the
next iteration of the surrounding do, while, or for loop. It
is somewhat like a jump to the end of a loop. For example,
suppose a program is reading a list of words from a file.
Certain processing must occur for most words, but a few
words are just ignored. Here is a pseudocode sketch (pseu-
docode isn’t true C; it merely expresses an idea without
following strict syntax) of how that could be written using
the continue statement.

while (readaword ()) {
if (word is in the ignore list)

continue;
process a word;

}

The effect of the continue statement is to skip the pro-
cess a word part of the loop body for words that are in the
ignore list.

D. Procedures

Procedures are tools for packaging a group of instructions
together with a group of local variables to perform a given
task. You define a procedure by specifying what informa-
tion is passed to the procedure each time it is activated,
listing its local variables, and writing its statements. As
discussed in Section II.B, the statements inside a proce-
dure can access global data that are declared outside the
procedure, but it is not possible for other procedures to ac-
cess the data that are declared within a procedure (unless
the procedure exports the address of a local variable). This
insularity is the most important feature of procedures. It
helps the programmer to create small, easily understand-
able routines.

Figure 1 contains a procedure to solve the quadratic
equation

Ax2 + Bx + C = 0

using the well-known quadratic equation:

−B ± √
B2 − 4 × A × C

2 × A

For example,

2x2 + 3x + 1 = 0

is a quadratic equation (A is 2; B is 3; C is 1) whose
solution is

−3 ± √
32 − 4 × 2 × 1

2 × 2
,

which simplifies to

−3 ± √
9 − 8

4
which has two solutions, −1 and −0.5.

The first part of solve specifies the procedure name,
parameter names, and parameter types. The header of the
solve procedure indicates that it expects three parameters,
which it also calls a, b, and c. The body of solve calculates
the solution’s discriminant, which is the expression inside
the square root symbol, and then calculates the answers,
based on whether the discriminant is positive, zero, or
negative. Most of the body of solve is a large if statement
that handles each of the three types of disciriminants.

In a program, you can invoke the solve procedure as
follows:

solve (2.0, 3.0, 1.0);

In the example above solve is invoked using constant
numerical values, but you could also use numerical vari-
ables.

/*
* solve the quadratic equation
ax**2 + b*x + c = 0

* using the formula x = (-b
+/- sqrt (b**2 - 4*a*c))/2*a

*/
void solve (double a, double b,
double c)
{

double d; // the discriminant
double r1, r2;
d = b * b - 4 * a * c;
if (d > 0) { // two real roots
r1 = (-b - sqrt (d))/(2 * a);
r2 = (-b + sqrt (d))/(2 * a);
printf(”xl = %g, x2 = %g,
%g\n”, r1, r2);

} else if (d == 0.0) { // one
real root
r1 = -b/(2 * a);
printf(”x1 = x2 = %g\n”, r1);

} else { // two real/imaginary
roots
r1 = -b/(2 * a);
r2 = sqrt (abs(d))/(2 * a);
printf(”x1 = %g + %gi,
x2 = %g - %gi\n”, r1,
r2, r1, r2);

}
}

FIGURE 1 A program to solve the quadratic equation.

P1: GLM Revised Pages

Encyclopedia of Physical Science and Technology EN002C-839 May 17, 2001 20:27

344 C and C++ Programming Language

III. KEY C FEATURES

The features of C that are discussed in the following sub-
sections set C apart from many other languages. Many
of these features are found in some form in other lan-
guages, but only C combines them within a consistent
framework.

A. Separate Compilation

Separate compilation is the ability to develop a program in
several independent pieces. Each piece is stored in its own
file in the computer, and each can be edited and worked
on separately. Each source file is independently translated
(compiled) into a machine language file, which is called an
object file. After the individual parts have been written and
compiled, they are combined to form a complete program
in a process called linking.

C’s support for separate compilation has allowed it to
provide many vital services in external software libraries.
For example, many programming languages have built-in
facilities for assigning one text string to another, raising
a number to a power (exponentiation), or for performing
data input and output. C has all of these capabilities, but
they are provided by external I/O libraries. This feature
of C has the benefit of making the compiler smaller and
easier to maintain, and it also increases the flexibility of
C, because it allows programmers to rework some of these
features to fit special circumstances. However, it has the
disadvantage that some of these vital features are not inte-
grated into the language as closely as in other languages,
and it forces the programmer to endure the overhead of
subroutine calls more than might otherwise be necessary.

C has several features that facilitate separate compila-
tion. The static and extern storage classes are used to or-
ganize programs. The static storage class is used to create
local data or procedures. This means that things declared
static cannot be accessed from outside the current file (un-
less a procedure in the file broadcasts their address). The
extern storage class is used to reference data (or proce-
dures) that are declared in other files. By default, you can
reference procedures from other files simply by writing
their name, but for data in other files, you must declare it
with the extern storage class before it can be referenced.

B. The C Preprocessor

Another feature that facilitates separate compilation is the
C preprocessor. It makes it easy for a group of files to
all reference a common set of definitions and extern dec-
larations. The C preprocessor is an early stage of the C
compiler that makes several alterations to program source
code files, in preparation for the more traditional compila-

tion phase. The preprocessor makes it easier to create large
programs that are stored in several files, because separate
files can reference common include files that contain def-
initions and external declarations. It also performs, just
prior to the true compilation phase, some of the chores of
a traditional text editor, making it easier to avoid keep-
ing different versions of a program’s source code files for
different systems or circumstances.

Traditionally, the C preprocessor has provided three ma-
jor features of the C language: a simple macro facility, file
inclusion, and conditional compilation.

File inclusion is controlled by the #include C prepro-
cessor mechanism. When a #include statement is encoun-
tered, the preprocessor replaces it with the contents of the
referenced file. For example, the file named stdio.h con-
tains definitions and references that are required by pro-
grams that are using the standard I/O library. It is included
by the following statement.

#include <stdio.h>

During the preprocessing phase, this statement will be
replaced by the contents of the stdio.h file, so that the later
phases of the compiler will only see the contents of stdio.h.

The macro feature of the C preprocessor allows you to
replace one item by another throughout a program. This
has many uses, such as creating named constants, cre-
ating in-line subroutines, hiding complicated constructs,
and making minor adjustments to the syntax of C. Macros
can have parameters, or they can simply replace one item
of text with another. Macros are created using the #define
mechanism. The first word following #define is the name
of the macro, and following names are the replacement
text.

There are several ubiquitous C macros including NULL,
an impossible value for pointers; EOF, the standard end
marker for stdio input streams; and the single character
I/O routines, getc() and putc(). NULL and EOF are simply
named constants. In most versions of C, they are defined
as follows:

define EOF (-1)
define NULL 0

Conditional compilation, the third traditional function
of the C preprocessor, allows a programmer to specify
parts of a program that may or may not be compiled.
This feature is used for many purposes, such as writing
programs that can be compiled on different computer sys-
tems. The conditional compilation lets programmers make
small adjustments to the program to adapt to the various
computer systems. In addition, conditional compilation is
often used to manage debugging features, which should
be omitted once the program is finished.

P1: GLM Revised Pages

Encyclopedia of Physical Science and Technology EN002C-839 May 17, 2001 20:27

C and C++ Programming Language 345

C. Novel Declaration Style

In some languages, the major data types are simple things,
such as numbers or characters, and arrays of simple things.
C is more complicated because C also has pointers to
simple things, pointers to pointers, and functions that can
return complicated items, such as a pointer to a function.
To declare one of these hybrid data types, you must have
a way of describing what you are declaring. Rather than
develop a new syntax for describing this large assortment
of data types, the approach in C is to make declarations
mirror the use of an item. This straightforward idea has
not proven to be simple for most people to understand, but
it must be understood to work with C.

Declaring simple things is easy. For example, the dec-
laration

int a;

states that a is an integer. The next simplest declaration is
to declare an array of something, for example, an array of
integers.

int b[10];

This declaration states that b is an array of ten integers.
b[0] is the first element in the array, b[1] is the next,
and so on. Notice that the declaration does not contain a
keyword stating that b is an array. Instead, C’s standard
array notation, b[subscript], is used in the declaration.

The next simplest declaration creates a pointer to a sim-
ple type, such as a pointer to an integer.

int *c;

This declaration states that *c is an integer. Remember
that * is the C indirection operator, which is used to deref-
erence a pointer. Thus, if *c is an integer, then c itself must
be a pointer to an integer.

Another thing that can be declared is the return type
of a function. The following declaration states that d is a
function returning an integer.

int d();

The () in the declaration indicate that d is a function.
When d is invoked in the program, it can be used in any
situation where an integer variable is used. For example,
you could write

i = 2 * d() + 10;

to indicate that the integer variable i should be assigned
twice the value returned by the d procedure plus ten.

The simplest rule for understanding a declaration is to
remember that if you use the item just as it is declared it
will have the simple type mentioned in the left part of the
declaration. The next step is to learn the meanings of the
three operators that are used in many declarations: a pair of
parentheses indicates a function, square brackets indicate
an array, and the asterisk indicates a pointer. Also remem-
ber that things to the right of a variable name (parentheses
and square brackets) bind more tightly than things to the
left.

The following declaration specifies a function named e
that returns a pointer to an integer

int *e();

Note that the above declaration does not declare a pointer
e to a function returning an integer, because the parenthe-
ses to the right of e take precedence over the indirection
operator to the left.

When you are verbalizing a declaration, start from the
inside and work out, and remember that it is helpful to
read () as “function returning,” [] as “array of,” and * as
“pointer to.” Thus, this declaration above could be read “e
is a function returning a pointer to an int.”

There are a few restrictions on what you can declare in
C. For example, you can declare a function, a pointer to a
function, or an array of pointers to functions, but you are
not allowed to declare an array of functions.

D. Operator-Rich Syntax

C has the usual assortment of numeric operators, plus some
additional operators, such as the operators for pointers, the
assignment operators, the increment/decrement operators,
the comma operator, and the conditional operator. With
just this rich set of operators, C could be considered to
have an operator-rich syntax.

But C goes one step further. it considers the expression
to be a type of statement, which makes it possible to put an
expression any place a statement is expected. For example,
c++ is a complete statement that applies the increment
operator (the ++ operator) to the variable named c.

C programs take on a very dense appearance when as-
signment statements are used in the control expressions
of loops and if statements. For example, the following
snippet of code is extremely common.

int ch;
while ((ch = getchar()) != EOF)

;

P1: GLM Revised Pages

Encyclopedia of Physical Science and Technology EN002C-839 May 17, 2001 20:27

346 C and C++ Programming Language

The control expression of this while loop calls getchar
to read in a character, assigns that character to the ch vari-
able, and then runs the body of the loop (which in the
above example is empty, causing the above code to read
in and ignore all of the input). The loop terminates when
getchar returns the value EOF (end of file; a symbolic
constant that is defined in the stdio.h include file).

Another common technique is to use the pointer incre-
ment and decrement operators in a loop control expression.
For example, the following loop copies the string pointed
to by p to the location pointed at by q (p and q are both
pointers to characters).

while (*q++ = *p++)
;

Note that the actual body of the loop is empty, the only
action is in the control expression of the while statement.
When the terminating null of the string is copied, the con-
trol expression becomes false, which terminates the loop.

Another aspect of C that makes it possible to construct
rich expressions is short-circuit expression evaluation.
Most C operators have a guaranteed expression evaluation
order, which is left to right for most arithmetic and com-
parison operators. In addition, C guarantees that logical
expressions will only be evaluated far enough to deter-
mine the outcome. As shown in Table III, the operator | |
means OR and the operator && means AND. Thus, the
expression

p && q

means p AND q . According to the rules of Boolean logic,
the result will be TRUE only if both p and q are TRUE.
When the program is running, if the p part turns out to
be FALSE, then the result of the whole expression is im-
mediately known to be FALSE, and in this case the q part
will not be evaluated.

Similarly, the expression

p || q

means p OR q . In this case, according to the rules of
Boolean logic, the result will be TRUE if either the p
or q part is TRUE. When the program is running, if the
p part turns out to be TRUE, then the result is immedi-
ately known to be TRUE, and in this case the q part will
not be evaluated, because C uses short circuit expression
evaluation.

The following code fragment is an example of how
short-circuit evaluation is often used. In it, a pointer is
compared with the address of the end of an array to make
sure that the pointer has not advanced past the end of the

array. If the pointer is in bounds, only then is it used to
access an item in the array.

if ((p < &x[20]) && (*p != 0))

Without the short-circuit expression guarantee made by
the C language, this expression would have to be written
as two expressions, so that the pointer would not be deref-
erenced when it was pointing outside the bounds of the
array. (Dereferencing an out-of-bounds pointer can cause
disastrous program failures.)

In all of these examples (and in the examples of the
conditional operator and comma operator in Section I.C),
C’s operator-rich syntax has made it possible to express
several things in just one or two lines, a benefit or short-
coming depending upon your viewpoint.

E. Explicit Pointer Usage

In all traditional computer architectures, at the lowest level
the machine is constantly working with addresses, because
it cannot store or retrieve information without knowing its
address. However, most computer languages have tried to
manage addresses automatically, to relieve programmers
of this burden.

C has taken a best of both worlds approach. If you pre-
fer, you can write programs that avoid working with ad-
dresses, which means avoiding the use of pointers as much
as possible. Programmers can’t completely avoid pointers
when working in C, because many of the standard library
routines expect pointer arguments.

Many programmers want to work with addresses, be-
cause of the control and efficiency that it yields. In addi-
tion, programmers writing software that directly accesses
computer hardware often are forced to work with ad-
dresses. Fortunately, when these needs arise the C lan-
guage is read with a complete set of features for working
with addresses.

One of the areas where C pushes you toward using point-
ers is with subroutine parameters. In some languages, such
as Pascal, you can specify whether subroutine parame-
ters are passed by value or by reference. With Pascal’s
value parameters, changes inside the subroutine do not
change the caller’s copy of the parameter, while with ref-
erence parameters, there is only one copy of the parameter,
and changes made inside a subroutine do alter the caller’s
value.

In C, all subroutine parameters are (in a strict techni-
cal sense) value parameters, but it is extremely common
to pass pointers to the actual parameters to subroutines,
thereby achieving the effect of reference parameters. For
example, the following brief subroutine exchanges its two
arguments (the first argument takes on the value of the

P1: GLM Revised Pages

Encyclopedia of Physical Science and Technology EN002C-839 May 17, 2001 20:27

C and C++ Programming Language 347

second and vice versa). If the two arguments were passed
by value, this subroutine would have no effect, but instead
the arguments are passed by address so that the swap can
take place.

iswap(int *a, int *b) /* swap a
and b (integers) */
{

int temp;
temp = *a;
*a = *b;
*b = temp;

}

Inside the iswap procedure the * operator is used to
access the values that a and b point toward. The iswap
procedure is called with two pointers to int (integer), as in
the following:

int i, j;

i = 50;
j = 20;
iswap(&i, &j);

When you call iswap you need to put the & (address-of)
operator in front of the variables i and j so that you pass
the addresses of the two variables to iswap. After iswap
completes its work, the variable i will have the value 20
and the variable j will have the value 50.

F. Function Pointers

A function pointer is a pointer variable, but it holds the
address of a function, not the address of a data item. The
only things you can do with a function pointer are read its
value, assign its value, or call the function that it points
toward. You cannot increment or decrement the address
stored in a function pointer or perform any other arithmetic
operations.

Function pointers make it possible to write very general
programs. For example, if you have a data structure that
contains several different types of items, each item might
contain a function pointer that could be used to print, order,
or otherwise manipulate the information. Each type of data
item would contain a function pointer to the appropriate
function. Function pointers provide a very tedious way
to build an object, a data structure that combines a set of
values with a collection of appropriate behaviors.

Function pointers are declared using the syntax de-
scribed in Section III.C. In that section, it was mentioned
that the declaration

int *fn();

declares a function named fn that returns a pointer to an
integer. If we want instead to declare a pointer to a func-
tion, we must use parentheses to indicate that what is being
declared is primarily a pointer:

int (*fnptr)();

The parentheses around ∗fnptr are necessary; they bind
the∗ (the indirection operator) to the fnptr, overriding the
normal precedence of the parentheses over the ∗. This dec-
laration should be read aloud as “fnptr is a pointer to a
function returning an integer.”

G. Void

One of the innovations of ANSI C is the creation of the
void data type, which is a data type that does not have any
values or operations, and that cannot be used in an expres-
sion. One important use of void is to state that a function
does not have a return value. Before ANSI, the best you
could do was avoid using procedures in expressions when
they did not return a value.

For example, the procedure iswap() in Section III.E,
does not return a value. It works correctly if used as shown
in that section, but it also can be used incorrectly.

x = 2 * iswap(&i, &j);

In this expression, the value stored in x is unpredictable,
because iswap does not return a value. Most pre-ANSI C
compilers will not object to this statement, because by
default all procedures were presumed to return an integer.
With ANSI C, you can specify that iswap has the type
void, thereby assuring that erroneously using iswap in an
arithmetic expression will be flagged as an error.

Another use of void is to create a generic pointer. On
some machines, different types of pointers have differ-
ent formats, and on most machines different data types
have different alignment requirements, which impose re-
strictions on legitimate pointer values. Until the ANSI
standardization, C lacked a generic pointer type that was
guaranteed to meet all of the requirements on any ma-
chine, that is, a pointer that would be compatible with all
of the other pointer types. This need is met by specifying
that something is a pointer to void.

IV. KEY C++ FEATURES

From a historical perspective, C++ is a set of features that
Bjarne Stroustrup added to C to facilitate object-oriented
programming, plus an additional set of features added
during the ANSI and ISO standardization process. C++

P1: GLM Revised Pages

Encyclopedia of Physical Science and Technology EN002C-839 May 17, 2001 20:27

348 C and C++ Programming Language

contains all of C, essentially unchanged, plus additional
features for working with objects. But from the perspec-
tive of someone learning to program in C++, it’s simply
a language, containing a mix of traditional features and
object-oriented features.

The major new C++ feature, the class, supports the
idea of object-oriented programming. Objects either in
the real world or in computer programs have two as-
pects: physical features, which are represented in com-
puter programs by information storage, and operational
features (actions), which are represented in software by
procedures. In traditional (non-object-oriented) program-
ming languages much attention has been paid to both data
structures and to algorithms, but little attention was paid
to combining the two, so that software can model entities
found in the world. The general idea of object-oriented
programming and the C++ class data type are intended to
remedy this omission.

C++ also contains various other improvements, includ-
ing references, which are related to pointers, and function
overloading. These two additions are described in Sections
A and B, below, and then the remaining sections detail the
class data type, which is the focus of object-oriented pro-
gramming using C++.

A. References

A reference is a data type that creates a new name for an
existing variable. For example, if x is an existing integer
variable, a reference to x can be created with the statement

int &rx = x;

The ampersand in the above declaration is the syntactical
indicator that r x is a reference to an int variable, rather
than a true int variable. After r x has been declared a ref-
erence to x , it can be used in any situation where x itself
could be used. The simple-minded form shown above is
rarely used, but references are extensively used as proce-
dure parameters and as return values from functions.

One of the simplest practical uses of references is to
write a slightly cleaner version of the iswap routine. (A
pointer version of iswap was shown in Section III.E.)

// swap integers a and b,
using reference parameters void
iswap(int& a, int& b)
{

int temp = a;
a = b;
b = temp;

}

Because this version of iswap uses reference-to-int pa-
rameters, it is used somewhat differently than the previous
version.

int i, j;

i = 50;
j = 30;

iswap(i, j);

In addition to demonstrating references, this example
also shows several aspects of C++, including the position-
ing of parameter declarations in the procedure header, the
more thorough declaration of function return types (void
in this example), and the new // syntax (on the first line of
the example) to indicate a comment to the end of line.

B. Function Overloading

Programmers often need to create a family of procedures
to perform the same task on various data types. For exam-
ple, the iswap procedure shown in Sections III.E and IV.A
works only for integers. It would also be useful to have
swap procedures for doubles, characters, and so forth. Al-
though each could be given a unique name (e.g., iswap for
integers, dswap for doubles, etc.), unique names quickly
become tedious and error prone. Instead, in C++ one can
create a family of procedures that have the same name but
that accept different parameter types. This lets the pro-
grammer use a single name, while it gives the compiler
the job of choosing the correct procedure, based on the
parameter types.

The following example shows how one could overload
the swap procedure, creating versions for characters, in-
tegers, and doubles.

void swap(char& a, char& b)
{
char temp = a; a = b; b = temp;

}
void swap(int& a, int& b)

{
int temp = a; a = b; b = temp;

}
void swap(double& a, double& b)

{
double temp = a; a = b; b =
temp;

}

When the compiler sees the statement swap(x,y) it will
choose a version of swap based on the types of the vari-
ables x and y. For example, if x and y are doubles, the
compiler will choose the third function shown above.

P1: GLM Revised Pages

Encyclopedia of Physical Science and Technology EN002C-839 May 17, 2001 20:27

C and C++ Programming Language 349

C. Classes

Classes are the major new feature that C++ adds to C.
They are the C++ language feature that facilitates object-
oriented programming. The key idea of object-oriented
programming is that the fundamental components of pro-
grams should be a objects—a data structure that combines
data (information storage) and procedures. Software ob-
jects are analogous to the raw parts that are used in other
creative disciplines. They make it possible to build more
complex entities than would otherwise be possible, they
may be modified and specialized as necessary, and they
allow the programmer to build software whose structure
parallels the structure of the problem domain.

It’s important to understand the difference between a
class and an object. A class is what programmers work
with; it’s a concept that is expressed in a program. An
object (also called an instance) is the realization of a class
when a program is executing. A programmer might write
a program that defines a class to represent, say, complex
numbers. When a program that uses that class is running,
then each complex number in the program is an object. If,
for example, the program is using 100 complex numbers,
then there are 100 objects, each following the blueprint
established in the complex number class that was written
by a programmer.

Although their syntax is based on C structures, classes
go far beyond the capabilities of ordinary C structures.

� Classes may have both data elements and procedure
elements. The procedure elements, which are called
member functions, can perform standard operations on
the class, such as changing the values of its data
elements, or reporting the values of the data elements

� Classes are the basis of inheritance, which allows
programmers to create class hierarchies, and which
reduces code duplication by enabling programmers to
modify (specialize) existing classes. When you create a
new class from an existing class, the original class is
called the base class and the new one, which adds
additional features or modifies the original behavior, is
called the derived class.

� Class data elements may be static, which means a
single copy of the item is shared among all instances of
the class, or nonstatic, which means one copy of the
item exists for each class instance.

� Classes may have public, private, and protected
elements, which allow a programmer to control access
to the individual parts of the class. Private elements
can be accessed only by class member functions,
protected elements can be accessed by class member
functions and by member functions of derived classes,
while public elements are generally available. The

public part of a class is often called its interface
because it defines the set of operations that are used to
work with the class.

� Classes may have routines, called constructors and
destructors, that are called automatically when a class
instance is created or destroyed. Constructors are
responsible for initializing a class, while destructors
perform any necessary cleanup. Constructors are also
used to convert items of another type to the class type.
For example, a class that represents complex numbers
might have a constructor that would convert a double
into a complex.

� Classes may have operator functions, so that objects
can be manipulated using algebraic notation.

The following class declaration describes a data type
that represents complex numbers, which are numbers de-
fined as having both real and imaginary parts. In algebraic
notation the letter i indicates the imaginary part of a num-
ber, thus 50 + 100i represents a complex with real part
of 50 and imaginary part of 100. A more realistic com-
plex number class would have many more facilities; the
simplifications imposed in this simple example are for
clarity.

class Complex {
protected:

double realpart, imagpart;
public:

// constructors
Complex(void);
Complex(double r);
Complex(double r, double i);
Complex(Complex &c);
// ADD OP - add a complex
or a double to a complex
void operator+=(Complex&
rhs);

void operator+=(double d);
// extract the real and
imaginary parts of a
complex
double getReal() { return
realpart; }
double getImag() { return
imagpart; }

};

The class shown above contains two data elements, dou-
bles named realpart and imagpart, and six operations. The
class is divided into two parts, the protected part and the
public part. The public elements of complex are univer-
sally accessible, while the elements in the protected part,

P1: GLM Revised Pages

Encyclopedia of Physical Science and Technology EN002C-839 May 17, 2001 20:27

350 C and C++ Programming Language

which in this case are the data elements, can only be ac-
cessed by derived classes.

The first four operations, the constructors, are used to
create new complex numbers. The first creates a Complex
object that is initialized to zero, the second creates a Com-
plex from a single number (the real part), the third creates
a Complex from a pair of numbers (the real and imaginary
parts), and the fourth creates a new Complex object from
an existing Complex object. In the class declaration shown
above, the four construction operations are described but
not defined. Here is the definition of the second constructor
(the others are similar, hence not shown).

// Construct a complex from a
single number.

Complex::Complex(double r):
realpart(r), // init the
realpart data member
imagpart(0) // init the
imagpart data member

{
// The body of the
constructor,
// but there is nothing left
to do.

}

Although this member function definition resembles an
ordinary C procedure, there are some important differ-
ences that should be discussed. The definition starts with
the notation Complex:: which is a way of reopening the
context of the class declaration. The pair of colons, which
is called the scope resolution operator, is placed after the
name of a class to indicate a definition of something in
the class. After the constructor header is a pair of ini-
tialization expressions. The first initialization expression
is realpart(r), which states that the class member named
realpart should have its initial value taken from the paren-
thesized expression, r . The second initialization expres-
sion sets the imagpart member to zero. The body of the
constructor, like the body of all C procedures, is delimited
by a pair of curly braces, but in this particular example
there is nothing to do in the constructor body because all
the work has been done in the initialization section of the
constructor.

The constructors mentioned in the Complex class dec-
laration allow us to create Complex numbers using the
following declarations:

Complex a;
Complex b(50, 100);
Complex c(b);

The Complex named a is initialized to zero, the Com-
plex named b is initialized to 50 + l00i , and the Complex
named c is initialized to the value of b. To understand how
the above works, you must remember that the compiler
will call the appropriate version of the constructor, based
on the arguments. In the example, Complex variables a, b,
and c will be constructed using the first, third, and fourth
forms, respectively, of the constructors shown previously
in the class declaration.

The two procedures named operator+ = in the Complex
class declaration allow you to use the + = operator (the as-
sign sum operator) to manipulate Complex numbers. (The
bodies of these procedures are not shown here.) This ca-
pability, which is known as operator overloading, is pri-
marily a notational convenience that allows manipulations
of class objects to be expressed algebraically. C++ allows
nearly all of its rich set of operators to be overloaded.
The limitations of C++ operator overloading are that user-
defined operator overloading must involve at least one
user-defined type (class) and that the standard precedence
and associativity may not be altered.

The first operator+ = procedure in the Complex class
lets you add one complex to another, the second allows you
to add a double (a real number) to a complex. For example,
the following two expressions automatically invoke the
first and second operator+ = functions. (Objects a and b
are complex.)

a += b;
b += 5;

The last two procedures shown in the Complex class
declaration are used to extract the real and imaginary parts
of a complex number. For example, the following state-
ment assigns the imaginary part of a, which is a Complex,
to x, which is a double number.

x = a.getImag();

Note that ordinary C “member of” notation (the dot) is
used to access the getImag member function.

D. Inheritance

Inheritance is a facility that allows a programmer to create
a new class by specializing or extending an existing class.
In C++ the original class is called the base class and the
newly created class is called the derived class. Inheritance
is also called class derivation. Derivation can do two types
of things to a base class: new features can be added, and
existing features can be redefined. Derivation does not
allow for the removal of existing class features.

P1: GLM Revised Pages

Encyclopedia of Physical Science and Technology EN002C-839 May 17, 2001 20:27

C and C++ Programming Language 351

Derivation is usually used to create specialized classes
from more general classes. It often expresses “kind of”
relationships. For example, one might derive a HighVolt-
ageMotor class from a Motor base class. Note that a High
Voltage Motor is a kind of Motor; the converse is not true.

All motors have a power rating, a maximum speed of
rotation, etc.These characteristics can be expressed in C++
as follows. First let us look at a partial declaration of the
Motor class.

class Motor {
double power;
double speed;
// other Motor characteristics

};
Note that only a few of the Motor class’s members are

sketched above. Next let’s look at the class declaration of
HighVoltageMotor. The notation in the class header states
that a HighVoltageMotor is derived from the Motor base
class. The body of HighVoltageMotor only lists things that
are added to the base class; the existing elements, such as
power, need not be restated:

class HighVoltageMotor : public
Motor {
double maximumVoltage;
// other characteristics of

High Voltage Motors
};

Each HighVoltageMotor object will contain all the char-
acteristics (elements) of a Motor, such as power and speed,
plus all the additional characteristics that pertain only to
a High Voltage Motor, such as the maximumVoltage.

E. Polymorphism

Polymorphism is the ability of something to have vari-
ous forms. In C++, polymorphism refers to the ability of
a class member function to have different forms for re-
lated classes. As an example, consider a family of classes
that represent shapes that can be displayed (on a screen)
or printed. We would probably create a base class called
Shape, and then derive specialized classes such as Cir-
cleShape, SquareShape, and OblongShape. All of these
classes would contain a member function called Draw that
would actually draw the given shape. Given an object of
one of these shape types, you could call Draw to draw the
given shape. This isn’t difficult or mysterious when the
compiler is able to tell, while analyzing and translating a
source program, what type of data object is being used.
For example, given an object whose type is CircleShape,
calling Draw would obviously draw a circle.

However, the situation is more complex if all that’s
known during compilation is that the object is a mem-
ber of the Shape family of objects, In this case, polymor-
phism comes into effect. Given an object whose type is
only known to be in the Shape family, calling Draw will
still call the correct version for the given object, even if
it’s not known in advance (i.e, during compilation) what
type of shape object exists.

In C++ you engage polymorphism by declaring a mem-
ber function to be virtual. When a class member function
is declared to be virtual, then the compiler makes arrange-
ments to call the correct version of the member function
based on the type of the object that’s present when the
program runs. Without virtual, the compiler’s job is a bit
easier, as it uses the information in the program’s source
code to determine what member function to call.

Moving beyond the details of what the compiler does,
the importance of polymorphism is that it lets a program-
mer create powerful families of classes, in which each
family member behaves differently, yet uniformly. Poly-
morphism means that you can count on an object, known
only as a member of a family, to behave as it should when
you call one of its virtual member functions.

F. Exceptions

In practical situations, it’s important to write robust soft-
ware that operates reliably in the face of great difficulty.
For example, a user might try to write a file to a floppy
disk drive that doesn’t contain a diskette, or a calculation
might inadvertently try to divide some value by zero. Pro-
fessional software must be able to handle these and myriad
other problems as intelligently and reliably as possible.

The traditional approach to handling errors is to write
procedures so that they return a specific value to indicate an
error. For example, the procedure to write data to a disk file
might return −1 if a failure occurs, and 0 if the operation
is a success. There are several difficulties with this simple,
traditional approach. The first is that programmers often
write software that ignores error return codes. In an ideal
world, programmers would not be so careless, but in the
real world of deadlines and other pressures, error return
values often are unused.

Another problem is that using error codes makes it hard
to design and implement an error handling strategy. If
every error has to be detected and handled on the spot, the
code starts consist of large amounts of hard to debug code
managing the problems. Soon, the bulk of code dealing
with problems starts to overwhelm and burden the code
that is focused on the actual task.

A better way to handle problems is to use exceptions.
When a problem occurs, the subroutine that detects the
problem then throws an exception, which transfers control

P1: GLM Revised Pages

Encyclopedia of Physical Science and Technology EN002C-839 May 17, 2001 20:27

352 C and C++ Programming Language

to whatever calling routine has arranged to handle that type
of problem. For example, consider a function named A that
manages the task of writing a document to disk. Naturally
A will call numerous other routines to do all the chores
necessary to accomplish the overall task. Before actually
calling its helper routines, A will enter a try/catch block
so that it can catch any input/output exceptions that occur
at any point in the operation. Any of the called subroutines
that detects a problem can simply throw an input/output
exception, knowing that it will be handled elsewhere (in
A in this example).

Another advantage of handling errors using exceptions
is that you can use a hierarchy of exceptions in order to pro-
vide a more fine-grained approach to handling errors. For
example, in addition to a generic input/output exception
that indicates something failed during an I/O operation,
you can also derive more specialized exceptions to indi-
cate the precise failure, such as a file open error or a file
write error. Catching the generic I/O exception will catch
all of the I/O errors, which is probably what function A
(from our example) would want to do, but the more fo-
cused subroutines that A calls might want to handle one
of the more specialized exceptions locally.

G. Iostream Library

One of the more demanding tasks that must be handled
by any software development environment is input and
output. There are several difficulties in handling I/O, such
as the need to input and output any conceivable type of
data, and the fact that different computer systems provide
very different low-level primitives for performing I/O. Be-
cause of these difficulties, many programming languages
provide I/O facilities that are built into the language, tacitly
admitting that the language itself isn’t powerful enough or
flexible enough to meet the needs of I/O operations.

One of the C language’s innovations was its Standard
I/O Library (stdio), which is a flexible group of subrou-
tines, written in C, that let a programmer perform input and
output operations. One problem with the C standard I/O
library is that it isn’t type safe. For example, you can easily
(but erroneously) output or input a floating point number
using the format intended for integers. For example, the
following snippet of C code does just that, producing a
nonsense output:

double d = 5.0;
printf(‘‘The variable d has the
value, %d\n‘‘, d);

(The problem with the above is the%d format code, which
calls for an integer to output, but which is handed the
variable d, a double.)

Another problem is that the standard C library can’t
easily be extended to handle user-defined class types. For
example, the C stdio library knows how to work with all
the built-in types, such as integers, strings, and floating
point values, but it doesn’t know how to work with, say,
the Complex type that was defined earlier in this article.

In C++ there is an I/O facility called the iostream li-
brary. Iostream is type-safe and extensible, which means
that it addresses the main deficiencies of the C stdio li-
brary. The key idea in iostreams is that input and output
is accomplished using functions that are crafted to handle
each different type of object. Iostream contains a built-
in group of functions to input and output all the standard
types, plus you can implement your own functions to han-
dle your own class types.

For example, you could use iostreams to output the
value of a double variable as follows:

double d = 5.0;
cout << ‘‘The variable d has the
value ‘‘ << d << ‘\n’;

As you can see in the above statement, iostreams hijack
the << operator to create output expressions. Similarly, it
uses the >> operator to form input expressions.

Besides the advantage of being type-safe, iostream is
extensible. If you create a function to insert a Complex
into an output stream, then you can use Complex objects
with the iostream library as conveniently as you can use
the built-in types:

Complex c(10, 20); // create a
complex initialized to 10+20i
cout << ‘‘The Complex c has the
value‘‘ << c << ‘\n’;

H. Namespaces

One of the original goals of the C language was to be use-
ful for writing large programs, such as operating systems.
Large software projects often involve groups of tens to
hundreds of programmers, often working for several com-
panies, who then produce programs that contain hundreds
of thousands of individual program statements. One prob-
lem with large programs is that they contain many thou-
sands of names—object names, procedure names, variable
names—that all have to be unique. Even students writing
their first program can encounter this problem; students
often create a subroutine called read, which is quickly
flagged as an error because the standard C library already
contains a subroutine called read. Unfortunately, there just
aren’t enough descriptive names to meet the demand.

P1: GLM Revised Pages

Encyclopedia of Physical Science and Technology EN002C-839 May 17, 2001 20:27

C and C++ Programming Language 353

The solution adopted in C++ is the namespace, which is
a way to create separate spaces for each group of names.
If you have a namespace named A then it can have a sub-
routine named read that doesn’t conflict with a subroutine
named read that is housed inside the B namespace. Using
namespaces makes it much easier to create large software
projects.

I. Templates

In general usage, a template is a pattern that you use to cre-
ate things. For example, in a woodworking class you might
use a template to guide you when you are sawing a particu-
larly tricky curve in a project. Similarly, in C++ a template
is a set of generic instructions for performing some task.
For example, the task might be storing a collection of ob-
jects. The template would contain generic instructions for
storing and retrieving, plus it would include a parameter to
indicate what type of object should be managed. Then the
C++ compiler would actually create the C++ code to im-
plement the storing operation on the given type of object.
This is often referred to as generic programming because
you are writing software that applies to any type of object.

For example, you might want to create a vector of ob-
jects, in which the objects would be accessed by a numeric
index. The first step would be to create a template that
would incorporate all the details of creating a vector of
some type of object. The template itself wouldn’t be spe-
cific to a given type of object, rather it would be generic,
simply a set of instructions that could apply to storing any
object type in a vector. Then if the program contained ob-
ject types Pt, Rect, and Sphere, then you could use the
vector template to create a vector of Pt, a vector of Rect,
and a vector of Sphere.

In addition to creating containers, templates are often
used to implement generic algorithm. An earlier example
in this article showed how to create an overloaded family
of functions to swap the values held in a pair of variables.
Since it would be tedious to create such functions for every
type of object in a large project, you could instead use
templates to create the function.

template<class T> void swap(T& a,
T& b)
{

T temp = a; a = b; b = temp;
}

The template declaration shown above doesn’t actually
create a swap function, but the compiler will follow the
recipe given in the template if you actually try to use a
swap function

Complex a(50);
Complex b(10, 20);

swap(a, b);

The code shown above first creates a pair of initialized
complex variables. When the compiler encounters the call
to swap with the two Complex arguments, it uses the tem-
plate recipe for swap to create a version of swap appro-
priate for Complex arguments, and then it uses that newly
minted swap function to actually perform the operation.

J. Standard Template Library

The addition of templates to C++ created an opportunity
to create new, generic software to address common pro-
gramming tasks. The most adept solution, which has now
become a standard part of C++, is the Standard Template
Library (STL), which was primarily the work of Alexan-
der Stepanov at Hewlett Packard. The STL addresses two
broad facilities, containers (also called collections) and
algorithms that apply to collections, such as finding an
element or counting elements. Because it is implemented
using templates, all of the operations in the STL can be ap-
plied to any type, the built-in types and user-defined types.
And because it is based on templates, the compiler gen-
erates versions of all the facilities that work specifically
with whatever type is used within the program, ensuring
that the implementation is as efficient as possible.

Historically, containers such as lists, queues, vectors,
and matrices were created as necessary each time the need
arose. If you wanted to store, for example, information
about Complex numbers in a list, you’d specially create
a new list type designed to store Complex objects. With
templates, you can simply create a fully featured list, ready
to store the Complex objects, with a single line of code:

list<Complex> complexNumbers;

Given the above declaration, individual Complex ob-
jects can be added to the list in many ways, such as adding
them to the front of the list:

Complex a(50);
Complex b(10, 20);

complexNumbers.push-front(a);
complexNumbers.push-front(b);

Other elements of the STL include vectors, stacks, and
queues. The emergence of the STL as a standard, key
component of C++ has greatly expanded the breadth of
tasks that are addressed by the libraries supplied with C++.

P1: GLM Revised Pages

Encyclopedia of Physical Science and Technology EN002C-839 May 17, 2001 20:27

354 C and C++ Programming Language

SEE ALSO THE FOLLOWING ARTICLES

BASIC PROGRAMMING LANGUAGE • DATABASES • DATA

STRUCTURES • MICROCOMPUTER DESIGN • PROLOG PRO-
GRAMMING LANGUAGE • SOFTWARE ENGINEERING

BIBLIOGRAPHY

Ellis, M. A., and Stroustrup, B. (1991). “The Annotated C++ Reference
Manual,” Addison-Wesley, Reading, Massachusetts.

Kernighan, B. W., and Ritchie, D. M. (1978). “The C Programming
Language,” Prentice-Hall, Englewood Cliffs, New Jersey.

Kernighan, B. W., and Ritchie, D. M. (1988). “The C Programming
Language,” 2nd ed., Prentice-Hall, Englewood Cliffs, New Jersey.

Ritchie, D. M., Johnson, S. C., Lesk, M. E., and Kernighan, B. W. (1978).
The C Programming Language. Bell System Technical Journal 57(6),
Part 2, 1991–2020.

Stepanov, A., and Lee, M. (1994). The Standard Template Library, HP
Labs Technical Report HPL-94-34 (R.1).

Stroustrup, B. (1994). “The Design and Evolution of C++,” Addison-
Wesley, Reading, Mass achusetts.

Stroustrup, B. (2000). “The C++ Programming Language, (Special Edi-
tion),” Addison-Wesley, Reading, Massachusetts.

P1: GNB/MAG P2: FJU Final Pages Qu: 00, 00, 00, 00

Encyclopedia of Physical Science and Technology EN003I-840 June 13, 2001 22:43

Computer Algorithms
Conor Ryan
University of Limerick

I. Algorithms and Programs
II. Algorithm Design
III. Performance Analysis and Measurement
IV. Lower Bounds
V. NP-Hard and NP-Complete Problems

VI. Nondeterminism
VII. Coping with Complexity

VIII. The Future of Algorithms
IX. Summary

GLOSSARY

Algorithm Sequence of well-defined instructions the ex-
ecution of which results in the solution of a specific
problem. The instructions are unambiguous and each
can be performed in a finite amount of time. Further-
more, the execution of all the instructions together takes
only a finite amount of time.

Approximation algorithm Algorithm that is guaranteed
to produce solutions whose value is within some pre-
specified amount of the value of an optimal solution.

Asymptotic analysis Analysis of the performance of an
algorithm for large problem instances. Typically the
time and space requirements are analyzed and provided
as a function of parameters that reflect properties of the
problem instance to be solved. Asymptotic notation
(e.g., big “oh,” theta, omega) is used.

Deterministic algorithm Algorithm in which the out-
come of each step is well defined and determined by
the values of the variables (if any) involved in the step.

For example, the value of x + y is determined by the
values of x and y.

Heuristic Rule of thumb employed in an algorithm to
improve its performance (time and space requirements
or quality of solution produced). This rule may be very
effective in certain instances and ineffective in others.

Lower bound Defined with respect to a problem. A lower
bound on the resources (time or space) needed to solve
a specified problem has the property that the problem
cannot be solved by any algorithm that uses less re-
sources than the lower bound.

Nondeterministic algorithm Algorithm that may con-
tain some steps whose outcome is determined by se-
lecting from a set of permissible outcomes. There are
no rules determining how the selection is to be made.
Rather, such an algorithm terminates in one of two
modes: success and failure. It is required that, when-
ever possible, the selection of the outcomes of indi-
vidual steps be done in such a way that the algorithm
terminates successfully.

 507

P1: GNB/MAG P2: FJU Final Pages

Encyclopedia of Physical Science and Technology EN003I-840 June 13, 2001 22:43

508 Computer Algorithms

NP-Complete problem Decision problem (one for
which the solution is “yes” or “no”) that has the fol-
lowing property: The decision problem can be solved in
polynomial deterministic time if all decision problems
that can be solved in nondeterministic polynomial time
are also solvable in deterministic polynomial time.

Performance Amount of resources (i.e., amount of com-
puter time and memory) required by an algorithm. If
the algorithm does not guarantee optimal solutions, the
term “performance” is also used to include some mea-
sure of the quality of the solutions produced.

Probabilistically good algorithm Algorithm that does
not guarantee optimal solutions but generally does pro-
vide them.

Simulated annealing Combinatorial optimization tech-
nique adapted from statistical mechanics. The tech-
nique attempts to find solutions that have value close to
optimal. It does so by simulating the physical process
of annealing a metal.

Stepwise refinement Program development methods in
which the final computer program is arrived at in a
sequence of steps. The first step begins close to the
problem specification. Each step is a refinement of the
preceding one and gets one closer to the final program.
This technique simplifies both the programming task
and the task of proving the final program correct.

Usually good algorithm Algorithm that generally pro-
vides optimal solutions using a small amount of com-
puting resources. At other time, the resources required
may be prohibitively large.

IN ORDER to get a computer to solve a problem, it is nec-
essary to provide it with a sequence of instructions that if
followed faithfully will result in the desired solution. This
sequence of instructions is called a computer algorithm.
When a computer algorithm is specified in a language the
computer understands (i.e., a programming language), it is
called a program. The topic of computer algorithms deals
with methods of developing algorithms as well as methods
of analyzing algorithms to determine the amount of com-
puter resources (time and memory) required by them to
solve a problem and methods of deriving lower bounds on
the resources required by any algorithm to solve a specific
problem. Finally, for certain problems that are difficult
to solve (e.g., when the computer resources required are
impractically large), heuristic methods are used.

I. ALGORITHMS AND PROGRAMS

An algorithm can take many forms of detail. Often the
level of detail required depends on the target of the algo-
rithm. For example, if one were to describe an algorithm

on how to make a cup of tea to a human, one could use
a relatively coarse (high) level of detail. This is because
it is reasonable to assume that the human in question can
fill in any gaps in the instructions, and also will be able
to carry out certain tasks without further instructions, e.g.,
if the human is required to get a cup from a cupboard, it
would be fair to assume that he/she knows how to do this
without elaboration on the task.

On the other hand, a program is generally a computer
program, and consists of a set of instructions at a very
fine level of detail. A fine level of detail is required be-
cause computer programs are always written in a partic-
ular language, e.g., Basic, C++, Pascal, etc. Furthermore,
every step in a task must be specified, because no back-
ground knowledge can be assumed. An often used dis-
tinction is that an algorithm specifies what a process is
doing, while a program specifies how the process should be
done. The truth is probably somewhere between these two
extremes—while an algorithm should be a clear statement
of what a process is doing, it is often useful to have some
level of specification of functionality in an algorithm.

It is not very natural for humans to describe tasks with
the kind of level of detail usually demanded by a pro-
gramming language. It is often more natural to think in a
top-down manner, that is, describe the problem in a high
level manner, and then rewrite it in more detail, or even in
a specific computer language. This can often help the per-
son concerned to get a problem clear in his/her own mind,
before committing it to computer. Much of this chapter
is concerned with the process of refinement. Refinement
of algorithms is (usually) an iterative process, where one
begins with a very high level—that is, the what—and by
repeatedly modifying the algorithm by adding more detail
(the how) brings the algorithm closer and closer to being
code, until the final coding of the algorithm becomes a
very clear task. Ideally, when one is writing a program,
one should not have to figure out any logic problems; all
of these should be taken care of in the algorithm.

Algorithms are not just used as an aid for programmers.
They are also a very convenient way to describe what a
task does, to help people conceptualize it at a high level,
without having to go through masses of computer code
line by line.

Consider the following problem, which we will state
first in English:

Mary intends to open a bank account with an initial de-
posit of $100. She intends to deposit an additional $100
into this account on the first day of each of the next
19 months for a total of 20 deposits (including the ini-
tial deposit). The account pays interest at a rate of 5% per
annum compounded monthly. Her initial deposit is also
on the first day of the month. Mary would like to know
what the balance in her account will be at the end of the
20 months in which she will be making a deposit.

P1: GNB/MAG P2: FJU Final Pages

Encyclopedia of Physical Science and Technology EN003I-840 June 13, 2001 22:43

Computer Algorithms 509

In order to solve this problem, we need to know how
much interest is earned each month. Since the annual in-
terest rate 5%, the monthly interest rate is 5/12%. Conse-
quently, the balance of the end of a month is

(initialbalance+interest)

= (initialbalance) ∗ (1+5/1200)

= 241/240 (initialbalance)

Having performed this analysis, we can proceed to com-
pute the balance at the end of each month using the fol-
lowing steps:

1. Let balance denote the current balance. The starting
balance is $100, so set balance = 100.

2. The balance at the end of the month is 241/240 *
balance. Update balance.

3. If 20 months have not elapsed, then add 100 to
balance to reflect the deposit for the next month. Go
to step 2. Otherwise, we are done.

This, then, is an algorithm for calculating the monthly
balances. To refine the algorithm further, we must consider
what kind of machine we wish to implement our algorithm
on. Suppose that we have to compute the monthly balances
using a computing device that cannot store the computa-
tional steps and associated data. A nonprogrammable cal-
culator is one such device. The above steps a will translate
into the following process:

1. Turn the calculator on.
2. Enter the initial balance as the number 100.
3. Multiply by 241 and then divide by 240.
4. Note the result down as a monthly balance.
5. If the number of monthly balances noted down is 20,

then stop.
6. Otherwise, add 100 to the previous result.
7. Go to step 3.

If we tried this process on an electronic calculator, we
would notice that the total time spent is not determined
by the speed of the calculator. Rather, it is determined by
how fast we can enter the required numbers and opera-
tors (add, multiply, etc.) and how fast we can copy the
monthly balances. Even if the calculator could perform
a billion computations per second, we would not be able
to solve the above problem any faster. When a stored-
program computing device is used, the above instructions
need be entered into the computer only once. The com-
puter can then sequence through these instructions at its
own speed. Since the instructions are entered only once
(rather than 20 times), we get almost a 20 fold speed up
in the computation. If the balance for 1000 months is re-

quired, the speedup is by a factor of almost 1000. We have
achieved this speedup without making our computing de-
vice any faster. We have simply cut down on the input
work required by the slow human!

A different approach would have been to write program
for the algorithm. The seven-step computational process
stated above translates into the Basic program shown in
Program 1.

PROGRAM 1

10 balance = 100
20 month = 1
30 balance = 241*balance/240
40 print month, ”$”;balance
50 if month = 20 then stop 60 month

= month + 1
70 balance = balance + 100
80 go to 30

PROGRAM 2: Pascal Program for Mary’s
Problem

line program account(input,output)
1 {computer the account balance at

the end of each month}
2 const InitialBalance = 100;
3 MonthlyDeposit = 100;
4 TotalMonths = 20;
5 AnnualInterestRate = 5;
6 var balance, interest, MonthlyRate:

real
7 month:integer;
8 begin
9 MonthlyRate := AnnualInterest-

Rate/1200;
10 balance := InitialBalance;
11 writeln(‘Month Balance’);
12 for month := 1 to TotalMonths

do
13 begin
14 interest := balance *

MonthlyRage;
15 balance := balance

+ interest;
16 writeln(month:10, ‘ ’,

balance:10:2);
17 balance := balance +

MonthlyDeposit;
18 end; of for
19 writeln;
18 end; of account

In Pascal, this takes the form shown in Program 2.
Apart from the fact that these two programs have been
written in different languages, they represent different

P1: GNB/MAG P2: FJU Final Pages

Encyclopedia of Physical Science and Technology EN003I-840 June 13, 2001 22:43

510 Computer Algorithms

programming styles. The Pascal program has been writ-
ten in such a way as to permit one to make changes with
ease. The number of months, interest rate, initial balance,
and monthly additions are more easily changed into Pascal
program.

Each of the three approaches is valid, and the one
that should eventually be used will depend on the user.
If the task only needs to be carried out occasionally,
then a calculator would probably suffice, but if it is to
be executed hundreds or thousands of times a day, then
clearly one of the computer programs would be more
suitable.

II. ALGORITHM DESIGN

There are several design techniques available to the de-
signer of a computer algorithm. Some of the most suc-
cessful techniques are the following:

� Divide and conquer
� Greedy method
� Dynamic programming
� Branch and bound
� Backtracking

While we do not have the space here to elaborate each
of these, we shall develop two algorithms using the divide
and conquer technique. The essential idea in divide and
conquer is to decompose a large problem instance into
several smaller instances, solve the smaller instances, and
combine the results (if necessary) to obtain the solution of
the original problem instance. The problem we shall in-
vestigate is that of sorting a sequence x[1], x[2], . . . , s[n]
of n, n > 0 numbers; where n is the size of the instance.
We wish to rearrange these numbers so that they are in
nondecreasing order (i.e., x[1] < x[2], . . . , x[n]).

For example, if n = 5, and (x[1], . . . , x[5]) = (10,18,
8,12,19), then after the sort, the numbers are in order
(8,9,10,12,18). Even before we attempt an algorithm to
solve this problem, we can write down and English ver-
sion of the solution, as in Program 3. The correctness of
this version of the algorithm is immediate.

PROGRAM 3: First Version of Sort
Algorithm

Procedure sort;
Sort x[I], 1< I< n into nondecreasing
order;

End;{of sort}
Using the divide and conquer methodology, we first de-

compose the sort instance into several smaller instances.
At this point, we must determine the size and number

of these smaller instances. Some possibilities are the
following:

(a) One of size n − 1 and another of size 1
(b) Two of approximately equal size
(c) K of size approximately n/k each, for some integer

k, k > 2

We shall pursue the first two possibilities. In each
of these, we have two smaller instances created. Us-
ing the first possibility, we can decompose the instance
(10,18,8,12,9) into any of the following pairs of instances:

(a) (10,18,8,12) (9)
(b) (10) (18,8,12,9)
(c) (10,18,8,9) (12)
(d) (10,18,12,9) (8)

and so on. Suppose we choose the first option. Having
decomposed the initial instance into two, we must sort
the two instances and then combine the two-sorted se-
quences into one. When (10,18,8,12) is sorted, the re-
sult is (8,10,12,18). Since the second sequence is of size
1, it is already in sorted order. To combine the two se-
quences, the number 9 must be inserted into the first se-
quence to get the desired five-number sorted sequence.
The preceding discussion raises two questions. How is the
four-number sequence sorted? How is the one-number se-
quence inserted into the sorted four-number sequence?
The answer to the first is that this, too, can be sorted
using the divide and conquer approach. That is, we de-
compose it into two sequences: one of size 3 and the
other of size 1. We then sort the sequence of size 3 and
then insert the 1 element sequence. To sort the three-
element sequence, we decompose it into two sequences
of size 2 and size 1, respectively. To sort the sequence
of size 2, we decompose it into two of size 1 each. At
this point, we need merely insert one into the other. Be-
fore attempting to answer the second question, we refine
Program 3, incorporating the above discussion. The result
is Program 4.

PROGRAM 4: Refinement of Program 3

line procedure sort(n)
1 {sort n numbers into nondecreasing

order}
2 if n>1 then begin
3 sort(n - 1); sort the first

sequence
4 insert(n - 1,x[n]);
5 end; {of if}
6 writeln;
7 end;{of sort}

P1: GNB/MAG P2: FJU Final Pages

Encyclopedia of Physical Science and Technology EN003I-840 June 13, 2001 22:43

Computer Algorithms 511

Program 4 is a recursive statement of the sort algorithm
being developed. In a recursive statement of an algorithm,
the solution for an instance of size n is defined in terms of
solutions for instances of smaller size. In Program 4, the
sorting of n items, for n >1 items, is defined in terms of the
sorting of n − 1 items. This just means that to sort n items
using procedure sort, we must first use this procedure to
sort n − 1 items. This in turn means that the procedure
must first be used to sort n − 2 items, and so on. This
use of recursive generally poses no problems, as most
contemporary programming languages support recursive
programs. To refine Program 4, we must determine how an
insert is performed. Let us consider an example. Consider
the insertion of 9 into (8,10,12,18). We begin by moving 9
from position 5 of the sequence and then comparing 9 and
18, since 18 is larger, it must be brought to the right of 9.
So 18 is moved to position 5. The resulting sequence is as
follows (“—” denoted an empty position in the sequence):

8 10 12 — 18

Next, 9 is compared with 12, and 12 is moved to position
4. This results in the following sequence:

8 10 — 12 18

Then 9 is compared with 10 and 10 is moved to position
3. At this time we have the sequence:

8 — 10 12 18

Finally, 9 is compared with 8. Since 9 is not smaller
than 8, it is inserted into position 2. This results in the
sequence (8,9,10,12,18). With this discussion, we can re-
fine Program 4 to get Program 5. Program 5 is then easily
refined to get the Pascal-like code of Program 6. This code
uses position 0 of the sequence to handle insertions into po-
sition 1. The recursion in this procedure can be eliminated
to get Program 7. The algorithm we have just developed
for sorting is called insertion sort. This algorithm was ob-
tained using the stepwise refinement process beginning
with Program 3. As a result of using this process, we have
confidence in the correctness of the resulting algorithm.
Formal correctness proofs can be obtained using mathe-
matical induction or other program verification methods.

PROGRAM 5: Refinement of Program 4

line procedure sort(n)
1 {sort n numbers into nondecreasing

order}
2 if n > 1 then begin
3 sort(n - 1); sort the first

sequence
4 assign t the value x[n];
5 compare t with the xs

beginning at x[n - 1];

6 move the xs up until the
correct place for t is
found

7 insert t into this place
8 end; {of if }
9 end; {of sort}
PROGRAM 6: Refinement of Program 5

line procedure sort(n)
1 {sort n numbers into nondecreasing

order}
2 if n > 1 then begin
3 sort(n - 1); sort the first

sequence
4 assign t and x[0]the value

x[n];
5 assign i the value n - 1;
6 while t < x[i] do {find correct

place for t};
7 begin
8 move x[i] to x[i + 1];
9 reduce i by 1;
10 end;{of while}
11 put t into x[i + 1]
12 end;{of if}
13 end;{of sort}
PROGRAM 7: Refinement of Program 6

line procedure sort(n)
1 {sort n numbers into nondecreasing

order}
2 for j := 2 to n do
3 begin {insert x[j] into x[1:j - 1]}
4 assign t and x[0] the value x[j];
5 assign i the value j - 1;
6 whilet < x[i]do {find correct place

for t}
7 begin
8 move x[i] to x[i + 1];
9 reduce i by 1;
10 end;{of while}
11 put t into x[i + 1]
12 end;{of if}
13 end;{of sort}

Program 7 is quite close to being a Pascal program.
One last refinement gives us a correct Pascal procedure to
sort. This is given in Program 8. This procedure assumes
that the numbers to be sorted are of type integer. In case
numbers of a different type are to be sorted, the type of
declaration of t should be changed. Another improvement
of Program 8 can be made. This involves taking the state-
ment x[0] := t out of the for loop and initializing x[0] to
a very small number before the loop.

P1: GNB/MAG P2: FJU Final Pages

Encyclopedia of Physical Science and Technology EN003I-840 June 13, 2001 22:43

512 Computer Algorithms

PROGRAM 8: Refinement of Program 7

line procedure sort (n)
1 {sort n numbers into nondecreasing

order}
2 for j := 2 to n do
3 begin {insert x[j] into x[1:j - 1]}
4 assign t and x[0] the value

x[j];
5 assign i the value j - 1;
6 while t < x[i] do {find correct

place for t}
7 begin
8 move x[i] to x[i + 1];
9 reduce i by 1;
10 end;{of while}
11 put t into x[i + 1]
12 end;{of sort}

Let us consider the route our development process
would have taken if we had decided to decompose sort
instances into two smaller instances of roughly equal size.
Let us further suppose that the left half of the sequence is
one of the instances created and the right half is the other.
For our example we get the instances (10,18) and (8,12,9).
These are sorted independently to get the sequence (10,18)
and (8.9,12). Next, the two sorted sequence are combined
to get the sequence (8,9,10,12,18). This combination pro-
cess is called merging. The resulting sort algorithm is
called merge sort.

PROGRAM 9: Final version of Program 8

line procedure sort(n)
1 {sort n numbers into nondecreasing

order}
2 var t, i, j : integer;
2 begin
2 for j := 2 to n do
3 begin {insert x[j] into x[1 : j - 1]}
4 t := x[j];x[0]:=t;i:=j - 1;
6 while t < x[i] do {find correct

place for t}
7 begin
8 x[i + 1] := x[i];
9 i := i - 1;
10 end;{of while}
11 x[i + 1] := t
12 end;{of for}
13 end;{of sort}
PROGRAM 9: Merge Sort

line procedure MergeSort(X, n)
1 {sort n numbers in X}
2 if n > 1 then
3 begin

4 Divide X into two sequences A and B
such that A contains 	n/2

numbers, and B the rest

5 MergeSort (A,	 n/2
)
6 MergeSort (A,n - 	 n/2
)
7 merge (A, B);
8 end;{of if}
9 end;{of MergeSort }

Program 9 is the refinement of Program 3 that results
for merge sort. We shall not refine this further here. The
reader will find complete programs for this algorithm in
several of the references sited later. In Program 9, the
notation [x] is used. This is called the floor of x and denotes
the largest integer less than or equal to x . For example,
	2.5
 = 2, 	− 6.3
 = − 7, 	5/3
 = 1, and 	n/2
 denotes
the largest integer less than or equal to n/2.

III. PERFORMANCE ANALYSIS
AND MEASUREMENT

In the preceding section, we developed two algorithms for
sorting. Which of these should we use? The answer to this
depends on the relative performance of the two algorithms.
The performance of an algorithm is measured in terms of
the space and time needed by the algorithm to complete its
task. Let us concentrate on time here. In order to answer
the question “How much time does insertion sort take?”
we must ask ourselves the following:

1. What is the instance size? The sort time clearly
depends on how many numbers are being sorted.

2. What is the initial order? An examination of Program
7 means that it takes less time to sort n numbers that
are already in nondecreasing order than when they are
not.

3. What computer is the program going to be run on?
The time is less on a fast computer and more on a
slow one.

4. What programming language and compiler will be
used? These influence the quality of the computer
code generated for the algorithm.

To resolve the first two question, we ask for the worst
case or average time as a function on instance size. The
worst case size for any instance size n is defined as

TW(n) = max{t(I) | I is an instance of size n}.
Here t(I) denotes the time required for instance I . The

average time is defined as:

(TA)m = 1

N

∑
t(I).

P1: GNB/MAG P2: FJU Final Pages

Encyclopedia of Physical Science and Technology EN003I-840 June 13, 2001 22:43

Computer Algorithms 513

where the sum is taken over all instances of size n and N
is the number of such instances. In the sorting problem,
we can restrict ourselves to the n! different permutations
of any n distinct numbers. So N = n!.

A. Analysis

We can avoid answering the last two questions by acquir-
ing a rough count of the number of steps executed in the
worst or average case rather than an exact time. When
this is done, a paper and pencil analysis of the algorithm
is performed. This is called performance analysis. Let us
carry out a performance analysis on our two sorting algo-
rithms. Assume that we wish to determine the worst-case
step count for each. Before we can start we must decide
the parameters with respect to which we shall perform the
analysis. In our case, we shall obtain times as a function
of the number n of numbers to be sorted. First consider
insertion sort. Let t(n) denote the worst-case step count of
Program 6. If n < 1, then only one step is executed (verify
that n < 1). When n > 1, the recursive call to sort (n − 1)
requires t(n − 1) steps in the worst case and the remaining
steps count for some linear function of n step executions
in the worst case. The worst case is seen to arise when
x[N] is to be inserted into position 1. As a result of this
analysis, we obtain the following recurrence for insertion
sort:

t(n) =
{

a, n <= 1,

t(n − 1) + bn + c, n > 1,

where a, b, and c are constants. This recurrence can be
solved by standard methods for the solution of recurrences.
For merge sort, we see from Program 9 that when n < 1,
only a constant number of steps are executed. When N > 1,
two calls to merge sort and one to merge are made. While
we have not said much about the division into A and B is
to be performed, this can be done in a constant amount of
time. The recurrence for Merge Sort is now seen to be

t(n) =
{

a, n <= 1,

t(n/2
) + t(n − 	n/2
) + m(n) + b, n > 1,

where a and b are constants and m(n) denotes the worst-
case number of steps needed to merge n numbers. Solving
this recurrence is complicated by the presence of the floor
function. A solution for the case n is a power of 2 is easily
obtained using standard methods. In this case, the floor
function can be dropped to get the recurrence:

t(n) =
{

a, n <= 1,

2t(n/2) + m(n) + b, n > 1.

The notion of a step is still quite imprecise. It denotes
any amount of computing that is not a function of the
parameters (in our case n). Consequently, a good approx-
imate solution to the recurrences is as meaningful as an

exact solution. Since approximate solutions are often eas-
ier to obtain than exact ones, we develop a notation for
approximate solutions.

Definition [Big “oh”]. f (n) = O(g(n)) (read as “ f of
n is big oh of g of n”) iff there exist positive constants c
and n0 such that f (n) ≤ cg(n) for all n, n ≥ n0. Intuitively,
O(g(n)) represents all functions f (n) whose rate of growth
is no more than that of g(n).

Thus, the statement f (n) = O(g(n)) states only that
g(n) is an upper bound on the value of f (n) for all n, n > n.
It does not say anything about how good this bound is.
Notice that n = O(n2), n = O(n2.5), n = 0 (n3)n = O(2n),
and so on. In order for the statement f (n) = 0(g(n)) to be
informative, g(n) should be a small function of n as one
can come up with for which f (n) = O(g(n)). So while we
often say 3n + 3 = O(n2), even though the latter statement
is correct. From the definition of O , it should be clear that
f (n) = O(g(n)) is not the same as 0(g(n)) = f (n). In fact,
it is meaningless to say that O(g(n)) = f (n). The use of
the symbol = is unfortunate because it commonly denoted
the “equals” relation. Some of the confusion that results
from the use of this symbol (which is standard terminol-
ogy) can be avoided by reading the symbol = as “is” and
not as “equals.” The recurrence for insertion sort can be
solved to obtain

t(n) = O(n2).

To solve the recurrence for merge sort, we must use the
fact m(n) = O(n). Using this, we obtain

t(n) = O(n log n).

It can be shown that the average number of steps ex-
ecuted by insertion sort and merge sort are, respectively,
0(n2) and 0(n log n). Analyses such as those performed
above for the worst-case and the average times are called
asymptotic analyses. 0(n2) and 0(n log n) are, respec-
tively, the worst-case asymptotic time complexities of in-
sertion and merge sort. Both represent the behavior of the
algorithms when n is suitably large. From this analysis we
learn that the growth rate of the computing time for merge
sort is less than that for insertion sort. So even if insertion
sort is faster for small n, when n becomes suitably large,
merge sort will be faster. While most asymptotic analysis
is carried out using the big “oh” notation, analysts have
available to them three other notations. These are defined
below.

Definition [Omega, Theta, and Little “oh”]. f (n) =
�(g(n)) read as “ f of n is omega of g of n”) iff there
exist positive constants c and n0 such that f (n) ≥ cg(n)
for all n, n ≥ n0. f (n) is �(g(n)) (read as “ f of n is
theta of g of n”) iff there exist positive constants c1, c2,
and n0 such that c1g(n) ≤ f (n) ≤ c2g(n) for all n, n ≥ n0.

P1: GNB/MAG P2: FJU Final Pages

Encyclopedia of Physical Science and Technology EN003I-840 June 13, 2001 22:43

514 Computer Algorithms

f (n) = o(g(n)) (read as “ f of n is little oh of g of n”) iff
limn→∞ f (n)/g(n) = 1.

Example. 3n + 2 = �(n); 3n + 2 = �(n); 3n + 2 −
o(3n); 3n3 = �(n2); 2n2 + 4n = �(n2); and 4n3 + 3n2 =
o(4n3).

The omega notation is used to provide a lower bound,
while the theta notation is used when the obtained bound
is both a lower and an upper bound. The little “oh” nota-
tion is a very precise notation that does not find much use
in the asymptotic analysis of algorithms. With these ad-
ditional notations available, the solution to the recurrence
for insertion and merge sort are, respectively, �(n2) and
�(n log n). The definitions of O, �, �, and o are easily
extended to include functions of more than one variable.
For example, f (n, m) = O(g(n, m)) if there exist posi-
tive constants c, n0 and m0 such that f (n, m) < cg(n, m)
for all n > n0 and all m > m0. As in the case of the big
“oh” notation, there are several functions g(n) for which
f (n) = �(g(n)). The g(n) is only a lower bound on f (n).
The θ notation is more precise that both the big “oh” and
omega notations. The following theorem obtains a very
useful result about the order of f (n) when f (n) is a poly-
nomial in n.

Theorem 1. Let f (n) = amnm + am−1nm−1 + · · · + a0,

am �= 0.

(a) f (n) = O(nm)
(b) f (n) = �(nm)
(c) f (n) = �(nm)
(d) f (n) = o(amnm)

Asymptotic analysis can also be used for space com-
plexity. While asymptotic analysis does not tell us how
many seconds an algorithm will run for or how many
words of memory it will require, it does characterize the
growth rate of the complexity. If an �(n2) procedure takes
2 sec when n = 10, then we expect it to take 8̃ sec when
n = 20 (i.e., each doubling of n will increase the time
by a factor of 4). We have seen that the time complex-
ity of an algorithm is generally some function of the in-
stance characteristics. As noted above, this function is very
useful in determining how the time requirements vary as
the instance characteristics change. The complexity func-
tion can also be used to compare two algorithms A and
B that perform the same task. Assume that algorithm A
has complexity �(n) and algorithm B is t of complexity
�(n2). We can assert that algorithm A is faster than al-
gorithm B for “sufficiently large” n. To see the validity
of this assertion, observe that the actual computing time
of A is bounded from above by c ∗ n for some constant c
and for all n, n ≥ n2, while that of B is bounded from be-
low by d ∗ n2 for some constant d and all n, n ≥ n2. Since

TABLE I Values of Selected Asymptotic Functions

log n n n log n n2 n3 2n

0 1 0 1 1 2

1 2 2 4 8 4

2 4 8 16 64 16

3 8 24 64 512 256

4 16 64 256 4,096 65,536

5 32 160 1,024 32,768 4,294,967,296

cn ≤ dn2 for n ≥ c/d, algorithm A is faster than algorithm
B whenever n ≥ max{n1, n2, c/d}.

We should always be cautiously aware of the presence
of the phrase “sufficiently large” in the assertion of the
preceding discussion. When deciding which of the two
algorithms to use, we must know whether the n we are
dealing with is in fact “sufficiently large.” If algorithm
A actually runs in 106n msec while algorithm B runs in
n2 msec and if we always have n ≤ 106, then algorithm B
is the one to use.

Table I and Fig. 1 indicate how various asymptotic func-
tions grow with n. As is evident, the function 2n grows very
rapidly with n. In fact, if a program needs 2n steps for ex-
ecution, then when n = 40 the number of steps needed is
∼1.1 × 1012. On a computer performing 1 billion steps
per second, this would require ∼18.3 min (Table II). If
n = 50, the same program would run for ∼13 days on this
computer. When n = 60, ∼310.56 years will be required
to execute the program, and when n = 100 ∼ 4x1013 years
will be needed. So we may conclude that the utility of pro-
grams with exponential complexity is limited to small n
(typically n ∼ 40). Programs that have a complexity that
is a polynomial of high degree are also of limited utility.

FIGURE 1 Plot of selected asymptotic functions.

P1: GNB/MAG P2: FJU Final Pages

Encyclopedia of Physical Science and Technology EN003I-840 June 13, 2001 22:43

Computer Algorithms 515

TABLE II Times on a 1 Billion Instruction per Second Computera

Time for f(n) instructions on a 109 instruction/sec computer

n f (n) == n f (n) == n log2 n f (n) == n2 f (n) == n3 f (n) == n4 f (n) == n10 f(n) == nn

10 0.01 µsec 0.03 µsec 0.1 µsec 1 µsec 10 µsec 10 sec 1µsec

20 0.02 µsec 0.09 µsec 0.4 µsec 8 µsec 160 µsec 2.84 hr 1 msec

30 0.03 µsec 0.15 µsec 0.9 µsec 27 µsec 810 µsec 6.83 day 1 sec

40 0.04 µsec 0.21 µsec 1.6 µsec 64 µsec 2.56 msec 121.36 day 18.3 min

50 0.05 µsec 0.28 µsec 2.5 µsec 125 µsec 6.25 msec 3.1 yr 13 day

100 0.10 µsec 0.66 µsec 10 µsec 1 msec 100 msec 3171 yr 4 × 103 yr

1,000 1.00 µsec 9.96 µsec 1 msec 1 sec 16.67 min 3.17 × 103 yr 32 × 10283 yr

10,000 10.00 µsec 130.3 µsec 100 msec 16.67 min 115.7 day 3.17 × 1023 yr —

100,000 100.00 µsec 1.66 msec 10 sec 11.57 day 3171 yr 3.17 × 1033 yr —

1,000,000 1.00 msec 19.92 msec 16.67 min 31.71 yr 3.17 × 107 yr 3.17 × 1043 yr —

a 1 µsec = 10−6 sec; 1 msec = 10−3 sec.

For example, if a program needs n10 steps, then using
our 1 billion steps per second computer (Table II) we will
need 10 sec when n = 10; 3171 years when n = 100; and
3.17 ∗ 1013 years when n = 1000. If the program’s com-
plexity were n3 steps instead, we would need 1 sec when
n = 1000; 110.67 min when n = 10,000; and 11.57 days
when n = 100,000. From a practical standpoint, it is ev-
ident that for reasonably large n (say n > 100) only pro-
grams of small complexity (such as n, n log n, n2, n3, etc.)
are feasible. Furthermore, this would be the case even if
one could build a computer capable of executing 1012 in-
structions per second. In this case, the computing times of
Table II would decrease by a factor of 1000. Now, when
n = 100, it would take 3.17 years to execute n10 instruc-
tions, and 4 × 1010 years to execute 2n instructions.

B. Measurement

In a performance measurement, actual times are obtained.
To do this, we must refine our algorithms into computer
programs written in a specific programming language and
compile these on a specific computer using a specific
compiler. When this is done, the two programs can be
given worst-case data (if worst-case times are desired) or
average-case data (if average times are desired) and the
actual time taken to sort measured for different instance
sizes. The generation of worst-case and average test data is
itself quite a challenge. From the analysis of Program 7, we
know that the worst case for insertion sort arises when the
number inserted on each iteration of the for loop gets into
position 1. The initial sequence (n, n−1, . . . , 2, 1) causes
this to happen. This is the worst-case data for Program 7.
How about average-case data? This is somewhat harder
to arrive at. For the case of merge sort, even the worst-
case data are difficult to devise. When it becomes difficult
to generate the worst-case or average data, one resorts to

simulations. Suppose we wish to measure the average per-
formance of our two sort algorithms using the program-
ming language Pascal and the TURBO Pascal (TURBO
is a trademark of Borland International) compiler on an
IBM-PC. We must first design the experiment. This de-
sign process involves determining the different values of
n for which the times are to be measured. In addition, we
must generate representative data for each n. Since there
are n! different permutations of n distinct numbers, it is
impractical to determine the average run time for any n
(other than small n’s, say n < 9) by measuring the time
for all n! permutations and then computing the average.
Hence, we must use a reasonable number of permutations
and average over these. The measured average sort times
obtained from such experiments are shown in Table III.
As predicted by our earlier analysis, merge sort is faster
than insertion sort. In fact, on the average, merge sort will
sort 1000 numbers in less time than insertion sort will take
for 300! Once we have these measured times, we can fit
a curve (a quadratic in the case of insertion sort and an
n log n in the case of merge sort) through them and then
use the equation of the curve to predict the average times
for values of n for which the times have not been measured.
The quadratic growth rate of the insertion sort time and
the n log n growth rate of the merge sort times can be seen
clearly by plotting these times as in Fig. 2. By perform-
ing additional experiments, we can determine the effects
of the compiler and computer used on the relative perfor-
mance of the two sort algorithms. We shall provide some
comparative times using the VAX 11780 as the second
computer. This popular computer is considerably faster
than the IBM-PC and costs ∼100 times as much. Our
first experiment obtains the average run time of Program
8 (the Pascal program for insertion sort). The times for
the V AX llnso were obtained using the combined trans-
lator and interpretive executer, pix. These are shown in

P1: GNB/MAG P2: FJU Final Pages

Encyclopedia of Physical Science and Technology EN003I-840 June 13, 2001 22:43

516 Computer Algorithms

TABLE III Average Times for Merge and Inser-
tion Sorta

n Merge Insert

0 0.027 0.032

10 1.524 0.775

20 3.700 2.253

30 5.587 4.430

40 7.800 7.275

50 9.892 10.892

60 11.947 15.013

70 15.893 20.000

80 18.217 25.450

90 20.417 31.767

100 22.950 38.325

200 48.475 148.300

300 81.600 319.657

400 109.829 567.629

500 138.033 874.600

600 171.167 —

700 199.240 —

800 230.480 —

900 260.100 —

1000 289.450 —

a Times are in hundredths of a second.

Table IV. As can be seen, the IBM-PC outperformed the
V AX even though the V AX is many times faster. This is
because of the interpreter pix. This comparison is perhaps
unfair in that in one case a compiler was used and in the
other an interpreter. However, the experiment does point
out the potentially devastating effects of using a compiler
that generates poor code or of using an interpreter. In our
second experiment, we used the Pascal compiler, pc, on the

FIGURE 2 Plot of times of Table III.

TABLE IV Average Times for Insertion Sorta

n IBM-PC turbo VAX pix

50 10.9 22.1

100 38.3 90.47

200 148.3 353.9

300 319.7 805.6

400 567.6 1404.5

a Times are in hundredths of a second.

V AX. This time our insertion sort program ran faster on
the V AX. However, as expected, when n becomes suitably
large, insertion sort on the V AX is slower than merge sort
on an IBM-PC. Sample times are given in Table V. This
experiment points out the importance of designing good
algorithms. No increase in computer speed can make up
for a poor algorithm. An asymptotically faster algorithm
will outperform a slower one (when the problem size is
suitably large); no matter how fast a computer the slower
algorithm is run on and no matter how slow a computer
the faster algorithm is run on.

IV. LOWER BOUNDS

The search for asymptotically fast algorithms is a chal-
lenging aspect of algorithm design. Once we have de-
signed an algorithm for a particular problem, we would
like to know if this is the asymptotically best algorithm.
If not, we would like to know how close we are to the
asymptotically best algorithm. To answer these questions,
we must determine a function f (n) with the following
property:

PI: Let A be any algorithm that solves the given prob-
lem. Let its asymptotic complexity be O(g(n)). f (n) is
such that g(n) = �(f (n)).

That is, f (n) is a lower bound on the complexity of
every algorithm for the given problem. If we develop an

TABLE V Comparison between IBM-PC and
VAXa

IBM-PC merge VAX insertion
n sort turbo sort pc

400 109.8 64.1

500 138.0 106.1

600 171.2 161.8

700 199.2 217.9

800 230.5 263.5

900 260.1 341.9

1000 289.5 418.8

a Times are in hundredths of a second.

P1: GNB/MAG P2: FJU Final Pages

Encyclopedia of Physical Science and Technology EN003I-840 June 13, 2001 22:43

Computer Algorithms 517

algorithm whose complexity is equal to the lower bound
for the problem being solved, then the developed algo-
rithm is optimal. The number of input and output data
often provides a trivial lower bound on the complexity
of many problems. For example, to sort n numbers it is
necessary to examine each number at least once. So every
sort algorithm must have complexity �(n). This lower
bound is not a very good lower bound and can be improved
with stronger arguments than the one just used. Some of
the methods for obtaining nontrivial lower bounds are the
following:

1. Information-theoretic arguments
2. State space arguments
3. Adversary constructions
4. Reducibility constructions

A. Information-Theoretic Arguments

In an information-theoretic argument, one determines the
number of different behaviors the algorithm must exhibit
in order to work correctly for the given problem. For ex-
ample, if an algorithm is to sort n numbers, it must be
capable of generating n! different permutations of the n
input numbers. This is because depending on the particu-
lar values of the n numbers to be sorted, any of these n!
permutations could represent the right sorted order. The
next step is to determine how much time every algorithm
that has this many behaviors must spend in the solution
of the problem. To determine this quantity, one normally
places restrictions on the kinds of computations the algo-
rithm is allowed to perform. For instance, for the sorting
problem, we may restrict our attention to algorithms that
are permitted to compare the numbers to be sorted but not
permitted to perform arithmetic on these numbers. Un-
der these restrictions, it can be shown that n log n is a
lower bound on the average and worst-case complexity of
sorting. Since the average and worst-case complexities of
merge sort is �(n log n), we conclude that merge sort is an
asymptotically optimal sorting algorithm under both the
average and worst-case measures. Note that it is possible
for a problem to have several different algorithms that are
asymptotically optimal. Some of these may actually run
faster than others. For example, under the above restric-
tions, there may be two optimal sorting algorithms. Both
will have asymptotic complexity�(n log n). However, one
may run in 10n log n time and the other in 2On log n time.
A lower bound f (n) is a tight lower bound for a certain
problem if this problem is, in fact, solvable by an algo-
rithm of complexity O(f (n)). The lower bound obtained
above for the sorting problem is a tight lower bound for
algorithms that are restricted to perform only comparisons
among the numbers to be sorted.

B. State Space Arguments

In the case of a state space argument, we define a set
of states that any algorithm for a particular problem can
be in. For example, suppose we wish to determine the
largest of n numbers. Once again, assume we are restricted
to algorithms that can perform comparisons among these
numbers but cannot perform any arithmetic on them. An
algorithm state can be described by a tuple (i, j). An al-
gorithm in this state “knows” that j of the numbers are
not candidates for the largest number and that i = n − j
of them are. When the algorithm begins, it is in the state
(n, 0), and when it terminates, it is in the state (1, n − 1).
Let A denote the set of numbers that are candidates for the
largest and let B denote the set of numbers that are not.
When an algorithm is in state (i, j), there are i numbers in
A and j numbers in B. The types of comparisons one can
perform are A : A (“compare one number in A with an-
other in A”), A : B, and B : B. The possible state changes
are as follows:

A : A This results in a transformation from the state
(i, j) to the state (i − 1, j + 1)

B : B The state (i, j) is unchanged as a result of this
type of comparison.

A : B Depending on the outcome of the comparison,
the state either will be unchanged or will become
(i − 1, j + 1).

Having identified the possible state transitions, we must
now find the minimum number of transitions needed to go
from the initial state to the final state. This is readily seen
to be n − 1. So every algorithm (that is restricted as above)
to find the largest of n numbers must make at least n − 1
comparisons.

C. Adversary and Reducibility Constructions

In an adversary construction, one obtains a problem in-
stance on which the purported algorithm must do at least
a certain amount of work if it is to obtain the right an-
swer. This amount of work becomes the lower bound. A
reducibility construction is used to show that, employing
an algorithm for one problem (A), one can solve another
problem (B). If we have a lower bound for problem B,
then a lower bound for problem A can be obtained as a
result of the above construction.

V. NP-HARD AND NP-COMPLETE
PROBLEMS

Obtaining good lower bounds on the complexity of a prob-
lem is a very difficult task. Such bounds are known for a
handful of problems only. It is somewhat easier to relate

P1: GNB/MAG P2: FJU Final Pages

Encyclopedia of Physical Science and Technology EN003I-840 June 13, 2001 22:43

518 Computer Algorithms

the complexity of one problem to that of another using the
notion of reducibility that we briefly mentioned in the last
section. Two very important classes of reducible problems
are NP-hard and NP-complete. Informally, all problems in
the class NP-complete have the property that, if one can be
solved by an algorithm of polynomial complexity, then all
of them can. If an NP-hard problem can be solved by an al-
gorithm of polynomial complexity, then all NP-complete
problems can be so solved. The importance of these two
classes comes from the following facts:

1. No NP-hard or NP-complete problem is known to be
polynomially solvable.

2. The two classes contain more than a thousand
problems that have significant application.

3. Algorithms that are not of low-order polynomial
complexity are of limited value.

4. It is unlikely that any NP-complete or NP-hard
problem is polynomially solvable because of the
relationship between these classes and the class of
decision problems that can be solved in polynomial
nondeterministic time.

We shall elaborate the last item in the following
subsections.

VI. NONDETERMINISM

According to the common notion of an algorithm, the re-
sult of every step is uniquely defined. Algorithms with this
property are called deterministic algorithms. From a the-
oretical framework, we can remove this restriction on the
outcome of every operation. We can allow algorithms to
contain an operation whose outcome is not uniquely de-
fined but is limited to a specific set of possibilities. A com-
puter that executes these operations are allowed to choose
anyone of these outcomes. This leads to the concept of
a nondeterministic algorithm. To specify such algorithms
we introduce three new functions:

� choice(S): Arbitrarily choose one of the elements of
set S.

� failure: Signals an unsuccessful completion.
� success: Signals a successful completion.

Thus the assignment statement x = choice(1 : n) could
result in x being assigned anyone of the integers in the
range [1, n]. There is no rule specifying how this choice
is to be made. The failure and success signals are used to
define a computation of the algorithm. The computation
of a nondeterministic algorithm proceeds in such a way
that, whenever there is a set of choices that leads to a
successful completion, one such set of choices is made and

the algorithm terminates successfully. A nondeterministic
algorithm terminates unsuccessfully if there exists no set
of choices leading to a success signal. A computer capable
of executing a nondeterministic algorithm in this way is
called a nondeterministic computer. (The notion of such a
nondeterministic computer is purely theoretical, because
no one knows how to build a computer that will execute
nondeterministic algorithms in the way just described.)

Consider the problem of searching for an element x in
a given set of elements a[1 . . . n], n ≥ 1. We are required
to determine an index j such that a[j] = x . If no such j
exists (i.e., x is not one of the a’s), then j is to be set to 0.
A nondeterministic algorithm for this is the following:

j = choice(1:n)
if a[j] = x then print U); success endif
print (”0”); failure.

From the way a nondeterministic computation is de-
fined, it follows that the number 0 can be output if there is
no j such that a[j] = x . The computing times for choice,
success, and failure are taken to be O(1). Thus the above
algorithm is of nondeterministic complexity O(1). Note
that since a is not ordered, every deterministic search algo-
rithm is of complexity �(n). Since many choice sequences
may lead to a successful termination of a nondeterminis-
tic algorithm, the output of such an algorithm working on
a given data set may not be uniquely defined. To over-
come this difficulty, one normally considers only decision
problems, that is, problems with answer 0 or 1 (or true or
false). A successful termination yields the output 1, while
an unsuccessful termination yields the output 0. The time
required by a nondeterministic algorithm performing on
any given input depends on whether there exists a sequence
of choices that leads to a successful completion. If such a
sequence exists, the time required is the minimum num-
ber of steps leading to such a completion. If no choice
sequence leads to a successful completion, the algorithm
takes O(1) time to make a failure termination. Nondeter-
minism appears to be a powerful tool. Program 10 is a non-
deterministic algorithm for the sum of subsets problem. In
this problem, we are given a multisetw(1 . . . n) of n natural
numbers and another natural number M . We are required
to determine whether there is a sub multiset of these n nat-
ural numbers that sums to M . The complexity of this non-
deterministic algorithm is O(n). The fastest deterministic
algorithm known for this problem has complexity O(2n/2).

PROGRAM 10: Nondeterministic Sum of
Subsets

line procedure NonDeterministicSumOfSub-
sets(W,n,M)

2 for i := 1 to n do

P1: GNB/MAG P2: FJU Final Pages

Encyclopedia of Physical Science and Technology EN003I-840 June 13, 2001 22:43

Computer Algorithms 519

3 x(i):= choice({0,1});
4 endfor
5 if

∑n
i=1 w(i)x(i) = M then success

6 else failure;
7 endif;
7 end;

A. NP-Hard and NP-Complete Problems

The size of a problem instance is the number of digits
needed to represent that instance. An instance of the sum of
subsets problem is given by (w(I), w(2), . . . , w(n), M).
If each of these numbers is a positive integer, the instance
size is ⌈

n∑
i=1

log2(w(i) + 1)

⌉
+ �log2(M + 1)�

if binary digits are used. An algorithm is of polynomial
time complexity if its computing time is O(p(m)) for every
input of size m and some fixed polynomial p(−).

Let P be the set of all decision problems that can be
solved in deterministic polynomial time. Let NP be the
set of decision problems solvable in polynomial time by
nondeterministic algorithms. Clearly, P ⊂ NP. It is not
known whether P = NP or P �= NP. The P = NP prob-
lem is important because it is related to the complexity
of many interesting problems. There exist many problems
that cannot be solved in polynomial time unless P = NP.
Since, intuitively, one expects that P ⊂ NP, these prob-
lems are in “all probability” not solvable in polynomial
time. The first problem that was shown to be related
to the P = NP problem, in this way, was the problem
of determining whether a propositional formula is sat-
isfiable. This problem is referred to as the satisfiability
problem.

Theorem 2. Satisfiability is in P iff P = NP.

Let A and B be two problems. Problem A is polynomi-
ally reducible to problem B (abbreviated A reduces to B,
and written as A α B) if the existence of a deterministic
polynomial time algorithm for B implies the existence of
a deterministic polynomial time algorithm for A. Thus if
A α B and B is polynomiaIly solvable, then so also is A.
A problem A is NP-hard iff satisfiability α A. An NP-hard
problem A is NP-complete if A ∈ NP. Observe that the
relation α is transitive (i.e., if A α B and B α C, then A
α C). Consequently, if A α B and satisfiabilityα A then B
is NP-hard. So, to show that any problem B is NP-hard,
we need merely show that A α B, where A is any known
NP-hard problem. Some of the known NP-hard problems
are as follows:

NP1: Sum of Subsets

Input: Multiset W = {wi | 1 ≤ i ≤ n} of natural numbers
and another natural number M .

Output: “Yes” if there is a submultiset of What sums to
M ; “No” otherwise.

NP2: 0/1-Knapsack

Input: Multisets P = {Pi | 1 ≤ i ≤ n} and W = {Wi |1 ≤
i ≤ n} of natural numbers and another natural number
M .

Output: xi ∈ {0, 1} such that
∑

i is maximized
and iWiXi M .

NP3: Traveling Salesman

Input: A set of n points and distances d(i, j). The d(i, j)
is the distance between the points i and j .

Output: A minimum-length tour that goes through each
of the n points exactly once and returns to the start of the
tour. The length of a tour is the sum of the distances be-
tween consecutive points on the tour. For example, the tour
1 → 3 → 2 → 4 → 1 has the length d(1, 3) + d(3, 2) +
d(2, 4) + d(4, 1).

NP4: Chromatic Number

Input: An undirected graph G = (V, E).
Output: A natural number k such that k is the smallest

number of colors needed to color the graph. A coloring of
a graph is an assignment of colors to the vertices in such
a way that no two vertices that are connected by an edge
are assigned the same color.

NP5: Clique

Input: An undirected graph G = (V, E) and a natural
number k.

Output: “Yes” if G contains a clique of size k (i.e., a
subset U ⊂ V of size k such that every two vertices in U
are connected by an edge in E) or more. “No” otherwise.

NP6: Independent Set

Input: An undirected graph G = (V, E) and a natural
number k.

Output: “Yes” if G contains an independent set of size
k (i.e., a subset U ⊂ V of size k such that no two ver-
tices in U are connected by an edge in E) or more. “No”
otherwise.

P1: GNB/MAG P2: FJU Final Pages

Encyclopedia of Physical Science and Technology EN003I-840 June 13, 2001 22:43

520 Computer Algorithms

NP7: Hamiltonian Cycle

Input: An undirected graph G = (V, E).
Output: “Yes” if G contains a Hamiltonian cycle (i.e., a

path that goes through each vertex of G exactly once and
then returns to the start vertex of the path). “No” otherwise.

NP8: Bin Packing

Input: A set of n objects, each of size s(i), 1 ≤ i ≤ n
[s(i) is a positive number], and two natural numbers k and
C .

Output: “Yes” if the n objects can be packed into at most
k bins of size c. “No” otherwise. When packing objects
into bins, it is not permissible to split an object over two
or more bins.

NP9: Set Packing

Input: A collection S of finite sets and a natural number
k.

Output: “Yes” if S contains at least k mutually disjoint
sets. “No” otherwise.

NP10: Hitting Set.

Input: A collection S of subsets of a finite set U and a
natural number k.

Output: “Yes” if there is a subset V of U such that V
has at most k elements and V contains at least one element
from each of the subsets in S. “No” otherwise.

The importance of showing that a problem A is NP-
hard lies in the P = NP problem. Since we do not expect
that P = NP, we do not expect. NP-hard problems to be
solvable by algorithms with a worst-case complexity that
is polynomial in the size of the problem instance. From
Table II, it is apparent that, if a problem cannot be solved
in polynomial time (in particular, low-order polynomial
time), it is intractable, for all practical purposes. If A is
NP-complete and if it does turn out that P = NP, then A
will be polynomially solvable. However, if A is only NP-
hard, it is possible for P to equal NP and for A not to be
in P.

VII. COPING WITH COMPLEXITY

An optimization problem is a problem in which one wishes
to optimize (i.e., maximize or minimize) an optimization
function f (x) subject to certain constraints C(x). For ex-
ample, the NP-hard problem NP2 (0/1-knapsack) is an
optimization problem. Here, we wish to optimize (in this

case maximize) the function f (x) = ∑n
i=1 pi xi subject to

the following constraints:

(a) xi ∈ {0, 1}, 1 ≤ i ≤ n
(b)

∑n
i=1 wi xi ≤ M

A feasible solution is any solution that satisfies the con-
straints C(x). For the 0/1-knapsack problem, any assign-
ment of values to the xi ’S that satisfies constraints (a) and
(b) above is a feasible solution. An optimal solution is a
feasible solution that results in an optimal (maximum in
the case of the 0/1-knapsack problem) value for the op-
timization function. There are many interesting and im-
portant optimization problems for which the fastest algo-
rithms known are impractical. Many of these problems
are, in fact, known to be NP-hard. The following are some
of the common strategies adopted when one is unable to
develop a practically useful algorithm for a given opti-
mization:

1. Arrive at an algorithm that always finds optimal
solutions. The complexity of this algorithm is such
that it is computationally feasible for “most” of the
instances people want to solve. Such an algorithm is
called a usually good algorithm. The simplex
algorithm for linear programming is a good example
of a usually good algorithm. Its worst-case
complexity is exponential. However, it can solve most
of the instances given it in a “reasonable” amount of
time (much less than the worst-case time).

2. Obtain a computationally feasible algorithm that
“almost” always finds optimal solutions. At other
times, the solution found may have a value very
distant from the optimal value. An algorithm with this
property is called a probabilistically good algorithm.

3. Obtain a computationally feasible algorithm that
obtains “reasonably” good feasible solutions.
Algorithms with this property are called heuristic
algorithms. If the heuristic algorithm is guaranteed to
find feasible solutions that have value within a
prespecified amount of the optimal value, the
algorithm is called an approximation algorithm. In
the remainder of this section, we elaborate on
approximation algorithms and other heuristics.

A. Approximation Algorithms

When evaluating an approximation algorithm, one consid-
ers two measures: algorithm complexity and the quality
of the answer (i.e., how close it is to being optimal). As in
the case of complexity, the second measure may refer to
the worst case or the average case. There are several cate-
gories of approximation algorithms. Let A be an algorithm

P1: GNB/MAG P2: FJU Final Pages

Encyclopedia of Physical Science and Technology EN003I-840 June 13, 2001 22:43

Computer Algorithms 521

that generates a feasible solution to every instance I of a
problem P . Let F∗(I) be the value of an optimal solution,
and let F ′(I) be the value of the solution generated by A.

Definition. A is a k-absolute approximation algori-
thm for P iff |F∗(I) − F ′(I)| ≤ k for all instances I . k is
a constant. A is an f (n)-approximate algorithm for p iff
|F∗(I) − F ′(I)|/F∗(I) ≤ f (n) for all I . The n is the size of
I and we assume that |F∗(I)| > 0. An f (n)-approximate
algorithm with f (n) ≤ ε for all n and some constant ε is
an ε-approximate algorithm.

Definition. Let A(ε) be a family of algorithms that
obtain a feasible solution for every instance I of P . Let
n be the size of I . A(ε) is an approximation scheme for
P if for every A(ε) > 0 and every instance I, |F∗(I) −
F ′(I)|F∗(I) ≤ ε. An approximation scheme whose time
complexity is polynomial in n is a polynomial time ap-
proximation scheme. A fully polynomial time approxi-
mation scheme is an approximation scheme whose time
complexity is polynomial in n and 1/ε.

For most NP-hard problems, the problem of finding
k-absolute approximations is also NP-hard. As an exam-
ple, consider problem NP2 (01 l-knapsack). From any in-
stance (Pi , Wi , 1 ≤ i ≤ n, M), we can construct, in linear
time, the instance (k + 1)pi , wi , ≤i ≤ n, M). This new in-
stance has the same feasible solutions as the old. How-
ever, the values of the feasible solutions to the new in-
stance are multiples of k + 1. Consequently, every k-
absolute approximate solution to the new instance is an
optimal solution for both the new and the old instance.
Hence, k-absolute approximate solutions to the 0/1-
knapsack problem cannot be found any faster than optimal
solutions.

For several NP-hard problems, the ε-approximation
problem is also known to be NP-hard. For others fast
ε-approximation algorithms are known. As an example,
we consider the optimization version of the bin-packing
problem (NP8). This differs from NP8 in that the number
of bins k is not part of the input. Instead, we are to find
a packing of the n objects into bins of size C using the
fewest number of bins. Some fast heuristics that are also
ε-approximation algorithms are the following:

First Fit (FF). Objects are considered for packing in
the order 1, 2, . . . , n. We assume a large number of bins
arranged left to right. Object i is packed into the leftmost
bin into which it fits.

Best Fit (BF). Let cAvail[j] denote the capacity avail-
able in bin j . Initially, this is C for all bins. Object i is
packed into the bin with the least cAvail that is at least
s(i).

First Fit Decreasing (FFD). This is the same as
FF except that the objects are first reordered so that
s(i) ≥ s(i + 1)1 ≤ ileqn.

Best Fit Decreasing (BFD). This is the same as BF ex-
cept that the objects are reordered as for FFD. It should be
possible to show that none of these methods guarantees
optimal packings. All four are intuitively appealing and
can be expected to perform well in practice. Let I be any
instance of the bin packing problem. Let b(I) be the num-
ber of bins used by an optimal packing. It can be shown
that the number of bins used by FF and BF never exceeds
(17/10)b(I) + 2, while that used by FFD and BFD does
not exceed (11/9)b(I) + 4.

Example. Four objects with s(1 : 4) = (3, 5, 2, 4) are
to be packed in bins of size 7. When FF is used, object
1 goes into bin 1 and object 2 into bin 2. Object 3 fits
into the first bin and is placed there. Object 4 does not
fit into either of the two bins used so far and a new bin
is used. The solution produced utilizes 3 bins and has
objects 1 and 3 in bin I, object 2 in bin 2, and object 4 in
bin 3.

When BF is used, objects 1 and 2 get into bins 1 and 2,
respectively. Object 3 gets into bin 2, since this provides
a better fit than bin I. Object 4 now fits into bin I. The
packing obtained uses only two bins and has objects 1 and
4 in bin 1 and objects 2 and 3 in bin 2. For FFD and BFD,
the objects are packed in the order 2,4, 1,3. In both cases,
two-bin packing is obtained. Objects 2 and 3 are in bin 1
and objects 1 and 4 in bin 2. Approximation schemes (in
particular fully polynomial time approximation schemes)
are also known for several NP-hard problems. We will not
provide any examples here.

B. Other Heuristics

PROGRAM 12: General Form of an Exchange Heuristic

1. Let j be a random feasible solution [i.e., C(j) is
satisfied] to the given problem.

2. Perform perturbations (i.e., exchanges) on i until it is
not possible to improve j by such a perturbation.

3. Output i .

Often, the heuristics one is able to devise for a problem
are not guaranteed to produce solutions with value close to
optimal. The virtue of these heuristics lies in their capacity
to produce good solutions most of the time. A general
category of heuristics that enjoys this property is the class
of exchange heuristics. In an exchange heuristic for an
optimization problem, we generally begin with a feasible
solution and change parts of it in an attempt to improve
its value. This change in the feasible solution is called a
perturbation. The initial feasible solution can be obtained
using some other heuristic method or may be a randomly
generated solution. Suppose that we wish to minimize the

P1: GNB/MAG P2: FJU Final Pages

Encyclopedia of Physical Science and Technology EN003I-840 June 13, 2001 22:43

522 Computer Algorithms

objective function f (i) subject to the constraints C . Here,
i denotes a feasible solution (i.e., one that satisfies C).
Classical exchange heuristics follow the steps given in
Program 12. This assumes that we start with a random
feasible solution. We may, at times, start with a solution
constructed by some other heuristic. The quality of the
solution obtained using Program 12 can be improved by
running this program several times. Each time, a different
starting solution is used. The best of the solutions produced
by the program is used as the final solution.

1. A Monte Carlo Improvement Method

In practice, the quality of the solution produced by an ex-
change heuristic is enhanced if the heuristic occasionally
accepts exchanges that produce a feasible solution with
increased f (). (Recall that f is the function we wish
to minimize.) This is justified on the grounds that a bad
exchange now may lead to a better solution later. In or-
der to implement this strategy of occasionally accepting
bad exchanges, we need a probability function prob(i, j)
that provides the probability with which an exchange that
transforms solution i into the inferior solution j is to be ac-
cepted. Once we have this probability function, the Monte
Carlo improvement method results in exchange heuristics
taking the form given in Program 13. This form was pro-
posed by N. Metropolis in 1953. The variables counter and
n are used to stop the procedure. If n successive attempts
to perform an exchange on i are rejected, then an opti-
mum with respect to the exchange heuristic is assumed to
have been reached and the algorithm terminates. Several
modifications of the basic Metropolis scheme have been
proposed. One of these is to use a sequence of different
probability functions. The first in this sequence is used
initially, then we move to the next function, and so on.
The transition from one function to the next can be made
whenever sufficient computer time has been spent at one
function or when a sufficient number of perturbations have
failed to improve the current solution.

PROGRAM 13: Metropolis Monte Carlo Method

1. Let i be a random feasible solution to the given
problem. Set counter = 0.

2. Let j be a feasible solution that is obtained from i as
a result of a random perturbation.

3. If f (j) < f (i), then [i = j , update best solution found
so far in case i is best, counter = 0, go to Step 2].

4. If f (j) ≥ f (i) If counter = n then output best
solution found and stop. Otherwise, r = random
number in the range (0, 1).
If r < prob(i, j), then [i = j , counter = 0] else
[counter = counter + 1].
go to Step 2.

The Metropolis Monte Carlo Method could also be re-
ferred to as a metaheuristic, that is, a heuristic that is
general enough to apply to a broad range of problems.
Similar to heuristics, these are not guaranteed to produce
an optimal solution, so are often used in situations either
where this is not crucial, or a suboptimal solution can be
modified.

VIII. THE FUTURE OF ALGORITHMS

Computer algorithm design will always remain a crucial
part of computer science. Current research has a number
of focuses, from the optimization of existing, classic al-
gorithms, such as the sorting algorithms described here,
to the development of more efficient approximation algo-
rithms. The latter is becoming an increasingly important
area as computers are applied to more and more difficult
problems.

This research itself can be divided into two main areas,
the development of approximation algorithms for partic-
ular problems, e.g. Traveling salesman problem, and into
the area of metaheuristics, which is more concerned with
the development of general problem solvers.

IX. SUMMARY

In order to solve difficult problems in a reasonable amount
of time, it is necessary to use a good algorithm, a good
compiler, and a fast computer. A typical user, generally,
does not have much choice regarding the last two of these.
The choice is limited to the compilers and computers the
user has access to. However, one has considerable flexi-
bility in the design of the algorithm. Several techniques
are available for designing good algorithms and determin-
ing how good these are. For the latter, one can carry out
an asymptotic analysis. One can also obtain actual run
times on the target computer.When one is unable to ob-
tain a low-order polynomial time algorithm for a given
problem, one can attempt to show that the problem is NP-
hard or is related to some other problem that is known
to be computationally difficult. Regardless of whether
one succeeds in this endeavor, it is necessary to develop
a practical algorithm to solve the problem. One of the
suggested strategies for coping with complexity can be
adopted.

SEE ALSO THE FOLLOWING ARTICLES

BASIC PROGRAMMING LANGUAGE • C AND C++ PRO-
GRAMMING LANGUAGE • COMPUTER ARCHITECTURE •

P1: GNB/MAG P2: FJU Final Pages

Encyclopedia of Physical Science and Technology EN003I-840 June 13, 2001 22:43

Computer Algorithms 523

DISCRETE SYSTEMS MODELING • EVOLUTIONARY ALGO-
RITHMS AND METAHEURISTICS • INFORMATION THEORY

• SOFTWARE ENGINEERING • SOFTWARE RELIABILITY

• SOFTWARE TESTING

BIBLIOGRAPHY

Aho, A., Hopcroft, J., and Ullman, J. (1974). “The Design and Analy-
sis of Computer Algorithms,” Addison-Wesley, Reading, MA.

Canny, J. (1990). J. Symbolic Comput. 9 (3), 241–250.
Garey, M., and Johnson, D. (1979). “Computers and Intractability,”

Freeman, San Francisco, CA.
Horowitz, E., and Sahni, S. (1978). “Fundamentals of Computer Algo-

rithms,” Computer Science Press, Rockville, MD.
Kirkpatrick, S., Gelatt, C., and Vecchi, M. (1983). Science 220, 671–680.
Knuth, D. (1972). Commun. ACM 15 (7), 671–677.
Nahar, S., Sahni, S., and Shragowitz, E. (1985). ACM/IEEE Des. Autom.

Conf., 1985, pp. 748–752.
Sahni, S. (1985). “Concepts in Discrete Mathematics,” 2nd ed., Camelot,

Fridley, MN.
Sahni, S. (1985). “Software Development in Pascal,” Camelot, Fridley,

MN.
Sedgewick, R. (1983). “Algorithms,” Addison-Westley, Reading, MA.
Syslo, M., Deo, N., and Kowalik, J. (1983). “Discrete Optimization

Algorithms,” Prentice-Hall, Engle-wood Cliffs, NJ.

P1: LDK/GJK P2: FVZ Final Qu: 00, 00, 00, 00

Encyclopedia of Physical Science and Technology EN003B-842 June 14, 2001 12:13

Computer Viruses
Ernst L. Leiss
University of Houston

I. Background and Motivation
II. Viruses, Worms, and So Forth

III. Prevention and Detection
IV. Conclusion

GLOSSARY

Data integrity Measure of the ability of a (computer)
system to prevent unwanted (unauthorized) changes or
destruction of data and software.

Data security Measure of the ability of a (computer) sys-
tem to prevent unwanted (unauthorized) access to data
and software.

Logical bomb Code embedded in software whose execu-
tion will cause undesired, possibly damaging, actions.

Subversion Any action that results in the circumvention
of violation of security principles.

Worm Self-contained program that is usually not per-
manently stored as a file and has the capacity of self-
replication and of causing damage to data and software.

Virus Logical bomb with the ability of self-replication. It
usually is a permanent part of an existing, permanently
stored file and has the capability of causing damage to
data and software.

I. BACKGROUND AND MOTIVATION

In the years before 1988, a number of incidents suggested
the potential for major problems related to the organized
and widespread subversion of (networked) computer sys-

tems, accompanied by the possibility of massive destruc-
tion of data and software. While until then these con-
cerns were considered rather remote, the Internet attack
of 1988 shattered this complacency. In the intervening
decade, computer viruses have attained significant vis-
ibility in the computer-literate population, rivalling the
notoriety of Y2K-related problems but with substantially
greater staying power.

The reason for the attention attracted by these intruders
lies in their potential for destruction of data and software.
With the exception of some highly secured systems re-
lated to defense and national security, virtually all larger
computer systems are connected via computer networks,
commonly referred to as the Internet. Personal computers,
if they are not permanently linked into these networks,
have at least the capability of linking up to them inter-
mittently through a variety of Internet service providers.
Networks are systems that allow the transmission of dig-
itally encoded information (data, software, messages, as
well as still images, video, and audio) at relatively high
speeds and in relatively convenient ways from one system
to another. Subverting the function of a network may there-
fore result in the subversion of the computers linked by it.
Consequently, a scenario is very plausible in which a pro-
gram may be transmitted that is capable of destroying large
amounts of data in all the computers in a given network.

 577

html

P1: LDK/GJK P2: FVZ Final

Encyclopedia of Physical Science and Technology EN003B-842 June 14, 2001 12:13

578 Computer Viruses

The case that such a scenario is plausible has been made
for many years, starting with F. Cohen’s demonstration of
a computer virus in 1983.

In 1988, such a scenario was played out for the first time
on a worldwide scale. Since then, numerous incidents have
reinforced the public’s sense of vulnerability to attacks by
insidious code fragments on software and data stored in all
kinds of computers. While earlier virus attacks spread via
diskettes and later via electronic bulletin boards (in ways
that required some user participation through loading in-
fected programs), in recent years, the World Wide Web and
more sophisticated e-mail systems have provided trans-
mission channels that facilitated the worldwide spread of
the attackers at a unprecedented speed. Moreover, infec-
tion which earlier required some explicit action by the
victim has become much more stealthy, with the advent
of viruses that become activated through the opening (or
even previewing) of an apparently innocent attachment to
an e-mail document.

The destruction of data and software has obvious eco-
nomic implications. The resulting malfunctioning of com-
puter systems may also affect safety-critical systems, such
as air-traffic control systems or control systems for hydro-
electric dams or nuclear power plants. Futhermore, the
potential for disruption can be damaging: a bomb threat
can conceivably be more paralyzing that the explosion of
a small bomb itself. Protection against such treats may be
either impossible or unacceptable to usesrs in the neces-
sarily resulting reduction of functionality and ease of use
of computer systems. It must be borne in mind that by
necessity, the notion of user friendliness of a computer
system of communications network is antithetical to the
notions of data security and data integrity.

II. VIRUSES, WORMS, AND SO FORTH

From a technical point of view, the most alarming aspect of
the attackers under discussion in this article is that they are
self-replicating. In other words, the piece of software that
performs the subversion has the ability of making copies
of itself and transmitting those copies to other programs
in the computer or to other computers in the network.
Obviously, each of these copies can now wreak havoc
where it is and replicate itself as well! Thus, it may be
sufficient to set one such program loose in one computer
in order to affect all computers in a given network. Since
more and more computers, including personal computers,
are interconnected, the threat of subversion can assume
literally global dimensions. Let us look at this in greater
detail. First, we define a few important terms.

A logical bomb is a piece of code, usually embedded in
other software, that is only activated (executed) if a certain

condition is met. It does not have the capability of self-
replication. Activation of the logical bomb may abort a
program run or erase data or program files. If the condition
for execution is not satisfied at all times, it may be regarded
as a logical time bomb. Logical bombs that are activated in
every invocation are usually not as harmful as time bombs
since their actions can be observed in every execution of
the affected software. A typical time bomb is one where
a disgruntled employee inserts into complex software that
is frequently used (a compiler or a payroll system, for
example) code that will abort the execution of the software,
for instance, after a certain date, naturally chosen to fall
after the date of the employee’s resignation or dismissal.

While some programming errors may appear to be time
bombs (the infamous Y2k problem certainly being the best
known and most costly of these), virtually all intentional
logical bombs are malicious.

A computer virus is a logical bomb that is able to self-
replicate, to subvert a computer system in some way, and
to transmit copies of itself to other hardware and software
systems. Each of these copies in turn may self-replicate
and affect yet other systems. A computer virus usually
attaches itself to an existing program and thereby is per-
manently stored.

A worm is very similar to a computer virus in that it
is self-replicating and subverts a system; however, it usu-
ally is a self-contained program that enters a system via
regular communication channels in a network and then
generates its own commands. Therefore, it is frequently
not permanently stored as a file but rather exists only in the
main memory of the computer. Note that a logical bomb
resident in a piece of software that is explicitly copied to
another system may appear as a virus to the users, even
though it is not.

Each of the three types of subversion mechanisms,
bombs, viruses, and worms, can, but need not, cause dam-
age. Instances are known in which bombs and viruses
merely printed out some brief message on the screen and
then erased themselves, without destroying data or caus-
ing other disruptions. These can be considered as rela-
tively harmless pranks. However, it must be clearly un-
derstood that these subversion mechanisms, especially the
self-replicating ones, most definitely have enormous po-
tential for damage. This may be due to deliberate and
explicit erasure of data and software, or it may be due to
far less obvious secondary effects. To give one example,
consider a worm that arrives at some system via electronic
mail, thereby activating a process that handles the receiv-
ing of mail. Typically, this process has a high priority; that
is, if there are any other processes executing, they will
be suspended until the mail handler is finished. Thus, if
the system receives many mail messages, a user may get
the impression that the system is greatly slowed down. If

P1: LDK/GJK P2: FVZ Final

Encyclopedia of Physical Science and Technology EN003B-842 June 14, 2001 12:13

Computer Viruses 579

these mail messages are all copies of the same worm, it is
clear that the system can easily be saturated and thereby
damage can be done, even though no data or programs are
erased.

This is what happened in the historic case study cited
above. On November 2, 1988, when a worm invaded over
6000 computers linked together by a major U.S. network
that was the precursor to the present-day Internet, includ-
ing Arpanet, Milnet, and NSFnet. Affected were comput-
ers running the operating system Berkeley Unix 4.3. The
worm took advantage of two different flaws, namely, a de-
bugging device in the mail handler (that most centers left
in place even though it was not required any longer after
successful installation of the mail handler) and a similar
problem in a communications program. The worm ex-
ploited these flaws by causing the mail handler to circum-
vent the usual access controls in a fairly sophisticated way;
it also searched users’ files for lists of trusted users (who
have higher levels of authority) and used them to infil-
trate other programs. The worm’s means of transmission
between computer was the network. Because infiltrated
sites could be reinfiltrated arbitrarily often, systems (es-
pecially those that were favorite recipients of mail) became
saturated and stopped performing useful work. This was
how users discovered the infiltration, and this was also the
primary damage that the worm caused. (While it did not
erase or modify any data, it certainly was capable of doing
this had it been so designed.) The secondary damage was
caused by the efforts to remove the worm. Because of the
large number of sites affected, this cost was estimated to
have amounted to many years of work, even though it was
relatively easy to eliminate the worm by rebooting each
system because the worm was never permanently stored.

One reason this worm made great waves was that it
caused the first major infiltration of mainframe comput-
ers. Prior to this incident, various computer viruses (caus-
ing various degrees of damage) had been reported, but
only for personal computers. Personal computers are typ-
ically less sophisticated and originally had been designed
for personal use only, not for networking; for these rea-
sons they had been considered more susceptible to attacks
from viruses. Thus, threats to mainframes from viruses
were thought to be far less likely than threats to personal
computers. The November 2, 1988, incident destroyed this
myth in less than half a day, the time it took to shut down
Internet and many computer systems on it.

Since then, a wide variety of attackers have appeared
on the scene, substantially aided by the explosive growth
of the World Wide Web. Not surprisingly, given the domi-
nance that Microsoft’s operating systems have in the mar-
ket, most recent viruses exist within the context of that
company’s operating systems. Many of these viruses use
the increasingly common use of attachments to be trans-

mitted surreptitiously; in this case, opening an attachment
may be all that is required to get infected. In fact, users may
not even be aware that an attachment was opened, because
it occurred automatically (to support more sophisticated
mail functions, such as previewing or mail sorting ac-
cording to some user-specified criterion). Frequently, the
resulting subversion of the mail system facilitates further
distribution of the virus, using mailing lists maintained by
the system.

III. PREVENTION AND DETECTION

There are two different approaches to defending against
viruses and worms. One is aimed at the prevention or de-
tection of the transmission of the infiltrator; the other tries
to prevent or detect damage that the infiltrator may cause
by erasing or modifying files. The notable 1988 worm
incident illustrates, however, that even an infiltrator that
does not alter any files can be very disruptive.

Several defense mechanisms have been identified in
the literature; below some of the more easily imple-
mentable defenses are listed. One should, however, keep
in mind that most of them will be implemented by more
software, which in turn could be subject to infiltration.
First, however, it is necessary to state two fundamental
principles:

1. No infection without execution.
2. Detection is undecidable.

The first principle refers to the fact that infection cannot
occur unless some type of (infected) software is executed.
In other words, merely looking at an infected program
will not transmit a virus. Thus, simple-minded e-mail pro-
grams that handle only flat ASCII files are safe since no
execution takes place. As we pointed out earlier, the exe-
cution involved can be virtually hidden from the user (e.g.,
in the case of previewing attachments), but in every case,
the user either enabled the execution or could explicitly
turn it off. The second principle has major implications.
Essentially, it states that it is probably impossible to de-
sign a technique that would examine an arbitrary program
and determine whether it contains a virus. This imme-
diately raises the question of how virus detections soft-
ware functions. Let us make a small excursion first. We
claim that any half-way effective virus must have the abil-
ity of determining whether a program has already been
infected by it. If it did not have this capability,it would
reinfect an already infected program. However, since a
virus is a code fragment of a certain length, inserting that
same code fragment over and over into the same program
would result in a program that keeps on growing until it

P1: LDK/GJK P2: FVZ Final

Encyclopedia of Physical Science and Technology EN003B-842 June 14, 2001 12:13

580 Computer Viruses

eventually exceeds any available storage capacity, result-
ing in immediate detection of the virus. Returning now to
our question of how virus detection software works, we
can say that it does exactly the same that each virus does.
This ofcourse implies trivially that that test can be car-
ried out only if the virus is known. In other words, virus
detection software will never be able to find any virus;
it will only be able to detect viruses that were known to
the authors of the detection software at the time it was
written. The upshot is that old virus detection software
is virtually worthless since it will not be able to detect
any viruses that appeared since the software was written.
Consequently, it is crucial to update one’s virus detection
software frequently and consistently.

While many virus detection programs will attempt to
remove a virus once it is detected, removal is significantly
trickier and can result in the corruption of programs. Since
viruses and worms typically have all the access privileges
that the user has, but no more, it is possible to set the
permissions for all files so that writing is not permitted,
even for the owner of the files. In this way, the virus will not
be able to write the files, something that would be required
to insert the virus. It is true that the virus could subvert
the software that controls the setting of protections, but
to date (February 2000), no virus has ever achieved this.
(Whenever a user legitimately wants to write a file, the user
would have to change the protection first, then write the
file, and then change the protection back.) The primary
advantage of this method is that it is quite simple and
very effective. Its primary disadvantage is that users might
find it inconvenient. Other, more complicated approaches
include the following:

1. Requirement of separate and explicit approval (from
the user) for certain operations: this assumes as
interactive environment and is probably far too
combersome for most practical use. Technically, this
can be implemented either as software that requires
the user to enter an approval code or as hardware
addendum to the disk drive that prevents any
unapproved writes to that disk. Note, however, that a
good deal of software, for example, compilers,
legitimately write to disk, even though what is written
may be already infiltrated.

2. Comparison with protected copy: another way of
preventing unauthorized writes is to have a protected
copy (encrypted or on a write-once disk, see method
6) of a program and to compare that copy with the
conventionally stored program about to be executed.

3. Control key: a control key can be computed for each
file. This may be a type of check sum, the length of
the file, or some other function of the file. Again, it is
important that this control key be stored incorruptible.

4. Time stamping: many operating systems store a date
of last modification for each file. If a user separately
and incorruptibly stores the date of last modification
for important files, discrepancies can indicate
possible infiltrations.

5. Encryption: files are stored in encrypted format (that
is, as cipher text). Before usage, a file must be
decrypted. Any insertion of unencrypted code (as it
would be done by a virus trying to infiltrate a
program) will give garbage when the resulting file is
decrypted.

6. Write-once disks: certain codes (immutable codes,
balanced codes) can be used to prevent (physically)
the change of any information stored on write once
(or laser) disks.

All methods attempt to prevent unauthorized changes in
programs or data. Methods 2 (protected copy), 3 (control
key), and 6 (write-once disk) work primarily if no changes
at all are permitted. Methods 4 (time stamping) and 5
(encryption) work if changes are to be possible.

None of these methods guarantees that attempted infil-
trations will be foiled. However, these methods may make
it very difficult for a virus to defeat the security defenses
of a computer system. Note, however, that all are aimed at
permanently stored files. Thus, a worm as in the Novem-
ber 2, 1988, incident may not be affected at all by any of
them. As indicated, this worm took advantage of certain
flaws in the mail handler and a communications program.

IV. CONCLUSION

Viruses and worms are a threat to data integrity and have
the potential for endangering data security; the danger of
these attackers is magnified substantially by their ability of
self-replication. While the general mechanisms of viruses
have not changed significantly over the past decade, the
useage patterns of computers have, providing seemingly
new ways of attacking data and software. Certain defense
mechanisms are available; however, they do not guarantee
that all attacks will be repulsed. In fact, technical means in
general are insufficient to deal with the threats arising from
viruses and worms as they use commonly accepted and
convenient means of communication to infiltrate systems.

Using reasonable precautions such as restricting ac-
cess; preventing users from running unfamiliar, possi-
bly infiltrated software; centralizing software develop-
ment and maintenance; acquiring software only from rep-
utable vendors; avoiding opening attachments (at least
from unknown senders); using virus detection software
in a systematic and automated way (e.g., every log-on
triggers a virus scan); and most importantly, preparing,

P1: LDK/GJK P2: FVZ Final

Encyclopedia of Physical Science and Technology EN003B-842 June 14, 2001 12:13

Computer Viruses 581

internally disseminating, and strictly adhering to a care-
fully thought-out disaster recovery plan (which must func-
tion even if the usual computer networks are not opera-
tional!), it is likely that major damage can be minimized.

SEE ALSO THE FOLLOWING ARTICLE

COMPUTER NETWORKS

BIBLIOGRAPHY

Anti-Virus Emergency Response Team, hosted by Network Associates
(http://www.avertlabs.com).

Bontchev, V. (199). “Future Trends in Virus Writing,” Virus Test Cen-
ter, University of Hamburg, Germany (http://www.virusbtn.com/other
papers/Trends).

Computer Emergency Response Team (CERT). Registered Service mark
of Carnegie-Mellon University, Pittsburgh (http://www.cert.org).

Department of Energy Computer Incident Advisory Capability (http://
www.ciac.org).

European Institute for Computer Anti-Virus Research (http://www.
eicar.com).

Kephart, J. O., Sorkin, G. B., Chess, D. M., and White, S.
R. (199). “Fighting Computer Viruses,” Sci. Am., New York
(http://www.sciam.com/ 1197issue/1197kephart.html).

Leiss, E. L. (1990). “Software Under Siege: Viruses and Worms,” Else-
vier, Oxford, UK.

Polk, W. T., and Bassham, L. E. (1994). “A Guide to the Selection
of Anti-Virus Tools and Techniques,” Natl. Inst. Standards and Tech-
nology Computer Security Divison (http://csrc.ncsl.nist.gov/nistpubs/
select).

http://www.virusbtn.com/otherpapers/Trends
http://www.virusbtn.com/otherpapers/Trends
http://www.cert.org
http://www.ciac.org
http://www.ciac.org
http://www.eiacr.com
http://www.eiacr.com
http://www.sciam.com/ 1197issue/1197kephart.html
http://www.avertlabs.com
http://csrc.ncsl.nist.gov/nistpubs/select
http://csrc.ncsl.nist.gov/nistpubs/select

P1: GPB Final Pages

Encyclopedia of Physical Science and Technology EN004M-843 June 8, 2001 15:37

Cryptography
Rebecca N. Wright
AT&T Labs—Research

I. Introduction
II. Attacks on Cryptographic Systems
III. Design and Use of Cryptographic Systems
IV. Symmetric Key Cryptography
V. Public Key Cryptography

VI. Key Distribution and Management
VII. Applications of Cryptography

GLOSSARY

Ciphertext All or part of an encrypted message or file.
Computationally infeasible A computation is computa-

tionally infeasible if it is not practical to compute, for
example if it would take millions of years for current
computers.

Cryptosystem A cryptosystem or cryptographic system
consists of an encryption algorithm and the correspond-
ing decryption algorithm.

Digital signature Cryptographic means of authenticating
the content and sender of a message, like a handwritten
signature is to physical documents.

Encryption The process of transforming information to
hide its meaning. An encryption algorithm is also called
a cipher or code.

Decryption The process of recovering information that
has been encrypted.

Key A parameter to encryption and decryption that con-
trols how the information is transformed.

Plaintext The plaintext or cleartext is the data to be
encrypted.

Public key cryptosystem A two-key cryptosystem in
which the encryption key is made public, and the de-
cryption key is kept secret.

Symmetric key cryptosystem A traditional single-key
cryptosystem, in which the same key is used for en-
cryption and decryption.

CRYPTOGRAPHY, from the Greek krýpt-, meaning
hidden or secret, and gráph-, meaning to write, is the sci-
ence of secret communication. Cryptography consists of
encryption or enciphering, in which a plaintext message
is transformed using an encryption key and an encryption
algorithm into a ciphertext message, and decryption or de-
ciphering, in which the ciphertext is transformed using the
decryption key and the decryption algorithm back into the
original plaintext. Cryptography protects the privacy and
sometimes the authenticity of messages in a hostile en-
vironment. For an encryption algorithm to be considered
secure, it should be difficult or impossible to determine
the plaintext from the ciphertext without knowledge of
the decryption key.

 61

P1: GPB Final Pages

Encyclopedia of Physical Science and Technology EN004M-843 June 8, 2001 15:37

62 Cryptography

Historically, cryptography has been used to safeguard
military and diplomatic communications and has therefore
been of interest mainly to the government. Now, as the use
of computers and computer networks grows, there is an
increasing amount of information that is stored electroni-
cally, on computers that can be accessed from around the
world via computer networks. As this happens, businesses
and individuals are finding more of a need for protection
of information that is proprietary, sensitive or expensive
to obtain.

Traditionally, encryption was used for a sender to send
a message to a receiver in such a way that others could
not read or undetectably tamper with the message. Today,
encryption protects the privacy and authenticity of data
in transit and stored data, prevents unauthorized access
to computer resources, and more. Cryptography is com-
monly used by almost everyone, often unknowingly, as it
is increasingly embedded into ubiquitous systems, such as
automated bank teller machines, cellular telephones, and
World Wide Web browsers.

I. INTRODUCTION

Cryptography probably dates back close to the beginnings
of writing. One of the earliest known examples is the Cae-
sar cipher, named for its purported use by Julius Caesar in
ancient Rome. The Caesar cipher, which can not be con-
sidered secure today, replaced each letter of the alphabet
with the letter occurring three positions later or 23 posi-
tions earlier in the alphabet: A becomes D, B becomes
E, X becomes A, and so forth. A generalized version of
the Caesar cipher is an alphabetic substitution cipher. As
an example, a simple substitution cipher might use the
following secret key to provide a substitution between
characters of the original message and characters of the
encrypted message.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

F R O A H I C W T Z X L U Y N K E B P M V G D S Q J

Using this key, a sample encrypted message is:

IEQ IBQDXMBQ FX RMBFQW MOWQB IEQ QLT IBQQ.

As is evident from even such a short example, this sim-
ple method does not disguise patterns in the text such as
repeated letters and common combinations of letters. In
fact, if the encrypted message is known to be English text,
it is usually quite easy to determine the original message,
even without the knowledge of the secret key, by using let-
ter frequency analysis, guessing and checking, and maybe
a little intuition and luck. Such substitution ciphers are

commonly used today as puzzles in newspapers and puz-
zle books, but are not secure when used alone as cryp-
tosystems. Polyalphabetic substitution ciphers, developed
by Len Battista in 1568, improved on regular substitu-
tion ciphers by changing the substitution scheme partway
through a message. Although substitution is not secure
when used alone, it can be useful when used in conjunction
with other techniques, and in fact, many cryptosystems
used today benefit from substitution when it is carefully
used as part of their encryption algorithms.

Another simple technique that is not secure alone, but
can be secure when used as part of a cryptosystem, is
transposition or permutation. A simple transposition ci-
pher might rearrange the message

WE MEET AT DAWN IN THE MUSEUM,

by removing spaces, writing it in columns of letters whose
length is determined by the key, and then reading across
the columns

W E D I E E

E T A N M U

M A W T U M

E T N H S,

yielding the ciphertext

WEDIEE ETANMU MAWTUM ETNHS.

In this simple example, it is easy to see that an attacker can
fairly easily determine the column length by seeing which
pairs of letters are most likely to be adjacent in English
words.

Used together, repeated combinations of substitution
and transpositions can make the job of an attacker who is
trying to break the system without knowing the key harder
by more thoroughly obscuring the relationship between
the plaintext and the ciphertext, requiring an attacker to
explore many more possibilities. Many of the mechanical
and electrical ciphers used in World Wars I and II, such as
the Enigma rotor machine, relied on various combinations
of substitutions and permutations.

Cryptanalysis is the process of trying to determine the
plaintext of a ciphertext message without the decryption
key, as well as possibly trying to determine the decryption
key itself. Together, cryptography and cryptanalysis com-
prise the field of cryptology. The job of the cryptographer
is to devise systems faster than the cryptanalysts can break
them. Until early the 20th century, cryptanalysts gener-
ally had a clear upper hand over cryptographers, and most
known ciphers or cryptosystems could easily be broken.

The transition to modern cryptography began with
the invention of computers, and continued with the

P1: GPB Final Pages

Encyclopedia of Physical Science and Technology EN004M-843 June 8, 2001 15:37

Cryptography 63

development of ciphers such as the Data Encryption
Standard (DES) and the exciting discovery of public
key cryptography. The use of computers means more
possibilities for ciphers, as sophisticated and lengthy
computations that would have error-prone if done by
hand and expensive if done by mechanical devices have
now become possible.

A. Cryptosystems: A Mathematical Definition

Mathematically, a cryptosystem is defined as three algo-
rithms—a (randomized) key generation algorithm key-
Gen, a (possibly randomized) encryption algorithm Enc,
and a (usually deterministic) decryption algorithm Dec.
More specifically, we define the following sets.

M = set of plaintext messages

C = set of encrypted messages

KE = set of encryption keys

KD = set of decryption keys

R = set of random values for encryption

R′ = set of random values for key generation.

M is called the message space, and KE ∪ KD is called
the key space. In computerized algorithms, the key space
and message space are typically sets of all bit strings of
particular lengths. As a notational convention, we denote
sets by boldface letters and elements of a set by the same
letter in italic typeface. The functions KeyGen, Enc, and
Dec are defined as follows.

KeyGen: R′ → KE × KD

Enc: M × KE × R → C

Dec: C × KD → M,

such that for every r ∈ R and r ′ ∈ R′,

Dec(Enc(M, KE , r), K D) = M,

where KeyGen(r ′) = (KE , K D). We usually suppress ex-
plicit mention of the randomization used by Enc, and in-
stead write Enc(M, KE) to donate Enc(M, KE , r), where
r is chosen randomly as specified by an algorithmic de-
scription of Enc.

Often, KE = K D; that is, the encryption and decryption
keys are identical, and in this case we refer to it simply as
the key or the secret key. This is called symmetric or secret
key cryptography. In contrast, in asymmetric or public key
cryptography, the encryption keys and decryption keys
are different from each other, and only the decryption key
needs to be kept secret. In public key cryptography, the
decryption key is also sometimes called the secret key.

FIGURE 1 Diagram of a cryptosystem.

In order for a cryptosystem to be useful, all three func-
tions KeyGen, Enc, and Dec must be efficiently com-
putable. Since key generation is generally done only infre-
quently and can often be done in advance, it is acceptable
for KeyGen to be somewhat less efficient, perhaps even
taking many minutes to compute. In contrast, encryption
and decryption are usually done more frequently and in
real time, so Enc and Dec should be more efficient, mea-
suring on the order of milliseconds or less.

We would also like additional requirements to capture
the security of the cryptosystem—for example, that it is
difficult to determine any information about K D or M from
Enc(M , KE ,) alone. However, the specific meaning of this
requirement depends the computational power available
to an attacker, the abilities of the attacker to learn the en-
cryptions of various messages, and other such factors, so
there is not one single definition that can capture secu-
rity in all settings. A rather strong, and desirable, notion
of security is that of semantic security: from the cipher-
text only, it should be computationally infeasible to learn
anything about the plaintext except its length. The cipher-
text should not reveal, for example, any of the bits of the
ciphertext, nor should it suggest that some plaintext mes-
sages are more probably than others. Semantic security is
much stronger than simply stating that an attacker does
not learn the plaintext.

To see the importance of the key generation function in a
cryptosystem, consider again the Caesar cipher presented
previously. This can be thought of as encryption function
that rotates characters in the alphabet according to the key,
with a key generation function that always chooses the key
3. It is intuitively easy to see that an attacker who knows
that the key is always 3, or infers it by seeing a num-
ber of plaintext/ciphertext pairs, clearly has an advantage
over an attacker in a system where the key is chosen ran-
domly from 1 to 26. In a system with a large key space,
the key generation function can help to formally express
the security of the cryptosystem by quantifying the a pri-
ori uncertainty the attacker has about the decryption key.
In some implemented systems, key generation is left to
the user, but this can be problematic because users are a
bad source of randomness, and therefore this effectively
reduces the size of the key space.

P1: GPB Final Pages

Encyclopedia of Physical Science and Technology EN004M-843 June 8, 2001 15:37

64 Cryptography

B. Goals of Cryptosystems: What Cryptography
Can and Cannot Provide

Cryptography can be used to provide a variety of security-
related properties. We will use the term “message” to refer
either to a message or any other kind of data, either in
transit or stored. Cryptography is often used to provide
the following important properties.

Confidentiality: protects the contents of data from being
read by unauthorized parties.

Authentication: allows the recipient of a message to pos-
itively determine the identity of the sender.

Integrity: ensures the recipient that a message has not
been altered from its original contents.

Nonrepudiation: allows the recipient of a message to
prove to a third party that the sender sent the
message.

There are a number of additional security-related prop-
erties that cryptography does not directly provide, but for
which cryptography can be part of a solution. These in-
clude anonymous communication, in which the receiver
of a message is prevented from learning the identity of
the sender; fair exchange, in which Alice should receive
a valid message from Bob if and only if Bob receives a
valid message from Alice; privacy from spam (unwanted
bulk electronic mail); preventing the recipient of a mes-
sage from further distributing the message; and protection
against message traffic analysis.

Although cryptography is an important tool in securing
computer systems, it alone is not sufficient. Even if a strong
cryptosystem is used to authenticate users of a computer
system before allowing them access, this authentication
procedure can be easily subverted if there are other ways
for attackers to access the system, whether through mis-
takenly installed, poorly configured, or just plain buggy
software.

II. ATTACKS ON CRYPTOGRAPHIC
SYSTEMS

It is generally assumed that an attacker on a cryptographic
system knows everything about the specification of the
system: that is, the key generation function, the encryp-
tion function, and the decryption function. Thus, the se-
curity of the system depends only on the fact that the at-
tacker does not know the key, and on the degree to which
the ciphertexts produced by the system hide the keys and
plaintexts that were used. This is called Kerckhoff’s prin-
ciple, named for Auguste Kerckhoff who advocated it in
a book he wrote in 1883. While the attacker may not in
fact always know this much information, it is a conser-

vative assumption and avoids “security by obscurity,” or
basing security on the assumption that the attacker does
not know the encryption function. Captured equipment or
documentation have frequently played a role in the break-
ing of military ciphers. In the industrial world, disgruntled
employees can often be induced to reveal which ciphers
their employers’ systems use. If a cryptosystem is imple-
mented in widely distributed software, the algorithm will
almost certainly be discovered by reverse engineering, as
happened with the RC4 cryptosystem, or leaked, as hap-
pened with the A5 cryptosystem. In practice, security by
obscurity often turns out not to be security at all because
cryptosystems that have not withstood public scrutiny are
far more likely to have flaws in their design than those
that were heavily scrutinized. Due to these factors, secu-
rity by obscurity is generally frowned on by the scientific
community.

In addition to knowing the specification of the system,
an attacker may also know some additional information,
such as what kinds of messages will be encrypted. The
attacker may also have access to some pairs of plaintext
and their corresponding ciphertexts, possibly chosen by
the attacker.

A. Types of Attacks and Attackers

There are a number of types of attacks and attackers. One
measurement of an attack is how much the attacker is
able to learn, described here from weakest to strongest as
categorized by Lars Knudsen.

Information deduction: The attacker learns partial in-
formation about the plaintext of an intercepted ci-
phertext or about the secret key.

Instance deduction: The attacker learns the plaintext of
an intercepted ciphertext.

Global deduction: The attacker discovers an alternate al-
gorithm for deciphering ciphertexts without the se-
cret key.

Total break: The attacker learns the secret key.

In both global deductions and total breaks, the attacker
can then decrypt any ciphertext.

The attacker may have different messages available to
analyze in mounting an attack, again described from weak-
est to strongest.

Ciphertext-only attack: the attacker has access to a
number of ciphertexts.

Known-plaintext attack: the attacker has access to a
number of plaintext/ciphertext pairs.

Chosen-plaintext attack: the attacker can choose a num-
ber of plaintexts and learn their ciphertexts.

Adaptive chosen-plaintext attack: a chosen-plaintext
attack in which the attacker can choose which

P1: GPB Final Pages

Encyclopedia of Physical Science and Technology EN004M-843 June 8, 2001 15:37

Cryptography 65

plaintext message to see the ciphertext of next
based on all the messages he has seen so far.

Chosen-ciphertext attack: the attacker can choose a
number of ciphertexts and learn their plaintexts.

Adaptive chosen-ciphertext attack: a chosen-cipher-
text attack in which the attacker can choose which
ciphertext message to see the plaintext of next
based on all the messages he or she has seen so far.

In the types of attacks just described, it is usually as-
sumed that all the ciphertexts were generated with the
same encryption key. In addition, some cryptosystems
are susceptible to related-message and related-key attacks,
in which the attacker has access to ciphertexts or plain-
text/ciphertext pairs for keys or plaintext messages with
certain known relationships.

One measure of the practicality of an attack is the num-
ber and type of ciphertexts or plaintext/ciphertext pairs it
requires. Other measures include the computational com-
plexity, also called the work factor, and the storage re-
quirements of the attack.

In the case that encryption is being used to provide prop-
erties other than just secrecy, there are additional types of
attacks. For example, if encryption is being used to provide
authentication and integrity through digital signatures, an
attacker may attempt to forge signatures. As above, suc-
cessful attacks can range from an existential forgery, in
which one signed message is forged, to a total break, and
attacks can use any number and type of signed messages.

Cryptanalysis describes attacks that directly attack the
cryptosystem itself. The main two classes of cryptanalytic
attacks, described below, are brute force attacks and struc-
tural attacks. We also describe some non-cryptanalytic
attacks.

B. Brute Force Attacks

Brute force attacks are ciphertext-only attacks or known-
plaintext attacks in which the decryption algorithm is used
as a “black box” to try decrypting a given ciphertext with
all possible keys until, in the case of a ciphertext-only
attack, a meaningful message is found (if here is a way
to determine in the context under attack whether a mes-
sage is “meaningful”), or in the case of known-plaintext
attacks, until the ciphertext decrypts to the corresponding
plaintext. On average, a brute force will have to check half
the key space before finding the correct key. While such
attacks are exponential in the length of the key, they can be
successfully carried out if the key space is small enough.

C. Structural Attacks

Brute force attacks simply use then encryption algorithm
as a black box. It is often possible to mount more effi-

cient attacks by exploiting the structure of the cipher. For
example, in attacking the alphabetic substitution cipher,
an efficient attacker makes use of the fact that different
occurrences of the same letter is always substituted by the
same substitute. More examples of structural attacks are
given in the discussion of current cryptosystems.

D. Non-Cryptanalytic Attacks

When strong cryptographic systems with sufficiently long
key lengths are used, brute force and other cryptanalytic
attacks will not have a high probability of success. How-
ever, there a number of attacks that exploit the implemen-
tation and deployment of cryptosystems that can be tried
instead and indeed are often successful in practice. These
attacks usually have the goal of learning a user’s secret
key, though they also may be carried out only to learn a
particular plaintext message. As in the case of cryptana-
lytic attacks, the attacker may or may not have access to
plaintext/ciphertext pairs.

1. Social Attacks

Social attacks describe a broad range of attacks that use
social factors to learn a user’s secret key. These range from
attempting to guess a secret key chosen by a user by using
information known about the user to calling a user on
the telephone pretending to be a system administrator and
asking to be given information that will allow the attacker
to gain access to the user’s private keys. Alternately, the
target of a social attack can be the contents of a particular
sensitive message, again by fooling the sender or recipient
into divulging information about it. Bribery and coercion
are also considered social attacks. The best defense against
social attacks is a combination of user education and legal
remedies.

2. System Attacks

System attacks are attacks in which an attacker attempts
to gain access to stored secret keys or stored unencrypted
documents by attacking through non-cryptographic means
the computer systems on which they are stored. Common
ways that this is done are:

� Exploiting known, publicized holes in common
programs such as sendmail or World Wide Web
browsers.

� Computer viruses (usually distributed through e-mail).
� Trojan horse programs (usually downloaded from the

Web by unsuspecting users).

In many cases, there are existing and easily available tools
to carry out these types of attacks.

P1: GPB Final Pages

Encyclopedia of Physical Science and Technology EN004M-843 June 8, 2001 15:37

66 Cryptography

Edward Felten and others have described a number of
strong attacks that are partially system attacks and partially
social attacks, in which they take advantage of certain
features in the way systems such as Web browsers are
designed, combined with expected user behavior.

The best defenses against system attacks are prevention,
detection, and punishment, achieved by a combination of
good system administration, good firewalls, user educa-
tion, and legal remedies.

3. Timing Attacks

Timing attacks were publicized by Paul Kocher in 1996.
They attack the implementation of cryptosystems by mea-
suring observable differences in the timing of the algo-
rithm based on the particular value of the key. They then
use statistical methods to determine the bits of key by
observing many operations using the same key. Timing
attacks typically require a significant number of chosen
ciphertexts.

Related attacks can use any measure of differences in
the performance of the encryption and decryption func-
tions such as power consumption and heat dissipation.

Timing attacks and related attacks can be protected
against to some degree by “blinding” the devices perform-
ing encryption and decryption computations so that all
computations have the same performance, regardless of
the particular key and message being used. However, this
can have a substantial performance cost, as it requires all
computations to have worst-case performance. Such at-
tacks can also be protected against by designing systems
so that they will not act as an “oracle” by decrypting and re-
turning all and any messages that come their way, thereby
preventing an attacker from obtaining the necessary data
to carry out the attack. However, this is not always possible
without interfering with the purpose of the system.

III. DESIGN AND USE OF
CRYPTOGRAPHIC SYSTEMS

A good cryptosystem should satisfy several properties.
It must be efficient to perform encryption and decryp-
tion, the encryption and decryption algorithms should be
easy to implement, and the system should be resistant to
attacks. Earlier, Kerckhoff’s principle was noted, it says
that the security of a cryptosystem should depend only on
the secrecy of the secret key.

A. Provable Versus Heuristic Security

In some cases, it is possible to actually prove that a cryp-
tosystem is secure, usually relative to certain hardness

assumptions about the difficulty of breaking some of its
components. In other cases, the security of a cryptosystem
is only heuristic: the system appears to be secure based on
resistance to known types of attacks and scrutiny by ex-
perts, but no proof of security is known. While provable
security is certainly desirable, most of today’s cryptosys-
tems are not in fact provably secure.

B. Confusion and Diffusion

Two important properties that can be used to help in
guiding the design of a secure cryptosystem, identified
by Claude Shannon in 1949, are confusion and diffusion.
Confusion measures the complexity of the relationship be-
tween the key and the ciphertext. Diffusion measures the
degree to which small changes in the plaintext have large
changes in the ciphertext.

For example, substitution creates confusion, while
transpositions create diffusion. While confusion alone
can be enough for a strong cipher, diffusion and confusion
are most effective and efficient when used in conjunction.

C. Modes of Encryption

A block cipher encrypts messages of a small, fixed size,
such as 128 bits. A stream cipher operates on a message
stream, encrypting a small unit of data, say a bit or byte, at
a time. While stream ciphers can be designed from scratch,
it is also possible to use a block cipher as a stream cipher,
as we will see below.

To encrypt a large message or data file using a block
cipher, it must first be broken into blocks. A mode of en-
cryption describes how the block cipher is applied to dif-
ferent blocks, usually by applying some sort of feedback
so that, for example, repeated occurrences of the same
block within a message do not encrypt to the same ci-
phertext. The main modes of block cipher encryption are
electronic codebook mode (ECB), cipher block chaining
mode (CBC), cipher feedback mode (CFB), output feed-
back mode (OFB), and counter mode (CTR).

1. Electronic Codebook Mode (ECB)

In electronic codebook mode, the block cipher is applied
independently (with the same key) to each block of a
message. While this is the easiest mode to implement,
it does not obscure the existence of repeated blocks of
plaintext. Furthermore, if an attacker can learn known
plaintext/ciphertext pairs, these will allow him or her to
decrypt any additional occurrences of the same block.
Additionally, the attacker can replay selected blocks of
previously sent ciphertexts, and an attacker may be able
to use collected ciphertext blocks to replace blocks of a

P1: GPB Final Pages

Encyclopedia of Physical Science and Technology EN004M-843 June 8, 2001 15:37

Cryptography 67

new ciphertext message and change its meaning. For ex-
ample, a lucky attacker might be able to change an elec-
tronic funds transfer to a different amount or a different
payee.

The other modes discussed as follows avoid this prob-
lem by incorporating some feedback that causes different
occurrences of the same plaintext block to encrypt to dif-
ferent ciphertexts.

2. Cipher Block Chaining Mode (CBC)

In cipher block chaining mode, the plaintext of a block is
combined with the ciphertext of the previous block via an
exclusive or (xor) operation, and the result is encrypted.
The result is the ciphertext of that block, and will also be
used in the encryption of the following block. An initial-
ization vector (IV) acts as the “previous ciphertext block”
for the first plaintext block. The initialization vector can
be made public (i.e., can be sent in the clear along with the
ciphertext), but ideally should not be reused for encryption
of different messages to avoid having the same ciphertext
prefix for two messages with the same plaintext prefix.

Decryption reverses the process. The first block of ci-
phertext is decrypted and then xored with the initialization
vector; the result is the first plaintext block. Subsequent
ciphertext blocks are decrypted and then xored with the
ciphertext of the previous block.

One concern in feedback modes is synchronization af-
ter transmission errors. Cipher block chaining is self-
synchronizing: a transmission error in one block will result
in an error in that block and the following block, but will
not affect subsequent blocks.

Plaintext block chaining is also possible.

3. Cipher Feedback Mode (CFB)

Cipher feedback mode allows a block cipher with block
size n bits to be used as a stream cipher with a data en-
cryption unit of m bits, for any m ≤ n.

In CFB mode, the block cipher operates on a register of
n bits. The register is initially filled with an initialization
vector. To encrypt m bits of data, the block cipher is used
to encrypt the contents of the register, the leftmost m bits
of the result are xored with the m bits of data, and the result
is m bits of ciphertext. In addition, the register is shifted
left by m bits, and those m ciphertext bits are inserted in
the right-most m register bits to be used in processing the
next m bits of plaintext.

Decryption reverses the process. The register initially
contains the initialization vector. To decrypt m bits of ci-
phertext, the block cipher is used to encrypt the contents
of the register, and the resulting leftmost m bits are xored
with the m ciphertext bits to recover m plaintext bits. The
m ciphertext bits are then shifted left into the register.

Note that the encryption function of the block cipher is
used in encryption and decryption of CFB mode, and the
decryption function of the block cipher is not used at all.

As in CBC mode, an initialization vector is needed
to get things started, and can be made public. In CBC
mode, however, the initialization vector must be unique
for each message encrypted with the same key, or else
an eavesdropper can recover the xor of the corresponding
plaintexts.

A single transmission error in the ciphertext will cause
an error in n/m + 1 blocks as the affected ciphertext
block is shifted through the register, and then the system
recovers.

4. Output Feedback Mode (OFB)

Output feedback mode is similar to CFB mode, except that
instead of the leftmost m bits of the ciphertext being shifted
left into the register, the leftmost m bits of the output of
the block cipher are used. As in CBC mode, encryption
proceeds by encrypting the contents of the register using
the block cipher and xoring the leftmost m bits of the result
with the current m plaintext bits. However, OFB mode
introduces insecurity unless m = n. As with CFB mode,
The initialization vector can be made public and must be
unique for each message encrypted with the same key.

In OFB mode, the key stream—the sequences of m bits
that will be xored with the plaintext (by the sender) or
the ciphertext (by the receiver)—depend only on the ini-
tialization vector, not on the plaintext or the ciphertext.
Hence OFB mode has the efficiency advantage that, pro-
vided the sender and receiver agree in advance about what
initialization vector their next message will use, the key
stream can be computed in advance, rather than having to
be computed while a message is being encrypted or de-
crypted. Since xor is a much more efficient operation than
most block ciphers, this can be a substantial gain in the
time between the receipt of an encrypted message and its
decryption.

In OFB mode, the key must be changed before the key
stream repeats, on average after 2m − 1 bits are encrypted
if m = n.

5. Counter Mode (CTR)

Counter mode is similar in structure to the feedback
modes, CFB and OFB, except that the register contents
are determined by a simple counter modulo 2m , or some
other method for generating unique registers for each ap-
plication of the block cipher. As in OFB mode, the key
stream can be computed in advance. Despite the apparent
simplicity of CTR mode, it has been shown to be in some
sense at least as secure as CBC mode.

P1: GPB Final Pages

Encyclopedia of Physical Science and Technology EN004M-843 June 8, 2001 15:37

68 Cryptography

IV. SYMMETRIC KEY CRYPTOGRAPHY

Traditionally, all cryptography was symmetric key cryp-
tography. In a symmetric key cryptosystem, the encryption
key KE and the decryption key K D are the same, denoted
simply by K . The key K must be kept secret, and it is also
important that an eavesdropper who sees repeated encryp-
tions using the same key can not learn the key. The simple
substitution cipher described earlier is an example of a
symmetric key cryptosystem.

A. The One-Time Pad

Invented by Gilbert Vernam and Major Joseph Mauborgne
in 1917, the one time pad is a provably secure cryptosys-
tem. It is also perfectly secure, in the sense that the proof
of security does not depend on any hardness assumptions.
In the one-time pad, the message space M can be the
set of all n-bit strings. The space of keys and cipher-
texts are also the set of all n-bit strings. The key gen-
eration function chooses an n-bit key uniformly at ran-
dom. Given a message M and a key K , the encryption
Enc(M, K) = M ⊕ K , the xor of M and K . The decryp-
tion of a ciphertext C is Dec(C, K) = C ⊕ K . It fol-
lows that Dec(Enc(M, K), K) = (M ⊕ K) ⊕ K = M ⊕
(K ⊕ K) = M .

A given ciphertext C can correspond to any plaintext
message M , specifically when the key is K = M ⊕ C .
Hence, since the K is random and is never reused, it is
impossible to learn anything about M from C without the
secret key. That is, the one-time pad is perfectly secure.

One-time pads are impractical in most settings because
the secret key must be as long as the message that is to
be sent and cannot be reused. If the key is reused for
two different messages M and M ′, then the corresponding
ciphertexts can be xored to learn M ⊕ M ′. If additional
information is known about the plaintexts, such as they are
English text, or that it is a bit string with a fixed header, this
is usually sufficient to reveal M and M ′, which in turn also
reveals the key K . Nonetheless, if it is possible to exchange
a sufficiently long random key stream in advance, which
can then be used to encrypt messages until it runs out, the
one-time pad still can be useful.

B. Pseudorandom Number Generators

A pseudorandom number generator is a function that takes
a short random seed and outputs a longer bit sequence
that “appears random.” To be cryptographically secure,
the output of a pseudorandom number generator should be
computationally indistinguishable from a random string.
In particular, given a short prefix of the sequence, it should
be computationally infeasible to predict the rest of the se-

quence without knowing the seed. Many so-called random
number generators, such as those based on linear feed-
back shift registers (LFSR) or linear congruences, are not
cryptographically secure, as it is possible to predict the
sequence from a short prefix of the sequence. Despite the
fact that LFSRs are not secure, a large number of stream
ciphers have been developed using them. Most of these
have themselves since been shown to be insecure.

The secure Blum–Blum–Shub generator, developed by
Lenore Blum, Manuel Blum, and Michael Shub in 1986,
is based on the believed computational difficulty of distin-
guishing quadratic residues modulo n from certain kinds
of nonquadratic residues modulo n.

A cryptographically secure pseudorandom number gen-
erator can be used to make a stream cipher by using the
seed as a key and treating the generator output as a long
key for a pseudorandom one-time pad.

C. Data Encryption Standard (DES)

The Data Encryption Standard (DES) was issued by the
United States National Bureau of Standards (NBS) in 1977
as a government standard to be used in the encryption of
data. The DES algorithm is based on a cryptosystem called
Lucifer that was proposed to the NBS by the IBM Corpora-
tion. The standard includes the data encryption algorithm
itself, as well as instructions for its implementation in
hardware and an order for U.S. federal government agen-
cies to use it for protection of sensitive but non-classified
information. Since its initial standardization, DES was
heavily used for encryption both for government and non-
government applications, both in the United States and
elsewhere. Although its key length is short enough to now
be susceptible to brute force attacks, DES lived a long
lifetime and served its function well.

DES is a block cipher with a 56-bit key and 64-bit
blocks. DES is an example of a Feistel cipher, so named
for one of its designers, Horst Feistel. In the Feistel struc-
ture, encryption proceeds in rounds on an intermediate
64-bit result. Each round divides the intermediate result
into a left half and a right half. The right half then un-
dergoes a substitution followed by a permutation, chosen
based on the key and the round. This output is xored with
the left half to make the right half of the next interme-
diate result; the right half of the old intermediate result
becomes the left half of the new intermediate result. In
DES, there are 16 such rounds. An initial permutation of
the plaintext is performed before the first round, and the
output from the last round is transformed by the inverse
permutation before the last round. This structure has the
advantage that the encryption and decryption algorithms
are almost identical, an important advantage for efficient
hardware implementations.

P1: GPB Final Pages

Encyclopedia of Physical Science and Technology EN004M-843 June 8, 2001 15:37

Cryptography 69

As approved as a standard, DES can be used in any of
ECB, CBC, CFB, and OFB modes of encryption.

1. Stronger Variants of DES

Although the key length of DES is now short enough to be
susceptible to brute force attacks, there are variants of DES
that effectively have a longer key length. It is important to
note that even though these constructions are more resis-
tant to brute force attacks, it is theoretically possible that
they are more susceptible to structural attacks. However,
no structural attacks are known on the two constructions
presented here that are more efficient than structural at-
tacks on DES itself.

a. Triple-DES. Triple-DES uses two DES encryption
keys, K1 and K2. The triple-DES encryption C of a plain-
text block M is

C = Enc(Dec(Enc(M, K1), K2), K1),

where Enc and Dec denote regular DES encryption and
decryption. Decryption is

M = Dec(Enc(Dec(C, K1), K2), K1).

The reason for the encrypt/decrypt/encrypt pattern is for
compatibility with regular DES: triple-DES with K1 = K2

is identical to regular DES. With independently chosen
keys, triple-DES has an effective key length of 128 bits.

b. DESX. DESX, suggested by Ronald Rivest, has
an effective key length of 184 bits, and is much more
efficient that triple-DES because it only requires a single
DES encryption. In DESX, K is a 56-bit key and K1 and
K2 are 64-bit keys. The DESX encryption C of a plaintext
block M is

C = K2 ⊕ Enc(K1 ⊕ M, K),

where Enc denotes regular DES encryption. Decryption is

M = K1 ⊕ Dec(K2 ⊕ C, K).

DES compatibility is obtained by taking K1 = K2 = 0. Joe
Kilian and Phillip Rogaway proved that the DESX con-
struction is sound, in that it is in fact more resistant to
brute force attacks than DES.

2. Brute Force Attacks on DES

Even at the time of DES’s standardization, there was some
concern expressed about the relatively short key length,
which was shortened from IBM’s original proposal. Given
a ciphertext/plaintext pair, or from several ciphertexts and
a notion of a meaningful message, a brute force attack

would on average need to try 255 keys before finding the
right key.

Since its introduction, a number of estimates have been
given of the cost and speed of doing a brute force DES
attack, and a handful of such attacks have actually been
performed. Since computers tend to double in speed and
halve in price every 18 months, both the cost and the time
of these attacks has steadily declined. Furthermore, since
DES key search is completely parallelizable, it is possi-
ble to find keys twice as fast by spending twice as much
money.

When DES was standardized, Whitfield Diffie and
Martin Hellman estimated that it would be possible to
build a DES-cracking computer for $20 million that would
crack a DES key in a day. In 1993, Michael Wiener
designed on paper a special purpose brute force DES-
cracking computer that he estimated could be built for $1
million and would crack an average DES key in about
three and a half hours. In 1997, Wiener updated his analy-
sis based on then-current computers, estimating that a $1
million machine would crack keys in 35 minutes.

In 1998, the Electronic Frontier Foundation (EFF) ac-
tually built a DES-cracking computer, at the cost of
$200,000, consisting of an ordinary personal computer
with a large array of custom-designed chips. It cracks a
DES key in an average of four and a half days.

3. Differential and Linear Cryptanalysis of DES

a. Differential cryptanalysis. In 1990, Eli Biham
and Adi Shamir introduced differential cryptanalysis, a
chosen-plaintext attack for cryptanalyzing ciphers based
on substitutions and permutations. Applied to DES, the
attack is more efficient than brute force, but it is a largely
theoretical attack because of the large number of chosen
plaintexts required. As compared to brute force, which re-
quires a single known plaintext/ciphertext pair and takes
time 255, differential cryptanalysis requires 236 chosen
plaintext/ciphertext pairs and takes time 237.

Differential cryptanalysis operates by taking many pairs
of plaintexts with fixed xor difference, and looking at the
differences in the resulting ciphertext pairs. Based on these
differences, probabilities are assigned to possible keys.
As more pairs are analyzed, the probability concentrates
around a smaller number of keys. One can continue until
the single correct key emerges as the most probable, or
stop early and perform a reduced brute force search on the
remaining keys.

Since the publication of differential cryptanalysis, Don
Coppersmith, one of DES’s designers at IBM, revealed
that the DES design team in fact knew about differen-
tial cryptanalysis, but had to keep it secret for reasons
of national security. He also revealed that they chose the

P1: GPB Final Pages

Encyclopedia of Physical Science and Technology EN004M-843 June 8, 2001 15:37

70 Cryptography

specific substitution and permutation parameters of DES
to provide as much resistance to differential cryptanalysis
as possible.

b. Linear cryptanalysis. Linear cryptanalysis was
invented by Mitsuru Matsui and Atsuhiro Yamagishi in
1992, and applied by Matsui to DES in 1993. Like dif-
ferential cryptanalysis, linear cryptanalysis also requires
a large number of plaintext/ciphertext pairs. Linear crypt-
analysis uses plaintext/ciphertext pairs to generate a linear
approximation to each round, that is, a function that ap-
proximates the key for each round as an xor of some of
the rounds input bits and output bits. An approximation
to DES can be obtained by combining the 16 1-round ap-
proximations. The more plaintext/ciphertext pairs that are
used, the more accurate the approximation will be. With
243 plaintext/ciphertext pairs, linear cryptanalysis requires
time 213 and has success probability .85 of recovering the
key.

D. Advanced Encryption Standard

In 1997, the United States National Institute of Standards
(NIST) began the process of finding a replacement for
DES. The new advanced encryption standard (AES) would
need to be an unpatented, publicly disclosed, symmetric
key block cipher, operating on 128 bit blocks, and sup-
porting key sizes of 128, 192, and 256 bits, large enough
to resist brute force attacks well beyond the foreseeable
future. Several candidates were submitted, and were con-
sidered for security, efficiency, and ease of implementa-
tion. Fifteen submitted algorithms from twelve countries
were considered in the first round of the selection process,
narrowed to five in the second round. On October 2, 2000,
NIST announced that it had selected Rijndael, a block
cipher developed by Belgian cryptographers Joan Dae-
men and Vincent Rijmen, as the proposed AES algorithm.
Rijndael was chosen for its security, performance, effi-
ciency, implementability, and flexibility. Before Rijndael
can actually become the standard, it must first undergo a
period of public review as a Draft Federal Information Pro-
cessing Standard (FIPS) and then be officially approved
by the United States Secretary of Commerce. This process
is expected to be completed by the middle of 2001.

The Rijndael algorithm supports a variable key size and
variable block size of 128, 192, or 256 bits, but the standard
is expected to allow only block size 128, and key size 128,
192, or 256. Rijndael proceeds in rounds. For a 128-bit
block, the total number of rounds performed is 10 if the
key length is 128 bits, 12 if the key length is 192 bits, and
14 if the key length is 256 bits.

Unlike the Feistel structure of DES, Rijndael’s rounds
are divided into three “layers,” in each of which each bit

of an intermediate result is treated in the same way. (In
contrast, the left half and the right half of intermediate
results are treated differently in each round of a Fiestel ci-
pher.) The layered structure is designed to resist linear and
differential cryptanalysis, and consists of the following.

� Linear mixing layer: adds diffusion.
� non-Linear layer: adds confusion.
� Key addition layer: adds feedback between rounds by

xoring a current round key with an intermediate
encryption result.

The Rijndael algorithm considers bytes as elements of
the finite field GF(28), represented as degree 8 polyno-
mials. For example, the byte with decimal representation
105, or binary representation 01101001, is represented as

x6 + x5 + x3 + 1.

The sum of two such elements is the polynomial obtained
by summing the coefficients modulo 2. The product of
two such elements is the multiplication of the polynomial
modulo the irreducible polynomial

m(x) = x8 + x4 + x3 + 1.

Let b be the block length in bits. Throughout the en-
cryption process, a matrix of bytes containing containing
a partial result is maintained. It is called the State, and has
b/32 columns and four rows. The State initially consists
of a block of plaintext, written “vertically” into the arrays,
column by column. At the end, the ciphertext for the block
will be taken by reading the State in the same order.

A diagram illustrating the structure of a round is given
in Fig. 2. Each round (except the last) consists of four
transformations on the State.

ByteSub: This is the non-linear layer. The ByteSub trans-
formation consists of a non-linear byte substitution op-
erating independently on each of the bytes of the State.
The substitution is done using an “S-box” determined
by taking for each element its inverse element in GF(28)
followed by some additional algebraic operations. The
resulting S-box satisfies several properties including
invertibility, minimization of certain kinds of corre-
lation to provide resistance to linear and differential
cryptanalysis, and simplicity of description. In an im-
plementation, the entire S-box can either be calculated
once and stored as a table, or S-box transformations
can be calculated as needed.

ShiftRow: Together, the ShiftRow transformation and
the MixColumn operation are the linear mixing layer.
The ShiftRow transformation cyclically shifts each
rows of the State. For 128-bit blocks, the first row is
not shifted, the second row is shifted left by 1 byte,

P1: GPB Final Pages

Encyclopedia of Physical Science and Technology EN004M-843 June 8, 2001 15:37

Cryptography 71

FIGURE 2 A round of Rijndael. (Illustration by John Savard.)

the third row is shifted by 2 bytes, and the last row
shifted by 3 bytes.

MixColumn: In the MixColumn transformation, each
column of the State is considered as the coefficients of a
degree 4 polynomial over GF(28), which is then multi-
plied by the fixed polynomial c(x) = 3x3 + x2 + x + 2
modulo x4 + 1, where the sum and products of coeffi-
cients are as described above.

AddRoundKey: This is the key addition layer. In the Ad-
dRoundKey transformation, the State is transformed by
being xored with the Round Key, which is obtained as
follows. Initially, the encryption key is expanded into a
longer key using a Key Expansion transformation. Each
AddRoundKey uses the next b bits of the expanded key
as its Round Key.

The final round eliminates the MixColumn transforma-
tion, consisting only of ByteSub, ShiftRow, and Ad-
dRoundKey. This is done to make decryption more struc-
turally similar to encryption, which is desirable for ease
of implementation. An additional AddRound-Key is per-
formed before the first round.

Decryption in Rijndael consists of inverting each step.
Due to the algebraic properties of Rijndael, the order of
steps does not need to be changed for decryption. In-
vByteSub describes the application of the inverse S-box
calculation. InvShiftRow shifts the rows right instead of

left, by the same offsets as ShiftRow. InvMixColumn re-
places the polynomial by its inverse in GF(28). Since xor
is its own inverse, AddRoundKey remains the same, ex-
cept that in decryption the Round keys must be used in
the reverse order. Hence, Rijndael decryption starts with
an AddRoundKey step, and then operates in rounds con-
sisting of InvByteSub, InvShiftRow, InvMixColumn, and
AddRoundKey, followed by a final round of InvByteSub,
InvShiftRow, and InvMixColumn.

At the time of this writing, encryption modes for AES
are being determined, and will probably consist of ECB,
CBC, CFB, OFB, and counter modes, as well as possibly
others.

V. PUBLIC KEY CRYPTOGRAPHY

The concept of public key cryptography was originally
proposed in 1976 by Whitfield Diffie and Martin Hellman,
and independently by Ralph Merkle. In 1997, Britain’s
Government Communications Headquarters (GCHQ)
released previously classified documents revealing three
British government employees, James Ellis, Clifford
Cocks, and Malcolm Williamson, developed these same
ideas several years earlier, but kept them secret for
reasons of national security. There is some evidence
that the United States’ National Security Agency (NSA)

P1: GPB Final Pages

Encyclopedia of Physical Science and Technology EN004M-843 June 8, 2001 15:37

72 Cryptography

also secretly developed similar ideas as early as the
1960’s.

In public key systems, the encryption key KE , also
called the public key, and the decryption key K D , also
called the secret key, are different from each other. Fur-
thermore, it is computationally infeasible to determine K D

from KE . Therefore, the encryption key can be made pub-
lic. This has two advantages for key management. First,
instead of each pair of users requiring a different secret
key, as in the case of symmetric key cryptography (for
a total of n2 − n encryption keys for n users), each user
can have a single encryption key that all the other users
can use to send her encrypted messages (for a total of n
encryption keys for n users). Second, keys no longer need
to be exchanged privately before encrypted messages can
be sent.

Although the public keys in a public key cryptosys-
tem need not be communicated secretly, they still must
be communicated in an authenticated manner. Otherwise,
an attacker Marvin could try convince Bob into accept-
ing Marvin’s public key in place of Alice’s public key. If
Marvin succeeds, then encrypted messages from Bob to
Alice will actually be readable by Marvin instead of by
Alice. If Marvin has sufficient control over the communi-
cation network, he can even prevent detection by Alice by
intercepting the messages from Bob and then reencrypt-
ing the messages with Alice’s real public key and sending
them to her. In order to avoid such “man-in-the-middle”
attacks, public keys are usually certified by being digitally
signed by other entities.

Assuming that Alice and Bob already know each other’s
public keys, they can communicate privately as follows.
To send her message MA to Bob, Alice encrypts it with
Bob’s public key and sends the resulting ciphertext to Bob.
Bob uses his private key to decrypt the ciphertext and ob-
tain MA. To send his response MB to Alice, Bob encrypts it
with Alice’s public key and sends the resulting ciphertext
to Alice. Alice uses her private key to decrypt the cipher-
text and obtain MB . An eavesdropper who overhears the
ciphertexts does not learn anything about MA and MB

because she does not have the necessary decryption keys.
The fundamental mathematical idea behind public key

cryptosystems are trapdoor one-way functions. A function
is one-way if it is hard to invert it: that is, given a value y it
is computationally infeasible to find x such that f (x) = y.
A one-way function is said to have the trapdoor property
if given the trapdoor information, it becomes easy to in-
vert the function. To use a trapdoor one-way function as
a public key cryptosystem, the one-way function is used
as the encryption algorithm, parametrized by its public
key. The trapdoor information is the secret key. Trapdoor
one-way functions are conjectured, but not proven, to ex-
ist. As such, all known public key cryptosystems are in

fact based on widely believed but unproven assumptions.
The famous and widely believed conjecture in theoretical
computer science, P = NP, is a necessary but not suffi-
cient condition for most of these assumptions to be true.
It is an active area of research in public key cryptography
to determine minimal assumptions on which public key
cryptosystems can be based.

The earliest proposed public key systems were based on
NP-complete problems such as the knapsack problem, but
these were quickly found to be insecure. Some variants
are still considered secure, but are not efficient enough
to be practical. The most widely used public key cryp-
tosystems, the RSA and El Gamal systems, are based on
number theoretic and algebraic properties. Some newer
systems are based on elliptic curves and lattices. Recently,
Ronald Cramer and Victor Shoup developed a public key
cryptosystem that is both practical and provably secure
against adaptive chosen ciphertext attacks, the strongest
kind of attack. The RSA system is described in detail
below.

A. Using Public Key Cryptosystems

1. Hybrid Systems

Since public key cryptosystems are considerable less ef-
ficient than comparably secure symmetric key systems,
public key cryptosystems are almost always used in con-
junction with symmetric key systems, called hybrid sys-
tems. In a hybrid system, when Alice and Bob are initiating
a new communication session, they first use a public key
cryptosystem to authenticate each other and privately ex-
change a new symmetric key, called a session key. For
the remainder of the session, they use the symmetric ses-
sion key to encrypt their messages. Hybrid systems enjoy
the key management benefits of public key cryptography,
most of the efficiency benefits of symmetric key cryptog-
raphy, as well as gaining additional security from the use
of a frequently changing session key.

2. Probabilistic Encryption

It is crucial to the security of a public key cryptosystem that
messages are somehow randomized before encryption. To
see this, suppose that encryption were deterministic and
that an attacker knows that an encrypted message sent to
Alice is either “Yes” or “No,” but wants to learn which.
Since Alice’s public key KE is public, the attacker can
simply compute Enc(“Yes”, KE) and Enc(“No”, KE) to
see which one actually corresponds to the ciphertext.

To avoid this problem, Shafi Goldwasser and Silvio
Micali introduced probabilistic encryption. In probabilis-
tic encryption, the encryption function is randomized

P1: GPB Final Pages

Encyclopedia of Physical Science and Technology EN004M-843 June 8, 2001 15:37

Cryptography 73

rather than deterministic, and ciphertexts of one message
should be computationally indistinguishable from cipher-
texts of another message. The same plaintext will encrypt
to different ciphertexts if different randomization is used,
so an attacker who performs trial encryptions as above
will only get the same result as the sender of a message
if he also used the same randomness. Provably secure
probabilistic encryption schemes have been developed
based on the Blum–Blum–Shub pseudorandom number
generator.

In practice, randomization is achieved by randomly
padding the plaintext before encryption, which is then re-
moved as part of decryption. However, this padding must
be done carefully, as there have been attacks that success-
fully exploit padding.

3. Digital Signatures

Some public key cryptosystems can be used to digitally
sign messages. Here, the private key is used to sign the
message by applying the Dec function. The signature is
appended to the plaintext message. Anyone can verify Al-
ice’s signature on a document by applying the Enc function
with her public key to the signature part of the message
and checking that the result matches the plaintext. If the
public key system is secure, digital signatures provide the
following.

� Authenticity: only Alice knows her private key and
could create the signature.

� Integrity: if the plaintext is changed in transit, the
signature will not match.

� Non-repudiation: a third party who knows Alice’s
public key can also verify that the signature is Alice’s.

Unlike handwritten signatures, digital signatures are a
function of the document they sign, so it is not possible to
undetectably copy the signature from one document onto
another.

If Alice and Bob wish to communicate using both en-
cryption and digital signatures, Alice signs messages with
her private signature key then encrypts with Bob’s public
encryption key. Bob decrypts with his private decryption
key and then checks the digital signature using Alice’s
public signature verification key. If the encryption and de-
cryption functions are commutative, as in the case with
RSA, the same key pair could be used for both encryp-
tion and signatures. However, this is not recommended
as it unnecessarily creates scenarios that provide chosen
ciphertext and/or chosen plaintext to a potential attacker.

Since public key operations are expensive, often a hash
function—a cryptographic compression function—is ap-
plied to a long message or file before it is signed. In this

case, the signature consists of plaintext appended to the
signature of the hash. The signature is verified by apply-
ing the hash to the plaintext and applying the decryption
function to the signature, and checking whether these two
results are identical.

Some public key systems, such as the Digital Signature
Algorithm (DSA), can only be used for digital signatures,
and not for encryption.

B. RSA

The first concrete public key system proposed with a secu-
rity that has withstood the test of time was the RSA system,
named for its inventors Ronald Rivest, Adi Shamir, and
Leonard Adleman. RSA is based on the computational dif-
ficulty of factoring the product of large primes. The public
key consists of an n-bit modulus N , which is the product
of two primes p and q each of length n/2 bits, and an ele-
ment e of the multiplicative group �∗

n . N is called the RSA
modulus and e is called the encryption exponent. The de-
cryption exponent is d such that ed = 1 mod φ(n), where
φ(N) = (p − 1)(q − 1) is the Euler totient function. The
private key is the pair 〈N , d〉. Once the public and private
keys have been generated, p and q are no longer needed.
They can be discarded, but should not be disclosed.

Based on the current state of the art for factoring and
other attacks on RSA, current security recommendations
as of 2001 usually stipulate that n should be 1024 bits,
or 309 decimal digits. Although any efficient algorithm
for factoring translates into an efficient attack on RSA,
the reverse is not known to be true. Indeed, Boneh and
Venkatesan have given some evidence that factoring may
be harder than breaking RSA.

Suppose we have a message M that we want to encrypt,
and further suppose that it has already been padded with
appropriate random padding (which is necessary for
security reasons) and represented as an element m ∈ �∗

n .
If M is too large to represent in �∗

n , it must first be
broken into blocks, each of which will be encrypted
as described here. To encrypt the resulting message
m ∈ �∗

n , it is raised to the eth power modulo N , that
is, Enc(m, 〈N , e〉) = me mod N . Decryption is done by
reversing the process: Dec(c, 〈N , d〉) = cd mod N . There-
fore, Dec(Enc(m, 〈N , e〉), 〈N , d〉) = med mod N = m.

1. An RSA Example

We illustrate the use of RSA by an example. Let p = 23 and
q = 31. While these values are much too small to produce a
secure cryptosystem, they suffice to demonstrate the RSA
algorithm. Then n = pq = 713 and

φ(n) = φ(713) = 22 · 30 = 660.

P1: GPB Final Pages

Encyclopedia of Physical Science and Technology EN004M-843 June 8, 2001 15:37

74 Cryptography

The encryption exponent e must be chosen relatively prime
to 660, say e = 97. The decryption exponent is d = e−1

mod φ(n) = 313. It can be found using the extended eu-
clidean algorithm.

To encrypt the plaintext message m = 542, we have

c = me mod 437 = 302.

Note that if we attempt to compute me as an integer first,
and then reduce modulo n, the intermediate result will be
quite large, even for such small values of m and e. For this
reason, it is important for RSA implementations to use
modular exponentiation algorithms that reduce partial re-
sults as they go and to use more efficient techniques such as
squaring and multiply rather than iterated multiplications.
Even with these improvements, modular exponentiation is
still somewhat inefficient, particularly for the large moduli
that security demands. To speed up encryption, the encryp-
tion exponent is often chosen to be of the form 2k + 1, to
allow for the most efficient use of repeated squarings. To
speed up decryption, the Chinese Remainder Theorem can
be used provided p and q are remembered as part of the
private key.

2. Choosing the RSA Parameters
and Attacks Against RSA

Despite a number of interesting attacks on it that have
been discovered over the years, it is still generally believed
secure today provided certain guidelines are followed in its
implementation: the keys are large enough, certain kinds
of keys are avoided, and messages are randomly padded
prior to encryption in a “safe” way.

The key generation function for RSA specfies how
to generate N , e, and d . The usual method is to first
choose p and q , compute N = pq , choose e, and com-
pute d = e−1 mod N . There are several additional steps
left to specify: how are p and q chosen, and how is e cho-
sen. Both steps are influenced by the need to avoid certain
attacks, which are described below. A careful choice of
the RSA parameters proceeds as follows.

1. Choose the modulus size n large enough, and restrict
p and q to be n/2 bits (to avoid factoring attacks).

2. Choose p and q to be “safe” primes of length n/2 (to
avoid re-encryption attacks), and compute N = pq.

3. Choose e large enough (to avoid small public
exponent attacks), either randomly or according to a
specified calculation, and compute d = e−1mod N .

4. If the resulting d is too small, go back to the previous
step and choose a new e and compute a new d (to
avoid small private exponent attacks).

a. Breaking RSA by factoring N. If an attacker can
factor N to obtain p and q, then he or she can compute
φ(N) and use the extended euclidean algorithm to compute
the private exponent d = e−1modφ(N). Since it is easy for
a brute force search algorithm to find small factors of any
integer by trial division, it is clear that p and q should be
taken of roughly equal size.

When RSA was first introduced, the continued fraction
factoring algorithm could factor numbers up to about 50
digits (around 200 bits). Since that time, spurred by the
application of breaking RSA as well as by the inherent
mathematical interest, factoring has been a much stud-
ied problem. By 1990, the quadratic sieve factoring algo-
rithm could routinley factor numbers around 100 digits,
the record being a 116-digit number (385 bits). In 1994,
the quadratic sieve algorithm factored a 129-digit num-
ber (428 bits), and in 1996, the number field sieve algo-
rithm factored a 130-digit number (431 bits)in less than a
quarter of the time the quadratic sieve would have taken.
The general number field sieve algorithm is currently the
fastest factoring algorithm, with a running time less than
e3n1/3 log2/3 n , where n is the length in bits.

At the time of this writing, security experts usually rec-
ommend taking n = 1024 (or 309 decimal digits) for gen-
eral use of RSA. This recommendation usually increases
every five to ten years as computing technology improves
and factoring algorithm become more sophisticated.

b. Re-encryption attacks and safe primes. Gus
Simmons and Robert Morris describe a general attack that
can be applied to any deterministic public key cryptosys-
tem, or as a chosen plaintext attack on any deterministic
symmetric key cryptosystem. Given a ciphertext C , an at-
tacker should re-encrypt C under the same key, re-encrypt
that results, and so forth, until the result is the original
ciphertext C . Then the previous result must be the origi-
nal plaintext M . The success of the attack is determined
by the length of such cycles. Although public key sys-
tems should not be, and are not, generally used without
randomization, it is still desirable to avoid small cycles.
Rivest recommends the following procedure for choosing
safe primes.

1. Select a random n/2-bit number. Call it r .
2. Test 2r + 1, 2r + 3, . . . for primality until a prime is

found. Call it p′′.
3. Test 2p′′ + 1, 4p′′ + 1, . . . for primality until a prime

is found. Call it p′′.
4. Test 2p′ + 1, 4p′ + 1, . . . for primality until a prime is

found. This is p.
5. Repeat steps 1–4 to find q.

P1: GPB Final Pages

Encyclopedia of Physical Science and Technology EN004M-843 June 8, 2001 15:37

Cryptography 75

c. Small public exponent attacks. In order to im-
prove efficiency of encryption, it has been suggested to in-
stead fix e = 3. However, certain attacks have been demon-
strated when either e is too small. The most powerful of
these attacks is based on lattice basis reduction and is due
to Don Coppersmith. Coppersmith’s attack is not a total
break. However, if the public exponent is small enough
and certain relationships between messages are known, it
allows the attacker to succeed in learning the actual mes-
sages. If the encryption key is small enough and some bits
of the decryption key are known, it allows the attacker to
learn the complete decryption key. To avoid these attacks,
it is important that the public exponent is chosen to be suf-
ficiently large. It is still believed secure, and is desirable
for efficiency reasons, to choose e to be of the form 2k + 1
for some k ≥ 16.

d. Small private exponent attacks. An attack of
Michael Wiener shows that if d < (1/3)N 1/4, than attacker
can efficiently recover the private exponent d from the
public key < N , e). The attack is based on continued
fraction approximations.

In addition to the attacks just described that relate to how
the RSA parameters are chosen, there are also a number
of attacks on RSA that relate to how RSA is used. As
mentioned earlier, if the message space is small and no
randomization is used, an attacker can learn the plaintext
of a ciphertext C by encrypting each message in the mes-
sage space and see which one gives the target ciphertext
C . Some additional usage attacks on RSA are described
below. RSA is also susceptible to timing attacks, described
earlier.

e. Bleichenbacher’s padding attack. Daniel
Bleichenbacher showed a adaptive chosen-ciphertext
attack on RSA as implemented in the PKCS1 standard,
which uses the approach of appending random bits
to a short message M before encrypting it to make it
n bits long. In PKCS1, a padded message looks like
this:

02 random pad 00 M ,

which is then encrypted using RSA. The recipient of the
message decrypts it, checks that the structure is correct,
and strips of the random pad. However, some applications
using PKCS1 then responded with an “invalid ciphertext”
message if the initial “02” was not present. Given a target
ciphertext C , the attacker sends related ciphertexts of un-
known plaintexts to the recipient, and waits to see if the
response indicates that the plaintexts start with “02” or
not. Bleichenbacher showed how this information can be
used to learn the target ciphertext C .

This attack demonstrates that the way randomization is
added to a message before encryption is very important.

f. Multiplication attacks. When used for signatures,
the mathematical properties of exponentiation creates the
possibilities for forgery. For example,

Md
1 mod N · Md

2 mod N = (M1 M2)d mod N ,

so an attacker who sees the signature of M1 and M2 can
compute the signature of M1 M2. Similarly, if the attacker
wants to obtain Alice’s signature on a message M that
Alice is not willing to sign, he or she can try to “blind” it
by producing a message that she would be willing to sign.
To do this, the attacker chooses a random r and computes
M ′ = M · re. If Alice is willing to sign M ′, its signature is
Md · r mod N , and the attacker divide by r to obtain the
signature for M .

In practice, signatures are generated on hashes of mes-
sages, rather than the messages themselves, so this attack
is not a problem. Furthermore, it is a useful property for
allowing digital signatures where the signer does not learn
the contents of a message, which can be useful in desig-
ing systems that require both anonymity of participants
and certification by a particular entity, such as anonymous
digital cash systems and electronic voting systems.

g. Common modulus attacks. In a system with
many users, a system administrator might try to use the
same modulus for all users, and give each user their own
encryption and decryption exponents. However, Alice can
use the Chinese Remainder theorem together with her pri-
vate key d to factor the modulus. Once she has done that,
she can invert other users public exponents to learn their
decryption exponents.

VI. KEY DISTRIBUTION AND MANAGEMENT

In order for encryption to protect the privacy of a message,
it is crucial that the secret keys remain secret. Similarly,
in order for a digital signature to protect the authenticity
and integrity of a message, it is important that the sign-
ing key remains secret and that the public key is properly
identified as the public key of the reputed sender. There-
fore is it of paramount importance that the distribution and
management of public and private keys be done securely.

Historically, keys were hand delived, either directly or
through a trusted courier. When keys had to be changed,
replacement keys were also hand delivered. However, this
is often difficult or dangerous, for the very same reasons
that motivated the need for encryption in the first place.
While the initial key may need to be communicated by
hand, it is desirable to use encryption to communicate

P1: GPB Final Pages

Encyclopedia of Physical Science and Technology EN004M-843 June 8, 2001 15:37

76 Cryptography

additional keys, rather than communicating them by hand.
Method to do this are called key exchange protocols, and
are described below.

With public key cryptography, some of the key manage-
ment problems are solved. However, in order for Alice’s
public key to be useful, it is important that others know that
it is her key, and not someone else masquerading as her
for the purpose of receiving her secret messages. Hence,
it is important that the binding between a public key and
an identity is authenticated. Wide-scale methods for do-
ing this are called public key infrastructures, and are also
described below.

A. Key Exchange Protocols

The simplest key exchange protocol would be to use one
secret key for a while, then use it to communicate a new
secret key, and switch to that key. However, this is not a
satisfactory solution because if one key is compromised
(i.e., discovered by an attacker), then all future keys will be
compromised as well. Instead, session keys are commonly
used. A long-term key is exchanged securely (possibly by
hand). A session key protocol is used to generate a short-
term session key that will be used to encrypt messages for
a period of time until the next time the session key protocol
is run. Although exposure of the long-term key still results
in compromise of all session keys, exposure of one session
key does not reveal anything about past or future session
keys. Long-term keys can be chosen to optimize security
over efficiency, since they are only infrequently used, and
long-term keys are less exposed because fewer messages
are encrypted with them. Often the long-term key is the
public key and private key of a public key cryptosystem,
while the session keys are symmetric cryptosystem keys.

B. Diffie–Hellman Key Exchange

Diffie-Hellman key exchange is based on the assumed dif-
ficulty of the discrete logarithm problem modulo a prime
number—that is, that it is difficult to compute z from
gz mod p. Diffie–Hellman allows to parties who have not
previously exchanged any keys to agree on a secret key.
Alice and Bob agree on a prime modulus p and a primitive
element g. Alice picks a random number x and sends

a = gx mod p

to Bob. Similarly, Bob picks a random number y and sends

b = gy mod p

to Alice. Alice then computes bx mod p = gxy mod p and
Bob computes ay mod p = gxy mod p. The computed
value gxy mod p is then used as a secret key.

Assuming that the discrete logarithm problem is com-
putationally infeasible, an attacker overhearing the con-
versation between Alice and Bob can not learn gxymodp.
However, it is subject to the kind of man-in-the-middle
attack discussed earlier.

C. Key Distribution Centers

In a key distribution center (KDC) solution, a key distri-
bution center shares a secret key with all participants and
is trusted to communicate keys from one user to another.
If Alice wants to exchange a key with Bob, she asks the
KDC to choose a key for Alice and Bob to use and send
it securely to each of them. While it may be possible to
have such solutions within a particular business, they do
not scale well to large systems or systems that cross ad-
ministrative boundaries.

D. Public Key Infrastructures

In a public key infrastructure (PKI), any user Alice should
be able to determine the public key of any other user Bob,
and to be certain that it is really Bob’s public key. This
is done by having different entities digitally sign the pair:
〈Bob, KE 〉, consisting of Bob’s identity and public key. In
practice, a certificate will also contain other information,
such as an expiration date, the algorithm used, and the
identity of the signer. Now, Bob can present his certificate
to Alice, and if she can verify the signature and trusts
the signer to tell the truth, she knows KE is Bob’s public
key. As with other key exchange solutions, this is simply
moving the need for secrecy or authentication from one
place to another, but can sometimes be useful.

The two main approaches to building a large-scale
PKI are the hierarchical approach and the “web of trust”
approach. In either model, a participant authenticates
user/key bindings by determining one or more paths of
certificates such that the user trusts the first entity in the
path, certificates after the first are signed by the previous
entity, and the final certificate contains the user/key bind-
ing in question. The difference between the two models is
in the way trust is conveyed on the path.

In the hierarchical model, a certificate is signed by a
certificate authority (CA). Besides a key binding, a CA
certificate authorizes a role or privilege for the certified
entity, by virtue of its status as an “authority” within its
domain. For example, a company can certify its employ-
ees’ keys because it hired those employees; a commercial
certificate authority (CA) can certify its customer’s keys
because it generated them; a government or commercial
CA can certify keys of hierarchically subordinate CAs by
its powers of delegation; government agencies can certify
keys of government agencies and licensed businesses, as
empowered by law; and an international trade bureau can

P1: GPB Final Pages

Encyclopedia of Physical Science and Technology EN004M-843 June 8, 2001 15:37

Cryptography 77

certify government keys by international agreement. An
individual is assumed to know and trust the key of a CA
within its domain. A CA is assumed to know and trust
the key of the CA who certifies its own keys, and it has
a responsibility for accuracy when signing certificates of
a principal in its domain. In summary, the hierarchical
model conveys trust transitively, but only within a pre-
scribed domain of control and authority.

In the web of trust model, individuals act as introduc-
ers, by certifying the keys of other individuals whom they
have personally authenticated. In order for Alice to deter-
mine whether a key KE belongs to Bob, she considers the
signature(s) certifying the binding of KE to Bob, and must
ask whether any of the users who signed Bob certificates
are considered trusted to verify and sign someone else’s
certificate. In other words, trust is not conveyed along the
path of certificates, but rather it is awarded by the user
of the certificate. Belief in the final certificate is possible
only if the user trusts all of the certifying users on a path.

VII. APPLICATIONS OF CRYPTOGRAPHY

Cryptography has found a wide range of applications.
Many cryptographic tools use cryptography to create
building blocks that provide privacy, authentication,
anonymity, and other such properties. In turn, these tools
can be used to create secure applications for users. One
strong and very general tool, called secure multiparty
computation, allows a group of parties each holding a
private input to jointly compute an output dependent on
their private inputs without revealing their private inputs
to each other. Secure multiparty computation can be
used to solve problems like electronic voting, electronic
auctions, and many other such problems.

Cryptography and cryptographic tools are particularly
important for providing security in communications net-
works and on computer systems. Link encryption, which
encrypts along a single link of a communication network,
and end-to-end encryption, which encrypts all the way
from the start to the end of a path in a communication
network, are both used to protect the privacy of messages
in transit. In computer systems, cryptography can be used
to provide access control and prevent unwanted intrud-
ers from reading files, changing files, or accessing other
resources.

Cryptography can also be used to provide important
security properties in electronic commerce. A now famil-
iar example is the use of cryptography to authenticate a
merchant and encrypt a credit card number when buy-
ing goods over the World Wide Web. Cryptography can
also protect the provider of digital content such as music
or video by ensuring that recipients cannot widely redis-
tribute the content without being detected. In the future,
more advanced applications of cryptography in electronic
commerce may be seen, where credit cards are replaced
by digital cash and automated agents securely participate
in auctions on a user’s behalf.

SEE ALSO THE FOLLOWING ARTICLES

COMPUTER ALGORITHMS • COMPUTER NETWORKS •
COMPUTER VIRUSES • SOFTWARE RELIABILITY • WWW
(WORLD-WIDE WEB)

BIBLIOGRAPHY

Boneh, D. (1999). “Twenty years of attacks on the RSA cryptosystem,”
Notices Am. Math. Soc. (AMS), 46(2), 203–213.

Daemen, J., and Rijmen V. (2000). The Block Cipher Rijndael. In “Pro-
ceedings of Smart Card Research and Applications” (CARDIS ’98),
Louvain-la-Neuve, Belgium, September 14–16, 1998, Lecture Notes
in Computer Science, Vol. 1820, Springer, 277–284.

Diffie, W., and Hellman, M. E. (1976). “New directions in cryptography,”
IEEE Trans. Inf. Theory, IT-22(6), 644–654.

(1998). “electronic frontier foundation,” (ed. John Gilmore) Cracking
DES: Secrets of Encryption Research, Wiretap Politics and Chip De-
sign, O’Reilly & Associates.

Goldreich, Oded (1999). “Modern Cryptography, Probabilistic Proofs
and Pseudo-randomness,” Springer-Verlag.

Kahn, David (1967). “The Codebreakers: The Story of Secret Writing,”
Macmillan Co., New York, New York.

Menenez, Alfred J., Van Oorschot, Paul C., and Vanstone, Scott A.
(1996), “Handbook of Applied Cryptography,” CRC Press Series on
Discrete Mathematics and Its Applications, CRC Press.

Rivest, R. L., Shamir A., and Adleman, L. (1978). A method for obtain-
ing digital signatures and public-key cryptosystems, Comm. ACM,
February 1978, 120–126.

Schneier, Bruce (1996). “Applied Cryptography Second Edition: proto-
cols, algorithms, and source code in C,” John Wiley and Sons.

Shannon, C. E. (1949). “Communication theory of secrecy systems,”
Bell Sys. Tech. J. 1949, 656–715.

Stinson, D. E. (1995). “Cryptography Theory and Practice,” CRC Press,
Boca Raton.

P1: LEF Final Pages Qu: 00, 00, 00, 00

Encyclopedia of Physical Science and Technology EN004I-845 June 8, 2001 18:21

Data Mining and Knowledge
Discovery

Sally I. McClean
University of Ulster

I. Data Mining and Knowledge Discovery
II. The Technologies

III. Data Mining for Different Data Types
IV. Key Application Areas
V. Future Developments

GLOSSARY

Association rules link the values of a group of attributes,
or variables, with the value of a particular attribute of
interest which is not included in the group.

Data mining process takes place in four main stages:
Data Pre-processing, Exploratory Data Analysis, Data
Selection, and Knowledge Discovery.

Data mining tools are software products; a growing
number of such products are becoming commercially
available. They may use just one approach (single
paradigm), or they may employ a variety of different
methods (multi-paradigm).

Deviation detection is carried out in order to discover
Interestingness in the data. Deviations may be detected
either for categorical or numerical data.

Interestingness is central to Data Mining where we are
looking for new knowledge which is nontrivial. It al-
lows the separation of novel and useful patterns from
the mass of dull and trivial ones.

Knowledge discovery in databases (KDD) is the main
objective in Data Mining. The two terms are often used
synonymously, although some authors define Knowl-
edge Discovery as being carried out at a higher level
than Data Mining.

DATA MINING is the process by which computer pro-
grams are used to repeatedly search huge amounts of data,
usually stored in a Database, looking for useful new pat-
terns. The main developments that have led to the emer-
gence of Data Mining have been in the increased volume
of data now being collected and stored electronically, and
an accompanying maturing of Database Technology. Such
developments have meant that traditional Statistical Meth-
ods and Machine Learning Technologies have had to be
extended to incorporate increased demands for fast and
scaleable algorithms.

In recent years, Database Technology has developed in-
creasingly more efficient methods for data processing and

 229

P1: LEF Final Pages

Encyclopedia of Physical Science and Technology EN004I-845 June 8, 2001 18:21

230 Data Mining and Knowledge Discovery

data access. Simultaneously there has been a convergence
between Machine Learning Methods and Database Tech-
nology to create value-added databases with an increased
capability for intelligence. There has also been a conver-
gence between Statistics and Database Technology.

I. DATA MINING AND
KNOWLEDGE DISCOVERY

A. Background

The main developments that have led to the emergence of
Data Mining as a promising new area for the discovery of
knowledge have been in the increased amount of data now
available, with an accompanying maturing of Database
Technology. In recent years Database Technology has de-
veloped efficient methods for data processing and data
access such as parallel and distributed computing, im-
proved middleware tools, and Open Database Connectiv-
ity (ODBC) to facilitate access to multi-databases.

Various Data Mining products have now been devel-
oped and a growing number of such products are becoming
commercially available. Increasingly, Data Mining sys-
tems are coming onto the market. Such systems ideally
should provide an integrated environment for carrying out
the whole Data Mining process thereby facilitating end-
user Mining, carried out automatically, with an interactive
user interface.

B. The Disciplines

Data Mining brings together the three disciplines of Ma-
chine Learning, Statistics, and Database Technology. In
the Machine Learning field, many complex problems are
now being tackled by the development of intelligent sys-
tems. These systems may combine Neural Networks, Ge-
netic Algorithms, Fuzzy Logic systems, Case-Based Rea-
soning, and Expert Systems. Statistical Techniques have
become well established as the basis for the study of Un-
certainty. Statistics embraces a vast array of methods used
to gather, process, and interpret quantitative data. Statisti-
cal Techniques may be employed to identify the key fea-
tures of the data in order to explain phenomena, and to
identify subsets of the data that are interesting by virtue
of being significantly different from the rest. Statistics can
also assist with prediction, by building a model from which
some attribute values can be reliably predicted from oth-
ers in the presence of uncertainty. Probability Theory is
concerned with measuring the likelihood of events under
uncertainty, and underpins much of Statistics. It may also
be applied in new areas such as Bayesian Belief Networks,
Evidence Theory, Fuzzy Logic systems and Rough Sets.

Database manipulation and access techniques are
essential to efficient Data Mining; these include Data Vi-

sualization and Slice and Dice facilities. It is often the case
that it is necessary to carry out a very large number of data
manipulations of various types. This involves the use of a
structured query language (SQL) to perform basic oper-
ations such as selecting, updating, deleting, and inserting
data items. Data selection frequently involves complex
conditions containing Boolean operators and statistical
functions, which thus require to be supported by SQL.
Also the ability to join two or more databases is a powerful
feature that can provide opportunities for Knowledge
Discovery.

C. Data Mining Objectives and Outcomes

Data Mining is concerned with the search for new knowl-
edge in data. Such knowledge is usually obtained in the
form of rules which were previously unknown to the user
and may well prove useful in the future. These rules might
take the form of specific rules induced by means of a
rule induction algorithm or may be more general statisti-
cal rules such as those found in predictive modeling. The
derivation of such rules is specified in terms of Data Min-
ing tasks where typical tasks might involve classifying or
clustering the data.

A highly desirable feature of Data Mining is that there
be some high-level user interface that allows the end-user
to specify problems and obtain results in as friendly as
matter as possible. Although it is possible, and in fact
common, for Data Mining to be carried out by an expert
and the results then explained to the user, it is also highly
desirable that the user be empowered to carry out his own
Data Mining and draw his own conclusions from the new
knowledge. An appropriate user interface is therefore of
great importance.

Another secondary objective is the use of efficient data
access and data processing methods. Since Data Mining is
increasingly being applied to large and complex databases,
we are rapidly approaching the situation where efficient
methods become a sine qua non. Such methods include
Distributed and Parallel Processing, the employment of
Data Warehousing and accompanying technologies, and
the use of Open Database Connectivity (ODBC) to facil-
itate access to multi-databases.

D. The Data Mining Process

The Data Mining process may be regarded as taking place
in four main stages (Fig. 1):

� Data Pre-processing
� Exploratory Data analysis
� Data Selection
� Knowledge Discovery

P1: LEF Final Pages

Encyclopedia of Physical Science and Technology EN004I-845 June 8, 2001 18:21

Data Mining and Knowledge Discovery 231

FIGURE 1 The Data Mining Process.

Data Pre-processing is concerned with data cleansing
and reformatting, so that the data are now held in a form
that is appropriate to the Mining algorithms and facili-
tates the use of efficient access methods. Reformatting
typically involves employing missing value handling and
presenting the data in multidimensional views suitable for
the multidimensional servers used in Data Warehousing.

In Exploratory Data Analysis (EDA), the miner has
a preliminary look at the data to determine which at-
tributes and which technologies should be utilized. Typi-
cally, Summarization and Visualization Methods are used
at this stage.

For Data Selection, we may choose to focus on certain
attributes or groups of attributes since using all attributes
at once is likely to be too complex and time consuming.
Alternatively, for large amounts of data, we may choose to
sample certain tuples, usually chosen at random. We may
then carry out Knowledge Discovery using the sample,
rather than the complete data, thus speeding up the process
enormously. Variable reduction techniques or new variable
definition are alternative methods for circumventing the
problems caused by such large data sets.

Knowledge Discovery is the main objective in Data
Mining and many different technologies have been em-
ployed in this context. In the Data Mining Process we
frequently need to iterate round the EDA, Data Selection,
Knowledge Discovery part of the process, as once we dis-
cover some new knowledge, we often then want to go back
to the data and look for new or more detailed patterns.

Once new knowledge has been mined from the
database, it is then reported to the user either in verbal,
tabular or graphical format. Indeed the output from the
Mining process might be an Expert System. Whatever
form the output takes, it is frequently the case that such in-
formation is really the specification for a new system that
will use the knowledge gained to best advantage for the
user and domain in question. New knowledge may feed

into the business process which in turn feeds back into the
Data Mining process.

E. Data Mining Tasks

1. Rule Induction

Rule induction uses a number of specific beliefs in the form
of database tuples as evidence to support a general belief
that is consistent with these specific beliefs. A collection
of tuples in the database may form a relation that is defined
by the values of particular attributes, and relations in the
database form the basis of rules. Evidence from within the
database in support of a rule is thus used to induce a rule
which may be generally applied.

Rules tend to be based on sets of attribute values, par-
titioned into an antecedent and a consequent. A typical
“if then” rule, of the form “if antecedent = true, then
consequent = true,” is given by “if a male employee is
aged over 50 and is in a management position, then he will
hold an additional pension plan.” Support for such a rule is
based on the proportion of tuples in the database that have
the specified attribute values in both the antecedent and
the consequent. The degree of confidence in a rule is the
proportion of those tuples that have the specified attribute
values in the antecedent, which also have the specified
attribute values in the consequent.

Rule induction must then be combined with rule selec-
tion in terms of interestingness if it is to be of real value
in Data Mining. Rule-finding and evaluation typically re-
quire only standard database functionality, and they may
be carried out using embedded SQL. Often, if a database
is very large, it is possible to induce a very large num-
ber of rules. Some may merely correspond to well-known
domain knowledge, whilst others may simply be of lit-
tle interest to the user. Data Mining tools must therefore
support the selection of interesting rules.

P1: LEF Final Pages

Encyclopedia of Physical Science and Technology EN004I-845 June 8, 2001 18:21

232 Data Mining and Knowledge Discovery

2. Classification

A commonly occurring task in Data Mining is that of
classifying cases from a dataset into one of a number
of well-defined categories. The categories are defined by
sets of attribute values, and cases are allocated to cate-
gories according to the attribute values that they possess.
The selected combinations of attribute values that define
the classes represent features within the particular con-
text of the classification problem. In the simplest cases,
classification could be on a single binary-valued attribute,
and the dataset is partitioned into two groups, namely,
those cases with a particular property, and those without
it. In general it may only be possible to say which class
the case is “closest to,” or to say how likely it is that the
case is in a particular category.

Classification is often carried out by supervised Ma-
chine Learning, in which a number of training examples
(tuples whose classification is known) are presented to the
system. The system “learns” from these how to classify
other cases in the database which are not in the training set.
Such classification may be probabilistic in the sense that it
is possible to provide the probability that a case is any one
of the predefined categories. Neural Networks are one
of the main Machine Learning technologies used to carry
out classification. A probabilistic approach to classifica-
tion may be adopted by the use of discriminant functions.

3. Clustering

In the previous section, the classification problem was con-
sidered to be essentially that of learning how to make de-
cisions about assigning cases to known classes. There are,
however, different forms of classification problem, which
may be tackled by unsupervised learning, or clustering.
Unsupervised classification is appropriate when the def-
initions of the classes, and perhaps even the number of
classes, are not known in advance, e.g., market segmen-
tation of customers into similar groups who can then be
targeted separately.

One approach to the task of defining the classes is to
identify clusters of cases. In general terms, clusters are
groups of cases which are in some way similar to each
other according to some measure of similarity. Clustering
algorithms are usually iterative in nature, with an initial
classification being modified progressively in terms of the
class definitions. In this way, some class definitions are
discarded, whilst new ones are formed, and others are
modified, all with the objective of achieving an overall
goal of separating the database tuples into a set of cohesive
categories. As these categories are not predetermined, it
is clear that clustering has much to offer in the process of
Data Mining in terms of discovering concepts, possibly
within a concept hierarchy.

4. Summarization

Summarization aims to present concise measures of the
data both to assist in user comprehension of the underly-
ing structures in the data and to provide the necessary in-
puts to further analysis. Summarization may take the form
of the production of graphical representations such as bar
charts, histograms, and plots, all of which facilitate a visual
overview of the data, from which sufficient insight might
be derived to both inspire and focus appropriate Data Min-
ing activity. As well as assisting the analyst to focus on
those areas in a large database that are worthy of detailed
analysis, such visualization can be used to help with the
analysis itself. Visualization can provide a “drill-down”
and “drill-up” capability for repeated transition between
summary data levels and detailed data exploration.

5. Pattern Recognition

Pattern recognition aims to classify objects of interest
into one of a number of categories or classes. The ob-
jects of interest are referred to as patterns, and may range
from printed characters and shapes in images to electronic
waveforms and digital signals, in accordance with the data
under consideration. Pattern recognition algorithms are
designed to provide automatic identification of patterns,
without the need for human intervention. Pattern recogni-
tion may be supervised, or unsupervised.

The relationships between the observations that de-
scribe a pattern and the classification of the pattern are
used to design decision rules to assist the recognition
process. The observations are often combined to form fea-
tures, with the aim that the features, which are smaller in
number than the observations, will be more reliable than
the observations in forming the decision rules. Such fea-
ture extraction processes may be application dependent,
or they may be general and mathematically based.

6. Discovery of Interestingness

The idea of interestingness is central to Data Mining
where we are looking for new knowledge that is non-
trivial. Since, typically, we may be dealing with very large
amounts of data, the potential is enormous but so too is the
capacity to be swamped with so many patterns and rules
that it is impossible to make any sense out of them. It is
the concept of interestingness that provides a framework
for separating out the novel and useful patterns from the
myriad of dull and trivial ones.

Interestingness may be defined as deviations from the
norm for either categorical or numerical data. How-
ever, the initial thinking in this area was concerned with
categorical data where we are essentially comparing the
deviation between the proportion of our target group with

P1: LEF Final Pages

Encyclopedia of Physical Science and Technology EN004I-845 June 8, 2001 18:21

Data Mining and Knowledge Discovery 233

a particular property and the proportion of the whole popu-
lation with the property. Association rules then determine
where particular characteristics are related.

An alternative way of computing interestingness for
such data comes from statistical considerations, where we
say that a pattern is interesting if there is a statistically
significant association between variables. In this case the
measure of interestingness in the relationship between two
variables A and B is computed as:

Probability of (A and B)-Probability of

(A)∗ Probability of (B).

Interestingness for continuous attributes is determined in
much the same way, by looking at the deviation between
summaries.

7. Predictive Modeling

In Predictive Modeling, we are concerning with using
some attributes or patterns in the database to predict other
attributes or extract rules. Often our concern is with trying
to predict behavior at a future time point. Thus, for busi-
ness applications, for example, we may seek to predict
future sales from past experience.

Predictive Modeling is carried out using a variety of
technologies, principally Neural Networks, Case-Based
Reasoning, Rule Induction, and Statistical Modeling, usu-
ally via Regression Analysis. The two main types of
predictive modeling are transparent (explanatory) and
opaque (black box). A transparent model can give infor-
mation to the user about why a particular prediction is
being made, while an opaque model cannot explain itself
in terms of the relevant attributes. Thus, for example, if
we are making predictions using Case-Based Reasoning,
we can explain a particular prediction in terms of similar
behavior commonly occurring in the past. Similarly, if we
are using a statistical model to predict, the forecast is ob-
tained as a combination of known values which have been
previously found to be highly relevant to the attribute be-
ing predicted. A Neural Network, on the other hand, often
produces an opaque prediction which gives an answer to
the user but no explanation as to why this value should be
an accurate forecast. However, a Neural Network can give
extremely accurate predictions and, where it may lack in
explanatory power, it more than makes up for this deficit
in terms of predictive power.

8. Visualization

Visualization Methods aim to present large and complex
data sets using pictorial and other graphical representa-
tions. State-of-the-art Visualization techniques can thus
assist in achieving Data Mining objectives by simplifying

the presentation of information. Such approaches are of-
ten concerned with summarizing data in such a way as to
facilitate comprehension and interpretation. It is impor-
tant to have the facility to handle the commonly occurring
situation in which it is the case that too much information
is available for presentation for any sense to be made of
it—the “haystack” view. The information extracted from
Visualization may be an end in itself or, as is often the case,
may be a precursor to using some of the other technologies
commonly forming part of the Data Mining process.

Visual Data Mining allows users to interactively explore
data using graphs, charts, or a variety of other interfaces.
Proximity charts are now often used for browsing and
selecting material; in such a chart, similar topics or
related items are displayed as objects close together, so
that a user can traverse a topic landscape when browsing
or searching for information. These interfaces use colors,
filters, and animation, and they allow a user to view data
at different levels of detail. The data representations, the
levels of detail and the magnification, are controlled by
using mouse-clicks and slider-bars.

Recent developments involve the use of “virtual reality,”
where, for example, statistical objects or cases within a
database may be represented by graphical objects on the
screen. These objects may be designed to represent people,
or products in a store, etc., and by clicking on them the
user can find further information relating to that object.

9. Dependency Detection

The idea of dependency is closely related to interesting-
ness and a relationship between two attributes may be
thought to be interesting if they can be regarded as de-
pendent, in some sense. Such patterns may take the form
of statistical dependency or may manifest themselves as
functional dependency in the database. With functional
dependency, all values of one variable may be determined
from another variable. However, statistical dependency is
all we can expect from data which is essentially random
in nature.

Another type of dependency is that which results from
some sort of causal mechanism. Such causality is often
represented in Data Mining by using Bayesian Belief Net-
works which discover and describe. Such causal mod-
els allow us to predict consequences, even when circum-
stances change. If a rule just describes an association, then
we cannot be sure how robust or generalizable it will be
in the face of changing circumstances.

10. Uncertainty Handling

Since real-world data are often subject to uncertainty of
various kinds, we need ways of handling this uncertainty.
The most well-known and commonly used way of

P1: LEF Final Pages

Encyclopedia of Physical Science and Technology EN004I-845 June 8, 2001 18:21

234 Data Mining and Knowledge Discovery

handling uncertainty is to use classical, or Bayesian,
probability. This allows us to establish the probabilities,
or support, for different rules and to rank them accord-
ingly. One well-known example of the use of Bayesian
probability is provided by the Bayesian Classifier which
uses Bayes’ Theorem as the basis of a classification
method. The various approaches to handling uncertainty
have different strengths and weaknesses that may make
them particularly appropriate for particular Mining tasks
and particular data sets.

11. Sequence Processing

Sequences of data, which measure values of the same at-
tribute at a sequence of different points, occur commonly.
The best-known form of such data arises when we collect
information on an attribute at a sequence of time points,
e.g., daily, quarterly, annually. However, we may instead
have data that are collected at a sequence of different points
in space, or at different depths or heights. Statistical data
that are collected at a sequence of different points in time
are known as time series.

In general, we are concerned with finding ways of de-
scribing the important features of a time series, thus allow-
ing Predictive Modeling to be carried out over future time
periods. There has also been a substantial amount of work
done on describing the relationship between one time se-
ries and another with a view to determining if two time
series co-vary or if one has a causal effect on the other.
Such patterns are common in economic time series, where
such variables are referred to as leading indicators. The
determination of such leading indicators can provide new
knowledge and, as such, is a fertile area for Data Mining.

The methods used for Predictive Modeling for the pur-
pose of sequence processing are similar to those used for
any other kind of Predictive Modeling, typically Rule In-
duction and Statistical Regression. However, there may
be particular features of sequences, such as seasonality,
which must be incorporated into the model if prediction
is to be accurate.

F. Data Mining Approaches

As has already been stated, Data Mining is a multidisci-
plinary subject with major input from the disciplines of
Machine Learning, Database Technology and Statistics
but also involving substantial contributions from many
other areas, including Information Theory, Pattern Recog-
nition, and Signal Processing. This has led to many dif-
ferent approaches and a myriad of terminology where dif-
ferent communities have developed substantially different
terms for essentially the same concepts. Nonetheless, there
is much to gain from such an interdisciplinary approach
and the synergy that is emerging from recent developments
in the subject is one of its major strengths.

G. Advantages of Data Mining

Wherever techniques based on data acquisition, process-
ing, analysis and reporting are of use, there is potential
for Data Mining. The collection of consumer data is be-
coming increasingly automatic at the point of transaction.
Automatically collected retail data provide an ideal arena
for Data Mining. Highly refined customer profiling be-
comes possible as an integral part of the retail system,
eschewing the need for costly human intervention or su-
pervision. This approach holds the potential for discover-
ing interesting or unusual patterns and trends in consumer
behavior, with obvious implications for marketing strate-
gies such as product placement, customized advertising,
and rewarding customer loyalty. The banking and insur-
ance industries have also well-developed and specialized
data analysis techniques for customer profiling for the pur-
pose of assessing credit worthiness and other risks asso-
ciated with loans and investments. These include using
Data Mining methods to adopt an integrated approach to
mining criminal and financial data for fraud detection.

Science, technology, and medicine are all fields that of-
fer exciting possibilities for Data Mining. Increasingly it
is the vast arrays of automatically recorded experimen-
tal data that provide the material from which may be
formed new scientific knowledge and theory. Data Mining
can facilitate otherwise impossible Knowledge Discovery,
where the amount of data required to be assimilated for
the observation of a single significant anomaly would be
overwhelming for manual analysis.

Both modern medical diagnosis and industrial process
control are based on data provided by automated monitor-
ing systems. In each case, there are potential benefits for
efficiency, costs, quality, and consistency. In the Health
Care environment, these may lead to enhanced patient
care, while application to industrial processes and project
management can provide a vital competitive advantage.

Overall, however, the major application area for Data
Mining is still Business. For example a recent survey of
Data Mining software tools (Fig. 2) showed that over
three-quarters (80%) are used in business applications,
primarily in areas such as finance, insurance, marketing
and market segmentation. Around half of the vendor tools
surveyed were suited to Data Mining in medicine and in-
dustrial applications, whilst a significant number are most
useful in scientific and engineering fields.

II. THE TECHNOLOGIES

A. Machine Learning Technologies

1. Inferencing Rules

Machine Learning, in which the development of Infer-
encing Rules plays a major part, can be readily applied

P1: LEF Final Pages

Encyclopedia of Physical Science and Technology EN004I-845 June 8, 2001 18:21

Data Mining and Knowledge Discovery 235

FIGURE 2 Application areas for Data Mining Tools.

to Knowledge Discovery in Databases. Records (tuples)
in a database may be regarded as training instances that
attribute-value learning systems may then use to discover
patterns in a file of database records. Efficient techniques
exist which can handle very large training sets, and include
ways of dealing with incomplete and noisy data.

Logical reasoning may be automated by the use of a
logic programming system, which contains a language
for representing knowledge, and an inference engine for
automated reasoning. The induction of logical definitions
of relations has been named Inductive Logic Program-
ming (ILP), and may also be used to compress existing
relations into their logical definitions. Inductive learning
systems that use ILP construct logical definitions of target
relations from examples and background knowledge.
These are typically in the form of if–then rules, which
are then transformed into clauses within the logic
programming system. ILP systems have applications in a
wide variety of domains, where Knowledge Discovery is
achieved via the learning of relationships. Inference rules
may be implemented as demons, which are processes
running within a program while the program continues
with its primary task.

2. Decision Trees

A Decision Tree provides a way of expressing knowledge
used for classification. A Decision Tree is constructed by
using a training set of cases that are described in terms of
a collection of attributes. A sequence of tests is carried out

on the attributes in order to partition the training set into
ever-smaller subsets. The process terminates when each
subset contains only cases belonging to a single class.
Nodes in the Decision Tree correspond to these tests, and
the leaves of the tree represent each subset. New cases
(which are not in the training set) may be classified by
tracing through the Decision Tree starting at its root and
ending up at one of the leaves.

The choice of test at each stage in “growing” the tree
is crucial to the tree’s predictive capability. It is usual to
use a selection criterion based on the gain in classification
information and the information yielded by the test. In
practice, when “growing” a Decision Tree, a small work-
ing set of cases is used initially to construct a tree. This tree
is then used to classify the remaining cases in the training
set: if all are correctly classified, then the tree is satis-
factory. If there are misclassified cases, these are added to
the working set, and a new tree constructed using this aug-
mented working set. This process is used iteratively until
a satisfactory Decision Tree is obtained. Overfitting of the
data and an associated loss of predictive capability may
be remedied by pruning the tree, a process that involves
replacing sub-trees by leaves.

3. Neural Networks

Neural Networks are designed for pattern recognition, and
they thus provide a useful class of Data Mining tools. They
are primarily used for classification tasks. The Neural Net-
work is first trained before it is used to attempt to identify
classes in the data. Hence from the initial dataset a propor-
tion of the data are partitioned into a training set which
is kept separate from the remainder of the data. A fur-
ther proportion of the dataset may also be separated off
into a validation set that is used to test performance dur-
ing training along with criteria for determining when the
training should terminate, thus preventing overtraining.

A Neural Network is perhaps the simplest form of par-
allel computer, consisting of a (usually large) set of simple
processing elements called neurons. The neurons are con-
nected to one another in a chosen configuration to form a
network. The types of connectivities or network architec-
tures available can vary widely, depending on the applica-
tion for which the Neural Network is to be used. The most
straightforward arrangements consist of neurons set out
in layers as in the feedforward network. Activity feeds
from one layer of neurons to the next, starting at an initial
input layer.

The Universal Approximation Theorem states that a
single layer net, with a suitably large number of hidden
nodes, can well approximate any suitably smooth func-
tion. Hence for a given input, the network output may be
compared with the required output. The total mean square
error function is then used to measure how close the actual

P1: LEF Final Pages

Encyclopedia of Physical Science and Technology EN004I-845 June 8, 2001 18:21

236 Data Mining and Knowledge Discovery

output is to the required output; this error is reduced by a
technique called back-error propagation. This approach
is a supervised method in which the network learns the
connection weights as it is taught more examples. A dif-
ferent approach is that of unsupervised learning, where
the network attempts to learn by finding statistical features
of the input training data.

4. Case-Based Reasoning

Case-Based Reasoning (CBR) is used to solve problems
by finding similar, past cases and adapting their solutions.
By not requiring specialists to encapsulate their expertise
in logical rules, CBR is well suited to domain experts who
attempt to solve problems by recalling approaches which
have been taken to similar situations in the past. This is
most appropriate in domains which are not well under-
stood, or where any rules that may have been devised have
frequent exceptions. CBR thus offers a useful approach to
building applications that support decisions based on past
experience.

The quality of performance achieved by a case-based
reasoner depends on a number of issues, including its ex-
periences, and its capabilities to adapt, evaluate, and repair
situations. First, partially matched cases must be retrieved
to facilitate reasoning. The retrieval process consists of
two steps: recalling previous cases, and selecting a best
subset of them. The problem of retrieving applicable cases
is referred to as the indexing problem. This comprises the
matching or similarity-assessment problem, of recogniz-
ing that two cases are similar.

5. Genetic Algorithms

Genetic Algorithms (GA’s) are loosely based on the bio-
logical principles of genetic variation and natural selec-
tion. They mimic the basic ideas of the evolution of life
forms as they adapt to their local environments over many
generations. Genetic Algorithms are a type of evolution-
ary algorithm, of which other types include Evolutionary
Programming and Evolutionary Strategies.

After a new generation is produced, it may be combined
with the population that spawned it to yield the new cur-
rent population. The size of the new population may be
curtailed by selection from this combination, or alterna-
tively, the new generation may form the new population.
The genetic operators used in the process of generating
offspring may be examined by considering the contents
of the population as a gene pool. Typically an individual
may then be thought of in terms of a binary string of fixed
length, often referred to as a chromosome. The genetic
operators that define the offspring production process are
usually a combination of crossover and mutation opera-

tors. Essentially these operators involve swapping part of
the binary string of one parent with the corresponding part
for the other parent, with variations depending on the par-
ticular part swapped and the position and order in which
it is inserted into the remaining binary string of the other
parent. Within each child, mutation then takes place.

6. Dynamic Time-Warping

Much of the data from which knowledge is discovered are
of a temporal nature. Detecting patterns in sequences of
time-dependent data, or time series, is an important aspect
of Data Mining, and has applications in areas as diverse as
financial analysis and astronomy. Dynamic Time-Warping
(DTW) is a technique established in the recognition of
patterns in speech, but may be more widely applied to
other types of data.

DTW is based on a dynamic programming approach to
aligning a selected template with a data time series so that
a chosen measure of the distance between them, or error, is
minimized. The measure of how well a template matches
the time series may be obtained from the table of cumu-
lative distances. A warping path is computed through
the grid from one boundary point to another, tracing back
in time through adjacent points with minimal cumulative
distance. This warping path defines how well the template
matches the time series, and a measure of the fit can be
obtained from the cumulative distances along the path.

B. Statistical and other
Uncertainty-Based Methods

1. Statistical Techniques

Statistics is a collection of methods of enquiry used to
gather, process, or interpret quantitative data. The two
main functions of Statistics are to describe and summa-
rize data and to make inferences about a larger population
of which the data are representative. These two areas are
referred to as Descriptive and Inferential Statistics, respec-
tively; both areas have an important part to play in Data
Mining. Descriptive Statistics provides a toolkit of meth-
ods for data summarization while Inferential Statistics is
more concerned with data analysis.

Much of Statistics is concerned with statistical analysis
that is mainly founded on statistical inference or hypoth-
esis testing. This involves having a Null Hypothesis (Ho):
which is a statement of null effect, and an Alternative Hy-
pothesis (H1): which is a statement of effect. A test of sig-
nificance allows us to decide which of the two hypotheses
(Ho or H1) we should accept. We say that a result is signif-
icant at the 5% level if the probability that the discrepancy
between the actual data and what is expected assuming
the null hypothesis is true has probability less that 0.05 of

P1: LEF Final Pages

Encyclopedia of Physical Science and Technology EN004I-845 June 8, 2001 18:21

Data Mining and Knowledge Discovery 237

occurring. The significance level therefore tells us where
to threshold in order to decide if there is an effect or not.

Predictive Modeling is another Data Mining task that is
addressed by Statistical methods. The most common type
of predictive model used in Statistics is linear regression,
where we describe one variable as a linear combination
of other known variables. A number of other tasks that
involve analysis of several variables for various purposes
are categorized by statisticians under the umbrella term
multivariate analysis.

Sequences of data, which measure values of the same
attribute under a sequence of different circumstances, also
occur commonly. The best-known form of such data arises
when we collect information on an attribute at a sequence
of time points, e.g., daily, quarterly, annually. For such
time-series data the trend is modeled by fitting a regres-
sion line while fluctuations are described by mathematical
functions. Irregular variations are difficult to model but
worth trying to identify, as they may turn out to be of most
interest.

Signal processing is used when there is a continuous
measurement of some sort—the signal—usually distorted
by noise. The more noise there is, the harder it is to ex-
tract the signal. However, by using methods such as fil-
tering which remove all distortions, we may manage to
recover much of the original data. Such filtering is often
carried out by using Fourier transforms to modify the
data accordingly. In practice, we may use Fast Fourier
Transforms to achieve high-performance signal process-
ing. An alternative method is provided by Wavelets.

All of Statistics is underpinned by classical or Bayesian
probability. Bayesian Methods often form the basis of
techniques for the automatic discovery of classes in data,
known as clustering or unsupervised learning. In such
situations Bayesian Methods may be used in computa-
tional techniques to determine the optimal set of classes
from a given collection of unclassified instances. The aim
is to find the most likely set of classes given the data and
a set of prior expectations. A balance must be struck be-
tween data fitting and the potential for class membership
prediction.

2. Bayesian Belief Networks

Bayesian Belief Networks are graphical models that com-
municate causal information and provide a framework for
describing and evaluating probabilities when we have a
network of interrelated variables. We can then use the
graphical models to evaluate information about external
interventions and hence predict the effect of such inter-
ventions. By exploiting the dependencies and interdepen-
dencies in the graph we can develop efficient algorithms
that calculate probabilities of variables in graphs which

are often very large and complex. Such a facility makes
this technique suitable for Data Mining, where we are of-
ten trying to sift through large amounts of data looking for
previously undiscovered relationships.

A key feature of Bayesian Belief Networks is that they
discover and describe causality rather than merely identi-
fying associations as is the case in standard Statistics and
Database Technology. Such causal relationships are rep-
resented by means of DAGs (Directed Acyclic Graphs)
that are also used to describe conditional independence as-
sumptions. Such conditional independence occurs when
two variables are independent, conditional on another
variable.

3. Evidence Theory

Evidence Theory, of which Dempster–Shafer theory is a
major constituent, is a generalization of traditional proba-
bility which allows us to better quantify uncertainty. The
framework provides a means of representing data in the
form of a mass function that quantifies our degree of be-
lief in various propositions. One of the major advantages
of Evidence Theory over conventional probability is that it
provides a straightforward way of quantifying ignorance
and is therefore a suitable framework for handling missing
values.

We may use this Dempster–Shafer definition of mass
functions to provide a lower and upper bound for the prob-
ability we assign to a particular proposition. These bounds
are called the belief and plausibility, respectively. Such
an interval representation of probability is thought to be a
more intuitive and flexible way of expressing probability,
since we may not be able to assign an exact value to it but
instead give lower and upper bounds.

The Dempster–Shafer theory also allows us to trans-
form the data by changing to a higher or lower granularity
and reallocating the masses. If a rule can be generalized
to a higher level of aggregation then it becomes a more
powerful statement of how the domain behaves while, on
the other hand, the rule may hold only at a lower level of
granularity.

Another important advantage of Evidence Theory is that
the Dempster–Shafer law of combination (the orthogonal
sum) allows us to combine data from different independent
sources. Thus, if we have the same frame of discernment
for two mass functions which have been derived indepen-
dently from different data, we may obtain a unified mass
assignment.

4. Fuzzy Logic

Fuzzy logic maintains that all things are a matter of degree
and challenges traditional two-valued logic which holds

P1: LEF Final Pages

Encyclopedia of Physical Science and Technology EN004I-845 June 8, 2001 18:21

238 Data Mining and Knowledge Discovery

that a proposition is either true or it is not. Fuzzy Logic
is defined via a membership function that measures the
degree to which a particular element is a member of a set.
The membership function can take any value between 0
and 1 inclusive.

In common with a number of other Artificial Intelli-
gence methods, fuzzy methods aim to simulate human
decision making in uncertain and imprecise environments.
We may thus use Fuzzy Logic to express expert opinions
that are best described in such an imprecise manner. Fuzzy
systems may therefore be specified using natural language
which allows the expert to use vague and imprecise termi-
nology. Fuzzy Logic has also seen a wide application to
control theory in the last two decades.

An important use of fuzzy methods for Data Mining is
for classification. Associations between inputs and outputs
are known in fuzzy systems as fuzzy associative mem-
ories or FAMs. A FAM system encodes a collection of
compound rules that associate multiple input statements
with multiple output statements We combine such multi-
ple statements using logical operators such as conjunction,
disjunction and negation.

5. Rough Sets

Rough Sets were introduced by Pawlak in 1982 as a means
of investigating structural relationships in data. The tech-
nique, which, unlike classical statistical methods, does not
make probability assumptions, can provide new insights
into data and is particularly suited to situations where we
want to reason from qualitative or imprecise information.
Rough Sets allow the development of similarity mea-
sures that take account of semantic as well as syntactic
distance. Rough Set theory allows us to eliminate redun-
dant or irrelevant attributes. The theory of Rough Sets has
been successfully applied to knowledge acquisition, pro-
cess control, medical diagnosis, expert systems and Data
Mining. The first step in applying the method is to gen-
eralize the attributes using domain knowledge to identify
the concept hierarchy. After generalization, the next step
is to use reduction to generate a minimal subset of all the
generalized attributes, called a reduct. A set of general
rules may then be generated from the reduct that includes
all the important patterns in the data. When more than
one reduct is obtained, we may select the best according
to some criteria. For example, we may choose the reduct
that contains the smallest number of attributes.

6. Information Theory

The most important concept in Information Theory is
Shannon’s Entropy, which measures the amount of in-
formation held in data. Entropy quantifies to what extent

the data are spread out over its possible values. Thus high
entropy means that the data are spread out as much as pos-
sible while low entropy means that the data are nearly all
concentrated on one value. If the entropy is low, therefore,
we have high information content and are most likely to
come up with a strong rule.

Information Theory has also been used as a measure
of interestingness which allows us to take into account
how often a rule occurs and how successful it is. This is
carried out by using the J-measure, which measures the
amount of information in a rule using Shannon Entropy
and multiplies this by the probability of the rule coming
into play. We may therefore rank the rules and only present
the most interesting to the user.

C. Database Methods

1. Association Rules

An Association Rule associates the values of a given set
of attributes with the value of another attribute from out-
side that set. In addition, the rule may contain informa-
tion about the frequency with which the attribute values
are associated with each other. For example, such a rule
might say that “75% of men, between 50 and 55 years
old, in management positions, take out additional pension
plans.”

Along with the Association Rule we have a confidence
threshold and a support threshold. Confidence measures
the ratio of the number of entities in the database with the
designated values of the attributes in both A and B to
the number with the designated values of the attributes
in A. The support for the Association Rule is simply the
proportion of entities within the whole database that take
the designated values of the attributes in A and B.

Finding Association Rules can be computationally in-
tensive, and essentially involves finding all of the covering
attribute sets, A, and then testing whether the rule “A im-
plies B,” for some attribute set B separate from A, holds
with sufficient confidence. Efficiency gains can be made
by a combinatorial analysis of information gained from
previous passes to eliminate unnecessary rules from the
list of candidate rules. Another highly successful approach
is to use sampling of the database to estimate whether or
not an attribute set is covering. In a large data set it may
be necessary to consider which rules are interesting to the
user. An approach to this is to use templates, to describe
the form of interesting rules.

2. Data Manipulation Techniques

For Data Mining purposes it is often necessary to use
a large number of data manipulations of various types.
When searching for Association Rules, for example, tuples

P1: LEF Final Pages

Encyclopedia of Physical Science and Technology EN004I-845 June 8, 2001 18:21

Data Mining and Knowledge Discovery 239

with certain attribute values are grouped together, a task
that may require a sequence of conditional data selection
operations. This task is followed by counting operations
to determine the cardinality of the selected groups. The
nature of the rules themselves may require further data
manipulation operations such as summing or averaging of
data values if the rules involve comparison of numerical
attributes. Frequently knowledge is discovered by combin-
ing data from more than one source—knowledge which
was not available from any one of the sources alone.

3. Slice and Dice

Slice and Dice refers to techniques specifically designed
for examining cross sections of the data. Perhaps the most
important aspect of Slice and Dice techniques is the facil-
ity to view cross sections of data that are not physically
visible. Data may be sliced and diced to provide views in
orthogonal planes, or at arbitrarily chosen viewing angles.
Such techniques can be vital in facilitating the discovery of
knowledge for medical diagnosis without the requirement
for invasive surgery.

4. Access Methods

For Data Mining purposes it is often necessary to retrieve
very large amounts of data from their stores. It is there-
fore important that access to data can be achieved rapidly
and efficiently, which effectively means with a minimum
number of input/output operations (I/Os) involving phys-
ical storage devices. Databases are stored on direct access
media, referred to generally as disks. As disk access times
are very much slower than main storage access times, ac-
ceptable database performance is achieved by adopting
techniques whose objective is to arrange data on the disk
in ways which permit stored records to be located in as
few I/Os as possible.

It is valuable to identify tuples that are logically related,
as these are likely to be frequently requested together. By
locating two logically related tuples on the same page,
they may both be accessed by a single physical I/O. Lo-
cating logically related tuples physically close together is
referred to as clustering. Intra-file clustering may be ap-
propriate if sequential access is frequently required to a
set of tuples within a file; inter-file clustering may be used
if sets of tuples from more than one file are frequently
requested together.

D. Enabling Technologies

1. Data Cleansing Techniques

Before commencing Data Mining proper, we must first
consider all data that is erroneous, irrelevant or atypical,
which Statisticians term outliers.

Different types of outliers need to be treated in different
ways. Outliers that have occurred as a result of human
error may be detected by consistency checks (or integrity
constraints). If outliers are a result of human ignorance,
this may be handled by including information on changing
definitions as metadata, which should be consulted when
outlier tests are being carried out. Outliers of distribution
are usually detected by outlier tests which are based on
the deviation between the candidate observation and the
average of all the data values.

2. Missing Value Handling

When we carry out Data Mining, we are often working
with large, possibly heterogeneous data. It therefore fre-
quently happens that some of the data values are missing
because data were not recorded in that case or perhaps
was represented in a way that is not compatible with the
remainder of the data. Nonetheless, we need to be able
to carry out the Data Mining process as best we can. A
number of techniques have been developed which can be
used in such circumstances, as follows:

• All tuples containing missing data are eliminated
from the analysis.

• All missing values are eliminated from the analysis.
• A typical data value is selected at random and

imputed to replace the missing value.

3. Advanced Database Technology

The latest breed of databases combines high performance
with multidimensional data views and fast, optimized
query execution. Traditional databases may be adapted to
provide query optimization by utilizing Parallel Process-
ing capabilities. Such parallel databases may be imple-
mented on parallel hardware to produce a system that is
both powerful and scaleable. Such postrelational Database
Management Systems represent data through nested mul-
tidimensional tables that allow a more general view of the
data of which the relational model is a special case. Dis-
tributed Databases allow the contributing heterogeneous
databases to maintain local autonomy while being man-
aged by a global data manager that presents a single data
view to the user. Multidimensional servers support the
multidimensional data view that represents multidimen-
sional data through nested data. In the three-dimensional
case, the data are stored in the form of a data cube, or
in the case of many dimensions we use the general term
data hypercube.

The Data Warehousing process involves assembling
data from heterogeneous sources systematically by us-
ing middleware to provide connectivity. The data are

P1: LEF Final Pages

Encyclopedia of Physical Science and Technology EN004I-845 June 8, 2001 18:21

240 Data Mining and Knowledge Discovery

then cleansed to remove inaccuracies and inconsistencies
and transformed to give a consistent view. Metadata that
maintain information concerning the source data are also
stored in the warehouse. Data within the warehouse is
generally stored in a distributed manner so as to increase
efficiency and, in fact, parts of the warehouse may be repli-
cated at local sites, in data marts, to provide a facility for
departmental decision-making.

4. Visualization Methods

Visualization Methods aim to present complex and volu-
minous data sets in pictorial and other graphical represen-
tations that facilitate understanding and provide insight
into the underlying structures in the data. The subject
is essentially interdisciplinary, encompassing statistical
graphics, computer graphics, image processing, computer
vision, interface design and cognitive psychology.

For exploratory Data Mining purposes, we require flex-
ible and interactive visualization tools which allow us to
look at the data in different ways and investigate differ-
ent subsets of the data. We can highlight key features of
the display by using color coding to represent particular
data values. Charts that show relationships between indi-
viduals or objects within the dataset may be color-coded,
and thus reveal interesting information about the structure
and volume of the relationships. Animation may provide
a useful way of exploring sequential data or time series
by drawing attention to the changes between time points.
Linked windows, which present the data in various ways
and allow us to trace particular parts of the data from one
window to another, may be particularly useful in tracking
down interesting or unusual data.

5. Intelligent Agents

The potential of Intelligent Agents is increasingly having
an impact on the marketplace. Such agents have the ca-
pability to form their own goals, to initiate action without
instructions from the user and to offer assistance to the
user without being asked. Such software has been likened
to an intelligent personal assistant who works out what
is needed by the boss and then does it. Intelligent Agents
are essentially software tools that interoperate with other
software to exchange information and services. They act
as an intelligent layer between the user and the data, and
facilitate tasks that serve to promote the user’s overall
goals. Communication with other software is achieved by
exchanging messages in an agent communication lan-
guage. Agents may be organized into a federation or
agency where a number of agents interact to carry out
different specialized tasks.

6. OLAP

The term OLAP (On-line Analytical Processing) origi-
nated in 1993 when Dr. E. F. Codd and colleagues devel-
oped the idea as a way of extending the relational database
paradigm to support business modeling. This develop-
ment took the form of a number of rules that were de-
signed to facilitate fast and easy access to the relevant
data for purposes of management information and de-
cision support. An OLAP Database generally takes the
form of a multidimensional server database that makes
management information available interactively to the
user. Such multidimensional views of the data are ide-
ally suited to an analysis engine since they give max-
imum flexibility for such database operations as Slice
and Dice or drill down which are essential for analytical
processing.

7. Parallel Processing

High-performance parallel database systems are displac-
ing traditional systems in very large databases that have
complex and time-consuming querying and processing re-
quirements. Relational queries are ideally suited to parallel
execution since they often require processing of a number
of different relations. In addition to parallelizing the data
retrieval required for Data Mining, we may also parallelize
the data processing that must be carried out to implement
the various algorithms used to achieve the Mining tasks.
Such processors may be designed to (1) share memory,
(2) share disks, or (3) share nothing. Parallel Processing
may be carried out using shared address space, which pro-
vides hardware support for efficient communication. The
most scaleable paradigm, however, is to share nothing,
since this reduces the overheads. In Data Mining, the im-
plicitly parallel nature of most of the Mining tasks allows
us to utilize processors which need only interact occa-
sionally, with resulting efficiency in both speed-up and
scalability.

8. Distributed Processing

Distributed databases allow local users to manage and ac-
cess the data in the local databases while providing some
sort of global data management which provides global
users with a global view of the data. Such global views
allow us to combine data from the different sources which
may not previously have been integrated, thus providing
the potential for new knowledge to be discovered. The con-
stituent local databases may either be homogeneous and
form part of a design which seeks to distribute data storage
and processing to achieve greater efficiency, or they may
be heterogeneous and form part of a legacy system where

P1: LEF Final Pages

Encyclopedia of Physical Science and Technology EN004I-845 June 8, 2001 18:21

Data Mining and Knowledge Discovery 241

the original databases might have been developed using
different data models.

E. Relating the Technologies to the Tasks

Data Mining embraces a wealth of methods that are used
in parts of the overall process of Knowledge Discovery
in Databases. The particular Data Mining methods em-
ployed need to be matched to the user’s requirements for
the overall KDD process.

The tools for the efficient storage of and access to large
datasets are provided by the Database Technologies. Re-
cent advances in technologies for data storage have re-
sulted in the availability of inexpensive high-capacity stor-
age devices with very fast access. Other developments
have yielded improved database management systems and
Data Warehousing technologies. To facilitate all of the
Data Mining Tasks, fast access methods can be com-
bined with sophisticated data manipulation and Slice and
Dice techniques for analysis of Data Warehouses through
OLAP to achieve the intelligent extraction and manage-
ment of information.

The general tasks of Data Mining are those of descrip-
tion and prediction. Descriptions of the data often require
Summarization to provide concise accounts of some parts
of the dataset that are of interest. Prediction involves us-
ing values of some attributes in the database to predict un-
known values of other attributes of interest. Classification,
Clustering, and Pattern Recognition are all Data Mining
Tasks that can be carried out for the purpose of description,
and together with Predictive Modeling and Sequence Pro-
cessing can be used for the purpose of prediction. All of
these descriptive and predictive tasks can be addressed by
both Machine Learning Technologies such as Inferencing
Rules, Neural Networks, Case-Based Reasoning, and Ge-
netic Algorithms, or by a variety of Uncertainty Methods.

Data Mining methods are used to extract both patterns
and models from the data. This involves modeling de-
pendencies in the data. The model must specify both the
structure of the dependencies (i.e., which attributes are
inter-dependent) and their strengths. The tasks of Depen-
dency Detection and modeling may involve the discov-
ery of empirical laws and the inference of causal models
from the data, as well as the use of Database Technologies
such as Association Rules. These tasks can be addressed
by Machine Learning Technologies such as Inferencing
Rules, Neural Networks and Genetic Algorithms, or by
Uncertainty Methods, including Statistical Techniques,
Bayesian Belief Networks, Evidence Theory, Fuzzy Logic
and Rough Sets.

The tasks of Visualization and Summarization play a
central role in the successful discovery and analysis of
patterns in the data. Both of these are essentially based on

Statistical Techniques associated with Exploratory Data
Analysis. The overall KDD process also encompasses the
task of Uncertainty Handling. Real-world data are often
subject to uncertainty of various kinds, including miss-
ing values, and a whole range of Uncertainty Methods
may be used in different approaches to reasoning under
uncertainty.

III. DATA MINING FOR
DIFFERENT DATA TYPES

A. Web Mining and Personalization

Developments in Web Mining have been inexorably linked
to developments in e-commerce. Such developments have
accelerated as the Internet has become more efficient and
more widely used. Mining of click streams and session
log analysis allows a web server owner to extract new
knowledge about users of the service, thus, in the case of
e-commerce, facilitating more targeted marketing. Simi-
larly, personalization of web pages as a result of Data Min-
ing can lead to the provision of a more efficient service.

B. Distributed Data Mining

Recent developments have produced a convergence be-
tween computation and communication. Organizations
that are geographically distributed need a decentralized
approach to data storage and decision support. Thus the
issues concerning modern organizations are not just the
size of the database to be mined, but also its distributed
nature. Such developments hold an obvious promise not
only for what have become traditional Data Mining areas
such as Database Marketing but also for newer areas such
as e-Commerce and e-Business.

Trends in DDM are inevitably led by trends in Net-
work Technology. The next generation Internet will con-
nect sites at speeds of the order of 100 times faster than
current connectivity. Such powerful connectivity to some
extent accommodates the use of current algorithms and
techniques. However, in addition, new algorithms, and lan-
guages are being developed to facilitate distributed data
mining using current and next generation networks.

Rapidly evolving network technology, in conjunction
with burgeoning services and information availability on
the Internet is rapidly progressing to a situation where a
large number of people will have fast, pervasive access to
a huge amount of information that is widely accessible.
Trends in Network Technology such as bandwidth devel-
opments, mobile devices, mobile users, intranets, infor-
mation overload, and personalization leads to the conclu-
sion that mobile code, and mobile agents, will, in the near
future, be a critical part of Internet services. Such develop-
ments must be incorporated into Data Mining technology.

P1: LEF Final Pages

Encyclopedia of Physical Science and Technology EN004I-845 June 8, 2001 18:21

242 Data Mining and Knowledge Discovery

C. Text Mining

Text may be considered as sequential data, similar in
this respect to data collected by observation systems. It
is therefore appropriate for Data Mining techniques that
have been developed for use specifically with sequential
data to be also applied to the task of Text Mining. Tra-
ditionally, text has been analyzed using a variety of in-
formation retrieval methods, including natural language
processing. Large collections of electronically stored text
documents are becoming increasingly available to a va-
riety of end-users, particularly via the World Wide Web.
There is great diversity in the requirements of users: some
need an overall view of a document collection to see
what types of documents are present, what topics the
documents are concerned with, and how the documents
are related to one another. Other users require specific
information or may be interested in the linguistic struc-
tures contained in the documents. In very many appli-
cations users are initially unsure of exactly what they
are seeking, and may engage in browsing and searching
activities.

General Data Mining methods are applicable to the
tasks required for text analysis. Starting with textual data,
the Knowledge Discovery Process provides information
on commonly occurring phenomena in the text. For exam-
ple, we may discover combinations of words or phrases
that commonly appear together. Information of this type
is presented using episodes, which contain such things
as the base form of a word, grammatical features, and the
position of a word in a sequence. We may measure, for ex-
ample, the support for an episode by counting the number
of occurrences of the episode within a given text sequence.

For Text Mining, a significant amount of pre-processing
of the textual data may be required, dependent on the
domain and the user’s requirements. Some natural lan-
guage analysis may be used to augment or replace some
words by their parts of speech or by their base forms.
Post-processing of the results of Text Mining is usually
also necessary.

D. Temporal Data Mining

Temporal Data Mining often involves processing time se-
ries, typically sequences of data, which measure values of
the same attribute at a sequence of different time points.
Pattern matching using such data, where we are searching
for particular patterns of interest, has attracted consid-
erable interest in recent years. In addition to traditional
statistical methods for time series analysis, more recent
work on sequence processing has used association rules
developed by the database community. In addition Tem-
poral Data Mining may involve exploitation of efficient

methods of data storage, fast processing and fast retrieval
methods that have been developed for temporal databases.

E. Spatial Data Mining

Spatial Data Mining is inexorably linked to developments
in Geographical Information Systems. Such systems store
spatially referenced data. They allow the user to extract
information on contiguous regions and investigate spatial
patterns. Data Mining of such data must take account of
spatial variables such as distance and direction. Although
methods have been developed for Spatial Statistics, the
area of Spatial Data Mining per se is still in its infancy.
There is an urgent need for new methods that take spatial
dependencies into account and exploit the vast spatial data
sources that are accumulating. An example of such data is
provided by remotely sensed data of images of the earth
collected by satellites.

F. Multimedia Data Mining

Multimedia Data Mining involves processing of data from
a variety of sources, principally text, images, sound, and
video. Much effort has been devoted to the problems of
indexing and retrieving data from such sources, since typ-
ically they are voluminous. A major activity in extract-
ing knowledge from time-indexed multimedia data, e.g.,
sound and video, is the identification of episodes that rep-
resent particular types of activity; these may be identified
in advance by the domain expert. Likewise domain knowl-
edge in the form of metadata may be used to identify and
extract relevant knowledge. Since multimedia contains
data of different types, e.g., images along with sound,
ways of combining such data must be developed. Such
problems of Data Mining from multimedia data are, gen-
erally speaking, very difficult and, although some progress
has been made, the area is still in its infancy.

G. Security and Privacy
Aspects of Data Mining

As we have seen, Data Mining offers much as a means of
providing a wealth of new knowledge for a huge range of
applications. The knowledge thus obtained from databases
may be far in excess of the use to which the data own-
ers originally envisaged for the database. However, such
data may include sensitive information about individuals
or might involve company confidential information. Care
must therefore be taken to ensure that only authorized per-
sonnel are permitted to access such databases. However, it
may be possible to get around this problem of preserving
the security of individual level data by using anonymiza-
tion techniques and possibly only providing a sample of

P1: LEF Final Pages

Encyclopedia of Physical Science and Technology EN004I-845 June 8, 2001 18:21

Data Mining and Knowledge Discovery 243

the data for Mining purposes. In addition, it is often the
case that, for purposes of Data Mining, we do not need to
use individual level data but instead can utilize aggregates.

For Database Technology, intrusion detection models
must be developed which protect the database against se-
curity breaches for the purpose of Data Mining. Such
methods look for evidence of users running huge num-
bers of queries against the database, large volumes of data
being downloaded by the user, or users running their own
imported software on portions of the database.

H. Metadata Aspects of Data Mining

Currently, most data mining algorithms require bringing
all together data to be mined in a single, centralized data
warehouse. A fundamental challenge is to develop dis-
tributed versions of data mining algorithms so that data
mining can be done while leaving some of the data in place.
In addition, appropriate protocols, languages, and network
services are required for mining distributed data to handle
the mappings required for mining distributed data. Such
functionality is typically provided via metadata.

XML (eXtensible Markup Language) is fast emerging
as a standard for representing data on the World Wide
Web. Traditional Database Engines may be used to pro-
cess semistructured XML documents conforming to Data
Type Definitions (DTDs). The XML files may be used to
store metadata in a representation to facilitate the mining
of multiple heterogeneous databases. PMML (predictive
Mark-up Language) has been developed by the Data Min-
ing community for the exchange of models between dif-
ferent data sites; typically these will be distributed over
the Internet. Such tools support interoperability between
heterogeneous databases thus facilitating Distributed Data
Mining.

IV. KEY APPLICATION AREAS

A. Industry

Industrial users of databases are increasingly beginning to
focus on the potential for embedded artificial intelligence
within their development and manufacturing processes.
Most industrial processes are now subject to technological
control and monitoring, during which vast quantities of
manufacturing data are generated. Data Mining techniques
are also used extensively in process analysis in order to
discover improvements which may be made to the process
in terms of time scale and costs.

Classification techniques and rule induction methods
are used directly for quality control in manufacturing. Pa-
rameter settings for the machinery may be monitored and

evaluated so that decisions for automatic correction or in-
tervention can be taken if necessary. Machine Learning
technologies also provide the facility for failure diagnosis
in the maintenance of industrial machinery.

Industrial safety applications are another area benefiting
from the adoption of Data Mining technology. Materials
and processes may need to be classified in terms of their
industrial and environmental safety. This approach, as op-
posed to experimentation, is designed to reduce the cost
and time scale of safe product development.

B. Administration

There is undoubtedly much scope for using Data Mining
to find new knowledge in administrative systems that often
contain large amounts of data. However, perhaps because
the primary function of administrative systems is routine
reporting, there has been less uptake of Data Mining to
provide support and new knowledge for administrative
purposes that in some other application areas.

Administrative systems that have received attention
tend to be those in which new knowledge can be directly
translated into saving money. An application of this type is
provided by the Inland Revenue that collects vast amounts
of data and may potentially save a lot of money by devis-
ing ways of discovering tax dodges, similarly for welfare
frauds. Another successful application of Data Mining has
been to the health care system where again new discover-
ies about expensive health care options can lead to huge
savings. Data Mining is also likely to become an extremely
useful tool in criminal investigations, searching for possi-
ble links with particular crimes or criminals.

C. Business

As we might expect, the major application area of Data
Mining, so far, has been Business, particularly the areas
of Marketing, Risk Assessment, and Fraud Detection.

In Marketing, perhaps the best known use of Data Min-
ing is for customer profiling, both in terms of discovering
what types of goods customers tend to purchase in the
same transaction and groups of customers who all behave
in a similar way and may be targeted as a group. Where
customers tend to buy (unexpected) items together then
goods may be placed on nearby shelves in the supermar-
ket or beside each other in a catalogue. Where customers
may be classified into groups, then they may be singled out
for customized advertising, mail shots, etc. This is known
as micro marketing. There are also cases where customers
of one type of supplier unexpectedly turn out to be also
customers of another type of supplier and advantage may
be gained by pooling resources in some sense. This is
known as cross marketing.

P1: LEF Final Pages

Encyclopedia of Physical Science and Technology EN004I-845 June 8, 2001 18:21

244 Data Mining and Knowledge Discovery

Another use of Data Mining for Business has been for
Risk Assessment. Such assessment of credit worthiness
of potential customers is an important aspect of this use
which has found particular application to banking institu-
tions where lending money to potentially risky customers
is an important part of the day-to-day business. A related
application has been to litigation assessment where a firm
may wish to assess how likely and to what extent a bad
debtor will pay up and if it is worth their while getting
involved in unnecessary legal fees.

Case Study I. A supermarket chain with a large
number of stores holds data on the shopping trans-
actions and demographic profile of each customer’s
transactions in each store. Corporate management
wants to use the customer databases to look for global
and local shopping patterns.

D. Database Marketing

Database Marketing refers to the use of Data Mining tech-
niques for the purposes of gaining business advantage.
These include improving a company’s knowledge of its
customers in terms of their characteristics and purchasing
habits and using this information to classify customers;
predicting which products may be most usefully offered to
a particular group of customers at a particular time; identi-
fying which customers are most likely to respond to a mail
shot about a particular product; identifying customer loy-
alty and disloyalty and thus improving the effectiveness of
intervention to avoid customers moving to a competitor;
identifying the product specifications that customers re-
ally want in order to improve the match between this and
the products actually offered; identifying which products
from different domains tend to be bought together in or-
der to improve cross-marketing strategies; and detecting
fraudulent activity by customers.

One of the major tasks of Data Mining in a commer-
cial arena is that of market segmentation. Clustering tech-
niques are used in order to partition a customer database
into homogeneous segments characterized by customer
needs, preferences, and expenditure. Once market seg-
ments have been established, classification techniques are
used to assign customers and potential customers to par-
ticular classes. Based on these, prediction methods may be
employed to forecast buying patterns for new customers.

E. Medicine

Potential applications of Data Mining to Medicine provide
one of the most exciting developments and hold much
promise for the future. The principal medical areas which
have been subjected to a Data Mining approach, so far,
may be categorized as: diagnosis, treatment, monitoring,
and research.

The first step in treating a medical complaint is diag-
nosis, which usually involves carrying out various tests
and observing signs and symptoms that relate to the pos-
sible diseases that the patient may be suffering from. This
may involve clinical data, data concerning biochemical
indicators, radiological data, sociodemographic data in-
cluding family medical history, and so on. In addition,
some of these data may be measured at a sequence of
time-points, e.g., temperature, lipid levels. The basic prob-
lem of diagnosis may be regarded as one of classifica-
tion of the patient into one, or more, possible disease
classes.

Data Mining has tremendous potential as a tool for
assessing various treatment regimes in an environment
where there are a large number of attributes which measure
the state of health of the patient, allied to many attributes
and time sequences of attributes, representing particular
treatment regimes. These are so complex and interrelated,
e.g., the interactions between various drugs, that it is dif-
ficult for an individual to assess the various components
particularly when the patient may be presenting with a
variety of complaints (multi-pathology) and the treatment
for one complaint might mitigate against another.

Perhaps the most exciting possibility for the applica-
tion of Data Mining to medicine is in the area of medi-
cal research. Epidemiological studies often involve large
numbers of subjects which have been followed-up over
a considerable period of time. The relationship between
variables is of considerable interest as a means of investi-
gating possible causes of diseases and general health in-
equalities in the population.

Case Study II. A drug manufacturing company is
studying the risk factors for heart disease. It has data
on the results of blood analyses, socioeconomic data,
and dietary patterns. The company wants to find out
the relationship between the heart disease markers in
the blood and the other relevant attributes.

F. Science

In many areas of science, automatic sensing and recording
devices are responsible for gathering vast quantities of
data. In the case of data collected by remote sensing from
satellites in disciplines such as astronomy and geology the
amount of data are so great that Data Mining techniques
offer the only viable way forward for scientific analysis.

One of the principal application areas of Data Mining
is that of space exploration and research. Satellites pro-
vide immense quantities of data on a continuous basis
via remote sensing devices, for which intelligent, train-
able image-analysis tools are being developed. In previous
large-scale studies of the sky, only relatively small amount
of the data collected have actually been used in manual at-
tempts to classify objects and produce galaxy catalogs.

P1: LEF Final Pages

Encyclopedia of Physical Science and Technology EN004I-845 June 8, 2001 18:21

Data Mining and Knowledge Discovery 245

Not only has the sheer amount of data been overwhelm-
ing for human consideration, but also the amount of data
required to be assimilated for the observation of a single
significant anomaly is a major barrier to purely manual
analysis. Thus Machine Learning techniques are essential
for the classification of features from satellite pictures, and
they have already been used in studies for the discovery
of quasars. Other applications include the classification
of landscape features, such as the identification of volca-
noes on the surface of Venus from radar images. Pattern
recognition and rule discovery also have important appli-
cations in the chemical and biomedical sciences. Finding
patterns in molecular structures can facilitate the develop-
ment of new compounds, and help to predict their chemical
properties. There are currently major projects engaged in
collecting data on the human gene pool, and rule-learning
has many applications in the biomedical sciences. These
include finding rules relating drug structure to activity for
diseases such as Alzheimer’s disease, learning rules for
predicting protein structures, and discovering rules for the
use of enzymes in cancer research.

Case Study III. An astronomy cataloguer wants to
process telescope images, identify stellar objects of in-
terest and place their descriptions into a database for
future use.

G. Engineering

Machine Learning has an increasing role in a number of
areas of engineering, ranging from engineering design to
project planning. The modern engineering design process
is heavily dependent on computer-aided methodologies.
Engineering structures are extensively tested during the
development stage using computational models to provide
information on stress fields, displacement, load-bearing
capacity, etc. One of the principal analysis techniques
employed by a variety of engineers is the finite element
method, and Machine Learning can play an important role
in learning rules for finite element mesh design for en-
hancing both the efficiency and quality of the computed
solutions.

Other engineering design applications of Machine
Learning occur in the development of systems, such as
traffic density forecasting in traffic and highway engi-
neering. Data Mining technologies also have a range of
other engineering applications, including fault diagnosis
(for example, in aircraft engines or in on-board electronics
in intelligent military vehicles), object classification (in oil
exploration), and machine or sensor calibration. Classifi-
cation may, indeed, form part of the mechanism for fault
diagnosis.

As well as in the design field, Machine Learning
methodologies such as Neural Networks and Case-Based
Reasoning are increasingly being used for engineering

project management in an arena in which large scale inter-
national projects require vast amounts of planning to stay
within time scale and budget.

H. Fraud Detection and Compliance

Techniques which are designed to register abnormal trans-
actions or data usage patterns in databases can provide an
early alert, and thus protect database owners from fraud-
ulent activity by both a company’s own employees and
by outside agencies. An approach that promises much for
the future is the development of adaptive techniques that
can identify particular fraud types, but also be adaptive to
variations of the fraud. With the ever-increasing complex-
ity of networks and the proliferation of services available
over them, software agent technology may be employed in
the future to support interagent communication and mes-
sage passing for carrying out surveillance on distributed
networks.

Both the telecommunications industry and the retail
businesses have been quick to realize the advantages of
Data Mining for both fraud detection and discovering fail-
ures in compliance with company procedures. The illegal
use of telephone networks through the abuse of special ser-
vices and tariffs is a highly organized area of international
crime. Data Mining tools, particularly featuring Classifi-
cation, Clustering, and Visualization techniques have been
successfully used to identify patterns in fraudulent behav-
ior among particular groups of telephone service users.

V. FUTURE DEVELOPMENTS

Data Mining, as currently practiced, has emerged as a
subarea of Computer Science. This means that initial de-
velopments were strongly influenced by ideas from the
Machine Learning community with a sound underpin-
ning from Database Technology. However, the statistical
community, particularly Bayesians, was quick to realize
that they had a lot to contribute to such developments.
Data Mining has therefore rapidly grown into the inter-
disciplinary subject that it is today.

Research in Data Mining has been led by the KDD
(Knowledge Discovery in Databases) annual conferences,
several of which have led to books on the subject (e.g.,
Fayyad et al., 1996). These conferences have grown in 10
years from being a small workshop to a large independent
conference with, in Boston in 2000, nearly 1000 partici-
pants. The proceedings of these conferences are still the
major outlet for new developments in Data Mining.

Major research trends in recent years have been:

� The development of scalable algorithms that can
operate efficiently using data stored outside main
memory

P1: LEF Final Pages

Encyclopedia of Physical Science and Technology EN004I-845 June 8, 2001 18:21

246 Data Mining and Knowledge Discovery

� The development of algorithms that look for local
patterns in the data—data partitioning methods have
proved to be a promising approach

� The development of Data Mining methods for
different types of data such as multimedia and text
data

� The developments of methods for different application
areas

Much has been achieved in the last 10 years. However,
there is still huge potential for Data Mining to develop
as computer technology improves in capability and new
applications become available.

SEE ALSO THE FOLLOWING ARTICLES

ARTIFICAL NEURAL NETWORKS • COMPUTER ALGO-
RITHMS • DATABASES • FOURIER SERIES • FUNCTIONAL

ANALYSIS • FUZZY SETS, FUZZY LOGIC, AND FUZZY SYS-
TEMS • STATISTICS, BAYESIAN • WAVELETS

BIBLIOGRAPHY

Adriaans, P., and Zantinge, D. (1996). “Data Mining,” Addison-Wesley,
MA.

Berry, M., and Linoff, G. (1997). “Data Mining Techniques for Market-
ing, Sales and Customer Support,” Wiley, New York.

Berson, A., and Smith, S. J. (1997). “Data Warehousing, Data Mining,

and Olap,” McGraw-Hill, New York.
Bigus, J. (1996). “Data Mining With Neural Networks,” McGraw-Hill,

New York.
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984).

“Classification and Regression Trees,” Wadsworth, Belmont.
Cabena, P., Hadjinian, P., Stadler, R., Verhees, J., and Zanasi, A.

(1997). “Discovering Data Mining from Concept to Implementation,”
Prentice-Hall, Upper Saddle River, NJ.

Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R.
(1996). “Advances in Knowledge Discovery and Data Mining,” AAAI
Press/The MIT Press, Menlo Park, CA.

Freitas, A. A., and Lavington, S. H. (1998). “Mining Very Large
Databases With Parallel Processing,” Kluwer, New York.

Groth, R. (1997). “Data Mining: A Hands on Approach to Information
Discovery,” Prentice-Hall, Englewood Cliffs, NJ.

Inmon, W. (1996). “Using the Data Warehouse,” Wiley, New York.
Kennedy, R. L., Lee, Y., Van Roy, B., and Reed, C. D. (1997). “Solving

Data Mining Problems Through Pattern Recognition,” Prentice-Hall,
Upper Saddle River, NJ.

Lavrac, N., Keravnou, E. T., and Zupan, B. (eds.). (1997). “Intelligent
Data Analysis in Medicine and Pharmacology,” Kluwer, Boston.

Mattison, R. M. (1997). “Data Warehousing and Data Mining for
Telecommunications,” Artech House, MA.

Mitchell, T. (1997). “Machine Learning,” McGraw-Hill, New York.
Ripley, B. (1995). “Pattern Recognition and Neural Networks,”

Cambridge University Press, Cambridge.
Stolorz, P., and Musick, R. (eds.). (1997). “Scalable High Performance

Computing for Knowledge Discovery and Data Mining,” Kluwer,
New York.

Weiss, S. M., and Indurkhya, N. (1997). “Predictive Data Mining: A
Practical Guide” (with Software), Morgan Kaufmann, San Francisco,
CA.

Wu, X. (1995). “Knowledge Acquisition from Databases,” Ablex, Green-
wich, CT.

P1: GLM/GLE P2: FQP Final Pages Qu: 00, 00, 00, 00

Encyclopedia of Physical Science and Technology EN004-846 June 8, 2001 16:16

Data Structures
Allen Klinger
University of California, Los Angeles

I. Introduction
II. Memory Allocation and Algorithms

III. Hierarchical Data Structures
IV. Order: Simple, Multiple, and Priority
V. Searching and Sorting Techniques

VI. Tree Applications
VII. Randomness, Order, and Selectivity

VIII. Conclusion

GLOSSARY

Algorithm Regular procedure (like a recipe) that termi-
nates and yields a result when it is presented with input
data.

Binary search tree Data structure used in a search.
Binary tree Tree in which each entry has no, one, or two

successors; a data structure that is used to store many
kinds of other data structures.

Bit Binary digit.
Circular linkage Pointers permitting more than one com-

plete traversal of a data structure.
Data structure An abstract idea concerning the organiza-

tion of records in computer memory; a way to arrange
data in a computer to facilitate computations.

Deque Double-ended queue (inputs and outputs may be
at both ends in the most general deques).

Double linkage Pointers in both directions within a data
structure.

Field Set of adjoining bits in a memory word; grouped
bits treated as an entity.

Graph Set of nodes and links.

Hash (hashing) Process of storing data records in a dis-
orderly manner; the hash function calculates a key and
finds an approximately random table location.

Heap Size-ordered tree; all successor nodes are either
(consistently) smaller or larger than the start node.

Key Index kept with a record; the variable used in a sort.
Linear list One-dimensional data set in which relative

order is important. In mathematical terms, linear list
elements are totally ordered.

Link Group of bits that store an address in (primary, fast)
memory.

Linked allocation Method for noncontiguous assign-
ment of memory to a data structure; locations or ad-
dress for the next element stored in a part of the current
word.

List Treelike structure useful in representing recursion.
Minimal spanning tree Least sum-of-link path that con-

nects all nodes in a graph with no cycles (closed cir-
cuits).

Node Element of a data structure consisting of one or
more memory words. Also, an entity in a graph con-
nected to others of its kind by arcs or links.

 263

P1: GLM/GLE P2: FQP Final Pages

Encyclopedia of Physical Science and Technology EN004-846 June 8, 2001 16:16

264 Data Structures

Pointer See link.
Port Location where data enter or exit a data structure.
Priority queue Queue where each item has a key that

governs output; replacing physical position of records
in the data structure by their key values.

Quad-tree (also quadtree) A tree where every node has
four or fewer successor elements; abbreviated form of
quaternary tree.

Queue Linear list with two ports, one for inputs; the other
for outputs; data structure supporting algorithms that
operate in a first-in–first-out manner.

Recursion Repeated use of a procedure by itself.
Ring Circularly linked data structure.
Search Operation of locating a record or determining its

absence from a data structure.
Sequential allocation Assignment of memory by con-

tiguous words.
Sort Permutation of a set of records to put them into a

desired order.
Stack One-port linear list that operates in a last-in–first-

out manner. This structure is heavily used to implement
recursion.

Tag Bit used to signal whether a pointer is as originally
intended; if the alternative, the pointer is a thread.

Thread Alternate use for a pointer in a data structure.
Tree Hierarchical data structure.
Trie Tree data structure employing (1) repeated subscript-

ing, and (2) different numbers of node successors. A
data structure that is particularly useful for multiway
search; structure from information retrieval; useful
means for search of linguistic data.

DATA STRUCTURES are conceptual tools for planning
computer solution of a problem. For a working definition
of the term use the way information is organized in com-
puter memory. The memory-organization approach taken
is closely intertwined with the algorithms that can be de-
signed. That makes algorithms (or analysis of algorithms)
closely related to data structures. In practice, computer
programs implement algorithms. Data structures have an
impact on computer operation. They determine available
memory space for other programs and fix the running time
of their own program and the ability of other routines to
function.

Data structures are places to put useful things inside a
computer. The choice of one kind rather than another is a
process of arranging key information to enable its use for
some purpose. Another way to define data structures is as
practical ways to implement computation on digital com-
puters, taking account of characteristics of the hardware,
operating system, and programming language.

Data structures are ways of describing relationships
among entities. Recognizing a relationship and its prop-
erties helps in writing computer programs. Many ways to
arrange data are related to, or are like, well-known phys-
ical relationships between real objects. Examples include
people in business situations or families, books on a shelf,
newspaper pages, and cars on a highway. Sometimes data
structures are dealt with in combination with all their im-
plementation details. This combination is called an ab-
stract data type.

There is a close connection between kinds of data struc-
tures and algorithms, one so close that in some cases it
is equivalence. An algorithm is a regular procedure to
perform calculations. This is seen in examples such as a
search for a name in a list, as in using phone directories. A
directory involves data-pairs (name, telephone number)—
usually alphabetically organized by initial letter of the last
name. There is a practical usefulness of alphabetization.
As with any data structuring, this idea and its implemen-
tation enable use of a simpler algorithm. A central data
structuring notion is arrangement, particularly in the sense
systematic or ordered. When data are disordered, the algo-
rithm would need to read every record until the one wanted
was found. As in this example, data structure selection is
an essential choice governing how computers are to be
used in practice. Data structures are fundamental to all
kinds of computing situations.

Descriptions of the simplest data structure entities and
explanations of their nature follow in succeeding sec-
tions. Basic data structures are stack, queue, and other
linear lists; multiple-dimension arrays; (recursive) lists;
and trees (including forests and binary trees). Pointer or
link simply means computer data constituting a memory
location. Level indicates position in a structure that is hi-
erarchical. Link, level, and the elementary structures are
almost intuitive concepts. They are fairly easily under-
stood by reference to their names or to real-life situations
to which they relate. Evolving computer practice has had
two effects. First, the impact of the World Wide Web and
Internet browsers has acquainted many computer users
with two basic ideas: link (pointer) and level. Second, com-
puter specialists have increased their use of advanced data
structures. These may be understandable from their names
or descriptive properties. Some of these terms are tries,
quad-trees (quadtrees, quaternary trees), leftist-trees, 2–
3 trees, binary search trees, and heap. While they are less
common data structures and unlikely to be part of a first
course in the field, they enable algorithmic procedures in
applications such as image transmission, geographic data,
and library search.

The basic data structure choice for any computing task
involves use of either (1) reserved contiguous memory,

P1: GLM/GLE P2: FQP Final Pages

Encyclopedia of Physical Science and Technology EN004-846 June 8, 2001 16:16

Data Structures 265

or (2) links, pointers—locators for related information
elements. Data structuring concerns deciding among
methods that possess value for some information arrange-
ments. Often the decision comes down to a mathematical
analysis that addresses how frequently one or another kind
of data is present in a given problem. The data structure
may need to be chosen to deal with any of several issues,
for example: (1) things to be computed, (2) characteristics
of the programming language, (3) aspects of the operating
system, (4) available digital hardware, and (5) ways that
results may be used. Thus, data structures is a technical
term that covers: (1) practical aspects of the computing do-
main needed to effectively and efficiently use computers,
and (2) theoretical aspects involving mathematical analy-
sis issues.

I. INTRODUCTION

Data structures make it easier for a programmer to decide
and state how a computing machine will perform a given
task. To actually execute even such a simple algorithm as
multiplication of two numbers with whole and fractional
parts (as 2 1

4 times 3 1
3) using a digital device, a suitable

data structure must be chosen since the numeric infor-
mation must be placed in the machine somehow. How
this is done depends on the representation used in the
data structure—for example, the number of fields (dis-
tinct information entities in a memory word) and their size
in binary digits or bits. Finally, the actual program must
be written as a step-by-step procedure to be followed in-
volving the actual operations on the machine-represented
data. (These operations are similar to those a human
would do as a data processor performing the same kind of
algorithm.)

The topic of data structures fits into the task of program-
ming a computer as mathematical reasoning leads from
word descriptions of problems to algebraic statements.
(Think of “rate times time equals distance” problems.)
In other words, data structure comparisons and choices
resemble variable definitions in algebra. Both must be un-
dertaken in the early stages of solving a problem. Data
structures are a computer-oriented analogy of “let x be
the unknown” in algebra; their choice leads to the final
design of a program system, as the assignment of x leads
to the equation representing a problem.

The first three sections of this article introduce basic
data structure tools and their manipulation, including the
concepts of sequential and linked allocation, nodes and
fields, hierarchies or trees, and ordered and nonordered
storage in memory. The section on elementary and ad-
vanced structures presents stacks, queues, and arrays,

as well as inverted organization and multilists. The fi-
nal sections deal with using data structures in algorithm
design. Additional data structure concepts, including bi-
nary search trees, parent trees, and heaps, are found in
these sections, as is a survey of sorting and searching
algorithms.

II. MEMORY ALLOCATION
AND ALGORITHMS

A rough data structure definition is a manner for recording
information that permits a program to execute a definite
method of movement from item to item. An analysis is
needed before programming can be done to decide which
data structure would be the best choice for the situation
(data input, desired result).

Examples of tasks we could want the computer to per-
form might include:

1. Selection of individuals qualified for a task (typist,
chemist, manager)

2. Output of individuals with a common set of attributes
(potential carpool members for certain regions, bridge
players vested in the company retirement plan and
over 50 years in age, widget-twisters with less than
two years of seniority)

3. Output of individuals with their organizational
relationships (division manager, staff to division
manager, department director, branch leader, section
chief, group head, member of technical staff)

In data structure terms, all these outputs are lists, but the
last item is more. In ordinary terms, it is an organization
chart. That is a special kind of data structure possessing
hierarchy. As a data structure, the relationship possesses
a hierarchical quality so it is not just a list but also a tree.
Trees can be represented by a linear list data structure
through the use of a special place marker that signifies
change hierarchy level. In text representation, either a pe-
riod or a parenthesis is used for that purpose. Whether a
data structure is a list or is represented by a list is another
of the unusual aspects of this field of knowledge. Never-
theless, these are just two aspects of the problem being
dealt with, specifically:

1. The nature of the physical data relationship
2. The way the data may be presented to the computer

Two kinds of storage structures are familiar from everyday
life: stack and queue. Real examples of queues are wait-
ing lines (banks, post office), freeway traffic jams, and

P1: GLM/GLE P2: FQP Final Pages

Encyclopedia of Physical Science and Technology EN004-846 June 8, 2001 16:16

266 Data Structures

so forth. Physical stacks include piles of playing cards
in solitaire and rummy games and unread material on
desks.

Data structure methods help programs get more done
using less space. Storage space is valuable—there is only
a limited amount of primary computer storage (random
access, fast, or core memory; RAM stands for random ac-
cess memory). Programs have been rewritten many times,
often to more efficiently use fast memory. Many tech-
niques evolved from memory management programming
lore, some from tricks helpful in speeding the execution
of particular algorithms. Peripheral memory devices are
commonly referred to as external or secondary storage.
They include compact-disc read-only memory (CD-ROM,
disks, drums, and magnetic tape). Such devices enable re-
taining and accessing vast volumes of data. The use of
secondary stores is an aspect of advanced data structuring
methodology often dealt with under file management or
database management. This article is mainly concerned
with fast memory (primary storage).

Improvements in storage use or in execution speed oc-
cur when program code is closely matched to machine
capabilities. Data structure ideas do this by using special
computer hardware and software features. This can in-
volve more full use of bits in computer words, fields of
words in primary storage, and segments of files in sec-
ondary storage.

Data structure ideas can improve algorithm perfor-
mance in both the static (space) and dynamic (time) as-
pects of memory utilization. The static aspects involve the
actual memory allocation. The dynamic aspects involve
the evolution of this space over time (measured in cen-
tral processor unit, or CPU, cycles) as programs execute.
Note that algorithms act on the data structure. Program
steps may simply access or read out a data value or rear-
range, modify, or delete stored information. But, they also
may combine or eliminate partially allotted sets of mem-
ory words. Before-and-after diagrams help in planning dy-
namic aspects of data structures. Ladder diagrams help in
planning static allocations of fast memory. Memory allo-
cation to implement a data structure in available computer
storage begins with the fundamental decision whether to
use linked or sequential memory. Briefly, linked allocation
stores wherever space is available but requires advanced
reservation of space in each memory word for pointers
to show where to go to get the next datum in the struc-
ture. Memory that is sequentially allocated, by contrast,
requires reservation of a fixed-sized block of words, even
though many of these words may remain unused through
much of the time an algorithm is being followed as its
program executes.

We now present an example that illustrates several other
data structure concepts; the notions of arrays (tables) and

graphs, which we will describe below, are used in handling
scheduling problems.

1. Example (Precedence)

A room has several doors. Individuals arrive at the room
at different times. This information can be arranged in
several ways. Listing individuals in arrival order is one
possibility. Another is listing individuals with their arrival
times—that is, in a table. A graph is yet another way; see
Fig. 1.

A graph can represent the precedence relations via its
physical structure (its nodes and its edges), as in Fig. 1.
The arrows indicate “successor-of-a-node.” J(ones) is no
node’s successor (was first); Sh(arp) has no successors
(was last). G(reen) and B(rown) arrived simultaneously
after S(mith) and before Sh(arp).

Computer storage of precedence information via a ta-
ble leads to a linear list data structure. The alternative,
the graph, could be stored in numeric form as node pairs.
The arrows in the graph become locators (links, pointers)
to data words in computer memory. Ordinal information
(first, second, etc.) also could be stored in the data words
and could facilitate certain search algorithms. Thus, alter-
natives exist for presenting facts about time or order of
each individual’s entry. Decisions to be made about those
facts are derived from the data structure contents. One pos-
sible data structure is a table giving entry times. Another
is a graph showing entry order. Since order can be derived
from time data, an algorithm that operates on the data in the
table (remove two entries, subtract their time values, etc.)
can give information that is explicit in the other data struc-
ture via the graph arrows (or locator in computer memory).
This is a general property of data structures. That is, data
represented can shorten computations. It is also true that
computing can reduce storage needs.

Priority of arrival is analogous to scheduling such things
as jobs to build a house or courses to complete a degree.
Computer algorithms that take advantage of data structure
properties are useful tools for planning complex sched-
ules. Efficient scheduling algorithms combine elementary
data structures with the fact that graph elements without
predecessors can be removed while preserving priorities.

FIGURE 1 Precedence graph and table of arrival times.

P1: GLM/GLE P2: FQP Final Pages

Encyclopedia of Physical Science and Technology EN004-846 June 8, 2001 16:16

Data Structures 267

A node is the smallest elementary data structure unit.
Physical nodes are contiguous words in fast memory. It
is useful to think of the realization of a data structure as
a network of nodes embedded in memory, possibly con-
nected by links. Parts of nodes and portions of memory
words referred to as entities by programs are called fields.
A one-bit field is called a flag, or sometimes a tag.

Simple sequential assignment of memory can imple-
ment list structures. Three elementary data structures are
illustrated as follows by list examples. A pile of papers
on a desk is a stack. A group of cars in a one-lane traffic
bottleneck is a queue. A collection of candies can be a
bag. Actually, in computer terms the data objects (papers,
cars, and candies) are stored in the named data structure,
and all three are generally called linear lists. The data
type (e.g., real, integer, complex) is another attribute
that must be noted in planning the data structure. It can
change the space needed by each node (complex values
require more bits).

An array is a multidimensional (not linear) data struc-
ture. An appointment schedule for the business week,
hour by hour and day by day, is an example of an array.
A mathematical function can generate data for an array
structure. For example, the four-dimensional array shown
in Table I (with entries in exponential notation) was ob-
tained by substituting numeric values for x, y, w, and z in
the expression:

w = x3.5 + 2yz

The exponential notation for numerical items displayed
here is also called floating point. The notation is useful in
this table because there is a wide range of values for the
w variable for similar x, y, and z.

In sequential allocation of storage, data are grouped
together one memory word after another within a given
structure. In linked allocation, a field or node part, usually
a section of one memory word, is used to store the next lo-
cation. Reserving more memory than is currently required
to hold the data on hand is necessary in sequential allo-
cation since the number of elements stored in a structure
may grow during execution of programs. In contrast, with
sequential methods, linked allocation does not require re-
serving extra memory words; instead, it adds bits needed
to store pointers as overhead in every node.

TABLE I Four-Dimension Array: w = x 3.5 + 2y Z

x y z w

1.25 50 0.25 7.50

3.75 3 3.75 8.82 × 105

2.35 32 3.75 8.82 × 105

64 21 1.75 2.10 × 106

· · ·

Although less memory is generally needed with linked
allocation than with sequential allocation, the latter facili-
tates more rapid access to an arbitrary node. This is so since
an arbitrary node is located through what may be a lengthy
chain of pointers in the former case. Sequential allocation
access to the contents of the data structure involves both
the start value (a pointer to the abstract structure) and an
index to the items it holds.

III. HIERARCHICAL DATA STRUCTURES

Tree data structures enable representation of multidirec-
tional or hierarchic relationships among data elements.
There are several related data structures (for example,
trees, forests), and the most general hierarchic structure,
the list, is usually indicated as a special structure written
with capitalized first letter, List. Capital L lists represent
recursion. A List differs from either a tree or a forest by
permitting nodes to point to their ancestors. All these struc-
tures are usually represented in memory by yet another one
that also is hierarchic, the binary tree. This is so because
there are straightforward ways to implement binary tree
traversal.

A binary tree is a hierarchic structure with every ele-
ment having exactly no, one, or two immediate successors.
When another structure (tree, forest, List) is given a binary
tree representation, some of the “linked” memory alloca-
tion needed to store the data it holds becomes available in
a form that is more sequential. This is related to a descrip-
tive term about binary trees, the notion of completeness.
A binary tree is said to be complete when all the nodes
that are present at a level are in sequence, beginning at the
left side of the structure, with no gaps.

There are many definite ways to move through all the
items in a binary tree data structure (several of them corre-
spond to analogous procedures for general trees, forests,
and Lists). Some of the most useful are pre-order (where
a root or ancestor is visited before its descendants; after it
is evaluated, first the left successor is visited in preorder,
then the right), in-order (also called symmetric order), and
post-order. In post-order, the ancestor is seen only after
the post-order traversal of the left subtree and then the
right. In-order has the in-order traversal of the left sub-
tree preceding the evaluation of the ancestor. Traversal of
the two parts occurs before visiting the right sub-tree
in the in-order fashion.

Trees may be ordered; that is, all the “children” of any
node in the structure are indexed (first, second, etc.). An
ordered tree is the most common kind used in computer
programs because it is easily represented by a binary tree;
within each sibling set is a linear-list-like structure, which
is useful for data retrieval; a nonordered tree is much like a

P1: GLM/GLE P2: FQP Final Pages

Encyclopedia of Physical Science and Technology EN004-846 June 8, 2001 16:16

268 Data Structures

bag or set. A node in either kind of tree has degree equal to
the number of its children, that is, the length of its sublist.
Another basic tree term is level. This signifies the number
of links between the first element in the hierarchy, called
the root, and the datum. As a result, we say that the root
is at level zero. A tree node with no successors is called a
tip or leaf.

Strings, linear lists with space markers added, are often
used to give text depictions of trees. There are several ways
to visually depict the hierarchical relationship expressed
by tree structures: nested parentheses, bar indentation, set
inclusion, and decimal points—essentially the same de-
vice used when library contents are organized, for exam-
ple, by the Dewey decimal system. All of these methods
can be useful. The kind of information that can be stored
by a tree data structure is both varied and often needed in
practical situations. For example, a tree can describe the
chapter outline of a book (Fig. 2a). On personal computers
or web browsers, the starting location is called the root or
home. It lists highest level information.

A binary tree is particularly useful because it is easy
to represent in computer memory. To begin with, the data
words (the contents stored at each node in the structure)
can be distinguished from successor links by a one-bit flag.
Another one-bit flag indicates a “left/right” characteristic
of the two pointers. Thus, at a cost of very little dedicated
storage, basic information that is to be kept can be stored
with the same memory word field assignments. The binary
tree version of Fig. 2a is Fig. 2b.

Binary trees always have tip nodes with unused point-
ers (link fields). Hence, at the small cost of a tag bit to
indicate whether the link field is in use, this space can be
used for traversal. The idea is that any pointer field not
used to locate other data in the binary tree structure can
be used to describe where to go in a traversal (via pre-
order, post-order, etc.). Hence, these tip fields can be used
to speed algorithm execution. These pointer memory lo-
cation values may be useful in indicating where the algo-
rithm should go next. If a tag bit indicates that the purpose
is data structure traversal, the locator is called a thread.

IV. ORDER: SIMPLE, MULTIPLE,
AND PRIORITY

A. Linear and Indexed Structures

The simplest data structures are lists (also called data
strings). Even the ordinary list data structure can be set
up to have one or another of several possible input and
output properties. There are ways to use such input and
output properties to give advantages in different situa-
tions. Hence, careful choice of the simple structure can
contribute to making a computer program fast and space-
efficient.

Two kinds of simple lists are stacks and queues. A
stack is a data store where both input and output occur
at the same location: the general name for such a place
is a port. Stacks are characterized by last-in–first-out data
handling. A queue is a two-port store characterized by
first-in–first-out data handling. A queue is a more versa-
tile data structure than a stack. A method for storing a
queue in a fixed fast memory space uses circular wrap-
ping of the data (modulo storage). There is another kind
of linear list—a deque or double-ended queue, which has
two ports. In the most general deque, input and output can
take place at both ports.

Linear lists are data structures with entries related only
through their one-dimensional relative positions. Because
of this, from size and starting location of the structure,
both first and last nodes can be located easily.

Data stored in a stack are accessible to the program in
the reverse of the input order, a property that is useful in sit-
uations involving recursion. Evaluating an algebraic for-
mula involving nested expressions is a recursive process
that is facilitated by use of a stack to store left parenthe-
ses and symbols (operands) while the program interprets
operators.

Stacks, queues, and deques all make heavy use of linear
order among the data elements. However, for some com-
puting purposes, a data structure that pays no attention to
order is very useful. One elementary structure that has this
nature is called a bag. Bags are structures where elements
may be repeatedly included. An example of a bag is

DIRECTORY-BAG
M. JONES, 432-6101;
M. JONES, 432-6101; M. JONES, 432-6101;
A. GREEN, 835-7228; A. GREEN, 835-7228;

One use of bags is in looping as a supplementary and more
complex index.

Up to this point we have considered only one type of
elementary structure, in the sense that all the ones we have
dealt with have been one dimensional. In mathematics, a
one-dimensional entity is a kind of array known as a vec-
tor. A vector can be thought of as a set of pairs: an index
and a data item. The convention is that data items are all
the same type and indices are integers. With the same con-
vention (both indices and data present) allowing an index
to be any ordered string of integers yields an elementary
data structure called an array. If the ordered string of inte-
gers has n-many elements, the array is associated with that
number of dimensions. In algebra, mathematics applies
two-dimensional arrays to simultaneous linear equations,
but the data structure idea is of a more general concept. It
allows any finite number of dimensions.

A dense array is one where data items are uniformly
present throughout the structure. In a block array, data

P1: GLM/GLE P2: FQP Final Pages

Encyclopedia of Physical Science and Technology EN004-846 June 8, 2001 16:16

Data Structures 269

FIGURE 2 Trees and a book chapter outline. (a) General tree representation; (b) binary tree representation. Chap.,
chapter; Sect., section; SS, subsection.

P1: GLM/GLE P2: FQP Final Pages

Encyclopedia of Physical Science and Technology EN004-846 June 8, 2001 16:16

270 Data Structures

items may be present only in certain intervals of coor-
dinate directions. Both dense and block arrays are good
candidates for sequential storage, in contrast with sparse
arrays. A sparse array characteristically has a number of
data items present much smaller than the product of the
maximum coordinate dimensions, and data that are arbi-
trarily distributed within it. Linked allocation is preferred
for sparse arrays. Sparse arrays occur in routing appli-
cations. A table using a binary variable to show plants
where goods are manufactured and destinations where
they are sold would have many zeros signifying plant-
not-connected-to-market. Use of a linked representation
for storing this sparse array requires much less storage
than by sequential means.

Compressed sequential allocation is another array stor-
age method. It uses the concept of a base location and
stores only nonzero data items. It has the advantage that the
nonzero data items are stored in sequential order, so access
is faster than with linked representation. For r nonzero el-
ements, where r is not very small compared to the product
of the array dimensions ˙mn, the storage required for com-
pressed sequential allocation is 2r . The base locations are
essentially list heads (see below), and searching a list of r
of them takes, on the average, of the order of log2r steps.
Arrays are also called orthogonal lists, the idea being that
the several coordinate directions are perpendicular; rows
and columns in a two-dimensional matrix are examples.
In an m × n matrix A with elements a[i, j], a typical ele-
ment A[k, l] belongs to two orthogonal linear lists (row list
A[k, *], column list A[*, l], where the asterisk represents
all the values, i.e., 1, . . . , m or 1, . . . , n).

B. Linkage

The method of double linkage of all nodes has advantages
in speeding algorithm execution. This technique facilitates
insertion and deletion in linear lists. Another advanced
method has pointers that link the beginning and end of a
data structure. The resulting data structures enable simpli-
fied traversal algorithms. This technique is usually called
circular linkage or sometimes simply rings; it is a valu-
able and useful method when a structure will be traversed
several times and is entered each time at a starting point
other than the starting datum (“top” in a stack, “front” in
a queue).

Whenever frequent reversal of traversal direction or in-
sertion or deletion of data elements occurs, a doubly linked
structure should be considered. Two situations where this
often occurs are in discrete simulation and in algebra.
Knuth described a simulation where individuals wait-
ing for an elevator may tire and disappear. Likewise, the
case of polynomial addition requires double linkage be-
cause sums of like terms with different signs necessitate
deletions.

A special type of queue called a priority queue replaces
the physical order of the data elements by the numerical
value of a field in the nodes stored. Data are output from a
priority queue in the order given by these numerical values.
In order to do this, either the queue must be scanned in its
entirety each time a datum is to be output, or the insertion
operation must place the new node in its proper location
(based on its field value). Whatever the approach, this
structure introduces the need for several terms discussed
below in greater detail. A key is a special field used for
ordering a set of records or nodes. The term key often
signifies “data stored in secondary storage as an entity.”
The process of locating the exact place to put an item with
a particular key is called a search. The process of ordering
a set of items according to their key values is called a sort.

Even though at some time during program execution a
data structure may become empty, it could be necessary
to locate it. A special memory address (pointer, locator)
for the data structure makes it possible for that to be done.
This address is called a list head. (List heads are traversal
aides.)

Multilists are a generalization of the idea of orthogonal
lists in arrays. Here, several lists exist simultaneously and
use the same data elements. Each list corresponds to some
logical association of the data elements. That is, if items
are in a list they possess a common attribute.

Two other advanced structures, inverted lists and doubly
linked trees, enable more efficiency in executing certain
kinds of algorithms by using more pointers. Inverted or-
ganization takes one table, such as Table I, into many. The
added pointers make data structure elements correspond
to the subtables.

V. SEARCHING AND SORTING
TECHNIQUES

The two topics, searching and sorting, are related in the
sense that it is simpler to locate a record in a list that has
been sorted. Both are common operations that take place
many times in executing algorithms. Thus, they constitute
part of the basic knowledge of the field of data structures.
There are many ways to define special data structures to
support searching and sorting. There is also a direct con-
nection between searching itself, as an algorithmic pro-
cess, and tree data structures.

Sorting tasks appear in so many applications that the ef-
ficiency of sort algorithms can have a large effect on over-
all computer system performance. Consequently, choice
of a sort method is a fundamental data structure decision.
The ultimate decision depends on the characteristics of
the data sets to be sorted and the uses to which the sorted
data will be put. The requests for a sorted version of a

P1: GLM/GLE P2: FQP Final Pages

Encyclopedia of Physical Science and Technology EN004-846 June 8, 2001 16:16

Data Structures 271

list, their nature, and the rate of re-sort on given lists must
all be taken into account. Several measures of merit are
used to make quantitative comparisons between sorting
techniques; memory requirement is one such measure.
In essence, a sort yields a permutation of the entries in
an input list. However, this operation takes place not on
the information contained in the individual entries, but
rather on a simpler and often numerical entity known
as a key.

A. Sorting Algorithms

There are very many different sorting algorithms. Some
of them have descriptive names, including insertion sort,
distribution sorting, and exchange sorting. Another kind,
bubble sort, is based on a simple idea. It involves a small
key rising through a list of all others. When the list is
sorted, that key will be above all larger values. Some sort-
ing methods rely on special data structures. One such case
is heap sort.

A heap is a size-ordered complete binary tree. The root
of the tree is thus either the largest of the key values or the
least, depending on the convention adopted. When a heap
is built, a new key is inserted at the first free node of the
bottom level (just to the right of the last filled node), then
exchanges take place (bubbling) until the new value is in
the place where it belongs.

Insertion sort places each record in the proper position
relative to records already sorted.

Distribution sort (also called radix sort) is based on the
idea of partitioning the key space into successively finer
sets. When the entire set of keys has been examined, all
relative positions in the list have been completely deter-
mined. (Alphabetizing a set is an example of a radix sort.)

When a large sorted list is out of order in a relatively
small area, exchange sorts can be useful. This is a kind of
strategy for restoring order. The process simply exchanges
positions of record pairs found out of order. The list is
sorted when no exchanges can take place.

Another sorting strategy takes the most extreme record
from an unsorted list, ends a sorted list to it, then continues
the process until the unsorted list is empty. This approach
is called sorting by selection.

Counting sort algorithms determine the position of a
particular key in a sorted list by finding how many keys
are greater (or less) than that chosen. Once the number
is determined, no further relative movement of the key
position is found.

Merging two sorted lists requires only one traversal of
each list—the key idea in merg sort. To sort a list by merg-
ing, one begins with many short sorted lists. Often those
“runs” of elements in a random list that are already in or-
der form one of them. The process merges them two at a

time. The result is a set of fewer long lists. The procedure
repeats until a single list remains.

B. Searching: Algorithms and Data Structures

Searching can be thought of as relatively simple in con-
trast with the many kinds of sorting algorithms. The sim-
ple sequential search proceeds stepwise through the data
structure. If the item sought is present, it will be found. If it
is present, the worst case is when it is last; otherwise (that
is, when it is not in the list) the search is both unsuccessful
and costly in terms of the number of items examined.

A much better way to search, on the average, in terms of
the number of comparisons required either to find an item
or to conclude that it is not in the data structure being ex-
amined is called a binary search. The approach is based on
sorting the records into order before beginning the search
and then successively comparing the entry sought first
with one in the data structure middle. The process con-
tinues successively examining midpoints of subsets. At
each stage, approximately half the data structure can be
discarded. The result is on the average order of magnitude
of log2r search steps for a file of size r .

Any algorithm for searching an ordered table of length
N by comparisons can be represented by a binary tree
data structure. That structure is called a binary search tree
when the nodes are labeled sequentially (left to right by
1 to N in the N -node case). This fact can also be stated
as follows: There is an equivalent algorithm for searching
an ordered table of length N and a binary search tree (i.e.,
a data structure). Focusing on the recursive definition of a
binary search tree, first, all are binary trees; second, binary
search trees have their node information fields consists of
keys; finally, each key satisfies the conditions that:

1. All keys in the left subtree are less.
2. All keys in the right subtree are greater.
3. Left and right subtrees are binary search trees.

The many special cases of such recursively defined binary
search trees (data structure) each correspond to a search
algorithm. Movement through a binary search tree is like
going to a place in the file. That place has a key, which is
to be examined and compared to the one sought.

Two special cases of binary search trees (and, hence,
search algorithms) are binary and Fibonaccian. Each of
these algorithms is relatively easy to implement in terms of
computations used to create the underlying search tree data
structure. By contrast, interpolation search is a valuable
method but is more complex in terms of computations.

To obtain the search tree that corresponds to binary
search of 16 records, assume that the numbering 1, . . . ,
16 gives the keys. If we entered the file at the midpoint and

P1: GLM/GLE P2: FQP Final Pages

Encyclopedia of Physical Science and Technology EN004-846 June 8, 2001 16:16

272 Data Structures

entered each subfile at its midpoint, we would have a bi-
nary search tree with key value 8 at the root, left successor
4, and right successor 12. Fibonacci search replaces the
division-by-two operations necessary in a binary search
by simpler addition and subtraction steps. The Fibonacci
series consists of numbers that are each the sum of the
immediately preceding two in that sequence. A Fibonacci
series begins with two ones, and has values:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

In a Fibonaccian search, the elements of the binary search
tree are either Fibonacci numbers or derived from them;
the root is a Fibonacci number, as are all nodes reached
by only left links. Right links lead to nodes whose val-
ues are the ancestor plus the difference between it and
its left successor. That is, the difference between the an-
cestor and left successor is added to the ancestor to get
the right successor value. Fibonaccian binary search trees
have a total number of elements one less than a Fibonacci
number.

VI. TREE APPLICATIONS

A. Parent Trees and Equivalence
Representation

In a parent tree data structure, each successor points to its
ancestor. Hence, such a structure can be stored in memory
as a sequential list of (node, parent-link) pairs, as illus-
trated by Fig. 3. The parent tree representation facilitates
“bottom-up” operations, such as finding the (1) root, (2)
depth in the tree, and (3) ancestors (i.e., all nodes in the
chain from the selected one to the root). Another advan-
tage is in savings in link overhead: Only one link per node
is required, compared to two per node in the conventional
(downward-pointer binary tree) representation. The disad-
vantage of the parent representation is that it is inefficient
for problems requiring either enumeration of all nodes in
a tree or top-down exploration of tree sections. Further,
it is valid only for nonordered trees. Trees where sibling
order is not represented are less versatile data structures.
For example, search trees cannot be represented as parent
trees, since the search is guided by the order on keys stored
in the data structure information fields.

Equivalence classes are partitions of a set into subsets
whose members can be treated alike. Binary relations can
be given explicitly by a list of the objects so paired with
the symbol “:” indicating that objects on either side stand
in some relation to one another. Sometimes “:” is a symbol
for the equivalence relation; another form is “==”. These
are read “can be replaced by” and “is identically equal to,”
respectively.

FIGURE 3 A parent tree and its memory representation. (a)
Parent tree; (b) locations of data found in the parent tree; (c) a
sequential table storing the parent tree information.

An equivalence relation of a set of objects is defined by:
(1) the list of equivalent pairs, or (2) a rule that permits
generation of equivalent pairs (possibly only a subset).

1. Example (Pictures)

The parts of a picture that together compose objects can
be members of equivalence classes. A possible rule for
generating related pairs is “Two black squares are equiv-
alent if they share an edge.” Then, each equivalence class
represents a closed pattern.

An algorithm that solves the general equivalence class
problem scans a list of input data pairs. The process iso-
lates equivalent pairs and creates parent trees. The idea
is that the algorithm creates a node for each of the two
elements in a given pairing and one (e.g., always the one

P1: GLM/GLE P2: FQP Final Pages

Encyclopedia of Physical Science and Technology EN004-846 June 8, 2001 16:16

Data Structures 273

on the left) is made the root. If a new equivalent pair also
has an element already in a parent tree, the other item
is adjoined to the existing tree (under the relation of this
program). Whether two nodes are equivalent can be deter-
mined by finding and comparing the roots of their corre-
sponding equivalence trees to determine whether they are
in the same partition.

Parent trees are advantageous for algorithms for de-
ciding equivalence, since the most time-consuming step,
retrieval of the root of a tested node, is speeded by this data
structure. Thus, to organize a set of nodes into equivalence
classes, use an algorithm to put them into parent trees.

B. Spanning Trees and Precedence

Spanning trees are illustrated in Fig. 4(a) for a set of four
nodes. As the term implies, a spanning tree is a tree that
contains all the nodes. Suppose the tree is viewed as a
graph so that links are no longer solely pointers (memory
addresses of the next datum) but edges with weights. This
enables the concept of a minimal spanning tree. This idea
is simply the spanning tree of least total edge values. The
concept is illustrated by the following example and by
Fig. 4(b).

1. Example (Minimal Spanning Tree)

. We have four nodes, a, b, c, and d , and seek to build a
minimal spanning tree given the edge weights:

(a, b) = 6, (b, d) = 12

(a, c) = 3, (c, d) = 16

FIGURE 4 Spanning trees. (a) Four nodes with four spanning trees, all with node one at the root; (b) four nodes with
edge weights and two different spanning trees.

The tree with the form (a (b (d), c) has total weight 21,
which is less than that for the tree with d linked to c instead
of b—i.e., a (b, c (d)). Both trees just described appear in
Fig. 4 (second row at right).

The minimal spanning tree algorithm uses the following
idea. Initially, all the nodes are members of different sets.
There are as many sets as nodes. Each node has itself as the
only member of its set. As the algorithm proceeds, at each
stage it groups more nodes together, just as in equivalence
methods. The algorithm stops when all nodes are in one
set. The parent tree data structure is the best one to use to
implement the minimal spanning tree algorithm.

Yet another algorithm concept and its implications for
data structure selection arise from the precedence situa-
tion introduced earlier. To create an efficient scheduling
procedure, observe that any task that does not require com-
pletion of others before it is begun can be started at any
time. In data structure terms, this is equivalent to an algo-
rithm using the following fact: Removal of a graph ele-
ment without a predecessor does not change the order of
priorities stored in the graph.

VII. RANDOMNESS, ORDER,
AND SELECTIVITY

The issue of order is central to data structures, but it is also
the opposite of a basic mathematical notion, randomness.
Currently, data encryption is a valued use of computation.
The basic coding method involves creating a form of disor-
der approaching randomness to render files unintelligible

P1: GLM/GLE P2: FQP Final Pages

Encyclopedia of Physical Science and Technology EN004-846 June 8, 2001 16:16

274 Data Structures

to an intruder. Factoring a very large integer into a product
of prime numbers, finding the greatest common divisor of
two integers, and devising new algorithms to calculate
fundamental quantities are all central issues in restructur-
ing data that relate to encryption algorithms. This topic
is beyond the scope of this article, but is addressed in the
second of the three data structure volumes by Knuth.

Regarding disorder versus order, π , the ratio of the cir-
cumference of a circle to its diameter, has many known
and some esoteric qualities. For example,

1. It is irrational.
2. It is not known whether its successive digits are truly

random.
3. Successive digits of π exhibit local nonrandomness

(e.g., there are seven successive 3’s occurring starting
at the 710,100th decimal digit, as noted by Gardner).

4. π is well approximated by several easily computed
functions: 22/7, 355/113, [2143/22]1/4, this last noted
by Ramanujan.

Selecting where to search in the plane is aided by both
quad-trees and 2–3 trees. Quad-trees are like binary trees
but regulary involve four or fewer success to every tree
node. As a data structure, quad-trees enable algorithms to
process spatial issues, including hidden-line elimination
in graphic display. The three-dimensional analog is octress
(eight or fewer successor nodes). The somewhat similar
2–3 trees require all internal nodes (i.e., nonterminals) to
have either two or three successors.

A trie is a data structure that uses repeated subscripting
and is used to enable multiway search. The term comes
from the word retrieval. It originated in the field of in-
formation retrieval and has developed in part because of
machine translation. The benefit of using the trie approach
is that it helps reduce the number of ways to search. It
does this by eliminating impossible cases. (For example,
in English words, a “q” is never followed by anything
but a space [Iraq] or the letter “u”. That involves a con-
siderable reduction from 26 or 27 other letters or space
symbol.) Entries in the nodes of a trie are instructions that
describe how to proceed further in a symbol-by-symbol
search.

Hashing is a very useful computer technique for lo-
cating (storing) data records. The hashing method delib-
erately introduces disorder. In other words, hashing uses
randomness in storing. The rationale is that on the av-
erage this achieves a significant speed improvement in
locating a data record. The index of the item to be stored
is called a key, and the function that takes the key into
a table location is called a hash function. Usually, this
is done in a way that chops up the numeric key value,
introducing a somewhat random element into the actual

FIGURE 5 Cuboctahedron.

pattern of data storage. (This is what lead to the term
hashing.)

Both fractions and whole numbers led to ideas that are
essentially data structures. For fractions, see the universal
resource locators in the bibliography. For whole numbers,
addition of a long list of large numbers vertically arranged
is a much easier matter than all in a row, if they are written
in Arabic numerals.

A geometric realization of the value of lists and data
structures in general is shown in Fig. 5, a view of a 14-
faced solid generally called a cuboctahedron. The image
was generated by the Mathematica utility from the data
structures below. Coordinates of the vertices were calcu-
lated by analytic geometry. Once each triple, x , y, z, was
known, the graphic routine needed to sequence vertices,
generate faces, and then color the result. Two of the lists
that were involved in that process follow. (Notice that there
are quadrilateral and triangular faces; likewise, each list
consists of sublists.) Braces, “{“and”}”, initiate and con-
clude, respectively, each list/sublist. The integers in the
“Faces” list range from one to 12. Each one is a specific
three-dimensional point or corner of the solid object. The
actual coordinates of these points appear in the 1 through
12 order in the “Vertices” list.

1. Faces = {{10, 11, 12}, {7, 8, 9}, {4, 5, 9, 8}, {8, 3, 4},
{2, 3, 8, 7}, {7, 1, 2}, {1, 6, 9, 7}, {9, 5, 6}, {10, 2, 3},
{1, 6, 12}, {11, 4, 5}, {3, 4, 11, 10}, {1, 2, 10, 12},
{11, 12, 6, 5}}

P1: GLM/GLE P2: FQP Final Pages

Encyclopedia of Physical Science and Technology EN004-846 June 8, 2001 16:16

Data Structures 275

2. Vertices = {{1, 0, 0}, {1/2, (31/2)/2, 0}, {−1/2,
(31/2)/2, 0}, {−1, 0, 0}, {−1/2, −(31/2)/2, 0}, {1/2,
−(31/2)/2, 0}, {1/2, (31/2)/4, 1}, {−1/2, (31/2)/4, 1}, {0,
−(31/2)/4, 1}, 0, (31/2)/4, −1, {−1/2, −(31/2)/4, −1},
{1/2, −(31/2)/4, −1}}

VIII. CONCLUSION

The subject of data structures clearly contains a myriad
of technical terms. Each of the topics discussed has been
briefly mentioned in this article. A basic text on data struc-
tures would devote many pages to the fine points of use.
Yet the pattern of the subject is now clear. Before program-
ming can begin, planning the algorithms and the data they
will operate on must take place. To have efficient comput-
ing, a wide range of decisions regarding the organization
of the data must be made. Many of those decisions will
be based on ideas of how the algorithms should proceed
(e.g., “put equivalent nodes into the same tree”). Others
will be based on a detailed analysis of alternatives. One
example is taking into account the likely range of values
and their number. This determines possible size of a data
table. Both table size and retrieval of elements within it
impact key choices. Two computer data structure consid-
erations are always memory needed and processing time
or algorithm execution speed.

Many aspects of data structures and algorithms involve
data stored where access is on a secondary device. When
that is the situation, procedures deal with search and sort-
ing. Sorting occupies a substantial portion of all the com-
puting time used and contains numerous alternate algo-
rithms. Alternative means exist because data sometimes
make them advantageous.

As in the case of sorting, it is always true that actual
choice of how an algorithmic task should be implemented
can and should be based on planning, analysis, and tailor-
ing of a problem that is to be solved. The data structure
also needs to take into account the computer hardware
characteristics and operating system.

Explosive development of computer networks, the
World Wide Web, and Internet browsers means that
many technical terms discussed in this article will join
links, pointers, and hierarchy in becoming common terms,
not solely the province of computer experts using data
structures.

Universal Resource Locators

Mathematics and computer data structures—http://
www.cs.ucla.edu/∼klinger/inprogress.
html
Egyptian fractions—http://www.cs.ucla.edu/
∼klinger/efractions.html
Baseball arithmetic—http://www.cs.ucla.edu/
∼klinger/bfractions.html
Thinking about number—http://www.cs.ucla.
edu/∼klinger/5fractions.html
Cuboctahedron image—http://www.cs.ucla.
edu/∼klinger/tet1.jpg

SEE ALSO THE FOLLOWING ARTICLES

C AND C++ PROGRAMMING LANGUAGE • COMPUTER

ALGORITHMS • COMPUTER ARCHITECTURE • DATABASES

• DATA MINING • EVOLUTIONARY ALGORITHMS AND

METAHEURISTICS • QUEUEING THEORY

BIBLIOGRAPHY

Aho, A., Hopcroft, J., and Ullman, J. (1983). “Data Structures and Al-
gorithms,” Addison-Wesley, Reading, MA.

Dehne, F., Tamassia, R., and Sack, J., eds. (1999). “Algorithms and
Data Structures,” (Lecture Notes in Computer Science), Proc. 6th
Int. Workshop, Vancouver, Canada, August 11–14, Springer-Verlag,
New York.

Graham, R., Knuth, D., and Patashnik, O. (1988). “Concrete Mathemat-
ics,” Addison-Wesley, Reading, MA.

Knuth, D. (1968). “The Art of Computer Programming,” Vol. I, “Funda-
mental Algorithms,” Addison-Wesley, Reading, MA.

Knuth, D. (1973). “The Art of Computer Programming,” Vol. III, “Sort-
ing and Searching,” Addison-Wesley, Reading, MA.

Knuth, D. (1981). “The Art of Computer Programming,” Vol. II,
“Seminumerical Algorithms,” Addison-Wesely, Reading, MA.

Meinel, C. (1998), “Algorithmen und Datenstrukturen im VLSI-Design
[Algorithms and Data Structures in VLSI Design],” Springer-Verlag,
New York.

Sedgewick, R. (1990). “Algorithms in C,” Addison-Wesley, Reading,
MA.

Sedgewick, R. (1999). “Algorithms in C++: Fundamentals, Data Struc-
tures, Sorting, Searching,” 3rd ed., Addison-Wesley, Reading, MA.

Waite, M., and Lafore, R. (1998). “Data Structures and Algorithms in
Java,” Waite Group.

http://www.cs.ucla.edu/~klinger/inprogress.html
http://www.cs.ucla.edu/~klinger/inprogress.html
http://www.cs.ucla.edu/~klinger/inprogress.html
http://www.cs.ucla.edu/~klinger/efractions.html
http://www.cs.ucla.edu/~klinger/efractions.html
http://www.cs.ucla.edu/~klinger/bfractions.html
http://www.cs.ucla.edu/~klinger/bfractions.html
http://www.cs.ucla.edu/~klinger/5fractions.html
http://www.cs.ucla.edu/~klinger/5fractions.html
http://www.cs.ucla.edu/~klinger/tet1.jpg
http://www.cs.ucla.edu/~klinger/tet1.jpg

P1: LDK/LPB P2: FPP Revised Pages Qu: 00, 00, 00, 00

Encyclopedia of Physical Science and Technology En004I-844 June 8, 2001 2:29

Databases
Alvaro A. A. Fernandes
Norman W. Paton
University of Manchester

I. Database Management Systems
II. Data Models
III. Database Languages
IV. Advanced Models and Languages
V. Distribution

VI. Conclusions

GLOSSARY

Application A topic or subject for which information sys-
tems are needed, e.g., genomics.

Conceptual model A data model that describes appli-
cation concepts at an abstract level. A conceptual
model for an application may be amenable to im-
plementation using different database management
systems.

Concurrency control Mechanisms that ensure that each
individual accessing the database can interact with the
database as if they were the only user of the database,
with guarantees as to the behavior of the system when
many users seek to read from or write to the same data
item at the same time.

Database A collection of data managed by a database
management system.

Database management system A collection of services
that together give comprehensive support to applica-
tions requiring storage of large amounts of data that
are to be shared by many users.

DBMS See database management system.
Data model A collection of data types which are

made available to application developers by a
DBMS.

Data type A set of instances of an application concept
with an associated set of legal operations in which
instances of the concept can participate. Some data
types are primitive (e.g., integer, string) insofar as they
are supported by the DBMS directly (and, hence, are
not application specific). Some are application specific
(e.g., gene). Some data types are atomic (e.g., integer)
and some are complex (e.g., address, comprising street
name, state, etc.). Some data types are scalar (e.g., in-
teger) and some are bulk, or collection (e.g., sets, lists).

Persistence The long-term storage of an item of data in
the form supported by a data model.

Referential integrity The requirement that when a refer-
ence is made to a data item, that data item must exist.

Secondary storage management The ability to store
data on magnetic disks or other long-term storage de-
vices, so that data outlive the program run in which
they were created.

Security Mechanisms that guarantee that no users see or
modify information that they are not entitled to see or
modify.

 213

P1: LDK/LPB P2: FPP Revised Pages

Encyclopedia of Physical Science and Technology En004I-844 June 8, 2001 2:29

214 Databases

A DATABASE is a collection of data managed by a
database management system (DBMS). A DBMS pro-
vides facilities for describing the data that are to be stored,
and is engineered to support the long-term, reliable stor-
age of large amounts of data (Atzeni et al., 1999). DBMSs
also provide query language and/or programing language
interfaces for retrieving and manipulating database data.
Many organizations are dependent in a significant way
upon the reliability and efficiency of the DBMSs they
deploy.

I. DATABASE MANAGEMENT SYSTEMS

A database management system (DBMS) provides a col-
lection of services that together give comprehensive sup-
port to applications requiring storage of large amounts of
data that are to be shared by many users. Among the most
important services provided are:

1. Secondary storage management. The ability to store
data on magnetic disks or other long-term storage
devices, so that data outlive the program run in which
they were created. Sophisticated secondary storage
management systems are required to support effective
storage and access to large amounts of data. Storage
managers typically include facilities for providing
rapid access to specific data items using indexes,
minimize the number of distinct accesses required to
the secondary store by clustering related data items
together, and seek wherever possible to make
effective use of buffers that retain recently accessed
data items in the memory of the computer on which
the database system or the application is running.

2. Concurrency control. Large databases are valuable to
the organizations that hold them, and often have to be
accessed or updated by multiple users at the same
time. Uncontrolled updates to a shared store can lead
to the store being corrupted as a result of programs
interfering with each other in unanticipated ways. As
a result, DBMSs incorporate mechanisms that ensure
that each individual accessing the database can
interact with the database as if they were the only
user of the database, with guarantees as to the
behavior of the system when many users seek to read
from or write to the same data item at the same time.

3. Recovery. Many database applications are active
24 hr a day, often with many different programs
making use of the database at the same time, where
these programs are often running on different
computers. As a result, it is inevitable that programs
accessing a database will fail while using the
database, and even that the computer running the

DBMS can go down while it is in use. The DBMS
must be as resilient as possible in the face of software
or hardware failures, with a view to minimizing the
chances of a database being corrupted or information
lost. As a result, DBMSs include recovery facilities
that often involve some temporary replication of data
so that enough information is available to allow
automatic recovery from different kinds of failure.

4. Security. Most large database systems contain data
that should not be visible to or updateable by at least
some of the users of the database. As a result,
comprehensive mechanisms are required to guarantee
that no users see information that they are not entitled
to see, and more important still, that the users who are
able to modify the contents of the database are
carefully controlled—staff should not be able to
modify their own salaries, etc. As a result, database
systems provide mechanisms that allow the
administrator of a database to control who can do
what with the database.

DBMSs can thus be seen as having many responsibil-
ities. Like a bank, it is good if a DBMS provides a wide
range of facilities in an efficient way. However, in the same
way as it is of overriding importance that a bank does not
lose your money, it is crucial that a DBMS must keep
track of the data that are entrusted to it, minimizing er-
rors or failures. Thus the provision of a database manage-
ment facility is essentially a serious matter, and substantial
database failures would be very damaging to many orga-
nizations. However, the details of how the aforementioned
services are supported are quite technical, and the remain-
der of this chapter focuses on the facilities provided to
users for describing, accessing, and modifying database
data. Details on how databases are implemented can be
found in Elmasri and Navathe (2000) and Garcia-Molina
et al. (2000).

II. DATA MODELS

In the context of database technology, by data model is
meant a collection of data types which are made available
to application developers by a DBMS. By application is
meant a topic or subject for which information systems are
needed, e.g., genomics. The purpose of a data model is to
provide the formal framework for modeling application
requirements regarding the persistent storage, and later
retrieval and maintenance, of data about the entities in the
conceptual model of the application and the relationships
in which entities participate.

Each data type made available by the data model be-
comes a building block with which developers model

P1: LDK/LPB P2: FPP Revised Pages

Encyclopedia of Physical Science and Technology En004I-844 June 8, 2001 2:29

Databases 215

application requirements for persistent data. The permis-
sible operations associated with each data type become
the building blocks with which developers model appli-
cation requirements for interactions with persistent data.
Data models, therefore, differ primarily in the collection
of data types that they make available. The differences can
relate to structural or behavioral characteristics. Structural
characteristics determine what states the database may be
in (or, equivalently, are legal under the data model). Behav-
ioral characteriztics determine how database states can be
scrutinized and what transitions between database states
are possible under the data model.

A DBMS is said to implement a data model in the sense
that:

1. It ensures that every state of every database managed
by it only contains instances a data type that is
well-defined under the implemented data model.

2. It ensures that every retrieval of data and every state
transition in every database managed by it are the
result of applying an operation that is (and only
involves types that are) well defined under the
implemented data model.

From the point of view of application developers then,
the different structural or behavioral characteriztics asso-
ciated with different data models give rise to the prag-
matic requirement of ensuring that the data model chosen
to model application requirements for persistent data does
not unreasonably distort the conceptual view of the appli-
cation that occurs most naturally to users. The main data
models in widespread use at the time of this writing meet
this pragmatic requirement in different degrees for differ-
ent kinds of application.

A. The Relational Data Model

The relational data model makes available one single data
type, referred to as a relation. Informally, a relation can
be thought of as a table, with each row corresponding to
an instance of the application concept modeled by that
relation and each column corresponding to the values of a
property that describes the instances. Rows are referred to
as tuples and column headers as attributes. More formal
definitions now follow.

Let a domain be a set of atomic values, where a value
is said to be atomic if no further structure need be dis-
cerned in it. For example, integer values are atomic, and

FIGURE 1 Relation schemas for DNA sequence and organism.

so, quite often, are strings. In practice, domains are speci-
fied by choosing one data type, from the range of primitive
data types available in the software and hardware environ-
ment, whose values become elements of the domain being
specified.

A relation schema R(A1, . . . , An) describes a relation
R of degree n by enumerating the n-attributes A1, . . . , An

that characterize R. An attribute names a role played by
some domain D in describing the entity modeled by R.
The domain D associated with an attribute A is called the
domain of A and is denoted by dom(A) = D. A relational
database schema is a set of relation schemas plus the
following relational integrity constraints:

1. Domain Constraint: Every value of every attribute is
atomic.

2. Key Constraint: Every relation has a designated
attribute (or a concatenation thereof) which acts as the
primary key for the relation in the sense that the
value of its primary key identifies the tuple uniquely.

3. Entity Integrity Constraint: No primary key value can
be the distinguished NULL value.

4. Referential Integrity Constraint: If a relation has a
designated attribute (or a concatenation thereof)
which acts as a foreign key with which the relation
refers to another, then the value of the foreign key in
the referring relation must be a primary key value in
the referred relation.

For example, a very simple relational database stor-
ing nucleotide sequences might draw on the primitive
data type string to specify all its domains. Two re-
lation names might be DNA-sequence and organ-
ism. Their schemas can be represented as in Fig. 1. In
this simple example, a DNA sequence has an identify-
ing attribute sequence id, one or more accession
nos by which the DNA sequence is identified in other
databases, the identifying attribute protein id which
the DNA sequence codes for and the organism ids of
the organisms where the DNA sequence has been identi-
fied. An organism has an identifying attribute organ-
ism id, perhaps a common name and the up node of
the organism in the adopted taxonomy.

A relation instance r (R) of a relation schema R(A1,

. . . , An) is a subset of the Cartesian product of the do-
mains of the attributes that characterize R. Thus, a re-
lation instance of degree n is a set, each element of
which is an n-tuple of the form 〈v1, . . . , vn〉 such that

P1: LDK/LPB P2: FPP Revised Pages

Encyclopedia of Physical Science and Technology En004I-844 June 8, 2001 2:29

216 Databases

FIGURE 2 Relation instances under the schemas in Fig. 1.

either vi ∈ dom(Ai), 1 ≤ i ≤ n, or else vi is the distin-
guished NULL value. A relational database state is
a set of relation instances. Legal relation instances for
DNA sequence and organism from Fig. 1 might be
as depicted in Fig. 2.

Notice, in Fig. 2, how each tuple in DNA sequence
is an element of the Cartesian product:

dom(sequence id) × dom(accession no)

× dom(protein id) × dom(organism id)

and correspondingly in the case of organism. Notice
also, in Figs. 1 and 2, that all the relational integrity con-
straints are satisfied, as follows. The domain constraint is
satisfied due to the fact that the domain of every attribute
is the primitive data type string, whose instances have
been assumed to be atomic. The designated primary keys
for DNA sequence and organism are, respectively,
sequence id and organism id, and since they are
intended as unique identifiers of the entities modeled,
the key constraint is satisfied. The entity integrity con-
straint is satisfied assuming that tuples that are not shown
also do not contain NULL as values for the primary keys.
There is a designated foreign key, organism id, from
DNA sequence to organism, and since the values of
organism id appear as primary key values in organ-
ism, the referential integrity constraint is satisfied.

The relational data model has several distinctive fea-
tures as a consequence of its simple mathematical charac-
terization:

� Since a relation instance is a set of tuples, no order
can be assumed in which tuples occur when retrieved
or otherwise are operated on.

� Since there are no duplicate elements in a set, each
tuple in a relation instance is unique. In other words,
the concatenation of all the attributes is always a
candidate key for the relation.

� Since values are atomic, the relational model cannot
ascribe to an attribute a domain whose elements are
collections (e.g., sets, or lists). For example, in Fig. 2,
if a DNA sequence has more than one
accession no, this cannot be captured with sets of
strings as attribute values.

The languages with which data in relation instances
can be retrieved and manipulated (thereby effecting state
transitions) are discussed in Section III.A.

The relational model was proposed in a form very close
to that described in this section in Codd (1970). An ex-
cellent formal treatment can be found in Abiteboul et al.
(1995).

B. Object-Oriented Data Models

Rather than a single data type, as is the case with the re-
lational data model, an object-oriented data model makes
available to application developers a collection of type
constructors with which complex, application-specific
types can be built. The immediate effect of this approach,
in contrast with the relational case, is that more com-
plex application data can be modeled more directly in
the database. Instead of having to break down one appli-
cation concept into many relations, the complex structure
needed to model the concept is often directly represented
by a combination of type constructors provided by the data
model.

The most basic notion in object-oriented data models is
that of an object, whose purpose is to model application
entities. An object is characterized by having an identity,
by being in a certain state (which conforms to a prescribed
structure) and by being capable of interaction via a col-
lection of methods (whose specifications characterize the
behavior of the object).

The identity of an object is unique. It is assigned to
the object by the DBMS when the object is created, and
deleted when the object is destroyed. In contrast with a re-
lational primary key, between these two events the identity
of the object cannot be changed, neither by the DBMS nor
by application systems. Another contrast is that the iden-
tity of an object is distinct and independent from both the
state of the object and the methods available for interacting
with it.

Objects that are structurally and behaviorally similar
are organized into classes. A class has an associated extent
which is a set of the identifiers of objects whose structural
and behavioral similarity the class reflects. An object-
oriented schema is a collection of classes plus integrity
constraints.

P1: LDK/LPB P2: FPP Revised Pages

Encyclopedia of Physical Science and Technology En004I-844 June 8, 2001 2:29

Databases 217

FIGURE 3 A fragment of an object-oriented schema diagram.

In contrast to the relational case, there is no widespread
agreement on which integrity constraints are an intrinsic
part of an object-oriented model, but one of the most often
used stipulates how many objects of each of the classes
related by some relationship type can participate in rela-
tionship instances. For binary relationships (which are the
most commonly used), there are three possibilities, viz.,
one-to-one, one-to-many, and many-to-many.

Figure 3 depicts in diagrammatic form a small fragment
of an object-oriented database schema with four classes,
viz., gene, allele, wild type, and mutant. The
latter two are subclasses of allele as indicated by the
arrow head and explained later. Note also the relationship
type from gene to allele named has alleles. The
annotations 1 and * specify a one-to-many constraint to
the effect that an object of class gene may be related
to many objects of class allele, but one allele is only
related to one gene.

The structure of an object is characterized by a col-
lection of properties and relationships. An object is in
a certain state when all the properties and relationships
defined by its structure are assigned legal values. Both

FIGURE 4 A structure for the gene class from Fig. 3.

properties and relationships resemble attributes in the
relational model, with the following main differences:

1. The domain of a property need not be atomic insofar
as the type of its values can be structures or
collections by the application of the available type
constructors (typically, tuple of, set of,
list of, and bag of).

2. The domain of a relationship is a set of object
identities (or power set thereof).

Figure 4 shows how the structure of the gene class
from Fig. 3 might be specified in an object-oriented data
model. Notice the use of type constructors in assign-
ing domains to the property citation and the rela-
tionship has alleles. Notice the nonatomic domain
codon structure. Notice also that the identity of in-
dividual gene objects is not dependent on any of the
specifications in Fig. 4: It is the DBMS that assigns iden-
tifiers, manages their use (e.g., in establishing a relation-
ship between gene objects and allele objects), and
annuls them if objects are destroyed. Notice, finally, that

P1: LDK/LPB P2: FPP Revised Pages

Encyclopedia of Physical Science and Technology En004I-844 June 8, 2001 2:29

218 Databases

FIGURE 5 (Partial) behavior of the gene class from Fig. 4.

while an object-oriented database allows relationships to
be expressed as simple properties (e.g.,protein id and
organism id establish relationships between gene
andprotein andorganism, respectively), it is only by
explicitly expressing them as relationships that an object-
oriented DBMS would have the information needed to
enforce the kind of referential integrity that relational sys-
tems enforce for attributes designated as foreign keys.

The behavior of an object is characterized by a col-
lection of method specifications. A method specification
is an application-defined declaration of the name and pa-
rameter types for a method that can be invoked on the
object. By method invocation on an object o with iden-
tity i is meant, roughly, that the method call refers to i
(thereby identifying o as the object to which the method
is addressed) and is meant to be executed in the context of
the current state of o using o’s assigned behavior (where
that execution may itself invoke methods defined on ob-
jects other than o). A method definition is an executable
specification of a function or procedure.

Typically, accessor methods (i.e., those that return
the current value of a property or relationship) and up-
date methods (i.e., those that modify to a given value
the current value of a property or relationship) are au-
tomatically generated at schema compilation time. A
popular approach to naming such methods is to pre-
fix the property or relationship name by get and
set , respectively. If type constructors are involved then
more methods are made available, accordingly. For ex-
ample, with reference to Fig. 4, methods would be
generated that implement (implicit) specifications such
as get citation() -> list of(string), or
insert citation(string). The former invoked on
a gene object o would return a list of strings currently as-
signed as the value of the citation property of o, while
the latter would cause a state transition in o by adding the
string passed as argument to the list of strings currently
assigned as the value of the citation property of o.

Figure 5 shows how behavior for the gene class from
Fig. 4 might be specified (but method definitions are omit-
ted). Thus, a gene object will respond to a request for its
density of guanine and cytosine pairs with a float value.
Also, given a region inside it (as defined by a start and
an end position in its nucleotide sequence) a gene object
will respond to a request for mRNA found inside the re-
gion with a list of identifiers of mRNA objects (assuming
a class mRNA to have been declared in the schema).

The requirement that one must always invoke meth-
ods to interact with objects gives rise to a distinctive fea-
ture of object-oriented approaches, viz., encapsulation,
by which is meant that the state of an object is protected
from direct manipulation or scrutiny. This is beneficial in
the sense that it allows application developers to ignore
the structural detail of the state of objects: all they need to
know is the behavior of the object, i.e., which methods can
be invoked on it. This, in turn, allows the detailed structure
of objects to change without necessarily requiring changes
in the application programs that use them.

The approach of organizing objects into classes gives
rise to another distinctive feature of object-oriented ap-
proaches, viz., inheritance, by which is meant a subsump-
tion relationship between the extents of two classes C and
C ′. Thus, a class C is said to extend (or specialize, or
inherit from) a class C ′ if all objects in the extent of C
have the same properties, relationships, and compatible
method specifications as (but possibly more than) the ob-
jects in the extent of C ′. In this case, C is said to be a
subclass of C ′. Thus, inheritance in object-oriented data
models is both structural and behavioral (but the compati-
bility constraints for the latter are beyond the scope of this
discussion). There are many motivations for inheritance
mechanisms as described, including a stimulus to reuse,
a more direct correspondence with how applications are
conceptualized, etc.

In the presence of inheritance, not only can a method
name be overloaded (i.e., occur in more than one method

P1: LDK/LPB P2: FPP Revised Pages

Encyclopedia of Physical Science and Technology En004I-844 June 8, 2001 2:29

Databases 219

specification), but it can also be overridden (i.e., occur
in more than one method definition). In this case, method
invocations can be attended to by more than one method
definition and the decision as to which one to use usually
depends on the type of the object that the method was
invoked on. This selection process which binds a method
definition to a method invocation can only be carried out at
run time, therefore this distinctive object-oriented feature
is known as late (or dynamic) binding.

To summarize, an object-oriented data model has the
following main distinctive features:

� Objects have not only structure but also behavior.
� Objects have a unique identity that is independent of

their state and behavior.
� Values can be drawn from complex domains resulting

from the application of type constructors such as
tuple of, set of, list of, and bag of.

� The state of objects is encapsulated.
� Objects are organized into classes by structural and

behavioral similarity.
� Structural and behavioral inheritance is supported.
� Overloading, overriding, and late binding are

supported.

Because an object-oriented model brings together struc-
ture and behavior, much of the functionality required by
applications to interact with application objects can be
modeled inside the database itself. Nevertheless, most
object-oriented database systems provide application pro-
gram interfaces that allow a programming language to
retrieve and manipulate objects.

Unlike the relational model, object-oriented data mod-
els cannot all be traced back to a single major proposal.
The closest thing to this notion is a manifesto (found, e.g.,
in Atkinson et al. (1990)) signed by prominent members
of the research community whose recommendations are
covered by and large in the treatment given in this sec-
tion. The ODMG industry consortium of object database
vendors has proposed an object-oriented data model that
is widely seen as the de facto standard (Cattell et al.,
2000).

C. Object-Relational Data Models

While object-oriented data models typically relegate re-
lations to the status of one among many types that
can be built using type constructors (in this case, e.g.,
tuple of), object-relational data models retain the cen-
tral role relations have in the relational data model.

However, they relax the domain constraint of the rela-
tional data model (thereby allowing attribute values to be
drawn from complex domains), they incorporate some of

the distinctive features of the object-oriented model such
as inheritance and assigned behavior with encapsulated
states, and they allow for database-wide functionality to
be specified by means of rules (commonly referred to as
triggers, as described in Section IV.B) that react to spe-
cific interactions with application entities by carrying out
some appropriate action.

As a consequence of the central role that relations retain
in object-relational data models, one crucial difference
with respect to the object-oriented case is that the role
played by object identity is relaxed to an optional, rather
than mandatory, feature. Thus, an object-relational DBMS
stands in an evolutionary path regarding relational ones,
whereas object-oriented ones represent a complete break
with the relational approach. In this context, notice that
while a tuple of type constructor may allow a relation
type to be supported, each tuple will have an identity, and
attribute names will be explicitly needed to retrieve and
interact with values.

Such differences at the data model level lead to prag-
matic consequences of some significance at the level of
the languages used to interact with application entities.
In particular, while object-oriented data models naturally
induce a navigational approach to accessing values, this
leads to chains of reference of indefinite length that need
to be traversed, or navigated.

In contrast, object-relational data models retain the
associative approach introduced by the relational data
model. Roughly speaking, this approach is based on view-
ing the sharing of values between attributes in different re-
lations as inherently establishing associations between re-
lation instances. These associations can then be exploited
to access values across different relations without specif-
ically and explicitly choosing one particular chain of ref-
erences. These issues are exemplified in Sections III.B
and III.C

Since object-relational models are basically hybrids,
their notions of schema and instance combine features
of both relational and object-oriented schemas and in-
stances. The object-relational approach to modeling the
gene entity type is the same as the object-oriented one
depicted in Figs. 4 and 5 but for a few differences, e.g.,
relationships are usually not explicitly supported as such
by object-relational data models.

As in the object-oriented case, object-relational data
models were first advocated in a concerted manner by
a manifesto (Stonebraker et al., 1990) signed by promi-
nent members of the research community. A book-length
treatment is available in Stonebraker and Brown (1999).
Any undergraduate textbook on Database Systems (e.g.,
Atzeni et al., 1999; Elmasri and Navathe, 2000) can be
used to complement the treatment of this and the section
that follows.

P1: LDK/LPB P2: FPP Revised Pages

Encyclopedia of Physical Science and Technology En004I-844 June 8, 2001 2:29

220 Databases

FIGURE 6 SQL declarations for the schemas in Fig. 1.

III. DATABASE LANGUAGES

A DBMS must support one or more languages with which
application developers can set up, populate, scrutinize,
and maintain data. In principle, different purposes are best
served by different database languages, but in practice,
DBMSs tend to use one language to cater for more than
one purpose.

The kinds of database languages that must in principle
be supported in DBMSs are:

1. Data definition languages, which are used to declare
schemas (perhaps including application-specific
integrity constraints)

2. Data manipulation languages, which are used to
retrieve and manipulate the stored data

Data manipulation languages can be further categorized
as follows:

1. Query languages, which most often are high-level,
declarative, and computationally incomplete (i.e., not
capable of expressing certain computations, typically
due to the lack of support for updates or for recursion
or iteration)

2. Procedural languages, which most often are
low-level, imperative, and computationally complete

Besides these, most DBMSs provide interfacing mech-
anisms with which developers can implement applications
in a general-purpose language (referred to in this context
as a host language) and use the latter to invoke whatever
operations are supported over the stored data (because they
are part of the behavior of either the data types made avail-
able by the data model or the application types declared
in the application schema).

A. Relational Database Languages

SQL is the ISO/ANSI standard for a relational database
language. SQL is both a data definition and a data ma-
nipulation language. It is also both a query language and
capable of expressing updates. However, SQL is not com-
putationally complete, since it offers no support for either
recursion or iteration. As a consequence, when it comes to
the development of applications, SQL is often embedded
in a host language, either one that is specific to the DBMS
being used or a general purpose language for which a
query language interface is provided.

Figure 6 shows how the schema illustrated in Fig. 1 can
be declared in SQL. Notice that SQL includes constructs to
declare integrity constraints (e.g., a referential integrity on
from DNA sequence to organism) and even an action
to be performed if it is violated (e.g., cascading deletions,
by deleting every referring tuple when a referenced tuple
is deleted).

SQL can also express insertions, deletions and updates,
as indicated in Fig. 7. Note in Fig. 7 that on insertion it is
possible to omit null values by listing only the attributes
for which values are being supplied. Note also that the
order of insertion in Fig. 7 matters, since referential in-
tegrity constraints would otherwise be violated. Finally,
note that, because of cascading deletions, the final state-
ment will also delete all tuples in DNA sequence that
refer to the primary key of the tuple being explicitly deleted
in organism.

After the operations in Fig. 7 the state depicted in Fig. 2
will have changed to that shown in Fig. 8.

As a relational query language, SQL always returns
results that are themselves relation instances. Thus, the
basic constructs in SQL cooperate in specifying aspects
of the schema as well as the instantiation of a query result.
Roughly, the SELECT clause specifies the names of at-
tributes to appear in the result, the FROM clause specifies

P1: LDK/LPB P2: FPP Revised Pages

Encyclopedia of Physical Science and Technology En004I-844 June 8, 2001 2:29

Databases 221

FIGURE 7 Using SQL to effect state transitions in the relation instances from Fig. 2.

the names of relations contributing data to the result,
and the WHERE clause specifies, in terms of the relations
(and their attributes) mentioned in the FROM clause, the
conditions which each tuple in the result must satisfy. SQL
queries tend to be structured around this combination of
SELECT, FROM and WHERE clauses. Figure 9 shows ex-
ample SQL queries.

Query RQ1 in Fig. 9 returns a unary table, each tuple
of which records the organism id of organisms that
share the common name of “white clover.” Query
RQ2 returns a binary table relating each common name
found in the organism table with the protein ids
produced by their identified genes. Figure 10 shows the
relations instances returned by RQ1 and RQ2.

SQL also supports aggregations (e.g., COUNT and AVG,
which, respectively, count the number of tuples in a result
and compute the average value of a numeric attribute in
the result), groupings, and sorting.

Embedding SQL into a host language is another ap-
proach to retrieving and manipulating data from relational
databases. Vendors typically provide a host language for
SQL of which the fragment in Fig. 11 is an illustration.
The fragment in Fig. 11 uses a CURSOR construct to scan
the organism relation instance for organisms with no
common name. When one is found, rather than leaving the
value unassigned, the program uses theUPDATE construct
to set the common name attribute to the string None.

SQL is legally defined by ISO/ANSI standards which
are available from those organizations. For comprehensive
treatment, a good source is Melton and Simon, 1993. A de-
tailed treatment of the relational algebra and calculi which
underpin SQL can be found in Abiteboul et al. (1995).

B. Object-Oriented Database Languages

In the object-oriented case, the separation between the lan-
guages used for data definition, querying and procedural

FIGURE 8 Updated relation instances after the commands in Fig. 7.

manipulation is more explicit than in the relational case.
This is because in object-oriented databases, the syntactic
style of SQL is circumscribed largely to the query part of
the data manipulation language.

Also, rather than make use of vendor-specific host lan-
guages, object-oriented DBMSs either provide interfaces
to general-purpose languages or else the DBMS itself sup-
ports a persistent programming language strategy to ap-
plication development (i.e., one in which a distinction be-
tween the data space of the program and the database is
deliberately not made, which leads to applications that
need not explicitly intervene to transfer data from persis-
tent to transient store and back again).

The de facto standard for object-oriented databases is
the proposal by the ODMG consortium of vendors. The
ODMG standard languages are ODL, for definition, and
OQL (which extends the query part of SQL), for querying.
The standard also defines interfaces for a few widely used
general-purpose languages. Figure 4 could be declared in
ODL as shown in Fig. 12.

Note how ODL allows inverse relationships to be
named, as a consequence of which referential integrity
is enforced in both directions.

Two OQL queries over the gene class in Fig. 12 are
given in Fig. 13. Query OQ1 returns a set of complex val-
ues, i.e., name-cited pairs, where the first element is
the standard name of an instance of the gene class
and the second is the list of strings stored as the value of
the citation attribute for that instance. Query OQ2 re-
turns the common name of organisms associated with
genes that have alleles. Note the use of the COUNT
aggregation function over a collection value. Note, fi-
nally, the denotation g.organism id.common name
(known as a path expression). Path expressions allow a
navigational style of access.

For ODMG-compliant DBMSs, the authoritative refer-
ence on ODL and OQL is (Cattell et al., 2000). A more

P1: LDK/LPB P2: FPP Revised Pages

Encyclopedia of Physical Science and Technology En004I-844 June 8, 2001 2:29

222 Databases

FIGURE 9 Using SQL to query the database state in Fig. 9.

formal treatment of some of the issues arising in object-
oriented languages can be found in Abiteboul et al. (1995).

C. Object-Relational Database Languages

The proposed standard for object-relational database lan-
guages is SQL-99. Figure 14 shows how Fig. 4 could be
specified in SQL-99. Note the use of ROW TYPE to spec-
ify a complex domain, the use ofREF to denote tuple iden-
tifiers and the use of type constructors such as SET and
LIST. Note also that, unlike ODL (cf. Fig. 12), in SQL-99
inverse relationships are not declared. Note, finally, how
gene is modeled as including operations, as indicated by
the keyword FUNCTION introducing the behavioral part
of the specification of gene.

Two SQL-99 queries over the gene type in Fig. 14
are given in Fig. 15. Query ORQ1 returns a binary ta-
ble relating the standard name of each gene with the
common name of organisms where the gene is found.
Query ORQ2 returns the common name of organisms
associated with genes that have alleles. Note that in
SQL-99 path expressions use the symbol -> to derefer-
ence identifiers and (not shown in Fig. 15) the symbol ‘..’
to denote attributes in row types.

SQL-99 is legally defined by ISO/ANSI standards
which are available from those organizations.

IV. ADVANCED MODELS
AND LANGUAGES

The previous sections have described mainstream
database models and languages, presenting facilities that
are in widespread use today. This section introduces sev-
eral extensions to the mainstream data models and lan-
guages with facilities that allow the database to capture
certain application requirements more directly.

FIGURE 10 Results of the SQL queries in Fig. 9.

A. Deductive Databases

Deductive database systems can be seen as bringing to-
gether mainstream data models with logic programming
languages for querying and analyzing database data. Al-
though there has been research on the use of deductive
databases with object-oriented data models, this section
illustrates deductive databases in the relational setting, in
particular making use of Datalog as a straightforward de-
ductive database language (Ceri et al., 1990).

A deductive (relational) database is a Datalog pro-
gram. A Datalog program consists of an extensional
database and an intensional database. An extensional
database contains a set of facts of the form:

p(c1 , . . . , cm)

where p is a predicate symbol and c1 , . . . , cm are con-
stants. Each predicate symbol with a given arity in the
extensional database can be seen as analogous to a rela-
tional table. For example, the table organism in Fig. 2
can be represented in Datalog as:

organism(’Bras. napus’, ’rape’,

’Brassicaceae’,).

organism (’Trif. repens’,

’white clover’, ’Papilionoideae’,).

Traditionally, constant symbols start with a lower
case letter, although quotes can be used to delimit other
constants.

An intensional database contains a set of rules of the
form:

p(x1, . . . , xm): − q1(x11, . . . , x1k), . . . , q j (x j1, . . . , x jp)

where p and qi are predicate symbols, and all argument
positions are occupied by variables or constants.

Some additional terminology is required before exam-
ples can be given of Datalog queries and rules. A term is
either a constant or a variable—variables are traditionally
written with an initial capital letter. An atom p(t1, . . . , tm)
consists of a predicate symbol and a list of arguments,
each of which is a term. A literal is an atom or a negated
atom ¬p(t1, . . . , tm). A Datalog query is a conjunction
of literals.

P1: LDK/LPB P2: FPP Revised Pages

Encyclopedia of Physical Science and Technology En004I-844 June 8, 2001 2:29

Databases 223

FIGURE 11 Embedding SQL in a host language to effect state transitions.

FIGURE 12 ODL to specify the gene class in Fig. 4.

FIGURE 13 Using OQL to query the gene class in Fig. 12.

FIGURE 14 SQL-99 to specify the gene entity in Fig. 3.

P1: LDK/LPB P2: FPP Revised Pages

Encyclopedia of Physical Science and Technology En004I-844 June 8, 2001 2:29

224 Databases

FIGURE 15 Using SQL-99 to query the gene type in Fig. 14.

Figure 16 shows some queries and rules expressed in
Datalog. The queries DQ1 and DQ2 are expressed using
a set comprehension notation, in which the values to the
left of the | are the result of the Datalog query to the right
of the |.

QueryDQ1 retrieves the organism identifier of’white
clover’. Informally, the query is evaluated by uni-
fying the query literal with the facts stored in the ex-
tensional database. Query DQ2 retrieves the identifiers
of the proteins in ’white clover’. However, the
predicate species protein representing the relation-
ship between the common name of a species and the
identifiers of its proteins is not part of the extensional
database, but rather is a rule defined in the intensional
database. This rule, DR1 in Fig. 16, is essentially equiv-
alent to the SQL query RQ2 in Fig. 9, in that it re-
trieves pairs of species common names and protein iden-
tifiers that satisfy the requirement that the proteins are
found in the species. In DR1, the requirement that a
dna Sequence be found in an organism is repre-
sented by the atoms for dna Sequence and organism
sharing the variableOID, i.e., the organism identifier of the
organism must be the same as the organism identifier
of the dna Sequence.

Deductive databases can be seen as providing an alter-
native paradigm for querying and programming database
applications. A significant amount of research has been
conducted on the efficient evaluation of recursive queries
in deductive languages (Ceri et al., (1990), an area in
which deductive languages have tended to be more pow-
erful than other declarative query languages. Recursive
queries are particularly useful for searching through tree
or graph structures, for example in a database represent-
ing a road network or a circuit design. A further feature of
deductive languages is that they are intrinsically declara-

FIGURE 16 Using datalog to query the database state in Fig. 8.

tive, so programs are amenable to evaluation in different
ways—responsibility for finding efficient ways of eval-
uating deductive programs rests as much with the query
optimizer of the DBMS as with the programmer.

Although there have been several commercial deduc-
tive database systems, these have yet to have a significant
commercial impact. However, some of the features of de-
ductive languages, for example, relating to recursive query
processing, are beginning to be adopted by relational ven-
dors, and are part of the SQL-99 standard.

B. Active Databases

Traditional DBMSs are passive in the sense that com-
mands are executed by the database (e.g., query, update,
delete) as and when requested by the user or application
program. This is fine for many tasks, but where a DBMS
simply executes commands without paying heed to their
consequences, this places responsibilities on individual
programmers that they may struggle to meet (Paton and
Diaz, 1990).

For example, imagine that it is the policy of an orga-
nization managing a repository of DNA sequence data
that whenever a new sequence is provided with a given
sequence id, the previous sequence is recorded, along
with the date when the change takes place and the name
of the user making the update. This straightforward pol-
icy may, however, be difficult to enforce in practice, as
there may be many different ways in which a new replace-
ment can be provided—for example, through a program
that accepts new information from a WWW interface, or
through an interactive SQL interface. The policy should
be enforced in a consistent manner, no matter how the se-
quence has come to be updated. In an active database,
the database system is able to respond automatically to

P1: LDK/LPB P2: FPP Revised Pages

Encyclopedia of Physical Science and Technology En004I-844 June 8, 2001 2:29

Databases 225

events of relevance to the database, such as the updating
of a table, and thus the database can provide centralized
support for policies such as those described earlier.

Active behavior is described using event-condition-
action or ECA rules. These rules have three components:

1. Event: a description of the happening to which the
rule is to respond. In the example above, this could be
the updating of the relation storing the sequence data.

2. Condition: a check on the context within which the
event has taken place. The condition is either a check
on the parameters of the event or a query over the
database.

3. Action: a program block that indicates the reaction
that the system should take to the event in a context
where the condition is true.

Active rules will now be illustrated using the exam-
ple described above, based around a table sequence
with attributes sequence id and sequence. A record
will be kept of modified sequences in the table modi-
fied sequence, with attributes sequence id, old
sequence, date of change, user and update
type.

The active rule in Fig. 17 is written using the SQL-99
syntax. In the SQL standard, active rules are known as
triggers. The event the trigger is monitoring is after
update of sequence on sequence, which is
raised after any change to the sequence attribute of the
table sequence. The tuple prior to the update taking
place is referred to within the trigger as oldseq. The
example is of a row trigger, which means that the trigger
responds to updates to individual tuples, so if a single up-
date statement modifies 10 rows in the sequence table,
the trigger will be executed 10 times. In this example there
is no condition—the action is executed regardless of the
state of the database, etc.

Writing correct triggers is not altogether straightfor-
ward. For the example application, additional triggers

FIGURE 17 Using an active rule to log changes to the sequence table.

would be required, for example, to log the deletion of
an existing sequence entry, so that a modification of a se-
quence as a delete followed by an insert is not omitted from
the log. Considerable skill is required in the development
and maintenance of large rule bases. However, it is clear
that active rules can be used for many different purposes—
supporting business rules, enforcing integrity constraints,
providing fine tuned authorization mechanisms, etc. As a
result, the principal relational database products support
active mechanisms, and the SQL-99 standard should en-
courage consistency across vendors in due course.

V. DISTRIBUTION

A conventional DBMS generally involves a single server
communicating with a number of user clients, as illus-
trated in Fig. 18. In such a model, the services provided
by the database are principally supported by the central
server, which includes a secondary storage manager, con-
currency control facilities, etc., as described in Section I.

In relational database systems, clients generally com-
municate with the database by sending SQL query or up-
date statements to the server as strings. The server then
compiles and optimizes the SQL, and returns any result or
error reports to the client.

Clearly there is a sense in which a client-server database
is distributed, in that application programs run on many
clients that are located in different parts of the network.
However, in a client-server context there is a single server
managing a single database described using a single data
model. The remainder of this section introduces some
of the issues raised by the relaxation of some of these
restrictions.

A. Distributed Databases

In a distributed database, data is stored in more than one
place, as well as being accessed from multiple places, as

P1: LDK/LPB P2: FPP Revised Pages

Encyclopedia of Physical Science and Technology En004I-844 June 8, 2001 2:29

226 Databases

FIGURE 18 A client-server database architecture.

in the client-server model. A typical distributed DBMS
architecture is illustrated in Fig. 19, in which there
are two servers, each of which is accessed by multiple
clients.

Distributed databases can come into being for different
reasons. For example, a multinational organization may
have distinct databases for each of its national subsidiaries,
but some tasks may require access to more than one of
these databases (e.g., an item that is out of stock in one

FIGURE 19 A distributed database architecture.

country may be available in another). Another situation
in which multiple databases may have to be used together
is where organizations merge, and it becomes necessary
to support some measure of interoperation across their
independently developed information systems.

The context within which a distributed database comes
into being significantly influences the complexity of the
resulting system. The nature of a distributed database can
be characterized by the following features:

P1: LDK/LPB P2: FPP Revised Pages

Encyclopedia of Physical Science and Technology En004I-844 June 8, 2001 2:29

Databases 227

1. Fragmentation. The fragmentation of data in a
distributed database describes how individual data
items are partitioned across the database servers. For
example, in the genomic database of Fig. 1, one form
of fragmentation could lead to all the sequences from
an organism being stored on the same server. This
might happen, for example, if the sequencing of an
organism is being carried out at a single site. This
form of fragmentation is known as horizontal
fragmentation, as the tuples in the tables
organism and DNA sequence are partitioned on
the basis of their organism id values. In vertical
fragmentation, some of the attributes of a table are
placed on one server, and other attributes on another.

In many applications, it is difficult to arrange a
straightforward fragmentation policy—for example,
if distributed databases are being used where two
organizations have recently merged, it is very
unlikely that the existing databases of the merging
organizations will have made use of similar
fragmentation schemes.

2. Homogeneity. In a homogeneous distributed
database system, all the servers support the same kind
of database, e.g., where all the servers are relational,
and in particular where all the servers have been
provided by the same vendor. It is common, however,
for more than one database paradigm to be
represented in a distributed environment, giving rise
to a heterogeneous distributed database.

3. Transparency. In Fig. 19, a user at Client 1 can
issue a request that must access or update data from
either of the servers in the distributed environment.

FIGURE 20 A data warehouse architecture.

The level of transparency supported indicates the
extent to which users must be aware of the distributed
environment in which they are operating (Atzeni
et al., 1999). Where there is fragmentation
transparency, requests made by the user need not
take account of where the data is located. Where there
is replication transparency, requests made by the
user need not take account of where data has been
replicated in different servers, for example, to
improve efficiency. Where there is language
transparency, the user need not be concerned if
different servers support different query languages.
The greater the level of transparency supported, the
more infrastructure is required to support transparent
access. Distributed query processing and concurrency
control present particular challenges to database
systems developers (Garcia-Molina et al., 2000).

B. Data Warehouses

Traditional database systems have tended to be designed
with an emphasis on on line transaction processing
(OLTP), in which there are large numbers of short transac-
tions running over the database. In our biological example,
a typical transaction might add a new sequence entry into
the database. Such transactions typically read quite mod-
est amounts of data from the database, and update one or
a few tuples.

However, the data stored in an organization’s databases
are often important for management tasks, such as de-
cision support, for which typical transactions are very
different from those used in OLTP. The phrase on line

P1: LDK/LPB P2: FPP Revised Pages

Encyclopedia of Physical Science and Technology En004I-844 June 8, 2001 2:29

228 Databases

analytical processing (OLAP) has been used to charac-
terize this different kind of access to databases, in which
typical transactions read rather than update the database,
and may perform complex aggregation operations on the
database. As the data required for OLAP often turn out to
be stored in several OLTP databases, it often proves to be
necessary to replicate data in a system designed specifi-
cally to support OLAP—such a replicated store is known
as a data warehouse.

A data warehouse architecture is illustrated in Fig. 20
(Anahory and Murray, 1997). A data warehouse contains
three principal categories of information: detailed infor-
mation (for example, in the genomic context, this may be
the raw sequence data or other data on the function of in-
dividual protein); summary information (for example, in
the genome context, this may record the results of aggre-
gations such as the numbers of genes associated with a
given function in each species); and meta data (which de-
scribes the information in the warehouse and where it came
from).

An important prerequisite for the conducting of effec-
tive analyses is that the warehouse contains appropriate
data, of adequate quality, which is sufficiently up-to-date.
This means that substantial effort has to be put into load-
ing the data warehouse in the first place, and then keep-
ing the warehouse up-to-date as the sources change. In
Fig. 20, data essentially flow from the bottom of the figure
to the top. Sources of data for the warehouse, which are
often databases themselves, are commonly wrapped so
that they are syntactically consistent, and monitored for
changes that may be relevant to the warehouse (e.g., using
active rules). The load manager must then merge together
information from different sources, and discard informa-
tion that doesn’t satisfy relevant integrity constraints. The
query manager is then responsible for providing com-
prehensive interactive analysis and presentation facilities
for the data in the warehouse.

VI. CONCLUSIONS

This chapter has provided an introduction to databases,
and in particular to the models, languages, and systems
that allow large and complex data-intensive applications
to be developed in a systematic manner. DBMSs are now
quite a mature technology, and almost every organization
of any size uses at least one such system. The DBMS
will probably be among the most sophisticated software
systems deployed by an organization.

This is not to say, however, that research in database
management is slowing down. Many data-intensive appli-
cations do not use DBMSs, and developments continue,

with a view to making database systems amenable for use
in more and more different kinds of application. For ex-
ample, spatial, temporal, multimedia, and semistructured
data are difficult to represent effectively in many database
systems, and many issues relating to distributed informa-
tion management continue to challenge researchers.

SEE ALSO THE FOLLOWING ARTICLES

DATA MINING AND KNOWLEDGE DISCOVERY • DATA

STRUCTURES • DESIGNS AND ERROR-CORRECTING

CODES • INFORMATION THEORY • OPERATING SYSTEMS

• PROJECT MANAGEMENT SOFTWARE • REQUIREMENTS

ENGINEERING (SOFTWARE) • SOFTWARE ENGINEERING

• SOFTWARE MAINTENANCE AND EVOLUTION • WWW
(WORLD-WIDE WEB)

BIBLIOGRAPHY

Abiteboul, S., Hull, R., and Vianu, V. (1995). Foundations of Databases,
Addison-Wesley. ISBN 0-201-53771-0.

Anahory, S., and Murray, D. (1997). Data Warehousing in the Real
World, Addison-Wesley. ISBN 0-201-17519-3.

Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich, K., Maier, D., and
Zdonik, S. B. (1990). “The Object-Oriented Database System Mani-
festo,” In [(Kim et al., 1990)], pp. 223–240.

Atzeni, P., Ceri, S., Paraboschi, S., and Torlone, R. (1999). Database
Systems: Concepts, Languages and Architectures, McGraw-Hill.

Cattell, R. G. G., Barry, D. K., Berler, M., Eastman, J., Jordan, D.,
Russell, C., Schadow, O., Stanienda, T., and Velez, F. (2000). The
Object Data Standard: ODMG 3.0, Morgan Kaufman, ISBN 1-55860-
647-5.

Ceri, S., Gottlob, G., and Tanca, L. (1990). Logic Programming and
Databases, Springer-Verlag, Berlin. ISBN 0-387-51728-6.

Codd, E. F. “A Relational Model of Data for Large Shared Data Banks,”
Communications of the ACM 13(6): 377–387, June 1970; Also in
CACM 26(1) January 1983 pp. 64–69.

Elmasri, R., and Navathe, S. B. (2000). Fundamentals of Database Sys-
tems, Addison-Wesley, Reading, MA, USA, 3rd. edition, ISBN 0-201-
54263-3.

Garcia-Molina, H., Ullman, J., and Widom, J. (2000). Database System
Implementation, Prentice Hall. ISBN 0-13-040264-8.

Kim, W., Nicolas, J.-M., and Nishio, S. (eds.). (1990). Deductive
and Object-Oriented Databases (First International Conference
DOOD’89, Kyoto), Amsterdam, The Netherlands, Elsevier Science
Press (North-Holland), ISBN 0-444-88433-5.

Melton, J., and Simon, A. R. (1993). Understanding the New SQL: A
Complete Guide, Morgan Kaufman, ISBN 1-55860-245-3.

Paton, N., and Diaz, O. (1999). “Active Database Systems,” ACM Com-
puting Surveys 1(31), 63–103.

Stonebraker, M., and Brown, P. (1999). Object-Relational DBMS: Track-
ing the Next Great Wave, Morgan Kaufman, ISBN 1-55860-452-9.

Stonebraker, M., Rowe, L. A., Lindsay, B. G., Gray, J., Carey, M. J.,
Brodie, M. L., Bernstein, P. A., and Beech, D. “Third-Generation
Database System Manifesto—The Committee for Advanced DBMS
Function,” SIGMOD Record 19(3): 31–44, September 1990.

P1: ZBU Final Pages Qu: 00, 00, 00, 00

Encyclopedia of Physical Science and Technology EN005I-847 June 16, 2001 12:41

Evolutionary Algorithms
and Metaheuristics

Conor Ryan
University of Limerick

I. Metaheuristics versus Algorithms
II. Evolutionary Algorithms
III. Simulated Annealing
IV. Tabu Search
V. Memetic Algorithms

VI. Summary

GLOSSARY

Chromosome A strand of DNA in the cell nucleus that
carries the genes. The number of genes per chromo-
some and number of chromosomes per individual de-
pend on the species concerned. Often, evolutionary al-
gorithms use just 1 chromosome; humans, for example,
have 46.

Cossover Exchange of genetic material from two parents
to produce one or more offspring.

Genotype The collective genetic makeup of an organism.
Often in evolutionary algorithms, the genotype and the
chromosome are identical, but this is not always the
case.

Hill climber A metaheuristic that starts with a potential
solution at a random place in the solution landscape.
Random changes are made to the potential solution
which, in general, are accepted if they improve its per-
formance. Hill climbers tend to to find the best solution
in their immediate neighborhood.

Fitness The measure of how suitable an individual or
point in the solution landscape is at maximizing (or
minimizing) a function or performing a task.

Local optima An point in a solution landscape which is
higher, or fitter, than those in its immediate neighbor-
hood.

Mutation A small, random change to an individual’s
genotype.

Neighborhood The area immediately around a point in
the solution landscape.

Phenotype The physical expression of the genotype,
resulting from the decoding and translation of the
genes. Examples of phenotypes are eye color and hair
colour.

Population A group of potential solutions searching a
solution landscape in parallel. Typically, a popula-
tion of individuals is manipulated by an evolutionary
algorithm.

Recombination See crossover.
Reproduction Copying of an individual unchanged into

 673

P1: ZBU Final Pages

Encyclopedia of Physical Science and Technology EN005I-847 June 16, 2001 12:41

674 Evolutionary Algorithms and Metaheuristics

the next generation. The probability that an individual
will reproduce (and thus have a longer lifetime) is di-
rectly proportional to its fitness.

Selection In evolutionary algorithms, individuals in a new
generation are created from parents in the previous gen-
eration. The probability that individuals from the pre-
vious generation will be used is directly proportional to
their fitness, in a similar manner to Darwinian survival
of the fittest.

Solution landscape A map of the fitness of every possible
set of inputs for a problem. Like a natural landscape, a
solution landscape is characterized by peaks, valleys,
and plateaus, each reflecting how fit its corresponding
inputs are.

Weak artificial intelligence An artificial intelligence
(AI) method that does not employ any information
about the problem it is trying to solve. Weak AI meth-
ods do not always find optimal solutions, but can be
applied to a broad range of problems.

METAHEURISTICS are search techniques that explore
the solution landscape of a problem or function in an at-
tempt to find an optimal solution or maximum/minimum
value. Typically, a metaheuristic starts from a randomly
chosen point and explores the landscape from there by
modifying the initial solution. In general, if the modi-
fied solution is better than its predecessor, it is retained
and the original one is discarded. This is not always the
case, however, as sometimes slight deterioration of the
initial solution is accepted, in the hope that it might lead
to some long-term gain. This process is then repeated,
often thousands or more times, until a satisfactory solu-
tion has been generated. Some metaheuristic methods are
referred to as hill climbers because of the way they ran-
domly start with a point on the solution landscape and
proceed to find the best solution (the highest peak) in the
neighborhood.

Evolutionary algorithms are a special case of meta-
heuristics which maintain a population of potential solu-
tions and use a variety of biologically inspired mecha-
nisms to produce new populations of solutions which
inherit traits from the initial population. Like the hill-
climbing metheuristics mentioned above, the process is
repeated many times until a satisfactory solution has been
discovered.

The advantage of using metaheuristics over other search
methods in some problems is that one often need know
very little about the task at hand. Furthermore, these search
methods often produce counterintuitive results that a hu-
man would be unlikely to have derived.

I. METAHEURISTICS VERSUS
ALGORITHMS

A. Introduction

An algorithm is a fixed series of instructions for solving
a problem. Heuristics, on the other hand, are more of a
“rule of thumb” used in mathematical programming and
usually mean a procedure for seeking a solution, but with-
out any guarantee of success. Often, heuristics generate a
reasonably satisfactory solution, which tends to be in the
neighborhood of an optimal one, if it exists.

Heuristics tend use domain-specific knowledge to ex-
plore landscapes, which is usually given by an expert in the
area. This renders them less than useful when applied to
other problem areas, as one cannot expect them to be gen-
eral enough to be applied across a wide range of problems.
Metaheuristics, on the other hand, operate at a higher level
than heuristics, and tend to employ little, if any, domain-
specific knowledge.

The absence of this knowledge qualifies metaheuristics
as weak methods in classic artificial intelligence parlance.
Although they have little knowledge which they can apply
to the problem area, they are general enough to be appli-
cable across a broad range of problems. Metaheuristics
can be broadly divided into two groups: the first continu-
ously modifies a single potential solution until it reaches
a certain performance threshold; the second employs a
population of candidate solutions which is effectively
evolved over time until one of the candidates performs
satisfactorily.

B. Solution Landscapes

Often, when discussing metaheuristics, or indeed, any
search method, one refers to the solution landscape. Sim-
ply put, the solution landscape for a problem is a map-
ping of every set of inputs to their corresponding output.
Consider the graph in Fig. 1, which shows the solution
landscape for the function X − X2. Clearly, the maximum
value for the function is at X = 0, and any search method
should quickly locate the area in which this value lies and
then slowly home in on it.

Not all solution landscapes have such a simple shape,
however. Figure 2 gives the landscape for the function

F2(x) = exp

[
−2 log(2) ∗

(
x − 0.1

0.8

)2
]

∗ sin6(5πx).

This function contains five peaks, each at different
heights. Landscapes such as these can cause difficulties for
searches because if one of the lower peaks is mistakenly
identified as the optimal value, it is unlikely that the search

P1: ZBU Final Pages

Encyclopedia of Physical Science and Technology EN005I-847 June 16, 2001 12:41

Evolutionary Algorithms and Metaheuristics 675

FIGURE 1 Solution landscape for X − X2.

will be able to jump to the correct peak. These lower
peaks are known as local optima because, although they
are higher than their immediate neighbors, they are still
lower than the global optimum. This underlines the cru-
cial difference between an algorithm and a heuristic. One
would never expect such uncertainties when employing an
algorithm, while such vagueness is part and parcel when
employing heuristics. Finally, Fig. 3 shows a still more
complex landscape. In this case we have two input vari-

FIGURE 2 A solution landscape with several local optima.

ables, leading to a three-dimensional representation of the
landscape. This landscape was generated by the function

f (x, y) = 200 − (x2 + y − 11)2 − (x + y2 − 7)2

and contains four equal peaks. This presents yet another
complication for a search method, as it will often be de-
sirable to discover all peaks in a landscape, and there is
often no simple way to discourage a search method from
continuously searching the same area.

P1: ZBU Final Pages

Encyclopedia of Physical Science and Technology EN005I-847 June 16, 2001 12:41

676 Evolutionary Algorithms and Metaheuristics

FIGURE 3 A more complex solution landscape.

We will see in the following sections that the task of
the search function is to identify the areas in the landscape
which are most likely to contain global optima. Once these
areas have been identified, the search must then narrow to
find the highest peak in the neighborhood.

II. EVOLUTIONARY ALGORITHMS

Evolutionary algorithms are metaheuristics that typically
maintain populations of potential solutions. These popula-
tions simulate the evolution of individual strutures through
the processes of selection, reproduction, recombination,
and mutation. Each individual structure, more commonly
referred to simply as an individual, in a population repre-
sents one possible solution to the problem at hand. Gener-
ally, each individual is considered to have a chromosome

FIGURE 4 Flowchart for a simple evolutionary algorithm.

which consists of a number of genes that encode the indivi-
dual’s behavior. What the genes encode is entirely depen-
dent on the problem at hand, and we will see later that
different evolutionary algorithms use different encoding
schemes and are often suited to very different problem
domains. Thus, when trying to maximize or minimize a
function, it would be appropriate to represent a real num-
ber with an individual’s chromosome, while if one were
trying to generate control routines for a robot, it would be
more appropriate to encode a program.

The genes of an individual are collectively known as its
genotype, while their physical expression, or result of de-
coding, is referred to as the phenotype. Some EAs exploit
the mapping process from genotype to phenotype, while
others rely on the fact that the phenotype is directly en-
coded, i.e., the genotype and the phenotype are the same.

Based on the Darwinian process of “survival of the
fittest,” those individuals that perform best at the prob-
lem survive longer and thus have more of an opportunity
to contribute to new offspring. While the exact manner in
which individuals are combined to produce new indivi-
duals depends on both the particular evolutionary algo-
rithm being employed and the type of structures being
manipulated, most evolutionary algorithms follow a se-
ries of steps similar to that in Fig. 4.

The origin of life in genetic algorithms happens in a
somewhat less romantic fashion than the sudden spark
which gave rise to life from the primordial ooze on earth.
In a manner not unlike that suggested by the theory of
“directed panspermia,”1 the implementor of a genetic al-
gorithm seeds the initial population with an appropriate

1Panspermia is the belief that the life on earth derives from “seeds”
of extraterrestial origin. According to the notion of directed panspermia,
these “seeds” were deliberately sent out by intelligent beings.

P1: ZBU Final Pages

Encyclopedia of Physical Science and Technology EN005I-847 June 16, 2001 12:41

Evolutionary Algorithms and Metaheuristics 677

diversity of genetic material on which evolution operates.
This initial seeding generally involves the encoding of ev-
ery possible phenotypic trait into binary form, which then
serves as the genotype.

Testing involves determining how suitable each individ-
ual is for solving the problem. Each individual is assigned
a fitness measure that reflects how well adapted it is to its
environment, i.e., how good it is at solving the problem.
The more fit an individual is, the more likely it is to be
selected to contribute to the new population, often referred
to as the next generation. There are a number of different
approaches to the selection scheme, but, in general, the
overall effect is that the more fit an individual is, the more
likely it is to be selected.

Once selected, there are a number of operators that can
be applied to an individual. One such operator is repro-
duction, which involves copying the individual unchanged
into the next generation; thus a more fit individual will
have a greater probability of a long lifespan than less
fit individuals. Another operator is the mutation opera-
tor. Mutation involves randomly changing one part of an
individual’s chromosome and then copying the resulting
new individual into the next generation. The exact im-
plementation of mutation depends on the representation
scheme being employed, and is detailed below.

The final operator, which is also highly implementation-
specific, is the crossover or recombination operator, and
(usually) involves two individuals. Crossover is analo-
gous to sexual reproduction, and involves two individu-
als exchanging genetic material to produce one or more
offspring. Although the exact nature of the operator de-
pends on the representation, the overall effect is similar to
that in Fig. 5. In this case, two parents exchange different
amounts of genetic material to produce two children. Two
children are often produced to ensure that no genetic ma-
terial is lost. However, more often than not, nature takes no
such steps, and any extraneous genetic material is simply
discarded.

FIGURE 5 Flowchart for a simple evolutionary algorithm.

A common view is that mutation is an explorative oper-
ator, in that a random change in an individual’s genes can
cause it to jump to a previously unexplored region in the
solution landscape. It then follows that crossover is an
exploitative operator, as it effectively concentrates the
search in an area already occupied by individuals. How-
ever, it is a matter of some debate as to which of the op-
erators is the more important, and there is considerable
disagreement in particular on the role played by mutation.
Some of the evolutionary algorithms discussed below have
very different views on the importance of each. For ex-
ample, genetic programming generally does not employ
any mutation, while evolutionary programming does not
employ any crossover. It is perhaps indicative of the com-
plexity of the evolutionary processes that no consensus
has been reached.

What all proponents of evolutionary algorithms would
agree on, however, is that evolutionary search is not ran-
dom search. Although the initial population is random,
further operations are only performed on the more fit
individuals, which results in a process that is distinctly
nonrandom and produces structures that far outperform
any generated by a strictly random process.

A. Genetic Algorithms

Genetic algorithms are possibly the simplest evolutionary
algorithms and deviate the least from the basic description
given above. Genetic algorithms tend to use fixed-length
binary strings to represent their chromosomes, which are
analogous to the base-4 chromosomes employed in DNA.
However, there is no particular reason why chromosome
length should be fixed, nor why a representation scheme
other than binary could not be used. Figure 6 shows an ex-
ample of chromosomes of different lengths being crossed
over.

Genetic algorithms are most often used in function max-
imization (or minimization) or object selection problems.
In a function maximization problem, the algorithm must
find a value for x that maximizes the output of some
function f (x). The chromosomes of individuals are thus
simple binary (or possibly gray-coded) numbers, and the
fitness for each individual is the value the function gen-
erates with it as the input. Consider the sample individu-
als in Table I, which are trying to maximize the problem
f (x) = X3 − X2 + X . In this case, we are using five-bit
numbers, the first-bit of which is used as a sign.

In this extremely small population, the individual 11011
is clearly the best performer, but the rule for selection is
simply that the greater the fitness of an individual, the more
likely it is to be selected. This suggests that even the rel-
atively poor individual 10011 should have some chance,
too. The simplest selection scheme is “roulette wheel”
selection. In this scheme, each individual is assigned a

P1: ZBU Final Pages

Encyclopedia of Physical Science and Technology EN005I-847 June 16, 2001 12:41

678 Evolutionary Algorithms and Metaheuristics

FIGURE 6 Variable-length crossover.

“slice” of a roulette wheel—the more fit the individual,
the larger the slice. The size of this slice, which is effec-
tively the probability that an individual will be selected,
is calculated using the formula

P(x) = fx∑
fi

. (1)

That is, the probability that an individual will be se-
lected is equal to the individual’s fitness divided by the
total fitness.

The total fitness is 30,977, so the probability that the
fittest individual will be selected is 14,509/30,977, or
.468, while the probability that the least fit individual will
be selected is just 69/30977, or .002. This ensures that
although the less fit individuals have some chance of con-
tributing to the next generation, it is far more likely to be
the more fit individuals who contribute their genes. This
is analogous to individuals in a population competing for
resources, where the more fit individuals attain more.

In an experiment such as this, the flowchart in Fig. 4 is
repeated until there is no longer change in the population,
which means that no more evolution is taking place.

TABLE I Example Individuals from a Simple
Genetic Algorithm Population

Individual Binary Decimal Fitness

1 01010 10 9,910

2 11011 −11 14,509

3 01001 9 6,489

4 10011 −3 69

Types of Problems

Genetic algorithms are typically used on function opti-
mization problems, where they are used to calculate which
input yields the maximum (or minimum) value. However,
they have also been put to use on a wide variety of prob-
lems. These range from game-playing, where the geno-
type encodes a series of moves, to compiler optimization,
in which case each gene is an optimization to be applied
to a piece of code.

B. Genetic Programming

Genetic programming (GP) is another well-known evolu-
tionary algorithm, and differs from the genetic algorithm
described above in that the individuals it evolves are parse
trees instead of binary strings. The benefit of using parse
trees is that individuals can represent programs, rather than
simply represent numbers.

A simple parse tree is illustrated in Fig. 7. The nodes of
a tree contain functions, such as ++ or −−, while the leaves
contain the arguments to that function. Notice that, be-
cause all functions in a parse tree return a value, it is
possible to pass the result of a function as the argument
to another function. For example, the expression a ++ b * c
would be represented as in Fig. 7.

Parse trees also have a convenient linear representa-
tion, identical to that used in the language Lisp. For ex-
ample, the left tree in Fig. 7 would be (++ 1 2), i.e., the
function followed by its arguments, while the right tree in
Fig. 7 would be described by (++ a (* b c)). Because of the
close relationship between Lisp and parse trees and the

P1: ZBU Final Pages

Encyclopedia of Physical Science and Technology EN005I-847 June 16, 2001 12:41

Evolutionary Algorithms and Metaheuristics 679

FIGURE 7 Two simple parse trees.

convenient manner in which the latter can be represented
in Lisp, many users of GP implement their system in Lisp.

1. Crossover in Genetic Programming

The tree-based representation scheme employed by GP
requires special operators for crossover. In this case, a
subtree is selected from each parent, and the two subtrees
are then swapped, as in Fig. 8. Individuals in GP enjoy a
property known as closure, that is, any terminal, integer
or variable, can be passed to any function. Similarly, the
return type of any function can be legally passed as an
argument to any other function. This property ensures that,
regardless of the way in which individuals are combined,
the offspring will be a legal tree. The offspring in Fig. 8
are of a different length from their parents, and this is

FIGURE 8 Crossover in genetic programming.

an important trait of GP. It is highly unlikely that one will
know the length of a solution in advance, and this property
permits individuals to grow and contract as necessary.

2. Initial Population

In common with most evolutionary algorithms, the initial
population in GP is randomly generated. However, due to
the variable sizes of the individuals, there are a number of
methods for producing this initial population. One such
method, the grow method, randomly chooses which func-
tions and terminals to put in. This can result in a variety
of shapes and sizes of trees, as the choice of a function
will cause an individual to keep growing. Usually, there
is an upper limit set on the depth of individuals, which,
once encountered, forces the inclusion of a terminal. Each

P1: ZBU Final Pages

Encyclopedia of Physical Science and Technology EN005I-847 June 16, 2001 12:41

680 Evolutionary Algorithms and Metaheuristics

FIGURE 9 A selection of trees generated using the full method.

of the individuals in Fig. 7 could have been generated
using the grow method. Trees generated in this way are
usually characterized by having different-sized branches,
although it is possible that they may be the same.

Another method is referred to as the full method. This
only chooses function nodes until the maximum depth has
been reached. At this level, only terminals are chosen. This
method gives much richer trees than the grow method, as,
in general, individuals are much bigger, but the population
tends to be quite uniform, especially with regard to size.
Most evolutionary algorithms thrive on a diverse popula-
tion, and GP is no exception, so this method is rarely used
on its own. Figure 9 shows some examples of full trees.

One final popular method is the ramped half-and-half
method, which is essentially a compromise between the
above two methods. For ramped half-and-half, one first
decides on a maximum depth N , and the population is
then divided into groups, each of which has a maximum
going from 2 to N . Half of the individuals in each group
are then generated using the grow method and the other
half are generated using the ramped method.

3. Types of Problems

The flexible representation employed by GP has given rise
to a wide variety of applications. One area where GP has
enjoyed much success is in that of symbolic regression,
also refered to as sequence problems. Symbolic regression
problems involve determining a function that maps a set

of input data to a set of output data. For example, if one
had a set of stock prices for a particular commodity at
the end of each of the last 7 days, it would be extremely
useful to have a function that could forecast the following
day’s price. Other examples include speech recognition,
where various sounds are matched to a particular word,
DNA pattern recognition, and weather prediction.

Available data are divided into two sets, the training set
and the test set. GP is then used to generate individuals
which are functions that map the inputs—previous prices,
wave forms, etc.—onto one of a set of outputs, which,
depending on the problem task, could be anything from
the next day’s price to a word.

C. Evolutionary Programming

Evolutionary programming (EP) is distinct from most
other types of evolutionary algorithms in that it operates
at a higher level, that is, instead of groups of individuals,
it maintains groups of species which are evolving toward
a particular goal.

The main steps in EP are similar to that of other GAs,
with the exception of crossover. Crossover does not take
place between individuals in EP because the finest grain
in the population is a species, and crossover tends not to
take place between different species in nature. Instead of
crossover, the driving force behind EP is mutation, the idea
of which is to reinforce the notion that, in general, new
generations of a species tend to be somewhat similar to

P1: ZBU Final Pages

Encyclopedia of Physical Science and Technology EN005I-847 June 16, 2001 12:41

Evolutionary Algorithms and Metaheuristics 681

the previous ones. Despite the notion of acting at a species
level, the same terminology is used in EP as in other evolu-
tionary algorithms i.e., one still deals with populations of
individuals.

One of the strengths of EP is that it is metaheuris-
tic in the truest sense of the word because its operation
is totally independent of the representation scheme em-
ployed by its individuals. This is partly due the absence of
a crossover operator, as only certain structures can be ran-
domly crossed over without running the risk of producing
illegal offspring.

As with all other evolutionary algorithms, the initial
population is generated at random. The exact manner in
which this happens, however, is entirely dependent on the
problem domain. EP can handle any structure, whether
as simple as the binary strings used by GAs, sets of real
numbers, or even highly complex structures like neural
networks.

Once the population has been generated, each indivi-
dual is tested, again in the same manner as other evolution-
ary algorithms. Another difference occurs when generat-
ing the next generation. Each individual in the population
is looked upon as a species, and if that individual is cho-
sen to survive into the next generation, the species should
evolve, in that, although it is somewhat different from its
predecessor, there should still be some clear behavioral
similarities.

This inheritance of traits is achieved by a simple muta-
tion of the parent individual. The manner in which the
parent is mutated depends on the representation scheme.
For example, if one were manipulating binary strings, one
could simply change a bit value, while if one were con-
cerned with evolving neural networks, mutation could be
achieved by a simple modification of one or more weights.

We have not yet discussed selection with regard to EP.
This is because it is possible to avoid selection entirely
with EP. If each individual produces one offspring per
generation, one can simply replace the parent generation
in its entirety. However, there is no reason why the popu-
lation size should be held constant, or why each individual
should only produce one offspring. An element of compe-
tition can be introduced by conducting tournaments during
selection. Effectively, for each new individual in the next
generation, a tournament is held whereby a (small) num-
ber of individuals are selected from the parent population
at random. The fittest individual in this group is then used
to produce the next offspring.

Types of Problems

Due to the absence of any representation-dependent ope-
rators, EP can literally be applied to any optimization
problem. Indeed, there is no particular reason why one
could not conduct experiments with a population of just

one. However, in practice, the population is usually >1,
although there is no clear indication of at what point in-
creasing the population simply slows down search. Be-
cause there is no crossover, the effectiveness of the algo-
rithm is not as sensitive to the population size as in most
other evolutionary algorithms.

D. Evolutionary Strategies

While most evolutionary algorithms operate at a genotype
level, evolutionary strategies (ES) operate at a phenotype
or behavioral level. There is no mapping from an indivi-
dual’s genes to its physical expression, as the physical
expression is coded directly. The reason for this approach
is to encourage a strong causality, that is, a small change in
the coding leads to a small change in the individual. Simi-
larly, a large change in the coding has associated with it a
large change.

Due to this concentration on the phenotype, individuals
often directly encode whatever is being evolved, e.g., it
is not unusual for an individual to be a real number or,
indeed, a set of real numbers. Items encoded in this way
are usually referred to as the objective variables. Unlike
most evolutionary algorithms, individuals in an ES popu-
lation control several of their own parameters, in particu-
lar, mutation. These parameters, known as strategy vari-
ables, control the degree of mutation that can occur in
each of the objective variables. The higher the value of a
strategy variable, the greater the degree of variation that
can occur.

Population sizes in ES are extremely small compared
to other evolutionary algorithms. At the extreme, it is pos-
sible to have a population size of just one. This is known
as a two-membered, or (1 + 1), ES. There are considered
to be two members because there is always a parent and
a child. The (1 + 1) refers to the fact that there is one par-
ent, which produces one offspring in each generation. In
this case, there is no crossover, just mutation. When the
child is created, it is compared to the parent and, if it has
a greater fitness, replaces the parent.

This algorithm has been enhanced to the so-called
(m + 1) ES, which refers to the fact that there are m par-
ents, each of which produces one offspring. Sometimes
crossover is employed in this case, to permit the sharing of
useful information. Once all the offspring are created, the
best m individuals from the combined parent and offspring
group are selected to become the next generation. This
strategy is referred to as the + strategy, and is in contrast
to the alternative comma, or (m, 1), ES, in which the parent
group is replaced entirely by the offspring group, regard-
less of any improvements or degradations in performance.

Crossover in ES is intended to produce children that are
behaviorally similar to their parents, and there are three
different approaches. The first, discrete recombination, is

P1: ZBU Final Pages

Encyclopedia of Physical Science and Technology EN005I-847 June 16, 2001 12:41

682 Evolutionary Algorithms and Metaheuristics

FIGURE 10 Uniform crossover.

similar to a method often used in GAs, uniform crossover.
Uniform crossover involves creating a crossover mask, a
binary string the same length as the parents. A 0 in the
mask results in the relevant gene being selected from the
first parent, while a 1 results in the second parent donat-
ing the gene. The crossover mask is a random string, and
generally ensures that each parent contributes equally to
the child. An example is shown in Fig. 10.

The other two methods exploit the fact that the genes are
real-valued. The first of these, the intermediate recombi-
nation operator, determines the value of the child’s genes
by averaging the two values in the parents’ genes. The
second method, the random intermediate recombinator,
probabilistically determines the evenness of the contribu-
tion of each parent for each parameter.

FIGURE 11 Mapping process for grammatical evolution.

E. Grammatical Evolution

Grammatical evolution (GE) is effectively a cross between
genetic programming and genetic algorithms. It is an auto-
matic programming system that can generate computer
programs from variable-length binary strings.

An evolutionary algorithm is used to perform the search
upon a population of these binary strings, each of which
represents a program. The output program, the phenotype,
is generated through a genotype-to-phenotype mapping
process, where the genotype refers to the binary string. It
is this mapping process that distinguishes GE from other
linear GP-type systems, and bestows several advantages
on the system. Figure 11 compares the mapping process
in grammatical evolution to that found in nature.

This mapping separates the search and solution spaces,
and permits GE to enjoy many of the operators designed
for GA; it does away with the need to design special muta-
tion and crossover operators to handle the program syntax.
Individuals in GE map a genotype onto a program using a
Backus Naur form (BNF) grammar definition that can be
tailored to the particular problem in terms of complexity
and the language of the output code.

The mapping process takes place by reading N -bit
codons (N typically takes the value 8, but depends on
the grammar) on the binary string, converting a codon
into its corresponding integer value. The integer value is
then used to select an appropriate production rule from
the BNF definition to apply to the current nonterminal,

P1: ZBU Final Pages

Encyclopedia of Physical Science and Technology EN005I-847 June 16, 2001 12:41

Evolutionary Algorithms and Metaheuristics 683

e.g., in the first instance, the start symbol. This is achieved
by determining how many production rules can be applied
to the current nonterminal and then getting the codon in-
teger value modulus the number of possible production
rules. For example, given a nonterminal 〈expr〉 with the
production rules

〈expr〉 ::= 〈expr〉〈op〉〈expr〉 (0)

|(〈expr〉〈op〉〈expr〉) (1)

|〈pre-op〉(〈expr〉) (2)

|〈var〉 (3)

In this case there are four possible rules which can be ap-
plied to 〈expr〉. If the current codon integer value was
2, this would give 2 MOD 4, which equals 0. In this
case, then, the zeroth production rule is applied to the
nonterminal resulting in the replacement of 〈expr〉 with
〈expr〉〈op〉〈expr〉; the mapping continues by reading
codon after codon using the generated number to select
appropriate rules for each nonterminal until a completed
program is achieved.

It is the modulus function to select production rules that
gives the system a degenerate genetic code. That is, many
different codon integer values can represent the same pro-
duction rule. A consequence of this is that a mutation at a
codon while changing the integer value will not necessar-
ily change the production rule applied at that instance, the
result being a functionally equivalent phenotype. A muta-
tion of this type has been termed a neutral mutation, and it
is proposed that these neutral mutations are responsible for
maintaining genetic diversity in biological populations; a
similar effect has been observed in GE.

III. SIMULATED ANNEALING

Simulated annealing (SA) attempts to model the manner in
which a metal cools and solidifies, and uses this model as
a metaheuristic. When metal is heated, its atoms become
increasingly free to move about. The more heat that is
applied, the greater is the degree of movement. When the
metal is subsequently permitted to cool, the atoms slow,
and eventually stop. If the atoms are moved during their
excited state, they will stay in the new position once the
metal solidifies. Furthermore, if the metal is cooled too
quickly, it will become brittle.

The connection between annealing and simulated an-
nealing is that a potential solution is analogous to the
metal being manipulated. The process starts with a ran-
domly generated solution, to which random changes are
made. The degree of change is sensitive to the “temper-
ature” of the system, that is, a high temperature permits
a large change and a lower temperature only permits a
smaller change. Each change should eventually lead to
the solution becoming better.

An important question in SA is what kinds of changes
should be permitted? If one only ever accepts improve-
ments, then the algorithm will only ever search a single
peak in the solution landscape. To permit a more global
search, the algorithm must occasionaly accept decreases
in performance, in the hope that they may lead to better
increases later on. SA acknowledges this, and accepts de-
creases in performance with a certain probability, and this
probability itself decreases over time. This permits SA to
do something of a global search early on in a run and then
to focus on a more local search as time progresses.

The all-important control parameters for SA are the
initial temperature, the final temperature, and the cooling
rate, for these directly affect the number of perturbations
that can be made to a structure. One final parameter is the
number of perturbations that can be made at each temper-
ature. Again, to take the analogy of cooling metal, at any
given temperature, one can make several modifications
before permitting the temperature to drop. For the process
to work at its peak, a particular temperature should be kept
constant until all the useful modifications have been made.
The exact implementation of this varies, but many practi-
tioners keep making perturbations until a certain amount
have occurred without any increase in performance.

An algorithm, then, for simulated annealing could be:

1. Get an initial solution s and temperature T .
2. While at this temperature perform the following:

(a) Generate a solution s ′ from s.
(b) Let δ = fitness(s) − fitness(s ′).
(c) If δ ≤ 0 (increase in fitness), set s = s ′.
(d) If δ > 0 (decrease in fitness), set s = s ′ with some

probability.
3. Reduce temperature T according to the cooling rate.

The probability mentioned in step 2 above is generally

Prob(accept) = e−δ/T .

That is, the probability varies inversely with the current
temperature, so that as time goes on, decreases in fitness
are less likely to be accepted.

The decrease in temperature is set according to the cool-
ing rate r , which is a number between 0 and 0.99, although
in practice it is usually around 0.8–0.99. This gives us the
following equation for calculating T ′, the new temperature
value:

T ′ = rT .

The process continues until either the minimum tem-
perature is reached or a satisfactory solution is reached.
Unfortunately, setting the parameter values is something
of a black art. If the initial temperature is too high, then
there may be too many changes at the early stages to do

P1: ZBU Final Pages

Encyclopedia of Physical Science and Technology EN005I-847 June 16, 2001 12:41

684 Evolutionary Algorithms and Metaheuristics

any useful exploration. Similarly, if it is too low, the search
may be unnecessarily constrained in one area. In the same
manner, if the cooling rate is too quick, the system may
converge on a suboptimal solution.

Representation

Like evolutionary programming, discussion of represen-
tation in SA has been left until last. This is because its
operation is totally independant of representation, and any
structure that can be randomly modified can be processed
using simulated annealing. Thus, any structure from a sim-
ple binary number to something as complex as a neural
network may be used.

IV. TABU SEARCH

All of the metaheuristic search methods described thus far
are blind search methods, in that they are not aware of what
part of the solution landscape they are searching. This can
lead to inefficiencies if the same part of the landscape is
repeatedly searched or, as can happen in EP or SA, a move
is made that brings the potential solution back into a region
that has already been searched.

Consider Fig. 12, where point A has already been
searched and the current point is B. It is more attractive to
return to point A than to move to C in the short term, even
though C may eventually lead to a higher reward, as it
could direct the search toward D. Tabu search attempts to
inhibit this kind of behavior by maintaining a “tabu list,”
which is simply a list of previously made moves, or areas
of the landscape which have already been searched, and
therefore should not be revisited (are considered taboo).

This is often a problem for hill-climbing algorithms. In
many instances, they can get stuck in this situation, even
if they did travel toward C , as they are likely to be tempted
back up toward A.

When moving from one solution s to another solution s ′,
tabu search generates a set of possible moves known as the
neighborhood of s. The move that gives the greatest reward
is taken and then entered into the tabu list to ensure that the
same move will not be made again. The exact form of the
tabu list varies. Sometimes the actual solutions themselves

FIGURE 12 Escaping from a local maximum.

are stored, to prevent them from being revisited, while
other implementations store the inverse of the move, to
prevent the search from going back. Before a move can
be made, however, the tabu list is examined to see if it is
there; if so, the next best move is chosen, and so on.

Tabu search can be looked upon as a search with a short-
term memory, as the last number of moves are remem-
bered. There is a limit to the number remembered, as it is
generally not practical to store every move. Using this im-
plementation, however, tabu search can be too restrictive;
quite often there may only be a relatively small number of
moves leading away from a particular position. Once all
of these are in the tabu list, it is possible for the search to
become trapped.

To prevent this from happenning, an aspiration func-
tion is often employed. An aspiration function permits a
move that is in the tabu list if this move gives a better
score than all others found. This is sometimes necessary
because some level of backtracking is often needed. The
probability of the aspiration function permitting a move
from the tabu list to be made often varies with time.

While tabu search can be very efficient, its utility can
often depend on the problem being tackled. If a relatively
small number of moves can be made, the list is often too
small to be of any use. Conversely, if the number of moves
possible from each solution, i.e., the neighborhood, is very
large, the system becomes extremely inefficient, as it re-
quires testing each item in the neighborhood.

V. MEMETIC ALGORITHMS

While the population-based evolutionary algorithms may
appear to be quite different from the single-entity-based
algorithms of simulated annealing and tabu search, there
is no reason why they cannot work together. After all,
our own evolution is characterized by both the evolution
of genes and the evolution of ideas. An individual often
benefits from the experience of its parents, and during its
own lifetime, strives to become as successful as possible—
in EA terms, to become as fit as it can be.

Memetic algorithms, sometimes refered to as hybrid
genetic algorithms, attempt to capture this behavior. At a
simple level, they are similar to evolutionary algorithms,

P1: ZBU Final Pages

Encyclopedia of Physical Science and Technology EN005I-847 June 16, 2001 12:41

Evolutionary Algorithms and Metaheuristics 685

FIGURE 13 Flowchart for a simple memetic algorithm.

but each individual also undergoes some kind of hill climb-
ing, possibly simulated annealing or tabu search. The fit-
ness of that individual becomes whatever the fitness is
after the hill-climbing. Figure 13 shows a flowchart for
a memetic algorithm. As can be seen, the only difference
between this and the flowchart for evolutionary algorithms
in Fig. 4 is the extra “Perform Local Search” step.

In true metaheuristic fashion, there is no detail about
either the method used to produce each generation or the
local search method employed. This means that any rep-
resentation scheme may be used. Thus, it is possible to
combine GP and SA, or GA and tabu search; indeed, any
combination is possible.

VI. SUMMARY

In order to solve difficult or poorly understood problems, it
is often useful to employ a metaheuristic. Metaheuristics
are adept at discovering good solutions without neces-
sarily requiring much information about the problem to
which they are being applied.

There are two broad categories of metaheuristics, often
termed evolutionary algorithms and hill climbers. How-

ever, it is often difficult to decide which one is appropriate
for a problem without at least some degree of knowledge
about the problem domain.

Hill climbers continuously modify a single structure,
ideally with each change bringing some kind of improve-
ment, but often accepting degradations, in the hope that
they may eventually lead to a long-term gain.

Evolutionary algorithms, on the other hand, are
population-based techniques. These search a problem
space in parallel and try to share information with each
other using a number of biologically inspired mechanisms.

In general, metaheuristics tend not to have hard and
fast rules about their application. Knowing the best way
to apply them is often an acquired skill, and even then
something of a black art. Nothing can replace experience,
and the interested reader is encouraged to experiment with
the various algorithms.

SEE ALSO THE FOLLOWING ARTICLES

ARTIFICIAL INTELLIGENCE • CHROMATIN STRUCTURE

AND MODIFICATION • COMPUTER ALGORITHMS • DATA

MINING, STATISTICS • GENE EXPRESSION, REGULATION

OF • METAL FORMING • NONLINEAR PROGRAMMING •
STOCHASTIC PROCESSES

BIBLIOGRAPHY

Axelrod, R. (1984). “The Evolution of Cooperation,” Basic Books, New
York.

Banzhaf, W., Nordin, P., Keller, R. E., and Francone, F. D. (1998).
“Genetic Programming—An Introduction,” Morgan Kaufmann, San
Francisco.

Darwin, C. (1859). “The Origin of Species,” John Murray, London.
Fogel, L. J., Owens, A. J., and Walsh, M. J. (1966). “Artificial Intelligence

through Simulated Evolution,” Wiley, New York.
Goldberg, D. (1989). “Genetic Algorithms in Search, Optimization, and

Machine Learning,” Addison-Wesley, Reading, MA.
Holland, J. H. (1975). “Adaptation in Natural and Artificial Systems,”

University of Michigan Press, Ann Arbor, MI.
Koza, J. R. (1992). “Genetic Programming: On the Programming of

Computers by Means of Natural Selection,” MIT Press, Cambridge,
MA.

Ryan, C. (1999). “Automatic Re-engineering of Software Using Genetic
Programming,” Kluwer, Amsterdam.

P1: GTV/GRI P2: GLM Final Pages Qu: 00, 00, 00, 00

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

Image Processing
Rama Chellappa
Azriel Rosenfeld
University of Maryland

I. Introduction
II. Digitization
III. Representation
IV. Compression
V. Enhancement

VI. Restoration
VII. Reconstruction

VIII. Matching

IX. Image Sequence Analysis
X. Recovery
XI. Segmentation
XII. Geometry
XIII. Description
XIV. Architectures
XV. Summary

GLOSSARY

Compression Reduction of the amount of data used
to represent an image, by compact encoding or by
approximation.

Description Information about image parts and their
properties and relations.

Digitization Conversion of an image into a discrete array
of numbers for computer processing.

Enhancement Processing of an image to improve its
appearance.

Matching Comparison of images for purposes of pat-
tern recognition, registration, stereopsis, or motion
analysis.

Recognition Recognition of objects in an image by com-
paring image descriptions with object models.

Reconstruction Computation of cross sections of an im-
age or volume, given a set of its projections.

Recovery Estimation of the orientation of a surface from

the shading, texture, or shape of the corresponding re-
gion of an image.

Representation Mathematical description of image data.
Restoration Processing of an image to correct for the

effects of degradations.
Segmentation Partitioning of an image into homoge-

neous regions; extraction of features such as edges or
curves from an image.

COMPUTERS are used to process images for many pur-
poses. Image processing is the computer manipulation of
images to produce more useful images; subfields of image
processing include image compression or coding, image
enhancement and restoration, and image reconstruction
from projections; examples of applications include com-
pression of DVD movies, restoration of Hubble telescope
images, and medical imaging. The goal of image analysis
is to produce a description of the scene that gave rise to the

 595

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

596 Image Processing

image; examples of applications are reading documents
(character recognition), counting blood cells on a micro-
scope slide, detecting tumors in chest X rays, producing
land use maps from satellite images, detecting defects in
printed circuits, and guiding robots in navigating or in
manipulating objects. In addition to processing images
in the visible spectrum, acquisition, processing and anal-
ysis of infrared, synthetic aperture radar, medical, hyper-
spectral, and range images have become important over
the last 20 years due to the emergence of new sensors and
applications.

I. INTRODUCTION

This chapter deals with the manipulation and analysis of
images by computer. In image processing, both the input
and the output are images, the output being, for exam-
ple, an approximated or improved version of the input. In
image analysis (also known by such names as pictorial
pattern recognition, image understanding, and computer
vision), the input is an image and the output is (typically) a
description of the scene that gave rise to the image. Com-
puter graphics, which is not covered in this chapter, is the
inverse of image analysis: The input is a scene description,
and the output is an image of the scene as it would appear
from a given viewpoint.

An image is defined by specifying how its value (bright-
ness, color, etc.) varies from point to point—in other
words, by a function of two variables defined over an
“image plane.” Before an image can be processed and
analyzed by (digital) computer, it must be converted into
a discrete array of numbers each of which represents the
value at a given point. This process of conversion is called
digitization (Section II).

A digitized image can be viewed as a matrix of gray-
level values. To understand/analyze the structure of this
matrix, image models and image transforms have been
used. Image models attempt to describe the image data
quantatively, while image transforms enable the analy-
sis of the image data in the transform domain for var-
ious applications such as compression, restoration, and
filtering.Image models and representations are discussed
in Section III.

To represent the input image with sufficient accuracy,
the array of numbers must usually be quite large—for
example, about 500 × 500 in the case of a television im-
age. Image compression (or coding) deals with methods
of reducing this large quantity of data without sacrificing
important information about the image (Section IV).

One of the central goals of image processing is to im-
prove the appearance of the image—for example, by in-
creasing contrast, reducing blur, or removing noise. Image

enhancement (Section V) deals with methods of improv-
ing the appearance of an image. More specifically, image
restoration (Section VI) is concerned with estimating im-
age degradations and attempting to correct them.

Another important branch of image processing is image
reconstruction from projections (Section VII). Here we are
given a set of images (e.g., X rays) representing projections
of a given volume, and the task is to compute and display
images representing cross sections of that volume.

Comparison or matching of images is an important tool
in both image processing and analysis. Section VIII dis-
cusses image matching and registration and depth mea-
surement by comparison of images taken from different
positions (stereomapping).

Section IX summarizes methods for the analysis of im-
age sequences. Techniques for motion compensation, de-
tection and tracking of moving objects, and recovery of
scene structure from motion using optic flow and discrete
features are discussed.

The brightness of an image at a point depends on many
factors, including the illumination, reflectivity, and sur-
face orientation of the corresponding surface point in the
scene. Section X discusses methods of recovering these
“intrinsic” scene characteristics from an image by analyz-
ing shading, texture, or shapes in the image.

Image analysis usually begins with feature detection or
segmentation—the extraction of parts of an image, such as
edges, curves, or regions, that are relevant to its descrip-
tion. Techniques for singling out significant parts of an
image are reviewed in Section XI. Methods of compactly
representing image parts for computer manipulation, as
well as methods of decomposing image parts based on
geometric criteria and of computing geometric properties
of image parts, are treated in Section XII.

Section XIII deals with image description, with an em-
phasis on the problem of recognizing objects in an image.
It reviews properties and relations, relational structures,
models, and knowledge-based image analysis.

A chapter such as this would not be complete with-
out some discussion of architectures designed for efficient
processing of images. The eighties witnessed an explosion
of parallel algorithms and architectures for image process-
ing and analysis; especially noteworthy were hypercube-
connected machines. In the early nineties attention was
focused on special processors such as pyramid machines.
Recently, emphasis is being given to embedded processors
and field-programmable gate arrays. Section XIV presents
a summary of these developments.

The treatment in this chapter is concept-oriented; appli-
cations are not discussed, and the use of mathematics has
been minimized, although some understanding of Fourier
transforms, stochastic processes, estimation theory, and
linear algebra is occasionally assumed. The Bibliography

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

Image Processing 597

lists basic textbooks, as well as a recent survey article that
celebrated 50 years of progress in image processing and
analysis.

Since an earlier version of this chapter appeared in 1986,
image processing and analysis have grown so dramatically
in depth and breadth that it is nearly impossible to cover all
their subareas in detail. To adhere to our page limitations,
we have made a conscientious selection of topics for dis-
cussion. We avoid discussion of topics such as scanners,
display devices, and hardware and software issues. On the
other hand, since the mideighties, much to our delight, the
field has been supported by a strong underlying analytical
framework based on mathematics, statistics, and physics.
We point out the influence of these fields on image pro-
cessing, analysis, understanding, and computer vision.

II. DIGITIZATION

Digitization is the process of converting an image into a
discrete array of numbers. The array is called a digital
image, its elements are called pixels (short for “picture
elements”), and their values are called gray levels. (In a
digital color image, each pixel has a set of values repre-
senting color components.)

Digitization involves two processes: sampling the im-
age value at a discrete grid of points and quantizing the
value at each of these points to make it one of a discrete set
of gray levels. In this section we briefly discuss sampling
and quantization.

A. Sampling

In general, any process of converting a picture into a dis-
crete set of numbers can be regarded as “sampling,” but
we assume here that the numbers represent the image val-
ues at a grid of points (or, more precisely, average values
over small neighborhoods of these points). Traditionally,
rectangular uniform sampling lattices have been used, but
depending on the shape of the image spectrum, hexagonal,
circular, or nonuniform sampling lattices are sometimes
more efficient.

The grid spacing must be fine enough to capture all the
detail of interest in the image; if it is too coarse, infor-
mation may be lost or misrepresented. According to the
sampling theorem, if the grid spacing is d , we can ex-
actly reconstruct all periodic (sinusoidal) components of
the image that have period 2d or greater (or, equivalently,
“spatial frequency” 1/2d or fewer cycles per unit length).
However, if patterns having periods smaller than 2d are
present, the sampled image may appear to contain spu-
rious patterns having longer periods; this phenomenon is
called aliasing. Moiré patterns are an everyday example

of aliasing, usually arising when a scene containing short-
period patterns is viewed through a grating or mesh (which
acts as a sampling grid).

Recent developments in the design of digital cameras
enable us to acquire digital images instantly. In addition,
many image processing operations such as contrast en-
hancement and dynamic range improvement are being
transferred to the acquisition stage.

B. Quantization

Let z be the value of a given image sample, representing
the brightness of the scene at a given point. Since the
values lie in a bounded range, and values that differ by
sufficiently little are indistinguishable to the eye, it suffices
to use a discrete set of values. It is standard practice to use
256 values and represent each value by an 8-bit integer
(0, 1, . . . , 255). Using too few discrete values give rise
to “false contours,” which are especially conspicuous in
regions where the gray level varies slowly. The range of
values used is called the grayscale.

Let the discrete values (“quantization levels”) be
zl , . . . , zk . To quantize z, we replace it by the z j that lies
closest to it (resolving ties arbitrarily). The absolute dif-
ference |z − z j | is called the quantization error at z.

Ordinarily, the z’s are taken to be equally spaced over
the range of possible brightnesses. However, if the bright-
nesses in the scene do not occur equally often, we can
reduce the average quantization error by spacing the z’s
unequally. In fact, in heavily populated parts of the bright-
ness range, we should space the z’s closely together, since
this will result in small quantization errors. As a result,
in sparsely populated parts of the range, the z’s will have
to be farther apart, resulting in larger quantization errors;
but only a few pixels will have these large errors, whereas
most pixels will have small errors, so that the average error
will be small. This technique is sometimes called tapered
quantization.

Quantization can be optimized for certain distribu-
tions of brightness levels, such as Gaussian and double-
exponential. Another class of techniques, known as
moment-preserving quantizers, does not make specific as-
sumptions about distributions. Instead, the quantizers are
designed so that low-order moments of the brightness be-
fore and after quantization are required to be equal. These
scalar quantizers do not exploit the correlation between ad-
jacent pixels. Vector quantization (VQ), in which a small
array of pixels is represented by one of several standard
patterns, has become a popular method of image com-
pression on its own merits, as well as in combination with
techniques such as subband or wavelet decomposition. A
major difficulty with VQ techniques is their computational
complexity.

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

598 Image Processing

III. REPRESENTATION

Two dominant representations for images are two-
dimensional (2-D) discrete transforms and various types of
image models. In the former category, linear, orthogonal,
separable transforms have been popular due to their
energy-preserving nature and computational simplicity.
When images are represented using discrete transforms,
the coefficients of the expansion can be used for synthesis,
compression, and classification. The two most often used
discrete transforms are the discrete Fourier transform (due
to its FFT implementation) and discrete cosine transform
(due to its FFT-based implementation and its adoption in
the JPEG image compression standard). If minimizing the
mean squared error between the original image and its ex-
pansion using a linear orthogonal transform is the goal, it
can be shown that the Karhunen–Loeve transform (KLT)
is the optimal transform, but the KLT is not practical, since
it requires eigencomputations of large matrices. Under a
circulant covariance structure, the DFT is identical to the
KLT.

All the 2-D discrete transforms mentioned above ana-
lyze the data at one scale or resolution only. Over the last
20 years, new transforms that split the image into multiple
frequency bands have given rise to schemes that analyze
images at multiple scales. These transforms, known as
wavelet transforms, have long been known to mathemati-
cians. The implementation of wavelet transforms using
filter banks has enabled the development of many new
transforms.

Since the early eighties, significant progress has been
made in developing stochastic models for images. The
most important reason is the abstraction that such models
provide of the large amounts of data contained in the im-
ages. Using analytical representations for images, one can
develop systematic algorithms for accomplishing a par-
ticular image-related task. As an example, model-based
optimal estimation-theoretic principles can be applied to
find edges in textured images or remove blur and noise
from degraded images. Another advantage of using im-
age models is that one can develop techniques to vali-
date a given model for a given image. On the basis of
such a validation, the performance of algorithms can be
compared.

Most statistical models for image processing and anal-
ysis treat images as 2-D data, i.e., no attempt is made to
relate the 3-D world to its 2-D projection on the image.
There exists a class of models, known as image-formation
models, which explicitly relate the 3-D information to the
2-D brightness array through a nonlinear reflectance map
by making appropriate assumptions about the surface be-
ing imaged. Such models have been the basis for computer
graphics applications, can be customized for particular

sensors, and have been used for inferring shape from shad-
ing and other related applications. More recently, accurate
prediction of object and clutter models (trees, foliage, ur-
ban scenes) has been recognized as a key component in
model-based object recognition as well as change detec-
tion. Another class of models known as fractals, originally
proposed by Mandelbrot, is useful for representing images
of natural scenes such as mountains and terrain. Fractal
models have been successfully applied in the areas of im-
age synthesis, compression, and analysis.

One of the earliest model-based approaches was the
multivariate Gaussian model used in restoration. Regres-
sion models in the form of facets have been used for deriv-
ing hypothesis tests for edge detection as well as deriving
the probability of detection. Deterministic 2-D sinusoidal
models and polynomial models for object recognition have
also been effective.

Given that the pixels in a local neighborhood are corre-
lated, researchers have proposed 2-D extensions of time-
series models for images in particular, and for spatial data
in general, since the early 1950s. Generalizations have in-
cluded 2-D causal, nonsymmetric half-plane (NSHP), and
noncausal models.

One of the desirable features in modeling is the ability
to model nonstationary images. A two-stage approach,
regarding the given image as composed of stationary
patches, has attempted to deal with nonstationarities in
the image. A significant contribution to modeling nonsta-
tionary images used the concept of a dual lattice process,
in which the intensity array is modeled as a multilevel
Markov random field (MRF) and the discontinuities are
modeled as line processes at the dual lattice sites inter-
posed between the regular lattice sites. This work has led
to several novel image processing and analysis algorithms.

Over the last 5 years, image modeling has taken on
a more physics-based flavor. This has become neces-
sary because of sensors such as infrared, laser radar,
SAR, and foliage-penetrating SAR becoming more com-
mon in applications such as target recognition and image
exploitation. Signatures predicted using electromagnetic
scattering theory are used for model-based recognition and
elimination of changes in the image due to factors such as
weather.

IV. COMPRESSION

The aim of image compression (or image coding) is to
reduce the amount of information needed to specify an
image, or an acceptable approximation to an image. Com-
pression makes it possible to store images using less mem-
ory or transmit them in less time (or at a lower bandwidth).

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

Image Processing 599

A. Exact Encoding

Because images are not totally random, it is often pos-
sible to encode them so that the coded image is more
compact than the original, while still permitting exact
reconstruction of the original. Such encoding methods are
generally known as “lossless coding.”

As a simple illustration of this idea, suppose that the
image has 256 gray levels but they do not occur equally
often. Rather than representing each gray level by an 8-bit
number, we can use short “codes” for the frequently oc-
curring levels and long codes for the rare levels. Evidently
this implies that the average code length is relatively short,
since the frequent levels outnumber the rare ones. If the
frequent levels are sufficiently frequent, this can result
in an average code length of less than eight bits. A gen-
eral method of constructing codes of this type is called
Shannon–Fano–Huffman coding.

As another example, suppose that the image has only a
few gray levels, say two (i.e., it is a black-and-white, or
binary, image: two levels might be sufficient for digitizing
documents, e.g., if we can distinguish ink from paper reli-
ably enough). Suppose, further, that the patterns of black
and white in the image are relatively simple—for exam-
ple, that it consists of black blobs on a white background.
Let us divide the image into small blocks, say 3 × 3. The-
oretically, there are 29 = 512 such blocks (each of the nine
pixels in a block can have gray level either 0 or 1), but not
all of these combinations occur equally often. For exam-
ple, combinations like

1 1 1

1 1 1

1 1 1
or

0 1 1

0 1 1

0 0 1
or

1 1 0

0 0 0

0 0 0
or

0 0 0

0 0 0

0 0 0

should occur frequently, but combinations like

1 0 1

0 1 0

1 0 0

should occur rarely or not at all. By using short codes to
represent the frequent blocks and longer codes for the rare
ones, we can reduce (to much less than 9) the average
number of bits required to encode a block. This approach
is sometimes called area character coding or block cod-
ing. Other methods of compactly encoding such images,
including run length coding and contour coding, are dis-
cussed in Section 12 when we consider methods of com-
pactly representing image parts.

B. Approximation

The degree of compression obtainable by exact encoding
is usually small, perhaps of the order of 2:1. Much higher

degrees of compression, of 20:1 or greater, can be obtained
if we are willing to accept a close approximation to the
image (which can, in fact, be virtually indistinguishable
from the original).

The fineness of sampling and quantization ordinarily
used to represent images are designed to handle worst
cases. Adequate approximations can often be obtained us-
ing a coarser sampling grid or fewer quantization levels. In
particular, sampling can be coarse in image regions where
the gray level varies slowly, and quantization can be coarse
in regions where the gray level varies rapidly. This idea can
be applied to image compression by using “adaptive” sam-
pling and quantization whose fineness varies from place
to place in the image. Alternatively, we can use Fourier
analysis to break the image up into low-frequency and
high-frequency components. The low-frequency compo-
nent can be sampled coarsely, the high-frequency compo-
nent can be quantized coarsely, and the two can then be
recombined to obtain a good approximation to the image.
Still another idea is to add a pseudorandom “noise” pat-
tern, of amplitude about one quantization step, to the im-
age before quantizing it and then subtract the same pattern
from the image before displaying it; the resulting “dither-
ing” of the gray levels tends to break up false contours,
so that quantization to fewer levels yields an acceptable
image.

C. Difference Coding and Transform Coding

In this section we discuss methods of transforming an
image so as to take greater advantage of both the exact
encoding and approximation approaches.

Suppose we scan the image (say) row by row and use
the gray levels of a set of preceding pixels to predict the
gray level of the current pixel—by linear extrapolation,
for example. Let ẑi be the predicted gray level of the
i th pixel and zi its actual gray level. If we are given the
actual gray levels of the first few pixels (so we can ini-
tiate the prediction process) and the differences zi − ẑi

between the actual and the predicted values for the rest
of the pixels, we can reconstruct the image exactly. The
differences, of course, are not a compact encoding of the
image; in fact, they can be as large as the largest gray level
and can be either positive or negative, so that an extra bit
(a sign bit) is needed to represent them. However, the dif-
ferences do provide a basis for compact encoding, for two
reasons.

1. The differences occur very unequally; small
differences are much more common than large ones,
since large, unpredictable jumps in gray level are rare
in most types of images. Thus exact encoding

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

600 Image Processing

techniques, as described in Section IV.A, can be used
to greater advantage if we apply them to the
differences rather than to the original gray levels.

2. When large differences do occur, the gray level is
fluctuating rapidly. Thus large differences can be
quantized coarsely, so that fewer quantization levels
are required to cover the range of differences.

The main disadvantage of this difference coding approach
is the relatively low degree of compression that it typically
achieves.

More generally, suppose that we apply an invertible
transformation to an image—for example, we take its
discrete Fourier transform. We can then encode or ap-
proximate the transformed image, and when we want to
reconstruct the original image, we apply the inverse trans-
formation to the approximated transform. Evidently, the
usefulness of this transform coding approach depends on
the transformed image being highly “compressible.”

If we use the Fourier transform, it turns out that for most
classes of images, the magnitudes of the low-frequency
Fourier coefficients are very high, whereas those of the
high-frequency coefficients are low. Thus we can use a
different quantization scheme for each coefficient—fine
quantization at low frequencies, coarse quantization at
high frequencies. (For sufficiently high frequencies, the
magnitudes are so small that they can be discarded.) In
fact, the quantization at high frequencies can be very
coarse because they represent parts of the image where
the gray level is fluctuating rapidly. When the image is
reconstructed using the inverse transform, errors in the
Fourier coefficients are distributed over the entire image
and so tend to be less conspicuous (unless they are very
large, in which case they show up as periodic patterns).
An example of transform coding using the discrete cosine
transform is shown in Fig. 1.

Difference and transform coding techniques can be
combined, leading to hybrid methods. For example, one
can use a 1-D transform within each row of the image, as
well as differencing to predict the transform coefficients
for each successive row by extrapolating from the coeffi-
cients for the preceding row(s). Difference coding is also
very useful in the compression of time sequences of im-
ages (e.g., sequences of television frames), since it can
be used to predict each successive image by extrapolating
from the preceding image(s).

D. Recent Trends

The difference and transform compression schemes de-
scribed above attempt to decorrelate the image data at a
single resolution only. With the advent of multiresolution
representations (pyramids, wavelet transforms, subband

decompositions, and quadtrees), hierarchical compression
schemes have become the dominant approach. Subband
and wavelet compression schemes provide better distribu-
tions of bits across the frequency bands than are possible
in single-resolution schemes. Also, much higher compres-
sion factors with improved peak to signal-to-noise ratios
are being achieved using these schemes. Additional fea-
tures such as progressive compression schemes also make
these methods more attractive. An example of subband
coding is also shown in Fig. 1.

During the early years of image compression research,
although compressed images were transmitted over
noisy channels, source and channel coding aspects were
treated independently. Due to the emergence of wired
and wireless networks, the problems of compression and
transmission are now solved using a joint source/channel
framework, with the goal of obtaining the best possible
compression results for the given channel. Depending
on whether the state of the channel is known a priori
or is estimated on-line, different strategies are possible.
These developments, in addition to reenergizing image
compression research, have also led to new coding
techniques such as turbo coding.

Compression of image sequences has been investigated
for more than 20 years for applications ranging from video
telephony to DVD movies. One of the ways to achieve the
very high compression factors required in these applica-
tions is to exploit temporal redundancy, in addition to the
spatial redundancy that is present in still images. Tempo-
ral redundancy is removed by using pixel- or object-based
motion compensation schemes, skipping frames, or condi-
tional replenishment. During the early years, pel-recursive
displacement estimates were used to assign motion vec-
tors to blocks of pixels. Recently, object-based schemes
are being introduced. An example of moving object de-
tection in a video frame is shown in Fig. 2.

One of the clear signs that technology has contributed
to a commercial product is that standards exist for its
implementation. Image compression, because of its
usefulness in a large number of applications, is an area
that has seen standardization of its technology. For still
image compression, standards such as those developed
by the Joint Photographic Experts Group (JPEG) and the
Joint Bi-level Photographic Experts Group (JBIG) are in
daily use. A new standard (JPEG-2000), which includes
wavelet transform compression, will be available soon.
For compressing image sequences, many standards are
available, including (but not limited to) H. 261, H. 263,
MPEG-1, MPEG-2, and MPEG-4, and new standards
such as MPEG-7 are being developed. These new and
improved standards for still and sequence compression
reflect the widespread acceptance of research results and
technological advances obtained in universities, research
laboratories, and industry.

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

Image Processing 601

(a)

FIGURE 1 Image compression. (a) Original image; (b) compressed image, using the discrete cosine transform;
(c) compressed image, using a subband coding scheme.

V. ENHANCEMENT

The general goal of image enhancement is to improve
the appearance of an image so that it can be easier to
use. The appropriate method of enhancement depends on
the application, but certain general-purpose methods are
applicable in many situations. In this section we describe
some basic methods of grayscale modification (or contrast
stretching), blur reduction, shading reduction, and noise
cleaning.

A. Grayscale Modification

When the illumination of a scene is too high or too low
or the objects in a scene have reflectivities close to that of
the background, the gray levels in the resulting image will
occupy only a portion of the grayscale. One can improve
the appearance of such an image by spreading its gray lev-
els apart to occupy a wider range. This process of contrast
stretching does not introduce any new information, but it
may make fine detail or low-contrast objects more clearly

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

602 Image Processing

(b)

FIGURE 1 (continued)

visible, since spreading apart indistinguishable (e.g., ad-
jacent) gray levels makes them distinguishable.

Even if an image occupies the entire grayscale, one can
spread apart the gray levels in one part of the grayscale at
the cost of packing them closer together (i.e., combining
adjacent levels) in other parts. This is advantageous if the
information of interest is represented primarily by gray
levels in the stretched range.

If some gray levels occur more frequently than others
(e.g., the gray levels at the ends of a grayscale are usually

relatively uncommon), one can improve the overall con-
trast of the image by spreading apart the frequently occur-
ring gray levels while packing the rarer ones more closely
together; note that this stretches the contrast for most of
the image. (Compare the concept of tapered quantization
in Section II.B.) The same effect is achieved by requantiz-
ing the image so that each gray level occurs approximately
equally often; this breaks up each frequently occuring gray
level into several levels, while compressing sets of con-
secutive rarely occuring levels into a single level. Given an

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

Image Processing 603

(c)

FIGURE 1 (continued)

image, we can plot a graph showing how often each gray
level occurs in the image; this graph is called the image’s
histogram. The method of requantization just described is
called histogram flattening. It is sometimes preferable to
requantize an image so as to give it a histogram of some
other standard shape.

Since humans can distinguish many more colors
than shades of gray, another useful contrast stretching
technique is to map the gray levels into colors; this tech-
nique is called pseudo-color enhancement.

B. Blur Reduction

When an image is blurred, the ideal gray level of each pixel
is replaced by a weighted average of the gray levels in a
neighborhood of that pixel. The effects of blurring can be
reversed, to a first approximation, by subtracting from the
gray level of each pixel in the blurred image a weighted
average of the gray levels of the neighboring pixels. This
method of “sharpening” or deblurring an image is some-
times referred to as Laplacian processing, because the

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

604 Image Processing

(a)

(b)

FIGURE 2 Moving object detection in a video frame. (a) Original frame; (b) detected object.

difference between a pixel’s gray level and the average of
its neighbors’ gray levels is a digital approximation to the
Laplacian (sum of second partial derivatives) of the image.

Blurring weakens the high-frequency Fourier compo-
nents of an image more than it does the low ones. Hence
high-emphasis frequency filtering, in which the high-

frequency components are strengthened relative to the low
ones, has a deblurring effect. Such filtering will also en-
hance noise, since noise tends to have relativity strong
high-frequency components; one should avoid strength-
ening frequencies at which the noise is stronger than the
information-bearing image detail.

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

Image Processing 605

C. Shading Reduction

The illumination across a scene usually varies slowly,
while the reflectivity may vary rapidly from point to point.
Thus illumination variations, or shading, give rise pri-
marily to low-frequency Fourier components in an im-
age, while reflectivity variations also give rise to high-
frequency components. Thus one might attempt to reduce
shading effects in an image by high-emphasis frequency
filtering, weakening the low-frequency components in the
image’s Fourier transform relative to the high-frequency
components. Unfortunately, this simple approach does not
work, because the illumination and reflectivity informa-
tion is combined multiplicatively rather than additively;
the brightness of the scene (and hence of the image) at
a point is the product of illumination and reflectivity, not
their sum. Better results can be obtained using a technique
called homomorphic filtering. If we take the logarithm of
the gray level at each point of the image, the result is
the sum of the logarithms of the illumination and reflec-
tivity; in other words, the multiplicative combination has
been transformed into an additive one. We can thus take
the Fourier transform of the log-scaled image and apply
high-emphasis filtering to it. Taking the inverse Fourier
transform and the antilog at each point then gives us an
enhanced image in which the effects of shading have been
reduced.

D. Noise Cleaning

Noise that is distinguishable from the image detail is rel-
atively easy to remove from an image. For example, if the
image is composed of large objects and the noise consists
of high-contrast specks (“salt and pepper”), we can detect
the specks as pixels that are very different in gray level
from (nearly) all of their neighbors and remove them by
replacing each such pixel by the average of its neighbors.
As another example, if the noise is a periodic pattern,
in the Fourier transform of the image it gives rise to a
small set of isolated high values (i.e., specks); these can
be detected and removed as just described, and the inverse
Fourier transform can be applied to reconstruct an image
from which the periodic pattern has been deleted. (This
process is sometimes called notch filtering.)

Image noise can also be reduced by averaging oper-
ations. If we have several copies of an image that are
identical except for the noise (e.g., several photographs or
television frames of the same scene), averaging the copies
reduces the amplitude of the noise while preserving the
image detail. In a single image, local averaging (of each
pixel with its neighbors) will reduce noise in “flat” regions
of the image, but it will also blur the edges or boundaries
of regions. To avoid blurring, one can first attempt to de-
tect edges and then average each pixel that lies near an

edge only with those of its neighbors that lie on the same
side of the edge. One need not actually decide whether
an edge is present but can simply average each pixel only
with those of its neighbors whose gray levels are closest
to its own, since these neighbors are likely to lie on the
same side of the edge (if any) as the pixel. [Better results
are obtained by selecting, from each symmetric pair of
neighbors, the one whose gray level is closer to that of
the pixel. If the image’s histogram has distinctive peaks
(see Section XI.A), averaging each pixel with those of its
neighbors whose gray levels belong to the same peak also
has a strong smoothing effect.] Another approach is to
examine a set of wedge-shaped neighborhoods extending
out from the pixel in different directions and to use the
average of that neighborhood whose gray levels are least
variable, since such a neighborhood is likely to lie on one
side of an edge. A more general class of approaches uses
local surface fitting (to the gray levels of the neighbors)
rather than local averaging; this too requires modifications
to avoid blurring edges.

Another class of noise-cleaning methods is based on
rank ordering, rather than averaging, the gray levels of the
neighbors of each pixel. The following are two examples
of this approach.

1. Min–max filtering. Suppose that the noise consists of
small specks that are lighter than their surroundings.
If we replace each pixel’s gray level by the minimum
of its neighbors’ gray levels, these specks disappear,
but light objects also shrink in size. We now replace
each pixel by the maximum of its neighbors; this
reexpands the light objects, but the specks do not
reappear. Specks that are darker than their
surroundings can be removed by an analogous
process of taking a local maximum followed by a
local minimum.

2. Median filtering. The median gray level in a
neighborhood is the level such that half the pixels in
the neighborhood are lighter than it and half are
darker. In a “flat” region of an image, the median is
usually close to the mean; thus replacing each pixel
by the median of its neighbors has much the same
effect as local averaging. For a pixel near a (relatively
straight) edge, on the other hand, the median of the
neighbors will usually be one of the neighbors on the
same side of the edge as the pixel, since these
neighbors are in the majority; hence replacing the
pixel by the median of the neighbors will not blur the
edge. Note that both min–max and median filtering
destroy thin features such as lines, curves, or sharp
corners; if they are used on an image that contains
such features, one should first attempt to detect them
so they can be preserved.

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

606 Image Processing

FIGURE 3 Image smoothing by iterated median filtering.
[Figure 7 in the previous edition.]

Median filters belong to a class of filters known as order-
statistic or rank order-based filters. These filters can ef-
fectively handle contamination due to heavy-tailed, non-
Gaussian noise, while at the same time not blurring edges
or other sharp features, as linear filters almost always do.
An example of iterated median filtering is shown in Fig. 3.

VI. RESTORATION

The goal of image restoration is to undo the effects of given
or estimated image degradations. In this section we de-
scribe some basic methods of restoration, including pho-
tometric correction, geometric correction, deconvolution,
and estimation (of the image gray levels in the presence
of noise).

A. Photometric Correction

Ideally, the gray levels in a digital image should represent
the brightnesses at the corresponding points of the scene in
a consistent way. In practice, however, the mapping from
brightness to gray level may vary from point to point—for
example, because the response of the sensor is not uniform
or because the sensor collects more light from scene points

in the center of its field of view than from points in the
periphery (“vignetting”).

We can estimate the nonuniformity of the sensor by
using images of known test objects. A nonnoisy image
of a uniformly bright surface should have a constant gray
level; thus variations in its gray level must be due to sensor
nonuniformity. We can measure the variation at each point
and use it to compute a correction for the gray level of an
arbitrary image at that point. For example, if we regard
the nonuniformity as an attenuation by the factor a(x, y)
at each point, we can compensate for it by multiplying the
gray level at (x, y) by 1/a(x, y).

B. Geometric Correction

The image obtained by a sensor may be geometrically dis-
torted, by optical aberrations, for example. We can esti-
mate the distortion by using images of known test objects
such as regular grids. We can then compute a geomet-
ric transformation that will correct the distortion in any
image.

A geometric transformation is defined by a pair of
functions x ′ = φ(x, y), y′ = ψ(x, y) that map the old
coordinates (x, y) into new ones (x ′, y′). When we
apply such a transformation to a digital image, the input
points (x, y) are regularly spaced sample points, say
with integer coordinates, but the output points (x ′, y′)
can be arbitrary points of the plane, depending on the
nature of the transformation. To obtain a digital image
as output, we can map the output points into the nearest
integer-coordinate points. Unfortunately, this mapping
is not one-to-one; some integer-coordinate points in the
output image may have no input points mapped into
them, whereas others may have more than one.

To circumvent this problem, we use the inverse transfor-
mation x = φ(x ′, y′), y = ψ(x ′, y′) to map each integer-
coordinate point of the output image back into the input
image plane. This point is then assigned a gray level de-
rived from the levels of the nearby input image points—for
example, the gray level of the nearest point or a weighted
average of the gray levels of the surrounding points.

C. Deconvolution

Suppose that an image has been blurred by a known
process of local weighted averaging. Mathematically,
such a blurring process is described by the convolution
(g = h ∗ f) of the image f with the pattern of weights h.
(The value of h ∗ f for a given shift of h relative to f is
obtained by pointwise multiplying them and summing the
results.)

By the convolution theorem for Fourier transforms, we
have G = HF , where F, G, H are the Fourier transforms

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

Image Processing 607

of f, g, h, respectively. Thus in principle we can restore
the unblurred f by computing F = G/H and inverse
Fourier transforming. (At frequencies where H has ze-
ros, G/H is undefined, but we can take F = G = 0.) This
process is called inverse filtering. If h is not given, we can
estimate it from the blurred images of known test objects
such as points, lines, or step edges.

The simple deconvolution process just described ig-
nores the effects of noise. A more realistic model for
a degraded image is g = h ∗ f + n, where n represents
the noise. If we try to apply inverse filtering in this situ-
ation we have G = HF + N , so that G/H = F + N/H.

Thus at high spatial frequencies, where the noise is
stronger than the information-bearing image detail, the
results of inverse filtering will be dominated by the noise.
To avoid this, the division G/H should be performed
only at relatively low spatial frequencies, whereas at
higher frequencies G should be left intact.

A more general process known as least-squares filtering
or Wiener filtering can be used when noise is present, pro-
vided the statistical properties of the noise are known. In
this approach, g is deblurred by convolving it with a filter
m, chosen to minimize the expected squared difference
between f and m ∗ g. It can be shown that the Fourier
transform M of m is of the form (1/H)[1/(1 + S)], where
S is related to the spectral density of the noise; note that
in the absence of noise this reduces to the inverse filter:
M = 1/H . A number of other restoration criteria lead to
similar filter designs.

Other methods of deblurring can be defined that as-
sume some knowledge about the statistical properties of
the noise. A typical approach is to find an estimate f̂ of f
such that the “residual” g − h ∗ f̂ has the same statistical
properties as n. This problem usually has many solutions,
and we can impose additional constraints on f̂ (that it be
nonnegative, “smooth,” etc.). Deblurring techniques have
also been developed in which the choice of filter depend-
son the local characteristics of the image or in which the
blur itself is assumed to vary in different parts of the image.

D. Estimation

Suppose that an image has been corrupted by the addi-
tion of noise, g = f + n, where the statistics of the noise
are known. We want to find the optimum estimate f̂ of
the image gray level at each point. If the image has no
structure, our only basis for this estimate is the observed
gray level g at the given point; but for real-world images,
neighboring points are not independent of one another, so
that the estimates at neighboring points can also be used
in computing the estimate at a given point.

One approach to image estimation, known as Kalman
filtering, scans the image row by row and computes the

estimate at each pixel as a linear combination of the esti-
mates at preceding, nearby pixels. The coefficients of the
estimate that minimizes the expected squared error can be
computed from the autocorrelation of the (ideal) image.

Recursive Kalman filters for image restoration are com-
putationally intensive. Approximations such as reduced-
update Kalman filters give very good results at a much
lower computational complexity. The estimation-theoretic
formulation of the image restoration problem using the
Kalman filter has enabled investigation of more general
cases, including blind restoration (where the unknown blur
function is modeled and estimated along with the origi-
nal image) and nonstationary image restoration (piecewise
stationary regions are restored, with the filters appropriate
for the regions being selected using a Markov chain).

In addition to recursive filters, other model-based
estimation-theoretic approaches have been developed. For
example, in the Wiener filter described above, one can use
random field models (see Section III) to estimate the power
spectra needed. Alternatively, one can use MRF models to
characterize the degraded images and develop determinis-
tic or stochastic estimation techniques that maximize the
posterior probability density function.

A seminal approach that models the original image
uisng a composite model, where stationary regions are
represented using MRF models, and the discontinuities
that separate the stationary regions are represented using
“line processes,” has yielded a new unified framework for
handling a wide variety of problems in image estimation,
restoration, surface reconstruction, and texture segmen-
tation. The composite model, when used in conjunction
with the MAP criterion, leads to nonconvex optimization
problems. A class of stochastic search methods known
as simulated annealing and its variants has enabled the
solution of such optimization problems. Although these
methods are computationally intensive, parallel hardware
implementations of the annealing algorithms have taken
the bite out of their computational complexity. An image
restoration example is shown in Fig. 4.

VII. RECONSTRUCTION

A projection of an image is obtained by summing its gray
levels along a family of parallel lines. In this section we
show how an image can be (approximately) reconstructed
from a sufficiently large set of its projections. This pro-
cess of reconstruction from projections has important ap-
plications in reconstructing images of cross sections of a
volume, given a set of X-ray images of the volume taken
from different directions. In an X-ray image of an object,
the ray striking the film at a given point has been atten-
uated by passing through the object; thus its strength is

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

608 Image Processing

(a)

(b)

FIGURE 4 Image restoration. (a) Original image; (b) blurred image; (c) restored image. [These images were provided
by Prof. A. Katsaggelos of Northwestern University.]

proportional to the product of the attenuations produced
by unit volumes of the object along its path. On a logarith-
mic scale, the product becomes a sum, so that an X-ray
image (produced by a parallel beam of X rays) can be re-
garded as a projection of the object, and each row of the

image can be regarded as a projection of a planar cross
section of the object. Other methods of obtaining projec-
tions of a volume have been developed using radioactive
tracers or ultrasound. An example of a cross section of the
body reconstructed from a set of X rays is shown in Fig. 5.

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

Image Processing 609

(c)

FIGURE 4 (continued)

By the projection theorem for Fourier transforms, the
1-D transform of a projection of an image is equal to a
cross section of the 2-D transform of the image. Specif-
ically, let fθ be the projection obtained by summing the
gray levels of the image f along the family of lines in di-
rection θ . Let F be the Fourier transform of f , and let Fθ ′

be the cross section of F along the line through the ori-

FIGURE 5 Reconstruction of a cross section of the human body from a set of X rays.

gin in direction θ ′ = θ + π/2. Then the Fourier transform
of fθ is just Fθ ′

. This implies that if we have projections
of f in many directions and we take their Fourier trans-
forms, we obtain cross sections of the Fourier transform F
along many lines through the origin. We can approximate
F by interpolating from these cross sections and then re-
construct f by inverse Fourier transforming. Note that the

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

610 Image Processing

high-frequency components of f will not be reconstructed
accurately using this method, since the cross-section data
far from the origin are sparse.

Another approach to reconstruction from projections is
based on “back-projection.” The value v of a projection at
a point is the sum of the values of the original image along
a given line; to back-project, we divide v into many equal
parts and distribute them along that line. If we do this for
every projection, we obtain a highly blurred version of
the original image. (To see this, suppose that the image
contains a bright point P on a dark background; then P
will give rise to a high value in each projection. When we
back-project, these values will be spread along a set of
lines that all intersect at P , giving rise to a high value at
P and lower values along the lines radiating from it.) To
obtain a more accurate reconstruction of the image, we
combine back-projection with deblurring; we first filter
the projections to precompensate for the blurring and then
back-project them. This method of reconstruction is the
one most commonly used in practice.

Each projection of an image f gives us a set of linear
equations in the gray levels of f , since the value of a pro-
jection at a point is the sum of the gray levels along a line.
Thus if we have a large enough set of projections of f , we
can, in principle, solve a large set of linear equations to
determine the original gray levels of f . Many variations of
this algebraic approach to reconstruction have been for-
mulated. (In principle, algebraic techniques can also be
used in image deblurring; the gray level of a pixel in the
blurred image is a weighted average of neighboring gray
levels in the ideal image, so that the ideal gray levels can
be found by solving a set of linear equations.)

Over the last 15 years, the emphasis in image recon-
struction has been on introducing probabilistic or statisti-
cal principles in modeling noise and imaging mechanisms
and deriving mathematically sound algorithms. As mul-
timodal images (X ray, CT, MRI) are becoming increas-
ingly available, registration of these images to each other
and positioning of these images to an atlas have also be-
come critical technologies. Visualization of reconstructed
images and objects is also gaining attention.

VIII. MATCHING

There are many situations in which we want to “match”
or compare two images with one another. The following
are some common examples.

1. We can detect occurrences of a given pattern in an
image by comparing the image with a “template” of
the pattern. This concept has applications in pattern
recognition, where we can use template matching to

recognize known patterns, and also in navigation,
where we can use landmark matching as an aid in
determining the location from which an image was
obtained.

2. Given two images of a scene taken from different
positions, if we can identify points in the two images
that correspond to a given scene point, we can
determine the 3-D location of the scene point by
triangulation. This process is known as
stereomapping. The identification of corresponding
points involves local matching of pieces of the two
images.

3. Given two images of a scene taken (from the same
position) at different times, we can determine the
points at which they differ and analyze the changes
that have taken place in the scene.

This section discusses template matching and how to
measure the match or mismatch between two images, im-
age registration, and stereomapping and range sensing.
The analysis of time sequences of images is discussed in
Section IX.

A. Template Matching

A standard measure of the “mismatch” or discrep-
ancy between two images f and g is the sum of the
absolute (or squared) differences between their gray
levels at each point—for example,

∑ ∑
(f − g)2. A

standard measure of match is the correlation coeffi-
cient

∑ ∑
f g/

√
(
∑ ∑

f 2)(
∑ ∑

g2); by the Cauchy–
Schwarz inequality, this is always ≤1 and is equal to 1 if
f and g differ by a multiplicative constant. Thus to find
places where the image f matches the template g, we can
cross-correlate g with f (i.e., compute

∑ ∑
f g for all

shifts of g relative to f) and look for peaks in the cor-
relation value. Note that by the convolution theorem for
Fourier transforms, we can compute the cross-correlation
by pointwise multiplying the Fourier transforms F and
G∗ (where the asterisk denotes the complex conjugate)
and then inverse transforming.

The matched filter theorem states that if we want to
detect matches between f and g by cross-correlating a
filter h with f , and the criterion for detection is the ratio
of signal power to expected noise power, then the best filter
to use is the template g itself. Depending on the nature of
f and the detection criterion, however, other filters may
be better; for example, if f is relatively “smooth,” better
results are obtained by correlating the derivative of f with
the derivative of g, or f with the second derivative of g.

Matching of derivatives generally yields sharper match
peaks, but it is more sensitive to geometric distortion. To
handle distortion, a good approach is first to match the

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

Image Processing 611

image with smaller (sub)templates, since these matches
will be less sensitive to distortion, and then to look for
combinations of these matches in approximately the cor-
rect relative positions.

Matching by cross-correlation is a computationally ex-
pensive process. We can reduce its cost by using inex-
pensive tests to determine positions in which a match is
likely to be found, so that we need not test for a match in
every possible position. One possibility is to match at a
low resolution (i.e., at coarsely spaced points) and search
for match peaks only in the vicinity of those points where
the coarse match is good. An alternative is to match with
a subtemplate and check the rest of the template only at
those points where the subtemplate matches well. Note
that if we use a very low resolution, or a very small sub-
template, there will be many false alarms, but if we use
a relatively high resolution, or a relatively large subtem-
plate, the saving will not be significant.

B. Image Registration

Before we can match two or more images, they may have
to be aligned to compensate for different acquisition view-
points or times. For example, if we wish to combine in-
formation from CT, X-ray and MRI images, they have to
be registered to a common coordinate frame before fusion
or change detection can be attempted. Similar situations
arise in image exploitation and automatic target recogni-
tion applications. There are also situations where instead
of registering multiple images to each other, one needs
to register multiple images, acquired at different times,
to a 3-D model. These methods are referred to as model-
supported positioning methods. Most traditional methods
of image registration based on area correlation or feature
matching can handle only minor geometric and photomet-
ric variations (typically, in images collected by the same
sensor). In a multisensor context, however, the images to
be registered may be of widely different types, obtained
by disparate sensors with different resolutions, noise lev-
els, and imaging geometries. The common or “mutual”
information, which is the basis of automatic image reg-
istration, may manifest itself in a very different way in
each image. This is because different sensors record dif-
ferent physical phenomena in the scene. For instance, an
infrared sensor responds to the temperature distribution
of the scene, whereas a radar responds to material prop-
erties such as dielectric constant, electrical conductivity,
and surface roughness.

Since the underlying scene giving rise to the shared in-
formation is the same is all images of the scene, certain
qualitative statements can be made about the manner in
which information is preserved across multisensor data.
Although the pixels corresponding to the same scene re-

gion may have different values depending on the sensor,
pixel similarity and pixel dissimilarity are usually pre-
served. In other words, a region that appears homogeneous
to one sensor is likely to appear homogeneous to another,
local textural variations apart. Regions that can be clearly
distinguished from one another in one image are likely
to be distinguishable from one another in other images,
irrespective of the sensor used. Although this is not true
in all cases, it is generally valid for most types of sensors
and scenes. Man-made objects such as buildings and roads
in aerial imagery, and implants, prostheses, and metallic
probes in medical imagery, also give rise to features that
are likely to be preserved in multisensor images. Feature-
based methods that exploit the information contained in
region boundaries and in man-made structures are there-
fore useful for multisensor registration.

Feature-based methods traditionally rely on establish-
ing feature correspondences between the two images.
Such correspondence-based methods first employ feature
matching techniques to determine corresponding feature
pairs in the two images and then compute the geomet-
ric transformation relating them, typically using a least-
squares approach. Their primary advantage is that the
transformation parameters can be computed in a single
step and are accurate if the feature matching is reliable.
Their drawback is that they require feature matching,
which is difficult to accomplish in a multisensor context
and is computationally expensive, unless the two images
are already approximately registered or the number of fea-
tures is small.

Some correspondence-less registration methods based
on moments of image features have been proposed, but
these techniques, although mathematically elegant, work
only if the two images contain exactly the same set of
features. This requirement is rarely met in real images.
Another proposed class of methods is based on the gener-
alized Hough transform (GHT). These methods map the
feature space into a parameter space, by allowing each
feature pair to vote for a subspace of the parameter space.
Clusters of votes in the parameter space are then used to
estimate parameter values. These methods, although far
more robust and practical than moment-based methods,
have some limitations. Methods based on the GHT tend to
produce large numbers of false positives. They also tend
to be computationally expensive, since the dimensionality
of the problem is equal to the number of transformation
parameters.

Recently, methods similar in spirit to GHT-style meth-
ods, but employing a different search strategy to elim-
inate the problems associated with them, have been
proposed. These methods first decompose the original
transformation into a sequence of elementary stages. At
each stage, the value of one transformation parameter

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

612 Image Processing

is estimated by a feature consensus mechanism in which
each feature pair is allowed to estimate the value of the
parameter that is consistent with it. The value of the pa-
rameter that is consistent with the most feature pairs is
considered to be its best estimate. Using the concepts of
parameter observability and parameter separability, it is
possible in most cases to avoid the need for feature pair-
ings; instead, aggregate properties of features determined
from each image separately are used.

The global registration achieved by feature consensus
should be sufficient for many applications such as those
employing registration for determining a focus of atten-
tion. If more accurate global registration is needed, as in
medical applications, the feature consensus result may be
used as an initial condition for more elaborate schemes that
use feature correspondence or multidimensional search,
which require a good initial guess about the transformation
parameters. Methods like deformable template matching
can also be invoked for local refinement of the registration.
An example of image registration is shown in Fig. 6.

C. Stereomapping and Range Sensing

Let P be a point in a scene and let P1 and P2 be the
points corresponding to P in two images obtained from
two known sensor positions. Let the “lens centers” in these

(a)

FIGURE 6 Image registration. (a, b) The two images to be registered; (c) the registration result (“checkerboard”
squares show alternating blocks of the two registered images.)

two positions be L1 and L2, respectively. By the geometry
of optical imaging, we know that P must lie on the line
P1L1 (in space) and also on the line P2L2; thus its position
in space is completely determined.

The difficulty in automating this process of stereomap-
ping is that it is difficult to determine which pairs of image
points correspond to the same scene point. (In fact, some
scene points may be visible in one image but hidden in
the other.) Given a point P1 in one image, we can attempt
to find the corresponding point P2 in the other image by
matching a neighborhood of P1 with the second image.
(We need not compare it with the entire image; since the
camera displacement is known, P2 must lie on a known
line in the second image.) If the neighborhood used is too
large, geometric distortion may make it impossible to find
a good match; but if it is too small, there will be many
false matches, and in a featureless region of the image, it
will be impossible to find unambiguous (sharp) matches.
Thus the matching approach will yield at best a sparse set
of reasonably good, reasonably sharp matches. We can
verify the consistency of these matches by checking that
the resulting positions of the scene points in space lie on
a smooth surface or a set of such surfaces. In particular,
if the matches come from points that lie along an edge in
an image, we can check that the resulting spatial positions
lie on a smooth space curve.

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

Image Processing 613

(b)

FIGURE 6 (continued)

(c)

FIGURE 6 (continued)

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

614 Image Processing

A strong theoretical basis for this approach evolved
around the midseventies. Since then, advances have been
made in interpolating the depth estimates obtained at po-
sitions of matched image features using surface interpo-
lation techniques and hierarchical feature-based matching
schemes, and dense estimates have been obtained using
gray-level matching guided by simulated annealing. Al-
though these approaches have contributed to a greater un-
derstanding of the problem of depth recovery using two
cameras, much more tangible benefits have been reaped
using a larger number of cameras. By arranging them in
an array pattern, simple sum of squared difference-based
schemes are able to produce dense depth estimates in
real time. Using large numbers of cameras (in excess of
50), new applications in virtual reality, 3-D modeling, and
computer-assisted surgery have become feasible.

Consistent with developments in multiscale analysis,
stereo mapping has benefited from multiscale feature-
based matching techniques. Also, simulated annealing and
neural networks have been used for depth estimation using
two or more images.

Another approach to determining the spatial positions
of the points in a scene is to use patterned illumination.
For example, suppose that we illuminate the scene with a
plane of light
, so that only those scene points that lie
in
 are illuminated, and the rest are dark. In an image of
the scene, any visible scene point P (giving rise to image
point P1) must lie on the line P1L1; since P must also
lie in
, it must be at the intersection of P1L1 and
,
so that its position in space is completely determined. We
can obtain complete 3-D information about the scene by
moving
 through a set of positions so as to illuminate
every visible scene point, or we can use coded illumination
in which the rays in each plane are distinctive (e.g., by their
colors). A variety of “range sensing” techniques based on
patterned illumination has been developed. Still another
approach to range sensing is to illuminate the scene, one
point at a time, with a pulse of light and to measure the
time interval (e.g., the phase shift) between the transmitted
and the reflected pulses, thus obtaining the range to that
scene point directly, as in radar.

IX. IMAGE SEQUENCE ANALYSIS

Suppose that we are given a sequence of images (or
frames) of the same scene taken at different times from
the same position. By comparing the frames, we can de-
tect changes that have taken place in the scene between
one frame and the next. For example, if the frames are
closely spaced in time and the changes are due to the mo-
tions of discrete objects in the scene, we can attempt to
track the objects from frame to frame and so determine

their motions. One way to do this is to match pieces of
consecutive frames that contain images of a given object
to estimate the displacement of that object. However, if the
object is moving in three dimensions, the size and shape
of its image may change from frame to frame, so that it
may be difficult to find good matches.

During the early eighties, much effort was focused on
estimating the motions and depths of features (points,
lines, planar or quadric patches) using two or three frames.
This problem was broken into two stages: establishing cor-
respondences of features between frames and estimating
motion and depth from the corresponding features using
linear or nonlinear algorithms. However, the performance
of these algorithms on real image sequences was not sat-
isfactory.

To exploit the large numbers of frames in video im-
age sequences, model-based recursive filtering approaches
for estimating motion and depth were suggested in the
mideighties. This approach led to applications of extended
Kalman filters and their variants to problems in image se-
quence analysis. In general, model-based approaches en-
abled the use of multiple cameras, auxilary information
such as inertial data, and statistical analysis. Successful
applications of recursive filters to automobile navigation
have been demonstrated. Figure 7 illustrates the use of
recursive filters for feature tracking.

If the motion from frame to frame is not greater than
the pixel spacing, then by comparing the space and time
derivatives of the gray-level at a given point, in princi-
ple we can estimate the component of the image motion at
that point in the direction of the gray-level gradient, but the
component in the orthogonal (tangential) direction is am-
biguous. Equivalently, when we look at a moving (straight)
edge, we can tell how fast it is moving in the direction per-
pendicular to itself but not how fast it is sliding along itself.
Unambiguous velocity estimates can be obtained at cor-
ners where two edges meet. Such estimates can be used
as boundary conditions to find a smooth velocity field that
agrees with the observed velocities at corners and whose

FIGURE 7 Feature tracking using recursive filtering.

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

Image Processing 615

components in the gradient direction agree with the ob-
served components perpendicular to edges.

When a sequence of frames is taken by a moving
sensor, there will be changes nearly everywhere, with the
magnitude of the change at a given image point depending
on the velocity of the sensor and on its distance from the
corresponding scene point. The array of motion vectors at
all points of the image is known as the optical flow field.
An example of such a field is shown in Fig. 8. Different
types of sensor motion (ignoring, for the moment, the
motions of objects in the scene) give rise to different types
of flow fields. Translational sensor motion perpendicular
to the optical axis of the sensor simply causes each point
of the image to shift, in the opposite direction, by an
amount proportional to its distance from the sensor, so
that the resulting image motion vectors are all parallel.
Translation in other directions, on the other hand, causes
the image to expand or shrink, depending on whether the
sensor is approaching or receding from the scene; here
the motion vectors all pass through a common point,
the “focus of expansion” (or contraction). Thus if we
know the translational sensor motion, we can compute
the relative distance from the sensor to each point of the
scene. (The distances are only relative because changes
in absolute distance are indistinguishable from changes
in the speed of the senser.) The effects of rotational
sensor motion are more complex, but they can be treated
independently of the translation effects.

Motion of a rigid body relative to the sensor gives rise to
a flow field that depends on the motion and on the shape of
the body. In principle, given enough (accurate) measure-
ments of the flow in a neighborhood, we can determine
both the local shape of the body and its motion.

Parallel to, and often independent of, the correspon-
dence-based approach, optical flow-based structure and
motion estimation algorithms have flourished for more
than two decades. Although robust dense optical flow es-
timates are still elusive, the field has matured to the extent
that systematic characterization and evaluation of optical
flow estimates are now possible. Methods that use robust
statistics, generalized motion models, and filters have all
shown great promise. Significant work that uses directly
observable flow (“normal flow”) provides additional in-
sight into the limitations of traditional approaches. An
example of depth estimation using optical flow is shown
in Fig. 8.

Segmentation of independently moving objects and
dense scene structure estimation from computed flow
have become mature research areas. New developments
such as fast computation of depth from optical flow us-
ing fast Fourier transforms have opened up the pos-
sibility of real-time 3-D modeling. Another interesting
accomplishment has been the development of algorithms

FIGURE 8 Depth estimation from optical flow. (a, b) Two frames
of a video sequence; (c) computed flow field; (d) depth map; (e, f)
views synthesized from the depth map.

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

616 Image Processing

for sensor motion stabilization and panoramic view
generation.

Detection of moving objects, structure and motion
estimation, and tracking of 2-D and 3-D object motion
using contours and other features have important appli-
cations in surveillance, traffic monitoring, and automatic
target recognition. Using methods ranging from recur-
sive Kalman filters to the recently popular Monte Carlo
Markov chain algorithms (known as CONDENSATION
algorithms), extensive research has been done in this area.
Earlier attempts were concerned only with generic track-
ing, but more recently, “attributed tracking,” where one in-
corporates the color, identity, or shape of the object as part
of the tracking algorithm, is gaining importance. Also, due
to the impressive computing power that is now available,
real-time tracking algorithms have been demonstrated.

X. RECOVERY

The gray level of an image at a given point P1 is propor-
tional to the brightness of the corresponding scene point
P as seen by the sensor; P is the (usually unique) point on
the surface of an object in the scene that lies along the line
P1L1 (see Section VIII.C). The brightness of P depends
in turn on several factors: the intensity of the illumination
at P , the reflective properties of the surface S on which
P lies, and the spatial orientation of S at P . Typically,
if a light ray is incident on S at P from direction i , then
the fraction r of the ray that emerges from S in a given
direction e is a function of the angles θi and θe that i and e,
respectively, make with the normal n to S at P . For exam-
ple, in perfect specular reflection we have r = 1, if i and e
are both coplanar with n and θi = θe, and r = 0 otherwise.
In perfectly diffuse or Lambertian reflection, on the other
hand, r depends only on θ , and not on θe; in fact, we have
r = p cos θi , where p is a constant between 0 and 1.

If we could separate the effects of illumination, reflec-
tivity, and surface orientation, we could derive 3-D infor-
mation about the visible surfaces in the scene; in fact, the
surface orientation tells us the rate at which the distance
to the surface is changing, so that we can obtain distance
information (up to a constant of integration) by integrating
the orientation. The process of inferring scene illumina-
tion, reflectivity, and surface orientation from an image
is called recovery (more fully, recovery of intrinsic scene
characteristics from an image). Ideally, recovery gives us
a set of digital image arrays in which the value of a pixel
represents the value of one of these factors at the corre-
sponding scene point; these arrays are sometimes called
intrinsic images.

In this section we briefly describe several methods of in-
ferring intrinsic scene characteristics from a single image.

These methods are known as “shape from . . .” techniques,
since they provide information about the 3-D shapes of the
visible surfaces in the scene.

A. Shape from Shading

Suppose that a uniformly reflective surface is illuminated
by a distant, small light source in a known position and
is viewed by a distant sensor. Then the directions to the
light source and to the sensor are essentially the same for
two nearby surface points P and P ′. Thus the change in
surface brightness (and hence in image gray level) as we
move from P to P ′ is due primarily to the change in di-
rection of the surface normal. In other words, from the
“shading” (i.e., the changes in gray level) in a region of
the image, we can compute constraints on the changes
in orientation of the corresponding surface in the scene.
These constraints do not determine the orientation com-
pletely, but we can sometimes estimate the orientation of
a smooth surface from shading information with the aid
of boundary conditions (e.g., contours along which the
surface orientation is known).

During the past two decades, significant strides have
been made in recovering shape from shading. Using op-
timal control-theoretic principles, deeper understanding
of the existence and uniqueness of solutions has become
possible. Computational schemes using calculus of vari-
ations, multigrid methods, and linearization of the re-
flectance map have enabled practical implementations.
Robust methods for simultaneously estimating the illu-
minant source direction and the surface shape have also
been developed. Extensions to other imaging modalities,
such as synthetic aperture radar and fusion of steropsis
with shape from shading, have expanded the domain of
applications.

If we can illuminate a scene successively from two (or
more) directions, we can completely determine the surface
orientation, for any surface that is visible in both images,
by combining the constraints obtained from the shading in
the two images. This technique is known as photometric
stereo; an example is shown in Fig. 9.

An abrupt change in image gray level (i.e., an “edge”
in an image) can result from several possible causes in the
scene. It might be due to an abrupt change in illumina-
tion intensity; that is, it might be the edge of a shadow. It
might also be due to an abrupt change in surface orienta-
tion (e.g., at an edge of a polyhedron), or it might be due to
a change in reflectivity (e.g., an occluding edge where one
surface partially hides another). Ideally, it should be pos-
sible to distinguish among these types of edges by careful
analysis of the gray-level variations in their vicinities. For
example, a shadow edge might not be very sharp, a convex
orientation edge might have a highlight on it, and so on.

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

Image Processing 617

FIGURE 9 Photometric stereo.

B. Shape from Texture

Suppose that a surface is uniformly covered with an
isotropic pattern or “texture.” If the surface is flat and
faces directly toward the sensor, its image will also be
uniformly textured. On the other hand, if the surface is
slanted, the patterns in the image will be foreshortened
in the direction of the slant due to perspective distortion.
Moreover, the scale of the image will change along the
direction of the slant, since the distance from the sensor
to the surface is changing; hence the sizes and spacings of
the patterns will vary as we move across the image.

The slant of a uniformly textured surface can be inferred
from anisotropies in the texture of the corresponding im-
age region. For example, in an isotropic texture, the distri-

bution of gray-level gradient directions should be uniform,
but if the textured surface is slanted, the distribution of di-
rections should have a peak in the direction of slant, due
to the foreshortening effect, and the sharpness of the peak
gives an indication of the steepness of the slant.

C. Shape from Shape

Various global assumptions can be used to infer surface
orientation from the 2-D shapes of regions in an image.
If the regions arise from objects of known shapes, it is
straightforward to deduce the orientations of the objects
from the shapes of their images, or their ranges from their
image sizes. Even if the object shapes are unknown, certain
inferences can be regarded as plausible. For example, if

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

618 Image Processing

an observed shape could be the projected image of a more
symmetric or more compact slanted shape (e.g., an ellipse
could be the projection of a slanted circle), one might as-
sume that this is actually the case; in fact, human observers
frequently make such assumptions. They also tend to as-
sume that a continuous curve in an image arises from a
continuous curve in space, parallel curves arise from par-
allel curves, straight lines arise from straight lines, and so
on. Similarly, if two shapes in the image could arise from
two congruent objects at different ranges or in different
orientations, one tends to conclude that this is true.

A useful assumption about a curve in an image is that it
arises from a space curve that is as planar as possible and
as uniformly curved as possible. One might also assume
that the surface bounded by this space curve has the least
possible surface curvature (it is a “soap bubble” surface) or
that the curve is a line of curvature of the surface. Families
of curves in an image can be used to suggest the shape of
a surface very compellingly; we take advantage of this
when we plot perspective views of 3-D surfaces.

XI. SEGMENTATION

Images are usually described as being composed of parts
(regions, objects, etc.) that have certain properties and
that are related in certain ways. Thus an important step
in the process of image description is segmentation, that
is, the extraction of parts that are expected to be relevant
to the desired description. This section reviews a variety
of image segmentation techniques.

A. Pixel Classification

If a scene is composed of surfaces each of which has a con-
stant orientation and uniform reflectivity, its image will be
composed of regions that each have an approximately con-
stant gray level. The histogram of such an image (see Sec-
tion V.A) will have peaks at the gray levels of the regions,
indicating that pixels having these levels occur frequently
in the image, whereas other gray levels occur rarely. Thus
the image can be segmented into regions by dividing the
gray scale into intervals each containing a single peak.
This method of segmentation is called thresholding.

Thresholding belongs to a general class of segmenta-
tion techniques in which pixels are characterized by a set
of properties. For example, in a color image, a pixel can
be characterized by its coordinates in color space—e.g.,
its red, green, and blue color components. If we plot each
pixel as a point in color space, we obtain clusters of points
corresponding to the colors of the surfaces. We can thus
segment the image by partitioning the color space into re-
gions each containing a single cluster. This general method
of segmentation is called pixel classification.

Even in a black-and-white image, properties other than
gray level can be used to classify pixels. To detect edges
in an image (Section XI.B), we classify each pixel as to
whether or not it lies on an edge by thresholding the rate of
change of gray level in the neighborhood of that pixel; that
is, we classify the pixel as edge or nonedge, depending on
whether the rate of change is high or low. Similarly, we
detect other features, such as lines or curves, by thresh-
olding the degree to which the neighborhood of each pixel
matches a given pattern or template.

Properties derived from the neighborhoods of pixels—
in brief, local properties—can also be used to segment
an image into regions. For example, in a “busy” region
the rate of change of gray level is often high, whereas
in a “smooth” region it is always low. Suppose that we
compute the rate of change at each pixel and then locally
average it over a neighborhood of each pixel; then the
average will be high for pixels in busy regions and low for
pixels in smooth regions, so we can segment the image into
such regions by thresholding the local average “busyness.”
We can use this method to segment an image into various
types of differently “textured” regions by computing a set
of local properties at each pixel and locally averaging their
values; pixels belonging to a given type of textured region
will give rise to a cluster in this “local property space.”

Early pixel-based classification schemes made the as-
sumption that adjacent pixels are uncorrelated. Since the
mideighties, pixel classifications methods have tended to
exploit the local correlation of pixels in single- or multi-
band images (often called “context” in the remote sens-
ing literature). The use of MRFs and Gibbs distributions
to characterize the local spatial/spectral correlation, com-
bined with the use of estimation-theoretic concepts, has
enabled the development of powerful pixel classification
methods. An example of region segmentation is shown in
Fig. 10.

We have assumed up to now that the image consists
of regions each of which has an approximately constant
gray level or texture. If the scene contains curved surfaces,
they will give rise to regions in the image across which
the gray level varies; similarly, slanted textured surfaces in
the scene will give rise to regions across which the texture
varies. If we can estimate the orientations of the surfaces
in the scene, as in Section X, we can correct for the effects
of orientation.

B. Feature Detection

The borders of regions in an image are usually character-
ized by a high rate of change of gray level [or color or local
property value(s)]. Thus we can detect region borders, or
edges, in an image by measuring this rate of change (and
thresholding it; see Section XI.A). For simplicity, we dis-
cuss only edges defined by gray-level changes, but similar

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

Image Processing 619

(a)

(b)

FIGURE 10 Texture segmentation. (a) Original texture mosaic; (b) segmented result.

remarks apply to other types of edges. The following are
some standard methods of detecting edges.

1. Estimate the rate of change of gray level at each pixel
P in two perpendicular directions using first-
difference operators; let the estimates be f1 and f2.

The gray-level gradient (i.e., greatest rate of change)
at P is the vector whose magnitude is

√
f 2
1 + f 2

2 and
whose direction is tan−1(f2/ f1).

2. Fit a polynomial surface to the gray levels in the
neighborhood of P and use the gradient of the surface
as an estimate of the gray level gradient.

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

620 Image Processing

3. Match a set of templates, representing the second
derivatives of gray-level “steps” in various
orientations, to the neighborhood of P (see
Section VIII.A) and pick the orientation for which the
match is best. (It turns out that convolving such a
template with the image amounts to applying a
first-difference operator at each pixel; thus this
method amounts to computing first differences in
many directions and picking the direction in which
the difference is greatest.) Alternatively, fit a step
function to the gray levels in the neighborhood of P
and use the orientation and height of this step to
define the orientation and contrast of the edge at P .

4. Estimate the Laplacian of the gray level at each pixel
P . Since the Laplacian is a second-difference
operator, it is positive on one side of an edge and
negative on the other side; thus its zero-crossings
define the locations of edges. (First differences should
also be computed to estimate the steepnesses of these
edges.)

Although the use of the Laplacian operator for edge
detection has long been known, the idea of applying the
Laplacian operator to a Gaussian smoothed image, using
filters of varying sizes, stimulated theoretical develop-
ments in edge detection. In the mideighties, edge detec-
tors that jointly optimize detection probability and local-
ization accuracy were formulated and were approximated
by directional derivatives of Gaussian-smoothed images.
Fig. 11 shows an example of edge detection using this
approach.

All these methods of edge detection respond to noise as
well as to region borders. It may be necessary to smooth
the image before attempting to detect edges; alternatively,
one can use difference operators based on averages of
blocks of gray levels rather than on single-pixel gray lev-
els, so that the operator itself incorporates some smooth-
ing. Various types of statistical tests can also be used to
detect edges, based, for example, on whether the set of
gray levels in two adjacent blocks comes from a single
population or from two populations. Note that edges in an
image can arise from many types of abrupt changes in the
scene, including changes in illumination, reflectivity, or
surface orientation; refinements of the methods described
in this section would be needed to distinguish among these
types.

To detect local features such as lines (or curves or cor-
ners) in an image, the standard approach is to match the im-
age with a set of templates representing the second deriva-
tives of lines (etc.) in various orientations. It turns out that
convolving such a template with the image amounts to ap-
plying a second-difference operator at each pixel; thus this
method responds not only to lines, but also to edges or to

noise. Its response can be made more specific by applying
the templates only when appropriate logical conditions are
satisfied; for example, to detect a dark vertical line (on a
light background) at the pixel P , we can require that P
and its vertical neighbors each be darker than their hori-
zontal neighbors. (Similar conditions can be incorporated
when using template matching to detect edges.) To detect
“coarse” features such as thick lines, similar templates and
conditions can be used, but scaled up in size, that is, based
on blocks of pixels rather than on single pixels.

It is usually impractical to use templates to detect global
features such as long straight edges or lines, since too many
templates would be needed to handle all possible positions
and orientations. An alternative idea, called the Hough
transform approach, is to map the image into a parameter
space such that any feature of the given type gives rise
to a peak in the space. For example, any straight line is
characterized by its slope θ and its (shortest) distance ρ

from the origin. To detect long straight lines in an image,
we match it with local templates as described above; each
time a match is found, we estimate its θ and ρ and plot
them as a point in (θ , ρ) space. When all matches have
been processed in this way, any long straight lines in the
image should have given rise to clusters of points in (θ ,
ρ) space. Note that this technique detects sets of collinear
line segments, whether or not they form a continuous line.
A similar approach can be used to find edges or curves of
any specific shape. Perceptual grouping of local features,
using the Gestalt laws of grouping, provides an alternative
approach when explicit shape information is not available.

C. Region Extraction

The segmentation techniques described in Sections XI.A
and XI.B classify each pixel independently, based on its
local properties; they are oblivious to whether the result-
ing set of pixels forms connected regions or continuous
edges (etc.), and they therefore often give rise to noisy
regions or broken edges. In this subsection we briefly dis-
cuss methods of segmentation that take continuity into
account.

One approach is to require that the pixel classifications
be locally consistent. If the classes represent region types
and most of the neighbors of pixel P are of a given type,
P should also be of that type. In edge (or curve) detection,
if P lies on an edge in a given orientation, its neighbors in
that direction should lie on edges in similar orientations.
Once we have defined such consistency constraints, we
can formulate the pixel classification task as one of opti-
mization: Classify the pixels so as to maximize the similar-
ity between each pixel and its class, while at the same time
maximizing the consistencies between the classifications
of neighboring pixels. Standard iterative methods can be

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

Image Processing 621

(a)

FIGURE 11 Edge detection. (a) Original image; (b) detected edges.

used to solve this optimization problem. If we are more
concerned with consistency than with class similarity, we
can simply reclassify pixels so as to make the results more
consistent, thus reducing the “noise” in classified regions
(or deleting isolated edge pixels), filling gaps in edges,
and so on. The criteria of region consistency and edge
consistency can, in principle, be combined to extract re-
gions that are homogeneous and are surrounded by strong
edges.

Another way of enforcing local continuity is to “grow”
the regions by starting with (sets of) pixels whose classi-
fications are clear-cut and extending them by repeatedly
adding adjacent pixels that resemble those already clas-
sified. Similarly, to obtain continuous edges (or curves)
we can start with strong-edge pixels and extend or “track”
them in the appropriate directions. More generally, if we
are given a set of region fragments or edge fragments, we
can merge them into larger fragments based on similarity

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

622 Image Processing

(b)

FIGURE 11 (continued)

or consistency criteria. The results of these approaches will
generally depend on the order in which the pixels or frag-
ments are examined for possible incorporation or merging;
it may be desirable to use search techniques (lookahead,
backtracking) as an aid in making good choices.

We can also use global consistency criteria in segment-
ing an image; for example, we can require that the gray
levels in a region be approximately constant (or, more gen-
erally, be a good fit to a planar or higher-order surface) or

that a set of edge or line elements be a good fit to a straight
line (or higher-order curve). To impose such a condition,
we can start with the entire image, measure the fit, and
split the image (e.g., into quadrants) if the fit is not good
enough. The process can then be repeated for each quad-
rant until we reach a stage where no further splitting is
needed; we have then partitioned the image into blocks
on each of which the fit is good. Conversely, given such a
partition, we may be able to merge some pairs of adjacent

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

Image Processing 623

parts and still have good fits to the merged parts. By us-
ing both splitting and merging, we can arrive at a partition
such that the fit on each part is acceptable, but no two parts
can be merged and still yield an acceptable fit. Note that
by fitting surfaces to the gray levels we can, in principle,
handle regions that arise from curved or shaded surfaces
in the scene.

In many situations we have prior knowledge about the
sizes and shapes of the regions that are expected to be
present in the image, in addition to knowledge about their
gray levels, colors, or textures. In segmentation by pixel
classification we can make use of information about gray
level (etc.) but not about shape. Using region-based meth-
ods of segmentation makes it easier to take such geomet-
ric knowledge into account; we can use region-growing,
merging, or splitting criteria that are biased in favor of
the desired geometries, or, more generally, we can in-
clude geometry-based cost factors in searching for an op-
timal partition. Cost criteria involving the spatial relations
among regions of different types can also be used.

XII. GEOMETRY

In this section we discuss ways of measuring geometric
properties of image subsets (regions or features) and of
decomposing them into parts based on geometric crite-
ria. We also discuss ways of representing image subsets
exactly or approximately.

A. Geometric Properties

Segmentation techniques based on pixel classification can
yield arbitrary sets of pixels as “segments.” One often
wants to consider the connected pieces of a subset indi-
vidually, in order to count them, for example.

Let P and Q be pixels belonging to a given subset S. If
there exists a sequence of pixels P = P0, P1, . . . , Pn = Q,
all belonging to S, such that, for each i, Pi is a neigh-
bor of Pi−1, we say that P and Q are connected in S.
The maximal connected subsets of S are called its (con-
nected) components. We call S connected if it has only one
component.

Let S̄ be the complement of S. We assume that the
image is surrounded by a border of pixels all belonging to
S̄. The component of S̄ that contains this border is called
the background of S; all other components of S̄, if any, are
called holes in S.

Two image subsets S and T are called adjacent if some
pixel of S is a neighbor of some pixel of T . Let S1, . . . , Sm

be a partition of the image into subsets. We define the
adjacency graph of the partition as the graph whose nodes

are S1, . . . , Sm and in which nodes Si and Sj are joined
by an arc if and only if Si and Sj are adjacent. It can be
shown that if we take S1, . . . , Sm to be the components of
S and of S̄, where S is any subset of the image, then the
adjacency graph of this partition is a tree.

The border of S consists of those pixels of S that are
adjacent to (i.e., have neighbors in) S̄. More precisely, if
C is any component of S and D any component of S̄, the
D-border of C consists of those pixels of C (if any) that
are adjacent to D. In general, if S = C is connected, it
has an outer border composed of pixels adjacent to the
background, and it may also have hole borders composed
of pixels adjacent to holes.

The area of S is the number of pixels in S. The perimeter
of S is the total length of all its borders; it can be defined
more precisely, for any given border, as the number of
moves from pixel to pixel required to travel completely
around the border and return to the starting point. The
compactness of S is sometimes measured by a/p2, where
a is area and p is perimeter; this quantity is low when S
has a jagged or elongated shape.

For any pixel of P of S, let d(P) be the distance (in
pixel units) from P to S̄. The thickness of S is twice the
maximum value of d(P). If the area of S is large compared
with its thickness, it is elongated.

S is called convex if for all pixels P, Q in S, the line
segment PQ lies entirely within distance 1 of S. It is easy
to show that, if S is convex, it must be connected and have
no holes. The smallest convex set containing S is called
the convex hull of S; we denote it H (S). The difference
set H (S) − S is called the convex deficiency of S, and its
components are called the concavities of S.

If surface orientation information is available, we can
compute properties of the visible surfaces in the scene (not
just of their projections in the image); for example, we can
compute surface area rather than just region area. Many of
the properties discussed above are very sensitive to spatial
orientation and are of only limited value in describing
scenes in which the orientations of the surfaces are not
known.

B. Geometry-Based Decomposition

The concepts defined in Section XII.A provide us with
many ways of defining new subsets of an image in terms
of a given subset S. Examples of such subsets are the
individual connected components of S, the holes in S,
subsets obtained by “filling” the holes (e.g., taking the
union of a component and its holes), the borders of S,
the convex hull of S or its concavities, and so on. One
can also “refine” a subset by discarding parts of it based
on geometric criteria; for example, one can discard small

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

624 Image Processing

components or concavities (i.e., those whose areas are
below some threshold).

An important class of geometric decomposition tech-
niques is based on the concept of expanding and shrinking
a set. [These operations are the same as min–max filter-
ing (Section V.D) for the special case of a binary image.]
Let S(1) be obtained from S by adding to it the border
of S̄ (i.e., adding all points of S̄ that are adjacent to S),
and let S(2), S(3), . . . be defined by repeating this process.
Let S(−1) be obtained from S by deleting its border (i.e.,
deleting all points of S that are adjacent to S̄), and let
S(−2), S(−3), . . . be defined by repeating this process. If
we expand S and then reshrink it by the same amount,
that is, we construct (S(k))(−k) for some k, it can be shown
that the result always contains the original S; but it may
contain other things as well. For example, if S is a cluster
of dots that are less than 2k apart, expanding S will fuse
the cluster into a solid mass, and reshrinking it will leave
a smaller, but still solid mass that just contains the dots of
the original cluster. Conversely, we can detect elongated
parts of a set S by a process of shrinking and reexpanding.
Specifically, we first construct (S(−k))(k); it can be shown
that this is always contained in the original S. Let Sk be
the difference set S − (S(−k))(k). Any component of Sk has
a thickness of at most 2k; thus if its area as large relative
to k (e.g., ≥10k2), it must be elongated.

Another method of geometric decomposition makes use
of shrinking operations that preserve the connectedness
properties of S, by never deleting a pixel P if this would
disconnect the remaining pixels of S in the neighborhood
of P . Such operations can be used to shrink the compo-
nents or holes of S down to single pixels or to shrink S
down to a “skeleton” consisting of connected arcs and
curves; the latter process is called thinning.

Still another approach to geometric decomposition in-
volves detecting features of a set’s border(s). As we move
around a border, each step defines a local slope vector, and
we can estimate the slope of the border by taking running
averages of these vectors. By differentiating (i.e., differ-
encing) the border slope, we can estimate the curvature of
the border. This curvature will be positive on convex parts
of the border and negative on concave parts (or vice versa);
zero-crossings of the curvature correspond to points of in-
flection that separate the border into convex and concave
parts. Similarly, sharp positive or negative maxima of the
curvature correspond to sharp convex or concave “cor-
ners.” It is often useful to decompose a border into arcs by
“cutting” it at such corners or inflections. Similar remarks
apply to the decomposition of curves. Many of the meth-
ods of image segmentation described in Section XI can be
applied to border segmentation, with local slope vectors
playing the role of pixel gray levels. Analogues of various
image-processing techniques can also be applied to bor-

ders; for example, we can take the 1-D Fourier transform
of a border (i.e., of a slope sequence) and use it to detect
global periodicities in the border or filter it to smooth the
border, or we can match a border with a template using
correlation techniques.

C. Subset Representation

Any image subset S can be represented by a binary image
in which a pixel has value 1 or 0 according to whether
or not it belongs to S. This representation requires the
same amount of storage space no matter how simple or
complicated S is; for an n × n image, it always requires
n2 bits. In this section we describe several methods of
representing image subsets that require less storage space
if the sets are simple.

1. Run length coding. Each row of a binary image can
be broken up into “runs” (maximal consecutive
sequences) of 1’s alternating with runs of 0’s. The
row is completely determined if we specify the value
of the first run (1 or 0) and the lengths of all the runs,
in the sequence. If the row has length n and there are
only k runs, this run length code requires only 1 + k
log n bits, which can be much less than n if k is small
and n is large.

2. Maximal block coding. The runs of 1’s can be
regarded as maximal rectangles of height 1 contained
in the set S. We can obtain a more compact code if we
allow rectangles of arbitrary height. Given a set of
rectangles R1, . . . , Rm whose union is S, we can
determine S by specifying the positions and
dimensions of these rectangles. As a specific
example, for each pixel P in S, let SP be the maximal
upright square centered at P and contained in S. We
can discard SP if it is contained in SQ for some
Q �= P . The union of the remaining SP ’s is evidently
S. Thus the set of centers and radii of these SP ’s
completely determines S; it is called the medial axis
transformation of S, since the centers tend to lie on
the “skeleton” of S.

3. Quadtree coding. Consider a binary image of size
2n × 2n . If it does not consist entirely of 1’s or 0’s, we
divide it into quadrants; if any of these is not all 1’s or
all 0’s, we divide it into subquadrants, and so on, until
we obtain blocks that are all 1’s or all 0’s. The
subdivision process can be represented by a tree of
degree 4 (a quadtree); the root node represents the
entire image, and each time we subdivide a block, we
give its node four children representing its quadrants.
If we specify the values (1 or 0) of the blocks
represented by the leaves, the image is completely
determined. The number of leaves will generally be

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

Image Processing 625

greater than the number of blocks in the medial axis
transformation, but the quadtree has the advantage of
concisely representing the spatial relations among the
blocks by their positions in the tree, rather than
simply storing them as an unsorted list.

4. Contour coding. Given any border of an image
subset, we can define a border-following process that,
starting from any pixel P of the border, successively
visits all the pixels of that border, moving from
neighbor to neighbor, and, finally, returns to P . The
succession of moves made by this process, together
with the coordinates of P , completely determines the
border. (Each move can be defined by a code
designating which neighbor to move to; the sequence
of these codes is called the chain code of the border.
Curves in an image can also be encoded in this way.)
If all the borders of a set S are specified in this way, S
itself is completely determined; that is, we can
“draw” its borders and then “fill” its interior. This
method of representing a set S is called contour
coding. If S has only a few borders and their total
length (i.e., the perimeter of S) is not too great, this
representation can be more compact than the
representation of S by a binary image.

For all these representations, efficient algorithms have
been developed for computing geometric properties di-
rectly from the representation, for computing the repre-
sentations of derived subsets (unions, intersections, etc.)
directly from the representations of the original subsets,
and for converting one representation to another.

The representations defined above are all exact; they
completely determine the given subset. We can also de-
fine approximations to an image, or to an image subset,
using similar methods. For example, we can use max-
imal blocks whose values are only approximately con-
stant; compare the method of segmentation by splitting
described in Section XI.C. Similarly, we can approxi-
mate a border or curve—for example, by a sequence
of straight-line segments. We can approximate a medial
axis by a set of arcs and a radius function defined along
each arc; a shape defined by a simple arc and its asso-
ciated function is called a generalized ribbon. It is of-
ten useful to compute a set of approximations of dif-
ferent degrees of accuracy; if these approximations are
refinements of one another, they can be stored in a tree
structure.

Representations analogous to those described here can
be defined for 3-D objects. Such 3-D representations are
needed in processing information about surfaces (e.g., ob-
tained from stereo, range sensing, or recovery techniques)
or in defining the objects in a scene that we wish to rec-
ognize in an image.

XIII. DESCRIPTION

The goal of image analysis is usually to derive a descrip-
tion of the scene that gave rise to the image, in particular,
to recognize objects that are present in the scene. The de-
scription typically refers to properties of and relationships
among objects, surfaces, or features that are present in the
scene, and recognition generally involves comparing this
descriptive information with stored “models” for known
classes of objects or scenes. This section discusses prop-
erties and relations, their representation, and how they are
used in recognition.

A. Properties and Relations

In Section XII.A we defined various geometric properties
of and relationships among image parts. In this section we
discuss some image properties that depend on gray level
(or color), and we also discuss the concept of invariant
properties.

The moments of an image provide information about the
spatial arrangement of the image’s gray levels. If f (x, y)
is the gray level at (x, y), the (i, j) moment mi j is defined
as

∑ ∑
xi yi f (x, y) summed over the image. Thus m00 is

simply the sum of all the gray levels. If we think of gray
level as mass, (m10/m00, m01/m00) are the coordinates of
the centroid of the image. If we choose the origin at the
centroid and let m̄i j be the (i, j) central moment relative to
this origin, then m̄10 = m̄01 = 0, and the central moments
of higher order provide information about how the gray
levels are distributed around the centroid. For example,
m̄20 and m̄02 are sensitive to how widely the high gray
levels are spread along the x and y axes, whereas m̄30 and
m̄03 are sensitive to the asymmetry of these spreads. The
principal axis of the image is the line that gives the best
fit to the image in the least-squares sense; it is the line
through the centroid whose slope tan θ satisfies

tan2 θ + m̄20 − m̄02

m̄11
tan θ − 1 = 0.

Moments provide useful information about the layout
or shape of an image subset that contrasts with its comple-
ment; they can be computed without the need to segment
the subset explicitly from the rest of the image. (Many of
the geometric properties defined in Section XII can also
be defined for “fuzzy” image subsets that have not been
explicitly segmented.)

If the gray levels in an image (or region) are spatially
stationary (intuitively, the local pattern of gray levels is
essentially the same in all parts of the region), various
statistical measures can be used to provide information
about the texture of the region. The “coarseness” of the
texture can can be measured by how slowly the image’s

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

626 Image Processing

autocorrelation drops off from its peak at zero displace-
ment (or, equivalently, by how rapidly the image’s Fourier
power spectrum drops off from its peak at zero frequency),
and the “directionality” of the texture can be detected by
variation in the rate of dropoff with direction. Strong peri-
odicities in the texture give rise to peaks in the Fourier
power spectrum. More information is provided by the
second-order probability density of gray levels, which tells
us how often each pair of gray levels occurs at each possi-
ble relative displacement. (The first-order gray level prob-
ability density tells us about the population of gray levels
but not about their spatial arrangement.) Some other pos-
sible texture descriptors are statistics of gray-level run
lengths, gray-level statistics after various amounts and
types of filtering, or the coefficients in a least-squares
prediction of the gray level of a pixel from those of its
neighbors. Information about the occurrence of local pat-
terns in a texture is provided by first-order probability
densities of various local property values (e.g., degrees of
match to templates of various types). Alternatively, one
can detect features such as edges in a texture, or segment
the texture into microregions, and compute statistics of
properties of these features or microregions (e.g., length,
curvature, area, elongatedness, average gray level) and of
their spatial arrangement. Overall descriptions of region
texture are useful primarily when the regions are the im-
ages of flat surfaces oriented perpendicularly to the line of
sight; in images of curved or slanted surfaces, the texture
will not usually be spatially stationary (see Section X.B).

The desired description of an image is often insensitive
to certain global transformations of the image; for exam-
ple, the description may remain the same under stretching
or shrinking of the gray scale (over a wide range) or under
rotation in the image plane. This makes it desirable to de-
scribe the image in terms of properties that are invariant
under these transformations. Many of the geometric prop-
erties discussed in Section XII are invariant under vari-
ous geometric transformations. For example, connectiv-
ity properties are invariant under arbitrary “rubber-sheet”
distortion; convexity, elongatedness, and compactness are
invariant under translation, rotation, and magnification;
and area, perimeter, thickness, and curvature are invari-
ant under translation and rotation. (This invariance is only
approximate, because the image must be redigitized af-
ter the transformation.) The autocorrelation and Fourier
power spectrum of an image are invariant under (cyclic)
translation, and similar transforms can be defined that are
invariant under rotation or magnification. The central mo-
ments of an image are invariant under translation, and
various combinations of moments can be defined that are
invariant under rotation or magnification. It is often pos-
sible to normalize an image, that is, to transform it into a
“standard form,” such that all images differing by a given

type of transformation have the same standard form; prop-
erties measured on the normalized image are thus invariant
to transformations of that type. For example, if we trans-
late an image so its centroid is at the origin and rotate it so
its principal axis is horizontal, its moments become invari-
ant under translation and rotation. If we flatten an image’s
histogram, its gray-level statistics become independent of
monotonic transformations of the grayscale; this is often
done in texture analysis. It is much more difficult to de-
fine properties that are invariant under 3-D rotation, since
as an object rotates in space, the shape of its image can
change radically, and the shading of its image can change
nonmonotonically.

In an image of a 2-D scene, many types of relationships
among image parts can provide useful descriptive infor-
mation. These include relationships defined by the relative
values of properties (“larger than,” “darker than,” etc.) as
well as various types of spatial relations (“adjacent to,”
“surrounded by,” “between,” “near,” “above,” etc.). It is
much more difficult to infer relationships among 3-D ob-
jects or surfaces from an image, but plausible inferences
can sometimes be made. For example, if in the region on
one side of an edge there are many edges or curves that
abruptly terminate where they meet the edge, it is reason-
able to infer that the surface on that side lies behind the
surface on the other side and that the terminations are due
to occlusion. In any case, properties of and relationships
among image parts imply constraints on the correspond-
ing object parts and how they could be related and, thus,
provide evidence about which objects could be present in
the scene, as discussed in the next subsection.

B. Relational Structures and Recognition

The result of the processes of feature extraction, segmen-
tation, and property measurement is a collection of image
parts, values of properties associated with each part, and
values of relationships among the parts. Ideally, the parts
should correspond to surfaces in the scene and the val-
ues should provide information about the properties of
and spatial relationships among these surfaces. This in-
formation can be stored in the form of a data structure
in which, for example, nodes might represent parts; there
might be pointers from each node to a list of the properties
of that part (and, if desired, to a data structure such as a
chain code or quadtree that specifies the part as an image
subset) and pointers linking pairs of nodes to relationship
values.

To recognize an object, we must verify that, if it were
present in the scene, it could give rise to an image having
the observed description. In other words, on the basis of
our knowledge about the object (shape, surface properties,
etc.) and about the imaging process (viewpoint, resolution,

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

Image Processing 627

etc.), we can predict what parts, with what properties and
in what relationships, should be present in the image as
a result of the presence of the object in the scene. We
can then verify that the predicted description agrees with
(part of) the observed description of the image. Note that
if the object is partially hidden, only parts of the predicted
description will be verifiable. The verification process can
be thought of as being based on finding a partial match
between the observed and predicted data structures. Note,
however, that this is not just a simple process of (say)
labeled graph matching; for example, the predicted image
parts may not be the same as the observed parts, due to
errors in segmentation.

If the viewpoint is not known, recognition becomes
much more difficult, because the appearance of an object
(shape, shading, etc.) can vary greatly with viewpoint. A
brute-force approach is to predict the appearance of the
object from many different viewpoints and match the ob-
served description with all of these predictions. Alterna-
tively, we can use a constraint analysis approach such as
the following. For any given feature or region in the im-
age, not every feature or surface of the object could give
rise to it (e.g., a compact object can never give rise to an
elongated region in the image), and those that can give
rise to it can do so only from a limited set of viewpoints.
If a set of image parts could all have arisen from parts of
the same object seen from the same viewpoint, we have
strong evidence that the object is in fact present.

C. Models

In many situations we need to recognize objects that be-
long to a given class, rather than specific objects. In prin-
ciple, we can do this if we have a “model” for the class,
that is, a generic description that is satisfied by an object
if and only if it belongs to the class. For example, such
a model might characterize the objects as consisting of
sets of surfaces or features satisfying certain constraints
on their property and relationship values. To recognize an
object as belonging to that class, we must verify that the
observed configuration of image parts could have arisen
from an object satisfying the given constraints.

Unfortunately, many classes of objects that humans can
readily recognize are very difficult to characterize in this
way. Object classes such as trees, chairs, or even hand-
printed characters do not have simple generic descriptions.
One can “characterize” such classes by simplified, partial
descriptions, but since these descriptions are usually in-
complete, using them for object recognition will result in
many errors. Even the individual parts of objects are often
difficult to model; many natural classes of shapes (e.g.,
clouds) or of surface textures (e.g., tree bark) are them-
selves difficult to characterize.

We can define relatively complex models hierarchically
by characterizing an object as composed of parts that sat-
isfy given constraints, where the parts are in turn com-
posed of subparts that satisfy given constraints, and so
on. This approach is used in syntactic pattern recognition,
where patterns are recognized by the detection of config-
urations of “primitive” parts satisfying given constraints,
then configurations of such configurations, and so on. Un-
fortunately, even though the models defined in this way
can be quite complex, this does not guarantee that they
correctly characterize the desired classes of objects.

Models are sometimes defined probabilistically, by the
specification of probability densities on the possible sets
of parts, their property values, and so on. This allows
recognition to be probabilistic, in the sense that we can
use Bayesian methods to estimate the probability that a
given observed image configuration arose from an object
belonging to a given class. This approach is used in statis-
tical pattern recognition. Unfortunately, making a model
probabilistic does not guarantee its correctness, and in any
case, the required probability densities are usually very
difficult to estimate.

Real-world scenes can contain many types of objects. A
system capable of describing such scenes must have a large
set of models available to it. Checking these models one by
one against the image data would be very time-consuming.
The models should be indexed so the appropriate ones can
be rapidly retrieved, but not much is known about how to
do this.

D. Knowledge-Based Recognition Systems

Nearly all existing image analysis systems are designed
to carry out fixed sequences of operations (segmentation,
property measurement, model matching, etc.) on their in-
put images. The operations are chosen by the system de-
signer on the basis of prior knowledge about the given class
of scenes. For example, we choose segmentation opera-
tions that are likely to extract image parts corresponding
to surfaces in the scene, we measure properties that are
relevant to the desired description of the scene, and so on.

A more flexible type of system would have the capacity
to choose its own operations on the basis of knowledge
about the class of scenes (and the imaging process) and
about how the operations are expected to perform on var-
ious types of input data. At each stage and in each part of
the image, the system would estimate the expected results
of various possible actions, based on its current state of
knowledge, and choose its next action to have maximum
utility, where utility is a function of the cost of the action
and the informativeness of the expected results.

Many examples of knowledge-based reocgnition sys-
tems have been demonstrated in the image understanding

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

628 Image Processing

and computer vision literature. A more recent idea is to
design a supervisor for the knowledge-based system, so
that by evaluating the system’s current state (quality of
image, required speed, etc.), the best possible algorithm,
with optimal choice of parameters, can be chosen from
among the available options. Designing such a system,
however, requires active participation by the user.

XIV. ARCHITECTURES

Image processing and analysis are computationally costly
because they usually involve large amounts of data and
complex sets of operations. Typical digital images consist
of hundreds of thousands of pixels, and typical process-
ing requirements may involve hundreds or even thousands
of computer operations per pixel. If the processing must
be performed rapidly, conventional computers may not be
fast enough. For this reason, many special-purpose com-
puter architectures have been proposed or built for pro-
cessing or analyzing images. These achieve higher pro-
cessing speeds by using multiple processors that operate
on the data in parallel.

Parallelism could be used to speed up processing at
various stages; for example, in image analysis, one could
process geometric representations in parallel or match re-
lational structures in parallel. However, most of the pro-
posed approaches have been concerned only with parallel
processing of the images themselves, so we consider here
only operations performed directly on digital images.

The most common class of image operations comprises
local operations, in which the output value at a pixel de-
pends only on the input values of the pixel and a set of its
neighbors. These include the subclass of point operations,
in which the output value at a pixel depends only on the in-
put value of that pixel itself. Other important classes of op-
erations are transforms, such as the discrete Fourier trans-
form, and statistical computations, such as histogramming
or computing moments; in these cases each output value
depends on the entire input image. Still another important
class consists of geometric operations, in which the out-
put value of a pixel depends on the input values of some
other pixel and its neighbors. We consider in this section
primarily local operations.

A. Pipelines

Image processing and analysis often require fixed se-
quences of local operations to be performed at each pixel
of an image. Such sequences of operations can be per-
formed in parallel using a pipeline of processors, each
operating on the output of the preceding one. The first pro-
cessor performs the first operation on the image, pixel by

pixel. As soon as the first pixel and its neighbors have been
processed, the second processor begins to perform the sec-
ond operation, and so on. Since each processor has avail-
able to it the output value of its operation at every pixel,
it can also compute statistics of these values, if desired.

Let t be the longest time required to perform an opera-
tion at one pixel, and let kt be the average delay required,
after an operation begins, before the next operation can
start. If there are m operations and the image size is n × n,
the total processing time required is then n2t + (m − 1)kt .
Ordinarily n is much greater than m or k, so that the total
processing time is not much greater than that needed to do
a single operation (the slowest one).

Pipelines can be structured in various ways to take ad-
vantage of different methods of breaking down operations
into suboperations. For example, a local operation can
sometimes be broken into stages, each involving a differ-
ent neighbor, or can be broken up into individual arithmeti-
cal or logical operations. Many pipeline image-processing
systems have been designed and built.

B. Meshes

Another way to use parallel processing to speed up image
operations is to divide the image into equal-sized blocks
and let each processor operate on a different block. Usu-
ally the processors will also need some information from
adjacent blocks; for example, to apply a local operation
to the pixels on the border of a block, information about
the pixels on the borders of the adjacent blocks is needed.
Thus processors handling adjacent blocks must communi-
cate. To minimize the amount of communication needed,
the blocks should be square, since a square block has the
least amount of border for a given area. If the image is
n × n, where n = rs, we can divide it into an r × r array
of square blocks, each containing s × s pixels. The pro-
cessing is then done by an r × r array of processors, each
able to communicate with its neighbors. Such an array of
processors is called a mesh-connected computer (or mesh,
for short) or, sometimes, a cellular array. Meshes are very
efficient at performing local operations on images. Let t
be the time required to perform the operation at one pixel,
and let c be the communication time required to pass a
pixel value from one processor to another. Then the total
processing time required is 4cs + ts2. Thus by using r2

processors we have speeded up the time required for the
operation from tn2 to about ts2, which is a speedup by
nearly a factor of r2. As r approaches n (one processor
per pixel), the processing time approaches t and no longer
depends on n at all.

For other types of operations, meshes are not quite so
advantageous. To compute a histogram, for example, each
processor requires time on the order of s2 to count the

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

Image Processing 629

values in its block of the image, but the resulting counts
must still be transmitted to one location (e.g., to the proces-
sor in the upper left corner) so they can be added together.
The transmission requires on the order of r relay stages,
since the data must be communicated from one processor
to another. Thus as r approaches n, the time required to
compute a histogram becomes on the order of n. This is
much faster than the single-processor time, which is on
the order of n2, but it is still not independent of n. It can
be shown that the time required on a mesh to compute a
transform or to perform a geometric operation is also on
the order of n as r approaches n.

The speed of a mesh is limited in performing nonlocal
operations, because information must be transmitted over
long distances, and the processors in the mesh are con-
nected only to their neighbors. Much faster processing
times, on the order of log n, can be achieved by the use of
a richer interprocessor connection structure, based, for ex-
ample, on a tree or a hypercube. Meshes augmented in this
way allow a wide variety of operations to be performed
on images at very high speeds.

C. Recent Trends

Given the impressive advances in the computing power
of personal computers and other workstations, the role of
computer architectures in image processing and analysis
has changed. One can now cluster a set of PCs to realize the
computational power of a supercomputer at a much lower
cost. This, together with the ability to connect cameras
and drivers to a PC, has made image processing feasible
at every desk. Important advances are also being made
in implementing image processing and understanding al-
gorithms on embedded processors, field-programmable
gate arrays, etc. Also, more emphasis is being given to
low-power implementations so that battery life can be
extended.

XV. SUMMARY

Given the advances that have been made over the last
15 years in image processing, analysis, and understand-
ing, this article has been very difficult for us to revise.
After completing the revision, we paused to ponder what
has been achieved in these fields over the last 50 years.
Based on our combined perspectives, we have formulated
the following observations that encapsulate the excitement
that we still feel about the subject.

1. Sensors—Instead of the traditional single camera in
the visible spectrum, we now have sensors that can
cover a much wider spectrum and can perform simple
operations on the data.

2. Algorithms—Starting from heuristic, ad hoc
concepts, we have reached a stage where statistics,
mathematics, and physics play key roles in algorithm
development. Wherever possible, existence and
uniqueness issues are being addressed. Instead of the
traditional passive mode in which algorithms simply
process the data, we can now have the algorithms
control the sensors so that appropriate data can be
collected, leading to an active vision paradigm.

3. Architectures—In the early seventies it took
considerable effort and money to set up an image
processing/computer vision laboratory. Due to the
decreasing costs of computers and memory and their
increasing power and capacity, we are now not far
away from the day when palm processing of images
will be possible.

4. Standards—Advances in JPEG, JPEG-2000, and
various MPEG standards have resulted in at least
some image processing topics (image compression,
video compression) becoming household concepts.

5. Applications—In addition to traditional military
applications, we are witnessing enormous growth in
applications in medical imaging, remote sensing,
document processing, internet imaging, surveillance,
and virtual reality. The depth and breadth of the field
keep growing!

SEE ALSO THE FOLLOWING ARTICLES

COLOR SCIENCE • COMPUTER ALGORITHMS • COM-
PUTER ARCHITECTURE • IMAGE-GUIDED SURGERY • IM-
AGE RESTORATION, MAXIMUM ENTROPY METHODS

BIBLIOGRAPHY

Aloimonos, Y. (ed.) (1993). “Active Perception,” Lawrence Erlbaum,
Hillsdale, NJ.

Ballard, D. H., and Brown, C. M. (1982). “Computer Vision,” Prentice–
Hall, Englewood Cliffs, NJ.

Blake, A., and Zisserman, A. (1987). “Visual Reconstruction,” MIT
Press, Cambridge, MA.

Brady, J. M. (ed.) (1981). “Computer Vision,” North-Holland,
Amsterdam.

Chellappa, R., and Jain, A. K. (1993). “Markov Random Fields: Theory
and Application,” Academic Press, San Diego, CA.

Chellappa, R., Girod, B., Munson, D., Jr., Tekalp, M., and Vetterli, M.
(1998). “The Past, Present and Future of Image and Multidimensional
Signal Processing.” IEEE Signal Process. Mag. 15(2), 21–58.

Cohen, P. R., and Feigenbaum, E. A. (eds.) (1982). “Handbook of Arti-
ficial Intelligence,” Vol. III, Morgan Kaufmann, Los Altos, CA.

Ekstrom, M. P. (ed.) (1984). “Digital Image Processing Techniques,”
Academic Press, Orlando, FL.

Faugeras, O. D. (ed.) (1983). “Fundamentals in Computer Vision—An
Advanced Course,” Cambridge University Press, New York.

P1: GTV/GRI P2: GLM Final Pages

Encyclopedia of Physical Science and Technology EN007I-841 June 30, 2001 17:53

630 Image Processing

Faugeras, O. D. (1996). “Three-Dimensional Computer Vision—A Ge-
ometric Viewpoint,” MIT Press, Cambridge, MA.

Gersho, A., and Gray, R. M. (1992). “Vector Quantization and Signal
Compression,” Kluwer, Boston.

Grimson, W. E. L. (1982). “From Images to Surfaces,” MIT Press,
Cambridge, MA.

Grimson, W. E. L. (1990). “Object Recognition by Computer—The Role
of Geometric Constraints,” MIT Press, Cambridge, MA.

Hanson, A. R., and Riseman, E. M. (eds.) (1978). “Computer Vision
Systems,” Academic Press, New York.

Horn, B. K. P. (1986). “Robot Vision,” MIT Press, Cambridge, MA, and
McGraw–Hill, New York.

Horn, B. K. P., and Brooks, M. (eds.) (1989). “Shape from Shading,”
MIT Press, Cambridge, MA.

Huang, T. S. (ed.) (1981a). “Image Sequence Analysis,” Springer, Berlin.
Huang, T. S. (ed.) (1981b). “Two-Dimensional Digital Signal Process-

ing,” Springer, Berlin.
Jain, A. K. (1989). “Fundamentals of Digital Image Processing,”

Prentice–Hall, Englewood Cliffs, NJ.
Kanatani, K. (1990). “Group-Theoretic Methods in Image Understand-

ing,” Springer, Berlin.
Koenderink, J. J. (1990). “Solid Shape,” MIT Press, Cambridge, MA.

Marr, D. (1982). “Vision—A Computational Investigation into the Hu-
man Representation and Processing of Visual Information,” Freeman,
San Francisco.

Mitchell, J. L., Pennebaker, W. B., Fogg., C. E., and LeGall, D. J. (1996).
“MPEG Video Compression Standard,” Chapman and Hall, New York.

Pavlidis, T. (1982). “Algorithms for Graphics and Image Processing,”
Computer Science Press, Rockville, MD.

Pennebaker, W. B., and Mitchell, J. L. (1993). “JPEG Still Image Com-
pression Standard,” Van Nostrand Reinhold, New York.

Pratt, W. K. (1991). “Digital Image Processing,” Wiley, New York.
Rosenfeld, A., and Kak, A. C. (1982). “Digital Picture Processing,” 2nd

ed., Academic Press, Orlando, FL.
Ullman, S. (1979). “The Interpretation of Visual Motion,” MIT Press,

Cambridge, MA.
Weng, J., Huang, T. S., and Ahuja, N. (1992). “Motion and Structure

from Image Sequences,” Springer, Berlin.
Winston, P. H. (ed.) (1975). “The Psychology of Computer Vision,”

McGraw–Hill, New York.
Young, T. Y., and Fu, K. S. (eds.) (1986). “Handbook of Pattern Recog-

nition and Image Processing,” Academic Press, Orlando, FL.
Zhang, Z., and Faugeras, O. D. (1992). “3D Dynamic Scene Analysis—A

Stereo-Based Approach,” Springer, Berlin.

P1: GLM Final Pages Qu: 00, 00, 00, 00

Encyclopedia of Physical Science and Technology EN008A-861 June 29, 2001 15:20

Linear Systems of Equations
(Computer Science)

Victor Pan
City University of New York

I. Introduction and Preliminaries
II. Some Examples of Applications
III. Gaussian Elimination and Triangular

Factorization
IV. Orthogonal Factorization and Singular

Linear Systems
V. Asymptotic and Practical Accelerations

of Solving General Linear Systems
VI. Direct Solution of Some Special Linear Systems
VII. Direct Algorithms for Sparse and

Well-Structured Linear Systems
VIII. Iterative Algorithms for Sparse and Special

Dense Linear Systems
IX. Influence of the Development of Vector and

Parallel Computers on Solving Linear Systems

GLOSSARY

Condition (condition number) Product of the norms of
a matrix and of its inverse; condition of the coefficient
matrix characterizes the sensitivity of the solution of
the linear system to input errors.

Error matrix (error vector) Difference between the ex-
act and approximate values of a matrix (of a vector).

Gaussian elimination Algorithm that solves a linear sys-
tem of equations via successive elimination of its un-
knowns, or, equivalently, via decomposition of the in-
put coefficient matrix into a product of two triangular
matrices.

m × n matrix Two-dimensional array of mn entries rep-
resented in m rows and n columns. A sparse matrix
is a matrix filled mostly with zeros. A sparse matrix

 617

P1: GLM Final Pages

Encyclopedia of Physical Science and Technology EN008A-861 June 29, 2001 15:20

618 Linear Systems of Equations (Computer Science)

is structured if the locations of all its nonzero entries
follow some regular patterns.

Norms of vectors (matrices) Nonnegative values that
characterize the magnitudes of those vectors (matri-
ces).

Pivot Entry in the northwest corner of the coefficient ma-
trix, which defines the current elimination step of the
solution to that system; pivoting is a policy of inter-
changing the rows and/or the columns of the matrix
such that its certain entry of sufficiently large magni-
tude is moved to the northwest corner.

A LINEAR SYSTEM OF EQUATIONS is the set of
equations of the form,

a11x1 + a12x2 + · · · + a1n xn = b1

...

am1x1 + am2x2 + · · · + amn xn = bm

where a11, a12, . . . , amn, b1, b2, . . . , bm are given con-
stants, and x1, x2, . . . , xn are unknown values. The main
problem is to compute a solution to such a system, that is,
a set of values, c1, c2, . . . , cn, such that the substitution of
x1 = c1, x2 = c2, . . . , xn = cn simultaneously satisfies all
the equations of that system, or to determine that the sys-
tem is inconsistent, that is, it has no solution.

I. INTRODUCTION AND PRELIMINARIES

A. Subject Definition

Our subject is the systems

a11x1 + a12x2 + · · · + a1n xn = b1

... (1)

am1x1 + am2x2 + · · · + amn xn = bm

and algorithms for their solution, with particular atten-
tion to linear systems important in computational practice
and to their solution on modern computers. We include
inconsistent systems and systems having nonunique solu-
tion (compare Examples 2 and 3). [Nonunique solution of
Eq. (1) always means infinitely many solutions.]

EXAMPLE 1. m = n = 3:

10x1 + 14x2 + 0 ∗ x3 = 7

−3x1 − 4x2 + 6x3 = 4

5x1 + 2x2 + 5x3 = 6

where x1 = 0, x2 = 0.5, x3 = 1 is the unique solution.

EXAMPLE 2. m = 3, n = 2 (overdetermined systems,
m > n):

2x1 − x2 = 3.2

−2x1 − 2x2 = −10.6

0 ∗ x1 − 6x2 = −18

The system is inconsistent.

EXAMPLE 3. m = 2, n = 3 (underdetermined sys-
tems, m < n):

x1 + x2 + x3 = 5, −x1 + x2 + x3 = 3

The system has infinitely many solutions, x1 = 1, x2 =
4 − x3 for any x3.

Usually, we assume that all the inputs ai j and bi are
real numbers; the extensions to complex and other in-
puts (Boolean rings, path algebras) being possible and
frequently straightforward.

B. Variety of Applications, Ties with the
Computer Technology. Vast Bibliography.
Packages of Subroutines

Here are some large subjects, important in computational
practice: numerical solution of differential and partial
differential equations, mathematical programming and
operations research, combinatorial computations, fitting
data by curves, interpolation by polynomials and poly-
nomial computations. These and many other practically
important subjects have a common feature: Computation-
ally, the problems are reduced to solving linear systems
[Eq. (1)], probably the most frequent operation in the prac-
tice of numerical computing. Special packages of com-
puter subroutines, such as LINPACK and LAPACK (see
also MATLAB), are available for solving linear systems.
The bibliography on the subject is vast; luckily, the book
by G. H. Golub and C. F. van Loan systematically and
successfully describes a variety of most important ba-
sic and advanced topics. The book (particularly, pages
XIII–XXVII) contains an extensive list of bibliography up
to 1996, including a sublist of introductory texts (pages
XVII–XVIII). Some other texts, also containing further
references, are listed at the end of this article. In particu-
lar, several major topics are covered in the two volumes
edited by E. Spedicato (especially see pages 1–92) and by
G. Winter Althaus and E. Spedicato and in the books by
J. W. Demmel and L. N. Trefethen and D. Bau, III. The
books by N. Higham, and by A. Greenbaum (advanced)
and the volume edited by T. Kailath and A. Sayed are
specialized in the treatment of numerical stability/round-
off errors, iterative algorithms and linear systems with
Toeplitz, and other structured matrices, respectively (on

P1: GLM Final Pages

Encyclopedia of Physical Science and Technology EN008A-861 June 29, 2001 15:20

Linear Systems of Equations (Computer Science) 619

the latter topic, see also author’s advanced book with
D. Bini). Chapter 9 of the book by K. O. Geddes, S. R.
Czapor, and G. Labahn covers error-free solution of linear
systems by symbolic algebraic methods (see also Section
3 of chapter 3 of author’s book with D. Bini).

The development and study of modern algorithms for
systems [Eq. (1)] has been greatly influenced by practi-
cal and theoretical applications of linear systems and by
the development of modern computer technology. More
recent vector and parallel computers have turned out to be
very effective for solving linear systems, which has mo-
tivated both further development of those computers and
the study and design of algorithms for linear systems.

C. Sparsity, Structure, and Computer
Representation of Linear Systems

A linear system [Eq. (1)] can be defined by its extended
matrix,

W =

a11 a12 · · · a1n b1
...

...
...

...
am1 am2 · · · amn bm

 (2)

which occupies m × (n + 1) working array in a computer.
The first n columns of W form the m × n coefficient ma-
trix A of the system. The last column is the right-hand-side
vector b.

EXAMPLE 4. The extended matrices of systems of
Examples 1 and 2 are

10 14 0 7

−3 −4 6 4

5 2 5 6

 ,

2 −1 3.2

−2 −2 −10.6

0 −6 −18

Since the primary storage space of a computer is lim-
ited, the array [Eq. (2)] should not be too large; 100 × 101
or 200 × 201 can be excessively large for some computers.
Practically, systems with up to, say, 100,000 equations, are
handled routinely, however; because large linear systems
arising in computational practice are usually sparse (only
a small part of their coefficients are nonzeros) and well
structured (the nonzeros in the array follow some regu-
lar patterns). Then special data structures enable users to
store only nonzero coefficients (sometimes only a part of
them). The algorithms for solving such special systems
are also much more efficient than in the case of general
dense systems.

Consider, for instance, tridiagonal systems, where ai j =
0, unless −1 ≤ i − j ≤ 1. Instead of storing all the n2 + n
input entries of A and b, which would be required in case
of a dense system, special data structures can be used to
store only the 4n − 2 nonzero entries. The running time of

the program solving such a system (which can be roughly
measured by the number of arithmetic operations used) is
also reduced from about 2

3 n3 for dense systems to 8n − 13
for tridiagonal systems, (substitute n = 10,000 to see the
difference). The structure of some linear systems may not
be immediately recognized. For instance, in Section II.A
solving the Laplace equation ∂2u/∂x2 + ∂2u/∂y2 = 0 is
reduced to a system that is not tridiagonal but is block tridi-
agonal, that is, its coefficient matrix can be represented as
a tridiagonal matrix whose entries are in turn matrices,
specifically in the model example of a small size:

A =

−4 1 1 0

1 −4 0 1

1 0 −4 1

0 1 1 −4

 =

[
B2 I2

I2 B2

]
(3)

B2 =
[−4 1

1 −4

]
, I2 =

[
1 0

0 1

]

Block tridiagonal structures can be also effectively ex-
ploited, particularly in cases where the blocks are well
structured.

D. Specifics of Overdetermined and
Underdetermined Linear Systems

Overdetermined linear systems [Eq. (1)] with m greatly
exceeding n (say, m = 1000; n = 2) arise when we try
to fit given data by simple curves, in statistics, and in
many other applications; such systems are usually in-
consistent. A quasi-solution x∗

1 , . . . , x∗
n is sought, which

minimizes the magnitudes of the residuals, ri = bi −
(ai1x∗

1 + · · · + ain x∗
n), i = 1, . . . , n. Methods of comput-

ing such a quasi-solution vary with the choice of the min-
imization criterion, but usually the solution is ultimately
reduced to solving some regular linear systems [Eq. (1)]
(where m = n) (see Sections II.E; IV.A; and IV.C).

A consistent underdetermined system [Eq. (1)] always
has infinitely many solutions (compare Example 3) and
is frequently encountered as part of the problem of math-
ematical programming, where such systems are comple-
mented with linear inequalities and with some optimiza-
tion criteria.

E. General and Special Linear Systems. Direct
and Iterative Methods. Sensitivity to Errors

Generally, the efforts to identify fully the structure of a
system [Eq. (1)] are generously awarded at the solution
stage. Special cases and special algorithms are so numer-
ous, however, that we shall first study the algorithms that
work for general linear systems [Eq. (1)]. We shall follow
the customary pattern of subdividing the methods for

P1: GLM Final Pages

Encyclopedia of Physical Science and Technology EN008A-861 June 29, 2001 15:20

620 Linear Systems of Equations (Computer Science)

solving systems [Eq. (1)] into direct and iterative. The di-
rect methods are more universal; they apply to general and
special linear systems, but for many special and/or sparse
linear systems, the special iterative methods are superior
(see Section VIII). If the computations are performed
with infinite precision, the direct methods solve Eq. (1) in
finite time, whereas iterative methods only compute better
and better approximations to a solution with each new
iteration (but may never compute the solution exactly).
That difference disappears in practical computations,
where all arithmetic operations are performed with finite
precision, that is, with round-off errors. In principle,
the round-off errors may propagate and greatly, or even
completely, contaminate the outputs. This depends on
the properties of the coefficient matrix, on the choice of
the algorithms, and on the precision of computation. A
certain amount of study of the sensitivity of the outputs
to round-off error is normally included in texts on linear
systems and in current packages of computer subroutines
for such systems; stable algorithms are always chosen,
which keep output errors lower. In general, direct methods
are no more or no less stable than the iterative methods.

II. SOME EXAMPLES OF APPLICATIONS

Next we present a few simple examples that demonstrate
how frequently practical computations and important the-
oretical problems are reduced to solving linear systems
of algebraic equations (more examples are presented in
Sections VI.B and VII.D) (Those readers not interested in
the present section may proceed to Section III, consulting
Section II as they are referred to it.)

A. Numerical Solution of the Laplace Equation

We consider the Laplace equation ∂2u/∂x2 + ∂2u/∂y2 = 0
on the square region 0 ≤ x, y ≤ 1, provided that the func-
tion u(x, y) is given on the boundary of that region; u(x, y)
models the temperature distribution through a square plate
with fixed temperature on its sides. To compute u(x, y)
numerically, we superimpose a mesh of horizontal and
vertical lines over the region as shown by

u16

u15

u14
u13 u12 u11

u10

u9

u7 u8u6

x

y

u1

u4u3

u2

u5

so that u1 denotes the point (1
3 , 2

3); u2 denotes the point
(2

3 , 2
3); u7 denotes (2

3 , 1), and so on; u5, u6, . . . , u16 are
given; and u1, u2, u3, u4 are unknowns. Then we replace
the derivatives by divided differences,

∂2u/∂x2 by u(x − h, y) − 2u(x, y) + u(x + h, y)

∂2u/∂y2 by u(x, y − h) − 2u(x, y) + u(x, y + h)

where h = 1
3 . This turns the Laplace equation into a linear

system that can be equivalently derived if we just assume
that the temperature at an internal point of the grid equals
the average of the temperatures at the four neighboring
points of the grid;

−4u1 + u2 + u3 = −u6 − u16

u1 − 4u2 + u4 = −u7 − u9

u1 − 4u3 + u4 = −u13 − u15

u2 + u3 − 4u4 = −u10 − u12

The coefficient matrix A of the system is the block tridi-
agonal of Eq. (3). With smaller spacing we may obtain a
finer grid and compute the temperatures at more points on
the plate. Then the size of the linear system will increase,
say to N 2 equations in N 2 unknowns for larger N ; but its
N 2 × N 2 coefficient matrix will still be block tridiagonal
of the following special form (where blank spaces mean
zero entries),

BN IN

IN BN IN

IN BN
. . .

. . .
. . . IN

IN BN

BN =

−4 1

1 −4
. . .

. . .
. . . 1

1 −4

Here, BN is an N × N tridiagonal matrix, and IN denotes
the N × N identity matrix (see Section II.D). This exam-
ple demonstrates how the finite difference method reduces
the solution of partial differential equations to the solu-
tion of linear systems [Eq. (1)] by replacing derivatives by
divided differences. The matrices of the resulting linear
systems are sparse and well structured.

B. Solving a Differential Equation

Let us consider the following differential equation on
the interval {t : 0 ≤ t ≤ 1}, d2x/dt2 + x = g(t), x(0) = 0,

P1: GLM Final Pages

Encyclopedia of Physical Science and Technology EN008A-861 June 29, 2001 15:20

Linear Systems of Equations (Computer Science) 621

x(1) = 1 [where g(t) is a given function, say g(t) =
log(t + 1) or g(t) = et]. Let t0 = 0; t1, t2, t3, t4, t5 = 1 be
the one-dimensional grid of six equally spaced points
on the interval {t : 0 ≤ t ≤ 1}, so t1 = 1

5 , t2 = 2
5 , t3 = 3

5 ,
t4 = 4

5 , h = 1
5 . Denote x0 = x(t0) = x(0) = 0, x1 = x(t1),

. . . , x5 = x(t5) = x(1) = 1, replace the derivative d2x/dt2

by the divided differences so that (d2x/dt2)|t=t2 =
(x1 − 2x2 + x3)/h2 and similarly at t = t1, t = t3, and
t = t4; and arrive at the tridiagonal system defined by the
following extended matrix:

h2 − 2 1 0 0 h2g(t1) − x0

1 h2 − 2 1 0 h2g(t2)

0 1 h2 − 2 1 h2g(t3)

0 0 1 h2 − 2 h2g(t4) − x5

Using a finer grid with more points t , we may compute
the solution x(t) at more points. The derived linear system
would have greater size but the same tridiagonal structure.

C. Hitchcock Transportation Problem.
Linear Programming Problem

We consider a communication system having three
sources, 1, 2, and 3, with supplies s1, s2, and s3 and two
sinks, 1 and 2, with demands d1 and d2, respectively, such
that d1 + d2 = s1 + s2 + s3. Let every source be connected
with every sink by a communication line. Suppose that
the quantities xi j must be delivered from source i to sink
j for every pair i , j such that

2∑
j=1

xi j = si, i = 1, 2, 3

3∑
j=1

xi j = d j, j = 1, 2

One of these equations can be deleted, for the sums of the
first three and of the last two equations coincide with one
another. Thus, we arrive at an underdetermined system of
four equations with six unknowns having two free vari-
ables; say x22 and x32, which can be chosen arbitrarily, then
x11, x12, x21, x31 will be uniquely defined. For instance, let
s1 = s2 = s3 = 2, d1 = d2 = 3. Choose x22 = x32 = 1, then
x11 = x12 = x21 = x31 = 1; choose x22 = 2, x32 = 0, then
x11 = x12 = 1, x21 = 0, x31 = 2, and so on. In such situa-
tions some additional requirements are usually imposed.
Typically, it is required that all the variables xi j be non-
negative and that a fixed linear function in those variables
take its minimum value; for example,

minimize x11 + x12 + x21 + 2x22 + 2x31 + x32

subject to x11 + x12 = 2

x21 + x22 = 2

x31 + x32 = 2

x11 + x21 + x31 = 3

x12 + x22 + x32 = 3

xi j ≥ 0 for i = 1, 2, 3, j = 1, 2

In this case, x11 = x12 = 1, x21 = x32 = 2, x22 = x31 = 0
is the unique solution. This example is a specific instance
of the Hitchcock transportation problem, generally de-
fined as follows:

minimize
p∑

i=1

q∑
j=1

ci j xi j

subject to
q∑

j=1

xi j = si , i = 1, . . . , p

p∑
i=1

xi j = d j, j = 1, . . . , q

xi j ≥ 0 for all i and j

Here si , d j and ci j are given for all i, j . (In our specific ex-
ample above, p = 3, q = 2, s1 = s2 = s3 = 2, d1 = d2 = 3,
c11 = c12 = c21 = c32 = 1, c22 = c31 = 2.) The linear equa-
tions form an underdetermined but sparse and well-
structured system.

The Hitchcock transportation problem is in turn an im-
portant particular case of the linear programming problem
(1.p.p.). The 1.p.p. is known in several equivalent forms,
one of which follows:

minimize
m∑

j=1

c j x j

subject to
m∑

j=1

ai j xi j = bi, i = 1, . . . , n

x j ≥ 0, j = 1, . . . , m

In this representation, the general 1.p.p. includes an un-
derdetermined system of linear equations complemented
with the minimization and nonnegativity requirements.
Solving the 1.p.p. can be reduced to a finite number of iter-
ations, each reduced to solving one or two auxiliary linear
systems of equations; such systems either have n equations
with n unknowns (in the simplex algorithms for 1.p.p.) or
are overdetermined, in which case their least-squares so-
lutions are sought (in ellipsoid algorithms, in Karmarkar’s

P1: GLM Final Pages

Encyclopedia of Physical Science and Technology EN008A-861 June 29, 2001 15:20

622 Linear Systems of Equations (Computer Science)

algorithm). The least-squares solutions to overdetermined
linear systems are studied in Sections II.E; IV.A; and IV.C.

D. Some Matrix Operations. Special Matrices

The study of linear systems [Eq. (1)] is closely related to
the study of matrices and vectors. In this section we shall
reduce n × n matrix inversion (which is theoretically im-
portant and has some practical applications, for instance,
in statistics) to solving n systems [Eq. (1)], where m = n.
We shall also list some special matrices and recall some
basic concepts of matrix theory.

Generally, a p × q array is called a p × q matrix; in par-
ticular p × 1 and 1 × p matrices are called vectors of di-
mension p. Deletion of any r rows and s columns for r < p
and s < q turns a p × q matrix into its (p − r) × (q − s)
submatrix. The coefficient matrix A of Eq. (1) has size
m × n; the extended matrix W has size m × (n + 1); the
last column of W is vector b of dimension m. The un-
knowns x1, x2, . . . , xn form a (column) vector x of dimen-
sion n. Of course, that notation may change; for instance,
in the next section we shall replace x by c and b by f.

The transpose of a matrix V is denoted by V T, so xT =
[x1, . . . , xn], x = [x1, . . . , xn]T. For a complex matrix
V = [vgh], its Hermitian transpose is defined V H = [v∗

hg],
v∗

hg being the complex conjugate of vhg.V T =V H for a real
V . A matrix V is called symmetric if V = V T and Her-
mitian if V = V H. For two column vectors u and v of the
same dimension p, their inner product (also called their
scalar product or their dot product), is defined as follows,

uTv = u1v1 + u2v2 + · · · + u pvp

This is extended to define the m × p product of an
m × n matrix A by an n × p matrix B, AB = [ai1b1k +
ai2b2k + · · · + ainbnk, i = 1, . . . , m; k = 1, . . . , p]; that is,
every row [ai1, . . . , ain] of A is multiplied by every col-
umn [b1k, . . . , bnk]T of B to form the m × p matrix AB.
For instance, if A = [1, 2], B = [1, 2]T, then AB = [5] is
a 1 × 1 matrix, B A = [1 2

2 4] is a 2 × 2 matrix, AB �= B A.
The m equations of Eq. (1) can be equivalently represented
by a single matrix–vector equation, Ax = b. For instance,
the system of Eq. (1) takes the following form,

10 14 0

−3 −4 6

5 2 5

x1

x2

x3

 =

7

4

6

 .

(For control, substitute here the solution vector [x1, x2,

x3]T = [0, 0.5, 1]T and verify the resulting equalities.)
Hereafter In denotes the unique n × n matrix (called the

identity matrix) such that AIn = A, In B = B for all the ma-
trices A and B of sizes m × n and n × p, respectively. All
the entries of In are zeros except for the diagonal entries,
equal to 1. (Check that I2 A = A for I2 = [1 0

0 1] and for ar-

bitrary A.) In the sequel, I (with no subscript) denotes the
identity matrix In for appropriate n; similarly, 0 denotes a
null matrix (filled with zeros) of appropriate size.

An n × n matrix A may (but may not) have its inverse,
that is, an n × n matrix X = A−1 such that X A = I . For
instance, A−1 = [1 −2

0 1] if A = [1 2
0 1]; but the matrix [2 2

1 1]
has no inverse. Matrices having no inverse are called sin-
gular. All the nonsquare matrices are singular. Linear sys-
tem Ax = b has unique solution x = A−1b if and only if
its coefficient matrix A is nonsingular. If X A = I , then al-
ways AX = I ; so computing the kth column of X = A−1

amounts to solving the system of Eq. (1) where b is the kth
coordinate vector whose kth entry is 1 and whose other
entries are zeros, k = 1, 2, . . . , n. Computing the inverse
of an n × n matrix A is equivalent to solving n such linear
systems with the common coefficient matrix A.

The maximum r , such that A has an r × r nonsingu-
lar submatrix, is called the rank of A and is denoted as
rank(A). An m × n matrix A has full rank if rank(A) =
min{m, n}.

Theorem 1. If the system of Eq. (1) is consistent, then
its general solution is uniquely defined by the values of
n − r free parameters, where r = rank(A).

The sum A + B = [ai j + bi j] and the difference
A − B = [ai j − bi j] are defined for two matrices A and
B of the same size; the product cA = Ac = [cai j] is de-
fined for a matrix A and a scalar c. The customary
laws of arithmetic (except for AB = B A) are extended
to the case where the operations are performed with
matrices, A + B = B + A, (A + B) + C = A + (B + C),
−A = (−1)A, (AB)C = A(BC), (A + B)C = AC + BC ,
C(A + B) = C A + C B, c(A + B) = cA + cB.

Further, (AB)T = BT AT, (AB)−1 = B−1 A−1, (A−1)T =
(AT)−1. Linear forms and linear equations can be defined
over matrices, say AX + BY = C , where A, B, C, X, Y
are matrices of appropriate sizes, A, B, C are given and
X, Y are unknown. Such a matrix equation can be also
rewritten as a system of linear equations, the entries of
X and Y playing the role of unknowns. If B = 0, C = I ,
we arrive at the matrix equation AX = I , which defines
X = A−1.

Finally, definitions of and the customary notation for
some special matrices used in special linear systems
[Eq. (1)] are given in Table I.

E. Approximating Data by Curves.
Overdetermined Linear Systems.
Normal Equations, Reduction to Linear
Programming Problems

In many applications we need to define a simple curve
(function) that approximates to (that is, passes near) a

P1: GLM Final Pages

Encyclopedia of Physical Science and Technology EN008A-861 June 29, 2001 15:20

Linear Systems of Equations (Computer Science) 623

TABLE I Customary Notation for Special Matrices

1. Diagonal, A = diag[a11, . . . , ann]: ai j = 0, unless i = j

2. Lower triangular, A = L: ai j = 0, unless i ≥ j

2a. Unit lower triangular: aii = 1 for all i

3. (Unit) upper triangular, A = U, A = R: The transpose of 2 (of item 2a)

4. Band with bandwidth (g, h): ai j = 0, unless g ≤ i − j ≤ h

4a. Tridiagonal: ai j = 0, unless −1 ≤ i − j ≤ 1

5. (Strictly) row-diagonally dominant: 2|aii | >
∑n

j=1 |ai j | for all i

6. (Strictly) column-diagonally dominant: 2|a j j | >
∑n

i=1 |ai j | for all j

7. Hermitian (real symmetric): A = AH(in real case, A = AT)

8. Positive definite: x̄H Ax̄ > 0 for all vectors x̄ �= 0̄

9. Unitary (real orthogonal), A = Q: AH A = I (real case, AT A = I)

10. Toeplitz: ai j = ai+1 j+1, for all i, j < n

11. Hankel: ai j = ai+1 j−1, for all i < n, j > 1

12. Vandermonde: ai j = ai−1
j for all i, j ; a j distinct

given set of points on a plane {(xi , fi), i = 1, . . . , N }. [The
objectives can be to compress 2 × N array representing
those points where N is large or to retrieve the information
and to suppress the noise or to replace a function f (x) by
an approximating polynomial, which can be computed at
any point using only few arithmetic operations.]

i : 1 2 3 4 5 6 7 8

xi : 0.1 0.2 0.3 0.5 0.7 1.0 1.4 2.0

fi : 0.197 0.381 0.540 0.785 0.951 1.11 1.23 1.33

A model example with eight points, where in fact fi =
tan−1 xi (in practice, hundreds or thousands of input points
are not an unusual case) is shown in the accompanying
tabulation. To find a straight line c0 + c1x passing through
all the eight points (xi , fi), we would have to satisfy the
following system of eight equations with two unknowns
c0 and c1, c0 + c1xi = fi , i = 1, . . . , 8. This is a typical
example of an overdetermined linear system Ac = f, that
has no solution. Every (overdetermined) linear system
Ac = f, however, has a least-squares solution vector c = c∗

minimizing the Euclidean norm of the residual vector
r = f − Ac, r = [r1, r2, . . . , rN]T, ‖r‖2 = (

∑N
i= j r2

i)1/2. In
our case, N = 8, and r = [r1, r2, . . . , r8]T, c = [c1, c2]T,
f = [0.197, 0.381, 0.540, 0.785, 0.951, 1.11, 1.23, 1.33]T,
and

A =
[

1 1 1 1 1 1 1 1

0.1 0.2 0.3 0.5 0.7 1.0 1.4 2.0

]T

In some cases a vector c is sought that minimizes another
norm of r (rather than Euclidean); but the minimization
of the Euclidean norm of r [or of a weighted Euclidean
norm (

∑N
i=1wi r2

i)1/2 for a fixed set of positive weights
w1, . . . , wN] is most customary because simple solution
methods are available. Computing a least squares solu-

tion c to an overdetermined linear system Ac = f is called
regression in statistics. When the computation is with fi-
nite precision, computing such a solution c is equivalent
to solving the system of normal equations. AT Ac = ATf.
In the previous example the normal equations take the
following form:[

8 6.2

6.2 7.84

] [
c0

c1

]
=

[
6.524

6.8081

]

The latter system defines the desired least-squares solu-
tion vector cT = [c0, c1] = [0.368119, 0.577265] (here the
entries of c are given with six decimals).

When the computation is done with finite precision,
using normal equations is not always recommended be-
cause for some matrices A, higher precision of compu-
tation is required in order to solve the system of normal
equations correctly. For example, let us consider the prob-
lem of least-squares fitting by a straight line, c0 + c1x , to
the set of data, shown in the accompanying tabulation.

i : 1 2 3 4

xi : 970 990 1000 1040

fi : 4 2 0 −3

Then, f = [4, 2, 0, −3]T,

AT =
[

1 1 1 1

970 990 1000 1040

]

which gives the following system AT Ac = ATf of normal
equations [

4 4000

4000 4002600

] [
c0

c1

]
=

[
3

2740

]

P1: GLM Final Pages

Encyclopedia of Physical Science and Technology EN008A-861 June 29, 2001 15:20

624 Linear Systems of Equations (Computer Science)

The solution c1 = −0.1, c0 = 100.75 defines the straight
line −0.1x + 100.75. Next, we assume that the compu-
tation is with chopping to four decimals, that is, every
number is a floating-point decimal number, and its frac-
tion (mantissa) is chopped to its four most significant dig-
its. We then arrive at c1 = −0.13, c0 = 130.7. The sub-
stantial error arises because of the large entries of AT A.
To counter this difficulty, we linearly transform the ba-
sis 1, x of the representation of the straight line into
the more suitable basis 1, x − 1000 and seek the straight
line c∗

0 + c∗
1(x − 1000). (That basis is in fact orthogo-

nal: The two vectors [1, 1, 1, 1] and [x1 − 1000, x2 −
1000, x3 − 1000, x4 − 1000] = [−30, −10, 0, 40], repre-
senting the values of the basis functions 1 and x − 1000
at x1, x2, x3, x4, are orthogonal to each other; that is,
their inner product equals −30 − 10 + 0 + 40 = 0). Us-
ing that basis we may rewrite the previous tabulation as
shown in the accompanying one here. We then arrive at

i : 1 2 3 4

xi − 1000: −30 −10 0 40

fi : 4 2 0 −3

the normal equations, AT Ac∗ = ATf, where

AT =
[

1 1 1 1

−30 −10 0 40

]
so that 4c∗

0 = 3, 2600c∗
1 = −260, c∗

0 = 0.75, and c∗
1 = c1 =

−0.1. This defines the desired straight line, c∗
0 + c∗

1(x −
1000) = 0.75 − 0.1(x − 1000) = −0.1x + 100.75. The
latter approach, with the orthogonalization of the basis
via its linear transformation, leads to the methods of QR-
factorization of a matrix A (see Section IV.A).

Our model examples of the approximation to the
given data by a straight line can be immediately ex-
tended to the approximation by algebraic polynomials
of higher degree, by trigonometric polynomials, and so
on. For instance, fitting by a quadratic curve c0 + c1x
+ c2x2 leads to an overdetermined system c0 + c1xi +
c2x2

i = fi , i = 1, . . . , N , of the form Ac = f, whose least-
square solution can be found by the usual methods. Here,
c = [c0, c1, c2]T, and A is a 3 × N matrix A = [x j

i , i = 1,

. . . , N , j = 0, 1, 2].
Minimizing the least deviation norm of the residual vec-

tor ‖r‖1 = ∑N
i=1|ri | is a little harder than regression. The

problem is equivalent to the linear programming problem
(1.p.p.) of the following form:

minimize ‖q‖1 =
n∑

j=1

qi

subject to q ≥ f − Ac, q ≥ −f + Ac

The latter inequalities imply that every coordinate qi of
the vector q is not less than |ri | = | fi − AT

i c| where AT
i

denotes the ith row of A.
Similarly, the minimization of the maximum norm of

r, ‖r‖∞ = max 1≤i≤N |ri |, is equivalent to the 1.p.p. of the
following form:

minimize q

subject to q ≥ fi − AT
i c

q ≥ − fi + AT
i c, i = 1, 2, . . . , N

The latter inequalities imply that q ≥ | fi − AT
i c| for all i .

III. GAUSSIAN ELIMINATION AND
TRIANGULAR FACTORIZATION

Gaussian elimination and its modifications are the most
customary direct algorithms for the general linear sys-
tem of Eq. (1), Ax = b. The subroutine versions usually
include pivoting and rely on triangular factorizations of
the coefficient matrix A; computing is performed with fi-
nite precision. We initially assume infinite precision and
no pivoting in order to facilitate the presentation. Sys-
tems with nonsquare matrices A are studied further in
Section IV; Section VI contains some special algorithms
for special systems [Eq. (1)] that are most important in
applications; and Section V contains further estimates
for time and space required to solve a general linear
system.

A. Solving Triangular Systems
by Back Substitution

Let A = [ai j] be an n × n upper triangular matrix; that is,
ai j = 0 if i > j (similarly, A is a lower triangular if ai j = 0,

where i < j). There can be two cases.

Case 1. All the diagonal entries aii are nonzero. In that
case, the system is nonsingular and has a unique solution.

EXAMPLE 5.

x1 + 2x2 − x3 = 3

−2x2 − 2x3 = −10

−6x3 = −18

Compute x3 = −18/(−6) = 3. Substitute this value into
the second equation and obtain −2x2 − 6 = −10, so
−2x2 = −4, x2 = 2. Substitute x2 = 2, x3 = 3 into the
first equation and obtain x1 + 4 − 3 = 3, x1 = 2. In gen-
eral, if A is an n × n triangular matrix, this back substitu-
tion algorithm can be written as follows.

P1: GLM Final Pages

Encyclopedia of Physical Science and Technology EN008A-861 June 29, 2001 15:20

Linear Systems of Equations (Computer Science) 625

For i = n, n − 1, . . . , 1

If aii = 0, end (the system is singular)

Else xi :=
(

bi −
n∑

j=i+1

ai j x j

)/
aii

The computation consists mostly of operations of the
form, c: = c + gh. The amount of computational work re-
quired to perform such an operation on a computer us-
ing a floating-point finite-precision arithmetic is called a
flop. The number of flops used is a customary measure
for the amount of work required in algorithms for sys-
tems [Eq. (1)]. Frequently, the terms of lower order are
ignored; for instance, we may say that the above back sub-
stitution algorithm requires n2/2 flops. In that algorithm,
operations are grouped into inner product computations;
computing inner products can be simplified on some serial
computers.

Case 2. Some diagonal entries are zeros. In that case
the system is singular, that is, inconsistent or has infinitely
many solutions (compare Theorem 1).

EXAMPLE 6.

0 ∗ x1 + 2x2 − x3 = 3

−2x2 − 2x3 = −10

−6x3 = −18

Back substitution shows an inconsistency: x3 = 3, x2 = 2,
4 − 2 = 3.

EXAMPLE 7.

x1 + 2x2 − x3 = 3

0 ∗ x2 − 2x3 = −6

−6x3 = −18

Back substitution yields x3 = 3; x2 is a free variable; x1 =
6 − 2x2.

B. Forward Elimination Stage
of Gaussian Elimination

Every system [Eq. (1)] can be reduced to triangular form
using the following transformations, which never change
its solutions:

1. Multiply equation i (row i of the extended matrix W)
by a nonzero constant.

2. Interchange equations i and k (rows i and k of W).
3. Add a multiple of equation i to equation k (of row i to

row k of W).

EXAMPLE 8.

10x1 + 14x2 = 7

−3x1 − 4x2 + 6x3 = 4

5x1 + 2x2 + 5x3 = 6

Step 1. Multiply the first equation by the multipliers
m21 = − 3

10 and m31 = 5
10 ; subtract the results from the sec-

ond and the third equations, respectively; and arrive at the
system

10x1 + 14x2 = 7

0.2x2 + 6x3 = 6.1

−5x2 + 5x3 = 2.5

Step 2. Multiply the second equation by the multiplier
m32 = −5/0.2 = −25 and subtract the results from the
third equation. The system becomes triangular:

10x1 + 14x2 = 7

0.2x2 + 6x3 = 6.1

155x3 = 155

For the general system [Eq. (1)], where m = n, the algo-
rithm can be written as follows.

ALGORITHM 1. FORWARD ELIMINATION. In-
put the n2 + n entries of the extended matrix W =
[wi j , i = 1, . . . , n; j = 1, . . . , n + 1] of the system of
Eq. (1), which occupies n × (n + 1) working array:

For k = 1, . . . , n − 1,

For i = k + 1, . . . , n,

wik : = wik/wkk

For j = k + 1, . . . , n + 1,

wi j : = wi j − wikwk j

In n − 1 steps, the diagonal entries wi i and the super-
diagonal entries wi j , i < j, of the working array W are
overwritten by the entries of the extended matrix U of
an upper triangular system equivalent to the original sys-
tem [Eq. (1)], provided that in the kth step the denomina-
tor wkk (called the pivot) is nonzero for k = 1, . . . , n − 1.
For general system Eq. (1), the algorithm requires about
n3/3 flops, that is, more than n2/2 flops used in back
substitution. The multipliers mik usually overwrite the
subdiagonal entries wik of the array (the previous contents
are no longer needed and are deleted). Thus, the space of
n2 + n units of an n × (n + 1) array suffices to solve the
general system Eq. (1), including the space for input and
output. Additional n2 (or n2 + n) units of space are pro-
vided to save the inputs A (and b̄) in some subroutines.

P1: GLM Final Pages

Encyclopedia of Physical Science and Technology EN008A-861 June 29, 2001 15:20

626 Linear Systems of Equations (Computer Science)

The entire computational process of forward elimination
can be represented by the sequence of n × (n + 1) ma-
trices W (0), . . . , W (n−1), where W (k−1) and W (k) denote
the contents of the working arrays before and after elim-
ination step k, respectively, k = 1, . . . , n − 1; W (0) = W,

whereas W (n−1) consists of the multipliers (placed under
the diagonal) and of the entries of U .

EXAMPLE 9. The sequence W (0), W (1), W (2) repre-
sents forward elimination for a system of three equations
of Example 1:

10 14 0 7

−3 −4 6 4

5 2 5 6

 →

10 14 0 7

−0.3 0.2 6 6.1

0.5 −5 5 2.5

→

10 14 0 7

−0.3 0.2 6 6.1

0.5 −25 155 155

The presented algorithm works if and only if the pivot
entry (k, k) is zero in none step k, k = 1, . . . , n − 1, or,
equivalently, if and only if for none k the (n − k) × (n − k)
principal submatrix of the coefficient matrix A is singular.
(A p × p submatrix of A is said to be the principal if it is
formed by the first p rows and by the first p columns of A.)
That assumption always holds (so the validity of the above
algorithm is assured) in the two important cases where A
is row or column diagonally dominant and where A is
Hermitian (or real symmetric) positive definite (compare
the list of special matrices in Section II.D). (For exam-
ple, the system derived in Section II.A is simultaneously
row and column diagonally dominant and real symmetric;
multiplication of all the inputs by −1 makes that system
also positive definite. The product V HV for a nonsingular
matrix V is a Hermitian positive definite matrix, which is
real symmetric if V is real.)

Next, we assume that in some step k the pivot entry
(k, k) is 0. Then we have two cases.

Case 1. The entries (k, k), (k + 1, k), . . . , (s − 1, k) are
zeros; the entry (s, k) is nonzero, where k < s ≤ n. In that
case interchange rows s and k, bringing a nonzero entry
into the pivot position; then continue the elimination.

EXAMPLE 10.

10 14 0 7

−3 −4.2 6 4

5 2 5 6

 →

10 14 0 7

−0.3 0 6 6.1

0.5 −5 5 2.5

→

10 14 0 7

0.5 −5 5 2.5

−0.3 0 6 6.1

Case 2. The pivot entry (k, k) and all the subdiago-
nal entries (s, k) for s > k equal 0. In that case continue
elimination, skipping the kth elimination step and leaving
the (k, k) entry equal to 0. For underdetermined systems,
apply complete pivoting (see Section III.C). Some sub-
routines end the computation in Case 2, indicating that
the system is singular.

EXAMPLE 11.

10 14 0 7 6

−3 −4.2 5 4 5

5 7 5 5 7

10 14 5 9 4

→

10 14 0 7 6

−0.3 0 5 6.1 6.8

0.5 0 5 1.5 4

1 0 5 2 −2

→

10 14 0 7 6

−0.3 0 5 6.1 6.8

0.5 0 5 1.5 4

1 0 1 0.5 −6

No row interchange is required in order to eliminate all
the subdiagonal nonzero entries in the second column in
Step 2.

The forward-elimination algorithm can be immediately
extended to overdetermined and underdetermined sys-
tems.

EXAMPLE 12. Forward elimination for an underde-
termined system:[

10 −7 1 0

−3 2 0 1

]
→

[
10 −7 1 0

−0.3 −0.1 0.3 1

]

Summarizing, forward elimination with pivoting re-
duces arbitrary linear system Eq. (1) to triangular form
and, respectively, to either Case 1 or Case 2 of the pre-
vious section (see the end of Section III.C for complete
classification).

Forward elimination and back substitution together are
called Gaussian elimination algorithm. There exist several
modifications of that algorithm. In one of them, Jordan’s,
the back substitution is interwoven throughout the elimi-
nation; that is, every pivot equation times appropriate mul-
tipliers is subtracted from all the subsequent and preceding
equations; this turns the system into diagonal form in n
elimination steps. [Each step, but the first, involves more
flops, so the resulting solution of the general system of
Eq. (1) becomes more costly.] In the case of systems of
two equations, Jordan’s version is identical to the canoni-
cal Gaussian elimination.

P1: GLM Final Pages

Encyclopedia of Physical Science and Technology EN008A-861 June 29, 2001 15:20

Linear Systems of Equations (Computer Science) 627

C. Gaussian Elimination Performed with
Finite Precision. Pivoting Policies.
Complete Pivoting for Singular Systems

Gaussian elimination, as presented in the previous sec-
tions, may easily fail in practical computations with fi-
nite precision, because such computations may greatly
magnify the round-off errors if the pivot entries are close
to 0.

EXAMPLE 13. Let the following sequence of work-
ing arrays represent Gaussian elimination performed on a
computer with chopping to five decimals (see Section II.E
about such chopping):

10 14 0 7

−3 −4.198 6 3.901

5 2 6 7

→

10 14 0 7

−0.3 0.002 6 6.001

0.5 −5 6 3.5

→

10 14 0 7

−0.3 0.002 6 6.001

0.5 −2500 15006 15005

Solving the resulting upper triangular system, we obtain
the following approximation to the solution:

x3 = 0.99993, 0.002x2 + 6 ∗ (0.99993) = 6.001

x2 = 0.75, 10x1 + 14 ∗ (0.75) = 7

x1 = −0.35

This greatly differs from the correct solution, x1 = 0,

x2 = 0.5, x3 = 1, because the division (at the second elim-
ination step) by the small diagonal entry 0.002 has mag-
nified the round-off errors.

The algorithm can be made more stable (less sensitive
to the errors) if the rows of working array are appropriately
interchanged during the elimination. First, the following
policy of row interchange is called (unscaled) partial piv-
oting. Before performing the kth elimination step, choose
(the least) i such that |wik | is maximum over all i ≥ k and
interchage rows i and k. Row i is called pivotal, the en-
try wik is called the pivot entry of step k. Keep track of
all the row interchanges. In some subroutines row inter-
changes are not explicit but are implicitly indicated by
pointers. (Each step k may be preceded by scaling the
equations by factors of 2s on binary computers to make
max j |wi j | in all rows i ≥ k lying between 1 and 2. Such
scaling is expensive, however, so it is rarely repeated for
k > 1.)

ALGORITHM 2. FORWARD ELIMINATION WITH
UNSCALED PARTIAL PIVOTING.

For h = 1, . . . , n

ph = h (initialization)

For k = 1, . . . , n − 1

Find the smallest i ≥ k such that |wik | ≥ |wlk |
for all l ≥ k

If wik = 0, end (A is singular)

Else swap the contents of pk and pi

Swap rows k and i of W

For i = k + 1, . . . , n

wik:= wik/wkk

For j = k + 1, . . . , n + 1

wi j:= wi j − wikwk j

If wnn = 0, end (A is singular).

In our previous example, partial pivoting after the first
elimination step would change the working array W as
follows:

10 14 0 7 1

−0.3 0.002 6 6.001 2

0.5 −5 6 3.5 3

→

10 14 0 7 1

0.5 −5 6 3.5 3

−0.3 0.002 6 6.001 2

Here, the last column is the vector p, which monitors
the row interchanges. Further computation with chopping
to five decimals would give the correct solution, x3 = 1,

x2 = 0.5, x1 = 0.
Next, we discuss Complete (total) pivoting. Both rows

and columns of W can be interchanged in elimination step
k to bring the absolutely maximum coefficient in the left
side of the last n − k + 1 equations of the current sys-
tem to the pivot position (k, k); that is, after that inter-
change |wkk | ≥ maxi j=k,...,n|wi j |. Two auxiliary vectors
[1, 2, . . . , n] are formed to monitor the row and column
interchanges.

EXAMPLE 14. Here are the pivot entries in the first elim-
ination step for the system

200x1 − 1000x2 = 2200, x1 − x2 = 0

1. For unscaled partial pivoting, a11 = 200.
2. For complete pivoting, a12 = −1000.

Solution of some systems [Eq. (1)] (called ill-condi-
tioned) is sensitive to input errors and to round-off errors,

P1: GLM Final Pages

Encyclopedia of Physical Science and Technology EN008A-861 June 29, 2001 15:20

628 Linear Systems of Equations (Computer Science)

no matter which algorithm is applied (see Sections III.I
and III.J). For other systems (well-conditioned, such as in
the first example of this section), the output errors in the
presence of round-off depend on the algorithm, in particu-
lar, on pivoting. Theoretical estimates (Section III.J) show
that complete pivoting prevents the solution from any sub-
stantial magnification of input and round-off errors in the
case of well-conditioned systems. Practical computations
show that even unscaled partial pivoting has similar prop-
erties for almost all well-conditioned systems [although it
fails for some specially concocted instances of Eq. (1)].
Unscaled partial pivoting requires only n(n − 1)/2 com-
parisons versus about n3/3 in complete pivoting; therefore
in practice, safe and inexpensive unscaled partial pivoting
is strongly preferred, except for underdetermined systems,
for which Gaussian elimination with complete pivoting or
the methods of Section IV.B are recommended.

The triangular systems, to which the original systems
[Eq. (1)] are reduced by forward elimination with com-
plete pivoting, can be completely classified. We assume
infinite precision of computation. Then there can be ex-
actly two cases. (The reader may use examples from
Section III.A.)

Case 1. All the diagonal (pivot) entries are nonzero;
the triangular system has exactly r equations, r = rank
(A) ≤ n. In that case, xr+1, . . . , xn are free variables; for
an arbitrary set of their values, back substitution defines
unique set of values of x1, . . . , xr satisfying the original
system of Eq. (1), (compare Theorem 1). If r = n, the
system of Eq. (1) is nonsingular and has a unique solution.

Case 2. The triangular system includes one or more
equations of the form, 0 = b∗

i , where b∗
i is a constant. If

at least one of those constants is nonzero, the original
system is inconsistent. Otherwise, those equations become
the identities, 0 = 0 and can be deleted. The remaining
triangular system belongs to Case 1.

D. Solving Several Systems with Common
Coefficient Matrix. Matrix Inversion

Matrix inversion and many other problems are reduced
to solving several linear systems [Eq. (1)] with the same
coefficient matrix A and distinct vectors b.

EXAMPLE 15. The two systems represented by their
working arrays

W =
[

10 −7 1

−3 2 0

]
, W∗ =

[
10 −7 0

−3 2 1

]

define the inverse A−1 of their common coefficient matrix
A. Represent these two systems by a 2 × 4 working array

and apply forward elimination to that array (compare also
Example 12 of Section III.B):[

10 −7 1 0

−3 2 0 1

]
→

[
10 −7 1 0

−0.3 −0.1 0.3 1

]

Both systems have been simultaneously reduced to upper
triangular form, so back substitution immediately gives
the solutions x2 = −3, x1 = −2 to the first system and
x2 = −10, x1 = −7 to the second. This defines the inverse
matrix A−1 = [−2 −7

−3 −10]. (Verify that AA−1 = A−1 A = I

for A = [10 −7
−3 2].)

In the elimination stage for k systems with a common
m × n matrix A (as well as for an underdetermined system
with n = m + k − 1), m3/3 + km2/2 flops and (k + m)m
units of storage space are used; for matrix inversion k = m,
it is easier to solve the system Ax = b than to invert A.
The back substitution stage involves km2/2 flops for the k
systems and (k + m/2)m for the underdetermined system.

E. Block Matrix Algorithms

Arithmetic operations with matrices can be performed the
same as those with numbers, except that singular matrices
cannot be inverted, and the communitive law no longer
holds for multiplications (see Section II.D). If the coef-
ficient matrix is represented in block matrix form, as in
Eq. (3), then we may perform block Gaussian elimination
operating with matrix blocks the same as with numbers
and taking special care when divisions and/or pivoting are
needed. The block version can be highly effective. For in-
stance, we represent the linear system of Section II.A as
follows [compare Eq. (3)]:[

B2 I2

I2 B2

] [
y
z

]
=

[
c
d

]
, c =

[−u6 − u16

−u7 − u9

]

d =
[−u13 − u15

−u10 − u12

]
, B2 =

[−4 1

1 −4

]

where I2 is the 2 × 2 identity matrix, and y, z are two-
dimensional vectors of unknowns. Then block forward
elimination transforms the extended matrix as follows:[

B2 I2 c
I2 B2 d

]
→

[
B2 I2 c

B−1
2 C2 f

]

Here, C2 = B2 − B−1
2 and f = d − B−1

2 c. Block back sub-
stitution defines the solution vectors

z = C−1
2 f, y = B−1

2 (c − z) = B−1
2

(
c − C−1

2 f
)

The recent development of computer technology greatly
increased the already high popularity and importance
of block matrix algorithms (and consequently, of ma-
trix multiplication and inversion) for solving linear sys-
tems, because block matrix computations turned out to be

P1: GLM Final Pages

Encyclopedia of Physical Science and Technology EN008A-861 June 29, 2001 15:20

Linear Systems of Equations (Computer Science) 629

particularly well suited and effective for implementation
on modern computers and supercomputers.

F. PLU Factorization. Computing
the Determinant of a Matrix

If Gaussian elimination requires no pivoting, then by the
end of the elimination stage, the working array contains a
lower triangular matrix L (whose subdiagonal entries are
filled with the computed multipliers and whose diagonal
entries are 1’s) and the extended matrix Û = A(n−1) of
the upper triangular system, equivalent to Eq. (1). The
coefficient matrix U of that system is an upper triangular
submatrix of Û . In Example 8,

L =

1 0 0

−0.3 1 0

0.5 −25 1

 ,

Û =

10 14 0 7

0 0.2 6 6.1

0 0 155 155

 ,

U =

10 14 0

0 0.2 6

0 0 155

For that special instance of Eq. (1), W = LÛ , A = LU ;
similarly for the general system of Eq. (1), unless pivot-
ing is used. Moreover, Gaussian elimination with partial
pivoting can be reduced to a certain interchange of the
rows of W (and of A), defined by the output vector
p (see Algorithm 2 in Section III.C), and to Gaussian
elimination with no pivoting. Any row interchange of W
is equivalent to premultiplication of W by an appropri-
ate permutation matrix P−1 (say, if P−1 = [0 1

1 0], then
rows 1 and 2 are interchanged), so Gaussian elimination
with pivoting computes matrices P, L , and Û such that
P−1W = LÛ , P−1 A = LU, W = P LÛ , A = P LU ; that
is, the LU factors of P−1 A and the LÛ factors of P−1W
are computed. P LU factorization is not unique, it depends
on pivoting policy; the elimination with no pivoting gives
P = 1, W = LÛ ; A = LU .

When P LU factors of A are known, solving the system
Ax = b is reduced to the interchange of the entries of b
and to solving two triangular systems

Ly = P−1b, Ux = y (4)

for the total cost of n2 flops. The back substitution of
Section III.A saves n2/2 of those flops, but computing the
P LU factors of A saves n2/2 of the “elimination flops,”
because the last column of the matrix Û need not be com-
puted. In fact, two ways of solving the system Ax = b, that
is, via P LU factorization and via Gaussian elimination of

Sections III.A and III.B lead to exactly the same compu-
tations (within the order of performing the operations). In
subroutine packages, the solution based on P LU factor-
ization is usually preferred. Among its many applications,
P LU factorization of A leads to very effective computa-
tion of the determinant of an n × n matrix A, det A = det P
det U = (det P)u11u22, . . . , unn, where u11, . . . , unn de-
notes the diagonal entries of U and where det P = (−1)s, s
being the total number of all the row interchanges made
during the elimination.

Gaussian elimination applied to overdetermined or un-
derdetermined systems also computes P LU factoriza-
tions of their matrices (see Sections IV.A–C about some
other important factorizations in cases m �= n).

G. Some Modifications of LU Factorization.
Choleski’s Factorization. Block
Factorizations of a Matrix

If all the principal submatrices of an n × n matrix A
are nonsingular, LU factors of A can be computed; fur-
thermore, L DMT factors of A can be computed where
DMT = U , D is a diagonal matrix, D = diag (u11, . . . ,

unn), so both L and MT are unit triangular matrices (hav-
ing only 1’s on their diagonals). If the L DMT factors of
A are known, solving the system Ax = b can be reduced
to solving the systems Ly = b, Dz = y, MTx = z, which
costs only n2 + n flops, practically as many as in case
where the LU factors are known. The following modifica-
tion of Gaussian elimination computes the L DMT factors
of A.

ALGORITHM 3. LDMT FACTORIZATION

For k = 1, . . . , n

For g = 1, . . . , k − 1

ug: = aggagk

vg: = akgagg

akk : = akk −
k−1∑
j=1

akj u j

If akk = 0, end (A has no L DMT-factors)
Else

For i = k + 1, . . . , n,

aik : =
(

aik −
k−1∑
j=1

ai j u j

)/
akk,

aki : =
(

aki −
k−1∑
j=1

v j a jk

)/
akk

Algorithm 3 requires n3/3 flops and n2 + 2n units of
storage space. It keeps low the number of updatings of the

P1: GLM Final Pages

Encyclopedia of Physical Science and Technology EN008A-861 June 29, 2001 15:20

630 Linear Systems of Equations (Computer Science)

values ai j store in the working array so that each ai j is
updated only in a single inner loop of the form akk : = akk −∑

j ak j u j or aik : = (aik − ∑
j ai j u j)/akk, or aki : = (aki −∑

j v j a ji)/akk , where computing inner products is the
main operation (easy on many serial computers).

Algorithm 3, for LDMT factorization, is a simple ex-
tension of Crout’s algorithm, which computes LD and
MT, and of Doolittle’s algorithm, which computes L
and U = DMT. If A is symmetric and has only nonsin-
gular principal submatrices, then L = M , so Algorithm
3 computes the LDLT factorization of A. If A is sym-
metric and positive definite, then all the diagonal en-
tries of D are positive, so the matrix

√
D = diag [

√
d11,

. . . ,
√

dnn] can be computed; then Choleski’s factoriza-
tion, A = GGT, G = L

√
D can be computed. Algorithm

4 computes Choleski’s factorization using n3/6 flops and
only n(n + 1)/2 units of storage space.

ALGORITHM 4. CHOLESKI’S FACTORIZATION

For k = 1, . . . , n

akk : =
(

akk −
k−1∑
j=1

a2
k j

)1/2

If akk = 0, end (A is not positive definite)
Else

For i = k + 1, . . . , n

aik : =
(

aik −
k−1∑
j=1

ai j ak j

)/
akk

For complex Hermitian matrices, the factorizations
L DLT and GGT are replaced by L DLH and L LH, re-
spectively. The factorizations of A presented can be gen-
erally extended to the case where A is a block matrix,
provided that the given and the computed block matrices
can be inverted as required. For instance, let A be a 2 × 2
block-matrix,

A =
[

A11 A12

A21 A22

]
(5)

Then,

A =
[

I 0

A21 A−1
11 I

] [
A11 0

0 B

] [
I A−1

11 A12

0 I

]
(6)

A−1 =
[

I −A−1
11 A12

0 I

] [
A−1

11 0

0 B−1

] [
I 0

−A21 A−1
11 I

]

(7)

provided that B = A22 − A21 A−1
11 A12 and A11 and B are

nonsingular. This is the block version of the LDMT factor-
ization for A and of the respective triangular factorization
of A−1.

H. Error and Residual Vectors. Vector
and Matrix Norms. Condition Number

The error of an approximation x∗ to the solution x to
Eq. (1) is measured by the error vector, e = x − x∗. The
error magnitude is measured by a norm ‖e‖ of e and by
the relative error norm, ‖e‖/‖x‖; e is not known until x
is computed; as a substitution, the residual vector r, its
norm ‖r‖, and the relative residual norm ‖r‖/‖b‖ are
used. Here, r = r(x∗) = b − Ax∗, so r = Ae, e = A−1r if
A is nonsingular; a vector norm is nonuniquely defined by
the following properties:

1. ‖v‖ ≥ 0 for all vectors v, ‖v‖ = 0 if and only if v is a
null vector, filled with zeros.

2. ‖qv‖ = |q| ∗ ‖v‖ for all vectors v and all complex
numbers q.

3. ‖u + v‖ ≤ ‖u‖ + ‖v‖ for all pairs of vectors u and v
of the same dimension.

Maximum (Chebyshev’s, uniform) norm, ‖v‖∞ = maxi

|vi | and Hölder’s norms, ‖v‖p = (
∑

i|vi |p)1/p, for p = 1
(least deviation norm) and p = 2 (Euclidean norm) are
most customary vector norms. (Here, v = [vi] is a vector.)

Every vector norm can be extended to its subordinate
matrix norm,

‖A‖ = max
v�=0

‖Av‖/‖v‖ (8)

Chebyshev’s and Hölder’s norms define the matrix norms
‖A‖∞, ‖A‖p. Also, the Frobenius norm (F norm) is
a customary matrix norm, ‖A‖F = (

∑m
i=1

∑n
j=1|ai j |2)1/2,

where A is an m × n matrix [ai j]. All the matrix norms
have properties 1–3 (see above) of the vector norms (where
v and u are replaced by matrices); the subordinate matrix
norms satisfy also the inequalities

‖AB‖ ≤ ‖A‖ ∗ ‖B‖, ‖Av‖ ≤ ‖A‖ ∗ ‖v‖ (9)

for all matrices A, B and vectors v such that AB and Av
are defined. Here are some further properties of matrix
norms.

Theorem 2. For any m × n matrix A = [ai j],

‖A‖∞ = max
i

∑
j

|ai j |,

‖A‖1 = max
j

∑
i

|ai j |,

‖A‖2
2 ≤ ‖A‖1 ∗ ‖A‖∞

‖A‖∞
/√

n ≤ ‖A‖2 ≤ √
m‖A‖∞

‖A‖1
/√

m ≤ ‖A‖2 ≤ √
n‖A‖1

max
i j

|ai j | ≤ ‖A‖2 ≤ √
mn max

i j
|ai j |,

‖A‖2 ≤ ‖A‖F ≤ √
n‖A‖2

P1: GLM Final Pages

Encyclopedia of Physical Science and Technology EN008A-861 June 29, 2001 15:20

Linear Systems of Equations (Computer Science) 631

The condition number of A [cond(A) = ‖A‖∗‖A−1‖ if
A is nonsingular, cond(A) = ∞ otherwise] is used in the
error-sensitivity analysis for Eq. (1). Cond(A) depends on
the choice of a matrix norm, but cond(A) ≥ ‖I‖ ≥ 1 in any
of the cited norms.

EXAMPLE 16.

A =
[

10 −7

−3 2

]
, A−1 =

[−2 −7

−3 −10

]
‖A‖1 = 17; ‖A−1‖1 = 13,

cond1(A) = ‖A‖1‖A−1‖1 = 221

Hereafter, we shall use only the three subordinate matrix
norms, ‖A‖1 (1-norm), ‖A‖2 (2-norm), ‖A‖∞ (maximum
norm). For the subordinate matrix norms, the equations
Ax = b, x = A−1b, r = Ae, e = A−1r imply that

(1/cond(A))(‖r‖/‖b‖) ≤ ‖e‖/‖x‖
≤ cond(A)‖r‖/‖b‖ (10)

cond(A) ≥ (‖e‖/‖x‖)/(‖r‖/‖b‖) (11)

I. Sensitivity of Linear Systems to Input Errors

The solution to a linear system can be sensitive to input
errors even if the computations are performed with infinite
precision.

EXAMPLE 17.[
780 563

913 659

] [
x1

x2

]
=

[
217

254

]

The correct solution is x1 = 1, x2 = −1. For the approx-
imation x∗

1 = 0.341, x∗
2 = −0.087, we have the error and

the residual vectors

e = [0.659, −0.913]T r = [−0.001, 0]T

so for that specific matrix, the addition of 0.001 to b2,
which is a very small perturbation of the vector b =
[217; 254]T, changes the solution from x = [1, −1]T

to x∗ = [0.341, −0.087]T. Furthermore, ‖e‖∞ = 0.913,

‖x‖∞ = 1, ‖r‖∞ = 10−3, ‖b‖∞ = 254, so Eq. (11) implies
that

cond∞(A) ≥ 0.913 ∗ 254 ∗ 103 > 0.2 ∗ 106

Thus, in that example the linear system is ill-conditioned
(its coefficient matrix A has a large condition number)
and is sensitive to the input errors even if the computation
is performed with infinite precision. Systems like Eq. (1)
are not very sensitive to the input errors if the condition
number of A is not large (then the system is called well
conditioned). The latter fact follows from the next pertur-
bation theorem, which bounds the output errors depending
on the perturbation of inputs (on the input error) and on
cond(A).

Perturbation Theorem. Let A, E be n × n matrices, x, e,
b, and ∆ be n-dimensional vectors, such that Ax = b,

(A + E)(x − e) = b +∆, cond(A)‖E‖ ≤ ‖A‖. Then,

‖e‖
‖x‖ ≤ cond(A)

1 − cond(A)‖E‖/‖A‖
(‖E‖

‖A‖ + ‖∆‖
‖b‖

)
If ∆= 0, then ‖e‖/‖x − e‖ ≤ cond(A)‖E‖/‖A‖.

Remark 1. The cond(AT A) may be as large as
(cond(A))2, so the transition from the system of Eq. (1) to
AT Ax = ATb is not generally recommended, even though
the latter system is symmetric.

J. Sensitivity of Algorithms for Linear
Systems to Round-Off Errors

The output errors may also be influenced by the round-off
errors. The smaller such an influence, the higher numeri-
cal stability of the algorithm, which is a subject of major
concern to users. J. H. Wilkinson applied his nontrivial
techniques of backward error analysis to estimate that in-
fluence in cases where Gaussian elimination was applied.
It turned out that the resulting output error bounds were
the same as if the output errors stemmed entirely from
some input errors. (This result is easily extended to com-
puting LDMT factorization and Choleski’s factorization.)
To state the formal estimates, we define (a) the matrix |V |
of the absolute values of the entries of a matrix V = [vi j],
so |V | = [|vi j |]; and (b) the unit round-off u for a given
computer, u only depends on a floating-point finite pre-
cision (of d digits with a base β) u being the minimum
positive value such that the computer represents 1 + u and
1 with finite precision as two distinct values; u < β1−d .
The desired estimates can be derived by analyzing
the expressions aik = ∑s

j=0 li j u jk, s = min{i, k}, where
L = [li j], U = [u jk], u ji = li j = 0 if j > i, lii = 1 for all i,
A = [ai j], A = LU.

Theorem 3. Let L∗, U ∗, and x∗ denote approximations
to the LU -factors of A and to the solution x to Ax = b
computed on a computer with unit round-off u. Then

|L∗U ∗ − A| ≤ 3 un{|A| + |L∗| ∗ |U ∗|}
(A − E)x∗ = b where |E | ≤ un(3|A|+ 5|L∗| ∗ |U ∗|}; here
and hereafter the values of an order of 0(u2) are ignored.

If PLU factorization of A has been computed, it suf-
fices to replace A by P A−1in Theorem 3. With pivoting,
the entries of |L|∗ are bounded by 1, so ‖L∗‖∞ ≤ n, and
furthermore

‖E‖∞ ≤ ν
{
3‖A‖∞ + 5n‖U ∗‖∞

}
(12)

In the case where complete pivoting is applied, ‖U ∗‖∞
can be estimated by using Wilkinson’s bound,

max
i j

|ui j | ≤
(
2 · 31/2. . . n1/(n−1)n

)1/2
max

i j
|ai j | (13)

P1: GLM Final Pages

Encyclopedia of Physical Science and Technology EN008A-861 June 29, 2001 15:20

632 Linear Systems of Equations (Computer Science)

Many years of computational practice have convinced us
that the latter bound is almost always pessimistic, even
where unscaled partial pivoting is applied. The latter ob-
servation and the perturbation theorem of Section III.I
imply that Gaussian elimination with complete pivoting
never (and with partial pivoting rarely) greatly magnifies
the input or round-off errors, unless the system of Eq. (1) is
ill-conditioned, so that Gaussian elimination with pivoting
is quite stable numerically. This analysis can be extended
to some block matrix algorithms, in particular, to the block
factorization (5)–(7) for Hermitian (real symmetric) and
positive definite matrices A.

K. Iterative Improvement of Computed
Solution and Condition Estimation

Let good approximations L∗U ∗ to the LU factors of A =
LU be computed. Then set x(0) = e(0) = 0, r(0) = b, and
successively compute r(i + 1) = r(i) − Ae(i), in n2 flops;
e(i + 1) from L∗U ∗e(i + 1) = r(i + 1), in n2 flops
[see Eq. (4)]; x(i + 1) = x(i) + e(i + 1), in n flops, for
i = 0, 1, 2, If the computations are done with infi-
nite precision and if A is well conditioned, say, if 3
cond(A)‖A − L∗U ∗‖ < ‖A‖, then it can be shown that
x(i + 1) rapidly converges to the solution x to Ax = b.
Moreover, it can be shown that it is sufficient to use the
d-bit precision with d > log2 cond(A) while computing
e(i) and to use the (double) 2d-bit precision while com-
puting r(i + 1) in the above algorithm in order to assure
that every iteration decreases the error ‖x − x(i)‖ by a con-
stant factor, c, 0 < c < 1. Thus, more and more correct
digits of x are computed with each new iteration.

That algorithm of iterative improvement (by J. H.
Wilkinson) can be extended to the case where an approxi-
mation C to A is available such that ‖C−1 A − I‖ is suffi-
ciently small and the system Ce = r can be quickly solved
for e. In particular C = L∗U ∗ was implicitly defined above
by its factors L∗ and U ∗. Since the progress in iterative
improvement to x depends on cond(A), this suggests using
the same algorithm of iterative improvement as an effec-
tive heuristic condition estimator. Indeed, to estimate the
progress of iterative improvement, we only need an order
of n2 flops, whereas computing cond(A) generally requires
us to invert A and costs more than n3 flops.

IV. ORTHOGONAL FACTORIZATION
AND SINGULAR LINEAR SYSTEMS

Solving linear systems via orthogonal factorization of the
coefficient matrix is a stable method, particularly effective
for singular and ill-conditioned linear systems.

A. Application to Overdetermined Systems

We again consider computing a least-squares solution
to an overdetermined linear system, Ac = f (see Sec-
tion II.E). We assume that A is an m × n matrix. The
problem is equivalent to computing solution to the nor-
mal equations. AT Ac = ATf, which amounts to the re-
quirements that ∂(‖r(c)‖2

2)/∂c j = 0 for all j , where
r(c) = f − Ac is the residual vector, c = [c0, . . . , cn]T, and
‖v‖2

2 = ∑
j v2

j . The symmetric matrix AT A can be com-
puted in mn2/2 flops. The matrix AT A is positive def-
inite if it is nonsingular; then the normal equations can
be solved via Choleski’s factorization in n3/6 flops, so
computing a least-squares solution to Ac = f costs about
0.5n2(m+n/3) flops. The best methods of orthogonal fac-
torization require about n2(m − n/3) flops, but they are
substantially more stable and can also be extended to the
case of singular AT A. Iterative improvement of computed
approximations to a least-squares solution to Ac = f is pos-
sible based on the following equivalent representation of
the normal equations:[

I A

AT 0

] [
r
c

]
=

[
f
0

]

Remark 2. The problem of minimizing ‖f − Ac‖2 can be
immediately extended to the problem (called the weighted
least-squares problem) of minimizing ‖D(f − Ac)‖2 for
a diagonal matrix D = diag[d1, . . . , dm] with positive en-
tries on the diagonal. The methods of solution remain the
same, they are just applied to the system (D A)c = Df. In
Section II.E, we transformed the specific overdetermined
system Ac = f, with

AT =
[

1 1 1 1

970 990 1000 1040

]

fT = [4, 2, 0, −3], into the system AUc∗ = f, such that
c = Uc∗,

c0 = c∗
0 − 1000∗

1, c1 = c∗
1

U =
[

1 −1000

0 1

]
;

(AU)T =
[

1 1 1 1

−30 −10 0 40

]
,

(AU)T AU =
[

4 0

0 2600

]

This changed the normal equations from the system
4c0 + 4000c1 = 3, 4000c0 + 4002600c1 = 2740 to the
much more simple and more stable system, 4c∗

0 = 3, 2600
c∗

1 = −260. Such a trick can be extended to the general
overdetermined system Ac = f if a matrix U can be

P1: GLM Final Pages

Encyclopedia of Physical Science and Technology EN008A-861 June 29, 2001 15:20

Linear Systems of Equations (Computer Science) 633

computed such that (AU)T AU is a nonsingular diagonal
matrix. It is customary to apply that approach seeking
R = U−1 (rather than U) such that A = QR, QTQ is
diagonal (or, furthermore, QTQ = I) and R is an n × n
upper triangular matrix. When such QR factors of A
have been computed, the normal equations, AT Ac = ATf,
can be immediately simplified as follows. We sub-
stitute A = QR, AT = RTQT, QTQ = I in the system
ATAc = ATf and arrive at the system RTRc = RTQTf.

Case 1. AT A is nonsingular. Then, all the diagonal en-
tries of RT are nonzeros, and the system can be premul-
tiplied by (RT)−1, reduced to the upper triangular system
Rc = QTf, and then solved by back substitution.

Case 2. AT A is singular (see Section IV.C).

Algorithm 5 computes QR factorization of A using mn2

flops and n(m + n/2) space (A is overwritten by Q and
a.h denotes column h of A).

ALGORITHM 5 (MODIFIED GRAM–SCHMIDT).

For h = 1, . . . , n

rhh : = ‖a.h‖2

For i = 1, . . . , m,

aih : = aih/rhh

For j = h + 1, . . . , n

rhj : =
m∑

i=1

aihai j

For i = 1, . . . , m

ai j : = ai j − aihrhj

However, a faster algorithm, also completely stable
(called the Householder transformation or Householder
reflection), computes R and QTf using n2(m − n/3) flops
and mn space. The algorithm can be used for the more
general purpose of computing an m × m orthogonal matrix
Q = Qm,m and an m × n upper triangular matrix R = Rm,n

such that A = QR, QT Q = QQT = I . Previously we con-
sidered Q R factorization, where Q had size m × n and
R had size n × n. Such QR factors of A can be ob-
tained by deleting the last m − n columns of Qm,m and
the last m − n rows of R (those last rows of R form a
null matrix, for R is upper triangular). Householder trans-
formation of A into R is performed by successive pre-
multiplications of A by the Householder orthogonal ma-
trices Hk = I − 2vkvT

k /vT
k vk, k = 1, 2, . . . , r, where r ≤ n,

and usually r = n. The vector vk is chosen such that the
premultiplication by Hk makes zeros of all the subdiagonal
entries of column k of the matrix Ak = Hk−1 Hk−1. . . H1 A
and does not affect its columns 1, 2, . . . , k − 1. Such a
choice of v(k) for k = 1, 2 is shown below for the matrix A

of our previous example. Here is the general rule. Zero the
first k − 1 entries of column k of Ak and let a(k) denote the
resulting vector. Then vk = a(k) ± ‖a(k)‖2i(k) where i(k)
is the unit coordinate whose kth entry is 1 and whose other
entries are zeros; the sign + or − is chosen the same as
for the entry k of a(k) (if that entry is 0, choose, say, +)

Remark 3. A modification with column pivoting is some-
times performed prior to premultiplication by Hk for each
k in order to avoid possible complications where the vec-
tor a(k) has small norm. In that case, column k of A is
interchanged with column s such that s ≥ k and ‖a(s)‖2

is maximum. Finally, QR factors are computed for the
matrix AP , where P is the permutation matrix that moni-
tors the column interchange. Column pivoting can be per-
formed using O(mn) comparisons.

When only the vector QTf and the matrix Rm·n must
be computed, the vector f is overwritten by succes-
sively computed vectors H1f, H2 H1f, . . . , and the matri-
ces H1, H2, . . . , are not stored. If the matrix Q is to be
saved, it can be either explicitly computed by multiply-
ing the matrices Hi together [Q = (Hr Hr−1 . . . H1)T] or
implicitly defined by saving the vectors v1, v2, . . . , vr .

EXAMPLE 18. HOUSEHOLDER TRANSFORMA-
TION WITH NO COLUMN PIVOTING. For the matrix
A of Example 17, vT

1 = [3, 1, 1, 1], so

AT
1 =

[−2 0 0 0

−2000 0 10 50

]
,

vT
2 = [0,

√
2600, 10, 50],

AT
2 =

[−2 0 0 0
−2000 −√

2600 0 0

]

Givens transformation (Givens rotation) is sometimes
applied to compute QR factors of A, although it requires
2n2(m − n/3) flops and seems generally inferior to the
Householder transformation. The Givens’ method uses
successive premultiplications of A by rotation matrices
that differ from the identity matrix I only in their 2 × 2 sub-
matrices of the following form, [c d

−d c], where c2 + d2 = 1.
Each such premultiplication zeros a new entry of A.

B. Computing the Minimum 2-Norm Solution
to an Underdetermined System

Gaussian elimination with complete pivoting solves an
underdetermined system Ax = b with an m × n matrix
A, m ≤ n, in 0.5m2(n − m/3) flops, but does not define
the unique solution having minimum 2-norm. The solu-
tion having minimum 2-norm can be computed by us-
ing m2(n − m/3) flops as follows. Apply the Householder
transformation with column pivoting (see Remark 3) to

P1: GLM Final Pages

Encyclopedia of Physical Science and Technology EN008A-861 June 29, 2001 15:20

634 Linear Systems of Equations (Computer Science)

the transposed matrix AT and compute its factorization
ATP = QR, where

R =
[

R11 R12

0 0

]

and R11 is an r × r nonsingular triangular matrix, r =
rank(A), Q = [Q1, Q2], and Q1 is a square matrix. Then
the minimum 2-norm solution x to the system Ax = b can
be computed,

x = Q1y,

[
RT

11

RT
12

]
y = P−1b

unless the latter system (and then also the system Ax = b)
is inconsistent.

C. Applications to Overdetermined
Systems of Deficient Rank

Householder transformation with column pivoting can be
applied to a matrix A in order to compute the least-squares
solution to Ac = f even where A does not have full rank,
that is, where r = rank(A) < n ≤ m. That algorithm first
computes the factorization AP = QR where

R =
[

R11 R12

0 0

]

and R11 is an r × r nonsingular upper triangular matrix.
Then the general solution to AT Ac = ATf (that is, the
general least-squares solution to Ac = f) is computed as
follows:

c = P−1

[
R−1

11 (g − R12b)

b

]

where the vector g consists of the first r entries of QTf, and
the vector b consists of the last n − r entries of Pc. The
latter n − r entries can be used as free parameters in order
to define a specific solution (the simplest choice is b = 0).
Formally, infinite precision of computation is required in
that algorithm; actually, the algorithm works very well in
practice, although it fails on some specially concocted in-
stances, somewhat similarly to Gaussian elimination with
unscaled partial pivoting.

A little more expensive [n2(m +17n/3) flops and 2mn2

space versus n2(m − n/3) and mn2 in the Householder
transformation] but completely stable algorithm relies on
computing the singular value decomposition (SVD) of A.
Unlike Householder’s transformation, that algorithm al-
ways computes the least-squares solution of the minimum
2-norm. The SVD of an m × n matrix A is the factoriza-
tion A = U�V T, where U and V are two square orthog-
onal matrices (of sizes m × m and n × n, respectively),
U TU = Im, V TV = In, and where the m × n matrix �

may have nonzero entries only on the diagonal; the (i, i)
diagonal; entry of � is denoted σi and is called the i th sin-
gular value of A; σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, p = min{m, n},
so p = n if m ≥n. Matrix � consists of its largest principal
p × p diagonal submatrix, diag [σ1, . . . , σp], banded with
zeros.

EXAMPLE 19. The matrix A = [0.4, 0.3] has the
SVD.

[0.4, 0.3] = [1][0.5, 0]

[
0.8 0.6

−0.6 0.8

]

The normal equations AT Ac = ATf are equivalent to
the system �T�TV c = �TU Tf; �T � = diag[σ 2

1 , . . . ,

σ 2
n] is an n × n matrix, for m ≥ n. When the SVD of

A is available, the minimum 2-norm solution is ob-
tained by setting c = V (�T�)∗U Tf; then n × n ma-
trix (�T�)∗ = diag[σ−2

1 , . . . , σ−2
r , 0, . . . , 0] of rank

r = rank(�) is called the pseudo-inverse of A.
As one of the by-products of computing the SVD of A,

the number σ1/σr can be computed. That number equals
cond2(A) = ‖A‖2 ∗ ‖A−1‖2 for nonsingular matrices A
and extends both the definition of the condition number of
a matrix and its applications to error analysis to the case
of singular matrices.

D. Orthogonalization Methods for a System
with a Square Matrix

Methods of orthogonal factorization are also useful for
systems Ax = b with a square n × n matrix A in the cases
where A is ill-conditioned or singular. Householder or-
thogonalization solves such systems in 2n3/3 flops; SVD
requires 6n3 flops.

V. ASYMPTOTIC AND PRACTICAL
ACCELERATIONS OF SOLVING
GENERAL LINEAR SYSTEMS

The upper estimates of ≥n3/3 flops in algorithms for the
linear systems of Eq. (1) for m = n have led to a popu-
lar conjecture of the 1950s and 1960s that a nonsingu-
lar linear system of n equations cannot be solved using
less than cn3 arithmetic operations for some positive con-
stant c. This was proven to be wrong in 1968. The re-
sult followed from Strassen’s n × n matrix multiplication
(hereafter referred to as MM) using o(n2.81) arithmetic
operations and recently successively implemented on the
CRAY supercomputer. The block decomposition (5)–(7)
of Section III.G reduces 2n × 2n matrix inversion to two
n × n matrix inversions and to six n × n MMs and recur-
sively to several MMs of decreasing sizes; it follows that
o(n2.81) arithmetic operations suffice to invert an n × n

P1: GLM Final Pages

Encyclopedia of Physical Science and Technology EN008A-861 June 29, 2001 15:20

Linear Systems of Equations (Computer Science) 635

matrix A and, consequently, to solve the system Ax = b.
Due to the new techniques of algorithmic design, the ex-
ponent 2.81 of MM of 1968 decreased to 2.522 in 1978–
1979, below 2.52 in 1980, and below 2.4 in 1986. Con-
sequently, in 1986 the asymptotic acceleration of MM
already implied the complexity bound o(n2.4) (rather than
n3) for solving linear systems.

Numerical stability of all such fast n × n matrix mul-
tipliers has been both theoretically proven in the most
general case (by D. Bini and G. Lotti in 1980) and ex-
perimentally confirmed, but only the two algorithms (by
Strassen and by Winograd), both supporting the upper
bounds cn2.81, became practical so far and compete with
the classical algorithm for matrix multiplication [see Pan
(1984); Golub and Van Loan (1996); Higham (1996)].

Here is a distinct approach, promising some practical
improvement. Suppose that we seek the product Ab of a
1000 × 1000 matrix A by a vector b, both filled with zeros
and ones and use a computer with 100 bit precision. Each
entry of Ab is at most 1000 and occupies at most 10 bits, so
that 10 entries of Ab can be easily computed and stored
by using one arithmetic operation and a single word of
memory, thus almost by 10 times improving the classical
approach. The algorithm can be extended to matrices and
vectors whose entries are bounded by integers [see Pan
(1984); Bini and Pan (1994)].

The algorithms for matrix multiplication and inversion
are applied to the solution of linear systems via block algo-
rithms. The popularity and importance of such application
are growing because of high efficiency of the implementa-
tion of matrix multiplication on modern supercomputers,
particularly on loosely coupled multiprocessors.

VI. DIRECT SOLUTION OF SOME
SPECIAL LINEAR SYSTEMS

Many special linear systems Ax = b can be solved by spe-
cial efficient algorithms [recall, for example, Choleski’s
method for symmetric positive-definite systems (Sec-
tion III.G)]. Next, some typical special systems are con-
sidered (compare the end of Section II.D).

A. Banded, Block-Banded, Banded-Symmetric,
and Symmetric Systems

A matrix A = [ai j] has bandwidth (p, q) if ai j = 0 when-
ever i + p < j < i − q . Such a matrix can be stored by
using less than (p + q + 1)n memory words. The general
n × n lower triangular matrix has bandwidth (0, n − 1);
a tridiagonal matrix has bandwidth (1, 1). Banded sys-
tems frequently arise in applications. Their effective so-
lution may rely on decompositions of A into the prod-

uct of banded triangular matrices. In particular, if the
bandwidth of A is (p, q) and if A has LU factors, then
L and U have bandwidths (0, q) and (p, 0), respectively;
pqn + r (n − (p2 + q2)/2) + r3/3 flops, where r = min
{p, q}, suffice to compute the factors L and U . Then it
remains to use (p + q + 1)n − (p2 + q2)/2 flops to solve
the system Ax = b. Partial pivoting partially destroys the
band structure of A; however, the resulting PLU factor-
ization of A defines matrices U still having bandwidth
(p + q, 0) and L having at most p + 1 nonzero entries per
column. Consequently, a substantial flop saving is still
possible.

Many banded systems are symmetric positive definite
and/or diagonally dominant. In those cases, pivoting is
unnecessary, and the band structure can be fully exploited;
one-half of the flops used can be further saved if A has
Choleski’s factorization.

PLDLT PT factorization of an n × n symmetric matrix
A (where P is a permutation matrix) can be computed,
say, by Aasen’s algorithm, using about n3/6 (rather than
n3/3) flops and O(n2) comparisons for pivoting, even if A
is not positive definite and has no Choleski’s factorization.

In many applications, linear systems have block-band
structure. In particular, the numerical solution of par-
tial differential equations is frequently reduced to solv-
ing block tridiagonal systems (see Section II.A). For such
systems, block triangular factorizations of A and block
Gaussian elimination are effective. Such systems can be
also solved in the same way as usual banded systems with
scalar coefficients. This would save flops against dense
systems of the same size, but the algorithms exploiting
the block structure are usually far more effective.

Apart from triangular factorization and Gaussian elimi-
nation, there exist other effective direct methods for block-
banded systems. For instance, the odd–even reduction (the
cyclic reduction) is effective for solving symmetric block
tridiagonal systems Ax = b with (2s − 1) × (2s − 1), ma-
trices of the form

A =

D F

E D F

. . .
. . .

. . .

F

E D

= PBPT

= P

D F E F. . .
D E

E F D. F
. . .

E D

PT

P1: GLM Final Pages

Encyclopedia of Physical Science and Technology EN008A-861 June 29, 2001 15:20

636 Linear Systems of Equations (Computer Science)

Here, the blanks show the block entries filled with ze-
ros; P and PT are permutation matrices such that the
matrix B obtained from the original matrix A by mov-
ing all the 2s−1 odd numbered rows and columns of A into
the first 2s−1 positions. The first 2s−1 steps of Gaussian
elimination eliminate all the subdiagonal nonzero blocks
in the first 2s−1 columns of the resulting matrix. The
(2s−1 − 1) × (2s−1 − 1) matrix in the right lower corner
is again a block tridiagonal block Toeplitz matrix, so the
reduction is recursively repeated until the system is re-
duced to a single block equation. (For an exercise, apply
this algorithm to the system of Section II.A for the 4 × 6
grid, n = 15, s = 4.)

B. Toeplitz, Hankel, and Vandermonde
Systems and Their Correlation
to Polynomial Operations

Many scientific computations (for signal processing, for
partial differential equations, in statistics, for approxima-
tion of functions by polynomials, and so on) are reduced
to solving Toeplitz or Hankel systems Ax = b, having
Toeplitz or Hankel matrix A. A Hankel matrix becomes
a Toeplitz matrix by appropriate row interchange (reflect-
ing the rows about the median row), so we shall consider
only Toeplitz systems. An m × n Toeplitz matrix is de-
fined by its first row and its first column, which requires
only m + n − 1 units of storage space.

EXAMPLE 20. Toeplitz matrices:

1 0 −1 0 0 0

0 1 0 −1 0 0

0 0 1 0 −1 0

 ,

1 4 5 6

2 1 4 5

3 2 1 4

 ,

1 2 3

2 1 2

3 2 1

EXAMPLE 21. Polynomial division and solving a tri-
angular Toeplitz system. Given two polynomials,

w(t) = u4t4 + u3t3 + u2t2 + u1t + u0

v(t) = v2t2 + v1t + v0

we compute the quotient q(t) = q2t2 + q1t + q0 and the
remainder r (t) = r1t + r0 of the division of u(t) by v(t)
such that u(t) = v(t)q(t) + r (t) or, equivalently, such that

v2 0 0

v1 v2 0

v0 v1 v2

0 v0 v1

0 0 v0

q2

q1

q0

 +

0

0

0

r1

r0

 =

u4

u3

u2

u1

u0

Computing the coefficients, q2, q1, q0 of q(t) is equivalent
to solving the triangular Toeplitz system,

v2 0 0

v1 v2 0

v0 v1 v2

q2

q1

q0

 =

u4

u3

u2

When q(t) is known, r (t) is immediately computed, r (t) =
u(t)−v(t)q(t). For example, if u(t) = t4 + t3 + t2 + t +1,

v(t) = t2 − 1, then, q(t) = t2 + t + 2, r (t) = 2t + 3, so
the vector q = [1, 1, 2]T is the solution of the triangular
Toeplitz system

1 0 0

0 1 0

−1 0 1

1

1

2

 =

1

1

1

In general, computing the quotient of division of a poly-
nomial of degree n + k by a polynomial of degree k + 1
is equivalent to solving a triangular Toeplitz system of
size n. Solving both problems via fast Fourier transform
involves O(nlog n) arithmetic operations with a small
overhead.

Solving a general Toeplitz system is also closely re-
lated to polynomial computations, namely, to computing
Pade’ approximants to a power series and to computing
the greatest common divisor of two polynomials. Trench’s
algorithm of 1964 and other similar algorithms solve a
Toeplitz system with an n × n matrix in O(n2) arithmetic
operations (with a small overhead); algorithms of 1980
use only O(nlog2 n) with substantial overhead, and less
than 8n log2 n are used in the more recent algorithms.

Vandermonde systems have the coefficient matrix A
of the form A = [ai

j+1, i, j = 0, 1, . . . , n]. Solving system
AT p̄ = f̄ with such a matrix AT is equivalent to comput-
ing a polynomial p(t) = p0 + p1t + · · · + pntn that inter-
polates to a function f (t) at some points t0, t1, . . . , tn ,
where p = [pi], f = [f (ti)], i = 0, 1, . . . , n. That correla-
tion can be exploited in order to solve the systems ATp = f
using n2 flops, where A is an n × n Vandermonde matrix.

Numerical stability is frequently a problem in compu-
tations with polynomials and thus in the Toeplitz, Hankel,
and Vandermonde computations.

Toeplitz, Hankel, and Vandermonde matrices are spe-
cial cases of more general classes of structured ma-
trices associated with operators of shift (displacement)
and scaling; such an association enables us to extend
the algorithms for Toeplitz linear systems to the sys-
tems of the cited general classes (see author’s book with
D. Bini).

P1: GLM Final Pages

Encyclopedia of Physical Science and Technology EN008A-861 June 29, 2001 15:20

Linear Systems of Equations (Computer Science) 637

C. Fast Fourier Transform Methods
for Poisson Equations

Special linear systems arise from the Poisson equation,

∂2u/∂x2 + ∂2u/∂y2 = f (x, y)

on a rectangle, 0 ≤ x ≤ a, 0 ≤ y ≤ b. [The Laplace equa-
tion of Section II.A is a special case where f (x, y) = 0.]
If finite differences with N points per variable replace the
partial derivatives, the resulting linear system has N 2 equa-
tions. Such systems can be solved in O(N 2 log N) flops
with small overhead by special methods using fast Fourier
transform (FFT) versus an order of N 4 flops, which would
be required by Gaussian elimination for that special sys-
tem. Storage space also decreases from 2N 3 to N 2 units.
Similar saving of time and space from O(N 7) flops, 2N 5

space units to O(N 3 log N) flops and N 3 space units is
due to the application of FFT to the solution of Poisson
equations on a three-dimensional box.

VII. DIRECT ALGORITHMS FOR SPARSE
AND WELL-STRUCTURED
LINEAR SYSTEMS

A. Sparse Linear Systems
and the Associated Graphs

The coefficient matrices of banded and block-banded lin-
ear systems of Section VI.A are sparse, that is, filled
mostly with zeros, and have some regular patterns for all
the nonzero entries. Linear systems with those two features
arise most frequently in applications (compare the regu-
lar patterns of banded and block-banded systems, where
nonzeros are grouped about the diagonal). Such sparse and
structured systems can be solved efficiently using special
fast direct or iterative algorithms and special data struc-
tures allowing the storage of only nonzero coefficients.
To see the structure of the coefficient matrix A and to
choose appropriate data structures for its representation,
replace the nonzero entries of A by ones. The resulting
n × n matrix, B = [bi j], filled with zeros and ones, can be
interpreted as the adjacency matrix of a (directed) graph
G = (V, E) consisting of the vertex set V = {1, 2, . . . , n}
and of the edge set E such that there exists are (i, j) from
vertex i to vertex j if and only if bi j = 1 or, equivalently,
if and only if ai j �= 0. Note that the graph G is undirected
if the matrix A is symmetric. The special data structures
used in graph algorithms (linked lists, stacks, queues) are
extended to the computations for linear systems.

B. Fill-In; Pivoting (Elimination Order)
as a Means of Decreasing Fill-In

In the process of Gaussian elimination (with, say partial
pivoting), applied to a sparse system, some zero entries

of the working array may be filled with nonzeros. The set
of such entries is called fill-in. Large fill-in leads to in-
creasing both time and space used for solving linear sys-
tems. Some special pivoting policies (called orderings)
of Gaussian elimination have been developed in order to
keep fill-in low. Pivoting used for stabilization (see Sec-
tion III) is respectively modified to avoid conflicts. Typi-
cally, a certain degree of freedom is introduced by apply-
ing threshold (rather than partial or complete) stabilization
pivoting such that a pivot in the first elimination step can
be any entry (i, l) such that |ai1| ≥ t maxh |ah1|, where t
is a chosen tolerance value 0 < t < 1 (and similarly in the
further steps). The resulting freedom in pivoting is used to
keep the fill-in low. In the important cases of symmetric
positive-definite and/or symmetric diagonally dominant
systems Ax = b, no stabilization pivoting is needed, so
the problem is simplified. To decrease the fill-in, rows and
columns of A are interchanged such that the symmetry
of A is preserved; the resulting triangular factorization
takes the form A = PLLT PT, where L is a lower triangu-
lar matrix and P is a permutation matrix, which defines
the elimination order.

C. Some Policies of Pivoting
for Sparse Systems

The most universal elimination ordering is given by the
Markowitz’s rule, reduced to the minimum degree rule in
the symmetric case. Let pi and q j denote the numbers of
nonzeros in row i and column j of the coefficient matrix
A, respectively. Then the Markowitz rule requires us to
choose the nonzero entry (i, j) that minimizes the value
(pi −1)(q j −1) and to move that entry into the pivot posi-
tion (1, 1) in the first elimination step. (The ties can be bro-
ken arbitrarily.) The same rule is applied to the subsystem
of n − k + 1 remaining (last) equations in elimination step
k for k = 2, 3, . . . , n − 1. In the symmetric case, pi = qi

for all i , so the Markowitz rule is reduced to minimization
of pi [rather than of (pi − 1)(qi − 1)]. For instance, let A
be symmetric.

A =

x x x x · · · x

x x

x x

x x
...

. . .

x x

where all the nonzero entries of A are located on the diago-
nal, in the first row, and in the first column and are denoted
by x . Then the fill-in of Gaussian elimination with no piv-
oting would make the matrix dense, which would require
an increase in the storage space from 3n − 2 to n2 units.

P1: GLM Final Pages

Encyclopedia of Physical Science and Technology EN008A-861 June 29, 2001 15:20

638 Linear Systems of Equations (Computer Science)

With the Markowitz rule for this matrix, no fill-in will take
place.

There also exist general ordering policies that

1. Decrease the bandwidth (Cuthill–McKee) or the
profile (reversed Cuthill–McKee, King) of a
symmetric matrix A [the profile of a symmetric
matrix A equals

∑n
i=1(i − minai j �= 0 j)]

2. Reduce the matrix A to the block diagonal form or to
the block triangular form with the maximum number
of blocks (policies 1 and 2 amount to computing all
the connected components or all the strongly
connected components, respectively, of the associated
graph G

3. Represent symmetric A as a block matrix such that
elimination of the block level causes no fill-in (tree
partitioning algorithms for the associated graph G).
Effective dissection algorithms customarily solve
linear systems whose associated graphs G have small
separators, that is, can be partitioned into two or more
disconnected subgraphs of about equal size by
removing relatively few vertices. For instance, in
many applications G takes the form of an

√
n × √

n
grid on the plane. Removing 2

√
n − 1 vertices of the

horizontal and vertical medians separates G into four
disconnected grids, each with (n + 1 − 2

√
n)/4

vertices. This process can be recursively repeated
until the set of all the separators includes all the
vertices. The nested dissections of this kind define the
elimination orders (where the separator vertices are
eliminated in the order-reversing the process of
dissection), which leads to a great saving of time and
space. For instance, for the

√
n × √

n plane grid, the
nested dissection method requires O(n1.5) flops with
small overhead, rather than n3/3. Furthermore the
triangular factors L and U of PA (or Choleski’s factor
L and LT of PAPT in the symmetric case) are filled
with only O(n) nonzeros, so O(n) flops suffice in the
substitution stage, which makes the method even
more attractive where the right side b varies and the
coefficient matrix A is fixed.

D. Solving Path Algebra Problems
via Their Reduction to Linear
Systems. Exploiting Sparsity

Although effective algorithms for solving sparse linear
systems exploit some properties of the associated graphs,
many combinatorial problems can be effectively solved
by reducing them to linear systems of equations whose
coefficient matrix is defined by the graph, say, is filled
with the weights (the lengths) of the edges of the graph. In
particular, that reduction is applied to path algebra prob-

lems, such as computing shortest or longest paths between
some fixed pairs or between all pairs of vertices, comput-
ing paths having bounded length, counting the numbers
of circuits or of distinct paths between two given vertices,
and testing graphs for connectivity. Numerous applica-
tions include the problems of vehicle routing, investment
and stock control, network optimization, artificial intelli-
gence and pattern recognition, encoding and decoding of
information, and so on. The resulting linear systems are
usually sparse; special techniques (such as the Markowitz
rule and nested dissection) can be extended to this case.

VIII. ITERATIVE ALGORITHMS FOR
SPARSE AND SPECIAL DENSE
LINEAR SYSTEMS

Iterative algorithms are recommended for some linear sys-
tems Ax = b as an alternative to direct algorithms. An
iteration usually amounts to one or two multiplications of
the matrix A by a vector and to a few linear operations
with vectors. If A is sparse, small storage space suffices.
This is a major advantage of iterative methods where the
direct methods have large fill-in. Furthermore, with ap-
propriate data structures, arithmetic operations are actu-
ally performed only where both operands are nonzeros;
then, D(A) or 2D(A) flops per iteration and D(A) + 2n
units of storage space suffice, where D(A) denotes the
number of nonzeros in A. Finally, iterative methods allow
implicit symmetrization, when the iteration applies to the
symmetrized system AT Ax = ATb without explicit evalu-
ation of AT A, which would have replaced A by less sparse
matrix AT A.

Consider the two classical iterative methods: Jacobi and
Gauss–Seidel. Hereafter, x(s) = [x (s)

1 , . . . , x (s)
n]T denotes

the approximation to the solution vector x computed in
iteration s, s = 1, 2,

ALGORITHM 6 (JACOBI)

x (s+1)
i =

bi −
i−1∑
j=1

ai j x
(s)
j −

n∑
j=i+1

ai j x
(s)
j

aii
i = 1, . . . , n

ALGORITHM 7 (GAUSS–SEIDEL)

x (s+1)
i =

bi −
i−1∑
j=1

ai j x
(s+1)
j −

n∑
j=i+1

ai j x
(s)
j

aii

i = 1, . . . , n

Example 22. 4x1 − x2 = 7, −x1 + 4x2 = 2, x1 = 2, x2 = 1
is the solution. Let x (0)

1 = x (0)
2 = 0. Then, the Jacobi it-

erations give x (1)
1 = 1.75, x (1)

2 = 0.5, x (2)
1 = 1.875, x (2)

2 =

P1: GLM Final Pages

Encyclopedia of Physical Science and Technology EN008A-861 June 29, 2001 15:20

Linear Systems of Equations (Computer Science) 639

0.9375, and so on. The Gauss–Seidel iterations
give x (1)

1 = 1.75, x (1)
2 = 0.9375, x (2)

1 = 1.984375, x (2)
2 =

0.99609375, and so on.
The Jacobi and Gauss–Seidel iterations can be ex-

pressed in matrix form. Let us represent A as follows:
A = L + D + U , where D = diag[a11, . . . , ann], and L
and U are lower and upper triangular matrices whose di-
agonals are filled with zeros.

Example 23

A =
[

4 −1
−1 4

]
, D = diag[4, 4]

L =
[

0 0
−1 0

]
, U =

[
0 −1
0 0

]

Then, we may rewrite Algorithm 6 (Jacobi) as Dx(s+1) =
b − (L + U)x(s), and Algorithm 7 (Gauss–Seidel) as
(D + L)x(s + 1) = b − Ux(s). Here is a more general iter-
ation scheme.

ALGORITHM 8. Let A = P − N , where A and P are
nonsingular (and P is readily invertible). Let Px(s+1) =
b + Nx(s), s = 0, 1,

Examples. In Jacobi iteration, P = D, N = −(L + U);
in Gauss–Seidel iteration, P = D + L , N = −U .

THEOREM 3. Algorithm 8 converges to the solution
x = A−1b to the system Ax = b if there exists a matrix
norm such that ρ = ‖P−1 N‖ < 1. Furthermore in that
norm ‖x − x(s)‖ ≤ ρs‖x − x(0)‖.

COROLLARY 1. Jacobi iteration converges if A is a
diagonally dominant matrix; Gauss-Seidel iteration con-
verges if A is symmetric positive definite.

It is known that the greatest lower bound ρ(W) on all the
norms ‖W‖ of a matrix W equals the absolute value of the
absolutely largest eigenvalue λ of W ; the eigenvalues of W
are the values λ such that det(W −λI) = 0; ρ(W) is called
the spectral radius of W . Theorem 3 implies that ρ(P−1 N)
defines the convergence rate of Algorithm 8. Estimating
ρ(P−1 N) is generally harder than solving linear systems
Ax = b, but for many specific choices of P and N , such
estimates are readily available.

Appropriate variation of the splitting A = P − N may
imply smaller spectral radius ρ(P−1 N) and thus faster
convergence. In particular, we may try to accelerate the
Jacobi or Gauss–Seidel iteration, choosing a positive β

and modifying the splitting A = P∗ − N ∗ of those iter-
actions as follows: A = (1 + β)P∗ − (N + βP∗). In fact
the customary variation of Gauss-Seidel, called the suc-
cessive overrelaxation (SOR) method, is a bit differ-
ent: A = P − N , P = (D + ωL), N = ((1 − ω)D − ωU),
ω > 1; ω is called the relaxation parameter [ω = 1 means

Gauss-Seidel splitting, A = (D + L) − (−U)]. For some
linear systems, we know how to choose appropriate ω in
order to obtain dramatic acceleration of the convergence
of Gauss–Seidel; in other cases, ω is defined by additional
analysis or by heuristics. There exists a modification of
SOR called the symmetric SOR (SSOR) method, which
amounts to combining SOR with implicit symmetrization
of the system Ax = b.

Another modification (frequently combined with
SSOR) is the Chebyshev semi-iterative acceleration,
which replaces the approximation x−(k+1) by

y(k+1) = ωk+1
[
y(k) − y(k−1) + γ P−1

(
b − Ay(k)

)] + y(k−1)

where y(0) = x(0), y(1) = x(1), and γ and ωk+1 are some
scalars, responsible for the acceleration and somewhat
similar to the relaxation parameter ω of SOR. Some of
these and other iterative methods are sometimes applied
in block form.

The algorithms solve the linear systems that arise from
a PDE discretized over a sequence of d-dimensional grids
G0, . . . , Gk , rather than over a single grid, as in Sec-
tion II.A. The grid Gi+1 refines Gi and has by about 2d

times more points. The solution on a coarser grid Gi is
simpler, but it supplies a good initial approximation to the
solution on Gi+1, and then O(1) iteration steps refine this
approximation. It was recently observed that adding O(1)
bits of storage space per a solution point in each transition
to a finer grid also suffices, which means the overall stor-
age space of O(n) binary bits (n = Nk is the number of
points in the finest grid Gk), and for constant coefficient
linear PDEs, this also means that only a constant number,
O(1), of binary bits are needed in each of O(n) arithmetic
operations of this process. The search for the most effec-
tive preconditioning is the area of active research. Here is
one of the versions, where (u, v) denotes uTv, and the ma-
trix B is precomputed. If B = I , this becomes the original
conjugate gradient algorithm.

PRECONDITIONED CONJUGATE GRADIENT
ALGORITHM

r(0) = b − Ax(0), q(0): = B−1r(0), r(0): = q(0)

For k = 0, 1, . . .

ck : = (
r(k), r(k)

)/(
p(k), Ap(k)

))
x(k+1): = x(k) + ckp(k)

If not converged, do

r(k+1): = r(k) − ck Ap(k), q(k+1): = B−1r(k+1)

dk = (
r(k+1), q(k+1)

)/(
r(k), q(k)

)
,

p(k+1) = q(k+1) + dkp(k)

P1: GLM Final Pages

Encyclopedia of Physical Science and Technology EN008A-861 June 29, 2001 15:20

640 Linear Systems of Equations (Computer Science)

Conjugate gradient methods are closely related to the
Lanczos method, also used as an iterative algorithm for
symmetric linear systems. A large and growing class of
highly effective methods for linear systems arising from
partial differential equations (PDEs) is known as multigrid
and multilevel methods. For some linear systems (defined
on grids) the alternating direction implicit (ADI) method
is also effective. The multigrid methods solve a large class
of problems on a grid of n points with sufficiently high
precision within O(n) flops.

Several most popular iterative algorithms for linear
systems Ax = b rely on the residual minimization in
the Krylov subspace, so that the successive approxima-
tions x0, x1, . . . , xk to the solution minimize the residual
norms ‖ri‖ where ri = C(b − Axi), i = 0, 1, . . . , k, and
C = I or C = AH (conjugate gradient and orthogonaliza-
tion techniques). Sometimes the minimization is replaced
by a related but weaker requirement, such as orthogonal-
ity of ri to B j r0 for all j < i , where B = A∗ (BIOMIN
or CGS). The power of this approach is due to the three
term relations expressing xi through x j for j < i , so that
every iteration step is essentially reduced to one or two
matrix-by-vector multiplications. Many algorithms of this
class compute the exact solution x = A−1b in n steps (in
the absence of round-off errors), but much fewer steps are
needed in order to compute a good approximation to many
linear systems (even under round-off). The convergence
rate is defined by the eigenvalues of A or of AH A (singular
values of A), and there are various techniques of precondi-
tioning, which replace A by matrices CAD for appropriate
readily invertible matrices C and D and which accelerate
the convergence of such methods for many linear systems.

IX. INFLUENCE OF THE DEVELOPMENT
OF VECTOR AND PARALLEL
COMPUTERS ON SOLVING
LINEAR SYSTEMS

The development of vector and parallel computers has
greatly influenced methods for solving linear systems,
for such computers greatly speed up many matrix and
vector computations. For instance, the addition of two
n-dimensional vectors or of two n × n matrices or multi-
plication of such a vector or of such a matrix by a constant
requires n or n2 arithmetic operations, but all of them can
be performed in one parallel step if n or n2 processors are
available. Such additional power dramatically increased
the previous ability to solve large linear systems in a rea-
sonable amount of time. This development also required
revision of the previous classification of known algorithms
in order to choose algorithms most suitable for new com-
puters. For instance, Jordan’s version of Gaussian elimina-

tion (Section III.B) is slow on serial computers, but seems
more convenient on many parallel machines because n−1
nonzeros in a column are eliminated in each elimination
step. This is better suited to parallel computation with,
say n − 1 processors than the usual Gaussian elimination,
where n −k nonzeros are eliminated in step k and k varies
from 1 to n−1. Variation of k complicates synchronization
of the computation on all processors and communication
among them. Similar problems characterize the additive
steps of computing inner products, so the designer of paral-
lel algorithms does not always adopt usual tendency of the
designer of sequential algorithms to exploit maximally the
inner product computation. In another example, comput-
ing the inverse A−1 of A (and, consequently, computing
the solution x = A−1b to Ax = b) can be performed via
Newton’s iterations, Bh+1 = 2Bh − Bh ABh, h = 0, 1,
If A is a well-conditioned n × n matrix, then the choice
B0 = t AT, t = 1/(‖A‖1‖A‖∞) ensures that ‖A−1 − Bh‖
is already sufficiently small, when h = O(log n). Matrix
multiplications can be performed rapidly on some parallel
computers, so Newton’s algorithm can be useful for solv-
ing linear systems on some parallel machines, although as
a sequential algorithm it is certainly inferior to Gaussian
elimination.

It is frequently effective to use block representation
of parallel algorithms. For instance, a parallel version of
the nested dissection algorithm of Section VIII.C for a
symmetric positive-definite matrix A may rely on the fol-
lowing recursive factorization of the matrix A0 = PAPT,
where P is the permutation matrix that defines the elimi-
nation order (compare Sections III.G–I):

Ah =
[

Xh Y T
h

Yh Zh

]

where Zh = Ah+1 + Yh X−1
h Y T

h for h = 0, 1, . . . , d − 1,
and Xh is a block diagonal matrix consisting of
square blocks of rapidly decreasing sizes, say, (2−hn)0.5

× (2−hn)0.5, so

A−1
h =

[
I −X−1

h Y T
h

0 I

] [
X−1

h 0

0 A−1
h+1

] [
I 0

−Yh X−1
h I

]

Such a reclassification of the available algorithms for lin-
ear systems due to the recent and current development of
computer technology is an area of active research. Making
the final choice for practical implementation of parallel al-
gorithms requires some caution. The following quotient q
is a good measurement for the speedup due to using a
certain parallel algorithm on p processors:

q =
Execution time using the fastest known sequential

algorithm on one processor

Execution time using a parallel algorithm
on p processors.

P1: GLM Final Pages

Encyclopedia of Physical Science and Technology EN008A-861 June 29, 2001 15:20

Linear Systems of Equations (Computer Science) 641

The execution time includes various synchronization and
communication overheads, which means that in fact only
part of the whole computational work can be performed
in parallel. The overheads are usually machine dependent
and are harder to estimate, so theoretical analysis fre-
quently ignores them and tends to give overly optimistic
estimates for the power of various parallel algorithms.

SEE ALSO THE FOLLOWING ARTICLES

COMPUTER ALGORITHMS • DIFFERENTIAL EQUATIONS •
LINEAR OPTIMIZATION • NONLINEAR PROGRAMMING •
NUMERICAL ANALYSIS

BIBLIOGRAPHY

Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., DuCroz, J.,
Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D.
(1995). “LAPACK, User’s Guide,” release 2.0, second edition, SIAM,
Philadelphia.

Bini, D., and Pan, V. Y. (1994). “Polynomial and Matrix Computations,”
Birkhauser, Boston.

Chvatal, V. (1983). “Linear Programming,” Freeman, San Francisco, CA.

Demmel, J. W. (1996). “Numerical Linear Algebra,” SIAM, Philadel-
phia.

Dongarra, J., Bunch, J. R., Moler, C. B., and Stewart, G. W. (1978).
“LINPACK Users Guide,” SIAM, Philadelphia.

Golub, G. H., and van Loan, C. F. (1996). “Matrix Computations,” third
edition, Johns Hopkins Press, Baltimore, MD.

Gondran, M., and Minoux, M. (1984). “Graphs and Algorithms,” Wiley
(Interscience), New York.

Greenbaum, A. (1997). “Iterative Methods for Solving Linear Systems,”
SIAM, Philadelphia.

Higham, N. J. (1996). “Accuracy and Stability of Numerical Analysis,”
SIAM, Philadelphia.

Kailath, T., and Sayed, A., eds. (1999). “Fast Reliable Algorithms for
Matrices with Structure,” SIAM, Philadelphia.

Pan, V. (1984). “How to Multiply Matrices Faster,” Lecture Notes in
Computer Science 179, Springer-Verlag, Berlin.

Pissanetsky, S. (1984). “Sparse Matrix Technology,” Academic Press,
New York.

Spedicato, E., ed. (1991). “Computer Algorithms for Solving Linear
Algebraic Equations (the State of Art),” NATO ASI Series, Series
F: Computer and Systems Sciences, Vol. 77, Springer-Verlag, Berlin,
1991.

Trefethen, L. N., and Bau III, D. (1997). “Numerical Linear Algebra,”
SIAM, Philadelphia.

Winter Althaus, G., and Spedicato, E., eds. (1998). “Algorithms for
Large Scale Linear Algebriac Systems: Applications in Science and
Engineering,” NATO Advanced Science Institute, Kluwer Academic,
Dordrecht, The Netherlands.

P1: GRB Final Pages Qu: 00, 00, 00, 00

Encyclopedia of Physical Science and Technology EN013E-852 July 26, 2001 19:10

Project Management Software
Robert T. Hughes
University of Brighton

I. Product-Based Project Management
II. Software Development Life Cycles
III. Software Project Organization
IV. Configuration Management
V. Risk Management and Software Development

Projects
VI. Software Effort Estimation

VII. Software Quality Issues and Project
Management

GLOSSARY

Activity network (AN) A diagram showing the activities
required to complete a project and the dependences
among activities that will govern the sequence in which
they can be undertaken.

Function points A method of assessing the theoretical
size of a computer-based information system by count-
ing a number of different types of externally apparent
features, applying weights to the counts, and aggregat-
ing them.

Product breakdown structure (PBS) A representation
of the products that are to be created by a project.

Product flow diagram (PFD) A diagram indicating the
order in which the products of a project must be created
because of the technical dependences among them.

Project life cycle The sequence of phases needed to ac-
complish a particular project.

Risk exposure An indicator of the seriousness of a risk,

based on consideration of the likelihood of the risk
occurring and the extent of the damage if it did occur.

Risk reduction leverage An indicator of the usefulness
of a proposed risk reduction activity in reducing risk
exposure.

Software breakage Changes that have to be made to the
existing functionality of a software component in order
to accommodate the addition of new features.

Software development life cycle (SDLC) The sequence
of generic activities needed for software to be created
according to a particular development method.

Work breakdown structure (WBS) A representation of
the activities that will need to be undertaken to com-
plete a project.

SOME PRINCIPLES OF MANAGEMENT are appli-
cable to projects of all kinds. A convergence of opinion
on these principles is reflected in, among other things,

 139

P1: GRB Final Pages

Encyclopedia of Physical Science and Technology EN013E-852 July 26, 2001 19:10

140 Project Management Software

the documentation of a “body of knowledge” (BOK) re-
lating to project management produced by the Project
Management Institute (PMI) in the United States. Com-
parable BOKs have also been published in many other
countries, including Australia and the United Kingdom.
The applicability of these principles to software devel-
opment projects is illustrated by the integration by the
software engineering community in the United States of
the PMI BOK into the proposed Software Engineering
Body of Knowledge. The PMI, for its part, recognizes
that the core practices and techniques of project man-
agement may need to be extended to deal with special-
ist projects in particular environments. As software de-
velopment projects are notoriously prone to delay and
cost overruns, the question therefore arises of whether,
because of their inherent risks, they require specialist
software project management techniques. In an influen-
tial paper, Brooks (1987) argued that the products of
software engineering differ from the products of most
other engineering disciplines in their inherent complex-
ity, conformity, changeability, and invisibility. Software
project management can therefore be seen as extending
the range of techniques offered by generic project man-
agement to deal with the particular difficulties in software
development.

Software products are more complex than other en-
gineered artifacts in relation to the effort expended on
their creation and hence their cost. In part, this is because
software tends to be composed of unique components.
Clearly software products can be reproduced, as when
millions of copies of an operating system are produced
and sold, but the focus of software development (as with
the authorship of books) is on the development of the
initial unique product. The inherent complexity of soft-
ware crucially affects such aspects of development as the
definition of requirements and the testing of completed
products.

The problem of conformity centers on the need for soft-
ware to reflect the requirements of human beings and their
institutions. Brooks pointed out that while the physicist
has to deal with complexity, the physical world does seem
to conform to consistent rules, while human institutions
can often promulgate inconsistent, ambiguous, and arbi-
trary rules for which the software engineer has to make
provision.

In most fields of engineering, it is commonly accepted
that once a product is built, changes to it are likely to be at
least expensive to implement and might in extreme cases
be technically impossible. Having built a road, for exam-
ple, one would not expect that a change in the routing of
the road would be undertaken lightly. Yet with software
products, changes in functionality are expected to be in-

corporated without undue difficulty. Paradoxically, it is
often the most successful software products that are most
vulnerable to the demands for modification, as users try to
extend the use of the software to new areas of application.

Compared to the products of, say, civil engineering, the
products of software engineering tend not to be directly
visible. The progress that is being made in the construction
of a road is plain for all to see, while the appearance of an
office where software is being developed does not change
regardless of the stage of the project that has been reached.

All these factors, it is argued, call special attention to
particular aspects of project management. We suggest that
software project management has to respond to the follow-
ing specific demands.

� The need, because of the “invisible” nature of software
and hence the difficulty of tracking of the activities
which create software, to make the products of the
software process visible and then to control the
software process by tracking these now-visible
intermediate and deliverable products. The visibility of
the products of thought processes is commonly
achieved through the use of modeling techniques, such
as those developed for structured analysis and design
and the object-oriented approach.

� The need to map the phases of particular software
development life cycles onto the stages of a managed
project.

� The organization of teams of specialists to design and
implement the software.

� The requirement for a configuration management
regime that will ensure that the products of the
software development process are kept in step, so that
the components of a software application are
compatible and consistent and generate desired
outcomes. The configuration management system
needs to be complemented by an effective change
control mechanism.

� The need to consider the risks inherent in the
development of software that can threaten the
successful completion of a project.

� The need for techniques that can assess the “size” of
the often intangible products of software development
as a basis for projecting the likely cost of creating
those products.

� The selection of the most appropriate development
methods so that the quality attributes of software,
especially in safety critical applications, can be
assured.

These topics will be addressed in more detail in the fol-
lowing sections.

P1: GRB Final Pages

Encyclopedia of Physical Science and Technology EN013E-852 July 26, 2001 19:10

Project Management Software 141

I. PRODUCT-BASED PROJECT
MANAGEMENT

A. Product Breakdown Structures

The design of software is primarily a mental activity. It is
also largely iterative in nature. One consequence of this is
that it is difficult to judge, as a development activity takes
place, the time that will be required to complete the task.
One symptom of this is the “90% completion syndrome,”
where an activity is reported as being on schedule at the
end of each week, say, until the planned completion date is
reached, at which point it is reported as being “90% com-
plete” for however remaining weeks are actually required
for the accomplishment of the task. The first step in avoid-
ing this is to commence project planning with the creation
of a product breakdown structure (PBS) identifying all the
products that the project is to create.

The products identified may be technical ones, such as
software components and their supporting documentation,
management products, such as plans and reports of vari-
ous types, or items that are the by-products of processes to
ensure software quality, such as testing scripts. The prod-
ucts may be ones that will be delivered to the customer
(deliverables) or intermediate products created at various
stages of the project for internal purposes, for example, to
clarify and communicate design decisions between mem-
bers of the development team. The concept of a product is
a broad one, so that a person could be a product (e.g., “a
trained user”) or the product could be a revised version of
a previously existing product (e.g., “a tested program”).

A simplistic example of how a fragment of a PBS might
appear is shown in Fig. 1. In the hierarchy a higher level
box assigns a name to the grouping of lower level prod-
ucts that belong to it, but does not itself add any new
products.

The PBS may be compared with the work breakdown
structure (WBS), which is the more traditional way of de-
composing a project. Some advantages of the PBS over

FIGURE 1 Example of a product breakdown structure.

the WBS have been touched upon above, but it should
be noted that the PBS is easier to check for completeness
than a WBS, as the customer might, for example, be able
to identify a deliverable that they will need (such as user
manuals) even if they are not conversant with a particular
development methodology. As each product will need a
task or tasks to create it, there would clearly be a close
mapping between the PBS and WBS for a project. In-
deed, a composite structure is sometimes used which at
the higher levels is a PBS, but where at the lower levels the
tasks needed to create each atomic product are identified.

B. Product Flow Diagrams

Having created a PBS, it is possible to draw a product
flow diagram (PFD) which portrays the sequence in which
products have to be created. An example of a PFD is shown
in Fig. 2, which corresponds to and develops the PBS in
Fig. 1. The “flow” of dependences is primarily from top
to bottom and from left to right. The PFD should not have
any backward flows to indicate iterations. This is because
the assumption is that a jump back to a preceding product
can be made at any point—for example, the examination
of a test completion report might trigger an amendment to
a design document, which would lead to the re-creation of
this document and generate new versions of the products
that are dependent on the design document.

The PFD can be used to identify the details of the
methodology or methodologies that are employed on the
project. Each methodology, including those implied by
various structured and object-oriented approaches to sys-
tem development, will have associated with it a particular
generic PFD.

C. Activity Networks

As each identified product will need activities to create
it, the PFD that has been produced can be used to create
a first-cut activity network. This shows the activities that

P1: GRB Final Pages

Encyclopedia of Physical Science and Technology EN013E-852 July 26, 2001 19:10

142 Project Management Software

FIGURE 2 Example of a product flow diagram.

are required to accomplish the project and the sequence in
which they have to be carried out. The mathematical prop-
erties of such networks are well established, and when
durations for each of the activities are allocated, tech-
niques exist which can calculate the overall time duration
of the project and the latest time each of the activities
can start without the overall duration of the project being
affected. There are a number of software tools available,
such as Microsoft Project, which permit the entry of ac-
tivity network details and their subsequent analysis. The
detail of such analyses is outside the scope of this arti-
cle, but attention is drawn to the fact that the mathematics
of activity networks depends upon the assumption that
each activity is only executed once. Where activities of
relatively short duration can be iterated, as in the case of
software testing and correction cycles, then this can be
dealt with by hiding the repeating activity within some
higher level activity which has a fixed end point. If it is a
major activity that is iterated, as when successive versions
of a prototype are produced and exercised, then each iter-
ation can be treated as an individual activity or even as an
individual project.

To make the control of projects easier, it is convenient
to have component activities that are of about the same
duration. Where a large number of very small, but impor-
tant activities have been identified, these can be bundled
into a larger, umbrella activity. Where there is a very large
activity (“write code” is often an example), then an at-
tempt should be made to decompose the activity, either

by identifying components of the activity’s main product
or by identifying intermediate stages in the activity which
can be promoted to activities in their own right.

The product-based approach to the planning of software
development projects is advocated as it means that the
subsequent control of the project can be accomplished by
identifying which products have been successfully com-
pleted. The generation of products also allows the quality
control of intermediate products to be carried out, which
contributes to the early elimination of system defects.
Where activities are large and monolithic, the product-
based approach encourages the decomposition of an ac-
tivity into smaller ones, each of which should produce its
own intermediate or component products which can then
be subjected to control and quality checking.

II. SOFTWARE DEVELOPMENT
LIFE CYCLES

A. The Need for Defined Development
Life Cycles

Since the early 1960s, when management started to be-
come aware of the potential applications of electronic
computers, there has been a rapidly increasing demand
for software. In the early days, the techniques needed
to develop good software were not well defined and the
newness of the field also meant that projects were in-
evitably staffed by the largely inexperienced. Overambi-
tious schemes on the one hand and relative incompetence
on the other led to many failed projects. One of the so-
lutions to these problems was seen to be development of
structured methods, step-by-step procedures for the design
and construction of software which, if followed, would
ensure good software products delivered on time. As a
consequence, a number of different software design and
implementation methods have been devised. The features,
merits, and disadvantages of various approaches are dis-
cussed elsewhere, but it has already been noted that it is
possible to draw up at least one PBS and PFD for each of
these methods. Thus, for each method, it should be pos-
sible to designate a development life cycle showing the
sequence in which activities are carried out and the scope
that exists for iteration. Within these frameworks, project
managers need to know when specific activities will start
and end and be reassured that an activity, once completed,
will not be repeated. This may conflict with the need for
developers to repeat processes in order to discard imper-
fect designs and to perfect promising ones.

For the purposes of management control, managers will
also want to group activities into phases of some kind, each
of which will terminate with a milestone. A milestone is

P1: GRB Final Pages

Encyclopedia of Physical Science and Technology EN013E-852 July 26, 2001 19:10

Project Management Software 143

an event which is selected as requiring special attention
from the project and business management functions.

B. The Waterfall Model

The classic engineering approach which encapsulates the
manager’s viewpoint is the waterfall model. An example
of a project life cycle that conforms to this model is shown
in Fig. 3. Each activity can, at least in theory, only be
legitimately started when its predecessor has been com-
pleted. The analogy is to a stream of water descending a
mountain-side which drops from one pool to another with
no return. There is some scope for splashing back, for
feedback from a later stage to an earlier one. For exam-
ple, consideration of systems design might unearth further
user requirements; however, such feedback is generally re-
garded as something of an aberration.

It is important to stress that the waterfall model does
not imply that it is either possible or desirable to attempt
to plan every stage of a project in detail at the outset. An
obvious example of the difficulties that this would entail is

FIGURE 3 The “waterfall” project life cycle.

with the actual coding of software, where work can only be
allocated to individual members of the development team
when the structure of the components of the software has
emerged from design.

The advantage of the waterfall approach is that, if all
goes well, management control is facilitated: once a stage
has been completed, it should remain completed and all
involved in the project should know where they stand.
However, it is argued that the emphasis of the waterfall
approach on designing everything just once encourages
the initiation of projects that are large and monolithic in
nature. With large projects there is a danger that by the
time the project is completed, the world has moved on
and the original requirements have changed. The need
for a faster response to user requirements has encour-
aged a more incremental approach to the delivery of
software.

C. The Incremental Model

The incremental approach is based on the principle that
those involved in a project should at the outset focus on
the key business objectives that the project is to achieve
and be willing to suspend detailed consideration of the
minutiae of a selected solution. This willingness to sus-
pend consideration of the detail of a solution does not
mean that the need for a proof of concept is ignored; the
general feasibility of the overall project should have been
established, even if the details of all the requirements have
not. This initial focus on the overall desired outcomes,
plus the adoption of software and hardware platforms that
allow applications to be easily modified and extended,
enables the partition of the project into a number of in-
crements, each of which will deliver some benefit to the
customer for the software. Although it may appear that
many projects at first sight may not be amenable to this
kind of decomposition, it is suggested that with practice
it is usually possible to identify in the region of 20–100
such increments. Increasingly, software projects involve
the extension or replacement of an existing software ap-
plication and this means that very often the functions of
the old system can be replaced segment by segment.

A major advantage of this approach is the ability to de-
liver a subset of the customers’ requirements, preferably
the most valuable ones, at an early stage. The fact that ben-
efits of the development are felt earlier in the project may
mean that income (or savings) may be generated earlier
and thus improve an organization’s cash flow. A further
advantage is that technical risks may be reduced as the
knowledge gleaned from earlier increments can be used
to plan and deliver later stages with more certainty.

The incremental approach also facilitates “time box-
ing,” the use of a fixed time period for each increment to

P1: GRB Final Pages

Encyclopedia of Physical Science and Technology EN013E-852 July 26, 2001 19:10

144 Project Management Software

dictate the amount of functionality to be delivered: if time
runs out, rather than extending the deadline, the delivery
of some of the less urgent functionality is deferred until a
later increment.

The incremental approach is not without possible dis-
advantages. Each increment can be perceived as a small
project in its own right. Projects have startup costs and
there is a risk that the incremental approach can lead to a
reduction in productivity because of the loss of economies
of scale. There is also the risk of “software breakage”:
because of the lack of an overall detailed design, later
increments may require the software written for earlier
increments to be rewritten so that it is compatible with
this later functionality. The occurrence of software break-
age may be a symptom of a deeper problem: the piecemeal
development of the overall application may lead to insuffi-
cient effort being given to the creation of a robust unifying
architecture. The focus on a succession of individual in-
crements, especially where the minds of developers are
being concentrated by the tight deadlines implied by time
boxing, might mean that opportunities for different sub-
systems to share code may be overlooked. There is also a
risk that the short-term nature of the concerns of the de-
velopers of increments leads to the neglect of longer term
concerns relating to maintainability.

D. Evolutionary Models

Although it has been suggested that all the details of every
stage of a project planned using the waterfall model do
not have to be determined before the start of the project,
managers usually need to provide the client with a clear
idea of when the project will be completed. The history of
computer disasters indicates this is often problematic. A
large part of the difficulty stems from the uncertainties that
are inherent in the environments of many projects. These
uncertainties might reside in the nature of the customer
requirements or in the nature of the technical platform
that is to be used to deliver functionality. The rational ap-
proach to the reduction of such uncertainty is to commit
resources to buying knowledge through trial and experi-
ment, usually by building prototypes. Prototypes, working
models of the software, can be used to explore the nature
of user requirements, or to trial alternative ways of us-
ing technical platforms. Prototypes can also be used to
assess the impact of the adoption of a particular informa-
tion technology (IT) solution on the operations of the host
organization.

A prototype can be a “throwaway,” in that, once the
lessons learnt have been documented, it is discarded and
development starts afresh. Alternatively, a prototype can
be “evolutionary,” and gradually modified until it is trans-
formed into the final operational product.

In the case of prototypes that are designed to elicit and
elucidate requirements, two major types can be distin-
guished. In some cases there are uncertainties about the
way that the core software functions should operate. For
example, there might be a requirement for some software
to simulate some phenomenon in the real world. The al-
gorithms that execute the simulation would normally be
based on some preexisting theory, but might then be ad-
justed after comparing the results of the model with the
corresponding outcomes in the real world. In other appli-
cations, the internal functionality that the software is to
have is well defined (by, for example, established busi-
ness and accounting practices), but the interface between
the users and the software may need to be the subject of
prototyping.

E. Rapid Application Development

The development of structured approaches has, in con-
junction with the discipline imposed by the waterfall
model, brought some order to software development.
However, these approaches also have costs: order is im-
posed by introducing bureaucracy. This can stifle devel-
opment by putting an excessive focus on the next step in
a procedure rather than on the larger goals to be achieved
and by slowing down communication by insisting on doc-
umentation and formal meetings.

Approaches like rapid application development (RAD)
and the dynamic systems development method (DSDM)
try to overcome these obstacles by exploiting the oppor-
tunities offered by incremental development and proto-
typing. Development is carried out as far as possible in
small, discrete, incremental steps which last for only a few
weeks. Software products are produced by small, empow-
ered teams of developers and user representatives so that
agreement over requirements and design decisions can be
quickly reached through intensive communication. Deliv-
ery on time is facilitated by the use of time boxes. These ap-
proaches are not without risk, as noted in the section on the
incremental approach. In particular, there is the risk that
the emphasis on very focused incremental developments
can result in an overall architecture that is not maintainable
in the longer term. It could be that the adoption of a strong
object-oriented technique with some carefully considered
global design may be able to alleviate some of the risks.

RAD, DSDM, and associated development regimes
would seem to require more project management rather
than less. For example, configuration management be-
comes even more important as detailed requirements and
design will be volatile and may even be reversed on occa-
sion. The time-boxing approach may mean that require-
ments may suddenly be deferred to later increments, mak-
ing plans subject to frequent modifications.

P1: GRB Final Pages

Encyclopedia of Physical Science and Technology EN013E-852 July 26, 2001 19:10

Project Management Software 145

F. The Spiral Model

This development model is based on the idea that when
risks are prominent, the prudent way to proceed is by a
series of iterations where each cycle involves carrying
out activities that explore the problem domain and or de-
velop potential solutions in more detail. Each iteration is
completed by a control process where the desirability of
the next iteration is considered. Each iteration is more de-
tailed and involves a bigger commitment of resources, but
should have an increased probability of a successful over-
all outcome. This model is compatible with a waterfall
model if provision is made at the end of each step in the
waterfall for the consideration of the advisability of either
continuing the project or abandoning it.

III. SOFTWARE PROJECT ORGANIZATION

A. Relationship between Client and Developer

Most software development projects are commissioned by
a single client who requires a software application. There
may be cases where there is no client as such, as when
software is being developed speculatively to meet what
has been perceived as a need in the market. Even in this
latter case, the developers will need some surrogate users,
perhaps from the marketing function, to assist in deciding
what functionality the software should have.

In the situation where there is a clearly defined client
who has sponsored the project, development could be car-
ried out in-house by staff employed by the same organi-
zation as the client or could be carried out by a supplier
from outside. With both types of structure there is likely
to be a range of different stakeholders, both individual
and group, who have a legitimate interest in the project.
This may be because they will be affected by the oper-
ation of the new system once implemented, or because
their assistance will be needed for the development or im-
plementation of the application. With in-house projects
these stakeholders can be categorized as business man-
agers who will be concerned that the application should
further the business’s objectives, users who will have to
interact with the operational system, and various people,
not just technical staff, who will be needed to develop the
application.

With all these different voices wanting to be heard, a
project, to be successful, needs a single, unified project
authority which establishes and adapts as necessary the
project’s objectives and authorizes expenditure on it. The
project authority could be one person, but in more com-
plex situations may be a steering committee or project
board with representatives of the major stakeholders. This
project board does not deal with the day-to-day running

of the project: this is delegated to a project manager who
reports to the project board.

Where software is being supplied by an external orga-
nization, project management will be split into customer
and supplier elements. In these cases, there may be ef-
fectively two managers. One would belong to the cus-
tomer and would have responsibility for supervising the
fulfillment of the contractors’ obligations and also for co-
ordinating those elements of the project for which the
customer has responsibility, of which the populating of
databases with standing information would be a typical
example. On the supplier side, there would be a project
manager coordinating the technical activities needed to
deliver to the customer those products specified in the
contract. The executives negotiating such contract need to
make sure that the relationship between the two sides dur-
ing the project is agreed and understood by all concerned
at the outset. Projects to develop software almost invari-
ably involve nonsoftware elements and so there should be
a clear allocation of responsibility between customer and
supplier for each necessary activity.

B. Creating the Project Team

Projects, by definition, are unique, time-bound enterprises.
The project typically brings together practitioners who are
experts in different fields for the duration of the project
and then disperses them once the project is done. To do
this, staff might be brought together physically or may be
left in dispersed locations with channels of communica-
tion established between them. Some enterprises adopt a
functional organization where practitioners are grouped
physically by their specialties. For example, there might
be a central pool of code developers. This can lead to the
more effective use of staff as specialists can be more easily
switched between projects to cope with peaks and troughs
in demand. In the longer term, it allows specialists to fur-
ther their careers without having to move out of a technical
specialty at which they might be good. Innovative tech-
nical ideas might also be able to circulate more speedily
between the specialists in this type of environment.

Disadvantages of the functional organization are that
there can be communication barriers between the different
specialists involved in project, and software maintenance
may be hampered by there not being code developers ded-
icated to the enhancement and perfection of specific com-
ponents in the organization’s inventory of software. One
way of resolving the latter problem is by having special-
ist teams of maintenance programmers who are separate
from the initial development teams.

Some organizations have attempted to have both a task-
based and functional organization at the same time by
means of a matrix structure. Here a developer has two

P1: GRB Final Pages

Encyclopedia of Physical Science and Technology EN013E-852 July 26, 2001 19:10

146 Project Management Software

managers: a project leader who gives day-to-day direc-
tion about the work in hand, and a specialist manager
concerned with such matters as technical training needs.

A major problem with software development contin-
ues to be the dearth of good software developers. Many
observers have noted the wide difference in productivity
between the most and the least capable developers. It has
been suggested that the best way of achieving success with
a software project is to ensure that the best staff are hired
and that then they are used to best effect. This train of
thought leads to the chief programmer team. The chief
programmer is a highly talented and rewarded developer,
who designs and codes software. They are supported by
their own team designed to maximize the chief program-
mer’s personal effectiveness. There is a “co-pilot” with
whom the chief programmer can discuss problems and
who writes some of the code. There is an editor to write
up formally the documentation sketched out by the chief
programmer and a program clerk to maintain the actual
code and a separate tester. The general idea is that the
team is under the control of a single unifying intellect.
The major problem with this strategy is the difficulty of
obtaining and retaining the really outstanding software
engineers to fulfil the role of chief programmer.

A more practical and widespread approach is to have
small groups of programmers under the leadership of se-
nior programmers. Within these groups there is free com-
munication and a practice of reviewing each other’s work.

The structures above assume that developers work in
isolation from users and other, more business-orientated
analysis specialists. The adoption of a rapid application
development strategy would require this approach to be
radically rethought.

IV. CONFIGURATION MANAGEMENT

The innate qualities of invisibility, changeability, and com-
plexity that software possesses can create problems of en-
suring that all the components of a software system are
up to date and compatible. The technical discipline that
is designed to ensure that the right versions of each com-
ponent are assembled to create the correct working prod-
uct is known as configuration management. The growing
prevalence of development regimes that favor the cre-
ation of increments or successive generations of proto-
types makes the need for effective configuration manage-
ment even more pressing.

Particularly problematic from the point of view of con-
figuration management is the situation where there are not
only different consecutive versions of a software product
over time as enhancements are made, but also different
concurrent versions (“variants”) of the same base soft-

ware. These variants are typically to cater for different
national or market sectors.

Effective configuration management depends on a per-
son or persons being allocated the responsibility for
this activity. The products that need to be controlled
should be identified as configuration items (CIs) and their
details should be recorded in a configuration manage-
ment database (CMDB). The CMDB record will include,
among other things, the status of the CI (for example,
whether under development, under test, or released for
operation) and, where appropriate, the developer currently
carrying out any changes to it. This avoids situations where
more than one developer might inadvertently be making
potentially incompatible changes to the same software.
The set of components that make up an application that is
released to the users needs to be “baselined.” This is the
freezing of development on this set of components. Fur-
ther development of any of these components effectively
constitutes the creation of a new, different product.

The essentially technical discipline of configuration
management is associated with the managerial and busi-
ness concerns of change control. Although it is important
for developers to satisfy user needs and to recognize that
the precise nature of those needs is likely to emerge incre-
mentally as the project progresses, an uncritical blanket
acceptance of all requests for changes would lead to an
uncontrollable project. There are risks that, without the
careful control of changes, the scope of the project will
grow, existing work will be wasted, costs will increase,
and time scales will be extended. Projects are normally
based on a business case where the benefits of the project
have been judged to exceed the costs. The constraints on
changes should not be so tight that there is an insistence
on producing software in a previously agreed form when
it is now clear that the benefits originally envisaged will
not be reaped. On the other hand, unnecessary changes
which could increase costs so that they exceed the value
of the projected benefits need to be resisted.

The execution of a properly managed change control
procedure is normally initiated via a mechanism for re-
questing a change through the raising of a request for
change (RFC) document. The RFC represents a user con-
sensus that the change is desirable from their point of view.
The technical and resource implications of the change en-
visaged in the RFC then need to be assessed by devel-
opers. Where the software development is being carried
out for a customer by a separate organization and is sub-
ject to a contract, any additional work above that speci-
fied in the contract would attract additional payments. In
major projects, arrangements may be put in place for an
independent evaluation of the impact of a change so that
an unscrupulous supplier is not able to take advantage of
a customer who may not have any real choice but to go

P1: GRB Final Pages

Encyclopedia of Physical Science and Technology EN013E-852 July 26, 2001 19:10

Project Management Software 147

ahead with a change. Once the cost of the change has been
assessed, then a decision is needed on going ahead with
the change. A positive decision would lead to an autho-
rization for work to proceed and for copies of the baselined
products affected to be released to developers assigned to
making the changes.

V. RISK MANAGEMENT AND SOFTWARE
DEVELOPMENT PROJECTS

A. The Nature of Risk

The particular characteristics of software that were identi-
fied by Brooks and which were reviewed in the introduc-
tion suggest that software development projects are likely
to be particularly risky. Repeatedly surveys of software
projects have confirmed this: in one case a survey of 200 IT
organizations found 90% of IT projects were overbudget;
98% of the organizations had had to modify the original
requirements; 60% of the projects were late and 20% were
eventually found to be inappropriate. It should therefore
follow that the management of risk ought to be an integral
part of software and IT project management. However, the
same survey found that only 30% of organizations in the
survey carried out any kind of analysis of risk.

Risk has always been a feature of projects in more tradi-
tional engineering fields and generic approaches to project
risk have been developed. Software engineering thinkers,
such as Barry Boehm, have considered how these generic
principles can be applied to software development.

One dictionary definition of risk is the “possibility of
loss or injury.” Another way of perceiving risk is as the pos-
sibility that an assumption underlying a planned project
is in fact incorrect. When this happens then the project
manager has a problem. Obviously problems can occur
at any time and at any level of seriousness. For exam-
ple, a project might be completed on time, within budget,
and to specification but might still be deemed a failure
because the business environment within which it was to
operate has changed so that the new software is no longer
of use. Apart from these business risks, there are other
risks that can apply to the project as a whole. Many of
these will arise because the situation in which the project
is to take place has some inherent dangers. These types
of risk are susceptible to identification at the planning
stage, allowing a strategy to be adopted which is likely to
reduce risks arising from situational factors. An incremen-
tal delivery strategy might, for example, reduce the risks
involved in the development of large, complex systems,
while an evolutionary approach could reduce uncertainties
in requirements or the technical platform. Other risks will
be attached to individual tasks within the project. Here the

planning process will have to identify first these activities
and then the risks associated with each activity.

B. Prioritizing Risk

If a risk is simply a possible problem, then the number of
risks that might affect a project is infinite. The size of each
risk (or “risk exposure”) therefore needs to be assessed so
that attention can be focused on the most important ones.
This can be done by estimating the probability of the un-
satisfactory outcome, P(UO), and the loss, L(UO), if this
unsatisfactory outcome were to occur. P(UO) will be a
number with the value of 0.00 if the outcome were im-
possible (i.e., there is in fact no risk) and of 1.00 for an
absolute certainty. A value of 0.20 would imply that this
risk is likely to occur in one of five projects of this type.
L(UO) would typically be measured in money, although
lost time might be an alternative measure. The risk ex-
posure (RE) is then calculated as P(UO) × L(UO). Thus
if the probability of failure were 0.20 and the potential
loss were $10,000, the RE would be $2000. One way of
looking at RE is as the amount that should be put aside
to deal with this risk. Simplistically, if a similar project
were repeated 10 times and $2000 for each of the projects
were put aside to cover this risk, one might expect, on
average, the risk to occur on two of the occasions and use
up the money that had been held in reserve. (Obviously
in practice the same project is never repeated five times!
However, a project will have several risks and money put
aside for a risk that has not materialized can be used to
alleviate one that has). In practice, allocating a P(UO) and
an L(UO) for a risk might not be easy. P(UO) can only be
realistically assessed by examining a history of past cases,
while the actual loss that an unsatisfactory outcome might
cause will depend on particular circumstances. Because
of these difficulties, a more qualitative approach where
P(UO) and L(UO) for a risk are rated as high, medium,
or low is often adopted.

An instance of a software project can normally be cate-
gorized as belonging to a certain type that tends to employ
common techniques and methods. Many risks for projects
of a particular type will therefore be similar, allowing
generic risks of the most likely hazards to be assembled.
For example, Conrow and Shishido devised the list shown
in Table I, which is an aggregation and summary of 150
candidate risk issues that they have identified.

These generic risks will not threaten all software
projects to the same degree, but such lists can be used
as a memory prompt suggesting the possible hazards that
may face a specific project. The importance of each of
these possible risks for a project can be prioritized by as-
sessing the risk exposure (RE) for each one in the way
described above.

P1: GRB Final Pages

Encyclopedia of Physical Science and Technology EN013E-852 July 26, 2001 19:10

148 Project Management Software

TABLE I A Summary of Key Risk Issuesa

Risk grouping Software risk issues

Project level Excessive, immature, unrealistic, or unstable requirements

Lack of user involvement

Underestimation of project complexity or dynamic nature

Project attributes Performance shortfalls (includes errors and quality)

Unrealistic cost or schedule

Management Ineffective project management (multiple levels possible)

Engineering Ineffective integration, assembly and test, quality control, speciality
engineering, or systems engineering

Unanticipated difficulties associated with the user interface

Work environment Immature or untried design, process, or technologies selected

Inadequate work plans or configuration control

Inappropriate methods or tool selection or inaccurate metrics

Poor training

Other Inadequate or excessive documentation or review process

Legal or contractual issues (such as litigation, malpractice, ownership)

Obsolescence (includes excessive schedule length)

Unanticipated difficulties with subcontracted items

Unanticipated maintenance and/or support costs

a From Conrow, E. H., and Shishido, P. S. (1997). “Implementing risk management on software
intensive projects.” IEEE Software 14(3) (May/June), 83–89.

C. Planning Risk Avoidance or Reduction

Activities that might avoid the most likely risks occurring
can now be planned. Thus the risk that there might be
problems caused by the unfamiliarity of the development
staff with a certain software tool might be avoided, or
at least reduced, by hiring experts in the use of the tool.
These risk avoidance/reduction activities would require
changes to project plans and would themselves need to
be subjected to risk assessment. In the example where
certain software tool specialists have been hired, the risk
of overreliance on the experts who might then leave might
need to be considered.

Risk reduction actions need to be cost effective. To as-
sess whether this is the case, the risk reduction leverage
can be calculated as (REbefore − REafter)/(cost of risk re-
duction), where REbefore is the risk exposure before the
risk reduction action and REafter is the risk exposure that
will remain after the risk reduction. Both risk exposures
are expressed in terms of money. A risk reduction leverage
greater than 1.00 indicates that the avoidance/reduction ac-
tivity is financially worthwhile. Risk reduction activities
with values above but still close to 1.00 would need to be
considered very carefully.

D. Monitoring Risk

Like most aspects of software project planning, the bal-
ance of risk will not remain static during the lifetime of
a project. Some fears at the planning stage may turn out

to be groundless, while new risks can emerge unexpect-
edly. Some risks related to specific events, the delivery of
equipment, for example, will simply disappear because the
activity has been successfully accomplished. Hence risks
need to be carefully monitored throughout the execution
of the project: one method of doing this is to maintain a
project risk register, or inventory, which is reviewed and
updated as part of the general project control process.

VI. SOFTWARE EFFORT ESTIMATION

A. A Taxonomy of Software Effort
Estimation Methods

Both the invisibility and complexity of software identi-
fied by Brooks contribute to the difficulty of judging the
effort needed to complete software development tasks.
This, and the rapidly changing technical environment in
which software development takes place, has led to the
almost proverbial habit of software projects of being late
and overbudget. This in turn has motivated considerable
research effort into the problem.

Barry Boehm (1981), in the classic work in this area,
“Software Engineering Economics,” set out a basic taxon-
omy of estimating methods:

� Algorithmic models. These use “effort drivers”
reflecting quantitative aspects of the software
application to be built (such as the lines of code to be

P1: GRB Final Pages

Encyclopedia of Physical Science and Technology EN013E-852 July 26, 2001 19:10

Project Management Software 149

written) and the development environment (such as the
experience of the development team) to predict effort.

� Expert judgment. The advice of knowledgeable staff is
solicited.

� Analogy. A previous completed project that seems to
have similarities with the one under consideration is
selected and the actual effort for that project is used as
the basis for an estimate for the new project.

� “Parkinson.” The staff effort that is available to carry
out the project is identified and this is used as the basis
for an “estimate.”

� Price-to-win. The “estimate” is a figure set at a level
low enough to have a good chance of winning the
contract.

� Top-down. An overall estimate of effort for the project
as a whole is ascertained, often by means of an
algorithmic model, and this figure is then divided up
into the effort needed for lower level, component
activities.

� Bottom-up. The project is iteratively decomposed into
its component activities and the effort for each of these
activities is then assessed and accumulated to obtain
the overall estimated effort.

Two of these methods, Parkinson and price-to-win, are
clearly not true effort estimation techniques, and are re-
jected by Boehm as such. They can, however, be seen as
ways of setting management targets. Having produced a
target effort figure based on the Parkinson approach, a
manager might legitimately seek to reduce the scope of
the requirements of the project so that they can be imple-
mented with the resources to hand. This would be an exam-
ple of the sound engineering practice of designing to cost.

A true estimate, rather than being a single value, should
rather take the form of a probability graph where a prob-
ability is assigned to each value in a range of estimates.
Such a probability curve could plausibly conform to a
gamma distribution (see Fig. 4). A project manager using
the effort estimation presented in the form of such a graph
might decide to select a target which is aggressively low,
but where there is a substantial risk that the target might be
missed, or a larger effort figure which has a greater chance
of actually being met. The manager’s decision might well
be influenced by the need to win work from a potential
customer by a competitive price and by awareness that
aggressive targets can motivate higher productivity from
staff.

With the remaining, “true” methods there are numerous
overlaps. Top-down approaches, for example, will often
be based on algorithmic models. An “expert,” when asked
to produce an estimate of effort, might in fact use any
method, including asking another expert. However, there
is some evidence that experts tend to adopt an analogy ap-
proach. If a previous application that is a reasonable match

FIGURE 4 An accumulative probability curve showing the proba-
bility that a software component will be completed within different
numbers of staff-days.

cannot be found, then analogies might be sought by infor-
mally breaking the application down into component parts
and then seeking analogies for these components. Boehm
drew the conclusion that the various methods were com-
plementary, so that while algorithmic models could pro-
duce objective predictions of effort that were not subject
to bias, expert judgment might be able to identify excep-
tional circumstances. The best practice was therefore to
use the techniques in combination, compare their results,
and analyze the differences among them.

B. COCOMO: An Example
of an Algorithmic Model

Nearly all the techniques listed above, especially the al-
gorithmic models, depend on some measure of software
size. If the size of implemented software applications can
be measured in some manner, for example, in lines of
code, and the actual effort needed for these applications
is also recorded, then a productivity rate can be derived
as size/effort (e.g., as lines of code per day). If, for a new
project, the probable size is known, then by applying the
historical productivity rate an estimate of effort for the
new project can be arrived at.

Early approaches to software effort estimation were
based on this principle, a sophistication tending to be an
adjustment by means of the application of exponentiation
to take account of diseconomies of scale. These disec-
onomies can be caused by larger projects needing dispro-
portionately more effort to deal with communication and
management overheads.

Boehm’s COCOMO (constructive cost model) illus-
trates the principle. In its basic, organic mode it is ex-
pressed as

pm = 3.2(kdsi)1.05, (1)

where pm is person-months and kdsi is thousands of de-
livered source code instructions.

P1: GRB Final Pages

Encyclopedia of Physical Science and Technology EN013E-852 July 26, 2001 19:10

150 Project Management Software

TABLE II COCOMO 81 Cost Drivers

Product attributes RELY Required software reliability

DATA Database size

CPLX Product complexity

Computer attributes TIME Execution time constraints

STOR Main storage constraints

VIRT Virtual machine volatility—degree to
which the operating system, etc., changes

TURN Computer turnaround time

Personnel attributes ACAP Analyst capability

AEXP Application experience

PCAP Programmer capability

VEXP Virtual machine (operating system, etc.) experience

LEXP Programming language experience

Project attributes MODP Use of modern programming practices

TOOL Use of software tools

SCED Required development schedule

A problem with this basic approach is that productiv-
ity rates vary considerably between development envi-
ronments and indeed between projects within the same
environment. One solution to this is to use statistical tech-
niques to build local models. An alternative, favored by the
COCOMO community, is to locate a development envi-
ronment and application type within the totality of projects
executed by the software development community along
a number of dimensions. The dimensions as identified by
the initial COCOMO are shown in Table II. Each point in
this n-dimensional matrix would have associated with it
an expected productivity rate relating to the software de-
velopment industry as a whole. For example, an applica-
tion might have a high reliability requirement compared
to the nominal or industry-average type of project: this
would justify 15% additional effort. However, the pro-
grammers involved might have higher than average ca-
pabilities, which would justify a reduction in the effort
projected.

In addition to the need for calibration to deal with local
circumstances, a problem with the COCOMO-type ap-
proach is that the number of lines of code that an applica-
tion will require will be difficult to assess at the beginning
of the software development life cycle and will only be
known with certainty when the software has actually been
coded. Lines of code are also difficult for the user com-
munity to grasp and thus validate.

C. Function Points

An alternative size measure, function points, was first sug-
gested by Alan Albrecht. This measurement is based on
counts of the features of a computer-based information
system that are externally apparent. These include counts

of the files that are maintained and accessed by the applica-
tion (“logical internal files”), and files that are maintained
by other applications but are accessed by the current ap-
plication (“external interface files”). Three different types
of function are also counted. These are transactions that
take inputs and use them to update files (“external inputs”),
transactions that report the contents of files (“external out-
puts”), and transactions that execute inquiries on the data
that are held on files. The counts of the different types of
feature are each weighted in accordance with the percep-
tions of the designers of function points of their relative
importance. The particular weighting that applies is also
governed by the perception of whether the instance of the
feature is simple, average, or complex. These basic ideas
and rules have been subsequently taken up and expanded
by an International Function Point User Group (IFPUG).

An advantage of function points is that they can be
counted at an earlier stage of a project than lines of code,
that is, once the system requirements are determined. Dur-
ing the course of software development there is a tendency,
known as “scope creep,” for the requirements of the pro-
posed system to increase in size. This is partly because
the users are likely to identify new needs during the gath-
ering of the details of the required features of the new
system. These will clearly require additional effort for
their implementation and are a frequent cause of cost and
time overruns. Counting and recounting function points
during the course of a project can help to keep this phe-
nomenon under control. When the software application is
being constructed for a client under a contract and extra
features are required, then the original contract will need
to be modified to take account of the extra work and cost
to be incurred by the contractor. One option for dealing
with this is to agree at the outset on a price per function

P1: GRB Final Pages

Encyclopedia of Physical Science and Technology EN013E-852 July 26, 2001 19:10

Project Management Software 151

point for work in addition to that specified in the original
specification.

Accurate effort estimates can only proceed on the basis
of good historical information and so the accurate record-
ing of details of project cost and size is one of the indicators
of a well-managed project environment.

VII. SOFTWARE QUALITY ISSUES
AND PROJECT MANAGEMENT

A. Software Product Quality

The quality of software products is seen as being in-
creasingly important, especially as software is embedded
into more and more safety-critical applications. As a con-
sequence, attention has been devoted to ways of defin-
ing the quality requirements of software with the same
rigor as has been previously given to the definition of the
functions of the required software. The continuing de-
velopment of the ISO 9126 standard is one example of
this trend. This standard has defined five generic soft-
ware quality characteristics in addition to functionality,
namely reliability, usability, efficiency, maintainability,
and portability. Despite the slogan that “quality is free,”
in practice the incorporation of, for example, high lev-
els of reliability into software can add considerably to
costs.

For this reason, the level of effort and expenditure that
is invested in the quality of a software product must be jus-
tified by the use to which the software will be put. Where
human life could be at risk, for instance, then high lev-
els of expenditure on the quality of the software would
be justified. These considerations will influence many of
the decisions that have to be addressed at the stage when
the project is planned. The qualities defined by such stan-
dards as ISO 9126 are those that are expected in the final
delivered product and this places the emphasis on the eval-
uation of the completed product. From the point of view
of the managers of the development process, this is too
late: they need ways during the development process of
assessing the likely quality of the final product. One way of
doing this is by evaluating the quality of the intermediate
products that are created during the course of a software
development project.

B. Software Defect Accumulation

Software development can be usefully perceived as a chain
of processes where the output from one process is the input
to the next. Errors and defects can enter the development
chain during any of the constituent activities. Once the
defect has been introduced into the development chain
it is likely to remain there if care is not taken. An error

in the specification of a software product, for example,
could feed through to its design and then into the way
that it is coded. Furthermore, the defects in the develop-
ing application will, if left uncontrolled, accumulate as
more processes add their own defects. One consequence
of this will be that most of these defects will only become
apparent at one of the final testing stages. This can be a
serious problem for project management, as testing is one
of the most difficult activities to control, driven as it is by
the number of defects remaining in the software, which
is an unknown quantity. It is also generally more expen-
sive to correct errors at the later stages of development as
more rework is needed and later products tend to be more
detailed than earlier ones.

We have noted that an effective way to reduce these
difficulties is by the careful examination of intermedi-
ate products before they are passed onto subsequent pro-
cesses. To enable this to be done effectively, the follow-
ing process requirements should be specified for each
activity.

� Entry requirements which have to be satisfied before
work on a process in relation to a product can be
authorized. For example, it might be laid down that a
comprehensive set of test data and expected results
must have been prepared, checked, and approved
before testing is permitted to commence.

� Implementation requirements which define how the
process in question is to be carried out. In the case of
testing, it could be stated that whenever errors are
found and removed, all test runs must be repeated,
even those that have previously been found to run
correctly. The justification for this would be to ensure
that the error corrections have not themselves
introduced new errors.

� Exit requirements which have to be met before an
activity can be signed off as being completed. Thus,
for testing to be regarded as completed, a requirement
might be specified that all test runs must have been run
in sequence with no errors.

C. Reviews, Inspections, and Walkthroughs

The most common methods of checking the appropriate-
ness of intermediate products are reviews, inspections, and
walkthroughs. Although these are technically different,
many practitioners use the terms interchangeably.

The IEEE (1997) has defined a review as “an evalua-
tion of the software element(s) or project status to ascer-
tain discrepancies from planned results and to recommend
improvements. This evaluation follows a formal process.”
Broadly, technical reviews have the objective of examining
the quality of products being created by a project, while

P1: GRB Final Pages

Encyclopedia of Physical Science and Technology EN013E-852 July 26, 2001 19:10

152 Project Management Software

a management review focuses on the effectiveness of the
processes.

A technical review is directed by a review leader who
is familiar with the methods and technologies used on the
product to be examined. The review leader must select re-
viewers and arrange a review meeting when the product
is in a fit state for examination. In addition to the product,
the objectives of the review, the specification which the
product is fulfilling, and any relevant standards should be
available. Reviewers should carefully examine these doc-
uments before the meeting. At the meeting itself defects
found by the reviewers are recorded on a technical review
issues list. The temptation to suggest ways of resolving the
issues at this stage should be resisted. If a large number
of defects is found, a second meeting may be needed to
review the reworked product, but otherwise there should
be a management arrangement to ensure that the technical
issues noted by the review are dealt with.

Inspections are similar to reviews in principle, but the
focus is on the scrutiny of a specific document. There must
be one or more other documents against which it can be
checked. A design document would, for example, need a
specification with which it should be compatible. Inspec-
tions are associated with M. E. Fagan, who developed the
approach at IBM. He drew particular attention to the con-
ditions needed to make inspections effective. For instance,
the defect detection rate was found to fall off if more than
about 120 lines of a document was reviewed in 1 hr or the
review took longer than 2 hr. Inspections can thus be very
time-consuming, but Fagan was able to produce evidence
that, despite this, the use of inspections could be massively
cost-effective. Both reviews and inspections can be made
more effective by the use of checklists of the most proba-
ble errors that are likely to occur in each type of software
product.

Reviews, inspections, and other quality-enhancing
techniques are well established but are potentially expen-
sive. Project managers need to weigh the cost of confor-
mance, that is, the cost of the measures taken to remove
defects during development, against the cost of noncon-
formance, that is, the cost of remedying defects found
during the final testing phase. There would also be costs
associated with the potential damage an application could
occasion if it were defective when in operation.

D. Quality Plans

Standard entry, exit, and implementation requirements
could be documented in an organization’s quality man-
ual. Project planners would then select those standards
that are appropriate for the current project and document
their decisions in a software quality assurance plan for
their project.

The ANSI/IEEE standard for software quality plans
states that such plans should have the following sections.

1. Purpose. This section documents the purpose and
scope of the plan. It identifies the software product(s) to
which the plan relates.

2. Reference Documents. This section lists other docu-
ments that are referred to in the plan.

3. Management. This section describes the organization
of the project in terms of who will be responsible for what.
The tasks that the project will need to accomplish should
be documented. This would seem to be an example of
where a reference to another, existing planning document
would be appropriate.

4. Documentation. The documentation that is to be pro-
duced or used by the project should be identified. This
includes specifications, designs, testing plans and reports,
and user manuals.

5. Standards, Practices and Conventions. These specify
the standards that will be used during the project. These are
often in the form of references to preexisting standards, ei-
ther formulated externally or from the organization’s own
quality manual.

6. Reviews and Audits. This section lists the reviews
and audits to be carried out along with their scheduled
dates. Audits differ from reviews in that they tend to be
performed retrospectively. For example, audits might be
conducted on all the deliverables of a project immediately
prior to hand-over to the customer.

7. Configuration Management. This has been touched
upon in Section IV above.

8. Problem Reporting and Corrective Action. A fa-
miliar problem with management systems is that al-
though problems and issues might be effectively and
accurately identified and recorded, their resolution can
sometimes escape proper control. Procedures need to
be in place to ensure that the quality loop is complete
so that defect reports are properly tracked to their final
resolution.

9. Tools, Techniques, and Methodologies. The purpose
and use of any special tools, techniques and methodologies
employed should be described.

10. Code Control. This section describes the procedures
and organization in place to maintain a correct and secure
library of software and documentation.

11. Media Control. This section describes the mea-
sures that ensure the physical security of the products
of the project, especially those that are in electronic
format.

12. Supplier Control. Some elements of the software
product might not be created by the internal team, but
might be bought from subcontractors. The measures to
ensure the quality of these bought-in components need to
be planned and documented.

P1: GRB Final Pages

Encyclopedia of Physical Science and Technology EN013E-852 July 26, 2001 19:10

Project Management Software 153

13. Records Collection, Maintenance, and Retention.
The person or persons are named who are responsible for
ensuring that the appropriate documentation is produced
and stored and that the situations which should generate
documentation are identified.

The core purpose of this document can thus be seen
as ensuring that the actions needed to ensure quality are
incorporated into the fabric of the project and executed as
part of the day-to-day running of the project and not as
some desirable add-on.

SEE ALSO THE FOLLOWING ARTICLES

COMPUTER ALGORITHMS •REQUIREMENTS ENGINEERING

• SOFTWARE ENGINEERING • SOFTWARE MAINTENANCE

AND EVOLUTION • SOFTWARE TESTING

BIBLIOGRAPHY

Brooks, F. (1987). “No silver bullet, essence and accidents of software
engineering,” IEEE Computer 20(4), 10–19.

Brooks, F. P. (1995). “The Mythical Man-Month: Essays on Software
Engineering (Anniversary Edition),” Addison-Wesley, Reading MA.

Boehm, B. (1981). “Software Engineering Economics,” Prentice-Hall,
Englewood Cliffs, NJ.

Hughes, B., and Cotterell, M. (1999). “Software Project Management,”
2nd ed., McGraw-Hill, Maidenhead, U.K.

Humphrey, W. S. (1990). “Managing the Software Process,” Addison-
Wesley, Reading, MA.

IEEE. (1997). “Managing risk,” IEEE Software 14(3), 17–89.
Jones, C. (1998). “Estimating Software Costs,” McGraw-Hill, New York.
Kemerer, C. F. (ed.). (1997). “Software Project Management: Readings

and Cases,” Irwin, Chicago.
Project Management Institute (1996). “A Guide to the Project Man-

agement Body of Knowledge,” Project Management Institute, Upper
Darby, PA.

P1: GQT/GLT P2: GPA/GAE/GRD QC: FJS/FYK Final Pages Qu: 00, 00, 00, 00

Encyclopedia of Physical Science and Technology EN013E-853 July 27, 2001 11:46

Prolog Programming Language
Heimo H. Adelsberger
University of Essen

I. Brief History of Prolog
II. Application Areas
III. Prolog’s Elementary Constructs
IV. Basic Concepts of Logic Programming
V. Programming in Prolog

VI. Built-in Predicates
VII. Definite Clause Grammars

VIII. Meta-Level Programming
IX. Programming with Constraints over Finite

Domains

GLOSSARY

Backtracking If the basic control structure of Prolog
(i.e., calling procedures and using clauses in a top-
down, left-to-right fashion) leads to a goal that can-
not be satisfied, Prolog goes back to a previous choice
point with an unexplored alternative and moves for-
ward again.

Clause Alternative formulation of statements expressed
in first-order predicate calculus, having the form q1,

q2, . . . qm ← p1, p2, . . . pn.

Constraint Logical relation among several variables,
each taking a value in a given domain.

Definite clause grammar Formalism for describing lan-
guages, both natural and artificial. Definite clause
grammars are translated into Prolog yielding a
recursive-descent, top-down parser.

Horn clause Clause having one left-hand side literal at

most. The right-hand side literals have to be positive.
Prolog facts, rules, and goals are in the form of Horn
clauses.

Logical variable Variable that stands for some defi-
nite but unidentified object like a pronoun in natural
language.

Logic programming Representation of a program in
the form of Horn clauses, and interpretation of these
clauses in a declarative and in a procedural form.

Predicate calculus Formal language to express and rea-
son with statements over a domain of discourse.

Resolution Computationally advantageous inference
rule for proving theorems.

Unification Makes two terms identical by finding ap-
propriate substitutions for variables. It is the ba-
sic parameter-passing method of Prolog, which may
also be viewed as pattern matching using logical
variables.

 155

P1: GQT/GLT P2: GPA/GAE/GRD QC: FJS/FYK Final Pages

Encyclopedia of Physical Science and Technology EN013E-853 July 27, 2001 11:46

156 Prolog Programming Language

PROLOG is a computer programming language based on
the ideas of logic programming. Logic programming, like
functional programming, is radically different from con-
ventional, imperative (or procedural) programming lan-
guages. Rather than mapping the von Neumann machine
model into a programming language and prescribing how
the computer has to solve the problem, logic program-
ming is derived from an abstract model for describing
the logical structure of a problem with no relationship to
a machine model. Prolog describes objects and the rela-
tionships between them in a form close to mathematical
logic. In this context, computation means the deduction of
consequences from a program. Prolog manipulates pure
symbols with no intrinsic meaning. Constraint logic pro-
gramming extends the purely abstract logical framework
with objects that have meaning in an application domain:
numbers, along with their associated algebraic operations
and relations.

I. BRIEF HISTORY OF PROLOG

As early as the 1950s, computationally inclined logicians
were investigating techniques for automating proofs of
mathematical theorems. Then, in the mid-1960s, J. A.
Robinson formulated the resolution principle, a power-
ful method of drawing inferences that makes it easy to
reason about facts and deduce new knowledge from old.

In the early 1970s the first Prolog interpreter was de-
signed and implemented by A. Colmerauer at the Uni-
versity Aix-Marseilles, France. However, the use of Pro-
log was restricted primarily to a rather small academic
community. R. A. Kowalski popularized the idea of logic
programming—which is really what Prolog is about—
with the publication of his book, “Logic for Problem
Solving,” in 1979. During the second half of the 1970s
David H. D. Warren developed a very efficient Prolog
compiler written almost entirely in Prolog. The Prolog
syntax used for this project became a de facto standard
called the Edinburgh syntax. Since the announcement of
the Japanese Fifth Generation Computer Project in 1981,
when Prolog was chosen as the kernel language, Pro-
log has been accepted as the second general artificial in-
telligence programming language (with LISP being the
first).

Prolog was also influenced by the development of other
artificial intelligence languages. Dissatisfaction with the
theorem-proving techniques of the 1960s provided impe-
tus for the development of the language Planner, which
could explicitly represent assertions and theorems. Then
Popler was developed, a Planner-type language for the
POP-2 language environment. Subsequently, Conniver
provided additional language features for expressing the

order in which a proof of a theorem was to be attempted.
Prolog then followed with its representation of theorems
and axioms in the form of Horn clauses.

The founding work on constraint logic programming
(CLP) was done at Monash University in Melbourne
around 1987 by J. Jaffar and J. L. Lassez. In Europe,
research was originally concentrated at the European
Computer-Industry Research Center in Munich. CHIP
(Constraint Handling in Prolog) is a result of this effort.
A. Colmerauer contributed to this field by creating Prolog
III. Eclipse, a language coming from IC Parc (Imperial
College, London), shares many features with CHIP. It is
written in itself, employs a powerful generalized propaga-
tion technique, and supports parallelism.

The crucial features of Prolog are unification and back-
tracking. Through unification, two arbitrary structures can
be made equal, and Prolog processors employ a search
strategy which tries to find a solution to a problem by
backtracking to other paths if any one particular search
comes to a dead end.

Since 1995, Prolog has been an international standard
(ISO/IEC 13211).

II. APPLICATION AREAS

Prolog has been applied successfully for miscellaneous
tasks in artificial intelligence, such as theorem prov-
ing, problem solving, mathematical logic, computer al-
gebra, pattern matching, knowledge representation, and
expert systems. Other major application areas are database
management, software prototyping, compiler writing,
computer-aided instruction, and design automation, in-
cluding architecture, chemistry, and VLSI design.

Constraint programming has been successfully applied
to problem areas as diverse as DNA structure analysis,
time-tabling for hospitals, and industry scheduling. It is
well adapted to solving real-life problems because many
application domains evoke constraint description natu-
rally. Some examples follow:

Assignment problems: Typical examples are (1) stand
allocation for airports, where an aircraft must be parked
on an available stand during its stay at the airport, (2)
counter allocation for departure halls in airports, (3) berth
allocation to ships in a harbor.

Personnel assignment where work rules and regulations
impose difficult constraints: Examples include (1) produc-
tion of rosters for nurses in hospitals, (2) crew assignments
to flights, (3) staff assignments in railways.

Scheduling problems: Examples are (1) the petroleum
industry, (2) forest treatment scheduling, (3) production
scheduling in the plastic industry, (4) planning the produc-
tion of military and business jets. The use of constraints

P1: GQT/GLT P2: GPA/GAE/GRD QC: FJS/FYK Final Pages

Encyclopedia of Physical Science and Technology EN013E-853 July 27, 2001 11:46

Prolog Programming Language 157

in advanced planning and scheduling systems is increased
due to current trends of on-demand manufacturing.

Network management and configuration: Examples are
(1) the planning of cabling of telecommunication networks
in buildings, (2) electric power network reconfiguration
for maintenance scheduling without disrupting customer
services.

III. PROLOG’S ELEMENTARY
CONSTRUCTS

Prolog is very different from traditional programming
languages such as Ada, BASIC, COBOL, C, C++,
FORTRAN, and Pascal. These languages are procedu-
ral, that is, a program specifies explicitly the steps that
must be performed to reach a solution to the problem un-
der consideration. Prolog is also different from functional
programming languages such as pure LISP. A functional
language is based on values and expressions, and compu-
tation means the evaluation of expressions until the final
value is determined. Prolog is a declarative or descrip-
tive language for describing the logical structure of the
problem in a form close to mathematical logic. In Prolog,
computation means the deduction of consequences from
the program. Computer programming in Prolog consists
of (1) declaring some facts about objects and their rela-
tionships, (2) defining rules about objects and their rela-
tionships, and (3) asking questions about objects and their
relationships.

A. Facts

In a statement like “Mozart composed Don Giovanni” a
relation (“composed”) links two objects (“Mozart” and
“Don Giovanni”). This is expressed in Prolog in the form
of an assertion:

composed(mozart, don giovanni).

A relationship such as “composed” is also called a predi-
cate. Several facts together form a database.

Example. A database for operas

composed(beethoven, fidelio).

composed(mozart, don giovanni).

composed(verdi, rigolesso).

composed(verdi, macbeth).

composed(verdi, falstaff).

composed(rossini, guillaume tell).

composed(rossini, il barbiere di siviglia).

composed(paisiello, il barbiere di siviglia).

B. Questions

It is possible to ask questions in Prolog. The symbol used
to indicate a question is ?-. There are two different types
of questions: is-questions and which-questions. A typical
is-question is “Did Mozart compose Falstaff ?” In Prolog
one would write

?- composed(mozart, falstaff).

Prolog’s answer would be

no.

A typical which-question is “Who composed Falstaff ?”
In Prolog one would write

?- composed(X, falstaff).

Prolog’s answer would be

X = verdi.

If there are more solutions to a question, as in “Which
operas have been composed by Verdi?”

?- composed(verdi, X).

all solutions are presented one by one:

X = rigoletto;

X = macbeth;

X = falstaff;

no

1. Prolog Environment

Prolog waits after each solution for a user input.
A semicolon means: “Present one more solution.” Hit-

ting the return-key terminates the query. The “no” at the
end indicates that there are no more solutions.

Actually, the top-level behavior of a Prolog system is
not defined in the ISO standard. For the rest of this article
we will use the following convention for better readability:
if there are one or more solutions to a query, all solutions
are listed, separated by semicolons; the last solution is
terminated by a full stop. The values of the variables for
one solution are separated by a comma. If there is no
solution, this is indicated by the word “no.”

The text of a Prolog program (e.g., the opera database)
is normally created in a file or a number of files using one
of the standard text editors. The Prolog interpreter can
then be instructed to read in programs from these files;
this is called consulting the file. Alternatively, the Prolog
compiler can be used for compiling the file.

2. Closed-World Assumption

The answer to a query with respect to a program is a
logical consequence of the program. Such consequences

P1: GQT/GLT P2: GPA/GAE/GRD QC: FJS/FYK Final Pages

Encyclopedia of Physical Science and Technology EN013E-853 July 27, 2001 11:46

158 Prolog Programming Language

are obtained by applying deduction rules. The assumption
that all relevant knowledge is in the database is called the
closed-world assumption. Under this assumption it is valid
that Prolog comes back with “no” if a question cannot be
answered.

C. Terms, Constants, Variables, and Structures

1. Terms

The data objects of Prolog are called terms. A term is a
constant, a variable, or a compound term. A constant de-
notes an individual entity such as an integer or an atom,
while a variable stands for a definite but unidentified ob-
ject. A compound term describes a structured data object.

2. Constants

Atoms. An atom is a named symbolic entity. Any
symbolic name can be used to represent an atom. If there
is a possibility of confusion with other symbols, the
symbol has to be enclosed in single quotes. The following
are examples:

Quoted: 'Socrates' 'end of file' '('

Unquoted: composed mozart --> ?- :- **

Strings. A string is formed by a sequence of charac-
ters enclosed between quotation characters, as in `̀ this
is a string".

Numbers. An integer is represented by a sequence
of digit characters, possibly preceded by a plus or minus;
examples include the following:

123 -123 +123

A floating point number is represented by a sequence of
digit characters, possibly preceded by a plus or minus
and followed by a decimal part, or an exponent part, or a
decimal part followed by an exponent part. Examples are

2.0 -2.718 5.5E8 -0.34e+8 45.0e-8

3. Variables

A variable name may contain letters, numbers, and the un-
derscore character. It must start with an uppercase letter
or the underscore character.

X Var Grand dad X12 abc 123

If a variable is only referred to once in a clause, it does
not need to be named and may be written as an anony-
mous variable, indicated by the underscore character “ ”.

A clause may contain several anonymous variables; they
are all read and treated as distinct variables. For example,

composed(,).

A variable should be thought of as standing for some defi-
nite but unidentified object, which is analogous to the use
of a pronoun in natural language.

4. Compound Terms

Compound terms are structured data objects. A structure
consists of a name and a number of arguments, separated
by commas, enclosed by parentheses. The name is an
atom, called the principal functor. The number of argu-
ments is called the arity of the structure. Each argument
is a term. An atom can be considered to be a structure of
arity zero.

Examples.

human(socrates)

father(Dad, Child)

line(point(10,10,20), point(X,Y,Z))

s(np(john), vp(v(likes), np(mary)))

s(np(dt(the), n(boy)), vp(v(kicked),

np(dt(the), n(ball))))

D. Rules

Rules enable us to define new relationships in terms of
existing ones. For example, to explain that a person is
someone’s grandfather one could say

Grand dad is a grandfather of Grand child

if

Child is parent of Grand child

and

Grand dad is father of Child.

In Prolog syntax one would write

grandfather of(Grand dad, Grand child):-

parent of(Child, Grand child),

father of(Grand dad, Child).

The symbol “:-” is pronounced “if.” The comma between
“parent(. . .)” and “father(. . .)” is pronounced “and” and
must not be confused with the comma between arguments
of a structure. A rule has the form of an implication. The
left-hand side of a rule, the conclusion, is called the rule-
head; the right-hand side, the conjunction of conditions,
is called the rule-body.

E. Conjunctions

Given the following database (comments in Prolog come
in two forms: % up to end of line or /*· · ·*/)

P1: GQT/GLT P2: GPA/GAE/GRD QC: FJS/FYK Final Pages

Encyclopedia of Physical Science and Technology EN013E-853 July 27, 2001 11:46

Prolog Programming Language 159

/* A small example about

people, food, wine, and love */

likes(mary, food). % mary

likes(mary, wine).

likes(peter, wine). % peter

likes(peter, mary).

likes(paul, Something) :- % paul

likes(mary, Something).

in Prolog one could ask “Is there anything that Paul and
Mary both like?” in the following form:

?- likes(mary, X), likes(paul, X).

It can easily be verified that only the object ‘wine’ satis-
fies the conditions. Therefore, Prolog’s answer is

X = wine.

IV. BASIC CONCEPTS OF
LOGIC PROGRAMMING

A. Nondeterminism

A very important aspect of logic programming is that,
when several facts or rules match a given goal, the strat-
egy by means of which these alternatives are tried is not
determined. Sometimes this nondeterminism can be inter-
preted as a “don’t care” nondeterminism.

This is the case if every answer is acceptable. More often
it is a “don’t know” nondeterminism. In the above exam-
ple, “?-likes(mary, X), likes(paul, X),” the first subgoal,
“?-likes(mary, X),” can be matched with two facts in the
database: “likes (mary, food)” and “likes(mary, wine).”
At this point we do not know which fact will lead to a
solution.

Another form of nondeterminism is when several sub-
goals must be satisfied in a single goal statement. The
order in which these subgoals are satisfied is also not deter-
mined. Again, the example “?-likes(mary, X), likes (paul,
X)” can be used: it is logically equivalent to satisfying the
subgoal “?-likes(mary, X)” first and then “likes (paul, X)”
or vice versa or even both in parallel.

B. Backward Reasoning

Prolog deals with these forms of nondeterminism with
a simple depth-first search strategy. The first subgoal,
“likes(mary, X),” can be matched with the first fact in the
database. This leads to the instantiation of X to “food.” The
second subgoal, “likes(paul, X)” cannot be satisfied for
the following reason: X is instantiated to “food,” to prove
“likes(paul, food)” the rule “likes(paul, Something):-
likes(peter, Something)” must be used, instantiating

“Something” to “food.” The statement “likes(paul, food)”
is only true if “likes(peter, food)” is true. This is not
the case, however, since “likes(peter, food)” is not in the
database. Therefore, the subgoal fails. Prolog now back-
tracks, that is, it goes back to a previous choicepoint. This
was the goal “likes(mary, X).” Prolog uninstantiates X and
matches “likes(mary, X)” with the next appropriate fact
in the database, that is, “likes(mary, wine).” This leads
to the instantiation of X to wine. The second subgoal,
“likes(paul, X),” can now be proven since X is instanti-
ated to “wine,” and “likes(paul, wine)” can be deduced
from the fact “likes(peter, wine),” found in the database.

This form of reasoning is called backward reasoning:
Prolog scans the database for matching facts and rule-
heads. A matching fact indicates success. A matching
rule-head reduces the problem to one of solving the con-
ditions at the right-hand side of the rule. If several facts or
rule-heads match a given goal, Prolog takes the first one
from the database, then the second, and continues until
all matching facts or rule-heads have been processed. A
conjunction of goals is processed from left to right. The
first goal of the conjunction is proved, then the second,
and so on.

C. Unification and Logical Variables

The process of matching terms is called unification. The
goal is to make two (or more) terms identical, replacing
variables with terms as necessary. In the example above,
the two terms likes(mary, X) and likes(mary,
food) can be unified; the substitution is {X=food}. To
make, for example, the terms

parents(peter, Y, Z)

parents(X, paul, Z)

equal, more than one set of possible substitutions exists.
Possible substitutions are

{X=peter, Y=paul, Z=mary},
{X=peter, Y=paul, Z=elizabeth},
{X=peter, Y=paul, Z=xzvky} or

{X=peter, Y=paul}
to name only some. The last unifier, {X=peter,
Y=paul}, is called a most general unifier (mgu) since
it leads to the most general instance parents(peter,
paul, Z). Such an mgu is unique (up to renaming of
variables). Variables in logic programs are different from
variables in procedural programming languages in which
they stand for a store location in memory. Variables in
procedural programming languages can be changed using
an assignment statement.

A logical variable, in contrast, has the following
properties:

P1: GQT/GLT P2: GPA/GAE/GRD QC: FJS/FYK Final Pages

Encyclopedia of Physical Science and Technology EN013E-853 July 27, 2001 11:46

160 Prolog Programming Language

1. There is no explicit assignment (the system does it
through unification).

2. Values of instantiated variables cannot be changed
(except by the system through backtracking).

3. When two or more uninstantiated variables are
matched together, they become linked as one.

D. First-Order Predicate Calculus

Predicate calculus is a formal language for expressing
statements that are built from atomic formulas. Atomic
formulas can be constants, variables, functions, and pred-
icates. Atomic formulas can be connected to form state-
ments by using the following connectives: ∨ (logical or), ∧
(logical and), and ⇒ (implication). The symbol ∼ (not)
is used to negate a formula. Atomic formulas and their
negations are called literals. Variables in a statement can
be quantified by ∀ (the universal quantifier, “for all”) and
∃ (the existential quantifier, “for at least one”). The syn-
tactically correct expressions of the predicate calculus are
called well-formed formulas (wff’s). First-order predicate
calculus is an important subset of predicate calculus. State-
ments are restricted in that quantification is not allowed
over predicates or functions. For example, the sentence
“Siblings are not married” can be represented by the first-
order predicate calculus statement

(∀X)(∀Y)(siblings(X, Y) ⇒ ∼married(X, Y)).

E. Clauses

Clauses are alternative notations of statements expressed
in first-order predicate calculus. They have the form of a
logical implication. A clause is expressed as a pair of sets
of terms in the form

q1, q2, . . . qm ← p1, p2, . . . pn.

Variables are considered to be universally quantified. The
qi are called the consequents and the p j are called the
antecedents. This can be read as “q1 or q2 or . . . qm is
implied by p1 and p2 and · · · pn .” Clauses can also be
written in form of a disjunction with the antecedents as
negated literals

q1 ∨ q2 ∨ . . . ∨ qm∨ ∼ p1 ∨ ∼ p2 ∨ . . . ∨ ∼ pn.

Three special clauses deserve attention. When the conse-
quent is empty,

← p1, p2, . . . pn

the clause is interpreted as a negation. Such a clause is
also called a goal. When the antecedent is empty, as in

q1, q2, . . . qm ←,

the clause is called a fact, and it states unconditionally that
q1 or q2 or . . . qm is true. The empty clause

←
is a contradiction and can never be satisfied.

F. Horn Clauses

Prolog’s rules, facts, and queries are Horn clauses. Horn
clauses, also called definite clauses, are a subset of the
clausal form of logic. The consequent of the clause is
restricted to one term at maximum:

q ← p1, p2, . . .pn a rule (n > 0)
q ← a fact

← p1, p2, . . .pn a goal (n > 0).

Horn clauses do not have the expressive power of the full
clausal form of logic and, therefore do not have the power
of first-order predicate calculus. The main disadvantage is
that it is impossible to represent negative information like
“Siblings are not married” with Horn clauses.

Horn-clause logic is known to be Turing-complete, that
is, it provides a universal computing formalism. Horn
clauses are closely related to conventional programming
languages since they can be given a simple procedural
interpretation.

There are two ways in which a Horn clause like

a ← b, c, d

can be interpreted:

1. Declarative or descriptive interpretation. This is a
statement in logic saying “a is true if b and c and d
are true.”

2. Procedural or prescriptive interpretation. This is the
definition of the procedure “In order to execute a, all
procedures b, c, and d have to be executed.”

The declarative aspect emphasizes the static knowledge
that is represented. The procedural aspect emphasizes how
to use the knowledge to solve the problem.

Example.

grandfather of(Grand dad, Grand child) :-

parent of(Child, Grand child),

father of(Grand dad, Child).

Declarative interpretation. Grand dad is the
grandfather of Grand child if (there exists a Child
so that) Child is the parent of Grand child and
Grand dad is the father of Child.

P1: GQT/GLT P2: GPA/GAE/GRD QC: FJS/FYK Final Pages

Encyclopedia of Physical Science and Technology EN013E-853 July 27, 2001 11:46

Prolog Programming Language 161

Procedural interpretation. There are many possi-
ble interpretations, for example, given Grand child,
seeking Grand dad: To find the Grand dad of
a given Grand child, find (compute) a parent of
Grand child and then find (compute) his/her father.

G. Invertibility

Prolog is different from most other languages according
to the input–output behavior of arguments. A parameter in
a procedural programming language is of type “in,” “out,”
or “in–out.” This means that either a value is passed to a
subroutine, a result is returned from the subroutine, or a
value is passed first and a result is returned afterward. In
Prolog, the same argument of a predicate can be used for
both input and output, depending on the intention of the
user.

In a question like “?-grandfather(paul, peter)” both ar-
guments are used as input parameters. In a question like
“?-grandfather(paul, X)” the second argument may func-
tion as an output parameter, producing all grandchildren
of Paul, if any. This aspect of Prolog, that an argument
can be used sometimes as an input parameter but at other
times as an output parameter, is called invertibility.

H. Resolution

Resolution is a computationally advantageous inference
rule for proving theorems using the clausal form of logic.
If two clauses have the same positive and negative literal
(after applying appropriate substitutions as needed), as in
(p ∨ q1 ∨ q2 ∨ . . . qm) and (∼p ∨ ∼r1 ∨ r2 ∨ . . . rn), then

(q1 ∨ q2 ∨ . . . qm ∨ r1 ∨ r2 ∨ . . . rn)

logically follows. This new clause is called the resolvent
of the two parent clauses.

Resolution refutation is a proof by contradiction. To
prove a theorem from a given set of consistent axioms,
the negation of the theorem and the axioms are put in
clausal form. Then resolution is used to find a contradic-
tion. If a contradiction can be deduced (i.e., the negated
theorem contradicts the initial set of axioms), the theorem
logically follows from the axioms. An advantage of reso-
lution refutation is that only one inference rule is used. A
problem is combinatorial explosion: Many different can-
didates can be selected for resolution at each stage of the
proof, and worse, each match may involve different sub-
stitutions. Using only the most general unifier eliminates
one disadvantage mentioned above. Restricting clauses
to Horn clauses that have only one positive literal drasti-
cally reduces the number of possible reduction candidates.
The specific form of resolution used in Prolog systems
is called SLD-resolution (Linear resolution with Selector

function for Definite clauses). The most recent resolvent
and a clause from the database, determined by a selec-
tion function, must always be used for each resolution
step.

V. PROGRAMMING IN PROLOG

A. Lists

A list is an ordered sequence of elements that can have any
length. Lists are written in Prolog using square brackets
to delimit elements separated by commas, as in

colors([red, blue, green]).

Some other lists are the following:

[2,3,5,7]

[]

[[the, boy], [kicked, [the, ball]]]

The first list consists of the first four prime numbers, the
next list is the empty list. The last one represents the
grammatical structure of the sentence “The boy kicked the
ball”:

[[the,
︸︷︷︸

det

boy
︸︷︷︸

noun

],

︸ ︷︷ ︸

np

[kicked,
︸ ︷︷ ︸

verb

[the,
︸︷︷︸

det

ball
︸︷︷︸

noun

]

︸ ︷︷ ︸

np

]

︸ ︷︷ ︸

vp

]

︸ ︷︷ ︸

s

where s denotes sentence; np, noun phrase; vp, verb
phrase; and det, determiner.

The first element of a list is called the head of the list;
the remaining elements are called the tail; a vertical bar
separates the list head from its tail:

?- colors([X | Y]).
X = red,

Y = [blue, green].

or it can be used to build a new list:

?- colors(X), sort([black | X], Z).

Procedural interpretation. Get the list of colors
(called X), add black in front of it ([black |X]), and
sort this list. The sorted list is returned as Z.

Table I shows the heads and tails for miscellaneous lists.
Table II shows the instantiations of the variables if

List 1 is matched with List 2.
Prolog’s notation of a list using brackets and the vertical

bar is only a syntactical convenience. Fundamentally, lists
are structures having two arguments, the head and the tail
of the list.

P1: GQT/GLT P2: GPA/GAE/GRD QC: FJS/FYK Final Pages

Encyclopedia of Physical Science and Technology EN013E-853 July 27, 2001 11:46

162 Prolog Programming Language

TABLE I Head and Tail for Selected Examples of Lists

List Head Tail

[a,b,c,d] a [bc,d]

[a] a []

[a,[b,c]] a [[b,c]]

[[],[a],[b],[a,b]] [] [[a],[b],[a,b]]

TABLE II Matching of Two Lists

List 1 List 2 Instantiated variables

[a, b, c, d] [X, Y, Z, U] X = a

Y = b

Z = c

U = d

[a, b, c, d] [X|Y] X = a

Y = [b, c, d]

[a, b, c, d] [X, Y|Z] X = a

Y = b

Z = [c, d]

[a, b] [X, Y|Z] X = a

Y = b

Z = []

[a, b, c, d] [X, Y|Z, W] Incorrect syntax

[prolog, lisp] [lisp, X] Fails

B. Recursion

Data structures and procedures that are defined in terms
of themselves are called recursive. In many cases the use
of recursion permits the specification of a solution to a
problem in a natural form. A simple example is the mem-
bership relation:

member(Element, [Element| Tail]).
member(Element, [Head|Tail]):-
member(Element, Tail).

This can be read as “The element given as the first argu-
ment is a member of the list given as the second argument
if either the list starts with the element (the fact in the first
line) or the element is a member of the tail (the rule in the
second line).”

The following are possible questions (with answers):

?- member(d, [a,b,c,d]).

yes

?- member(e, [a,b,c,d]).

no

It is possible to produce all members of a list by asking

?- member(X, [a,b,c,d]).

X = a;

X = b;

X = c;

X = d.

C. Example: Permutations

The following Prolog program can be used to compute all
permutations of a given list:

permutation([], []).

permutation(X, [H|T]):-
append(Y, [H|Z], X),

append(Y, Z, P),

permutation(P, T).

append([], X, X).

append([A|B], C, [A|D]) :-

append(B, C, D).

Actually, considering the declarative aspect of Prolog, it is
better to state that this program defines a relation between
two lists, one being a permutation of the other. Possible
questions are

?- permutation([a,b,c], [b,c,a]).
yes

and

?- permutation([a,b,c], [a,b,c,d]).

no

The following question produces all possible permutations
of the list [a,b,c]:

?- permutation([a,b,c], X).

X = [a,b,c];

X - [a,c,b];

X = [b,a,c];

X = [b,c,a];

X = [c,a,b];

X = [c,b,a].

Explanation. The predicate “append” defines a rela-
tion between three lists: the list given as the third argument
is the concatenation of the lists given as the first and sec-
ond arguments. For example, the following holds:

?- append([a,b,c], [i,j], [a,b,c,i,j]).

yes

With the first two arguments instantiated and a variable as
the third argument, “append” can be used to join two lists:

?- append([1,2,3], [4,5,6], X).

X = [1,2,3,4,5,6].

P1: GQT/GLT P2: GPA/GAE/GRD QC: FJS/FYK Final Pages

Encyclopedia of Physical Science and Technology EN013E-853 July 27, 2001 11:46

Prolog Programming Language 163

This relation is traditionally called “append” in Prolog in
accordance with the append-function in LISP. Append as
the relation name, however, is disadvantageous, since it
stresses the procedural aspect of concatenation over the
declarative one. Different from LISP, Prolog’s append
can be used to split a list into all possible sublists as well:

?- append(X, Y, [1,2,3]).

X = [], Y = [1,2,3];

X = [1], Y = [2,3];

X = [1,2], Y = [3];

X = [1,2,3], Y = [].

With the help of “append” the predicate “permutation”
is easy to understand. The first clause says that the per-
mutation of an empty list is an empty list. This seems to
be trivial but it is essential since the second rule is recur-
sive and therefore depends on this rule to terminate. The
second rule says that to compute a permutation one has
first to split the given list (X) into two sublists (Y and
[H |Z]). The head of the second list (H) becomes the
first element of the result ([H |T]), but note that T is not
yet instantiated. Then the first list (Y) and the tail-end
of the second list (Z) are concatenated, forming list P.
List P is permuted and this permuted list (T) forms the
tail-end of the result ([H |T]).

D. Terminology

The above Prolog program to compute permutations con-
sists of two procedures (“permutation” and “append”).
Each procedure comprises one or more clauses (two for
“permutation” and two for “append”). A clause is termi-
nated by a period. The procedure name is called a pred-
icate. The number of arguments is called the arity (two
for “permutation” and three for “append”). Each clause
has a head, which is also called a procedure entry point,
and may have a body. The head defines the form of the
predicate’s arguments. The body of a clause consists of
goals or procedure calls, which impose conditions for the
head to be true.

E. Operators

Operators are a syntactical convenience to make programs
more readable. Instead of saying

composed(mozart, don giovanni).

it is also possible to say

mozart composed don giovanni.

if “composed” is defined as an infix operator. Operators
have the following properties: (1) precedence, (2) position,
(3) associativity, and (4) name.

Operators in Prolog are defined by executing the direc-
tive “op”:

:- op(Prec, Spec, Name).

For example (“Name” can be a single name or a list of
names),

:- op(1200, fx, [:-, ?-]).

:- op(500, yfx, +).

:- op(400, yfx, *).

:- op(200, xfy, ˆ).

Generally, directives allow one to specify how Prolog
should behave in specific situations, and are indicated by
the term “:-.”

1. Precedence

A lower number (like 400 compared to 1200 in the exam-
ple above) indicates a higher precedence:

3 ∗ 4 + 5 · · · (3 ∗ 4) + 5 · · · + (∗(3, 4), 5).

Parentheses can be used to get a different result:

3 ∗ (4 + 5) · · · ∗ (3, + (4, 5)).

2. Position and Associativity

Prefix operators are placed in front of the term, as in “−5”;
postfix operators are placed after the term, as in “5!”; and
infix operators are placed between two terms, as in “2 + 3.”
If two operators with the same precedence are used without
parentheses, the meaning of such an expression has to be
clarified. If the left operator binds more strongly, we speak
of left-associativity; otherwise, of right-associativity. To
define position and associativity for a Prolog operator, the
following atoms are used:

Infix: xfx xfy yfx

Prefix: fx fy

Postfix: xf yf

The meanings of “x” and “y” are as follows:

“x”: Only operators of strictly lower precedence are al-
lowed at this side of the term.

“y”: Operators of lower or the same precedence are al-
lowed at this side of the term.

yfx: left-associative
a + b + c . . . (a + b) + c . . . +(+(a,b),c)

xfy: right-associative
aˆb ˆc . . . a ˆ(b ˆc) . . . ˆ(a,ˆ(b,c))

xfx: nonassociative
a :- b :- c . . . this is an invalid term.

P1: GQT/GLT P2: GPA/GAE/GRD QC: FJS/FYK Final Pages

Encyclopedia of Physical Science and Technology EN013E-853 July 27, 2001 11:46

164 Prolog Programming Language

TABLE III Standard Operator Definitions

:- op(1200,xfx,[:-, -->]).

:- op(1200, fx,[:-, ?-]).

:- op(1100,xfy,[;]).

:- op(1050,xfy,[->]).

:- op(1000,xfy,[',']).

:- op(900, fy,[\+]).

:- op(700,xfx,[=, \=]).

:- op(700,xfx,[==, \==, @<, @>, @=<, @>=]).

:- op(700,xfx,[=..]).

:- op(700,xfx,[is, =:=, =\=, <, >, =<, >=]).

:- op(500,yfx,[+, -, /\, \/]).

:- op(400,yfx,[*, /, //, rem, mod, <<, >>]).

:- op(200,xfx,[**]).

:- op(200,xfy,[ˆ]).

:- op(200, fy,[- \]).

A list of standard operator definitions is shown in Table III.
Some of the symbols have already been introduced, like
:-, ?-, etc.; others are ordinary mathematical sym-
bols, like +, *, <, **, etc., and for bit-oriented ma-
nipulation, /\, \/, <<, >>, \. Some will be in-
troduced later, like --> (used with grammar rules), ->
(“if”), ; (“or”), \+ (“not provable”), \= (“not unifiable”),
==,\==, @<, @>, @=<, and @>= (comparison op-
erators for terms), =.. (manipulation of structured
terms), is, =:=, =\= (evaluation of arithmetic expres-
sions), and ˆ (used with findall, setof, and bagof).

F. Control Constructs

1. Cut

The cut allows one to control the procedural behavior of
Prolog programs. The cut succeeds only once. In case of
backtracking, it not only fails, but causes the parent goal
to fail as well, indicating that choices between the parent
goal and the cut need not be considered again. By pruning
computation paths in this form, programs operate faster
or require less memory space.

Interpretation of the Cut

First interpretation of the cut. “If you get this far,
you have picked the correct rule for this goal, there is no
point in ever looking for alternatives (there are no more or
these are not the correct ones).”

Example. Transliterate an English sentence into
German:

english german(you, du) :- !.

english german(are, bist) :- !.

english german(a, ein) :- !.

english german(X, X). /* catch-all */

list transliterated([], []).

list transliterated([E Word|E WordList],

[G Word|G WordList]) :-

english german(E Word, G Word),

list transliterated(E WordList, G WordList).

?-list transliterated([you,are,a,computer],X).

X = [du,bist,ein,computer].

We would get incorrect solutions (like [du, bist,
a, computer]) without the cuts in the first three
clauses of “english german.”

Problems with the cut. There are many problems
caused by the cut: A program such as

append([], X, X) :- !.

append([X|Xl], Y, [X|Zl]) :-

append(Xl, Y, Zl).

would still work on questions like

?- append([l,2,3], [4,5], X).

but would produce only one solution in

?- append(X, Y, [l,2,3,4,5]).

X = [], Y = [1,2,3,4,5].

Second interpretation of the cut. The cut–fail com-
bination: “If you get this far, you should stop trying to
satisfy this goal, you are wrong!” This helps to solve the
problem if a sentence has no Horn-clause representation
such as “Siblings are not married.” The expression “sib-
lings (X, Y) ⇒ not married (X, Y)” would lead to a rule
with a negated left-hand side, which is not allowed in
Horn-clause logic. The solution is to write a Prolog pro-
gram such as

married(X, Y) :- siblings(X, Y), !, fail.

married(X, Y).

If a pair of siblings can be found, the cut will be executed
and the first rule fails due to the predicate “fail” (see next
subsection). Now the cut prevents two things. First, Pro-
log will not look for further solutions for siblings, and,
second, Prolog will not look for other solutions for the
“married” predicate.

2. True and Fail

The predicate “fail” was used in the above example. It
never succeeds. The opposite behavior holds for “true.” It

P1: GQT/GLT P2: GPA/GAE/GRD QC: FJS/FYK Final Pages

Encyclopedia of Physical Science and Technology EN013E-853 July 27, 2001 11:46

Prolog Programming Language 165

succeeds, but fails on backtracking. Using “true,” a fact
can be represented as a rule:

composed(mozart, don giovanni):-true.

3. Conjunction, Disjunction, If-Then,
and If-Then-Else

Prolog’s basic control structure is the conjunction (“,”
an infix operator), which is true if both arguments are
true:

a :- b, c.

Disjunctions are normally expressed by two clauses

a :- b.

a :- c.

but can be written also using “;” as follows:

a :- b;c.

If-then is expressed by ‘->’

a :- b -> c.

“a” is true, if “b” is true and “c” is true, but only for the
first solution of “b”!

If-then-else is expressed by

a :- b -> c ; d.

“a” is true if (i) “b” is true and “c” is true, but only for the
first solution of “b,” or (ii) “b” is false and “d” is true!

VI. BUILT-IN PREDICATES

Built-in predicates provide facilities that cannot be ob-
tained by definitions in pure Prolog. In addition, they pro-
vide convenient facilities to save each programmer from
having to define them.

A. Logic and Control

1. Not Provable: \+
The predicate \+ is defined in analogy to the second in-
terpretation of the cut; therefore, the above example about
siblings could also be written as

married(X,Y) :- \+ siblings(X,Y).

The predicate \+ is defined as a prefix operator. The goal
\+ Xmust be instantiated to an executable goal when\+ X
is executed. The goal\+ X succeeds if the goalX fails, and
fails if the goal X succeeds. This is based on the idea to
interpret “negation as failure,” and this is different from

negation in logic; it means only: X is not provable. Note:
Executing \+ X can never result in X becoming more in-
stantiated. Any unbound variable which is part of X is still
unbound after executing \+ X.

2. Repeat

The goal “repeat” always succeeds and can always be re-
satisfied. This goal can be used to build looplike control
structures if used in conjunction with a goal that fails. Such
a loop is called a failure-driven loop:

repeat,

goal1,

goal2,

· · ·,
end test.

The loop is terminated if the end test succeeds. If
end test fails, Prolog backtracks. Since repeat always
succeeds, Prolog executes goal1 and goal2 again.
There is a difference, however, between such a construct
in Prolog and a normal repeat loop if goals in the loop can
be resatisfied or fail. In that case the execution can bounce
several times between these resatisfiable goals and the
end test before going up to the repeat. Furthermore,
the execution can bounce between the repeat at the begin-
ning and a goal in the loop body that fails. Finally, failure-
driven loops are only useful when used in conjunction with
built-in predicates that cause side effects, such as read and
write predicates. For an example, the user is referred to
Program I.

Program I

copy(In file, Out file) :-

open(In file, read, IN),

open(Out file, write, OUT),

/* begin loop */

repeat,

get code(IN, Ch),

char mapped(Ch, Ch new),

put code(Ch new),

Ch = -1, % end of file test

!,

/* end loop */

close(IN),

close(OUT).

char mapped(Lower, Upper) :-

Lower >= 97, /* a */

Lower =< 122, /* z */

!,

Upper is Lower - 32.

char mapped(X, X).

P1: GQT/GLT P2: GPA/GAE/GRD QC: FJS/FYK Final Pages

Encyclopedia of Physical Science and Technology EN013E-853 July 27, 2001 11:46

166 Prolog Programming Language

3. Once

To find only one (the first) solution, once(X) can be used.
If no solutions can be found, it fails. However, on back-
tracking, it explores no further solutions.

B. All Solutions

Normally, a goal like

?- composed(verdi, X).

produces a solution, and on backtracking the next one,
and so on. The predicates “findall,” “bagof,” and “setof”
allow one to collect all solutions to a query to be collected
in a list. They all have the same arguments “(Template,
Goal, Result),” but have different semantics. The predicate
“bagof” assembles the result list in the order in which
the results are found, “setof,” in addition, sorts the list
and removes duplicates. Predicates “bagof” and “setof”
treat variables differently from “findall.” An example shall
clarify this. Based on the database for operas from the
introductory example, the goal

?- findall(X,composed(verdi, X),Operas).

produces

Operas = [rigoletto, macbeth, falstaff].

The question

?- bagof(X, composed(verdi, X), Operas).

produces the same result, whereas

?- setof(X, composed(verdi, X), Operas).

produces the sorted list

Operas = [falstaff, macbeth, rigoletto].

A question like

?-findall(X, composed(einstein, X), Operas).

succeeds and produces the solution

Operas = [].

The corresponding queries with “bagof” and “setof” fail.
A more delicate query is

?-setof(Work,composed(Composer,Work),Operas).

The variables “Composer” and “Work” are not of the
same kind. One (“Work”) appears in “Template,” the other
(“Composer”) does not! The predicates “bagof” and
“setof” bind such a free variable, and then produce a list
of all solutions for this binding. On backtracking, they
produce the next list, and so on:

Operas = [fidelio],

Composer = beethoven;

Operas = [don giovanni],

Composer = mozart;

Operas = [il barbiere di siviglia],

Composer = paisiello;

Operas = [guillaume tell,

il barbiere di siviglia],

Composer = rossini;

Operas = [falstaff, macbeth, rigoletto],

Composer = verdi.

The corresponding query with “findall,”

?- findall(Work, composed(Composer, Work),

Operas).

treats a variable like “Work” not as free, but as existen-
tially quantified. This results in only one solution:

Operas =[fidelio, don giovanni, rigoletto,

macbeth, falstaff,guillaume tell,

il barbiere di siviglia,

il barbiere di siviglia].

The exactly same result can be achieved with “bagof”
by stating that the free variable shall be existentially
quantified:

?- bagof(Work,

Composerˆcomposed(Composer, Work)

Operas).

“Composer ˆ composed(Composer, Work)” can be read as:
“There exists a Composer such that composed(Composer,
Work) is true.”

C. Input/Output

Prolog predicates that lie outside the logic programming
model are called extra-logical predicates. The main reason
for using them is the side effect they achieve. The Prolog
predicates for I/O belong to this group. For a practical
reason, these predicates cannot be resatisfied; they fail on
backtracking. Only the major aspects are covered here.

1. Input/Output for Terms

Read. The predicate for input is “read.” The argument
is a term. The goal “read(X)” succeeds if X matches the
next term appearing on the current input stream:

?- read(X).

The user enters female(mary).

X = female(mary).

P1: GQT/GLT P2: GPA/GAE/GRD QC: FJS/FYK Final Pages

Encyclopedia of Physical Science and Technology EN013E-853 July 27, 2001 11:46

Prolog Programming Language 167

Write. The predicate for output is “write.” The argu-
ment is a Prolog term. The term is written to the current
output stream.

2. Layout

New line. The predicate “nl” produces a new line on
the current output stream.

Example. We can write a list of terms

write list([H|T]) :-

write(H),nl,write list(T).

write list([]) :- nl.

?- write list([a,b,c(d)]).

a

b

c(d)

yes

3. Input/Output for Characters

Prolog provides I/O based on characters as well. Predicates
with suffix “ code” use character codes (ASCII), and those
with suffix “ char” use character atoms. Each predicate
comes with two variants: with an explicit first argument,
indicating the stream, or without one; in this case, the
standard input or output stream is used.

Reading characters. The goal “get code(X)” suc-
ceeds if “X” matches the ASCII code of the next printing
character, “get char(X)” returns an atom. The end of the
file is indicated by the integer “-1” for “get code” and by
“end of file” for “get char.”

Writing characters. The goal “put code(X)” prints
out the character whose ASCII code corresponds to “X”:

?- putcode(65). prints `A'
?- putchar(a). prints `a'

D. File Handling

Prolog supports the transfer of data to and from one or
more external files. The predicates to open and close
streams are, respectively,

open(Filename, Mode, Stream)

close(Stream)

Mode is either read, write, or append. An example of copy-
ing a file and mapping all lowercase letters into uppercase
letters is given in Program I.

E. Arithmetic

Expressions are evaluated using “is,” which is defined as
an infix operator (xfx). The right-hand side of the “is”
goal is evaluated. If variables are used, they have to be
instantiated to numbers, otherwise the Prolog system pro-
duces an error. The result of the evaluation is then unified
with the term on the left-hand side. Prolog supports the
usual mathematical functions like abs(), sign(), round(),
truncate(), sin(), cos(), atan(), exp(), log(), sqrt(), and
power(∗∗).

Example.

?- X is (2 + 3) * 5.

X = 25.

Arithmetic comparison operators cause evaluation of ex-
pressions as well. Depending on the results, the goal suc-
ceeds or fails. Arithmetic operators and comparison oper-
ators are listed in Tables IV and V, respectively.

Examples.

X is 1 + 2 + 3. X = 6
X is 4 - 5. X = −1
X is sqrt(2.3). X = 1.51657508881031
X is 2**3. X = 8.0
6 is 1 + 2 + 3. succeeds
7 is 1 + 2 + 3. fails
X is 4 + Y. gives an error
Y is 5, X is 4 + Y. succeeds
X is a + 2 + 3. gives an error
7 is 4 + Y. gives an error
1 + 3 =:= 2+2. succeeds

succeeds
succeeds

1 + 3 =\= 2 + 5.
1 + 3 < 2 + 4.

TABLE IV Arihmetic Operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division (float)

// Division (integer)

rem Remainder

mod Modulo

/\ Bitwise and

\/ Bitwise or

\ Bitwise complement

<< Shift left

>> Shift right

P1: GQT/GLT P2: GPA/GAE/GRD QC: FJS/FYK Final Pages

Encyclopedia of Physical Science and Technology EN013E-853 July 27, 2001 11:46

168 Prolog Programming Language

TABLE V Arithmetic Comparison Operators

Operator Description

< Less

> Greater

=< Less-equal (the syntax avoids arrows!)

>= Greater-equal

=:= Equal

=\= Not equal

F. Manipulating and Testing the Database

Prolog allows one to check the existence of clauses in the
database and to add and remove clauses if the predicate is
declared “dynamic.”

1. Checking Clauses in the Database

The predicate “clause” is used to check if a clause is in
the database. It requires two terms for its arguments. The
first term is to be matched against the heads of clauses in
the database, the second against the body of the clause.
The goal may be resatisfied. A clause with no body is
treated as if it had a body consisting of the single goal
“true.”

Examples. In the example in Section III.E (“A small
example about people, food, wine, and love”), the last
clause is

likes(paul, Something) :-

likes(peter, Something).

If “likes/2” was declared “dynamic,” by executing the
directive

:- dynamic(likes/2).

then the following questions could be asked:

?- clause(

likes(paul, Something), likes(peter,

Something)).

yes

?- clause(likes(X, Y), Z).

X = mary, Y = food, Z = true;

X = mary, Y = wine, Z = true;

X = peter, Y = wine, Z = true;

X = peter, Y = mary, Z = true;

X = paul, Z = likes(peter, Y).

2. Asserting New Clauses

Clauses may be added to the database using assert. The
predicate “asserta” adds a clause before all other clauses
for the predicate, and “assertz” adds the clause after it.

Example.

?- asserta(composed(bizet, carmen)).

?- assertz((sign(X, 1) :- X > 0)).

?- assertz((sign(X, 0) :- X =:= 0)).

?- assertz((sign(X, -1) :- X < 0)).

3. Retracting Clauses

The predicate “retract” removes a clause from the
database. The goal can be resatisfied. The predicate “abol-
ish” removes all clauses for a given predicate. The argu-
ment for abolish is a predicate indicator, i.e., a term of the
form Name/Arity.

Example.

?- retract((likes(X, Y) :- Z)).

The first clause for predicate “likes” with arity 2 and ar-
bitrary body will be removed.

Example.

?- abolish(likes/2).

All facts and rules for predicate “likes” with arity 2 are
removed.

G. Manipulating, Creating, and Testing Terms

1. Testing Terms

The predicates for testing terms are shown in Table VI.
These predicates are meta-logical since they treat vari-
ables, rather than the terms they denote, as objects of the
language.

2. Manipulating Structured Terms

a. Functor. The predicate “functor” is called with
three arguments, “functor(S, F, A),” where S is a struc-
ture or atom, F is an atom indicating the name of principal
functor of S, and A is the arity of S.

The predicate “functor” is used in most cases in either
one of the following ways:

1. Get the principal functor and arity for a given struc-
ture, that is, S input, F and A output:

P1: GQT/GLT P2: GPA/GAE/GRD QC: FJS/FYK Final Pages

Encyclopedia of Physical Science and Technology EN013E-853 July 27, 2001 11:46

Prolog Programming Language 169

TABLE VI Predicates for Testing Terms

var(X) Succeeds if X is uninstantiated
when the goal is executed

atom(X) Succeeds for atoms ([] is an atom)

integer(X) Succeeds for integers

float(X) Succeeds for reals

atomic(X) Succeeds if X is an atom or number

compound(X) Succeeds if X is instantiated to
a compound term

nonvar(X) Succeeds if X is instantiated when
the goal is executed

number(X) Succeeds for numbers

?- functor(append([], X, X), Name, Arity).

Name = append,

Arity = 3.

2. Construct a structure for a given name and arity, that
is, S output, F and A input:

?- functor(X, append, 3).

X = append(A, B, C).

b. =... The predicate ``=..'' (pronounced “univ”)
is defined as an infix operator whose arguments are a struc-
ture on the left-hand side and a list on the right-hand side.

Example.

?- composed(mozart, don giovanni) =.. X.

X = [composed, mozart, don giovanni].

This predicate is necessary in Prolog since goals and struc-
tures cannot be manipulated directly. This is possible,
however, for the corresponding list. A typical action in
a grammar rule translator (see Sections VII and VIII)
is to expand a term with two additional arguments. In
the following example, expr(Value) is expanded into
expr(Value,S0,S):

?- expr(Value) =.. L,

append(L, [S0,S], L1),

G =.. L1.

G = expr(Value, S0, S),

L = [expr, Value],

L1 = [expr, Value, S0, S].

c. arg. The predicate “arg” has three arguments. The
goal ``arg(N,S,C)'' succeeds if C matches the Nth
argument of the structure S.

Example.

?- arg(2, composed(verdi, falstaff), X).

X = falstaff.

3. Term Unification

The predicates for testing and forcing equality are defined
as infix operators.

= and \=. Two terms are defined as being equal or not
equal depending on the success of the unification process.
The following goals will succeed:

?- a = a.

?- a = X.

?- X = Y.

?- a \= b.

4. Term Comparison

a. == and \==. A different concept is identity. The
main difference concerns variables. Two terms are identi-
cal if they are:

1. Variables which are linked together by a previous
unification process, or

2. The same integer, or
3. The same float, or
4. The same atom, or
5. Structures with the same functor and identical

components.

The following goals will succeed:

?- X == X.

?- X \== Y.

?- a == a.

?- a(X,Y) == a(X,Y).

?- a(3) \== a(X).

b. @=<, @=<, @<, @>, and @>=. These five
operators are based on a precedence relation between ar-
bitrary terms. The following goals will succeed:

?- abc @< xyz.

?- 2 @>= 1.

?- foo(a) @< foo(b).

?- foo(a) @< foo(a,a).

c. =:= and =\=. A third form of equality was cov-
ered in the section on arithmetics. Two expressions are
considered numerically equal if they evaluate to the same
value, otherwise they are numerically not equal. The fol-
lowing goals will succeed:

?- 1+3 =:= 2+2.

?- 1+3 =\= 1+4.

P1: GQT/GLT P2: GPA/GAE/GRD QC: FJS/FYK Final Pages

Encyclopedia of Physical Science and Technology EN013E-853 July 27, 2001 11:46

170 Prolog Programming Language

VII. DEFINITE CLAUSE GRAMMARS

A. Parsing

The formal description of the syntax of a language (natural
language or programming language) is called a grammar.
Certain rules define which sequences of words are valid
in the language and which are not. The process of recog-
nizing a correct sentence of a language is called parsing.
The structure of the sentence thereby produced is called
the parse tree. An important class of grammars consists of
context-free grammars (CFGs), developed by the linguist
Noam Chomsky. At the same time John Backus used a
similar grammar form to define ALGOL. Grammars of
this type are called BNF (Backus-Naur-Form) grammars.
Both types are equivalent in power, and the difference is
only notational.

A CFG is described by three sets: a set of terminals,
which are basic words of the language; a set of non-
terminals, which describe categories (verb-phrase, de-
terminer, expression, statement, etc.); and a set of rules
(also called productions). There is a natural correspon-
dence between this approach and first-order predicate
logic expressing context-free production rules in Horn
clause form. Since Horn clauses are also called definite
clauses, this form for describing a grammar is called a
definite clause grammar (DCG). DCGs are extensions
of CFGs. They have the advantages of CFGs, but they
also overcome some of the disadvantages of CFGs, as
follows:

1. DCGs can implement context dependence. This
means that production rules can be restricted to a
specific context where a phrase may appear.

2. DCGs can produce data structures aside from the
recursive structure of the grammar.

3. DCGs permit a flexible mixture of production rules
and auxiliary computation.

Since Horn clauses have a procedural interpretation, such
a DCG implemented in Prolog yields a parser for the
language described by the grammar. Since Prolog pro-
cedures are called in a depth-first fashion, such a parser is
a recursive-descent, top-down parser.

B. Definite Clause Grammars in Prolog

DCGs in a Prolog environment use a Prolog-like syntax.
Terminals are written in brackets; nonterminals are
written in the form of atoms. A small example defining
the syntax of a simple expression can illustrate this:

expr --> term, [+], expr.

expr --> term.

term --> numb, [*], term.

term --> numb.

numb --> [1].

numb --> [2].

numb --> [3].

numb --> [4]. /* etc. */

This grammar defines simple expressions consisting of
numbers and the two arithmetic operators “plus” and
“times,” obeying the usual hierarchy of operators used in
mathematics. The second group of rules (or productions),
for example, define a term. A term is a number, followed
by a times symbol, followed by a term; or a term is simply
a number. Generally, a rule like

head --> body.

can be read as “a possible form for ‘head’ is ‘body’.”
The above grammar is not yet a Prolog program. To pro-

duce the Prolog facts and rules, most Prolog systems have
a built-in grammar rule processor that automatically trans-
lates a production rule into a correct Prolog rule (DCGs
are not part of the ISO standard). To determine whether
a given sentence is valid for a given grammar, the predi-
cate “phrase” is used. This predicate has two arguments;
the first is the name of the production to be used, and the
second is the list of words of the sentence. To check if
2 ∗ 3 + 4 is a valid sentence, the goal

?- phrase(expr,[2,*,3,+,4]).

has to be executed. The answer is yes.

C. Arguments of Nonterminals and Mixing
Grammar Rules and Prolog Code

Grammar rules may also have arguments and can execute
Prolog goals. To execute a sequence of Prolog goals,
these goals must be put between braces. We shall extend
the above example so that not only can the validity of an
expression be checked, but the value of the expression
can be computed:

expr(Z) --> term(X), [+], expr(Y),

{Z is X+Y|.

expr(Z) --> term(Z).

term(Z) --> numb(X), [*], term(Y),

{Z is X*Y|.
term(Z) --> numb(Z).

numb(C) --> [C], {integer (C)|.

A goal like

?- phrase(expr(X),[3,*,4,+,5]).

P1: GQT/GLT P2: GPA/GAE/GRD QC: FJS/FYK Final Pages

Encyclopedia of Physical Science and Technology EN013E-853 July 27, 2001 11:46

Prolog Programming Language 171

will now produce the answer

X = 17.

D. Translation of Grammar Rules
into Prolog Rules

As an example of the way grammar rules work in Prolog,
we shall use the following sentence: “The boy kicked the
ball.” The grammatical structure is:

the boy kicked the ball

determiner noun verb determiner noun

noun_

verb_

sentence

phrasenoun_phrase

phrase

The complete grammar for parsing a sentence like this is
as follows:

sentence --> noun phrase, verb phrase.

noun phrase --> determiner, noun.

verb phrase --> verb, noun phrase.

determiner --> [the].

verb --> [kicked].

noun --> [boy].

noun --> [ball].

A grammar rule like

noun phrase --> determiner, noun.

is translated into the Prolog rule

noun phrase(S0,S) :-

determiner(S0,S1),

noun(S1,S).

The goal

?- noun phrase([the, boy, kicked, the, ball],S).

would succeed and instantiate S to [kicked,the,
ball]. This also gives the correct interpretation of such
a rule: The difference between S0 and the tail-end sublist
S is a noun phrase if there is some S1 so that the
difference between S0 and the tail-end sublist S1 is a
determiner, and the difference between S1 and S is a
noun. More succinctly, a noun phrase extends from

S0 to S if there is a determiner from S0 to S1 and a
noun from S1 to S.

The first parameter can be considered to be the input
parameter, the second to be the output parameter. The first
parameter is a list of words, which is split into two sub-
lists. The first sublist, the words at the beginning of the
sentence, is parsed by the rule. The second sublist forms
the second parameter. It consists of the remaining words
of the sentence that are not parsed by the rule.

The values of the variables S0, S1, and S for the example
are
S0 = [the,boy,kicked,the,ball],

S1 = [boy,kicked,the,ball],

S = [kicked,the,ball].

This demonstrates the correctness of the following inter-
pretation: The difference between S0 and S is the list
[the, boy] which is the result of parsing the input
sentence S0 as a noun-phrase.

To parse a sentence completely by a rule, the second
parameter has to be set to the empty list:
?- sentence([the,boy,kicked,the,ball],[]).

yes

E. A Grammar Example

The arguments of the nonterminals can be used to produce
data structures during the parsing process. This means that
such a grammar can be used not only to check the validity
of a sentence, but also to produce the corresponding parse
tree. Another use of arguments is to deal with context
dependence. To handle, e.g., number agreement, certain
nonterminals will have an extra argument, which can take
the values “singular” or “plural.”

The following grammar demonstrates some aspects of
writing a DCG in Prolog. It produces the complete parse
tree of the sentence. It handles some form of number agree-
ment. (A sentence like “The boy kick the ball” would be
rejected.). Finally, it separates grammar rules from the dic-
tionary. In this form it is easier to maintain the grammar:

/* A simple grammar */

sentence(s(NP, VP))

--> noun phrase(NP, Number),

verb phrase(VP, Number).

noun phrase(np(Det,Noun), Number)

--> determiner(Det, Number),

noun(Noun, Number).

verb phrase(vp(V,NP), Number)

--> verb(V, Number, transitive),

noun phrase(NP,).

determiner(det(Word), Number)

--> [word],

{is determiner(Word, Number)|.

P1: GQT/GLT P2: GPA/GAE/GRD QC: FJS/FYK Final Pages

Encyclopedia of Physical Science and Technology EN013E-853 July 27, 2001 11:46

172 Prolog Programming Language

noun(n(Root), Number)

--> [Word],

{is noun(Word, Number, Root)|.
verb(v(Root, Tense), Number, Transitivity)

--> [Word],

{is verb(Word, Root, Number,

Tense, Transitivity)|.

/* the dictionary */

/* determiner */

is determiner(a, singular).

is determiner(every, singular).

is determiner(the, singular).

is determiner(all, plural).

/* nouns */

is noun(man, singular, man).
is noun(men, plural, man).

is noun(boy, singular, boy).

is noun(boys, plural, boy).

is noun(woman, singular, woman).

is noun(women, plural, woman).

is noun(ball, singular, ball).

is noun(balls, plural, ball).

/* verbs */

is verb(Word, Root, Number,

Tense, Transitivity) :-

verb form(Word, Root, Number, Tense),

infinitive(Root, Transitivity).

infinitive(kick, transitive).

infinitive(live, intransitive).

infinitive(like, transitive).

verb form(kicks, kick, singular, present).

verb form(kick, kick, plural, present).

verb form(kicked, kick, , past).

verb form(lives, live, singular, present).

verb form(live, live, plural, present).

verb form(lived, live, , past).

verb form(likes, like, singular, present).

verb form(like, like, plural, present).

verb form(liked, like, , past).

This grammar allows one to parse the original sentence
“The boy kicked the ball,” producing the following parse
tree:

?- phrase(sentence(X),

[the, boy, kicked, the, ball]).

X = s(np(det(the), n(boy)),

vp(v(kick, past),np(det(the),n(ball)))).

In addition, one can parse many other sentences, most of
which may not make sense, such as

a man kicks a man

a man kicks a boy.

a boy kicked a man.

every man likes every woman.

VIII. META-LEVEL PROGRAMMING

Program and data in Prolog have the same syntactical
form. Predicates such as clause, assert, ==..,
and arg permit the manipulation of programs, even the
manipulation of the program being executed. This lan-
guage aspect, which was already an outstanding feature
of LISP, makes Prolog a very powerful tool. Programs
that analyze, transform, or even simulate other programs
are called meta-programs. The main characteristic is that
such programs treat other programs as data. A good il-
lustration is a grammar rule translator, mentioned in the
section above. Other examples are expert systems shells
or Prolog interpreters, which use different unification al-
gorithms, search strategies, or simulate parallel execution.

The purpose of a grammar rule translator is to transform
a syntax rule such as

noun phrase -> determiner, noun.

into the corresponding Prolog clause

noun phrase(S0,S) :-

determiner(S0,S1), noun(S1,S).

An example of a simple grammar rule translator is given in
Program II, covering the essential aspects only. Advanced
features, such as the mixing in of Prolog code or cuts, are
not considered.

In the following examples, variables produced by
the system are represented in the form of uppercase
characters preceded by an underscore character. The
same variables are represented by the same character:

?- expand term(

(sentence --> noun phrase,

verb phrase), X).

X = sentence (A, B) :-

noun phrase(A, C),verb phrase (C, B).

?- expand term((noun --> [ball]), X).

X = noun([ball} A], A) :- true.

?- expand term((expr --> term,[+],expr), X).

X = expr(A, B) :-

term(A, [+} C]), expr(C, B).

P1: GQT/GLT P2: GPA/GAE/GRD QC: FJS/FYK Final Pages

Encyclopedia of Physical Science and Technology EN013E-853 July 27, 2001 11:46

Prolog Programming Language 173

Program II

expand term((Head --> Body), (Head1:-Body1)) :- % The first argument of expand term,

expand goal(Head, S0, S, Head1), % a grammar rule is translated into

expand body(Body, S0, S, Body1). % the corresponding Prolog clause.

expand goal(Goal, Before, After, NewGoal) :- % expand goal adds the two

Goal =.. GoalList, % additional parameters.

append(GoalList, [Before,After], NewGoalList),

!,

NewGoal =.. NewGoalList.

% expand body consists of three clauses:

expand body((P1,P2), S0, S, G) :- % The first one deals with conjunctions.

!, % P1 is either a goal or a terminal.

expand body(P1, S0, S1, G1), % expand body(P1,..) will use the second

expand body(P2, S1, S, G2), % or third clause accordingly. If P2 is a

expand and(G1, G2, G). % conjunction, the first clause is called

% recursively. If P2 is a goal or a terminal,

% it is treated in the same manner

% as P1. expand and puts the two partial

% results G1 and G2 together, yielding G

% as result.

expand body(Terminals, S0, S, true) :- % The second clause deals with terminals

append(Terminals, S, S0), % that are written in list form. To check

!. % if Terminals is really a list, a small

% trick is used. The append goal succeeds

% only with lists. If `Terminals' is a

% goal, append fails, but if it is a list

% the desired effect is achieved, and the

% list of terminals is expanded for the

% two additional parameters.

expand body(NonTerm, S0, S, Goal) :- % The third clause deals with simple

expand goal(NonTerm, S0, S, Goal). % nonterminals.

expand and(true, A, A) :- !. % expand and forms a conjunction out of

expand and(A, true, A) :- !. % two goals. The first two clauses deal

expand and(A, B, (A,B)). % with the special case that one argument

% is the goal true in which case the

% other argument is returned.

IX. PROGRAMMING WITH CONSTRAINTS
OVER FINITE DOMAINS

A. Introduction

The following queries will demonstrate some deficiencies
of Prolog (we assume that all numbers are integers):

?- Z is X + Y, X=3, Y=4. (1)

{INSTANTIATION ERROR: 71 is 68+ 69 - arg 2}
?- X=3, Y=4, Z is X + Y. (2a)

X = 3, Y = 4, Z = 7.

?- Z=7, Y=4, Z is X + Y. (2b)

{INSTANTIATION ERROR: 71 is 68+4 - arg 2}
?- X >= 3, X < 4. (3)

{INSTANTIATION ERROR: 68>=3 - arg 1}
?- (X=1; X=3), (Y=1; Y=3), X \= Y. (4)

X = 1, Y = 3;

X = 3, Y = 1.

?- X \= Y, (X=1; X=3), (Y=1; Y=3). (5)

no

P1: GQT/GLT P2: GPA/GAE/GRD QC: FJS/FYK Final Pages

Encyclopedia of Physical Science and Technology EN013E-853 July 27, 2001 11:46

174 Prolog Programming Language

Query (1) produces an instantiation error since at the
time the first goal is executed, X and Y are not bound.
Rearranging the goals (2a) produces the correct solution:
Z = 7. Rearranging the goals would not help for (2b),
even though simple arithmetic would lead to the desired
solution: X is Z − Y. Query (3) produces an instantiation
error, but it is trivial that X should be 3 (assuming
X to be an integer!). Prolog easily finds solutions for
query (4); however, query (5) fails because of the first
subgoal (X and Y are unbound, therefore they can be
unified!) Prolog would be a more powerful language if
all these cases would be handled in the intuitive way: a
goal like “Z is X + Y” should be delayed until X and
Y are bound; 7 is X + 4 should produce a solution for
X; if the constraints narrow a variable to a single value,
the variable should be bound to this value, and there
should be a predicate “different terms” delayed until the
arguments are sufficiently bound to decide on final failure
or success of the goal. All this is achieved by extending
Prolog with the concept of constraints.

B. Constraint Logic Programming (CLP)

Prolog manipulates pure symbols with no intrinsic mean-
ing. Numbers, on the other hand, have a rich mathematical
structure: algebraic operations (e.g., addition and multi-
plication) and order (e.g., =, <, and >). Taking advantage
of this for Prolog means extending the purely abstract log-
ical framework by introducing domains for variables and
constraints for those variables which have to be obeyed.
This is called constraint logic programming (CLP). In
such a CLP system the simple unification algorithm that
lies at the heart of Prolog is augmented by a dedicated
“solver,” which can decide at any moment whether the
remaining constraints are solvable. For efficiency’s sake,
solvers for CLP systems need to be monotonic, so that
adding a new constraint to an already solved set does not
force them all to be re-solved. From a simple user’s per-
spective, CLP allows one to do mathematics with unbound
variables.

C. Constraints

Constraints arise in most areas of human endeavor. They
formalize the dependences in physical worlds and their
mathematical abstractions naturally and transparently. A
constraint simply is a logical relation among several
variables, each taking a value in a given domain. The
constraint thus restricts the possible values that variables
can take; it represents partial information about the vari-
ables of interest. The important feature of constraints is
their declarative manner, i.e., they specify what relation-
ship must be fulfilled without specifying a computational
procedure to enforce that relationship.

D. Constraint Satisfaction

Constraint satisfaction deals with problems defined over
finite domains. A constraint satisfaction problem is de-
fined as follows:

� A set of variables X = x1, . . ., xn .
� For each variable xi a finite set Di of possible values

(called the domain).
� A set of constraints restricting the values that the

variables can simultaneously take.

A solution for a constraint satisfaction problem is a set of
assignments of values from its domain to every variable
so that all constraints are satisfied at once.

E. Constraint Logic Programming and Prolog

Constraint solvers are not part of the ISO Prolog standard,
but it is easy to add such a solver as a module. Most Prolog
systems provide those solvers, the most important being
clp(FD), where the FD stand for “finite domain.” Only the
most basic aspects are covered here.

1. Imposing Domains on Variables

A domain consists of an upper and a lower bound for a
variable. There are two different ways of defining domains
for variables. One is to use the range operator “..” imposing
an upper and lower bound as in X in 1..5. In this way
it is possible to impose domains on unbound variables
by constraining them with already bound variables (# =
denotes an equity constraint).

?- X in 1..5, Y in 2..8, X+Y #= T.

X in 1..5,

Y in 2..8,

T in 3..13.

The second way to impose domains upon variables is de-
signed for larger problems. It produces domains for a list
of variables:

?- domain(VarList,Lower,Upper).

VarList is a list of unbound variables, while Lower is an
integer or the atom “inf” and Upper is an integer or the
atom “sup” (“inf” means no lower bound and “sup” means
no upper bound).

2. Imposing Constraints on Variables

Arithmetic constraints. The syntax for arithmetic
constraints is “Expression ComparisonOperator Expres-
sion.” An “Expression” is an arithmetic term, consisting of
integers and/or variables, connected by arithmetic opera-
tors, e.g.,+,-,*,/. The comparison operators in clp(FD)

P1: GQT/GLT P2: GPA/GAE/GRD QC: FJS/FYK Final Pages

Encyclopedia of Physical Science and Technology EN013E-853 July 27, 2001 11:46

Prolog Programming Language 175

TABLE VII Comparison Operators in clp(FD)

Operator Description

#< Less

#> Greater

#=< Less-equal

#>= Greater-equal

#= Equal

#\= Not equal

are distinguished from the ordinary ones by a leading “#”
(Table VII).

Propositional constraints. Propositional constraints
are used to combine constraints into phrases, thus making
it possible to define conditional constraints. Examples are
negating a constraint or defining an “either constraint 1 or
constraint 2” constraint (Table VIII).

Symbolic constraints. The constraintall diffe-
rent(List) ensures that each variable in the list is con-
strained to take a value that is unique among the variables.
“List” is a list of domain variables.

The constraint “all different” is the most important
of the group of so-called symbolic constraints. The rest
of this group is not explained here, only the names are
given: “count,” “element,” “relation,” “assignment,” “cir-
cuit” (Hamiltonian circuit), and constraints specifically
designed for scheduling problems: “serialized,” “cumula-
tive,” “disjoint1,” and “disjoint 2.”

F. clp(FD)

With this instrumentarium, it is possible to formulate the
examples from above in clp(FD) form:

TABLE VIII Propositional Operators in clp(FD)

Operator Description

#\ C True if the constraint C is false

C1 #/\ C2 True if the constraints C1 and C2 are both true

C1 #\ C2 True if exactly one of the constraints C1 and C2 is
true (xor)

C1 #\/ C2 True if at least one of the constraints C1 or C2
is true

C1 #=> C2 True if constraint C2 is true or the constraint
C1 is false

C1 #<= C2 True if constraint C1 is true or the constraint
C2 is false

C1 #<=> C2 True if the constraints C1 and C2 are both true or
both false

?- Z #= X + Y, X=3, Y=4. (1)

X = 3, Y = 4, Z = 7.

?- X=3, Y=4, Z #= X + Y. (2a)

X = 3, Y = 4, Z = 7.

?- Z=7, Y=4, Z #= X + Y. (2b)

X = 3, Y = 4, Z = 7.

?- X #>= 3, X #< 4. (3)

X = 3.

?- (X#=1 #\/ X#=3),(Y#=1 #\/ Y#=3),X #\= Y.

(4)

X in inf..sup, Y in inf..sup.

?- X #\= Y, (X#=1 #\/ X#=3), (Y#=1 #\/ Y#=3).

(5)

X in inf..sup, Y in inf..sup.

Queries (1)–(3) exhibit the expected behavior. Instead
of X=3, also X#=3 could be used. Queries (4) and (5)
demonstrate that not everything that could be deduced is
also deduced by the solver. One possibility to overcome
this is to formulate the query in the following form [and
similarly for (4)]:

?- X #\= Y, (X=1; X=3), (Y=1; Y=3). (5a)

X = 1, Y = 3;

X = 3, Y = 1.

What we actually do is post a constraint and then try to
find a set of assignments for the variables satisfying the
constraint (“generate-and-test”); this is called labeling.

G. Labeling Domain Variables

Let us define a small problem: x is an integer in the range
1–5, y is an integer in the range 1–10, x is even, y = 3x .
It is trivial that there exists only one solution: x = 2,

y = 6.

The clp(FD)-program produces this solution:

?-A in 1..5, B in 1..10, A mod 2 #= 0, B#=3*A.

A = 2, B = 6.

However, if we now enlarge the domain, e.g.,

?-A in 1..10, B in 1..20, A mod 2 #= 0, B#=3*A.

A in 2..6, B in 6..18.

the result is now an answer constraint, not a single
value for each variable. In addition, not all values of the
interval are valid, since x has to be even. To get single
values, one has to bind the domain variables to valid
values. This process is called labeling, and in clp(FD) the
predicate “labeling(OptList, List)” is used. “List” is the
list of domain variables, “OptsList” is a list of atoms or

P1: GQT/GLT P2: GPA/GAE/GRD QC: FJS/FYK Final Pages

Encyclopedia of Physical Science and Technology EN013E-853 July 27, 2001 11:46

176 Prolog Programming Language

predicates which control the order in which the domain
variables are labeled. If this list is empty, the default
labeling strategies are used.

1. Little Example

/* A little constraint problem */

little problem(L) :-

L=[A,B],

A in 1..10,

B in 1..20,

A mod 2 #= 0,

B#=3*A.

solution(L) :-

little problem(L),

labeling([],L).

?- little problem(L).

L = [A, B],

A in 2..6,

B in 6..18.

?- solution(L).

L = [2,6];

L = [4,12];

L = [6,18].

2. Controlling the Labeling Process

The first parameter of “labeling(OptList, List)” is a list of
atoms or predicates which control the order in which the
domain variables are labeled.

leftmost: The leftmost variable is selected first. This
is the default value.

min: The leftmost variable with the smallest bound is
selected.

max: The leftmost variable with the greatest upper bound
is selected.

ff: The first-fail principle is used. The leftmost variable
with the smallest domain is selected.

ffc: The variable with the smallest domain is selected,
breaking ties by selecting the variable with the most
constraints suspended on it.

variable(Sel): Provides the programmer with direct
control on how the next domain variable is selected.

Furthermore, there are atoms which control the way the
integer for each domain variable is selected.
step: Chooses the upper or the lower bound of a domain

variable first. This is the default.
enum: Chooses multiple integers for the domain variable.
bisect: Uses domain splitting to make the choices for

each domain variable.

Value(Enum): Enum is a predicate provided by the
programmer to narrow the choices for each domain
variables.

The next atoms define which integer is selected for each
variable.
up: Explores the domain in ascending order. This is the

default.
down: Explores the domain in descending order.

The next atoms control whether all solutions should be
enumerated or a single solution that minimizes or maxi-
mizes a domain variable is returned.
all: All solutions are generated. This is the default.
minimize(X): Search for a solution that minimizes the

domain variable X.
maximize(X): Search for a solution that maximizes

the domain variable X.
The last option is an atom that binds a variable to the

number of assumptions made to find that solution.
assumption(K): When a solution is found, K is bound

to the number of choices made to find it.
For example, to produce the results in reverse order, one

has to select the option “down”:

?- little problem(L), labeling([down],L).

L = [6,18];

L = [4,12];

L = [2,6].

3. Rectangle with Maximum Area

A small problem from geometry: Find the dimensions of
the rectangle of greatest area for a given circumference.
The circumference is given as 40 m, only integer solutions
are valid. The clp(FD) program is simple:

/* Rectangle with maximum area

for given circumference */

rectangle(Length,Width,Area) :-

Length in 0 .. 20,

Width in 0 .. 20,

Length+Width #= 20,

Area #= Length*Width.

maximum(Length,Width,Area) :-

rectangle(Length,Width,Area),

labeling([maximize(Area)],

[Length,Width,Area]).

?- maximum(Length,Width,Area).

Area = 100,

Width = 10,

Length = 10.

P1: GQT/GLT P2: GPA/GAE/GRD QC: FJS/FYK Final Pages

Encyclopedia of Physical Science and Technology EN013E-853 July 27, 2001 11:46

Prolog Programming Language 177

H. Send + More = Money

The send + more = money problem is a well-known
puzzle often used in the literature. A young, dynamic
student is short on money. He also knows that his father
will not easily give him the extra cash he needs, but under
certain circumstances his father may yield the money. He
knows that his father loves to solve riddles, especially nu-
merical ones. So he comes up with the following message
to his father:

SEND

+ MORE

= MONEY

Each letter represents a different digit ranging from zero
to nine, and the digits build numbers which in turn build
the above-mentioned mathematical exercise.

Gathering additional information. Each letter has a
domain with a lower bound of zero and an upper bound
of nine. Each domain variable is different from all others.
We know that a number does not start with the digit 0.
This narrows the domains for the variables S and M.

An arithmetic constraint for all letters which represents
the expression SEND + MORE = MONEY must be formu-
lated.

The predicate “sum(List)” builds the arithmetical
constraint over the domain variables. It reflects the
expression “SEND + MORE = MONEY.” The List
variable is a list of the domain variables.

sum([S,E,N,D,M,O,R,Y]) :-

1000*S+100*E+10*N+D % SEND

+ 1000*M+100*O+10*R+E % + MORE

#= 10000*M+1000∗O+100*N+10*E+Y. % = MONEY

The predicate riddle(Solution,Variables) defines
the puzzle. The purpose of the first parameter is only to
improve the readability of the result (without this it would
be difficult to recognize which variable assumes which
value):

riddle(Solution,Variables) :-

% A little trick (readability!)

Solution=[s:S,e:E,n:N,d:D,m:M,o:O,r:R,y:Y],

% The list of the domain variables:

Variables=[S,E,N,D,M,O,R,Y],

% Defines the domains for the variables:

domain(Variables,0,9),

% We know, M and S can not be 0!

M #> 0, S #> 0,

% Different letters, different numbers!
all different(Variables),

% And finally, the arithmetic constraint:

sum(Variables).

If we now pose the question

?- riddle(Solution,Variables).

we get the following answer:
Solution=[s:9,e: A,n: B,d: C,m:1,o:0,r: D,y: E],

Variables=[9, A, B, C,1,0, D, E],

A in 4..7,

B in 5..8,

C in 2..8,

D in 2..8,

E in 2..8.

Three of the eight variables are found (“s” = 9, “m” = 1,
“o” = 0), “e” is narrowed down to the interval [4..7], “n”
to [5..8]. For the remaining variables, the clp(FD)-solver
finds no additional information besides that the values 0,
1, and 9 are excluded. This is also the information an
experienced puzzle solver would immediately recognize.
To find the complete solution, we have to use the labeling
predicate:

?- riddle(Solution, Variables),

labeling([],Variables).

Solution = [s=9,e=5,n=6,d=7,m=1,o=0,r=8,y=2],

Variables = [9,5,6,7,1,0,8,2].

Efficient implementations of constraint solvers are
available, e.g, the clp(FD) solver implemented in Sictus
Prolog.

SEE ALSO THE FOLLOWING ARTICLES

ARTIFICIAL INTELLIGENCE • BASIC PROGRAMMING LAN-
GUAGE • C AND C++ PROGRAMMING LANGUAGE • LIN-
EAR SYSTEMS OF EQUATIONS • SOFTWARE ENGINEERING

• SOFTWARE TESTING

BIBLIOGRAPHY

Barták, R. (1999). “Constraint Programming: In Pursuit of the Holy
Grail.” In “Proceedings of WDS99, Prague.”

Campbell, J. A. (ed.). (1984). “Implementations of Prolog,” Wiley, New
York.

Carlsson, M., Ottoson, G., and Carlson, B. (1997). “An open-ended finite
domain constraint solver.” In “Proceedings Programming Languages:
Implementations, Logics, and Programs,” Springer-Verlag, New York.

Clark, K. L., and Tarnlund, S.-A. (eds.). (1982). “Logic Programming,”
Academic Press, New York.

Clocksin, W. F., and Mellish, C. S. (1984). “Programming in Prolog,”
2nd ed. Springer-Verlag, New York.

Hogger, C. J. (1984). “Introduction to Logic Programming,” Academic
Press, Orlando, FL.

P1: GQT/GLT P2: GPA/GAE/GRD QC: FJS/FYK Final Pages

Encyclopedia of Physical Science and Technology EN013E-853 July 27, 2001 11:46

178 Prolog Programming Language

ISO/IEC 13211 (1995). “Prolog International Standard,” ISO, Geneva.
Kowalski, R. A. (1979). “Logic for Problem Solving,” Elsevier North-

Holland, Amsterdam.
Jaffar, J., and Lassez, J. L. (1987). “Constraint Logic Programming.” In

“Proceedings Conference on Principles of Programming Languages,”
ACM, Munich.

Lloyd, J. W. (1984). “Foundations of Logic Programming,” Springer-

Verlag, New York.
Pereira, F. C. N., and Warren, D. H. D. (1980). “Definite clause grammars

for language analysis,” Artif. Intell. 13, 231–278.
Sterling, L., and Shapiro, E. (1986). “The Art of Prolog,” MIT Press,

Cambridge, MA.
Swedish Institute of Computer Science (2000). “SICStus Prolog User’s

Manual,” Kista, Sweden.

P1: GPA Final Pages Qu: 00, 00, 00, 00

Encyclopedia of Physical Science and Technology EN014E-854 July 28, 2001 17:21

Real-Time Systems
A. Burns
University of York

I. Introduction
II. System Model
III. Computational Model
IV. Scheduling Models
V. Approaches to Fault Tolerance

VI. Conclusion

GLOSSARY

Aperiodic process A process that is released at nonreg-
ular time intervals.

Deadline The time by which a process must complete its
execution.

Event-triggered The triggering of an activity by the ar-
rival of an event.

Jitter Variability in the completion (or release) time of
repeating processes.

Periodic process A process that is released at regular time
intervals.

Real-time systems A computing system with explicit
timing requirements that must be satisfied for correct
execution.

Response time analysis A form of schdulability analysis
that computes the worst-case completion time for a
process.

Scheduling The scheme by which resource are allocated
to processes.

Sporadic process An aperiodic process where consecu-
tive requests are separated by a minimum interarrival
time.

Temporal firewall A partitioning of a distributed sys-
tem such that an error in the time domain in one
part of the system does not induce timing error
elsewhere.

Time-triggered The triggering of an activity by the pas-
sage of time.

THE EVENT-TRIGGERED (ET) model of computa-
tion is presented as a generalization of the time-triggered
(TT) approach. It supports hard real-time and flexible
soft real-time services. The ET model is built upon a
number of key notions: temporal firewalls, controlled
objects, temporarily valid state data, and unidirectional
communications between isolated subsystems. It uses the
producer/consumer rather than client/server model of in-
teraction. In addition to describing a systems model and
computation model, this article considers issues of schedu-
lability and fault tolerance. The ET model is not radi-
cally different from the TT approach (as in many systems
most events will originate from clocks) but it does pro-
vide a more appropriate architecture for open adaptive
applications.

 45

P1: GPA Final Pages

Encyclopedia of Physical Science and Technology EN014E-854 July 28, 2001 17:21

46 Real-Time Systems

I. INTRODUCTION

At the 1998 Real-Time Systems Symposium, Kopetz
(1998) presented a cogent argument for the use of a time-
triggered model of computation for hard real-time sys-
tems. In this model, all computation and communication
activities are controlled by the passage of time, i.e., they
are triggered by a clock. His argument in support of a
time-triggered approach is based upon the following:

� A rejection of the client-server model of computation
� The need to emphasize the real-time properties of data
� The need to support the partitioning of systems with

temporal firewalls and effective interfaces

In this article we also support these observations but
provide a more general computation model. Again, all ac-
tivities are released by events, but these events can either
be generated by a clock, the system’s environment, or in-
ternally. However, all event sources that are not directly
linked to a clock can have temporal constraints imposed
or derived. By this means, hard real-time systems can be
supported.

The debate between proponents of time-triggered and
event-triggered models of computation has been a lively
and at times contentious one (Kopetz and Verissimo, 1993;
Kopetz, 1995). In this article we argue that the event-
triggered model is more general; it subsumes the time-
triggered approach. Hence the event-triggered model is
not an alternative to the time-triggered one, but, rather,
is a controlled means of increasing the flexibility of a
purely clock-driven architecture. With an event-triggered
approach it is possible, for example, to support a system
in which all but a small number of events are sourced
from clocks. However, it also allows a system to deal with
uncertainty in its environment.

Although it is as predictable, the drawback of using
events to control computation is that it leads to variability
in temporal behavior. This variability can be bounded but
can cause significant output jitter, which may be an is-
sue for certain control applications. Means of minimizing
output jitter will be addressed later in this article. Note,
however, that time-triggered systems can also exhibit jit-
ter (due to variations in execution time) especially if they
employ a cyclic executive for implementation. It should
also be remembered that jitter is not always detrimental;
it allows systems to be more versatile. Event-triggered
systems can go as quickly as possible, finish as quickly as
possible, and hence deliver services as quickly as possible.
This is a significant advantage for many applications.

The need to provide effective models of computation
for hard real-time applications has been intensified by
the advent of FieldBus technology in the process con-

trol domain, distributed microcomputer-based systems for
body-electronics in automobiles, and the integrated mod-
ular avionics (IMA) effort in aerospace. A wide range
of high-integrity applications, from railway signaling to
nuclear power-plant control, are looking to make use of
generic distributed computing architectures that facilitate
composability, analysis, fault tolerance, and effective per-
formance. The key to engineering these generic archi-
tectures is to make use of an appropriate computational
model. For simple systems, the time-triggered architec-
ture is one such model. For more dynamic and open appli-
cations the event-triggered model described in this article
is necessary.

The motivation for the event-triggered model is pre-
sented in the next section, where a systems model is pro-
posed. Section III then gives the computational model and
Section IV an implementation model. Approaches to fault
tolerance are presented in Section V and conclusions are
developed in Section VI.

II. SYSTEM MODEL

All real-time systems monitor and most at least partially
control the environment in which they execute. The com-
puter system is said to interact with controlled objects
(COs) in its environment. These objects may represent a
vessel’s temperature, the position of a rotator, the setting
of a switch, etc. All have a temporal dimension in that the
passage of sufficient time will cause their states to change.
However, controlled objects can clearly be categorized
into two distinct behavioral types: those that exhibit con-
tinuous changes and those that exhibit discrete changes.
Temperature, pressure, airflow, chemical concentration,
and rotor position are all continuous variables; switch
positions, operator input, electrical flow in earth wires,
and proximity sensors are examples of discrete controlled
objects.

Linked to each external controlled object is an entity
within the real-time computer system that shadows its be-
havior. The real-time state variable (RTSV) must always
be sufficiently up to date for the control functions of the
system to be discharged. This applies to output as well as
input activities. Having computed the required valve set-
ting, for example, there is a temporal constraint on the time
that can be taken before the actual physical valve has taken
up that position. The use of COs and RTSVs in the event-
triggered model is identical to that in the time-triggered
approach (Kopetz, 1998).

For controlled objects that are subject to continuous
change, the relationship between the CO and its RTSV is
a straightforward one. The required measurement variable
(e.g., temperature) is communicated as an electrical signal

P1: GPA Final Pages

Encyclopedia of Physical Science and Technology EN014E-854 July 28, 2001 17:21

Real-Time Systems 47

to an analog-to-digital converter (ADC) device at the in-
terface to the computer systems. The device converts the
voltage level to a digital signature representing its value.
By polling the register holding this value, the RTSV can
obtain the effective temperature reading. It is reliable if
the sensor is reliable and is up to date apart from the time
it takes for the reading to become stable in the ADC. Of
course the value in the RTSV will immediately start to
age and will eventually become stale if a new value is not
obtained.

The rate of change of the controlled object will dictate
the rate of polling at the interface. Polling is usually a time-
triggered activity and hence time-triggered architectures
are really only focused on systems with a fixed set of con-
tinuously changing external objects. A typical controlled
object of this type will give rise to a single sampling rate.
Others will execute in different phases and will ideally
be supported by time-varying polling rates. Interestingly,
even for this essentially time-triggered arrangement the
interface to the ADC is often event-triggered. The soft-
ware sends a signal to the device to initiate an input action
from a particular input channel. It then waits a predefined
time interval before taking the reading.

For external objects that exhibit discrete changes of state
there are two means of informing the computer system of
the state change. Either the state change event is made
available at the interface, or the interface just has the state
value. In the former case, the computer system can directly
deal with the event; in the latter case polling must again
be used to “check” the current state of the external object.
A time-triggered system must use the polling approach.

Note that with applications that have discrete-change
external objects, events are a reality of the system. The
computer system may choose to be only time-triggered
by restricting its interface, but at the system level it is nec-
essary to deal with the temporal consequences of events.
The real world cannot be forced to be time-triggered. So
the real issue is when to transform an event into state in-
formation. A time-triggered approach always does it at the
interface, an event-triggered model allows an event to pen-
etrate the system and to be transformed into a state only
when it is most appropriate. Hence, the event can have
an impact on the internal scheduling decisions affecting
computation. Indeed the event could have a priority that
will directly influence the time at which the state change
occurs and the consequences of this change.

For the computer system designer, the decision about
the interface (whether to accept events or to be just state
based) is often one that is strongly influenced by the tem-
poral characteristics of the external object. It depends on
the rarity of the event and the deadline on dealing with
the consequences of the event. To poll for a state change
that only occurs infrequently is very inefficient. The air-

bag controller in an automobile provides an extreme ex-
ample of this. The deadline for deploying an air-bag is
10 msec. It would therefore be necessary to poll for the
state change every 5 msec and complete the necessary
computations within 5 msec. If 1 msec of computation is
needed to check deployment, then 20% of the processing
resource must be dedicated to this activity. Alternatively,
an event-trigger response will have a deadline of 10 msec,
the same computational cost of 1 msec, but negligible pro-
cessor utilization as the application only requires one such
event ever to be dealt with. Clearly the event-triggered ap-
proach is the more efficient.

A. Interface Definition

It is imperative that the interface between the computer-
based control system and the environment it is controlling
is well defined and appropriately constrained. This is one
of the attractive features of the time-triggered architecture
and is equally important for the event-triggered (ET) ap-
proach. An ET interface consists of state data and event
ports. State data are written by one side of the interface
and read by the other. Concurrent reads and writes are
noninterfering. The temporal validity of the data is known
(or can be ascertained) by the reading activity. This may
require an associated time-stamp but may alternatively be
a static property that can be validated prior to execution.
An event port allows an event to pass through the interface.
It is unidirectional. The occurrence of an event at the sys-
tem interface will result in a computational process being
released for execution. The effect of an output event into
the computer system’s environment cannot be defined; it
is application-specific.

Although event ports are allowed in the interface, it re-
mains state-based as events must carry an implicit state
with them. So, for example, a switch device will not give
rise to a single event “Change” but will interface with its
state variable via two events: “SwitchUp” and “Switch-
Down.”

In order to manage the impact of incoming events the
computer system must be able to control its responses,
either by bounding the arrival patters or by only meeting
temporal constraints that are load sensitive. A bound on
the input traffic may again be a static property requiring
no run-time monitoring. Alternatively, an interface may
have the capability to disable the event port for periods
of time and thereby impose rate control over the event
source (see Section V.A). Flexible temporal constraints
can take the form of load-sensitive deadlines (e.g., the
greater the concentration of events, the longer the dead-
line requirement on dealing with each event) or event ra-
tioning. In the latter case an overloaded system will drop
certain events; it is therefore crucial that such events be

P1: GPA Final Pages

Encyclopedia of Physical Science and Technology EN014E-854 July 28, 2001 17:21

48 Real-Time Systems

state-based. A time-triggered system has no such robust-
ness when it comes to unforeseen dynamics.

The above discussion has concentrated on the computer
system and its environment. Equally important are the in-
terfaces between distinct subsystems of the computer sys-
tem itself. On a distributed platform it is useful to construct
“temporal firewalls” (Kopetz and Nossal, 1997) around
each node or location with local autonomy. An ET inter-
face with its state and event port definition is therefore
required at the boundary of any two subsystems.

The existence of event ports as well as state data would
appear to make the ET interface more complicated than its
TT equivalent. However, Kopetz (1998) recognised that to
meet some timing requirements it is necessary to coordi-
nate the execution of linked subsystems. He terms these
interfaces phase-sensitive. To acquire this sensitivity, the
time-triggered schedules in each subsystem must be co-
ordinated, which therefore necessitates a common time
base. That is, some notion of global time must exist in
the system. With an ET interface, this coordination can
be achieved though the events themselves and hence no
global time base is needed for the architecture itself.

Having said that, many applications will require a global
time service (although not necessarily of the granularity
required by the TT mechanisms), for example, to achieve
an ordering of external events in a distributed environ-
ment, or to furnish some forms of fault tolerance will re-
quire global time (see Section V). Nevertheless, the ET
architecture itself is not fundamentally linked to the exis-
tence of global time. This is important in facilitating the
development of open real-time systems (Stankovic et al.,
1996).

B. Summary

Our system model recognizes the need to support in-
terfaces to external controlled objects (COs) that either
change continuously or in discrete steps. Within the com-
puter system real-time entities (RTSV) will track the
behavior of these external objects. A system designer
has the choice of making the computer system entirely
time-triggered, in which case all COs are polled, or to
be event-triggered, in which case continuously COs are
polled but discrete COs give rise to events that are directly
represented and supported. The decision of which methods
to use must take into account the temporal characteristics
of the external COs and the structure and reliability of
the electronics needed to link each external object to the
computer system’s interface.

We have defined an ET interface that allows state data
and events ports to be used. All communication through an
interface is unidirectional. Such interfaces link the com-
puter system to its environment and are used internally

to link distinct subsystems. Events themselves give rise
to state changes in which the final state of the RTSV is
specified (not a delta change).

In the next section we develop the computational model
that allows the internal behavior of the computer system
(or subsystem) to be specified and analyzed. This will
enable the temporal obligation defined in the system’s in-
terface to be realized.

III. COMPUTATIONAL MODEL

Within the external interfaces, the behavior of the com-
puter system (or subsystem) is defined and constrained by
the computational model. The model allows an application
to be described using processes and shared state data. Each
process is event-triggered. Once released it may read input
state data from the system’s interface, write data to differ-
ent elements of the interface, read and/or write to shared
internal data, or generate events for external consumption
via the interface or internally to trigger the release of a
local process. The shared data, as the name implies, are
used for communication between processes. The imple-
mentation model must ensure atomic updates to shared
data.

The use of the term “process” does not imply a heavy-
weight construct with memory protection, etc. It merely
implies an abstract concurrent activity. Each process expe-
riences a potentially infinite number of invocations (each
in response to its event-trigger). The event may originate
from the clock, the interface, or another process. If the
clock event is regular, then the process is termed periodic.

The software architecture that links the processes to-
gether is best described as a set of producer–consumer re-
lations. The more general client–server model of interac-
tion is not well suited to real-time systems (Kopetz, 1998).
In particular the server is not easily made aware of the
temporal requirements of the client. With the producer–
consumer model, data flow and control flow (via event
chains releasing a sequence of precedence related pro-
cesses) allows an end-to-end temporal requirement to be
specified and subsequently verified.

The temporal requirements themselves are expressed
as attributes of the components of the application model.
But there is an interesting duality between a data-oriented
focus or a process-oriented focus to these specifications:

� Data-oriented focus. Here the state variables are
decorated with the temporal attributes. These take the
form of either absolute or relative temporal constraints
(Audsley et al., 1995) over the allowed age of the data.
For example, data X must never be older than
100 msec; or following event E, data Y must be

P1: GPA Final Pages

Encyclopedia of Physical Science and Technology EN014E-854 July 28, 2001 17:21

Real-Time Systems 49

updated within 50 msec. By fully specifying the
required properties of all events and state variables at
the interface, a complete specification of the required
temporal behavior of the system is achieved.

� Process-oriented focus. Here the processes have
deadlines relating their completion to the event that
caused their invocation, for example, the process must
be completed within 30 msec. Deadlines can also be
attached to events during execution, for example,
between invocation and the writing to shared data (in
general between the invocation event and any event
being initiated by the process). If a process is periodic,
then the period of invocation must also be defined.

The duality of these two approaches comes from the re-
lationships between the attributes. If there is a data focus,
then one can derive the necessary period and deadlines of
the processes. Similarly, if all processes have deadlines
(and periods where necessary), then the absolute or rela-
tive temporal constraints of the state data can be obtained.
For example, a periodic process with period 20 msec and
deadline on a write event of 10 msec will sustain an abso-
lute temporal constraint of 30 msec. However, a temporal
constraint of 30 msec can be met by a number of pro-
cess attributes, for example, period 15 deadline 15, period
20 deadline 10, period 25 deadline 5; even period 10 dead-
line 20. The choice of these attributes can be used to in-
crease schedulability and flexibility (Burns et al., 1994;
Burns and Davis, 1996).

In a more complex example there may be a relative tem-
poral constraint between an event at the interface and an
output state variable also at the interface. The computa-
tions necessary to construct this state value may involve
a number of processes. Nevertheless, the combined dead-
lines of the processes involved must be sufficient to satisfy
the required constraint.

With either a data focus or a process focus (or a com-
bination of the two) all the necessary constraints of hard
real-time systems can be specified. In addition, soft and
firm constraints with run-time tradeoffs can also be artic-
ulated. Also “value” or “utility” attributes can be added to
allow resource (e.g., CPU) overflow and underflow man-
agement. Tradeoffs can be made between a choice of al-
gorithm and deadline. Indeed all the flexible and adaptive
schemes associated with the term “imprecise computa-
tion” can be specified (Liu et al., 1991).

Even if all events originate from clocks it is still possi-
ble to construct more flexible and dynamic systems than
can be achieved with a time-triggered architecture where
all processes are periodic and periods are statically fixed
(Burns and McDermid, 1994). For example, a “periodic”
process can choose its next time trigger based on the cur-
rent state of the system. Although many time-triggered

systems can accommodate some flexibility by the use of
modes (with different schedules within each mode) this
is very limited when compared with what is possible in
event-triggered scheduling.

A. Communication Model

A key aspect of the computational model is the commu-
nication facilities that links the interfaces of the various
subsystems of the distributed real-time system. The classic
remote procedure call that is at the heart of the client–
server paradigm is not an ideal real-time protocol. It re-
quires the caller to wait, which induces a variable sus-
pension time, and the called object will need a surrogate
process to manage the call. This invokes a scheduling ac-
tion on the server. Although in the functional domain this
interaction is straightforward, for a real-time system it
is problematic. The time taken by the surrogate process
will depend on the number of external calls and local
scheduling events. The delay experienced by the client
will depend on the time taken by the surrogate process, and
hence there is a circular set of temporal dependences that
makes it difficult/impossible to undertake effective timing
analysis.

With the producer–consumer model no surrogate pro-
cesses are needed as only data and events are been com-
municated. A single unidirectional message send facility
is all that is required.1 The role of the communication sys-
tem is to transfer state data between subsystem interfaces
and to transport events from one subsystem to another. At
the receiver, data need to be placed in the correct inter-
face object (conceptually via dual port memory between
the communication controller and the host processor) and
events need to invoke application processes (typically via
an interrupt mechanism).

As the only communication protocol needed is a sim-
ple unidirectional broadcast, a number of simple schemes
are possible (Tindell et al., 1995). For example, the CAN
protocol is particularly suited to real-time communication
(Tindell et al., 1994b). Many of these schemes can be
easily analyzed for their worst-case temporal character-
istics. Together with the analysis of the processing units
this enables complete systems to be verified (at least in the
absence of faults; see Section V).

B. Formal Modeling and Verification

The computational model described in this section is sim-
ilar to that in a number of structural design methods such
as MASCOT (Simpson, 1986) and HRT-HOOD (Burns

1To facilitate multiple clients for the data, a broadcast or multicast
protocol is normally used.

P1: GPA Final Pages

Encyclopedia of Physical Science and Technology EN014E-854 July 28, 2001 17:21

50 Real-Time Systems

and Wellings, 1994). It is also possible to define its se-
mantics formally. Events are assumed to be instantaneous
(i.e., have no duration), whereas processing activities must
always have duration. Time could be modeled as a con-
tinuous entity or as a discrete notion (this depends on the
form of verification that will be applied). The notation
RTL (Jahanian and Mok, 1986) exactly fits this require-
ment, as do the modeling techniques represented by timed
automata (Alur and Dill, 1994).

Although proof-theoretic forms of verification are pow-
erful, they require theorem provers and a high level of
skill on behalf of the user. They have also yet to be used
on large temporal systems. Model-theoretic schemes are,
however, proving to be effective. For example, the com-
bination of model checking and timed automata in tools
such as Uppaal (Larsen et al., 1995, 1997) does allow ver-
ification to be applied to nontrivial applications. Although
state explosion remains a problem with large systems, the
ability to break a system down into effectively isolated
zones (using temporal firewalls) does allow a composable
approach.

The verification activity links the attributes of the ap-
plication code, for example, periods and deadlines with
the requirements of the interface. It does not prove that
an implementation is correct; it does, however, allow the
correctness of the model to be explored. If the subsequent
implementation is able to support the process periods and
deadlines, then the system will work correctly in the tem-
poral domain.

This form of verification is required for hard systems.
For soft or firm components the model can be exer-
cised to determine its average performance or other be-
havior metrics. The ability to combine worst-case and
average-case behavior is a key aspect of the computational
model.

C. Summary

The event-triggered model of computation introduced in
this section consists of the following:

� Processes, which are released for execution by
invocation events; they can read/write state variables
and can produce events

� Invocation events, which originate from a local clock,
the system/subsystem interface, or another local
process

� State variables, which hold temporally valid data
corresponding to external entities, interface entities, or
shared data between local processes

� Interfaces, which provide a temporal firewall and
contain state variables and event ports

� A communication system, which provides a

unidirectional broadcast facility for linking subsystem
interfaces

� Attributes, which capture the temporal requirement of
the state variables, processes, and communications.

Together these provide the mechanisms necessary to
produce distributed real-time systems that are predictable
but also have the flexibility needed to provide adaptive
value-added services.

IV. SCHEDULING MODELS

A. Introduction

A scheduling model describes how resources are allocated
to the components of the computation model. It also facil-
itates the analysis of processes that adhere to the resource
allocation scheme. Within a temporal firewall a fixed set
of hard processes will have well-defined temporal charac-
teristics. At the simplest level these will be as follows:

� Maximum invocation frequency. Usually given as the
minimum time between any two releases and denoted
by T . For a periodic process, T is the period. For other
event-triggered processes it is the shortest time
between any two invocation events.

� Deadline. The time by which the process must
complete its execution, or have completed some key
aspect of its computation. Usually denoted by D and
measured relative to the process’s release time.

The implemented code will also give rise to a measured
or estimated worst-case computation time, C .

More complex applications may have values of T , D,
and C that are variable and interdependent.

There are a number of applicable scheduling schemes
that are predictable and use resources effectively. Fixed-
priority scheduling has been the focus of considerable re-
search activity over the last decade. Initial work centered
upon rate monotonic scheduling (Liu and Layland, 1973),
where each process is required to be completed before
its next release. In effect this implies that each process
τi has a deadline Di equal to its period Ti . More recent
work has considered systems with Di < Ti (Leung and
Whitehead, 1982) or Di > Ti (Lehoczky, 1990; Tindell
et al., 1994b). In the former case a simple algorithm pro-
vides an optimal priority assignment: process priorities are
ordered according to deadline; the shorter the deadline, the
higher the priority. When processes have Di > Ti a more
complex priority assignment scheme is needed (Audsley
et al., 1993c).

The work of Joseph and Pandya (1986) and Audsley
et al. (1993a, b) gives the following equation for the

P1: GPA Final Pages

Encyclopedia of Physical Science and Technology EN014E-854 July 28, 2001 17:21

Real-Time Systems 51

worst-case response time of a given task τi (for Ri ≤ Ti):

Ri = Ci +
∑

∀ j∈hp(i)

⌈
Ri

Tj

⌉
C j , (1)

where hp(i) is the set of all tasks of higher priority than
task τi .

Equation (1) is solved by forming a recurrence relation.
Having calculated the worst-case response time, it is trivial
to check that Ri ≤ Di .

The value of this response time analysis (RTA) is that
is can be easily modified to accommodate a variety of ap-
plication characteristics and platform constraints (Burns,
1994), including irregular release patterns, phased exe-
cutions (i.e., offsets), processes with multiple deadlines,
processes with forward or backward error recovery, soft
and firm deadlines, aperiodic processes, etc. The neces-
sary mutual exclusive protection of shared state data is
provided by priority ceiling protocols.

Of course, in addition to fixed priority scheduling there
are a number of dynamic approaches, earliest deadline first
(EDF) being the most widely discussed.

B. Jitter Control

As indicated in the introduction, one of the drawbacks of
using events is that it induces variations in the time of
execution. This can result in poor schedulability and exc-
essive input and output jitter with the environment. Many
control applications require regular output, and signal pro-
cessing routines work best if data are obtained with precise
periods.

Within fixed-priority scheduling, the processes with the
highest priorities suffer the least jitter, and processes with
the shortest deadlines are those that are assigned the top
priorities. It follows therefore that the actual I/O activity
should be placed in a process that does not contain other
computations (and hence has low C) and is given a dead-
line equal to the maximum jitter that is allowed. The rest
of computation is placed in a process with a longer dead-
line. For example, consider a 50 msec periodic activity
that has an output jitter requirement of 5 msec. The ac-
tivity is realized by two processes, each with T = 50. The
main process has D = 45; the I/O process has an offset
of 45 and D = 5. The ability to control jitter in this way
has been demonstrated on safety-critical control systems
(Bate et al., 1996).

V. APPROACHES TO FAULT TOLERANCE

Most real-time systems also have high-integrity require-
ments and hence need to support various forms of error
detection and fault tolerance. In this section we consider

some of the schemes that can be built upon the event-
triggered model of computation. Three issues are con-
sidered: how a system (or subsystem) can protect itself
against an overload of event occurrences, how to build a
fault-tolerant system when there exists a global time base,
and how to provide fault-tolerant services when there is
no such time base.

A. Protection against Event Overloads

The notion of a temporal firewall is built on the assumption
that the external environment of a system or subsystem
cannot induce a failure in the temporal domain. With a
state-only interface this is straightforward, although coor-
dinated executions between subsystems requires a global
time base. Event ports, however, introduce the possibil-
ity that assumptions about the frequency of events may
be violated at run-time. If static analysis is not adequate,
then the source and/or the destination of events must be
monitored and controlled.

To control exports, a subsystem must monitor its event
production and be able to recognize overproduction, a
phenomena known as babbling. The simplest action to
take on recognizing this error is to close the subsys-
tem down. Action at a system level via, for example,
replication will then be needed if availability is to be
preserved.

To control imports requires the ability to close an event
port (e.g., disable interrupts) or to internally drop events
so that an upper bound on the event traffic is guaranteed.

Combining export and import controls facilitates the
production of fault containment regions, at least for tem-
poral faults.

B. Fault Tolerance with Global Time

If a global time base is available (either directly or via
a protocol that bounds relative drift between the set of
system clocks), then it is relatively straightforward to
build fault-tolerant services on either the time-triggered
or event-triggered models.

The first requirement is that the broadcast facility pro-
vided by the communication system is actually atomic.
Either all receivers get a message (embodying state data or
an event) or none do; moreover, they get the message only
once. The ability to support atomic broadcast with global
time (to the required level of integrity) is well illustrated
by the time-triggered approach. However, it is also pos-
sible to provide an atomic broadcast service on top of an
event-triggered communication media that does not have
a global time base. For example, it has been shown that
the CAN protocol can support atomic broadcast (Ruffino
et al., 1998; Proenza and Miro-Julia, 1999).

P1: GPA Final Pages

Encyclopedia of Physical Science and Technology EN014E-854 July 28, 2001 17:21

52 Real-Time Systems

The second requirement, if active replication is re-
quired, is for replicated subsystems to exhibit replica de-
terminism. If active replication is not required, i.e., faults
can be assumed to give rise to only fail-stop behavior and
there is time to execute recovery, then replica determinism
is not necessary and cold or warm standbys can be used
to increase availability.

Replica determinism requires all nonfaulty replicas to
exhibit identical external behavior (so that voting can
be used to identify faulty replicas). With the producer/
consumer model, divergent behavior can only occur if
replicated consumers do not read the same data from sin-
gle or replicated producers.2

The use of lock-stepped processors will furnish replica
determinism but it is inflexible. If replicated processes
are allowed to be more free-running, then different lev-
els of code replication can be achieved and indeed repli-
cated and nonreplicated software can coexist. If replicated
consumers can execute at different times (though within
bounds), it is possible for an early execution to “miss” data
that a later execution will obtain. To prevent this, a sim-
ple protocol can be used based on the following (Poledna
et al., 2000):

� Data are state-based, i.e., a read operation does not
block, as there is always something to read.

� Data are time-stamped with the time when the data
become valid.

� Clocks are bounded in terms of their relative drift by
an amount d .

So, for example, if process P produces the data and pro-
cess C consumes it and they are both replicated, then the
data become valid at time L + R, where R is the longest
response time of the replicated Ps and L is the common
release time of the Ps. The data can be read by the repli-
cas of C if the release time of all the Cs is earlier than
L + R + d. Otherwise an older copy of the data must be
used. A full set of algorithms for different schemas is pre-
sented by Poledna et al. (2000). All algorithms are based
on simulated common knowledge that is known or can be
calculated statistically.

C. Fault Tolerance without Global Time

In the event-triggered model of compilation, messages are
used to communicate events and states between subsys-
tems that are protected by their temporal firewalls. Within
such a firewall a central time base is assumed (i.e., is re-
quired). However, it may be that the subsystems them-
selves do not share a single time source or implement a

2The direct manipulation of clock values must also be prohibited.

global time-base via some clock synchronization protocol.
As communications can never be perfect, this presents a
difficulty as it is not obvious how to distinguish between
a message that has failed and one that is late.

Between the two extremes of synchronous systems (i.e.,
global time-base and easy recognition of a failure) and
asynchronous systems (i.e., no assumptions about time
and hence no means of easily recognizing failure) is the
timed asynchronous system model developed by Fetzer
and Cristian (1996a, b; Cristian and Fetzer, 1998).3 In
practice, most practical distributed systems can be de-
scribed as timed asynchronous. The model can be used to
build an atomic broadcast facility and indeed fail-aware
clock synchronization. The timed asynchronous model is
built on the following assumptions:

� Each processing node has a hardware clock with
bounded, known, drift; high-integrity applications can
use duplicated local clocks to achieve the required
reliability for this device.

� Regular traffic is passed between nodes; a couple of
messages per second is sufficient for the protocol to
work.

From the communication media, two time values are
derived:

� δmin, the minimum transmission time for any message;
a value of zero is valid but nonzero values make the
protocol more efficient.

� �, the assured maximum time it will take a message to
be transmitted when no failure occurs.

Note that � cannot be derived exactly. It is chosen to
make the likelihood of a message being delivered within
� to be suitably high.

The timed asynchronous protocol uses the transmission
of local clock values and the bounded drift values to clas-
sify all messages (when received) to be either “fast” or
“slow.” Fast messages are correct messages, i.e., they are
never too fast. The protocol guarantees the following:

� All fast messages were delivered in less than �.
� All messages that took longer than � are “slow.”
� No messages are duplicated

Note the protocol recognized that some messages de-
livered in less than � may be designated “slow.” This is
a performance issue; it may effect the quality of the com-
munication service but not its fundamental behavior.

3Another approach is to define quasi-synchronous systems (Verissimo
and Almeida, 1995; Almeida and Verissimo, 1998).

P1: GPA Final Pages

Encyclopedia of Physical Science and Technology EN014E-854 July 28, 2001 17:21

Real-Time Systems 53

As all messages are now “fail aware,” appropriate
fault tolerance mechanisms can be built. Indeed the time-
stamping schemes described in the previous section can
be accommodated. Necessary hand-shaking protocols also
can be built if necessary. In an event-triggered model, the
failure of an event message can be catastrophic as the re-
ceiver is obviously unaware that the event has not been
delivered. The use of an acknowledgment/resend protocol
solves this problem as long as the original event message
(which is assumed to have failed) is not delivered late and
is acted upon. The fail-aware scheme reported here pre-
vents this. Alternatively, if the acknowledgment/resend
protocol is inappropriate for scheduling reasons it is pos-
sible to use diffusion, in which the message is sent a suf-
ficient number of times to “ensure” delivery within the
system’s fault model.

The advantage with synchronous systems is that the as-
sumption of global time and bounded message communi-
cation makes it relative easy to build application services.
The disadvantage occurs if the assumption of synchron-
ous behavior breaks down—the upper-level services (and
the application) cannot recover. With the timed asyn-
chronous approach, bounded communication is guaran-
teed if there are no faults, and knowledge of failure is
available if there are. The flexibility this provides (in
terms of dealing with faults) is best exploited by the flexi-
ble computational model furnished by the event-triggered
approach.

FIGURE 1 Part of an event-trigger system.

VI. CONCLUSION

This article has presented the event-triggered model of
computation. It is a generalization of the time-triggered
approach in that it allows actions to be invoked by the pas-
sage of time and by events originating in the system’s envi-
ronment or in other actions. By bounding the occurrences
of events, predictable hard real-time systems can be pro-
duced. By not requiring an event to be statically mapped
on to a predetermined time line, flexible, adaptive, value-
added, responsive systems can be defined. For example,
a polling process that can dynamically change its rate of
execution when the controlled object is close to a critical
value is easily supported by the event-triggered model of
computation. A statically scheduled time-triggered archi-
tecture cannot furnish this flexibility.

As the computational model is supporting real-time ap-
plications it is obvious that a local clock (time source) is
required in each subsystem, but the event-triggered model
does not require global time or a strong synchronous as-
sumption about communication. Figure 1 depicts the ar-
chitecture implied by the event-triggered approach. Within
temporal firewalls processes and state variables are pro-
tected from external misuse. Events and state data are com-
municated between subsystems; the messages embodying
these entities are time stamped (with local clock values).

The computational model can be supported by a number
of flexible scheduling schemes. We have shown how the

P1: GPA Final Pages

Encyclopedia of Physical Science and Technology EN014E-854 July 28, 2001 17:21

54 Real-Time Systems

fixed-priority approach is well suited to event-triggered
computation.

ACKNOWLEDGMENTS

The author would like to express his thanks for useful comments made
on an earlier version of this article by Neil Audlsey, Paulo Verissimo,
and Andy Wellings.

SEE ALSO THE FOLLOWING ARTICLES

PROCESS CONTROL SYSTEMS • SOFTWARE ENGINEERING

• SOFTWARE RELIABILITY

BIBLIOGRAPHY

Almeida, C., and Verissimo, P. (1998). “Using light-weight groups to
handle timing failures in quasi-synchronous systems.” In “Proceedings
of the 19th IEEE Real-Time Systems Symposium, Madrid, Spain,” pp.
430–439, IEEE Computer Society Press.

Alur, R., and Dill, D. L. (1994). “A theory of timed automata,” Theor.
Computer Sci. 126(2), 183–236.

Audsley, N. C., Burns, A., Richardson, M., Tindell, K., and Wellings,
A. J. (1993a). “Applying new scheduling theory to static priority pre-
emptive scheduling,” Software Eng. J. 8(5), 284–292.

Audsley, N. C., Burns, A., and Wellings, A. J. (1993b). “Deadline mono-
tonic scheduling theory and application,” Control Eng. Pract. 1(1),
71–78.

Audsley, N. C., Tindell, K., and Burns, A. (1993c). “The end of the line
for static cyclic scheduling?” In “Proceedings of the Fifth Euromi-
cro Workshop on Real-Time Systems,” pp. 36–41, IEEE Computer
Society Press.

Audsley, N. C., Burns, A., Richardson, M. F., and Wellings, A. J. (1995).
“Data consistency in hard real-time systems,” Informatica 9(2), 223–
234.

Bate, I. J., Burns, A., and Audsley, N. C. (1996). “Putting fixed
priority scheduling theory into engineering practice for safety critical
applications.” In “Proceedings of the 2nd Real-Time Applications
Symposium.”

Burns, A. (1994). “Preemptive priority based scheduling: An appropriate
engineering approach.” In “Advances in Real-Time Systems” (Son,
S. H., ed.), pp. 225–248, Prentice-Hall, Englewood Cliffs, NJ.

Burns, A., and Davis, R. I. (1996). “Choosing task periods to minimise
system utilisation in time triggered systems,” Information Processing
Lett. 58, 223–229.

Burns, A., and McDermid, J. A. (1994). “Real-time safety critical
systems: Analysis and synthesis,” Software Eng. J. 9(6), 267–281.

Burns, A., and Wellings, A. J. (1994). “HRT-HOOD: A design method
for hard real-time ada,” Real-Time Syst. 6(1), 73–114.

Burns, A., Tindell, K., and Wellings, A. J. (1994). “Fixed priority
scheduling with deadlines prior to completion,” In “6th Euromicro
Workshop on Real-Time Systems, Vaesteraas, Sweden,” pp. 138–142.

Cristian, F., and Fetzer, C. (1998). “The timed asynchronous system
model.” In “Digest of Papers, The 28th Annual International Sympo-
sium on Fault-Tolerant Computing,” pp. 140–149, IEEE Computer
Society Press.

Fetzer, C., and Cristian, F. (1996a). “Fail-aware detectors,” Technical
Report CS96-475, University of California, San Diego, CA.

Fetzer, C., and Cristian, R. (1996b). “Fail-awareness in timed asyn-
chronous systems.” In “Proceedings of the 15th ACM Symposium
on Principles of Distributed Computing,” pp. 314–321a.

Jahanian, F., and Mok, A. K. (1986). “Safety analysis of timing properties
in real-time systems,” IEEE Trans. Software Eng. 12(9), 890–904.

Joseph, M., and Pandya, P. (1986). “Finding response times in a
real-time system,” BCS Computer J. 29(5), 390–395.

Kopetz, H. (1995). “Why time-triggered architectures will succeed in
large hard real-time systems,” Proc. IEEE Future Trends 1995, 2–9.

Kopetz, H. (1998). “The time-triggered model of computation.” In
“Proceedings 19th Real-Time Systems Symposium,” pp. 168–177.

Kopetz, H., and Nossal, R. (1997). “Temporal firewalls in large
distributed real-time systems.” In “Proceedings IEEE Workshop on
Future Trends in Distributed Systems, Tunis.”

Kopetz, H., and Verissimo, P. (1993). “Real-time and dependability
concepts.” In “Distributed Systems,” 2nd ed. (Mullender, S. J., ed.),
Chapter 16, pp. 411–446. Addison-Wesley, Reading, MA.

Larsen, K. G., Pettersson, P., and Yi, W. (1995). “Compositional and
symbolic model-checking of real-time systems.” In “Proceedings of
the 16th IEEE Real-Time Systems Symposium,” pp. 76–87, IEEE
Computer Society Press.

Larsen, K. G., Pettersson, P., and Yi, W. (1997). “Uppaal in a nutshell,”
Int. J. Software Tools Technol. Transfer 1(1/2), 134–152.

Lehoczky, J. P. (1990). “Fixed priority scheduling of periodic task sets
with arbitrary deadlines.” In “Proceedings 11th Real-Time Systems
Symposium,” pp. 201–209.

Leung, J. Y.-T., and Whitehead, J. (1982) “On the complexity of
fixed-priority scheduling of periodic real-time tasks,” Performance
Evaluation (Netherlands) 2(4), 237–250.

Liu, C. L., and Layland, J. W. (1973). “Scheduling algorithms for multi-
programming in a hard real-time environment,” JACM 20(1), 46–61.

Liu, J. W. S., Lin, K. J., Shih, W. K., Yu, A. C. S., Chung, J. Y., and
Zhao, W. (1991). “Algorithms for scheduling imprecise computa-
tions,” IEEE Computer 1991, 58–68.

Poledna, S., Burns, A., Wellings, A. J., and Barrett, P. A. (2000).
“Replica determinism and flexible scheduling in hard real-time
dependable systems,” IEEE Trans. Computing 49(2), 100–111.

Proenza, J., and Miro-Julia, J. (1999). “MajorCAN: A modification to
the controller area network protocol to achieve atomic broadcast.” In
“Offered to RTSS99,” IEEE Computer Society Press.

Ruffino, J., Verissimo, P., Arroz, G., Almeida, C., and Rodrigues, L.
(1998). “Fault-tolerant braodcast in can.” In “Proceedings of the 28th
FTCS, Munich,” IEEE Computer Society Press.

Simpson, H. R. (1986). “The mascot method,” Software Eng. J. 1(3),
103–120.

Stankovic, J. A., et al. (1996). “Real-time and embedded systems,”
ACM Surv. Spec. Iss. Strategic Directions Computer Sci. Res. 28(4),
751–763.

Tindell, K., Burns, A., and Wellings, A. J. (1994a). “An extendible
approach for analysing fixed priority hard real-time tasks,” Real-Time
Syst. 6(2), 133–151.

Tindell, K. W., Hansson, H., and Wellings, A. J. (1994b). Analysing
real-time communications: Controller area network (CAN).” In
“Proceedings 15th IEEE Real-Time Systems Symposium,” pp.
259–265, San Juan, Puerto Rico.

Tindell, K., Burns, A., and Wellings, A. J. (1995). “Analysis of hard
real-time communications,” Real-Time Syst. 7(9), 147–171.

Verissimo, P., and Almeida, C. (1995). “Quasi-synchronisation: A step
away from the traditional fault-tolerant real-time system models,”
Bull. Tech. Committee Operating Syst. Appl. Environ. (TCOS) 7(4),
35–39.

P1: GNB/GLT P2: GTY Final Pages Qu: 00, 00, 00, 00

Encyclopedia of Physical Science and Technology EN014I-855 July 28, 2001 19:19

Requirements Engineering
Bashar Nuseibeh
Open University

Steve Easterbrook
University of Toronto

I. Introduction
II. Overview of Requirements Engineering
III. Eliciting Requirements
IV. Modeling and Analyzing Requirements
V. Context and Groundwork

VI. Integrated Requirements Engineering
VII. Summary and Conclusions

GLOSSARY

Analysis The process of examining models or specifi-
cations for the purposes of identifying their state of
correctness, completeness, or consistency.

Elicitation Sometimes also referred to as acquisition or
capture, it is the process of gathering requirements
about an envisioned system.

Modeling In the context of requirements engineering, it is
process of constructing abstract descriptions of the de-
sired structure or behavior of a system and/or its prob-
lem domain.

Problem domain The environment in which a desired
system will be installed.

Prototyping The process of developing partial models
or implementations of an envisioned system, for the
purposes of eliciting and validating requirements.

Requirements Describe the world of the problem domain
as the stakeholders would like it to be.

Specification A description of the requirements for a
system.

Stakeholders Individuals, groups, or organizations who

stand to gain or lose from the development of an envi-
sioned system.

Validation The process of establishing whether or not the
elicited requirements are indeed those desired by the
stakeholders.

I. INTRODUCTION

Pamela Zave provides a concise definition of Require-
ments Engineering (RE):

“Requirements engineering is the branch of software engineer-
ing concerned with the real-world goals for, functions of, and
constraints on software systems. It is also concerned with the
relationship of these factors to precise specifications of software
behavior, and to their evolution over time and across software
families.” [Zave]

Simply put, software requirements engineering is the pro-
cess of discovering the purpose of a software system,
by identifying stakeholders and their needs, and docu-
menting these in

 229

a form that is amenable to analysis,

P1: GNB/GLT P2: GTY Final Pages

Encyclopedia of Physical Science and Technology EN014I-855 July 28, 2001 19:19

230 Requirements Engineering

communication, and subsequent implementation. There
are a number of inherent difficulties in this process. Stake-
holders (who include paying customers, users, and devel-
opers) may be numerous and geographically distributed.
Their goals may vary and conflict, depending on their per-
spectives of the environment in which they work and the
tasks they wish to accomplish. Their goals may not be
explicit or may be difficult to articulate, and, inevitably,
satisfaction of these goals may be constrained by a variety
of factors outside their control.

The primary measure of success of a software system,
and by implication its quality, is the degree to which it
meets its requirements. RE therefore plays a pivotal role
in determining the quality of a software system and its
fitness for purpose. It lies at the heart of software de-
velopment projects, since the outcomes of an RE pro-
cess provide crucial inputs into project planning, tech-
nical design, and evaluation. Of course, RE is not an
activity that only takes place at the start of a software
development project only. The discovery of requirements
often continues well into the development process, and
can be influenced by the presence of existing techni-
cal solutions and constraints. Broadly speaking, however,
RE is a “front-end” development activity—determining
subsequent development decisions and used as a mea-
sure of success for the final software system that is
delivered.

It is worth noting in passing that software requirements
engineering is often regarded as part of systems engineer-
ing, in that the software to be developed has to fit into a
wider technical, social, organizational, and business con-
text. Thus, RE is often also called software systems re-
quirements engineering, or simply systems requirements
engineering, to emphasise that it is a system-wide scope,
and not merely a software engineering one. The conse-
quences of this are that RE is very much a multidisci-
plinary activity, whose techniques draw upon many areas
of research and practice. These include traditional areas
such as computer science and mathematical logic, systems
theory, and information systems analysis, and the cogni-
tive and social sciences such as psychology, anthropology,
sociology, and linguistics.

II. OVERVIEW OF REQUIREMENTS
ENGINEERING

The process by which software development organizations
conduct RE varies from one organization to the next. How-
ever, there are a number of core activities that are common.
These include requirements elicitation (gathering), speci-
fication (modeling), and analysis, which will be elaborated
in the next two sections. The term requirements manage-

ment is often used to denote the handling of these activities,
although many industrial requirements management tools
actually only support the handling of the different kinds
of requirements documents generated by the RE process.
In other words, these tools have limited elicitation support
and analysis capabilities.

Underpinning the above activities are some broader
goals for RE. They include communicating, agreeing, and
evolving requirements.

A. Communicating Requirements

RE is not only a process of discovering and specifying re-
quirements, it is also a process of facilitating effective
communication of these requirements among different
stakeholders. Requirements documentation remains one
of the primary ways of communicating requirements. The
way in which requirements are documented plays an im-
portant role in ensuring that they can be read, analyzed,
(re)written, and validated.

The focus of requirements documentation research is
often on specification languages and notations, with a va-
riety of formal, semiformal, and informal languages sug-
gested for this purpose. From logic to natural language,
different languages have been shown to have different ex-
pressive and reasoning capabilities. Requirements docu-
mentation is also often based on commercial or industrial
standards. These standards provide templates that can be
used to structure the documentation and trigger informa-
tion gathering activity. Of course, the templates should not
constrain the requirements development activity, except
in the context of particular projects with rigid contractual
constraints.

Requirements traceability (RT) is another important
factor that determines how easy it is to read, navigate,
query, and change requirements documentation. RT refers
to the ability to describe and follow the life of a require-
ment in both forward and backward direction; that is, from
its origins in the problem world, through its development
and specification, to its subsequent deployment and use,
and through all periods of ongoing refinement and iteration
in any of these phases. RT lies at the heart of requirements
management practice in that it can provide a rationale for
requirements and is the basis for tools that analyze the
consequences and impact of change. Supporting RT in
requirements documentation is a means of achieving in-
tegrity and completeness of that documentation, and has
an important role to play in the management of changing
requirements.

B. Agreeing Requirements

As requirements are gathered, maintaining agreement
with all stakeholders can be a problem, especially where

P1: GNB/GLT P2: GTY Final Pages

Encyclopedia of Physical Science and Technology EN014I-855 July 28, 2001 19:19

Requirements Engineering 231

stakeholders have divergent goals. Validation is the pro-
cess of establishing that the requirements elicited provide
an accurate account of stakeholder actual needs. Explicitly
describing the requirements is a necessary precondition
not only for validating requirements, but also for resolv-
ing conflicts between stakeholders.

Techniques such as inspection and formal analysis tend
to concentrate on the coherence of the requirements de-
scriptions, asking questions such as: are they consistent,
and are they structurally complete? In contrast, techniques
such as prototyping, specification animation, and the use
of scenarios are geared toward testing a correspondence
with the real world problem. For example, they may ask:
have all the aspects of the problem that the stakeholders
regard as important been covered? Requirements valida-
tion is difficult for two reasons. The first reason is philo-
sophical in nature, and concerns the question of truth and
what is knowable. The second reason is social, and con-
cerns the difficulty of reaching agreement among different
stakeholders with conflicting goals.

C. Evolving Requirements

Successful software systems always evolve as the environ-
ment in which these systems operate changes and stake-
holder requirements change. Therefore, managing change
is a fundamental activity in RE.

Changes to requirements documentation need to be
managed. Minimally, this involves providing techniques
and tools for configuration management and version con-
trol, and exploiting traceability links to monitor and con-
trol the impact of changes in different parts of the docu-
mentation. Typical changes to requirements specifications
include adding or deleting requirements and fixing errors.
Requirements are added in response to changing stake-
holder needs, or because they were missed in the initial
analysis. Requirements are deleted usually only during
development, to forestall cost and schedule overruns, a
practice sometimes called requirements scrubbing.

Managing changing requirements is not only a process
of managing documentation, it is also a process of rec-
ognizing change through continued requirements elicita-
tion, re-evaluation of risk, and evaluation of systems in
their operational environment. In software engineering, it
has been demonstrated that focusing change on program
code leads to a loss of structure and maintainability. Thus,
each proposed change needs to be evaluated in terms of
existing requirements and architecture so that the trade-off
between the cost and benefit of making a change can be
assessed.

Finally, the development of software system product
families has become an increasingly important form of
development activity. For this purpose, there is a need to

develop a range of software products that share similar
requirements and architectural characteristics, yet differ
in certain key requirements. The process of identifying
core requirements in order to develop architectures that
are (a) stable in the presence of change, and (b) flexi-
ble enough to be customized and adapted to changing re-
quirements is one of the key research issues in software
engineering.

III. ELICITING REQUIREMENTS

The elicitation of requirements is perhaps the activity most
often regarded as the first step in the RE process. The term
“elicitation” is preferred to “capture,” to avoid the sugges-
tion that requirements are out there to be collected simply
by asking the right questions. Information gathered dur-
ing requirements elicitation often has to be interpreted,
analyzed, modeled, and validated before the requirements
engineer can feel confident that a complete enough set
of requirements of a system have been collected. There-
fore, requirements elicitation is closely related to other
RE activities—to a great extent, the elicitation technique
used is driven by the choice of modeling scheme, and vice
versa: many modeling schemes imply the use of particular
kinds of elicitation techniques.

A. Requirements to Elicit

One of the most important goals of elicitation is to find
out what problem needs to be solved, and hence identify
system boundaries. These boundaries define, at a high
level, where the final delivered system will fit into the cur-
rent operational environment. Identifying and agreeing a
system’s boundaries affects all subsequent elicitation ef-
forts. The identification of stakeholders and user classes,
of goals and tasks, and of scenarios and use cases all de-
pend on how the boundaries are chosen.

Identifying stakeholders—individuals or organizations
who stand to gain or lose from the success or failure of a
system—is also critical. Stakeholders include customers
or clients (who pay for the system), developers (who de-
sign, construct, and maintain the system), and users (who
interact with the system to get their work done). For inter-
active systems, users play a central role in the elicitation
process, as usability can only be defined in terms of the
target user population. Users themselves are not homo-
geneous, and part of the elicitation process is to identify
the needs of different user classes, such as novice users,
expert users, occasional users, disabled users, and so on.

Goals denote the objectives a system must meet. Elic-
iting high-level goals early in the development process is
crucial. However, goal-oriented requirements elicitation

P1: GNB/GLT P2: GTY Final Pages

Encyclopedia of Physical Science and Technology EN014I-855 July 28, 2001 19:19

232 Requirements Engineering

is an activity that continues as development proceeds, as
high-level goals (such as business goals) are refined into
lower-level goals (such as technical goals that are eventu-
ally operationalized in a system). Eliciting goals focuses
the requirements engineer on the problem domain and the
needs of the stakeholders, rather than on possible solutions
to those problems.

It is often the case that users find it difficult to articulate
their requirements. To this end, a requirements engineer
can resort to eliciting information about the tasks users
currently perform and those that they might want to per-
form. These tasks can often be represented in use cases that
can be used to describe the outwardly visible interactions
of users and systems. More specifically, the requirements
engineer may choose a particular path through a use case,
a scenario, in order to better understand some aspect of
using a system.

B. Elicitation Techniques

The choice of elicitation technique depends on the time
and resources available to the requirements engineer,
and of course, the kind of information that needs to be
elicited. We distinguish a number of classes of elicitation
technique:

✉ Traditional techniques include a broad class of
generic data gathering techniques. These include the use
of questionnaires and surveys, interviews, and analysis
of existing documentation such as organizational charts,
process models or standards, and user or other manuals of
existing systems.

✉ Group elicitation techniques aim to foster stake-
holder agreement and buy-in, while exploiting team dy-
namics to elicit a richer understanding of needs. They
include brainstorming and focus groups, as well as
RAD/JAD workshops (using consensus-building work-
shops with an unbiased facilitator).

✉ Prototyping has been used for elicitation where there
is a great deal of uncertainty about the requirements, or
where early feedback from stakeholders is needed. Proto-
typing can also be readily combined with other techniques,
for instance, by using a prototype to provoke discussion
in a group elicitation meeting, or as the basis for a ques-
tionnaire or think-aloud protocol.

✉ Model-driven techniques provide a specific model of
the type of information to be gathered, and use this model
to drive the elicitation process. These include goal-based
and scenario-based methods.

✉ Cognitive techniques include a series of tech-
niques originally developed for knowledge acquisition
for knowledge-based systems. Such techniques include
protocol analysis (in which an expert thinks aloud while

performing a task, to provide the observer with insights
into the cognitive processes used to perform the task),
laddering (using probes to elicit structure and content of
stakeholder knowledge), card sorting (asking stakehold-
ers to sort cards in groups, each of which has the name
of some domain entity), repertory grids (constructing an
attribute matrix for entities, by asking stakeholders for at-
tributes applicable to entities and values for cells in each
entity).

✉ Contextual techniques emerged in the 1990s as
an alternative to both traditional and cognitive tech-
niques. These include the use of ethnographic techniques
such as participant observation. They also include eth-
nomethodogy and conversation analysis, both of which
apply fine-grained analysis to identify patterns in conver-
sation and interaction.

C. The Elicitation Process

With a plethora of elicitation techniques available to the
requirements engineer, some guidance on their use is
needed. Methods provide one way of delivering such guid-
ance. Each method itself has its strengths and weaknesses,
and is normally best suited for use in particular application
domains.

Of course, in some circumstances a full-blown method
may be neither required nor necessary. Instead, the re-
quirements engineer needs simply to select the appropriate
technique or techniques most suitable for the elicitation
process in hand. In such situations, technique-selection
guidance is more appropriate than a rigid method.

IV. MODELING AND ANALYZING
REQUIREMENTS

Modeling—the construction of abstract descriptions that
are amenable to interpretation—is a fundamental activity
in RE. Models can be used to represent a whole range of
products of the RE process. Moreover, many modeling ap-
proaches are used as elicitation tools, where the modeling
notation and partial models produced are used as drivers
to prompt further information gathering. The key question
to ask for any modeling approach is “what is it good for?,”
and the answer should always be in terms of the kind of
analysis and reasoning it offers. We discuss below some
general categories of RE modeling approaches and give
some example techniques under each category. We then
list some analysis techniques that can be used to generate
useful information from the models produced.

A. Enterprise Modeling

The context of most RE activities and software systems
is an organization in which development takes place or

P1: GNB/GLT P2: GTY Final Pages

Encyclopedia of Physical Science and Technology EN014I-855 July 28, 2001 19:19

Requirements Engineering 233

in which a system will operate. Enterprise modeling and
analysis deals with understanding an organization’s struc-
ture; the business rules that affect its operation; the goals,
tasks, and responsibilities of its constituent members; and
the data that it needs, generates, and manipulates.

Enterprise modeling is often used to capture the purpose
of a system, by describing the behavior of the organization
in which that system will operate. This behaviour can be
expressed in terms of organizational objectives or goals
and associated tasks and resources. Others prefer to model
an enterprise in terms of its business rules, workflows, and
the services that it will provide.

Modeling goals is particularly useful in RE. High-level
business goals can be refined repeatedly as part of the
elicitation process, leading to requirements that can then
be operationalized.

B. Data Modeling

Large computer-based systems, especially information
systems, use and generate large volumes of information.
This information needs to be understood, manipulated,
and managed. Careful decisions need to be made about
what information the system will need to represent, and
how the information held by the system corresponds to the
real world phenomena being represented. Data modeling
provides the opportunity to address these issues in RE. Tra-
ditionally, Entity-Relationship-Attribute (ERA) modeling
is used for this type of modeling and analysis. However,
object-oriented modeling, using class and object models,
are increasingly supplanting ERA techniques.

C. Behavioral Modeling

Modeling requirements often involves modeling the dy-
namic or functional behavior of stakeholders and systems,
both existing and required. The distinction between mod-
eling an existing system and modeling a future system is
an important one, and is often blurred by the use of the
same modeling techniques for both. Early structured anal-
ysis methods suggested that one should start by modeling
how the work is currently carried out (the current physical
system), analyze this to determine the essential function-
ality (the current logical system), and finally build a model
of how the new system ought to operate (the new logical
system). Explicitly constructing all three models may be
overkill, but it is nevertheless useful to distinguish which
of these is being modeled.

A wide range of modeling methods are available, from
structured to object-oriented methods, and from soft to
formal methods. These methods provide different levels
of precision and are amenable to different kinds of anal-
ysis. Models based on formal methods can be difficult to

construct, but are also amenable to automated analysis.
On the other hand, soft methods provide rich represen-
tations that nontechnical stakeholders find appealing, but
are often difficult to check automatically.

D. Domain Modeling

A significant proportion of the RE process is about de-
veloping domain descriptions. A model of the domain
provides an abstract description of the world in which an
envisioned system will operate. Building explicit domain
models provides two key advantages: they permit detailed
reasoning about (and therefore validation of) what is as-
sumed about the domain, and they provide opportunities
for requirements reuse within a domain. Domain-specific
models have also been shown to be essential for building
automated tools, because they permit tractable reasoning
over a closed world model of the system interacting with
its environment.

E. Modeling Non-functional
Requirements (NFRs)

Non-functional requirements (also known as quality re-
quirements) are generally more difficult to express in a
measurable way, making them more difficult to analyze.
In particular, NFRs tend to be properties of a system as a
whole, and hence cannot be verified for individual compo-
nents. Recent work by both researchers and practitioners
has investigated how to model NFRs and to express them
in a form that is measurable or testable. There also is a
growing body of research concerned with particular kinds
of NFRs, such as safety, security, reliability, and usability.

F. Analyzing Requirements Models

A primary benefit of modeling requirements is the
opportunity this provides for analyzing them. Analysis
techniques that have been investigated in RE include re-
quirements animation, automated reasoning (e.g., analog-
ical and case-based reasoning and knowledge-based cri-
tiquing), and consistency checking (e.g., model checking).

V. CONTEXT AND GROUNDWORK

RE is often regarded as a front-end activity in the software
systems development process. This is generally true, al-
though it is usually also the case that requirements change
during development and evolve after a system has been in
operation for some time. Therefore, RE plays an impor-
tant role in the management of change in software devel-
opment. Nevertheless, the bulk of the effort of RE does

P1: GNB/GLT P2: GTY Final Pages

Encyclopedia of Physical Science and Technology EN014I-855 July 28, 2001 19:19

234 Requirements Engineering

occur early in the lifetime of a project, motivated by the
evidence that requirements errors, such as misunderstood
or omitted requirements, are more expensive to fix later in
project life cycles.

Before a project can be started, some preparation is
needed. In the past, it was often the case that RE methods
assumed that RE was performed for a specific customer,
who could sign off a requirements specification. However,
RE is actually performed in a variety of contexts, includ-
ing market-driven product development and development
for a specific customer with the eventual intention of de-
veloping a broader market. The type of product will also
affect the choice of method: RE for information systems
is very different from RE for embedded control systems,
which is different again from RE for generic services such
as networking and operating systems.

Furthermore, some assessment of a project’s feasibility
and associated risks needs to be undertaken, and RE plays
a crucial role in making such an assessment. It is often
possible to estimate project costs, schedules, and techni-
cal feasibility from precise specifications of requirements.
It is also important that conflicts between high-level goals
of an envisioned system surface early, in order to estab-
lish a system’s concept of operation and boundaries. Of
course, risk should be re-evaluated regularly throughout
the development lifetime of a system, since changes in
the environment can change the associated development
risks.

Groundwork also includes the identification of a suit-
able process for RE, and the selection of methods and tech-
niques for the various RE activities. We use the term pro-
cess here to denote an instance of a process model, which
is an abstract description of how to conduct a collection of
activities, describing the behavior of one or more agents
and their management of resources. A technique pre-
scribes how to perform one particular activity—and, if
necessary, how to describe the product of that activity in a
particular notation. A method provides a prescription for
how to perform a collection of activities, focusing on how
a related set of techniques can be integrated, and providing
guidance on their use.

VI. INTEGRATED REQUIREMENTS
ENGINEERING

RE is a multidisciplinary activity, deploying a variety of
techniques and tools at different stages of development and
for different kinds of application domains. Methods pro-
vide a systematic approach to combining different tech-
niques and notations, and method engineering plays an im-
portant role in designing the RE process to be deployed for
a particular problem or domain. Methods provide heuris-

tics and guidelines for the requirements engineer to deploy
the appropriate notation or modeling technique at different
stages of the process.

To enable effective management of an integrated RE
process, automated tool support is essential. Require-
ments management tools, such as DOORS, Requisite Pro,
Cradle, and others, provide capabilities for document-
ing requirements, managing their change, and integrating
them in different ways depending on project needs.

VII. SUMMARY AND CONCLUSIONS

The 1990s saw several important and radical shifts in the
understanding of RE. By the early 1990s, RE had emerged
as a field of study in its own right, as witnessed by the
emergence of two series of international meetings—the
IEEE sponsored conference and symposium, held in al-
ternating years, and the establishment of an international
journal published by Springer. By the late 1990s, the field
had grown enough to support a large number of additional
smaller meetings and workshops in various countries.

During this period, we can discern the emergence of
three radical new ideas that challenged and overturned
the orthodox views of RE. These three ideas are closely
interconnected:

� The idea that modeling and analysis cannot be
performed adequately in isolation from the
organizational and social context in which any new
system will have to operate. This view emphasized the
use of contextualized enquiry techniques, including
ethnomethodology and participant observation.

� The notion that RE should not focus on specifying the
functionality of a new system, but instead should
concentrate on modeling indicative and optative
properties of the environment.1 Only by describing the
environment, and expressing what the new system
must achieve in that environment, can we capture the
system’s purpose, and reason about whether a given
design will meet that purpose. This notion has been
accompanied by a shift in emphasis away from
modeling information flow and system state, and
toward modeling stakeholders’ goals and scenarios that
illustrate how goals are (or can be) achieved.

� The idea that the attempt to build consistent and
complete requirements models is futile, and that RE
has to take seriously the need to analyze and resolve
conflicting requirements, to support stakeholder

1Indicative descriptions express things that are currently true (and will
be true irrespective of the introduction of a new system), while optative
descriptions express the things that we wish the new system to make
true.

P1: GNB/GLT P2: GTY Final Pages

Encyclopedia of Physical Science and Technology EN014I-855 July 28, 2001 19:19

Requirements Engineering 235

negotiation, and to reason with models that contain
inconsistencies.

A number of major challenges for RE still remain to be
addressed in the years ahead:

1. Development of new techniques for formally mod-
eling and analyzing properties of the environment, as op-
posed to the behavior of the software. Such techniques
must take into account the need to deal with inconsis-
tent, incomplete, and evolving models. We expect such
approaches will better support areas where RE has been
weak in the past, including the specification of the ex-
pectations that a software component has of its environ-
ment. This facilitates migration of software components
to different software and hardware environments, and the
adaptation of products into product families.

2. Bridging the gap between requirements elicitation
approaches based on contextual enquiry and more for-
mal specification and analysis techniques. Contextual ap-
proaches, such as those based on ethnographic techniques,
provide a rich understanding of the organizational context
for a new software system, but do not map well onto ex-
isting techniques for formally modeling the current and
desired properties of problem domains. This includes the
incorporation of a wider variety of media, such as video
and audio, into behavioral modeling techniques.

3. Richer models for capturing and analyzing NFRs.
These are also known as the “ilities” and have defied a
clear characterization for decades.

4. Better understanding of the impact of software ar-
chitectural choices on the prioritization and evolution of
requirements. While work in software architectures has
concentrated on how to express software architectures and
reason about their behavioral properties, there is still an
open question about how to analyze what impact a particu-
lar architectural choice has on the ability to satisfy current
and future requirements, and variations in requirements
across a product family.

5. Reuse of requirements models. We expect that in
many domains of application, we will see the development
of reference models for specifying requirements, so that
the effort of developing requirements models from scratch
is reduced. This will help move many software projects
from being creative design to being normal design, and
will facilitate the selection of commercial off-the-shelf
(COTS) software.

6. Multidisciplinary training for requirements practi-
tioners. In this paper, we have used the term “requirements
engineer” to refer to any development participant who ap-
plies the techniques described in the paper to elicit, specify,
and analyze requirements. While many organizations do
not even employ such a person, the skills that such a person

or group should possess is a matter of critical importance.
The requirements engineer must possess both the social
skills to interact with a variety of stakeholders, includ-
ing potentially nontechnical customers, and the technical
skills to interact with systems designers and developers.

Many delivered systems do not meet their customers’
requirements due, at least partly, to ineffective RE. RE
is often treated as a time-consuming, bureaucratic, and
contractual process. This attitude is changing as RE is
increasingly recognized as a critically important activity
in any systems engineering process. The novelty of many
software applications, the speed with which they need to
be developed, and the degree to which they are expected
to change all play a role in determining how the systems
development process should be conducted. The demand
for better, faster, and more usable software systems will
continue, and RE will therefore continue to evolve in order
to deal with different development scenarios. Therefore,
effective RE will continue to play a key role in determining
the success or failure of projects, and in determining the
quality of systems that are delivered.

ACKNOWLEDGMENTS

The content of this article is drawn from a wide vari-
ety of sources, and is structured along the lines of the
roadmap by Nuseibeh and Easterbrook (2000). Nuseibeh
would like to acknowledge the financial support the UK
EPSRC (projects GR/L 55964 and GR/M 38582).

SEE ALSO THE FOLLOWING ARTICLES

HUMAN–COMPUTER INTERACTIONS • PROJECT MANAGE-
MENT SOFTWARE • SOFTWARE ENGINEERING • SOFT-
WARE RELIABILITY • SOFTWARE TESTING

BIBLIOGRAPHY

Chung, L., Nixon, B., Yu, E., and Mylopoulos, J. (2000). Non-Functional
Requirements in Software Engineering. Kluwer Academic, Boston.

Davis, A. (1993). Software Requirements: Objects, Functions and States.
Prentice Hall, New york.

Finkelstein, A. (1993). Requirements Engineering: An Overview, 2nd
Asia-Pacific Software Engineering Conference (APSEC’93), Tokyo,
Japan.

Gause, D. C., and Weinberg, G. M. (1989). Exploring Requirements:
Quality before Design, Dorset House.

Goguen, J., and Jirotka, M., eds. (1994). Requirements Engineering:
Social and Technical Issues, Academic Press London.

Graham, I. S. (1998). Requirements Engineering and Rapid Develo-
pment: A Rigorous, Object-Oriented Approach, Addison-Wesley,
Reading, MA.

P1: GNB/GLT P2: GTY Final Pages

Encyclopedia of Physical Science and Technology EN014I-855 July 28, 2001 19:19

236 Requirements Engineering

Jackson, M. (1995). Software Requirements and Specifications: A Lexi-
con of Practice, Principles and Prejudices, Addison-Wesley, Reading,
MA.

Jackson, M. (2001). Problem Frames: Analyzing and Structuring Soft-
ware Development Problems, Addison-Wesley, Reading, MA.

Kotonya, G., and Sommerville, I. (1998). Requirements Engineering:
Processes and Techniques, Wiley, New York.

Kovitz, B. L. (1999). Practical Software Requirements: A Manual of
Contents & Style. Manning.

Loucopoulos, P., and Mylopoulos, J., eds. (1996). Requirements Engi-
neering Journal, Springer Verlag, Berlin/New York.

Loucopoulos, P., and Karakostas, V. (1995). System Requirements Engi-
neering, McGraw-Hill, New York.

Macaulay, L. M. (1996). Requirements Engineering, Springer Verlag,
Berlin/New York.

Nuseibeh, B., and Easterbrook, S. (2000). Requirements Engineering:
A Roadmap, In ICSE-2000 The Future of Software Engineering
(A. Finkelstein, ed.), ACM Press, New York.

Pohl, K. (1996). Process-Centered Requirements Engineering, Research
Studies Press.

Robertson, S., and Robertson, J. (1999). Mastering the Requirements
Process. Addison-Wesley, Reading, MA.

Sommerville, I., and Sawyer, P. (1997). Requirements Engineering: A
Good Practice Guide, Wiley, New York.

Stevens, R., Brook, P., Jackson, K., and Arnold, S. (1998). Systems
Engineering: Coping with Complexity, Prentice Hall Europe.

Thayer, R., and Dorfman, M., eds. (1997). Software Requirements Engi-
neering (2nd Ed.), IEEE Computer Society Press, Los Alamitos, CA.

van Lamsweerde, A. (2000). Requirements Engineering in the Year 00:
A Research Perspective, Keynote Address, In Proceedings of 22nd

International Conference on Software Engineering (ICSE-2000),
Limerick, Ireland, June 2000, ACM Press, New York.

Wieringa, R. J. (1996). Requirements Engineering: Frameworks for
Understanding, Wiley, New York.

Zave, P. (1997). Classification of Research Efforts in Requirements
Engineering, ACM Computing Surveys 29(4): 315–321.

P1: GNH/MBG P2: GSS Final Pages Qu: 00, 00, 00, 00

Encyclopedia of Physical Science and Technology EN015J-856 August 2, 2001 11:21

Software Engineering
Mehdi Jazayeri
Technische Universität Wien

I. A Brief History of Software Engineering
II. Kinds of Software
III. The Software Life Cycle
IV. Process Models
V. Process Quality

VI. Requirements Engineering
VII. Software Architecture

VIII. Software Design and Specification
IX. Software Quality
X. Management of Software Engineering
XI. Summary

GLOSSARY

Component-based software engineering An approach
to software engineering based on the acquisition and
assembly of components.

Component interface The description of what services
are provided by the component and how to request those
services.

Inspections and reviews Organized meetings to review
software components and products with the aim of un-
covering errors early in the software life cycle.

Process maturity The capability of an organization to
follow a software process in a disciplined and con-
trolled way.

Programming language A primary tool of the software
engineer. It is a notation used to write software.

Software architecture The overall structure of a soft-
ware system in terms of its components and their rela-
tionships and interactions.

Software component A well-defined module that may
be combined with other components to form a software
product.

Software process An ideal description of the steps in-
volved in software production.

Software requirements A document that describes the
expected capabilities of a software product.

Validation and verification Procedures that help gain
confidence in the correct functioning of software.

SOFTWARE ENGINEERING is the application of en-
gineering principles to the construction of software. More

 1

P1: GNH/MBG P2: GSS Final Pages

Encyclopedia of Physical Science and Technology EN015J-856 August 2, 2001 11:21

2 Software Engineering

precisely, the IEEE Std 610.12-1990 Standard Glossary
of Software Engineering Terminology defines software
engineering as the application of a systematic, disciplined,
quantifiable approach to the development, operation, and
maintenance of software.

Software engineering deals with the building of soft-
ware systems that are so large or so complex that they are
built by a team or teams of engineers. Usually, these soft-
ware systems exist in multiple versions and are in service
for many years. During their lifetime, they undergo many
changes—to fix defects, to enhance existing features, to
add new features, to remove old features, or to be adapted
to run in a new environment.

We may appreciate the issues involved in software
engineering by contrasting software engineering with
computer programming. A programmer writes a complete
program, while a software engineer writes a software com-
ponent that will be combined with components written by
other software engineers to build a system. The compo-
nent written by one software engineer may be modified
by other software engineers; it may be used by others to
build different versions of the system long after the origi-
nal engineer has left the project. Programming is primarily
a personal activity, while software engineering is essen-
tially a team activity.

The term “software engineering” was invented in the
late 1960s after many large software projects failed to
meet their goals. Since then, the field has grown to include
many techniques and methods for systematic construc-
tion of software systems. These techniques span the entire
range of activities starting from the initial attempts to un-
derstand the customer requirements for a software system
to the design and implementation of that system, validation
of the system against the requirements, and the delivery
of the system and its deployment at the customer site.

The importance of software has grown over the years.
Software is now used to control virtually every sophis-
ticated or even not so sophisticated device. Software is
used to control transportation systems including subways,
trains, and airplanes; control power plants; everyday de-
vices such as ovens, refrigerators, and television sets; med-
ical devices such as pace makers and diagnostic machines.
The Internet is certainly powered by sophisticated soft-
ware. The whole society is dependent upon correct func-
tioning of software. Software is also of growing economic
impact: in 1985, around $140 billion was spent annually
on software worldwide. In 2000, the amount is estimated
at $800 billion worldwide. As a result, the software engi-
neering discipline has gained importance. The emphasis of
software engineering is on building dependable software
economically.

This article reviews the two major elements of soft-
ware engineering: products and processes. Software en-

gineers follow a process to build a product. We review
techniques for building a high-quality product. Some of
these are product related and others are process related. We
start with a brief history of software engineering followed
by a classification of the kinds of software in Section II.
Sections III and IV deal with the software process and
the remaining sections deal with activities in the software
process that produce the software product, including re-
quirements analysis, architectural design, and testing and
verification of software.

I. A BRIEF HISTORY OF SOFTWARE
ENGINEERING

The birth and evolution of software engineering as a disci-
pline within computer science can be traced to the evolv-
ing and maturing view of the programming activity. In the
early days of computing, the problem of programming was
viewed essentially as how to place a sequence of instruc-
tions together to get the computer to do something useful.
The problems being programmed were well understood—
for example, how to solve a differential equation. The
program was written by, say, a physicist to solve an equa-
tion of interest to him or her. The problem was just be-
tween the user and the computer—no other person was
involved.

As computers became cheaper and more common, more
and more people started using them. Programming lan-
guages were invented in the late 1950s to make it easier to
communicate with the machine. But still, the activity of
getting the computer to do something useful was essen-
tially done by one person who was writing a program for
a well-defined task.

It was at this time that “programming” attained the sta-
tus of a profession: you could ask a programmer to write
a program for you instead of doing it yourself. This intro-
duced a separation between the user and the computer.
Now the user had to specify the task in a form other
than the precise programming notation used before. The
programmer then read this specification and translated it
into a precise set of machine instructions. This, of course,
sometimes resulted in the programmer misinterpreting the
user’s intentions, even in these usually small tasks.

Very few large software projects were being done at this
time—the early 1960s—and these were done by computer
pioneers who were experts. For example, the CTSS oper-
ating system developed at MIT was indeed a large project,
but it was done by highly knowledgeable and motivated
individuals.

In the middle to late 1960s, truly large software sys-
tems were attempted commercially. The best documented
of these projects was the OS 360 operating system for

P1: GNH/MBG P2: GSS Final Pages

Encyclopedia of Physical Science and Technology EN015J-856 August 2, 2001 11:21

Software Engineering 3

the IBM 360 computer family. The people on these large
projects quickly realized that building large software
systems was significantly different from building smaller
systems. There were fundamental difficulties in scaling
up the techniques of small program development to large
software development. The term “software engineering”
was invented around this time, and conferences were held
to discuss the difficulties these projects were facing in de-
livering the promised products. Large software projects
were universally over budget and behind schedule. An-
other term invented at this time was “software crisis.”
Although the term software crisis is still used, it is now
agreed that “crisis” is caused by misplaced and unrealistic
expectations.

It became apparent that the problems in building large
software systems were not a matter of putting computer
instructions together. Rather, the problems being solved
were not well understood, at least not by everyone in-
volved in the project or by any single individual. People
on the project had to spend a lot of time communicating
with each other rather than writing code. People some-
times even left the project, and this affected not only the
work they had been doing but also the work of the oth-
ers who were depending on them. Replacing an individual
required an extensive amount of training about the “folk-
lore” of the project requirements and the system design.
Any change in the original system requirements seemed
to affect many parts of the project, further delaying system
delivery. These kinds of problems just did not exist in the
early “programming” days and seemed to call for a new
approach.

Many solutions were proposed and tried. Some sug-
gested that the solution lay in better management tech-
niques. Others proposed different team organizations. Yet
others argued for better programming languages and tools.
Many called for organization-wide standards such as uni-
form coding conventions. A few called for the use of
mathematical and formal approaches. There was no short-
age of ideas. The final consensus was that the problem of
building software should be approached in the same way
that engineers had built other large complex systems such
as bridges, refineries, factories, ships, and airplanes. The
point was to view the final software system as a com-
plex product and the building of it as an engineering job.
The engineering approach required management, orga-
nization, tools, theories, methodologies, and techniques.
And thus was software engineering born.

II. KINDS OF SOFTWARE

Software comes in an amazing variety. Certainly the soft-
ware inside a television set differs from that which con-

trols an airplane which is still different from the software
that makes up a word processor. Each of these different
types requires a different software engineering approach
in terms of the process model and in terms of requirements
that it must achieve.

A software system is often a component of a much larger
system. For example, a telephone switching system con-
sists of computers, telephone lines and cables, other hard-
ware such as satellites, and finally, software to control the
various other components. It is the combination of all these
components that is expected to meet the requirements of
the whole system.

We may classify the types of software along different di-
mensions. Along one dimension we may distinguish soft-
ware as system or application software. Another classi-
fication distinguishes among embedded, networking, and
application software. We will now discuss these different
kinds of software and their special characteristics.

A. Application Software

Application software refers to software that is written to
perform a particular function of general utility. While the
software is of course run on a computer, the function it
performs is not particularly computer related. For exam-
ple, a word processor is a typical example of application
software. It helps users to create text documents. It deals
with concepts from a domain of interest to users in the
document processing domain such as documents, pages,
paragraphs, words, justification, hyphenation, and so on.
The requirements for such software may be defined en-
tirely in terms of these concepts independently of the ex-
ecution platform. Of course, the execution platform does
exert some influence on the software in terms of what the
software can reasonably achieve. For example, the soft-
ware has access to different amounts of resources if it runs
on a powerful desktop computer or a small hand-held de-
vice. But the functionality requirements may be stated in
terms of the application domain.

Another example of application software is a banking
system. Such software also deals with a particular appli-
cation domain and its requirements may be stated in terms
of the domain concepts such as customer, account, interest
rate, deposit, and so on.

The different kinds of application software may be fur-
ther subdivided as shrink-wrapped and custom software.
Shrink-wrapped software is developed for a mass market
and sold on the market. Custom software is developed for a
particular customer. A word processor is typically shrink-
wrapped and banking software is typically custom-made.

A main difference between process models for shrink-
wrapped and custom software is in the requirements phase.
The requirements phase for shrink-wrapped software is

P1: GNH/MBG P2: GSS Final Pages

Encyclopedia of Physical Science and Technology EN015J-856 August 2, 2001 11:21

4 Software Engineering

done by a marketing group perhaps with the help of
focus groups. There is no specific customer that may
be consulted about the requirements. In contrast, the
requirements of custom software are driven by a customer.
Shrink-wrap software must be developed in different ver-
sions for different hardware platforms and perhaps in dif-
ferent levels of functionality (e.g., in light and professional
versions), whereas custom software is developed and opti-
mized for a particular platform (with a view toward future
evolutions of the platform). These considerations affect
the initial statements of the requirements and the tech-
niques used to achieve those requirements.

B. System Software

System software is intended to control the hardware re-
sources of a computer system to provide useful function-
ality for the user. For example, an operating system tries to
optimize the use of resources such as processor, memory,
and input–output devices to enable users to run various
programs efficiently. A database system tries to maximize
the use of memory and disk resources to allow different
users to access data concurrently.

As opposed to application software, the requirements
of system software are tied directly to the capabilities
of the hardware platform. The requirements must deal
with computer concepts such as hardware resources and
interfaces. The software engineering of system software
typically requires specialized knowledge such as transac-
tion processing for databases or process scheduling for
operating systems.

Despite their dependence on the hardware platform,
system software such as operating systems and databases
these days are developed independently of the hardware
platform. In earlier days, they had to be developed hand
in hand with the hardware. But advances in techniques for
developing abstract interfaces for hardware devices have
enabled system software to be developed in a portable
way. By setting appropriate configuration parameters, the
software is specialized for a particular platform.

System software often provides interfaces to be used by
other programs (typically application programs) and also
interfaces to be used by users (interactively). For example,
an operating system may be invoked interactively by a user
or by database systems.

An increasingly important class of system software is
communication software. Communication software pro-
vides mechanisms for processes on different computers
to communicate. Initially, communication software was
included in operating systems. Today, it is being increas-
ingly packages as “middleware.” Middleware provides fa-
cilities for processes on different computers to commu-
nicate as well as other facilities for finding and sharing

resources among computers. For writing distributed appli-
cations, software engineers rely on standard middleware
software.

C. Embedded Software

Embedded software is software that is not directly visi-
ble or invokable by a human user but is part of a system.
For example, the software is embedded in television sets,
airplanes, and videogames. Embedded software is used
to control the functions of hardware devices. For exam-
ple, a train control system reads various signals produced
by sensors along tracks to control the speed of the train.
The characteristic of embedded software is that it is de-
veloped hand in hand with the hardware. The designers of
the system face tradeoffs in placing a given functionality
in hardware or software. Generally, software offers more
flexibility. For example, a coin-operated machine could be
designed with different-sized slots for different coins or a
single slot with control software that determines the value
of the coin based on its weight. The software solution is
more flexible in that it can be adapted to new coins or new
currencies.

A particular kind of embedded software is real-time
software. This kind of software has requirements in terms
of meeting time constraints. For example, the telephone
software must play the dial tone within a certain time after
the customer has taken the phone off hook. Often real-time
systems are responsible for critical functions such as pa-
tient monitoring. In such cases special design techniques
are needed to ensure correct operation within required time
constraints. Real-time software is among the most chal-
lenging software to construct.

III. THE SOFTWARE LIFE CYCLE

From the inception of an idea for a software system, until it
is implemented and delivered to a customer, and even after
that, a software system undergoes gradual development
and evolution. The software is said to have a life cycle
composed of several phases. Each of these phases results in
the development of either a part of the system or something
associated with the system, such as a test plan or a user
manual. The phases may be organized in different orders,
for example, performed sequentially or in parallel. The
choice of organization and order of the phases define a
particular software process model. Depending on the kind
of software being built, and other requirements on the
project, such as the number of people or the length of the
schedule, a different process model may be appropriate.
The traditional life cycle model is called the “waterfall
model,” because each phase has well-defined starting and

P1: GNH/MBG P2: GSS Final Pages

Encyclopedia of Physical Science and Technology EN015J-856 August 2, 2001 11:21

Software Engineering 5

ending points, with clearly identifiable deliverables that
“flow” to the next phase. In practice, it is rarely so simple
and the phases and their deliverables have to be managed
in a more complicated way.

The following phases typically comprise a software pro-
cess model:

� Feasibility study. Starting with an idea for a software
product, a feasibility study tries to determine whether a
software solution is practical and economical. If
the project appears feasible, alternative solutions are
explored such as whether it is possible to buy the
software, develop it in-house, or contract for it to
be developed externally. The impact of the software on
the existing environment must also be considered in
this phase. Sometimes, new software will be replacing
existing manual procedures in an organization. As a
result, the introduction of the software will change the
way people work.

� Requirements analysis and specification. The
purpose of this phase is to identify and document the
exact requirements for the system. Such study may be
performed by the customer, the developer, a marketing
organization, or any combination of the three. In cases
where the requirements are not clear—e.g., for a
system that has never been done before—much
interaction is required between the user and the
developer. Depending on the kind of software being
produced, this phase must also produce user manuals
and system test plans.

� Architecture design and system specification. Once
the requirements for a system have been documented,
software engineers design a software system to meet
them. This phase is sometimes split into two
subphases: architectural or high-level design and
detailed design. High-level design decomposes the
software to be built into subsystems or components
called modules; detailed design then works on the
design of the components.

� Coding and module testing. In this phase the
engineers produce the actual software code and
programs that will be delivered to the customer as the
running system. Individual modules developed in the
coding phase are also tested before being delivered to
the next phase.

� Integration and system testing. All the modules that
have been developed before and tested individually are
put together—integrated—in this phase and tested as a
whole system.

� Delivery and maintenance. Once the system passes
all the tests, it is delivered to the customer and is
deployed. Following delivery, from the developer’s
viewpoint the product enters a maintenance phase. Any

modifications made to the system after initial delivery
are usually attributed to this phase.

These phases may be ordered and organized differently
according to the needs of the project. Each particular orga-
nization reflects a particular modeling of the development
process. In the next section we present the most prevalent
software process models. In parallel to these phases, two
other activities are essential to a software engineering or-
ganization. Project management monitors the timely and
orderly progress of the project and quality assurance is
concerned with ensuring that the final product meets the
quality standards of the organization. These activities are
not specific to any particular phase of the software life cy-
cle and must be in place throughout the whole life cycle.
Indeed, they are not even specific to software engineering
but to any engineering activity.

IV. PROCESS MODELS

A process model is an ideal definition of the software life
cycle or of how actual software projects work. As such,
they are prescriptions for how to organize the software
engineering activity. In reality, actual software projects
deviate from these models but the models nevertheless
give both managers and engineers a framework in which
to plan and schedule their work.

A. The Waterfall Model

The classic and traditional process model is the water-
fall model. This model assumes a sequential order of the
phases and the completion of one phase before the next
phase starts.

Figure 1 gives a graphical view of the waterfall soft-
ware development life cycle that provides a visual expla-
nation of the term “waterfall.” Each phase yields results
that “flow” into the next, and the process ideally proceeds
in an orderly and linear fashion.

FIGURE 1 The waterfall model of the software life cycle.

P1: GNH/MBG P2: GSS Final Pages

Encyclopedia of Physical Science and Technology EN015J-856 August 2, 2001 11:21

6 Software Engineering

The figure gives the simplest model of the waterfall
model. For example, it is clear that if any tests uncover
defects in the system, we have to go back at least to the
coding phase and perhaps to the design phase to cor-
rect some mistakes. In general, any phase may uncover
problems in previous phases; this will necessitate going
back to the previous phases and redoing some earlier
work. For example, if the system design phase uncov-
ers inconsistencies or ambiguities in the system require-
ments, the requirements analysis phase must be revis-
ited to determine what requirements were really intended.
Such problems require us to add feedback loops to the
model, represented as arrows that go back from one phase
to an earlier phase and the need to repeat some earlier
work.

A common shortcoming of the waterfall model is that it
requires a phase to be completed before the next one starts.
While feedback loops allow the results of one phase to af-
fect an earlier phase, they still do not allow the overlapping
of phases. In practice, a common technique to shorten de-
velopment times is to carry out activities in parallel. The
strict sequential nature of the waterfall model is one of
its most severe drawbacks. Other process models try to
alleviate this problem.

B. Incremental Models

The waterfall model defines the requirements at the begin-
ning and delivers the product at the end. During the whole
development time, the customer is not involved and does
not gain any visibility into the state of the product. Some
models try to remedy this problem by introducing differ-
ent stages in which partial deliveries of the product are
made to the customer.

One such model is the prototyping approach. The first
delivery to the customer is a prototype of the envisaged
system. The purpose of the prototype is to assess the feasi-
bility of the product and to verify that the requirements of
the customer have been understood by the developer and
will be met by the system. The prototype is then thrown
away (in fact, it is sometimes called a throwaway proto-
type), and development starts on the real product based
on the now firmly established requirements. The proto-
typing approach addresses the difficulty of understanding
the real requirements but it does not eliminate the time
gap between the definition of requirements and delivery
of the application.

Incremental process model addresses the delivery gap.
It produces the product in increments that implement the
needed functionality in increments. Increments may be
delivered to the customer as they are developed; this is
called evolutionary, or incremental, delivery.

Increments to be delivered to the customer consist
not only of code and internal project documentation but
also of user-oriented documentation. In other words, a
delivered increment is a self-contained functional unit of
software that performs some useful purpose for the cus-
tomer, along with all supporting material (requirements
and design specifications, test plans and test cases, a user
manual, and training material). This approach requires a
phase in which the requirements are carefully subdivided
into functionalities that may be decomposed and delivered
independently. The decision as to what order to deliver
the increments is a key negotiation point between the
developer and the customer. One possibility is to deliver
the basic functionality of the system first and increasingly
sophisticated functionality later. Another is to deliver what
can be delivered quickly and delay to later stages those
features that take longer to build. A third option is to de-
liver the functionality that is most critical to the customer
early.

C. The Transformation Model

The transformation model is rooted in theoretical work
on formal specifications. This model views software de-
velopment as a sequence of steps that starts from a formal
(mathematical) specification of the requirements and grad-
ually transforms it into an implementation. First, informal
requirements are analyzed and functions are specified for-
mally, possibly in an incremental way. Then, the develop-
ment process takes this formal description and transforms
it into a more detailed, less abstract formal description.

The software engineer may perform the transforma-
tions. In this case, the formal nature of the derivation may
provide a form of mathematical check that one step is a
correct transformation of the previous. It is also possible,
however, that the support system performs transforma-
tions automatically, possibly under the software engineer’s
direction.

The transformation model is rather a theoretical one
and is best viewed as an ideal model. Its contribution to
practice has been limited. The requirement to specify the
requirements formally is rather stringent and unrealistic
for typical products.

D. Spiral Model

The goal of the spiral model of the software process is to
provide a framework for designing such processes, guided
by the risk levels in the project at hand. As opposed to
the previously presented models, the spiral model may be
viewed as a metamodel, because it can accommodate any
development process model. By using it as a reference,

P1: GNH/MBG P2: GSS Final Pages

Encyclopedia of Physical Science and Technology EN015J-856 August 2, 2001 11:21

Software Engineering 7

one may choose the most appropriate development model
(e.g., evolutionary versus waterfall). The guiding principle
behind such choice is risk management.

The spiral model focuses on identifying and eliminating
high-risk problems by careful process design, rather than
treating both trivial and severe problems uniformly. The
spiral model is cyclic rather than linear like the waterfall
model. Each cycle of the spiral consists of four stages.

Stage 1 identifies the objectives of the portion of the
product under consideration, in terms of qualities to
achieve. Furthermore, it identifies alternatives—such as
whether to buy, design, or reuse any of the software—and
the constraints on the application of the alternatives. The
alternatives are then evaluated in Stage 2 and potential
risk areas are identified and dealt with. Risk assessment
may require different kinds of activities to be planned,
such as prototyping or simulation. Stage 3 consists of de-
veloping and verifying the next level product; again, the
strategy followed by the process is dictated by risk analy-
sis. Finally, Stage 4 consists of reviewing the results of the
stages performed so far and planning for the next iteration
of the spiral, if any.

If the requirements for the application are understood
reasonably well, a conventional waterfall process model
may be chosen, which leads to a simple one-turn spiral.
In less understood applications, however, the next step
may be evolutionary in nature; i.e., several spiral turns
may be required in order to achieve the desired results.
It can also accommodate any mixture of the previously
discussed models, with the appropriate mix chosen so as
to minimize the risks involved in development.

E. Open Source Model

The traditional software process models are based on the
assumption that what is delivered to the customer is an ex-
ecutable module that may be installed and run on the cus-
tomer’s computer. The source code remains the property
of the software developer. In the 1990s, the open source
process model became popular. This model spurns the pro-
prietary nature of the source code. It holds that the source
code must be placed in the public domain for anyone to
use. The goal is to encourage others to find the defects in
the software and produce enhancements and variations of
the product. System software, such as the Linux operating
system, was produced in this way. In effect, this process
encourages software developers anywhere to cooperate in
ad hoc workgroups. Anyone who finds a defect or thinks
of an enhancement can send a contribution to the unoffi-
cial keeper of the software who decides whether and when
to insert the enhancement in the software. This model has
gained considerable support in the software engineering

community as an effective way to enhance the reliability
of software products. The rationale is that the more inde-
pendent people that examine the source of the software,
the more defects will be found.

V. PROCESS QUALITY

The process followed in building software affects the qual-
ities of the software product. For example, a disciplined
process with reviews and inspections along the way is
more likely to produce reliable software than a process
that does not rely on any reviews of the intermediate steps.
Several standards have been developed to measure the
quality of software processes and thus gain confidence in
the quality of the produced product. Such process quality
standards help enterprises such as government agencies
evaluate software contractors.

A typical such standard is the Capability Maturity
Model. This model defines software process capability
as the range of results that may be expected by following
a software process. The process capability of an organi-
zation may be used to predict the most likely results of
a project undertaken by the organization. The model also
defines software process maturity as the extent to which
the process is defined explicitly, managed, measured, con-
trolled, and effective. The notion of maturity implies that
an organization’s software process capability can grow
as it matures. The model defines five levels of software
capability maturity. The least capable organizations are
graded at Level 1, called initial. An organization at Level 1
has no defined process model. It produces software as
best it can without any apparent planning. As a result,
projects sometimes succeed and sometimes fail. Any
given project’s outcome is unpredictable. At Level 2, the
organization has stable and established project manage-
ment controls. As a result, even though the organization
does not have a documented process, it consistently pro-
duces the intended product. This capability is referred to
as “repeatable.” Level 3 organizations have a defined pro-
cess that consistently leads to successful projects. Projects
in the organization tailor the defined process to the needs
of the project. A specific group is responsible for the or-
ganization’s software engineering activities. Management
has good visibility into the progress and status of projects.
Level 4 organizations not only have a defined process but
also collect metrics on the performance of their processes
and can therefore predict with good confidence how their
projects will perform in the future. This level is called
“managed.” At the highest level of process maturity,
organizations not only measure their process performance
but also aim to improve their performance continuously.

P1: GNH/MBG P2: GSS Final Pages

Encyclopedia of Physical Science and Technology EN015J-856 August 2, 2001 11:21

8 Software Engineering

This level is called “optimizing.” The focus in optimizing
organizations is no longer merely the production of the
software product—which is considered a certainty—but
on continuous improvement of the organization.

An initial study of software organizations around the
world showed that very few organizations perform at
Level 5. Most were at Level 3 or below. But once such
criteria for process performance have been defined, they
can be used by organizations to strive for improvement.

Each level of maturity is defined with the help of a
detailed list of characteristics. There are organizations
that perform “process assessment,” that is, measure the
maturity of a software development organization and pro-
vide it with guidelines on how to try to improve to the
next level of maturity. An organization’s process maturity
level gives its customers a basis for realistic expectations
of its performance. This is especially important if a com-
pany wants to outsource the development of key parts of
its software.

Measuring the maturity level of an organization is one
way of assessing the performance of a software develop-
ment organization. Other standards also exist that measure
the process differently. In all cases, such measurements are
difficult to make and should be evaluated carefully.

VI. REQUIREMENTS ENGINEERING

The most critical phase of software engineering is the re-
quirements analysis and specification phase. In this phase,
the representatives of the developing organization and
the customer organization attempt to define a complete
set of requirements for the software product to be built.
This phase is critical because once the requirements have
been defined, the software product will be built accord-
ing to those requirements. Any errors in the requirements
will lead to a product that does not meet the customer’s
expectations.

There are many reasons why requirements are often
not correct. First, the customer does not always know ex-
actly what is needed or what is possible. In this case, the
developer and the customer try to come up with an approx-
imation of what could be needed. Second, the customer
and the developer often come from different backgrounds
and experience domains, which leads to miscommunica-
tion and misunderstandings. Third, the customer’s require-
ments may be conflicting and inconsistent.

The activities involved with determining the require-
ments are collectively called “requirements engineering”
and consist of the activities of eliciting, understanding,
and documenting the requirements. The success of an ap-
plication depends heavily on the quality of the results of
requirements engineering. The ultimate purpose of these

activities is to understand the goals of the system, the
requirements it should meet, and to specify the qualities
required of the software solution, in terms of functionality,
performance, ease of use, portability, and so on, that would
lead to the satisfaction of the overall system requirements.

A general guideline for what should be included in a re-
quirements document, which is not always easy to follow,
is that the requirements document should describe what
qualities the application must exhibit, not how such qual-
ities should be achieved by design and implementation.
For example, the document should define what functions
the software must provide, without stating that a certain
distributed architecture, or module structure, or algorithm
should be used in the solution. The goal of the guide-
line is to avoid over-specification of the system. Over-
specification will constrain the engineers who will im-
plement the requirements and possibly prevent them from
finding better solutions. In practice, sometimes this guide-
line must be broken. For example, government regulations
may require that a certain security algorithm is or is not
used, or that a certain architecture is used to achieve reli-
ability. Often, existing environments constrain the design
choices to work with existing computers or architectures.

If the software to be developed is part of a more general
system, such as a television system, which includes many
devices, a crucial requirements activity will be responsi-
ble for decomposing the overall system requirements into
software and other requirements. The responsibilities of
the software component within the overall system must
be defined. The choice of what functionality to place in
software and what to do in hardware must sometimes re-
main flexible because it could be dependent on current
technology.

The main goal of the requirements activities is to un-
derstand precisely the interface between the application
to develop and its external environment. Such an environ-
ment can be—say—a physical plant that the application
is supposed to monitor and automate, or it can be a library
where librarians interact with the system to insert new ac-
quisitions in the catalog and to lend books to customers,
and where customers can browse through the catalog to
find the books they are interested in. The requirements
activity must clearly identify the main stakeholders, i.e.,
all those who have an interest in the system and will be
eventually responsible for its acceptance. For example, in
the case of the library, the software engineers must under-
stand who are the expected users of the system (librarians,
customers of the library), and what different access rights
to the system they will have. They will need to understand
the mechanisms of book acquisition, of borrowing and
returning books, etc. The main stakeholders will include
the librarians and sample customers. Since the library is
usually part of a larger system, the individuals responsible

P1: GNH/MBG P2: GSS Final Pages

Encyclopedia of Physical Science and Technology EN015J-856 August 2, 2001 11:21

Software Engineering 9

for the library in the larger system are also relevant stake-
holders. As an example, in the case of the library of a
university department, the department head is a stake-
holder, whose goals and requirements should be prop-
erly taken into account. The department head’s goal might
be to encourage students to borrow both books and jour-
nals, to stimulate their interest in reading the current sci-
entific literature. Or, alternatively, he or she might require
that students may only borrow books, limiting the ability
to borrow journals to only staff members. An important
stakeholder is the person or organization that will have the
budget to pay for the development. In this case, it may be
the dean or the president at the university. As this example
shows, the various stakeholders have different viewpoints
on the system. Each viewpoint provides a partial view of
what the system is expected to provide. Sometimes the
different viewpoints may be even contradictory. The goal
of requirements engineering is to identify all conflicts and
integrate and reconcile all the different viewpoints in one
coherent view of the system.

The result of the requirements activities is a require-
ments specification document, which describes what the
analysis has produced. The purpose of this document
is twofold: on the one hand, it must be analyzed and
confirmed by the various stakeholders in order to verify
whether it captures all of the customers’ expectations; on
the other hand, it is used by the software engineers to
develop a solution that meets the requirements.

The way requirements are actually specified is usually
subject to standardized procedures in software organiza-
tions. Standards may prescribe the form and structure of
the requirements specification document, the use of spe-
cific analysis methods and notations, and the kind of re-
views and approvals that the document should undergo.

A possible checklist of the contents of the requirements
specification document that might guide in its production
is the following:

1. Functional requirements. These describe what the
product does by using informal, semiformal, formal
notations, or a suitable mixture. Various kinds of
notations and approaches exist with different
advantages and applicability. The Unified Modeling
Language (UML) is increasingly used as a practical
standard because it contains different notations for
expressing different views of the system. The
engineer can select and combine the notations best
suited to the application or the ones he or she finds
the most convenient or familiar.

2. Quality requirements. These may be classified into
the following categories: reliability (availability,
integrity, security, safety, etc.), accuracy of results,
performance, human–computer interface issues,

operating constraints, physical constraints, portability
issues, and others.

3. Requirements on the development and maintenance
process. These include quality control procedures—in
particular, system test procedure—priorities of the
required functions, likely changes to the system
maintenance procedures, and other requirements.

VII. SOFTWARE ARCHITECTURE

The software architecture describes a software system’s
overall structure in terms of its major constituent com-
ponents and their relationships and interactions. The de-
sign of an architecture for complex systems is a highly
challenging task, requiring experience and, often, creativ-
ity and ingenuity. The goal of the architect is to design
and specify a system that satisfies the user requirements
and can be produced and maintained efficiently and eco-
nomically. The software architecture has many uses in the
software life cycle. The software architecture is the first
concrete description of the system that will be produced.
It describes the gross structure of the system and its major
parts. As a result, it can be analyzed to answer questions
about the final system. For example, it may be used to es-
timate the performance of the system or the expected cost
of producing the system. It may therefore be used to per-
form initial assessment of whether the system will meet
the functional, performance, and cost requirements.

Another use of the software architecture is to enable
the division of the subsequent work of designing the sub-
systems. As the architecture specifies the relationships
and constraints among the major subsystems, the design
of each such subsystem may be assigned to a different
designer, with the requirements specified by the overall
architecture.

One of the approaches to combating the challenges
of software architecture design is to develop and use
standard architectures. One of the most successful such
standard architectures for distributed platforms is the
client–server architecture. In this architecture, some com-
ponents play the role of servers, providing specific ser-
vices. Other components play the role of clients and use
the services of the servers to provide other services to
their clients, possibly to the users of the system. This ar-
chitecture has been used successfully in the design of the
Worldwide Web system. In that system, Web servers man-
age information organized as pages on their respective
sites. Client modules, called Web browsers in this case,
interact with the human user and request access to infor-
mation from appropriate Web servers.

The client–server architecture strongly separates the
clients from the servers, allowing them to be developed

P1: GNH/MBG P2: GSS Final Pages

Encyclopedia of Physical Science and Technology EN015J-856 August 2, 2001 11:21

10 Software Engineering

independently. Indeed, different Web browsers, produced
by different people and organizations work with different
Web servers, developed by different people and differ-
ent organizations. The requirement for this independence
between client and server, and indeed between any two
components is that each component has a well-defined
interface with which it can be used. The interface speci-
fies what services are available from a component and the
ways in which clients may request those services. Thus, the
designer of any client knows how to make use of another
component simply based on that component’s interface.
It is the responsibility of the component’s implementer
to implement the interface. The interface thus specifies
the responsibilities of the designers and implementers of
components and users of components.

Standard architectures capture and codify the accepted
knowledge about software design. They help designers
communicate about different architectures and their trade-
offs. They may be generic, such as the client–server archi-
tecture, or application- or domain-specific. Application-
specific architectures are designed for particular domains
of application and take advantage of assumptions that may
be made about the application. For example, a domain-
specific architecture for banking systems may assume the
existence of databases and even particular data types such
as bank accounts and operations such as depositing and
withdrawing from accounts.

At a lower level of detail, design patterns are a technique
for codifying solutions to recurring design problems. For
example, one may study different techniques for building
high-performance server components that are capable of
servicing large numbers of clients. Such solutions may
be documented using patterns that describe the problem
the pattern solves, the applicability of the patterns, the
tradeoffs involved, and when to use or not to use the pat-
tern. Both standard architectures and design patterns are
aimed at helping designers and architects cope with the
challenges of the design activity and avoid reinventing the
wheel on every new project.

The notion of a component is central to both architec-
tures and design patterns. Just as we can identify standard
architectures and patterns, we can also identify compo-
nents that are useful in more than one application. The
use of standard components is standard practice in other
engineering disciplines but it has been slow in software
engineering. Their importance was recognized early in
the development of software engineering but its realiza-
tion was only made possible in the 1990s after advances
in software architecture and design and programming lan-
guages made it possible to build such components and
specify their interfaces.

Component-based software engineering considers soft-
ware engineering to consist of assembling and integrating

components to build an application. It relies mostly on
components that are acquired from outside developers.
It divides software engineering into two distinct activi-
ties of component development and application or system
development. Application developers buy so-called off-
the-shelf components (COTS) from component develop-
ers and assemble them into the desired application.

Component-based software engineering places the ad-
ditional constraint on the software architect to produce a
design that utilizes available COTS as much as possible.
The use of COTS and component-based software engi-
neering presumably reduces the design time thus improv-
ing productivity and reducing overall costs of software
engineering.

VIII. SOFTWARE DESIGN
AND SPECIFICATION

The software architecture describes the overall structure
of a software system. The activity of software design
further refines this structure and produces a complete
set of components and their interfaces. The decomposi-
tion of the architecture into supporting components and
the design of interfaces for components are challeng-
ing design tasks. There are several different approaches
and methodologies to approach this task. Two main ap-
proaches are function-oriented design and object-oriented
design.

In function-oriented design, the required functionality
is analyzed and decomposed into smaller units. This de-
composition is repeated until the units are small enough
that can be implemented as a single component in the
overall system design. The interfaces for the components
are documented so that implementers know exactly what
to implement. The job of implementing a component in-
volves designing appropriate algorithms and data struc-
tures to accomplish the task of the component.

In object-oriented design, the system is viewed as con-
sisting of a set of objects that cooperate to accomplish the
required functionality. Each object has a set of attributes
and a set of functions that it can perform. The attributes
hold values that represent the state of the object. For ex-
ample, attributes for an “employee” object may include
name, address, skill, and salary. The objects interact and
cooperate by sending each other messages that request
functions to be performed. The task of object-oriented
design consists of identifying what objects are needed,
and the objects’ attributes and functions. Object behavior
refers to the functions that an object supports.

In more detail, an object-oriented designer starts by
identifying the needed objects, grouping similar objects
into classes, designing the attributes and behavior of

P1: GNH/MBG P2: GSS Final Pages

Encyclopedia of Physical Science and Technology EN015J-856 August 2, 2001 11:21

Software Engineering 11

classes, and the relationships among the classes. A class
describes the structure and behavior of a group of objects.
Each object is an instance of a particular class. Techniques
exist for designing new classes based on existing classes.
One such technique relies on the concept of “inheritance”
in which a class inherits all the properties of an existing
class and adds some more specific properties. For exam-
ple, we might define a new class hourly-employee as an
extension of an existing class employee. The new class
might define an hourly-pay attribute and a new function
for calculating the employee’s salary.

Several object-oriented design methodologies exist and
notations have been developed for documenting object-
oriented designs. The Unified Modeling Language (UML)
is standard notation that combines many previously de-
signed notations into a single language. It consists of no-
tations for documenting classes and their relationships,
cooperation patterns among objects, synchronization con-
straints on parallel activities, the deployment requirements
for the system, as well as a notation for describing the user
visible functions of the system.

Collections of related classes may be packaged together
to form application-oriented frameworks. Such frame-
works generally assume an implicit architecture for the
final application and provide classes that fit into that ar-
chitecture. More general frameworks address the needs
of a particular domain such as banking or finance. For
example, a financial-domain framework would consist of
classes such as account, interest, mortgage, and so on that
support the development of financial software. One of the
most successful uses of frameworks has been in the graph-
ical user interface domain.

IX. SOFTWARE QUALITY

With the critical role played by software in our society,
the issue of software quality has gained well-deserved
attention. Software is used in many diverse areas and
applications with varying demands for quality. For ex-
ample, the software responsible for landing an airplane
has different quality requirements from the software
that controls a vide-game console. Both must provide
their specified functionality but the users of the soft-
ware have different tolerance levels for errors in the soft-
ware and are willing to pay different amounts for higher
quality.

To deal with variations in quality requirements, we can
define a set of quality factors and metrics for the fac-
tors. The choice of factors that are important and their
level depends on the application. For example, security
is an important factor for e-commerce applications and
fault-tolerance is important for flight software. Typical

quality factors are performance, reliability, security, us-
ability, and so on. These factors may be further subdi-
vided. For example, reliability is subdivided into correct-
ness, fault-tolerance, and robustness. Correctness means
that the product correctly implements the required func-
tionality; fault- tolerance means that the product is tolerant
of the occurrence of faults such as power failure; robust-
ness means that the product behaves reasonably even in
unexpected situation such as the user supplying incorrect
input. For each of these factors, we can define metrics for
measuring them.

A complete requirements document includes not only
the functional requirements on the product but also the
quality requirements in terms of factors and the levels
required for each factor. Software engineers then try to
apply techniques and procedures for achieving the stated
quality requirements. There are two general approaches to
achieving quality requirements: product-oriented methods
and process-oriented methods. The process-oriented ap-
proach concentrates on improving the process followed to
ensure the production of quality products. We have already
discussed process quality, its assessment and improvement
in Section V. Here we review product-oriented techniques
for achieving software quality.

A. Validation and Verification

We refer to activities devoted to quality assessment as val-
idation and verification or V&V. Validation is generally
concerned with assessing whether the product meets ex-
ternal criteria such as the requirements. Verification is gen-
erally concerned with internal criteria such as consistency
of components with each other or that each component
meets its specification.

The approaches to validation and verification may be
roughly classified into two categories: formal and infor-
mal. Formal approaches include mathematical techniques
of proving the correctness of programs and the more com-
mon approach of testing. Informal techniques include re-
views and inspections of intermediate work products de-
veloped during the software life cycle.

B. Testing

Testing is a common engineering approach in which the
product is exercised in representative situations to assess
its behavior. It is also the most common quality assess-
ment technique in software engineering. There are, how-
ever, several limitations to testing in software engineering.
The most important limitation is that software products do
not exhibit the “continuity” property we are accustomed
to in the physical world. For example, if we test drive a
car at 70 miles an hour, we reasonably expect that the car

P1: GNH/MBG P2: GSS Final Pages

Encyclopedia of Physical Science and Technology EN015J-856 August 2, 2001 11:21

12 Software Engineering

will also operate at speeds below 70 miles an hour. If a
software product behaves correctly for a value of 70, how-
ever, there is no guarantee at all about how it will behave
with any other value! Indeed, due to subtle conditions, it
may not even behave properly when run with the value of
70 a second time! This discontinuity property of software
creates challenges for the testing activity. An accepted
principle in software engineering is that testing can only
be used to show the presence of errors in the software,
never their absence.

The primary challenge of testing is in deciding what
values and environments to test the software against.
Since it is impossible to test the software exhaustively—
on all possible input values—the engineer must apply
some criteria for selecting test cases that have the high-
est chances of uncovering errors in the product. Two ap-
proaches to selecting test cases are called white box test-
ing and black box testing. White box testing considers
the internals of the software, such as its code, to derive
test cases. Black box testing ignores the internal struc-
ture of the software and selects test cases based on the
specification and requirements of the software. Each ap-
proach has its own advantages and uses. Test coverage
refers to the degree to which the tests have covered the
software product. For example, the tests may have exer-
cised 80% of the code of the software. The amount of
the test coverage gives the engineers and managers a fig-
ure on which to base their confidence in the software’s
quality.

There are different focuses for testing. Functional test-
ing concentrates on detecting errors in achieving the re-
quired functionality. Performance testing measures the
performance of the product. Overload testing tries to find
the limits of the product under heavy load.

Testing is carried out throughout the entire life cycle,
applied to different work products. Two important tests ap-
plied before final delivery of the product are alpha test and
beta test. In alpha test, the product is used internally by the
developing organization as a trial run of the product. Any
errors found are corrected and then the product is placed
in a beta test. In a beta test, selected potential users of the
product try a pre-release of the product. The primary aim
of the beta test is to find any remaining errors in the product
that are more likely to be found in the customer’s environ-
ment. A benefit of the beta test for the software’s developer
is to get early reaction of potential customers to a product
or its new features. A benefit of beta test for the customer
is to get an early look at a future product or its new
features.

Testing consumes a large part of the software life cy-
cle and its budget. Engineers use software tools such as
test generators and test execution environments to try to
control these costs.

C. Reviews and Inspections

As opposed to testing, which attempts to uncover errors in
a product by running the product, analytic techniques try to
uncover errors by analyzing a representation of the product
such as its software code. Program proof techniques fall in
this category. A more common approach involves reviews
of a work product by peer engineers. Two such techniques
are code walk-throughs and inspections.

A code walk-through is an informal analysis of code as
a cooperative, organized activity by several participants.
The participants select some test cases (the selection could
have been done previously by a single participant) and
simulate execution of the code by hand, “walking through”
the code or through any design notation.

Several guidelines have been developed over the years
for organizing this naive but useful verification technique
to make it more systematic and reliable. These guidelines
are based on experience, common sense, and subjective
factors.

Examples of recommended rules are:

� The number of people involved in the review should
be small (three to five).

� The participants should receive written documentation
from the designer a few days before the meeting.

� The meeting should last a predefined amount of time
(a few hours).

� Discussion should be focused on the discovery of er-
rors, not on fixing them, nor on proposing alternative de-
sign decisions.

� Key people in the meeting should be the designer, who
presents and explains the rationale of the work, a modera-
tor for the discussion, and a secretary, who is responsible
for writing a report to be given to the designer at the end
of the meeting.

� In order to foster cooperation and avoid the feeling
that the designers are being evaluated, managers should
not participate in the meeting.

The success of code walk-throughs hinges on running
them in a cooperative manner as a team effort: they must
avoid making the designer feel threatened. Their purpose
is to examine the code, not the coder.

Another organized activity devoted to analyzing code
is called code inspection. The organizational aspects of
code inspection are similar to those of code walk-throughs
(i.e., the number of participants, duration of the meeting,
psychological attitudes of the participants, etc., should be
about the same), but there is a difference in goals.

In code inspection, the analysis is aimed explicitly at the
discovery of common errors. In other words, the code—or,
in general, the design—is examined by checking it for

P1: GNH/MBG P2: GSS Final Pages

Encyclopedia of Physical Science and Technology EN015J-856 August 2, 2001 11:21

Software Engineering 13

the presence of errors, rather than by simulating its
execution.

Many errors in programs can be classified according to
well-known categories. Such categorizations help support
and focus inspections.

There is some evidence that walk-throughs and inspec-
tions are cost-effective and many software engineering
organizations are adopting them as standard procedures
in the life cycle.

X. MANAGEMENT OF SOFTWARE
ENGINEERING

In addition to common project management issues such
as planning, staffing, monitoring, and so on, there are sev-
eral important challenges that face a software engineering
manager due to the special nature of software. The first is
that there are no reliable methods for estimating the cost or
schedule for a proposed software product. This problem
leads to frequent schedule and cost over-runs for software
projects. The factors that contribute to this problem are
the difficulty of measuring individual engineer’s software
productivity and the large variability in the capability and
productivity of software engineers. It is not uncommon
for the productivity of peer engineers to differ by an order
of magnitude. Dealing with the cost estimation challenge
requires the manager to monitor the project vigilantly and
update estimates and schedules as necessary throughout
the project.

Another factor that complicates the scheduling and es-
timation tasks is that requirements for a software system
can rarely be specified precisely and completely at the
start of a project. The product is often built for an incom-
pletely known environment, possibly for a new market, or
to control a novel device. Thus, it is typical for require-
ments to change throughout the software life cycle. One
of the ways to deal with this challenge is to use a flexible
process model that requires frequent reviews and incre-
mental delivery cycles for the product. Feedback from
the delivered increments can help focus and complete the
requirements.

A third challenge of managing a software project
is to coordinate the interactions and communications
among the engineers and the large numbers of work
products produced during the life cycle. Typically, many
work products exist in different versions. They must
be shared, consulted, and modified by different engi-
neers. The solution to this challenge is to establish
strict guidelines and procedures for configuration man-
agement. Configuration management tools are some of
the most widely used and effective software engineering
tools.

Configuration management tools and processes provide
a repository to hold documents. Procedures exist for con-
trolled access to documents in the repository, for creating
new versions of documents, and for creating parallel and
alternative development paths for a product consisting of
some of the documents. Typically, a software engineer
checks out a document such as a source code file from the
repository. This action locks out any other accesses to the
document by others. The engineer applies some changes
to the document and checks the document back in. At this
point this new version of the document becomes available
for others to access. Such procedures ensure that engineers
can share documents while avoiding unintended conflict-
ing updates.

With the support of configuration management, several
releases of a product may exist in the repository and indeed
under development. A particular release of a product may
be built by knowing which versions of individual com-
ponents are necessary. Configuration management tools
typically provide mechanisms for documenting the con-
tents of a release and build tools for automatically building
a given release. Such build tools support parameterization
of components. For example, a given product may be built
for a particular country by specifying a country-specific
component as a parameter.

Configuration management tools are essential for or-
derly development of software projects that produce myr-
iads of components and work products. They are even
more important in distributed software engineering orga-
nizations. It is now common for teams of software engi-
neers to be dispersed geographically, located at different
sites of an organization, possibly in different countries
and continents. Configuration management tools provide
support for such distributed teams by providing the illu-
sion of a central repository that may be implemented in a
distributed fashion.

One of the product management and development
trends of the 1990s was to look for organizational effi-
ciency by outsourcing those parts of a business that are
not in the core business of the company. Outsourcing
of software is indeed compatible with component-based
software engineering. Development of whole classes of
components can be outsourced with the responsibility
lines clearly specified. Successful outsourcing of soft-
ware engineering tasks can be based on well-specified
architectures and interface specifications. Clear and com-
plete specifications are difficult to produce but they are
a necessary prerequisite to a contract between the con-
tractor and a contracting organization. The specification
must state quality requirements in addition to functional
requirements. In particular, the contract must specify who
performs the validation of the software, and how much,
including test coverage criteria and levels.

P1: GNH/MBG P2: GSS Final Pages

Encyclopedia of Physical Science and Technology EN015J-856 August 2, 2001 11:21

14 Software Engineering

XI. SUMMARY

Software engineering is an evolving engineering disci-
pline. It deals with systematic approaches to building
large software systems by teams of programmers. We
have given a brief review of the essential elements of
software engineering including product-related issues
such as requirements, design, and validation, and
process-related issues including process models and their
assessment.

With the pervasiveness of software in society, the im-
portance of software engineering is sure to grow. As tech-
nologies in diverse areas are increasingly controlled by
software, challenges, requirements, and responsibilities
of software engineers also grow. For example, the growth
of the Internet has spurred the need for new techniques to
address the development and large-scale deployment of
software products and systems. The development of e-
commerce applications has necessitated the development
of techniques for achieving security in software systems.
As new applications and technologies are constantly
emerging, the software engineering field promises to stay
a vibrant and active field in a constant state of flux.

ACKNOWLEDGMENT

Sections of this material were adapted from the textbook Ghezzi,
C., Jazayeri, M., and Mandrioli, D. (2002). “Fundamentals of

Software Engineering,” 2nd edition, Prentice Hall, Englewood-
Cliffs, NJ.

SEE ALSO THE FOLLOWING ARTICLES

COMPILERS • COMPUTER ALGORITHMS • COMPUTER

ARCHITECTURE • COMPUTER NETWORKS • OPERATING

SYSTEMS • REQUIREMENTS ENGINEERING • SOFTWARE

MAINTENANCE AND EVOLUTION • SOFTWARE RELIABIL-
ITY • SOFTWARE TESTING • SYSTEM THEORY • WWW
(WORLD-WIDE WEB)

BIBLIOGRAPHY

Boehm, B. W. (1981). “Software Engineering Economics,” Prentice-
Hall, Englewood Cliffs, N.J.

Brooks, F. P. Jr. (1995). “The Mythical Man-Month: Essays on Software
Engineering,” second edition, Addison-Wesley, Reading, MA.

Ghezzi, C., and Jazayeri, M. (1997). “Programming Language Con-
cepts,” third edition, Wiley, New York.

Ghezzi, C., Jazayeri, M., and Mandrioli, D. (2002). “Fundamentals of
Software Engineering,” second edition, Prentice Hall, Englewood-
Cliffs, NJ.

Jazayeri, M., Ran, A., and van der Linden, A. (2000). “Software Ar-
chitecture for Product Families: Principles and Practice,” Addison-
Wesley, Reading, MA.

Leveson, N. (1995). “Safeware: System Safety and Computers,”
Addison-Wesley, Reading, MA.

Neumann, P. G. (1995). “Computer-Related Risks,” Addison-Wesley,
Reading, MA.

P1: LDK Final Pages Qu: 00, 00, 00, 00

Encyclopedia of Physical Science and Technology EN015J-857 August 2, 2001 11:23

Software Maintenance
and Evolution

Elizabeth Burd
Malcolm Munro
Research Institute in Software Evolution

I. Software Maintenance
II. Evolution

III. Conclusions

GLOSSARY

Change request A request for a change to a piece of
software.

Program comprehension The process of understanding
how a software system works.

Repository A data storage used for storing information
about a software system.

Software engineering The discipline of producing and
maintaining software.

Software system A collection of computer code and data
that runs on a computer.

SOFTWARE is the central resource of many companies;
it is the software that drives businesses and it is often the
only true description of their processes. However, as busi-
nesses change, then it is necessary to drive these modifica-
tions through the software. Software change is notoriously
difficult, and as the age of the software increases so the
process becomes harder.

Software Maintenance is a costly activity consuming
50% of all computer and IT resources. It has been shown
that maintenance costs can be up to 10 times those of an
initial development.

Software maintenance has been defined within the
ANSI standard as

the modification of software products after delivery to correct
faults, to improve performance or other attributes, or to adapt
the product to a changed environment.

It has also been defined as:

Software Maintenance is the set of activities (both technical and
managerial) necessary to ensure that software continues to meet
organizational needs.

The first definition can be considered as a technical def-
inition and states that there are certain technical activities
that we have to perform on software after it is delivered.
The second definition is much more business oriented and
states that software has to change as business changes.

 15

P1: LDK Final Pages

Encyclopedia of Physical Science and Technology EN015J-857 August 2, 2001 11:23

16 Software Maintenance and Evolution

Many different terms have been used to describe the
activity of software maintenance. These include bug fix-
ing, enhancement, support, further development, current
engineering, postdeployment software support, postre-
lease development, and many more. Coupled with these
terms and the previously cited definitions it is important
to recognize the different types of maintenance. In most
organizations software maintenance is only seen as bug
fixing, whereas continued change and evolution are seen
either as development or redevelopment. This is a mis-
take, as changing an existing system requires a number
of specialized techniques that do not apply to green field
development. The main technique required is that of pro-
gram comprehension, that is, understanding how the cur-
rent system is constructed and works so that changes can
be made. Underestimating this task can lead to system
degradation and further problems.

Software maintenance processes are initiated for a num-
ber of reasons. These differing reasons result in four cat-
egories of maintenance activities. These are

� Perfective maintenance—This involves improving
functionality of software in response to user-defined
changes.

� Adaptive maintenance—This process involves the
alteration of the software which is due to changes
within the software environment.

� Corrective maintenance—This process involves the
correction of errors that have been identified within
the software.

� Preventative maintenance—This involves updating the
software in order to improve upon its future
maintainability without changing its current
functionality.

The costs of the maintenance processes are not dis-
tributed evenly across all categories. Studies show that
50% of the total maintenance costs can be attributed to
perfective maintenance, 25% for adaptive maintenance,
whereas only 21% of the total costs are attributed to cor-
rective maintenance and 4% for preventive maintenance.

Despite the cost implications, software maintenance is
generally perceived as having a low profile within the soft-
ware community. Management teams have often in the
past placed little emphasis on maintenance-related activ-
ities. Small advances have been made in combating these
problems, and high-profile maintenance projects such as
the year 2000 problem have been successful at highlight-
ing the issues.

Software maintenance is made difficult by the age of the
software requiring maintenance. The age of the software
means that documentation has often been lost or is out of
date. Furthermore, issues of staff turnover and constant

demands for changes due to user enhancements or envi-
ronmental changes exacerbate the problems. In addition,
constant perfective and corrective maintenance, which is
not supported by preventative maintenance, has a tendency
to make the software more difficult to maintain in the
future.

Software evolution is a term that is sometimes used in-
terchangeably with software maintenance. In fact they are
different, but related terms. For the purpose of this paper
software evolution is considered to be the changes that oc-
cur to software throughout its lifetime to ensure it contin-
ues to support business processes. Software maintenance
is the process of making these changes to the software
thereby seeking to extend its evolutionary path.

Software evolution is defined as the cumulative effect
of the set of all changes made to software products after
delivery.

This chapter will investigate the existing approaches to
maintenance and then describe how these processes are to
be improved by studying the effect of software evolution.
Within Section II there is a review of past and present
maintenance practices. Section III evaluates the recent
findings from studies of software evolution and evaluates
these in terms of the implication to increasing complex-
ity and the formation of the detrimental legacy properties
within applications. It also makes some recommendations
regarding best practice for software maintenance based on
results of the evolution studies. Finally some conclusions
are drawn.

I. SOFTWARE MAINTENANCE

Software maintenance is influenced by software engineer-
ing. As the software engineering fraternity strives for the
perfect maintenance-free development method, the soft-
ware maintainers have to pick up the pieces. For exam-
ple, Object-Oriented designed systems were heralded as
maintenance free. It is easy to state this when there are
no Object-Oriented systems to maintain. It is only now
that such systems have move into maintenance that all
the problems manifest themselves. What should of course
happen is that software maintenance should influence soft-
ware engineering.

From the definitions given previously, it should be
clear that all levels of an organization should be aware
(and involved) of software maintenance. At the techni-
cal level the developers should not ignore it as they must
address the issues of maintainability of the systems they
develop; the maintainers cannot ignore it as they are car-
rying out the work; the users are involved as they want
the systems to evolve and change to meet their ever-
changing need; senior management cannot ignore it as its

P1: LDK Final Pages

Encyclopedia of Physical Science and Technology EN015J-857 August 2, 2001 11:23

Software Maintenance and Evolution 17

business is more than likely dependent on the software it is
running.

Why is there a maintenance problem?

� A large amount of existing software was produced
prior to significant use of structured design and
programming techniques.

� It is difficult to determine whether a change in code
will affect something else.

� Documentation is inadequate, nonexistent, or out of
date (or even there is too much of it);

� Maintenance is perceived as having a low profile
within an organization.

� Software is not seen as a corporate resource and hence
has no value.

� Maintenance programmers have not been involved in
the development of a product and find it difficult to
map actions to program source code.

Software maintenance has an important role to play
in an organization. Many organizations do not recognize
their software systems as a company asset and thus do not
place a high price on its value. The risk is that if all types
of maintenance are not carried out is that the business
of an organization suffers because of inadequate software
either because for example it is full of bugs or because
it has not evolved to meet changing business needs. The
benefits of carrying out maintenance in an organized and
cost-efficient manner is that an organization can easily and
continually adapt to new market opportunities.

A. Principles and Assumptions

The fact that software maintenance is inevitable and that
systems must continually evolve to meet an organizations’
needs is neatly encapsulated in a number of papers by
Professor Manny Lehman. In particular he presents five
laws of program evolution. The first two laws are relevant
here.

1. Law 1: Continuing Change

A Program that is used and that, as an implementation of its
specification, reflects some other reality, undergoes continuing
change or becomes progressively less useful. The change or de-
cay process continues until it is judged more cost effective to
replace the program with a recreated version.

2. Law 2: Increasing Complexity

As an evolving program is continuously changed, its complexity,
reflecting deteriorating structure, increases unless work is done
to maintain it or reduce it.

Both these laws state that software maintenance is in-
evitable and that organizations should be aware of this
fact. There are no magic silver bullets that can be used
in development to eliminate maintenance. The first law of
Continuing Change says that the original business and
organizational environment modeled in the software is
modified by the introduction of the software system and
thus the system must continually change to reflect this.
Thus software must evolve. The second law says that ex-
tra resources must be devoted to preserving and simplify-
ing the structure of the software system and that there is a
cost associated with maintaining the quality of the system.
Thus we should pay attention to preventive maintenance.

B. Models and Process
in Software Maintenance

There have been a large number of models describing the
software maintenance process. Probably the best models
are those that have remained in-house and are a hybrid
devised from several models and current in-house practice.
The published models can be classified into four types.

Maintenance models can be classified into four types:

1. Modification Cycle Models. These models give a
sequence of steps to be carried out—they are usually
oriented for corrective maintenance. The steps are of
the form Problem Verification, Problem Diagnosis,
Reprogramming and Rebuild, Baseline Verification,
and Validation.

2. Entity Models. These models enumerate the entities
of a system and detail how for each step of the model
the entities are generated or modified. The entities are
items such as Requirement, Specification, Source
Code, Change Requests, People, Tasks, Forms, and
Knowledge. The classic model of this type is that
developed for the IEEE in the IEEE Standard
1219-1993.

3. Process Improvement Models. These models
concentrate on how to improve the maintenance
process and are based on the SEI (Software
Engineering Institute) five-layer model of process
improvement.

4. Cost/Benefit Models. These models used the Entity
models and applied cost/benefit analysis to them.

The major gap in software maintenance is a theory of
software maintenance. There is not a formal theory nor is
there a clear way forward to developing one. The nearest
there is, is in the work of Manny Lehman and his laws of
program evolution. These laws were formulated from em-
pirical evidence but are difficult to validate for all systems.
A way forward is to carry out some long-term research on

P1: LDK Final Pages

Encyclopedia of Physical Science and Technology EN015J-857 August 2, 2001 11:23

18 Software Maintenance and Evolution

how systems evolve and how their structure changes over
time. This must be linked with how business affects the
evolving software. From this research a universal defini-
tion of maintainability may emerge.

C. Measurements and Metrics for Software
Maintenance

Measurement and metrics for software maintenance is
a difficult topic. There are a large number of product
and process metrics for software. Product metrics tend
to concentrate on complexity type metrics and there
have been some attempts at correlating some of these
metrics with maintenance effort. One of the problems
here is there is no definitive and universal definition of
maintainability. Another problem is that organizations
are reluctant to publish data on their systems thus making
any comparisons difficult.

Determination of the maintenance effort is again a dif-
ficult task. It will depend on factors such as the size of
the system, the age since delivery, structure and type
of system, quality of the documentation standards and
the document update procedures in place, the number
of reported bugs, the type and number of change re-
quests that are mandatory and desirable, the use of change
control procedures, the establishment of test procedures,
the level of staff competence and training and staff
turnover.

All these factors (and more) do not fit easily into a sim-
ple function that give the definitive answers to questions
such as “Is my system maintainable,” “How well is my
maintenance operation doing,” or “Should I continue with
maintaining the system or throw it away and start again.”
Some of these factors can be combined into a simple func-
tion forming that can be called a “System Profile.” From
this profile judgments could be made as to how to improve
the process and possibly make decisions on whether to
continue maintenance or to redevelop. The system profile
addressed the following factors:

1. Adequacy to the User. The values and judgments
obtained here assess the extent to which the system
currently meets the users requirements. Factors such
as implementation of desirable changes, length of the
changes backlog queue, and the effect of the business
are assessed.

2. Risk to the Business. The values and judgments
obtained here assess the risk of system failure and the
degree to which this would be serious for the overall
function of the organization. Factors such as staffing
experience and retention, software change control
procedures, number of known bugs, effect of errors
on the business, and the state of the code are assessed.

3. System Support Effort. The values and judgments
obtained here assess the amount of resources which
are required, or would be required, to maintain the
system adequately. Factors such as staffing levels on
maintenance, and number of mandatory changes are
assessed.

The importance of such an approach is that it attempts
to make any assessment objective and that it forces man-
agers to ask relevant questions about the systems they are
maintaining.

II. EVOLUTION

The evolution of software is studied by investigating the
changes that are made to software over successive ver-
sions. In the majority of cases this involved a historical
study of past changes over the past versions that are avail-
able. Unfortunately since the benefit of evolutionary stud-
ies of software have yet to establish their significance and
benefit within industry, the need to retain past versions
and data regarding the environmental circumstances of
the changes is not foreseen. While the authors have found
very few applications with a record of versions from the
entire lifetime of the software product they have been suc-
cessful in collecting a great number of systems and their
version upon which to base their analysis.

The approach adopted by the authors is to take succes-
sive versions of a software application and to investigate
the changes that are occurring. Depending on the general
data available regarding the environment of the changes,
additional information may or may not be used. Where
possible, analysis is performed using as much information
as possible to supplement the analysis process. A number
of different approaches are adopted but the fundamental
approach replies on the appearance or removal of calls and
data items.

A. Levels

Studies in software evolution have been conducted at three
main levels. These are Level 1—the system level; Level
2—the function level; Level 3—the data level. These can
broadly be viewed as at different levels of granularity rang-
ing from the system level to studies of the underlying data.
A more detailed description of each of the three levels is
indicated in the following.

1. Level 1, The System Level

Software evolution research at the system level has been
conducted, almost exclusively, by the Lehman team over a
period of 30 years. The major contribution of this work was

P1: LDK Final Pages

Encyclopedia of Physical Science and Technology EN015J-857 August 2, 2001 11:23

Software Maintenance and Evolution 19

the formation of the Lehman Laws of Evolution. These
laws reveal general observations of the changing char-
acter of software systems and additionally indicate how
the process of evolution should be best managed. For in-
stance, the second law provides a high-level definition of
increased complexity. It states that for a large program that
is continuously changing, its complexity, which reflects
deteriorating structure, increases unless work is performed
to maintain or reduce it. In addition, law five, that of in-
cremental growth limit, highlights that systems develop
an average increment of safe growth which, if exceeded,
causes quality and usage problems and time and cost over-
runs. These laws provide information upon which a high-
level maintenance strategy can be composed, but in some
instances it is necessary to be more specific regarding the
nature of change especially when partial redevelopment is
proposed to reduce legacy properties and improve future
maintainability.

To gain a deeper understanding of software evolution
at the system level it is interesting to study a software
application as a whole and to investigate how applica-
tions change over time; however, for large applications a
high level of abstraction for their representation is essen-
tial. Within Fig. 1 an application is represented at the file
level. This represented application is the Gnu C compiler.
In Fig. 1 each column represents a version of the soft-
ware, moving from left to right so the age of the software
increases. The rows each represent a different file within
the application. Figure 1 highlights where changes have
been made to one or more of the system files. Those files,
which are changed within a specific version, are shaded.
Those files, which remain unchanged within a version, are
left unshaded.

Figure 1 has also been sorted based on the number
of changes. Those files that are most frequently changed
are at the top of the diagram. Those files changed least
frequently are shown toward the bottom. From the dia-
gram it is possible to see a number of characteristics of
changes. Those changes in which columns are most heav-
ily shaded, represent major changes which the software.
Those columns with only a few changes may, for instance,
represent the result of small bug corrections.

It is interesting to see how the majority of changes are
made to relatively few of the files, especially when the
major software changes are discounted. Specifically, 30
or 40 files seem to be changed in each software version. It
is therefore likely that these files are in most need of pre-
ventative maintenance, as these either represent the core
procedural units of the application or are hard to under-
stand and therefore are a frequent source of misunder-
standings, and so often requiring bug fixes. An investi-
gation into these issues is currently an area of continued
research.

FIGURE 1 Versions for the GCC application.

The number of changes and the time to make these
changes are mapped onto the graph in Fig. 2. A high num-
ber of changes should represent the large commitments in
time, whereas the minor changes should represent much
shorter time commitments. For applications, not showing
this trend may indicate the presence of legacy properties.
This is particularly likely to be the case when the trend of
greater time commitments must to be allocated per change
as the age of the application increases. From the graph
within Fig. 2 it can be seen that within the early years
of this application the time commitments are proportion-
ally fewer than the number of changes. For instance, the
sample versions 2 to 8 on Fig. 2 show this trend. Dur-
ing the later versions larger time commitments seem to
be necessary. For instance, with changes 26 and onward

P1: LDK Final Pages

Encyclopedia of Physical Science and Technology EN015J-857 August 2, 2001 11:23

20 Software Maintenance and Evolution

FIGURE 2 Changes to the GCC application and time to make them.

the months required for making the required changes are
proportionally greater. When compared across the lifetime
of the software a definite increase in time commitments
per change can be seen. This may therefore imply that the
software is developing legacy tendencies.

2. Level 2, The Function Level

Research at this level has concentrated on the evolution
of the calling structure of code and to a lesser extent the
control structure. Work at this level reveals more about
the changes in complexity of individual source code mod-
ules and highlights the results and implications of spe-
cific change requests in a detailed manner. Such results
are essential to fully understand the effects, detrimental
or otherwise, of software evolution as a whole and how
the change process will effect the future changes required.
Specifically with studies at this level of granularity, it is
possible to gain an understanding of the evolution process
from the point of view of changes to the comprehensibility
of a source code module. It is this change in comprehen-
sibility that will directly effect the future maintainability
of the module under investigation.

Studies by Burd and Munro have identified some of the
effects of software. Within Fig. 3, a call structure change is
represented. The representation of the software on the left
of the diagram shows a single module from an early ver-
sion of the software. The figure shows that three modules
result from the single module due to the evolution process.
This is a commercial COBOL application. The cause of
this splitting process is due to the addition of new functions

added to the module. In the case of Fig. 3 these new units
are represented as the shaded nodes. The result of process
of evolution shows a requirement for existing modules to
be designed in a way that allows them to split over time.

Further studies into this phenomenon have indicated
that it may be possible to predict the likely places where
additional functionality will be added. From studies it has
been identified that where splitting of the modules occurs,
it occurs in a specific location of the tree structure. Specif-
ically, this usually occurs when the module is represented
as a tree based on dominance relations, at a position in the
tree where there are a number of branches occurring from
a node (i.e., the node has a high fan-out to other nodes).
In terms of the calling structure this equates to a function
that calls many other functions. Examples of likely can-
didate locations for the module splitting are highlighted
with arrows within Fig. 4.

With this knowledge, precautions can be taken in the
identified areas to enhance comprehensibility therefore
increasing potential adaptability. This kind of revelation
regarding the evolution of software applications can be
used to direct the software development process. Further-
more, it assists the knowledge of the cost benefit process
for change management by indicating areas where local-
ized redevelopment may enhance adaptability and thereby
reduce some of the legacy properties of software.

Examples of the splitting process have also been identi-
fied within applications written in C. However, other inter-
esting properties have also been found within C applica-
tions. In particular, this is the feature of increasing depth of
the call structure over time. In general, it has been found

P1: LDK Final Pages

Encyclopedia of Physical Science and Technology EN015J-857 August 2, 2001 11:23

Software Maintenance and Evolution 21

FIGURE 3 Changes in calling structure.

that the COBOL applications studied had a greater call
depth than the C applications. In most cases, the increase
is by approximately two levels. One example of the pro-
cess of increasing call depth to software over time is the
addition of a new call. An example is shown in Fig. 5,
where a new call is placed between the two nodes to the
graph on the left. The result of the addition of the call is
shown in the graph to the right of Fig. 5, which shows an
increased depth of the call structure in the later version
of the software. Thus, the studies at the calling structure

FIGURE 4 Potential portions of dominance tree where splitting is possible.

level, once again seem to show an increase in complexity
as a result of the process of software change and hence the
possible inclusion of legacy properties.

3. Level 3, The Data Level

Burd and Munro have also conducted some studies at
Level 3. Specifically these studies have focused around
changes in data usage across versions of a single software
module. The results of the findings have been varied, but

P1: LDK Final Pages

Encyclopedia of Physical Science and Technology EN015J-857 August 2, 2001 11:23

22 Software Maintenance and Evolution

FIGURE 5 The addition of a new call and resulting increase in calling structure.

some of the more revealing about the process of software
evolution are described here.

The first of these results is the process of de-localization
of data due to the change process. Within Fig. 6 a COBOL
module is represented. The rectangles represent the SEC-
TION within the software module. The figure identifies
the change in the usage of a single data item. Where a
particular SECTION uses the data item, the SECTION is
shaded. It can be seen from Fig. 6 that initially the data
item is local to one SECTION but over time (moving left
to right) the data item is introduced into one third of the
SECTIONs of the software module.

The consequence of this to comprehension and change
are great. Change ripple effects will be greatly increased,
as will the amount of information that maintainers need
to comprehend in order to gain an understanding of the
change.

Figure 7 shows an example from the COBOL code
where the process of increasing data complexity can be
identified. The figure shows the changes that are occurring
within the data usages for each SECTION. Comparisons
are made between the data items within a specific SEC-
TION in the earliest version of the software and compared
with the data usage of the identical SECTION, but in the

FIGURE 6 Changes to a local data item over time.

later version of the software. Within the COBOL applica-
tion all data items are global, thus usages of the same data
item within a number of SECTIONs means each one must
be consulted when a change is applied. The graph in Fig. 8
shows an overall change in the number of SECTIONs for
a specific data item.

Within Fig. 7 half of the graph shows data items which
are in fewer SECTIONs (those to the left and labelled
“Removal of data items”), whereas the other half of the
graph represents the addition of data items. For instance,
it can be seen that from the left-hand side, 5 data items
have been removed from 4 SECTIONs. Thus, in this case
the complexity of the relationships between SECTIONs
can be said to be decreasing for these specific data items.
However, the majority of the changes appear in the half of
the graph that relates to the addition of data items. To the
right-hand side it can be seen that over 20 data items have
been added to a further SECTION, but in addition 6 data
items have been added to more than 10 SECTIONs. Thus,
the graph shows a definite increase in data complexity of
the COBOL software due to the addition of data items.

Other increases in complexity, at least partly result-
ing from this phenomenon have also been identified. One
of these is an increased complexity in the data interface

P1: LDK Final Pages

Encyclopedia of Physical Science and Technology EN015J-857 August 2, 2001 11:23

Software Maintenance and Evolution 23

FIGURE 7 Showing the changes in localization and de-
localization of data.

between subsystems within a software module. An exam-
ple of this finding is shown within Fig. 8.

This figure represents the clear interface of data and
subsystems within the initial version of the software (to
the left) but shows how this structure is corrupted due to
the evolution process. This result has major implications
on the comprehensibility and future adaptability of the
software module.

4. Comparing Levels

In order to gain an even greater understanding of the differ-
ent maintenance trends of applications the results of call
and data analysis can be compared. The approach adopted
is to compare the proportion of data items modified and
function call changes within each of the applications for
each available version. Thus to compare the results of the
analysis of Level 2 and Level 3.

The results of this analysis process are shown within
Fig. 9. This graph represents the proportion of data items
modified per call change for each of the applications. This
graph would seem to indicate that within Sample Version
S2 (the GCC application) revealed a considerably higher
proportion of data per call modifications than was nec-
essary with the other versions. In addition, it is interest-
ing to investigate the rise and fall of these proportions.

FIGURE 8 Overlap of data usage between subsystems.

FIGURE 9 Comparing the results of analysis of Levels 2 and 3.

A very steep rise would indicate that a software applica-
tion is quickly gaining legacy properties; whereas a steep
fall may indicate that a preventative maintenance approach
had been adopted. Slight falls within the later trends of the
software’s evolution can be observed within Application 1
and Application 3. From Fig. 9, it can be observed that the
GCC application promotes a steep rise between Sample
Version S1 to Sample Version S5. Likewise the same ob-
servation can be made with Application 4 between Sample
Versions S1 and S2.

B. General Recommendations

From conducting this analysis process a number of factors
for successful maintenance have been identified from early
recommendations that the authors aim to extend and verify
within later studies. However, in order that industry can
see the benefits of such research it is necessary to make
some early recommendations. In summary,

� Study entire applications—By studying the entire
changes that occur to files within the application, a
more specific investigation can be made as to the
likelihood of where further changes will need to be
directed.

� Data seems to be less well understood than calling
structure—When making changes to software

P1: LDK Final Pages

Encyclopedia of Physical Science and Technology EN015J-857 August 2, 2001 11:23

24 Software Maintenance and Evolution

applications it seems that frequently the data are
modified in a less than optimal way. More effort
should be applied when making a change to ensure
that wherever possible data cohesion is not adversely
effected. Representing data cluster changes is one way
of highlighting such a problem.

� Fewer software releases tend of lead to slower
increases in data complexity—A strategy that tends to
batch change requests and issue releases at set
periodic time-scales has the opportunity to develop a
more considered overall maintenance strategy and
optimize and integrate the design of requests.

� Best people should be assigned to maintenance—This
research seems to highlight that when some of the best
programmers were assigned to the maintenance tasks
the overall quality of the code tended to improve. This
is a complete reversal of the standard evolutionary
path of software under maintenance where usually a
steady increase in software data complexity is
identifiable.

� Preventative maintenance needs to be continuous
theme—Preventative maintenance is not something
that can be performed once and then forgotten; rather
it must either be a task that is carried out in detail at
specific time periods or more appropriately as a
continuing theme.

Additional work in this area will try to gain further insights
into properties of specific maintenance changes and how
these changes effect the evolution of software applica-
tions. From this it is hoped that other insights into appro-
priate strategies for maintenance providers will emerge.

III. CONCLUSIONS

This chapter has investigated the often-confused relation-
ship between maintenance and evolution. It has defined
software evolution as the change that occurs to software
throughout its lifetime to ensure it continues to support
business processes. Software maintenance is the process
of making these changes to the software thereby seeking
to extend its evolutionary path. This chapter has reviewed
recent findings on studies of both the maintenance and the
evolution process.

Software Maintenance is concerned with the way in
which software is changed and how those changes are
managed. Software will have to change to meet the ever-
changing needs of a business. If these changes are not
well managed then the software will become scrambled
and prevent the business from achieving it full potential.

The chapter has reviewed studies at each of the three lev-
els of evolution study; the system, function and data levels.

It is shown how legacy properties are introduced into soft-
ware applications through the change process and what are
the long-term implications of these changes. Predictions of
the consequence of software gaining legacy properties are
made and also an indication of the low-level effect of these
legacy properties have been shown diagrammatically. On
the basis of these observations a number of recommenda-
tions, are made to assist software maintainers to prevent
the further introduction of these legacy properties within
future maintenance interventions. It is hoped from these
recommendations that the maintainability of software will
be improved within the future, therefore making the pro-
cess of evolution easier and cheaper.

The authors hope that those involved within the mainte-
nance and development of software applications will see
the benefit of retaining information regarding the devel-
opment and maintenance process. In the future more data
must be retained, which will lead to studies of the evolution
process to make even further observations, and therefore
continue to strive for the improvement of the maintain-
ability of software.

SEE ALSO THE FOLLOWING ARTICLES

COMPUTER ARCHITECTURE • COMPUTER NETWORKS •
DATABASES • DATA STRUCTURES • OPERATING SYSTEMS

• REQUIREMENTS ENGINEERING • SOFTWARE ENGINEER-
ING • SOFTWARE RELIABILITY • SOFTWARE TESTING

BIBLIOGRAPHY

Boehm, B. W. (1995). The high cost of software. In “Practical Strategies
for Developing Large Software Systems” (E. Horowitz, ed.), Addison
Wesley, Reading, MA.

Burd, E. L., and Munro, M. (1999). “Characterizing the Process of Soft-
ware Change,” Proceedings of the Workshop on Principles of Software
Change and Evolution: SCE’1999, ICSE.

Burd, E. L., and Munro, M. (2000). “Supporting program comprehension
using dominance trees” (Invited Paper), Special Issue on Software
Maintenance for the Annals of Software Engineering 9, 193–213.

Burd, E. L., and Munro, M. (2000). “Using evolution to evaluate reverse
engineering technologies: mapping the process of software change,”
J. Software Systems 53(1), 43–51.

Glass, R. L., and Noiseux, R. A. (1981). “Software Maintenance Guide-
book,” Prentice Hall, Englewood Cliffs, NJ.

IEEE Standard for Software Maintenance, TEEE Std 1219-1998.
Information Technology—Software Maintenance—BS ISO/IEC

14764:1999.
Lehman, M. M. (1980). “On understanding laws, evolution, and conser-

vation in the large-program life cycle,” J. Systems Software 1, 213–221.
Lehman, M. M. (1989). “Uncertainty in Computer Applications and its

Control through the Engineering of Software,” J. Software Main. 1(1).
Lientz, B., and Swanson, E. B. (1980). “Software Maintenance,”

Addison-Wesley, Reading, MA.
Parikh, G., and Zvegintzov, N. (1993). “Tutorial on Software Mainte-

nance,” IEEE Computer Society Press, Silver Spring, MD.
Pigiski, T. (1996). “Practical Software Maintenance,” Wiley, New York.

P1: GTV/GRD P2: GPB Final pages Qu: 00, 00, 00, 00

Encyclopedia of Physical Science and Technology EN015G-858 August 2, 2001 11:27

Software Reliability
Claes Wohlin
Blekinge Institute of Technology

Martin Höst
Per Runeson
Anders Wesslén
Lund University

I. Reliability Measurement and Modeling:
An Introduction

II. Usage-Based Testing
III. Data Collection
IV. Software Reliability Modeling
V. Experience Packaging

VI. Summary

GLOSSARY

Software error A mistake made by a human being, re-
sulting in a fault in the software.

Software failure A dynamic problem with a piece of
software.

Software fault A defect in the software, which may cause
a failure if being executed.

Software reliability A software quality aspect that is
measured in terms of mean time to failure or failure
intensity of the software.

Software reliability certification To formally demon-
strate system acceptability to obtain authorization to
use the system operationally. In terms of software re-
liability, it means to evaluate whether the reliability
requirement is met or not.

Software reliability estimation An assessment of the
current value of the reliability attribute.

Software reliability prediction A forecast of the value of
the reliability attribute at a future stage or point of time.

SOFTWARE RELIABILITY is defined as “the probabil-
ity for failure-free operation of a program for a specified
time under a specified set of operating conditions.” It is
one of the key attributes when discussing software qual-
ity. Software quality may be divided into quality aspects
in many ways, but mostly software reliability is viewed as
one of the key attributes of software quality.

The area of software reliability covers methods, mod-
els, and metrics of how to estimate and predict software
reliability. This includes models for both the operational
profile, to capture the intended usage of the software, and
the operational failure behavior. The latter type of models
is then also used to predict the future behavior in terms of
failures.

Before going deeper into the area of software reliabi-
lity, it is necessary to define a set of terms. Already in the
definition, the word failure occurs, which has to be defined
and in particular differentiated from error and fault.

Failure is a dynamic description of a deviation from
the expectation. In other words, a failure is a departure

 25

P1: GTV/GRD P2: GPB Final pages

Encyclopedia of Physical Science and Technology EN015G-858 August 2, 2001 11:27

26 Software Reliability

FIGURE 1 Relations between terms.

from the requirements of the externally visible results of
program execution. Thus, the program has to be executed
for a failure to occur. A fault is the source of a failure,
statically residing in the program, which under certain
conditions results in a failure. The term defect is often
used as a synonym for fault. The fault in the software is
caused by an error, where an error is a human action.

These definitions imply that the reliability depends not
only on product attributes, such as number of faults, but
also on how the product is used during operation, i.e.,
the operational profile. This also implies that software re-
liability is different from software correctness. Software
correctness is a static attribute, i.e., number of faults, while
reliability is a dynamic attribute, i.e., number of failures
during execution.

The relations between the terms are summarized in
Fig. 1.

Reliability is a probability quantity as stated in the def-
inition. Probabilities are quantities hard to capture and to
give adequate meanings for those whom are not used to
them. It is often hard to interpret statements such as “the
probability for a failure-free execution of the software is
0.92 for a period of 10 CPU hours.” Thus, software reli-
ability is often measured in terms of failure intensity and
mean time to failure (MTTF), since they are more intuitive
quantities for assessing the reliability. Then we state that
“the failure intensity is 8 failures per 1000 CPU hours” or
“the MTTF is 125 CPU hours,” which are quantities easier
to interpret.

I. RELIABILITY MEASUREMENT AND
MODELING: AN INTRODUCTION

A. Usage and Reliability Modeling

The reliability attribute is a complex one, as indicated by
the definitions above. The reliability depends on the num-

FIGURE 2 Reliability estimation from failure data.

ber of remaining faults that can cause a failure and how
these faults are exposed during execution. This implies
two problems.

� The product has to be executed in order to enable
measurement of the reliability. Furthermore, the
execution must be operational or resemble the
conditions under which the software is operated. It is
preferable for the reliability to be estimated before the
software is put into operation.

� During execution, failures are detected and may be
corrected. Generally, it is assumed that the faults
causing the failures are removed.

In order to solve these problems, two different types of
models have to be introduced.

• A usage specification. This specification, consisting
of a usage model and a usage profile, specifies the intended
software usage. The possible use of the system (usage
model) and the usage quantities in terms of probabilities or
frequencies (usage profile) should be specified. Test cases
to be run during the software test are generated from the
usage specification. The specification may be constructed
based on data from real usage of similar systems or on
application knowledge. If the reliability is measured dur-
ing real operation, this specification is not needed. The
usage-based testing is further discussed in Section II.

• A reliability model. The sequence of failures is mod-
eled as a stochastic process. This model specifies the fail-
ure behavior process. The model parameters are deter-
mined by fitting a curve to failure data. This implies also a
need for an inference procedure to fit the curve to data. The
reliability model can then be used to estimate or predict
the reliability (see Section IV).

The principal flow of deriving a reliability estimate during
testing is presented in Fig. 2.

As mentioned above, failure intensity is an easier quan-
tity to understand than reliability. Failure intensity can, in
most cases, be derived from the reliability estimate, but
often the failure intensity is used as the parameter in the
reliability model.

As indicated by Fig. 2, the measurement of reliability
involves a series of activities. The process related to soft-
ware reliabililty consists of four major steps.

P1: GTV/GRD P2: GPB Final pages

Encyclopedia of Physical Science and Technology EN015G-858 August 2, 2001 11:27

Software Reliability 27

1. Create usage specification. This step includes
collecting information about the intended usage and
creation of a usage specification.

2. Generate test cases and execute. From the usage
specification, test cases are generated and applied to
the system under test.

3. Evaluate outcome and collect failure data. For each
test case, the outcome is evaluated to identify whether
a failure occurred or not. Failure data is collected as
required by the reliability model.

4. Calculate reliability. The inference procedure is
applied on the failure data and the reliability model.
Thus, a reliability estimate is produced.

If the process is applied during testing, then process steps
2–4 are iterated until the software reliability requirement
is met.

Additionally, it is possible to use attribute models to
estimate or predict software reliability. This means that
software reliability is predicted from attributes other than
failure data. For example, it may be estimated from differ-
ent complexity metrics, particularly in early phases of a
project. Then the estimates are based on experience from
earlier projects, collected in a reliability reference model
as outlined in Fig. 3.

Attributes used in the reference model can be of dif-
ferent types, such as project characteristics: project size,
complexity, designers’ experience etc.; or early process
data, for example, inspection measurements. Software re-
liability estimation using this type of model is similar to
determining other attributes through software measure-
ment, and hence, attribute models are not specific for soft-
ware reliability.

B. Application of Reliability Measurement

The reliability measurement can be used for different pur-
poses in software project management. First of all, we
differentiate between reliability estimation and reliability
prediction:

� Reliability estimation means assessment of the current
value of the reliability attribute.

FIGURE 3 Reliability prediction from other attributes.

� Reliability prediction means forecasting the value of
the reliability attribute at a future stage or point of time.

Reliability measurements can be used for different pur-
poses. One of the most important is certification:

� Certification means to formally demonstrate system
acceptability to obtain authorization to use the system
operationally. In terms of software reliability, it means
to evaluate whether the reliability requirement is met
or not.

The certification object can be either a complete product
or components in a product or in a component library. The
certification can be used for internal development pur-
poses, such as controlling the test process by relating the
test stopping criteria to a specific reliability level, as well
as externally as a basis for acceptance.

� Reliability predictions can be used for planning
purposes. The prediction can be used to judge how
much time remains until the required reliability
requirement is met.

� Both predictions and estimations can be used for
reliability allocation purposes. A reliability
requirement can be allocated over different
components of the system, which means that the
reliability requirement is broken down and different
requirements are set on different system components.

Hence, there are many areas for which reliability estima-
tions and predictions are of great importance to control
the software processes.

II. USAGE-BASED TESTING

A. Purpose

Testing may be defined as any activity focusing on as-
sessing an attribute of capability of a system or program,
with the objective of determining whether it meets its re-
quired results. Another important aspect of testing is to
make quality visible. Here, the attribute in focus is the re-
liability of the system and the purpose of the testing is to
make the reliability visible. The reliability attribute is not
directly measurable and must therefore be derived from
other measurements. These other measurements must be
collected during operation or during the test that resembles
the operation to be representative for the reliability.

The difficulty of the reliability attribute is that it only
has a meaning if it is related to a specific user of the
system. Different users experience different reliability,

P1: GTV/GRD P2: GPB Final pages

Encyclopedia of Physical Science and Technology EN015G-858 August 2, 2001 11:27

28 Software Reliability

because they use the system in different ways. If we are to
estimate, predict, or certify the reliability, we must relate
this to the usage of the system.

One way of relating the reliability to the usage is to apply
usage-based testing. This type of testing is a statistical
testing method and includes:

� A characterization of the intended use of the software,
and the ability to sample test cases randomly from the
usage environment

� The ability to know whether the obtained outputs are
right or wrong

� A reliability model

This approach has the benefits of validating the require-
ments and accomplishing this in a testing environment
that is statistically representative of the real operational
environment.

Modeling the usage in a usage specification makes the
characterization of the intended usage. This specification
includes both how the users can use the system, i.e., the
usage model, and the probabilities for different use, i.e.,
the usage profile. From the usage specification, test cases
are generated according to the usage profile. If the profile
has the same distribution of probabilities as if the system
is used during operation, we can get a reliability estimate
that is related to the way the system is used (see Fig. 4).

To evaluate whether the system responses from the sys-
tem for a test case are right or wrong, an oracle is used.
The oracle uses the requirements specification to deter-
mine the right responses. A failure is defined as a devia-
tion of the system responses from its requirements. During
the test, failure data is collected and used in the reliability
model for the estimation, prediction, or certification of the
system’s reliability.

The generation of test cases and the decision on whether
the system responses are right or wrong are not simple
matters. The generation is done by “running through”
the model, and every decision is made as a random choice
according to the profile. The matter of determining the

FIGURE 4 Relationship between operation, usage specification,
and usage-based testing.

FIGURE 5 The domain-based model.

correct system responses is to examine the sequence of
user input and from the requirements determine what the
responses should be.

B. Usage Specifications Overview

In order to specify the usage in usage-based testing, there
is a need for a modeling technique. Several techniques
have been proposed for the usage specification. In this
section, the most referred usage specification models are
introduced.

1. Domain-Based Model

These models describe the usage in terms of inputs to
the system. The inputs can be viewed as balls in an urn,
where drawing balls from the urn generates the usage.
The proportion of balls corresponding to a specific input
to the system is determined by the profile. The test cases
are generated by repeatedly drawing balls from the urn,
usually with replacement (see Fig. 5).

The advantage of this model is that the inputs are as-
sumed to be independent of each other. This is required
for some types of reliability models.

The disadvantage is that the history of the inputs is
not captured, and this model can only model the usage
of a batch-type system, where the inputs are treated as
a separate run and the run is independent of other runs.
The model is too simple to capture the complex usage of
software systems. The input history has, in most cases, a
large impact on the next input.

2. Algorithmic Model

The algorithmic model is a refinement of the domain-
based model. The refinement is that the algorithmic model
takes the input history into account when selecting the next
input. The model may be viewed as drawing balls from
an urn, where the distribution of balls is changed by the
input history.

To define the usage profile for the algorithmic model,
the input history must be partitioned into a set of classes.

P1: GTV/GRD P2: GPB Final pages

Encyclopedia of Physical Science and Technology EN015G-858 August 2, 2001 11:27

Software Reliability 29

FIGURE 6 The algorithmic model.

For each class, the distribution of the inputs is determined.
If there are m classes and n different inputs, the usage
profile is described in an m ∗ n matrix. The elements in
the matrix are the probabilities for the different inputs
given the input history class.

The advantages are that this model takes the input his-
tory into account when generating the test cases and that it
is easy to implement for automatic generation. The draw-
back is that there is a need for the information, which is
not in the usage profile, on how to change from one input
history class to another (see Fig. 6).

3. Operational Profile

A way of characterizing the environment is to divide the
execution into a set of runs, where a run is the execution
of a function in the system. If runs are identical repetitions
of each other, these runs form a run type. Variations of a
system function are captured in different run types. The
specification of the environment using run types is called
the operational profile. The operational profile is a set of
relative frequencies of occurrence of operations, where an
operation is the set of run types associated with a system
function. To simplify the identification of the operational
profile, a hierarchy of profiles is established, each making
a refinement of the operational environment.

The development of operational profiles is made in five
steps.

� Identify the customer profile, i.e., determine different
types of customers, for example, private subscribers
and companies (for a telephony exchange).

� Define the user profile, i.e., determine if different types
of users use the software in different ways, for
example, subscribers and mainenance personnel.

� Define the system modes, i.e., determine if the system
may be operating in different modes.

� Define the functional profile, i.e., determine the

different functions of the different system modes, for
example, different services available to a subscriber.

� Define the operational profile, i.e., determine the
probabilities for different operations making up a
function.

This hierarchy of profiles is used if there is a need for
specifying more than one operational profile. If there is
only a need for specifying, for example, an average user,
one operational profile is developed, see Fig. 7.

Choosing operations according to the operational pro-
file generates test cases.

The operational profile includes capabilities to handle
large systems, but does not support the detailed behavior
of a user. It does not specify a strict external view, but
takes some software internal structures into account. This
is because the derivation of the operational profile needs
information from the design or, in some cases, from the
implementation to make the testing more efficient.

4. Grammar Model

The objective of the grammar model is to organize the
descriptions of the software functions, the inputs, and
the distributions of usage into a structural database from
which test cases can be generated. The model has a defined

FIGURE 7 The operational profile.

P1: GTV/GRD P2: GPB Final pages

Encyclopedia of Physical Science and Technology EN015G-858 August 2, 2001 11:27

30 Software Reliability

FIGURE 8 The grammar model.

grammar to describe the information of the database. The
grammar defines how a test case looks, such as in length,
used functions, and inputs and their distributions.

The grammar model is illustrated in Fig. 8 with the
example of selecting an item in a menu containing three
items. A test case in the illustration is made up of a num-
ber of commands ending with a selection. A command is
either up or down with equal probability. First, the number
of commands is determined. The number of commands is
uniformly distributed in the range of 0–1 with the prob-
ability 0.8 and in the range of 2–4 with the probability
0.2. The command is either “up” or “down,” each with a
probability of 0.5. After the command, a selection is made
and the test case is ended.

The outcome of a test case can be derived as the gram-
mar gives both the initial software conditions and the in-
puts to it. The grammar is very easy to implement, and
test cases can be generated automatically. The drawback
is that the grammar tends to be rather complex for a large
system, which makes it hard to get an overview of how
the system is used.

5. Markov Model

The Markov model is an approach to usage modeling
based on stochastic processes. The stochastic process that
is used for this model is a Markov chain. The construc-
tion of the model is divided into two phases: the structural
phase and the statistical phase.

During the structural phase, the chain is constructed
with its states and transitions. The transitions represent
the input to the system, and the state holds the necessary
information about the input history. The structural model
is illustrated in Fig. 9, with the example of selecting an
item in a menu containing three items.

The statistical phase completes the Markov chain by
assigning probabilities to the transitions in the chain. The
probabilities represent the expected usage in terms of rel-
ative frequencies. Test cases are then selected by “running
through” the Markov model.

The benefits of Markov models are that the model is
completely general and the generated sequences look like
a sample of the real usage as long as the model captures

FIGURE 9 The Markov model.

the operational behavior. Another benefit is that the model
is based on a formal stochastic process, for which an an-
alytical theory is available.

The drawback is that the number of states for a complex
system tends to grow very large.

6. State Hierarchy Model

The state hierarchy (SHY) model was introduced to cope
with modeling of complex systems with several user types
and numerous different users. The objective of the model
is to divide the usage modeling problem into different lev-
els, hence focusing on one aspect at the time. The number
of levels in the model can easily be adapted to the needs
when modeling (see Fig. 10). The usage levels in the figure
represent all usage of the system, the user type level repre-
sents users with the same structural usage, and the usage
subtype level represents all users with the same structural
and statistical usage. The user level represents the users of
the system, and the service level describes which services
a particular user can use. The structural description of a
service is described in the behavior level.

The hierarchy means that a service used by several users
is only modeled once and then instantiated for all users
using that particular service. The generation of test cases
according to the anticipated software usage is made by
“running through” the state hierarchy. The next event to be
added to the test case is generated by first choosing a par-
ticular user type, then a user subtype, then a specific user
of the chosen type, and, finally, a service is chosen. Based
on the state of the chosen service, a transition is made in
the behavior level and an event is added to the test case.

The SHY model divides the usage profile into two parts,
namely, individual profile and hierarchical profile. The
individual profile describes the usage for a single service,
i.e., how a user behaves when using the available services.
All users of a specific user type have the same individual
profile. This profile refers to the transition probabilities on
the behavior level.

P1: GTV/GRD P2: GPB Final pages

Encyclopedia of Physical Science and Technology EN015G-858 August 2, 2001 11:27

Software Reliability 31

FIGURE 10 Illustration of the SHY model.

The hierarchical profile is one of the major advantages
with the SHY model, as it allows for dynamic probabili-
ties. It is obvious that it is more probable that a subscriber,
connected to a telecommunication system, who has re-
cently lifted the receiver, dials a digit than another user
lifts the receiver. This means that the choice of a specific
user to generate the next event depends on the actual state
of the user and the states of its services. This is handled by
introducing state weights, which model the relative prob-
ability of generating the next event compared to the other
states of the service. Thus, the state weights are introduced
on the behavior level to capture that the probability of the
next event depends on the state in which the services of
the different users are. The state weights are the basis for
deriving the probabilities in the hierarchy.

One of the drawbacks of this model is that it is a compli-
cated model, and it can be hard to find a suitable hierarchy
and to define the state weights. Another drawback is that
since both services and users are dependent of each other,
and the model tries to take this into account, the model
becomes fairly complex, although realistic.

7. Summary

The usage models presented here have their different ad-
vantages and disadvantages. The choice of model depends
on the application characteristics and how important the
accuracy is.

If the system is a batch system, then either the domain-
based model or the algorithmic model is suitable, but not
if the input history is important. If the input history is im-
portant, there are the grammar, the Markov, or the SHY
models. These models take the input history into account,
and the input can be described in detail if necessary. If the

system is complex and has a large number of users, the
grammar model becomes very complex, and the number of
states in the Markov model grows very large. The models
that can model the usage of these systems are the opera-
tional profile and the SHY models. The operational profile
is the most widely used model.

Before the testing can start, test cases must be gener-
ated from the usage specification. This can be done by
running through the usage specification and logging test
cases. Basically, transforming the usage specification into
an executable representation generates test cases and then
they are executed with an oracle. The oracle determines
the expected response from the system under the generated
usage conditions. Another opportunity is that the oracle
determines the correct output during testing, although this
makes the testing less efficient in terms of calendar time.

C. Derivation of Usage Data

Reliability has only a meaning if it is related to the usage
of the system. By applying usage-based testing, the sys-
tem is tested as if being in operation, and the failure data
is representative of the operational failures. Usage-based
testing includes a usage profile, which is a statistical char-
acterization of the intended usage. The characterization is
made in terms of a distribution of the inputs to the system
during operation.

The usage profile is not easy to derive. When a system
is developed it is either a completely new system or a re-
design or modification of an existing system. If there is an
older system, the usage profile can be derived from mea-
suring the usage of the old system. On completely new sys-
tems there is nothing to measure, and the derivation must
be based on application knowledge and market analysis.

P1: GTV/GRD P2: GPB Final pages

Encyclopedia of Physical Science and Technology EN015G-858 August 2, 2001 11:27

32 Software Reliability

There are three ways to assign the probabilities in the
usage profile.

1. Measuring the usage of an old system. The usage
is measured during operation of an old system that the
new system shall replace or modify. The statistics are col-
lected, the new functions are analyzed, and their usage is
estimated based on the collected statistics.

2. Estimate the intended usage. When there are no old
or similar systems to measure on, the usage profile must
be estimated. Based on data from previous projects and on
interviews with the end users, an estimate on the intended
usage is made. The end users can usually make a good
profile in terms of relating the different functions to each
other. The function can be placed in different classes, de-
pending on how often a function is used. Each class is then
related to the other by, for example, saying that one class is
used twice as much as one other class. When all functions
are assigned a relation, the profile is set according to these
relations.

3. Uniform distribution. If there is no information avail-
able for estimating the usage profile, one can use a uniform
distribution. This approach is sometimes called the unin-
formed approach.

III. DATA COLLECTION

A. Purpose

The data collection provides the basis for reliability esti-
mations. Thus, a good data collection procedure is crucial
to ensure that the reliability estimate is trustworthy. A pre-
diction is never better than the data on which it is based.
Thus, it is important to ensure the quality of the data col-
lection. Quality of data collection involves:

� Collection consistency. Data shall be collected and
reported in the same way all the time, for example, the
time for failure occurrence has to be reported with
enough accuracy.

� Completeness. All data has to be collected, for
example, even failures for which the tester corrects the
causing fault.

� Measurement system consistency. The measurement
system itself must as a whole be consistent, for
example, faults shall not be counted as failures, since
they are different attributes.

B. Measurement Program

Measurement programs can be set up for a project, an
organizational unit, or a whole company. The cost is, of
course, higher for a more ambitious program, but the gains

are also higher for more experience collected within a
consistent measurement program.

Involving people in data collection implies, in particu-
lar, two aspects:

� Motivation. Explain why the data shall be collected
and for what purposes it is used.

� Feedback. Report the measurements and analysis
results back to the data providers.

Setting up a measurement program must be driven by spe-
cific goals. This is a means for finding and spreading the
motivation, as well as ensuring the consistency of the pro-
gram, i.e., for example, that data are collected in the same
way throughout a company. The Goal-Question-Metric
(GQM) approach provides means for deriving goal-
oriented measurements. Typical goals when measuring re-
liability are to achieve a certain level of reliability; to get
measurable criteria for deciding when to stop testing; or to
identify software components, which contribute the most
to reliability problems. The goals determine which data to
collect for software reliability estimation and prediction.

C. Procedures

To achieve data of high quality, as much as possible
shall be collected automatically. Automatic collection is
consistent—not depending on human errors—and com-
plete, as far as it is specified and implemented. However,
automatic collection is not generally applicable, since
some measurements include judgements, for example,
failure classification. Manual data collection is based on
templates and forms, either on paper or electronically.

D. Failure and Test Data

The main focus here is on software reliability models
based on failure data. From the reliability perspective, fail-
ure data has to answer two questions:

� When did the failure occur?
� Which type of failure occurred?

The failure time can be measured in terms of calendar time,
execution time, or the number of failures per time interval
(calendar or execution). Different models require different
time data. Generally, it can be stated that using execution
time increases the accuracy of the predictions, but requires
a transformation into calendar time in order to be useful for
some purposes. Planning of the test period is, for example,
performed in terms of calendar time and not in execution
time. Thus, there is a need for mapping between execution
time and calendar time. Keeping track of actual test time,

P1: GTV/GRD P2: GPB Final pages

Encyclopedia of Physical Science and Technology EN015G-858 August 2, 2001 11:27

Software Reliability 33

instead of only measuring calendar time, can also be a
means of improving the prediction accuracy.

When different failure severity categories are used, ev-
ery failure has to be classified to fit into either of the cate-
gories. Reliability estimations can be performed for each
category or for all failures. For example, it is possible to
derive a reliability measure in general or for critical fail-
ures in particular.

IV. SOFTWARE RELIABILITY MODELING

A. Purpose

As stated in opening, software reliability can be defined
as the probability of failure-free operation of a computer
program in a specified environment for a specified time.
This definition is straightforward, but, when the reliability
is expressed in this way, it is hard to interpret.

Some reasonable questions to ask concerning software
reliability of software systems are:

� What is the level of reliability of a software system?
� How much more development effort must be spent to

reach a certain reliability of a software system in a
software development project?

� When should the testing stop? That is, can we be
convinced that the reliability objective is fulfilled, and
how convinced are we?

Here, the first question seems to be the easiest to answer.
It is, however, not possible to directly measure the relia-
bility of a system. This has to be derived as an indirect
measure from some directly measurable attributes of the
software system. To derive the indirect measures of reli-
ability from the directly measurable attributes, software
reliability models are used. Examples of directly mea-
surable attributes are the time between failures and the
number of failures in a certain time period (see Fig. 11).

The main objective of a software reliability model is
to provide an opportunity to estimate software reliability,
which means that Fig. 4 may be complemented as shown
in Fig. 12.

FIGURE 11 The reliability can be derived from directly measur-
able attributes via a software reliability model.

FIGURE 12 Relationship between operation, usage specifica-
tion, usage-based testing, and software reliability models.

B. Definitions

As a starting point, we introduce some basic reliability
theory definitions. Let X be a stochastic variable repre-
senting time to failure. Then the failure probability F(t)
is defined as the probability that X is less than or equal to
t . We also define the survival function as R(t) = 1 − F(t).

Some important mean value terms are displayed in
Fig. 13. Here, the state of the system is simply modeled
as alternating between two states: when the system is exe-
cuting, a failure can occur and the system is repaired; and
when the system is being repaired, it will after a while,
when the fault is corrected, be executed again. This is
iterated for the entire life cycle of the system.

The expected value of the time from a failure until the
system can be executed again is denoted MTTR (mean
time to repair). This term is not dependent on the number
of remaining faults in the system.

The expected time that the system is being executed af-
ter a repair activity until a new failure occurs is denoted
MTTF1 (mean time to failure), and the expected time be-
tween two consecutive failures is denoted MTBF (mean
time between failures). The two last terms (MTTF and
MTBF) are dependent on the remaining number of soft-
ware faults in the system.

The above three terms are standard terms used in relia-
bility theory in general. In hardware theory, however, the
last two terms are often modeled as being independent of
the age of the system. This cannot, in most cases, be done
for software systems.

Two simple but important relationships are

MTBF = MTTF + MTTR,

Availability = MTTF/MTBF.

When modeling software reliability, the repair times do
not have any meaning. Instead, only the times between
consecutive failures are considered and therefore mea-
sured. In this case, the only term of the above three that

1Sometimes the term is defined as the time from a randomly chosen
time to the next failure.

P1: GTV/GRD P2: GPB Final pages

Encyclopedia of Physical Science and Technology EN015G-858 August 2, 2001 11:27

34 Software Reliability

FIGURE 13 Three important mean value terms: MTTF, MTBF,
and MTTR.

can be determined is the MTTF and the availability cannot
be determined.

C. Principles

As stated in the previous section, the reliability must be
derived as an indirect measure from directly measurable
attributes of the software system. The directly measurable
attributes are typically the times of failures, i.e., at what
different times the different failures have occurred, or the
number of failures in different time intervals.

These attributes can be measured in typically two dif-
ferent situations:

• When the software is under development and being
tested. In this case, it is assumed that faults resulting in
failures are corrected immediately. It could be the case
that the faults are not removed immediately, but it can be
some time from when the failure is detected until the fault
is located and corrected. Most software reliability models
do, however, not account for this time.

• When the software is in use and is being maintained.
In this case, the faults are, in most cases, not corrected
directly. This is instead done for the next release of the
software system. In this case, the MTBF and MTTF are
constant between two consecutive releases of the system.

The second situation is the simplest one, and it is similar
to basic hardware reliability theory. In this case, the failure
intensity can be modeled as constant for every release of
the software. In the first case, however, the failure intensity
cannot be modeled as being constant. Here, it is a function
of how many failures that have been removed. This is a
major difference compared to basic hardware reliability
theory, where components are not improved every time
they are replaced.

The situation where the failure intensity is reduced for
every fault that is corrected can be modeled in a number
of different ways, and a number of different models have
been proposed. This section concentrates on the case when
faults are directly corrected when their related failures
occur.

The majority of all software reliability models are based
on Markovian stochastic processes. This means that the
future behavior after a time, say, t , is only dependent on
the state of the process at time t and not on the history
about how the state was reached. This assumption is a
reasonable way to get a manageable model, and it is made
in many other engineering fields.

Regardless of the chosen model and data collection
strategy, the model contains a number of parameters.
These parameters must be estimated from the collected
data. There are three different major estimation techniques
for doing this:

� The maximum likelihood technique
� The least square technique
� The Bayesian technique

The first two are the most used, while the last is the least
used because of its high level of complexity.

The application of reliability models is summarized in
an example in Fig. 14. In this example, the failure intensity
is modeled with a reliability model. It could, however, be
some other reliability attribute, such as MTBF. First, the
real values of the times between failures in one realization
are measured (1). Then the parameters of the model are
estimated (2) with an inference method such as the maxi-
mum likelihood method. When this is done, the model can
be used, for example, for prediction (3) of future behavior
(see Fig. 14.)

D. Model Overview

Reliability models can be classified into four different
classes:

1. Time between failure models
2. Failure count models
3. Fault seeding models
4. Input domain-based models

Since the first two classes of models are most common,
they are described in some more detail, while the latter
two classes only are described briefly.

1. Time between Failure Models

Time between failure models concentrate on, as the name
indicates, modeling the times between occurred failures.
The first developed time between failure model was the
Jelinski-Moranda model from 1972, where it is assumed
that the times between failures are independently expo-
nentially distributed. This means that, if Xi denotes the

P1: GTV/GRD P2: GPB Final pages

Encyclopedia of Physical Science and Technology EN015G-858 August 2, 2001 11:27

Software Reliability 35

FIGURE 14 The application of reliability models. In this example the model is used for prediction.

time between the (i − 1)th and i th failure, then the proba-
bility density function of Xi is defined as in Eq. (1).

fXi (t) = λi e
−λi t , (1)

where λi is the failure intensity after the (i−1)th failure has
occurred (and before the i th failure has occurred). In the
Jelinski-Moranda model, λi is assumed to be a function
of the remaining number of failures and is derived as in
Eq. (2).

λi = φ(N − (i − 1)), (2)

where N is the initial number of faults in the program
and φ is a constant. The parameters in the model can be
interpreted as follows: let N be the initial number of faults
in the program and φ be a constant representing the per
fault failure intensity.

The above formulas are together a model of the behav-
ior of the software with respect to failures. It is not exactly
representing the real behavior, merely a simplification of
the real behavior. To be able to use this model, for exam-
ple, for prediction, N and φ must be estimated from the
measured data. It is possible to make a maximum likeli-
hood estimate of the parameters. The likelihood function
that can be used to estimate N and φ is found in Eq. (3).

L(t1, . . . , tn; N , φ) =
n∏

i=1

fXi (ti) =
n∏

i=1

φ(N − (i − 1))

× e−φ(N−(i−1))ti , (3)

where ti is the measured values of Xi , i.e., the measured
times between failures, and n is the number of measured
times. By taking the natural logarithm of the likelihood
function and simplifying, we obtain Eq. (4).

ln L = n ln φ +
n∑

i=1

ln(N − i + 1) − φ

n∑
i=1

(N − i + 1)ti

(4)

This function should be maximized with respect to N and
φ. To do this, the first derivative with respect to N and φ

can be taken. The N̂ and φ̂, which satisfy that both the
derivatives equals 0, are the estimates we are looking for.

After the Jelinski-Moranda model was published, a
number of different variations of the model were sug-
gested. Examples are:

� Failures do not have to be corrected until a major
failure has occurred.

� The failure intensity does not have to be constant
between successive failures. One proposal in the
literature is to introduce an increasing failure rate
(IFR) derived as λi = φ(N − (i − 1))t , where t is the
time elapsed since the last failure occurred.

� A variant of the Jelinski-Moranda model, which
accounts for the probability of imperfect debugging,
i.e., the probability that a fault is not removed in a
repair activity, has been developed. With this model,
the failure intensity can be expressed as
λi = φ(N − p(i − 1)), where p is the probability of
imperfect debugging.

The Jelinski-Moranda model (with no variants) is pre-
sented here in some more detail, since it is an intuitive
and illustrative model. In another situation when the main
objective is not to explain how to use reliability models, it
may be appropriate to use one of the variants of the model
or a completely different model.

2. Failure Count Models

Failure count models are based on the number of failures
that occur in different time intervals. The number of fail-
ures that occur is, with this type of model, modeled as
a stochastic process, where N (t) denotes the number of
failures that have occurred at time t .

Goel and Okomoto (1979) have proposed a failure
count model where N (t) is described by a nonhomoge-
nous Poisson process. The fact that the Poisson process
is nonhomogenous means that the failure intensity is not

P1: GTV/GRD P2: GPB Final pages

Encyclopedia of Physical Science and Technology EN015G-858 August 2, 2001 11:27

36 Software Reliability

constant, which means that the expected number of faults
found at time t cannot be described as a function linear in
time (which is the case for an ordinary Poisson process).
This is a reasonable assumption since the failure intensity
decreases for every fault that is removed from the code.
Goel and Okomoto proposed that the expected number
of faults found at time t could be described by Eq. (5).

m(t) = N (1 − e−bt), (5)

where N is the total number of faults in the program and
b is a constant. The probability function for N (t) can be
expressed as in Eq. (6).

P(N (t) = n) = m(t)n

n!
e−m(t) (6)

The Goel and Okomoto model can be seen as the basic fail-
ure count model, and as with the Jelinski-Moranda model,
a number of variants of the model have been proposed.

3. Fault Seeding Models

Fault seeding models are primarily used to estimate the
total number of faults in the program. The basic idea is to
introduce a number of representative failures in the pro-
gram and to let the testers find the failures that these faults
result in. If the seeded faults are representative, i.e., they
are equally failure prone as the “real” faults, the number
of real faults can be estimated by a simple reasoning.

If Ns faults have been seeded, Fs seeded faults have
been found, and Fr real faults have been found, then
the total number of real faults can be estimated through
Eq. (7).

N = Ns · Fr

Fs
(7)

A major problem with fault seeding models is seeding the
code with representative faults. This problem is elegantly
solved with a related type of models based on the capture-
recapture technique. With this type of model, a number of
testers are working independently and separately to find
a number of faults. Based on the number of testers that
find each fault, the number of faults in the code can be
estimated. The more testers that find each fault, the larger
share of the faults can be expected to be found, and the
fewer testers that find each faults, the fewer of the total
number of faults can be expected to be found.

4. Input Domain-Based Models

By using these types of models, the input domain is divided
into a set of equivalent classes, and then the software is
tested with a small number of test cases from each class.
An example of an input domain-based model is the Nelson
model.

E. Reliability Demonstration

When the parameters of the reliability model have been es-
timated, the reliability model can be used for prediction of
the time to the next failure and the extra development time
required until a certain objective is reached. The reliabil-
ity of the software can be certified via interval estimations
of the parameters of the model, i.e., confidence intervals
are created for the model parameters. But often, another
approach, which is described in this section, is chosen.

A method for reliability certification is to demonstrate
the reliability in a reliability demonstration chart. This
method is based on faults that are not corrected when fail-
ures are found, but if faults were corrected, this would only
mean that the actual reliability is even better than what the
certification says. This type of chart is shown in Fig. 15.

To use this method, start in the origin of the diagram.
For each observed failure, draw a line to the right and one
step up. The distance to the right is equal to the normalized
time (time ∗ failure intensity objective). For example, the
objective may be that the mean time to failure should be
100 (failure intensity objective is equal to 1/100) and the
measured time is 80, then the normalized time is 0.8. This
means that when the normalized time is less than 1, then
the plot comes closer to the reject line; on the other hand,
if it is larger than 1 then it comes closer to the accept line.

If the reached point has passed the accept line, the ob-
jective is met with the desired certainty, but if the reject
line is passed, it is with a desired certainty clear that the
objective is not met.

The functions for the two lines (accept line and reject
line) are described by Eq. (8).

x(n) = A − n ln γ

1 − γ
, (8)

where γ is the discrimination ratio (usually set to 2) and
n is the number of observed failures. For the reject line A
is determined by Eq. (9).

Arej = ln
1 − β

α
, (9)

FIGURE 15 Software reliability demonstration chart, which is
based on sequential sampling.

P1: GTV/GRD P2: GPB Final pages

Encyclopedia of Physical Science and Technology EN015G-858 August 2, 2001 11:27

Software Reliability 37

where α is the risk of saying that the objective is not met
when it is and β is the risk of saying that the objective is
met when it is not. For the accept line A is determined by
Eq. (10).

Aacc = ln
β

1 − α
(10)

F. Accuracy of Reliability Predictions

The accuracy of the existing reliability models depends
on the data that the prediction is based on. One model can
get an accurate prediction for one set of test data, but can
get an inaccurate prediction for another set of data. The
problem is that it is impossible to tell which model has an
accurate prediction for a particular set of test data.

When predicting the future growth of the reliability, one
method to evaluate the accuracy of the model is to use a
u-plot. A u-plot is used to determine if the predicted distri-
bution function is, on average, close to the true distribution
function. The distribution function for the time between
failures is defined by Eq. (11).

FXi (t) ≡ P(Xi < t) =
∫ t

0
fXi (τ) d τ (11)

The predicted distribution function is denoted F̂ Xi (t). If
Ti truly had the distribution F̂ Xi (t), then the random vari-
able Ui = F̂ Xi (Xi) is uniformly distributed in (0,1). Let ti
be the realization of Ti , and calculate ui = F̂ Xi (xi), then
ui is a realization of the random variable Ui . Calculat-
ing this for a sequence of predictions gives a sequence
of {ui }. This sequence should look like a random sample
from a uniform distribution. If there is a deviation from the
uniform distribution, this indicates a difference between
F̂ Xi (t) and FXi (t). The sequence of ui consists of n values.
If the n ui ’s are placed on the horizontal axis in a diagram,
and for each of these points a step function is increased
with 1/(n + 1), the result is a u-plot (see Fig. 16). The
u-plot is compared with the uniform distribution, which
is the line with unit slope through the origin. The dis-
tance between the unit line and the step function is then
a measure of the accuracy of the predicted distribution
function. In Fig. 16, we see that predictions for short and
long times are accurate, but the predictions in between
are a bit too optimistic; that is, the plot is above the unit
line.

V. EXPERIENCE PACKAGING

A. Purpose

In all measurement programs, collected experience is nec-
essary to make full use of the potential in software product

FIGURE 16 An example of a u-plot.

and process measurement and control. The experience
base is a storage place for collected measurements, predic-
tions, and their interpretations. Furthermore, the models
with parameters used are stored in the experience base.

The experience is used for different purposes:

� Constitute a baseline. Reference values for the
attributes to be measured and a long-term trend, for
example, in an improvement program

� Validate predictions. To judge whether predictions are
reasonable by comparing data and predictions to the
experience base

� Improve predictions. The accuracy of predictions can
be improved by using data from earlier projects

� Enable earlier and more confident predictions. To
predict product and process attributes in the early
phases requires a solid experience base

All these purposes are valid for measurement of product
and process attributes in general and reliability in particu-
lar. In the reliability area, we focus on two types of models
in the experience base.

� The usage model and profile applied in usage-based
testing have to be stored with the predictions made
since a reliability prediction always is based on a usage
profile. There is also a reuse potential of the usage
model and profile between different projects.

� The reliability model and its parameters are stored to
constitute a basis for early predictions of the reliability
for forthcoming similar projects.

Experience packaging, related to these two model types,
is further elaborated in Sections V.B and V.C.

P1: GTV/GRD P2: GPB Final pages

Encyclopedia of Physical Science and Technology EN015G-858 August 2, 2001 11:27

38 Software Reliability

B. Usage Model and Profile

The usage model and profile are descriptions of the in-
tended operational usage of the software. A reliability pre-
diction is conducted based on test cases generated from a
usage profile and is always related to that profile. Hence,
a reliability prediction must always be stored in the expe-
rience base together with the usage profile used.

Comparing the prediction to the outcome in operational
usage can validate a reliability prediction. If there is a con-
siderable difference between predicted and experienced
reliability, one of the causes may be discrepancies between
the usage profile and the real operational profile. This has
to be fed back, analyzed, and stored as experience.

Continuous measurements on the operational usage of
a product are the most essential experience for improving
the usage profile. A reliability prediction derived in usage-
based testing is never more accurate than the usage profile
on which it is based.

The usage models and profiles as such contain a lot of
information and represent values invested in the derivation
of the models and profiles. The models can be reused,
thus utilizing the investments better. Different cases can
be identified.

� Reliability prediction for a product in a new
environment. The usage model can be reused, and the
usage profile can be changed.

� Reliability prediction for an upgraded product. The
usage model and profile can be reused, but have to be
extended and updated to capture the usage of added
features of the product.

� Reliability prediction for a new product in a known
domain. Components of the usage model can be
reused. Some usage model types support this better
than others.

C. Reliability Models

Experience related to the use of reliability models is just
one type of experience that should be stored by an orga-
nization. Like other experiences, projects can be helped if
experience concerning the reliability models is available.

In the first stages of testing, the estimations of the model
parameters are very uncertain due to too few data points.
Therefore, it is very hard to estimate the values of the pa-
rameters, and experience would be valuable. If, for exam-
ple, another project prior to the current project has devel-
oped a product similar to the currently developed product,
then a good first value for the parameters would be to take
the values of the prior project.

Another problem is to decide what model to choose for
the project. As seen in the previous sections, a number of

different reliability models are available, and it is almost
never obvious which one to choose. Therefore, it could
be beneficial to look at previously conducted projects and
compare these projects with the current one and also to
evaluate the choice of models in previous projects. If sim-
ilar projects have successfully used one specific reliability
model, then this reliability model could be a good choice
for the current project. On the other hand, if previously
conducted similar projects have found a specific model to
be problematic, this model should probably not be chosen.

Experience of reliability from previous projects can also
be of use early in projects when reliability models cannot
yet be used, for example, in the early planning phases. Ex-
perience can, for example, answer how much testing effort
will be required to meet a certain reliability objective.

As with any other type of reuse, special actions must be
taken to provide for later reuse. When the experience is
needed, it is not possible to just look into old projects and
hope to find the right information and conclusions from
those old projects. Experience must be collected system-
atically and stored in the previous projects. This means,
for example, that

� Measurements should be collected for the purpose of
evaluation of the prediction models. Storing the choice
of reliability model together with actual results can, for
example, do this. This can be used to evaluate the
reliability in, for example, a u-plot.

� Measurements should be collected for the purpose of
understanding the model independent parameters such
as initial time between failures and the fraction of
found faults in different phases of the development.

The above-mentioned measurements are just examples of
measurements that can be collected to obtain experience.
The intention is not to provide a complete set of measures
that should be collected with respect to reliability.

VI. SUMMARY

When you use a software product, you want it to have
the highest quality possible. But how do you define the
quality of a software product? In the ISO standard 9126,
the product quality is defined as “the totality of features
and characteristics of a software product that bear on its
ability to satisfy stated or implied needs.” The focus here
has been on one important quality aspect: the reliability
of the software product.

Software reliability is a measure of how the software
is capable of maintaining its level of performance under
stated conditions for a stated period of time and is often
expressed as a probability. To measure the reliability, the

P1: GTV/GRD P2: GPB Final pages

Encyclopedia of Physical Science and Technology EN015G-858 August 2, 2001 11:27

Software Reliability 39

software has to be run under the stated conditions, which
are the environment and the usage of the software.

As the reliability is related to the usage, it cannot be
measured directly. Instead, it must be calculated from
other measurements on the software. A measure often used
is the failure occurrence, or more precisely the time be-
tween them, of the software which is related to the usage
of the software.

To calculate the reliability from the failure data, the
data must be collected during operation or from testing
that resembles operation. The testing method that is pre-
sented here is the usage-based testing method. In usage-
based testing, the software is tested with samples from
the intended usage. These samples are generated from a
characterization of the intended usage and are representa-
tions of the operation. The characterization is made with a
statistical model that describes how the software is used.

After the system is tested with usage-based testing, fail-
ure data that can be used for reliability calculations are
available. The failure data are put into a statistical model
to calculate the reliability. The calculations that are of in-
terest are to estimate the current reliability, to predict how
the reliability will change, or to certify with certain sig-
nificance that the required reliability is achieved.

Software reliability is not only an important aspect for
the end user, but it can also be used for planning and con-
trolling the development process. Reliability predictions
can be used to judge how much time is remaining before
the required reliability is obtained. Estimations or certi-
fications can be used to certify if we have obtained the
reliability requirement and as a criterion to stop testing.

SEE ALSO THE FOLLOWING ARTICLES

COMPUTER ALGORITHMS • COMPUTER ARCHITECTURE

• DATA STRUCTURES • OPERATING SYSTEMS • RE-
QUIREMENTS ENGINEERING • SOFTWARE ENGINEERING •
SOFTWARE MAINTENANCE AND EVOLUTION • SOFTWARE

TESTING • STOCHASTIC PROCESSES

BIBLIOGRAPHY

Fenton, N., and Pfleeger, S. L. (1996). “Software Metrics: A Rigorous &
Practical Approach,” 2nd ed., International Thomson Computer Press,
London, UK.

Goel, A., and Okumoto, K. (1979). “Time-dependent error-detection
rate model for software reliability and other performance measures,”
IEEE Trans. Reliab. 28(3), 206–211.

Jelinski, Z., and Moranda, P. (1972). Software Reliability Research.
“Proceedings of Statistical Methods for the Evaluation of Computer
System Performance,” 465–484, Academic Press, New York.

Lyu, M. R., ed. (1996). “Handbook of Software Reliability Engineering,”
McGraw-Hill, New York.

Musa, J. D., Iannino, A., and Okumoto, K. (1987). “Software Reli-
ability: Measurement, Prediction, Application,” McGraw-Hill, New
York.

Musa, J. D. (1993). “Operational profiles in software reliability engi-
neering,” IEEE Software March, 14–32.

Musa, J. D. (1998). “Software Reliability Engineering: More Reli-
able Software, Faster Development and Testing,” McGraw-Hill, New
York.

van Solingen, R., and Berghout, E. (1999). “The Goal/Question/Metric
Method: A Practical Guide for Quality Improvement and Software
Development,” McGraw-Hill International, London, UK.

Xie, M. (1991). “Software Reliability Modelling,” World Scientific,
Singapore.

P1: GTV Final Pages Qu: 00, 00, 00, 00

Encyclopedia of Physical Science and Technology EN015J-859 August 2, 2001 11:35

Software Testing
Marc Roper
Strathclyde University

I. Fundamental Limitations of Testing
II. Developments in Testing

III. A General Strategy for Testing
IV. Terminology and Techniques

GLOSSARY

Error A (typically human) mistake which results in the
introduction of a fault into the software.

Failure The manifestation of a fault as it is executed.
A failure is a deviation from the expected behavior,
that is, some aspect of behavior that is different from
that specified. This covers a large range of potential
scenarios including, but by no means limited to, inter-
face behavior, computational correctness, and timing
performance, and may range from a simple erroneous
calculation or output to a catastrophic outcome.

Fault Also known as a bug or defect, a fault is some
mistake in the software which will result in a failure.

Test case A set of test data and expected results related
to a particular piece of software.

Testing technique A mechanism for the generation of
test data based on some properties of the software under
test.

TESTING is essentially the dynamic execution of the
software with a view to finding faults and consequently
gaining confidence in the behavior of the software. The
emphasis on dynamic execution is important. Testing is

one of the primary ways of establishing that the software
“does what it should do” (there are limitations to this that
will be explored later), but it is by no means the only way.
Alternative strategies ranging from verification to inspec-
tions all have a role to play in this. However, these alterna-
tives inevitably do not involve executing the software and
are hence described as static approaches. Put succinctly,
testing involves cost-effectively choosing, executing, and
analyzing some subset of a program’s input data.

I. FUNDAMENTAL LIMITATIONS
OF TESTING

A. The Input Domain

In simple terms testing is about sampling data from the
input space of a system. The naı̈ve reaction to this is to
consider testing as involving running the program on ev-
ery possible input. Unfortunately, this is impossible as the
input space is prohibitively large. Consider, for example,
a well-known program (a simple program is used for illus-
trative purposes here, but the results are equally applicable
to any piece of software) which finds the greatest common
divisor of two integers. Assume further that in addition to

 41

P1: GTV Final Pages

Encyclopedia of Physical Science and Technology EN015J-859 August 2, 2001 11:35

42 Software Testing

constraining the input to deal with positive integers it is
also limited to a maximum value of 1000. The input do-
main of the program can be visualised as follows:

To exhaustively test this program it is necessary to choose
every combination of Input1 and Input2—that is (1,1),
(1,2), . . . , (234,789), . . . , (1000,1000). Even though it
might be tempting to assume that after perhaps trying 10,
or 50, or 100 pairs of inputs successfully that the program
works, it is not safe to do this. There always exists the
possibility that the next untried combination will be the
one that causes a failure. So, the input domain for this
simple program contains one million (1000 × 1000) pos-
sible distinct input combinations. Obviously, if the con-
straints on this program are relaxed slightly to allow in-
put in the range 1 to 1,000,000, and include a further
input (so it is now finding the greatest common divi-
sor of three numbers) then the input domain grows to
1018(1,000,000 × 1,000,000 × 1,000,000) distinct input
combinations. To put this into perspective, if it was pos-
sible to create, run, and check the output of each test
in one-hundredth of a second, then it would take over
317 million years to exhaustively test this program. This
is obviously not a tractable proposition and this is still a
very simple program with only three (constrained) integer
inputs. Most nonartificial programs have input domains
which are far larger and more complex than this.

B. The Internal Structure

It is clear that in the previous example, some of the
problems might be alleviated by examining the internal
structure of the program. This might make it possible to
reason about how certain groups or ranges of data are
treated and hence reduce the number of potential tests.
The internal structure of a program can conveniently be
represented by a directed graph (essentially a form of
flowchart). To illustrate the concepts involved consider a
simple program-like representation of the GCD calcula-
tion using Euclid’s algorithm:

The directed graph on the right illustrates the structure of
the algorithm on the left. The nodes represent blocks of
code and the edges represent transfer of control. In this
example, the shaded node corresponds to the if condition
(hence there are two possible exits) and the striped one
to the while condition. The blank nodes correspond to
the blocks of assignment statements and the final print
statement. Note that this notation is not conventional but
is merely used here for illustrative purposes—normally
all nodes are blank. When testing a program it is valuable
to consider the number of potential paths, or routes,
through the program as this provides a different focus
from the input domain. If it is possible to test all the
paths through the program, then this can provide a
level of confidence in the behavior of the program as
every possible route will have been tried. In the GCD
example, it might be tempting to think that there are
two paths—one which takes one of the branches from
the if-statement and then iterates around the while loop
before finishing, and the other which takes the previously
unexplored other if-statement branch (what it does after
that is irrelevant). However, this is not the case. The key
to the problem is the while-loop. The values of a and b
are updated on every iteration of the while loop and so
their values after one iteration are going to be different
to their values after two iterations, or three. . . . For this
reason, paths which differ only in the number of times
they iterate around a loop are considered to be distinct.
So, in the GCD example the number of paths is not 2, but
constrained only by the range of the input values.

To illustrate how easily this number of paths becomes
unmanageable, consider the simple example of a program
to process a test mark for up to 10 students and catego-
rize the result as one of A, B, C, D, or E. This could
be represented by the flowchart-like directed graph be-
low. One branch is required for each category of result
and the return branch for the loop is executed up to nine
times.

P1: GTV Final Pages

Encyclopedia of Physical Science and Technology EN015J-859 August 2, 2001 11:35

Software Testing 43

The number of paths through this program is calculated
by:

n+1∑

i=1

xi ,

where n is the maximum number of loop iterations (9) and
x is the number of branches or decisions within the loop
(5). This gives approximately 12.4 million paths! Once
again this is an intractable problem.

II. DEVELOPMENTS IN TESTING

A. The Problem of Extrapolating
from Observations

Given the problems described, it should be clear that test-
ing software is an extraordinarily difficult task and one
which is quite unrelated from the role that testing takes in
other disciplines. To take a trivial example, a new mixture
of concrete might be tested by subjecting blocks of it to
various extremes of pressure, temperature etc. and its be-
havior at these limits allows for extrapolation over a range
of other, less stressful, conditions. Enough is known about
the material and the way in which it is constructed to be
able to reason about these extrapolations with a degree
of confidence. Software is very different in this respect.
Not enough is known about the way the software is con-
structed and executed to be able to generalize from a test
case—the GCD program might produce the correct (or
incorrect!) answers for the values (12,34) but it is not pos-
sible to conclude anything about what it might produce
for the values (11,34), (12,35), or (85920,84053). Admit-
tedly, formal verification is the one exception to this, but
this requires languages to be constrained and the presence
of trusted compilers and execution platforms before it can
be applied. Additionally, it is an expensive process, which
makes it only feasible for small portions of safety-critical
code.

The implications previously described are very serious
since it means that looking for faults in software really
is like searching for a needle in a haystack. A significant
amount of effort can be put into the construction and ex-
ecution of test cases, but it is all too easy for these to
leave faults unexposed because the particular combina-
tion of test data that would have revealed them was not
chosen.

B. The Development of Testing Methods

This problem led to the rise of the testing methods and
techniques as ways of trying to make the selection of test
data more likely to detect faults. For example, the tech-
nique of equivalence partitioning (see Section IV.C) de-
liberately tries to improve the extrapolation of results by
requiring the tester to identify a set of data which, accord-
ing to the specification, is treated identically. Once this
set is identified then it is necessary to choose only one
element from this set because the results of this test can
be extrapolated over the whole set. This strategy helps
to reduce the overall number of tests, prevents the tester
from choosing redundant tests, and allows them to con-
clude more from the results. However, the identification
of the input partition is informal and based purely on the
specification and there is no formal analysis of the im-
plementation of this partition. Consequently, there is al-
ways a chance that the hypothesis behind the technique is
flawed. Other techniques such as boundary-value analysis
or cause-effect graphing are based upon similar reasoning
(that faults might typically lie at the boundaries of ranges
or be revealed by particular combinations of data).

The approaches described here all fall into the general
category of black box or functional testing. In other words,
the software under test is treated like a black box, sup-
plied with inputs, and its outputs observed. No attention
is paid to the way the software has been constructed and
so large portions of the software might go untested and
be implemented in a way that is quite different from what
the tester might expect from reading the specification. To
complement this a set of techniques based upon the struc-
ture of the code was developed (and termed structural or
white/glass box). These techniques focus on structural el-
ements which are not so much good things to test (in the
sense that in so doing is likely to reveal faults), but bad
things not to test. For example, one of the most modest
and intuitive is statement testing which requires that every
statement in the source code be executed at least once. The
rationale behind this is that leaving a statement untested
is a very uncomfortable thing to do. Of course, the mere
act of executing a statement is no guarantee that any fault
contained within it is going to be revealed. It also has

P1: GTV Final Pages

Encyclopedia of Physical Science and Technology EN015J-859 August 2, 2001 11:35

44 Software Testing

to be executed with the data that are going to reveal the
fault. To pick a simple example, the statement x=x+x
is indistinguishable from the statement x=x∗x if only
tested on the values 0 and 2 for x. It is only when other
data such as 3 or −1 are used that they calculate differ-
ent results and it becomes clear that maybe one should
have been used in place of the other. It is also easy to
see other limitations of statement testing. For example, if
there is a compound condition such as if (x<3 and
y==0.1) statement testing will not require that the sub-
conditions within this are thoroughly tested. It is sufficient
just to choose values that will cause any subsequent depen-
dent statements to be executed (such as x = 2 and y = 0.1,
and x = 4 and y = 0.1). For reasons such as this stronger
structural coverage techniques were introduced based on
elements such as compound conditions or the flow of data
within the program (see Section IV.B, which also explains
the important development of perceiving coverage tech-
niques as adequacy criteria). However, the stronger tech-
niques were devised to address loopholes in the weaker
techniques, but still have loopholes themselves.

There is another important factor to note at this point.
It is naturally tempting to think of the more demanding
testing techniques as being more likely to reveal faults.
This is only the case if the data used for the more demand-
ing technique are built upon and subsume that of the less
demanding technique (for example, a set of data might be
created to achieve statement coverage which is then aug-
mented to achieve a higher level of coverage). If, however,
the data sets are created independently then the situation
can arise where, by chance rather than design, the data to
achieve statement testing might reveal a fault which the
data to achieve the higher level of coverage did not. This
raises the issue of the relationship between techniques and
external attributes such as reliability or, more nebulously,
quality. For the reasons just discussed this relationship is
by no means simple or well defined. Work in this area has
produced some interesting results. For example, compar-
isons between partition testing (any criteria that divides up
the input domain in some way—such as statement testing
or branch testing) and random testing found partition test-
ing to be generally preferable, but also discovered some
situations where random testing was superior! This is an
active area of research.

C. The Impact of Technologies

This general overview has indicated that there is quite
some way to go before a general, effective, and predictable
testing strategy is in place for even relatively straightfor-
ward imperative single-user systems. Given that software
development technology is moving at an astonishing pace,
what is the lesson for developers of, for example, dis-

tributed systems, real-time systems, e-commerce systems,
web sites etc.? And what about the impact of the dazzling
array of implementation technologies that can be used?
Most research and development in the area of testing has
concentrated on vanilla, imperative systems, with an occa-
sional nod in the direction of the other technologies men-
tioned. Recently there has been a much greater focus on
object-oriented systems, but this has appeared long after
the technology itself became popular.

A paradigm shift such as the significant move to object-
oriented programming as the primary means of develop-
ing software has a significant impact on what is known
and assumed about testing strategies. For example, object-
oriented systems consist of networks of communicating
objects, each with their own encapsulated data that are ac-
cessed and manipulated by (typically) quite small meth-
ods. The structure of an object-oriented system is very
different from that of an imperative system and conse-
quently the structurally based testing strategies are not
so obviously applicable. Traditional imperative systems
are typically composed of modules that contain proce-
dures or functions of reasonable structural complexity.
Methods in object-oriented software on the other hand
tend to be much simpler (and hence focusing on struc-
tural tests is not likely to have the same benefits) but usu-
ally exhibit a much greater interaction with other objects.
For this reason the focus of testing has to shift and new
strategies have to be developed. For example, in object-
oriented systems there is a much greater emphasis on
state-based testing than might tend to appear in imperative
systems.

III. A GENERAL STRATEGY FOR TESTING

Obviously it is unreasonable to suggest that, just because
what is formally known about testing is currently scant,
software should not be tested. Pragmatically this cannot
be allowed to happen—software must be tested. Although
there is not one recommended over-arching strategy, there
is general agreement that testing which is focused on par-
ticular properties of the software is likely to be far more
effective than that which tries to test the software with no
particular goal in mind (other than the general behavior of
the software). The testing strategy is then a reflection of
the property being tested. For example, timing properties
might be tested by focusing on data which exercised par-
ticular hot-spots within the software, whereas reliability
properties would use data which were derived from likely
usage patterns of the software. A consequence of this ap-
proach, and acknowledging the limitations of testing it-
self, is that some (many!) tests are going to be omitted.
This omission should be done in a calculated risk-based

P1: GTV Final Pages

Encyclopedia of Physical Science and Technology EN015J-859 August 2, 2001 11:35

Software Testing 45

fashion, as opposed to arbitrarily missing out those tests
for which there was not enough time. A final note should
be the emphatic statement that testing should not be relied
on as the only means of ensuring good quality software—
the complexity of the software construction activity means
that every stage of development has a vital role to play and
a poor product cannot be rescued by rigorous testing.

IV. TERMINOLOGY AND TECHNIQUES

There are a plethora of terms and techniques used within
the software testing domain. This section aims to intro-
duce the primary ones categorized according to techniques
(structural or functional) or area of application.

A. Testing in the Software Development
Life Cycle

There are distinct strategies used within the development
life cycle that reflect the focus of testing at that particular
stage.

1. Unit Testing. The act of testing the smallest piece of
software in the system. This is typically the smallest
independently compilable component and may
correspond to elements such as a module or a class,
depending on the type of software being tested. This
is very often the focus of the structural and functional
techniques described later.

2. Integration Testing. The process of joining together
individual modules or components to form a
complete system and determining that they
communicate correctly and do not demonstrate any
adverse collective behavior (for example, in the form
of undesirable side-effects as a result of manipulating
global data or interacting incorrectly). There are a
number of different strategies to integration testing:
� Top-Down—Which concentrates on building the

top-level shell of the system first and moving toward
integrating the lower-level modules later. Until they
are integrated, lower-level modules have to be
replaced by stubs—modules which take the place of
the called modules to allow the higher level ones to
be tested. These stubs have the same interface as the
lower level modules but only a fragment of their
functionality and are replaced with the real modules
as the integration process progresses.

� Bottom-Up—The opposite of top-down, which
pulls together the lower-level modules first and
works its way up to the outer layer of the system.
This strategy requires the construction of drivers
(the opposite of stubs)—modules that take the place
of the calling modules and which have the role of

invoking the lower-level modules, but again without
the full range of functionality. Similarly to stubs,
these are replaced by the real modules as the
integration process works its way up the system.

� Sandwich—An “outside-in” approach that
combines the top-down and bottom-up strategies.

� Big Bang—The simultaneous integration of all
modules in one go.

� Builds—Modules are integrated according to
threads of functionality. That is, all the modules in a
system which implement one distinct requirement
(or use-case) are pulled together. This proceeds
through the set of requirements until they have all
been tested. In this approach a module might find
itself being integrated several times if it participates
in many requirements.

A strategic approach is valuable in integration as a
means of identifying any faults that appear. At this
stage, faults are going to be the result of subtle
interactions between components and are often
difficult to isolate. A strategy assists this by focusing
the tests and limiting the number of modules that are
integrated at any one phase. The big-bang strategy is
the obvious exception to this and is only a feasible
strategy when a system is composed of a small
number of modules. The actual strategy chosen will
often be a function of the system. For example, in a
an object-oriented system the notion of “top” and
“bottom” often does not exist as such systems tend to
have network rather than hierarchical structures and
so a threaded strategy based upon builds is a more
natural choice. In contrast, systems designed using
more traditional structured analysis techniques
according to their flow of data will often display a
distinct hierarchy. Such systems are more amenable
to the application of top-down (if the priority is on
establishing the outward appearance of the system) or
bottom-up (if the behavior of the lower-level data
gathering modules is considered important)
strategies.

3. System Testing. A level of testing that is geared at
establishing that the functionality of the system is in
place. This would often be based around a high-level
design of the system. System testing will often
involve analysis of other properties of the system by
using techniques such as:
� Performance Testing—Which examines the

system’s ability to deal efficiently with the demands
placed upon it, for example, by focusing on the
response time of the system under various loads or
operating conditions

� Stress Testing—The activity of determining how
the system deals with periods of excessive demand

P1: GTV Final Pages

Encyclopedia of Physical Science and Technology EN015J-859 August 2, 2001 11:35

46 Software Testing

(in terms of transactions, for example) by
overloading it for short periods of time

� Volume Testing—The operation of the system at
maximum capacity for a sustained period of time

� Configuration Testing—The execution of the
system on different target platforms and
environments

4. Acceptance Testing. The highest level of tests
carried out to determine if the product is acceptable to
the customer. These would typically be based around
the requirements of the system and usually involves
the user. If there were many possible users, for
example when the product is being built for a mass
market, then the product would also be subjected to
alpha and beta testing:
� Alpha Testing—The idea of inviting a “typical”

customer to try the product at the developer site.
The ways in which the customer uses the product is
observed, and errors and problems found are noted
by the developers.

� Beta Testing—Usually performed subsequent to
alpha testing, a number of typical customers receive
the product, use it in their own environment and
then problems and errors are reported to the
developer.

5. Regression Testing. The process of retesting
software after changes have been made to ensure that
the change is correct and has not introduced any
undesirable side effects. Very often, the difficulty in
regression testing is in identifying the scope of the
change.

B. Structural Testing Techniques

Structural testing (or coverage) techniques are those that,
as the name suggests, are based upon the internal structure
of the software being tested (or at the very least, take into
consideration the way that the software has been built).
Structural testing approaches are often referred to as white
box or glass box. They are also sometimes referred to as
Adequacy Criteria which reflects the perception of test
data in terms of structural coverage criteria. For example,
for a given program, if a set of test data exercises all state-
ments then the set is described as being statement testing,
or statement coverage, adequate.

1. Statement Testing/Coverage. A level of test
coverage that requires every statement in the software
to have been executed

2. Branch Testing/Coverage. A level of test coverage
that requires the true and false outcomes of every
branch in the software to have been executed

3. Multiple Condition Coverage. A level of test
coverage that requires every combination of the
outcomes of sub-conditions within a compound
condition to be tested. For example, a compound
condition might take the form of ((a == b) and
(x < y)). Multiple condition coverage would required
four tests—one where both (a == b) and (x < y) are
true, one where (a == b) is true and (x < y) is false,
and so on. In between multiple condition coverage
and branch coverage is a variety of other coverage
levels which focus on the individual subconditions
but do not exercise every combination and so might
fail to achieve branch coverage.

4. Mutation Testing. A testing strategy based around
deliberately introducing faults into a system and then
determining the effectiveness of test data by
measuring how many of these faults it detects. The
faults introduced are typically small (changes to
operators, variables, or constants), and mutation
testing is based on the assumption that data that
detect these small faults are also going to be effective
at detecting bigger ones. In practice a large number of
mutants are created automatically, each containing
one fault.

5. Data Flow Testing. A testing strategy that is based
on the way that data contained within variables is
manipulated within a program. In contrast to other
structural testing strategies which use control flow
information to determine test criteria, data flow
testing looks at the way that variables are used.
Variables are categorised as being defined (assigned
some value) or used (referenced in some way). The
essence of data flow testing is to exercise all possible
pairs of definition and usage (i.e. ways in which
variables can be given values which can be
subsequently referenced). Within the broader strategy
of data flow testing are a number of less demanding
strategies that, for example, focus on a subset of
variable contexts, but still follow the same principles.
The rationale for the strategy is that it mirrors the
likely data usage patterns within the program.

6. State-Based Testing. A technique that focuses on
identifying all the possible distinct states within a
module. It is often employed when testing individual
objects (the localized maintenance of state being one
of the central tenets of object-orientation) or other
systems that implement state machines.

C. Functional Testing Techniques

Functional testing techniques ignore the way that the soft-
ware has been constructed and support the generation of

P1: GTV Final Pages

Encyclopedia of Physical Science and Technology EN015J-859 August 2, 2001 11:35

Software Testing 47

data that is based upon the specification, or some other ex-
ternal description of the software. As the name suggests,
their focus is to help establish that the software correctly
supports the intended functions. They are frequently re-
ferred to as black box techniques.

1. Equivalence Partitioning. The mechanism whereby
classes of input data are identified from the
specification on the basis that everything within this
partition is treated identically according to the
specification. Having identified such partitions it is
only necessary to choose one test for each partition
since the underlying assumption is that all values are
treated the same. It is also recommended that data
falling outside the partition also be chosen. In
addition, the partitioning of the output domain should
also be considered and treated in a similar way.

2. Boundary Value Analysis. Having identified the
equivalence partitions, boundary value analysis is a
technique that encourages the selection of data from
the boundary of the partition on the basis that it is
more likely that errors will have been made at this
point. Data values should be chosen as close as
possible to each side of the boundary to ensure that it
has been correctly identified.

3. Cause-Effect Graphing. A technique that attempts
to develop tests that exercise the combinations of
input data. All inputs and outputs to a program are
identified and the way in which they are related is
defined using a Boolean graph so that the result
resembles an electrical circuit (the technique has its
roots in hardware testing). This graph is translated
into a decision table in which each entry represents a
possible combination of inputs and their
corresponding output.

4. Category-Partition Testing. This attempts to
combine elements of equivalence partitioning,
boundary value analysis, and cause-effect graphing
by exercising all combinations of distinct groups of

values of input parameters. The method identifies the
parameters of each “function” and, for each
parameter, identifies distinct characteristics termed
“categories.” The categories are further subdivided
into “choices” in the same way to equivalence
partitioning, and any constraints operating between
choices are then identified. Finally, test cases are
generated which consist of the allowable
combinations of choices in the categories.

SEE ALSO THE FOLLOWING ARTICLES

DATA STRUCTURES • REQUIREMENTS ENGINEERING •
SOFTWARE ENGINEERING • SOFTWARE MAINTENANCE

AND EVOLUTION • SOFTWARE RELIABILITY

BIBLIOGRAPHY

Adrion, W. R., Branstad, M. A., and Cherniavsky, J. C. (1982). “Valida-
tion, verification and testing of computer software,” ACM Computing
Surv. 14(2), 159–192.

Beizer, B. (1990). “Software Testing Techniques,” Van Nostrand
Reinhold.

Hamlet, R. (1988). “Special section on software testing (Guest Edito-
rial),” Commun. ACM 31(6), 662–667.

Hamlet, R. (1992). “Are We Testing for True Reliability?” IEEE Software
9(4), 21–27.

Harrold, M. J. (2000). Testing: A roadmap. In (A. Finkelstein, ed.), “The
Future of Software Engineering,” ACM Press, New York.

Ould, M. A., and Unwin, C. (eds.) (1986). “Testing in Software Devel-
opment,” Cambridge University Press.

Roper, M. (1993). “Software testing: A selected annotated bibliography,”
Software—Testing, Verification and Reliability 3(2), 135–157.

Roper, M. (1994). “Software Testing,” McGraw-Hill.
Software Testing Online Resources (STORM MTSU)http://www.mtsu.

edu/∼storm/
Zhu, H., Hall, P. A. V., and May, J. H. R. (1997). “Software

unit test coverage and adequacy,” ACM Comput. Surv. 29(4),
366–427.

http://www.mtsu.edu/~storm/
http://www.mtsu.edu/~storm/

P1: GTV/GVX P2: GQT/LPQ QC: FYD Final Pages Qu: 00, 00, 00, 00

Encyclopedia of Physical Science and Technology EN017B-860 August 2, 2001 19:22

WWW (World Wide Web)
Mike Jackson
University of Wolverhampton

I. The History of the Web
II. The Way the Web Works

III. Technologies That Make the Web Work
IV. Summary

GLOSSARY

Client A device that requests a service from a remote
computer.

Internet An internet is a collection of networks con-
nected together. The Internet is a global collection of
interlinked networks. Computers connected to the In-
ternet communicate via the Internet Protocol (IP).

Internet Protocol A protocol that was designed to pro-
vide a mechanism for transmitting blocks of data called
datagrams from sources to destinations, where sources
and destinations are hosts identified by fixed length
addresses.

Protocol A description of the messages and rules
for interchanging messages in intercomputer comm-
unication.

Server A device (normally a computer) that provides a
service when it receives a remote request.

TCP Transmission control protocol. A protocol that pro-
vides reliable connections across the Internet. Protocols
other than TCP may be used to send messages across
the Internet.

TCP/IP Transmission control protocol implemented on
top of the Internet protocol. The most commonly used
protocol combination on the Internet.

FOR MANY PEOPLE the World Wide Web is the pub-
lic face of the Internet. Although the majority of network
traffic is still devoted to electronic mail, most people visu-
alize a Web page when they try to portray the Internet. The
Web has done much to popularize the use of the Internet,
and it continues to be one of the enabling technologies in
the world of e-commerce.

The World Wide Web (WWW) is a mechanism for
making information stored in different formats available,
across a computer network, on hardware from a variety of
hardware manufacturers. At the present time (Fall 2000)
the hardware is normally a computer; however, in future
devices such as mobile phones will be increasingly used
for displaying information obtained via the Web. It is in
the spirit of the Web that the information can be accessed
and displayed by software that can be supplied by a vari-
ety of software suppliers, and that such software should be
available for a variety of operating systems (ideally every
operating system one can name). A further aim is that the
information can be presented in a form that makes it suit-
able for the recipient. For example, whereas information
might appear to a sighted person in the form of a text docu-
ment, a visually impaired person might be able to have the
same information read to them by the receiving device. A
similar mechanism could be used by someone working in

 875

P1: GTV/GVX P2: GQT/LPQ QC: FYD Final Pages

Encyclopedia of Physical Science and Technology EN017B-860 August 2, 2001 19:22

876 W W W (World Wide Web)

an environment that required them to observe something
other than a display screen.

I. THE HISTORY OF THE WEB

The content of the Web consists of the contributions of
anyone who creates a page and mounts it on a Web server;
however, the ideas behind the architecture that makes this
possible are generally accredited to a single person, Tim
Berners-Lee. Berners-Lee is an Englishman who gradu-
ated in 1976 from Queens College Oxford with a degree
in physics. In 1980 he began to work as a software consul-
tant at CERN, the European Particle Physics Laboratory
in Geneva. During this spell at CERN he wrote a program
called Enquire. The purpose of Enquire was to track the
software that existed at CERN: who wrote which program,
what machine a program ran on, and so on. Information in
Enquire was stored on pages, and pages were connected by
bidirectional links. The software associated with Enquire
made it possible to browse the information by following
links from page to page. Links could address information
within the same file as well as in external files. Enquire
ran on a stand-alone computer (a Norsk Data) and had no
facilities for exploiting network links. When Berners-Lee
left CERN after 6 months, the original version of Enquire
was lost.

After working on intelligent printer software, Berners-
Lee applied for a fellowship with CERN and became
part of its data acquisition and control group. CERN at
this time had a huge collection of disparate hardware
and software. Despite this disparity within the organiza-
tional infrastructure, scientists working there still needed
to collaborate. Attempts at collaboration that required ev-
eryone to standardize on particular platforms failed dis-
mally. Berners-Lee identified the need for a system similar
to Enquire, which could operate on any of the available
platforms within a networked environment. This software
would enable the external hypertext links in the original
Enquire program to span network connections. Such a sys-
tem would need to be completely decentralized so that its
users could obtain information without having to obtain
passwords or permissions.

Berners-Lee approached his manager Mike Sendall for
permission to develop his idea. He was told to write a pro-
posal for the project. This was finished in March 1989 and
was entitled “Information Management: A Proposal.” The
proposal was not initially greeted with great enthusiasm,
but eventually Berners-Lee was given permission to de-
velop the system, and a NeXT computer was purchased
to assist in its development. Work commenced in Octo-
ber 1990. At this point the system was christened “The
World Wide Web.” At around the same time the original

proposal document was rewritten with the help of Robert
Cailliau. The revised proposal was entitled “Proposal for
a HyperText Project.”

Berners-Lee and a number of others began to develop
software that demonstrated the basic principles of the
World Wide Web. By May 1991 the Web was on gen-
eral release across CERN. In August 1991 the software
was made publicly available on the Internet. Many peo-
ple outside of CERN began developing the software tools
necessary to construct and deliver Web pages. A major
breakthrough occurred in February 1993 with the release
of the alpha version of Mosaic, a piece of software for
viewing Web pages (a browser) written by NCSA’s Marc
Andreessen. Initially this was only available for the Unix
operating system, but by September 1993 versions for Mi-
crosoft Windows and the Apple Macintosh were down-
loadable across the Internet. It was the availability of this
program that helped to popularize the Web.

The first international Web conference was held in May
1994, and the World Wide Web Consortium (W3C) was
founded in December of the same year. W3C continues to
coordinate the development of new standards for the Web
with Berners-Lee as its director.

Since 1994 the Web has experienced phenomenal
growth. It would be foolish in a description of the Web
such as this to estimate its size. Any estimation would al-
most certainly turn out to be too low and would anyway
be hopelessly out of date within 6 months. The Web is
now truly worldwide. Software for viewing Web content
is freely available and normally supplied as standard with
most computers. Software for serving Web pages is also
generally available either as a free download or at a price
from major software suppliers. The Web features in the
plans of most commercial companies either as a platform
for advertising or as a mechanism for direct selling. Its ex-
istence has fueled significant interest in what has come to
be known as e-commerce, and a number of multimillion-
dollar companies have come into existence simply because
the Web is there to be exploited.

II. THE WAY THE WEB WORKS

The prerequisite that enabled the creation of the Web was
the existence of the Internet. It was Tim Berners-Lee’s
aim in creating the Web to place information on any com-
puter in a network and make it available on any other
computer connected to that network. The computers could
have different hardware architectures and different oper-
ating systems. In 1989 when the Web was first conceived,
it was clear that the Internet with its TCP/IP protocols was
capable of connecting heterogeneous hardware executing
heterogeneous software. The Web was therefore built on

P1: GTV/GVX P2: GQT/LPQ QC: FYD Final Pages

Encyclopedia of Physical Science and Technology EN017B-860 August 2, 2001 19:22

WWW (World Wide Web) 877

top of facilities provided by Internet software. The addi-
tional software that is necessary for the creation of a web
falls into two categories: servers and browsers.

In the Web any number of computers may run server
software. These machines will have access to the infor-
mation that is to be made available to users of the Web.
Web server software normally executes permanently on
server machines (it is only possible to request information
while server software is executing). The purpose of such
server software is to listen for requests for information
and, when those requests arrive, to assemble that informa-
tion from the resources available to the server. The infor-
mation is then delivered to the requestor. A machine that
is connected to a network via the Internet protocol TCP
(Transmission Control Protocol) sees the network as a col-
lection of numbered ports. A message may arrive on any of
these ports. Programs may attach themselves to a port (by
specifying its number) and then listen for requests. The
port normally used by a Web server is port 80 (although
it is possible to use other ports). Requests for Web pages
are therefore normally directed to port 80 of a machine
known to be operating Web server software. The owners
of Web sites (Webmasters) typically register an alias for
their machines that makes it clear that they are open to
requests for Web pages. Such aliases often begin with the
character string www, as in www.scit.wlv.ac.uk. Numer-
ous different types of Web server software are available.
The most popular Web server software, such as Apache
and Microsoft’s Internet Information Server (IIS), is either
freely downloadable from the Internet or else bundled with
an operating system. Web servers that perform specialized
tasks in addition to delivering Web-based information can
be purchased from a variety of software suppliers. Most
hardware/software platforms have at least one Web server
product available for them.

Information available via the Web is delivered to the
user via a browser. Browser software runs on client ma-
chines. A browser makes a request to a server and, when
the relevant information arrives, presents it to the user
(Fig. 1). The common conception of a browser is of a piece
of software with a graphical user interface (GUI) capable
of displaying pictures and playing sound. In fact the orig-
inal concept of a browser was never intended to be so
limited. A browser is simply a software product that can
request information from a Web server and then present
that information in a way that is suited to the recipient of
that information. The original browser developed by Tim
Berners-Lee made use of features of the NeXT platform,
which were quite advanced (in 1990), and was indeed GUI
based. At the same time, however, it was also recognized
that not all Web client machines would be so advanced,
and therefore a text-only browser was developed. From
the beginning, the Web was intended to be available to the

FIGURE 1 The way the Web works.

world, and therefore browsers for the visually and aurally
challenged were envisaged. W3C continues to reflect this
concern via its Web accessibility initiative. This vision of
the use of a browser has resulted in many misunderstand-
ings by those people who wish to provide information
via the Web. Many people assume that the Web works
in a WYSIWG (What You See Is What You Get) fashion.
Collators of Web information therefore sometimes believe
that the information transmitted will be received in exactly
the same form in which it was constructed. This is not,
and was never intended to be, the case. Another original
aim for browser software was that it should be capable
of creating Web content. This aim was not realized in the
early commonly available browsers (although it was a fea-
ture of Berners-Lee’s original browser on the NeXT plat-
form); however, some later browser software has incor-
porated page editing functionality. Like servers, browsers
are available for a wide variety of hardware/software com-
binations. The most widely used are Microsoft’s Internet
Explorer and Netscape Communication’s Communicator.
Some browsers (for example, Lynx) cater for computer
terminals that do not provide graphical output. There are
also browsers designed for hand-held computers.

The role of a browser is to request information from
a server. This request can take two forms. The user of a
browser can explicitly request a given piece of informa-
tion on a given Web server. Alternatively, the user of the
browser may request information that is referenced in the
information they have already obtained from the same or
another server. This second type of access makes use of a
hypertext link. Ted Nelson invented the term “hypertext”
in 1965. It refers to a document that contains links to re-
lated documents in appropriate places in the text. If a link
is followed, it will lead to another document that expands
on the issues raised by the document containing the link.

www.scit.wlv.ac.uk

P1: GTV/GVX P2: GQT/LPQ QC: FYD Final Pages

Encyclopedia of Physical Science and Technology EN017B-860 August 2, 2001 19:22

878 W W W (World Wide Web)

This allows a reader to approach a topic in a nonsequential
manner that is said to be similar to normal human thought
patterns. Web documents may contain links to other doc-
uments, and by selecting these links a user can access
(or browse) other related material. In this second type of
access each link contains information about identifying
a particular piece of information on a particular server.
As with explicit requests, it is the task of the browser to
contact the server (usually on port 80) and request the
information that has been cited.

III. TECHNOLOGIES THAT MAKE
THE WEB WORK

In order to make the Web work in the way described
above, Berners-Lee needed to develop three key elements
that would build on top of the features already provided
by the Internet. In his book Weaving the Web, he ranks
these in the following order: Universal Resource Identi-
fiers (URIs), HyperText Transfer Protocol (HTTP), and
HyperText Mark-up Language (HTML).

If the Web is to function at all, there must be some way
to uniquely specify a document located anywhere on the
Internet. This is achieved through a URI. In essence, the
URI naming scheme makes it possible for every item on
the Web to have a unique name. Such a naming scheme
must also include a technique for identifying the server
on which a document is located. Given this, the user of a
browser obtains documents by either explicitly entering a
URI or by invoking a link that has a URI built into it.

All communication relies on the existence of sets of
rules or protocols that govern what form the communica-
tion may take and how it will be understood. Computer
communication generally requires a very tightly defined
rule set. The transmission control protocol (TCP), which
is universal across the Internet, defines how data is reli-
ably transmitted and received by Internet hosts. It does not
define how those hosts manipulate the data they send or re-
ceive. The Web requires a mechanism whereby a browser
can request a document and a server can deliver it. This
type of interchange will also require a server to reply that
a document (for a variety of reasons) is unavailable. The
protocol that enables such interchanges is HTTP. This was
built on top of the Internet’s TCP protocol (it was, however,
designed to be compatible with other similar protocols).

The original concept of the Web was that all types of
documents should be available on it. This is achievable,
but it presents some problems. It is clearly unreasonable
to expect a browser to be able to display all the different
file formats that already exist and all the new formats that
might exist in the future. In addition, the majority of the
documents on the Internet will not contain links to other

documents, i.e., they will not be hypertext documents. In
order to realize the aims of the Web, it was therefore nec-
essary to create a type of document that could be rendered
by every browser (and hence become the lingua franca
of the Web). It was also important that such a document
could contain hypertext links to other documents, in a
sense gluing the Web together. The language created by
Berners-Lee to achieve these goals was called HTML.

These three innovations are described in detail in the
next sections.

A. Universal Resource Identifier (URI)

What is currently meant by the term URI is a matter of
debate. Rather than stating what a URI is, it is easier to say
what it was originally meant to be and what it has become.
The purpose of a URI is to uniquely identify any docu-
ment on the Web. For this reason Berners-Lee originally
called it the Universal Document Identifier. The idea was
presented to the Internet Engineering Task Force (IETF)
with a view to standardization. It was suggested during
discussions that the word uniform be used instead of uni-
versal. In addition, the IETF argued that Berners-Lee’s
implementation of a URI specified an address that might
be transient, so that the word locator was more appropriate
than identifier. Thus the term URL or Uniform Resource
Locator came into existence. A discussion of what a loca-
tor is can be found in IETF Request For Comments (RFC)
1736. (All Internet standards are defined in IETF Requests
for Comments.)

A statement of what is meant by a URI in the context of
the Web can be found in RFC 1630. This does not define
a standard for URIs, but it does say how they work on
the Web. It defines two types of URIs: Uniform Resource
Locators (URLs), which reference Web documents using
existing Internet protocols, and Uniform Resource Names
(URNs), which attach unique persistent names to Web
documents. The standard for URLs appears in RFC 2396.
A URN is assigned without reference to a resource’s In-
ternet address, URLs, in contrast, contain the address of
the Internet host on which the resource resides. Conse-
quently, a URL may become invalid if the resource to
which it refers is moved.

The idea of an URN is appealing as documents on the
Internet are often relocated to new servers. An organi-
zation may legitimately move its data from one server
to another. If it were possible to maintain a directory of
names that could associate a name with its location on the
Internet, then no Web links would be broken when data
was moved. In the URL mechanism, as we shall see, Inter-
net host addresses form part of the document address, and
therefore when a document is moved any links that refer-
ence that document become invalid. In practice, however,

P1: GTV/GVX P2: GQT/LPQ QC: FYD Final Pages

Encyclopedia of Physical Science and Technology EN017B-860 August 2, 2001 19:22

WWW (World Wide Web) 879

a satisfactory mechanism for implementing URNs has yet
to be implemented, and therefore for all practical purposes
all URIs in use are URLs. This description of the Web will
therefore concentrate on describing the nature of URLs.

URIs were designed to be extensible, complete, and
printable. The Web was created in order to be able to inte-
grate all the ways in which the Internet has been tradition-
ally used; for example, it is able to deal with connectionsl
to electronic mail and file transfer facilities. URIs had to
be capable of encompassing these and any future Inter-
net facilities. The mechanism for encoding a URI must
be capable of providing a representation for every legal
Internet address. Any URI may be represented as a set of
7-bit ASCII characters, making it possible to exchange all
URIs as written text on pieces of paper.

URIs consist of two parts, a scheme and a path. A
colon separates the scheme and the path in the written
URI. In the URI http://www.scit.wlv.ac.uk, the scheme
is http (hypertext transfer protocol) and the path is
//www.scit.wlv.ac.uk. The way in which the path is inter-
preted depends on the scheme in use. The most commonly
used URI schemes are listed in Table I. All the schemes
shown in Table I are normally referred to as URLs; the pre-
fix urn is reserved for future use when a Internet resource
naming mechanism comes into operation.

The way in which URLs reference the Internet can best
be seen by considering some examples of their use. For
example, the URL

mailto:someone@somehost.com

when expressed as a hyperlink and invoked by a user of a
browser, will initiate the sending of an electronic mail mes-
sage to the email address someone@somehost.com.

The http scheme is more complex. Again it can be ex-
plained by considering some examples. In these examples
the word “page” has been used to refer to a Web document.

The URL

http://www.scit.wlv.ac.uk

TABLE I URI Schemes and Their Associated
Protocol Types

Scheme prefix Type of access

http Hypertext transfer protocol

ftp File transfer protocol

gopher Gopher protocol

mailto Electronic mail address

news Usenet news

telnet, rlogin, tn3270 Interactive terminal session

wais Wide area information servers

file Local file access

refers to the “home” page of the Web server with the Inter-
net address www.scit.wlv.ac.uk. As a port number
is not explicitly specified, it will be assumed to be listening
on the standard Web server port, port 80.

The URL

http://www.scit.wlv.ac.uk:8000

refers to the “home” page of a Web server located with
the Internet address www.scit.wlv.ac.uk, which is
listening on port 8000.

The URL

http://www.scit.wlv.ac.uk/myfile.html

refers to something called myfile.html that is accessible
by the Web server listening on port 80 with the address
www.scit.wlv.ac.uk. Most likely this will be a file
containing HTML, but it may in fact turn out to be a di-
rectory or something else. The exact nature of what is
returned by the server if this link is followed will depend
of what myfile.html turns out to be and the way the server
is configured.

The URL

http://www.scit.wlv.ac.uk/∼cm1914

refers to the home page of user cm1914 on the ma-
chine with address www.scit.wlv.ac.uk. The full
file name of such a page will depend on the server
configuration.

The URL

http://www.scit.wlv.ac.uk/mypage.
html#para4

refers to a fragment within the page referenced by
http://www.scit.wlv.ac.uk/mypage.html
called para4.

The URL

http://www.scit.wlv.ac.uk/phonebook?
Smith

references a resource (in this case a database) named
phonebook and passes the query string “Smith” to that
resource. The actual document referenced by the URL is
the document produced when the query “Smith” is applied
to the phonebook database.

One important aspect of the definition of URIs (which
featured in the original RFC) is a mechanism for speci-
fying a partial URI. This allows a document to reference

www.scit.wlv.ac.uk
http://www.scit.wlv.ac.uk:8000
www.scit.wlv.ac.uk
http://www.scit.wlv.ac.uk/myfile.html
www.scit.wlv.ac.uk
http://www.scit.wlv.ac.uk/%EF%BD%9Ecm1914
http://www.scit.wlv.ac.uk
mailto:someone@somehost.com
http://www.scit.wlv.ac.uk
http://www.scit.wlv.ac.uk/mypage.html#para4
http://www.scit.wlv.ac.uk/mypage.html
http://www.scit.wlv.ac.uk/phonebook?smith
http://www.scit.wlv.ac.uk/mypage.html#para
http://www.scit.wlv.ac.uk/phonebook?smith
www.scit.wlv.ac.uk

P1: GTV/GVX P2: GQT/LPQ QC: FYD Final Pages

Encyclopedia of Physical Science and Technology EN017B-860 August 2, 2001 19:22

880 W W W (World Wide Web)

another document without stating its full URI. For exam-
ple, when two documents are on the same server, it is not
necessary to specify the server name in a link. This makes
it possible to move an entire group of interconnected doc-
uments without breaking all the links in those documents.

The examples just given have demonstrated how URIs
can be used to provide links to any resource on the In-
ternet. As new resources become available, new schemes
are proposed and the debate over the implementation of
URNs continues. W3C operates a mailing list on the topics
of URIs in order to support these developments.

B. HyperText Transfer Protocol (HTTP)

Tha basic architecture of the Web consists of browsers that
act as clients requesting information from Web servers.
Computer-to-computer communications are described in
terms of protocols, and Web interactions are no excep-
tion to this rule. In order to implement the prototype Web,
Berners-Lee had to define the interactions that were per-
missible between server and client (normally a browser,
but it could in fact be any program). The HyperText Trans-
fer Protocol (HTTP) describes these interactions. The ba-
sis of the design of HTTP was that it should make the
time taken to retrieve a document from a server as short
as possible. The essential interchange is “Give me this
document” and “Here it is.”

The first version of HTTP was very much a proof of
concept and did little more than the basic interchange.
This has become known as HTTP/0.9. The function of
HTTP is, given a URI, retrieve a document corresponding
to that URI. As all URIs in the prototype Web were URLs,
they contained the Internet address of the server that held
the document being requested. It is therefore possible to
open a standard Internet connection to the server using
TCP (or some other similar protocol). The connection is
always made to port 80 of the server unless the URI address
specifies a different port. HTTP then defines the messages
that can be sent across that connection.

In HTTP/0.9 the range of messages is very limited. The
only request a client may make is GET. The GET request
will contain the address of the required document. The
response of the server is to deliver the requested document
and then close the connection. In HTTP 0.9 all documents
are assumed to be HTML documents.

HTPP/0.9 is clearly not sufficient to meet the aspirations
of the Web. It was quickly enhanced to produce HTTP/1.0.
This protocol is described in RFC 1945. For the first few
years of the Web’s existence HTTP/1.0 was the protocol
in use. In July 1999 the definition HTPP/1.1 became an
IETF draft standard and the majority of commonly used
Web servers now implement it. HTTP/1.1 is described in
RFC 2616.

HTTP/1.0, like its predecessor, is a stateless protocol,
meaning that no permanent connection is made between
the client and the server. The sequence of events is always
as follows:

The browser connects to the server
The browser requests a resource
The server responds
The server closes the connection

This means that the behavior of neither the server nor the
browser is affected by previous requests that have been
made. This feature has had profound implications for some
types of Web access, for example, database access across
the Web, where the history of a transaction is important.

The format of an HTTP/1.0 message (request or re-
sponse) is as follows:

An initial line
Zero or more header lines
A blank line
An optional message body (e.g., a file, or query data, or

query output)

As in all Internet protocols a line is terminated by the
ASCII characters for carriage return (CR) and line feed
(LF), hexadecimal 0D and 0A. Therefore the blank line is
simply a CR followed by a LF.

The initial line specifies the nature of the request or
response. The header lines describe the information con-
tained in the initial line or in the message body. The mes-
sage body is used to hold data to be sent to the server or
received by the browser. If sent to a server it will typi-
cally contain query terms. If received by the browser it
will typically contain the data requested.

The content of the initial line will depend on whether
the message is a request or a response. If it is a request it
has the following format:

Method Request-URI HTTP-version

For example:

GET index.html HTTP/1.0

This asks the server to return the resource correspond-
ing to index.html and specifies that the protocol in use is
HTTP/1.0. Note that only the part of the URI that speci-
fies the resource is sent. The full URI would include the
server address, but as this is an interchange between a
given server and the browser it is not necessary to repeat
this. Similarly, if the hyperlink specifies a fragment of a
document (using the # notation described in the section
on URIs), this part of the URI is not passed to the server.

P1: GTV/GVX P2: GQT/LPQ QC: FYD Final Pages

Encyclopedia of Physical Science and Technology EN017B-860 August 2, 2001 19:22

WWW (World Wide Web) 881

TABLE II Methods Specified in the HTTP Protocol

Method
name Action

GET Requests a resource specified by a URI from a server.
The action of GET can be made conditional if
certain headers are supplied. If successful it
will result in a response which contains the
requested resource in the message body.

HEAD Similar to GET, except that if the request is successful
only the header information is returned and not the
resource. This could be used when a user requires
to know whether a resource exists but is not
interested in its content.

POST This is used to send data to the server. A typical use of
POST would be in a Web-enabled database system. In
this type of system the browser might display a form
in order to collect input data. The URI in this case
would specify a program that could take data from
the message body and insert it into the database. The
introduction of the POST method has been extremely
important in terms of making the Web interactive.

Where a fragment is requested, the browser acquires the
complete document and then displays the part of the doc-
ument corresponding to the fragment.

HTTP/0.9 supports the single method GET. HTTP/1.0
introduced two additional methods, HEAD and POST.
These are described in Table II.

The initial line of a response message from a server
(which will only be sent after a request has been made)
has the format

HTTP-Version Status-Code Reason-Phrase

For example:

HTTP/1.0 404 Not found

Here the client is informed that the resource it has re-
quested cannot be found on the server to which it has sent
a request. The status code was designed to be machine
readable and the reason phrase to be understandable by
humans. The format of the status code is Nxx, where N
indicates a general category of code. These categories are
shown in Table III.

The header fields in HTTP allow additional information
to be passed between the client and the server. The format
of a header line is:

Header name:value

For example:

From: MyEmailAddress@myhost.com

TABLE III HTTP Status Code Categories

Status code
category Meaning

1xx Informational

2xx The request was successfully carried out

3xx The request must be redirected in order to be satisfied

4xx The request cannot be carried out because of client error

5xx Server error; although the request appeared to be valid,
the server was unable to carry it out

This header could be inserted into a request to indicate the
email address of the user requesting the resource. Servers
can use headers such as this to gather usage statistics.

The set of permitted headers is defined in the protocol.
HTTP/1.0 defines 16 headers, whereas HTTP/1.1 defines
46 headers.

The most significant header to appear in HTTP/1.0 was
the Content-Type header. This header indicates the media
type of the message body. HTTP/0.9 made the assumption
that every document on the Web would contain HTML.
HTTP/1.0 makes provision for any type of document and
for the document type to be indicated by the Content-Type
header. A browser that receives a document from a server
can examine the Content-Type header to determine how
it should deal with the document. Browsers can normally
deal with plain text and HTML directly. If instead they
receive a file that has been produced by a word processor,
they can handle it by launching an appropriate “helper”
application. The Content-Type field will indicate which
application should be launched.

The introduction of this header was a significant step
in making it possible for a browser to successfully handle
files of any type. There still remains the problem, how-
ever, of defining a set of values for the header that can
identify the type of any Internet document. Fortunately, a
naming scheme for document types was defined in RFC
1521, which describes a mechanism known as Multimedia
Internet Mail Extensions (MIME). This proposal set up a
central registry of document types for the Internet. This
scheme is sufficient for indicating the type of any docu-
ment transmitted using HTTP, and therefore the Content-
Type header of a document is set to its MIME type. An
example of a Content-Type header is:

Content-Type: text/html

This indicates that the document transmitted has type text
and subtype html; in other words, it is an HTML document.
If the Content-Type header is

Content-Type: application/msword

P1: GTV/GVX P2: GQT/LPQ QC: FYD Final Pages

Encyclopedia of Physical Science and Technology EN017B-860 August 2, 2001 19:22

882 W W W (World Wide Web)

it indicates that the document received is in a format
that can be handled by the application program Microsoft
Word.

HTTP/1.0 was introduced to make the Web a reality.
This was the major design goal, and aspects such as effi-
cient use of network resources, use of caches, and proxy
servers were largely ignored. A public draft version of
HTTP that addresses these issues, HTTP/1.1, first ap-
peared in January of 1996. At the time of writing it is
nearing adoption as a formal Internet standard and is
described in RFC 2616. Many recently released servers
and browsers implement HTTP/1.1.

HTTP/1.1 is essentially a superset of HTTP/1.0.
HTTP/1.1 servers must continue to support clients who
communicate using HTTP/1.0. The most important addi-
tional features introduced in HTTP/1.1 are as follows:

� Clients may make a connection with a server and
without opening a further connection may request multiple
documents from that server. This gives a faster response
time, as opening a TCP connection imposes a significant
time overhead.

� Facilities are provided to enable clients to ensure that
data is only transmitted when the copy of a document sent
in response to a previous request is no longer the same as
the version on the server.

� A server can begin to send a page before its total
length is known. Many pages sent across the Web are gen-
erated on-the-fly. HTTP/1.1 allows faster response times
by permitting part of a response to be sent before the whole
response has been generated.

� A new mechanism allows multiple server names to
operate at the same Internet address. This makes more
efficient use of the finite number of Internet addresses.

� Additional methods include PUT, DELETE, TRACE
and CONNECT.

The existence of URIs makes it possible to address every
document on the Internet. HTTP provides a mechanism
whereby if a URI is given, the document represented by
that URI can be obtained from a remote server.

C. HyperText Markup Language (HTML)

The third technology necessary in order to construct the
World Wide Web was a document description language
in which URIs could be embedded. These then act as hy-
perlinks to local or remote documents. A number of pos-
sibilities existed at the time the Web was being created.
Berners-Lee, however, considered that all the existing op-
tions were too complex for representing hyperlinked doc-
uments suitable for display on nongraphical terminals. He
designed his own language, which was called HTML. This

language was based on the Standard Generalized Mark-up
Language (SGML) standard.

An important aspect of HTML is that it is readable by
humans as well as machines. Given an HTML document,
a human reader can make reasonable sense of it. A com-
puter can take the same source and display it in a way
suited to whatever output device is available. The outcome
of this requirement was that HTML is based on plain text.
A mechanism for describing the structure of plain text
documents already existed in the ISO standard (ISO stan-
dard 8879:1986) for SGML. SGML was widely accepted
by the Hypertext research community as an appropriate
platform for the description of hyperlinked documents.

SGML provides a mechanism to define a mark-up lan-
guage. Mark-up languages are plain text languages con-
taining textual tags that assign meaning to different parts
of the document. In languages developed from SGML,
tags are always surrounded by angled brackets (< and >).
Most tags occur in pairs, an opening tag and a closing tag.
For example, in HTML the beginning of a document title
is signified by the <TITLE> tag and the end of the title by
the </TITLE> tag. The <TITLE> tag is one of the simplest
types of tag; other tags may possess attributes. For exam-
ple, the anchor tag (<A>) in HTML may have a URL as an
attribute. One advantage of a mark-up language based on
SGML is, as outlined previously, that humans can read it.
In addition, SGML provides mechanisms whereby mark-
up languages can be quickly parsed and understood by a
computer.

A simple HTML example shown in Fig. 2 illustrates
how the language is used. Figure 2 lists the HTML found
in a simple Web page. Previously in this description of
the Web, the word “document” has been used to describe
a Web resource that may have been encoded in HTML
or another scheme. Web documents encoded in HTML
are generally referred to as pages. The terms will be used
interchangeably from now on.

The first two lines of the file shown in Fig. 2,

<!DOCTYPE HTML PUBLIC“-//W3C//DTD HTML 4.0
Transitional//EN”

“http://www.w3.org/TR/
REC-html40/strict.dtd”>

are required to meet the SGML requirement that files con-
taining mark-up should either contain the definition of the
mark-up scheme in use or indicate where the definition
can be found. Every SGML-based mark-up scheme has
a Document Type Definition (DTD). The DTD specifies
which tags must be used, which tags can be used, and
how those tags can be arranged (ordered and nested). The
file in Fig. 2 has been encoded using the tags defined in
the HTML 4.0 Transitional Recommendation from W3C.

P1: GTV/GVX P2: GQT/LPQ QC: FYD Final Pages

Encyclopedia of Physical Science and Technology EN017B-860 August 2, 2001 19:22

WWW (World Wide Web) 883

FIGURE 2 The contents of an HTML file describing a Web page.

A URL (http://www.w3.org/TR/REC-html40/
strict.dtd) that references the HTML 4.0 DTD
is provided. In this particular case a version of the
DTD that prohibits the use of deprecated tags has been
used.

The <HTML> tag that begins the actual HTML doc-
ument is matched at the end of the file by a </HTML>
tag. SGML requires that documents consist of a single
element enclosed within a pair of tags, and the <HTML>
and </HTML> tags serve this purpose. In SGML mark-up
schemes, wherever a tag pair is used to enclose some other
text, the closing tag will have the same name as the open-
ing tag prefixed by a ‘/’.

HTML documents have two sections: a head and a body.
The head contains information about the document that is
normally additional to that contained within the document.
The <HEAD> tag indicates the beginning of the head sec-
tion. This end of this section is indicated by the </HEAD>
tag. In the page shown in Fig. 2 the only information
given is the title of the document. This appears within the
<TITLE> and </TITLE> tags. The most commonly
used GUI browsers display the title of the page (which in
this case is “Simple HTML Page”) at the top of the browser
window, but this is not a mandatory requirement. Strings
within <TITLE> tags could, for example, be searched by
Web applications that wish to find pages with a particular

http://www.w3.org/TR/REC-html40/strict.dtd
http://www.w3.org/TR/REC-html40/strict.dtd

P1: GTV/GVX P2: GQT/LPQ QC: FYD Final Pages

Encyclopedia of Physical Science and Technology EN017B-860 August 2, 2001 19:22

884 W W W (World Wide Web)

keyword in the title (even if that title is never displayed).
Other information that may be included in the head section
is the name of the page author, keywords describing the
page, the name of the editor used to produce the page, etc.

The body section of the page contains descriptions of
the part of the document that should be displayed by a
browser. This section is delineated by the <BODY> and
</BODY> tags.

The line <H1>Example HTML Page</H1> de-
fines a heading with the text “Example HTML Page.”
HTML 4.0 defines six levels of headings H1 through H6.
H1 is considered to be a heading of the greatest importance
and H6 a heading with the least importance. Browsers of-
ten display headings in bold and at a font size that distin-
guishes them from the body text. The lines

<P>
This page contains a link to the
home page of the

University of Wolverhampton.
</P>

define a paragraph. All the text between the<P> and</P>
tags forms part of the paragraph. Browsers cannot guaran-
tee the layout they will use for text, as they cannot know
the screen space they will have to use in advance. The
layout of the text in an HTML file has no influence on the
way it will appear to someone viewing the text on the Web.
Visual browsers normally indicate paragraphs by inserting
white space between them, but this is not mandatory. The
paragraph shown contains a hyperlink to another docu-
ment. The link is declared in the anchor (A) tag. The
anchor tag has an attribute HREF that is set to a URL (in
this case http://www.wlv.ac.uk). Since the <A>
and tags surround the text “University of Wolver-
hampton,” it is this text that will contain the link to the
document located at http://www.wlv.ac.uk.
The second paragraph,

<P>
<A HREF=“http://validator.w3.org
/check/referer”>
<IMG BORDER=0
SRC= “http://validator.w3.org
/images/vh40”

ALT=“Valid HTML 4.0!” HEIGHT=31
WIDTH=88>

</P>

contains a hyperlink that is attached to an image rather than
being associated with text. The link specifies the URL of
an HTML validation service operated by W3C. The image

is specified using the tag. This is a tag that does not
enclose text, and therefore a corresponding closing tag is
not necessary. A number of attributes define how the image
is to be displayed. The BORDER attribute controls how
wide the border around the image should be: in this case
no border is to be displayed. The SRC attribute specifies
the URL that gives location of the image file. TheHEIGHT
and WIDTH attributes give the browser an indication of
the scaling that should be applied to the image when it
is displayed. The ALT attribute specifies what text should
be displayed if the browser is unable to display images.
It could also be used by Web page processing software to
determine what the image represents.

Many other HTML tags beyond those shown in this
example are defined in the HTML 4.0 recommendation.

When the HTML shown in Fig. 2 is displayed in one of
the most commonly used Web browsers, it is rendered as
shown in Fig. 3.

There are number of things to note about Fig. 3. The
browser has chosen to put the text that appeared between
the <TITLE> and </TITLE> tags into the title of the
window. The text for the heading has been rendered in a
bold with a large font size. In addition, the browser has
separated the heading from the first paragraph with white
space.

The text of the first paragraph has been reformatted to
fit into the size of the browser window. The text between
the <A> and the tags has been underlined (seen
in color it appears blue). This is this particular browser’s
default way of indicating that this text is a hyperlink. If
the browser user clicks on the hyperlink, the browser will
issue an HTTP request to the server indicated in the URL
referenced in the HREF attribute of the anchor tag. This
will request the document indicated by the URL and the
browser will eventually display it.

As the image and the text are in separate paragraphs,
the browser uses white space to separate them. The image

FIGURE 3 The HTML file in Fig. 2 displayed in a browser.

http://www.wlv.ac.uk
http://www.wlv.ac.uk

P1: GTV/GVX P2: GQT/LPQ QC: FYD Final Pages

Encyclopedia of Physical Science and Technology EN017B-860 August 2, 2001 19:22

WWW (World Wide Web) 885

has been obtained from a server completely separate from
the server from which the text was retrieved (its location is
indicated by the URL in the IMG SRC attribute). Since the
image is a hyperlink, if the user chooses to select it a new
document will be retrieved. In this example the document
will be one obtained from the W3C HTML validation ser-
vice and will contain a report on the validity of the HTML
describing the page (generated by checking it against the
HTML 4.0 DTD).

IV. SUMMARY

This article has described the key Web technologies: URIs,
HTTP, and HTML. Since the creation of the Web many
other technical innovations (e.g., Active Server Pages,
browser scripting languages, Java Applets, etc.) have con-
tributed to ensuring its popularity and ubiquity. The three
technologies discussed here, however, are the ones that
provide the basis for the deployment of all Web-based
software. They continue to develop as a result of commer-
cial pressure or via the standardization efforts of W3C.

New schemes for URIs are devised as new media types
are introduced on the Web. The HTTP/1.1 standardization
effort is nearing completion. It is already clear, however,
that HTTP/1.1 is not a lasting solution for the Web. A
working group on HTTP Next Generation (HTTP-NG) has
been set up by W3C. This group has already established
a number of directions for the development of HTTP.

HTML has undergone the most changes since its cre-
ation. The original set of tags was quite small. These have
been considerably expanded in later versions of HTML.
Many changes have come about from the acceptance of
what were at one time browser-specific tags. Finally, it
has been recognized that HTML cannot continue to grow
forever in this way and that at some point the set of tags
supported must be frozen. At the same time it is admit-
ted that the need for new tags will continue. A subset of
SGML called Extensible Markup Language (XML) has

been defined. This will enable purpose-specific mark-up
languages to be defined, and an XML-based version of
HTML called XHTML (Extensible HyperText Markup
Language) has become the latest W3C recommendation.

SEE ALSO THE FOLLOWING ARTICLES

CRYPTOGRAPHY • DATABASES • INFORMATION THEORY

• NETWORKS FOR DATA COMMUNICATION • SOFTWARE

ENGINEERING • SOFTWARE MAINTENANCE AND EVOLU-
TION • WIRELESS COMMUNICATIONS

BIBLIOGRAPHY

Berners-Lee, T. (1989). “Information Management: A Proposal.” [On-
line] 2 May 2000. <http://www.w3.org/History/1989/proposal.html>.

Berners-Lee, T. (1994). “RFC 1630: Universal Resource Identifiers in
WWW.” [Online] 2 May 2000. <http://www.ietf.org/rfc/rfc1630.txt>.

Berners-Lee, T. (1999). “Weaving the Web,” Orion Business, London.
Berners-Lee, T., and Cailliau, R. (1990). “WorldWideWeb: Proposal

for a HyperText Project.” [Online] 2 May 2000. <http://www.w3.org/
Proposal.html>.

Berners-Lee, T., Fielding, R., Irvine, U. C., and Frystyk, H. (1996).
“RFC 1945: Hypertext Transfer Protocol—HTTP/1.0.” [Online] 3
May 2000. <http://www.ietf.org/rfc/rfc1945.txt.>

Berners-Lee, T., Fielding, R., Irvine, U. C., and Mastiner L. (1998). “RFC
2396: Uniform Resource Identifiers (URI): Generic Syntax.” [Online]
2 May 2000. <http://www.ietf.org/rfc/rfc2396.txt>.

Brewer J., and Dardallier, D. (2000). “Web Accessibility Initiative
(WAI).” [Online] 2 May 2000. <http://www.w3.org/WAI/>.

Fielding R., Irvine, U. C., Gettys, J., Mogul, J., Frystyck, H., Mas-
inter, L., Leach, P. and Berners-Lee, T. (1999). “RFC 2616:
Hypertext Transfer Protocol—HTTP/1.1.” [Online] 3 May 2000.
<http://www.ietf.org/rfc/rfc2616.txt>.

Kunze, J. (1995). “RFC 1736: Functional Recommendations
for Internet Resource Locators. [Online] 2 May 2000,”
<http://www.ietf.org/rfc/rfc1736.txt>.

Raggett, D., Le Hors, A. and Jacobs I., eds. (1998). “HTML 4.0 Speci-
fication.” [Online] 3 May 2000. <http://www.w3.org/TR/1998/REC-
html40-19980424/>.

World Wide Web Consortium (W3C). [Online] <http://w3c.org>.

http://www.w3.org/History/1989/proposal.html
http://www.w3.org/History/1989/proposal.html
http://www.w3.org/Proposal.html
http://www.w3.org/Proposal.html
http://www.ietf.org/rfc/rfc1945.txt.
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/WAI/
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc1736.txt
http://www.w3.org/TR/1998/REC-html40-19980424/
http://www.w3.org/TR/1998/REC-html40-19980424/
http://w3c.org

	1
	BASIC Programming Language
	Glossary
	Brief Description
	Early History of Basic
	Design Goals
	The First Dartmouth Basic
	Major Design Decisions
	A Number is a Number is a Number; that is, there is Only One Kind of Number in Basic
	Basic Should Read and Print Numbers without Requiring Special “Formats”
	One Should be Able to Create, Change, and Run a BASIC Program from a Typewriter
	Basic Should have no Mysterious Punctuation Rules; thus, a Statement and a Line are Synonymous
	All Basic Statements Should Commence, After the Line Number, with a Keyword
	Basic Should not Require Unnecessary Declarations, Suchas Supplying Dimensions for Arrays
	Basic Should be Blank Insensitive; That is, a User Should be able to Type in a Program without Regard to Blank Spaces
	Line Numbers Should Double as Editing Aids and Targets of GOTO and IF-THEN Statements

	BASIC Starts to Grow
	Strings are Added
	MAT Statements are Added
	Files are Added
	Overlays are Added

	Growth of Basic
	Commercial Time Sharing
	Personal Computers Appear
	Incompatible Versions of BASIC Appear
	Disadvantages of Tiny Memories
	Optional LET
	Multiple Statements on a Line
	Commenting Conventions
	Raising to a Power
	Number Types Reappear
	Strings Proliferate

	New Influences
	Structured Programming
	Subroutines
	Graphics

	BASIC Loses Favor

	Standardization and its Failure
	Standard BASIC
	Impact of the Standard

	The Microcomputer Revolution
	Present and Future
	Basic as a Major Application Language
	Visual Interface Building Tools
	Object-Oriented Programming

	See also the Following Articles
	References

	2
	C and C++ Programming Language
	Glossary
	The Evolution of C and C++
	Standard C Features
	Data Types
	Operators
	Control Structures
	Procedures

	Key C features
	Separate Compilation
	The C Preprocessor
	Novel Declaration Style
	Operator-Rich Syntax
	Explicit Pointer Usage
	Function Pointers
	Void

	Key C++ Features
	References
	Function Overloading
	Classes
	Inheritance
	Polymorphism
	Exceptions
	Iostream Library
	Namespaces
	Templates
	Standard Template Library

	See also the following articles
	Reference

	3
	Computer Algorithms
	Glossary
	Algorithms and Programs
	Algorithm Design
	Performance Analysis and Measurement
	Analysis
	Measurement

	Lower Bounds
	Information-Theoretic Arguments
	State Space Arguments
	Adversary and Reducibility Constructions

	Np-Hard and Np-Complete Problems
	Nondeterminism
	NP-Hard and NP-Complete Problems

	Coping With Complexity
	Approximation Algorithms
	Other Heuristics
	A Monte Carlo Improvement Method

	The Future of Algorithms
	See also the Following Articles
	References

	4
	Computer Viruses
	Glossary
	Background and Motivation
	Viruses, Worms, and so Forth
	Prevention and Detection
	Conclusion
	See also the Following Article
	References

	5
	Cryptography
	Glossary
	Introduction
	Cryptosystems: A Mathematical Definition
	Goals of Cryptosystems: What Cryptography Can and Cannot Provide

	Attacks on Cryptographic Systems
	Types of Attacks and Attackers
	Brute Force Attacks
	Structural Attacks
	Non-Cryptanalytic Attacks
	Social Attacks
	System Attacks
	Timing Attacks

	Design and Use of Cryptographic Systems
	Provable Versus Heuristic Security
	Confusion and Diffusion
	Modes of Encryption
	Electronic Codebook Mode (ECB)
	Cipher Block Chaining Mode (CBC)
	Cipher Feedback Mode (CFB)
	Output Feedback Mode (OFB)
	Counter Mode (CTR)

	Symmetric Key Cryptography
	The One-Time Pad
	Pseudorandom Number Generators
	Data Encryption Standard (DES)
	Stronger Variants of DES
	Triple-DES
	DESX

	Brute Force Attacks on DES
	Differential and Linear Cryptanalysis of DES
	Differential cryptanalysis
	Linear cryptanalysis

	Advanced Encryption Standard

	Public Key Cryptography
	Using Public Key Cryptosystems
	Hybrid Systems
	Probabilistic Encryption
	Digital Signatures

	RSA
	An RSA Example
	Choosing the RSA Parameters and Attacks Against RSA
	Breaking RSA by factoring N
	Re-encryption attacks and safe primes
	Small public exponent attacks
	Small private exponent attacks
	Bleichenbacher’s padding attack
	Multiplication attacks
	Common modulus attacks

	Key Distribution Andmanagement
	Key Exchange Protocols
	Diffie–Hellman Key Exchange
	Key Distribution Centers
	Public Key Infrastructures

	Applications of Cryptography
	See also the Following Articles
	References

	6
	Data Mining and Knowledge Discovery
	Glossary
	Data Mining and Knowledge Discovery
	Background
	The Disciplines
	Data Mining Objectives and Outcomes
	The Data Mining Process
	Data Mining Tasks
	Rule Induction
	Classification
	Clustering
	Summarization
	Pattern Recognition
	Discovery of Interestingness
	Predictive Modeling
	Visualization
	Dependency Detection
	Uncertainty Handling
	Sequence Processing

	Data Mining Approaches
	Advantages of Data Mining

	The Technologies
	Machine Learning Technologies
	Inferencing Rules
	Decision Trees
	Neural Networks
	Case-Based Reasoning
	Genetic Algorithms
	Dynamic Time-Warping

	Statistical and other Uncertainty-Based Methods
	Statistical Techniques
	Bayesian Belief Networks
	Evidence Theory
	Fuzzy Logic
	Rough Sets
	Information Theory

	Database Methods
	Association Rules
	Data Manipulation Techniques
	Slice and Dice
	Access Methods

	Enabling Technologies
	Data Cleansing Techniques
	Missing Value Handling
	Advanced Database Technology
	Visualization Methods
	Intelligent Agents
	OLAP
	Parallel Processing
	Distributed Processing

	Relating the Technologies to the Tasks

	Data Mining for Different Data Types
	Web Mining and Personalization
	Distributed Data Mining
	Text Mining
	Temporal Data Mining
	Spatial Data Mining
	Multimedia Data Mining
	Security and Privacy Aspects of Data Mining
	Metadata Aspects of Data Mining

	Key Application Areas
	Industry
	Administration
	Business
	Database Marketing
	Medicine
	Science
	Engineering
	Fraud Detection and Compliance

	Future Developments
	See also the Following Articles
	References

	7
	Data Structures
	Glossary
	Introduction
	Memory Allocation and Algorithms
	Hierarchical Data Structures
	Order: Simple, Multiple, and Priority
	Linear and Indexed Structures
	Linkage

	Searching and Sorting Techniques
	Sorting Algorithms
	Searching: Algorithms and Data Structures

	Tree Applications
	Parent Trees and Equivalence Representation
	Example (Pictures)

	Spanning Trees and Precedence
	Example (Minimal Spanning Tree)

	Randomness, Order, and Selectivity
	Conclusion
	See also the Following Articles
	References

	8
	Databases
	Glossary
	Database Management Systems
	Data Models
	The Relational Data Model
	Object-Oriented Data Models
	Object-Relational Data Models

	Database Languages
	Relational Database Languages
	Object-Oriented Database Languages
	Object-Relational Database Languages

	Advanced Models and Languages
	Deductive Databases
	Active Databases

	Distribution
	Distributed Databases
	Data Warehouses

	Conclusions
	See also the Following Articles
	References

	9
	Evolutionary Algorithms and Metaheuristics
	Glossary
	Metaheuristics Versus Algorithms
	Introduction
	Solution Landscapes

	Evolutionary Algorithms
	Genetic Algorithms
	Types of Problems

	Genetic Programming
	Crossover in Genetic Programming
	Initial Population
	Types of Problems

	Evolutionary Programming
	Types of Problems

	Evolutionary Strategies
	Grammatical Evolution

	Simulated Annealing
	Representation

	Tabu Search
	Memetic Algorithms
	Summary
	See also the Following Articles
	References

	10
	Image Processing
	Glossary
	Introduction
	Digitization
	Sampling
	Quantization

	Representation
	Compression
	Exact Encoding
	Approximation
	Difference Coding and Transform Coding
	Recent Trends

	Enhancement
	Grayscale Modification
	Blur Reduction
	Shading Reduction
	Noise Cleaning

	Restoration
	Photometric Correction
	Geometric Correction
	Deconvolution
	Estimation

	Reconstruction
	Matching
	Template Matching
	Image Registration
	Stereomapping and Range Sensing

	Image Sequence Analysis
	Recovery
	Shape from Shading
	Shape from Texture
	Shape from Shape

	Segmentation
	Pixel Classification
	Feature Detection
	Region Extraction

	Geometry
	Geometric Properties
	Geometry-Based Decomposition
	Subset Representation

	Description
	Properties and Relations
	Relational Structures and Recognition
	Models
	Knowledge-Based Recognition Systems

	Architectures
	Pipelines
	Meshes
	Recent Trends

	Summary
	See also the Following Articles
	References

	11
	Linear Systems of Equations (Computer Science)
	Glossary
	Introduction and Preliminaries
	Subject Definition
	Variety of Applications, Ties with the Computer Technology. Vast Bibliography. Packages of Subroutines
	Sparsity, Structure, and Computer Representation of Linear Systems
	Specifics of Overdetermined and Underdetermined Linear Systems
	General and Special Linear Systems. Direct and Iterative Methods. Sensitivity to Errors

	Some Examples of Applications
	Numerical Solution of the Laplace Equation
	Solving a Differential Equation
	Hitchcock Transportation Problem. Linear Programming Problem
	Some Matrix Operations. Special Matrices
	Approximating Data by Curves. Overdetermined Linear Systems. Normal Equations, Reduction to Linear Programming Problems

	Gaussian Elimination and Triangular Factorization
	Solving Triangular Systems by Back Substitution
	Forward Elimination Stage of Gaussian Elimination
	Gaussian Elimination Performed with Finite Precision. Pivoting Policies. Complete Pivoting for Singular Systems
	Solving Several Systems with Common Coefficient Matrix. Matrix Inversion
	Block Matrix Algorithms
	PLU Factorization. Computing the Determinant of a Matrix
	Some Modifications of LU Factorization. Choleski’s Factorization. Block Factorizations of a Matrix
	Error and Residual Vectors. Vector and Matrix Norms. Condition Number
	Sensitivity of Linear Systems to Input Errors
	Sensitivity of Algorithms for Linear Systems to Round-Off Errors
	Iterative Improvement of Computed Solution and Condition Estimation

	Orthogonal Factorization and Singular Linear Systems
	Application to Overdetermined Systems
	Computing the Minimum 2-Norm Solution to an Underdetermined System
	Applications to Overdetermined Systems of Deficient Rank
	Orthogonalization Methods for a System with a Square Matrix

	Asymptotic and Practical Accelerations of Solving General Linear Systems
	Direct Solution of Some Special Linear Systems
	Banded, Block-Banded, Banded-Symmetric, and Symmetric Systems
	Toeplitz, Hankel, and Vandermonde Systems and Their Correlation to Polynomial Operations
	Fast Fourier Transform Methods for Poisson Equations

	Direct Algorithms for Sparse and Well-Structured Linear Systems
	Sparse Linear Systems and the Associated Graphs
	Fill-In; Pivoting (Elimination Order) as a Means of Decreasing Fill-In
	Some Policies of Pivoting for Sparse Systems
	Solving Path Algebra Problems via Their Reduction to Linear Systems. Exploiting Sparsity

	Iterative Algorithms for Sparse and Special Dense Linear Systems
	Influence of the Development of Vector and Parallel Computers on Solving Linear Systems
	See also the Following Articles
	References

	12
	Project Management Software
	Glossary
	Product-Based Project Management
	Product Breakdown Structures
	Product Flow Diagrams
	Activity Networks

	Software Development Life Cycles
	The Need for Defined Development Life Cycles
	The Waterfall Model
	The Incremental Model
	Evolutionary Models
	Rapid Application Development
	The Spiral Model

	Software Project Organization
	Relationship between Client and Developer
	Creating the Project Team

	Configuration Management
	Risk Management and Software Development Projects
	The Nature of Risk
	Prioritizing Risk
	Planning Risk Avoidance or Reduction
	Monitoring Risk

	Software Effort Estimation
	A Taxonomy of Software Effort Estimation Methods
	COCOMO: An Example of an Algorithmic Model
	Function Points

	Software Quality Issues and Project Management
	Software Product Quality
	Software Defect Accumulation
	Reviews, Inspections, and Walkthroughs
	Quality Plans

	See also the Following Articles
	References

	13
	Prolog Programming Language
	Glossary
	Brief History of Prolog
	Application Areas
	Prolog’s Elementary Constructs
	Facts
	Questions
	Prolog Environment
	Closed-World Assumption

	Terms, Constants, Variables, and Structures
	Terms
	Constants
	Variables
	Compound Terms

	Rules
	Conjunctions

	Basic Concepts of Logic Programming
	Nondeterminism
	Backward Reasoning
	Unification and Logical Variables
	First-Order Predicate Calculus
	Clauses
	Horn Clauses
	Invertibility
	Resolution

	Programming in Prolog
	Lists
	Recursion
	Example: Permutations
	Terminology
	Operators
	Precedence
	Position and Associativity

	Control Constructs
	Cut
	True and Fail
	Conjunction, Disjunction, If-Then, and If-Then-Else

	Built-in Predicates
	Logic and Control
	Not Provable:\+
	Repeat

	All Solutions
	Input/Output
	Input/Output for Terms
	Layout
	Input/Output for Characters

	File Handling
	Arithmetic
	Manipulating and Testing the Database
	Checking Clauses in the Database
	Asserting New Clauses
	Retracting Clauses

	Manipulating, Creating, and Testing Terms
	Testing Terms
	Manipulating Structured Terms
	Term Unification
	Term Comparison

	Definite Clause Grammars
	Parsing
	Definite Clause Grammars in Prolog
	Arguments of Nonterminals and Mixing Grammar Rules and Prolog Code
	Translation of Grammar Rules into Prolog Rules
	A Grammar Example

	Meta-level Programming
	Programming with Constraints over Finite Domains
	Introduction
	Constraint Logic Programming (CLP)
	Constraints
	Constraint Satisfaction
	Constraint Logic Programming and Prolog
	Imposing Domains on Variables
	Imposing Constraints on Variables

	clp(FD)
	Labeling Domain Variables
	Little Example
	Controlling the Labeling Process
	Rectangle with Maximum Area

	Send + More = Money

	See also the Following Articles
	References

	16
	Real-Time Systems
	Glossary
	Introduction
	System Model
	Interface Definition
	Summary

	Computational Model
	Communication Model
	Formal Modeling and Verification
	Summary

	Scheduling Models
	Introduction
	Jitter Control

	Approaches to Fault Tolerance
	Protection against Event Overloads
	Fault Tolerance with Global Time
	Fault Tolerance without Global Time

	Conclusion
	Acknowledgments
	See also the Following Articles
	References

	17
	Requirements Engineering
	Glossary
	Introduction
	Overview of Requirements Engineering
	Communicating Requirements
	Agreeing Requirements
	Evolving Requirements

	Eliciting Requirements
	Requirements to Elicit
	Elicitation Techniques
	The Elicitation Process

	Modeling and Analyzing Requirements
	Enterprise Modeling
	Data Modeling
	Behavioral Modeling
	Domain Modeling
	Modeling Non-functional Requirements (NFRs)
	Analyzing Requirements Models

	Context and Groundwork
	Integrated Requirements Engineering
	Summary and Conclusions
	Acknowledgments
	See also the Following Articles
	References

	19
	Software Engineering
	Glossary
	A Brief History of Software Engineering
	Kinds of Software
	Application Software
	System Software
	Embedded Software

	The Software Life Cycle
	Process Models
	The Waterfall Model
	Incremental Models
	The Transformation Model
	Spiral Model
	Open Source Model

	Process Quality
	Requirements Engineering
	Software Architecture
	Software Design and Specification
	Software Quality
	Validation and Verification
	Testing
	Reviews and Inspections

	Management of Software Engineering
	Summary
	Acknoweledgement
	See also the Following Articles
	References

	20
	Software Maintenance and Evolution
	Glossary
	Software Maintenance
	Principles and Assumptions
	Law 1: Continuing Change
	Law 2: Increasing Complexity

	Models and Process in Software Maintenance
	Measurements and Metrics for Software Maintenance

	Evolution
	Levels
	Level 1, The System Level
	Level 2, The Function Level
	Level 3, The Data Level
	Comparing Levels

	General Recommendations

	Conclusions
	See also the Following Articles
	References

	21
	Software Reliability
	Glossary
	Reliability Measurement and Modeling: An Introduction
	Usage and Reliability Modeling
	Application of Reliability Measurement

	 Usage-Based Testing
	Purpose
	Usage Specifications Overview
	Domain-Based Model
	Algorithmic Model
	Operational Profile
	Grammar Model
	Markov Model
	State Hierarchy Model
	Summary

	Derivation of Usage Data

	Data Collection
	Purpose
	Measurement Program
	Procedures
	Failure and Test Data

	Software Reliability Modeling
	Purpose
	Definitions
	Principles
	Model Overview
	Time between Failure Models
	Failure Count Models
	Fault Seeding Models
	Input Domain-Based Models

	Reliability Demonstration
	Accuracy of Reliability Predictions

	Experience Packaging
	Purpose
	Usage Model and Profile
	Reliability Models

	Summary
	See also the Following Articles
	References

	22
	Software Testing
	Glossary
	Fundamental Limitations of Testing
	The Input Domain
	The Internal Structure

	Developments in Testing
	The Problem of Extrapolating from Observations
	The Development of Testing Methods
	The Impact of Technologies

	A General Strategy for Testing
	Terminology and Techniques
	Testing in the Software Development Life Cycle
	Unit Testing
	Integration Testing
	System Testing

	Structural Testing Techniques
	Functional Testing Techniques

	See also the Following Articles
	References

	23
	WWW (World Wide Web)
	Glossary
	The History of the Web
	The Way the Web Works
	Technologies that Make the Web Work
	Universal Resource Identifier (URL)
	HyperText Transfer Protocol (HTTP)
	HyperText Markup Language (HTML)

	See also the Following Articles
	References

