

Integrating and Extending BIRT

This page intentionally left blank

Integrating and Extending BIRT

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Jason Weathersby • Don French • Tom Bondur
Jane Tatchell • Iana Chatalbasheva

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.awprofessional.com

This Book Is Safari Enabled

The Safari® Enabled icon on the cover of your favorite technology book means the book is
available through Safari Bookshelf. When you buy this book, you get free access to the
online edition for 45 days.

Safari Bookshelf is an electronic reference library that lets you easily search thousands of technical books,
find code samples, download chapters, and access technical information whenever and wherever you
need it.

To gain 45-day Safari Enabled access to this book:

■ Go to http://www.awprofessional.com/safarienabled
■ Complete the brief registration form

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please e-mail
customer-service@safaribooksonline.com.

Library of Congress Cataloging-in-Publication Data

Integrating and extending BIRT/ Jason Weathersby... [et al.].
p. cm.

Includes index.
ISBN 0-321-44385-3 (pbk. : alk. paper)
1. Computer software--Development. 2. Application software--Development. 3. Client/server

computing. I. Weathersby, Jason.

QA76.76.D47I552 2006
005.1—dc22

2006014602

Copyright © 2006 Actuate Corporation

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

ISBN 0-321-44385-3

Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville, Indiana.
First printing, October 2006

www.awprofessional.com
http://www.awprofessional.com/safarienabled

v

C o n t e n t s

Foreword . xvii

Preface .xix
About this book . xix
Who should read this book .xx
Contents of this book . xxi
Typographical conventions . xxiv
Syntax conventions . xxv

Acknowledgments . xxvii

Part I Installing and Deploying BIRT . 1

Chapter 1 Prerequisites for BIRT . 3
Requirements for the BIRT report designers .3

About installing required software .5
BIRT RCP Report Designer software requirements .5
BIRT Report Designer Full Eclipse Install software requirements .5
BIRT Report Designer software requirements .6

Prerequisites for other BIRT packages .7
BIRT Chart Engine software requirements .7
BIRT Demo Database software requirements .8
BIRT Report Engine software requirements .9
BIRT Samples software requirements .9
BIRT Test Suite software requirements .9

About types of BIRT builds .10

Chapter 2 Installing a BIRT Report Designer . 13
Installing BIRT Report Designer .14

Downloading and installing BIRT Report Designer .14
Installing the auxiliary file for BIRT Report Designer .14
Testing the BIRT Report Designer installation .15

Installing BIRT Report Designer Full Eclipse Install .15

vi C o n t e n t s

Downloading and installing BIRT Report Designer Full Eclipse Install 15
Installing the auxiliary file for BIRT Report Designer . 16

Installing BIRT RCP Report Designer . 16
Downloading and installing BIRT RCP Report Designer . 17
Installing the auxiliary file for BIRT Report Designer . 17
Testing the BIRT RCP Report Designer installation . 18

Troubleshooting installation problems . 18
Avoiding cache conflicts after you install a BIRT report designer . 18
Specifying which Java Virtual Machine to use when you start a BIRT report designer . . . 19

Installing a language pack . 19

Chapter 3 Installing Other BIRT Packages . 23
Installing BIRT Chart Engine . 23

Installing BIRT Chart Engine from the Eclipse BIRT web site . 24
Avoiding cache conflicts after installing . 24

Installing BIRT Demo Database . 25
Installing BIRT Demo Database from the Eclipse BIRT web site . 25
Testing the BIRT Demo Database installation . 25

Installing BIRT Report Engine . 26
Installing BIRT Report Engine from the Eclipse BIRT web site . 27
Testing the BIRT Report Engine installation . 27

Installing BIRT Samples . 28
Installing BIRT Test Suite . 29

Chapter 4 Updating a BIRT Installation . 31
Using the Eclipse Update Manager to update BIRT Report Designer installation 31
Updating BIRT RCP Report Designer installation . 32

Chapter 5 Deploying a BIRT Report to an Application Server 33
About application servers . 33

About deploying to Tomcat . 33
About deploying to other application servers . 34

Placing the BIRT report viewer on an application server . 34
Installing the BIRT report viewer files . 34

Installing the auxiliary file . 35
Installing your JDBC drivers . 35

Testing the BIRT report viewer installation . 35
Using a different context root for the BIRT report viewer . 36
Placing the viewer in a different location . 36
Mapping the folders that the BIRT report viewer uses . 36
Verifying that Apache Tomcat is running BIRT report viewer . 39

Placing fonts on the application server . 40
Viewing a report using a browser . 40

Understanding the run and frameset servlets . 41
Using the URL parameters for the run and frameset servlets . 41

__report parameter . 42
__document parameter . 42

C o n t e n t s vii

__format parameter .43
__locale parameter .43
__isnull parameter .43
__svg parameter .43
Report parameters .44

Part II Understanding the BIRT Framework 45

Chapter 6 Understanding the BIRT Architecture 47
Understanding the BIRT integration .47
About the BIRT applications .51

About BIRT Report Designer and BIRT RCP Report Designer .51
About the BIRT report viewer .51

About the BIRT engines .52
About the report design engine .52
About the report engine .52
About the generation engine .52
About the presentation engine .52
About the chart engine .53
About the data engine .53

About data engine components .53
About the ODA framework .53

About the types of BIRT report items .53
About standard report items .54
About custom report items .54
About chart report items .54

About the ROM .54
About the types of BIRT files .54

About report design files .55
About report document files .55
About report library files .55
About report template files .55

About custom Java applications .56
About custom report designers .56
About custom Java report generators .56

About extensions to BIRT .57

Chapter 7 Understanding the Report Object Model 59
About the ROM specification .59

ROM properties .60
ROM slots .61
ROM methods .61
ROM styles .62

About the ROM schema .62
About the rom.def file .63
About the primary ROM elements .66

viii C o n t e n t s

About the report item elements . 67
About the report items . 67
Understanding the report item element properties . 67

About the data elements . 68

Part III Scripting in a Report Design 71

Chapter 8 Using Scripting in a Report Design 73
Overview of BIRT scripting . 73

Choosing between Java and JavaScript . 73
Using both Java and JavaScript to write event handlers . 74

Understanding the event handler execution sequence . 74
About event firing sequence dependency . 74

About the onCreate and onRender firing sequence dependencies 75
About the ReportDesign firing sequence dependencies . 75

About the pageBreak event . 75
Analysis of the execution sequence phases . 75

Overview of the report execution process . 76
Preparation phase . 76
Report body processing phase . 76
Clean-up processing phase . 78
Row execution sequence . 78
Table and list method execution sequence . 78

About a report item event handler . 81
About data source and data set event handlers . 82

ODA data source events . 82
Scripted data source events . 82
ODA data set events . 82
Scripted data set events . 82

About ReportDesign event handlers . 82
Writing event handlers for charts . 83

Chart events . 83
Chart script context . 85
Chart instance object . 86

Chart instance getter methods . 86
Chart instance setter methods . 87

Writing a Java chart event handler . 87
Writing a JavaScript chart event handler . 87

Getting a dynamic image from a Microsoft Access database . 89

Chapter 9 Using JavaScript to Write an Event Handler 91
Using BIRT Report Designer to enter a JavaScript event handler . 91

Creating and using a global variable . 92
Understanding execution phases and processes . 93

Using the reportContext object . 94
Passing a variable between processes . 95
Getting information from an HTTP request object . 95

C o n t e n t s ix

Using the this object .95
Using the this object’s methods .95
Using the this object to set the property of a report item .96

Using the row object .99
Getting column information .99
Getting and altering the query string .100
Getting a parameter value .101
Changing the connection properties of a data source .101
Determining method execution sequence .102

Providing the ReportDesign.initialize code .102
Providing the code for the methods you want to track .103
Providing the ReportDesign.afterFactory code .103

Tutorial 1: Writing an event handler in JavaScript . 104
Task 1: Open the report design .104
Task 2: Create and initialize a counter in the Table.onCreate() method 104
Task 3: Conditionally increment the counter in the Row.onCreate() method.106
Task 4: Display the result, using the ReportDesign.afterFactory() method.107

Calling Java from JavaScript .108
Understanding the Packages object .108
Understanding the importPackage method .109
Using a Java class .109
Placing your Java classes where BIRT can find them .110
Issues with using Java in JavaScript code .110

Chapter 10 Using Java to Write an Event Handler 111
Writing a Java event handler class . 111

Locating the JAR files that an event handler requires .112
Extending an adapter class .112

Making the Java class visible to BIRT .116
Associating the Java event handler class with a report element .116
BIRT Java interface and class naming conventions .117
Writing a Java event handler .118

Using event handler adapter classes .118
Using event handler interfaces .118
About the Java event handlers for report items .119
Using Java event handlers for the DataSource element .120
Using Java event handlers for the DataSet element .120
Using Java event handlers for the ScriptedDataSource element .121
Using Java event handlers for the ScriptedDataSet element .122
Using Java event handlers for the ReportDesign .122

Understanding the BIRT interfaces .123
About the element design interfaces .124

About the methods for each report element .124
About the IReportElement interface .124

About the element instance interfaces .125
Using the IReportContext interface .126
Using the IColumnMetaData interface .128

x C o n t e n t s

Using the IDataSetInstance interface . 128
Using the IDataSetRow interface . 129
Using the IRowData interface . 129

Chapter 11 Using a Scripted Data Source . 131
Creating a scripted data source and scripted data set . 131
Tutorial 2: Creating and scripting a scripted data source . 133

Task 1: Create a new report . 133
Task 2: Create a scripted data source. 133
Task 3: Create a scripted data set . 134
Task 4: Supply code for the open() and close() methods of the data source 135
Task 5: Supply code for the open() method of the data set . 135
Task 6: Define output columns . 135
Task 7: Place the columns on the report layout . 137
Task 8: Supply code for the data set fetch() method. 138

Using a Java object to access a data source . 139
Performing initialization in the data set open() method . 139
Getting a new row of data in the data set fetch() method . 140
Cleaning up in the data set close() method . 140
Deciding where to locate your Java class . 140
Deploying your Java class . 141

Using input and output parameters with a scripted data set . 141

Part IV Integrating BIRT Functionality into Applications. . 143

Chapter 12 Understanding the BIRT APIs . 145
Package hierarchy diagrams . 146
About the BIRT Report Engine API . 147

Creating the BIRT Report Engine . 148
Using the BIRT Report Engine API . 148

EngineConfig class . 148
ReportEngine class . 148
IReportRunnable interface . 149
IReportDocument interface . 149
IEngineTask interface . 149
IGetParameterDefinitionTask interface . 149
IDataExtractionTask interface . 150
IRunTask interface . 150
IRenderTask interface . 150
IRunAndRenderTask interface . 150

Report engine class hierarchy . 151
Report engine interface hierarchy . 152

About the design engine API . 153
Using the BIRT design engine API . 154

DesignEngine class . 154
SessionHandle class . 154
ModuleHandle class . 155

C o n t e n t s xi

ReportDesignHandle class .155
LibraryHandle class .156
DesignElementHandle class .156
Individual element handle classes .156

Design engine class hierarchy .157
ReportElementHandle hierarchy .159
ReportItemHandle hierarchy .160
ElementDetailHandle hierarchy .161
StructureHandle hierarchy .162

About the BIRT Chart Engine API .163
Using the BIRT Chart Engine API .164
Chart engine class hierarchy .164

chart.aggregate hierarchy .165
chart.datafeed hierarchy .165
chart.device class hierarchy .166
chart.device interface hierarchy .166
chart.event class hierarchy .166
chart.exception class hierarchy .168
chart.factory class hierarchy .168
chart.log class hierarchy .169
chart.model class hierarchy .169
chart.model.attribute interface hierarchy .170
chart.model.attribute class hierarchy .172
chart.model.component interface hierarchy .173
chart.model.data interface hierarchy .174
chart.model.layout interface hierarchy .176
chart.model.type interface hierarchy .176
chart.render hierarchy .177
chart.script hierarchy .178
chart.util class hierarchy .179

Chapter 13 Programming with the BIRT Reporting APIs 181
Building a reporting application .182

About the environment for a reporting application .183
About plug-ins used by the report engine .183
About libraries used by the report engine .184
About required JDBC drivers .185

Modifying a report design with the API .185
Generating reports from an application .185

Setting up the report engine .186
Configuring the engine home .186
Configuring the report engine .187
Setting up a stand-alone or WAR file environment .188
Using the logging environment to debug an application .190

Opening a source for report generation .190
Understanding an IReportRunnable object .191
Understanding an IReportDocument object .191

Accessing a report parameter programmatically .192

xii C o n t e n t s

Preparing to generate the report . 199
Setting the parameter values for running a report design . 200
Setting up the rendering options . 200
Setting up the rendering context . 200
Providing an external connection to run a report design . 202

Generating the formatted output programmatically . 203
Accessing the formatted report . 203

About programming with a report design . 204
About BIRT model API capabilities . 205
Opening a report design programmatically for editing . 206

Configuring the design engine to access a design handle . 206
Using an IReportRunnable object to access a design handle . 206

Using a report item in a report design . 207
Accessing a report item by name . 207
Accessing a report item by iterating through a slot . 207
Examining a report item programmatically . 208
Accessing the properties of a report item . 208
Modifying a report item in a report design programmatically . 210
Accessing and setting complex properties . 211
Adding a report item to a report design programmatically . 213

Accessing a data source and data set with the API . 214
About data source classes . 214
About data set classes . 215
Using a data set programmatically . 215

Saving a report design programmatically . 217
Creating a report design programmatically . 217

Chapter 14 Programming with the BIRT Charting APIs 219
About the environment for building a charting application . 220
Verifying the development environment for charting applications . 221
Using the charting API to modify an existing chart . 222

Getting a Chart object from the report design . 222
Modifying chart properties . 222

Modifying axes properties . 223
Modifying plot properties . 223
Modifying the legend properties . 223
Modifying the series properties . 224

Adding a series to a chart . 224
Adding a chart event handler to a charting application . 224

Adding a Java chart event handler to a charting application . 224
Adding a JavaScript chart event handler to a charting application 225

Using the charting APIs to create a new chart . 225
Creating the chart instance object . 226
Setting the properties of the chart instance object . 227

Setting the chart color and bounds . 227
Setting plot properties . 227
Setting legend properties . 227
Setting legend line properties . 227

C o n t e n t s xiii

Setting axes properties .228
Creating a category series .228
Creating a y-series .228
Defining the y-series queries .229
Setting the y-series properties .229
Setting the properties of the x- and y-series .230
Adding a series definition to the Axis object .230
Adding series, queries, and categories to the series definitions .230

Creating sample data .231
Getting an element factory object .231
Getting an extended item handle object .231
Setting the chart.instance property on the report item .231
Getting a data set from the report design .232
Binding the chart to the data set .232
Adding the new chart to the report design .232
Saving the report design after adding the chart .232
Putting it all together .233

Using the BIRT charting API in a Java Swing application .239
Understanding the chart programming examples .246

DataCharts .246
GroupOnXSeries .246
GroupOnYAxis .246
AutoDataBinding .247
FormatCharts .247
InteractivityCharts .247
PDFChartGenerator .247
StyleProcessor .248
ScriptViewer .248
Viewer .248
ChartWizardLauncher .249
Report .250
Preference .250

Part V Working with the Extension Framework 251

Chapter 15 Building the BIRT Project . 253
About building the BIRT project .253

Assuring that you have the correct software on your system .254
Configuring the Eclipse workspace to compile BIRT .254

Creating Eclipse projects .256
Specifying the repository locations .257
Checking out the BIRT source .259
Adding the extra JAR file .261

Building the web viewer .262

Chapter 16 Extending BIRT . 267
Overview of the extension framework .267

xiv C o n t e n t s

Understanding the structure of a BIRT plug-in . 268
Understanding an extension point schema definition file . 268
Understanding a plug-in manifest file . 271
Understanding a plug-in run-time class . 272

Working with the Eclipse PDE . 275
Understanding plug-in project properties . 277
Understanding the Eclipse PDE Workbench . 277

Creating the structure of a plug-in extension . 279
Creating the plug-in extension content . 283
Building a plug-in extension . 287

Generating an Ant build script . 290
Testing a plug-in extension . 291

Deploying the extension plug-in . 291
Installing feature updates and managing the Eclipse configuration 293
Creating an update site project . 294

Downloading the code for the extension examples . 297

Chapter 17 Developing a Report Item Extension 299
Understanding a report item extension . 299
Developing the sample report item extension . 301

Downloading BIRT source code from the CVS repository . 302
Creating a rotated label report item plug-in project . 302
Defining the dependencies for the rotated label report item extension 305
Specifying the run-time package for the rotated label report item extension 307
Declaring the report item extension points . 307
Creating the plug-in extension content . 312

Understanding the rotated label report item extension . 316
Understanding RotatedLabelItemFactoryImpl . 318
Understanding RotatedLabelUI . 319
Understanding RotatedLabelPresentationImpl . 319
Understanding RotatedLabelReportItemImpl . 320
Understanding RotatedLabelPropertyEditUIImpl . 320
Understanding GraphicsUtil . 321

Deploying and testing the rotated label report item plug-in . 324
Deploying a report item extension . 324
Launching the rotated label report item plug-in . 324

Chapter 18 Developing a Report Rendering Extension 329
Understanding a report rendering extension . 329
Developing the CSV report rendering extension . 330

Downloading BIRT source code from the CVS repository . 330
Creating a CSV report rendering plug-in project . 331
Defining the dependencies for the CSV report rendering extension 334
Declaring the emitters extension point . 335

Understanding the sample CSV report rendering extension . 337
Implementing the emitter interfaces . 337
Implementing the content interfaces . 339

C o n t e n t s xv

Understanding the CSV report rendering extension package .341
Understanding CSVReportEmitter .341
Understanding CSVTags .348
Understanding CSVWriter .348

Understanding the BIRT report engine API package .348
Understanding RenderOptionBase .349
Understanding CSVRenderOption .349
Understanding EngineConstants .349

Testing the CSV report rendering plug-in .350
Launching the CSV report rendering plug-in .353
About ExecuteReport class .357
About the report design XML code .359

Chapter 19 Developing an ODA Extension . 365
Understanding an ODA extension .366
Developing the CSV ODA driver extensions .366

About the CSV ODA plug-ins .367
Downloading BIRT source code from the CVS repository .367

Implementing the CSV ODA driver plug-in .368
Defining the dependencies for the CSV ODA driver extension .370
Specifying the run-time settings for the CSV ODA driver extension370
Declaring the ODA data source extension point .371

Understanding the sample CSV ODA driver extension .379
Implementing the DTP ODA interfaces .379
Understanding the CSV ODA extension package .381

Understanding CSVFileDriver .382
Understanding CSVFileQuery .382
Understanding ResultSet .385
Understanding ResultSetMetaData .387
Understanding DataSetMetaData .388
Understanding Messages .388
Understanding DataTypes .388
Understanding CommonConstant .389

Developing the CSV ODA UI extension .390
Creating the CSV ODA UI plug-in project .390
Defining the dependencies for the CSV ODA UI extension .392
Specifying the run-time settings for the CSV ODA UI extension .393
Declaring the ODA data source UI extension point .393

Understanding the sample CSV ODA UI extension .403
Implementing the ODA data source and data set wizards .404
Understanding the org.eclipse.birt.report.data.oda.csv.ui.wizards package405

Understanding Constants .405
Understanding CSVFilePropertyPage .406
Understanding CSVFileSelectionPageHelper .406
Understanding CSVFileSelectionWizardPage .408
Understanding FileSelectionWizardPage .409

Testing the CSV ODA UI plug-in .414

xvi C o n t e n t s

Developing a Hibernate ODA extension . 419
Creating the Hibernate ODA driver plug-in project . 420
Understanding the sample Hibernate ODA driver extension . 426

Understanding HibernateDriver . 428
Understanding Connection . 428
Understanding DataSetMetaData . 430
Understanding Statement . 431
Understanding ResultSet . 435
Understanding HibernateUtil . 436

Building the Hibernate ODA driver plug-in . 439
Developing the Hibernate ODA UI extension . 441
Understanding the sample Hibernate ODA UI extension . 448

Understanding HibernatePageHelper . 449
Understanding HibernateDataSourceWizard . 452
Understanding HibernatePropertyPage . 452
Understanding HibernateHqlSelectionPage . 452

Building the Hibernate ODA UI plug-in . 458
Testing the Hibernate ODA UI plug-in . 460

Glossary . 465

Index . 525

xvii

F o r e w o r d

It is a common misconception that Eclipse projects are focused on simply
providing great tools for developers. Actually, the expectations are far greater.
Each Eclipse project is expected to provide both frameworks and extensible,
exemplary tools. As anyone who has ever tried to write software with reuse and
extensibility in mind knows, that is far more difficult than simply writing a tool.

“Exemplary” is one of those handy English words with two meanings. Both are
intended in its use above. Eclipse projects are expected to provide tools that are
exemplary in the sense that they provide an example of the use of the
underlying frameworks. Eclipse tools are also intended to be exemplary in the
sense that they are good and provide immediate utility to the developers who
use them.

Since its inception, the BIRT project has worked hard to create both reusable
frameworks and extensible tools. This book focuses primarily on how to extend
BIRT and how to use BIRT in your own applications and products. As such, it
illustrates BIRT’s increasing maturity and value as an embedded reporting
solution.

As Executive Director of the Eclipse Foundation, I’m pleased with the
tremendous progress the BIRT team has made since the project’s inception in
September of 2004, and I’m equally pleased with the vibrant community that
has already grown up around it. As you work with BIRT and the capabilities
that are described in this book, I’d encourage you to communicate your
successes back to the community, and perhaps consider contributing any
interesting extensions you develop. The BIRT web site can be found here:

http://www.eclipse.org/birt

It includes pointers to the BIRT newsgroup, where you can communicate and
share your results with other BIRT developers, and pointers to the Eclipse
installation of Bugzilla, where you can contribute your extensions. If you like
BIRT—and I am sure this book will help you learn to love it—please participate
and contribute. After all, it is the strength of its community that is the true
measure of any open source project’s success.

Mike Milinkovich
Executive Director, Eclipse Foundation

http://www.eclipse.org/birt

This page intentionally left blank

xix

P r e f a c e

About this book
BIRT is a powerful reporting platform that provides end-to-end reporting
solutions, from creating and deploying reports to integrating report capabilities
into other enterprise applications. Two companion books, BIRT: A Field Guide to
Reporting and Integrating and Extending BIRT, cover the breadth and depth of
BIRT’s functionality.

This book informs report developers about how to write scripts that:

■ Customize the report-generation process

■ Incorporate complex business logic in their reports

This book also informs application developers about how to:

■ Deploy reports

■ Integrate reporting capabilities into other applications

■ Extend BIRT functionality

By its very nature, reporting is not a stand-alone technology. It draws on data
generated by applications and is frequently integrated tightly within those
applications. In some applications, such as performance monitoring, reporting
provides the most tangible expression of value. Therefore, a successful reporting
platform must emphasize interoperability and extensibility, and, a successful
implementation of that platform must always involve some measure of
integration and extension.

As you read this book, you will see the significant investment that has been
made in BIRT to provide support for interoperability and extensibility. In the
area of interoperability, for instance, BIRT supports flexible deployment of its
report engine and viewer to a wide variety of J2EE application server
environments. Other provisions for interoperability in the BIRT platform
include the ability to dynamically build or modify reports from within an
application using the design engine application programming interface (API)

xx P r e f a c e

and the ability to access native data objects using the scripted data source
mechanism.

In the area of extensibility, BIRT provides hooks to build upon platform
capabilities in the following areas:

■ Report Items

New controls may be added to the BIRT designer palette using the report
item extension API.

■ Complex Logic

Event handlers written in JavaScript or Java may be included in the
generation or presentation phase of report or chart execution to incorporate
custom logic required by the application.

■ Data Access

The Open Data Access (ODA) extension provides the means to develop
drivers for new, non-JDBC data sources as well as create graphical user
interfaces for query specification.

■ Rendering

New report output formats or output for specialized devices can be
developed using the report rendering extension API.

Who should read this book
This book is intended for people who have a programming background. These
readers can be categorized as:

■ Embedders and integrators

These individuals work with the software to integrate it into their current
application infrastructure.

■ Extenders

These individuals leverage APIs and other extension points to add capability
or to establish new interoperability between currently disparate components
or services.

To write scripts in report design, you need knowledge of JavaScript or Java.
More advanced tasks, such as extending BIRT’s functionality, require Java
development experience and familiarity with the Eclipse platform.

P r e f a c e xxi

Contents of this book
This book is divided into several parts. The following sections describe the
contents of each of the parts.

Part I, Installing and Deploying BIRT

Part I introduces the currently available BIRT reporting packages, the
prerequisites for installation, and the steps to install and update the packages.
Part I includes the following chapters:

■ Chapter 1, Prerequisites for BIRT. BIRT provides a number of separate
packages as downloadable archive (.zip) files on the Eclipse web site. Some
of the packages are stand-alone modules, others require an existing Eclipse
environment, and still others provide additional functionality to report
developers and application developers. This chapter describes the
prerequisites for each of the available packages.

■ Chapter 2, Installing a BIRT Report Designer. BIRT provides two report
designers as separate packages, which are downloadable archive (.zip) files
on the Eclipse web site. This chapter describes the steps required to install
each of the available report designers.

■ Chapter 3, Installing Other BIRT Packages. This chapter describes the steps
required to install each of the available packages.

■ Chapter 4, Updating a BIRT Installation. BIRT packages are Eclipse-based, so it
is easy to update any of them from earlier releases to release 2.0 or later. This
chapter describes how you can install the latest packages without
interrupting your work.

■ Chapter 5, Deploying a BIRT Report to an Application Server. This chapter
introduces the distribution of reports through an application server such as
Apache Tomcat, IBM WebSphere, or BEA WebLogic. The instructions in the
chapter provide detailed guidance about deploying a BIRT report to Apache
Tomcat version 5.5.7. From those instructions, a developer can infer how to
deploy to other versions.

Part II, Understanding the BIRT Framework
Part II introduces the BIRT architecture and the Report Object Model (ROM) and
provides background information that will help programmers design or modify
reports programmatically, instead of using the graphical tools in BIRT Report
Designer. Part II includes the following chapters:

■ Chapter 6, Understanding the BIRT Architecture. This chapter provides an
architectural overview of BIRT and its components, including the
relationships among the BIRT components and BIRT’s relationship to Eclipse
and Eclipse frameworks. Architectural diagrams illustrate and clarify the

xxii P r e f a c e

relationships and workflow of the components. The chapter also provides
brief overviews of all the major BIRT components.

■ Chapter 7, Understanding the Report Object Model. This chapter provides an
overview of the BIRT ROM. ROM is a specification for a set of XML elements
that define both the visual and non-visual elements that comprise a report
design. The ROM specification includes the properties and methods of those
elements, and the relationships among the elements.

Part III, Scripting in a Report Design
Part III describes how a report developer can customize and enhance a BIRT
report by writing event handler scripts in either Java or JavaScript. Part III
includes the following chapters:

■ Chapter 8, Using Scripting in a Report Design. This chapter introduces the
writing of a BIRT event handler script in either Java or JavaScript, including
the advantages and disadvantages of using one language over the other.
BIRT event handlers are associated with data sets, data sources, and report
items. BIRT fires specific events at specific times in the processing of a report.
This chapter identifies the events that BIRT fires and describes the event
firing sequence.

■ Chapter 9, Using JavaScript to Write an Event Handler. This chapter discusses
the coding environment and coding considerations for writing a BIRT event
handler in JavaScript. This chapter describes several BIRT JavaScript objects
that a developer can use to get and set properties that affect the final report.
The BIRT JavaScript coding environment offers a pop-up list of properties
and functions available in an event handler. A JavaScript event handler can
also use Java classes. This chapter includes a tutorial that describes the
process of creating a JavaScript event handler.

■ Chapter 10, Using Java to Write an Event Handler. This chapter discusses how
to write a BIRT event handler in Java. BIRT provides Java adapter classes
that assist the developer in the creation of Java event handlers. The report
developer uses the property editor of the BIRT Report Designer to associate a
Java event handler class with the appropriate report element. This chapter
contains a tutorial that steps through the Java event handler development
and deployment process. This chapter also describes the event handler
methods and their parameters.

■ Chapter 11, Using a Scripted Data Source. BIRT supports getting data from any
data source that can be processed with Java or JavaScript. To use a scripted
data source in a BIRT report, the report developer implements an open and a
close method for the data source and an open, a fetch, and a close method for
the data set. A scripted data source can be an EJB, an XML stream, a
Hibernate object, or any variety of custom sources of data. This chapter
provides a tutorial about how to add a scripted data source to a report and
how to write the event handlers for that data source.

P r e f a c e xxiii

Part IV, Integrating BIRT Functionality into Applications

Part IV describes the public APIs that are available to Java developers, except
the extension APIs.

■ Chapter 12, Understanding the BIRT APIs. This chapter introduces BIRT’s
public API, which are the classes and interfaces in three package hierarchies:

■ The report engine API, in the org.eclipse.birt.report.engine.api hierarchy,
supports developers of custom report generators.

■ The design engine API, in the org.eclipse.birt.report.engine.api hierarchy,
supports the development of custom report designs.

■ The chart engine API, in the org.eclipse.birt.chart hierarchy, is used to
develop a custom chart generator.

■ Chapter 13, Programming with the BIRT Reporting APIs. This chapter describes
the fundamental requirements of a reporting application and lists the BIRT
API classes and interfaces that are used to create a reporting application. This
chapter describes the tasks that are required of a reporting application and
provides an overview of how to build a reporting application. The
org.eclipse.birt.report.engine.api package supports the process of generating
a report from a report design. The org.eclipse.bert.report.model.api package
supports creative new report designs and modifying existing report designs.

■ Chapter 14, Programming with the BIRT Charting APIs. This chapter describes
the requirements of a charting application, either in a stand-alone
environment or as part of a reporting application. The org.eclipse.birt.chart
hierarchy of packages provides the charting functionality in BIRT. By
describing the fundamental tasks required of charting applications, this
chapter introduces the API classes and interfaces that are used to create a
chart. This chapter also describes the chart programming examples in the
chart examples plug-in.

Part V, Working with the Extension Framework

Part V shows Java programmers how to add new functionality to the BIRT
framework. By building on the Eclipse platform, BIRT provides an extension
mechanism that is familiar to developers of Eclipse plug-ins. This part also
provides information about how to build the BIRT project for developers who
need access to the complete BIRT open source code base. Part V includes the
following chapters:

■ Chapter 15, Building the BIRT Project. This chapter explains how to download
BIRT 2.0.1 source code and build the BIRT project for development. This
chapter describes how to configure an Eclipse workspace, download BIRT
and Data Tools Platform (DTP) source code from the Eclipse Concurrent
Versions System (CVS) repository, and build the BIRT report and web
viewers.

■ Chapter 16, Extending BIRT. This chapter provides an overview of the BIRT
extension framework and describes how to use the Eclipse Plug-in

xxiv P r e f a c e

Development Environment (PDE) and the BIRT extension points to create,
build, and deploy a BIRT extension.

■ Chapter 17, Developing a Report Item Extension. This chapter describes how to
develop a report item extension. The rotated text extension example is a
plug-in that renders the text of a report item as an image. The extension
rotates the image in the report design to display the text at a specified angle.
This chapter describes how to build the rotated text report item plug-in and
add the report item to the BIRT Report Designer using the defined extension
points.

■ Chapter 18, Developing a Report Rendering Extension. This chapter describes
how to develop a report rendering extension. The Comma-Separated Values
(CSV) extension example is a plug-in that writes the table data in a report to
a file in CSV format. This chapter describes how to extend the emitter
interfaces using the defined extension points to build and deploy a
customized report rendering plug-in that runs in the BIRT Report Engine
environment.

■ Chapter 19, Developing an ODA Extension. This chapter describes how to
develop several types of DTP ODA extensions. The CSV ODA driver
example is a plug-in that reads data from a CSV file. The Hibernate ODA
driver example uses Hibernate Query Language (HQL) to provide a SQL-
transparent extension that makes the ODA extension portable to all
relational databases. This chapter shows how to develop an ODA extension
to the BIRT Report Designer 2.0.1 user interface that allows a report designer
to select an extended ODA driver. This chapter also describes how to
implement an extension to an ODA JDBC driver to use a supplied
connection.

The Glossary contains a glossary of terms that are useful to understanding all
parts of the book.

Typographical conventions
Table P-1 describes the typographical conventions that are used in this book.

Table P-1 Typographical conventions

Item Convention Example

Code examples Courier font StringName =
"M. Barajas";

File names Initial capital letter, except
where file names are case-
sensitive

SimpleReport.rptdesign

P r e f a c e xxv

Syntax conventions
Table P-2 describes the symbols that are used to present syntax.

Key
combination

A + sign between keys
means to press both keys at
the same time

Ctrl+Shift

Menu items Capitalized, no bold File

Submenu
items

Separated from the main
menu item with a small
arrow

File➛New

User input Courier font 2006

User input in
Java code

Courier italics chkjava.exe
cab_name.cab

Table P-1 Typographical conventions (continued)

Item Convention Example

Table P-2 Syntax conventions

Symbol Description Example

[] Optional item int count [= <value>];

Array subscript matrix[]

< > Argument that you must
supply

<expression to format>

Delimiter in XML <xsd:sequence>

{ } Groups two or more mutually
exclusive options or
arguments when used with a
pipe

{TEXT_ALIGN_LEFT |
TEXT_ALIGN_RIGHT}

Defines array contents {0, 1, 2, 3}

Delimiter of code block if (itemHandle == null)
{

// create a new handle
}

| Separates mutually exclusive
options or arguments in a
group

[public | protected |
private] <data type>
<variable name>;

Java bitwise OR operator int newflags = flags |4

This page intentionally left blank

xxvii

A c k n o w l e d g m e n t s

John Arthorne and Chris Laffra observed, “It takes a village to write a book on
Eclipse.” In the case of the BIRT books, it has taken a virtual village in four
countries to create these two books. Our contributors, reviewers, Addison-
Wesley editorial, marketing, and production staff, printers, and proofreaders are
working in Austin, Boston, Closter, Indianapolis, Inman, Los Angeles, Paris, San
Francisco, San Jose, Shanghai, South San Francisco, Upper Saddle River, and
Windsor.

We want to thank Greg Doench, our acquisitions editor, who asked us to write a
book about BIRT and has been holding his breath ever since to see if we could
possibly make the schedule that we set for ourselves. Of course, we want to
acknowledge the staff at Addison-Wesley who are working to support our
schedule. In particular, we would like to acknowledge John Fuller, Mary Kate
Murray, Julie Nahil, Sandra Schroeder, and Beth Wickenhiser. We also want to
thank Mike Milinkovich at the Eclipse Foundation and Mark Coggins at Actuate
Corporation for providing the forewords for the books.

We particularly want to acknowledge the many, many managers, designers, and
programmers too numerous to name who have worked diligently to produce
BIRT, giving us a reason for these two books. You know who you are and know
how much we value your efforts. The following technical staff members at
Actuate Corporation have been of particular assistance to the authors: Linda
Chan, Wenbin He, Petter Ivmark, Rima Kanguri, Nina Li, Wenfeng Li, Yu Li,
Jianqiang Luo, David Michonneau, Kai Shen, Aniruddha Shevade, Pierre
Tessier, Krishna Venkatraman, Mingxia Wu, Gary Xue, Jun Zhai, and Lin Zhu. In
addition, we want to acknowledge the support and significant contribution that
was provided by Paul Rogers.

Creating this book would not have been possible without the constant support
of the members of the Developer Communications team at Actuate Corporation.
Many of them and their families sacrificed long personal hours to take on
additional tasks so that members of the team of authors could create this
material. In particular, we wish to express our appreciation to Tigger Newman,
who provided the technical review of this book, and to Terry Ryan, who pulled
together the terminology in the glossary that accompanies each of the books. In
addition, Mary Adler, Frances Buran, Chris Dufour, Bruce Gardner, Melia

xxviii A c k n o w l e d g m e n t s

Kenny, Cheryl Koyano, Madalina Lungulescu, Liesbeth Matthieu, Audrey
Meinertzhagen, and Lois Olson all contributed to the success of the books.

1

P a r t

Part IInstalling and Deploying BIRT

This page intentionally left blank

3

C h a p t e r

Chapter 1Prerequisites for BIRT
BIRT provides a number of separate packages as downloadable archive (.zip)
files on the BIRT downloads page. Some of the packages are stand-alone
modules, others require an existing Eclipse environment, and still others
provide additional functionality to report developers and application
developers. This chapter describes the requirements for each of the available
packages:

■ BIRT Chart Engine

■ BIRT Demo Database

■ BIRT Report Designer

■ BIRT Report Designer Full Eclipse Install for Linux

■ BIRT Report Designer Full Eclipse Install for Windows

■ BIRT Report Engine

■ BIRT Rich Client Platform (RCP) Report Designer

■ BIRT Samples

■ BIRT SDK

■ BIRT Test Suite

Requirements for the BIRT report designers
There are two designer applications that you can use to create BIRT reports:

■ BIRT RCP Report Designer

4 C h a p t e r 1 P r e r e q u i s i t e s f o r B I R T

BIRT Report Designer is a stand-alone module for report designers who
do not have programming experience. BIRT RCP Report Designer is a
stand-alone component that only requires a Java JDK. BIRT RCP Report
Designer appears on the BIRT download page as RCP Report Designer.

■ BIRT Report Designer

BIRT Report Designer requires Eclipse, a Java JDK, and several other
components. BIRT Report Designer is useful for report designers who may
want to modify the underlying Java or JavaScript code that BIRT uses to
create a report.

You can install BIRT Report Designer in either of the following two ways:

■ Download and install an all-in-one archive file, which contains Eclipse,
BIRT Report Designer, Graphics Editor Framework (GEF), and Eclipse
Modeling Framework (EMF).

The all-in-one archive file contains all the components necessary to run
BIRT Report Designer except the Java SDK and itext-1.3.jar. The all-in-one
archive file appears on the BIRT download page as BIRT Report Designer
Full Eclipse Install.

■ Independently download and install all the components that are required
to run BIRT Report Designer.

To independently install the BIRT Report Designer component, you must
first download and install Eclipse. After installing Eclipse, you must also
download and install GEF and EMF. You must install itext-1.3.jar only
after installing BIRT. The BIRT Report Designer archive file appears on
the BIRT download page as Report Designer.

■ BIRT Report Designer and SDK

BIRT Report Designer and SDK is identical to BIRT Report Designer except
that it also includes the Java source code for the plug-ins. The requirements
for BIRT Report Designer and SDK are identical to the requirements for BIRT
Report Designer.

This section describes the prerequisites for each designer package and lists the
recommended versions for each component. Table 1-1 provides more
information about supported configurations.

Table 1-1 Supported configurations

Component Required version

Eclipse 3.2

GEF 3.2

EMF 2.2

JDK 1.4.2 or 1.5

R e q u i r e m e n t s f o r t h e B I R T r e p o r t d e s i g n e r s 5

About installing required software
Because BIRT is a Java-based platform, installing a required component
typically involves only unpacking an archive. Most BIRT components are
packed in archives that have an Eclipse directory at the top level. As a result,
you follow the same unpacking procedure for most modules. A common
installation mistake that new BIRT users make is unpacking archives in the
wrong directory. Before you unpack an archive, examine its structure to confirm
that you are unpacking it to the correct directory.

The BIRT web site provides the most current information about BIRT
installation. To get additional tips, access the BIRT newsgroup, or see an
installation demo, visit the following URL:

http://download.eclipse.org/birt/downloads/

BIRT RCP Report Designer software requirements
BIRT RCP Report Designer requires the following software:

■ J2SE 1.4.2 or later

If you do not have J2SE 1.4.2 or later already installed, choose the latest
release, and install it in an appropriate location on your system. The latest
JDK download is available at the following URL:

http://java.sun.com/products/

The JDK is available as a self-extracting executable file for Windows
operating systems and as an archive file for UNIX and Linux platforms.

■ iText

iText is a library that BIRT uses to generate PDF files. Download itext-1.3.jar
from the following URL:

http://prdownloads.sourceforge.net/itext/itext-1.3.jar

Copy itext-1.3.jar into $RCP_BIRT/plugins/com.lowagie.itext_1.3.0/lib.

BIRT Report Designer Full Eclipse Install software
requirements
BIRT Report Designer Full Eclipse Install Release 2.1 requires the following
software:

■ Java JDK J2SE 1.4.2 or later

If you do not have JDK 1.4.2 or later already installed, install the latest JDK
release in an appropriate location on your system. The latest JDK download
is available at the following URL:

http://java.sun.com/products/

http://download.eclipse.org/birt/downloads/
http://java.sun.com/products/
http://prdownloads.sourceforge.net/itext/itext-1.3.jar
http://java.sun.com/products/

6 C h a p t e r 1 P r e r e q u i s i t e s f o r B I R T

The JDK is available as a self-extracting executable file for Windows
operating systems and as an archive file for UNIX and Linux platforms.

■ iText

iText is a library that BIRT uses to generate PDF files. Download itext-1.3.jar
from the following URL:

http://prdownloads.sourceforge.net/itext/itext-1.3.jar

You copy iText to a directory that is created upon installing BIRT. You must
therefore install iText after you install BIRT. Copy itext-1.3.jar into
$ECLIPSE/plugins/com.lowagie.itext_1.3.0/lib.

BIRT Report Designer software requirements
BIRT Report Designer requires the following software:

■ Java J2SE 1.4.2 JDK or later

If you do not have Java already installed, choose the latest release, and install
it in an appropriate location on your system. The latest JDK download is
available at the following URL:

http://java.sun.com/products/

The J2SE JDK is available as a self-extracting executable file for Windows
operating systems and as an archive file for UNIX and Linux platforms.

Release 2.1 requires J2SE 1.4.2 JDK or later and does not support earlier
versions.

■ Eclipse Platform

BIRT Report Designer Release 2.1 is only compatible with Eclipse 3.2. BIRT
Report Designer does not support earlier versions of Eclipse.

You can download and install Eclipse SDK 3.2 from the following URL:

http://www.eclipse.org/downloads

The Eclipse SDK is an archive file that you must extract to your hard drive.
The installation of Eclipse is complete once you extract the archive. Eclipse
does not have a setup or install program.

The result of the Eclipse archive extraction is a folder named eclipse. You
must specify to the archive extraction program where on your hard drive
you want the eclipse folder to reside. You may extract the Eclipse archive to
any location you prefer. A typical location for Eclipse is the root directory of
the C drive. If you specify the root directory of the C drive, the result of
installing Eclipse is the following folder:

c:/eclipse

http://www.eclipse.org/downloads
http://prdownloads.sourceforge.net/itext/itext-1.3.jar
http://java.sun.com/products/

P r e r e q u i s i t e s f o r o t h e r B I R T p a c k a g e s 7

■ Graphics Editor Framework

GEF is an Eclipse plug-in that BIRT Report Designer’s user interface requires.

Download GEF 3.2 Runtime from the following URL:

http://download.eclipse.org/tools/gef/downloads

GEF is available as a ZIP archive file. Extract GEF to the directory that
contains Eclipse.

Eclipse 3.2 requires GEF 3.2 and does not support earlier versions.

■ Eclipse Modeling Framework

EMF is a collection of Eclipse plug-ins that BIRT charts use. EMF download
includes the required Service Data Objects (SDO) component. Download
EMF and SDO 2.2 Runtime from the following URL:

http://download.eclipse.org/tools/emf/scripts/downloads.php

EMF is available as a ZIP archive file. Extract EMF to the directory that
contains Eclipse.

Eclipse 3.2 requires EMF 2.2 and does not support earlier versions.

■ iText

iText is a library that BIRT uses to generate PDF files. Download itext-1.3.jar
from the following URL:

http://prdownloads.sourceforge.net/itext/itext-1.3.jar

You copy iText to a directory that is created upon installing BIRT. You must
therefore install iText after you install BIRT. Copy itext-1.3.jar into
$ECLIPSE/plugins/com.lowagie.itext_1.3.0/lib.

Table 1-1 lists the required configurations for developing report designs using
BIRT Report Designer 2.1. You cannot use any other versions of any of the listed
components.

Prerequisites for other BIRT packages
BIRT provides a number of supporting packages for the BIRT Report Designers.
This section describes the prerequisites for each of these packages.

BIRT Chart Engine software requirements
This section describes the software required to use BIRT Chart Engine.

BIRT Chart Engine requires the following software:

■ Java J2SE 1.4.2 JDK or later

http://download.eclipse.org/tools/gef/downloads
http://download.eclipse.org/tools/emf/scripts/downloads.php
http://prdownloads.sourceforge.net/itext/itext-1.3.jar

8 C h a p t e r 1 P r e r e q u i s i t e s f o r B I R T

If you do not have JDK 1.4.2 or later already installed, choose the latest
release, and install it in an appropriate location on your system. The latest
JDK download is available at the following URL:

http://java.sun.com/products

The JDK is available as a self-extracting executable file for Windows
operating systems and as an archive file for UNIX and Linux platforms.

■ Eclipse Platform

BIRT Report Designer Release 2.1 is compatible with Eclipse 3.2. BIRT Report
Designer does not support any earlier version of Eclipse.

You can download and install Eclipse SDK 3.2 from the following URL:

http://www.eclipse.org/downloads

■ Graphics Editor Framework

GEF is an Eclipse plug-in that BIRT Report Designer’s user interface
requires.

Download GEF 3.2 Runtime from the following URL:

http://download.eclipse.org/tools/gef/downloads

GEF is available as a ZIP archive file. Extract GEF to the directory that
contains Eclipse.

■ Eclipse Modeling Framework

EMF is a collection of Eclipse plug-ins that BIRT charts use. EMF download
includes the required SDO component. Download EMF and SDO 2.2
Runtime from the following URL:

http://download.eclipse.org/tools/emf/scripts/downloads.php

EMF is available as a ZIP archive file. Extract EMF to the directory that
contains Eclipse.

Eclipse 3.1 requires EMF 2.1 and does not support EMF 2.2 or later.

BIRT Demo Database software requirements
Both BIRT Report Designer and BIRT RCP Report Designer ship with a demo
database called Classic Models that uses Apache Derby. You do not need to
download any other files to use this database. The database is built in to the
designer builds.

BIRT Demo Database requires one of the following database platforms:

■ Apache Derby version 5.1 or higher

■ MySQL Connector/J version 3.x or MySQL client version 4.x

http://www.eclipse.org/downloads
http://download.eclipse.org/tools/gef/downloads
http://java.sun.com/products
http://download.eclipse.org/tools/emf/scripts/downloads.php

P r e r e q u i s i t e s f o r o t h e r B I R T p a c k a g e s 9

You can download this sample database from the following URL:

http://www.eclipse.org/birt/phoenix/db/

BIRT Report Engine software requirements
This section describes the software required to use BIRT Report Engine.

BIRT Report Engine requires Java J2SE 1.4.2 JDK or Java J2SE 5.0 JDK.

If you do not have J2SE 5.0 already installed, choose the latest release and install
it. The latest J2SE download is available at the following URL:

http://java.sun.com/j2se/1.5.0/download.jsp

J2SE 5.0 JDK is available as a self-extracting executable file for Windows
operating systems and as an archive file for UNIX and Linux platforms. Extract
the contents of this file into an appropriate location on your system.

Note that Sun renamed the Java 1.5 version to 5.0 and thus documentation on
Sun’s site may at times appear to refer to two different versions. Versions 5.0
and 1.5 are the same version.

BIRT Samples software requirements
BIRT Samples requires either BIRT Report Designer or BIRT Report Engine. The
version of the BIRT Samples files should match the version of the BIRT package
you use. Use BIRT Samples 2.1 with BIRT Report Designer 2.1.

You can get BIRT Samples from the following URL:

http://www.eclipse.org/birt/phoenix/examples/

BIRT Test Suite software requirements
This section describes the software required to use BIRT Test Suite.

BIRT Test Suite requires the following software:

■ Java J2SE 1.4.2 JDK or Java J2SE 5.0 JDK

If you do not have J2SE 5.0 already installed, choose the latest release and
install it. The latest J2SE download is available at the following URL:

http://java.sun.com/j2se/1.5.0/download.jsp

J2SE 5.0 JDK is available as a self-extracting executable file for Windows
operating systems and as an archive file for UNIX and Linux platforms.
Extract the contents of this file into an appropriate location on your system.

Note that Sun renamed the Java 1.5 version to 5.0 and thus documentation
on Sun’s site may at times appear to refer to two different versions. 5.0 and
1.5 are essentially synonymous.

■ Eclipse Platform

http://www.eclipse.org/birt/phoenix/db/
http://java.sun.com/j2se/1.5.0/download.jsp
http://www.eclipse.org/birt/phoenix/examples/
http://java.sun.com/j2se/1.5.0/download.jsp

10 C h a p t e r 1 P r e r e q u i s i t e s f o r B I R T

BIRT Report Designer Release 2.1 is compatible with Eclipse 3.2. BIRT Report
Designer does not support earlier versions of Eclipse.

You can download and install Eclipse SDK 3.2 from the following URL:

http://www.eclipse.org/downloads/

■ Graphics Editor Framework

GEF is an Eclipse plug-in that BIRT Report Designer’s user interface
requires.

Download GEF 3.2 Runtime from the following URL:

http://download.eclipse.org/tools/gef/downloads/

GEF is available as a ZIP archive file. Extract GEF to the directory that
contains Eclipse.

■ Eclipse Modeling Framework

EMF is a collection of Eclipse plug-ins that BIRT charts use. EMF download
includes the required SDO component. Download EMF and SDO 2.2
Runtime from the following URL:

http://download.eclipse.org/tools/emf/scripts/downloads.php

EMF is available as a ZIP archive file. Extract EMF to the directory that
contains Eclipse.

Eclipse 3.2 requires EMF 2.2.

■ JUnit Regression Testing Framework

BIRT Test Suite requires JUnit 4.1. JUnit is available as a ZIP archive file.
Download the archive from the following URL:

http://www.junit.org

■ BIRT Report Designer source code

In your Eclipse Workbench, use CVS to download the BIRT Report Designer
source code into your workspace.

About types of BIRT builds
The Eclipse BIRT download site makes available several types of builds for
BIRT. The following list describes the types of builds that are available:

■ Release build

A release build is of production quality and passes the complete test suite for
all components and features. Use the release build to develop applications.

■ Milestone build

http://www.eclipse.org/downloads/
http://download.eclipse.org/tools/gef/downloads/
http://download.eclipse.org/tools/emf/scripts/downloads.php
http://www.junit.org

A b o u t t y p e s o f B I R T b u i l d s 11

A milestone build provides access to newly completed features. The build is
stable, but it is not of production quality. Use this type of build to preview
new features and develop future reporting applications that depend on those
features.

■ Stable build

A stable build passes a reduced test suite. New features are in an
intermediate stage of development in this type of build. Use a stable build to
preview new features and provide feedback to the development team.

■ Nightly build

BIRT is built every night. As an open source project, these builds are
available to anyone. These builds are part of an ongoing development
process and are unlikely to be useful to report developers in general;
however, if a certain feature that you require does not work, you can file a
bug report. When the bug has been fixed, and the fix has been included in
the build, you can download BIRT and confirm that the fix solves the
problem that you reported.

This page intentionally left blank

13

C h a p t e r

Chapter 2Installing a BIRT Report
Designer

BIRT provides two report designers, BIRT Report Designer and BIRT RCP
Report Designer. Both designers are reporting systems that integrate with your
J2EE-based web application to enable report developers to produce compelling
reports in both web and PDF formats. BIRT Report Designer is for report
developers who want to use programming or scripting in their report designs.
BIRT RCP Report Designer does not support the use of programming or
scripting in Java.

Each designer is packaged as an archive (.zip) file and can be downloaded from
the Eclipse web site.

The available packages are:

■ BIRT Report Designer

If you already have installed an Eclipse environment, you can download and
install BIRT Report Designer.

■ BIRT RCP Report Designer

If you have installed a Java environment, you can download and install BIRT
RCP Report Designer. This designer is easier to use but does not support
programming or scripting in Java.

■ BIRT Report Designer Full Eclipse Install

If you have an installed Java environment, and you want to be able to
program or use JavaScript in your report design, you can download and
install BIRT Report Designer Full Eclipse Install. This package contains BIRT
Report Designer and all the Eclipse components that you need in one ZIP
file.

14 C h a p t e r 2 I n s t a l l i n g a B I R T R e p o r t D e s i g n e r

Installing BIRT Report Designer
BIRT Report Designer integrates into an existing Eclipse platform on your
computer by providing the report design perspective. BIRT Report Designer
also includes the Software Development Kit (SDK) and the components
provided in the BIRT Chart Engine, BIRT Demo Database, BIRT Report Engine,
and BIRT Samples packages.

You install BIRT Report Designer by downloading an archive (.zip) file from the
Eclipse web site and extracting it in your existing Eclipse environment. The
following examples use BIRT Release 2.1.

Downloading and installing BIRT Report Designer
Complete the following procedure to download and install BIRT Report
Designer on a Windows or UNIX system.

How to install BIRT Report Designer

1 Using your browser, navigate to the following URL:

http://download.eclipse.org/birt/downloads/

2 From Download, choose the following build:

Release build 2_1_0

The BIRT Release Build: 2_1_0 page appears.

3 Choose the Report Designer ZIP file:

birt-report-framework-2_1_0.zip

The Eclipse downloads page appears. This page shows all the sites that
provide this download file.

4 Choose the download site that is closest to your location.

birt-report-framework-2_1_0.zip downloads to your system.

5 Extract the archive file to the folder that contains your Eclipse directory.

Be certain to extract the archive into the directory that contains the eclipse
folder and not into the eclipse folder. For example, if your eclipse folder is
located at C:\eclipse, extract the archive into C:\.

6 Download and install the auxiliary file that is necessary for PDF creation, as
described in the following section.

Installing the auxiliary file for BIRT Report Designer
BIRT Report Designer also requires iText, an open source Java-PDF library that
BIRT uses to generate PDF versions of reports. You must install iText after you
install BIRT Report Designer.

http://download.eclipse.org/birt/downloads/

I n s t a l l i n g B I R T R e p o r t D e s i g n e r F u l l E c l i p s e I n s t a l l 15

1 Download itext-1.3.jar from the following URL:

http://prdownloads.sourceforge.net/itext/itext-1.3.jar

2 Copy itext-1.3.jar to the following location in your Eclipse installation:

/plugins/com.lowagie.itext_1.3.0/lib

Testing the BIRT Report Designer installation
To test your BIRT Report Designer installation, start Eclipse, then start BIRT
Report Designer. BIRT Report Designer is a perspective within Eclipse.

How to test the BIRT Report Designer installation

1 Start Eclipse.

2 From the Eclipse window menu, choose Open Perspective➛Report Design.
If Report Design does not appear in the Open Perspective window, choose
Other. A list of perspectives appears. Choose Report Design.

Eclipse displays the BIRT Report Designer perspective.

If the test fails, see “Avoiding cache conflicts after you install a BIRT report
designer,” later in this chapter.

Installing BIRT Report Designer Full Eclipse Install
If you are new to Eclipse and BIRT, you can download and install this package
to start developing and designing BIRT reports immediately. This package
includes BIRT Report Designer, an Eclipse environment, and other required
components.

In BIRT Release 2.1, the BIRT Report Designer Full Eclipse Install package
contains:

■ Eclipse Platform 3.2

■ Graphics Editor Framework 3.2

■ Eclipse Modeling Framework 2.2

■ BIRT Report Designer 2.1

You install BIRT Report Designer Full Eclipse Install by downloading and
extracting an archive (.zip) file. The following examples use BIRT Release 2.1.

Downloading and installing BIRT Report Designer
Full Eclipse Install
Complete the following procedure to download and install BIRT Report
Designer and the other necessary components on a Windows or UNIX system.

http://prdownloads.sourceforge.net/itext/itext-1.3.jar

16 C h a p t e r 2 I n s t a l l i n g a B I R T R e p o r t D e s i g n e r

How to install BIRT Report Designer Full Eclipse Install

1 Using your browser, navigate to the following URL:

http://download.eclipse.org/birt/downloads/

2 Select the following build:

Release build 2_1_0

The BIRT Release Build: 2_1_0 page appears.

3 Choose the Report Designer Full Eclipse Install ZIP file:

birt-report-designer-all-in-one-2_1_0.zip

The Eclipse downloads page appears. This page shows all the sites that
provide this download file.

4 Choose the download site that is closest to your location.

birt-report-designer-all-in-one-2_1_0.zip downloads to your system.

5 Extract the archive file.

6 Download and install the auxiliary file that is necessary for PDF creation, as
described in the following section.

Installing the auxiliary file for BIRT Report Designer
BIRT Report Designer also requires iText, an open source Java-PDF library that
BIRT uses to generate PDF versions of reports. You must install iText after you
install BIRT Report Designer.

1 Download itext-1.3.jar from the following URL:

http://prdownloads.sourceforge.net/itext/itext-1.3.jar

2 Copy itext-1.3.jar to the following location in your Eclipse installation:

/plugins/com.lowagie.itext_1.3.0/lib

To test your installation, see “Testing the BIRT Report Designer installation,”
earlier in this chapter.

Installing BIRT RCP Report Designer
BIRT RCP Report Designer is a stand-alone report design application that
enables report developers to produce compelling reports in both web and PDF
formats. This application uses the Eclipse Rich Client Platform (RCP) to provide
a report design environment that is less complex than the full Eclipse platform
and SDK. If you need the project-based environment that the full Eclipse
platform provides, install BIRT Report Designer instead. BIRT RCP Report
Designer only runs on Windows.

http://download.eclipse.org/birt/downloads/
http://prdownloads.sourceforge.net/itext/itext-1.3.jar

I n s t a l l i n g B I R T R C P R e p o r t D e s i g n e r 17

To integrate reports that you create in BIRT RCP Report Designer into your
J2EE-based web application, you also must install BIRT Report Engine. BIRT
RCP Report Designer includes the components that are provided in the BIRT
Demo Database package.

You install BIRT RCP Report Designer by downloading and extracting an
archive (.zip) file. The following examples use Release 2.1.

Downloading and installing BIRT RCP Report
Designer
Complete the following procedure to download and install BIRT RCP Report
Designer on a Windows system.

How to install BIRT RCP Report Designer

1 Using your browser, navigate to the following URL:

http://download.eclipse.org/birt/downloads/

2 Select the following build:

Release build 2_1_0

The BIRT Release Build: 2_1_0 page appears.

3 Choose the BIRT RCP Report Designer ZIP file:

birt-rcp-report-designer-2_1_0.zip

The Eclipse downloads page appears. This page shows all the sites that
provide this download file.

4 Choose the download site that is closest to your location.

birt-rcp-report-designer-2_1_0.zip downloads to your system.

5 Extract the archive to a suitable directory. You can either create a directory or
choose an existing directory. The root directory of the archive is birt-rcp-
report-designer-2_1_0.

6 Download and extract the auxiliary files that are necessary for report
viewing and PDF creation, as described in the following section.

Installing the auxiliary file for BIRT Report Designer
BIRT Report Designer also requires iText, an open source Java-PDF library that
BIRT uses to generate PDF versions of reports. You must install iText after you
install BIRT Report Designer.

1 Download itext-1.3.jar from the following URL:

http://prdownloads.sourceforge.net/itext/itext-1.3.jar

http://download.eclipse.org/birt/downloads/
http://prdownloads.sourceforge.net/itext/itext-1.3.jar

18 C h a p t e r 2 I n s t a l l i n g a B I R T R e p o r t D e s i g n e r

2 Copy itext-1.3.jar to the following location in your Eclipse installation:

/plugins/com.lowagie.itext_1.3.0/lib

Testing the BIRT RCP Report Designer installation
To test the installation, start BIRT RCP Report Designer.

How to test the BIRT RCP Report Designer installation

1 Navigate to the birt-rcp-report-designer-2_1_0 subdirectory.

2 To run BIRT RCP Report Designer, double-click BIRT.exe. BIRT RCP Report
Designer appears.

Troubleshooting installation problems
Installing a BIRT report designer is a straightforward task. If you extract the
archive file to the appropriate location and the required supporting files are also
available in the expected location, your BIRT report designer will work. Because
of this fact, one of the first steps in troubleshooting an installation problem is
confirming that you extracted all files to the correct location. In particular, verify
that the /eclipse/plugins directory contains jar files whose names begin with
org.eclipse.birt, org.eclipse.emf, and org.eclipse.gef. Beyond this step, there are
a few things that you can do to resolve installation problems. The following
sections describe ways of troubleshooting and resolving two common
installation errors.

Avoiding cache conflicts after you install a BIRT
report designer
Eclipse caches information about plug-ins for faster start-up. After you install or
upgrade BIRT Report Designer, using a cached copy of some pages can lead to
errors or missing functionality. BIRT RCP Report Designer can also have this
problem. Symptoms of this problem include:

■ The Report Design perspective does not appear in Eclipse.

■ You receive the message “An error occurred” when you open a report or use
the report design perspective.

■ JDBC drivers that you installed do not appear in the driver manager.

The solution is to remove the cached information. The recommended practice is
to start either Eclipse or BIRT from the command line with the -clean option.

To start Eclipse, use the following command:

eclipse -clean

I n s t a l l i n g a l a n g u a g e p a c k 19

To start BIRT RCP Report Designer, use the following command:

birt -clean

Specifying which Java Virtual Machine to use when
you start a BIRT report designer
You can specify which Java Virtual Machine (JVM) to use when you start a BIRT
report designer. This specification is important, particularly for users on UNIX,
when path and permission problems prevent the report designer from locating
an appropriate JVM to use. A quick way to overcome such problems is by
specifying explicitly which JVM to use when you start the BIRT report designer.

In both Windows and UNIX systems, you can either start a BIRT report designer
from the command line or create a command file or shell script that calls the
appropriate executable file with the JVM path. The example in this section uses
BIRT Report Designer on a Windows system.

How to specify which JVM to use when you start a BIRT report designer

On the command line, type a command similar to:

eclipse.exe -classpath <$JAVA_HOME>/j2sdk1.4.2_05/bin/java.exe

Installing a language pack
All BIRT user interface components and messages are internationalized through
the use of properties files. BIRT uses English as the default language, but other
languages are supported by installing a language pack that contains the
necessary properties files. There are 24 BIRT language packs, four each for the
following six BIRT products:

■ BIRT Report Designer Full Eclipse Install

■ BIRT Report Designer

■ BIRT RCP Report Designer

■ BIRT Report Engine

■ BIRT Chart Engine

■ BIRT Framework SDK

Each of the four language packs contains support for a specific set of languages.
The names of the language packs are identical for each product, although the
archive file names differ. The following list describes the four language packs
and the languages that they support:

■ NLpack1

20 C h a p t e r 2 I n s t a l l i n g a B I R T R e p o r t D e s i g n e r

The NLpack1 language pack supports German, Spanish, French, Italian,
Japanese, Korean, Brazilian Portuguese, traditional Chinese, and simplified
Chinese.

■ NLpack2

The NLpack2 language pack supports Czech, Hungarian, Polish, and
Russian.

■ NLpack2a

The NLpack2a language pack supports Danish, Dutch, Finnish, Greek,
Norwegian, Portuguese, Swedish, and Turkish.

■ NLpackBidi

The NLpackBidi language pack supports Arabic and Hebrew. Hebrew is
only for Eclipse runtime, GEF runtime, and EMF runtime.

The following instructions explain how to download and install a language
pack.

How to download and install a language pack

To download and install a language pack, perform the following steps:

1 Point your browser to the BIRT download page at:

http://download.eclipse.org/birt/downloads/

2 In the Download section of the BIRT download page, choose Release Build
2_1_0.

3 In the Build Documentation section of the BIRT Release Build page, choose
Language Packs.

4 Download the language pack for the product and language that meets your
needs.

5 Extract the language pack archive file into the directory above the Eclipse
directory.

6 Start Eclipse and choose Window➛Preferences➛Report Design➛Preview.

7 Select the language of choice from the drop-down list in Choose your locale.

8 Restart Eclipse.

If Windows is not running under the locale you need for BIRT, start Eclipse
using the -nl <locale> command line option, where <locale> is a standard Java
locale code, such as es_ES for Spanish as spoken in Spain. Sun Microsystems
provides a list of locale codes at the following URL:

http://java.sun.com/j2se/1.5.0/docs/guide/intl/locale.doc.html

http://download.eclipse.org/birt/downloads/
http://java.sun.com/j2se/1.5.0/docs/guide/intl/locale.doc.html

I n s t a l l i n g a l a n g u a g e p a c k 21

Eclipse remembers the locale you specify on the command line. On subsequent
launches of Eclipse, the locale is set to the most recent locale setting. To revert to
a previous locale, launch Eclipse using the -nl command line option for the
locale to which you want to revert.

This page intentionally left blank

23

C h a p t e r

Chapter 3Installing Other BIRT
Packages

Beyond the BIRT Report Designer packages, BIRT provides a number of other
separate packages as downloadable archive (.zip) files on the Eclipse web site.
Some of the packages are stand-alone modules, others require an existing
Eclipse or BIRT environment, and still others provide additional functionality to
report developers and application developers. This chapter describes the steps
required to install each of the available packages, shown in the following list:

■ BIRT Chart Engine

■ BIRT Demo Database

■ BIRT Report Engine

■ BIRT Samples

■ BIRT Test Suite

BIRT supports several languages for displaying user interface components and
messages. Support for languages other than English requires installing a
language pack. This chapter describes the steps required to install a language
pack.

Installing BIRT Chart Engine
BIRT Chart Engine supports adding charting capabilities to a Java application.
An application can use BIRT Chart Engine without using the BIRT reporting
functionality or BIRT Report Engine. BIRT Chart Engine integrates into an
existing Eclipse platform on a Microsoft Windows, UNIX, or Linux platform.

24 C h a p t e r 3 I n s t a l l i n g O t h e r B I R T P a c k a g e s

You can also install BIRT Chart Engine onto an existing J2EE application server.
To use BIRT Chart Engine, you use its public API, org.eclipse.birt.chart.

BIRT Report Designer includes all the components of BIRT Chart Engine. Thus,
if you are using a BIRT Report Designer, you do not need to install BIRT Chart
Engine separately.

The birt-charts-2.1.zip download file includes documentation and examples on
how to use BIRT Chart Engine. To view this documentation, see the following
location after extracting the archive:

eclipse/plugins/org.eclipse.birt.doc_2.1/Samples/
org.eclipse.birt.chart.examples/readme.html

Installing BIRT Chart Engine from the Eclipse BIRT
web site
To install BIRT Chart Engine, you extract an archive (.zip) file. Complete the
steps in the following section to download and install BIRT Chart Engine on a
Microsoft Windows, UNIX, or Linux platform.

How to install BIRT Chart Engine

1 Using your browser, navigate to the following URL:

http://download.eclipse.org/birt/downloads/

2 Select the following build:

Release build 2.1

The BIRT Release Build: 2.1 page appears.

3 Choose the Chart Engine archive (.zip) file:

birt-charts-2.1.zip

The Eclipse downloads page appears. This page shows all the sites that
provide this BIRT Chart Engine download file.

4 Choose your closest download site.

birt-charts-2.1.zip downloads to your system.

5 Extract the archive file to the folder that contains your Eclipse directory.

Avoiding cache conflicts after installing
Eclipse caches information about plug-ins for faster start-up. After you install or
upgrade BIRT Chart Engine, using a cached copy of some pages can lead to
errors or missing functionality.

The solution is to remove the cached information. The recommended practice is
to start Eclipse from the command line with the -clean option:

eclipse -clean

http://download.eclipse.org/birt/downloads/

I n s t a l l i n g B I R T D e m o D a t a b a s e 25

Installing BIRT Demo Database
The BIRT Demo Database package provides the Classic Models database that
this book uses for example procedures. The database is provided in the
following formats:

■ Apache Derby

■ Microsoft Access

■ MySQL

BIRT Report Designer and BIRT RCP Report Designer include this database in
Apache Derby format, as the Classic Models Inc. sample database data source.
Install BIRT Demo Database if you want to use the native drivers to access this
data source.

Installing BIRT Demo Database from the Eclipse BIRT
web site
To install BIRT Demo Database, you extract an archive (.zip) file. Complete the
steps in the following section to download and install BIRT Demo Database on a
Microsoft Windows, UNIX, or Linux platform.

How to install BIRT Demo Database

1 Using your browser, navigate to the following URL:

http://www.eclipse.org/birt/phoenix/db/

2 In the Install instructions, select sample database.

3 In the dialog box for the ZIP file download that appears, select Open.

The name of the ZIP file is birt-database-2_0_1.zip.

4 Extract the archive file to a location of your choice.

Extracting creates a directory, ClassicModels, that contains the BIRT Demo
Database in Apache Derby, Microsoft Access, and MySQL formats.

Testing the BIRT Demo Database installation
To test the BIRT Demo Database, first connect to the database with the native
database client tool or a Java application. Next, connect to the database from
BIRT Report Designer or BIRT RCP Report Designer.

How to access BIRT Demo Database

Perform one of the following sets of tasks, based on your preferred database:

■ Apache Derby database

Connect to the database located in the derby subdirectory of ClassicModels.

http://www.eclipse.org/birt/phoenix/db/

26 C h a p t e r 3 I n s t a l l i n g O t h e r B I R T P a c k a g e s

■ Microsoft Access database

Perform one of the following tasks:

■ Use Microsoft Access to connect to the database located in the msaccess
subdirectory of ClassicModels.

■ Use ODBC to access the database.

1 Create an ODBC data source on the database located in the msaccess
subdirectory of ClassicModels.

2 Use a JDBC:ODBC bridge driver to access the ODBC data source.

■ MySQL

1 Navigate to the mysql subdirectory of ClassicModels.

2 Create a database to use or edit create_classicmodels.sql to uncomment
the lines that create and select the classicmodels database.

3 Use the mysql command line interface to run create_classicmodels.sql.

4 Review load_classicmodels.sql to determine if the script can be used on
your platform without editing. Use the mysql command line interface to
run load_classicmodels.sql.

How to access BIRT Demo Database from a BIRT Report Designer

Now, connect to the database using BIRT Report Designer or BIRT RCP Report
Designer.

1 To access the Classic Models database in Apache Derby or MySQL format,
first add the driver Java archive (.jar) files to your BIRT Report Designer or
BIRT RCP Report Designer installation.

2 In any report design, create a data source on the database. In the same report
design, create a data set on the data source.

Installing BIRT Report Engine
BIRT Report Engine supports adding reporting capabilities to a Java
application. BIRT Report Engine integrates into an existing Eclipse platform on
a Microsoft Windows, UNIX, or Linux platform. You can also install report
engine components onto an existing J2EE application server. To support quick
deployment of reporting functionality to an application server, BIRT Report
Engine includes a web archive (.war) file.

I n s t a l l i n g B I R T R e p o r t E n g i n e 27

Installing BIRT Report Engine from the Eclipse BIRT
web site
To install BIRT Report Engine, you extract an archive (.zip) file. Complete the
steps in the following section to download and install BIRT Report Engine
on a Microsoft Windows, UNIX, or Linux platform. For more information about
setting up the BIRT Report Engine, see Chapter 5, “Deploying a BIRT Report
to an Application Server.”

How to install BIRT Report Engine

1 Using your browser, navigate to the following URL:

http://download.eclipse.org/birt/downloads

2 Select the following build:

Release build 2.1

The BIRT Release Build: 2.1 page appears.

3 Choose the Report Engine archive (.zip) file:

birt-runtime-2.1.zip

The Eclipse downloads page appears. This page shows all the sites that
provide this BIRT Report Engine download file.

4 Choose your closest download site.

birt-runtime-2.1.zip downloads to your system.

5 Extract the archive file to a suitable directory.

6 Create a system variable, BIRT_HOME.

Set the value of BIRT_HOME to the BIRT Report Engine installation
directory. For example:

C:\birt-runtime-2.1

Testing the BIRT Report Engine installation
To test the installation, run the BIRT Report Engine command line example.

How to test the BIRT Report Engine installation

1 From the command line, navigate to the directory where you installed BIRT
Report Engine.

2 Navigate to the Command Line Example subdirectory.

3 To run the genReport script, use the following syntax:

■ On a Windows platform

genReport [-e <target encoding>] [-f {HTML|FO|PDF}]
[-F <full path of report parameter file>]

http://download.eclipse.org/birt/downloads

28 C h a p t e r 3 I n s t a l l i n g O t h e r B I R T P a c k a g e s

[-l <locale>] [-o <full path of output file>]
[-p <report parameter name=value>]
<full path of report design file>

■ On a UNIX or Linux platform

genReport.sh [-e <target encoding>] [-f {HTML|FO|PDF}]
[-F <full path of report parameter file>]
[-l <locale>] [-o <full path of output file>]
[-p <report parameter name=value>]
<full path of report design file>

Enclose the value for a command line parameter in quotes. A report
parameter value specified by the -p command line argument overrides the
value in a report parameter file. For example, the following Windows
platform command uses the value, Hello, for the parameter, sample, to
generate an HTML file from the report design, test.rptdesign:

genReport -p "sample=Hello"
"C:\birt-runtime-2_0_1\Web Viewer Example\test.rptdesign"

genReport generates the required output file.

4 Open the output file.

Installing BIRT Samples
BIRT Samples provides examples of a BIRT report item extension and of
charting applications. The report item extension integrates into BIRT Report
Designer and BIRT Report Engine.

To install BIRT Samples, you extract an archive (.zip) file. Complete the steps in
the following section to download and install BIRT Samples on a Windows,
UNIX, or Linux platform.

How to install BIRT Samples

1 Using your browser, navigate to the following URL:

http://download.eclipse.org/birt/downloads

2 Select the following build:

Release build 2.1

The BIRT Release Build: 2.1 page appears.

3 Choose the Samples archive (.zip) file:

birt-samples-plugins-2.1.zip

The Eclipse downloads page appears. This page shows all the sites that
provide this BIRT Samples download file.

4 Choose your closest download site.

http://download.eclipse.org/birt/downloads

I n s t a l l i n g B I R T Te s t S u i t e 29

birt-samples-plugins-2.1.zip downloads to your system. Extract the archive
file to the folder that contains your Eclipse directory.

Installing BIRT Test Suite
BIRT Test Suite provides the test suite used by BIRT developers. Install this
package if you are a contributor to the BIRT project or if you want to customize
the BIRT packages to your own needs.

To install BIRT Test Suite, you extract an archive (.zip) file. Complete the steps in
the following section to download and install BIRT Test Suite on a Windows,
UNIX, or Linux platform.

How to install BIRT Test Suite

1 Using your browser, navigate to the following URL:

http://download.eclipse.org/birt/downloads/

2 Select the following build:

Release build 2.1

The BIRT Release Build: 2.1 page appears.

3 Choose the Test Suites archive (.zip) file:

birt-tests-suite-2.1.zip

The Eclipse downloads page appears. This page shows all the sites that
provide this BIRT Test Suite download file.

4 Choose your closest download site. birt-tests-suite-2.1.zip downloads to
your system.

5 Extract the archive file to the folder that contains your Eclipse directory.

6 Set up the BIRT Test Suite plug-ins so that they have access to the JUnit
libraries. For information about using the JUnit tests, see BIRT API Test
Reference.doc, which can be found in the following location in the BIRT Test
Suite package:

eclipse\plugins\org.eclipse.birt.tests.data

http://download.eclipse.org/birt/downloads/

This page intentionally left blank

31

C h a p t e r

Chapter 4Updating a BIRT
Installation

As BIRT Report Designer is a Java-based application, updating an installation
typically requires replacing the relevant files. Eclipse supports the update
process for BIRT Report Designer by providing the Update Manager. BIRT RCP
Report Designer is a stand-alone product, so you must replace the existing
version with a newer version.

This chapter describes important considerations and the steps you should
follow to update the following packages:

■ BIRT Report Designer

■ BIRT RCP Report Designer

Using the Eclipse Update Manager to update BIRT
Report Designer installation

Use the Update Manager to find and install newer major releases of BIRT Report
Designer. To install a milestone release or other prerelease version, use the
manual update instructions.

How to update BIRT Report Designer installation using the Update Manager

1 In Eclipse, choose Help➛Software Updates➛Find and Install. Feature
Updates appears.

2 Select Search for updates of currently installed features, and choose Finish.
The Update Manager may display a list of update sites. Choose one to

32 C h a p t e r 4 U p d a t i n g a B I R T I n s t a l l a t i o n

continue. Search Results appears and displays any updates that are
available.

3 Select a feature to update, then choose Next. Feature License appears.

4 To accept the license and continue installing the update, choose Next.
Installation appears.

5 Choose Finish to download and install the selected updates.

Updating BIRT RCP Report Designer installation
Unlike BIRT Report Designer, BIRT RCP Report Designer is a stand-alone
application. To update this application, you delete the entire application and
reinstall a newer version. If you created your workspace in the birt-rcp-report-
designer-<version> directory structure, you should back up your workspace or
the reports that you want to keep before you delete BIRT RCP Report Designer.
After you install a newer version of the application, you can copy your
workspace folder back to the application’s directory structure.

As a best practice, do not keep your workspace in the birt-rcp-report-designer-
<version> directory structure. Keeping your workspace in a different location
enables you to update your installation more easily in the future.

How to update BIRT RCP Report Designer

1 Back up the workspace directory if it is in the birt-rcp-report-designer-
<version> directory structure.

2 Delete the birt-rcp-report-designer-<version> directory.

3 Download and install BIRT RCP Report Designer as described earlier in this
book.

4 Restore the workspace directory, if necessary.

5 Restart BIRT RCP Report Designer with the -clean option:

birt -clean

33

C h a p t e r

Chapter 5Deploying a BIRT Report
to an Application Server

One way to view a BIRT report on the web is to deploy the BIRT report viewer
to an application server, such as Apache Tomcat, IBM WebSphere, JBOSS, or
BEA WebLogic.

You deploy the BIRT report viewer by copying files from the BIRT Report
Engine, which you must install separately from the BIRT Report Designer. The
BIRT Report Engine includes the BIRT report viewer as a web archive (.war) file
and as a set of files and folders.

This chapter provides information about deploying the BIRT report viewer
using either of these sources.

About application servers
The instructions in this chapter specifically address deploying a BIRT report to
Apache Tomcat version 5.5.7. While the information in this chapter is specific to
this version of Tomcat, a BIRT report can also be deployed to other versions of
Tomcat and to other application servers.

About deploying to Tomcat
There are only minor differences between the requirements for deploying to
Tomcat version 5.5.7 and deploying to earlier versions of Apache Tomcat.
Apache Tomcat 5.5.7 runs Java 5 by default, which is also the recommended
version to use for BIRT 2.1. If you use an earlier version of Java, you need to
install a compatibility package and configure Apache Tomcat to use the Java 1.4

34 C h a p t e r 5 D e p l o y i n g a B I R T R e p o r t t o a n A p p l i c a t i o n S e r v e r

run-time environment. For information about configuring Apache Tomcat to
use Java run-time 1.4, see the Apache Tomcat help pages. You can download
Apache Tomcat from jakarta.apache.org/tomcat.

About deploying to other application servers
Most application servers require a WAR file that contains everything that the
application requires, including a web.xml file describing the application and
various deployment preferences. A WAR file appropriate for Tomcat is included
with BIRT. In most cases, the WAR file will not require modification. In some
cases, however, developers who have experience with other application servers
can modify the web.xml file to reflect the requirements of their environments.
For more information about setting the web.xml parameters, see the section on
mapping the report viewer folders, later in this chapter.

If you are deploying to JBoss, you might need to copy axis.jar and axis-ant.jar
from WEB-INF/lib to the following directory:

jboss/server/default/lib

This step might not be necessary for some versions of JBoss, but if you are
experiencing difficulty with a JBoss deployment, copying these files might be
the solution to your problem.

Placing the BIRT report viewer on an application
server

You must place the BIRT report viewer in a location where Apache Tomcat can
access it. The most common location is in the $TOMCAT_INSTALL/webapps
directory. By placing the BIRT report viewer in $TOMCAT_INSTALL/webapps,
Apache Tomcat automatically recognizes and starts the BIRT report viewer the
next time you restart Apache Tomcat.

You must also install an auxiliary file, as explained later in this chapter.

Installing the BIRT report viewer files
The following instructions assume that you have installed the BIRT Report
Engine from the BIRT web site, that your web application directory is
$TOMCAT_INSTALL/webapps, and that your BIRT run-time install directory
is $BIRT_RUNTIME.

To install the BIRT report viewer from the BIRT Report Engine WAR file, first
place the BIRT report viewer WAR file on Apache Tomcat by copying birt.war to
$TOMCAT_INSTALL/webapps, as illustrated in the following DOS command:

copy $BIRT_RUNTIME/birt.war $TOMCAT_INSTALL/webapps

Then, restart Apache Tomcat.

P l a c i n g t h e B I R T r e p o r t v i e w e r o n a n a p p l i c a t i o n s e r v e r 35

How to install the BIRT report viewer from the BIRT Report Engine viewer folder

1 Navigate to $TOMCAT_INSTALL/webapps.

2 Create a subdirectory named birt.

3 To place the BIRT Report Engine on Apache Tomcat, copy the web viewer
example directory and all its subdirectories to:

$TOMCAT_INSTALL/webapps

as illustrated in the following DOS command:

xcopy /E "$BIRT_RUNTIME/WebViewerExample"
$TOMCAT_INSTALL/webapps/birt

4 Restart Apache Tomcat.

Installing the auxiliary file
There is one auxiliary file that you must install on Apache Tomcat. The file is
itext_1.3.jar and you must place it in the following directory:

$TOMCAT_INSTALL/birt/WebViewerExample/WEB-INF/platform/
plugins/com.lowagie.itext/lib

You can download itext_1.3.jar from:

http://prdownloads.sourceforge.net/itext/itext-1.3.jar

Installing your JDBC drivers
Add the JAR files for your JDBC drivers to the following directory:

$TOMCAT_INSTALL/birt/WEB-INF/platform/plugins/
org.eclipse.birt.report.data.oda.jdbc/drivers

Testing the BIRT report viewer installation
To test the installation of the BIRT report viewer, type the following URL in a
web browser address:

http://server_name/birt

where server_name is the name of the application server.

There is a JavaServer Page (JSP) called index.jsp in both the WAR file and in the
/birt directory. There is also a simple BIRT report design file, test.rptdesign, in
both the WAR file and the /birt directory. If the BIRT report viewer is installed
correctly, Tomcat uses index.jsp to process the report design file and generate
the report described by the design file.

http://prdownloads.sourceforge.net/itext/itext-1.3.jar
http:// server_name/birt

36 C h a p t e r 5 D e p l o y i n g a B I R T R e p o r t t o a n A p p l i c a t i o n S e r v e r

Using a different context root for the BIRT report
viewer
By default, the context root of the URL for a web application is the path to the
application directory or the WAR file. The default application directory for the
BIRT report viewer is /birt, so the default URL to access a BIRT report from
Apache Tomcat is:

http://localhost:8080/birt/run?__report=myReport.rptdesign

To change the BIRT context root, change the name of the /birt directory or the
WAR file in $TOMCAT_INSTALL/webapps. After making this change, you
must restart Apache Tomcat. Whatever name you choose, specify that name in
the URL to access your BIRT report. For example, if you choose reportViewer,
the URL to access a BIRT report becomes:

http://localhost:8080/reportViewer/
run?__report=myReport.rptdesign

The URL examples shown in this section access the report design with a relative
path. You must set the BIRT_VIEWER_WORKING_FOLDER variable to access
the report design with relative paths.

Placing the viewer in a different location
If you choose to place the BIRT report viewer in a location other than
$TOMCAT_INSTALL/webapps, you must add a context mapping entry to the
server.xml file in $TOMCAT_INSTALL/conf.

To add a context mapping entry, add the following lines to server.xml just above
the </host> tag near the end of the file:

<Context path="/birt"
docBase="BIRT_Path"/>

where BIRT_Path is the absolute path to the directory containing the BIRT
report viewer.

Save your changes to server.xml and restart Apache Tomcat to make your
changes active.

Mapping the folders that the BIRT report viewer uses
To determine the locations for report designs, images in reports, and log files,
the BIRT report viewer uses context parameters defined in the web.xml file.
Table 5-1 describes the context parameters for mapping folders. The default
values of some of the context parameters described in the table depend on
whether the application is deployed as a WAR file or a folder structure. When
an application is deployed as a WAR file, the application is referred to as a WAR
deployment. When an application is deployed as a folder structure, the
application is referred to as a non-WAR deployment.

http://localhost:8080/birt/run?__report=myReport.rptdesign

P l a c i n g t h e B I R T r e p o r t v i e w e r o n a n a p p l i c a t i o n s e r v e r 37

How to set the location for report designs

You can avoid including the full path to the report design in the URL if you
define BIRT_VIEWER_WORKING_FOLDER in the BIRT report viewer
application’s web.xml file.

Table 5-1 BIRT context parameters

Parameter Description Default value

BIRT_VIEWER
_IMAGE_DIR

Required for WAR deployment.
Optional for non-WAR
deployment.
Absolute path to a writable
directory for creating images and
chart representations for a report.

No default value for
WAR deployment
<context root>
/report/images for
non-WAR deployment

BIRT_VIEWER
_LOG_DIR

Optional.
Absolute path to a writable
directory for BIRT Report Engine
log messages.
For WAR deployment, BIRT
Report Engine logs messages
only when this parameter has a
value.

No default value for
WAR deployment
<context root>/logs for
non-WAR deployment

BIRT_VIEWER
_WORKING
_FOLDER

Optional.
Absolute path to a writable
directory for report designs and
temporary files.
Specifying report designs by
relative path is possible only
when this parameter has a value.

No default value for
either WAR
deployment or non-
WAR deployment

BIRT_VIEWER
_SCRIPTLIB
_DIR

Optional.
Absolute path to a directory
containing Java event handler
JAR files.

No default value for
WAR deployment
<context root>
/scriptlib for non-WAR
deployment

BIRT_VIEWER
_LOG_LEVEL

Defines the level of error logging,
using the standard Java logging
level identifiers. Allowable
values are ALL, CONFIG, FINE,
FINER, FINEST, INFO, OFF,
SEVERE, WARNING. For more
information about the logging
levels, see the Javadoc for
java.util.logging.Level.

OFF for both WAR
deployment and non-
WAR deployment

38 C h a p t e r 5 D e p l o y i n g a B I R T R e p o r t t o a n A p p l i c a t i o n S e r v e r

1 Navigate to $TOMCAT_INSTALL/webapps.

2 Open web.xml in a code editor.

To open web.xml in an editor, perform one of the following steps, based on
your deployment configuration:

■ If you use a WAR file to deploy the BIRT report viewer, extract
web-inf/web.xml from birt.war into a temporary location.

■ If you use a folder to deploy the BIRT report viewer, navigate to
birt/WEB-INF.

3 Locate the following element:

<context-param>
<param-name>BIRT_VIEWER_WORKING_FOLDER</param-name>
<param-value />

</context-param>

4 Change the param-value element, so that it includes the absolute path to the
folder for the report designs:

<context-param>
<param-name>BIRT_VIEWER_WORKING_FOLDER</param-name>
<param-value>Report_Folder</param-value>

</context-param>

where Report_Folder is the absolute path to the folder for the report
designs.

5 If you prefer not to use the default directory for event handler JAR files,
define the desired path by creating or modifying the following context
parameter:

<context-param>
<param-name>BIRT_VIEWER_SCRIPTLIB_DIR</param-name>
<param-value>Event_Handlers</param-value>

</context-param>

where Event_Handlers is the absolute path to the folder containing the
event handler JAR files.

6 Save web.xml and close the editor.

7 If you use a WAR file to deploy the BIRT report viewer, replace
web-inf/web.xml in birt.war with the name of the file you just modified.

8 Copy your report designs into the folder you specified in the param-value
element for BIRT_VIEWER_WORKING_FOLDER.

9 If your report uses Java event handler classes, copy the JAR files containing
the event handler classes into <BIRT_VIEWER_SCRIPTLIB_DIR>.

10 Restart Apache Tomcat.

P l a c i n g t h e B I R T r e p o r t v i e w e r o n a n a p p l i c a t i o n s e r v e r 39

Verifying that Apache Tomcat is running BIRT report
viewer
To verify that Apache Tomcat is running BIRT report viewer, run the Tomcat
manager. To run the Tomcat manager, you need a manager’s account. If you
have not already set up a Tomcat manager account, you can do so by adding the
following two lines to $TOMCAT_INSTALL/conf/tomcat-users.xml:

<role rolename="manager"/>
<user username="admin" password="tomcat" roles="manager"/>

Once you have a manager’s account open the Tomcat account manager by
opening the Tomcat main page, which for a typical Apache Tomcat installation
is http://localhost:8080, shown in Figure 5-1.

Figure 5-1 Apache Tomcat home page

On the Tomcat main page, choose Tomcat Manager. In the manager login
window, supply the username and password from the manager account entry in
tomcat-users.xml file. The Running status for the Eclipse BIRT report viewer is
true, as shown in Figure 5-2.

40 C h a p t e r 5 D e p l o y i n g a B I R T R e p o r t t o a n A p p l i c a t i o n S e r v e r

Figure 5-2 Running status for the Eclipse BIRT report viewer

Placing fonts on the application server
BIRT Report Engine requires certain TrueType fonts in order to display a PDF
report. BIRT searches for fonts in the common font directories for Windows and
Linux. The list of directories that BIRT searches is quite long but includes:

■ /windows/fonts for drives A through G

■ /WINNT/fonts for drives A through G

■ /usr/share/fonts/default/TrueType

■ /usr/share/fonts/truetype

If your PDF reports appear to be missing content, you can place the appropriate
fonts in any of the directories in the preceding list. You also can specify your
own font search path by creating the environment variable BIRT_FONT_PATH.

Viewing a report using a browser
Once you deploy the BIRT report viewer to your J2EE container, you can access
your BIRT reports using a web browser. To view a BIRT report using a browser,
you navigate to a URL having one of the following two formats:

http://localhost:8080/birt/run?parameter_list
http://localhost:8080/birt/frameset?parameter_list

where parameter_list is a list of URL parameters.

For more information about the URL parameters that you can use, see the
section about URL parameters, later in this chapter.

V i e w i n g a r e p o r t u s i n g a b r o w s e r 41

Understanding the run and frameset servlets
When you use the run servlet, it displays the report as a stand-alone web page
or a PDF file. If the report requires parameters, you must specify them in the
URL.

When you use the frameset servlet, the browser displays a page with a toolbar
with four buttons to do the following tasks:

■ Print the report.

■ Display a table of contents.

■ Display a parameters dialog.

■ Display a dialog for exporting data.

Using the URL parameters for the run and frameset
servlets
The parameter list for the run and frameset servlets must contain the __report
parameter. The other parameters are optional.

Table 5-2 lists the URL parameters for accessing BIRT reports.

Table 5-2 URL parameters for accessing BIRT reports

Parameter Values Required? Default value

__report Path to report
design file

The URL must
contain either a
__report
parameter or a
__document
parameter.

No default

__document Path to document
file

The URL must
contain either a
__report
parameter or a
__document
parameter.

No default

__format html or pdf Optional html

__locale Locale code Optional JVM locale

__isnull Any user-defined
report parameter
values

Optional Not applicable

__svg true or false No false

Other report
parameters

User-defined As specified in
the report design

As specified in
the report design

42 C h a p t e r 5 D e p l o y i n g a B I R T R e p o r t t o a n A p p l i c a t i o n S e r v e r

__report parameter
The __report parameter specifies the name and location of the report design file
for the report you want to display. If the URL contains a __report parameter, a
new report document file is generated from the report design file specified by
this parameter. The URL must contain either a __report parameter or a
__document parameter, but not both.

The path can be either absolute or relative. If you specify an absolute path, the
servlet uses that absolute path. If the path is relative, the location depends on
whether the working folder parameter, BIRT_VIEWER_WORKING_FOLDER,
is defined in the web.xml file. If the working folder parameter is defined in
web.xml, the base for the relative path is the path that the working folder
parameter specifies. If your application is deployed as a folder structure instead
of a WAR file and the working folder parameter is not defined in web.xml, then
the base for the relative path defaults to $TOMCAT_INSTALL/webapps/birt. If
your application is deployed using a WAR file,
BIRT_VIEWER_WORKING_FOLDER must specify a value.

The following three examples of a _ _report parameter illustrate the
possibilities:

■ The path to the report is an absolute path and the parameter is:

__report=C:\myReport.rptdesign

The report path is:

C:\myReport.rptdesign

The path in this example is absolute, so the value of
BIRT_VIEWER_WORKING_FOLDER is not relevant.

■ The path to the report is relative, BIRT_VIEWER_WORKING_FOLDER is
not defined in web.xml, and the parameter is:

__report=Report\myReport.rptdesign

The path to this report is:

$TOMCAT_INSTALLl\webapps\birt\Report\myReport.rptdesign

■ The path to the report is relative, BIRT_VIEWER_WORKING_FOLDER is
defined as C:\Reports, and the parameter is:

__report=myReport.rptdesign

The path to this report is:

C:\Reports\myReport.rptdesign

__document parameter
The __document parameter specifies the name and location of the report
document file for the report you want to display. If the __document parameter
is present, the report viewer displays the report encapsulated in the specified

V i e w i n g a r e p o r t u s i n g a b r o w s e r 43

file. The URL must contain either a __report parameter or a __document
parameter, but not both. The rules for specifying the name and location of the
report document file are the same as the rules for specifying a report design file,
as explained in the previous section.

__format parameter
Use the __format parameter to specify whether the report should display as an
HTML page or as a PDF document.

__locale parameter
Use the __locale parameter to specify a Java locale, such as en for English or
ch-zh for Chinese. The choice of locale affects the language in which certain
report items appear in the report. The report items that have
internationalization capability are those whose ROM elements contain a
resource property.

__isnull parameter
Use the __isnull parameter to specify that one of the other optional parameters
is null. The following rules govern the setting of parameter values:

■ If you include __isnull=parameterName in the URL and this parameter does
not appear elsewhere in the URL, then parameterName takes the value null,
which, in this context, means unknown.

■ If you include __isnull=parameterName in the URL but this parameter is also
set to a value in the URL, then parameterName takes the value of a blank
string.

■ If you do not include __isnull=parameterName in the URL and this parameter
is set to a value in the URL, then parameterName takes the value assigned in
the URL.

■ If you do not include __isnull=parameterName in the URL and this parameter
does not appear elsewhere in the URL, then parameterName is assigned its
default value.

__svg parameter
Use the __svg parameter to enable Scalable Vector Graphics (SVG) support in
the report engine when the browser does not contain SVG support. SVG
support is only relevant for charts and the __svg parameter is only relevant for
the run servlet, not the frameset servlet. A parameter value of true enables SVG
support.

44 C h a p t e r 5 D e p l o y i n g a B I R T R e p o r t t o a n A p p l i c a t i o n S e r v e r

Report parameters
Report parameters are parameters that the report developer creates when
designing the report. BIRT Report Designer includes report parameters in the
report design file.

45

P a r t

Part IIUnderstanding the BIRT
Framework

This page intentionally left blank

47

C h a p t e r

Chapter 6Understanding the BIRT
Architecture

BIRT consists of many components that relate to one another in various ways.
This chapter provides an overview of the BIRT architecture, the BIRT
components, the Eclipse components upon which BIRT relies, and the
relationships that tie them all together.

Understanding the BIRT integration
BIRT is an Eclipse project, which means that it is tightly integrated with Eclipse
frameworks and platforms. Like all Eclipse projects, BIRT is implemented as a
set of Eclipse plug-ins. The BIRT plug-ins provide the functionality for all BIRT
components, including BIRT applications, the engines that drive the
applications, and supporting application programming interfaces (APIs). The
BIRT plug-ins also provide the interface mechanism for communicating with
several Eclipse frameworks and platforms.

The relationships between BIRT and the Eclipse components are best viewed as
a stack, where each tier in the stack depends upon, uses, and integrates with the
tier below it. Figure 6-1 illustrates this stack of dependent tiers.

Figure 6-2 illustrates the various BIRT components and how they relate to one
another. In this diagram, a component in a solid box is a standard BIRT
component. A component in a dashed box is a custom component that a Java
developer can provide. Some custom components are extensions of BIRT and
other custom components are applications that use the BIRT APIs. A component
in a dotted box is a standard BIRT component that the containing component
uses. For example, because BIRT Report Designer uses the design engine, the
design engine appears in a dotted box within the box for BIRT Report Designer.

48 C h a p t e r 6 U n d e r s t a n d i n g t h e B I R T A r c h i t e c t u r e

BIRT designers

BIRT Report Designer

Eclipse frameworks

Eclipse Tools Platform Eclipse Rich Client Platform

BIRT run-time application

BIRT report viewer

Chart Builder

BIRT RCP Report Designer

BIRT engines

Data engineReport engine Chart engine

Script engine

Design engine

Generation
engine

Presentation
engine

BIRT core component plug-ins

Eclipse platforms

BIRT applications

Data Tools
Framework

Eclipse Modeling
Framework

Graphical
Framework

Figure 6-1 BIRT components as plug-ins to the Eclipse platform

U n d e r s t a n d i n g t h e B I R T i n t e g r a t i o n 49

BIRT Report Designer

Design engine

Report Object Model (ROM)

Report template files
(.rpttemplate)

Report library files
(.rptlibrary)

Report design
(.rptdesign)

Web application Report previewer Custom Java application

BIRT report viewerBIRT report viewer Report engine

Data previewer

Data engine

Standard BIRT report items

Report item extensions

Tools to create and edit report components and rules, including:

■ Bookmarks

■ Charts

■ Data sources

■ Data filters

■ Data groups

■ Data mapping rules

■ Data sets

■ Expressions

■ Highlighting rules

■ Hyperlinks

■ Library
components

■ Master pages

■ Properties

■ Report layout

■ Report parameters

■ Report XML

■ Scripts

■ Styles

Report outline explorer Data explorer

Report item palette Library outline explorer

BIRT report viewer

Report previewer

Data source

ODA framework

Custom data
source

Figure 6-2 Relationships of standard BIRT components and custom components
(continued)

50 C h a p t e r 6 U n d e r s t a n d i n g t h e B I R T A r c h i t e c t u r e

Generation engine

Report design
(.rptdesign)

Report document
(.rptdocument)

Presentation engine

Emitters

PDF emitter

HTML emitter

Custom emitter

Report

(PDF, HTML, Custom format)

Report engine

Data engine

Data source

Data transform engine

Data access engine

ODA Framework

Data access engine

Report executor

Data Engine

Data access engine

Report renderer

Chart engine

Chart Engine

BIRT report viewer

Report items

Design engine

Custom data
source

Script engine

Script engine

Figure 6-2 Relationships of standard BIRT components and custom components

A b o u t t h e B I R T a p p l i c a t i o n s 51

About the BIRT applications
There are three BIRT applications: BIRT Report Designer, BIRT RCP Report
Designer, and the BIRT report viewer. BIRT Report Designer and BIRT RCP
Report Designer are very similar. BIRT Report Designer runs as an Eclipse
plug-in and lets you build reports within the Eclipse workbench. BIRT RCP
Report Designer has a simplified report design interface based on Eclipse RCP.

About BIRT Report Designer and BIRT RCP Report
Designer
BIRT Report Designer is a graphical report design tool. BIRT Report Designer
uses the report design engine to generate a report design file based on the ROM.
ROM supports the standard set of BIRT report items and custom report items.

BIRT RCP Report Designer has a simplified report design interface based on
Eclipse RCP. The primary functional differences between the BIRT RCP Report
Designer and BIRT Report Designer are:

■ BIRT RCP Report Designer can only have one design open at a time.

■ BIRT RCP Report Designer has no integrated debugger.

■ BIRT RCP Report Designer does not support Java event handlers.

Other than these differences, the functionality of the two report designers is
identical and all further mentions of BIRT Report Designer in this chapter apply
equally to BIRT RCP Report Designer.

BIRT Report Designer also supports the reuse of a report design by saving it as a
template. You can also save individual report components in a component
library, which is accessible to other report designs.

About the BIRT report viewer
The BIRT report viewer is a web application servlet that prepares and delivers a
BIRT report. The BIRT report viewer uses the generation engine and the report
design to create a report document. The report viewer then uses the report
document and the presentation engine to generate the desired report.

The report previewer that is a part of the BIRT Report Designer uses the BIRT
report viewer to preview a report. A web application can also use the BIRT
report viewer, after you deploy the BIRT report viewer to an application server.

You can deploy the BIRT report viewer to the J2EE container of your choice,
such as Apache Tomcat, IBM WebSphere, or BEA WebLogic.

52 C h a p t e r 6 U n d e r s t a n d i n g t h e B I R T A r c h i t e c t u r e

About the BIRT engines
BIRT contains several engines. An engine is a set of Java APIs that provide
functionality in a specific domain. For example, the data engine contains the
APIs for managing data and the chart engine contains APIs to generate a chart.

About the report design engine
The report design engine contains the APIs for validating and generating a
report design file. The report design engine is used by BIRT Report Designer
and by any custom Java application that generates a BIRT report design. The
generation engine also uses the report design engine when building the report
document. The design engine contains APIs to validate the elements and
structure of the design file against the ROM specification.

About the report engine
The report engine consists of two parts, the generation engine and the
presentation engine. The BIRT report viewer and custom Java applications use
the report engine to process a report design and generate a report in the format
specified in the design.

About the generation engine
The generation engine consists of APIs for reading and interpreting a report
design. The generation engine uses the data engine to retrieve and transform
data from the data sources identified in the report design. The output of the
generation engine is a report document, which is an intermediate document in
the production of a report.

About the presentation engine
The presentation engine processes the report document created by the
generation engine and produces the report in the format specified in the design.

Like the generation engine, the presentation engine uses the data engine.
During the presentation stage, however, the data engine retrieves data from the
report document rather than from a data source.

The presentation engine uses whichever report emitter it requires to generate a
report in the format specified in the design. BIRT has two standard emitters,
HTML and PDF. BIRT also supports custom emitters for formats other than
HTML or PDF.

Chart report items and custom report items extend the presentation engine to
provide display capability for those items.

A b o u t t h e t y p e s o f B I R T r e p o r t i t e m s 53

About the chart engine
The chart engine contains APIs for generating charts and associating them with
data from a data source. The use of the chart engine is not restricted to a BIRT
application. Any Java application can use the chart engine APIs to create and
display a chart. The BIRT report viewer interprets the chart design information
in the report design and uses the chart engine to generate the chart.

About the data engine
The data engine contains the APIs to retrieve and transform data. When used by
the generation engine, the data engine retrieves data directly from the data
source. When used by the presentation engine, the data engine retrieves data
from the report document.

About data engine components
The data engine consists of two primary components, the data access
component and the data transform component. The data access component
communicates with the ODA framework to retrieve data. The data transform
component of the data engine performs such operations as sorting, grouping,
aggregating, and filtering the data returned from the data access component.

About the ODA framework
The ODA framework manages ODA and native drivers, loads drivers, opens
connections, and manages data requests. The ODA framework uses the Eclipse
Data Tools Platform project to manage connections.

The ODA framework contains extension points through which you can add a
custom ODA driver. The data engine extension provides the connection method
and the driver for the data source. A custom ODA driver is necessary if you
have a data source that BIRT does not support. When you create a custom ODA
driver you may need to extend not only the data engine but also BIRT Report
Designer. A BIRT Report Designer extension is necessary if the data source
requires a GUI component to specify the data set.

About the types of BIRT report items
A report item is a visual component of a report, such as a label or a list or a
chart. There are three categories of report items in BIRT: standard report items,
custom report items, and the chart report item.

54 C h a p t e r 6 U n d e r s t a n d i n g t h e B I R T A r c h i t e c t u r e

About standard report items
A report item is a visual component of a report. A report item can be as simple
as a label or as complex as a 3D chart. Every report item has an icon on BIRT
Report Designer Palette.

About custom report items
You can create new report items and you can extend an existing report item. An
example of a simple extension to a report item is adding a property, such as
color. An example of a new report item extension is the rotated text report item,
which is a reference implementation of a report item extension.

Creating a new report item and extending an existing report item both involve
extending BIRT through the Eclipse plug-in mechanism. Some custom items
require an extension to a single component, while other custom items require
extensions to multiple components. Depending on the report item, one or more
of the following components may require an extension to support the new item:

■ BIRT Report Designer

■ The report design engine

■ The report engine

About chart report items
A chart report item is a standard BIRT component, but it is implemented as a
BIRT extension. The user interface for creating a chart report item is a chart
builder that steps the report developer through the process of designing the
chart and associating it with the appropriate database columns.

About the ROM
ROM is the model upon which BIRT is based. ROM is a specification for the
structure, syntax, and semantics of the report design. The ROM specification
appears in a series of documents on the BIRT web site at:

http://www.eclipse.org/birt/ref

The formal expression of ROM is through an XML schema and a semantic
definition file.

About the types of BIRT files
BIRT Report Designer uses four types of files: report design files, report
document files, report library files, and report template files. The following
sections provide a brief overview of each of these file types.

http://www.eclipse.org/birt/ref

A b o u t t h e t y p e s o f B I R T f i l e s 55

About report design files
A report design file is an XML file that contains the report design, the complete
description of a BIRT report. The report design describes every aspect of a
report, including its structure, format, data sources, data sets, and JavaScript
event handler code. BIRT Report Designer creates the report design file and
BIRT report engine processes it. The file extension of a report design file is
.rptdesign.

About report document files
A report document file is a binary file that encapsulates the report design,
incorporates the data, and contains additional information, such as data rows,
pagination information, and table of contents information. The file extension of
a report document file is .rptdocument.

About report library files
A report library file is an XML file that contains reusable and shareable BIRT
report components. A report developer uses the library outline explorer in BIRT
Report Designer to manage access to and additions to the library.

A BIRT report library can contain such items as:

■ Embedded images

■ Styles

■ Visual report items

■ Code

■ Data sources

■ Data sets

The file extension of a report library file is .rptlibrary.

About report template files
A report template is an XML file that contains a reusable design. A report
developer can use the template as a basis for developing a new report. A report
developer uses a report template to maintain a consistent style across a set of
report designs and for streamlining the report design process. A report template
can specify many different elements of a report, including:

■ One or more data sources

■ One or more data sets

■ Part or all of the layout of a report design, including grids, tables, lists, and
other report items

56 C h a p t e r 6 U n d e r s t a n d i n g t h e B I R T A r c h i t e c t u r e

■ Grouping, filtering, and data binding definitions

■ Cheat sheets

■ Styles

■ Library components

■ Master page

A template is a flexible tool for report development. For example, one template
can specify almost every aspect of a report design, while another can specify
just a table format. A report template can be personalized after the report
developer uses it to create the report design. Report templates are useful for
maintaining a consistent style across a set of report designs and for streamlining
the report design process.

The file extension of a report template file is .rpttemplate.

About custom Java applications
Java developers can use the BIRT APIs to create a custom report designer or a
custom report viewer.

About custom report designers
A custom report designer is a Java application that a Java developer creates to
generate a well-formed report design file based on specific requirements. A
custom report designer does not necessarily include a user interface. A typical
example of a custom report designer is a Java application that dynamically
determines the content, structure, or data source for a report, based on business
logic. A custom report designer uses the same design engine API as BIRT
Report Designer.

About custom Java report generators
A custom Java report generator performs the same function as the BIRT report
generator, except that it is typically integrated into either a web application or a
stand-alone Java application. Like the BIRT report viewer web application, a
custom Java report generator uses the API of the report engine to read a report
design file and generate a report. A custom Java report generator can use
business logic to manage security issues, control content, and determine the
output format.

A b o u t e x t e n s i o n s t o B I R T 57

About extensions to BIRT
Through its public APIs and the BIRT extension framework, BIRT enables a Java
developer to expand the capabilities of BIRT. A list of possible custom
extensions includes:

■ A custom report item

A custom report item is a report item extension. This report item can be an
extension, an existing BIRT report item, or a new report item.

■ A custom ODA data source driver

A custom ODA data source driver is a custom ODA extension that connects
to a data source type other than those that BIRT directly supports.

■ A custom report emitter

A custom report emitter generates a report in a format other than HTML or
PDF.

This page intentionally left blank

59

C h a p t e r

Chapter 7Understanding the Report
Object Model

This chapter provides an overview of the BIRT ROM and the primary elements
that comprise the model. ROM defines the rules for constructing a valid report
design file in much the same way that HTML defines the rules for constructing a
valid web page. ROM, therefore, is the model for the BIRT report design file in
the same way that HTML is the model for the web page. For information about
every component of ROM, see the online help entry at Help➛Help
Contents➛BIRT Developer Guide➛Reference➛Report Object Model (ROM)
Definitions Reference.

About the ROM specification
The ROM specification defines a set of XML elements for describing both the
visual and non-visual components of a report. Visual elements include items
that appear in a report, such as a table, list, or label. Non-visual elements
include such things as report parameters, data sources, and data sets.

The XML file that BIRT Report Designer generates to describe a report consists
entirely of ROM elements. The ROM specification defines the elements, their
properties, and an element’s relationship to other elements. ROM elements
describe:

■ The report page layout

■ The placement, size, style, and structure of report items

■ The data source and query with which to populate a report

60 C h a p t e r 7 U n d e r s t a n d i n g t h e R e p o r t O b j e c t M o d e l

ROM properties
ROM elements can have properties and every property has a type. Property
types are similar to variable types in programming or data types in database
terminology. Like variables and data types, ROM property types can be simple
or complex. Simple types include string, number, dimension, color, and so forth.
Complex types include structure and list. A complex type contains more than
one component. For example, a text type contains both the text and a resource
key used for internationalizing the text.

The components of a ROM property are:

■ Property values

Most elements have simple properties that are defined by a name-value pair.
There are several property types, described later in this section.

■ User-defined property definitions

The userProperties array provides a way for users to define custom
properties. Each item in the array is a UserProperty object.

■ Executable expressions

The methods array is an associative array of method names. The method
name is the key into the array. The return value is a string that contains the
method text.

The property types defined in ROM include:

■ property

This property type is the simplest and most common property type. A
property definition of this type has the following syntax:

<property name="propName">value</property>

■ property-list

This property type defines a set of properties, such as custom colors. A
property definition of the property-list type has the following syntax:

<property-list name="propName">
[<structure> ... </structure>] *

</property-list>

■ xml-property

This property type defines custom XML. A property definition of the xml-
property type has the following syntax:

<xml-property name="propName">value</xml-property>

A b o u t t h e R O M s p e c i f i c a t i o n 61

■ expression

The value for this property type is an expression. A property definition of the
expression type has the following syntax:

<expression name="propName">value</expression>

■ ex-property

This property type is useful for defining properties that do not have well-
formed property names. A property definition of the ex-property type has
the following syntax:

<ex-property>
<name>propName</name>
<value>value</value>

</ex-property>

■ structure

This property is a collection of two or more properties. A property definition
of the structure type has the following syntax:

<structure name="propName">
<property name="member1">value1</property>
<property name="member2">value2</property>

</structure>

ROM slots
A ROM slot is a collection of identically typed elements. For example, a report
element has a slot of style elements that comprise all the styles available to the
report.

ROM methods
A ROM element can have one or more methods, called event handlers. BIRT
fires many different events during the course of executing a report. When BIRT
fires an event, the appropriate event handler is executed to handle the event. By
default, event handlers are empty methods that do nothing. By supplying code
for an event handler, a report developer can customize and extend the
functionality of BIRT. Supplying code for an event handler is called scripting.
An event handler can be scripted in either JavaScript or Java.

Report items have four events: onPrepare, onCreate, onPageBreak, and
onRender. Each of these events fires during different phases of report creation.
The onPrepare event fires in the preparation phase. The onCreate event fires
during the generation phase. The onRender and onPageBreak events fire during
the presentation phase.

Report items are not the only ROM elements to have event handler methods.
BIRT online help contains a complete reference for all the ROM elements and
their properties and methods.

62 C h a p t e r 7 U n d e r s t a n d i n g t h e R e p o r t O b j e c t M o d e l

ROM styles
The ROM style system is based on cascading style sheets (CSS), where a style set
in a container cascades to its contents. The Report element contains all other
elements, so the style property of the Report element defines the default style
for the entire report. An element within the report can override the default style.
A report developer can either choose a style from a defined set of styles or create
a new style. Typical style attributes include color, text size, alignment,
background image, and so forth. For more information about the styles, see the
ROM reference in the BIRT online help.

About the ROM schema
The ROM specification is encapsulated in a schema written in the language of
XML Schema. XML Schema provides a standard way of defining the structure,
content, and semantics of an XML file. XML Schema is similar to Document
Type Definition (DTD).

The ROM schema, therefore, contains the formal expression of the content,
structure, and semantics of the ROM report design. The ROM schema is located
at:

http://www.eclipse.org/birt/2005/design

A statement similar to the following statement appears at the top of every
report design file:

<report xmlns="http://www.eclipse.org/birt/2005/design"
version="3.2.2" id="1">

This statement identifies the schema upon which BIRT bases the report design.
If the design contains elements extraneous to or in violation of the rules set forth
in the schema, it is not a valid design.

Opening a report design file with a schema-aware tool such as XMLSpy
provides a means of verifying the report design against the schema. Using a
schema-aware tool also can help a developer of a custom report designer to
verify the output of the custom report designer.

The ROM schema defines syntax that allows extensions to BIRT without making
changes to the actual schema. For example, an extended item uses the following
tag:

<extended-item name="extension">

The ROM schema defines properties using the following syntax:

<property name="propertyName">value</property>

The ROM schema describes a syntax for representing properties. The ROM
schema does not define any actual properties. ROM element properties are
defined in another file, rom.def.

A b o u t t h e r o m . d e f f i l e 63

About the rom.def file
The rom.def file contains metadata defining the specific ROM elements, their
properties, their slots, and their methods. You can find rom.def in:

$INSTALL_DIR\eclipse\plugins
\org.eclipse.birt.report.model_2.1.0.jar

The rom.def file is an internal file that the design engine uses to present a
property sheet for a ROM element. The property sheet for an element contains
the element’s properties and their types, the element’s methods, and valid
choice selections for each of the element’s properties.

The rom.def file specifies the following kinds of metadata:

■ Choice

A choice definition specifies all the allowable values that an attribute can
have. Most choice definitions relate to style attributes. The following
example from rom.def defines all the allowable font families available to a
fontFamily style specification.

<ChoiceType name="fontFamily">
<Choice displayNameID="Choices.fontFamily.serif"

name="serif" />
<Choice displayNameID="Choices.fontFamily.sans-serif"

name="sans-serif" />
<Choice displayNameID="Choices.fontFamily.cursive"

name="cursive" />
<Choice displayNameID="Choices.fontFamily.fantasy"

name="fantasy" />
<Choice displayNameID="Choices.fontFamily.monospace"

name="monospace" />
</ChoiceType>

■ Class

A class definition defines a Java class that a report designer application can
access using the BIRT model API. There are class descriptions for data types,
such as String, Date, and Array. There are also class descriptions for the
functional classes such as Total, Finance, and DateTimeSpan. Finally, there
are class definitions for the report object definitions, such as Report, DataSet,
DataSource, ReportDefn, and ColumnDefn. A class definition consists of
definitions of the class attributes, methods, and localization identifiers. The
following example from rom.def defines the Report class.

<Class displayNameID="Class.Report" name="Report"
toolTipID="Class.Report.toolTip">
<Member dataType="ReportDefn"

displayNameID="Class.Report.design" name="design"
toolTipID="Class.Report.design.toolTip" />

<Member dataType="Object[]"

64 C h a p t e r 7 U n d e r s t a n d i n g t h e R e p o r t O b j e c t M o d e l

displayNameID="Class.Report.params" name="params"
toolTipID="Class.Report.params.toolTip" />

<Member dataType="Object[]"
displayNameID="Class.Report.config" name="config"
toolTipID="Class.Report.config.toolTip" />

</Class>

The preceding class definition does not have methods. The following
example illustrates a class method definition.

<Method displayNameID="Class.Total.sum" isStatic="true"
name="sum" returnType="number"
toolTipID="Class.Total.sum.toolTip">
<Argument name="expr" tagID="Class.Total.sum.expr"

type="number" />
<Argument name="filter" tagID="Class.Total.sum.filter"

type="String" />
<Argument name="group" tagID="Class.Total.sum.group"

type="String" />
</Method>

■ Element

An element definition consists of the element’s name, display name,
methods, and properties, as well as the element from which it inherits. The
rom.def file contains an element definition for every ROM element. The
following example from the rom.def file illustrates an element definition.

<Element canExtend="true"
displayNameID="Element.OdaDataSource"
extends="DataSource"
isAbstract="false" isNameRequired="true"
javaClass="org.eclipse.birt.report.model.elements

.OdaDataSource" name="OdaDataSource" since="1.0"
xmlName="oda-data-source">
<Property

displayNameID="Element.OdaDataSource.extensionID"
isIntrinsic="true" name="extensionID" since="1.0"
type="string" />

<Property detailType="ExtendedProperty"
displayNameID=
"Element.OdaDataSource.privateDriverProperties"
isList="true" name="privateDriverProperties"
since="1.0"
type="structure" />

<PropertyVisibility name="extensionID"
visibility="hide" />

<PropertyVisibility name="privateDriverProperties"
visibility="hide" />

</Element>

A b o u t t h e r o m . d e f f i l e 65

The preceding element definition does not contain any methods. The
following example illustrates an element method definition.

<Method context="factory"
displayNameID="Element.ScriptDataSource.open"
name="open" since="1.0"
toolTipID="Element.ScriptDataSource.open.toolTip">
<Argument name="reportContext"

tagID="Element.ScriptDataSet.open.reportContext"
type="org.eclipse.birt.report.engine.api.script

.IReportContext" />
<Argument name="object"

tagID="Element.ScriptDataSet.open.object"
type="Object" />

</Method>

■ Structure

A structure is a complex data type that usually consists of two or more
members. A few structures that are candidates for future expansion have
only a single member. The following example from the rom.def file
illustrates the definition of a structure.

<Structure displayNameID="Structure.DateTimeFormatValue"
name="DateTimeFormatValue" since="1.0">
<Member detailType="dateTimeFormat"

displayNameID="Structure.DateTimeFormatValue.category"
isIntrinsic="true" name="category" since="1.0"
type="choice" />

<Member
displayNameID="Structure.DateTimeFormatValue.pattern"
isIntrinsic="true" name="pattern" since="1.0"
type="string" />

</Structure>

■ Style

A style definition contains the least information of any type of metadata
described in rom.def. A style definition defines the name of the style, its
display name, and a reference value. The following example illustrates a
style definition.

<Style displayNameID="Style.Report" name="report"
reference="Overall default" />

■ Validator

A validator definition specifies a Java class with which to do validation. Two
of the validator classes are for validating values and all the rest are semantic

66 C h a p t e r 7 U n d e r s t a n d i n g t h e R e p o r t O b j e c t M o d e l

validators. The following example from rom.def shows how to specify a
validator.

<SemanticValidator
class="org.eclipse.birt.report.model.api.validators

.DataSetResultSetValidator"
modules="design, library"
name="DataSetResultSetValidator" />

About the primary ROM elements
The primary ROM elements consist of abstract elements from which other
elements derive and concrete elements that provide the overall report
definition. The following elements are the primary components that form the
basis for understanding ROM:

■ DesignElement

The DesignElement element is an internal, abstract element used to
implement basic features of ROM elements. DesignElement represents
anything that has properties.

■ Listing

The Listing element is the abstract base element for lists and tables. Both
elements support a data set, filtering, sorting, methods, and so forth.

■ MasterPage

The MasterPage element is an abstract base element that defines the basic
properties of a page.

■ ReportDesign

The ReportDesign element contains information about a report design,
defining properties that describe the design as a whole. Report design
properties do not inherit because a design cannot extend another design.

■ ReportElement

The ReportElement element is an abstract report element that represents
anything that can be named and customized. Most of the major components
in ROM derive from ReportElement, including the elements visible in the
user interface, such as data sets, styles, master pages, report items, and so
forth.

■ ReportItem

The ReportItem element is the base element for the visual elements. A report
item includes a style. The style provides visual characteristics for anything
that prints in a report: a section or report item.

A b o u t t h e r e p o r t i t e m e l e m e n t s 67

About the report item elements
There are many types of visual report components. Every type of visual report
component has a corresponding ROM element that derives from the ReportItem
element. Visual report components are called report items.

About the report items
There are top-level and low-level report items. The top-level items are items that
can contain other items. Examples of top-level items include:

■ List

A list contains a set of arbitrary content based upon data retrieved from a
data set. A list is appropriate when some report items require a sophisticated
layout and then repeat that layout for each row in a query.

■ Table

A table contains a tabular layout of data retrieved from a data set.

■ Text

Text contains a block of text with centered headings, paragraphs, and so
forth.

■ Grid

A grid contains a set of report items arranged into a grid with a fixed set of
columns and a variable number of rows. Each cell in the grid can contain a
single item or a container of items.

Lower level layout items have properties that describe them in various ways,
but they are not structural and do not contain other items. For example, the
Image element is not a container of other elements.

Understanding the report item element properties
The elements that derive from ReportItem are called the report item elements.
Every report item has an entry in the palette, the visual BIRT Report Designer
component that the report developer uses to build a report layout.

Each visual component has its own set of properties in addition to the
properties it inherits from ReportItem. The types of inherited report item
properties include:

■ Method

Defines executable code.

■ Property

Includes such things as names and dimensions.

68 C h a p t e r 7 U n d e r s t a n d i n g t h e R e p o r t O b j e c t M o d e l

■ Slot

Contains Type elements that define its contents, as shown in the following
element definition.

<Slot name="reportItems"
displayNameID="Element.FreeForm.slot.reportItems"
multipleCardinality="true">

<Type name="Label" />
<Type name="Data" />
<Type name="Text" />

</Slot>

■ StyleProperty

Defines style-related characteristics, such as color and font size.

About the data elements
There are several elements in the ROM specification that apply to data rather
than visual report items. These data elements describe data sources, data sets,
and rows of data. The following elements are data elements:

■ DataSource

The DataSource element represents a connection to an external data system,
such as an RDBMS, text file, or XML file.

■ ScriptedDataSource

The ScriptedDataSource element represents a connection to an external data
system that is not an ODA data source. The developer must provide scripts
for opening and closing a scripted data source. ScriptedDataSource inherits
from DataSource.

■ DataSet

The DataSet element represents a tabular result set retrieved from a data
source. A DataSet element defines a query, filters, parameters, and result set
columns.

■ JointDataSet

The JointDataSet element represents a data set that results from a join of
several data sets.

A b o u t t h e d a t a e l e m e n t s 69

■ ScriptedDataSet

The ScriptedDataSet element represents a data set that is associated with a
scripted data source. The developer must provide scripts for opening,
closing, and fetching a row from a scripted data source. ScriptedDataSet
inherits from DataSet.

■ Row

The Row element represents an integral set of column values that are a part
of a result set.

This page intentionally left blank

71

P a r t

Part IIIScripting in a Report Design

This page intentionally left blank

73

C h a p t e r

Chapter 8Using Scripting in a
Report Design

BIRT provides a powerful scripting capability with which a report developer
can provide custom code to control various aspects of report generation.

Overview of BIRT scripting
When developing a BIRT report using the Eclipse workbench, you can write
custom event handlers in either Java or JavaScript. When developing a BIRT
report using the Eclipse RCP, you can write only JavaScript event handlers.
Whether you use Java or JavaScript, the set of event handlers that you can write
is the same.

Choosing between Java and JavaScript
Both Java and JavaScript have advantages and disadvantages when writing an
event handler. For a developer who is familiar with only one of the two
languages, the advantage of using the familiar language is obvious but for all
others, the decision depends on the report requirements.

The advantages of using JavaScript to write an event handler include:

■ Ease of adding a simple script for a particular event handler

Adding a JavaScript event handler to a report is less complicated than
adding a Java event handler. When writing a JavaScript event handler, there
is no need to create a Java environment in Eclipse or to learn the Eclipse Java
development process. You are not required to specify a package, implement
an interface, or know the parameters of the event handler you write.

74 C h a p t e r 8 U s i n g S c r i p t i n g i n a R e p o r t D e s i g n

To add a JavaScript event handler, you type the code for the event handler on
the Script tab after selecting the name of the event handler from a drop-
down list.

■ Simpler language constructs, looser typing, and less strict language rules

JavaScript is less demanding to code than Java due to simpler language
constructs, looser typing, and less strict language rules.

The advantages of using Java to write an event handler include:

■ Availability of the Eclipse Java development environment

The Eclipse Java development environment is very powerful, and includes
such features as autocompletion, context sensitive help, keyboard shortcuts,
parameter hints, and much more.

■ Ease of finding and viewing event handlers

All the Java event handlers for a report exist in readily viewable Java files. By
contrast, the JavaScript event handlers are embedded in the design and you
can view only one handler at a time.

■ Access to an integrated debugger

The integrated debugger only supports Java event handlers, not JavaScript
event handlers.

Using both Java and JavaScript to write event
handlers
You are not limited to writing all event handlers in one language. You can write
some in Java and others in JavaScript. If you have both a Java and a JavaScript
event handler for the same event, BIRT uses the JavaScript handler.

Understanding the event handler execution sequence
This section explains the order of execution of the BIRT event handlers.

About event firing sequence dependency
The event firing sequence for ReportItem and ReportDesign events depends on
whether the report is run in the BIRT Report Designer previewer or elsewhere,
such as in the Web Viewer. When a report runs outside the previewer, the
generation phase always completes before the presentation phase begins. When
a report runs in the previewer, the generation and presentation phases are not
distinctly separated. The onCreate event is a generation-time event and the
onRender is a presentation-time event.

U n d e r s t a n d i n g t h e e v e n t h a n d l e r e x e c u t i o n s e q u e n c e 75

About the onCreate and onRender firing sequence
dependencies
When a report runs in the BIRT Report Designer previewer, all ReportItem
onRender events fire immediately after their corresponding onCreate events.
When a report runs outside the previewer, all onCreate events fire as a part of
the generation process, while the onRender events fire as a part of the
presentation process.

About the ReportDesign firing sequence dependencies
When a report runs in the previewer, the ReportDesign initialize event fires only
once, and is always the first event fired. When a report runs outside the
previewer, the initialize event is fired twice, once at the beginning of the
generation phase and once at the beginning of the presentation phase.

The ReportDesign beforeRender and afterRender events also fire at different
times, depending on whether the report runs in the previewer. When a report
runs in the previewer, beforeRender fires once near the start of the report, just
after beforeFactory fires. The ReportDesign afterRender event fires once, near
the completion of the report, just before the afterFactory event fires.

When the report runs outside the previewer, the ReportDesign beforeRender
event fires once, immediately after the firing of the initialize event in the
presentation phase. When the report runs outside the previewer, the
ReportDesign afterRender event is the last event fired.

About the pageBreak event
Table and Text objects have event handlers for handling page break events. The
pageBreak event is fired in the presentation phase whenever a page break
occurs.

Analysis of the execution sequence phases
The following diagrams present a more detailed view of the event handler
execution sequence. The diagrams reflect the processing sequence when a report
is run inside the previewer. When the presentation phase is separate from the
generation phase, as it is when a report is run outside the previewer, an
additional rendering sequence occurs. The rendering sequence is identical to the
generation sequence with the following exceptions:

■ There are no onPrepare events.

■ There are no onCreate events.

■ There are no data source or data set events because data is retrieved from the
report document rather than the database.

■ There are no beforeFactory and afterFactory events.

76 C h a p t e r 8 U s i n g S c r i p t i n g i n a R e p o r t D e s i g n

Overview of the report execution process
Figure 8-1 shows an overview of the report execution process. Each box in the
diagram refers to another diagram that appears later in the chapter.

Figure 8-1 Method execution phases

Preparation phase
The preparation phase includes initialization and master page creation,
followed by opening the data source. The preparation phase is identical for all
reports. Figure 8-2 illustrates the method execution sequence for the
preparation phase.

Figure 8-2 Preparation phase

In Figure 8-2, the master page processing sequence depends on the structure of
the report. A master page typically consists of one or more header and footer
grids with rows, their cells, and the cell contents. The execution sequence for a
master page parallels that for creating an ungrouped table, except that the
master page contains no detail rows.

Report body processing phase
BIRT processes a report body by processing all the report items that are not
contained in other report items. BIRT processes the items, going from left to
right and proceeding a row at a time toward the bottom right. A report item that

Preparation phase

Report body processing phase

Clean-up phase

ReportDesign.initialize

ReportDesign.beforeFactory

DataSource.beforeOpen

DataSource.afterOpen

Master page processing

(See Ungrouped table or list detail
execution sequence.)

ReportItem.onPrepare for every report item
in the report

ReportDesign.beforeRender

U n d e r s t a n d i n g t h e e v e n t h a n d l e r e x e c u t i o n s e q u e n c e 77

is not contained in another report item is called a top-level report item. Every
report has at least one top-level report item, usually a grid, a list, or a table. If a
report has more than one top-level report item, BIRT processes the top-level
items in order, from left to right and top to bottom.

For each top-level item, BIRT processes all the second-level items before
proceeding to the next top-level item. A second-level report item is a report item
that is contained within a top-level item. For example, a table contained in a grid
is a second-level report item.

There can be any number of levels of report items. To see the level of a particular
report item, examine the structure of the report design in Outline, as shown in
Figure 8-3.

BIRT processes all items at all levels in an iterative fashion, following the same
process at each level as it does for the top-level items.

Figure 8-3 The Outline window, showing the level of a report item

Figure 8-4 illustrates the general report body processing phase.

Figure 8-4 Report body processing phase

For every top-level report item, proceeding
from left to right for each row, starting with the
top row and proceeding to the bottom row:

Process the report item

(See the diagrams for the
individual report item types.)

78 C h a p t e r 8 U s i n g S c r i p t i n g i n a R e p o r t D e s i g n

Clean-up processing phase
The clean-up phase consists of two methods that execute upon closing the data
source, followed by a final method that executes after the generation phase.
Figure 8-5 illustrates the method execution sequence for the clean-up phase.

Figure 8-5 Clean-up phase

Row execution sequence
There are three kinds of rows: header, detail, and footer. Tables, lists, and groups
have rows. BIRT processes all rows identically. Figure 8-6 illustrates the method
execution sequence for a row.

Figure 8-6 Row execution sequence

Table and list method execution sequence
A list is the same as a table, except it only has a single cell in every row. BIRT
processes tables and lists identically except that for a list, BIRT does not iterate
through multiple cells. BIRT processes tables in three phases, the setup phase,
the detail processing phase, and the wrap-up processing phase, as shown in
Figure 8-7.

DataSource.beforeClose

DataSource.afterClose

ReportDesign.afterFactory

ReportDesign.afterRender

For every cell in a row

For every report item in a cell

Process the report item

item.onCreate

item.onRender

Row.onCreate

Row.onRender

Cell.onCreate

Cell.onRender

U n d e r s t a n d i n g t h e e v e n t h a n d l e r e x e c u t i o n s e q u e n c e 79

Figure 8-7 Table and list execution sequence

The following sections describe each of the three table and list execution
sequence sections.

Table and list setup phase

The pre-table processing phase is the same for all tables, both grouped and
ungrouped.

Figure 8-8 illustrates the method execution sequence for the pre-table
processing phase.

Figure 8-8 Table and list setup execution sequence

Table and list processing phase
The sequence for the table and list processing phase depends on whether the
table or list is grouped. The diagram for an ungrouped table or list is shown in
“Ungrouped table or list detail execution sequence,” later in this chapter. The
diagram for a grouped table or list is shown in “Grouped table or list execution
sequence,” later in this chapter.

Table and list wrap-up phase
The post-table processing phase is the same for all tables, both grouped and
ungrouped. Figure 8-9 illustrates the method execution sequence for the post-
table processing phase.

Table and list setup phase

Table and list processing phase

Table and list wrap-up phase

Table.onCreate

Table.onRender

DataSet.beforeOpen

For every row in the data set

DataSet.onFetch

Process the header row or rows

(See the row execution sequence diagram.)

DataSet.afterOpen

80 C h a p t e r 8 U s i n g S c r i p t i n g i n a R e p o r t D e s i g n

Figure 8-9 Table and list wrap-up execution sequence

Ungrouped table or list detail execution sequence
A table or list with no grouping has a different sequence than one with
grouping.

Figure 8-10 illustrates the execution sequence for a table or list without
grouping.

Figure 8-10 Ungrouped table or list detail execution sequence

Grouped table or list execution sequence

One of the differences between the processing sequence for a table or list with
grouping and a table or list without grouping is that for a table with grouping,
BIRT creates one ListingGroup item per group.

The ListingGroup element has three methods, onCreate, onRow, and onFinish,
all of which are called one or more times when processing a grouped table or
list. A ListingGroup is very similar to a table because it has one or more header
rows, one or more detail rows, and one or more footer rows. BIRT processes
grouping rows in the same way that it processes a table row.

Figure 8-11 illustrates the method execution sequence for a table that has
groups.

Process the footer row or rows

(See the row execution sequence diagram.)

For every detail row in the data set

Detail row processing

(See the row execution sequence diagram.)

Table and list setup processing

(See the table and list setup processing diagram.)

Table and list wrap-up processing

(See the table and list wrap-up processing diagram.)

A b o u t a r e p o r t i t e m e v e n t h a n d l e r 81

Figure 8-11 Grouped table execution sequence

If you need to verify the execution sequence of event handlers for a specific
report, you can add logging code to your event handlers. For information about
adding logging code, see the section on determining method execution
sequence in the chapter on using JavaScript.

About a report item event handler
You can write event handlers for all report item elements, such as Label and
List. Table 8-1 describes the report item event handler methods.

For every group level in the table

Process the group header row or rows
(See the row execution sequence.)

For every row within the table or list group

Process the detail row
(See the row execution sequence diagram.)

Process the group footer row or rows
(See the row execution sequence diagram.)

Table and list setup processing
(See the table and list setup processing diagram.)

Table and list wrap-up processing
(See the table and list wrap-up processing diagram.)

Table 8-1 Report item event handler methods

Method Description

onPrepare() The onPrepare event fires at the beginning of the
generation phase, before data binding or
expression evaluation occurs. This event is useful
for changing the design prior to data binding or
expression evaluation.

onCreate() The onCreate event fires at the time the element is
created in the generation phase, after it is bound to
data. This event is useful for operations that
depend on the data content of the element.

onRender() The onRender event fires in the presentation phase.
This event is useful for operations that depend on
the type or format of the output document.

82 C h a p t e r 8 U s i n g S c r i p t i n g i n a R e p o r t D e s i g n

About data source and data set event handlers
There are two kinds of data source elements and two kinds of data set elements.
The data source elements are DataSource and ScriptedDataSource. The data set
elements are DataSet and ScriptedDataSet. ScriptedDataSource and
ScriptedDataSet elements are for non-ODA data sources. The events that BIRT
fires for the ODA data sources are different from the events that it fires for non-
ODA data sources.

ODA data source events
You use the ODA DataSource events, afterClose, afterOpen, beforeClose, and
beforeOpen, to perform operations that are not directly related to managing the
data source. There is no requirement to implement the ODA data source event
handler methods.

Scripted data source events
You use the ScriptedDataSource events, open and close, to perform the actions
of opening and closing the data source. You must implement the
ScriptedDataSource event handlers.

ODA data set events
As with the ODA data source events, you are not required to provide event
handlers for the ODA data set events. The ODA data set events include
afterClose, afterOpen, beforeClose, beforeOpen, and onFetch.

Scripted data set events
You must handle the open, close, and fetch events of a ScriptedDataSet element.
You use these events to open the data set, close the data set, and to fetch a data
set row. In addition to the three ScriptedDataSet events for which you must
provide handlers, there is one optional event, the describe event. You use the
describe event handler to define dynamically generated columns.

About ReportDesign event handlers
There are several events associated with the ReportDesign element. There are
five ReportDesign element events that fire during the report generation process.
These five events are not associated with a specific report item, data source, or
data set. The ReportDesign events are initialize, beforeFactory, afterFactory,
beforeRender, and afterRender.

W r i t i n g e v e n t h a n d l e r s f o r c h a r t s 83

The initialize event fires before any other event and the initialize event handler
is therefore the most logical place to include initialization code.

The beforeFactory event fires before the generation phase. The afterFactory
events fire after the generation phase. The beforeRender event fires before the
presentation phase.

The afterRender events fire after the presentation phase. There are no specific
guidelines for what kind of code to include in these event handlers. They are
available for whatever purpose you have for them.

Writing event handlers for charts
While a chart is a report item, it is a much more complex report item than any
other. The set of events for a chart is much greater than for any other report
item. As with all report items, chart scripting is supported in both Java and
JavaScript.

Chart events
All chart Java event handlers receive a chart script context object,
IChartScriptContext. The chart script context object has methods to get the chart
instance, the locale, and the external context. Some chart event handler methods
have arguments of the type Chart, Series, Block, MarkerRange, ISeriesRenderer,
GeneratedChartState, DataSet, and IDataSetProcessor.

The chart has a different set of events for which you can write event handlers
than the other report items. Table 8-2 lists the chart event handler methods and
describes when they are called.

Table 8-2 Chart event handler methods

Method Called

afterDataSetFilled(Series series, DataSet dataSet,
IChartScriptContext icsc)

After populating the series data
set

afterDrawAxisLabel(Axis axis, Label label,
IChartScriptContext icsc)

After rendering each label on a
given axis

afterDrawAxisTitle(Axis axis, Label label,
IChartScriptContext icsc)

After rendering the title of an
axis

afterDrawBlock(Block block, IChartScriptContext icsc) After drawing each block

afterDrawDataPoint(DataPointHints dph, Fill fill,
IChartScriptContext icsc)

After drawing each data point
graphical representation or
marker

afterDrawDataPointLabel(DataPointHints dph, Label
label, IChartScriptContext icsc)

After rendering the label for
each data point

(continues)

84 C h a p t e r 8 U s i n g S c r i p t i n g i n a R e p o r t D e s i g n

afterDrawFittingCurve(CurveFitting cf,
IChartScriptContext icsc)

After rendering curve fitting

afterDrawLegendEntry(Label label, IChartScriptContext
icsc)

After drawing each entry in the
legend

afterDrawMarkerLine(Axis axis, MarkerLine mLine,
IChartScriptContext icsc)

After drawing each marker line
in an axis

afterDrawMarkerRange(Axis axis, MarkerRange
mRange, IChartScriptContext icsc)

After drawing each marker
range in an axis

afterDrawSeries(Series series, ISeriesRenderer isr,
IChartScriptContext icsc)

After rendering the series

afterDrawSeriesTitle(Series series, Label label,
IChartScriptContext icsc)

After rendering the title of a
series

afterGeneration(GeneratedChartState gcs,
IChartScriptContext icsc)

After generation of a chart
model to GeneratedChartState

afterRendering(GeneratedChartState gcs,
IChartScriptContext icsc)

After the chart is rendered

beforeDataSetFilled(Series series, IDataSetProcessor idsp,
IChartScriptContext icsc)

Before populating the series
data set using the
DataSetProcessor

beforeDrawAxisLabel(Axis axis, Label label,
IChartScriptContext icsc)

Before rendering each label on
a given axis

beforeDrawAxisTitle(Axis axis, Label label,
IChartScriptContext icsc)

Before rendering the title of an
axis

beforeDrawBlock(Block block, IChartScriptContext icsc) Before drawing each block

beforeDrawDataPoint(DataPointHints dph, Fill fill,
IChartScriptContext icsc)

Before drawing each datapoint
graphical representation or
marker

beforeDrawDataPointLabel(DataPointHints dph, Label
label, IChartScriptContext icsc)

Before rendering the label for
each datapoint

beforeDrawFittingCurve(CurveFitting cf,
IChartScriptContext icsc)

Before rendering curve fitting

beforeDrawLegendEntry(Label label,
IChartScriptContext icsc)

Before drawing each entry in
the legend

beforeDrawMarkerLine(Axis axis, MarkerLine mLine,
IChartScriptContext icsc)

Before drawing each marker
line in an axis

beforeDrawMarkerRange(Axis axis, MarkerRange
mRange, IChartScriptContext icsc)

Before drawing each marker
range in an axis

Table 8-2 Chart event handler methods (continued)

Method Called

W r i t i n g e v e n t h a n d l e r s f o r c h a r t s 85

Chart script context
All chart event handler methods for both Java and JavaScript receive a chart
script context argument in the form of a ChartScriptContext object. The chart
script context object provides access to the chart instance object, the Locale and
ULocale objects, a logging object, and an external context object. You can also
use the ChartScriptContext object to set the external context, the chart instance,
and the ULocale.

Table 8-3 lists the methods of the chart script context object and their functions.

beforeDrawSeries(Series series, ISeriesRenderer isr,
IChartScriptContext icsc)

Before rendering the series

beforeDrawSeriesTitle(Series series, Label label,
IChartScriptContext icsc)

Before rendering the title of a
series

beforeGeneration(Chart cm, IChartScriptContext icsc) Before generation of a chart
model to GeneratedChartState

beforeRendering(GeneratedChartState gcs,
IChartScriptContext icsc)

Before the chart is rendered

Table 8-2 Chart event handler methods (continued)

Method Called

Table 8-3 Chart script context event handler methods

Method Function

getChartInstance() Returns the chart instance object.

getExternalContext() Returns the IExternalContext object that provides
access to a scriptable external object. External
scriptable objects are defined in the user
application.

getLocale() Returns the Locale object for the locale currently in
use.

getLogger() Returns the Logger object, which can be used for
logging messages and errors.

getULocale() Returns the ULocale object for the locale currently
in use.

setChartInstance(Chart) Sets the chart instance.

setExternalContext(IEXternalContext) Sets the external context.

setLogger(ILogger) Sets the logger.

setULocale(ULocale) Sets the ULocale.

86 C h a p t e r 8 U s i n g S c r i p t i n g i n a R e p o r t D e s i g n

Chart instance object
As explained in the previous section, you get a chart instance object from the
chart script context object. The chart instance object contains methods that
provide chart modification functionality. Use the chart instance object to get
properties, change properties, and test properties.

Chart instance getter methods
The chart instance getter methods allow you to get various properties of a chart.

Table 8-4 lists the chart instance getter methods and the property values they
return.

Table 8-4 Chart instance getter methods

Method Gets

getBlock() The value of the Block containment reference

getDescription() The value of the Description containment
reference

getDimension() The value of the Dimension attribute

getExtendedProperties() The value of the Extended Properties containment
reference list

getGridColumnCount() The value of the Grid Column Count attribute

getInteractivity() The value of the Interactivity containment
reference

getLegend() The Legend block

getPlot() The Plot block

getSampleData() The value of the Sample Data containment
reference

getScript() The value of the Script attribute

getSeriesForLegend() An array of series whose captions or markers are
rendered in the Legend

getSeriesThickness() The value of the Series Thickness attribute

getStyles() The value of the Styles containment reference list

getSubType() The value of the Sub Type attribute

getTitle() The Title block for the chart

getType() The value of the Type attribute

getUnits() The value of the Units attribute

getVersion() The value of the Version attribute

W r i t i n g e v e n t h a n d l e r s f o r c h a r t s 87

Chart instance setter methods
The chart instance setter methods allow you to set various properties of a chart.
Table 8-5 lists the chart instance setter methods and the values they set.

Writing a Java chart event handler
Writing a Java chart event handler is not different from writing a Java event
handler for any other kind of report item. For more information about writing
Java event handlers, see Chapter 10, “Using Java to Write an Event Handler.”

Writing a JavaScript chart event handler
The process of writing a JavaScript chart event handler differs from the process
of writing an event handler for other report items. The primary difference is that
the Script tab does not contain a selectable list of chart events. For chart events,
you must include every event handler script for the chart in one place.

The Script tab of the BIRT Report Designer for a chart contains a set of function
stubs to assist you in writing a chart event handler. The set of stubs is a subset of
the chart events, consisting only of the before events, such as
beforeDataSetFilled(). Figure 8-12 shows the Script tab as it appears before any
event handlers have been typed.

Table 8-5 Chart instance setter methods

Method Sets

setBlock(Block value) The value of the Block containment reference

setDescription(Text value) The value of the Description containment
reference

setDimension(Chart
Dimension value)

The value of the Dimension attribute

setGridColumnCount(int
value)

The value of the GridColumnCount attribute

setInteractivity(Interactivity
value)

The value of the Interactivity containment
reference

setSampleData() The value of the Sample Data containment
reference

setScript() The value of the Script attribute

setSeriesThickness() The value of the Series Thickness attribute

setSubType() The value of the Sub Type attribute

setType() The value of the Type attribute

setUnits() The value of the Units attribute

setVersion() The value of the Version attribute

88 C h a p t e r 8 U s i n g S c r i p t i n g i n a R e p o r t D e s i g n

Figure 8-12 Script tab

The before events are the most common events to script. If you need to write an
after event handler, such as afterDataSetFilled(), you can find the signature of
the event handler earlier in this chapter or by viewing the interface
IChartEventHandler in the Chart Engine API Reference in the BIRT online help.

To write handler code for one of the before chart events, uncomment the
appropriate function statement in the Script tab and type the code between the
parentheses, as shown in Figure 8-13.

Figure 8-13 Chart event handler code with a standard function declaration

If you want to write an event handler that does not have a stub in the Script tab,
you must type the function declaration yourself. When typing a new function
declaration, follow the format of the function declarations in the stubs.

G e t t i n g a d y n a m i c i m a g e f r o m a M i c r o s o f t A c c e s s d a t a b a s e 89

Figure 8-14 shows the entry of an afterDrawElement() script.

Getting a dynamic image from a Microsoft Access
database

Microsoft Access stores an image as an array of image bytes preceded by 78
bytes of header information. BIRT does not use the header information. To get a
dynamic image from an Access database, you must copy the image data from
the database field into a Java array of type byte. You perform this copy
operation in the dynamic image expression.

The following script is an example of how to copy the image data from the
Access image field into a byte array that BIRT can use:

var picBytes = row["Picture"];
var offset = 78;
var lengthOfImage = picBytes.length - offset;
var imgBytes =

java.lang.reflect.Array.newInstance(java.lang.Byte.TYPE,
lengthOfImage);

java.lang.System.arraycopy(picBytes, offset, imgBytes, 0,
lengthOfImage);

imgBytes;

Figure 8-14 Chart event handler code with a custom function declaration

This page intentionally left blank

91

C h a p t e r

Chapter 9Using JavaScript to Write
an Event Handler

BIRT scripting is based on the Mozilla Rhino implementation of JavaScript, also
called ECMAScript. Rhino implements ECMAScript version 1.5 as described in
the ECMA standard ECMA-262 version 3. The complete specification for Rhino
is located at:

http://www.ecma-international.org/publications/standards/
Ecma-262.htm.

Using BIRT Report Designer to enter a JavaScript
event handler

You can use BIRT Report Designer to enter a JavaScript event handler and
associate it with a specific event for a specific element.

How to use BIRT Report Designer to enter a JavaScript event handler

1 In Outline, select the report element, data source, or data set for which you
want to write an event handler.

2 Choose the Script tab.

3 Choose an event handler from the drop-down list of methods.

4 Enter the event handler code in the script editor.

Figure 9-1 demonstrates entering a line of code in the onPrepare() method of a
Table element.

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm

92 C h a p t e r 9 U s i n g J a v a S c r i p t t o W r i t e a n E v e n t H a n d l e r

Creating and using a global variable
JavaScript has global variables and local variables. A local variable can only be
accessed in the scope of the method in which it is created. You use the var
identifier to create a local variable in JavaScript, as shown in the following line
of code:

var localCounter = 0;

To create a global variable, you omit the var identifier, as shown in the following
line of code:

globalCounter = 0;

When you create a global variable in JavaScript, that variable is visible to all
other JavaScript code that executes in the same process. For example, you can
use a global variable to count the detail rows in a table by first creating a global
variable in the onCreate() method of the table, as shown in the following line of
code:

rowCount=0;

Figure 9-1 Code entry for the onPrepare() method

U s i n g B I R T R e p o r t D e s i g n e r t o e n t e r a J a v a S c r i p t e v e n t h a n d l e r 93

Since rowCount is global, the onCreate() method of the detail row can access
and increment it, as shown in the following line of code:

rowCount++;

Understanding execution phases and processes
As explained in the scripting overview chapter, there are three BIRT execution
phases: the preparation phase, the generation phase, and the presentation
phase. However, there can be either one or two execution processes. When a
report is run in the BIRT Report Designer previewer, there is only one execution
process. There are two execution processes when the report is run in the
interactive viewer or when the report is deployed to an application server. The
first process, called the factory process, contains the preparation phase and the
generation phase. The second execution process, called the render process,
contains only the presentation phase. The render process can occur at a much
later time than the factory process and possibly on a different machine.

Because variables are only visible in the process in which they were created, it is
important to know which event handlers run in which process. It is also
important to be aware that code that works when the report is run in the
previewer might not work at run time if there is a render process dependency
on a variable created in the factory process.

The event handlers that run in the factory process, in the order executed,
include:

■ ReportDesign.initialize()

■ onPrepare() methods for every report item

■ ReportDesign.beforeFactory()

■ DataSource.beforeOpen()

■ DataSource.afterOpen()

■ DataSet.beforeOpen()

■ DataSet.afterOpen()

■ DataSet.onFetch()

■ onCreate() methods for every report item

■ DataSet.beforeClose()

■ DataSet.afterClose()

■ DataSource.beforeClose()

■ DataSource.afterClose()

■ ReportDesign.afterFactory()

94 C h a p t e r 9 U s i n g J a v a S c r i p t t o W r i t e a n E v e n t H a n d l e r

The event handlers that run in the render process, in the order executed,
include:

■ ReportDesign.initialize()

■ ReportDesign.beforeRender()

■ onRender() methods for every report item

■ ReportDesign.beforeFactory()

■ ReportDesign.afterRender()

It is worth noting that ReportDesign.initialize() runs in both processes.

Using the reportContext object
Almost every event handler has access to an object called the reportContext
object. The four exceptions are the open() and close() event handlers for
ScriptedDataSource and ScriptedDataSet. Table 9-1 lists commonly used
reportContext object methods.

Table 9-1 reportContext object methods

Method Task

deleteGlobalVariable() Deletes a global variable created using
setGlobalVariable()

deletePersistentGlobalVariable() Deletes a persistent global variable created
using setPersistentGlobalVariable()

getAppContext() Returns the application context

getConfigVariableValue() Returns the value of a config variable

getGlobalVariable() Returns a global variable created using
setGlobalVariable()

getHttpServletRequest() Returns the HTTP servlet request object

getLocale() Returns the current locale

getMessage() Returns a localized message from the
localization resource file

getOutputFormat() Returns the format in which the report is
emitted, either html or pdf

getParameterValue() Returns a parameter value

getPersistentGlobalVariable() Returns a persistent global variable
created using
setPersistentGlobalVariable()

setGlobalVariable() Creates a global variable that can be
accessed with getGlobalVariable()

U s i n g t h e t h i s o b j e c t 95

Passing a variable between processes
Although a global JavaScript variable cannot be passed between processes,
there is a way to pass a variable from the factory process to the render process.
The setPersistentGlobalVariable() method of the report context object creates a
variable that can be accessed using the getPersistentGlobalVariable() method.
The only restriction on the variable is that it must be a serializable Java object.

Getting information from an HTTP request object
The HTTP servlet request object contains various methods to retrieve
information about the request to run the report. One useful method of the HTTP
request object gets the query string that follows the path in the request URL. The
query string contains all the parameters of the request. By parsing the query
string, your code can extract the parameters in the request URL to conditionally
determine the report output. This feature can be used to pass in a user ID, for
example, or to set or override a report parameter.

The following code gets the query string:

importPackage(Packages.javax.servlet.http);
httpServletReq = reportContext.getHttpServletRequest();
formatStr=httpServletReq.getQueryString();

Using the this object
Every JavaScript event handler is associated with a particular ROM element,
such as a report item, a data source, a data set, or the report itself. Most report
elements have properties that an event handler can access and, in some cases,
change. Many report elements also have functions that you can call. A
JavaScript event handler can access these properties and functions through a
special object called the this object.

Using the this object’s methods
The this object represents the element for which the event handler handles
events. To use the this object, type the word, this, followed by a period in the
script window for the event handler you are writing. At the time you type the
period, a window pops up containing a scrollable list of all the properties and
functions of the element, as shown in Figure 9-2.

setParameterValue() Sets the value of a named parameter

setPersistentGlobalVariable() Creates a persistent global variable that
can be accessed using
getPersistentGlobalVariable()

Table 9-1 reportContext object methods (continued)

Method Task

96 C h a p t e r 9 U s i n g J a v a S c r i p t t o W r i t e a n E v e n t H a n d l e r

Figure 9-2 Using the this object to display a list of functions and properties

If the pop-up window disappears at any time, delete the period and re-enter it.
Scroll down using the arrow keys or the scroll bar controls and press Enter or
double-click when the property or function you want is highlighted.

Using the pop-up window to select a method or property can also be used for
other objects. A procedure later in this chapter steps you through setting the
background color of a label to yellow.

Using the this object to set the property of a report
item
The following procedure assumes that you have a BIRT report that contains a
label. The procedure sets the label’s background color to yellow. The general
process explained in this procedure is not specific to the label report item,
however. You modify all report item event handlers in the same general way.

How to set a property of a report item using JavaScript

1 Select the label whose color you want to change by navigating the Outline
view and selecting the appropriate report item, as shown in Figure 9-3.

Figure 9-3 Selecting a report item to modify

U s i n g t h e t h i s o b j e c t 97

2 Select onPrepare from the drop-down list in the Script window, as shown in
Figure 9-4.

Figure 9-4 Selecting onPrepare()

3 Enter the word this, followed by a period in the onPrepare script window, as
shown in Figure 9-5.

Figure 9-5 Using the this object

4 Select the getStyle() method from the scrollable list of properties and
functions.

The onPrepare script window appears as shown in Figure 9-6.

Figure 9-6 The onPrepare script window

5 Move the cursor to the end of the line in the onPrepare script window and
type a period.

The scrollable list of properties and functions of the Style element appears, as
shown in Figure 9-7.

98 C h a p t e r 9 U s i n g J a v a S c r i p t t o W r i t e a n E v e n t H a n d l e r

Figure 9-7 Properties and functions of the Style element

6 Select backgroundColor from the list of Style properties and functions.

7 Complete the line of JavaScript in the onPrepare script window by
appending ="yellow", as shown in Figure 9-8.

Figure 9-8 Changing the color of an element

8 Choose the Preview tab to see the effect of the onPrepare event handler
script.

The label appears in the report with a yellow background, as shown in
Figure 9-9.

Figure 9-9 Preview of the color change

U s i n g t h e r o w o b j e c t 99

Using the row object
The row object provides access to the columns of the current row from within
the DataSet.onFetch() method. You can retrieve the value of any column, using
the column name in a statement similar to the following examples:

col1Value = row["custNum"];
col1Value = row.custNum;

You can only index the column position with the column name if the name is a
valid JavaScript name with no spaces or special characters. Alternatively, you
can use the column alias if the alias is a valid JavaScript name.

You can also get a column value by numerically indexing the column position,
as shown in the following statement:

col1Value = row[1];

When you index the column position numerically, the number inside the
brackets is the position of the column, beginning with 1. You can retrieve the
row number with row[0].

Although you use array syntax to access the row object in JavaScript, this object
is not a JavaScript array. For this reason, you cannot use JavaScript array
properties, such as length, with the row object.

Getting column information
The DataSet object has a method called getColumnMetaData(), which returns
an IColumnMetaData object. The IColumnMetaData class has methods that
provide information about the columns in a data set, as shown in Table 9-2.

Table 9-2 Methods of the IColumnMetaData class

Method Returns

getColumnAlias() The alias of the specified column.

getColumnCount() The number of columns in a row of the
result set.

getColumnLabel() The column label.

getColumnName() The column name at the specified index.

(continues)

100 C h a p t e r 9 U s i n g J a v a S c r i p t t o W r i t e a n E v e n t H a n d l e r

You get the IColumnMetaData object from the dataSet object, as shown in the
following statement:

columnMetaData = this.getColumnMetaData();

You can use the count of columns to iterate through all the columns in the data
set, as shown in the following example:

colCount = columnMetaData.getColumnCount();
for (i = 0; i < colCount; i++)
{

pw.println("Column val for col position " + i + " = " +
row[i]);

pw.println("Column name for col position " + i + " = " +
columnDefinitions[i].name);

}

Getting and altering the query string
You get the text of the query in any DataSet event handler as shown in the
following example:

query = this.queryText;

getColumnNativeTypeName() One of the following data types:
■ BOOLEAN
■ DATETIME
■ DECIMAL
■ FLOAT
■ INTEGER
■ STRING
The data type is null if the column is a
computed field or if the type is not known.

getColumnType() The data type of the column at the specified
index.

getColumnTypeName() The data type name of the column at the
specified index.

isComputedColumn() True or false, depending on whether the
column is a computed field or not.

Table 9-2 Methods of the IColumnMetaData class (continued)

Method Returns

G e t t i n g a p a r a m e t e r v a l u e 101

You can modify a query in the DataSet beforeOpen() event handler by setting
the value of the queryText string. To change the query, set the queryText string
to a valid SQL query, as shown in the following example:

queryText = "select * from CLASSICMODELS.CUSTOMERS WHERE
CLASSICMODELS.CUSTOMERS.CUSTOMERNUMBER BETWEEN 470 AND 490";

One advantage of dynamically altering the query is that you can use business
logic to determine the proper query. This approach can be more flexible than
using parameters.

Getting a parameter value
A script can get the value of a report parameter by passing the name of the
parameter to the getParameterValue() method of the reportContext object. The
following statement gets the value of the UserID parameter:

userID = reportContext.getParameterValue("UserID");

Changing the connection properties of a data source
You can change the run-time connection properties of a data source by accessing
the extensionProperties array of the DataSource object. The ODA extension
defines the list of connection properties that can be set at run time. Table 9-3
describes the JDBC data source properties that affect the connection at run time.

To change these properties, add code similar to the following statements in the
DataSource.beforeOpen method:

extensionProperties.odaUser = "JoeUser";
extensionProperties.odaPassword = "openSesame";
extensionProperties.odaURL = "jdbc:my_data_source:xxx";
extensionProperties.odaDriverClass =

"com.companyb.jdbc.Driver";

Table 9-3 JDBC data source run-time connection properties

Property Description

odaUser The login user name

odaPassword The login password

odaURL The URL that identifies the data source

odaDriverClass The driver class for accessing the data source

102 C h a p t e r 9 U s i n g J a v a S c r i p t t o W r i t e a n E v e n t H a n d l e r

Determining method execution sequence
You can determine the sequence of method execution by writing code that
generates a file containing a line for every method that you want to track.

To create an output file containing a sequence of method execution, include
initialization code in the ReportDesign.initialize method and finalization code
in the ReportDesign.afterFactory method. In each method that you want to
track, add code to write a line of text to the output file. It is easier to write the
code in JavaScript than Java, but it is possible to write analogous code in Java.

The following sections show you how to use JavaScript to determine method
execution sequence.

Providing the ReportDesign.initialize code
The following code in the ReportDesign.initialize method creates a file on your
hard drive and adds one line to the file.

importPackage(Packages.java.io);
fos = new java.io.FileOutputStream("c:\\logFile.txt");
printWriter = new java.io.PrintWriter(fos);
printWriter.println("ReportDesign.initialize");

The preceding code does the following tasks:

■ Imports the Java package, java.io

■ Creates a file output stream for the file you want to create

■ Creates a PrintWriter object that every method can use to track method
execution sequence

How to provide code for the ReportDesign.initialize method

You provide code for the ReportDesign.initialize method by performing the
following steps:

1 Choose the Script tab.

2 Choose the Outline view.

3 In Outline, select the top line, as shown in Figure 9-10.

Figure 9-10 Selecting the report design

D e t e r m i n i n g m e t h o d e x e c u t i o n s e q u e n c e 103

4 In Script, select the Initialize() method.

5 Type the code into the script editor.

The BIRT report designer appears, as shown in Figure 9-11.

Figure 9-11 Providing ReportDesign.initialize code

Providing the code for the methods you want to track
For every method that you want to track, provide a single statement generating
a line of output to your log file, as shown in the following statement:

printWriter.println("Table.onRow");

To provide code for a report item method you want to track, first select the
appropriate object from Outline and select the appropriate method from the
method selection list. Then use the same steps for entering code into a method,
as described in the preceding section.

To provide code for a data set or the data source method, select the appropriate
data source or data set from Data Explorer before selecting the method you
want to track.

Providing the ReportDesign.afterFactory code
The following statement in the ReportDesign.afterFactory method closes the
file.

printWriter.close();

Using this method flushes all the buffers and ensures that all method output
appears in the file.

104 C h a p t e r 9 U s i n g J a v a S c r i p t t o W r i t e a n E v e n t H a n d l e r

To provide the ReportDesign.afterFactory code, select the top line of the outline
and select the afterFactory method on the code page.

Tutorial 1: Writing an event handler in JavaScript
This tutorial provides instructions for writing a set of event handlers. The
tutorial assumes that you have a basic report design based on the Classic
Models, Inc. sample database. The only requirement of the starting report
design is that it contains a table of customers with a column for the customer
name. In this tutorial you count the customers whose names contain the string
“Mini” and display the result in a pop-up window.

In this tutorial, you perform the following tasks:

■ Open the report design.

■ Create and initialize a counter in the Table.onCreate() method.

■ Conditionally increment the counter in the Row.onCreate() method.

■ Display the result, using the ReportDesign.afterFactory() method.

Task 1: Open the report design
Open a report design that uses the Classic Car sample database and displays a
table of customer names.

1 If necessary, open Navigator by choosing Window➛Show View➛Navigator.

2 Double-click the appropriate report design. The file opens in the layout
editor, as shown in Figure 9-12.

Figure 9-12 Report design in the layout editor

Task 2: Create and initialize a counter in the
Table.onCreate() method

In order to count the number of customers whose names contain the string
“Mini,” you must first set a persistent global variable to zero. The
Table.onCreate() method is the most appropriate place to do this task because

D e t e r m i n i n g m e t h o d e x e c u t i o n s e q u e n c e 105

Table.onCreate() executes before any rows are retrieved. You conditionally
increment this counter in the Row.onCreate() method.

1 In Layout, select the table by placing the cursor near the bottom-left corner of
the table. The table icon appears, as shown in Figure 9-13.

Figure 9-13 Table icon in the layout editor

2 Choose the Script tab. The script window appears, as shown in Figure 9-14.

Figure 9-14 Script window

3 Type the following line of code in the script window for the onCreate()
method:

reportContext.setPersistentGlobalVariable("cmKey",
new java.lang.Integer("0"));

4 To run the report and verify that the code did not create any errors, choose
Preview.

5 Scroll to the bottom of the report, where JavaScript error messages appear. If
there are no errors, the report appears, as shown in Figure 9-15.

If you see an error message, you may have typed a statement incorrectly. If
so, go back to the script window, select the method you just modified, correct
the error, and choose Preview again.

106 C h a p t e r 9 U s i n g J a v a S c r i p t t o W r i t e a n E v e n t H a n d l e r

Figure 9-15 Report preview

Task 3: Conditionally increment the counter in the
Row.onCreate() method

To count the number of customers with the string “Mini” in their names, you
must examine each customer’s name and add one to the counter for every
occurrence. A logical place to do this task is in the Row.onCreate() method,
which is executed upon every retrieval of a row of data from the data source.

1 In Layout, select the row and then choose Script.

2 Pull down the list of methods at the top of the script window and select
onCreate, as shown in Figure 9-16.

Figure 9-16 onCreate() in the Script window

3 Enter the following line of JavaScript code in the script window:

row_data = this.getRowData();

Notice that when you enter the period after this, a pop-up appears
containing all the available methods and properties, including getRowData.
This line of code gets an instance of IRowData. You use the method,
getExpressionValue(), on IRowData to get the contents of a column of the
row.

D e t e r m i n i n g m e t h o d e x e c u t i o n s e q u e n c e 107

4 Type the following line of JavaScript below the line you just entered:

CustName=row_data.getExpressionValue("row[CUSTOMERNAME]");

This line of code returns the contents of the table column that comes from the
CUSTOMERNAME column in the data set.

5 Type the following lines of code to conditionally increment the persistent
global variable you created in Task 2: “Create and initialize a counter in the
Table.onCreate() method.”

if(CustName.indexOf("Mini") != -1){
cnt = reportContext.getPersistentGlobalVariable("cmKey");
reportContext.setPersistentGlobalVariable("cmKey",

new java.lang.Integer(cnt.intValue() + 1));
}

You can use the JavaScript palette to insert each of the following elements in
the preceding line:

■ indexOf()

Select Native (JavaScript) Objects➛String Functions➛indexOf()

■ != and +=

Select Operators➛Comparison➛!= and Operators➛Assignment➛+=

6 Choose Preview to run the report again to verify that the code you entered
did not create any errors.

Task 4: Display the result, using the
ReportDesign.afterFactory() method

To display the count of customers with the string “Mini” in their names, you
insert code in a method that runs after the processing of all the rows in the table.
One logical place for this code is in the ReportDesign.afterFactory() method.

1 In Outline, select the report design, as shown in Figure 9-17.

Figure 9-17 Selecting the report design in Outline

2 Select the afterFactory() method from the script window drop-down list.

108 C h a p t e r 9 U s i n g J a v a S c r i p t t o W r i t e a n E v e n t H a n d l e r

3 Type the following code into the afterFactory() method:

importPackage(Packages.javax.swing);
countOfMinis = reportContext.getPersistentGlobalVariable(

"cmKey").intValue();
frame = new JFrame("Count of Minis = " + countOfMinis);
frame.setBounds(310, 220, 300, 20);
frame.show();

4 Select Preview to see the results. If there were no errors in the code, you see a
report similar to the one in Figure 9-18.

Figure 9-18 Result of changing the afterFactory() method

If you do not see the Count of Minis window, look for it behind the Eclipse
window. If the Count of Minis window does not appear, the most likely reason
is a scripting error caused by an error in one of your code entries. If you suspect
that a scripting error has occurred, scroll to the bottom of the report, where all
scripting error messages appear. In most situations, there is a brief error
message next to a plus sign (+). The plus sign indicates that there is a more
detailed error message that you can view. To expand the brief error message,
choose the plus sign. Scroll down to see the more detailed error message.

Calling Java from JavaScript
Rhino provides excellent integration with Java classes, allowing BIRT scripts to
work seamlessly with business logic written in Java. Wrapping Java in
JavaScript allows the developer to write powerful scripts quickly by leveraging
both internal and external libraries of existing Java code. You can use static
methods, non-static methods, and static constants of a Java class.

Understanding the Packages object
The Packages object is the JavaScript gateway to the Java classes. It is a top-level
Rhino object that contains properties for every top-level Java package, such as
java and com. Packages also contains a property for every package that it finds

C a l l i n g J a v a f r o m J a v a S c r i p t 109

in its classpath. You use Packages to access a Java class for which Packages has a
property by preceding the class name with Packages, as shown in the following
statement:

var nc = new Packages.javax.swing.JFrame("MyFrame”);

You can also use Packages to reference a Java class that is not a part of a
package, as shown in the following statement:

var nc = new Packages.NumberConversion();

For BIRT to find your custom Java class or package, you must place it in the
BIRT classpath, as discussed later in this chapter.

Understanding the importPackage method
You can avoid writing a fully qualified reference to a Java class by using the top-
level Rhino method importPackage(). The importPackage() method functions
like a Java import statement. Use the importPackage() method to specify one or
more Java packages that contain the Java classes that you need to access, as
shown in the following example:

importPackage(Packages.java.io, Packages.javax.swing);

You must prepend Packages to the name of each package. After the first time
BIRT executes a method containing the importPackage() method, the specified
packages are available to all succeeding scripts. For this reason, you should
include the importPackage() method in the ReportDesign.initialize method,
which is always the first method that BIRT executes.

Java imports java.lang.* implicitly. Rhino, on the other hand, does not import
java.lang.* implicitly because JavaScript has several top-level objects with the
same names as some classes defined in the java.lang package. These classes
include Boolean, Math, Number, Object, and String. Importing java.lang causes
a name collision with the JavaScript objects of the same name. For this reason,
you should avoid using importPackage() to import java.lang.

Using a Java class
To use a Java class in a BIRT script, you set a JavaScript object equal to the Java
object. You then call the Java class methods on the JavaScript object. The
following example creates a Java Swing frame and sets the JavaScript object
named frame to the Java JFrame object. Then the code calls the setBounds() and
show() methods directly on the JavaScript object.

importPackage(Packages.javax.swing);
frame = new JFrame("My Frame");
frame.setBounds(300, 300, 300, 20);
frame.show();

The effect of this code example is to display a Java window on your desktop
containing the title, My Frame.

110 C h a p t e r 9 U s i n g J a v a S c r i p t t o W r i t e a n E v e n t H a n d l e r

Placing your Java classes where BIRT can find them
For the BIRT report viewer to find your Java classes, the classes must be in a
folder under:

$ECLIPSE_INSTALL\plugins org.eclipse.birt.report
.viewer_*\birt\WEB-INF\classes

You can put a JAR file and individual classes at this location. If your Java class is
a part of a package, you must create a hierarchy of folders under the classes
folder that represents the package hierarchy. For example, if your Java class is in
the com.acme.businessLogic package, your class must be in:

$ECLIPSE_INSTALL\plugins\org.eclipse.birt.report
.viewer_*\birt\WEB-INF\classes\com\acme\businessLogic

When you deploy your report to an application server, you must also deploy
your Java classes.

Issues with using Java in JavaScript code
There are many nuances of writing Java code, such as how to handle
overloaded methods, how to use interfaces, and so forth. Refer to the Rhino
page on scripting Java at http://www.mozilla.org/rhino/ScriptingJava.html
for more information about these topics.

http://www.mozilla.org/rhino/ScriptingJava.html

W r i t i n g a J a v a e v e n t h a n d l e r c l a s s 111

C h a p t e r

Chapter 10Using Java to Write an
Event Handler

Creating a Java event handler is slightly more complex than creating a
JavaScript event handler because you cannot simply enter Java code directly in
the BIRT report designer. To create a Java event handler class, you must compile
the source for the Java class and make certain that the class is visible to BIRT.
Creating a Java event handler for BIRT is simplified, however, by the fact that
Eclipse is a robust Java development environment and supports integrating a
Java project with a BIRT project.

This chapter discusses the following topics:

■ Writing the event handler class

■ Making the event handler class visible to BIRT

■ Associating the event handler class with a report item

■ Understanding the classes and interfaces associated with Java event handlers

Writing a Java event handler class
When you provide one or more Java event handlers for a scriptable BIRT
element, you must create one class that contains all the Java event handlers for
that element. Creating a class that contains event handler methods for more
than one element is not advisable.

BIRT provides a set of Java interfaces and Java adapter classes to simplify the
process of writing a Java event handler class. There is one interface and one
adapter class for every scriptable BIRT element. An element’s event handler

112 C h a p t e r 1 0 U s i n g J a v a t o W r i t e a n E v e n t H a n d l e r

interface defines all the event handler methods for that element. A handler class
must implement every method defined in the interface, even if some of the
methods are empty.

Locating the JAR files that an event handler requires
There are two JAR files that contain all the classes and interfaces that an event
handler requires. One of the JAR files is a part of BIRT Report Designer and SDK
and the other one is a part of BIRT Report Engine.

The JAR file that you use for developing a Java event handler is
org.eclipse.birt.report.engine_Version.jar, which is located in the Eclipse plugins
directory for BIRT Report Designer and SDK.

The JAR file that you use when you deploy your report is scriptapi.jar, which is
located in the \WebViewerExample\WEB-INF\lib directory of BIRT Report
Engine. All JAR files in the \WebViewerExample\WEB-INF\lib directory are in
a deployed report’s classpath, so there is no need to do anything special to make
scriptapi.jar accessible at run time.

Extending an adapter class
An element’s adapter class implements the element’s interface and provides
empty stubs for every method. To use the adapter class, extend the adapter class
and override the methods for which you are providing handler code. Eclipse
recommends extending an adapter class rather than implementing an interface
directly.

BIRT naming conventions for the event handler interfaces and adapter classes
are discussed later in this chapter.

How to create an event handler class and add it to the Java project

This section describes the process for using the Eclipse Java development
environment to create an event handler class for a scriptable BIRT element.

1 Add org.eclipse.birt.report.engine_Version.jar to your Java project, as
outlined in the following steps:

1 Select your Java project and choose File➛Properties➛Java Build
Path➛Libraries. Java Build Path appears, as shown in Figure 10-1.

W r i t i n g a J a v a e v e n t h a n d l e r c l a s s 113

Figure 10-1 Adding a JAR file to the compiler’s classpath

2 Choose Add External JARs. JAR Selection appears.

3 Navigate to Eclipse /plugins directory. In a default Eclipse installation,
this directory is in the following location:

C:\eclipse\plugins

4 Select org.eclipse.birt.report.engine_Version.jar. Choose Add. Java Build
Path appears.

5 Choose OK.

2 Select your Java project and choose File➛New➛Other. Select a wizard
appears.

3 Expand Java and select Class, as shown in Figure 10-2.

114 C h a p t e r 1 0 U s i n g J a v a t o W r i t e a n E v e n t H a n d l e r

Figure 10-2 The Select a wizard dialog

Choose Next. Java Class appears, as shown in Figure 10-3.

Figure 10-3 Java Class

4 Navigate to the folder where you want the Java source file to reside by
choosing the Browse button beside Source Folder.

W r i t i n g a J a v a e v e n t h a n d l e r c l a s s 115

5 If your new Java class is a part of a package, type the fully qualified package
name in Package.

6 In Name, type a name for your class.

7 In Modifiers, choose Public.

8 Choose the Browse button beside Superclass. Superclass Selection appears,
as shown in Figure 10-4.

Figure 10-4 Superclass Selection

9 In Choose a type, type the name of the adapter class for the ROM element.
For example, enter Label EventAdapter for the Label element. Choose OK.
New Java Class reappears.

10 Select Generate comments. Choose Finish. A Java editor view appears,
similar to the one shown in Figure 10-5.

Figure 10-5 The Java editor

11 Add the event handler method for your new event handler class. Figure 10-6
shows the addition of an onPrepare() method that sets the background color
of the label to red.

116 C h a p t e r 1 0 U s i n g J a v a t o W r i t e a n E v e n t H a n d l e r

Figure 10-6 The onPrepare() method in the Java editor

Making the Java class visible to BIRT
One way to make a Java event handler class visible to the BIRT report designer
is to create a Java development project for compiling the class in the same
workspace as your BIRT report project. The other option is to place the class in a
directory or JAR file that is specified in the BIRT classpath. When you deploy
the report to an application server, however, you must copy the Java class to the
appropriate location on the server. For more information about deploying Java
classes to an application server, see the chapter about deploying BIRT to an
application server.

Associating the Java event handler class with a report
element

After you create the Java event handler class and code the appropriate handler
methods, you must associate the class with the appropriate report element.

How to associate a Java class with a report element

The example in this procedure makes the following assumptions:

■ The report design includes a scriptable report item, such as a label.

■ A Java class containing event handler methods for the scriptable report item
is visible to BIRT.

1 In Outline, select the report element for which an event handler class is
visible to BIRT, as shown in Figure 10-7.

B I R T J a v a i n t e r f a c e a n d c l a s s n a m i n g c o n v e n t i o n s 117

Figure 10-7 Selecting a report element

2 In Property Editor for the selected report element, select Event Handler and
enter the fully qualified name of your event handler class, as shown in
Figure 10-8.

Figure 10-8 The event handler class name

BIRT Java interface and class naming conventions
When working with BIRT Java event handlers, you encounter event handler
interfaces, adapter classes, element instance interfaces, and element design
interfaces. All BIRT event handler classes and interfaces are named using
consistent naming conventions.

Naming convention for event handler interfaces
All BIRT ROM element interface names begin with the letter I, which is followed
by the name of the ROM element and then EventHandler. For example, the
interface for the Label element is ILabelEventHandler.

Naming convention for event handler adapter classes

All BIRT ROM element adapter class names begin with the name of the element,
followed by EventAdapter. For example, the name of the adapter class for a
Label element is LabelEventAdapter.

118 C h a p t e r 1 0 U s i n g J a v a t o W r i t e a n E v e n t H a n d l e r

Naming convention for ROM element instance interfaces

All BIRT ROM element instance interface names begin with the letter I, followed
by the name of the element and then Instance. For example, the ROM element
instance interface for a Label element is ILabelInstance.

Naming convention for ROM element design interfaces

All BIRT ROM element instance design interface names begin with the letter I,
followed by the name of the element. For example, the design interface for a
Label element is ILabel.

Writing a Java event handler
Most scriptable elements have more than one event for which you can write a
handler. If you write an event handler for any event of an element, the event
handler class must include methods for all the events for that element. You can
leave empty those methods that do not require handler code but the empty
methods must appear in the class.

You can give an event handler class any name you choose. You associate the
class with a report element in BIRT Report Designer in the Properties view, as
explained earlier in this chapter. Your Java event handler class can either extend
an adapter class or implement an event handler interface. Adapter classes and
handler interfaces are explained in the next sections.

Using event handler adapter classes
BIRT provides event handler adapter classes for every scriptable report element.
An event handler adapter class contains empty methods for every event
handler method for the element. If your class extends an adapter class, you need
to override only the methods for the events for which you want to provide
handler code.

One advantage of using an adapter class instead of implementing an interface is
that your class will compile even if methods are added to the interface in a
future release. If the signature of an event handler method changes in a future
release, however, you must change your implementation of that method to
reflect the signature change. The class will compile even if you do not change
the method with the changed signature, but the method with the wrong
signature will never be called.

Using event handler interfaces
BIRT provides event handler interfaces for every scriptable report element. If
your event handler class extends an adapter class, the adapter class implements
the correct interface. If your class does not extend an adapter class, then your

W r i t i n g a J a v a e v e n t h a n d l e r 119

class must implement the appropriate interface for the report element you are
scripting.

There are some advantages of specifying an interface instead of extending an
adapter class. Eclipse generates stubs for every method the interface specifies.
The stubs show the method arguments, so you can see the argument types of
the methods you must implement. If your class extends an adapter class, there
are no generated stubs for you to examine. You also have more freedom in the
design of your class structure if you avoid using an adapter class. For example,
you might want two or more event handler classes to extend a single base class.
Because Java does not support multiple inheritance, the event handler class
cannot extend both the adapter class and the base class. However, if the event
handler class implements an interface instead of extending an adapter class,
there is nothing to prevent the event handler class from extending the base class.

The disadvantage of using an interface over an adapter class is that if additional
methods are added to an interface in a future release, a class that implements
the interface fails to compile.

About the Java event handlers for report items
You can write an event handler for any or all the events that BIRT fires for a
report item. Table 10-1 describes the events BIRT fires for each report item.

Table 10-1 Report item event handler methods

Method Description

onPrepare() The onPrepare() method for every report element
contains the following two arguments:
■ The element design interface
■ The report context interface

onCreate() The arguments to the onCreate() method depend on the
particular element. Every onCreate() method contains
at least the following two arguments:
■ The element instance interface
■ The report context interface

onPageBreak() The onPageBreak() method for every report element
contains the following two arguments:
■ The element instance interface
■ The report context interface

onRender() The onRender() method for every report element
contains the following two arguments:
■ The element instance interface
■ The report context interface

120 C h a p t e r 1 0 U s i n g J a v a t o W r i t e a n E v e n t H a n d l e r

Using Java event handlers for the DataSource
element
The DataSource event handler interface has four methods that you can
implement to respond to events. A Java class to handle these events must
implement the IDataSourceEventHandler interface or extend the
DataSourceAdapter class.

All the event methods receive an IReportContext object. All the methods except
the afterClose() method also receive an IDataSetInstance object. The onFetch()
method also receives an IDataSetRow object. These interfaces are discussed later
in this chapter. Table 10-2 lists the four methods that you can implement for a
DataSource element.

Using Java event handlers for the DataSet element
BIRT fires five events for the DataSet element. A Java class to handle these
events must implement the IDataSetEventHandler interface or extend the
DataSetAdapter class. All DataSet event handler methods receive an
IReportContext object. Additionally, all DataSet event handler methods except
the afterClose() method receive an IDataSetInstance object. The onFetch()
method receives a third object, an IDataSetRow object. These interfaces are
described later in this chapter. Table 10-3 lists the five methods that you can
implement for a DataSet element.

Table 10-2 DataSource event handler methods

Method Description

beforeOpen(IDataSourceInstance
dataSource, IReportContext
reportContext)

The beforeOpen event fires
immediately before opening the data
source. This handler is often used to
change the connection properties,
such as user name and password.

afterOpen(IDataSourceInstance
dataSource, IReportContext
reportContext)

The afterOpen event fires
immediately after opening the data
source.

beforeClose(IDataSourceInstance
dataSource, IReportContext
reportContext)

The beforeClose event fires
immediately before closing the data
source.

afterClose(IReportContext
reportContext)

The afterClose event fires
immediately after closing the data
source.

W r i t i n g a J a v a e v e n t h a n d l e r 121

Using Java event handlers for the
ScriptedDataSource element
The ScriptedDataSource interface extends the IDataSourceEventHandler
interface, which has four methods. The ScriptedDataSource interface adds two
new methods to the four of the IDataSourceEventHandler interface. A Java class
that provides the ScriptedDataSource event handlers must implement
IScriptedDataSourceEventHandler interface or extend the
ScriptedDataSourceAdapter class. A Java class that provides the
ScriptedDataSource event handlers must implement the two methods of the
IScriptedDataSourceEventHandler interface plus the four methods of the
IDataSourceEventHandler interface, which it extends.

Both of the two event handler methods of IScriptedDataSourceEventHandler
receive an IDataSourceInstance object. Table 10-4 lists the two additional
methods that you must implement for a ScriptedDataSource element.

Table 10-3 DataSet event handler methods

Method Description

beforeOpen(IDataSetInstance
dataSet, IReportContext
reportContext)

The beforeOpen event fires
immediately before opening the data
set. This event handler is often used to
change the query text for a data set.

afterOpen(IDataSetInstance dataSet,
IReportContext reportContext)

The afterOpen event fires
immediately after opening the data
set.

onFetch(IDataSetInstance dataSet,
IDataSetRow row, IReportContext
reportContext)

The onFetch event fires upon fetching
each row from the data source.

beforeClose(IDataSetInstance
dataSet, IReportContext
reportContext)

The beforeClose event fires
immediately before closing the data
set.

afterClose(IReportContext
reportContext)

The afterClose event fires
immediately after closing the data set.

Table 10-4 ScriptedDataSource event handler methods

Method Description

open(IDataSourceInstance
dataSource)

Use this method to open the data
source.

close(IDataSourceInstance
dataSource)

Use this method to close the data
source and perform cleanup tasks.

122 C h a p t e r 1 0 U s i n g J a v a t o W r i t e a n E v e n t H a n d l e r

Using Java event handlers for the ScriptedDataSet
element
The ScriptedDataSet interface extends the IDataSetEventHandler interface,
which has four methods. The ScriptedDataSet interface adds four new methods
to the four of the IDataSourceEventHandler interface. Of the four new methods,
three must be fully implemented and the fourth may be empty. A Java class that
provides the ScriptedDataSet event handlers must implement
IScriptedDataSetEventHandler interface or extend the ScriptedDataSetAdapter
class. A Java class that provides the ScriptedDataSet event handlers must
implement the four methods of the IScriptedDataSetEventHandler interface
plus the four methods of the IDataSourceEventHandler interface, which it
extends.

Table 10-5 lists the four additional methods that you must implement for a
ScriptedDataSet element.

Using Java event handlers for the ReportDesign
BIRT fires several events that the ReportDesign element handles. A Java class to
handle these events must implement the IReportEventHandler interface or
extend the ReportEventAdapter class. All of the event handler methods receive
an IReportContext object. The beforeFactory() method also receives an

Table 10-5 ScriptedDataSet event handler methods

Method Description

open(IDataSetInstance dataSet) Called when the data set is opened.
Use this method to initialize
variables and to prepare for
fetching rows.

fetch(IDataSetInstance dataSet,
IUpdatableDataSetRow dataSetRow)

Called at row processing time. Use
this method to fetch data with
which to populate the row object.
This method must return true if the
fetch is successful and false if it is
not.

close(IDataSetInstance dataSet) Called upon completion of
processing a data set. Use this
method to perform cleanup
operations.

describe(IDataSetInstance dataSet,
IScriptedDataSetMetaData metaData
metaData)

Use this method to define the
column names and types of the
data set.

U n d e r s t a n d i n g t h e B I R T i n t e r f a c e s 123

IReportDesign object. Table 10-6 lists the methods that you can implement for a
ReportDesign element in the order in which they fire.

Understanding the BIRT interfaces
A developer of Java event handlers needs to be familiar with several Java
interfaces. Most of the handler method parameters and return values are Java
interfaces rather than classes.

The most important Java interfaces for developing Java event handlers are:

■ The element design interfaces

■ The IReportElement interface

■ The element instance interfaces

■ The report context interfaces

■ The IColumnMetaData interface

■ The IDataSetInstance interface

■ The IDataSourceInstance interface

■ The IDataSetRow interface

■ The IRowData interface

Table 10-6 ReportDesign event handler methods

Method Description

initialize(IReportContext reportContext) The initialize event is fired twice,
once before the generation phase
begins and once before the
render phase begins.

beforeFactory(IReportDesign report,
IReportContext reportContext)

The beforeFactory event is fired
before the generation phase
begins.

afterFactory(IReportContext
reportContext)

The afterFactory event is fired
after the generation phase ends.

beforeRender(IReportContext
reportContext)

The beforeRender event is fired
before the presentation phase
begins.

afterRender(IReportContext
reportContext)

The afterRender event is fired
after the presentation phase ends.

124 C h a p t e r 1 0 U s i n g J a v a t o W r i t e a n E v e n t H a n d l e r

About the element design interfaces
Every element has a unique element design interface. The element design is a
Java interface that specifies methods for accessing and setting specific features
of the element’s design. Every element design interface inherits methods from
IReportElement.

About the methods for each report element
Besides the methods defined in IReportElement, each report element has
methods that are only relevant for that report element. For example, ICell, the
design interface for a Cell object, includes the following methods in addition to
those defined in IReportElement:

■ getColumn()

■ getColumnSpan()

■ getDrop()

■ getHeight()

■ getRowSpan()

■ getWidth()

■ setColumn(int column)

■ setColumnSpan(int span)

■ setDrop(java.lang.String drop)

■ setRowSpan(int span)

In contrast, the methods for ITextItem, the design interface for a TextItem
element, includes these additional methods:

■ getContent()

■ getContentKey()

■ getContentType()

■ getDisplayContent()

■ setContent(java.lang.String value)

■ setContentKey(java.lang.String resourceKey)

■ setContentType(java.lang.String contentType)

For a complete list of all the design interfaces, see the BIRT Javadoc. To access
the Javadoc, choose BIRT Developer Guide➛Reference in the online help.

About the IReportElement interface
The IReportElement interface is the base interface for all the report element
interfaces. IReportElement has the following methods:

U n d e r s t a n d i n g t h e B I R T i n t e r f a c e s 125

■ getComments()

■ getCustomXml()

■ getDisplayName()

■ getDisplayNameKey()

■ getName()

■ getNamedExpression(java.lang.String name)

■ getParent()

■ getQualifiedName()

■ getStyle()

■ getUserProperty(java.lang.String name)

■ setComments(java.lang.String theComments)

■ setCustomXml(java.lang.String customXml)

■ setDisplayName(java.lang.String displayName)

■ setDisplayNameKey(java.lang.String displayNameKey)

■ setName(java.lang.String name)

■ setNamedExpression(java.lang.String name, java.lang.String exp)

■ setUserProperty(java.lang.String name, java.lang.Object value)

For more information about the methods defined in the IReportElement
interface, including the arguments and return values of all its methods, see the
BIRT Javadoc in the BIRT online help.

About the element instance interfaces
The element instance interfaces are available at run time, but not at design time.
They contain the run-time instance of the element. The element instance
interface is passed to both onCreate(), the generation phase event handler, and
to onRender(), the presentation phase event handler.

Through instance interfaces, you have access to a different set of properties than
you do at design time. There is no superinterface from which all element
instance interfaces inherit. Like the element design interface, the set of methods
in the instance interfaces varies from element to element.

For example, ICellInstance, the Cell instance interface, contains the following
methods:

■ getColSpan()

■ getColumn()

■ getRowSpan()

126 C h a p t e r 1 0 U s i n g J a v a t o W r i t e a n E v e n t H a n d l e r

■ setColSpan(int colSpan)

■ setRowSpan(int rowSpan)

By comparison, IRowInstance, the Row instance interface, contains these
methods:

■ getBookmarkValue()

■ getHeight()

■ getStyle()

■ setBookmark()

■ setHeight()

For a complete list of all instance interfaces, see the BIRT Javadoc in the BIRT
online help.

Using the IReportContext interface
An object of type IReportContext is passed to all event handlers except those for
ScriptedDataSource and ScriptedDataSet objects. The IReportContext interface
includes the methods shown in Table 10-7.

Table 10-7 IReportContext interface methods

Method Task

deleteGlobalVariable(java.lang.String
name)

Removes a global variable created using the
setGlobalVariable() method.

deletePersistentGlobalVariable(java.lang
.String name)

Removes a persistent global variable created
using the setPersistentGlobalVariable() method.

getAppContext() Retrieves the application context object as a
java.util.Map object. The report application can
use the application context object to pass any
information that is application-specific.
One example of information passed through an
application context object is the HTTPSession
object.

getGlobalVariable(java.lang.String
name)

Returns the object saved with the
setGlobalVariable() method. The string
argument is the key with which the object was
saved.

getHttpServletRequest() Returns the HttpServletRequest object
associated with the URL requesting the report.
The HttpServletRequest object provides access
to the request URL and any parameters that are
appended to the request.

U n d e r s t a n d i n g t h e B I R T i n t e r f a c e s 127

getLocale() Returns the locale associated with the report
execution or rendering task. This locale might
be different from the local machine’s system or
user locale.

getMessage(java.lang.String key) Returns a message from the default properties
file.

getMessage(java.lang.String key,
java.util.Locale locale, java.lang.Object[]
params)

Returns a message from the properties file for a
specified locale, using a parameters array.

getMessage(java.lang.String key,
java.lang.Object[] params)

Returns a message from the default properties
file, using a parameters array.

getOutputFormat() Returns a string containing either html or pdf,
depending on which format was specified in the
__format parameter of the request URL.

getParameterValue(java.lang.String
name)

Returns the value of the parameter named in the
name argument. The value returned is a
java.lang.Object.

getPersistentGlobalVariable(java.lang
.String name)

Returns the serializable object saved with the
setPersistentGlobalVariable() method. The
string argument is the key with which the
serializable object was saved.

setGlobalVariable(java.lang.String name,
java.lang.Object obj)

Saves an object that can be retrieved in the same
execution phase as it is saved. The
setGlobalVariable() method takes a string
argument and an Object argument. You use the
string argument as a key with which to later
retrieve the saved object.

setParameterValue(java.lang.String
name, java.lang.Object value)

Sets the value of a named parameter with the
value contained in the value parameter.

setPersistentGlobalVariable(java.lang
.String name, java.io.Serializable obj)

Saves an object that can be retrieved in a
different execution phase than it is saved. The
setPersistentGlobalVariable() method takes a
string argument and a serializable object
argument. You use the string argument as a key
with which to later retrieve the serializable
object. The object is serializable because it must
be persisted between phases to support
executing the two phases at different times and
possibly on different machines. The serializable
object is saved in the report document.

Table 10-7 IReportContext interface methods (continued)

Method Task

128 C h a p t e r 1 0 U s i n g J a v a t o W r i t e a n E v e n t H a n d l e r

Using the IColumnMetaData interface
The IColumnMetaData interface provides information about the columns of the
data set. Table 10-8 lists the methods in the IColumnMetaData interface class.

Using the IDataSetInstance interface
The IDataSetInstance interface provides access to many aspects of the data set
and associated elements. An IDataSetInstance object is passed to every DataSet
event handler method.

Table 10-9 describes the methods in the interface IDataSetInstance.

Table 10-8 IColumnMetaData interface methods

Method Returns

getColumnAlias(int index) The alias assigned to the column at the
position indicated by the index argument

getColumnCount() The count of columns in the data set

getColumnLabel(int index) The label assigned to the column at the
position indicated by the index argument

getColumnName(int index) A string containing the name of the column at
the position indicated by the index argument

getColumnNativeTypeName
(int index)

The name of the type of data in the column at
the position indicated by the index argument

getColumnType(int index) The data type of the column at the position
indicated by the index argument

getColumnTypeName
(int index)

The name of the type of data in the column at
the position indicated by the index argument

isComputedColumn
(int index)

True or false, depending on whether the
column at the position indicated by the index
argument is a computed field

Table 10-9 IDataSetInstance interface methods

Method Returns

getAllExtensionProperties() The data set extension properties in the
form of a java.util.Map object. The map
object maps data extension names to their
values.

getColumnMetaData() An IColumnMetaData object that provides
the data set’s metadata.

getDataSource() A DataSource object with which the data
set is associated.

U n d e r s t a n d i n g t h e B I R T i n t e r f a c e s 129

Using the IDataSetRow interface
An object of the IDataSetRow type is passed to the DataSet.onfetch() event
handler method. Table 10-10 lists the methods in the IDataSetRow interface.
Note that there are two getColumnValue() methods. The two methods differ
only in the argument that specifies the column containing the value. They both
return a java.lang.Object object, which you must cast to the appropriate type for
the column.

Using the IRowData interface
An object of the IRowData type is returned from the getRowData() method of
IReportElementInstance, which every report element instance interface extends.

IRowData provides access to the bound values that appear in the table. The
IRowData interface has two getExpressionValue() methods. Both methods
return the display value for a specific column in the table. The two methods

getExtensionID() The unique ID that identifies the type of the
data set, assigned by the extension that
implements this data set.

getExtensionProperty(java.lang
.String name)

The value of a data set extension property.

getName() The name of this data set.

getQueryText() The query text of the data set.

setExtensionProperty(java.lang
.String name, java.lang.String
value)

The value of an extension property.

setQueryText(java.lang.String
queryText)

The query text of the data set.

Table 10-10 IDataSetRow interface methods

Method Returns

getColumnValue(int index) The column data by index. This index is
1-based.

getColumnValue(java.lang.String
name)

The column data by column name.

getDataSet() An IDataSetInstance object representing
the data set that contains this row.

Table 10-9 IDataSetInstance interface methods (continued)

Method Returns

130 C h a p t e r 1 0 U s i n g J a v a t o W r i t e a n E v e n t H a n d l e r

differ in the argument you pass to specify the column that you require.
Table 10-11 lists the methods in the IRowData interface.

Table 10-11 IRowData interface methods

Method Returns

getColumnCount() Return the count of the bounding
expressions.

getColumnName(int index) Return the name of the bounding
expression by id.

getColumnValue(int index) Return the value of the bounding
expression by id. This index is 1-based.

getColumnValue(String name) Return the value of the bounding
expression by name.

131

C h a p t e r

Chapter 11Using a Scripted Data
Source

BIRT supports accessing a data source using JavaScript code. A data source that
you access using JavaScript is called a scripted data source. With a scripted data
source, you can access objects other than a SQL, XML, or text file data source.
Because the JavaScript code for accessing and managing a scripted data source
can wrap Java objects, a scripted data source can be an EJB, an XML stream, a
Hibernate object, or any other Java object that retrieves data.

A scripted data source must return data in tabular format so that BIRT can
perform sorting, aggregation, and grouping.

Creating a scripted data source and scripted data set
Creating a scripted data source and creating a non-scripted data source are
similar. The differences between creating a scripted data source and a
non-scripted data source are:

■ The report developer must select Scripted Data Source from the list of data
source types when creating a scripted data source.

■ The report developer can provide code for two event handler methods,
open() and close(), that are only available for a scripted data source.

Every scripted data source must have at least one scripted data set. The
differences between creating a scripted data set and a non-scripted data set are:

■ The report developer must associate the scripted data set with a scripted
data source.

132 C h a p t e r 1 1 U s i n g a S c r i p t e d D a t a S o u r c e

■ The report developer must provide code for the scripted data set fetch()
event handler method.

■ The report developer uses a different dialog for identifying the columns of a
scripted data set than for a non-scripted data set.

When you use BIRT Report Designer to create a scripted data source, you must
perform the following tasks:

■ Create a scripted data source.

Right-click on Data Sources in the data explorer and select Scripted Data
Source in the list of data source types.

■ Create a scripted data set.

Right-click on Data Sets in the data explorer and select a scripted data source
from the list of available data sources.

■ Define output columns.

Define the names and types of output columns, using the scripted data set
editor.

■ Supply code for the data source open() and close() methods.

There are two scripted data source event handler methods, open() and
close(). It is not mandatory that you implement either method, but most
applications require the use of the open() method.

Use the open() method to initialize a data source. Typically, you create a Java
object for accessing the data source in the open() method.

Use the close() method to clean up any loose ends, including setting object
references to null to ensure that the objects are deleted during garbage
collection.

■ Supply code for the data set methods.

There are three scripted data set event handler methods, open(), fetch(), and
close(). It is mandatory that you implement only the fetch() method.

Use the open() method to initialize variables and to prepare the data source
for fetching data.

Use the fetch() method to get a row of data from the data source and to
populate the columns of the row object. The fetch() method must return
either true or false. A true value tells BIRT that there is another row to
process. A false return value signifies that there are no more rows to process.

Use the close() method to perform cleanup operations.

■ Place the columns on the report layout.

Place a data set column on a report layout the same way you place a column
for a non-scripted data set.

C r e a t i n g a s c r i p t e d d a t a s o u r c e a n d s c r i p t e d d a t a s e t 133

The following tutorial guides you through the procedure required to perform
each task in this process.

Tutorial 2: Creating and scripting a scripted data
source

This tutorial provides instructions for creating and scripting a simulated
scripted data source. Although this tutorial does not use an actual data source,
you learn the process for scripting a real data source.

In this tutorial, you perform the following tasks:

■ Create a new report.

■ Create a scripted data source.

■ Create a scripted data set.

■ Supply code for the open() and close() methods of the data source.

■ Supply code for the data set open() method.

■ Define output columns.

■ Place the columns on the report layout.

■ Supply code for the data set fetch() method.

Task 1: Create a new report
In this task you create a new report in BIRT Report Designer and name it
ScriptedDataSrc.rptdesign.

1 Choose File➛New➛Report.

2 In File Name in New Report, type:

ScriptedDataSrc.rptdesign

3 In Enter or Select the Parent Folder, accept the default folder. Choose Next.

4 In Report Templates, select My First Report. Choose Finish. The BIRT report
design screen appears. If a Cheat Sheet tab appears, close it.

Task 2: Create a scripted data source
In this task you create the new data source.

1 In Data Explorer, right-click Data Sources and choose New Data Source.
Select a Data Source type appears.

2 In New Data Source, select Scripted Data Source.

134 C h a p t e r 1 1 U s i n g a S c r i p t e d D a t a S o u r c e

3 In Data Source Name, type:

ScriptedDataSource

4 Choose Finish.

Data Explorer and the code window for ScriptedDataSource appear, as
shown in Figure 11-1.

Figure 11-1 Data Explorer and ScriptedDataSource code window

Task 3: Create a scripted data set
In this task, you create the new data set.

1 In Data Explorer, right-click Data Sets. Choose New Data Set. New Data Set
appears, as shown in Figure 11-2.

Figure 11-2 New data set for a scripted data source

2 In Data Set Name, type:

ScriptedDataSet

3 Choose Finish.

4 In Data Explorer, select ScriptedDataSet. The script window for the data set
appears, as shown in Figure 11-3.

Figure 11-3 Code window for ScriptedDataSet

C r e a t i n g a s c r i p t e d d a t a s o u r c e a n d s c r i p t e d d a t a s e t 135

Task 4: Supply code for the open() and close()
methods of the data source

In the open() method, you open the data source. In the close() method, you do
cleanup tasks. In this tutorial, there is no actual data source but typically you
need to place some code in these methods. The open() method is the default
selected method upon creating a data set.

1 If necessary, select open from the pull-down list of methods.

2 Type the following code into the code window for the open() method:

dummyObject = new Object();

The preceding code is a placeholder for the purpose of this simplified
example. In a typical application, you use this method to initialize a Java
object that provides access to the data for the report.

3 Select close from the pull-down list of methods.

4 Type the following code into the code window:

dummyObject = null;

Task 5: Supply code for the open() method of the
data set

When you create the data set, the open() method is selected by default. Use the
open() method of the data set to do initialization, such as defining a counter
and setting it to zero.

1 Select open from the pull-down list of methods.

2 Type the following code into the code window:

recordCount = 0;

Task 6: Define output columns
To create the output columns for a scripted data set, you must edit the data set.
The columns you create in the data set editor are the columns that the data set
fetch() method generates.

1 In Data Explorer, double-click ScriptedDataSet. Edit Data Set—
ScriptedDataSet appears, as shown in Figure 11-4.

Figure 11-4 Edit Data Set for a scripted data source

136 C h a p t e r 1 1 U s i n g a S c r i p t e d D a t a S o u r c e

2 Select Output Columns. Output Columns appears.

3 In the Name column of the first row, type:

col1

4 Select the Type column of the first row. Select Integer from the drop-down
list. Output Columns contains the definition of one output column, as shown
in Figure 11-5.

Figure 11-5 Column name and type in Output Columns

5 In the Name column of the second row, type:

col2

6 In the Type column of the second row, select String.

7 In the Name column of the third row, type:

col3

In the Type column of the third row, select Float. Output Columns contains
the definition of three output columns, as shown in Figure 11-6. Choose OK.

Figure 11-6 Column definitions

C r e a t i n g a s c r i p t e d d a t a s o u r c e a n d s c r i p t e d d a t a s e t 137

Task 7: Place the columns on the report layout
You place columns for a scripted data set in the same way as for a non-scripted
data set.

1 On ScriptedDataSrc.rptdesign, select Layout.

2 Drag Table from Palette onto the layout.

3 Accept the default table size of three columns and one detail row.

4 In Data Explorer, expand ScriptedDataSet. The three columns you created
appear in Data Explorer, as shown in Figure 11-7.

Figure 11-7 New columns in ScriptedDataSet

5 Add the columns to the report detail row:

1 Drag col1 from Data Explorer to the first column of the report detail row.

2 Drag col2 from Data Explorer to the second column of the report detail
row.

3 Drag col3 from Data Explorer to the third column of the report detail row.

Figure 11-8 shows the three columns of the data set in the layout editor.

Figure 11-8 New columns in the report design

6 Choose Preview.

The preview of the report appears, as shown in Figure 11-9.

Figure 11-9 Report preview, showing the new columns

138 C h a p t e r 1 1 U s i n g a S c r i p t e d D a t a S o u r c e

Task 8: Supply code for the data set fetch() method
Use the fetch() method to process row data. The fetch() method must return
either true or false. Fetch() returns true to indicate that there is a row to process.
Fetch() returns false to indicate that there are no more rows to process. The
fetch() method also calculates the values of computed fields.

The report only has column headings at this point. To include data, you must
add code to the fetch() method.

1 Choose the Layout tab.

2 Right-click ScriptedDataSet in Data Explorer. Choose Edit Script.

3 Select fetch in the drop-down list of methods.

4 Select fetch from the pull-down list of methods in the data set code window.

5 Type the following code into the code window. This code limits the number
of rows that appear in the report to 19.

if(recordCount < 20) {
recordCount++;
row.col1 = recordCount;
row["col2"] = "Count = " + recordCount;
row[3] = recordCount * 0.5;
return true;

}
else return false;

The three formats in the preceding script illustrate the different ways you
can specify a column of a row. The code appears as shown in Figure 11-10.

Figure 11-10 Code that generates column output

6 Choose Preview.

The report now contains 20 rows and 3 columns of data, as shown in
Figure 11-11.

U s i n g a J a v a o b j e c t t o a c c e s s a d a t a s o u r c e 139

Figure 11-11 Report preview

Using a Java object to access a data source
A common use of a scripted data set is to access a Java object that accesses or
generates the data for a report. This section shows how to access a Java class
from within the JavaScript code for a scripted data set.

Performing initialization in the data set open()
method
Use the data set open() method to perform initialization tasks. A typical
initialization task is to get an instance of the Java object that provides the data
for the report.

When referring to a Java object, first import its package into the JavaScript
environment. For example, the following code imports the package
com.yourCompany.yourApplication:

importPackage(Packages.com.yourCompany.yourApplication);

This statement is like the import statement in Java and allows you to omit the
package name when referencing a class. This statement is normally the first line
of code in the open() method. You typically follow the importPackage
statement with code to create an instance of the Java object, as shown in the
following example:

var myList = MyListFactory.getList();

140 C h a p t e r 1 1 U s i n g a S c r i p t e d D a t a S o u r c e

A typical way of getting rows of data from a Java object is to use an iterator
object. The open() method is the proper place to create an iterator object. For
example, the following statement gets an iterator from myList:

var iterator = myList.getIterator();

Getting a new row of data in the data set fetch()
method
Once you have a way to get rows of data from your Java object, use the fetch()
method to call the Java method that returns the rows. The fetch() method
determines if there are any more rows of data and returns false if there are none,
as shown in the following code:

if(iterator.hasNext() == false){
return false;

}

At this point, the fetch() method can populate a row with data that it gets from
the iterator, as shown in the following code:

var node = iterator.next();
row[1] = node.getFirstCol();
row[2] = node.getSecondCol();
row[3] = node.getThirdCol();

Then, you must return true to signal BIRT there is a valid row of data to process:

return true;

Cleaning up in the data set close() method
You can perform any cleanup in the close() method. This method is a good
place to set to null any objects that you created. For example, the following code
sets three object references to null:

myList = null;
iterator = null;
node = null;

Deciding where to locate your Java class
If a scripted data source uses a custom Java class, that class must reside in a
location where BIRT can find it. BIRT can find the Java class if its location meets
any of the following requirements:

■ The Java class is in the classpath of the Java Runtime Environment (JRE)
under which Eclipse runs.

Consider using this option if your Java class is in this location for other
reasons.

U s i n g i n p u t a n d o u t p u t p a r a m e t e r s w i t h a s c r i p t e d d a t a s e t 141

■ The Java class is in <ECLIPSE_INSTALL>\plugins\
org.eclipse.birt.report.viewer\birt\WEB-INF\lib.

Consider using this option if your Java class is built and tested and ready to
deploy.

■ The Java class is a part of an Eclipse Java project that is in the same
workspace as the BIRT report project.

Consider using this option if you are developing your Java class
simultaneously with developing your BIRT report.

Deploying your Java class
Before you deploy your BIRT report to an application server, you must place
your Java class in a JAR file. You must then deploy that JAR file to the proper
location on the application server so that the BIRT report viewer can find it at
run time. For more information about where to deploy Java classes on an
application server, see the chapter about deploying BIRT to an application
server.

Using input and output parameters with a scripted
data set

The scritped data set JavaScript event handler methods have two arrays you can
use to access parameters, inputParams and outputParams. The inputParams
array contains one string for every parameter whose direction is defined as
input. The outputParams array contains one string for every parameter whose
direction is defined as output.

For example, assume that you have a scripted data set with an input and an
output parameter, as shown in Figure 11-12:

Figure 11-12 A scripted data set, with input and output parameters

142 C h a p t e r 1 1 U s i n g a S c r i p t e d D a t a S o u r c e

You can get and set the values of the out_msg and in_count parameters by using
the inputParams and outputParams arrays as in the following example:

outputParams["out_msg"] = "Total rows: " +
inputParams["in_count"];

You can access a parameter in the array either by the name of the parameter or
by a 1-based index value. The inputParams and outputParams arrays are not
accessible to Java event handlers.

143

P a r t

Part IVIntegrating BIRT Functionality
into Applications

This page intentionally left blank

145

C h a p t e r

Chapter 12Understanding the BIRT
APIs

BIRT consists of hundreds of Java classes and interfaces, but most of them are
only of interest to contributors to the BIRT open source project. Developers of
applications only require access to the classes and interfaces that are in the
public API. The public API consists of the classes and interfaces in the following
package hierarchies:

■ Report engine API

The org.eclipse.birt.report.engine.api package hierarchy contains the API
that a developer of a custom report generator uses. This API provides the
most commonly used functionality for a reporting application. The key class
in the report engine API is ReportEngine. This class provides access to
creating a report from a report design or a report document.

■ Design engine API

The org.eclipse.birt.report.model.api package hierarchy is by far the larger of
the two reporting APIs. This API provides access to the content and structure
of a report design, a template, or a library. A reporting application can use
this API to change the structure of a design. The design engine API is also the
API that a developer of a custom report designer uses.

■ Chart engine API

The org.eclipse.birt.chart package hierarchy contains the API that a
developer of a custom chart generator uses. A reporting application can also
use this API to modify charts in a report design.

■ Extension APIs

146 C h a p t e r 1 2 U n d e r s t a n d i n g t h e B I R T A P I s

BIRT also provides a set of extension APIs for creating custom report items,
custom data sources and data sets, custom rendering formats, and custom
charts. Chapters later in this book describe how to use these extensions.

For information on class and interface methods, see the API Javadoc, which you
can access from the BIRT Report Designer or Eclipse Workbench main menu at
Help➛Help Contents➛BIRT Developer Guide.

Package hierarchy diagrams
This chapter contains hierarchical diagrams for packages. These diagrams show
the hierarchy of the classes in the package and interfaces local to the package or
implemented by classes in the package. Classes and interfaces preceded by a
package name are not local to the package. The hierarchical diagrams indicate
different attributes and relationships in the classes and interfaces by means of
the graphics shown in Table 12-1.

Table 12-1 Conventions for the hierarchy diagrams

■ Abstract class

■ Class that has one or
more subclasses

■ Class with no subclasses

■ Final class

■ Interface

■ Solid lines indicate a
superclass-subclass
relationship

■ Broken lines indicate an
implementation
relationship

■ An asterisk indicates too
many subclasses to list

Class

Class

Class

Class

Interface

SubClass

SuperClass

Class Interface

SuperClass

SubClass

(*)

A b o u t t h e B I R T R e p o r t E n g i n e A P I 147

About the BIRT Report Engine API
The BIRT Report Engine provides report generation and rendering services in
several different environments, including the following environments:

■ Stand-alone engine

A Java developer uses a stand-alone engine to render an existing BIRT report
from a report design (.rptdesign) file. In this environment, the Java developer
creates a command line application that writes a complete report to disk,
either in HTML or PDF format.

■ BIRT report viewer

BIRT Report Designer uses the BIRT report viewer to view a report as
paginated HTML. The BIRT report viewer is a web application that runs in
the Tomcat Application Server, which is embedded in Eclipse. This viewer
contains an embedded report engine.

■ Custom report designer with an embedded engine

A custom desktop reporting application integrates the BIRT Report Engine
for the purpose of previewing the report.

■ Web application that embeds the engine

A web application similar to the BIRT report viewer can use the BIRT report
engine to generate a web-based report.

The BIRT Report Engine is designed for easy customization to support the
diverse environments in which it can be used. The BIRT Report Engine also
supports seamless extension. The core engine runs and renders reports, leaving
environment-dependent processing such as URL construction, image storage,
and design file caching to the application that hosts the engine.

The BIRT Report Engine API consists of a set of interfaces and implementation
classes. The BIRT Report Engine API supports integrating the run-time part of
BIRT into your application. The API provides a set of task classes that support
the following operations:

■ Discover the set of parameters defined for a report.

■ Get the default values for parameters.

■ Run a report design to produce an unformatted report document.

■ Run a report design or report document to produce an HTML or PDF
formatted report.

■ Extract data from a report document.

148 C h a p t e r 1 2 U n d e r s t a n d i n g t h e B I R T A P I s

Creating the BIRT Report Engine
Each application, whether it is stand-alone or web-based, only needs to create
one ReportEngine instance. Since the BIRT Report Engine is thread-safe, the
single-instance recommendation is not a restriction.

Create the BIRT Report Engine with a constructor that takes an EngineConfig
object as an argument. The configuration object can be null, in which case a
default engine configuration is used. At termination, the application should call
shutdown() to unload extensions and delete temporary files.

Using the BIRT Report Engine API
The following are the primary steps in using the BIRT Report Engine API:

■ Create an instance of EngineConfig to set options for the report engine.

■ Create an instance of the ReportEngine class.

■ Open a report design using one of the openReportDesign() methods of
ReportEngine or open a report document using the openReportDocument()
method.

■ Obtain information about report parameters using
IGetParameterDefinitionTask.

■ Run and render a report using IRunAndRenderTask or IRunTask followed
by IRenderTask.

■ Call shutdown() on your engine instance.

There are a few primary classes and interfaces that provide the core
functionality of the BIRT Report Engine. The following sections provide an
overview of these classes. For full details, see the Javadoc.

EngineConfig class
The EngineConfig class wraps configuration settings for a report engine. Use
the EngineConfig object to set global options for the report engine, including:

■ Specifying the location of engine plug-ins and Java archive (.jar) files

■ Specifying the location of data drivers

■ Adding application-wide scriptable objects

■ Managing logging

ReportEngine class
The ReportEngine class represents the BIRT report engine. You create the
ReportEngine class with a constructor that takes an EngineConfig object. If the
configuration object is null, the environment must provide a BIRT_HOME
variable that specifies the directory that contains the engine plug-ins and JAR
files.

A b o u t t h e B I R T R e p o r t E n g i n e A P I 149

You use a ReportEngine object to perform the following tasks:

■ Get the configuration object.

■ Open a report design or a report document.

■ Create an engine task to get parameter definitions and set parameter values.

■ Create an engine task to access the data from a data set.

■ Get supported report formats and MIME types.

■ Create an engine task to run a report or render a report to an output format.

■ Create an engine task to extract data from a report document.

■ Clean up and shut down the engine.

IReportRunnable interface
To work with the report design with the engine, you must load the design using
one of the openReportDesign() methods in the ReportEngine class. These
methods return an IReportRunnable instance that represents the engine’s view
of the report design.

You use an IReportRunnable object to perform the following tasks:

■ Get any parameter data.

■ Get properties such as the report title and report author.

■ Get any images embedded within the report design.

■ Run the report.

IReportDocument interface
To work with a report document with the engine, you must load the document
using the ReportEngine.openReportDocument() method. This method returns
an IReportDocument instance.

You use an IReportDocument object to render a report to HTML or PDF with an
IRenderTask object. You can use the table of contents markers in the
IReportDocument to determine which pages to render.

IEngineTask interface
The IEngineTask interface provides the framework for the tasks that the report
engine performs. The IEngineTask interface manages the scripting context and
report locales. The other task interfaces extend IEngineTask.

IGetParameterDefinitionTask interface
The IGetParameterDefinitionTask interface extends IEngineTask to provide
access to information about parameters. The engine factory method to create an

150 C h a p t e r 1 2 U n d e r s t a n d i n g t h e B I R T A P I s

IGetParameterDefinitionTask object takes an IReportRunnable argument.
Parameter definitions provide access to:

■ Information that BIRT Report Designer specified at design time

■ Static or dynamic selection lists

■ User-supplied values

■ The grouping structure of the parameters

■ Custom XML

■ User-defined properties

IDataExtractionTask interface
The IDataExtractionTask interface extends IEngineTask to provide access to the
data stored in an IReportDocument object. You can use an IDataExtractionTask
object to examine the metadata for a set of data rows. Using the metadata, you
can select a set of columns to extract, sort, or filter. This interface can extract the
data from:

■ The whole report document

■ A single report item

■ A single instance of a report item

IRunTask interface
The IRunTask interface provides the methods to run a report design. This task
saves the result as a report document (.rptdocument) file to disk.

An IRunTask object takes parameter values as a HashMap. Call the
validateParameters() method to validate the parameter values before you run
the report.

IRenderTask interface
The IRenderTask interface provides the methods to render a report document to
PDF or to paginated or unpaginated HTML. This task can save the report to
disk or to a stream.

You can set options that are specific to each of the HTML and PDF formats. Set
these options through the HTMLRenderOption and PDFRenderOption classes.
Pass the appropriate render option object for your report to the IRenderTask
object before rendering the report.

IRunAndRenderTask interface
The IRunAndRenderTask interface provides the methods to render a report as
unpaginated HTML. This task can save the report to disk or to a stream.

A b o u t t h e B I R T R e p o r t E n g i n e A P I 151

An IRunAndRenderTask object takes parameter values as a HashMap. Call the
validateParameters() method to validate the parameter values before you run
the report.

You can set options that are specific to HTML format. Set these options through
the HTMLRenderOption class. Pass the render option object for your report to
the IRunAndRenderTask object before running the report.

Report engine class hierarchy
The class hierarchy in Figure 12-1 illustrates the organization of the classes
within the report engine package. The names of the classes in the diagram do
not include the package name, which is org.eclipse.birt.report.engine.api.

Figure 12-1 Classes within the report engine package (continues)

java.lang.Object

IStatusHandlerDefaultStatusHandler

EngineConfig

IHTMLActionHandlerHTMLActionHandler

HTMLCompleteImageHandler

HTMLEmitterConfig

HTMLRenderContext

IHTMLImageHandlerHTMLServiceImageHandler

RenderOptionBase IRenderOption

FORenderOption

HTMLRenderOption

ReportEngine

ComponentID

DataID

DataSetID

EngineConstants

InstanceID

PDFRenderContext

IHTMLImageHandler

152 C h a p t e r 1 2 U n d e r s t a n d i n g t h e B I R T A P I s

Figure 12-1 Classes within the report engine package (continued)

Report engine interface hierarchy
Figure 12-2 contains the interface hierarchy for the report engine API.

Figure 12-2 Interface hierarchy for the report engine API

java.lang.Exception

org.eclipse.birt.core.exception.
BirtException

EngineException

java.io.Serializablejava.lang.Throwable

TOCNode

ReportParameterConverter

ReportRunner

IEngineTask

IGetParameterDefinitionTask

IRunAndRenderTask

IHTMLActionHandler

IHTMLImageHandler

IAction

IDataIterator

IDataExtractionTask

IRenderTask

IRunTask

IExtractionResults

IPageHandler

A b o u t t h e d e s i g n e n g i n e A P I 153

Figure 12-2 Interface hierarchy for the report engine API (continued)

About the design engine API
The design engine API is also known as the report model API. The design
engine API is the API that a tool writer uses to build a design tool. The design
engine API contains classes and methods to create, access, and validate a report
design.

The org.eclipse.birt.report.model.api package contains the interfaces and classes
that the tool writer uses to access the design model objects. Through the design
engine API, you can do the following tasks:

■ Read and write design files.

■ Maintain the command history for undo and redo.

■ Provide a rich semantic representation of the report design.

■ Provide metadata about the ROM.

■ Perform property value validation.

■ Notify the application when the model changes.

IParameterDefnBase

IParameterDefn

IScalarParameterDefn

IParameterGroupDefn

IParameterSelectionChoice

ICascadingParameterGroup

IRenderOption

IReportDocument

IReportPart

IImage

IReportRunnable

IStatusHandler

154 C h a p t e r 1 2 U n d e r s t a n d i n g t h e B I R T A P I s

Using the BIRT design engine API
The purpose of the BIRT design engine API is to modify or create a report
design file that the BIRT report engine can use to generate a report. BIRT Report
Designer, for example, uses the BIRT design engine API for this purpose. A
custom report design tool, written for the same general purpose as BIRT Report
Designer, can also use the BIRT design engine API to generate a design file. The
design engine API also supports libraries and templates in the same way as
report designs.

The BIRT design engine API does not include a user interface. A custom report
design tool must provide its own user interface code.

With the design engine, you can create a BIRT report design by performing the
following tasks:

■ With a static DesignEngine method, instantiating a SessionHandle object to
load the property definitions of the report elements and to begin a user
session

■ With the SessionHandle object, setting session parameters and creating an
instance of the ReportDesignHandle class

■ With the ReportDesignHandle object, setting the report-specific properties,
adding elements to the report design, and providing access to the report
elements

■ Saving the report design file

The following sections describe the primary classes of the BIRT design engine
API.

DesignEngine class
The DesignEngine class is the gateway to creating the other objects you need to
build a report design tool. Use the static methods of the DesignEngine class to:

■ Load the metadata system.

The initialize() method takes an argument containing the path to a file
containing report element metadata. The metadata system describes the
BIRT ROM elements and their properties and relationships. The metadata
file that BIRT Report Designer uses is called rom.def. If you use this file, you
do not need to call initialize().

■ Create a SessionHandle object.

Use the newSession() method to perform this task. The SessionHandle
provides a gateway to the ReportDesign object.

SessionHandle class
The SessionHandle class represents the user session. A SessionHandle object
provides access to the set of open designs. A session has a set of default values

A b o u t t h e d e s i g n e n g i n e A P I 155

for style properties and a default unit of measure. The session also has methods
to create and open report designs, templates, and libraries. The methods to
create or open a report design return a ReportDesignHandle object.

ModuleHandle class
ModuleHandle provides access to the common structure and functionality of
report designs, templates, and libraries. It is the parent class of the
ReportDesignHandle and LibraryHandle classes. ModuleHandle provides
access to the generic properties, such as author and comments. You also use
ModuleHandle for many tasks on the file, including:

■ Saving the module to a file

■ Accessing the command stack for undo and redo

■ Navigating to the various parts of the module

■ Accessing the command stack

■ Getting configuration variables

The ModuleHandle also has methods to get handles to the individual report
items and all the other elements in a report design, template, or library. These
elements and supporting components include:

■ Report items. These elements are visual report elements such as tables, grids,
images, and text elements.

■ Code modules. These modules are global scripts that apply to the file as a
whole.

■ Parameters.

■ Data sources and data sets.

■ Color Palette. This component is a set of custom color names.

■ CSS files that the module uses.

■ Theme. The theme is a group of styles that the module uses for formatting
report elements.

■ Master page. This element defines the layout of pages in paginated report
output.

■ Libraries. Any module can use one or more libraries to provide predefined
elements.

■ Resources. External files provide lists of messages in localized forms.

■ Embedded images.

ReportDesignHandle class
ReportDesignHandle provides access to the report design-specific properties
such as the scripts that execute when generating or rendering a report. This class

156 C h a p t e r 1 2 U n d e r s t a n d i n g t h e B I R T A P I s

also provides access to properties that templates use, such as the cheat sheet,
display name, and icon file.

ReportDesignHandle inherits most of its behavior and functionality from
ModuleHandle. You also use ReportDesignHandle to get handles to the
individual report items and for many report design-specific tasks, including:

■ Navigating to the various parts of the design

■ Setting the initialization script that runs when the report executes

The ReportDesignHandle also has methods to gain access to the following
report components:

■ Styles, the list of user-defined styles for formatting report elements

■ Base directory, used to find the location of file system resources that have
relative paths

■ Body, a list of the report sections and report items in the design

■ Scratch Pad, a temporary place to move report items while restructuring a
report

LibraryHandle class
LibraryHandle provides access to the library-specific properties, as shown in
the following list. LibraryHandle inherits most of its behavior and functionality
from ModuleHandle.

■ Imported CSS styles

Styles imported from CSS files

■ Themes

Groups of styles for formatting report elements

DesignElementHandle class
The DesignElementHandle class is the base class for report elements. The
DesignElementHandle class provides generic services for all elements,
including such things as:

■ Adding a report item to a slot

■ Registering a change event listener

■ Getting and setting properties, names, and styles

■ Dropping an element from the design

Individual element handle classes
The individual element handle classes derive from ReportDesignHandle. Each
report element has its own handle class. To work with operations unique to a

A b o u t t h e d e s i g n e n g i n e A P I 157

given report element, you cast the ReportDesignHandle to the appropriate
subclass for the element. For example, the CellHandle class has methods such as
getColumn(), while the DataSourceHandle class has methods such as
setBeforeOpen().

Design engine class hierarchy
Figure 12-3 illustrates the hierarchy of the classes within the design engine
package. The hierarchy diagram omits package prefixes on class names for the
classes and interfaces in the package org.eclipse.birt.report.model.api.

Figure 12-3 Classes within the report model package (continues)

java.lang.Object

ModuleHandle

DefaultResourceLocator IResourceLocator

DesignElementHandle

(*) See Figure 12-4

ReportElementHandle

ColumnBandAdapter

GridColumnBandAdapter

TableColumnBandAdapter

ColumnBandData java.lang.Cloneable

IModuleHandle

ReportDesignHandle

LibraryHandle

Design Engine

DesignVisitor

ElementDetailHandle

(*) See Figure 12-6

ElementFactory

DesignVisitorForwarder

ElementVisitor

158 C h a p t e r 1 2 U n d e r s t a n d i n g t h e B I R T A P I s

Figure 12-3 Classes within the report model package (continued)

MemberIterator

ModelUtil

SessionHandle

SlotIterator

SortedSlotIterator

StructureFactory

StructureIterator

java.util.Iterator

java.util.Iterator

java.util.Iterator

java.util.Iterator

java.lang.Throwable

java.lang.Exception

org.eclipse.birt.core.exception.BirtException

java.io.Serializable

DesignFileException

GroupElementFactory

ErrorDetail

EmptyGroupElementHandle

SimpleGroupElementHandle

GroupElementHandle

GroupPropertyHandle

CommandStack

IResourceLocator

ModelException

java.lang.RuntimeException

IllegalOperationException

IAbsoluteFontSizeValueProvider

A b o u t t h e d e s i g n e n g i n e A P I 159

ReportElementHandle hierarchy
Figure 12-4 contains the class hierarchy for ReportElementHandle and the
classes that derive from it.

Figure 12-4 ReportElementHandle class hierarchy (continues)

java.lang.Object

CellHandle

DesignElementHandle

ColumnHandle

ReportElementHandle

DataSetHandle

OdaDataSetHandle

ScriptDataSetHandle

DataSourceHandle

OdaDataSourceHandle

ScriptDataSourceHandle

GroupHandle

ListGroupHandle

TableGroupHandle

MasterPageHandle

GraphicMasterPageHandle

SimpleMasterPageHandle

ParameterHandle

ScalarParameterHandle

CascadingParameterGroupHandle

ParameterGroupHandle

160 C h a p t e r 1 2 U n d e r s t a n d i n g t h e B I R T A P I s

Figure 12-4 ReportElementHandle class hierarchy (continued)

ReportItemHandle hierarchy
Figure 12-5 contains the class hierarchy for ReportItemHandle and the classes
that derive from it.

Figure 12-5 ReportItemHandle class hierarchy

RowHandle

StyleHandle

PrivateStyleHandle

SharedStyleHandle

ReportItemHandle

(*) See the ReportItemHandle
 hierarchy diagram

TemplateElementHandle

TemplateDataSetHandle

TemplateReportItemHandle

TemplateParameterDefinitionsHandle

ThemeHandle

java.lang.Object

ReportItemHandle

DesignElementHandle

ReportElementHandle

DataItemHandle

ExtendedItemHandle

FreeFormHandle

GridHandle

A b o u t t h e d e s i g n e n g i n e A P I 161

Figure 12-5 ReportItemHandle class hierarchy (continued)

ElementDetailHandle hierarchy
Figure 12-6 contains the class hierarchy for ElementDetailHandle and the
classes that derive from it.

Figure 12-6 ElementDetailHandle class hierarchy (continues)

ImageHandle

LabelHandle

LineHandle

ListingHandle

ListHandle

TableHandle

RectangleHandle

MultiLineDataHandle

TextDataHandle

TextItemHandle

java.lang.Object

FactoryPropertyHandle

ElementDetailHandle

ColorHandle

DimensionHandle

FontHandle

SlotHandle

TranslationHandle

ValueHandle

ComplexValueHandle

UserPropertyDefnHandle

162 C h a p t e r 1 2 U n d e r s t a n d i n g t h e B I R T A P I s

Figure 12-6 ElementDetailHandle class hierarchy (continued)

StructureHandle hierarchy
Figure 12-7 contains the class hierarchy for StructureHandle and the classes that
derive from it.

Figure 12-7 StructureHandle class hierarchy

(*) See Figure 12-7

MemberHandle

SimpleValueHandle

PropertyHandle

StructureHandle

java.lang.Object

ElementDetailHandle

ValueHandle

ActionHandle

CachedMetaDataHandle

ColumnHintHandle

ComputedColumnHandle

ConfigVariableHandle

CustomColorHandle

EmbeddedImageHandle

ExtendedPropertyHandle

FilterConditionHandle

StructureHandle

DataSetParameterHandle

DataSourceParameterBindingHandle

A b o u t t h e B I R T C h a r t E n g i n e A P I 163

Figure 12-7 StructureHandle class hierarchy (continued)

About the BIRT Chart Engine API
The Chart Engine API is based upon the EMF as a structured data model. The
Chart Engine API includes many packages in the org.eclipse.birt.chart
hierarchy.

Use the classes and interfaces in the chart engine API to modify chart objects
within a BIRT reporting application or in a stand-alone charting application.

The model.* packages contain the core chart model interfaces and enumeration
classes generated using EMF. The model.*.impl packages contain the core chart
model implementation classes generated using EMF. All other packages are
dependencies and indirect references from the core model.

There is a one-to-one correspondence between the classes in the impl packages
and the interfaces in corresponding model packages. The classes in the impl
packages implement the methods in the interfaces of the corresponding model
classes. The impl classes also contain factory methods that you use to create an
instance of a class.

SortKeyHandle

StyleRuleHandle

HighlightRuleHandle

MapRuleHandle

SelectionChoiceHandle

HideRuleHandle

IncludeLibraryHandle

IncludeScriptHandle

ParamBindingHandle

PropertyMaskHandle

ResultSetColumnHandle

SearchKeyHandle

FormatValueHandle

164 C h a p t e r 1 2 U n d e r s t a n d i n g t h e B I R T A P I s

Using the BIRT Chart Engine API
Although there are over 500 classes and interfaces in the BIRT Chart Engine
API, most of functionality for creating or modifying a chart is concentrated in a
small subset of classes and interfaces.

The primary interface in the BIRT Chart Engine API is the Chart interface. An
object of the Chart type is called the chart instance object. The Chart interface
has two subinterfaces, ChartWithAxes and ChartWithoutAxes. DialChart is a
third interface that inherits from ChartWithoutAxes. You create a chart instance
object with the create() method of either ChartWithAxesImpl,
ChartWithoutAxesImpl, or DialChartImp, as in the following statement:

ChartWithAxes myChart = ChartWithAxesImpl.create();

You set the basic properties of a chart, such as its title and dimensionality with
setter methods of the Chart interface, such as:

myChart.setTitle("Monthly Sales");
myChart.setDimension(ChartDimension.THREE_DIMENSIONAL);

You set the more complex properties of a chart, like the characteristics of the
chart’s axes and series by getting an instance of the object you want to modify
and then setting its properties. For example, to set the caption of a chart’s x-axis,
you can use the following code:

Axis xAxis = myChart.getPrimaryBaseAxes()[0];
xAxis.getTitle().getCaption().setValue("Months");

Although charts are often identified by type, such as a pie chart or a line chart, a
chart with multiple series of differing types cannot be classified as one type. A
series, on the other hand, has a specific type. With the BIRT Chart Engine API,
you can create a specific type of series by using the create() method of one of
the SeriesImpl subclasses. For example, the following code creates a bar series:

BarSeries barSeries1 = (BarSeries) BarSeriesImpl.create();

For more information about using the BIRT Chart Engine API, see the chapter
about programming with the BIRT Chart Engine APIs.

Chart engine class hierarchy
The diagrams that follow contain hierarchies for the following chart engine
packages:

■ org.eclipse.birt.chart.aggregate

■ org.eclipse.birt.chart.datafeed

■ org.eclipse.birt.chart.device

■ org.eclipse.birt.chart.event

■ org.eclipse.birt.chart.exception

A b o u t t h e B I R T C h a r t E n g i n e A P I 165

■ org.eclipse.birt.chart.factory

■ org.eclipse.birt.chart.log

■ org.eclipse.birt.chart.model

■ org.eclipse.birt.chart.model.attribute

■ org.eclipse.birt.chart.model.component

■ org.eclipse.birt.chart.model.data

■ org.eclipse.birt.chart.model.layout

■ org.eclipse.birt.chart.model.type

■ org.eclipse.birt.chart.render

■ org.eclipse.birt.chart.script

■ org.eclipse.birt.chart.util

The hierarchy diagrams for the org.eclipse.birt.chart.model.*.impl packages are
not included because they are simply implementations of the interfaces in the
corresponding org.eclipse.birt.chart.model.* packages. The model packages,
with two exceptions, contain only interfaces.

The first exception is org.eclipse.birt.chart.model, which has one class,
ScriptHandler. The second exception is org.eclipse.birt.chart.model.attribute,
which has a set of enumeration classes, one for each attribute. Each of the
enumeration classes only contains a list of legal values for its attribute.

chart.aggregate hierarchy
Figure 12-8 contains the class hierarchy for org.eclipse.birt.chart.aggregate.

Figure 12-8 Interfaces in org.eclipse.birt.chart.aggregate

chart.datafeed hierarchy
Figure 12-9 contains the class hierarchy for org.eclipse.birt.chart.datafeed.

Figure 12-9 Interfaces in org.eclipse.birt.chart.datafeed

IAggregateFunctionAggregateFunctionAdapter

IDataSetProcessor

java.lang.Object

org.eclipse.birt.chart.computation.Methods

DataSetAdapter

ResultSetDataSet

ResultSetWrapper

org.eclipse.birt.chart.
computation.Iconstants

IDataSetProcessor

166 C h a p t e r 1 2 U n d e r s t a n d i n g t h e B I R T A P I s

chart.device class hierarchy
Figure 12-10 contains the class hierarchy for org.eclipse.birt.chart.device.

Figure 12-10 Classes in org.eclipse.birt.chart.device package

chart.device interface hierarchy
Figure 12-11 contains the interface hierarchy for org.eclipse.birt.chart.device.

Figure 12-11 Interfaces in org.eclipse.birt.chart.device package

chart.event class hierarchy
Figure 12-12 contains the class hierarchy for org.eclipse.birt.chart.event.

java.lang.Object

DisplayAdapter

DeviceAdapter

TextAdapter

IDisplayServer

org.eclipse.birt.chart.event.EventObjectCache

IDisplayRenderer

ITextMetrics

EmptyEventNotifier IUpdateNotifier

java.util.EventListener

IDeviceRenderer

IPrimitiveRenderer

IDisplayServer

IImageMapEmitter

IStructureDefinitionListener

ITextMetrics

IUpdateNotifier

ICallBackNotifier

A b o u t t h e B I R T C h a r t E n g i n e A P I 167

Figure 12-12 Classes in org.eclipse.birt.chart.event package (continues)

java.lang.Object

java.util.EventObject

PrimitiveRenderEvent

BlockgenerationEvent

java.lang.Comparable

ArcRenderEvent

AreaRenderEvent

ClipRenderEvent

ImageRenderEvent

InteractionEvent

LineRenderEvent

OvalRenderEvent

PolygonRenderEvent

RectangleRenderEvent

StructureRenderEvent

TextRenderEvent

Image3DRenderEvent I3DRenderEvent

Line3DRenderEvent I3DRenderEvent

Oval3DRenderEvent I3DRenderEvent

Polygon3DRenderEvent I3DRenderEvent

Rectangle3DRenderEvent I3DRenderEvent

Text3DRenderEvent I3DRenderEvent

TransformationEvent

EventObjectCache

168 C h a p t e r 1 2 U n d e r s t a n d i n g t h e B I R T A P I s

Figure 12-12 Classes in org.eclipse.birt.chart.event package (continued)

chart.exception class hierarchy
Figure 12-13 contains the class hierarchy for org.eclipse.birt.chart.exception.

Figure 12-13 Classes in org.eclipse.birt.chart.exception package

chart.factory class hierarchy
Figure 12-14 contains the class hierarchy for org.eclipse.birt.chart.factory.

Figure 12-14 Classes and interfaces in org.eclipse.birt.chart.factory package

WrappedInstruction java.lang.Comparable

StructureSource

WrappedStructureSource

java.lang.Object

java.util.lang.Throwable

java.util.lang.Exception

org.eclipse.birt.core.exception.BirtException

ChartException

IMessageLookup

java.lang.Object

GeneratedChartState

Generator

RunTimeContext

ActionEvaluatorAdapter

DataRowExpressionEvaluator
Adapter

DeferredCache

java.lang.Serializable

IDataRowExpressionEvaluator

IActionEvaluator

A b o u t t h e B I R T C h a r t E n g i n e A P I 169

chart.log class hierarchy
Figure 12-15 contains the class hierarchy for org.eclipse.birt.chart.log.

Figure 12-15 Classes in org.eclipse.birt.chart. log package

chart.model class hierarchy
Figure 12-16 contains the class hierarchy for org.eclipse.birt.chart.model.

Figure 12-16 Classes and interfaces in org.eclipse.birt.chart.model package

ILogger

java.lang.Object

Logger

org.eclipse.emf.common.notify.Notifier

org.eclipse.emf.ecore.EObject

Chart

ChartWithAxes

ChartWithoutAxes

org.eclipse.emf.ecore.EModelElement

org.eclipse.emf.ecore.EFactory

ModelFactory

org.eclipse.emf.ecore.ENamedElement

org.eclipse.emf.ecore.EPackage

ModelPackage

Serializer

DialChart

java.lang.Object

org.mozilla.javascript.ScriptableObject

ScriptHandler

170 C h a p t e r 1 2 U n d e r s t a n d i n g t h e B I R T A P I s

chart.model.attribute interface hierarchy
Figure 12-17 contains the interface hierarchy for
org.eclipse.birt.chart.model.attribute.

Figure 12-17 Interfaces in org.eclipse.birt.chart.model.attribute package

org.eclipse.emf.ecore.EObject

ActionValue

ScriptValue

org.eclipse.emf.common.notify.Notifier

SeriesValue

TooltipValue

URLValue

AxisOrigin

Bounds

DataPoint

CallbackValue

Angle3D

DataPointComponent

org.eclipse.emf.ecore.EModelElement

org.eclipse.emf.ecore.EFactory

AttributeFactory

org.eclipse.emf.ecore.ENamedElement

org.eclipse.emf.ecore.EPackage

AttributePackage

ExtendedProperty

A b o u t t h e B I R T C h a r t E n g i n e A P I 171

Figure 12-17 Interfaces in org.eclipse.birt.chart.model.attribute package
(continues)

Fill

ColorDefinition

Gradient

Image

EmbeddedImage

FontDefinition

FontSpecifier

DateFormatSpecifier

NumberFormatSpecifier

JavaDateFormatSpecifier

JavaNumberFormatSpecifier

Insets

Interactivity

LineAttributes

Location

Location3D

Marker

Palette

Rotation3D

Size

Style

172 C h a p t e r 1 2 U n d e r s t a n d i n g t h e B I R T A P I s

Figure 12-17 Interfaces in org.eclipse.birt.chart.model.attribute package
(continued)

chart.model.attribute class hierarchy
Figure 12-18 contains the class hierarchy for
org.eclipse.birt.chart.model.attribute.

Figure 12-18 Classes in org.eclipse.birt.chart.model.attribute package

StyleMap

TextAlignment

Text

java.lang.Object

org.eclipse.emf.common.util.AbstractEnumerator

ActionType

Anchor

AngleType

AxisType

ChartDimension

ChartType

DataPointComponentType

DataType

DateFormatDetail

DateFormatType

Direction

GroupingUnitType

HorizontalAlignment

A b o u t t h e B I R T C h a r t E n g i n e A P I 173

Figure 12-18 Classes in org.eclipse.birt.chart.model.attribute package
(continued)

chart.model.component interface hierarchy
Figure 12-19 contains the interface hierarchy for
org.eclipse.birt.chart.model.component.

MarkerType

Orientation

Position

RiserType

RuleType

ScaleUnitType

SortOption

Stretch

StyledComponent

TickStyle

TriggerCondition

TriggerFlow

UnitsOfMeasurement

VerticalAlignment

LeaderLineStyle

LegendBehaviorType

LegendItemType

LineDecorator

LineStyle

IntersectionType

174 C h a p t e r 1 2 U n d e r s t a n d i n g t h e B I R T A P I s

Figure 12-19 Interfaces in org.eclipse.birt.chart.model.component package

chart.model.data interface hierarchy
Figure 12-20 contains the interface hierarchy for
org.eclipse.birt.chart.model.data.

org.eclipse.emf.ecore.EObject

Axis

ChartPreferences

org.eclipse.emf.common.notify.Notifier

org.eclipse.emf.ecore.EModelElement

ComponentFactory

org.eclipse.emf.ecore.EFactory

org.eclipse.emf.ecore.ENamedElement

org.eclipse.emf.ecore.EPackage

ComponentPackage

Grid

Label

MarkerLine

MarkerRange

Scale

Series

CurveFitting

Dial

DialRegion

Needle

A b o u t t h e B I R T C h a r t E n g i n e A P I 175

Figure 12-20 Interfaces in org.eclipse.birt.chart.model.data package (continues)

org.eclipse.emf.ecore.EObject

Action

BaseSampleData

org.eclipse.emf.common.notify.Notifier

DataElement

NumberDataElement

DateTimeDataElement

TextDataElement

DataSet

NumberDataSet

DateTimeDataSet

TextDataSet

StockDataSet

org.eclipse.emf.ecore.EModelElement

DataFactory

org.eclipse.emf.ecore.EFactory

org.eclipse.emf.ecore.ENamedElement

DataPackage

org.eclipse.emf.ecore.EPackage

OrthogonalSampleData

Query

Rule

SampleData

176 C h a p t e r 1 2 U n d e r s t a n d i n g t h e B I R T A P I s

Figure 12-20 Interfaces in org.eclipse.birt.chart.model.data package (continued)

chart.model.layout interface hierarchy
Figure 12-21 contains the interface hierarchy for
org.eclipse.birt.chart.model.layout.

Figure 12-21 Interfaces in org.eclipse.birt.chart.model.layout package

chart.model.type interface hierarchy
Figure 12-22 contains the interface hierarchy for
org.eclipse.birt.chart.model.type.

SeriesDefinition

SeriesGrouping

Trigger

org.eclipse.emf.ecore.EObject

Block

LabelBlock

org.eclipse.emf.common.notify.Notifier

TitleBlock

ClientArea

Legend

org.eclipse.emf.ecore.EModelElement

Plot

org.eclipse.emf.ecore.EFactory

LayoutFactory

org.eclipse.emf.ecore.ENamedElement

LayoutPackage

org.eclipse.emf.ecore.EPackage

A b o u t t h e B I R T C h a r t E n g i n e A P I 177

Figure 12-22 Interfaces in org.eclipse.birt.chart.model.type package

chart.render hierarchy
Figure 12-23 contains the class and interface hierarchy for
org.eclipse.birt.chart.render.

Figure 12-23 Classes and interfaces in org.eclipse.birt.chart.render package
(continues)

org.eclipse.emf.ecore.EObject

org.eclipse.emf.ecore.EModelElement

org.eclipse.emf.ecore.EFactory

org.eclipse.emf.common.notify.Notifier

TypeFactory

org.eclipse.emf.ecore.ENamedElement

TypePackage

org.eclipse.emf.ecore.EPackage

Series

BarSeries

LineSeries

ScatterSeries

PieSeries

StockSeries

DialSeries

AreaSeries

IModelAccess

IActionRenderer

ISeriesRenderer

178 C h a p t e r 1 2 U n d e r s t a n d i n g t h e B I R T A P I s

Figure 12-23 Classes and interfaces in org.eclipse.birt.chart.render package
(continued)

chart.script hierarchy
Figure 12-24 contains the class and interface hierarchy for
org.eclipse.birt.chart.script.

Figure 12-24 Classes and interfaces in org.eclipse.birt.chart.script package

java.lang.Object

BaseRenderer

AxesRenderer

ISeriesRenderer

ISeriesRenderingHints

ISeriesRenderingHints3D

ActionRendererAdapter IActionRenderer

EmptyWithAxes

EmptyWithoutAxes

CurveRenderer

java.lang.Object

ScriptClassLoaderAdapter

IChartEventHandlerChartEventHandlerAdapter

IScriptClassLoader

IChartEventHandler

IScriptClassLoader

java.io.Serializable

IChartScriptContext

IExternalContext

A b o u t t h e B I R T C h a r t E n g i n e A P I 179

chart.util class hierarchy
Figure 12-25 contains the class hierarchy for org.eclipse.birt.chart.util.

Figure 12-25 Classes in org.eclipse.birt.chart.util package

java.lang.Object

java.util.GregorianCalendar

DateTime

java.lang.Cloneable
java.util.Calendar

java.io.Serializable

PluginSettings

Base64

ChartUtil

ImageCache

java.io.InputStream

java.io.FilterInputStream

Base64.OutputStream

QRDecomposition

This page intentionally left blank

181

C h a p t e r

Chapter 13Programming with the
BIRT Reporting APIs

A reporting application uses the BIRT report engine API to generate reports
from report design (.rptdesign) files. Typically, the application produces the
report as a formatted file or stream, in HTML or PDF format. Alternatively, the
application can create a report document (.rptdocument) file that contains the
report content in binary form, then renders the report to HTML or PDF later.

This chapter describes the fundamental requirements of a reporting application
and describes the BIRT API classes and interfaces that you use in the
application. This chapter also provides detailed information about the tasks to
perform.

The BIRT APIs in the org.eclipse.birt.report.engine.api package support the
process of generating a report from a report design. This package provides the
ReportEngine class and supporting interfaces and classes.

Optionally, the reporting application can use the BIRT design engine API to
access the structure of report designs, templates, and libraries. With this API, the
application can create and modify report designs before generating a report.
This API supports creating and modifying the report items and other elements
within designs.

The org.eclipse.birt.report.model.api package and its subpackages provide
access to all the items that comprise a report design.

For complete information about all the methods and fields of the classes and
interfaces in these packages, see the online Javadoc. To view the Javadoc, open
BIRT Report Designer and choose Help➛Help Contents➛BIRT Programmer
Reference➛Reference➛API Reference. Choose Report Engine API Reference for
the report engine API and Report Object Model API Reference for the design
engine API. The Javadoc also shows supporting packages in the public API.

182 C h a p t e r 1 3 P r o g r a m m i n g w i t h t h e B I R T R e p o r t i n g A P I s

Building a reporting application
An application that generates a report must carry out at least the required tasks
described in the following sections. Further tasks, such as supplying user-
entered values for parameters, are optional.

Creating and configuring a report engine
Instantiate a ReportEngine object. Set the engine home directory and handler
configuration for the desired output format. The engine home directory defines
the location of required plug-ins and libraries.

A single report engine object can generate multiple reports from multiple report
designs.

Opening a report design or report document
Use one of the openReportDesign() methods of the ReportEngine class to open
a report design from a String file name or an input stream. These methods
return an IReportRunnable object.

Use the openReportDocument() method of the ReportEngine class to open a
report document (.rptdocument) file from a String file name. This method
returns an IReportDocument object.

Ensuring access to the data source

Ensure that the report engine can locate the classes that connect to the data
source and supply data to the data set. The report engine can either create a
connection to the data source or use a Connection object that the application
provides.

Preparing to create a report in the supported output formats

Use an IRenderOption object to set the output format, the output file name or
stream, the locale, and format-specific settings. The HTMLRenderOption class
supports the HTML output format. For PDF output, use RenderOptionBase.

Generating a report in one of the supported output formats
Use an IRunAndRenderTask object to create the report from the
IReportRunnable object. Use an IRenderTask object to create the report from an
IReportDocument object.

Alternatively, use a URL to access the report viewer servlet, such as when
deploying a BIRT report to an application server, as described earlier in this
book. The report viewer can generate a report from either a design file or a
document file.

B u i l d i n g a r e p o r t i n g a p p l i c a t i o n 183

Shutting down the engine

Shut down the report engine if the application does not need to generate more
reports.

Optional tasks
The tasks in the following list are optional for a reporting application. Typically,
the application performs one or more of these tasks.

■ Gather values for parameters.

If the application uses a report design that has parameters, use the default
values for the parameters or set different values.

■ Create a report document file.

A report document file contains the report in a binary storage form. If the
application uses a report design, use an IRunTask object to create the report
document as an IReportDocument object.

■ Export data from a report document.

Use an IDataExtractionTask object to extract data values from any item or set
of items in the report document. Export the data values to a file or another
application, or perform further processing on the data.

About the environment for a reporting application
You must ensure that the deployed application can access all the classes
required for BIRT, your external data sources, and any other classes you need.
The key requirement for BIRT is the location of the engine home. The engine
home is the directory that contains the BIRT plug-ins and libraries needed to
generate a report from a report design.

If you use the BIRT source code, you must ensure that the version that your
application uses matches the version of the plug-ins and libraries in the BIRT
engine home directory. If these versions are not the same, your reporting
application is likely to fail.

The BIRT Report Engine package provides the complete environment for the
reporting application. Earlier chapters in this book provide information about
prerequisites and installing this package. The subdirectory, ReportEngine, of
BIRT Report Engine contains all the plug-ins and libraries that the report engine
uses. This directory contains a complete engine home that a reporting
application requires.

About plug-ins used by the report engine
The engine home directory has a subdirectory, plugins, that contains the
org.eclipse.birt and other plug-ins that a reporting application can use.
Depending on the requirements of your reporting application and the items in

184 C h a p t e r 1 3 P r o g r a m m i n g w i t h t h e B I R T R e p o r t i n g A P I s

your report designs, you can omit plug-ins that provide functionality that the
application and designs do not use.

About libraries used by the report engine
The lib subdirectory of the engine home directory contains the JAR files
described in Table 13-1. This location within the report engine ensures that the
class loader of the application server in which you deploy the report engine can
locate the libraries. To support generation of reports in PDF format, the library
itext-1.3.jar must exist in the lib subdirectory of the report.engine.emitter.pdf
plug-in.

Depending on the requirements of your reporting application and the items in
your report designs, you can omit libraries that provide functionality that the
application and designs do not use.

Table 13-1 Libraries in the engine home lib directory

Library Description

chartengineapi.jar From the chart.engine plug-in. Contains chart
model and factory classes. Supports generation
of charts in a report.

com.ibm.icu_3.4.4.1.jar From IBM. Provides International Components
for Unicode to support text in multiple locales.

commons-cli-1.0.jar Used by the ReportRunner application in the
report.engine plug-in. From the Apache Jakarta
project. Provides command-line parsing.
Reporting applications in a web environment do
not require this library.

commons-codec-1.3.jar Used by the report.engine plug-in. From the
Apache Jakarta project. Provides encoding and
decoding functionality.

coreapi.jar From the core plug-in. Contains framework and
utility classes.

dataadapterapi.jar From the report.data.adapter plug-in.

dteapi.jar From the data plug-in. Provides access to data
sources. Transforms data that the data set
provides.

engineapi.jar From the report.engine plug-in. Required for
generating a report from a report design.

flute.jar Used by the report.model plug-in. From the W3
Consortium. Provides access to CSS
functionality.

js.jar From the core plug-in. Provides scripting
functionality.

G e n e r a t i n g r e p o r t s f r o m a n a p p l i c a t i o n 185

About required JDBC drivers
The engine home plugins/org.eclipse.birt.report.data.oda.jdbc_<version>
subdirectory contains a subdirectory, drivers. Place the driver classes or Java
archive (.jar) files that you require to access JDBC data sources in this location.

Modifying a report design with the API
A reporting application can also modify a report design before generating the
report. The application uses classes in org.eclipse.birt.model.api to change the
structure of a report design. Sections later in this chapter provide more
information about the types of change you can make to a report design and how
to use these classes.

To provide further customization of a report, during the generation of the
output, a report design can use Java script classes or embedded JavaScript code
to handle events. The reporting application can use the model API classes to
include new scripts. Earlier chapters in this book provide more information
about the functionality of scripting.

Generating reports from an application
To build a stand-alone reporting application, code the tasks listed earlier in this
chapter. The following sections describe these tasks in greater detail. The
application does not require the BIRT Report Designer user interface to generate
a report.

The key tasks are to ensure that the report engine has access to an engine home,
set any parameter values, set up the tasks to generate the report, and run the
report.

modelapi.jar From the report.model plug-in. Describes the
report design.

org.eclipse.emf.common
_2.2.0.v<version>.jar

From the Eclipse EMF plug-in. Required for
charts.

org.eclipse.emf.ecore.xmi
_2.2.0.v<version>.jar

From the Eclipse EMF plug-in. Required for
charts.

org.eclipse.emf.ecore
_2.2.0.v<version>.jar

From the Eclipse EMF plug-in. Required for
charts.

sac.jar Used by the report.model plug-in. From the W3
Consortium. Required for CSS functionality.

scriptapi.jar From the report.engine plug-in. Required for
Java-based scripting.

Table 13-1 Libraries in the engine home lib directory (continued)

Library Description

186 C h a p t e r 1 3 P r o g r a m m i n g w i t h t h e B I R T R e p o r t i n g A P I s

The org.eclipse.birt.report.engine.api package contains the classes and
interfaces that an application uses to generate reports. The main classes and
interfaces are ReportEngine, EngineConfig, IReportRunnable, IRenderOption
and its descendants, and IEngineTask and its descendants.

Setting up the report engine
A report engine is an instantiation of the ReportEngine class. This object is the
key component in any reporting application. It provides access to runnable
report designs, parameters, the structure of a report design, and the task for
generating a report from a report design. You set the report engine’s properties
with an EngineConfig object. The following sections describe the various
configuration options.

After setting all the required properties, instantiate the report engine with new
ReportEngine(). The constructor takes an EngineConfig object as its argument.

Configuring the engine home
The engine home is the key property that the report engine requires. The report
engine cannot parse the report design nor run the report without a defined
engine home.

For a stand-alone application, the engine home is an absolute path to a file
system location. For an application running from a web archive (.war) file on an
application server, the engine home is a relative path in the WAR file.

To set the engine home location, you use one of the following techniques:

■ For a stand-alone application, call the EngineConfig.setEngineHome()
method with an argument that is the path to your engine home directory, for
example:

config.setEngineHome
("C:/Program Files/birt-runtime-2_1_0/ReportEngine");

■ In your application’s environment, set the BIRT_HOME environment
variable and set your CLASSPATH variable to access the required libraries.
For example, in a Windows batch file that launches a stand-alone
application, include commands similar to the following before running your
application:

set BIRT_HOME=
"C:\Program Files\birt-runtime-2_1_0\ReportEngine"

SET CLASSPATH=%BIRT_HOME%\<required library 1>;
%BIRT_HOME%\<required library 2 and so on>;
%CLASSPATH%

■ For a web application that has a location in the file system, use the servlet
context to find the real path of the engine home, for example:

config.setEngineHome
(servletContext.getRealPath("/WEB-INF"));

G e n e r a t i n g r e p o r t s f r o m a n a p p l i c a t i o n 187

■ For a web application that runs from a WAR file, use a relative path from the
WAR file root, for example:

config.setEngineHome("");

■ In Eclipse, set BIRT_HOME in the VM arguments in the Run dialog. For
example, in VM arguments, type text similar to the following:

-DBIRT_HOME=
"C:\Program Files\birt-runtime-2_1_0\ReportEngine"

Configuring the report engine
Optionally, you can also set other configuration properties using methods on an
EngineConfig object. Table 13-2 describes these properties and how to set them
with EngineConfig methods. The EngineConfig class also provides getter
methods to access these properties. Sections later in this chapter provide
examples of setting engine configuration properties and how an application
uses them.

Table 13-2 EngineConfig properties

Property type Setting the property

HTML emitter
configuration

For custom handling of images or actions for
HTML output. Create a new
HTMLEmitterConfig object and set up the
handlers. Then call setEmitterConfiguration().

Logging To set the logging file location and level, call
setLogConfig().

Platform context To indicate whether the application and engine
home are in a stand-alone environment or
packaged as a web archive (.war) file, create an
implementation of the IPlatformContext
interface. Then call setEngineContext().

Resource files To set the location where the reporting
application can access resource files such as
libraries and properties files that contain
localized strings, call setResourcePath().

Scripting configuration To provide external values to scripting methods,
call setConfigurationVariable(). To provide
additional Java resources to scripting methods,
call addScriptableJavaObject().

Status handling To provide a custom status handler, create an
implementation of the IStatusHandler interface.
Then call setStatusHandler().

Temporary file location To set up a custom location for temporary files,
call setTempDir().

188 C h a p t e r 1 3 P r o g r a m m i n g w i t h t h e B I R T R e p o r t i n g A P I s

Setting up a stand-alone or WAR file environment
Two engine configuration properties depend on whether the environment in
which the application runs is stand-alone or in a web archive (.war) file in an
application server. These properties are the platform context and the HTML
emitter configuration. The platform context provides the report engine with the
mechanism to access files. The HTML emitter configuration provides the
functionality to process images and handle hyperlinking and bookmark actions.

Setting up the platform context
For the platform context, the BIRT framework provides two implementations of
the org.eclipse.birt.core.framework.IPlatformContext interface. These
implementations provide all the required functionality for the platform context.
For a stand-alone application, the context provides direct file system access to
files. For an application running on an application server, the context uses the
J2EE ServletContext class for file access. In the case of an application that runs
from a WAR file, the platform context uses the resource-based access provided
by the ServletContext class.

By default, BIRT uses a PlatformFileContext object, which provides the platform
context for a stand-alone application. This context is also suitable for a web
application that uses file system deployment on the application server.

For an application that runs from a WAR file on an application server, you must
instantiate a PlatformServletContext object. The constructor for this class takes
two arguments, a ServletContext object and a URL that is the path to the
application. Use the PlatformServletContext object as the argument to the
EngineConfig object’s setEngineContext() method. For example, the code in
Listing 13-1 sets up a platform context for a reporting application that uses
MarketApp as its context root.

Setting up the HTML emitter
When you generate a report in HTML format, BIRT’s HTML emitter creates
image files for image elements and chart elements. The emitter also handles
hyperlink, bookmark, and drill-through actions.

To set up an image handler, instantiate an implementation of the
IHTMLImageHandler interface. For a stand-alone application, create an
HTMLCompleteImageHandler object. Typically, the functionality that this class
provides is sufficient, so your application does not need to extend it. For an
application that runs from a WAR file on an application server, instantiate an
HTMLServerImageHandler object. Typically for the application server
environment, you need to extend from the base class that BIRT provides.

To set up an action handler, instantiate an implementation of the
IHTMLActionHandler interface. This object handles the hyperlink, bookmark,
and drill-through actions that the IAction interface defines.

To set up the HTML emitter, instantiate an HTMLEmitterConfig object. To
configure the image handler, call the HTMLEmitterConfig.setImageHandler()

G e n e r a t i n g r e p o r t s f r o m a n a p p l i c a t i o n 189

method. To configure the action handler, call the HTMLEmitterConfig
.setActionHandler() method. Call the EngineConfig.setEmitterConfiguration()
method to complete the emitter configuration. This method takes two
arguments, the output format type, which is RenderOptionBase
.OUTPUT_FORMAT_HTML, and an HTMLEmitterConfig object. For a
reference implementation of an emitter configuration for HTML format, see the
org.eclipse.birt.report.viewer plug-in.

Listing 13-1 Setting up the platform context for WAR file deployment

// Instantiate an engine configuration object.
EngineConfig config = new EngineConfig();
// Set the relative path of the engine home in the WAR file.
config.setEngineHome("");
// Create the platform context as a hard-coded string.
// Alternatively, use HTTPServletRequest methods to retrieve
// the context dynamically.
// In this code, servletContext is a ServletContext object.
IPlatformContext context = new PlatformServletContext

(servletContext, "http://localhost:8080/MarketApp");
// Set the engine context in the configuration object.
config.setEngineContext(context);

How to set up a report engine

Listing 13-2 shows an example of setting up a report engine as a stand-alone
application on a Windows system. The application uses the engine home
located in the BIRT run-time directory. The report output format is HTML. The
application configures the HTML emitter, then creates the engine with
completed EngineConfig object.

Listing 13-2 Setting up the report engine

// Create an EngineConfig object.
EngineConfig config = new EngineConfig();
// Set up the path to your engine home directory.
config.setEngineHome

("C:/Program Files/birt-runtime-2_1_0/ReportEngine");
// Explicitly set up the stand-alone application
IPlatformContext context = new PlatformFileContext();
config.setEngineContext(context);
// Set up writing images or charts embedded in HTML output.
HTMLCompleteImageHandler imageHandler =

new HTMLCompleteImageHandler();
HTMLEmitterConfig hc = new HTMLEmitterConfig();
hc.setImageHandler(imageHandler);
config.setEmitterConfiguration

(RenderOptionBase.OUTPUT_FORMAT_HTML, hc);
// Create the engine.
ReportEngine engine = new ReportEngine(config);

190 C h a p t e r 1 3 P r o g r a m m i n g w i t h t h e B I R T R e p o r t i n g A P I s

Using the logging environment to debug an application
BIRT Report Engine uses the java.util.logging classes, Logger and Level, to log
information about the processing that the engine performs. When you run an
application in the Eclipse workbench, by default, the messages appear in the
console. When you run an application external to Eclipse, the default location of
the log messages depends on your environment. The default logging threshold
is Level.INFO. Typically, you change this level in your application to reduce the
number of internal logging messages.

To set up the logging environment to write the engine’s log messages to a file on
disk, use the EngineConfig.setLogConfig() method. This method takes two
arguments, the directory in which to create the log file and the lowest level at
which to log information. BIRT Report Engine creates a log file with a name
whose format is ReportEngine_YYYY_MM_DD_hh_mm_ss.log. Set the logging
level to a high threshold so that the engine logs a reduced number of messages.

Typically, you want to see information at INFO level when you first develop a
block of code. To modify the amount of information that the engine logs, use the
ReportEngine.changeLogLevel() method. This method takes a single argument,
which is a Level constant. When the code is stable, you no longer need to see all
the engine’s INFO messages. At that point, you can delete or comment out the
call to changeLogLevel().

How to use BIRT logging

The following example shows how to use logging in an application. You set up
the logging environment, then modify it later in your application.

1 Set up the logging configuration on the report engine object.

// Create an EngineConfig object.
EngineConfig config = new EngineConfig();
//Set up the location and level of the logging output.
config.setLogConfig("C:/Temp", Level.ERROR);
// Set up any other required configuration settings here.
// Create the report engine.
ReportEngine engine = new ReportEngine(config);

2 In any newly written code, increase the amount of logging.

engine.changeLogLevel(Level.INFO);

Opening a source for report generation
BIRT Report Engine can generate a report from either a report design or a report
document. The engine can also generate a report document from a report
design.

To open a report design, you call one of the openReportDesign() methods on
ReportEngine. These methods instantiate an IReportRunnable object, using a
String that specifies the path to a report design or an input stream.

G e n e r a t i n g r e p o r t s f r o m a n a p p l i c a t i o n 191

To open a report document, you call the ReportEngine.openReportDocument()
method. This method instantiates an IReportDocument object, using a String
that specifies the path to a report document. You must handle the
EngineException that these methods throw.

Understanding an IReportRunnable object
The IReportRunnable object provides direct access to basic properties of the
report design. The names of report design properties are static String fields,
such as IReportRunnable.AUTHOR. To access a report design property, use the
getProperty() method with a String argument that contains one of these fields.

To access and set the values of parameters, you use methods on a parameter
definition task object, described later in this chapter. To generate a report from a
design, open the report design as shown in the following example, then perform
the tasks shown later in this chapter.

How to access a report design

Listing 13-3 shows how to open a report design and find a property value. If the
engine cannot open the specified report design, the code shuts down the engine.
The variable, engine, is a ReportEngine object.

Listing 13-3 Accessing a report design

String designName = "./SimpleReport.rptdesign";
IReportRunnable runnable = null;
try {

runnable = engine.openReportDesign(designName);
}
catch (EngineException e)
{

System.err.println
("Design " + designName + " not found!");

engine.shutdown();
System.exit(-1);

}
// Get the value of a simple property.
String author = (String) runnable.getProperty

(IReportRunnable.AUTHOR);

Understanding an IReportDocument object
The IReportDocument object provides access to the data in a report and the
report’s structure. IReportDocument provides methods to retrieve table of
contents entries, bookmarks, and page information.

To access table of contents entries, use the findTOC() method. This method
takes a TOCNode argument and returns a TOCNode object. To find the root
table of contents entry, use an argument of null. To find the subentries of a table
of contents entry, use the getChildren() method. This method returns a List of

192 C h a p t e r 1 3 P r o g r a m m i n g w i t h t h e B I R T R e p o r t i n g A P I s

TOCNode objects. From a TOCNode object, you can retrieve the display value
of the entry and a Bookmark object.

In turn, you can use the Bookmark object as an argument to the
getPageNumber() method, which returns the number of the page to which the
bookmark links. With this information, you can specify particular pages to
render to a formatted report.

How to access a report document

Listing 13-4 shows how to open a report document and navigate its table of
contents to find a page. If the engine cannot open the specified report design,
the code shuts down the engine. The variable, engine, is a ReportEngine object.

Listing 13-4 Accessing a report document

String dName = "./SimpleReport.rptdocument";
IReportDocument doc = null;
try { doc = engine.openReportDocument(dName);
} catch (EngineException e) {

System.err.println("Document " + dName + " not found!");
engine.shutdown();
System.exit(-1);

}
// Get the root of the table of contents.
TOCNode td = doc.findTOC(null);
java.util.List children = td.getChildren();
long pNumber;
// Loop through the top level table of contents entries.
if (children != null && children.size() > 0) {

for (int i = 0; i < children.size(); i++) {
// Find the required table of contents entry.
TOCNode child = (TOCNode) children.get(i);
if (child.getDisplayString().equals("103")) {

// Get the number of the page that contains the data.
pNumber = doc.getPageNumber(child.getBookmark());
System.out.println("Page to print is " + pNumber);

}
}

}

Accessing a report parameter programmatically
A report parameter is a report element that provides input to a report design
before the application generates the report. A report document does not use
report parameters for generating a report. If your report source is a report
document or the default values for all report parameters for a report design are
always valid, you do not need to perform the tasks in this section.

G e n e r a t i n g r e p o r t s f r o m a n a p p l i c a t i o n 193

Report parameters have attributes that a reporting application can access. The
most commonly used attributes are name and value. The report engine uses the
report design logic and the report parameter values to perform tasks such as
filtering a data set or displaying an external value in the report.

After the reporting application sets the values for the report parameters, it must
pass these values to the task that generates the report, as shown later in this
chapter. To access report parameters and their default values and to set
user-supplied values to a parameter, the reporting application uses the BIRT
report engine API classes and interfaces shown in Table 13-3.

The following sections describe how to access report parameters by name or
with generic code. You use generic code if the application must be able to run
any report design, for example, if you access report designs from a list that
depends on user input. If the application runs only a fixed set of known report
designs, you can access the report parameters by name.

Table 13-3 Classes that support report parameters

Class or interface Description

ReportEngine Call the createGetParameterDefinitionTask()
method to access parameters. This method
returns an IGetParameterDefinitionTask object.

IGetParameterDefinition
Task

The interface to access a single report parameter
or a collection of all the report parameters in a
report design. This interface also provides
access to valid values for parameters that use
restricted sets of values, such as cascading
parameters.

IParameterDefnBase The base interface for report parameter
elements. Scalar parameters implement the
derived interface, IScalarParameterDefn.
Parameter groups implement the derived
interface IParameterGroupDefn. To get
information about parameter attributes, use
objects of these types.

IParameterGroupDefn The base interface for report parameter groups.
Cascading parameter groups implement the
derived interface ICascadingParameterGroup.

IParameterSelectionChoice The interface for valid values for a report
parameter that uses a restricted set of values,
such as a cascading parameter.

ReportParameter
Converter

The class that converts a String value provided
by a user interface into a locale-independent
format.

194 C h a p t e r 1 3 P r o g r a m m i n g w i t h t h e B I R T R e p o r t i n g A P I s

Creating a parameter definition task object for the report design

A single IGetParameterDefinitionTask object provides access to all parameters
in a report design. Create only one of these objects for each report design, by
using the ReportEngine.createGetParameterDefinitionTask() method.

Testing whether a report design has report parameters

To test if a report design has report parameters, call the getParameterDefns()
method on IGetParameterDefinitionTask. This method returns a Collection. To
test whether the Collection has elements call the Collection.isEmpty() method.
If the application runs only known report designs, you do not need to perform
this task.

Getting the report parameters in a report design

To access a single report parameter with a known name, use the
IGetParameterDefinitionTask.getParameterDefn() method. This method
returns an object of type IParameterDefnBase. Alternatively, use the
IGetParameterDefinitionTask.getParameterDefns() method to return a
Collection of IParameterDefnBase objects. The application can then use an
Iterator to access each report parameter from this Collection in turn.

The getParameterDefns() method takes a Boolean argument. When the
argument is false, the method returns an ungrouped set of report parameters.
When the argument is true, the method returns parameter groups, as defined in
the report design. To create a user interface that replicates the parameter group
structure, use a value of true.

To check whether a report parameter is a group, the application must call
IParameterDefnBase.getParameterType(). This method returns
IParameterDefnBase.PARAMETER_GROUP when the parameter is a group or
IParameterDefnBase.CASCADING_PARAMETER_GROUP when the
parameter is a cascading parameter group.

To access the group’s report parameters, use the IParameterGroupDefn
.getContents() method. This method returns an ArrayList object that contains
objects of type IScalarParameterDefn.

Getting the default value of each report parameter
This task is optional. To get the default value of a single known report
parameter, use IGetParameterDefinitionTask.getDefaultValue(). This method
returns an Object. To determine the effective class of the Object, use
IScalarParameterDefn.getDataType(). This method returns an int value, which
is one of the static fields in IScalarParameterDefn.

To get the default value of all parameters in the report design, use
IGetParameterDefinitionTask.getDefaultValues(). This method returns a
HashMap object, which maps the report parameter names and their default
values.

G e n e r a t i n g r e p o r t s f r o m a n a p p l i c a t i o n 195

Getting valid values for parameters using a restricted set of values

Some report parameters accept only values from a restricted list. In some cases,
this list is a static list of values, such as RED, BLUE, or GREEN. In other cases,
the list is dynamic and a query to a database provides the valid values. For
example, a query can return the set of sales regions in a sales tracking database.

To determine the list of valid values, call the IGetParameterDefinitionTask
.getSelectionList() method. This method returns a Collection of
IParameterSelectionChoice objects. IParameterSelectionChoice has two
methods. getLabel() returns the display text and getValue() returns the value. If
the Collection is null, the report parameter can take any value.

Getting the attributes of each report parameter
This task is optional. To get the attributes of a report parameter, use the
IScalarParameterDefn methods. The application can use the attributes to
generate a customized user interface. For example, to get the data type of a
report parameter, use the getDataType() method.

Collecting an updated value for each report parameter
To provide new values for the report parameters, provide application logic such
as a user interface or code to retrieve values from a database. To set the value of
the parameter, call IGetParameterDefinitionTask.setParameterValue().

If you provide a user interface that returns String values to your application for
date and number parameters, you must convert the String into a locale-
independent format before setting the value. To perform this task, first call
ReportParameterConverter.parse() to set the value to a locale-independent
format. Next, call IGetParameterDefinitionTask.setParameterValue().

After setting the report parameter values, call the IGetParameterDefinitionTask
.getParameterValues() method. This method returns a HashMap object that
contains values that calls to IGetParameterDefinitionTask.setParameterValue()
set. You can later use this HashMap object to set the report parameter values for
report generation, as described later in this chapter.

How to set the value of a known report parameter

The code sample in Listing 13-5 shows how to set the value of a report
parameter that has a known name. The sample creates a HashMap object that
contains the parameter values to use later to run the report. The variable,
engine, is a ReportEngine object. The variable, runnable, is an object of type
IReportRunnable.

This sample does not show details of code for retrieving the parameter value
from a user interface or a database. The code to perform these tasks depends on
your application’s requirements.

196 C h a p t e r 1 3 P r o g r a m m i n g w i t h t h e B I R T R e p o r t i n g A P I s

Listing 13-5 Setting the value of a single parameter

// Create a parameter definition task.
IGetParameterDefinitionTask task =

engine.createGetParameterDefinitionTask(runnable);
// Instantiate a scalar parameter.
IScalarParameterDefn param = (IScalarParameterDefn)

task.getParameterDefn("customerID");
// Get the default value of the parameter.
// The code assumes that the data type of the parameter,
// customerID, is Double.
int customerID =

((Double) task.getDefaultValue(param)).intValue();

// Get a value for the parameter. This example does not
// provide the code for this task. This example assumes that
// this step creates a correctly typed object, inputValue.

// Set the value of the parameter.
task.setParameterValue("customerID", inputValue);
// Get the values set by the application for all parameters.
HashMap parameterValues = task.getParameterValues();

How to use the Collection of report parameters

The code sample in Listing 13-6 shows how to use the Collection of report
parameters. The sample uses the ReportParameterConverter class to convert the
String values that the user interface supplies into the correct format for the
parameter. The sample creates a HashMap object that contains the parameter
values to use later to run the report. The variable, engine, is a ReportEngine
object. The variable, runnable, is an object of type IReportRunnable.

This sample does not show details of code for retrieving the parameter values
from a user interface or a database. The code to perform these tasks depends on
your application’s requirements.

Getting the values for cascading parameters

A cascading parameter group uses a query to retrieve values from a database.
The parameter definition task filters the values for each parameter in the group,
based on the values of preceding parameters in the group. For example,
consider a cascading parameter group that uses the following query.

SELECT
PRODUCTS.PRODUCTLINE,
PRODUCTS.PRODUCTNAME,
PRODUCTS.PRODUCTCODE

FROM CLASSICMODELS.PRODUCTS

G e n e r a t i n g r e p o r t s f r o m a n a p p l i c a t i o n 197

Listing 13-6 Setting the values of multiple parameters

// Create a parameter definition task.
IGetParameterDefinitionTask task =

engine.createGetParameterDefinitionTask(runnable);
// Create a collection of the parameters in the report design.
// This example does not use the parameter grouping.
Collection params = task.getParameterDefns(false);
// Get the default values of the parameters.
HashMap parameterValues = task.getDefaultValues();

// Get values for the parameters. This example does not
// provide the code for this task. Later code in this example
// assumes that this step creates a HashMap object,
// inputValues. The keys in the HashMap are the parameter
// names and the values are those that the user provided.

// Iterate through the report parameters, setting the values
// to use for generating the report. Ensure that the values
// are in standard locale-independent format.
Iterator iterOuter = params.iterator();
while (iterOuter.hasNext())
{

IParameterDefnBase param =
(IParameterDefnBase) iterOuter.next();

String pname = param.getName();
String value = (String) inputValues.get(pname);
if (value != null)
{

ReportParameterConverter cfgConverter = new
ReportParameterConverter("", Locale.getDefault());

Object obj =
cfgConverter.parse(value, param.getDataType());

parameterValues.put(pname, obj);
}

}

The group contains two parameters, ProductLine on PRODUCTS
.PRODUCTLINE and ProductCode on PRODUCTS.PRODUCTCODE. The
display text for ProductCode is PRODUCTS.PRODUCTNAME. Figure 13-1
shows the appearance of the requester that prompts for values for these
parameters when you preview the report in BIRT Report Designer.

To use the report engine API to get the values for cascading parameters,
perform the tasks in the following list. Figure 13-1 shows an example of
performing these tasks.

■ To prepare the data values for the cascading parameters, call the method,
IGetParameterDefinitionTask.evaluateQuery(). This method takes the String
name of the parameter group as a parameter.

198 C h a p t e r 1 3 P r o g r a m m i n g w i t h t h e B I R T R e p o r t i n g A P I s

Figure 13-1 Cascading report parameters

■ To populate the list of values for the first report parameter in the group, call
the IGetParameterDefinitionTask.getSelectionListForCascadingGroup()
method. This method takes two parameters, the String name of the
parameter group and an array of Object. For the first parameter, this array is
empty. The method returns a Collection of IParameterSelectionChoice
objects.

■ To populate the list of values for further report parameter in the group, call
getSelectionListForCascadingGroup() again. In this case, the Object[] array
contains the values for the preceding report parameters in the group. In the
example shown in Figure 13-1, the Object[] array is:

new Object[] {"Trains" }

How to use cascading parameters

The code sample in Listing 13-7 first shows how to run the query for cascading
parameters. Next, the sample accesses the set of valid values for each parameter
in the cascading parameter group in turn. The variable, task, is an object of type
IGetParameterDefinitionTask.

Listing 13-7 Getting the valid values for cascading parameters

// Create a grouped collection of the design’s parameters.
Collection params = task.getParameterDefns(true);
// Iterate through the parameters to find the cascading group.
Iterator iter = params.iterator();
while (iter.hasNext()) {

IParameterDefnBase param = (IParameterDefnBase)
iter.next();
if (param.getParameterType() ==

IParameterDefnBase.CASCADING_PARAMETER_GROUP) {
ICascadingParameterGroup group =

(ICascadingParameterGroup) param;
Iterator i2 = group.getContents().iterator();

G e n e r a t i n g r e p o r t s f r o m a n a p p l i c a t i o n 199

// Run the query for the cascading parameters.
task.evaluateQuery(group.getName());
Object[] userValues =

new Object[group.getContents().size()];
// Get the report parameters in the cascading group.
int i = 0;
while (i2.hasNext()) {

IScalarParameterDefn member =
(IScalarParameterDefn) i2.next();

// Get the values for the parameter.
Object[] setValues = new Object[i];
if (i > 0)

System.arraycopy(userValues, 0, setValues, 0, i);
Collection c =

task.getSelectionListForCascadingGroup
(group.getName(), setValues);

// Iterate through the values for the parameter.
Iterator i3 = c.iterator();
while (i3.hasNext()) {

IParameterSelectionChoice s =
(IParameterSelectionChoice) i3.next();

String choiceValue = s.getValue();
String choiceLabel = s.getLabel();

}
// Get the value for the parameter from the list of choices.
// This example does not provide the code for this task.

userValues[i] = inputChoiceValue;
i++;

}
}

Preparing to generate the report
BIRT provides two output formats for reports, HTML and PDF. You can also
provide custom output formats by creating a new renderer from the rendering
extension points, as discussed later in this book.

Three task classes support generating a report from a source. Sections earlier in
this chapter described how to open the two types of source, a report design and
a report document. The tasks that you use to generate a report from the source
are:

■ IRunAndRenderTask. An object of this type creates a report in unpaginated
HTML format by running a report design directly. To instantiate this object,
call the ReportEngine method, createRunAndRenderTask().

■ IRunTask. An object of this type creates a report document (.rptdocument)
file from a report design. To instantiate this object, call the ReportEngine
method, createRunTask(). After creating the report document, you create the
report with an IRenderTask object.

200 C h a p t e r 1 3 P r o g r a m m i n g w i t h t h e B I R T R e p o r t i n g A P I s

■ IRenderTask. An object of this type creates a complete report or a set of pages
from a report by formatting the contents of a report document. To instantiate
this object, call the ReportEngine method, createRenderTask().

Each type of task object can act on multiple sources. When the application no
longer needs the task object, call the task’s close() method.

Setting the parameter values for running a report design
To set the values for parameters for generating a report, use methods on an
IRunAndRenderTask or an IRunTask object. These tasks run a report design to
generate output. IRenderTask does not support changing the parameters for a
report because its source is a report document. The IRunTask object that created
the report document already specified the parameter values.

Call setParameterValues() to set the values for all the parameters. This method
takes a HashMap as an argument. To create a suitable HashMap, perform the
tasks described in “Accessing a report parameter programmatically,” earlier in
this chapter.

To set the value for a single parameter when generating a report, call the
setParameterValue() method. When the task generates the report or the report
document, it uses the default values for any parameters that were not set by
either of these methods.

Setting up the rendering options
Before generating a report to either HTML or PDF, the application must set
options that determine features of the output. The options must specify either
an output file name or a stream. Other configuration options, such as setting
whether to create embeddable HTML, are optional. BIRT supports two types of
HTML output, HTML and embeddable HTML. Embeddable HTML is suitable
for including inside another web page. This format contains no header
information nor the <html> tag.

The application uses a rendering options object to set the output options on an
IRunAndRenderTask or an IRenderTask object. The format-specific rendering
options classes implement IRenderOption and extend RenderOptionBase. The
rendering options class supporting the HTML format is HTMLRenderOption.
There are no format-specific options for PDF output. To set options for PDF
output, use the RenderOptionBase class.

Setting up the rendering context
Before generating a report, the application must provide context settings to the
rendering task. Use the setAppContext() method on an IRenderTask or an
IRunAndRenderTask object. This method performs no function on an IRunTask
object because this task does not render to an output format.

To set up the context for HTML rendering, use an HTMLRenderContext object.
To set up the context for PDF rendering, use a PDFRenderContext object. To

G e n e r a t i n g r e p o r t s f r o m a n a p p l i c a t i o n 201

apply a context setting, use setter methods on the rendering context object.
These classes also have getter methods that retrieve context settings.

Both HTML and PDF rendering contexts support a base URL for an action
handler and a list of the image formats that the output format accepts, as shown
in the following list. The output format of the report defines which other context
settings are available.

■ Action handler base URL. If you use a custom action handler, set its base
URL with the setBaseURL() method.

■ Supported image formats for extended report items such as charts or custom
extended items. The final rendering environment for the report, such as the
browser for a report in HTML format, affects this context value. To set the
supported formats, use setSupportedImageFormats() with a String that
contains a list of the supported image formats as its argument. The image
formats are standard types, such as BMP, GIF, JPG, and SVG. Semicolons (;)
separate the items in the list. The method getSupportedImageFormats()
returns a String of the same format.

After creating the rendering context object, call the task’s setContext() method.
This method takes a HashMap object as an argument. The key to the hash-map
entry is one of the constants APPCONTEXT_HTML_RENDER_CONTEXT or
APPCONTEXT_PDF_RENDER_CONTEXT in the EngineConstants class. The
value of the entry is the rendering context object. Listing 13-8 includes code that
sets the rendering context for HTML.

Setting up the HTML rendering context
Before generating an HTML report that uses images on disk or creates images or
charts in a report, the application must provide additional context settings. The
HTMLRenderContext class provides the following settings:

■ Image base directory. If your report designs use relative paths to access static
images, set the path to their location with the HTMLRenderContext
.setBaseImageURL() method.

■ Image output directory. Many reports include images, either as static images
or dynamically created images, such as charts. HTML reports place all
images in a defined location. To set this location, call the
HTMLRenderContext.setImageDirectory() method. If you do not set the
base location, the report engine cannot place images in your report.

Setting up the PDF rendering context
Before generating a PDF report that uses fonts from non-standard locations or
needs to embed fonts in a report, the application must provide additional
context settings. The PDFRenderContext class provides the following settings:

■ Font directory. If your deployment platform uses fonts from a custom
location, set the path to their location with the setFontDirectory() method.

202 C h a p t e r 1 3 P r o g r a m m i n g w i t h t h e B I R T R e p o r t i n g A P I s

This method takes a String argument, which is a list of directories separated
by semicolon characters.

■ Embedding fonts. If you need to embed custom fonts in the PDF document,
call PDFRenderContext.setEmbededFont() with an argument of true.

How to configure properties for a report in HTML format

The code sample in Listing 13-8 shows the use of rendering options on an
IRunAndRenderTask object to set report parameter values, the output format of
the report, and the output file name. The variable, engine, is a ReportEngine
object. The variable, runnable, is an object of type IReportRunnable. The
variable, name, is the name of the report design.

Listing 13-8 Configuring properties on an IRunAndRenderTask object

// Create a run and render task object.
IRunAndRenderTask task =

engine.createRunAndRenderTask(runnable);
// Set values for all parameters in a HashMap, parameterValues
task.setParameterValues(parameterValues);
// Validate parameter values.
boolean parametersAreGood = task.validateParameters();
// Set the name of an output file.
HTMLRenderOption options = new HTMLRenderOption();
String output = name.replaceFirst(".rptdesign", ".html");
options.setOutputFileName(output);
// Apply the rendering options to the task.
task.setRenderOption(options);
// Instantiate an HTML rendering context object and
// set the name of the directory for images.
HTMLRenderContext renderContext = new HTMLRenderContext();
renderContext.setImageDirectory("image");
// Apply the rendering context to the task.
HashMap appContext = new HashMap();
appContext.put

(EngineConstants.APPCONTEXT_HTML_RENDER_CONTEXT,
renderContext);

task.setAppContext(appContext);

Providing an external connection to run a report design
In many application server environments, web applications have access to a
pool of Connection objects. In order to use an external connection from such a
pool for the data source in a report design, you must pass information to the
data driver plug-in that the report design uses. You pass the information in the
rendering context HashMap object. For example, the code in Listing 13-9 sets up
the connection to a custom driver, mydatapluginname. The variable task is an
IRunAndRenderTask object or an IRunTask object.

G e n e r a t i n g r e p o r t s f r o m a n a p p l i c a t i o n 203

The standard data drivers in BIRT do not support using an external connection.
You must extend the drivers to perform this task. Later chapters in this book
explain this process.

Listing 13-9 Setting up an external Connection object

HashMap contextMap = new HashMap();
HTMLRenderContext renderContext = new HTMLRenderContext();
contextMap.put

(EngineConstants.APPCONTEXT_HTML_RENDER_CONTEXT,
renderContext);

// Get a connection from the pool
Connection myConnection = getConnectionFromPool();
contextMap.put("org.eclipse.birt.mydatapluginname",

myConnection);
task.setContext(contextMap);

Generating the formatted output programmatically
To generate a report, the application must call the run() method on an
IRunAndRenderTask or an IRunTask object. The application must handle the
EngineException that run() can throw.

After generating the report, the application can reuse the report engine to
generate further reports. If your application only generates a single report, shut
down the engine after performing the report generation.

How to generate a report

The code sample in Listing 13-10 generates a report, then shuts down the report
engine. The variable, engine, is a ReportEngine object. The variable, task, is an
IRunAndRenderTask or an IRunTask object. The variable, name, is the name of
the report design. The variable, output, is the name of the output file.

Listing 13-10 Generating a report from a report design or a report document

try {
task.run();
System.out.println("Created Report " + output + ".");

}
catch (EngineException e1) {

System.err.println("Report " + name + " run failed.");
System.err.println(e1.toString());

}
engine.shutdown();

Accessing the formatted report
When you generate a report document as a file on disk, you can access the
report in the same way as any other file. For example, you open HTML

204 C h a p t e r 1 3 P r o g r a m m i n g w i t h t h e B I R T R e p o r t i n g A P I s

documents in a web browser and PDF documents using Adobe Reader. If you
send the report to a stream, the stream must be able to process the information.

About programming with a report design
A reporting application typically generates a report from a report design. In this
type of reporting application, you typically develop a report design and include
the design along with your application at deployment time. Any changes to the
generated report depend on the values of report parameters and the data from
the data set. To access the report design, the application uses an
IReportRunnable object.

Sometimes business logic requires changes to the report design before
generating the report. You can make some changes through using parameters
and scripting. Other changes can only occur through modification of the report
design itself.

A reporting application can make changes to the report design and the ROM
elements that make up the design. To access the structure of the report design,
the application obtains a ReportDesignHandle object from the design engine. To
access the design engine, an application must first instantiate a report engine, as
in any other reporting application.

The ReportDesignHandle object provides access to all properties of the report
design and to the elements that the report design contains. The model API
provides handle classes to access all ROM elements. For example, a GridHandle
object provides access to a grid element in the report design. All ROM
element handles, including the report design handle, inherit from
DesignElementHandle. Report items inherit from ReportElementHandle and
ReportItemHandle.

After making changes to a report design or its elements, the application can
write the result to a stream or a file. The report engine can then open an
IReportRunnable object on the resulting design and generate a report.

An application typically accesses the items in a report design to perform one of
the following tasks:

■ Modify an existing report design programmatically to change the contents
and appearance of the report output.

An application can modify page characteristics, grids, tables, and other
report items in the design, the data source, and the data set that extracts data
from a data source.

■ Build a report design and generate report output entirely in an application
without using BIRT Report Designer.

A reporting application can access and modify the structures in a template or a
library file in the same way as the structures in a report design. The techniques

A b o u t p r o g r a m m i n g w i t h a r e p o r t d e s i g n 205

described in the rest of this chapter are applicable to these files as well as to
report designs.

A template has identical functionality to a report design. For this reason, the
ReportDesignHandle class provides access to a template. The LibraryHandle
class provides access to a library. Both these classes derive from the
ModuleHandle class, which provides the fields and methods for the common
functionality, such as accessing elements in the file.

The package that contains the classes and interfaces to work with the items in a
report design, library, or template is org.eclipse.birt.report.model.api.

About BIRT model API capabilities
A report developer can write an application that creates and modifies a report
design programmatically. The BIRT model API has the same capabilities as BIRT
Report Designer. For example, the following list shows some of the ways in
which you can use the BIRT model API to manipulate a report design
programmatically:

■ Modifying a report item in a report design:

■ Format a report item, changing the font, font color, fill color, format,
alignment, or size.

■ Modify the expression or other property of a report item.

■ Change the data set bound to a table or list.

■ Adding a report item to a report design:

■ Add a simple report item such as a data item, label, or image.

■ Set the value to display in the new report item, such as the expression of a
data item or the text in a label item.

■ Create a complex item such as a grid, table, or list.

■ Add other items into a grid, table, or list.

■ Changing the structure of a report design:

■ Add or delete a group or column in a table or list.

■ Add a report parameter.

■ Modifying non-visual elements in a report design:

■ Specify a data source for a data set.

■ Set a design property such as a report title, author, wallpaper, or
comment.

■ Set a page property, such as height, width, or margins.

206 C h a p t e r 1 3 P r o g r a m m i n g w i t h t h e B I R T R e p o r t i n g A P I s

Opening a report design programmatically for editing
To access a report design and its contents, the application must instantiate a
report engine, then use a ReportDesignHandle object. You instantiate a
ReportDesignHandle by calling a method on another class, such as the model
class, SessionHandle, or the report engine interface, IReportRunnable.

The SessionHandle object manages the state of all open report designs. Use a
SessionHandle to open, close, and create report designs, and to set global
properties, such as the locale and the units of measure for report elements. The
SessionHandle can open a report design from a file or a stream. Create the
session handle only once. BIRT supports only a single SessionHandle for a user
of a reporting application.

Configuring the design engine to access a design handle
The DesignEngine class provides access to all the functionality of the Report
Object Model (ROM) in the same way that the ReportEngine class provides
access to report generation functionality. To create a DesignEngine object, you
first create a DesignConfig object to contain configuration settings for the
design engine. The DesignConfig object sets up custom access to resources and
custom configuration variables for scripting. Instantiate a DesignEngine object
with the DesignConfig object as an argument to the constructor.

Create the SessionHandle object by calling the method, newSessionHandle() on
the DesignHandle object. To open the report design, call the method,
openDesign(), on the SessionHandle object. This method takes the name of the
report design as an argument and instantiates a ReportDesignHandle object.

Using an IReportRunnable object to access a design handle
You can also open a report design from an IReportRunnable object by using the
getDesignHandle() method. The ReportDesignHandle object provides access to
the design opened by the report engine. Changes to the report design do not
affect the IReportRunnable object. To generate a report from the changed report
design, you must reopen the design as an IReportRunnable object.

How to open a report design for editing

The code sample in Listing 13-11 creates a DesignEngine object, which it uses to
create a SessionHandle object. The code then uses the SessionHandle object to
open a report design.

Listing 13-11 Opening a report design for editing

// Create a design engine configuration object.
DesignConfig dConfig = new DesignConfig();
DesignEngine dEngine = new DesignEngine(dConfig);
// Create a session handle, using the system locale.
SessionHandle session = dEngine.newSessionHandle(null);
// Create a handle for an existing report design.

A b o u t p r o g r a m m i n g w i t h a r e p o r t d e s i g n 207

String name = "./SimpleReport.rptdesign";
ReportDesignHandle design = null;
try {

design = session.openDesign(name);
} catch (Exception e) {

System.err.println
("Report " + name + " not opened!\nReason is " +
e.toString());

return null;
}

Using a report item in a report design
A report item is a visual element in the report design. Typically, a report
developer adds a report item to the design in BIRT Report Designer by dragging
an item from the palette to the layout editor. Sometimes you need to change the
properties of certain report items in the design before running the report. An
application uses methods on the ReportDesignHandle class to access a report
item either by name or from a list of items in a slot in a container report item.

A slot is a logical component of a report item. For example, a table element has
five slots: Header, Detail, Footer, Groups, and Columns. In turn, each of these
slots can have further slots. Each slot has zero or more members of the
appropriate report item type. For example, the Header, Detail, and Footer slots
all contain elements of type RowHandle. RowHandle has a Cell slot that
contains all the cells in the row. For a visual representation of the slots in an
individual report item, see the Outline view in BIRT Report Designer.

Accessing a report item by name
To make a report item accessible by name, the item must have a name. A report
developer can set the name in BIRT Report Designer or programmatically by
using the item’s setName() method. To find a report item by name, use the
findElement() method. This method returns a DesignElementHandle object. All
report items derive from this class.

Accessing a report item by iterating through a slot
To access a report item through the report design’s structure, the application
first gets the slot handle of the report body by calling the getBody() method.
This slot handle holds the top-level report items in the report design. For
example, consider a simple report structure that has three top-level items: a grid
containing header information, a table containing data, and a label that displays
a report footer. Figure 13-2 shows its outline view in BIRT Report Designer.

208 C h a p t e r 1 3 P r o g r a m m i n g w i t h t h e B I R T R e p o r t i n g A P I s

Figure 13-2 Slots in a report design

To access the top-level items in this report design, you iterate over the contents
of the body slot handle. These contents all derive from DesignElementHandle.
To access the iterator for a slot handle, call SlotHandle.iterator(). Each call to
Iterator.getNext() returns a report item. Alternatively, to access a report item at
a known slot index, call SlotHandle.get(). The slot index number is zero-based.
The ReportDesignHandle class also provides finder methods, which can access
an item or other report element by name.

Examining a report item programmatically
To examine a report item, check the class of the report item, cast the object to its
actual class, then call methods appropriate to that class. For example, the class
of a label element handle is LabelHandle. To get the text that the label displays,
call LabelHandle.getText().

Some report items, such as a label or a text element, are simple items. Other
items, such as a grid or a table element, are structured items. You can access
properties for the whole of a structured item in the same way as for a simple
item.

You can also iterate over the contents of the structured item. For example, use
this technique to determine the contents of a cell in a table. To access the
contents of a structured item, you call a method to retrieve the slot handle for
rows or columns. For example, to access the RowHandle objects that make up a
table element’s footer, call TableHandle.getFooter(). Table and list elements also
have a slot for groups. Like the body slot handle, the slot handles for the
contents of structured report items can contain zero, one, or multiple elements.

Accessing the properties of a report item
To provide information about report items, each class has getter methods
specific to the report item type. For example, an image element handle,
ImageHandle, has the getURI() method. This method returns the URI of an

A b o u t p r o g r a m m i n g w i t h a r e p o r t d e s i g n 209

image referenced by URL or file path. The DesignElementHandle class and
other ancestor classes in the hierarchy also provide generic getter methods, such
as getName().

Some properties of a report item are simple properties, with types that are Java
types or type wrapper classes. An example of this type of property is the name
property, which is a String object. Some of these properties, like name, have
arbitrary values.

Other simple properties have restricted values from a set of BIRT String
constants. The interface, DesignChoiceConstants in the
org.eclipse.birt.report.model.api.elements package, defines these constants. For
example, the image source property of an image element can have only one of
the values, IMAGE_REF_TYPE_EMBED, IMAGE_REF_TYPE_EXPR,
IMAGE_REF_TYPE_FILE, IMAGE_REF_TYPE_NONE, or
IMAGE_REF_TYPE_URL.

Other properties are complex properties and the getter method returns a handle
object. For example, the DesignElementHandle.getStyle() method returns a
StyleHandle object and ReportItemHandle.getWidth() returns a
DimensionHandle object.

The handle classes provide access to complex properties of a report item, as
described later in this chapter. These classes provide getter methods for related
properties. For example, StyleHandle classes provide access to font and
background color.

How to access a report item by name

The code sample in Listing 13-12 finds an image item by name, checks its type,
then examines its URI. The variable, design, is a ReportDesignHandle object.

Listing 13-12 Finding a report item with a given name

DesignElementHandle logoImage =
design.findElement("Company Logo");

// Check for the existence of the report item.
if (logoImage == null) {

return null;
}
// Check that the report item has the expected class.
if (!(logoImage instanceof ImageHandle)) {

return null;
}
// Retrieve the URI of the image.
String imageURI = ((ImageHandle) logoImage).getURI();
return imageURI;

How to use the report structure to access a report item

The code sample in Listing 13-13 finds an image item in a grid, checks its type,
then examines its URI. Use this technique for generic code to navigate a report

210 C h a p t e r 1 3 P r o g r a m m i n g w i t h t h e B I R T R e p o r t i n g A P I s

design structure or if you need to find an item that does not have a name. The
variable, design, is a ReportDesignHandle object.

Modifying a report item in a report design programmatically
To set the simple properties of report items, each class has setter methods
specific to the report item type. For example, an image element handle,
ImageHandle, has the setURI() method. This method sets the URI of an image
referenced by URL or file path. The DesignElementHandle class and other
ancestor classes in the hierarchy also provide generic setter methods, such as
setName(). Setter methods throw exceptions, such as NameException,
SemanticException, and StyleException.

To set attributes of a complex property, such as a style, you must call methods
on a handle object, as described later in this chapter. These classes provide setter
methods for related properties. For example, StyleHandle classes provide access
to style properties, such as font and background color.

Listing 13-13 Navigating the report structure to access a report item

// Instantiate a slot handle and iterator for the body slot.
SlotHandle shBody = design.getBody();
Iterator slotIterator = shBody.iterator()
// To retrieve top-level report items, iterate over the body.
while (slotIterator.hasNext()) {

Object shContents = slotIterator.next();
// To get the contents of the top-level report items,
// instantiate slot handles.
if (shContents instanceof GridHandle) {

GridHandle grid = (GridHandle) shContents;
SlotHandle grRows = grid.getRows();
Iterator rowIterator = grRows.iterator();
while (rowIterator.hasNext()) {

// Get RowHandle objects.
Object rowSlotContents = rowIterator.next();
// To find the image element, iterate over the grid.
SlotHandle cellSlot =

((RowHandle) rowSlotContents).getCells();
Iterator cellIterator = cellSlot.iterator();
while (cellIterator.hasNext()) {

// Get a CellHandle object.
Object cellSlotContents = cellIterator.next();
SlotHandle cellContentSlot =

((CellHandle) cellSlotContents).getContent();
Iterator cellContentIterator =

cellContentSlot.iterator();
while (cellContentIterator.hasNext()) {

// Get a DesignElementHandle object.
Object cellContents =

cellContentIterator.next();

A b o u t p r o g r a m m i n g w i t h a r e p o r t d e s i g n 211

// Check that the element is an image.
if (cellContents instanceof ImageHandle) {

String imageSource = ((ImageHandle)
cellContents).getSource();

// Check that the image has a URI.
if ((imageSource.equals(IMAGE_REF_TYPE_URL))
|| (imageSource.equals(IMAGE_REF_TYPE_FILE))){

// Retrieve the URI of the image.
String imageURI = ((ImageHandle)

cellContents).getURI();
}

}
}

}
}

}
}

Changes that you make to items in the report design do not affect the design file
until you save the design to disk or to a stream. After saving the design, get an
IReportRunnable handle for the modified design in order to generate a report.

How to change a simple property of a report item

The code sample in Listing 13-14 uses a method on LabelHandle to change the
text in a label. The variable, design, is a ReportDesignHandle object. This
sample accesses the label by name. You can also access a report item by
navigating the report structure.

Listing 13-14 Changing the text property of a label report item

// Access the label by name.
LabelHandle headerLabel =

(LabelHandle) design.findElement("Header Label");
try {

headerLabel.setText("Updated " + headerLabel.getText());
} catch (Exception e) {

// Handle the exception
}

Accessing and setting complex properties
Complex properties use BIRT handle objects to access data structures. For
example, a DimensionHandle object provides access to size and position
properties, such as the absolute value and the units of the width of a report item.

Some String properties on a handle object, such as font style and text alignment
on a style handle, have restricted values defined by constants in the interface,
DesignChoiceConstants in the org.eclipse.birt.report.model.api.elements
package. For example, the font style property can have only one of the values,
FONT_STYLE_ITALIC, FONT_STYLE_NORMAL, and
FONT_STYLE_OBLIQUE.

212 C h a p t e r 1 3 P r o g r a m m i n g w i t h t h e B I R T R e p o r t i n g A P I s

Using a property handle

To access complex properties, you use getter methods on the report item. For
example, to access the width of a report item, call the method
ReportItemHandle.getWidth(). This method returns a DimensionHandle
object. To work with complex properties, you use getter and setter methods on
the handle object. For example, to get and set the size of a dimension, you use
DimensionHandle.getMeasure() and DimensionHandle.setAbsolute(),
respectively.

When you set a value on a complex property, the change to the handle object
affects the report item straight away. You do not call an additional setter method
on the report item itself.

Using styles on a report item

The StyleHandle class provides access to many fundamental properties of a
report item, such as margin size, text alignment, background color, borders,
font, and so on. StyleHandle provides a full set of getter methods for each style
property. For simple properties, StyleHandle provides setter methods. To
modify complex properties, you use setter methods on the property handle
object, not on the style handle itself.

A report item can use two styles: a private style and a shared style. The handle
classes for these styles are PrivateStyleHandle and SharedStyleHandle,
respectively. Both classes derive from StyleHandle.

A private style contains the settings that the report developer chose in the
property editor when designing the report. Shared styles appear in the Outline
view in BIRT Report Designer. You use shared styles to apply the same
appearance to multiple items in a report design. Changes to a shared style affect
all report items that use the style. Style settings in a private style override the
settings in a shared style.

How to change a complex property of a report item

The code sample in Listing 13-15 shows how to use PrivateStyleHandle and
ColorHandle objects to change the background color of a label. The variable,
design, is a ReportDesignHandle object. This sample accesses the label by name.
You can also access a report item by navigating the report structure.

Listing 13-15 Changing a complex property of a report item

// Access the label by name.
LabelHandle headerLabel =

(LabelHandle) design.findElement("Header Label");
try {

// To prepare to change a style property, get a
StyleHandle.
StyleHandle labelStyle = headerLabel.getPrivateStyle();
// Update the background color.
ColorHandle bgColor = labelStyle.getBackgroundColor();

A b o u t p r o g r a m m i n g w i t h a r e p o r t d e s i g n 213

bgColor.setRGB(0xFF8888);
} catch (Exception e) {

// Handle any exception
}

Adding a report item to a report design programmatically
A reporting application can use a simple report design or a template to create
more complex designs. The application can add extra report items to the
design’s structure based on external conditions. For example, based on the user
name of the user requesting generation of a report, you can add extra
information to the report for that category of user. You use the same techniques
to add content to a new design if you create a design entirely with the API.

The class that creates new elements, such as report items, in a report design is
ElementFactory. This class provides methods of the form, newXXX(), where
XXX is the report item or element to create. The method newElement() is a
generic method that creates an element of any type. To access the element
factory, call the ReportDesign.getElementFactory() method.

You can place new report items at the top level of the report design, directly in
the Body slot, within containers such as a cell in a table or grid, or on the master
page. You can add a simple item, such as a label, or complex items, such as a
table with contents in its cells. Wherever you add the new report item, the
location is a slot, such as the body slot of the report design or a cell slot in a row
in a table. To add a report item to a slot, you use one of the SlotHandle.add()
methods. The method has two signatures that support adding the report item to
the end of a slot, or to a particular position in a slot.

Table and list elements are container items that iterate over the rows that a data
set provides. For these report items to access the data rows, you must bind them
to a data set. The table or list element provides data rows to the report items that
it contains. For this reason, you usually bind only the container item to a data
set, as described later in this chapter.

How to add a grid item and label item to a report design

The code sample in Listing 13-16 creates a grid item, then adds a label item to
one of the cells in the grid. An application can create any other report item in a
similar manner. The variable, design, is a ReportDesignHandle object.

Listing 13-16 Adding a container item to the Body slot

// Instantiate an element factory.
ElementFactory factory = design.getElementFactory();
try {

// Create a grid element with 2 columns and 1 row.
GridHandle grid = factory.newGridItem("New grid", 2, 1);
// Set a simple property on the grid, the width.
grid.setWidth("50%");
// Create a new label and set its properties.

214 C h a p t e r 1 3 P r o g r a m m i n g w i t h t h e B I R T R e p o r t i n g A P I s

LabelHandle label = factory.newLabel("Hello Label");
label.setText("Hello, world!");
// Get the first row of the grid.
RowHandle row = (RowHandle) grid.getRows().get(0);
// Add the label to the second cell in the row.
CellHandle cell = (CellHandle) row.getCells().get(1);
cell.getContent().add(label);
// Get the Body slot. Add the grid to the end of the slot.
design.getBody().add(grid);

} catch (Exception e) {
// Handle any exception

}

Accessing a data source and data set with the API
This section shows how to use ROM elements that are not report items. To use
other ROM elements, such as the libraries that the report design uses, you
employ similar techniques.

You access the report design’s data sources and data sets from methods on the
ReportDesignHandle instance, in a similar way to other report elements. The
model classes that define a data source and data set are DataSourceHandle and
DataSetHandle, respectively. A data set provides a report item such as a table
with data from a data source. For a report item to access the data set, use the
setDataSet() method.

You can use a finder method on the report design handle to access a data source
or data set by name. The finder methods are findDataSource() and
findDataSet(), respectively.

Alternatively, to access all the data sources or data sets, you can use a getter
method that returns a slot handle. The getter methods are getDataSources() and
getDataSets(), respectively. To access the individual data sources or data sets in
a slot handle, you iterate over the contents of the slot handle in the same way as
for any other slot handle.

About data source classes
DataSourceHandle is a subclass of ReportElementHandle. You get and set
report item properties for a data source in the same way as for any other report
element. DataSourceHandle also provides methods to access the scripting
methods of the data source.

The two subclasses of DataSourceHandle, OdaDataSourceHandle and
ScriptDataSourceHandle, provide the functionality for the two families of BIRT
data sources. For more information about ODA data sources, see the Javadoc for
the ODA API, in Open Data Access (ODA) 3.0.0 API Reference. The scripting
methods for a scripted data source fully define the data source, as described
earlier in this book.

A b o u t p r o g r a m m i n g w i t h a r e p o r t d e s i g n 215

About data set classes
DataSetHandle is a subclass of ReportElementHandle. You get and set
properties for a data set in the same way as for any other report element.
DataSetHandle also provides methods to access properties specific to a data set,
such as the data source, the data set fields, and the scripting methods of the data
set.

The two subclasses of DataSetHandle, OdaDataSetHandle and
ScriptDataSetHandle, provide the functionality for the two families of BIRT
data sets. For more information about ODA data sets, see the Javadoc for the
ODA API.

Using a data set programmatically
Typically, a reporting application uses data sets and data sources already
defined in the report design. You can use the data set’s setDataSource() method
to change the data source of a data set. For example, based on the name of the
user of the reporting application, you can report on the sales database for a
particular geographical region, such as Europe or for North America.

Changing the properties of a data set

Changing the properties of a data set requires consideration of the impact on the
report design. If you change the data source of a data set, the type of the data
source must be appropriate for the type of the data set. You must also be certain
that the new data source can provide the same fields as the original data source.

How to change the data source for a data set

The code sample in Listing 13-17 shows how to check for a particular data
source and data set in a report design, then changes the data source for the data
set. The code finds the data source and data set by name.

Alternatively, use the getDataSets() and getDataSources() methods. Then use
the technique for iterating over the contents of a slot handle. The variable,
design, is a ReportDesignHandle object.

Listing 13-17 Modifying a data set

// Find the data set by name.
DataSetHandle ds = design.findDataSet("Customers");
// Find the data source by name.
DataSourceHandle dso = design.findDataSource("EuropeSales");
// Check for the existence of the data set and data source.
if (dso == null) || (ds == null)
{

System.err.println("EuropeSales or Customers not found");
return;

}
// Change the data source of the data set.

216 C h a p t e r 1 3 P r o g r a m m i n g w i t h t h e B I R T R e p o r t i n g A P I s

try
{

ds.setDataSource(dso);
} catch (SemanticException e1) {

e1.printStackTrace();
}

Changing the data set binding of a report item
You can also use the report item’s setDataSet() method to set or change the data
set used by a report item. If you change the data set used by a report item, you
must ensure that the contents of the report item access only data bindings that
are supplied by the new data set. If necessary, you must change the references to
data bindings in data elements, text elements, and scripting methods. If the data
bindings in the old data set do not match the names or data types of the fields
that the new data set provides, you must correct the data bindings before you
generate a report from the modified report design. Use the ReportItemHandle
method, columnBindingsIterator(), to iterate over the column bindings that the
report item uses. The items in the list are of type ComputedColumnHandle.
This class provides methods to access the name, expression, and data type of the
column binding.

To access the data set column and expression that a data item uses, call the
methods, getResultSetColumn() and getResultSetExpression(). You can
compare the data type and name with the result set columns that the data set
returns.

How to bind a data set to a table

The code sample in Listing 13-18 shows how to check for a particular data set in
a report design, then changes the data set for a table. The code finds the table
and data set by name. Alternatively, use slot handles to navigate the report
design structure. The variable, design, is a ReportDesignHandle object.

Listing 13-18 Binding a data set to a report item

// Find the table by name.
TableHandle table =

(TableHandle) design.findElement("Report Data");
// Find the data set by name.
DataSetHandle ds = design.findDataSet("EuropeanCustomers");
// Check for the existence of the table and the data set.
if (table == null) || (ds == null) {

System.err.println("Incorrect report structure");
return;

}
// Change the data set for the table.
try {

table.setDataSet(ds);

A b o u t p r o g r a m m i n g w i t h a r e p o r t d e s i g n 217

} catch (Exception e) {
System.err.println("Could not set data set for table");

}

Saving a report design programmatically
After making changes to an existing report design or creating a new report
design, you can choose to save the design for archival purposes, or for future
use. To overwrite an existing report design to which the application has made
changes, use the ReportDesignHandle.save() method. To save a new report
design or to keep the original report design after making changes, use the
ReportDesignHandle.saveAs() method.

Alternatively, if you do not need to save the changes to the report design, use
the ReportDesignHandle.serialize() method. This method returns an output
stream. The report engine can generate a report by opening a stream as an input
stream.

If you do not need to make any further changes to the report design, use the
ReportDesignHandle.close() method to close the report design.

How to save a report design

The following code saves the open report design. The variable, design, is a
ReportDesignHandle object.

design.saveAs("sample.rptdesign");
design.close();

Creating a report design programmatically
You can build a report design and generate the report output in an application
without using BIRT Report Designer. You use the createDesign() method on the
session handle class, SessionHandle, to create a report design. You use the other
model classes to create its contents.

How to create a new report design

The following code creates a report design.

SessionHandle session = DesignEngine.newSession(null);
ReportDesignHandle design = session.createDesign();

This page intentionally left blank

219

C h a p t e r

Chapter 14Programming with the
BIRT Charting APIs

This chapter describes the basic requirements of a charting application and
illustrates the use of BIRT charting API classes and interfaces for modifying an
existing chart definition and for creating a new chart.

The BIRT charting API allows you to:

■ Write Java applications with bar charts, pie charts, line charts, scatter charts,
area charts, dial charts, and stock charts.

■ Customize a chart in many ways to fit the requirements of the application.

■ Modify an existing chart item in a BIRT report design or add a chart to an
existing report design.

While this chapter illustrates how to customize an existing chart and create a
new chart within a BIRT application, describing how to use the charting API in a
stand-alone application is beyond the scope of this book. However, creating a
chart in a stand-alone application is not significantly different from creating a
chart in a BIRT application.

Although there are more than 400 classes and interfaces in the BIRT charting
API, this chapter discusses only the most important classes and interfaces. For
detailed information about the complete set of charting API classes and
interfaces, see the BIRT online help. For examples of completed charting
applications, download the BIRT samples from the BIRT web site.

220 C h a p t e r 1 4 P r o g r a m m i n g w i t h t h e B I R T C h a r t i n g A P I s

About the environment for building a charting
application

The minimum requirements for creating a basic charting application are:

■ The BIRT run-time engine

The run-time engine is only required for an application that runs within the
BIRT report context.

■ The BIRT run-time charting engine

■ Java JDK 1.4.2 or later

■ The following JAR files and folders within the Java classpath:

■ From BIRT runtime/Chart Engine

❏ org.eclipse.birt.chart.device.extension_2.1.0.jar

❏ org.eclipse.birt.chart.device.svg_2.1.0.jar

❏ org.eclipse.birt.chart.engine.extension_2.1.0.jar

❏ org.eclipse.birt.chart.engine_2.1.0.jar

❏ org.eclipse.birt.core.ui_2.1.0.jar

❏ org.eclipse.birt.core_2.1.0.jar

■ From BIRT runtime/Report Engine

❏ org.mozilla.rhino_1.6.0 folder

❏ org.apache.commons.codec_1.3.0 folder

❏ org.eclipse.emf.common_2.2.0.jar

❏ org.eclipse.emf.ecore_2.1.0.jar

❏ org.eclipse.emf.ecore.xmi_2.1.0.jar

■ From eclipse/plugins

❏ org.eclipse.birt.chart.device.swt_2.1.0.jar

❏ org.eclipse.birt.chart.ui.extension_2.1.0.jar

❏ org.apache.batik_1.6.0 folder

❏ org.apache.batik.pdf_1.6.0 folder

❏ org.apache.xerces_2.8.0 folder

■ Any custom extension plug-in JAR files of your own creation

Ve r i f y i n g t h e d e v e l o p m e n t e n v i r o n m e n t f o r c h a r t i n g a p p l i c a t i o n s 221

Your application may require additional JAR files in the Java classpath. You can
be certain that you have all the necessary BIRT-related JAR files for an
application if you add the following JAR files to your Java classpath:

■ $RUNTIME/Chart Engine /*.jar

■ $RUNTIME/Report Engine/plugins/*.jar

In addition to the JAR files that are installed with the BIRT run-time engine, you
might need to include itext-1.3.jar in the Java classpath. itext-1.3.jar is an
auxiliary JAR file that you have to download as described in the instructions in
the chapter on BIRT requirements. itext-1.3.jar is used only for the generation of
a PDF report.

Verifying the development environment for charting
applications

Listing 14-1 illustrates the creation of the most basic charting application it is
possible to write. The output of the example program is an XML file that
describes a chart that has no data binding, no labels, no series, and no titles.

Although the output of this example is not useful, by compiling and running the
program, you can verify that your environment is correctly configured for
compiling and running a charting application.

Listing 14-1 Basic charting application

import java.io.*;
import org.eclipse.birt.chart.model.*;
import org.eclipse.birt.chart.model.impl.*;

public class MyFirstChartProg {
public static void main(String[] args) {

Chart myChart = ChartWithAxesImpl.create();
Serializer si = SerializerImpl.instance();
try {

si.write(myChart, new FileOutputStream(new File
("C:\\myChart.chart")));

}
catch (IOException e) {e.printStackTrace();}

}
}

When this program compiles and executes without errors, it creates a file called
myChart.chart containing several hundred lines of XML code representing a
basic chart definition.

222 C h a p t e r 1 4 P r o g r a m m i n g w i t h t h e B I R T C h a r t i n g A P I s

Using the charting API to modify an existing chart
A Java program can open an existing BIRT report design file and alter the
content of the report before displaying or saving the report. The chapter on
programming BIRT describes how to open a report file using the BIRT engine
API. This section describes how to modify an existing chart within the report
design by using the charting API. The following sections contain code examples
for each step in the process.

Getting a Chart object from the report design
To get a report item from a report design, you must first get a
ReportDesignHandle object. Listing 14-2 illustrates how to get a
ReportDesignHandle object and then get a Chart object from it. The code in
Listing 14-2 assumes that the chart that you want to modify is the first report
item of a list and that the list is the first report item in the report.

Listing 14-2 Getting a ReportDesignHandle object and a Chart object

SessionHandle sessionHandle = DesignEngine.newSession(null);
ReportDesignHandle designHandle = null;
try {

designHandle = sessionHandle.openDesign(designFileName);
} catch (DesignFileException e1) {
 e1.printStackTrace();
}
ListHandle li = (ListHandle)

designHandle.getBody().getContents().get(0);
ExtendedItemHandle eihChart1 =

(ExtendedItemHandle)
li.getSlot(0).getContents().get(0);

ChartReportItemImpl crii = null;
try {

crii = (ChartReportItemImpl) eihChart1.getReportItem();
}
catch (ExtendedElementException e2) {

e2.printStackTrace();
}
Chart chart = (Chart) crii.getProperty("chart.instance");

Modifying chart properties
When you have the chart you want to modify, you can change the chart’s
properties, as shown in the following code example.

chart.setDimensions(ChartDimension.TWO_DIMENSIONAL_LITERAL);
chart.getTitle().getLabel().getCaption().setValue

("North America");

U s i n g t h e c h a r t i n g A P I t o m o d i f y a n e x i s t i n g c h a r t 223

chart.getTitle().getLabel().getCaption().getFont()
.setRotation(5);

Modifying axes properties
To modify the properties of one or more axes of a chart, it is first necessary to
cast the Chart object to a type of ChartWithAxes, as shown in the following
statement.

chart = (ChartWithAxes) chart;

Listing 14-3 illustrates the technique for getting the axes of a chart and setting
their properties.

Listing 14-3 Getting an axis and setting its properties

Axis xAxisPrimary = chart.getPrimaryBaseAxes()[0];
xAxisPrimary.getLabel().getCaption().getFont().setRotation

(45);
xAxisPrimary.getTitle().getCaption().setValue("Months");
Axis yAxisPrimary =

chart.getPrimaryOrthogonalAxis(xAxisPrimary);
yAxisPrimary.getMajorGrid().setTickStyle

(TickStyle.LEFT_LITERAL);
yAxisPrimary.setType(AxisType.LINEAR_LITERAL);
yAxisPrimary.getLabel().getCaption().getFont().setRotation

(90);
yAxisPrimary.getTitle().getCaption()

.setValue("Sales Growth");
yAxisPrimary.setFormatSpecifier

(JavaNumberFormatSpecifierImpl.create("$"));

Modifying plot properties
The following code illustrates how to get the chart plot and how to modify its
properties.

Plot plot = chart.getPlot();
plot.getClientArea().setBackground(ColorDefinitionImpl.CREAM

());
plot.getOutline().setVisible(true);

Modifying the legend properties
You can also get the chart legend and modify its properties using code similar to
the following code.

Legend legend = cm.getLegend();
legend.getText().getFont().setSize(16);
legend.getInsets().set(10, 5, 0, 0);
legend.setAnchor(Anchor.NORTH_LITERAL);

224 C h a p t e r 1 4 P r o g r a m m i n g w i t h t h e B I R T C h a r t i n g A P I s

Modifying the series properties
The following code illustrates how to get a series from an axis and how to
change the properties of the series.

SeriesDefinition seriesDefX = SeriesDefinitionImpl.create();
seriesDefX = (SeriesDefinition)

xAxisPrimary.getSeriesDefinitions().get(0);
seriesDefX.getSeriesPalette().update(0);

Adding a series to a chart
You can add a new series to a chart. Listing 14-4 illustrates how to create a
second series, set some of its properties, assign data to the series, and add the
series to an axis.

Listing 14-4 Creating a series, setting its properties, and adding the series to an
axis

SeriesDefinition seriesDefY = SeriesDefinitionImpl.create();
seriesDefY.getSeriesPalette().update(ColorDefinitionImpl

.YELLOW());
BarSeries barSeries2 = (BarSeries) BarSeriesImpl.create();
barSeries2.setSeriesIdentifier("Q2");
barSeries2.setRiserOutline(null);
barSeries2.getLabel().setVisible(true);
barSeries2.setLabelPosition(Position.INSIDE_LITERAL);

// Assign data to the series

Query query2 = QueryImpl.create("row[\"Value2\"]");
barSeries2.getDataDefinition().add(query2);
seriesDefY.getSeries().add(barSeries2);
seriesDefY.getQuery().setDefinition("\"Q2\"");

// Add the new series to the y-axis

yAxisPrimary.getSeriesDefinitions().add(seriesDefY);

Adding a chart event handler to a charting
application
There are two kinds of chart event handlers that you can add to a charting
application: a Java event handler or a JavaScript event handler.

Adding a Java chart event handler to a charting application
To add a Java event handler, you must first create a separate Java class file
containing your new event handler method or methods. The process for
creating a Java event handler class is identical to the process for creating a Java

U s i n g t h e c h a r t i n g A P I s t o c r e a t e a n e w c h a r t 225

event handler class for any other report item. For more information about
creating a Java event handler class, see the chapter on scripting with Java.

To register a Java class in the charting application code, use the setScript()
method of the chart instance object, as shown in the following statement.

chart.setScript
("com.MyCompany.eventHandlers.ChartEventHandlers");

In the preceding statement, the string passed to the setScript() method is the
fully qualified name of the Java class. Notice that the .class extension is not
included in the class name.

Adding a JavaScript chart event handler to a charting
application
To add a JavaScript event handler, you must code the script as one long string
and pass that string to the setScript() method of the chart instance object. You
must include a function for every event handler method of the chart. For
example, the Java statement in Listing 14-5 passes a string to chart.setScript()
containing event handler scripts for two event handler methods.

Listing 14-5 Adding an event handler script to a chart

cwaBar.setScript(
"function beforeDrawDataPointLabel”
+ "(dataPoints, label, scriptContext)"
+ "{val = dataPoints.getOrthogonalValue();"
+ "clr = label.getCaption().getColor();"
+ "if (val < -10) clr.set(32, 168, 255);"
+ "else if ((val >= -10) & (val <=10))”
+ “clr.set(168, 0, 208);"
+ "else if (val > 10) clr.set(0, 208, 32);}"

Line breaks in the JavaScript code are indicated by backslash n (\n), and
quotes within the script are indicated by a backslash quote (\"). The JavaScript
code in Listing 14-5 consists of several strings concatenated together to form a
single string. This technique helps make the script more readable.

Using the charting APIs to create a new chart
You can add a new chart to an existing report design or to a new report design.
In either case, your program must perform a series of tasks. Creating a new
chart and adding the chart to a report design requires performing the following
tasks:

■ Creating the chart instance object

The chart instance object contains the properties of the chart, such as its title,
its axes, and its series.

226 C h a p t e r 1 4 P r o g r a m m i n g w i t h t h e B I R T C h a r t i n g A P I s

■ Setting the properties of the chart instance object

The properties of the chart include everything about the chart except the
data set to which it is bound and the chart’s ultimate display size.

■ Getting an ElementFactory object

You use the ElementFactory object to create a new report element.

■ Creating sample data

Sample data is useful for the correct display of a chart element in BIRT
Report Designer.

■ Getting an ExtendedItemHandle object

The ExtendedItemHandle object is similar to a standard report item handle.
The item handle is the object with which you access the report item instance.
The handle is also the object that binds to a data set and the object that you
add to the report design.

■ Setting the chart.instance property on the report item

The chart.instance property of the report item identifies the chart instance
object. This property provides the link between the report item and the chart
instance object.

■ Getting a data set from the report design

A chart must bind to data in order to have meaning. The report design
provides access to one or more data sets that the report developer defined.
The program also can create a data set and add it to the design.

■ Binding a chart to the data set

To bind a chart to a data set, you specify the data set as a property of the
extended item handle object.

■ Adding the new chart to the report design

The last step is to add the chart to the report design by adding the extended
item handle object to the report design.

■ Optionally saving the report design

An application program that creates or modifies a BIRT report design can
also save the new or modified report design.

The following sections describe the preceding steps in more detail and provide
code examples for every step.

Creating the chart instance object
To create a chart instance object, you use a static method of one of the chart
implementation classes. Depending on which chart implementation object you

U s i n g t h e c h a r t i n g A P I s t o c r e a t e a n e w c h a r t 227

use, you can either create a chart with or without axes. The following line of
code creates a chart with axes.

ChartWithAxes newChart = ChartWithAxesImpl.create();

Setting the properties of the chart instance object
You define the characteristics of the chart by setting the properties of the chart
instance object. The following sections describe setting various properties of the
chart.

Setting the chart color and bounds
To set the chart’s color and bounds, use setter methods of the chart instance
object.

newChart.getBlock().setBackground
(ColorDefinitionImpl.WHITE);

newChart.getBlock().setBounds(BoundsImpl.create(0, 0, 400,
250));

newChart.getTitle().getLabel().getCaption().setValue
("Europe");

Setting plot properties
To set properties of the plot, first get a Plot object from the chart instance object,
then use a setter method of a component of the Plot object.

Plot p = newChart.getPlot();
p.getClientArea().setBackground(ColorDefinitionImpl.create

(255, 255, 225));

Setting legend properties
To set properties of the chart legend, first get a Legend object from the chart
instance object, then use a setter method of a component of the Legend object.

Legend lg = newChart.getLegend();
lg.getText().getFont().setSize(16);
lg.getInsets().set(1, 1, 1, 1);
lg.getOutline().setVisible(false);
lg.setAnchor(Anchor.NORTH_LITERAL);

Setting legend line properties
To set properties of the legend line, first get a LineAttribute object from the
Legend object.

LineAttributes lia = lg.getOutline();
lia.setStyle(LineStyle.SOLID_LITERAL);

228 C h a p t e r 1 4 P r o g r a m m i n g w i t h t h e B I R T C h a r t i n g A P I s

Setting axes properties
A chart with axes always has at least two axes, the primary base axis and the
axis orthogonal to the base axis. There can be more than one primary base axis,
but for every base axis there is one axis that is orthogonal to it. To get a primary
base axis, use the getPrimaryBaseAxes() method of the chart instance. This
method returns an array. If there is only one primary base axis, get the zeroth
element of the array, as shown in the following code.

Axis xAxisPrimary = newChart.getPrimaryBaseAxes()[0];

The following code sets the properties of the primary base axis.

xAxisPrimary.setType(AxisType.TEXT_LITERAL);
xAxisPrimary.getMajorGrid().setTickStyle

(TickStyle.BELOW_LITERAL);
xAxisPrimary.getOrigin().setType

(IntersectionType.VALUE_LITERAL);
xAxisPrimary.getTitle().setVisible(false);

To get the axis orthogonal to the primary base axis, use the
getPrimaryOrthogonalAxis() method of the chart instance object, as shown in
the following code:

Axis yAxisPrimary =
newChart.getPrimaryOrthogonalAxis(xAxisPrimary);

yAxisPrimary.getMajorGrid().setTickStyle
(TickStyle.LEFT_LITERAL);

yAxisPrimary.getScale().setMax(NumberDataElementImpl.create
(160));

yAxisPrimary.getScale().setMin(NumberDataElementImpl.create
(-50));

yAxisPrimary.getTitle().getCaption().setValue
("Sales Growth");

Creating a category series
To create a chart series, use the static create() method of the SeriesImpl class.

Series seriesCategory = SeriesImpl.create();

Once you have a Series object, you must create a query and add the query to the
series data definition, as shown in the following code:

Query query = QueryImpl.create("row[\"Category\"]");
seriesCategory.getDataDefinition().add(query);

Creating a y-series
To create a y-series, use the static create() method of one of the subclasses of the
SeriesImpl class. You can create series of various types using the create()
method of one of the following classes:

■ AreaSeriesImpl

U s i n g t h e c h a r t i n g A P I s t o c r e a t e a n e w c h a r t 229

■ BarSeriesImpl

■ DialSeriesImpl

■ LineSeriesImpl

■ PieSeriesImpl

■ ScatterSeriesImpl

■ StockSeriesImpl

Because a chart can have multiple series of differing types, it is not always
possible to classify a chart as a single type.

The following example creates a bar series and a line series.

BarSeries bs1 = (BarSeries) BarSeriesImpl.create();
bs1.setSeriesIdentifier("Q1");
LineSeries ls1 = (LineSeries) LineSeriesImpl.create();
ls1.setSeriesIdentifier("Q2");

Defining the y-series queries
To set the data values for the y-series, you must create Query objects and add
the queries to the LineSeries objects as shown in the following code.

Query query1 = QueryImpl.create("row[\"Value1\"]");
Query query2 = QueryImpl.create("row[\"Value2\"]");
bs1.getDataDefinition().add(query1);
ls1.getDataDefinition().add(query2);

Setting the y-series properties
To set the properties of the y-series, use getter and setter methods of the
LineSeries objects, as shown in Listing 14-6.

Listing 14-6 Setting the properties of a series

ls1.getLineAttributes().setColor
(ColorDefinitionImpl.RED());

ls1.getMarker().setType(MarkerType.TRIANGLE_LITERAL);
ls1.getLabel().setVisible(true);
ls1.getLabel().getCaption().setValue("Q1");
ls2.getLineAttributes().setColor

(ColorDefinitionImpl.YELLOW());
bs1.getMarker().setType(MarkerType.TRIANGLE_LITERAL);
bs1.getLabel().setVisible(true);
bs1.getLabel().getCaption().setValue("Q2");

230 C h a p t e r 1 4 P r o g r a m m i n g w i t h t h e B I R T C h a r t i n g A P I s

Setting the properties of the x- and y-series
To set the properties of either the x- or y-series, you must first use the static
create() method of the SeriesDefinitionImpl class to get a SeriesDefinition
object, as shown in the following code.

SeriesDefinition sdX = SeriesDefinitionImpl.create();
SeriesDefinition sdY1 = SeriesDefinitionImpl.create();
SeriesDefinition sdY2 = SeriesDefinitionImpl.create();

To set the color of a series, get a SeriesPalette object and call its update()
method, as shown in the following code.

sdX.getSeriesPalette().update(0);
sdY1.getSeriesPalette().update(0);
sdY2.getSeriesPalette().update(0);

Adding a series definition to the Axis object
After setting the properties of a SeriesDefinition object, you must add the
SeriesDefinition object to the Axis object’s collection of series definitions, as
shown in the following code.

xAxisPrimary.getSeriesDefinitions().add(sdX);
yAxisPrimary.getSeriesDefinitions().add(sdY1);
yAxisPrimary.getSeriesDefinitions().add(sdY2);

Adding series, queries, and categories to the series
definitions
To add the line series to the series definition’s collection of series, get the series
from the SeriesDefinition object and add the line series to it, as shown in the
following examples.

sdY1.getSeries().add(ls1);
sdY2.getSeries().add(bs1);

To add a query to the series definition, get the query from the SeriesDefinition
object and pass the query to the setDefinition() method, as shown in the
following code.

sdY1.getQuery().setDefinition("\"Q1\"");
sdY2.getQuery().setDefinition("\"Q2\"");

To add a category to the SeriesDefinition object, get the series from the
SeriesDefinition object and add the category to it, as shown in the following
statement:

sdX.getSeries().add(seriesCategory);

U s i n g t h e c h a r t i n g A P I s t o c r e a t e a n e w c h a r t 231

Creating sample data
This section describes an optional step in the creation of a chart. If you omit the
code in Listing 14-7, the chart renders correctly at run time but not in the BIRT
Report Designer.

Listing 14-7 Adding sample data to a chart

SampleData sdt = DataFactory.eINSTANCE.createSampleData();
BaseSampleData sdBase =

DataFactory.eINSTANCE.createBaseSampleData();
sdBase.setDataSetRepresentation("A");
sdt.getBaseSampleData().add(sdBase);
OrthogonalSampleData sdOrthogonal =

DataFactory.eINSTANCE.createOrthogonalSampleData();
sdOrthogonal.setDataSetRepresentation("1");
sdOrthogonal.setSeriesDefinitionIndex(0);
sdt.getOrthogonalSampleData().add(sdOrthogonal);
newChart.setSampleData(sdt);

Getting an element factory object
You must have an ElementFactory object to create the next object in the chain. To
get an ElementFactory object, use the getElementFactory() method of the
ReportDesignHandle object.

ElementFactory ef = designHandle.getElementFactory();

Getting an extended item handle object
You use the ElementFactory object to create an ExtendedItemHandle object.
Because the chart report item is an extended report item, you use the
newExtendedItem() method of the ElementFactory object to create the
ExtendedItemHandle object.

ExtendedItemHandle chartHandle = ef.newExtendedItem(null,
"Chart");

Setting the chart.instance property on the report item
You must set the chart.instance property of the report item object so that it
contains the chart instance object. You get the report item from the extended
item handle object, as shown in the following code.

try{
chartHandle.getReportItem().setProperty("chart.instance",
newChart);

} catch(ExtendedElementException e)
{

e.printStackTrace();
}

232 C h a p t e r 1 4 P r o g r a m m i n g w i t h t h e B I R T C h a r t i n g A P I s

Getting a data set from the report design
The new chart is still not bound to a data set. To bind a chart to a data set, you
must get a data set from the report design, as shown in the following code.

OdaDataSetHandle dataSet =
(OdaDataSetHandle) designHandle.getDataSets().get(0);

Binding the chart to the data set
Use the extended item handle to bind the chart to the data set. This is also a
good place to set the dimensions of the report item.

try {
chartHandle.setDataSet(dataSet);
chartHandle.setHeight("250pt");
chartHandle.setWidth("400pt");

}
catch (SemanticException e) {

e.printStackTrace();
}

Adding the new chart to the report design
Once the properties of the chart are properly set and the chart is bound to a data
set, it is time to add the new chart to the report design. The following code adds
the chart to the footer of a list item.

ListHandle li = (ListHandle)
designHandle.getBody().getContents().get(0);

try {
li.getFooter().add(chartHandle);

}
catch (ContentException e3) {

e3.printStackTrace();
}
catch (NameException e3) {

e3.printStackTrace();
}

Saving the report design after adding the chart
Although the previous step is the final step in creating the chart and adding it to
the report, you still have to save the design. It is a good idea to save the
modified report design with a new name in order not to destroy the original
report design file.

try {
designHandle.saveAs("./Test_modified.rptdesign");

}

U s i n g t h e c h a r t i n g A P I s t o c r e a t e a n e w c h a r t 233

catch (IOException e) {
e.printStackTrace();

}
designHandle.close();

Putting it all together
The application in Listing 14-8 uses many of the techniques illustrated in this
section and unites them in a coherent Java application.

Listing 14-8 Adding a chart to the report design

import java.io.IOException;
import java.util.HashMap;
import org.eclipse.birt.report.engine.api.*;
import org.eclipse.birt.chart.model.*;
import org.eclipse.birt.chart.model.attribute.*;
import org.eclipse.birt.chart.model.attribute.impl.*;
import org.eclipse.birt.chart.model.component.*;
import org.eclipse.birt.chart.model.component.impl.*;
import org.eclipse.birt.chart.model.data.*;
import org.eclipse.birt.chart.model.data.impl.*;
import org.eclipse.birt.chart.model.layout.*;
import org.eclipse.birt.chart.model.type.*;
import org.eclipse.birt.chart.model.type.impl.*;
import org.eclipse.birt.chart.reportitem.*;

/**
 * Reads a BIRT report design file, adds a chart and writes a
 * new report design file containing the added chart.
 * Run this application with the following command line:
 * java ChartReportApp origDesing modifiedDesign
 */

public class ChartReportApp
{
private EngineConfig config;

ChartReportApp () {

// Get an EngineConfig object with which to specify
// the home of the BIRT report engine.
config = new EngineConfig();

// Alter this path to the location of your Eclipse
// installation.

234 C h a p t e r 1 4 P r o g r a m m i n g w i t h t h e B I R T C h a r t i n g A P I s

config.setEngineHome(
"C:/birt-runtime-2_1_0/Report Engine");

}

/**
* Give default values to the original design, the new design,
* and the output format.
* Extract command line values, if any.
* Create an instance of this class, build a chart,
* and run the report
***/

public static void main(String[] args)
{

String reportDesign = "./test.rptdesign";
String newReportDesign = "./Test_modified.rptdesign";
String format = HTMLRenderOption.OUTPUT_FORMAT_HTML;
boolean showInfo = true;

if(args.length > 0){
reportDesign = args[0];

}
if(args.length > 1){

newReportDesign = args[1];
}

ChartReportApp cra = new ChartReportApp();

cra.build(reportDesign, newReportDesign);
cra.run(newReportDesign, format);

}

/***
* Build a chart
**/
public void build (String origDesign, String newDesign)
{

// Get a new DesignEngine session
SessionHandle sessionHandle = DesignEngine.newSession(

null);

// Get a handle to the original report design
ReportDesignHandle designHandle = null;
try {

designHandle = sessionHandle.openDesign(origDesign);
} catch (DesignFileException e1) {

e1.printStackTrace();

U s i n g t h e c h a r t i n g A P I s t o c r e a t e a n e w c h a r t 235

}

// Creaate a new chart instance object
ChartWithAxes newChart = ChartWithAxesImpl.create();

// Set the properties of the chart
newChart.setType("Line Chart");
newChart.setSubType("Overlay");
newChart.getBlock().setBackground(

ColorDefinitionImpl.WHITE());
newChart.getBlock().setBounds(

BoundsImpl.create(0, 0, 400, 250));
Plot p = newChart.getPlot();
p.getClientArea().setBackground(

ColorDefinitionImpl.create(255, 255, 225));
newChart.getTitle().getLabel().getCaption().

setValue("Europe");

Legend lg = cwaLine.getLegend();
LineAttributes lia = lg.getOutline();
lg.getText().getFont().setSize(16);
lia.setStyle(LineStyle.SOLID_LITERAL);
lg.getInsets().set(1, 1, 1, 1);
lg.getOutline().setVisible(false);
lg.setAnchor(Anchor.NORTH_LITERAL);

Axis xAxisPrimary = newChart.getPrimaryBaseAxes()[0];
xAxisPrimary.setType(AxisType.TEXT_LITERAL);
xAxisPrimary.getMajorGrid().setTickStyle(
TickStyle.BELOW_LITERAL);
xAxisPrimary.getOrigin().setType(
IntersectionType.VALUE_LITERAL);
xAxisPrimary.getTitle().setVisible(false);

Axis yAxisPrimary = cwaLine.getPrimaryOrthogonalAxis(
xAxisPrimary);

yAxisPrimary.getMajorGrid().setTickStyle(
TickStyle.LEFT_LITERAL);

yAxisPrimary.getScale().setMax(
NumberDataElementImpl.create(160));

yAxisPrimary.getScale().setMin(NumberDataElementImpl.
create(-50));

yAxisPrimary.getTitle().getCaption().
setValue("Sales Growth");

// Create sample data.
SampleData sdt = DataFactory.eINSTANCE.createSampleData();
BaseSampleData sdBase =

DataFactory.eINSTANCE.createBaseSampleData();

236 C h a p t e r 1 4 P r o g r a m m i n g w i t h t h e B I R T C h a r t i n g A P I s

sdBase.setDataSetRepresentation("A");
sdt.getBaseSampleData().add(sdBase);
OrthogonalSampleData sdOrthogonal =

DataFactory.eINSTANCE.createOrthogonalSampleData();
sdOrthogonal.setDataSetRepresentation("1");
sdOrthogonal.setSeriesDefinitionIndex(0);
sdt.getOrthogonalSampleData().add(sdOrthogonal);
newChart.setSampleData(sdt);

// Create the category series
Series seCategory = SeriesImpl.create();

// Set data value for X-Series
Query query = QueryImpl.create("row[\"Category\"]");
seCategory.getDataDefinition().add(query);

// Create the primary data set
LineSeries ls1 = (LineSeries) LineSeriesImpl.create();
ls1.setSeriesIdentifier("Q1");

// Set data value for Y-Series
Query query1 = QueryImpl.create("row[\"Value1\"]");
ls1.getDataDefinition().add(query1);
ls1.getLineAttributes().setColor(

ColorDefinitionImpl.RED());
ls1.getMarker().setType(MarkerType.TRIANGLE_LITERAL);
ls1.getLabel().setVisible(true);
ls1.getLabel().getCaption().setValue("Q1");
LineSeries ls2 = (LineSeries) LineSeriesImpl.create();
ls2.setSeriesIdentifier("Q2");

// Set data value for Y-Series
Query query2 = QueryImpl.create("row[\"Value2\"]");
ls2.getDataDefinition().add(query2);

ls2.getLineAttributes().setColor(
ColorDefinitionImpl.YELLOW());

ls2.getMarker().setType(MarkerType.TRIANGLE_LITERAL);
ls2.getLabel().setVisible(true);
ls2.getLabel().getCaption().setValue("Q2");

SeriesDefinition sdX = SeriesDefinitionImpl.create();
sdX.getSeriesPalette().update(0);
xAxisPrimary.getSeriesDefinitions().add(sdX);

SeriesDefinition sdY1 = SeriesDefinitionImpl.create();
sdY1.getSeriesPalette().update(0);
sdY1.getSeries().add(ls1);
sdY1.getQuery().setDefinition("\"Q1\"");

U s i n g t h e c h a r t i n g A P I s t o c r e a t e a n e w c h a r t 237

yAxisPrimary.getSeriesDefinitions().add(sdY1);

SeriesDefinition sdY2 = SeriesDefinitionImpl.create();
sdY2.getSeriesPalette().update(0);
sdY2.getSeries().add(ls2);
sdY2.getQuery().setDefinition("\"Q2\"");
yAxisPrimary.getSeriesDefinitions().add(sdY2);
sdX.getSeries().add(seCategory);

// Get a chart implementation object and set its
// chart.instance property
ElementFactory ef = designHandle.getElementFactory();
ExtendedItemHandle extendedItemHandle =

ef.newExtendedItem(null, "Chart");

try{
ChartReportItemImpl chartItem =

(ChartReportItemImpl)extendedItemHandle.
getReportItem();

chartItem.setProperty(“chart.instance”, newChart);
} catch(ExtendedElementException e){ e.printStackTrace(); }

// Get an ODA data set and bind it to the chart
OdaDataSetHandle dataSet = (OdaDataSetHandle)

designHandle.getDataSets().get(0);
try {

 extendedItemHandle.setDataSet(dataSet);
 extendedItemHandle.setHeight("250pt");
 extendedItemHandle.setWidth("400pt");

} catch (SemanticException e) {
e.printStackTrace();

}

// Add the chart to the report design
ListHandle li = (ListHandle) designHandle.

getBody().getContents().get(0);
try {

li.getFooter().add(extendedItemHandle);
} catch (ContentException e3) {

e3.printStackTrace();
} catch (NameException e3) {

e3.printStackTrace();
}

// Save the report design that now contains a chart
try {

designHandle.saveAs(newDesign);
} catch (IOException e) {

238 C h a p t e r 1 4 P r o g r a m m i n g w i t h t h e B I R T C h a r t i n g A P I s

e.printStackTrace();
}
designHandle.close();

}

/**
* Run the report design that contains the new chart.
* Depending on format parameter, this method creates either
* an HTML report or a PDF report.
**/
public void run(String reportDesign, String format)
{

// Create an image handler object
IHTMLImageHandler imageHandler = new

HTMLServerImageHandler();

// Create an emitter config object and set the image
// handler on it.
HTMLEmitterConfig hc = new HTMLEmitterConfig();
hc.setImageHandler(imageHandler);

// Create a rendering context object and set its image
// directories.
HTMLRenderContext renderContext = new HTMLRenderContext();
renderContext.setImageDirectory("./images");
renderContext.setBaseImageURL("./images");

// Create the report engine.
ReportEngine engine = new ReportEngine(config);

// Creaet a runnable report from the reportDesign.
IReportRunnable report = null;
try
{

report = engine.openReportDesign(reportDesign);
}
catch (EngineException e)
{

System.err.println("Report " + reportDesign +
" not found!\n");

engine.destroy();
return;

}

// Create a task to run the report
IRunAndRenderTask task = engine.

createRunAndRenderTask(report);
HTMLRenderOption options = new HTMLRenderOption();

U s i n g t h e B I R T c h a r t i n g A P I i n a J a v a S w i n g a p p l i c a t i o n 239

// Set the output format, either HTML or PDF
options.setOutputFormat(format);

// Give the report the same name as the design,
// except give it the appropriate extension
String output = reportDesign.replaceFirst(".rptdesign",

"." + format);
options.setOutputFileName(output);

// Set the render options on the RunAndRenderTask object
task.setRenderOption(options);

// Create an application context HashMap and add the
// render context to it
HashMap appContext = new HashMap();
appContext.put(

EngineConstants.APPCONTEXT_HTML_RENDER_CONTEXT,
renderContext);

// Set the application context on the task
task.setAppContext(appContext);

// Run the report.
try {

task.run();
}
catch (EngineException e1)
{

System.err.println("Report " + reportDesign +
" run failed.\n");

System.err.println(e1.toString());
}
engine.destroy();

}
}

Using the BIRT charting API in a Java Swing
application

The BIRT charting API does not rely on the BIRT design engine or the BIRT
report engine. You can use the BIRT charting API to generate a chart in any Java
application.

The program shown in Listing 14-9 uses the BIRT charting API to build a chart
in a Java Swing application. The application does not use the BIRT design

240 C h a p t e r 1 4 P r o g r a m m i n g w i t h t h e B I R T C h a r t i n g A P I s

engine or the BIRT report engine, and it does not process a BIRT report design
file.

Listing 14-9 Java Swing charting application

import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Container;
import java.awt.Dimension;
import java.awt.FlowLayout;
import java.awt.Font;
import java.awt.FontMetrics;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.GridLayout;
import java.awt.Rectangle;
import java.awt.Toolkit;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.ComponentEvent;
import java.awt.event.ComponentListener;
import java.util.HashMap;
import java.util.Map;
import javax.swing.JFrame;
import javax.swing.JPanel;

import org.eclipse.birt.chart.device.IDeviceRenderer;
import org.eclipse.birt.chart.device.IUpdateNotifier;
import org.eclipse.birt.chart.exception.ChartException;
import org.eclipse.birt.chart.factory.GeneratedChartState;
import org.eclipse.birt.chart.factory.Generator;
import org.eclipse.birt.chart.model.Chart;
import org.eclipse.birt.chart.model.ChartWithAxes;
import org.eclipse.birt.chart.model.attribute.AxisType;
import org.eclipse.birt.chart.model.attribute.Bounds;
import org.eclipse.birt.chart.model.attribute.impl.BoundsImpl;
import org.eclipse.birt.chart.model.component.Axis;
import org.eclipse.birt.chart.util.PluginSettings;
import org.eclipse.birt.chart.model.impl.ChartWithAxesImpl;
import org.eclipse.birt.chart.model.attribute.impl.

ColorDefinitionImpl;
import org.eclipse.birt.chart.model.layout.Plot;
import org.eclipse.birt.chart.model.layout.Legend;
import org.eclipse.birt.chart.model.attribute.

IntersectionType;
import org.eclipse.birt.chart.model.attribute.LegendItemType;
import org.eclipse.birt.chart.model.attribute.TickStyle;

U s i n g t h e B I R T c h a r t i n g A P I i n a J a v a S w i n g a p p l i c a t i o n 241

import org.eclipse.birt.chart.model.data.NumberDataSet;
import org.eclipse.birt.chart.model.data.impl.

NumberDataSetImpl;
import org.eclipse.birt.chart.model.data.TextDataSet;
import org.eclipse.birt.chart.model.component.Series;
import org.eclipse.birt.chart.model.data.SeriesDefinition;
import org.eclipse.birt.chart.model.type.BarSeries;
import org.eclipse.birt.chart.model.data.impl.

SeriesDefinitionImpl;
import org.eclipse.birt.chart.model.attribute.Position;
import org.eclipse.birt.chart.model.data.impl.TextDataSetImpl;
import org.eclipse.birt.chart.model.type.impl.BarSeriesImpl;
import org.eclipse.birt.chart.model.component.impl.SeriesImpl;

/* The selector of charts in Swing JPanel.
 *
 */
public final class SwingChartingApp extends JPanel implements

IUpdateNotifier,
ComponentListener

{

private static final long serialVersionUID = 1L;
private boolean bNeedsGeneration = true;
private GeneratedChartState gcs = null;
private Chart cm = null;
private IDeviceRenderer idr = null;
private Map contextMap;

/* Contructs the layout with a container for displaying
 * chart
 */
public static void main(String[] args)
{

SwingChartingApp scv = new SwingChartingApp();
JFrame jf = new JFrame();
jf.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
jf.addComponentListener(scv);
Container co = jf.getContentPane();
co.setLayout(new BorderLayout());
co.add(scv, BorderLayout.CENTER);
Dimension dScreen = Toolkit.

getDefaultToolkit().getScreenSize();
Dimension dApp = new Dimension(800, 600);
jf.setSize(dApp);
jf.setLocation((dScreen.width - dApp.width) / 2,

(dScreen.height - dApp.height) / 2);
jf.setTitle(scv.getClass().getName() + " [device="

+ scv.idr.getClass().getName()

242 C h a p t e r 1 4 P r o g r a m m i n g w i t h t h e B I R T C h a r t i n g A P I s

+ "]");//$NON-NLS-1$
jf.show();

}

/* Get the connection with SWING device to render the
 * graphics.
 */
SwingChartingApp()
{

contextMap = new HashMap();
final PluginSettings ps = PluginSettings.instance();
try
{

idr = ps.getDevice("dv.SWING");//$NON-NLS-1$
}
catch (ChartException ex)
{

ex.printStackTrace();
}
cm = createBarChart();

}

/* Build a simple bar chart */
public static final Chart createBarChart()
{

ChartWithAxes cwaBar = ChartWithAxesImpl.create();

/* Plot */
cwaBar.getBlock().

setBackground(ColorDefinitionImpl.WHITE());
cwaBar.getBlock().getOutline().setVisible(true);
Plot p = cwaBar.getPlot();
p.getClientArea().

setBackground(
ColorDefinitionImpl.create(255,

255,
225));

p.getOutline().setVisible(false);

/* Title */
cwaBar.getTitle().getLabel().getCaption().

setValue("Bar Chart");

/* Legend */
Legend lg = cwaBar.getLegend();
lg.getText().getFont().setSize(16);
lg.setItemType(LegendItemType.CATEGORIES_LITERAL);

/* X-Axis */

U s i n g t h e B I R T c h a r t i n g A P I i n a J a v a S w i n g a p p l i c a t i o n 243

Axis xAxisPrimary = cwaBar.getPrimaryBaseAxes()[0];
xAxisPrimary.setType(AxisType.TEXT_LITERAL);
xAxisPrimary.getMajorGrid().

setTickStyle(TickStyle.BELOW_LITERAL);
xAxisPrimary.getOrigin().

setType(IntersectionType.VALUE_LITERAL);
xAxisPrimary.getTitle().setVisible(true);

/* Y-Axis */
Axis yAxisPrimary = cwaBar.

getPrimaryOrthogonalAxis(xAxisPrimary);
yAxisPrimary.getMajorGrid().

setTickStyle(TickStyle.LEFT_LITERAL);
yAxisPrimary.setType(AxisType.LINEAR_LITERAL);
yAxisPrimary.getLabel().getCaption().

getFont().setRotation(90);

/* Data Set */
TextDataSet categoryValues =

TextDataSetImpl.create(new String[]{
"Item 1", "Item 2", "Item 3"});

NumberDataSet orthoValues = NumberDataSetImpl.
create(new double[]{

25, 35, 15
});

/* X-Series */
Series seCategory = SeriesImpl.create();
seCategory.setDataSet(categoryValues);
SeriesDefinition sdX = SeriesDefinitionImpl.create();
sdX.getSeriesPalette().update(0);
xAxisPrimary.getSeriesDefinitions().add(sdX);
sdX.getSeries().add(seCategory);

/* Y-Series */
BarSeries bs = (BarSeries) BarSeriesImpl.create();
bs.setDataSet(orthoValues);
bs.setRiserOutline(null);
bs.getLabel().setVisible(true);
bs.setLabelPosition(Position.INSIDE_LITERAL);
SeriesDefinition sdY = SeriesDefinitionImpl.create();
yAxisPrimary.getSeriesDefinitions().add(sdY);
sdY.getSeries().add(bs);
return cwaBar;

}

public void regenerateChart()
{

bNeedsGeneration = true;

244 C h a p t e r 1 4 P r o g r a m m i n g w i t h t h e B I R T C h a r t i n g A P I s

repaint();
}

public void repaintChart()
{

repaint();
}

public Object peerInstance()
{

return this;
}

public Chart getDesignTimeModel()
{

return cm;
}

public Object getContext(Object key)
{

return contextMap.get(key);
}

public Object putContext(Object key, Object value)
{

return contextMap.put(key, value);
}

public Object removeContext(Object key)
{

return contextMap.remove(key);
}

public Chart getRunTimeModel()
{

return gcs.getChartModel();
}

public void paint(Graphics g)
{

super.paint(g);
Graphics2D g2d = (Graphics2D) g;
idr.setProperty(IDeviceRenderer.GRAPHICS_CONTEXT, g2d);
idr.setProperty(IDeviceRenderer.UPDATE_NOTIFIER, this);
Dimension d = getSize();
Bounds bo = BoundsImpl.create(0, 0, d.width, d.height);
bo.scale(72d / idr.getDisplayServer().

getDpiResolution());

U s i n g t h e B I R T c h a r t i n g A P I i n a J a v a S w i n g a p p l i c a t i o n 245

Generator gr = Generator.instance();

if (bNeedsGeneration)
{

bNeedsGeneration = false;
try
{

gcs = gr.build(idr.getDisplayServer(),
cm,
bo,
null,
null,
null);

}
catch (ChartException ex)
{

System.out.println(ex);
}

}

try
{

gr.render(idr, gcs);
}
catch (ChartException ex)
{

System.out.println(ex);
}

}

public void componentHidden(ComponentEvent e)
{
}

public void componentMoved(ComponentEvent e)
{
}

public void componentResized(ComponentEvent e)
{

bNeedsGeneration = true;
}

public void componentShown(ComponentEvent e)
{
}

}

246 C h a p t e r 1 4 P r o g r a m m i n g w i t h t h e B I R T C h a r t i n g A P I s

Understanding the chart programming examples
The org.eclipse.birt.chart.examples plug-in is a collection of chart programming
examples. The root directory of the chart programming examples is:

C:\eclipse\plugins\org.eclipse.birt.chart.examples

The individual examples in the chart examples plug-in are located in a
subdirectory under the examples root directory, called EXAMPLES_ROOT.
Most of the examples consist of one or more Java applications that use either
Java Swing or Eclipse SWT. The application classes are called viewer
applications and their class names end in Viewer. Most of the examples also
have one or more additional classes that the viewer class uses. The additional
classes are usually where the chart is built.

The following sections provide brief summaries of the examples in the chart
examples plug-in.

DataCharts
The DataCharts example consists of DataChartsViewer, a Java Swing
application that uses the DataCharts class to build a chart. Depending on user
selection, the application builds any of the following three kinds of charts:

■ A pie chart with a minimum slice

■ A bar chart with multiple y-axes

■ A bar chart with multiple Y series

GroupOnXSeries
The GroupOnXSeries example is a Java application that processes a BIRT report
design and modifies it. The original report design contains a chart report item
that does not group on the X series. The GroupOnXSeries Java application
modifies the design so that the chart report item does group on the X series. The
application modifies the design it reads from NonGroupOnXSeries.rptdesign
and it saves a new BIRT report design named GroupOnXSeries.rptdesign.

GroupOnYAxis
The GroupOnYAxis example is a Java application that processes a BIRT report
design and modifies it. The original report design contains a chart report item
that does not group on the y-axis. The GroupOnYAxis Java application modifies
the design so that the chart report item does group on the y-axis. The
application modifies the design it reads from NonGroupOnYAxis.rptdesign and
it saves a new BIRT report design named GroupOnYAxis.rptdesign.

U n d e r s t a n d i n g t h e c h a r t p r o g r a m m i n g e x a m p l e s 247

AutoDataBinding
The AutoDataBinding example is an Eclipse SWT application that consists of
the AutoDataBindingViewer and DataRowExpressionEvaluator classes. The
AutoDataBindingViewer creates a SWT Display widget and adds a chart to it.
The application binds data to the chart and renders the chart.

FormatCharts
The FormatCharts example is a Java Swing application that consists of the
FormatChartsViewer and FormatCharts Java classes. The FormatChartsViewer
class calls any of several methods in FormatCharts to add a chart to the
application. FormatCharts has methods to build the following kinds of charts
based on user selection:

■ Axis format

■ Colored by category

■ Legend title

■ Percentage value

■ Plot format

■ Series format

InteractivityCharts
There are three viewer applications for the InteractivityCharts example,
SvgInteractivityViewer, SwingInteractivityViewer, and SwtInteractivityViewer.
Each of the viewer applications uses a different Java framework, as indicated by
the name of the viewer. All three applications do the same thing, offering the
user a choice of type of interactivity chart and calling the corresponding method
in the InteractivityCharts class. The four types of interactivity illustrated in
these charts are:

■ Click to highlight series

■ Mouse over data points to show tooltips

■ Click line series to toggle visibility

■ Click pie slice to redirect URL

PDFChartGenerator
The PDFChartGenerator example is a Java application that builds a simple chart
and renders it as a PDF file. The PDFChartGenerator example consists of
ChartModels and PDFChartGenerator. ChartModels has a single method that
builds a simple chart. PDFChartGenerator uses the BIRT charting API to get the
PDF renderer and the chart generator.

248 C h a p t e r 1 4 P r o g r a m m i n g w i t h t h e B I R T C h a r t i n g A P I s

StyleProcessor
The StyleProcessor example builds a simple chart and applies styles to several
elements of the chart. The example consists of StyleChartViewer, an Eclipse
SWT application, and StyleProcessor class, an implementation of the
IStyleProcessor interface.

ScriptViewer
The ScriptViewer example consists of two applications, JavaScriptViewer and
JavaViewer. Both applications are SWT applications that illustrate the
techniques for creating charts with report element event handlers.
JavaScriptViewer builds charts that have JavaScript event handlers. JavaViewer
builds charts that have Java event handlers. Both applications use the
ScriptCharts class to build charts.

The ScriptCharts class has methods to create charts with report element event
handlers written in JavaScript and four methods that create charts with report
element event handlers written in Java.

Each JavaScript event handler is defined as a single string in ScriptCharts. The
Java event handlers are Java classes that are located in EXAMPLES_ROOT/api/
script/java. The ScriptCharts methods that add a Java event handler pass a
string containing the path of the Java class.

Viewer
The Viewer example is a set of six Eclipse applications that create a wide variety
of charts. There are two Java Swing applications and four Eclipse SWT
applications. The following list includes the viewers and the kinds of charts that
they can create:

■ Chart3DViewer

■ 3D bar chart

■ 3D line chart

■ 3D area chart

■ CurveFittingViewer

■ Curve fitting bar chart

■ Curve fitting line chart

■ Curve fitting stock chart

■ Curve fitting area chart

■ DialChartViewer

■ Single dial multiregion chart

■ Multidial multiregion chart

U n d e r s t a n d i n g t h e c h a r t p r o g r a m m i n g e x a m p l e s 249

■ Single dial single region chart

■ Multidial single region chart

■ SwingChartViewersSelector

■ Bar chart

■ Bar chart with 2 series

■ Pie chart

■ Pie chart with 4 series

■ Line chart

■ Bar/Line stacked chart

■ Scatter chart

■ Area chart

■ SwingLiveChartViewer

■ Live animated chart with scrolling data

■ SWTchartViewerSelector

■ Bar chart

■ Bar chart with 2 series

■ Pie chart

■ Pie chart with 4 series

■ Line chart

■ Bar/Line stacked chart

■ Scatter chart

■ Area chart

ChartWizardLauncher
The ChartWizardLauncher example consists of two Java classes,
ChartWizardLauncher and DefaultDataServiceProviderImpl.
ChartWizardLauncher attempts to read a chart from testCharts.chart. If the file
exists, it modifies that file. If the file does not exist, the application creates a new
file. The ChartWizardLauncher uses the BIRT chart wizard to create a wizard for
the chart. DefaultDataServiceProviderImpl provides a basic implementation for
a simulated data service.

250 C h a p t e r 1 4 P r o g r a m m i n g w i t h t h e B I R T C h a r t i n g A P I s

Report
There are three report examples, all of which are Java applications that have no
user interface. The three report examples use the BIRT design engine to build a
BIRT report design file from scratch. All three report examples use the BIRT
charting API to add a chart to the report design. All of the report examples do
add the following elements to the report design file:

■ Master pages

■ Data sources

■ Data sets

■ A body section

The MeterChartExample example adds a meter chart to the body of the report.
The SalesReport example creates styles and adds a pie chart to the body of the
report. The StockReport example adds a stock chart to the body of the report.

Preference
The preference example illustrates how a Java servlet can process URL
parameters to set style preferences for a chart. The servlet, PreferenceServlet,
uses ChartModels to generate the chart. The servlet uses the
LabelStyleProcessor class to use the style parameters to affect the style of a label
in the chart. The example also includes a help page that explains how to do the
following things:

■ Set up Eclipse to work with Tomcat

■ Run the Preference example

■ Develop chart pages using JSPs and servlets

251

P a r t

Part VWorking with the
Extension Framework

This page intentionally left blank

253

C h a p t e r

Chapter 15Building the BIRT Project
This chapter explains how to download the BIRT 2.1 source code and build the
BIRT project. This information is primarily for contributors to the BIRT open
source project. You do not need to build BIRT to extend BIRT or write scripts for
BIRT.

About building the BIRT project
Building the BIRT project consists of the following tasks:

■ Assuring that you have the correct software on your system

Your Eclipse version and your Java JDK must be compatible with the version
of BIRT you are building. BIRT also requires several additional Eclipse
plug-ins.

■ Configuring your Eclipse workspace to compile BIRT code

You must configure your Eclipse workspace correctly to be able to build
BIRT. Switching workspaces causes the Eclipse preferences to change, so it is
necessary to confirm the workspace settings whenever you switch
workspaces.

■ Downloading and compiling the BIRT source code from the Eclipse web site

You use the Eclipse CVS system to download the BIRT source code. The
downloaded code compiles automatically when the download is complete.

■ Building the web viewer

You must build the web viewer separately from building BIRT.

254 C h a p t e r 1 5 B u i l d i n g t h e B I R T P r o j e c t

Assuring that you have the correct software on your
system
To assure that you have all the components that are necessary for building BIRT,
install Eclipse and all the related components necessary for running BIRT, as
explained in the installation chapters. By creating a complete, functioning BIRT
installation, you insure that you have all the correct software on your system
necessary for building BIRT.

Configuring the Eclipse workspace to compile BIRT
The BIRT source code uses some features that are only present in JDK version
1.4 and higher. In order for BIRT to build successfully, you need to set the
Eclipse compiler compliance to 1.4. You can set this version for your Eclipse
workspace by starting Eclipse and setting Eclipse preferences. If you create a
new workspace or switch to a different workspace, you can lose the compiler
settings, in which case you must reset them as described in the following
instructions.

How to set Eclipse workspace preferences

1 Choose Window➛Preferences. Preferences appears, as shown in Figure 15-1.

Figure 15-1 The Preferences dialog

A b o u t b u i l d i n g t h e B I R T p r o j e c t 255

2 Expand the Java entry in the tree and select Compiler, as shown in
Figure 15-2.

Figure 15-2 Compiler preferences

3 In JDK Compliance:

■ Select 1.4 in Compiler compliance level.

■ Deselect Use default compliance settings.

■ In Generated .class files compatibility, select 1.4.

■ In Source compatibility, select 1.4.

256 C h a p t e r 1 5 B u i l d i n g t h e B I R T P r o j e c t

■ In Classfile Generation, accept the default settings, shown in
Figure 15-3.

Figure 15-3 Default settings for Classfile Generation

Choose OK. The message shown in Figure 15-4 appears.

Figure 15-4 Compiler settings prompt

4 Choose Yes.

Creating Eclipse projects
To build BIRT, you must download the source code. You use the CVS client in
Eclipse to specify the Eclipse CVS repository site location and to download the
source from the remote site. When you check out code from the Eclipse CVS
site, Eclipse downloads the source code to the current Eclipse workspace on
your local system. Every project you check out creates a corresponding Eclipse
project in your current workspace. There are no restrictions or special

C r e a t i n g E c l i p s e p r o j e c t s 257

requirements to download the source code. It is freely available from the Eclipse
open source site.

Specifying the repository locations
The following instructions describe how to specify the repository location for
the BIRT source.

How to specify a CVS repository location for the BIRT project

1 In Eclipse, choose Window➛Open Perspective➛Other➛CVS Repository
Exploring. The Eclipse desktop changes to the CVS perspective, similar to
Figure 15-5.

Figure 15-5 The CVS perspective

2 Right-click in CVS Repositories and choose New➛Repository Location.

Add CVS Repository appears, as shown in Figure 15-6.

258 C h a p t e r 1 5 B u i l d i n g t h e B I R T P r o j e c t

Figure 15-6 The Add CVS Repository dialog

3 On Add CVS Repository, set the values that appear in Table 15-1.

4 Choose Finish.

Table 15-1 Values for Add CVS Repository fields

Field Value

Host dev.eclipse.org

Repository path /home/birt

User anonymous

Connection type pserver

Use default port Selected

Validate connection on finish Selected

Save password Deselected

C r e a t i n g E c l i p s e p r o j e c t s 259

A new node appears in CVS Repositories, as shown in Figure 15-7. This node
is named :pserver:anonymous@dev.eclipse.org:/cvsroot/birt.

Figure 15-7 BIRT project repository in CVS Repositories

Checking out the BIRT source
You use the CVS source code checkout procedure to check out BIRT source code.

How to check out the BIRT source

1 If Eclipse is not already set to the CVS Repositories perspective, choose
Window➛Open Perspective➛Other➛CVS Repository Exploring.

2 If the Problems view is not already visible, choose Basic➛Problems in
Show View.

Note any exisisting problems.

3 In the CVS Repositories tree, expand the following nodes:

■ :pserver:anonymous@dev.eclipse.org/cvsroot/birt

■ Branches

■ BIRT_2_1_0_Branch

■ sourceBIRT_2_1_0_Branch

The CVS Repositories tree appears, as shown in Figure 15-8.

260 C h a p t e r 1 5 B u i l d i n g t h e B I R T P r o j e c t

Figure 15-8 The BIRT release in CVS Repositories

4 In the BIRT repository, at:

:pserver:anonymous@dev.eclipse.org:/cvsroot/
birt➛Branches➛BIRT_2_1_0_Branch➛
sourceBIRT_2_1_0_Branch

select all nodes.

5 Some of the nodes in CVS are extraneous for building BIRT and can create
compile errors. While the compile errors are not serious, it is easier to verify
that you have a good build if you have no compiler errors. The following
nodes are unnecessary and can be deselected:

■ org.eclipse.birt.chart.tests

■ org.eclipse.birt.report.data.oda.flatfile

■ org.eclipse.birt.report.data.oda.flatfile.nl

■ org.eclipse.birt.report.data.oda.flatfile.ui

■ org.eclipse.birt.report.data.oda.flatfile.ui.nl

■ org.eclipse.birt.report.designer.rcp.ui

■ org.eclipse.birt.report.designer.tests

■ org.eclipse.birt.report.tests.chart

■ org.eclipse.birt.report.tests.engine

C r e a t i n g E c l i p s e p r o j e c t s 261

■ org.eclipse.birt.report.tests.model

■ org.eclipse.birt.test.performance

■ org.eclipse.birt.tests.core

■ org.eclipse.birt.tests.data

6 From the context menu, choose Check Out.

The entire BIRT source tree now downloads and builds. The building phase
of this operation can take a long time. There is a progress meter in the
bottom- right corner of the Eclipse window that provides percentage build
completion information.

7 Check the Problems view for errors.

You should see more problems now than before you checked out the BIRT
source. You must add one JAR file to eliminate the new errors, as described
in the following section.

Adding the extra JAR file
There is one extra JAR file, itext-1.3.jar, that BIRT requires to complete the build
process. This JAR file is not in the repository and you must download it
separately.

You can download itext_1.3.jar from:

http://prdownloads.sourceforge.net/itext/itext-1.3.jar

The following section describes how to add itext-1.3.jar to the com.lowagie.text
project.

How to add itext-1.3.jar to the com.lowagie.itext project

1 Copy itext-1.3.jar into com.lowagie.itext/lib, located in the current Eclipse
workspace.

2 If the Package Explorer view is not visible, perform the following steps:

1 Choose Window➛Show View➛Other.

2 In Show View, select Java➛Package Explorer.

3 In Package Explorer, select the com.lowagie.itext folder.

4 Choose File➛Refresh.

Eclipse rebuilds the workspace after every change to a project. When BIRT
finishes rebuilding the workspace, the Problems view should show only the
errors that existed before starting the BIRT build, if any.

http://prdownloads.sourceforge.net/itext/itext-1.3.jar

262 C h a p t e r 1 5 B u i l d i n g t h e B I R T P r o j e c t

Building the web viewer
Once you have a successful BIRT build, you are ready to build the BIRT report
viewer and the web viewer. Except for the choice of the build script, the process
for building the two viewers is identical. However, you must build the report
viewer before building the web viewer. Both viewer build scripts are Ant scripts
located in org.eclipse.birt.report.viewer.

How to build the report viewer and the web viewer

1 Choose Window➛Open Perspective➛Java to change your Eclipse
perspective to Java. Package Explorer appears on the Eclipse workbench, as
shown in Figure 15-9.

Figure 15-9 Package Explorer

2 In Package Explorer, expand org.eclipse.birt.report.viewer, as shown in
Figure 15-10.

Figure 15-10 Contents of org.eclipse.birt.report.viewer

B u i l d i n g t h e w e b v i e w e r 263

3 Right-click BuildViewer.xml and choose Run As➛2 Ant Build from the
context menu, as shown in Figure 15-11. There are two Ant Build choices on
the context menu. Be sure to choose 2 Ant Build.

Modify attributes and launch appears.

Figure 15-11 Selecting 2 Ant Build

264 C h a p t e r 1 5 B u i l d i n g t h e B I R T P r o j e c t

4 Choose the Targets tab and deselect all the targets except JAR (default), as
shown in Figure 15-12.

Figure 15-12 The Modify attributes and launch dialog

5 Choose the Properties tab. Modify attributes and launch—Properties
appears.

6 Deselect Use global properties as specified in the Ant run-time preferences
and choose Add Property. Add Property appears, as shown in Figure 15-13.

Figure 15-13 Add Property

7 In Name, type:

eclipse.home

8 In Value, type the path to your Eclipse home directory. Choose OK.

B u i l d i n g t h e w e b v i e w e r 265

Properties appears, as shown in Figure 15-14.

Figure 15-14 The Properties page, showing eclipse.home

9 Choose Run. Console appears, as shown in Figure 15-15.

Figure 15-15 The Console page

Assuming that there were no errors in the web viewer build, a folder is
created named:

$ECLIPSE_WORKSPACE/org.eclipse.birt.report.viewer/birt_web

10 Repeat step 3 through step 9, substituting BuildWebViewer.xml for
BuildViewer.xml in step 3.

This page intentionally left blank

267

C h a p t e r

Chapter 16Extending BIRT
This chapter provides an overview of the BIRT extension framework and shows
how to create and deploy a BIRT extension using the Eclipse Plug-in
Development Environment (PDE).

Overview of the extension framework
The Eclipse platform is an open source, integrated system of application
development tools that you implement and extend using a plug-in interface.
Eclipse provides a set of core plug-ins that configure the basic services for the
platform’s framework. A platform developer can build and integrate new tools
in this application development system.

BIRT is a set of plug-in extensions that enable a developer to add reporting
functionality to an application. The BIRT APIs define extension points that
allow a developer to add custom functionality to the BIRT framework. Eclipse
makes BIRT source code available to the developer community in the CVS
repository.

In the Eclipse installation, the name of a plug-in directory contains an appended
version number. This book omits the version number from the names of the
plug-in directories. For example, the book abbreviates the name of the plug-in
directory, org.eclipse.birt.report.data.oda.jdbc_2.1.0.N20060628-1351, to
org.eclipse.birt.report.data.oda.jdbc.

The following sections provide a general description of how to make an
extension to a defined extension point in the BIRT release 2.1 framework using
the Eclipse PDE.

268 C h a p t e r 1 6 E x t e n d i n g B I R T

Understanding the structure of a BIRT plug-in
An Eclipse plug-in implements the following components:

■ Extension point schema definition

An XML document that specifies a grammar that you must follow when
defining the elements of a plug-in extension in the Eclipse PDE

■ Plug-in manifest

An XML document that describes the plug-in’s activation framework to the
Eclipse run-time environment

■ Plug-in run-time class

A Java class that defines the methods for starting, managing, and stopping a
plug-in instance

The following sections provide detailed descriptions of these Eclipse plug-in
components.

Understanding an extension point schema definition
file
A plug-in directory typically contains an XML extension point schema
definition (.exsd) file in a schema subdirectory. The XML schema documents the
elements, attributes, and types used by the extension point. The Eclipse PDE
uses this information to describe the elements and attributes in the property
editors and other facilities of the Eclipse platform.

You use the Eclipse PDE to develop the plug-in content, test, and deploy a
plug-in. The Eclipse PDE automatically generates the plugin.xml,
build.properties, and run-time archive files.

The file, $INSTALL_DIR\eclipse\plugins\org.eclipse.birt.report.designer.ui
\schema\reportitemUI.exsd, documents the settings for a report item extension
to the BIRT Report Designer user interface. The XML schema file,
reportitemUI.exsd, has the following structure:

■ <schema> is the root element that sets the target namespace and contains all
other elements and their attributes.

■ <annotation> contains the following attributes:

■ <appinfo> provides the following items:

❏ Machine-readable metadata that Eclipse uses to identify the plug-in

❏ Text-based information that appears in the PDE Extensions page and
HTML extension point description

U n d e r s t a n d i n g t h e s t r u c t u r e o f a B I R T p l u g - i n 269

■ <documentation> provides user information that appears in the PDE’s
HTML extension point description.

■ <element> declares a reference for the model and optional user interface
extensions, such as figure, label, image, builder, property page, palette,
editor, outline, and description. Each extension element is a complex type
containing attributes and annotations, as described below:

■ model is an extension element that specifies the Report Object Model
(ROM) name for the report item extension.

■ Each user interface extension element specifies the following items:

❏ Extension element name.

❏ Fully qualified name of the Java class implementing the interface
specified for the extension element. For example, builder implements
the interface, org.eclipse.birt.report.designer.ui.extensions
.IReportItemBuilderUI.

Listing 16-1 is a partial schema example showing reportitemUI.exsd. The
ellipses (...) mark the places in the code where lines are omitted.

Listing 16-1 Partial example schema for Report Item UI

<?xml version='1.0' encoding='UTF-8'?>
<!-- Schema file written by PDE -->
<schema targetNamespace="org.eclipse.birt.report.designer.ui">

<annotation>
<appInfo>

<meta.schema
plugin="org.eclipse.birt.report.designer.ui"
id="reportitemUI"
name="Report Item UI Extension Point"/>

</appInfo>
<documentation>

This extension point is used in conjunction with the
Report Item extension point defined in the model. It
is used to register the GUI to be used for the
Extended report item.

</documentation>
</annotation>
<element name="extension">

<complexType>
<sequence>

...
<element ref="model"/>
<element ref="builder" minOccurs="0" maxOccurs="1"/>
<element ref="propertyPage" minOccurs="0"

maxOccurs="1"/>
<element ref="palette" minOccurs="0" maxOccurs="1"/>
<element ref="editor" minOccurs="0" maxOccurs="1"/>
<element ref="outline" minOccurs="0" maxOccurs="1"/>

270 C h a p t e r 1 6 E x t e n d i n g B I R T

<element ref="description" minOccurs="0"
maxOccurs="1"/>

</sequence>
<attribute name="point" type="string" use="required">

...
</attribute>

</complexType>
</element>
<element name="model">

<complexType>
<attribute name="extensionName" type="string"

use="required">
<annotation>

<documentation>
The ROM Report Item Extension name that maps
to this UI

</documentation>
</annotation>

</attribute>
</complexType>

</element>
...
<element name="builder">

<annotation>
<documentation>

Optional Builder for the element inside the Editor.
Instantiated when a new item is dragged from the
palette inside the editor.

</documentation>
</annotation>
<complexType>

<attribute name="class" type="string">
<annotation>

<documentation>
a fully qualified name of the Java class
implementing org.eclipse.birt.report
.designer.ui.extensions.IReportItemBuilderUI

</documentation>
<appInfo>

<meta.attribute kind="java"/>
</appInfo>

</annotation>
</attribute>

</complexType>
</element>
...

</schema>

U n d e r s t a n d i n g t h e s t r u c t u r e o f a B I R T p l u g - i n 271

Understanding a plug-in manifest file
You install an Eclipse plug-in in a subdirectory of the $INSTALL_DIR/eclipse/
plugins directory. The plug-in manifest file, plugin.xml, describes the plug-in’s
activation framework to the Eclipse run-time environment.

At run time, Eclipse scans the subdirectories in $INSTALL_DIR/eclipse/
plugins, parses the contents of each plug-in manifest file, and caches the
information in the plug-in registry. If the Eclipse run time requires an extension,
Eclipse lazily loads the plug-in, using the registry information to instantiate the
plug-in’s objects. The run-time environment for the BIRT Report Engine
functions in a similar way.

The plug-in manifest file declares the plug-in’s required code and extension
points to the plug-in registry. The plug-in run-time class provides the code
segment. By lazily loading the plug-in’s code segment, the run-time
environment minimizes start-up time and conserves memory resources.

The plug-in manifest file, plugin.xml, has the following structure:

■ <plugin> is the root element.

■ <extension> specifies the extension points and the related elements and
attributes that define the processing capabilities of the plug-in component.

Listing 16-2 shows the contents of the plug-in manifest file,
org.eclipse.birt.sample.reportitem.rotatedlabel\plugin.xml. This file describes
the required classes and extension points for the BIRT report item extension
sample, rotated label.

Listing 16-2 Sample plug-in manifest file

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.2"?>
<plugin>

<extension
id="rotatedLabel"
name="Rotated Label Extension"
point="org.eclipse.birt.report.designer.ui

.reportitemUI">
<reportItemLabelUI

class="org.eclipse.birt.sample.reportitem
.rotatedlabel.RotatedLabelUI"/>

<model extensionName="RotatedLabel"/>
<palette icon="icons/rotatedlabel.jpg"/>
<editor

canResize="true"
showInDesigner="true"
showInMasterPage="true"/>

<outline icon="icons/rotatedlabel.jpg"/>
<propertyPage

272 C h a p t e r 1 6 E x t e n d i n g B I R T

class="org.eclipse.birt.sample.reportitem
.rotatedlabel.RotatedLabelPropertyEditUIImpl"/>

</extension>
<extension

id="rotatedLabel"
name="Rotated Label Extension"
point="org.eclipse.birt.report.model.reportItemModel">
<reportItem

class="org.eclipse.birt.sample.reportitem
.rotatedlabel.RotatedLabelItemFactoryImpl"

extensionName="RotatedLabel">
<property

defaultDisplayName="Rotation Angle"
defaultValue="-45"
name="rotationAngle"
type="integer"/>

<property
defaultDisplayName="Display Text"
defaultValue="Rotated Label"
name="displayText"
type="string"/>

</reportItem>
</extension>
<extension

id="rotatedLabel"
name="Rotated Label Extension
point="org.eclipse.birt.report.engine.reportitem

Presentation">
<reportItem

class="org.eclipse.birt.sample.reportitem.rotated
label.RotatedLabelPresentationImpl"

name="RotatedLabel"/>
</extension>

</plugin>

Understanding a plug-in run-time class
A plug-in runs within an instance of a plug-in run-time class. A plug-in
run-time class extends org.eclipse.core.runtime.Plugin, the abstract superclass
for all plug-in run-time class implementations. The Plugin run-time class
defines the methods for starting, managing, and stopping a plug-in instance.

The Plugin run-time class typically contains a reference to an Open Services
Gateway Initiative (OSGi) resource bundle that manages the execution context.
Plugin implements the interface, org.osgi.framework.BundleActivator, which
installs, starts, stops, and uninstalls the OSGi resource bundle. The OSGi
resource bundle implements a service registry to support the following services:

■ Installing the resource bundle

U n d e r s t a n d i n g t h e s t r u c t u r e o f a B I R T p l u g - i n 273

■ Subscribing to an event

■ Registering a service object

■ Retrieving a service reference

The OSGi platform provides a secure, managed, extensible Java framework for
deploying, downloading, and managing service applications. For more
information about the OSGi platform, visit the OSGi Alliance web site at
http://www.osgi.org/. For more information about the Java run-time and OSGi
APIs, see the reference documentation for the Platform Plug-in Developer
Guide in Eclipse Help.

Listing 16-3 is a code example showing the life-cycle and resource bundle
methods for the report item plug-in, rotated label.

Listing 16-3 Sample code for the rotated label report item plug-in

package org.eclipse.birt.sample.reportitem.rotatedlabel;

import org.eclipse.core.runtime.Plugin;
import org.osgi.framework.BundleContext;
import java.util.*;

/**
 * The main plugin class to be used in the desktop.
 */
public class RotatedLabelPlugin extends Plugin {

// The Plugin ID
public final static String ID =

"org.eclipse.birt.sample.reportitem.rotatedlabel";
//The shared instance.
private static RotatedLabelPlugin plugin;
//Resource bundle.
private ResourceBundle resourceBundle;

/**
 * The constructor.
 */
public RotatedLabelPlugin() {

super();
plugin = this;
try {

resourceBundle = ResourceBundle.getBundle
("org.eclipse.birt.sample.reportitem.rotatedlabel

.RotatedLabelPluginResources");
} catch (MissingResourceException x) {

resourceBundle = null;
}

}

http://www.osgi.org/

274 C h a p t e r 1 6 E x t e n d i n g B I R T

/**
 * This method is called upon plug-in activation
 */
public void start(BundleContext context) throws Exception {

super.start(context);
}

/**
 * This method is called when the plug-in is stopped
 */
public void stop(BundleContext context) throws Exception {

super.stop(context);
}

/**
 * Returns the shared instance.
 */
public static RotatedLabelPlugin getDefault() {

return plugin;
}

/**
 * Returns the string from the plugin's resource bundle,
 * or 'key' if not found.
 */
public static String getResourceString(String key) {

ResourceBundle bundle =
RotatedLabelPlugin.getDefault().getResourceBundle();

try {
return (bundle != null) ? bundle.getString(key) : key;

} catch (MissingResourceException e) {
return key;

}
}

/**
 * Returns the plugin's resource bundle,
 */
public ResourceBundle getResourceBundle() {

return resourceBundle;
}

}

W o r k i n g w i t h t h e E c l i p s e P D E 275

Working with the Eclipse PDE
The Eclipse PDE is an integrated design tool that you use to create, develop, test,
debug, and deploy a plug-in. The PDE provides wizards, editors, views, and
launchers to assist you in developing a plug-in.

The Eclipse PDE provides a wizard to assist you in setting up a plug-in project
and creating the framework for a plug-in extension. In the Plug-in Development
perspective, you can use the New Plug-in Project wizard to assist you in setting
up a plug-in project and creating the framework for a plug-in extension. The
PDE wizard automatically generates the plug-in manifest file, plugin.xml, and,
optionally, the Java plug-in run-time class.

How to choose the Plug-in Development perspective

To access the PDE, you must choose the Plug-in Development perspective. To
open the Plug-in Development perspective, perform the following tasks:

1 From the Eclipse menu, choose Window➛Open Perspective➛Other. Open
Perspective appears.

2 Select Plug-in Development, as shown in Figure 16-1.

Figure 16-1 Selecting a perspective

Choose OK. The Plug-in Development perspective appears.

How to set up a new plug-in project

To access the New Plug-in Project wizard and create a project, perform the
following tasks:

1 From the PDE menu, choose File➛New➛Project. New Project appears.

2 In Wizards, expand Plug-in Development, and select Plug-in Project, as
shown in Figure 16-2.

276 C h a p t e r 1 6 E x t e n d i n g B I R T

Figure 16-2 New Project

Choose Next. New Plug-in Project appears, as shown in Figure 16-3.

Figure 16-3 New Plug-in Project

W o r k i n g w i t h t h e E c l i p s e P D E 277

Understanding plug-in project properties
Using the New Plug-in Project wizard, you can define the following properties
for the plug-in:

■ Project settings

■ Name

■ Location

■ Source and output folders

■ Plug-in format, such as the Eclipse version and whether to create an OSGi
bundle manifest

■ Plug-in content

■ Properties such as ID, version, name, provider, and the run-time library
classpath

■ Choose to generate an activator, a Java class that controls the plug-in’s life
cycle

■ Create a rich client application

■ Plug-in components such as an editor, property page, view, menu, or other
components from a series of templates

In Eclipse 3.2, opting to create an OSGi bundle manifest, MANIFEST.MF, offers
significant advantages. The OSGi bundle manifest, META-INF/MANIFEST.MF,
contains a set of manifest headers that provide descriptive information about a
bundle.

Eclipse 3.2 uses an implementation of the OSGi R4 framework specification.
This framework defines the directives that specify the access rules for an
exported package and the headers that facilitate class loading, start-up time,
filtering, and other features.

BIRT release 2.1 uses the OSGi framework that comes with the Eclipse 3.2
platform. You must implement any plug-in that extends a BIRT release 2.1
extension point as an OSGi bundle.

Inside the Eclipse environment, you can develop and deploy a plug-in for BIRT
Report Designer. Outside of the Eclipse environment, you can develop and
deploy a plug-in for BIRT Web Viewer. BIRT Web Viewer is a J2EE web
application consisting of servlets and JSPs that encapsulates the BIRT Report
Engine API to generate reports.

Understanding the Eclipse PDE Workbench
The Eclipse PDE supports host and run-time instances of the workbench project.
The host instance provides the development environment. The run-time
instance allows you to launch a plug-in to test it.

278 C h a p t e r 1 6 E x t e n d i n g B I R T

Figure 16-4 shows the project for the report item extension sample, rotated label,
in the host instance of the PDE Workbench. In the host instance, the PDE
Workbench provides the following view and editor components:

■ Package Explorer provides an expandable view of the plug-in package.

■ Outline provides an expandable view of the project settings.

■ PDE Manifest Editor displays a page containing the project settings for the
currently selected item in Outline.

Figure 16-4 The host instance of the PDE Workbench

In PDE Manifest Editor, you specify project settings and edit related files to
create the plug-in framework on the following pages:

■ Overview

Lists general information such as the plug-in ID, version, name, provider,
platform filter, and activator class. This page also contains sections that link
to the plug-in content pages, extensions, launchers for testing and
debugging, deployment wizards, and the settings for the execution
environment. In Figure 16-4, PDE Manifest Editor displays the Overview
page.

■ Dependencies

Lists the plug-ins that must be on the classpath to compile and run.

Package Explorer Manifest Editor

Outline

C r e a t i n g t h e s t r u c t u r e o f a p l u g - i n e x t e n s i o n 279

■ Runtime

Declares the packages that the plug-in exposes to clients, the package
visibility to other plug-ins, and the libraries and folders in the plug-in
classpath.

■ Extensions

Declares the extensions that the plug-in makes to the platform.

■ Extension Points

Declares the new extension points that the plug-in adds to the platform.

■ Build

Displays the build configuration settings. A change to a setting on this page
updates the file, build.properties.

■ MANIFEST.MF

Displays an editable page containing the header settings for the manifest file,
MANIFEST.MF, that provide descriptive information about an OSGi bundle.

■ Plug-in.xml

Displays an editable page containing the settings for the plug-in manifest
file, plugin.xml.

■ Build.properties

Displays an editable page containing the settings for the file,
build.properties.

A modification to a setting in a PDE Manifest Editor page automatically updates
the corresponding plug-in manifest or build properties file.

Creating the structure of a plug-in extension
Use the host instance of the PDE Workbench to create the basic structure of a
plug-in extension by performing the following tasks:

■ Specifying the plug-in dependencies

■ Verifying the plug-in run-time archive

■ Specifying the plug-in extension

How to specify the plug-in dependencies

1 On PDE Manifest Editor, choose Overview.

2 In Plug-in Content, choose Dependencies.

3 In Required Plug-ins, choose Add. Plug-in Selection appears, as shown in
Figure 16-5.

280 C h a p t e r 1 6 E x t e n d i n g B I R T

Figure 16-5 Plug-in Selection

4 In Plug-in Selection, select a plug-in, such as the following example:

org.eclipse.birt.report.designer.ui

Choose OK.

5 Repeat steps 2 and 3 to add more plug-ins to the list of required plug-ins in
the Dependencies page.

In Required Plug-ins, the order of the list determines the sequence in which a
plug-in loads at run time. Use Up and Down to change the loading order as
necessary.

Figure 16-6 shows an example of a list of dependencies for a plug-in
extension.

Figure 16-6 The Dependencies page

C r e a t i n g t h e s t r u c t u r e o f a p l u g - i n e x t e n s i o n 281

How to verify the plug-in run-time archive

1 On PDE Manifest Editor, choose Runtime. Runtime appears, as shown in
Figure 16-7.

Figure 16-7 The Runtime page

2 In Runtime, perform the following tasks:

■ In Exported Packages, list all the packages that the plug-in exposes to
clients.

■ In Package Visibility, when the plug-in is in strict run-time mode, indicate
whether a selected package is one of the following options:

❏ Visible to downstream plug-ins

❏ Hidden except for the specified plug-ins

■ In Classpath, choose Add to add the name of an archive file or folder to
the classpath manually.

How to specify the plug-in extension

1 On PDE Manifest Editor, choose Extensions.

2 In All Extensions, choose Add. New Extension appears.

3 On Extension Point Selection, in Extension Points, select a plug-in, such as
the following example:

org.eclipse.birt.report.designer.ui.reportitemUI

282 C h a p t e r 1 6 E x t e n d i n g B I R T

New Extension appears, as shown in Figure 16-8.

Figure 16-8 New Extension—Extension Point Selection

Choose Finish. Extensions appears, as shown in Figure 16-9.

Figure 16-9 The Extensions page

4 Repeat steps 2 and 3 to add more plug-ins to the list of required extension
points in the Extensions page.

C r e a t i n g t h e p l u g - i n e x t e n s i o n c o n t e n t 283

Creating the plug-in extension content
The XML schema specifies a grammar that you must follow when creating an
extension in the Eclipse PDE. When you select an element of an extension in the
Extensions page of the PDE, Eclipse uses the XML schema to populate the
Extension Element Details section with the list of valid attributes and values for
the element.

On Extensions, if you choose Find declaring extension point, the PDE searches
for an extension point that matches the criteria. If you choose Open extension
point description, the PDE generates an HTML page containing the information
documented in the XML schema and displays the page in a viewer.

This section discusses the following tasks:

■ Searching for and viewing extension point information

■ Specifying plug-in extension content

■ Specifying a build configuration

How to search for and view extension point information

1 In the Eclipse PDE, select a plug-in extension in All Extensions.

2 In Extension Details, choose Find declaring extension point.

Search appears. In Figure 16-10, Search lists one match,
org.eclipse.birt.report.designer.ui.reportitemUI.

Figure 16-10 Search, showing a single match

3 In Search, double-click on the match, such as org.eclipse.birt.report
.designer.ui.reportitemUI. In PDE Manifest Editor, a window appears,
displaying the contents of the file, org.eclipse.birt.report.designer.ui/
plugin.xml, as shown in Figure 16-11.

Figure 16-11 Plugin.xml, showing three extension points

284 C h a p t e r 1 6 E x t e n d i n g B I R T

Plugin.xml describes the extension points, odadatasource, reportItemUI, and
menu Builders.

4 In PDE Manifest Editor, close the window displaying contents of the
plugin.xml file. Choose Extensions.

5 In Extension Details, choose Open extension point description.

A viewer opens, displaying the HTML document for the extension point. In
Figure 16-12, the viewer displays Report Item UI Extension Point, containing
information extracted from the XML schema, $INSTALL_DIR\eclipse\
plugins\org.eclipse.birt.report.designer.ui\schema\reportitemUI.exsd.

Figure 16-12 Extension point description

In the HTML document, Configuration Markup displays the attribute list for
the extension point. Scroll down to view all the contents of the HTML
document, including the optional set of user interface elements for the report
item extension, such as builder, property page, palette, editor, outline, and
description.

How to specify plug-in extension content

1 In PDE Manifest Editor, choose Extensions.

2 In All Extensions, right-click on an extension point such as
org.eclipse.birt.report.designer.ui.reportItemLabelUI, and choose
New➛<extension point element>.

Figure 16-13 shows how to select the extension point element,
reportItemLabelUI.

C r e a t i n g t h e p l u g - i n e x t e n s i o n c o n t e n t 285

Figure 16-13 Context menu for selecting an extension point element

Extensions appears, displaying the extension element and its details, as
shown in Figure 16-14.

Figure 16-14 The Extensions page

In this example, All Extensions lists the extension, org.eclipse.birt.sample
.reportitem.rotatedlabel.RotatedLabelUI (rotatedItemLabelUI), and
Extension Element Details lists rotatedItemLabelUI properties. In Extension
Element Details, the label for a required attribute, such as class, contains an
asterisk.

3 To view the annotation for a property listed in Extension Element Details,
hover the cursor over the property label.

A ToolTip appears, displaying the annotation for the property from the XML
schema. Figure 16-15 shows the annotation for the class property for the
example extension element, rotatedItemLabelUI.

286 C h a p t e r 1 6 E x t e n d i n g B I R T

Figure 16-15 Annotation for an extension element

4 To specify the class attributes for an extension element, choose class in
Extension Element Details.

If no class file exists, Java Attribute Editor appears, as shown in Figure 16-16.
If the class file exists, the class file opens in PDE Manifest Editor.

Figure 16-16 Java Attribute Editor

B u i l d i n g a p l u g - i n e x t e n s i o n 287

On Java Attribute Editor, you can modify or add to the settings for the
following class properties:

■ Source folder

■ Package

■ Enclosing type

■ Class name

■ Modifiers, such as public, default, private, protected, abstract, final, and
static

■ Superclass

■ Interfaces

■ Method stubs, such as main, constructors, and inherited abstract methods

■ Comments

Choose Finish.

5 To add more elements and attributes to a selected extension point, repeat
steps 1 and 2.

Figure 16-17 shows the full list of extension points required for the sample
report item extension, org.eclipse.birt.sample.reportitem.rotatedlabel.

Figure 16-17 List of required extension points

Building a plug-in extension
In Eclipse PDE Manifest Editor, Build allows you to specify the build
configuration, including the following items:

288 C h a p t e r 1 6 E x t e n d i n g B I R T

■ Runtime Information

Defines the libraries, the source folders to compile into each library, and the
compilation order.

■ Binary Build

Selects the files and folders to include in the binary build.

■ Source Build

Selects the files and folders to include in the source build. Source Build is not
typically required. Source Build uses the org.eclipse.pde.core.source
extension point that allows the PDE to find source archives for libraries in
other Eclipse plug-ins.

How to specify a build configuration

1 On PDE Manifest Editor, choose Build. Build Configuration appears.
Figure 16-18 shows Build Configuration.

Figure 16-18 Build Configuration

2 In Runtime Information, add a new library by choosing Add Library.

Add Entry appears.

B u i l d i n g a p l u g - i n e x t e n s i o n 289

Enter the new library name or select a run-time library from the list, as
shown in Figure 16-19. Choose OK.

Figure 16-19 Add Entry

3 To change the compilation order of a library, change its position in the list. In
Runtime Information, select the library and choose Up or Down.

Figure 16-20 shows Runtime Information with mylibrary.jar selected and
Down enabled.

Figure 16-20 Changing the compilation order of a library

4 To add a folder to a library, choose Add Folder. New Source Folder appears,
as shown in Figure 16-21.

Figure 16-21 New Source Folder

290 C h a p t e r 1 6 E x t e n d i n g B I R T

Select a folder, such as src, and choose OK. Runtime Information appears, as
shown in Figure 16-22.

Figure 16-22 Runtime Information

5 In Binary Build, include a folder in the binary build by selecting the folder.
Figure 16-23 shows the icons folder selected.

Figure 16-23 Binary Build

6 From the Eclipse menu, choose Project➛Build All, to build a project.

Alternatively, you can choose Project➛Build Automatically to continually
build the project as you make changes to the code.

Generating an Ant build script
The Eclipse PDE can generate an Ant build script for compiling plug-in code,
based on the settings in the build.properties file. The generated script is an XML
file in which the elements are the required tasks for the build operation. The Ant
build tool compiles the project, using the specified Java compiler.

Ant is an open source Java application available from the Apache Software
Foundation. For more information on Ant and the Apache Software
Foundation, visit the web site at http://ant.apache.org.

How to generate an Ant build script

In Package Explorer, right-click the project’s plugin.xml file and choose PDE
Tools➛Create Ant Build File. PDE Tools creates an Ant script file, build.xml, in
the project folder.

http://ant.apache.org

D e p l o y i n g t h e e x t e n s i o n p l u g - i n 291

Testing a plug-in extension
You can launch an instance of the run-time workbench to test and debug the
plug-in extension.

How to launch a run-time workbench

1 On PDE Manifest Editor, choose Overview. Overview appears as shown in
Figure 16-24.

Figure 16-24 Overview, showing testing and debugging options

2 In Testing, choose Launch an Eclipse application. Eclipse launches the run-
time workbench.

In the report item extension example, Report Design—Eclipse SDK appears.
In the run-time workbench, you must create a new report design project to
use the report label extension.

Deploying the extension plug-in
You can use the Export Wizard to produce a distributable archive file that
contains the plug-in code and other resources. A user can find a software
update and extract the contents of the archive file to an Eclipse installation
using the Feature Updates and Product Configuration managers. A plug-in
developer can create and manage an update site using the Update Site Editor in
the Eclipse PDE.

292 C h a p t e r 1 6 E x t e n d i n g B I R T

How to deploy a plug-in extension

1 In the Eclipse PDE Manifest Editor, choose Overview.

2 In Exporting, choose Export Wizard. Export appears.

3 In Available Plug-ins and Fragments, select the plug-in to export. For
example, select org.eclipse.birt.sample.reportitem.rotatedlabel.

4 In Export Destination, specify Archive file or Directory. For example, in
Directory, type:

C:\Program Files\eclipse

5 In Export Options, select one of the following options, if necessary:

■ Include source code

■ Package plug-ins as individual JAR archives

■ Save as Ant script

Export appears as shown in Figure 16-25. Choose Finish to export the plug-
in to the specified destination.

Figure 16-25 Exporting a plug-in

D e p l o y i n g t h e e x t e n s i o n p l u g - i n 293

Installing feature updates and managing the Eclipse
configuration
If all the dependent resources are available in the new environment, Eclipse can
discover and activate the plug-in in the run-time environment. In this type of
unmanaged distribution and installation, the user must find and install updates
to the plug-in if a release occurs in the future.

A plug-in developer can also use a more structured approach and group plug-
ins into features. A feature is a set of plug-ins that you install and manage
together.

Features contain information that allow the Feature Updates and Product
Configuration managers to locate published updates and discover new related
features. Updates are typically published in a special internet directory called an
update site, created and managed by a plug-in developer using the Update Site
Editor.

How to install feature updates and manage the Eclipse configuration

The Eclipse PDE provides wizards and editors that support the use of features
and update sites. Choose Help➛Software Updates➛Find and Install to access
Feature Updates. Feature Updates allows you to search for updates and new
features, as shown in Figure 16-26.

Figure 16-26 Searching for feature updates

Choose Help➛Software Updates➛Manage Configuration to access Product
Configuration. Figure 16-27 shows Product Configuration.

294 C h a p t e r 1 6 E x t e n d i n g B I R T

Figure 16-27 Product Configuration

Product Configuration allows you to perform the following tasks:

■ Scan for updates.

■ View installation history.

■ Show activities that created the current configuration.

■ Add an extension location that contains features and plug-ins previously
installed.

■ Revert to a previous configuration.

Creating an update site project
You create an update site by building an update site project in the Eclipse PDE
workspace. The update site project contains a manifest file, site.xml, that lists
the features and plug-ins packages.

The build operation for an update site puts the JAR files for features in a
features folder and the JAR files for plug-ins in a plug-ins folder. The Eclipse
PDE also provides support for uploading an update site to a remote server or
local file system for distribution.

D e p l o y i n g t h e e x t e n s i o n p l u g - i n 295

How to create an update site project

1 From the Eclipse menu, choose File➛New➛Project. New Project appears.

2 In Wizards, open Plug-in Development and select Update Site Project, as
shown in Figure 16-28. Choose Next. Update Site Project appears.

Figure 16-28 Selecting Update Site Project wizard

3 On Update Site Project, specify the following items:

■ Project name

■ Project contents directory, such as C:\Program Files\eclipse\workspace\
BIRT Update Site

■ Web resources

❏ Select Generate web page listing of all available features within the
site

Creates index.html, site.css, and site.xls files for displaying the
contents of the update site.

❏ Web resources location

Change this setting to the web resources location. The default value is
web.

296 C h a p t e r 1 6 E x t e n d i n g B I R T

Update Site Project appears as shown in Figure 16-29. Choose Finish. Update
Site Map appears as shown in Figure 16-30.

Figure 16-29 Creating a new update site project

Figure 16-30 Update Site Map

4 Choose New Category to create a feature category.

5 Choose Add Feature to add a feature to a selected category.

For more information about deploying a plug-in, installing features, managing
a product configuration, and building an update site, see the documentation for
the Platform Plug-in Developer Guide in Eclipse Help.

D o w n l o a d i n g t h e c o d e f o r t h e e x t e n s i o n e x a m p l e s 297

Downloading the code for the extension examples
This book provides examples for the following types of BIRT extensions:

■ Report item

The example shows how to build a rotated label report item plug-in and add
the report item to the BIRT Report Designer using the defined extension
points. This plug-in renders the label of a report item as an image. The
extension rotates the image in a report design to display the label at a
specified angle.

■ Report rendering

The example shows how to extend the emitter interfaces to build and deploy
a report rendering plug-in that runs in the BIRT Report Engine environment.
The CSV extension example is a plug-in that writes the table data in a report
to a file in CSV format.

■ ODA drivers

The CSV ODA driver example is a plug-in that reads data from a CSV file.
The Hibernate ODA driver example uses HQL to provide a SQL-transparent
extension that makes the ODA extension portable to all relational databases.

These examples also show how to develop an ODA extension to the BIRT
Report Designer 2.1 user interface so that a report developer can select an
extended ODA driver.

You can download the source code for these extension examples at
http://www.actuate.com/birt/contributions.

http://www.actuate.com/birt/contributions

This page intentionally left blank

299

C h a p t e r

Chapter 17Developing a Report Item
Extension

This chapter describes how to create a BIRT extension in the Eclipse PDE using
the sample report item extension, rotated label. You learn about creating a BIRT
report item extension in the following sections:

■ Understanding a report item extension

■ Developing the sample report item extension

■ Understanding the sample report item extension

■ Building, deploying, and testing the rotated label report item plug-in

Understanding a report item extension
A report item extension adds a new type of report item to the BIRT framework
by implementing multiple extension points. A plug-in that defines an extension
point typically contains an XML extension point schema definition (.exsd) file in
a schema subdirectory. This XML schema describes the elements, attributes, and
types used by the extension point to the Eclipse PDE environment.

To add a new report item, a report item extension implements the following
extension points:

■ Report item model

org.eclipse.birt.report.model.reportItemModel specifies the report
item extension point for the ROM. The XML schema file,
org.eclipse.birt.report.model/schema/reportItemModel.exsd, describes this
extension point.

300 C h a p t e r 1 7 D e v e l o p i n g a R e p o r t I t e m E x t e n s i o n

■ Report item user interface

org.eclipse.birt.report.designer.ui.reportitemUI specifies the report item
extension point for the user interface in the report layout editor and report
item palette. The XML schema file, org.eclipse.birt.report.designer.ui/
schema/reportitemUI.exsd, describes this extension point.

■ Report item query (optional)

org.eclipse.birt.report.engine.reportitemQuery specifies the extension point
for query preparation support in the BIRT designer and report engine. A
query preparation extension is optional. If the report item does not require
query preparation, you can omit the query extension. The XML schema file,
org.eclipse.birt.report.engine/schema/reportitemQuery.exsd, describes this
extension point.

■ Report item run time

org.eclipse.birt.report.engine.reportitemGeneration specifies the extension
point for instantiating, processing, and persisting a new report item at report
generation time. The XML schema file, org.eclipse.birt.report.engine/
schema/reportitemGeneration.exsd, describes this extension point.

org.eclipse.birt.report.engine.reportitemPresentation specifies the extension
point for instantiating, processing, and rendering a new report item at report
presentation time. The XML schema file, org.eclipse.birt.report.engine/
schema/reportitemPresentation.exsd, describes this extension point.

■ Report item emitter (optional)

org.eclipse.birt.report.engine.emitters specifies the extension point for
support of a new output format in the presentation engine. The XML schema
file, org.eclipse.birt.report.engine/schema/emitters.exsd, describes this
extension point.

At run time, the BIRT Report Engine performs the following processing on a
report item before rendering the final output:

■ Query preparation

Gathers the data binding information and expressions defined for the report,
passing the information to the report engine. The data engine prepares the
data access strategy based on this information.

■ Generation

Creates the instances of report items and fetches the data.

■ Presentation

Renders the report item to a supported data primitive, such as an image,
string, HTML segment, or custom data component.

■ Emitter

Converts the output to a specified format, such as HTML or PDF.

D e v e l o p i n g t h e s a m p l e r e p o r t i t e m e x t e n s i o n 301

This chapter provides an example of a custom report item extension,
org.eclipse.birt.sample.reportitem.rotatedlabel. The sample code for the rotated
label report item extension creates a text element that renders label text at a
specified angle.

The standard report item plug-in, chart, is a more complex example of a report
item extension. The BIRT chart plug-in implements user interface and report
engine extensions that support a report design using any of the following chart
types:

■ Bar

■ Line

■ Pie

■ Scatter

■ Stock

For reference documentation for the report item API, see the Javadoc for the
org.eclipse.birt.report.engine.extension package in BIRT Programmer Reference
in Eclipse Help.

Developing the sample report item extension
The Report Item extension framework allows a report developer to create a
customized report item in the palette of BIRT Report Designer. You can use a
report item extension in a report design in the same way as a standard report
item, such as Label, Text, Grid, Table, or Chart.

The sample code for the rotated label report item extension creates a label
element that renders text at a specified angle. This section describes the steps
required to implement the org.eclipse.birt.sample.reportitem.rotatedlabel
sample. To implement the rotated label report item extension, perform the
following tasks:

■ Configure the plug-in project.

You can build the rotated label report item plug-in manually by following
the instructions in this chapter.

■ Add the report item to the Report Designer UI.

Extend the Report Item UI extension point, org.eclipse.birt.report.designer
.ui.reportItemUI.

■ Add the report item definition to the ROM.

Extend the Report Item Model extension point, org.eclipse.birt.report.model
.reportItemModel.

■ Add rendering behavior to the report item.

302 C h a p t e r 1 7 D e v e l o p i n g a R e p o r t I t e m E x t e n s i o n

Extend the Report Item Presentation extension point, org.eclipse.birt.report
.engine.reportItemPresentation.

■ Deploy the report item extension.

Export the rotated label report item plug-in folder from your workspace to
the eclipse\plugins folder. You do not need to export the plug-in folder to
test the extension when you launch it as an Eclipse application in the PDE.

You can download the source code for the rotated label report item extension
example at http://www.actuate.com/birt/contributions.

Downloading BIRT source code from the CVS
repository
Eclipse makes BIRT source code available to the developer community in the
CVS repository. You work only with the Java classes in the
org.eclipse.birt.sample.reportitem.rotatedlabel plug-in.

To compile, you do not need the source code for any required plug-ins. You can
configure the system to use the JAR files in the $INSTALL_DIR\eclipse\plugin
folder.

These plug-ins must be in the classpath to compile successfully. To debug, you
may need the source code for all the required BIRT plug-ins.

The rotated label report item extension depends on the following Eclipse
plug-ins:

■ org.eclipse.emf.ecore

■ org.eclipse.birt.report.designer.ui

■ org.eclipse.birt.report.model

■ org.eclipse.draw2d

■ org.eclipse.birt.report.engine

■ org.eclipse.jface.text

■ org.eclipse.core.runtime

■ org.eclipse.birt.core

■ org.eclipse.ui

■ org.eclipse.birt.core.ui

Creating a rotated label report item plug-in project
Create a new plug-in project for the rotated label report item extension in the
Eclipse PDE.

http://www.actuate.com/birt/contributions

D e v e l o p i n g t h e s a m p l e r e p o r t i t e m e x t e n s i o n 303

How to create the plug-in project

1 In the Eclipse PDE, choose File➛New➛Project. New Project appears.

2 In Select a wizard, select Plug-in Project. Choose Next. New Plug-in Project
appears.

3 In Plug-in Project, modify the settings, as shown in Table 17-1.

Plug-in Project appears, as shown in Figure 17-1.

Figure 17-1 Plug-in Project settings

Choose Next. Plug-in Content appears.

Table 17-1 Settings for Plug-in Project fields

Section Option Value

Plug-in Project Project name org.eclipse.birt.sample
.reportitem.rotatedlabel

Use default location Selected

Location Not available when you
select Use default location.

Project Settings Create a Java project Selected

Source folder src

Output folder bin

Target Platform Eclipse version 3.2

OSGi framework Selected Equinox

304 C h a p t e r 1 7 D e v e l o p i n g a R e p o r t I t e m E x t e n s i o n

4 In Plug-in Content, modify the settings as shown in Table 17-2.

New Plug-in Content appears, as shown in Figure 17-2. Choose Finish.

Figure 17-2 Plug-in Content, showing settings for a new plug-in project

Table 17-2 Plug-in Content settings

Section Option Value

Plug-in Properties Plug-in ID org.eclipse.birt.sample
.reportitem.rotatedlabel

Plug-in Version 1.0.0

Plug-in Name RotatedLabel Plug-in

Plug-in Provider yourCompany.com or leave blank

Classpath rotatedLabel.jar or leave blank

Plug-in Options Generate an activator, a Java
class that controls the plug-in’s
life cycle

Selected

Activator org.eclipse.birt.sample
.reportitem.rotatedlabel
.RotatedLabelPlugin

This plug-in will make
contributions to the UI

Deselected

Rich Client
Application

Would you like to create a rich
client application?

No

D e v e l o p i n g t h e s a m p l e r e p o r t i t e m e x t e n s i o n 305

The rotated label report item extension project appears in the Eclipse PDE
Workbench, as shown in Figure 17-3.

Figure 17-3 Plug-in project in the Eclipse PDE Workbench

Defining the dependencies for the rotated label
report item extension
In this task, you specify the list of plug-ins that must be available on the
classpath of the rotated label report item extension to compile and run.

How to specify the dependencies

1 On PDE Manifest Editor, choose Overview.

2 In Plug-in Content, choose Dependencies. Required Plug-ins contains the
following plug-ins:

org.eclipse.ui
org.eclipse.core.runtime

3 In Required Plug-ins, perform the following tasks:

1 Select org.eclipse.ui and choose Remove.

2 Select org.eclipse.core.runtime and choose Remove.

org.eclipse.core.runtime and org.eclipse.ui no longer appear in Required
Plug-ins.

306 C h a p t e r 1 7 D e v e l o p i n g a R e p o r t I t e m E x t e n s i o n

4 In Required Plug-ins, choose Add. Plug-in Selection appears.

5 In Plug-in Selection, hold down CTRL and select the following plug-ins:

■ org.eclipse.emf.ecore

■ org.eclipse.birt.report.designer.ui

■ org.eclipse.birt.report.model

■ org.eclipse.draw2d

■ org.eclipse.birt.report.engine

■ org.eclipse.jface.text

■ org.eclipse.core.runtime

■ org.eclipse.birt.core

■ org.eclipse.ui

■ org.eclipse.birt.core.ui

Choose OK. Dependencies appears, as shown in Figure 17-4.

Figure 17-4 Dependencies, showing required plug-ins

The order of the list determines the sequence in which a plug-in loads at run
time. Use Up and Down to change the loading order as necessary, as shown
in Figure 17-4. The rotated label report item extension does not require any
changes to the loading order if you selected the required plug-ins in the
order listed in step 5.

D e v e l o p i n g t h e s a m p l e r e p o r t i t e m e x t e n s i o n 307

Specifying the run-time package for the rotated label
report item extension
On Runtime, you specify exported packages, package visibility, the libraries,
and folders on the plug-in classpath. In the rotated label report item plug-in, the
only package that you must make visible to other plug-ins is org.eclipse.birt
.sample.reportitem.rotatedlabel.

On PDE Manifest Editor, choose Runtime. On Runtime, in Exported Packages,
verify that the org.eclipse.birt.sample.reportitem.rotatedlabel package appears
in the list.

Figure 17-5 The Runtime page

Declaring the report item extension points
In this next step, you specify the extension points required to implement the
rotated label report item extension and add the extension element details. The
Eclipse PDE uses the XML schema defined for each extension point to provide
the list of valid attributes and values specified for the extension elements.

The rotated label report item extension implements the following extension
points:

■ org.eclipse.birt.report.designer.ui.reportitemUI

Registers the graphical user interface (GUI) to use for the report item
extension

■ org.eclipse.birt.report.model.reportItemModel

Specifies how to represent and persist the report item extension in the ROM

■ org.eclipse.birt.report.engine.reportitemPresentation

Specifies how to instantiate, process, and render the report item extension

The XML schema specifies the following properties that identify each extension
point in the run-time environment:

308 C h a p t e r 1 7 D e v e l o p i n g a R e p o r t I t e m E x t e n s i o n

■ ID

Optional identifier of the extension instance

■ Name

Optional name of the extension instance

■ Point

Fully qualified identifier of the extension point

The extension point, org.eclipse.birt.report.designer.ui.reportitemUI, specifies
the following extension elements:

■ reportItemLabelUI

Fully qualified name of the Java class that gets the display text for the report
item component in BIRT Report Designer

■ model

ROM report item extension name that maps to this UI component

■ palette

Icon to show and the category in which the icon appears in the Palette

■ editor

Flags indicating whether the editor shows in the MasterPage and Designer
UI and is resizable in the Editor

■ outline

Icon to show in the Outline View

■ propertyPage

Optional Property Edit Page to use for the report item extension in the
Property Edit View

The extension point, org.eclipse.birt.report.model.reportItemModel, specifies
reportItem and the following extension element properties:

■ extensionName

Internal unique name of the report item extension

■ class

Fully qualified name of the Java class that implements the
org.eclipse.birt.report.model.api.extension.IReportItemFactory interface

■ defaultStyle

Predefined style to use for the report item extension

■ isNameRequired

D e v e l o p i n g t h e s a m p l e r e p o r t i t e m e x t e n s i o n 309

Field indicating whether the report item instance name is required

■ displayNameID

Resource key for the display name

reportItem also specifies the following property extension elements:

■ rotationAngle

■ displayText

rotationAngle and displayText each specify the following properties:

■ name

Internal unique name of the property extension element

■ type

Data type, such as integer or string

■ displayNameID

Resource key for the display name

■ canInherit

Flag indicating whether the property extension element can inherit
properties

■ detailType

Detail data type, such as Boolean or string

■ defaultValue

Default value of the property extension element

■ isEncryptable

Flag indicating whether the property is encrypted

■ defaultDisplayName

Display name to use if no localized I18N display name exists

The extension point, org.eclipse.birt.report.engine.reportitemPresentation,
specifies the following reportItem extension elements:

■ name

Unique name of the report item extension

■ class

Fully qualified name of the Java class that implements the
org.eclipse.birt.report.engine.extension.IReportItemPresentation interface

■ supportedFormats

310 C h a p t e r 1 7 D e v e l o p i n g a R e p o r t I t e m E x t e n s i o n

Supported rendering formats for this extended item. The value for this
attribute is a comma-separated string, such as "HTML,PDF". The string is
case-insensitive.

How to specify the extension points

1 On PDE Manifest Editor, choose Extensions.

2 In All Extensions, choose Add. New Extension appears.

3 On New Extension—Extension Points, in Available extension points, select
the following plug-in:

org.eclipse.birt.report.designer.ui.reportitemUI

New Extension—Extension Points appears, as shown in Figure 17-6. Choose
Finish.

Figure 17-6 Extension points in New Extension

4 Repeat steps 2 and 3 to add the following extension points to the list of
required extension points in the Extensions page:

■ org.eclipse.birt.report.model.reportItemModel

■ org.eclipse.birt.report.engine.reportitemPresentation

D e v e l o p i n g t h e s a m p l e r e p o r t i t e m e x t e n s i o n 311

Figure 17-7 shows the list of extension points required for the report item
extension example.

Figure 17-7 Required extension points for a report item extension

How to add the extension details

Perform the following tasks:

1 On Extensions, in All Extensions, select org.eclipse.birt.report.designer.ui
.reportitemUI.

2 In Extension Details, set the following property values as shown in
Table 17-3.

3 In All Extensions, select org.eclipse.birt.report.model.reportItemModel

4 In Extension Details, set the following property values as shown in
Table 17-4.

Table 17-3 Properties for reportItemUI extension

Property Value

ID rotatedLabel

Name Rotated Label Extension

Point org.eclipse.birt.report.designer.ui.reportitemUI

Table 17-4 Properties for reportItemModel extension

Property Value

ID rotatedLabel

Name Rotated Label Extension

Point org.eclipse.birt.report.model.reportItemModel

312 C h a p t e r 1 7 D e v e l o p i n g a R e p o r t I t e m E x t e n s i o n

5 In All Extensions, select
org.eclipse.birt.report.engine.reportitemPresentation

6 In Extension Details, set the following property values as shown in
Table 17-5.

Creating the plug-in extension content
The XML schema specifies a grammar that you must follow when creating an
extension in the Eclipse PDE. When you select an element of an extension in the
Extensions page of the PDE, Eclipse uses the XML schema to populate the
Extension Element Details section with the list of valid attributes and values for
the element.

How to specify the plug-in extension content

1 In PDE Manifest Editor, choose Extensions.

2 In All Extensions, right-click org.eclipse.birt.report.designer.ui.reportItemUI
and choose New➛reportItemLabelUI, as shown in Figure 17-8.

Figure 17-8 Selecting an extension element

Table 17-5 Properties for reportitemPresentation extension

Property Value

ID rotatedLabel

Name Rotated Label Extension

Point org.eclipse.birt.report.engine.reportitemPresentation

D e v e l o p i n g t h e s a m p l e r e p o r t i t e m e x t e n s i o n 313

All Extensions lists the extension, org.eclipse.birt.sample.reportitem
.rotatedlabel.ReportItemLabelUI (rotatedItemLabelUI), and Extension
Element Details lists rotatedItemLabelUI properties.

3 In Extension Element Details, type the following fully qualified class name:

org.eclipse.birt.sample.reportitem.rotatedlabel
.RotatedLabelUI

Extensions appears, as shown in Figure 17-9.

Figure 17-9 Properties for rotatedItemLabelUI

4 In All Extensions, right-click org.eclipse.birt.report.designer.ui.reportitemUI
again and repeatedly choose New➛<extension element> to add the
following extension elements, corresponding extension element properties,
and values, as shown in Table 17-6.

Table 17-6 Properties for other reportitemUI extension elements

Extension element Property Value

model extensionName RotatedLabel

palette icon icons/rotatedlabel.jpg

editor showInMasterPage true

showInDesigner true

canResize true

outline icon icons/rotatedlabel.jpg

propertyPage class org.eclipse.birt.sample
.reportitem.rotated
label.RotatedLabel
PropertyEditUIImpl

314 C h a p t e r 1 7 D e v e l o p i n g a R e p o r t I t e m E x t e n s i o n

5 In All Extensions, right-click org.eclipse.birt.report.model.reportItemModel
and choose New➛reportItem, as shown in Figure 17-10.

Figure 17-10 Choosing a new report item

6 In Extension Element Details, add the reportItem properties shown in
Table 17-7.

7 In All Extensions, in org.eclipse.birt.report.model.reportItemModel, perform
the following tasks:

1 Right-click reportItem and choose New➛property to add the extension
element properties shown in Table 17-8.

2 Right-click reportItem again and choose New➛property to add the
extension element properties shown in Table 17-9.

Table 17-7 Property values for reportItem

Extension element Property Value

reportItem extensionName RotatedLabel

class org.eclipse.birt.sample
.reportitem.rotatedlabel
.RotatedLabelItem
FactoryImpl

Table 17-8 Property values for rotationAngle

Extension element Property Value

property name rotationAngle

type integer

defaultValue -45

defaultDisplayName Rotation Angle

D e v e l o p i n g t h e s a m p l e r e p o r t i t e m e x t e n s i o n 315

8 In All Extensions, right-click org.eclipse.birt.report.engine
.reportitemPresentation and choose New➛reportItem, as shown in
Figure 17-11.

Figure 17-11 Choosing reportItem

9 In Extension Element Details, add the reportItem properties shown in
Table 17-10.

Figure 17-12 shows the full list of extension points and elements required for the
example, org.eclipse.birt.sample.reportitem.rotatedlabel.

Table 17-9 Property values for displayText

Extension element Property Value

property name displayText

type string

defaultValue Rotated Label

defaultDisplayName Display Text

Table 17-10 Property values for reportItem

Extension element Property Value

reportItem name RotatedLabel

class org.eclipse.birt.sample
.reportitem.rotated
label.RotatedLabel
PresentationImpl

316 C h a p t e r 1 7 D e v e l o p i n g a R e p o r t I t e m E x t e n s i o n

Figure 17-12 Extension points for rotated label report item extension

Understanding the rotated label report item extension
The rotated label report item plug-in provides the functionality required at run
time to render the label of a report item as an image and rotate the image in the
report design to display the label at the specified angle. The following sections
provide a general description of the code-based extensions a developer must
make to complete the development of the rotated report item extension after
defining the plug-in framework in the Eclipse PDE.

The rotated label report item extension implements the following interfaces and
classes:

■ org.eclipse.birt.report.designer.ui.extensions

Specifies the following interfaces:

■ IPropertyTabUI

Represents a new tab in the Property Editor view, creating the UI,
updating property values on request, and notifying the BIRT framework
of any UI-based property change. PropertyTabUIAdapter is the adapter
class that implements this interface.

■ IReportItemLabelProvider

Defines the interface for the accessor method that provides the label text.
ReportItemLabelProvider is the adapter class that implements this
interface.

■ IReportItemPropertyEditUI

Provides the interface for defining tabs in the Property Editor. No default
adapter class exists for this interface in BIRT release 2.1.

U n d e r s t a n d i n g t h e r o t a t e d l a b e l r e p o r t i t e m e x t e n s i o n 317

■ org.eclipse.birt.report.designer.ui.views.attributes.providers
.PropertyProcessor

Provides accessor methods for processing general property information.

■ org.eclipse.birt.report.engine.extension

■ IRowSet

Defines the interface to a row set. Provides metadata, grouping level, and
row navigation methods.

■ IReportItemPresentation

Defines the interface for presentation of a report item extension.
IReportItemPresentation sets the locale, resolution, output, and image
formats, and processes the extended item in the report presentation
environment. ReportItemPresentationBase is the adapter class that
implements this interface.

■ org.eclipse.birt.report.model.api

■ DesignElementHandle

Functions as the base class for all report elements. DesignElementHandle
provides a high-level interface to the BIRT report model. The class
provides the generic services for all elements. Derived classes provide
specialized methods for each element type. DesignElementHandle
implements the interface, org.eclipse.birt.report.model.elements
.interfaces.IDesignElementModel.

■ DesignEngine

Provides an interface to the BIRT design engine. DesignEngine
instantiates a session handle to use when creating a new design, opening
an existing design, and managing design processing. The session handle
contains the report design’s state. DesignEngine implements the
interface, IDesignEngine interface.

■ ExtendedItemHandle

Provides a handle to an extended item that appears in a section of a
report. The extended report item can have properties such as size,
position, style, visibility rules, or a binding to a data source.
ExtendedItemHandle extends ReportItemHandle, an abstract base class
that extends DesignElementHandle.

■ org.eclipse.birt.report.model.elements.Style

Extends org.eclipse.birt.report.model.core.StyleElement, the base class for
report elements with a style, and implements org.eclipse.birt.report.model
.elements.interfaces.IStyleModel, the interface for storing style element
constants.

318 C h a p t e r 1 7 D e v e l o p i n g a R e p o r t I t e m E x t e n s i o n

■ org.eclipse.birt.report.model.api.extension

Specifies the following interfaces:

■ IMessages

Defines the interface for getting a localized message from a message file
using a resource key.

■ IPropertyDefinition

Defines the interface for the accessor methods that describe a property.
PropertyDefinition is the adapter class that implements this interface.

■ IReportItem

Defines the interface for an instance of an extended report element. There
is a one-to-one correspondence between the BIRT report item and this
implementation. ReportItem is the adapter class that implements this
interface.

■ IReportItemFactory

Defines the interface for the factory that creates an instance of the
extended element, IReportItem. IReportItem stores the model data and
serializes the model state. ReportItemFactory is the adapter class that
implements this interface.

■ org.eclipse.birt.report.model.metadata.PropertyType

Functions as the base class for the meta-data of a property type. A property
type provides the display name, data validation and conversion methods,
XML name, and other processing. PropertyType implements the interface,
org.eclipse.birt.report.model.api.metadata.IPropertyType.

■ org.eclipse.core.runtime.Plugin

Defines the basic methods for starting, managing, and stopping the plug-in
instance.

The following sections contain implementation details for the most important
classes in the rotated label report item extension.

Understanding RotatedLabelItemFactoryImpl
The RotatedLabelItemFactoryImpl class instantiates a new report item when the
user drags a rotated label report item from the Palette and drops the report item
in the BIRT Report Designer Editor. RotatedLabelItemFactoryImpl extends the
adapter class, org.eclipse.birt.report.model.api.extension.ReportItemFactory.

The newReportItem() method receives a reference to DesignElementHandle,
which provides the interface to the BIRT report model. The newReportItem()
method instantiates the new report item, as shown in Listing 17-1.

U n d e r s t a n d i n g t h e r o t a t e d l a b e l r e p o r t i t e m e x t e n s i o n 319

Listing 17-1 The newReportItem() method

public class RotatedTextItemFactoryImpl
extends ReportItemFactory implements IMessages

{
public IReportItem newReportItem(DesignElementHandle deh)
{

return new RotatedTextReportItemImpl(deh);
}
...

}

Understanding RotatedLabelUI
In the RotatedLabelUI class, the RotatedLabelUI.getLabel() method provides
the text representation for the label to BIRT Report Designer. RotatedLabelUI
extends the adapter class, org.eclipse.birt.report.designer
.ui.extensions.ReportItemLabelProvider. Listing 17-2 shows the code for the
getLabel() method.

Listing 17-2 The getLabel() method

public class RotatedLabelUI extends ReportItemLabelProvider
{

public String getLabel(ExtendedItemHandle handle)
{

if (handle.getProperty("displayText") != null) {
return (String) handle.getProperty("displayText");

} else {
return "Rotated Label";

}
}

Understanding RotatedLabelPresentationImpl
The RotatedLabelPresentationImpl class specifies how to process and render the
report item at presentation time. RotatedLabelPresentationImpl extends the
org.eclipse.birt.report.engine.extension.ReportItemPresentationBase class.

The method, onRowSets(), renders the rotated label report item as an image,
rotated by the angle specified in the report design, as shown in Listing 17-3.

Listing 17-3 The onRowSets() method

public Object onRowSets(IRowSet[] rowSets) throws
BirtException

{
if (modelHandle == null)
{

return null;
}

320 C h a p t e r 1 7 D e v e l o p i n g a R e p o r t I t e m E x t e n s i o n

graphicsUtil = new GraphicsUtil();
org.eclipse.swt.graphics.Image rotatedImage =

graphicsUtil.createRotatedText(modelHandle);
ImageLoader imageLoader = new ImageLoader();
imageLoader.data = new ImageData[]

{ rotatedImage.getImageData() };
ByteArrayOutputStream baos =

new ByteArrayOutputStream();
imageLoader.save(baos, SWT.IMAGE_JPEG);
return baos.toByteArray();

}

Understanding RotatedLabelReportItemImpl
In the RotatedLabelReportItemImpl class, the method,
getPropertyDefinitions(), instantiates RotatedLabelPropertyDefinitionImpl
objects for the displayText and rotationAngle properties.
RotatedLabelReportItemImpl extends the adapter class,
org.eclipse.birt.report.model.api.extension.ReportItem. Listing 17-4 shows the
code for the getPropertyDefinitions() method.

Listing 17-4 The getPropertyDefinitions() method

public IPropertyDefinition[] getPropertyDefinitions()
{

if (rt == null)
{

return null;
}
return new IPropertyDefinition[]{

new RotatedLabelPropertyDefinitionImpl(null,
"displayText", "property.label.displayText",
false,
PropertyType.STRING_TYPE,
null,null,null,true),

new RotatedLabelPropertyDefinitionImpl(null,
"rotationAngle",
"property.label.rotationAngle",
false,
PropertyType.INTEGER_TYPE,
null,null,null,true),

}
}

Understanding RotatedLabelPropertyEditUIImpl
The RotatedLabelPropertyEditUIImpl class builds the UI using the
RotatedLabelGeneralTabUIImpl class to set up the controls for the UI.
RotatedLabelPropertyEditUIImpl implements the org.eclipse.birt.report
.designer.ui.extensions.IReportItemPropertyEditUI interface.

U n d e r s t a n d i n g t h e r o t a t e d l a b e l r e p o r t i t e m e x t e n s i o n 321

In the RotatedLabelPropertyEditUIImpl class, the getCategoryTabs() method
instantiates the RotatedLabelGeneralTabUIImpl class, as shown in Listing 17-5.

Listing 17-5 The getCateoryTabs() method

public class RotatedLabelGeneralTabUIImpl implements
IReportItemPropertyEditUI {
public IPropertyTabUI[] getCategoryTabs() {

return new IPropertyTabUI[]{
new RotatedLabelGeneralTabUIImpl(),

};
}

}

The RotatedLabelGeneralTabUIImpl class contains an internal class,
GeneralCategoryWrapper, which creates the UI contents, as shown in
Listing 17-6.

Listing 17-6 The GeneralCategoryWrapper class

static class GeneralCategoryWrapper
extends AttributesUtil.PageWrapper {
static String CATEGORY_NAME = "General";

public void buildContent(Composite parent,
Map propertyMap) {
parent.setLayout(createGridLayout(2));
buildGridControl(parent,

propertyMap,
ReportDesignConstants.EXTENDED_ITEM,
ReportItemHandle.NAME_PROP,
1,
false,
new TextPropertyDescriptor

(new PropertyProcessor
(ReportDesignConstants.EXTENDED_ITEM,

ReportItemHandle.NAME_PROP)),
true,
150);
...

Understanding GraphicsUtil
The GraphicsUtil class creates the image containing the specified text and
rotates the text image to the specified angle, using the following methods:

■ createRotatedText()

This method performs the following operations:

■ Gets the display text and rotation angle properties

322 C h a p t e r 1 7 D e v e l o p i n g a R e p o r t I t e m E x t e n s i o n

■ Sets the display text font and determines the font metrics

■ Creates an image the same size as the display text String

■ Draws the display text as an image

■ Calls the rotateImage() method to rotate the image at the specified angle

■ Disposes of the operating system resources used to render the image

■ Returns the image object

Listing 17-7 shows the code for createRotatedText() method.

Listing 17-7 The createRotatedText() method

public Image createRotatedText(ExtendedItemHandle
modelHandle)

{
Image stringImage;
Image image;
GC gc;

String text = "";
if (modelHandle.getProperty("displayText") != null) {

text = (String) modelHandle.getProperty
("displayText");

}
Integer angle = null;

if (modelHandle.getProperty("rotationAngle") != null) {
angle = (Integer) modelHandle.getProperty

("rotationAngle");
}

String fontFamily = "Arial";
if (modelHandle.getProperty(Style.FONT_FAMILY_PROP) !=

null) {
fontFamily = (String) modelHandle.getProperty

(Style.FONT_FAMILY_PROP);
}

if (display == null) SWT.error
(SWT.ERROR_THREAD_INVALID_ACCESS);

FontData fontData = new FontData(fontFamily, 14, 0);
Font font = new Font(display, fontData);
try
{

gc = new GC(display);
gc.setFont(font);
gc.getFontMetrics();
Point pt = gc.textExtent(text);
gc.dispose();
stringImage = new Image(display, pt.x, pt.y);
gc = new GC(stringImage);

U n d e r s t a n d i n g t h e r o t a t e d l a b e l r e p o r t i t e m e x t e n s i o n 323

gc.setFont(font);
gc.drawText(text, 0, 0);
image = rotateImage(stringImage, angle.doubleValue());
gc.dispose();
stringImage.dispose();
return image;

}
catch(Exception e)
{

e.printStackTrace();
}
return null;

}

■ rotateImage()

This method rotates the image and determines the width, height, and point
of origin for the image, as shown in Listing 17-8.

Listing 17-8 The rotateImage() method

private Image rotateImage (Image img, double degrees)
{

double positiveDegrees = (degrees % 360) +
((degrees < 0) ? 360 : 0);

double degreesMod90 = positiveDegrees % 90;
double radians = Math.toRadians(positiveDegrees);
double radiansMod90 = Math.toRadians(degreesMod90);
if (positiveDegrees == 0)

return img;
int quadrant = 0;
if (positiveDegrees < 90)

quadrant = 1;
else if ((positiveDegrees >= 90) &&

(positiveDegrees < 180))
quadrant = 2;

else if ((positiveDegrees >= 180) &&
(positiveDegrees < 270))
quadrant = 3;

else if (positiveDegrees >= 270)
quadrant = 4;

int height = img.getBounds().height;
int width = img.getBounds().width;
double side1 = (Math.sin(radiansMod90) * height) +

(Math.cos(radiansMod90) * width);
double side2 = (Math.cos(radiansMod90) * height) +

(Math.sin(radiansMod90) * width);
double h = 0;
int newWidth = 0, newHeight = 0;
if ((quadrant == 1) || (quadrant == 3)) {

324 C h a p t e r 1 7 D e v e l o p i n g a R e p o r t I t e m E x t e n s i o n

h = (Math.sin(radiansMod90) * height);
newWidth = (int)side1;
newHeight = (int)side2;

} else {
h = (Math.sin(radiansMod90) * width);
newWidth = (int)side2;
newHeight = (int)side1;

}
int shiftX = (int)(Math.cos(radians) * h) -

((quadrant == 3) || (quadrant == 4)
? width : 0);

int shiftY = (int)(Math.sin(radians) * h) +
((quadrant == 2) || (quadrant == 3)

? height : 0);
Image newImg = new Image(display, newWidth, newHeight);
GC newGC = new GC(newImg);
Transform tr = new Transform(display);
tr.rotate((float)positiveDegrees);
newGC.setTransform(tr);
newGC.setBackground(display.getSystemColor

(SWT.COLOR_WHITE));
newGC.drawImage(img, shiftX, -shiftY);
newGC.dispose();
return newImg;

}

Deploying and testing the rotated label report item
plug-in

After building the plug-in, the Eclipse PDE provides support for deploying and
testing the plug-in in a run-time environment. The following sections describe
the steps to deploy and test the rotated label report item plug-in example.

Deploying a report item extension
To deploy the rotated label report item plug-in and integrate the extension with
the BIRT Report Designer, use the Export wizard or manually copy the
org.eclipse.birt.sample.reportitem.rotatedtext plug-in from your workspace to
the eclipse\plugins folder.

Launching the rotated label report item plug-in
On PDE Manifest Editor, in Overview, the Testing section contains links to
launch a plug-in as a separate Eclipse application in either Run or Debug mode.
Figure 17-13 shows Overview for the rotated label report item extension
example in the host instance of the PDE Workbench.

D e p l o y i n g a n d t e s t i n g t h e r o t a t e d l a b e l r e p o r t i t e m p l u g - i n 325

Figure 17-13 Overview information for the rotated label report item extension

How to launch a run-time workbench

1 On PDE Manifest Editor, choose Overview. In Testing, choose Launch an
Eclipse application. Eclipse launches the run-time workbench.

2 In Report Design, choose File➛New➛Project. New Project appears. In
Wizards, choose Report Project, as shown in Figure 17-14.

Figure 17-14 Selecting Report Project in New Project

Choose Next. New Report Project appears.

3 In Project name, type:

sample report item

Choose Finish. Sample report item appears in the Navigator.

326 C h a p t e r 1 7 D e v e l o p i n g a R e p o r t I t e m E x t e n s i o n

4 In Report Design—Eclipse Platform, choose File➛New➛Report. New
Report appears, as shown in Figure 17-15.

Figure 17-15 New Report

5 In File name, type a file name if you want to change the default file name.
Choose Next. New Report displays the report templates.

6 In Report templates, choose Blank Report. Choose Finish. The layout editor
displays the report design, new_report.rptdesign. Palette contains the
RotatedText report item.

7 From Palette, drag RotatedLabel to Layout, as shown in Figure 17-16.

Figure 17-16 Rotated label report item in the report design

Rotated label report item

D e p l o y i n g a n d t e s t i n g t h e r o t a t e d l a b e l r e p o r t i t e m p l u g - i n 327

8 In new_report.rptdesign, choose Preview. The preview appears, displaying
the rotated label report item, as shown in Figure 17-17.

Figure 17-17 The rotated label in the report preview

This page intentionally left blank

329

C h a p t e r

Chapter 18Developing a Report
Rendering Extension

This chapter describes how to develop a report rendering extension using the
Eclipse PDE with a sample CSV report rendering extension as the example. You
learn how to develop a BIRT report rendering extension in the following
sections:

■ Understanding a report rendering extension

■ Developing the CSV report rendering extension

■ Understanding the sample CSV report rendering extension

■ Testing the CSV report rendering plug-in

Understanding a report rendering extension
BIRT Report Engine provides report rendering extensions that render a report in
HTML and PDF. In BIRT release 2.1, the BIRT report rendering extension API
supports rendering a report in a customized format, such as CSV.

This chapter provides a sample implementation of a customized CSV report
rendering extension, org.eclipse.birt.report.engine.emitter.csv. The sample code
creates a BIRT plug-in that writes the data contents of a report to a file. For
reference documentation on the BIRT report rendering API, see the Javadoc for
the org.eclipse.birt.report.engine.emitter and
org.eclipse.birt.report.engine.content packages in BIRT Programmer Reference
in Eclipse Help.

330 C h a p t e r 1 8 D e v e l o p i n g a R e p o r t R e n d e r i n g E x t e n s i o n

The BIRT Report Engine does not run as an Eclipse plug-in. BIRT implements a
separate plug-in loading framework in the report engine environment. This
framework runs independently of the Eclipse run-time environment, giving the
BIRT Report Engine complete control of report execution.

A BIRT engine plug-in typically loads and runs in the BIRT Report Engine
environment rather than the Eclipse run-time environment. A BIRT engine
plug-in extension is functionally similar to an Eclipse plug-in extension.

A rendering extension adds an emitter to the BIRT framework by implementing
the extension point, org.eclipse.birt.report.engine.emitters. This extension point
enables support for a new output format in the presentation engine. The BIRT
plug-in registry uses this extension point to discover all supported output
formats specified in the report engine environment. The XML schema file,
org.eclipse.birt.report.engine/schema/emitters.exsd, describes the extension
point.

Developing the CSV report rendering extension
The CSV report rendering extension extends the functionality defined by the
org.eclipse.birt.report.engine.emitter package. This package is part of the
org.eclipse.birt.report.engine plug-in. In developing the CSV report rendering
extension, you perform the following tasks:

■ Download the required BIRT source code from the Eclipse CVS repository.

■ Create a CSV report rendering extension project in the Eclipse PDE.

■ Define the dependencies.

■ Declare the emitters extension point.

■ Implement the emitter interfaces.

■ Test the extension in the run-time environment.

You can download the source code for the CSV report rendering extension
example at http://www.actuate.com/birt/contributions.

Downloading BIRT source code from the CVS
repository
The CSV report rendering extension depends on the following BIRT plug-ins:

■ org.eclipse.birt.core

■ org.eclipse.birt.report.engine

■ org.eclipse.birt.report.model

http://www.actuate.com/birt/contributions

D e v e l o p i n g t h e C S V r e p o r t r e n d e r i n g e x t e n s i o n 331

The CSV report rendering extension requires changes to the org.eclipse.birt
.report.engine plug-in, so you must download the source code for this plug-in
from the CVS repository.

To compile, you do not need the source code for the other required plug-ins. You
can configure the system to use the JAR files in the $INSTALL_DIR\eclipse\
plugins folder.

These plug-ins must be in the classpath to compile successfully. To debug, you
may need the source code for all required BIRT plug-ins.

Creating a CSV report rendering plug-in project
Create a new plug-in project for the CSV report rendering extension using the
Eclipse PDE.

How to create the CSV report rendering plug-in project

1 From the Eclipse PDE menu, choose File➛New➛Project. New Project
appears.

2 On New Project, select Plug-in Project. Choose Next. New Plug-in Project
appears.

3 In Plug-in Project, modify the settings, as shown in Table 18-1.

Plug-in Project appears as shown in Figure 18-1. Choose Next. Plug-in
Content appears.

Table 18-1 Values for Plug-in Project fields

Section Option Value

Plug-in Project Project name org.eclipse.birt.report
.engine.emitter.csv

Use default location Selected

Location Not available when you
select Use default location

Project Settings Create a Java project Selected

Source folder src

Output folder bin

Target Platform Eclipse version 3.2

an OSGi framework Selected Equinox

332 C h a p t e r 1 8 D e v e l o p i n g a R e p o r t R e n d e r i n g E x t e n s i o n

Figure 18-1 Values for Plug-in Project

4 In Plug-in Content, modify the settings, as shown in Table 18-2.

Table 18-2 Values for Plug-in Content fields

Section Option Value

Plug-in
Properties

Plug-in ID org.eclipse.birt.report
.engine.emitter.csv

Plug-in Version 1.0.0

Plug-in Name BIRT CSV Emitter

Plug-in Provider yourCompany.com or
leave blank

Classpath csvEmitter.jar or leave
blank

Plug-in Options Generate an activator, a
Java class that controls the
plug-in’s life cycle

Selected

Activator org.eclipse.birt.report
.engine.emitter.csv
.CsvPlugin

This plug-in will make
contributions to the UI

Deselected

Rich Client
Application

Would you like to create a
rich client application?

No

D e v e l o p i n g t h e C S V r e p o r t r e n d e r i n g e x t e n s i o n 333

Plug-in Content appears as shown in Figure 18-2. Choose Finish.

Figure 18-2 Values for Plug-in Content

The CSV report rendering extension project appears in the Eclipse PDE
workbench, as shown in Figure 18-3.

Figure 18-3 CSV report rendering extension project

334 C h a p t e r 1 8 D e v e l o p i n g a R e p o r t R e n d e r i n g E x t e n s i o n

Defining the dependencies for the CSV report
rendering extension
To compile and run the CSV report rendering example, you need to specify the
list of plug-ins that must be available on the classpath of the extension.

How to specify the dependencies

1 On PDE Manifest Editor, choose Overview.

2 In Plug-in Content, choose Dependencies. Required Plug-ins contains the
following plug-in:

org.eclipse.core.runtime

3 In Required Plug-ins, perform the following tasks:

1 Select org.eclipse.core.runtime and choose Remove.

org.eclipse.core.runtime no longer appears in Required Plug-ins.

2 Choose Add. Plug-in Selection appears.

3 In Plug-in Selection, hold down CTRL and select the following plug-ins:

❏ org.eclipse.birt.core

❏ org.eclipse.birt.report.model

❏ org.eclipse.birt.report.engine

Choose OK. Dependencies appears as shown in Figure 18-4.

Figure 18-4 The Dependencies page

The order of the list determines the sequence in which a plug-in loads at run
time. Use Up and Down to change the loading order as necessary, as shown
in Figure 18-4. The CSV report rendering extension does not require any
changes to the loading order if you selected the required plug-ins in the
order listed in step 3.

D e v e l o p i n g t h e C S V r e p o r t r e n d e r i n g e x t e n s i o n 335

Declaring the emitters extension point
In this step, you specify the extension point required to implement the CSV
report rendering extension and add the extension element details. The extension
point, org.eclipse.birt.report.engine.emitters, specifies the following properties
that identify the extension point:

■ ID

Optional identifier of the extension instance

■ Name

Optional name of the extension instance

■ Point

Fully qualified identifier of the extension point

The extension point defines an emitter that specifies the output format for the
plug-in, requiring you to define the following extension element properties:

■ class

Java class that implements the IContentEmitter interface

■ format

Output format that the emitter supports, such as csv

■ mimeType

MIME type for the supported output format, such as text/csv

■ id

Optional identifier of the emitter extension

You specify the extension point and extension element details using the Eclipse
PDE.

How to specify the extension point

1 On PDE Manifest Editor, choose Extensions.

2 In All Extensions, choose Add. New Extension—Extension Point Selection
appears.

3 In Available extension points, select the following plug-in:

org.eclipse.birt.report.engine.emitters

336 C h a p t e r 1 8 D e v e l o p i n g a R e p o r t R e n d e r i n g E x t e n s i o n

Choose Finish. Extensions appears, as shown in Figure 18-5.

Figure 18-5 Emitter plug-in extension on the Extensions page

All Extensions lists the extension point, org.eclipse.birt.report.engine
.emitters. Extension Details contains the list of extension details specified in
the XML schema file, emitters.exsd.

4 In All Extensions, right-click the extension point, org.eclipse.birt.report
.engine.emitters, and choose the extension element, emitter, as shown in
Figure 18-6.

Figure 18-6 Selecting the emitter extension element

Extension element, emitter, appears in All Extensions.

5 In Extension Element Details, specify the properties for the emitter extension
element, emitter, as shown in Table 18-3.

Table 18-3 Property values for the emitter extension element

Property Value

class org.eclipse.birt.report.engine.emitter.csv.CSVReportEmitter

format csv

mimeType text/csv

id org.eclipse.birt.report.engine.emitter.csv

U n d e r s t a n d i n g t h e s a m p l e C S V r e p o r t r e n d e r i n g e x t e n s i o n 337

Extensions appears as shown in Figure 18-7. PDE Manifest Editor
automatically updates plugin.xml.

Figure 18-7 Property values for the emitter extension

Understanding the sample CSV report rendering
extension

The CSV report rendering extension described in this chapter is a simplified
example that illustrates how to create a report rendering plug-in using the
Eclipse PDE. The extension extends the report emitter interfaces and XML
writer in org.eclipse.birt.report.engine.emitter. The example is based on the
plug-in, org.eclipse.report.engine.emitter.html, which is part of the BIRT
framework. BIRT release 2.1 also provides a data extraction feature built into the
UI that can export data from a report document in CSV, tab-separated values
(TSV), and Extensible Markup Language (XML) formats.

The CSV report rendering extension example exports only the data in the table
controls to the CSV output file. The lines of the CSV output file contain only
column data separated by commas. The sample CSV report design cannot
contain images, charts, or hyperlinks.

The extension example creates the CSV output file in the same folder as the
exported report. The output file name is the name of the report with a .csv
extension. The extension provides only limited error checking.

The following section provides a general description of the code-based
extensions a developer must make to complete the development of the CSV
report rendering extension after defining the plug-in framework in the Eclipse
PDE.

Implementing the emitter interfaces
The org.eclipse.birt.report.engine.emitter plug-in defines the report emitter
interfaces that XML writer uses to render the elements of the report items in a

338 C h a p t e r 1 8 D e v e l o p i n g a R e p o r t R e n d e r i n g E x t e n s i o n

report container, such as a page, table, row, column, cell, label, image, or
extended item. The CSV report rendering extension implements parts of the
following interfaces and classes in the emitter plug-in:

■ IContentEmitter

Defines the interface for the start and end processing that renders the report
items. ContentEmitterAdapter is the adapter class that implements this
interface.

■ IEmitterServices

Defines the interface an emitter uses to access the following items:

■ Emitter configuration

Provides information on the engine emitter configuration

■ Rendering context

Provides information on the engine rendering context

■ Rendering options

Implements the org.eclipse.birt.report.engine.api.IRenderOption
interface, specifying the following output items:

❏ Format, such as PDF or HTML

❏ File name to use for output

❏ Stream for writing to the output file

❏ Miscellaneous settings

■ Runnable report design

Defines the methods that get the report design handle, images, and
property values, such as report name, title, and description. Specified by
an implementation of the interface, org.eclipse.birt.report.engine.api
.IReportRunnable.

■ Engine task

Defines the set of operations specified for a unit of work. Implements the
org.eclipse.birt.report.engine.api interface, providing access to the
following items:

❏ Task identifier

❏ Locale

❏ Application context

❏ Parameters

❏ Report engine

❏ Scriptable Java object

U n d e r s t a n d i n g t h e s a m p l e C S V r e p o r t r e n d e r i n g e x t e n s i o n 339

EngineEmitterServices is the adapter class that implements this interface.

■ XMLWriter

Outputs content in XML format. CSV report rendering extension extends
XMLWriter to write in CSV format. Performs the following operations:

■ Opens and closes the output stream, using an instance of
java.io.PrintWriter class

■ Starts and finishes the java.io.PrintWriter processing

■ Returns encoding information

■ Opens and closes the printing of an XML tag, including any attributes
and encoded content

■ Sets up the java.util.logging.Logger object and logs messages at the
specified logging levels

As a best practice, Eclipse recommends extending the adapter class rather than
implementing an interface directly. An adapter class provides stub
implementations of all the methods in the interface. If you implement an
interface directly and the interface changes, you must add any new methods to
the code to avoid compiler errors even if you do not plan to use the methods.
Extending the adapter class insulates the developer from this problem. A class
that extends an adapter compiles, but does not provide the new behavior
automatically. You must be aware of the changes to the interface to take
advantage of the new functionality and extend the code.

Implementing the content interfaces
The package, org.eclipse.birt.report.engine.content, defines the interfaces for
BIRT report items that BIRT Report Engine uses to pass content to an emitter.
These content interfaces provide a common protocol for rendering an instance
of a content object.

The CSV report rendering extension implements some of these interfaces. Each
interface defines accessor methods for properties depending on the type of the
content object, as shown in Table 18-4.

Table 18-4 Interfaces that pass content to an emitter

Interface Properties

IBandContent Header and footer content in a table or group.

ICellContent Row and column spans.

IContainerContent No defined fields or methods. Inherits fields and
methods from the superinterfaces, IContent, IElement,
and CSSStylableElement.

IDataContent Label and help keys, text, and values.

(continues)

340 C h a p t e r 1 8 D e v e l o p i n g a R e p o r t R e n d e r i n g E x t e n s i o n

Most of the interfaces in the org.eclipse.birt.report.engine.content package, with
the exception of interfaces such as IContentVisitor, IElement, and
IReportContent, inherit from the superinterface, org.eclipse.birt.report.engine
.content.IContent. IContent specifies methods that provide access to the
following additional interfaces and properties in the package:

■ IContentVisitor

Defines a visitor interface, typically used by a buffered emitter. The visitor
design pattern separates content objects and their operations into different
classes. Implementing a visitor design pattern allows a developer to change
the operations performed on a collection of objects without changing the
structure of the objects and recompiling the object code.

■ IBounds

Describes the geometric properties of the content.

■ ContentType

Lists the constant field values used to identify content types.

■ IHyperlinkAction

Defines the interface that allows BIRT Report Engine to pass hyperlink
information to an emitter.

The following interfaces define additional functionality in the
org.eclipse.birt.report.engine.content package:

■ IStyle

Defines the accessor methods for ROM style properties

IElement Parent or children of a content element.

IForeignContent Raw types and values not handled by BIRT Report
Engine.

IImageContent URI, MIME type, image source, image map, help key,
extension, alternative key and text.

ILabelContent Label and help keys and text.

IPageContent Page number, dimensions, orientation, and content
style.

IRowContent Table, group, band, and row.

ITableBandContent Table and group headers and footers, and band detail.

ITableContent Table band content, caption, column, and column count.

ITextContent Text.

Table 18-4 Interfaces that pass content to an emitter (continued)

Interface Properties

U n d e r s t a n d i n g t h e s a m p l e C S V r e p o r t r e n d e r i n g e x t e n s i o n 341

■ IReportContent

Creates report item content, using the following components:

■ Report design

An instance of org.eclipse.birt.report.engine.ir.Report

■ Table of contents (TOC) node

An instance of org.eclipse.birt.report.engine.api.TOCNode

■ CSS engine

An instance of org.eclipse.birt.report.engine.css.engine.CSSEngine

Understanding the CSV report rendering extension
package
The implementation package for the CSV report rendering extension example,
org.eclipse.birt.report.engine.emitter.csv, contains the following classes:

■ CSVReportEmitter

Extends org.eclipse.birt.report.engine.emitter.ContentEmitterAdapter.
CSVReportEmitter handles the start and end processing that renders the
report container.

■ CSVTags.java

Defines the comma and new line Strings used when writing to the CSV file.

■ CSVWriter

Extends org.eclipse.birt.report.engine.emitter.XMLWriter. CSVWriter
performs the following operations:

■ Overrides XMLWriter.closeTag() to set up for CSV output processing

■ Prints CSV content, using a call to java.io.PrintWriter.print()

■ CSVPlugin

Defines the methods for starting, managing, and stopping a plug-in instance.

The following section contains more specific information about the
implementation details for the classes in the CSV report rendering extension
package.

Understanding CSVReportEmitter
CSVReportEmitter is the class that extends ContentEmitterAdapter to output
the text content of the report items to a CSV file. CSVReportEmitter instantiates
the writer and emitter objects.

342 C h a p t e r 1 8 D e v e l o p i n g a R e p o r t R e n d e r i n g E x t e n s i o n

CSVReportEmitter implements the following methods:

■ CSVReportEmitter() instantiates the CSV report emitter class as an
org.eclipse.birt.report.engine.presentation.ContentEmitterVisitor object, to
perform emitter operations, as shown in Listing 18-1.

Listing 18-1 The CSVReportEmitter() constructor

public CSVReportEmitter()
{

contentVisitor = new ContentEmitterVisitor(this);
}

■ initialize() performs the following operations required to create an output
stream that writes the text contents of the report to the CSV file:

■ Obtains a reference to the IEmitterServices interface. Instantiates the file
and output stream objects, using the specified settings.

■ Instantiates the CSV writer object.

Listing 18-2 shows the initialize() method.

Listing 18-2 The initialize() method

public void initialize(IEmitterServices services)
{

this.services = services;
Object fd = services.getOption

(RenderOptionBase.OUTPUT_FILE_NAME);
File file = null;
try
{

if (fd != null)
{

file = new File(fd.toString());
File parent = file.getParentFile();
if (parent != null && !parent.exists())
{

parent.mkdirs();
}
out = new BufferedOutputStream(new

FileOutputStream(file));
}

}
catch (FileNotFoundException e)
{

logger.log(Level.WARNING, e.getMessage(), e);
}
if (out == null)
{

U n d e r s t a n d i n g t h e s a m p l e C S V r e p o r t r e n d e r i n g e x t e n s i o n 343

Object value = services.getOption
(RenderOptionBase.OUTPUT_STREAM);

if (value != null && value instanceof OutputStream)
{

out = (OutputStream) value;
}
else
{

try
{

file = new File(REPORT_FILE);
out =

new BufferedOutputStream
(new FileOutputStream(file));

}
catch (FileNotFoundException e)
{

logger.log(Level.SEVERE, e.getMessage(), e);
}

}
}
writer = new CSVWriter();

}

■ start() performs the following operations:

■ Obtains a reference to the IReportContent interface, containing accessor
methods that get the interfaces to the report content emitters

■ Sets a logging level and writes to the log file

■ Opens the output file and specifies the encoding scheme as UTF-8

■ Starts the CSV writer

Listing 18-3 shows the start() method.

Listing 18-3 The start() method

public void start(IReportContent report)
{

logger.log(Level.FINE,
"[CSVReportEmitter] Start emitter.");

this.report = report;
writer.open(out, "UTF-8");
writer.startWriter();

}

■ end() performs the following operations:

■ Sets a logging level and writes to the log file

■ Ends the write process and closes the CSV writer

344 C h a p t e r 1 8 D e v e l o p i n g a R e p o r t R e n d e r i n g E x t e n s i o n

■ Closes the output file

Listing 18-4 shows the end() method.

Listing 18-4 The end() method

public void end(IReportContent report)
{

logger.log(Level.FINE,
"[CSVReportEmitter] End report.");

writer.endWriter();
writer.close();
if(out != null)
{

try
{

out.close();
}
catch (IOException e)
{

logger.log(Level.WARNING, e.getMessage(), e);
}

}
}

Understanding the other CSVReportEmitter methods
The CSVReportEmitter class defines the following additional methods, called at
different phases of the report generation process, that identify hidden content
and provide access to emitters, render options, and style information to
facilitate BIRT Report Engine processing:

■ push(), pop(), and peek()

The CSV plug-in does not export hidden report elements. You can use the
IStyle interface to obtain information about the visible format of a content
object by pushing and popping this object on and off a stack.

In Listing 18-5, while the IStyle object is on the stack, peek() uses
IStyle.getVisibleFormat() to examine the visible format property. peek()
determines if the current content object is visible and returns the Boolean
variable, isHidden, to indicate the status of the item.

Listing 18-5 The peek() method

public boolean peek(IStyle style)
{

boolean isHidden = false;
if (!stack.empty())
{

isHidden =
((Boolean) stack.peek()).booleanValue();

U n d e r s t a n d i n g t h e s a m p l e C S V r e p o r t r e n d e r i n g e x t e n s i o n 345

}
if (!isHidden)
{

String formats = style.getVisibleFormat();
if (formats != null

&& (formats.indexOf
(EngineIRConstants.FORMAT_TYPE_VIEWER) >=
0 || formats.indexOf

(BIRTConstants.BIRT_ALL_VALUE) >= 0))
{

isHidden = true;
}

}
return isHidden;

}

■ startTable()

When writing to the CSV file, the CSV rendering extension must consider the
cell position in the row because all the cells end with a comma except the last
cell in the row.

startTable() uses ITableContent.getColumnCount() to get information about
table column numbers and to initialize the protected columnNumbers
variable, as shown in Listing 18-6.

Listing 18-6 The startTable() method

public void startTable(ITableContent table)
{

assert table != null;
columnNumbers = table.getColumnCount();

...
}

■ startRow()

At the start of each row, startRow() performs the following operations:

■ Calls isRowInFooterBand() to determine if the row is in the header or
footer band of a table or group

■ Sets the currentColumn indicator to 0

Listing 18-7 shows the startRow() code.

Listing 18-7 The startRow() method

public void startRow(IRowContent row)
{

assert row != null;
if (isRowInFooterBand(row))

exportTableElement = false;

346 C h a p t e r 1 8 D e v e l o p i n g a R e p o r t R e n d e r i n g E x t e n s i o n

IStyle mergedStyle = row.getStyle();
push(mergedStyle);
if (isHidden())
{

return;
}
currentColumn = 0;

}

■ isRowInFooterBand()

If the row is an instance of band content, isRowInFooterBand() checks the
band type. If the band type is a footer, the method returns true, as shown in
Listing 18-8.

Listing 18-8 The isRowInFooterBand() method

boolean isRowInFooterBand(IRowContent row)
{

IElement parent = row.getParent();
if (!(parent instanceof IBandContent))
{

return false;
}
IBandContent band = (IBandContent)parent;
if (band.getBandType() == IBandContent.BAND_FOOTER)
{

return true;
}
return false;

}

■ startText()

If the element is exportable and not hidden, startText() writes the text value
to the CSV output file, as shown in Listing 18-9.

Listing 18-9 The startText() method

public void startText(ITextContent text)
{

IStyle mergedStyle = text.getStyle();
if (peek(mergedStyle))
{

return;
}
logger.log(Level.FINE,

"[CSVReportEmitter] Start text");

U n d e r s t a n d i n g t h e s a m p l e C S V r e p o r t r e n d e r i n g e x t e n s i o n 347

String textValue = text.getText();

if (exportTableElement)
{

writer.text(textValue);
}

}

■ endCell()

If the current cell is not the last column in the row and the element is
exportable and not hidden, endCell() writes a comma to the CSV output file,
as shown in Listing 18-10.

Listing 18-10 The endCell() method

public void endCell(ICellContent cell)
{

if (isHidden())
{

return;
}
logger.log(Level.FINE,

"[CSVReportEmitter] End cell.");

if ((currentColumn < columnNumbers)
&& exportTableElement)

{
writer.closeTag(CSVTags.TAG_COMMA);

}
}

■ endRow()

At the end of each row, if the element is exportable and not hidden,
endRow() writes a new line or carriage return to the CSV output file, as
shown in Listing 18-11.

Listing 18-11 The endRow() method

public void endRow(IRowContent row)
{

if (pop())
{

return;
}
if (exportTableElement)
writer.closeTag(CSVTags.TAG_CR);
exportTableElement = true;

}

348 C h a p t e r 1 8 D e v e l o p i n g a R e p o r t R e n d e r i n g E x t e n s i o n

Understanding CSVTags
The CSVTags class defines the contents of the comma and new line tags, as
shown in Listing 18-12.

Listing 18-12 The CSVTags class

public class CSVTags
{

public static final String TAG_COMMA = "," ;
public static final String TAG_CR = "\n" ;

}

Understanding CSVWriter
The CSVWriter class extends org.eclipse.birt.report.engine.emitter.XMLWriter,
overwriting the closeTag() method to write the closing tags defined in
CSVTags, as shown in Listing 18-13.

Listing 18-13 The closeTag() method

public void closeTag(String tagName)
{

super.printWriter.print(tagName);
}

Understanding the BIRT report engine API package
In addition to the rendering classes, implementing the CSV report rendering
extension requires making changes to the org.eclipse.birt.report
.engine.api package. The following changes create and expose the API for the
CSV rendering option developed in the org.eclipse.birt.report.engine
.emitter.csv package:

■ RenderOptionBase

Add the CSV output format to the format definitions in RenderOptionBase.

■ CSVRenderOption

Create the class, org.eclipse.birt.report.engine.api.CSVRenderOption, to
integrate the plug-in with BIRT Report Engine. This class defines CSV as an
option in BIRT Report Engine.

■ EngineConstants

Add the CSV render context to the list in EngineConstants.

The following section contains more specific information about the
implementation details for the classes in the org.eclipse.birt.report.engine.api
package.

U n d e r s t a n d i n g t h e s a m p l e C S V r e p o r t r e n d e r i n g e x t e n s i o n 349

Understanding RenderOptionBase
The org.eclipse.birt.report.engine.api.RenderOptionBase class implements the
IRenderOption interface, which defines the rendering options for emitters. The
accessor methods for this interface provide access to the following output
options:

■ File name

■ Format

■ Stream

Add the new CSV format to the format definitions in org.eclipse.birt.report
.engine.api.RenderOptionBase class, as shown in Listing 18-14.

Listing 18-14 The RenderOptionBase class

public class RenderOptionBase implements IRenderOption {
...
public static final String OUTPUT_FORMAT_HTML = "html";
public static final String OUTPUT_FORMAT_PDF = "pdf";
public static final String OUTPUT_FORMAT_FO = "fo";
public static final String OUTPUT_FORMAT_CSV = "csv";
...

Understanding CSVRenderOption
The org.eclipse.birt.report.engine.api.CSVRenderOption class extends
RenderOptionBase to add the CSV rendering option, as shown in Listing 18-15.

Listing 18-15 The CSVRenderOption class

package org.eclipse.birt.report.engine.api;

public class CSVRenderOption extends RenderOptionBase {

public static final String CSV = "CSV";

public CSVRenderOption() {
}

}

Understanding EngineConstants
The org.eclipse.birt.report.engine.api.EngineConstants class defines the CSV
rendering context options to add the CSV rendering context option, as shown in
Listing 18-16.

350 C h a p t e r 1 8 D e v e l o p i n g a R e p o r t R e n d e r i n g E x t e n s i o n

Listing 18-16 The EngineConstants class

public class EngineConstants {
public final static String APPCONTEXT_HTML_RENDER_CONTEXT =

"HTML_RENDER_CONTEXT";
public final static String APPCONTEXT_PDF_RENDER_CONTEXT =

"PDF_RENDER_CONTEXT";
public final static String APPCONTEXT_CSV_RENDER_CONTEXT =

"CSV_RENDER_CONTEXT";
...

}

Testing the CSV report rendering plug-in
To test the CSV report rendering example, you create a Java application that
runs a report design in an installation of the BIRT run-time engine. BIRT
provides a run-time engine that runs in a stand-alone J2EE application server
environment and a preview engine that runs in the BIRT Report Designer.

To test the CSV report rendering plug-in, you perform the following tasks:

■ Build the org.eclipse.birt.report.engine.emitter.csv and org.eclipse.birt
.report.engine.api plug-ins.

■ Deploy the plug-ins to the BIRT run-time engine directory.

■ Launch a run-time instance of the Eclipse PDE.

■ Create a Java application that runs a report design and writes the report’s
table data to a CSV file.

■ Create a report design containing a table that maps to a data source and data
set.

■ Run the application and examine the output in the CSV file.

You must have previously installed the BIRT run-time engine in the test
environment. For more information about downloading and installing the BIRT
run-time engine, see the sections on installing the BIRT system earlier in this
book or visit the Eclipse BIRT web site at http://www.eclipse.org/birt.

The following sections describe the steps required to build and export the
plug-ins, launch the Eclipse PDE run-time environment, create the Java
application and report design, and test the plug-in example.

How to build and export the org.eclipse.birt.report.engine.emitter.csv plug-in

On PDE Manifest Editor, perform the following tasks:

1 On Build, specify the binary build configuration for the plug-in for
org.eclipse.birt.report.engine.emitter.csv to include the following items:

■ plugin.xml

http://www.eclipse.org/birt

Te s t i n g t h e C S V r e p o r t r e n d e r i n g p l u g - i n 351

■ bin\org.eclipse.birt.report.engine.emitter.csv

■ META-INF\MANIFEST.MF

2 On Overview, in Exporting, choose the Export Wizard and perform the
following tasks:

1 In Options, choose Package plug-ins as individual JAR archives, as
shown in Figure 18-8.

Figure 18-8 Exporting a plug-in option

2 In Destination, choose the directory, $INSTALL_DIR\birt-runtime-
2_1_0\Report Engine, as shown in Figure 18-9. Choose Finish.

Figure 18-9 Exporting a plug-in to BIRT run-time engine

How to build and deploy the org.eclipse.birt.report.engine plug-in

1 Using Ant with the following BuildEngineAPI.xml file, create an archive
containing the org.eclipse.birt.report.engine.api package with the
modifications required to run the CSV emitter example.

BuildEngineAPI.xml has two target operations:

■ Jar creates the engineapi.jar file from a defined file set.

352 C h a p t e r 1 8 D e v e l o p i n g a R e p o r t R e n d e r i n g E x t e n s i o n

■ Clean removes any objects created by previous build and archive
operations, deleting the bin directory and engineapi.jar file.

Listing 18-17 shows the BuildEngineAPI.xml code.

Listing 18-17 The BuildEngineAPI.xml code

<project name="BIRT Engine Project" default="Jar"
basedir=".">
<description>BIRT Engine Project.</description>

<property name="bin" location="bin"/>
<property name="lib" location="lib"/>

<target name="Jar" description="package engine files">
<jar destfile="engineapi.jar">

<fileset dir="${bin}">
<include

name="org/eclipse/birt/report/engine/api/
*.class"/>

<include name="org/eclipse/birt/report/engine/
util/
*.class"/>

<include name="org/eclipse/birt/report/engine/
i18n/
*.class"/>

<include name="org/eclipse/birt/report/engine/
i18n/
*.properties"/>

<include name="org/eclipse/birt/report/engine/
api/impl/CascadingParameterGroupDefn.class"/>

<include name="org/eclipse/birt/report/engine/
api/impl/ParameterDefn.class"/>

<include name="org/eclipse/birt/report/engine/
api/impl/ParameterDefnBase.class"/>

<include name="org/eclipse/birt/report/engine/
api/impl/ParameterGroupDefn.class"/>

<include name="org/eclipse/birt/report/engine/
api/impl/ParameterSelectionChoice.class"/>

<include name="org/eclipse/birt/report/engine/
api/impl/ScalarParameterDefn.class"/>

</fileset>
</jar>

</target>

<!-- Clean removes any objects created by
previous build and archive operations -->

<target name="Clean" description="clean up">
<!-- Delete the ${bin} directory -->
<delete dir="${bin}"/>
<!-- Delete the engineapi.jar file /-->

Te s t i n g t h e C S V r e p o r t r e n d e r i n g p l u g - i n 353

<delete dir="engineapi.jar"/>
</target>

</project>

2 Copy engineapi.jar to $INSTALL_DIR\birt-runtime-2_1_0\Report Engine\
lib.

Launching the CSV report rendering plug-in
On PDE Manifest Editor, in Overview, the Testing section contains links to
launch a plug-in as a separate Eclipse application in either Run or Debug mode.
Figure 18-10 shows Overview for the CSV report rendering extension example
in the host instance of the PDE workbench.

Figure 18-10 Overview information for the CSV report rendering extension

When the Eclipse PDE launches an Eclipse application, it creates the working
directory, $INSTALL_DIR\eclipse\runtime-EclipseApplication, by default if
the directory does not exist. For testing purposes, you can create a Java project
in this workspace to run and render a report in CSV format. You can change the
location of the working directory when you create the launch configuration for
the Java application.

To execute, the report execution project must include the archive, org.eclipse.birt
.report.engine.emitter.csv in $INSTALL_DIR\birt-runtime-2_1_0\Report
Engine\plugins, and the archive, engineapi.jar, in lib. Figure 18-11 shows the
Eclipse run-time workbench with the report execution project completely
specified, after a successful execution.

354 C h a p t e r 1 8 D e v e l o p i n g a R e p o r t R e n d e r i n g E x t e n s i o n

Figure 18-11 The report execution project in the Eclipse run-time workbench

How to launch the CSV report rendering plug-in

1 On Eclipse PDE Manifest Editor, in the Testing section of Overview, choose
Launch an Eclipse application. The Eclipse PDE launches a run-time instance
of the workbench.

2 In the run-time instance of the Eclipse PDE workbench, choose
Window➛Open Perspective➛Java. Java opens.

How to create the report execution project

1 In Eclipse run-time workbench, choose File➛New➛Project. New Project
appears.

2 In New Project—Select a wizard, perform the following tasks:

1 In Wizards, choose Java Project. Choose Next. Create a Java Project
appears.

2 In Create a Java Project, perform the following tasks:

1 In Project name, type:

ExecuteReport

2 In Contents, select Create new project in workspace. Choose Next.
Java Settings—Source appears.

3 In Java Settings, choose Libraries. Java Settings—Libraries appears.

Te s t i n g t h e C S V r e p o r t r e n d e r i n g p l u g - i n 355

4 In Libraries, perform the following tasks:

1 Choose Add External JARS. JAR Selection opens.

2 On JAR Selection, in Look in, navigate to $INSTALL_DIR\birt
-runtime-2_1_0\Report Engine\lib and, holding down CTRL, select
the following libraries:

❏ chartengineapi.jar

❏ com.ibm.icu_3.4.4.1.jar

❏ commons-cli-1.0.jar

❏ commons-codec-1.3.jar

❏ coreapi.jar

❏ dataadapterapi.jar

❏ dteapi.jar

❏ engineapi.jar

❏ flute.jar

❏ js.jar

❏ modelapi.jar

❏ org.eclipse.emf.common_2.2.0.jar

❏ org.eclipse.emf.ecore.xmi_2.2.0.jar

❏ org.eclipse.emf.ecore_2.2.0.jar

❏ sac.jar

❏ scriptapi.jar

Choose Open. Choose Finish. In Package Explorer, the ExecuteReport
project appears.

How to create the Java report execution class

1 In Eclipse run-time workbench, choose File➛New➛Class. New Java Class
appears.

2 On New Java Class, perform the following tasks:

1 In Source folder, type:

ExecuteReport

2 In Which method stubs would you like to create?, perform the following
tasks:

1 Select Public static void main(Strings[] args).

2 Deselect Constructors from superclass.

356 C h a p t e r 1 8 D e v e l o p i n g a R e p o r t R e n d e r i n g E x t e n s i o n

3 Deselect Inherited abstract methods.

Choose Finish.

In Package Explorer, ExecuteReport.java appears in the ExecuteReport
project.

3 Open ExecuteReport.java in Java Editor, and add the required code. The
ExecuteReport code is discussed later in this chapter.

4 In Eclipse run-time workbench, compile the project by choosing
Project➛Build Project.

How to run the CSV report rendering extension

To run the CSV report rendering extension, using the ExecuteReport
application, perform the following tasks:

1 In Eclipse run-time workbench, right-click ExecuteReport, and choose Run
As➛Run from the menu. Run appears.

2 On Run, perform the following tasks:

1 In Java Application, select ExecuteReport, as shown in Figure 18-12.

Figure 18-12 Selecting ExecuteReport

2 To change the working directory for the launch configuration, perform
the following tasks:

1 On Run, choose (x) = Arguments.

2 In Working Directory, choose Other. Choose File System. Browse for
Folder appears. Select the working directory that contains the
ExecuteReports project for the launch configuration. Choose OK.

3 On Run, choose Apply.

Te s t i n g t h e C S V r e p o r t r e n d e r i n g p l u g - i n 357

3 To run the Java application using the launch configuration, choose Run.

How to view the CSV report rendering extension file output

1 Navigate to the directory containing the CSV output file. This CSV report
rendering extension example writes the CSV file to the following location:

C:\Program Files\eclipse\runtime-EclipseApplication\
ExecuteReport\reports

2 Using a text editor or other tool, open the file, and view its contents.

Figure 18-13 shows the CSV output.

Figure 18-13 CSV output

The XML source code for the report design used in this example is discussed
later in this chapter.

About ExecuteReport class
The ExecuteReport class runs a BIRT report and renders the output in CSV
format, writing the text-based elements of the report to a file. The ExecuteReport
class performs the following operations:

■ Configures the report engine

■ Sets the log configuration and logging level

■ Starts the platform and loads the plug-ins

■ Gets the report engine factory object from the platform and creates the report
engine

■ Opens the report design

■ Creates a task to run and render the report

■ Set the rendering options, such as the output file and format

■ Runs the report and destroys the engine

■ Shuts down the engine

Listing 18-18 shows the code for the ExecuteReport class in the CSV report
rendering extension example.

358 C h a p t e r 1 8 D e v e l o p i n g a R e p o r t R e n d e r i n g E x t e n s i o n

Listing 18-18 The ExecuteReport class code

import java.util.logging.Level;
import org.eclipse.birt.core.framework.Platform;
import org.eclipse.birt.report.engine.api.EngineConfig;
import org.eclipse.birt.report.engine.api.CSVRenderOption;
import org.eclipse.birt.report.engine.api.IReportEngine;
import

org.eclipse.birt.report.engine.api.IReportEngineFactory;
import org.eclipse.birt.report.engine.api.IReportRunnable;
import org.eclipse.birt.report.engine.api.IRunAndRenderTask;

public class ExecuteReport {

static void executeReport() throws Exception
{

IReportEngine engine=null;
EngineConfig config = null;
config = new EngineConfig();
config.setEngineHome

("C:/birt-runtime-2_1_0/ReportEngine");
config.setLogConfig("c:/birt/logs", Level.FINE);
Platform.startup(config);
IReportEngineFactory factory =

(IReportEngineFactory) Platform.createFactoryObject
(IReportEngineFactory

.EXTENSION_REPORT_ENGINE_FACTORY);
engine = factory.createReportEngine(config);
engine.changeLogLevel(Level.WARNING);

IReportRunnable design =
engine.openReportDesign

("reports/csvTest.rptdesign");
IRunAndRenderTask task =

engine.createRunAndRenderTask(design);
String format = CSVRenderOption.OUTPUT_FORMAT_CSV;
if (format.equals(CSVRenderOption.OUTPUT_FORMAT_CSV))
{

CSVRenderOption csvOptions = new CSVRenderOption();
csvOptions.setOutputFormat(format);
csvOptions.setOutputFileName("reports/csvTest.csv");
task.setRenderOption(csvOptions);

}

task.run();
task.close();
engine.shutdown();
Platform.shutdown();
System.out.println("We are done!!!");

Te s t i n g t h e C S V r e p o r t r e n d e r i n g p l u g - i n 359

}
public static void main(String[] args) {

try
{

executeReport();
}
catch (Exception e)
{

e.printStackTrace();
}

}
}

About the report design XML code
The XML file for the report design, csvTest.reportdesign, contains the following
source code settings, as specified in the report design:

■ Data sources, including the ODA plug-in extension ID, driver class, URL,
and user

■ Data sets, including the ODA JDBC plug-in extension ID, result set
properties, and query text

■ Page setup, including the page footer

■ Body, containing the table structure and properties for the bound data
columns, including the header, footer, and detail rows

The report design example specifies a data source that connects to
org.eclipse.birt.report.data.oda.sampledb, the BIRT Classic Models sample
database. Listing 18-19 shows the XML source code for the report design used to
test the CSV rendering example. The sample application runs the report from
the reports subfolder in the ExecuteReport project.

Listing 18-19 The report design XML code

<?xml version="1.0" encoding="UTF-8"?>
<!-- Written by Eclipse BIRT 2.0 -->
<report xmlns="http://www.eclipse.org/birt/2005/design"

version="3.2.2" id="1">
<property name="createdBy">

Eclipse BIRT Designer Version 1.0.1
Build <20050729-0746></property>

<property name="units">in</property>
<data-sources>

<oda-data-source
extensionID=
"org.eclipse.birt.report.data.oda.sampledb"
name="Data Source" id="2">

360 C h a p t e r 1 8 D e v e l o p i n g a R e p o r t R e n d e r i n g E x t e n s i o n

<property
name="odaDriverClass">
org.eclipse.birt.report.data.oda.sampledb.Driver

</property>
<property

name="odaURL">jdbc:classicmodels:sampledb
</property>
<property name="odaUser">ClassicModels</property>

</oda-data-source>
</data-sources>
<data-sets>

<oda-data-set
extensionID=

"org.eclipse.birt.report.data.oda.jdbc
.JdbcSelectDataSet" name="Data Set" id="3">

<structure name="cachedMetaData">
<list-property name="resultSet">

<structure>
<property name="position">1</property>
<property name=

"name">PRODUCTNAME
</property>
<property

name="dataType">string
</property>

</structure>
<structure>

<property name="position">2</property>
<property

name="name">QUANTITYINSTOCK
</property>
<property

name="dataType">integer
</property>

</structure>
<structure>

<property name="position">3</property>
<property name="name">MSRP</property>
<property name="dataType">float</property>

</structure>
</list-property>

</structure>
<property name="dataSource">Data Source</property>
<property name="queryText">

select CLASSICMODELS.PRODUCTS.PRODUCTNAME,
CLASSICMODELS.PRODUCTS.QUANTITYINSTOCK,
CLASSICMODELS.PRODUCTS.MSRP

from CLASSICMODELS.PRODUCTS</property>
</oda-data-set>

</data-sets>
<page-setup>

<simple-master-page name="Simple MasterPage" id="4">

Te s t i n g t h e C S V r e p o r t r e n d e r i n g p l u g - i n 361

<page-footer>
<text id="5">

<property name="contentType">html</property>
<text-property name="content">

<![CDATA[<value-of>new Date()</value-of>]]>
</text-property>

</text>
</page-footer>

</simple-master-page>
</page-setup>
<body>

<table id="6">
<property name="width">100%</property>
<property name="dataSet">Data Set</property>
<list-property name="boundDataColumns">

<structure>
<property name="name">PRODUCTNAME</property>
<expression

name="expression">dataSetRow["PRODUCTNAME"]
</expression>

</structure>
<structure>

<property
name="name">QUANTITYINSTOCK

</property>
<expression

name="expression">
dataSetRow["QUANTITYINSTOCK"]

</expression>
</structure>
<structure>

<property name="name">MSRP</property>
<expression

name="expression">dataSetRow["MSRP"]
</expression>

</structure>
</list-property>
<column id="28"/>
<column id="29"/>
<column id="30"/>
<header>

<row id="7">
<cell id="8">

<property name="colSpan">3</property>
<property name="rowSpan">1</property>
<property name="textAlign">center</property>

<label id="9">
<property

name="fontSize">x-large
</property>
<property

name="fontWeight">bold
</property>

362 C h a p t e r 1 8 D e v e l o p i n g a R e p o r t R e n d e r i n g E x t e n s i o n

<property
name="textAlign">center

</property>
<text-property

name="text">Report
</text-property>

</label>
</cell>

</row>
<row id="10">

<cell id="11">
<label id="12">

<text-property
name="text">PRODUCTNAME

</text-property>
</label>

</cell>
<cell id="13">

<label id="14">
<text-property

name="text">QUANTITYINSTOCK
</text-property>

</label>
</cell>
<cell id="15">

<label id="16">
<text-property

name="text">MSRP
</text-property>

</label>
</cell>

</row>
</header>
<detail>

<row id="17">
<cell id="18">

<data id="19">
<property

name="resultSetColumn">PRODUCTNAME
</property>

</data>
</cell>
<cell id="20">

 <data id="21">
<property

name="resultSetColumn">QUANTITYINSTOCK
</property>

</data>
</cell>
<cell id="22">

<data id="23">
<property

name="resultSetColumn">MSRP

Te s t i n g t h e C S V r e p o r t r e n d e r i n g p l u g - i n 363

</property>
</data>

</cell>
</row>

</detail>
<footer>

<row id="24">
<cell id="25"/>
<cell id="26"/>
<cell id="27"/>

</row>
</footer>

</table>
</body>

</report>

BIRT Report Engine can render a report design for output using a standard
emitter extension or a customized emitter extension, such as this CSV rendering
example.

This page intentionally left blank

365

C h a p t e r

Chapter 19Developing an ODA
Extension

This chapter describes how to develop an ODA extension. BIRT uses the Eclipse
Data Tools Platform (DTP) ODA API to build a driver that connects to a data
source and retrieves data for a report. The API defines interfaces and classes that
manage the following tasks:

■ Connecting to a data source

■ Preparing and executing a query

■ Handling data and metadata in a result set

■ Mapping between the object representation of data and the data source

Eclipse DTP also provides tools and support for SQL development, locales,
logging, and other special types of processing. For more information about the
Eclipse DTP project, see http://www.eclipse.org/datatools.

This chapter shows how to develop an ODA extension using examples that
access the following data sources:

■ CSV file

Uses the source code from the DTP ODA flat file plug-in,
org.eclipse.datatools.connectivity.oda.flatfile, as the template for the classes
in the CSV ODA plug-in project. The DTP ODA interfaces are similar to a
JDBC interface with extensions that support retrieving data from
non-relational database sources.

■ Relational database

Uses Hibernate Core for Java, an object-oriented software system for
generating SQL and handling JDBC result sets. Hibernate Query Language

http://www.eclipse.org/datatools

366 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

(HQL) provides a SQL-transparent extension that makes the DTP ODA
extension portable to all relational databases. Hibernate also supports
developing a query in the native SQL dialect of a database.

Hibernate is free, open-source software licensed under the GNU Lesser
General Public License (LGPL). For more information about Hibernate, see
http://www.hibernate.org/.

Understanding an ODA extension
A BIRT report design specifies the type of data access and data transformations
required to generate a report. All data comes from an external data source. The
BIRT data engine supports the DTP ODA framework. The DTP ODA
framework provides access to standard and custom data sources using an open
API.

The ODA extension point makes it possible to create a plug-in driver to any
external data source. BIRT adopts DTP ODA extension points for the report
designer and report generation environments.

A DTP ODA extension adds a new data source driver to the BIRT framework by
implementing the following extension points:

■ ODA data source

org.eclipse.datatools.connectivity.oda.dataSource supports the extension of
BIRT design-time and run-time data source access. The XML schema file,
org.eclipse.datatools.connectivity.oda/schema/dataSource.exsd, describes
this extension point.

■ ODA user interface

org.eclipse.datatools.connectivity.oda.design.ui.dataSource supports
optionally adding an integrated user interface for an ODA driver to BIRT
Report Designer. The plug-in can provide user interface support that allows
a user to specify the data source and edit the data set. The XML schema file,
org.eclipse.datatools.connectivity.oda.design.ui/schema/dataSource.exsd,
describes this extension point.

For more information on the DTP ODA APIs, see the Javadoc for the
org.eclipse.datatools.connectivity.oda package hierarchy. The Javadoc is in the
DTP Software Development Kit (SDK) available from the Eclipse Data Tools
Platform project at http://www.eclipse.org/datatools.

Developing the CSV ODA driver extensions
You develop the CSV ODA extensions by performing the following tasks:

■ Download the required BIRT source code from the Eclipse CVS repository.

http://www.hibernate.org/
http://www.eclipse.org/datatools

D e v e l o p i n g t h e C S V O D A d r i v e r e x t e n s i o n s 367

■ Create two new projects in the Eclipse PDE to implement the following
plug-ins:

■ CSV ODA driver to access the data source

■ CSV ODA user interface (UI) to select the data file and available data
columns in BIRT Report Designer

■ Extend the source code in the CSV ODA plug-in projects by adding new
functionality at the defined extension points.

■ Test and deploy the extensions in the run-time environment.

You can download the source code for the CSV ODA driver extension examples
at http://www.actuate.com/birt/contributions.

About the CSV ODA plug-ins
The CSV ODA extensions require the following two plug-ins:

■ org.eclipse.birt.report.data.oda.csv

The CSV ODA data source plug-in extends the functionality defined by the
extension point, org.eclipse.datatools.connectivity.oda.dataSource, to create
the CSV ODA driver. The first row of the CSV input file contains the column
names. The remaining rows, separated by new line markers, contain the data
fields, separated by commas. The org.eclipse.birt.report.data.oda.csv plug-in
contains the database classes and data structures, such as data types, result
set, metadata result set, and query used to handle data in a BIRT report.

The org.eclipse.datatools.connectivity.oda.dataSource extension point is
in the Eclipse DTP project and is part of the org.eclipse.datatools
.connectivity.oda plug-in. This plug-in is available from the CVS repository
in /home/datatools.

■ org.eclipse.birt.report.data.csv.ui

The CSV ODA UI plug-in extends the functionality defined by the
org.eclipse.datatools.connectivity.connectionProfile, org.eclipse.ui
.propertyPages, and org.eclipse.datatools.connectivity.oda.design.ui
.dataSource extension points. The UI consists of the following two pages:

■ The data source page specifies and validates the path and name of the
CSV file.

■ The data set page shows the selected data file and columns available in
the file. By default, the UI selects all the columns in the data set.

Downloading BIRT source code from the CVS
repository
The CSV ODA driver plug-in, org.eclipse.birt.report.data.oda.csv, requires the
following Eclipse plug-ins:

http://www.actuate.com/birt/contributions

368 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

■ org.eclipse.core.runtime

■ org.eclipse.datatools.connectivity.oda

The CSV ODA UI extension, org.eclipse.birt.report.data.csv.ui, requires the
following Eclipse plug-ins:

■ org.eclipse.core.runtime

■ org.eclipse.ui

■ org.eclipse.datatools.connectivity.oda.design.ui

■ org.eclipse.birt.report.data.oda.csv

For the org.eclipse.birt.report.data.oda.csv plug-in, you extend only the Java
classes in the org.eclipse.datatools.connectivity.oda plug-in. For the
org.eclipse.birt.report.data.csv.ui plug-in, you extend the Java classes in the
org.eclipse.datatools.connectivity.oda.design.ui plug-in.

Eclipse makes source code available to the developer community in the CVS
repository. To compile, you do not need the source code for the plug-ins. You
can configure the system to use the JAR files in the eclipse\plugins folder. To
debug, you may need the source code for all the required BIRT and DTP
plug-ins.

Implementing the CSV ODA driver plug-in
This section describes how to implement an ODA driver plug-in, using the CSV
ODA driver plug-in as an example. To create an ODA driver plug-in, perform
the following tasks:

■ Create the ODA driver plug-in project.

■ Define the dependencies.

■ Specify the run-time archive.

■ Declare the ODA extension points.

You can create the CSV ODA driver plug-in project, org.eclipse.birt.report
.data.oda.csv, in the Eclipse PDE. This section describes how to create the
plug-in project using the New Plug-in Project wizard.

How to create the CSV ODA driver plug-in project

1 From the Eclipse PDE menu, choose File➛New➛Plug-in Project.

2 On New Project—Select a wizard, select Plug-in Project. Choose Next. New
Plug-in Project appears.

I m p l e m e n t i n g t h e C S V O D A d r i v e r p l u g - i n 369

3 In Plug-in Project, modify the settings as shown in Table 19-1. Choose Next.
Plug-in Content appears.

4 In Plug-in Content, modify the settings as shown in Table 19-2. Choose
Finish.

Table 19-1 Settings for Plug-in Project options

Section Option Value

Plug-in Project Project name org.eclipse.birt.report.data
.oda.csv

Use default location Selected

Location Not available when you select
Use default location

Project Settings Create a Java project Selected

Source folder src

Output folder bin

Target Platform Eclipse version 3.2

OSGi framework Selected Equinox

Table 19-2 Settings for Plug-in Content options

Section Option Value

Plug-in
Properties

Plug-in ID org.eclipse.birt.report.data
.oda.csv

Plug-in Version 1.0.0

Plug-in Name CSV ODA Driver

Plug-in Provider yourCompany.com or leave
blank

Classpath csvODA.jar

Plug-in
Options

Generate an activator, a
Java class that controls
the plug-in’s life cycle

Selected

Activator org.eclipse.birt.report.data
.oda.csv.CsvPlugin

This plug-in will make
contributions to the UI

Deselected

Rich Client
Application

Would you like to create
a rich client application?

No

370 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

Defining the dependencies for the CSV ODA driver
extension
In this step, you specify the list of plug-ins that must be available on the
classpath of the CSV ODA driver extension to compile and run.

How to specify the dependencies

1 On PDE Manifest Editor, choose Overview.

2 In Plug-in Content, choose Dependencies. In Required Plug-ins, choose Add.
Plug-in Selection appears.

3 In Plug-in Selection, hold down CTRL and select the following plug-ins:

■ org.eclipse.core.runtime

■ org.eclipse.datatools.connectivity.oda

Choose OK. Dependencies appears, as shown in Figure 19-1.

Figure 19-1 The Dependencies page

The order of the list determines the sequence in which a plug-in loads at run
time. Use Up and Down to change the loading order as necessary. The CSV
ODA driver extension does not require any changes to the loading order if
you selected the required plug-ins in the order listed in step 3.

Specifying the run-time settings for the CSV ODA
driver extension
On PDE Manifest Editor, choose Runtime. On Runtime, you specify exported
package visibility and the libraries and folders on the plug-in classpath.

In Exported Packages, verify that the org.eclipse.birt.report.data.oda.csv
package appears in the list. In Classpath, verify that the archive file you
specified in the New Plug-in Project wizard, csvODA.jar, appears in the
library list.

I m p l e m e n t i n g t h e C S V O D A d r i v e r p l u g - i n 371

Declaring the ODA data source extension point
In this next step, you specify the extension point used to implement the CSV
ODA driver extension and add the extension element details. The ODA data
source extension point supports extending design-time and run-time data
source access for an application. The extension must implement the ODA Java
run-time interfaces defined in the org.eclipse.datatools.connectivity.oda plug-in.

The extension point, org.eclipse.datatools.connectivity.oda.dataSource, specifies
the following properties that identify the extension in the run-time
environment:

■ ID

Optional identifier of the extension instance

■ Name

Optional name of the extension instance

■ Point

Fully qualified identifier of the extension

The extension point requires you to define the following extension elements and
extension element details for the CSV ODA driver:

■ Datasource

Defines an ODA data source extension type to use at design time and run
time, containing the following elements and element details:

■ id

Fully qualified identifier of an ODA data source extension.

■ driverClass

Java class that implements the org.eclipse.datatools.connectivity.oda
.IDriver interface. This interface provides the entry point for the ODA
run-time driver extension.

■ odaVersion

Version of the ODA interfaces. Specify version 3.0 for an ODA driver
developed for BIRT release 2.1.

■ defaultDisplayName

Display name of the ODA data source extension. The value can be
localized using the plugin.properties mechanism. The default display
name is the extension id.

■ setThreadContextClassLoader

Indicates whether the consumer of the ODA run-time extension plug-in
must set the thread context class loader before calling an ODA interface

372 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

method. The OSGi class loader that loads the ODA run-time plug-in is
not designed to load additional classes. To load additional classes, an
ODA run-time plug-in must provide its own java.net.URLClassLoader
object and switch the thread context class loader as required.

The dataSource element also specifies a property, HOME, containing the
following extension element details:

■ name

Unique name of a property group.

■ defaultDisplayName

Default display name of a property group. The value can be localized
using the plugin.properties mechanism. The default display name is
the id.

■ type

Data type of the property.

■ canInherit

Flag indicating whether the property extension element can inherit
properties.

■ defaultValue

Default value of the property extension element.

■ isEncryptable

Flag indicating whether the property is encrypted.

■ dataSet

Defines a type of data set supported by a dataSource extension, containing
the following elements and element details:

■ id

Required identifier of the ODA data set extension.

■ defaultDisplayName

Display name of the ODA data set extension. The value can be localized
using the plugin.properties mechanism. The default display name is the
element id.

The dataSet element also specifies a complex data type, dataTypeMapping,
which defines a sequence of data type mappings containing the following
properties:

■ nativeDataTypeCode

Integer value that must match one of the data type codes returned in the
implementation for the ODA driver interface.

I m p l e m e n t i n g t h e C S V O D A d r i v e r p l u g - i n 373

■ nativeDataType

String value specifying the data source native data type.

■ odaScalarDataType

ODA scalar data type that maps to the native type. Supported ODA data
types include Date, Double, Integer, String, Time, Timestamp, Decimal,
BLOB, and CLOB.

How to specify the data source extension point

1 On PDE Manifest Editor, choose Extensions.

2 In All Extensions, choose Add. New Extension appears.

3 On New Extension—Extension Points, in the list of extension points, select
the following plug-in:

org.eclipse.datatools.connectivity.oda.dataSource

New Extension—Extension Points appears as shown in Figure 19-2. Choose
Finish.

Figure 19-2 Selecting the dataSource extension point

374 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

Extensions appears as shown in Figure 19-3.

Figure 19-3 The dataSource extension point on Extensions page

All Extensions lists the extension point, org.eclipse.datatools.connectivity
.oda.dataSource. Extensions Details contains the list of extension details
specified in the XML schema file, dataSource.exsd.

How to specify the data source extension element

1 On PDE Manifest Editor, choose Extensions.

In All Extensions, right-click the extension point, org.eclipse.datatools
.connectivity.oda.dataSource, and choose New➛dataSource, as shown in
Figure 19-4. The PDE Manifest Editor displays org.eclipse.birt.report.data
.oda.csv.dataSource in All Extensions.

Figure 19-4 Choosing a new data source extension element

2 In Extension Element Details, add the extension element details for the
extension element, dataSource, as shown in Table 19-3.

I m p l e m e n t i n g t h e C S V O D A d r i v e r p l u g - i n 375

3 The property values for the dataSource extension element appear as shown
in Figure 19-5.

Figure 19-5 Property settings for the new extension element

4 Specify the extension element details for org.eclipse.datatools
.connectivity.oda.dataSource by performing the following tasks:

1 In All Extensions, right-click the dataSource extension element and
choose New➛properties, as shown in Figure 19-6. PDE Manifest Editor
displays properties in All Extensions.

Figure 19-6 Choosing properties

Table 19-3 Property values for the dataSource extension element

Property Value

id org.eclipse.birt.report.data.oda.csv

driverClass org.eclipse.birt.report.data.oda.csv
.CSVFileDriver

odaVersion 3.0

defaultDisplayName CSV Data Source

setThreadContextClassLoader false

376 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

2 Right-click properties and choose New➛property, as shown in
Figure 19-7. PDE Manifest Editor displays property in All Extensions.

Figure 19-7 Choosing a new property

3 Add the element details for the property, as shown in Table 19-4. When
the extension element details for the property are complete, All
Extensions appears as shown in Figure 19-8.

Figure 19-8 HOME property settings in Extensions

How to specify the data set extension

1 On PDE Manifest Editor, choose Extensions.

Table 19-4 Property settings for HOME property

Property Value

name HOME

defaultDisplayName CSV File Full Path

type string

canInherit true

I m p l e m e n t i n g t h e C S V O D A d r i v e r p l u g - i n 377

2 In All Extensions, right-click the extension point, org.eclipse.datatools
.connectivity.oda.dataSource, and choose the extension element,
New➛dataSet, as shown in Figure 19-9.

Figure 19-9 Choosing the dataSet extension

The Eclipse PDE displays org.eclipse.birt.report.data.oda.csv.dataSet in All
Extensions. In Extension Element Details, add the details for the extension,
dataSet, as shown in Table 19-5. Extensions appears as shown in
Figure 19-10.

Figure 19-10 Property settings for dataSet, in Extensions

Table 19-5 Property values for the dataSet extension

Property Value

id org.eclipse.birt.report.data.oda.csv
.dataSet

defaultDisplayName CSV Data Set

378 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

3 In All Extensions, right-click the extension point, org.eclipse.birt
.report.data.oda.csv.dataSet and choose New➛dataTypeMapping, as shown
in Figure 19-11.

Figure 19-11 Choosing a new data type mapping

Repeat step 3 eight times to add more dataTypeMapping elements.

4 In Extension Element Details, add the extension element details for the list of
dataTypeMapping elements, as shown in Table 19-6.

When the extension element details for all the dataTypeMappings are
complete, All Extensions appears as shown in Figure 19-12.

Table 19-6 Settings for dataTypeMapping elements

nativeDataType nativeDataTypeCode odaScalarDataType

INTEGER 4 Integer

DOUBLE 8 Double

BIGDECIMAL 2 Decimal

STRING 12 String

DATE 91 Date

TIME 92 Time

TIMESTAMP 93 Timestamp

BLOB 2004 String

CLOB 2005 String

U n d e r s t a n d i n g t h e s a m p l e C S V O D A d r i v e r e x t e n s i o n 379

Figure 19-12 Data type mappings in All Extensions

PDE Manifest Editor automatically updates plugin.xml with extension
element information.

Understanding the sample CSV ODA driver extension
BIRT Data Engine supports the Eclipse DTP ODA framework. The DTP ODA
framework supports creating an extension that can plug any external data
source into BIRT Report Engine.

The DTP ODA API specifies the interfaces for a run-time driver. BIRT Data
Engine uses the data source and data set definitions in a report design to access
the ODA run-time driver to execute a query and retrieve data.

The DTP ODA interfaces are similar to JDBC interfaces with extensions that
support retrieving data from non-RDBMS sources. An extended ODA driver
can implement these interfaces to wrap the API for another data source, such as
a CSV file, to retrieve a result set containing data rows.

The CSV ODA driver extension described in this chapter is a simplified example
that illustrates how to create an ODA plug-in using the Eclipse PDE. The
following section describes the code-based extensions a developer must make to
complete the development of the CSV ODA driver extension after defining the
plug-in framework in the Eclipse PDE.

Implementing the DTP ODA interfaces
The ODA plug-in, org.eclipse.datatools.connectivity.oda, defines the run-time
interfaces used to retrieve data from a data source. The CSV ODA driver
extension implements the following interfaces in the ODA plug-in:

380 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

■ IDriver

The entry point to an ODA run-time driver. IDriver is the connection factory
that generates the connection to an ODA run-time driver. An IDriver
implementation provides the IConnection object used to establish a
connection to a data source.

■ IConnection

The interface that establishes a connection to a data source. An IConnection
implementation opens and closes the connection, returns an IQuery object
for a data set, and optionally commits or rolls back all changes made since
the last commit or rollback operation.

■ IQuery

The base interface for handling a query. The IQuery implementation
prepares the query text, sets parameters and sorting specifications, executes
the query, returns metadata for the result set, and closes the query.

■ IResultSet

The interface used to access the result set retrieved by an IQuery object. An
IResultSet implementation opens and closes a cursor that points to the
current data row, and moves the cursor forward to the next row, until there
are no more rows or MaxRows limit is reached. Accessor methods get the
value for specified columns in the current row as specific data types. A query
can retrieve one or more IResultSet instances.

■ IResultSetMetaData

The interface that contains the metadata for an IResultSet object. An
IResultSetMetaData implementation contains metadata describing each
column in a result set, including the following information:

■ Column count in the result set

■ Display length

■ Label

■ Name

■ Data type

■ Precision

■ Scale

■ Permits null

■ IDataSetMetaData

An interface that describes the features and capabilities of a data set type,
including the following attributes:

■ Indicates whether the data set type supports the following features:

U n d e r s t a n d i n g t h e s a m p l e C S V O D A d r i v e r e x t e n s i o n 381

❏ Input, output, or named parameters

❏ Named or multiple result sets

❏ Multiple open result sets

■ Provides the following information:

❏ Version of the data source provider

❏ Sort mode for columns, such as none, single, or multiple sort order

■ Returns references to the following components:

❏ Data source connection

❏ Collection of objects in the data source provider catalog

■ IParameterMetaData

An interface that provides information on the parameters defined in a
prepared statement, including count, data type, precision, scale, or whether a
parameter allows null.

■ IAdvancedQuery

An extended interface for a query that has complex input and output
parameters or returns multiple result sets.

Understanding the CSV ODA extension package
The package for the CSV ODA extension example, org.eclipse.birt.report
.data.oda.csv, uses the following classes to implement the ODA plug-in
interfaces:

■ CSVFileDriver

Implements the IDriver interface. Instantiates the connection object for the
CSV ODA driver and sets up the log configuration and application context.

■ Connection

Implements the IConnection interface. Opens and closes the connection to
the CSV file and instantiates the IQuery object.

■ CSVFileQuery

Implements the IQuery interface. Handles the processing that performs the
following operations:

■ Sets up the java.io.File object, containing the file and path names

■ Fetches the data rows from the data file, using the internal class,
CSVBufferReader

■ Trims the column data, removing extraneous characters such as commas
and quotes

■ Prepares the result set metadata, containing the table and column names

382 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

■ ResultSet

Implements the IResultSet interface. Handles the processing that transforms
the String value for a column to the specified data type.

■ ResultSetMetaData

Implements the IResultSetMetaData interface. Describes the metadata for
each column in the result set.

■ DataSetMetaData

Implements the IDataSetMetaData interface. Describes the features and
capabilities of the data set.

■ Messages

Defines the exception messages for the CSV ODA driver.

■ DataTypes

Defines, validates, and returns the data types supported by the CSV ODA
driver.

■ CommonConstant

Defines the constants used in the package, such as the driver name, ODA
version, query keywords, and delimiters.

Understanding CSVFileDriver
The CSVFileDriver class instantiates the connection object for the CSV ODA
driver and sets up the log configuration and application context. Listing 19-1
shows the getConnection() method.

Listing 19-1 The getConnection() method

public IConnection getConnection(String odaDataSourceId)
throws OdaException

{
return new Connection();

}

Understanding CSVFileQuery
In the CSVFileQuery class, the constructor sets up the java.io.File object,
containing the file and path names. The constructor allows the application to
submit the home directory parameter, homeDir, as a file name as well as a path.
CSVFileQuery() configures the data source property based on the value of the
HOME property specified in the report design, as shown in Listing 19-2.

Listing 19-2 The Statement class

CSVFileQuery (String homeDir, IConnection host)
throws OdaException

U n d e r s t a n d i n g t h e s a m p l e C S V O D A d r i v e r e x t e n s i o n 383

{
if (homeDir == null || host == null)

throw new OdaException(Messages.getString
("Common.ARGUMENT_CANNOT_BE_NULL"));

File file = new File(homeDir);
if (file.isDirectory()

this.homeDirectory = homeDir;
else if (file.isFile()

this.homeDirectory = file.getParent();
this.connection = host;

}

The CSVFileQuery class prepares and executes a query, then retrieves the data.
CSVFileQuery implements the following additional methods:

■ prepare() performs the following operations:

■ Formats the query String, eliminating redundant spaces and converting
all keywords to uppercase, by calling formatQueryText()

■ Validates the query by calling validateQueryText()

■ Prepares the metadata required for the execution of the query and
retrieval of the query results by calling prepareMetaData()

Listing 19-3 shows the prepare() method.

Listing 19-3 The prepare() method

public void prepare(String queryText) throws OdaException
{

validateOpenConnection();
String formattedQuery = formatQueryText(queryText);
validateQueryText(formattedQuery);
prepareMetaData(formattedQuery);

}

■ prepareMetaData() acquires the following metadata:

■ Table name

■ Actual column names read from data file

■ Query column names, including prepared column names that use
wildcards

■ Query data types

If the command column list contains a wild card, prepareMetaData() sets the
array of command column names equal to the array of actual column names.

prepareMetaData() then instantiates and sets up the ResultSetMetaData
object. Listing 19-4 shows the prepareMetaData() method.

384 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

Listing 19-4 The prepareMetaData() method

private void prepareMetaData(String queryText)
throws OdaException

{
String[] queryFragments =

parsePreparedQueryText(queryText);
String tableName =

getPreparedTableNames(queryFragments);
String[] allColumnNames =

discoverActualColumnMetaData(tableName,
NAME_LITERAL);

String[] allColumnTypes = null;
String[] queryColumnNames = null;
String[] queryColumnTypes = null;
if (isWildCard

(getPreparedColumnNames(queryFragments)))
{

queryColumnNames = allColumnNames;
queryColumnTypes = allColumnTypes;

}
else
{

queryColumnNames =
getPreparedColumnNames(queryFragments)

.split(CommonConstants.DELIMITER_COMMA);
}

this.resultSetMetaData =
new ResultSetMetaData(queryColumnNames,

queryColumnTypes,
getColumnLabels(queryFragments));

this.currentTableName = tableName;
}

■ executeQuery() performs the following operations:

■ Fetches the data from the file to a Vector object

■ Transfers the data from the Vector to a two-dimensional String array

■ Returns the data rows and metadata in a single ResultSet object

Listing 19-5 shows the executeQuery() method.

Listing 19-5 The executeQuery() method

public IResultSet executeQuery() throws OdaException
{

Vector v = fetchQueriedDataFromFileToVector();
String[][] rowSet =

copyDataFromVectorToTwoDimensionArray(v);

U n d e r s t a n d i n g t h e s a m p l e C S V O D A d r i v e r e x t e n s i o n 385

return new ResultSet(rowSet, this.resultSetMetaData);
}

■ The internal class, CSVBufferReader, fetches the data rows from the data file.
Listing 19-6 shows the readLine() method.

Listing 19-6 The readLine() method

public String readLine() throws IOException
{

if (isLastCharBuff() && needRefillCharBuff())
return null;

if (needRefillCharBuff())
{

charBuffer = newACharBuff();
int close = reader.read(charBuffer);
if (close == -1)

return null;
if (close != CHARBUFFSIZE)

this.eofInPosition = close;
this.startingPosition = 0;

}
String candidate = "";
int stopIn = CHARBUFFSIZE;
if (isLastCharBuff())
{

stopIn = this.eofInPosition;
}
for (int i = this.startingPosition; i < stopIn; i++)
{

if (this.charBuffer[i] == '\n')
{

return readALine(candidate, stopIn, i);
}

}
if (isLastCharBuff())
{

return readLastLine(candidate);
}
return readExtraContentOfALine(candidate);

}

Understanding ResultSet
The ResultSet class performs the following operations:

■ Provides the cursor processing that fetches forward into the buffered result
set rows

■ Transforms the String value for a column to the specified data type

386 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

ResultSet implements the following methods:

■ ResultSet(), the constructor, sets up a two-dimensional array that contains
the table data and metadata, as shown in Listing 19-7.

Listing 19-7 The ResultSet() constructor

ResultSet(String[][] sData, IResultSetMetaData rsmd)
{

this.sourceData = sData;
this.resultSetMetaData = rsmd;

}

■ getRow() returns the cursor, indicating the position of the row in the result
set, as shown in Listing 19-8.

Listing 19-8 The getRow() method

public int getRow() throws OdaException
{

validateCursorState();
return this.cursor;

}

■ next() increments the cursor to point to the next row, as shown in
Listing 19-9.

Listing 19-9 The next() method

public boolean next() throws OdaException
{

if ((this.maxRows <= 0? false:cursor >=
this.maxRows - 1) || cursor >=
this.sourceData.length - 1)

{
cursor = CURSOR_INITIAL_VALUE;
return false;

}
cursor++;
return true;

}

■ getInt() returns the data type value for a column in the row at the column
position specified in the result set, as shown in Listing 19-10.

Listing 19-10 The getInt() method

public int getInt(int index) throws OdaException
{

return stringToInt(getString(index));
}

U n d e r s t a n d i n g t h e s a m p l e C S V O D A d r i v e r e x t e n s i o n 387

■ stringToInt() converts the String value of the column to the specified data
type, as shown in Listing 19-11.

Listing 19-11 The stringToInt() method

private int stringToInt(String stringValue)
{

if (stringValue != null)
{

try
{

return new Integer(stringValue).intValue();
}
catch (NumberFormatException e)
{

this.wasNull = true;
}

}
return 0;

}

Understanding ResultSetMetaData
The ResultSetMetaData class describes the metadata for a column in the result
set, including the following information:

■ Column count in the result set

■ Display length

■ Label

■ Name

■ Data type

■ Precision

■ Scale

■ Permits null

getColumnName() returns the column name for a column at the row, column
position specified in the result set, as shown in Listing 19-12.

Listing 19-12 The getColumnName() method

public String getColumnName(int index) throws OdaException
{

validateColumnIndex(index);
return this.columnName[index - 1].trim();

}

388 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

Understanding DataSetMetaData
The DataSetMetaData class describes the features and capabilities of the data
set, including:

■ Indicating whether the data set supports multiple result sets

■ Providing information about the sort mode for columns

■ Returning a reference to the data source connection

getConnection() returns a reference to a data source connection, as shown in
Listing 19-13.

Listing 19-13 The getConnection() method

public IConnection getConnection() throws OdaException
{

return connection;
}

Understanding Messages
The Messages class defines the exception messages for the CSV ODA driver.

getString() returns a message from the resource bundle using the key value, as
shown in Listing 19-14.

Listing 19-14 The getString() method

public static String getString(String key) {
try {
return RESOURCE_BUNDLE.getString(key);
} catch (MissingResourceException e) {

return '!' + key + '!';
}

}

Understanding DataTypes
The DataTypes class defines, validates, and returns the data types supported by
the CSV ODA driver. DataTypes sets up a map, correlating the names of data
types with a specific integer value, as shown in Listing 19-15.

Listing 19-15 The DataTypes class

public final class DataTypes
{

public static final int INT = Types.INTEGER;
public static final int DOUBLE = Types.DOUBLE;
public static final int STRING = Types.VARCHAR;
...
private static HashMap typeStringIntPair = new HashMap();

U n d e r s t a n d i n g t h e s a m p l e C S V O D A d r i v e r e x t e n s i o n 389

static
{

typeStringIntPair.put("INT", new Integer(INT));
typeStringIntPair.put("DOUBLE", new Integer(DOUBLE));
typeStringIntPair.put("STRING", new Integer(STRING));

...
}

getTypeCode() returns the integer value for a type based on the type name
parameter, as shown in Listing 19-16.

Listing 19-16 The getType() method

public static int getTypeCode(String typeName) throws
OdaException

{
String preparedTypeName = typeName.trim().toUpperCase();
if (typeStringIntPair.containsKey(preparedTypeName))

return
((Integer) typeStringIntPair

.get(preparedTypeName)).intValue();
throw new OdaException(Messages.getString

("DataTypes.TYPE_NAME_INVALID") + typeName);
}

Understanding CommonConstant
The CommonConstant class defines the constants used in the package, such as
the driver name, ODA version, query keywords, and delimiters. Listing 19-17
shows these definitions.

Listing 19-17 The CommonConstant class

final class CommonConstant
{

public static final String DELIMITER_COMMA = ",";
public static final String DELIMITER_SPACE = " ";
public static final String DELIMITER_DOUBLEQUOTE = "\"";
public static final String KEYWORD_SELECT = "SELECT";
public static final String KEYWORD_FROM = "FROM";
public static final String KEYWORD_AS = "AS";
public static final String KEYWORD_ASTERISK = "*";
public static final String DRIVER_NAME =

"ODA CSV FILE DRIVER";
public static final int MaxConnections = 0;
public static final int MaxStatements = 0;
public static final String CONN_HOME_DIR_PROP = "HOME";
public static final String CONN_DEFAULT_CHARSET = "UTF-8";
public static final String PRODUCT_VERSION = "3.0";

}

390 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

Developing the CSV ODA UI extension
The data source extension point, org.eclipse.datatools.connectivity.oda.design
.ui.dataSource, supports adding a new data source to a user interface, such as
BIRT Report Designer. For each data source, the extension implements the
following optional components:

■ A wizard for creating the data source

■ A set of pages for editing the data source

■ The list of data sets that the data source supports

For each data set, the extension implements the following optional components:

■ A wizard for creating the data set

■ A set of pages for editing the data set

The data source editor page must implement the extension point, org.eclipse.ui
.propertyPages, by extending the abstract class, org.eclipse.datatools
.connectivity.oda.design.ui.wizards.DataSourceEditorPage. The data set editor
page must implement the extension point, org.eclipse.ui.propertyPages, by
extending the abstract class, org.eclipse.datatools.connectivity.oda.design
.ui.wizards.DataSourceEditorPage. The ODA data source and data set UI
extensions extend these base classes to create customized property pages with
page control and other behavior.

This section describes how to implement a BIRT ODA UI plug-in, using the CSV
ODA driver plug-in as an example. To create an ODA driver plug-in, perform
the following tasks:

■ Create the CSV ODA UI plug-in project.

■ Define the dependencies.

■ Specify the run-time archive.

■ Declare the ODA UI extension points.

Creating the CSV ODA UI plug-in project
You can create the CSV ODA UI plug-in project, org.eclipse.birt.report.data
.oda.csv.ui, using the Eclipse PDE. The following section describes how to create
the plug-in project using the New Plug-in Project wizard.

How to create the CSV ODA UI plug-in project

1 From the Eclipse menu, choose File➛New➛Plug-in Project. New Project
appears.

2 On New Project—Select a wizard, select Plug-in Project. Choose Next. New
Plug-in Project appears.

D e v e l o p i n g t h e C S V O D A U I e x t e n s i o n 391

3 In Plug-in Project, modify the settings as shown in Table 19-7. Choose Next.
Plug-in Content appears.

4 In Plug-in Content, modify the settings as shown in Table 19-8. Choose
Finish.

Table 19-7 Settings for Plug-in Project options

Section Option Value

Plug-in Project Project name org.eclipse.birt.report
.data.oda.csv.ui

Use default location Selected

Location Not available when you
select Use default
location

Project Settings Create a Java project Selected

Source folder src

Output folder bin

Target
Platform

Eclipse version 3.2

OSGi framework Selected Equinox

Table 19-8 Settings for Plug-in Content options

Section Option Value

Plug-in
Properties

Plug-in ID org.eclipse.birt.report
.data.oda.csv.ui

Plug-in Version 1.0.0

Plug-in Name %plugin.name

Plug-in Provider yourCompany.com or
leave blank

Classpath csvOdaUI.jar

Plug-in
Options

Generate an activator, a Java
class that controls the
plug-in’s life cycle

Selected

Activator org.eclipse.birt.report.data
.oda.csv.ui.UiPlugin

This plug-in will make
contributions to the UI

Selected

This plug-in will make
contributions to the UI

Deselected

(continues)

392 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

Defining the dependencies for the CSV ODA UI
extension
In this step, you specify the list of plug-ins that must be available on the
classpath of the CSV ODA UI extension to compile and run.

How to specify the dependencies

1 On PDE Manifest Editor, choose Overview.

2 In Plug-in Content, choose Dependencies.

3 In Required Plug-ins, choose Add. Plug-in Selection appears.

4 In Plug-in Selection, hold down CTRL and select the following plug-ins:

■ org.eclipse.core.runtime

■ org.eclipse.ui

■ org.eclipse.datatools.connectivity.oda.design.ui

■ org.eclipse.birt.report.data.oda.csv

Choose OK. Dependencies appears as shown in Figure 19-13.

Figure 19-13 Selected plug-ins in Dependencies

The order of the list determines the sequence in which a plug-in loads at run
time. Use Up or Down to change the loading order as necessary. The CSV
ODA UI extension does not require any changes to the loading order, if you
selected the required plug-ins in the order listed in step 4.

Rich Client
Application

Would you like to create a
rich client application?

No

Table 19-8 Settings for Plug-in Content options (continued)

Section Option Value

D e v e l o p i n g t h e C S V O D A U I e x t e n s i o n 393

Specifying the run-time settings for the CSV ODA UI
extension
On PDE Manifest Editor, choose Runtime. On Runtime, you specify exported
package visibility and the libraries and folders on the plug-in classpath.

In Exported Packages, verify that the org.eclipse.birt.report.data.oda.csv.ui and
org.eclipse.birt.report.data.oda.csv.ui.wizards packages appear in the list. In
Classpath, verify that the archive file you specified in the New Plug-in Project
wizard, csvODAui.jar, appears in the library list.

Declaring the ODA data source UI extension point
In this next step, you specify the extension points used to implement the CSV
ODA UI extension and add the extension element details. The CSV ODA UI
plug-in extends the functionality defined by the following extension points:

■ org.eclipse.datatools.connectivity.connectionProfile

Provides support for adding a connection profile

■ org.eclipse.ui.propertyPages

Adds a property page that displays the properties of an object in a dialog box

■ org.eclipse.datatools.connectivity.oda.design.ui.dataSource

Extends the ODA Designer UI framework to support creating a dialog page
that allows a user to specify an ODA data source and a related data set

The extension points specify the following properties that identify the
extensions in the run-time environment:

■ ID

Optional identifier of the extension instance

■ Name

Optional name of the extension instance

■ Point

Fully qualified identifier of the extension point

The connectionProfile extension point specifies the following extension
elements:

■ category

Identifies the category. Supports grouping of connection profile types, such
as related database connection profiles.

■ connectionProfile

Defines a connection profile type. Specifies properties such as id, display
name, category, icon, connection factory, and property persistence.

394 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

■ connectionFactory

Defines a connection factory that creates a connection to a server using the
properties stored in a connection profile.

■ newWizard

Defines a wizard that creates a connection profile.

The propertyPages extension point specifies the following extension elements:

■ page

Defines a property page. Specifies properties such as id, display name,
category, icon, object class, and filter.

■ filter

Specifies an action filter that evaluates the attributes of each object in a
current selection. If an object has the specified attribute state, a match occurs.
Each object must implement the org.eclipse.ui.IActionFilter interface.

The dataSource extension point specifies the following extension elements:

■ dataSourceUI

Adds UI support for specifying an extended data source

■ dataSetUI

Adds UI support for specifying a data set from an extended data source

The dataSourceUI extension element requires you to define the following
extension elements and details:

■ id

Fully qualified name of the data source, such as org.eclipse.birt.report
.data.oda.csv. This name must be the same as the name for ODA extension
driver.

■ newDataSourceWizard

Wizard class that allows a report developer to specify a data source in the UI.
This class must use or extend org.eclipse.datatools.connectivity.oda.design
.ui.wizards.NewDataSourceWizard.

The dataSetUI extension element requires you to define the following extension
elements and details:

■ id

Fully qualified name of the data set, such as org.eclipse.birt.report.data
.oda.csv.dataSet. This name must be the same as the name for the ODA
extension driver data set.

D e v e l o p i n g t h e C S V O D A U I e x t e n s i o n 395

■ dataSetWizard

Wizard class that allows a report developer to specify a data set in the BIRT
Report Designer UI. This class must use or extend org.eclipse.datatools
.connectivity.oda.design.ui.wizards.DataSetWizard.

■ dataSetPage

Specifies an editor page to add to the editor dialog for a data set. The data set
UI adds editor pages to a dialog in the order the pages are defined. This class
must use or extend org.eclipse.datatools.connectivity.oda.design.ui.wizards
.DataSetWizardPage.

How to specify the CSV ODA UI extension points

1 On the PDE Manifest Editor, choose Extensions.

2 In All Extensions, choose Add. New Extension appears.

3 On New Extension—Extension Points, in the list of extension points, select
the following plug-in:

org.eclipse.datatools.connectivity.connectionProfile

Choose Finish.

4 Repeat steps 2 and 3 to add the following extension points to the list to the
Extensions page:

■ org.eclipse.ui.propertyPages

■ org.eclipse.datatools.connectivity.oda.design.ui.dataSource

Figure 19-14 shows the list of extension points required for the CSV ODA UI
extension example.

Figure 19-14 Required extension points for the CSV ODA UI extension

How to add the extension details

1 In All Extensions, select org.eclipse.datatools.connectivity.connectionProfile.

2 In Extension Details, to specify point property value for connectionProfile,
type:

org.eclipse.datatools.connectivity.connectionProfile

396 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

3 In All Extensions, select org.eclipse.ui.propertyPages.

4 In Extension Details, to specify the point property value for propertyPages,
type:

org.eclipse.ui.propertyPages

5 In All Extensions, select org.eclipse.datatools.connectivity.oda.design.ui
.dataSource.

6 In Extension Details, to specify the point property value for dataSource,
type:

org.eclipse.datatools.connectivity.oda.design.ui.dataSource

Leave the values for ID and Name properties blank for these three extension
points blank.

How to specify the connectionProfile extension elements

1 In All Extensions, right-click the extension point, org.eclipse.datatools
.connectivity.connectionProfile, and choose New➛category, as shown in
Figure 19-15. The Eclipse PDE displays category in All Extensions.

Figure 19-15 Choosing a connectionProfile extension element

2 In Extension Element Details, specify the extension element details for the
extension element, category, as shown in Table 19-9.

Table 19-9 Property settings for category

Property Value

id %oda.data.source.id

parentCategory %oda.parent.category.id

name %oda.data.source.name

D e v e l o p i n g t h e C S V O D A U I e x t e n s i o n 397

3 Add the following additional extension elements to the connectionProfile
extension point on the Extensions page:

■ connectionProfile

■ connectionFactory

■ newWizard

1 To add the connectionProfile properties, in All Extensions, right-click the
extension point, org.eclipse.datatools.connectivity.connectionProfile, and
choose New➛connectionProfile. In Extension Element Details, specify
the extension element details for connectionProfile, as shown in
Table 19-10.

2 To add the connectionFactory properties, in All Extensions, right-click the
extension point, org.eclipse.datatools.connectivity.connectionProfile, and
choose New➛connectionFactory. In Extension Element Details, specify
the extension element details for connectionFactory, as shown in
Table 19-11.

3 To add the newWizard properties, in All Extensions, right-click the
extension point, org.eclipse.datatools.connectivity.connectionProfile, and
choose New➛newWizard. In Extension Element Details, specify the
extension element details for newWizard, as shown in Table 19-12.

Table 19-10 Property settings for connectionProfile

Property Value

id %oda.data.source.id

category %oda.data.source.id

name %connection.profile.name

icon icons/file.gif

pingFactory org.eclipse.datatools.connectivity.oda.profile
.OdaConnectionFactory

Table 19-11 Property settings for connectionFactory

Property Value

id org.eclipse.datatools.connectivity.oda
.IConnection

class org.eclipse.datatools.connectivity.oda.profile
.OdaConnectionFactory

profile %oda.data.source.id

name %oda.connection.factory.name

398 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

Figure 19-16 shows the complete list of extension points and extension
elements required for the connectionProfile extension.

Figure 19-16 connectionProfile extension points and elements

How to specify the propertyPages extension elements

1 In All Extensions, right-click the extension point,
org.eclipse.ui.propertyPages, and choose New➛page, as shown in
Figure 19-17. The Eclipse PDE displays page in All Extensions.

Figure 19-17 Choosing a propertyPages extension element

2 In Extension Element Details, specify the extension element details for page,
as shown in Table 19-13.

Table 19-12 Property settings for newWizard

Property Value

id %oda.data.source.id

name %newwizard.name

class org.eclipse.datatools.connectivity.oda.design.ui
.wizards.NewDataSourceWizard

profile %oda.data.source.id

icon icons/fieldlist.ico

description %newwizard.description

D e v e l o p i n g t h e C S V O D A U I e x t e n s i o n 399

3 In All Extensions, right-click the extension element, page, and choose
New➛filter, as shown in Figure 19-18. The Eclipse PDE displays filter in All
Extensions.

Figure 19-18 Choosing a filter extension element

4 In Extension Element Details, specify the extension element details for filter,
as shown in Table 19-14.

Figure 19-19 shows the complete list of extension points and extension
elements required for the propertyPages extension.

Figure 19-19 propertyPages extension points and elements

Table 19-13 Property settings for page

Property Value

id %oda.data.source.id

name %profile.propertypage.name

class org.eclipse.datatools.connectivity.oda.design.ui.pages
.impl.DefaultDataSourcePropertyPage

objectClass org.eclipse.datatools.connectivity.IConnectionProfile

Table 19-14 Property settings for filter

Property Value

name org.eclipse.datatools.profile.property.id

value %oda.data.source.id

400 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

How to specify the dataSource extension elements

1 In All Extensions, right-click the extension point, org.eclipse.datatools
.connectivity.oda.design.ui.dataSource, and choose New➛dataSourceUI, as
shown in Figure 19-20. The Eclipse PDE displays dataSourceUI in All
Extensions.

Figure 19-20 Choosing a dataSourceUI extension element

2 In Extension Element Details, specify the extension element details for
dataSourceUI, as shown in Table 19-15.

3 In All Extensions, right-click the extension element, dataSourceUI, and
choose New➛newDataSourceWizard, as shown in Figure 19-21. The Eclipse
PDE displays newDataSourceWizard in All Extensions.

Figure 19-21 Choosing a newDataSourceWizard extension element

Table 19-15 Property setting for dataSourceUI

Property Value

id %oda.data.source.id

D e v e l o p i n g t h e C S V O D A U I e x t e n s i o n 401

4 In Extension Element Details, specify the extension element details for
newDataSourceWizard, as shown in Table 19-16.

5 In All Extensions, right-click the extension point, org.eclipse.datatools
.connectivity.oda.design.ui.dataSource, and choose New➛dataSetUI, as
shown in Figure 19-22. The Eclipse PDE displays dataSetUI in All
Extensions.

Figure 19-22 Choosing a dataSetUI extension element

6 In Extension Element Details, specify the extension element details for
dataSetUI, as shown in Table 19-17.

Table 19-16 Property settings for newDataSourceWizard

Property Value

pageClass org.eclipse.datatools.connectivity.oda.design.ui.pages
.impl.DefaultDataSourceWizardPage

windowTitle %wizard.window.title

includes
Progress
Monitor

false

pageTitle %datasource.selectfile

Table 19-17 Property settings for dataSetUI

Property Value

id org.eclipse.birt.report.data.oda.csv.dataSet

initialPageId oda.csv.ui.tablePage

supportsIn
Parameters

false

supportsOut
Parameters

false

402 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

7 In All Extensions, right-click the extension element, dataSetUI, and choose
New➛dataSetWizard, as shown in Figure 19-23. The Eclipse PDE displays
dataSetWizard in All Extensions.

Figure 19-23 Choosing a dataSetWizard extension element

8 In Extension Element Details, specify the extension element details for
dataSetWizard, as shown in Table 19-18.

9 In All Extensions, right-click the extension element, dataSetUI, and choose
New➛dataSetPage, as shown in Figure 19-24. The Eclipse PDE displays
dataSetPage in All Extensions.

Figure 19-24 Choosing a dataSetPage extension element

Table 19-18 Property settings for dataSetWizard

Property Value

class org.eclipse.datatools.connectivity.oda.design.ui.wizards
.DataSetWizard

windowTitle %dataset.selectcolumns

U n d e r s t a n d i n g t h e s a m p l e C S V O D A U I e x t e n s i o n 403

10 In Extension Element Details, specify the extension element details for the
extension element, dataSetPage, as shown in Table 19-19.

Figure 19-25 shows the complete list of extension points and extension
elements required for the org.eclipse.datatools.connectivity.oda.design
.ui.dataSource extension point.

Figure 19-25 dataSource extension points and elements

PDE Manifest Editor automatically updates plugin.xml with the extension
element information.

Understanding the sample CSV ODA UI extension
The CSV ODA UI extension described in this chapter illustrates how to create an
ODA UI plug-in using the Eclipse PDE. The following section describes the
code-based extensions a developer must make to complete the development of
the CSV ODA UI extension, after defining the plug-in framework in the Eclipse
PDE.

The CSV ODA UI plug-in contains the following packages:

■ org.eclipse.birt.report.data.oda.csv.ui

Contains the following files:

Table 19-19 Property settings for dataSetPage

Property Value

id oda.csv.ui.tablePage

wizardPage
Class

org.eclipse.birt.report.data.oda.csv.ui.wizards
.FileSelectionWizardPage

displayName %dataset.selectcolumns

path /

icon icons/file.gif

404 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

■ UiPlugin class is automatically generated by the PDE Manifest Editor
when you create the plug-in project.

■ Messages class and the properties file, messages.properties, generate the
messages displayed in the UI. The localized versions for these messages
are in files, using the following naming syntax:

messages_<locale>.msg

■ org.eclipse.birt.report.data.oda.csv.ui.wizards

The wizards package contains the classes that create the user interface pages
used to choose a data source and data set in BIRT Report Designer. For more
details about these classes, see “Understanding the org.eclipse.birt
.report.data.oda.csv.ui.wizards package,” later in this chapter.

Implementing the ODA data source and data set
wizards
In BIRT release 2.1, BIRT Report Designer adopted the Eclipse Data Tools
Platform (DTP) ODA design-time framework. The DTP ODA framework
defines two of the three extension points used in the CSV ODA UI plug-in:

■ Connection profile

Defined in org.eclipse.datatools.connectivity.connectionProfile

■ Data source and data set wizards

Defined in org.eclipse.datatools.connectivity.oda.design.ui.dataSource

The CSV ODA UI plug-in also uses the extension point for property pages
defined in org.eclipse.ui.propertyPages.

The CSV ODA UI plug-in uses the following classes in the org.eclipse.datatools
.connectivity.oda.design.ui.wizards package to create the wizards that specify
the data source and data set pages. An ODA UI plug-in must extend these
classes to provide the wizard pages with page control and related behavior:

■ DataSourceEditorPage

The abstract base class that provides the framework for implementing an
ODA data source property page

■ DataSourceWizardPage

The abstract base class that provides the framework for implementing an
ODA data source wizard page

■ DataSetWizardPage

The abstract base class that provides the framework for implementing an
ODA data set wizard page

The CSV ODA UI plug-in must also implement the org.eclipse.ui.propertyPages
extension point. The propertyPages extension point requires a class attribute

U n d e r s t a n d i n g t h e s a m p l e C S V O D A U I e x t e n s i o n 405

specifying the fully qualified name of the class that implements org.eclipse.ui
.IWorkbenchPropertyPage.

Understanding the org.eclipse.birt.report.data.oda
.csv.ui.wizards package
The org.eclipse.birt.report.data.oda.csv.ui.wizards package in the CSV ODA UI
extension example implements the following classes:

■ Constants

Defines the constants for the data source connection properties defined in
org.eclipse.birt.report.data.oda.csv.

■ CSVFilePropertyPage

Extends DataSourceEditorPage. This class creates and initializes the editor
controls for the property page used to specify the ODA data source. The class
updates the connection profile properties with the values collected from the
page.

■ CSVFileSelectionPageHelper

Specifies the page layout and sets up the control that listens for user input
and verifies the location of the CSV data source file.

■ CSVFileSelectionWizardPage

Extends DataSourceWizardPage. This class creates and initializes the
controls for the data source wizard page. The class sets the select file message
and collects the property values.

■ FileSelectionWizardPage

Extends DataSetWizardPage. This class creates and initializes the controls for
the data set wizard page and specifies the page layout. The class connects to
the data source, executes a query, retrieves the metadata and result set, and
updates the date-set design.

Understanding Constants
The Constants class defines the following variables for the data source
connection properties defined in org.eclipse.birt.report.data.oda.csv:

■ ODAHOME specifies the CSV ODA file path constant, HOME.

■ ODA_DEFAULT_CHARSET specifies the default character set as 8-bit
Unicode Transformation Format (UTF-8).

Listing 19-18 shows the code for the Constants class.

Listing 19-18 The Constants class

public class Constants {

406 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

public static String ODAHOME="HOME";
public static String ODA_DEFAULT_CHARSET = "UTF-8";

}

Understanding CSVFilePropertyPage
CSVFilePropertyPage extends the DataSourceEditorPage class, implementing
the following methods to provide page editing functionality for the CSV ODA
data source property page:

■ createAndInitCustomControl() method performs the following tasks:

■ Instantiates a CSVFileSelectionPageHelper object

■ Specifies the page layout and sets up the editing control by calling
CSVFileSelectionPageHelper.createCustomControl() method

Listing 19-19 shows the code for the createAndInitCustomControl() method.

Listing 19-19 The createAndInitCustomControl() method

protected void createAndInitCustomControl
(Composite parent, Properties profileProps)

{
if(m_pageHelper == null)

m_pageHelper =
new CSVFileSelectionPageHelper(this);

m_pageHelper.createCustomControl(parent);
m_pageHelper.initCustomControl(profileProps);
if(! isSessionEditable())

getControl().setEnabled(false);
}

■ collectCustomProperties() updates the connection profile properties with
the values collected from the page by calling CSVFileSelectionPageHelper
.collectCustomProperties() method, as shown in Listing 19-20.

Listing 19-20 The collectCustomProperties() method

public Properties collectCustomProperties
(Properties profileProps)

{
if(m_pageHelper == null)

return profileProps;
return m_pageHelper.collectCustomProperties

(profileProps);
}

Understanding CSVFileSelectionPageHelper
CSVFileSelectionPageHelper provides auxiliary processing for the
CSVFilePropertyPage and CSVFileSelectionWizardPage classes.
CSVFileSelectionPageHelper implements the following methods:

U n d e r s t a n d i n g t h e s a m p l e C S V O D A U I e x t e n s i o n 407

■ createCustomControl() performs the following tasks:

■ Sets up the composite page layout

■ Calls the setupFileLocation() method that sets up a control to listen for
user input and verify the location of the CSV data source file

Listing 19-21 shows the code for the createCustomControl() method.

Listing 19-21 The createCustomControl() method

void createCustomControl(Composite parent)
{

Composite content = new Composite(parent, SWT.NULL);
GridLayout layout = new GridLayout(2, false);
content.setLayout(layout);
setupFileLocation(content);

}

■ setupFileLocation() performs the following tasks:

■ Sets up the label and the grid data object in the page layout

■ Sets up the control that listens for user input and verifies the location of
the CSV data source file

Listing 19-22 shows the code for the setupFileLocation() method.

Listing 19-22 The setupFileLocation() method

private void setupFileLocation(Composite composite)
{

Label label = new Label(composite, SWT.NONE);
label.setText(Messages.getString

("label.selectFile"));
GridData data = new GridData(GridData.FILL_HORIZONTAL);
fileName = new Text(composite, SWT.BORDER);
fileName.setLayoutData(data);
setPageComplete(false);
fileName.addModifyListener

(new ModifyListener()
 {

public void modifyText(ModifyEvent e)
{

 verifyFileLocation();
}

});
}

■ collectCustomProperties() sets the data source directory property in the
connection profile, as shown in Listing 19-23.

408 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

Listing 19-23 The collectCustomProperties() method

Properties collectCustomProperties(Properties props)
{

if(props == null)
props = new Properties();
props.setProperty(CommonConstants.CONN_HOME_DIR_PROP,

getFolderLocation());
return props;

}

■ initCustomControl() initializes the data source wizard control to the location
of the data source file, as shown in Listing 19-24.

Listing 19-24 The initCustomControl() method

void initCustomControl(Properties profileProps)
{

if(profileProps == null || profileProps.isEmpty() ||
fileName == null)

return;
String folderPath = profileProps.getProperty

(CommonConstants.CONN_HOME_DIR_PROP);
if(folderPath == null)

folderPath = EMPTY_STRING;
fileName.setText(folderPath);
verifyFileLocation();

}

Understanding CSVFileSelectionWizardPage
The CSVFileSelectionWizardPage class extends the DataSourceWizardPage
class, implementing the following methods to provide the functionality for the
CSV ODA data source wizard page:

■ The createPageCustomControl() method performs the following tasks:

■ Instantiates a CSVFileSelectionPageHelper object

■ Specifies the page layout and sets up the wizard page control by calling
CSVFileSelectionPageHelper.createCustomControl() method

■ Calls CSVFileSelectionPageHelper.initCustomControl() to initialize the
control to the location of the data source file

Listing 19-25 shows the code for the createPageCustomControl() method.

Listing 19-25 The createPageCustomControl() method

public void createPageCustomControl(Composite parent)
{

U n d e r s t a n d i n g t h e s a m p l e C S V O D A U I e x t e n s i o n 409

 if(m_pageHelper == null)
m_pageHelper =

new CSVFileSelectionPageHelper(this);
m_pageHelper.createCustomControl(parent);

 m_pageHelper.initCustomControl(m_csvFileProperties);
}

■ The collectCustomProperties() method instantiates a Properties object to
contain the CSV data source properties information, as shown in
Listing 19-26.

Listing 19-26 The collectCustomProperties() method

public Properties collectCustomProperties()
{

if(m_pageHelper != null)
return m_pageHelper.collectCustomProperties

(m_csvFileProperties);
return (m_csvFileProperties != null) ?

m_csvFileProperties : new Properties();
}

Understanding FileSelectionWizardPage
The FileSelectionWizardPage class extends the DataSetWizardPage class,
implementing the following methods to provide the functionality for the CSV
ODA data set wizard page:

■ The createPageControl() method performs the following tasks:

■ Specifies the page layout and sets up the wizard page control

■ Gets the data source properties

■ Calls populateAvailableList() to update the data set design

Listing 19-27 shows the code for the createPageControl() method.

Listing 19-27 The createPageControl() method

private Control createPageControl(Composite parent)
{

Composite composite = new Composite(parent, SWT.NULL);
FormLayout layout = new FormLayout();
composite.setLayout(layout);
FormData data = new FormData();
data.left = new FormAttachment(0, 5);
data.top = new FormAttachment(0, 5);
fileName = new Text(composite, SWT.BORDER);
fileName.setLayoutData(data);
Properties dataSourceProps =
getInitializationDesign().getDataSourceDesign()

.getPublicProperties();
fileName.setText((String)

410 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

(dataSourceProps.getProperty(Constants.ODAHOME)));
data = new FormData();
data.top = new FormAttachment

(fileName, 10, SWT.BOTTOM);
data.left = new FormAttachment(0, 5);
data.right = new FormAttachment(47, -5);
data.bottom = new FormAttachment(100, -5);
data.width = DEFAULT_WIDTH;
data.height = DEFAULT_HEIGHT;
m_availableList = new List(composite,

SWT.MULTI | SWT.BORDER |
SWT.H_SCROLL | SWT.V_SCROLL);

m_availableList.setLayoutData(data);
m_selectedFile =

new File((String)
(dataSourceProps.getProperty(Constants.ODAHOME)));

populateAvailableList();
return composite;

}

■ getQuery() method builds the query for the data set by performing the
following tasks:

■ Gets the table name from the file object

■ Appends the table name to a query that selects all the columns using a
wildcard

■ Appends the column list then the table name to a query that selects
specific columns

■ Returns the query text

Listing 19-28 shows the code for the getQuery() method.

Listing 19-28 The getQuery() method

private String getQuery()
{

String tableName = null;
StringBuffer buf = new StringBuffer();
File file = m_selectedFile;
if(file != null)
{

tableName = file.getName();
}
if(tableName != null)
{

if(m_availableList.getItemCount() == 0)
{

buf.append("select * from ").append(tableName);
}
else

U n d e r s t a n d i n g t h e s a m p l e C S V O D A U I e x t e n s i o n 411

{
buf.append("select ");
String[] columns = m_availableList.getItems();
for(int n = 0; n < columns.length; n++)
{

buf.append(columns[n]);
if(n < columns.length - 1)
{

buf.append(", ");
}

}
buf.append(" from ").append(tableName);

}
}
return buf.toString();
}

■ getQueryColumnNames() method performs the following tasks:

■ Instantiates the CSVFileDriver

■ Prepares the query and gets the results set metadata using the CSV ODA
run-time driver and data source connection properties settings

■ Gets the column count

■ Iterates through the metadata results to get the column names and return
the results

Listing 19-29 shows the code for the getQueryColumnNames() method.

Listing 19-29 The getQueryColumnNames() method

private String[] getQueryColumnNames
(String queryText, File file)

{
IDriver ffDriver = new CSVFileDriver();
IConnection conn = null;
try
{

conn = ffDriver.getConnection(null);
IResultSetMetaData metadata =

getResultSetMetaData(queryText, file, conn);
int columnCount = metadata.getColumnCount();
if(columnCount == 0)

return null;
String[] result = new String[columnCount];
for(int i = 0; i < columnCount; i++)

result[i] = metadata.getColumnName(i + 1);
return result;

}
catch(OdaException e)
{

setMessage(e.getLocalizedMessage(), ERROR);
disableAll();

412 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

return null;
}
finally
{

closeConnection(conn);
}

}

■ getResultSetMetaData() method performs the following tasks:

■ Sets up the Properties object with the location of the data source file

■ Opens the connection to the data source

■ Sets up a Query object and prepares the query text

■ Executes the query

■ Returns the metadata

Listing 19-30 shows the code for the getResultSetMetaData() method.

Listing 19-30 The getResultSetMetaData() method

private IResultSetMetaData getResultSetMetaData
(String queryText, File file, IConnection conn)
throws OdaException

{
java.util.Properties prop = new java.util.Properties();
prop.put(CommonConstants.CONN_HOME_DIR_PROP,

file.getParent());
conn.open(prop);
IQuery query = conn.newQuery(null);
query.setMaxRows(1);
query.prepare(queryText);
query.executeQuery();
return query.getMetaData();

}

■ setResultSetMetaData() method updates the data set page design with
metadata returned by the query by performing the following tasks:

■ Calls the DesignSessionUtil.toResultSetColumnsDesign() method to
convert the run-time metadata to a design-time ResultSetColumns object

■ Obtains a ResultSetDefinition object from the design factory to use in
populating the data set page design with the metadata definitions

■ Calls the resultSetDefn.setResultSetColumns() method to set the
reference to ResultSetColumns object, containing the metadata content

■ Assigns the result set definition to the data set design

Listing 19-31 shows the code for the setResultSetMetaData() method.

U n d e r s t a n d i n g t h e s a m p l e C S V O D A U I e x t e n s i o n 413

Listing 19-31 The setResultSetMetaData() method

private void setResultSetMetaData
(DataSetDesign dataSetDesign,IResultSetMetaData md)
throws OdaException

{
ResultSetColumns columns =

DesignSessionUtil.toResultSetColumnsDesign(md);
ResultSetDefinition resultSetDefn =

DesignFactory.eINSTANCE.createResultSetDefinition();
resultSetDefn.setResultSetColumns(columns);
dataSetDesign.setPrimaryResultSet(resultSetDefn);
dataSetDesign.getResultSets().setDerivedMetaData(true);

}

■ savePage() method performs the following tasks:

■ Instantiates the CSVFileDriver

■ Gets the result set metadata

■ Updates the data set design with the metadata

■ Closes the connection

Listing 19-32 shows the code for the savePage() method.

Listing 19-32 The savePage() method

private void savePage(DataSetDesign dataSetDesign)
{

String queryText = getQuery();
dataSetDesign.setQueryText(queryText);
IConnection conn = null;
try
{

IDriver ffDriver = new CSVFileDriver();
conn = ffDriver.getConnection(null);
IResultSetMetaData metadata =

getResultSetMetaData(queryText, m_selectedFile,
conn);

setResultSetMetaData(dataSetDesign, metadata);
}
catch(OdaException e)
{

dataSetDesign.setResultSets(null);
}
finally
{

closeConnection(conn);
}

}

414 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

Testing the CSV ODA UI plug-in
On PDE Manifest Editor, in Overview, the Testing section contains links to
launch a plug-in as a separate Eclipse application in either Run or Debug mode.

How to launch the CSV report rendering plug-in

1 On the Eclipse PDE Manifest Editor, in the Testing section of Overview,
choose Launch an Eclipse application. The Eclipse PDE launches a run-time
instance of the workbench.

2 In the run-time instance of the Eclipse PDE workbench, choose
Window➛Open Perspective➛Other. Select Perspective appears.

3 In Select Perspective, select Report Design. Choose OK. Report Design
appears.

How to create a report design

1 In Report Design, choose File➛New➛Project.

2 Expand Business Intelligence and Reporting Tools and choose Report
Project. Choose Next. New Report Project appears.

3 In Report Project, perform the following tasks:

1 In Project name, type:

CSV_ODA_Reports

In Project contents, select Use default location. Choose Finish. In
Navigator, CSV_ODA_Reports appears.

4 In Navigator, right-click CSV_ODA_Reports and choose File➛New➛Report.
New Report appears.

5 On New Report, perform the following tasks:

1 In Enter or select the parent folder, select CSV_ODA_Reports.

2 In file name, type:

new_report_1.rptdesign

Choose Next.

3 In Report Templates, select Blank Report. Choose Finish. In Navigator,
new_report_1.rptdesign appears in the CSV_ODA_Reports project folder.

6 Right-click new_report_1.rptdesign and choose Open.
new_report_1.rptdesign appears in Report Design, as shown in Figure 19-26.

Te s t i n g t h e C S V O D A U I p l u g - i n 415

Figure 19-26 new_report_1.rptdesign in the report design environment

How to specify a data source

1 In Data Explorer, right-click Data Sources and choose New Data Source, as
shown in Figure 19-27. New Data Source appears.

Figure 19-27 Choosing New Data Source

416 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

2 On New Data Source, choose CSV Data Source, as shown in Figure 19-28.
Choose Next. Select File appears.

Figure 19-28 Choosing CSV Data Source

3 In Select File, enter the path and file name of the directory that contains the
CSV data source file, as shown in Figure 19-29. Choose Finish. Report Design
appears.

Figure 19-29 Path to the CSV data source file directory

How to select a new data set

1 In Report Design, choose Data➛New Data Set. New Data Set appears, as
shown in Figure 19-30. Choose Next. Select Columns appears.

Te s t i n g t h e C S V O D A U I p l u g - i n 417

Figure 19-30 New Data Set

2 On Select Columns, select all the columns, as shown in Figure 19-31. Choose
Finish.

Figure 19-31 Selecting columns

Edit Data Set appears, as shown in Figure 19-32.

Figure 19-32 Edit Data Set

418 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

3 Choose Preview Results. Preview Results appears as shown in Figure 19-33.
Choose OK.

Figure 19-33 Data preview

4 On Data Explorer, expand Data Sets. Data Explorer appears as shown in
Figure 19-34.

Figure 19-34 Data Set in Data Explorer

How to run a report design using CSV ODA UI and driver extensions

1 To build the report, drag Data Set from Data Explorer to the layout editor.
Layout appears as shown in Figure 19-35.

Figure 19-35 Report design in the layout editor

D e v e l o p i n g a H i b e r n a t e O D A e x t e n s i o n 419

2 To run the report design, choose Preview. new_report_1.rptdesign runs,
displaying the data set from the CSV data source, as shown in Figure 19-36.

Figure 19-36 Preview of the data set from the CSV data source

Developing a Hibernate ODA extension
You develop the Hibernate ODA extension by creating two new projects in the
Eclipse PDE that implement the following plug-ins:

■ org.eclipse.birt.report.data.oda.hibernate

The Hibernate ODA driver accesses a relational data source using HQL. The
Hibernate ODA data source plug-in extends the functionality defined by the
org.eclipse.datatools.connectivity.oda.dataSource extension point to create
the Hibernate ODA driver.

■ org.eclipse.birt.report.data.oda.hibernate.ui

The Hibernate ODA UI plug-in for BIRT Report Designer selects a Hibernate
data source and allows the user to create an HQL statement to retrieve data
from the available tables and columns. The Hibernate ODA UI plug-in
extends the functionality defined by the org.eclipse.datatools.connectivity
.oda.design.ui.dataSource, org.eclipse.ui.propertyPages, and org.eclipse
.datatools.connectivity.connectionProfile extension points.

The UI consists of the following pages:

■ Data source page

Includes the Hibernate data source in the list of available data sources.
The Hibernate ODA driver contains preconfigured Hibernate
configuration and mapping files that connect to the MySQL version of the
BIRT demonstration database, ClassicModels.

420 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

■ Data set page

Creates an HQL statement that selects the data set and embeds the HQL
statement in the report design.

In BIRT Report Designer, the Hibernate ODA data source wizard allows the
report developer to select a Hibernate ODA driver containing preconfigured
Hibernate configuration and mapping files. The Hibernate ODA driver searches
for these configuration and mapping files in the plug-in’s hibfiles directory.

The Hibernate ODA driver also searches in the hibfiles directory for JAR and
ZIP files and the org.eclipse.birt.report.data.oda.jdbc plug-in for JDBC drivers
to add to the classpath. This approach prevents the need to copy drivers to
multiple locations. Note that changing the configuration causes the Hibernate
ODA driver plug-in to rebuild the Hibernate SessionFactory, which is a
machine-intensive operation.

Once the Hibernate ODA driver creates the data source configuration, you can
create a data set. The Hibernate data set wizard allows the user to enter HQL
statements. The Hibernate ODA UI example only supports simple queries, such
as the following types of statements:

From Customer

or

Select ord.orderNumber,cus.customerNumber, cus.customerName
from Orders as ord, Customer as cus
where ord.customerNumber = cus.customerNumber and
cus.customerNumber = 363

In the Hibernate ODA plug-in, there is an exampleconfig directory. This
directory contains a sample Hibernate configuration file, mapping files, and
Java classes that connect to the BIRT sample MySQL database. You can test
using these files by performing the following tasks:

■ Modify the hibernate.cfg.file to connect to your database configuration.

■ Copy these files to the hibfiles directory.

■ Create a JAR file containing the Java classes.

You can test and deploy the extensions in the Eclipse PDE run-time
environment.

The following sections describe how to create and deploy the Hibernate ODA
driver and UI plug-in projects. You can download the source code for the
Hibernate ODA driver and UI extension examples at http://
www.actuate.com/birt/contributions.

Creating the Hibernate ODA driver plug-in project
Create the Hibernate ODA driver plug-in project, org.eclipse.birt.report
.data.oda.hibernate, using the New Plug-in Project wizard in the Eclipse PDE.

http://www.actuate.com/birt/contributions
http://www.actuate.com/birt/contributions

D e v e l o p i n g a H i b e r n a t e O D A e x t e n s i o n 421

How to create the Hibernate ODA driver plug-in project

1 From the Eclipse PDE menu, choose File➛New➛Plug-in Project.

2 On New Project—Select a wizard, select Plug-in Project. Choose Next. New
Plug-in Project appears.

3 In Plug-in Project, modify the settings as shown in Table 19-20.

4 On Plug-in Content, modify the settings as shown in Table 19-21.

Table 19-20 Settings for Plug-in Project options

Section Option Value

Plug-in Project Project name org.eclipse.birt.report.data
.oda.hibernate

Use default location Selected

Location Not available when you
select Use default location

Project Settings Create a Java project Selected

Source folder name src

Output folder name bin

Target Platform Eclipse version 3.2

OSGi framework Selected Equinox

Table 19-21 Settings for Plug-in Content options

Section Option Value

Plug-in
Properties

Plug-in ID org.eclipse.birt.report.data
.oda.hibernate

Plug-in Version 2.0.0

Plug-in Name BIRT ODA-Hibernate
Driver

Plug-in Provider yourCompany.com or
leave blank

Classpath odahibernate.jar

Plug-in
Options

Generate an activator, a
Java class that controls the
plug-in’s life cycle

Selected

Activator org.eclipse.birt.report.data
.oda.hibernate.Activator

This plug-in will make
contributions to the UI

Deselected

(continues)

422 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

Choose Finish. The Hibernate ODA driver plug-in project appears in the
Eclipse PDE workbench.

How to specify the properties of the Hibernate ODA plug-in project

1 Using the Eclipse PDE Manifest Editor, in Dependencies, specify the
following required plug-ins in the following order:

■ org.eclipse.core.runtime

■ org.eclipse.birt.report.data.oda.jdbc

■ org.eclipse.datatools.connectivity.oda

Dependencies appears as shown in Figure 19-37.

Figure 19-37 Required plug-ins, in Dependencies

2 On Runtime, in Exported Packages, verify that the org.eclipse.birt.report
.data.oda.hibernate package appears in the list, as shown in Figure 19-38.

Figure 19-38 Runtime exported packages

Rich Client
Application

Would you like to create a
rich client application?

No

Table 19-21 Settings for Plug-in Content options (continued)

Section Option Value

D e v e l o p i n g a H i b e r n a t e O D A e x t e n s i o n 423

3 On Runtime, in Classpath, add the following JAR files to the plug-in
classpath:

■ lib/hibernate3.jar

■ lib/ant-antlr-1.6.5.jar

■ lib/antlr-2.7.6.rc1.jar

■ lib/asm.jar

■ lib/asm-attrs.jar

■ lib/cglib-2.1.3.jar

■ lib/dom4j-1.6.1.jar

■ lib/ehcache-1.1.jar

■ lib/jta.jar

■ lib/commons-collections-2.1.1.jar

■ lib/commons-logging-1.0.4.jar

Classpath appears as shown in Figure 19-39.

Figure 19-39 Runtime classpath

You must have previously imported these JAR files into the lib directory in
the Hibernate ODA plug-in. You can also put these JAR files in a new plug-in
that the Hibernate ODA plug-in references.

4 On Extensions, add the extension point, org.eclipse.datatools.connectivity
.oda.dataSource, and the following elements and details for:

■ dataSource

Add the extension element details, as shown in Table 19-22.

424 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

The dataSource extension has an attribute named
setThreadContextClassLoader, which, if set to true, sets the thread
context class loader to the Hibernate ODA plug-in class loader. In this
example, this attribute is set to true to avoid potential class conflicts with
classes loaded with the Eclipse Tomcat plug-in.

■ dataSet

Add the extension element details, as shown in Table 19-23.

5 On Extensions, select dataSource and add the following properties and
element details:

■ HIBCONFIG, as shown in Table 19-24.

■ MAPDIR, as shown in Table 19-25.

Table 19-22 Property settings for the dataSource extension element

Property Value

id org.eclipse.birt.report.data.oda
.hibernate

driverClass org.eclipse.birt.report.data.oda
.hibernate.HibernateDriver

odaVersion 3.0

defaultDisplayName Hibernate Data Source

setThreadContextClassLoader true

Table 19-23 Property settings for the dataSet extension element

Property Value

id org.eclipse.birt.report.data.oda
.hibernate.dataSet

defaultDisplayName Hibernate Data Set

Table 19-24 HIBCONFIG property settings

Property Value

name HIBCONFIG

defaultDisplayName Hibernate Configuration File

type string

canInherit true

D e v e l o p i n g a H i b e r n a t e O D A e x t e n s i o n 425

6 On Extensions, select dataSet and add the list of dataTypeMapping elements,
as shown in Table 19-26.

Table 19-25 MAPDIR property settings

Property Value

name MAPDIR

defaultDisplayName Hibernate Mapping Directory

type string

canInherit true

Table 19-26 Settings for dataTypeMapping elements

nativeDataType nativeDataTypeCode odaScalarDataType

BIT -7 Integer

TINYINT -6 Integer

SMALLINT 5 Integer

INTEGER 4 Integer

BIGINT -5 Decimal

FLOAT 6 Double

REAL 7 Double

DOUBLE 8 Double

NUMERIC 2 Decimal

DECIMAL 3 Decimal

CHAR 1 String

VARCHAR 12 String

LONGVARCHAR -1 String

DATE 91 Date

TIME 92 Time

TIMESTAMP 93 Timestamp

BINARY -2 String

VARBINARY -3 String

LONGVARBINARY -4 String

BOOLEAN 16 Integer

BLOB 2004 Blob

CLOB 2005 Clob

426 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

Extensions appears as shown in Figure 19-40.

Figure 19-40 Extensions

Understanding the sample Hibernate ODA driver
extension
The package for the Hibernate ODA extension example, org.eclipse.birt
.report.data.oda.hibernate, implements the following classes using the ODA
plug-in interfaces defined in the DTP plug-in, org.eclipse.datatools
.connectivity.oda, and the extension points defined in the XML Schema file,
datasource.exsd. The package implements the following classes:

■ HibernateDriver

Implements the IDriver interface. Instantiates the connection object for the
Hibernate ODA driver. This is the entry point for the Hibernate ODA
plug-in.

■ Connection

Implements the IConnection interface. Opens and closes the connection to
the Hibernate ODA data source and instantiates the IQuery object.

D e v e l o p i n g a H i b e r n a t e O D A e x t e n s i o n 427

■ Statement

Implements the IQuery interface. Prepares the result set metadata containing
the table and column names, executes the query, and fetches the data rows
from the data source.

■ ResultSet

Implements the IResultSet interface. Provides access to the data rows in the
result set, maintaining a cursor that points to the current row. Handles the
processing that gets the value for a column as the specified data type.

■ ResultSetMetaData

Implements the IResultSetMetaData interface. Describes the metadata for
each column in the result set.

■ DataSetMetaData

Implements the IDataSetMetaData interface. Describes the features and
capabilities of the driver for the data set.

■ Messages

Defines the exception messages for the Hibernate ODA driver.

■ DataTypes

Defines, validates, and returns the data types supported by the Hibernate
ODA driver.

■ CommonConstant

Defines the constants used in the package, such as the driver name, ODA
version, query keywords, and delimiters.

■ HibernateUtil

Manages the Hibernate SessionFactory that provides the session or run-time
interface between the Hibernate service and the ODA driver. This class is
built based on the example HibernateUtil, available at
http://www.hibernate.org.

The Hibernate ODA driver plug-in supports specifying the Hibernate
configuration file and mapping files directory in the data source wizard. The
plug-in creates the Hibernate SessionFactory from these settings. The
example project has an exampleconfig directory that contains a Hibernate
configuration and mapping files for use with the BIRT MySQL example
database, ClassicModels.

The following sections describe the classes where there are important
differences between the implementation of Hibernate ODA driver and the
earlier example, the CSV ODA driver.

http://www.hibernate.org

428 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

Understanding HibernateDriver
The HibernateDriver class instantiates the Connection object for the Hibernate
ODA driver. This class implements the IDriver interface, but does not provide
any processing for the methods that configure logging and set the application
context. Listing 19-33 shows the getConnection() method.

Listing 19-33 The getConnection() method

public IConnection getConnection(String connectionClassName)
throws OdaException

{
return new Connection();

}

getMaxConnections() returns 0, imposing no limit on the number of
connections to the ODA data source from the application. Listing 19-34 shows
the getMaxConnections() method.

Listing 19-34 The getMaxConnections() method

public int getMaxConnections() throws OdaException
{

return(0);
}

Understanding Connection
The Connection class implements the following methods:

■ open()

Opens a Hibernate session and sets the Boolean variable, isOpen, to true.
The open() method uses the HibernateUtil class to obtain a session from a
Hibernate SessionFactory, providing the run-time interface between the
Hibernate service and the ODA driver.

The open() method retrieves the locations for the Hibernate configuration
file and mapping files directory from connection properties. The open()
method calls HibernateUtil.constructSessionFactory(), which attempts to
build the SessionFactory with these settings. If the SessionFactory already
exists, the plug-in does not recreate the SessionFactory unless the Hibernate
configuration file or the mapping directory have changed.

Listing 19-35 shows the code for the open() method.

Listing 19-35 The open() method

public void open(Properties connProperties)
throws OdaException

{
try
{

D e v e l o p i n g a H i b e r n a t e O D A e x t e n s i o n 429

configfile =
connProperties.getProperty("HIBCONFIG");
mapdir = connProperties.getProperty("MAPDIR");
HibernateUtil
.constructSessionFactory(configfile, mapdir);
Session testSession = HibernateUtil.currentSession();
this.isOpen = true;

}catch(Exception e)
{

throw new OdaException(e.getLocalizedMessage());
}
}

■ newQuery()

Opens a new query by returning an instance of a Statement object, the class
that implements the IQuery interface. The connection can handle multiple
result set types, but the Hibernate ODA example uses only one and ignores
the dataSetType parameter, as shown in Listing 19-36.

Listing 19-36 The newQuery() method

public IQuery newQuery(String dataSetType)
throws OdaException

{
if (!isOpen())

throw new OdaException(Messages.getString
("Common.CONNECTION_IS_NOT_OPEN"));

return new Statement(this);
}

■ getMetaData()

Returns an IDataSetMetaData object of the data set type, as shown in
Listing 19-37.

Listing 19-37 The getMetaData() method

public IDataSetMetaData getMetaData(String dataSetType)
throws OdaException

{
return new DataSetMetaData(this);

}

■ getMaxQueries()

Indicates the maximum number of queries the driver supports. The
getMaxQueries() method returns 1, indicating that the Hibernate ODA
driver does not support concurrent queries, as shown in Listing 19-38.

430 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

Listing 19-38 The getMaxQueries() method

public int getMaxQueries() throws OdaException
{
return 1;
}

■ commit() and rollback()

Handle transaction processing. The Hibernate ODA driver example does not
support transaction operations. In the Connection class, the commit() and
rollback() methods throw UnsupportedOperationException. Listing 19-39
shows the code for the commit() method.

Listing 19-39 The commit() method

public void commit() throws OdaException
{
throw new UnsupportedOperationException ();
}

■ close()

Closes the Hibernate session, as shown in Listing 19-40.

Listing 19-40 The close() method

public void close() throws OdaException
{

this.isOpen = false;
try{

HibernateUtil.closeSession();
}catch(Exception e){

throw new OdaException(e.getLocalizedMessage());
}

}

Understanding DataSetMetaData
The DataSetMetaData class describes the features and capabilities of the data
source for the specified data set. The Hibernate ODA driver example returns
true or false to indicate support for a feature. The Hibernate ODA driver
example does not support input or output parameters, named parameters, or
multiple result sets.

The following code example indicates that the Hibernate ODA driver does not
support multiple result sets, as shown in Listing 19-41.

Listing 19-41 The supportsMultipleResultSets() method

public boolean supportsMultipleResultSets() throws
OdaException

{

D e v e l o p i n g a H i b e r n a t e O D A e x t e n s i o n 431

return false;
}

A method such as getSQLStateType(), which has no implementation, simply
throws UnsupportedOperationException, as shown in Listing 19-42.

Listing 19-42 The getSQLStateType() method

public int getSQLStateType() throws OdaException
{

throw new UnsupportedOperationException ();
}

Understanding Statement
The Statement class implements the IQuery interface. This class prepares and
executes the query. Statement also handles parameters and retrieves the result
set and result set metadata.

The Statement class implements the following methods:

■ prepare()

The ODA framework calls the prepare() method before executing the query.
The ODA framework uses the query saved in the report design.

The Hibernate ODA UI plug-in also calls prepare() to verify the columns
used in the report design. The UI plug-in passes an HQL statement that gets
the columns from the result set object.

prepare() sets up the result-set metadata and stores the query in an object
variable for use by the executeQuery() method. The ODA run time uses the
result-set metadata to retrieve the data. BIRT Report Designer also uses the
result-set metadata to display the columns in the UI.

The prepare() method performs the following operations:

■ Sets up array lists to contain the columns, column types, and column
classes

■ Trims the query String

■ Creates a Hibernate Query object, using the HQL query

■ Gets the Hibernate column names, types, and classes for the query

■ Instantiates a ResultSetMetaData object, passing in the column names
and data types

■ Saves the query for execution

Listing 19-43 shows the code for the prepare() method.

Listing 19-43 The prepare() method

public void prepare(String query) throws OdaException

432 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

{
Query qry = null;
testConnection();
ArrayList arColsType = new ArrayList();
ArrayList arCols = new ArrayList();
ArrayList arColClass = new ArrayList();

String[] props = null;
try
{

Session hibsession = HibernateUtil.currentSession();
query = query.replaceAll("[\\n\\r]+"," ");
query = query.trim();
qry = hibsession.createQuery(query);
Type[] qryReturnTypes = qry.getReturnTypes();
if(qryReturnTypes.length > 0
&& qryReturnTypes[0].isEntityType())
{
for(int j=0; j< qryReturnTypes.length; j++)
{

String clsName=qryReturnTypes[j].getName();
props =
HibernateUtil.getHibernateProp(clsName);
for(int x = 0; x < props.length; x++)
{
String propType =

HibernateUtil.getHibernatePropTypes
(clsName, props[x]);

if(DataTypes.isValidType(propType))
{

arColsType.add(propType);
arCols.add(props[x]);
arColClass.add(clsName);

}
else
{

throw new OdaException
(Messages.getString
("Statement.SOURCE_DATA_ERROR"));

}
}

}
}

else
{

props = extractColumns(qry.getQueryString());
for(int t=0; t < qryReturnTypes.length; t++)
{

D e v e l o p i n g a H i b e r n a t e O D A e x t e n s i o n 433

if(DataTypes.isValidType
(qryReturnTypes[t].getName()))

{
arColsType.add(qryReturnTypes[t].getName());
arCols.add(props[t]);

}
else
{

throw new OdaException
(Messages.getString

("Statement.SOURCE_DATA_ERROR"));
}

}
}

}
catch(Exception e)
{

throw new OdaException(e.getLocalizedMessage());
}
this.resultSetMetaData = new ResultSetMetaData

((String[])arCols.toArray
(new String[arCols.size()]),
(String[])arColsType.toArray

(new String[arColsType.size()]),
(String[])arCols.toArray

(new String[arCols.size()]),
(String[])arColClass.toArray

(new String[arColClass.size()]));
this.query = query;

}

■ getMetaData()

The BIRT framework calls getMetaData() after the prepare() method to
retrieve the metadata for a result set. The BIRT framework uses the metadata
to create the data set in the report.

Listing 19-44 shows the code for the getMetaData() method.

Listing 19-44 The getMetaData() method

public IResultSetMetaData getMetaData() throws OdaException
{

return this.resultSetMetaData;
}

■ executeQuery()

The executeQuery() method executes the prepared query and retrieves the
results. The executeQuery() method returns an IResultSet object, which is
created using the list results, result-set metadata, and Hibernate types
returned from the HQL query. The ODA framework uses the IResultSet
object to iterate over the results.

434 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

The executeQuery() method performs the following operations:

■ Sets up an array of org.hibernate.type.Type to map Java types to JDBC
datatypes

■ Sets up a list to contain the results set

■ Trims the query String

■ Instantiates a Hibernate Query object, creating the HQL query

■ Executes the HQL query, returning the query result set in a List

■ Gets the Hibernate types for the query result set

■ Instantiates a ResultSet object, passing in the data, metadata, and
Hibernate types

Listing 19-45 shows the code for the executeQuery() method.

Listing 19-45 The executeQuery() method

public IResultSet executeQuery() throws OdaException
{

Type[] qryReturnTypes = null;
List rst = null;
try
{

Session hibsession = HibernateUtil.currentSession();
String qryStr = this.query;
qryStr = qryStr.replaceAll("[\\n\\r]+"," ");
qryStr.trim();
Query qry = hibsession.createQuery(qryStr);
rst = qry.list();
qryReturnTypes = qry.getReturnTypes();

}
catch(Exception e)
{

throw new OdaException(e.getLocalizedMessage());
}
return new ResultSet

(rst, getMetaData(), qryReturnTypes);
}

■ close()

The close() method clears the Connection and ResultSetMetaData objects. In
the Connection object, the close() method closes the Hibernate session.

Listing 19-46 shows the code for the Statement.close() method.

Listing 19-46 The Statement.close() method

public void close() throws OdaException

D e v e l o p i n g a H i b e r n a t e O D A e x t e n s i o n 435

{
connection = null;
resultSetMetaData = null;

}

Understanding ResultSet
The ResultSet class implements the IResultSet interface. When this class is
instantiated, it stores the list.iterator() passed from the Statement object. It uses
the iterator when the ODA driver framework calls the next() method.

The iterator points to the next available row of data from the HQL query results.
The framework calls the accessor methods that get the data types for the
columns in the current row. For example, if the first column is a String, the
framework calls getString(). This method calls the getResult() method, which
interprets the HQL query results.

The getResult() method parses the results in one of the following ways,
depending on whether the query returns a Hibernate EntityType or just an array
of values:

■ If the query uses HQL and each return type is an EntityType, getResult()
gets each Column class and uses the Hibernate ClassMetaData methods to
retrieve the value.

■ If the query returns standard data types, getResult() gets each value or
values, returning an Object containing the simple value or an array of
Objects containing the multiple values.

Listing 19-47 shows the code for the getResult() method.

Listing 19-47 The getResult() method

private Object getResult(int rstcol) throws OdaException
{

Object obj = this.currentRow;
Object value = null;
try

{
if(qryReturnTypes.length >

0 && qryReturnTypes[0].isEntityType())
{

String checkClass =
((ResultSetMetaData)getMetaData())

.getColumnClass(rstcol);
Object myVal =
HibernateUtil.getHibernatePropVal(obj,

checkClass,
getMetaData().getColumnName(rstcol));

value = myVal;
}
else
{

436 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

if(getMetaData().getColumnCount() == 1)
{
value = obj;

}
else
{

Object[] values = (Object[])obj;
value = values[rstcol-1];

}
}

}
catch(Exception e)
{

throw new OdaException(e.getLocalizedMessage());
}

return(value);
}

Understanding HibernateUtil
HibernateUtil is a utility class that provides the run-time interface between the
Hibernate service and the application. The HibernateUtil class example derives
from the class provided with the Hibernate documentation. HibernateUtil
performs the following operations:

■ Initializes the SessionFactory

■ Builds the Hibernate SessionFactory

■ Opens and closes a session

■ Returns information on Hibernate classes and properties

■ Registers the JDBC driver with the DriverManager

The Connection.open() method calls HibernateUtil.constructSessionFactory(),
which creates a SessionFactory if one does not already exist. The
constructSessionFactory() method closes and rebuilds the SessionFactory if the
location of the configuration file or mapping files directory has changed.

The SessionFactory construction process creates the ClassLoader. The
ClassLoader adds the drivers directory in the org.eclipse.birt.report.data.oda
.jdbc plug-in and the hibfiles directory in the Hibernate ODA plug-in to
classpath. This process also registers the JDBC driver specified in the Hibernate
config file with the DriverManager.

The HibernateUtil class implements the following methods:

■ initSessionFactory()

This method creates the SessionFactory object from the configuration
settings in the hibernate.cfg.xml file. Listing 19-48 shows the code for the
initSessionFactory() method.

D e v e l o p i n g a H i b e r n a t e O D A e x t e n s i o n 437

Listing 19-48 shows the code for the initSessionFactory() method.

Listing 19-48 The initSessionFactory() method

private static synchronized void initSessionFactory
(String hibfile, String mapdir)
throws HibernateException
{

if(sessionFactory == null)
{

Thread thread = Thread.currentThread();
try
{

oldloader = thread.getContextClassLoader();
refreshURLs();
ClassLoader changeLoader = new URLClassLoader

((URL [])URLList.toArray
(new URL[0]),thread

.getContextClassLoader());
thread.setContextClassLoader(changeLoader);
Configuration cfg =

buildConfig(hibfile,mapdir);
Class driverClass =

changeLoader.loadClass(cfg.getProperty
("connection.driver_class"));

Driver driver =
(Driver) driverClass.newInstance();

WrappedDriver wd =
new WrappedDriver(driver,

cfg.getProperty
("connection.driver_class"));

boolean foundDriver = false;
Enumeration drivers =

DriverManager.getDrivers();
while (drivers.hasMoreElements())
{

Driver nextDriver =
(Driver)drivers.nextElement();

if (nextDriver.getClass() == wd.getClass())
{

if(nextDriver.toString()
.equals(wd.toString()))

{
foundDriver = true;
break;

}
}

}
if(!foundDriver)
{

DriverManager.registerDriver(wd);
}
sessionFactory = cfg.buildSessionFactory();

438 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

configuration = cfg;
HibernateMapDirectory = mapdir;
HibernateConfigFile = hibfile;

}
catch(Exception e)
{

e.printStackTrace();
throw new HibernateException

("No Session Factory Created " +
e.getLocalizedMessage());

}
finally
{

thread.setContextClassLoader(oldloader);
}

}
}

■ constructSessionFactory

This method checks to see if a configuration change occurred. If a change
occurred, the method closes the session and SessionFactory and calls the
initSessionFactory to rebuild the SessionFactory.

Listing 19-49 shows the code for the constructSessionFactory() method.

Listing 19-49 The constructSessionFactory() method

public static void constructSessionFactory
(String hibfile, String mapdir)
throws HibernateException
{

if(hibfile == null)
{

hibfile = "";
}
if(mapdir == null)
{

mapdir = "";
}
if(sessionFactory == null)
{

initSessionFactory(hibfile, mapdir);
return;

}
if(HibernateMapDirectory.equalsIgnoreCase

(mapdir) && HibernateConfigFile
.equalsIgnoreCase(hibfile))

{
return;

}
synchronized(sessionFactory)
{

D e v e l o p i n g a H i b e r n a t e O D A e x t e n s i o n 439

Session s = (Session) session.get();
if (s != null)
{

closeSession();
}
if (sessionFactory != null &&

!sessionFactory.isClosed())
{

closeFactory();
}
sessionFactory = null;
initSessionFactory(hibfile, mapdir);

}

■ currentSession()

This method opens a session when called by the Connection.open() method,
as shown in Listing 19-50.

Listing 19-50 The currentSession() method

public static Session currentSession()
throws HibernateException {
Session s = (Session) session.get();
if (s == null) {

s = sessionFactory.openSession();
session.set(s);

}
return s;

}

Other methods in this class return information on a particular class and its
properties. The getHibernateProp() method returns the properties for a class.
The getHibernatePropTypes() method returns the data type for a property of a
class.

Building the Hibernate ODA driver plug-in
To build and deploy the org.eclipse.birt.report.data.oda.hibernate plug-in using
the Eclipse PDE Manifest Editor, perform the following tasks:

■ On Build, specify the Build Configuration to include the following items:

■ In Runtime Information, add the odahibernate.jar file.

■ In Binary Build, select the following files and folders:

❏ META-INF

❏ exampleconfig

❏ hibfiles

❏ lib

440 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

❏ plugin.xml

Build Configuration appears, as shown in Figure 19-41.

Figure 19-41 Build Configuration settings

■ On Overview, in Exporting, choose Export Wizard and perform the
following tasks:

■ In Options, verify that Package plug-ins as individual JAR archives is not
selected.

■ In Destination, choose the directory, $INSTALL_DIR\birt-runtime-
2_1_0\Report Engine, as shown in Figure 19-42.

D e v e l o p i n g a H i b e r n a t e O D A e x t e n s i o n 441

Figure 19-42 Using the Export wizard

The Hibernate ODA example uses MySQL as the database. The BIRT sample
database and the MySQL installation scripts can be downloaded from
http://www.eclipse.org/birt/db. For information about the required Hibernate
libraries, please refer to the Hibernate web site at http://www.hibernate.org.

Developing the Hibernate ODA UI extension
To use the data retrieved by the Hibernate ODA driver in a BIRT report design,
you must extend the DTP design UI. To implement the Hibernate ODA UI, you
extend the following extension points:

■ org.eclipse.datatools.connectivity.oda.design.ui.dataSource

The dataSource extension point defines and implements the UI for new data
source and data set wizards. These wizards use the Hibernate ODA driver
plug-in to extend the functionality available in the Data Explorer of BIRT
Report Designer.

■ org.eclipse.ui.propertyPages

The propertyPage extension displays and manipulates the Hibernate
configuration file and mapping files directory locations.

http://www.eclipse.org/birt/db
http://www.hibernate.org

442 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

■ org.eclipse.datatools.connectivity.connectionProfile

The connectionProfile extension shares a data source connection between
applications.

To start developing the Hibernate ODA UI plug-in, create the plug-in project,
org.eclipse.birt.report.data.oda.hibernate.ui.

How to create the Hibernate ODA UI plug-in project

1 From the Eclipse PDE menu, choose File➛New➛Plug-in Project. New
Project appears.

2 On New Project, select Plug-in Project. Choose Next. New Plug-in Project
appears.

3 In Plug-in Project, modify the settings as shown in Table 19-27. Choose Next.
Plug-in Content appears.

4 In Plug-in Content, modify the settings as shown in Table 19-28. Choose
Finish.

Table 19-27 Settings for Plug-in Project options

Section Option Value

Plug-in Project Project name org.eclipse.birt.report.data
.oda.hibernate.ui

Use default location Selected

Location Not available when you
select Use default location

Project Settings Create a Java project Selected

Source folder name src

Output folder name bin

Target Platform Eclipse version 3.2

OSGi framework Selected Equinox

Table 19-28 Settings for Plug-in Content options

Section Option Value

Plug-in
Properties

Plug-in ID org.eclipse.birt.report.data
.oda.hibernate.ui

Plug-in Version 2.0.0

Plug-in Name BIRT Hibernate UI Plug-in

Plug-in Provider yourCompany.com or
leave blank

Classpath hibernateui.jar

D e v e l o p i n g a H i b e r n a t e O D A e x t e n s i o n 443

The Hibernate ODA UI plug-in project appears in the Eclipse PDE workbench.

How to specify the Hibernate ODA UI dependencies

1 On the Eclipse PDE Manifest Editor, in Dependencies, specify the required
plug-ins in the following order:

■ org.eclipse.core.runtime

■ org.eclipse.ui

■ org.eclipse.datatools.connectivity.oda.design.ui

■ org.eclipse.birt.report.data.oda.hibernate

Dependencies appears as shown in Figure 19-43.

Figure 19-43 Required plug-ins for the Hibernate ODA UI plug-in project

How to specify the Hibernate ODA UI runtime

On Runtime, in Exported Packages, add org.eclipse.birt.report.oda.hibernate.ui
to the list of packages that this plug-in exposes to clients.

Plug-in Options Generate an activator, a
Java class that controls the
plug-in’s life cycle

Selected

Activator org.eclipse.birt.report.data
.oda.hibernate.ui
.Activator

This plug-in will make
contributions to the UI

Deselected

Rich Client
Application

Would you like to create a
rich client application?

No

Table 19-28 Settings for Plug-in Content options (continued)

Section Option Value

444 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

Runtime appears as shown in Figure 19-44.

Figure 19-44 Exported packages for the Hibernate ODA UI plug-in project

How to specify the Hibernate ODA UI extension points

1 On the PDE Manifest Editor, choose Extensions.

2 In All Extensions, choose Add. New Extension appears.

3 On New Extension—Extension Points, in the list of extension points, select
the following plug-in:

org.eclipse.datatools.connectivity.oda.design.ui.dataSource

Choose Finish.

4 Repeat steps 2 and 3 to add the following extension points to the list on the
Extensions page:

■ org.eclipse.ui.propertyPages

■ org.eclipse.datatools.connectivity.connectionProfile

How to add the extension details

1 On Extensions, select the extension point, org.eclipse.datatools.connectivity
.oda.design.ui.dataSource, and add the following elements and element
details:

■ dataSourceUI

Add the following id:

org.eclipse.birt.report.data.oda.hibernate

Add the following extension element to dataSourceUI:

newDataSourceWizard

Add the extension element details for the extension element,
newDataSourceWizard, as shown in Table 19-29.

D e v e l o p i n g a H i b e r n a t e O D A e x t e n s i o n 445

■ dataSetUI

Add the extension element details for the extension element, dataSetUI,
as shown in Table 19-30.

2 On Extensions, select dataSetUI, org.eclipse.birt.report.data.oda.hibernate
.dataSet, and add the following properties and element details:

■ dataSetWizard, as shown in Table 19-31

■ dataSetPage, as shown in Table 19-32

Table 19-29 Property settings for newDataSourceWizard

Property Value

pageClass org.eclipse.birt.report.data.oda
.hibernate.ui.HibernateDataSourceWizard

windowTitle Hibernate Data Source

includesProgressMonitor false

pageTitle Hibernate Data Source

Table 19-30 Property settings for the dataSetUI extension element

Property Value

id org.eclipse.birt.report.data.oda
.hibernate.dataSet

initialPageId org.eclipse.birt.report.data.oda
.hibernate.ui.HibernatePage

supportsInParameters true

supportsOutParameters false

Table 19-31 Property settings for the dataSetWizard extension element

Property Value

class org.eclipse.datatools.connectivity
.oda.design.ui.wizards.DataSetWizard

windowTitle Hibernate Data Set

Table 19-32 Property settings for the dataSetPage extension
element

Property Value

id org.eclipse.birt.report.data.oda
.hibernate.ui.HibernatePage

(continues)

446 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

3 On Extensions, select org.eclipse.ui.propertyPages and add the following
property and extension element details for page, as shown in Table 19-33.

4 On Extensions, select page and add the following property and extension
element details for filter, as shown in Table 19-34.

5 On Extensions, select org.eclipse.datatools.connectivity.connectionProfile,
and add the following properties and element details:

■ category, as shown in Table 19-35

wizardPageClass org.eclipse.birt.report.data.oda
.hibernate.ui
.HibernateHqlSelectionPage

displayName Enter HQL

path /

Table 19-33 Property settings for the page extension element

Property Value

id org.eclipse.birt.report.data.oda.hibernate.

name ODA Hibernate Data Source Connection
Properties

class org.eclipse.birt.report.data.oda.hibernate.ui
.HibernatePropertyPage

objectClass org.eclipse.datatools.connectivity
.IConnectionProfile

Table 19-34 Property settings for the filter extension element

Property Value

name org.eclipse.datatools.profile.property.id

value org.eclipse.birt.report.data.oda.hibernate

Table 19-35 Property settings for the filter extension element

Property Value

id org.eclipse.birt.report.data.oda.hibernate

parentCategory org.eclipse.datatools.connectivity.oda
.profileCategory

name Hibernate Data Source

Table 19-32 Property settings for the dataSetPage extension
element (continued)

Property Value

D e v e l o p i n g a H i b e r n a t e O D A e x t e n s i o n 447

■ connectionProfile, as shown in Table 19-36

■ connectionFactory, as shown in Table 19-37

■ newWizard, as shown in Table 19-35

Table 19-36 Property settings for the connectionProfile extension
element

Property Value

id org.eclipse.birt.report.data.oda.hibernate

category org.eclipse.birt.report.data.oda.hibernate

name ODA Hibernate Data Source Connection
Profile

pingFactory org.eclipse.datatoools.connectivity.oda
.profile.OdaConnectionFactory

Table 19-37 Property settings for the connectionFactory extension
element

Property Value

id ogr.eclipse.datatools.connectivity.oda
.IConnection

class ogr.eclipse.datatools.connectivity.oda
.profile.OdaConnectionFactory

profile org.eclipse.birt.report.data.oda.hibernate

name ODA Connection Factory

Table 19-38 Property settings for the newWizard extension element

Property Value

id org.eclipse.birt.report.data.oda.hibernate

name ODA Hibernate Data Source

class org.eclipse.datatools.connectivity
.oda.design.ui.wizards
.NewDataSourceWizard

profile org.eclipse.birt.report.data.oda.hibernate

description Create an ODA Hibernate connection
profile

448 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

Extensions appears as shown in Figure 19-45.

Figure 19-45 Extensions for the Hibernate ODA UI

Understanding the sample Hibernate ODA UI
extension
The following sections describe the code-based extensions a developer must
make to complete the development of the Hibernate ODA UI extension, after
defining the plug-in framework in the Eclipse PDE.

The Hibernate ODA UI plug-in implements the following classes:

■ HibernatePropertyPage

Creates and initializes the editor controls for the property page that specify
the ODA data source. This class updates the connection profile properties
with the values collected from the page. HibernatePropertyPage extends
org.eclipse.datatools.connectivity.oda.design.ui.wizards
.DataSourceEditorPage, the abstract base class for implementing a
customized ODA data source property page.

■ HibernatePageHelper

Implements the user interface that specifies data source properties. This
utility class specifies the page layout, sets up the controls that listen for user
input, verifies the location of the Hibernate configuration file, and sets up
the location of the mapping directory. The HibernateDataSourceWizard and
HibernatePropertyPage classes use HibernatePageHelper.
HibernatePageHelper also extends org.eclipse.datatools.connectivity.oda
.design.ui.wizards.DataSourceEditorPage.

■ HibernateDataSourceWizard

Creates and initializes the controls for the data source wizard page. The class
sets the configuration file message and collects the property values. In the

D e v e l o p i n g a H i b e r n a t e O D A e x t e n s i o n 449

extension element settings for newDataSourceWizard, the pageClass
property specifies this class as the implementation class for the dataSourceUI
wizard. The HibernateDataSourceWizard class extends org.eclipse.datatools
.connectivity.oda.design.ui.wizards.DataSourceWizardPage, the abstract
base class for implementing a customized ODA data source wizard page.

■ HibernateHqlSelectionPage

Creates the user interface that specifies an HQL statement. The Hibernate
ODA UI plug-in calls HibernateHqlSelectionPage when creating or
modifying the data set for a data source. In the extension element settings for
dataSetPage, the wizardPageClass property specifies this class as the
implementation class for the dataSetUI page wizard.
HibernateHqlSelectionPage also extends org.eclipse.datatools.connectivity
.oda.design.ui.wizards.DataSourceWizardPage.

■ Messages

This class and the related properties file, messages.properties, generate the
messages displayed in the Hibernate ODA UI.

Understanding HibernatePageHelper
This class creates the components that select the Hibernate configuration file
and a mapping files directory using the following methods:

■ createCustomControl()

Builds the user interface for the data source

■ initCustomControl()

Sets the initial property values

■ collectCustomProperties()

Returns the modified properties to the ODA framework

When the data source page displays, the Finish button becomes available when
the setPageComplete() method indicates the page is complete.

HibernateDataSourceWizard.createPageCustomControl() and
HibernatePropertyPage.createAndInitCustomControl() call
HibernatePageHelper. The createCustomControl() method is the entry point for
this class.

Listing 19-51 shows the code for the createCustomControl() method.

Listing 19-51 The createCustomControl() method

void createCustomControl(Composite parent)
{

Composite content = new Composite(parent, SWT.NULL);
GridLayout layout = new GridLayout(3, false);
content.setLayout(layout);

450 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

setupConfigLocation(content);
setupMapLocation(content);

}

The setupConfigLocation() method sets up the configuration file location. The
setupMapLocation() method sets up the mapping folder. These two methods
perform similar tasks.

Listing 19-52 shows the code for the setupConfigLocation() method. This
method adds a label, a text entry component, and a button. The text entry
component has a ModifyListener() method, which verifies that the file selected
exists, and the button has a SelectionAdapter() method, which uses the
FileDialog() method to access the configuration file.

Listing 19-52 The setupConfigLocation() method

private void setupConfigLocation(Composite composite)
{

Label label = new Label(composite, SWT.NONE);
label.setText("Select Hibernate Config File");
GridData data =

new GridData(GridData.FILL_HORIZONTAL);
m_configLocation = new Text(composite, SWT.BORDER);
m_configLocation.setLayoutData(data);
setPageComplete(true);
m_configLocation.addModifyListener

(new ModifyListener()
{

public void modifyText(ModifyEvent e)
{

verifyConfigLocation();
}

});
m_browseConfigButton = new Button(composite, SWT.NONE);
m_browseConfigButton.setText("...");
m_browseConfigButton.addSelectionListener

(new SelectionAdapter()
{

public void widgetSelected(SelectionEvent e)
{

FileDialog dialog = new FileDialog
(m_configLocation.getShell());

if(m_configLocation.getText() != null &&
m_configLocation.getText()

.trim().length() > 0)
{

dialog.setFilterPath
(m_configLocation.getText());

}
dialog.setText

("Select Hibernate Config File");
String selectedLocation = dialog.open();
if(selectedLocation != null)

D e v e l o p i n g a H i b e r n a t e O D A e x t e n s i o n 451

{
m_configLocation.setText

(selectedLocation);
}

}
});

}

The initCustomControl() method initializes the properties settings. The plug-in
passes the properties to the method from the createPageCustomControl() and
setInitialProperties() methods of the HibernateDataSourceWizard class and the
createAndInitCustomControl() method of the HibernatePropertyPage class.

The initCustomControl() method retrieves the properties for the Hibernate
configuration file and mapping files directory and sets text component values.

Listing 19-53 shows the code for the initCustomControl() method.

Listing 19-53 The initCustomControl() method

void initCustomControl(Properties profileProps)
{

setPageComplete(true);
setMessage(DEFAULT_MESSAGE, IMessageProvider.NONE);
if(profileProps == null || profileProps.isEmpty() ||

m_configLocation == null)
return;

String configPath =
profileProps.getProperty("HIBCONFIG");

if(configPath == null)
configPath = EMPTY_STRING;
m_configLocation.setText(configPath);
String mapPath = profileProps.getProperty("MAPDIR");
if(mapPath == null)

mapPath = EMPTY_STRING;
m_mapLocation.setText(mapPath);
verifyConfigLocation();

}

When the user presses the Finish or Test Connection button, the plug-in calls the
collectCustomProperties() method to retrieve the new values for the Hibernate
configuration file and mapping files directory. The HibernateDataSourceWizard
and HibernatePropertyPage classes call the
HibernatePageHelper.collectCustomProperties() method from their
collectCustomProperties() methods.

Listing 19-54 shows the code for the collectCustomProperties() method.

Listing 19-54 The collectCustomProperties() method

Properties collectCustomProperties(Properties props)
{

if(props == null)
props = new Properties();

452 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

props.setProperty("HIBCONFIG",
getConfig());

props.setProperty("MAPDIR", getMapDir());
return props;

}

Understanding HibernateDataSourceWizard
The HibernateDataSourceWizard class extends the DTP
DataSourceWizardPage, by implementing three methods that the ODA
framework calls:

■ createPageCustomControl()

Constructs the user interface

■ setInitialProperties()

Sets the initial values of the user interface

■ collectCustomProperties()

Retrieve the modified values

This class creates the HibernatePageHelper class, and uses the methods
described earlier to handle these three methods. The ODA framework uses this
class to create a new data source.

Understanding HibernatePropertyPage
The HibernatePropertyPage class extends the DTP DataSourceEditorPage by
implementing two methods that the ODA framework calls:

■ createAndInitCustomControl()

Constructs the user interface and sets the initial values

■ collectCustomProperties()

Retrieves the modified values

This class creates the HibernatePageHelper class and uses the methods
described earlier to handle these two methods. The ODA framework uses this
class to create a new data source.

Understanding HibernateHqlSelectionPage
The HibernateHqlSelectionPage class extends DataSetWizardPage to define the
page controls and related functionality for the Hibernate ODA data set wizard.
HibernateHqlSelectionPage allows the user to create an HQL statement that
selects the data set and embeds the HQL statement in the report design. This
page links to the Hibernate ODA through the wizardPageClass attribute of the
dataSetPage element within the dataSource extension.

D e v e l o p i n g a H i b e r n a t e O D A e x t e n s i o n 453

The HibernateHqlSelectionPage class implements the following methods:

■ createPageControl()

This method performs the following operations:

■ Sets up a composite set of controls using a series of GridLayout and
GridData objects to create the data set editor UI

■ Sets the user prompt to enter an HQL statement and verify the query

■ Adds a text control to allow the user to enter and modify text

■ Adds a ModifyListener to the text control to detect user input

■ Sets up the Verify Query button and adds a SelectionListener to detect
when the user selects the button

■ Returns the composite page control

Listing 19-55 shows the code for the createPageControl() method.

Listing 19-55 The createPageControl() method

public Control createPageControl(Composite parent)
{
Composite composite = new Composite

(parent, SWT.NONE);
GridLayout layout = new GridLayout();
layout.numColumns = 1;
composite.setLayout(layout);
Label label = new Label(composite, SWT.NONE);
label.setText(Messages.getString

("wizard.title.selectColumns"));
GridData data = new GridData(GridData.FILL_BOTH);
queryText = new Text(composite,SWT.MULTI |

SWT.WRAP | SWT.V_SCROLL);
queryText.setLayoutData(data);
queryText.addModifyListener(new ModifyListener(){

public void modifyText(ModifyEvent e)
{

if(m_initialized == false)
{

setPageComplete(true);
m_initialized = true;

}
else
{

setPageComplete(false);
}
}

});
setPageComplete(false);
Composite cBottom = new Composite

(composite, SWT.NONE);
cBottom.setLayoutData

454 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

(new GridData(GridData.FILL_HORIZONTAL));
cBottom.setLayout(new RowLayout());
queryButton = new Button(cBottom, SWT.NONE);
queryButton.setText(Messages.getString

("wizard.title.verify"));
queryButton.addSelectionListener

(new SelectionAdapter())
{
public void widgetSelected(SelectionEvent event)
{

verifyQuery();
}

});
return composite;
}

■ initializeControl()

The plug-in calls this method to retrieve the HQL query from the current
design and initializes the HQL text component with this value.
initializeControl() also reads the Hibernate configuration file and mapping
files directory from the report design and stores them in member variables
for use when building a query.

Listing 19-56 shows the code for the initializeControl() method.

Listing 19-56 The initializeControl() method

private void initializeControl()
{

Properties dataSourceProps =
getInitializationDesign().getDataSourceDesign()

.getPublicProperties();
 m_hibconfig =

dataSourceProps.getProperty("HIBCONFIG");
m_mapdir = dataSourceProps.getProperty("MAPDIR");
DataSetDesign dataSetDesign =

getInitializationDesign();
if(dataSetDesign == null)

return;
String queryTextTmp = dataSetDesign.getQueryText();
if(queryTextTmp == null)

return;
queryText.setText(queryTextTmp);
this.m_initialized = false;
setMessage("", NONE);

}

■ verifyQuery()

This method is the selection event called when the user chooses the Verify
Query button. verifyQuery performs the following operations:

■ Opens a connection to the run-time environment.

D e v e l o p i n g a H i b e r n a t e O D A e x t e n s i o n 455

■ Instantiates a Query object and gets the query text entered by the user.

■ Prepares the query.

■ Checks the column to determine if the query prepare was successful.
Depending on the success of the query prepare, verifyQuery() indicates
that page processing is complete or incomplete.

■ Re-enables the Verify Query button.

■ Closes the connection.

Listing 19-57 shows the code for the verifyQuery() method.

Listing 19-57 The verifyQuery() method

boolean verifyQuery()
{

setMessage("Verifying Query", INFORMATION);
setPageComplete(false);
queryButton.setEnabled(false);
Connection conn = new Connection();
try
{

Properties prop = new Properties();
if(m_hibconfig == null)m_hibconfig = "";
if(m_mapdir == null)m_mapdir = "";
prop.put("HIBCONFIG", m_hibconfig);

prop.put("MAPDIR", m_mapdir);
conn.open(prop);
IQuery query = conn.newQuery("");
query.prepare(queryText.getText());
int columnCount =

query.getMetaData().getColumnCount();
if (columnCount == 0)
{

setPageComplete(false);
return false;

}
setPageComplete(true);
return true;

}
catch (OdaException e)
{

System.out.println(e.getMessage());
showError("ODA Verify Exception", e.getMessage());
setPageComplete(false);
return false

}
catch (Exception e)
{

System.out.println(e.getMessage());
showError("Verify Exception", e.getMessage());
setPageComplete(false);
return false;

456 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

}
finally
{

try
{

queryButton.setEnabled(true);
conn.close();

}
catch (OdaException e)
{

System.out.println(e.getMessage());
setMessage(e.getLocalizedMessage(),

ERROR);e.getMessage());
setPageComplete(false);
return false;

}
}

}

■ canLeave()

When the user chooses OK or attempts to leave the page, the plug-in calls
the canLeave() method. If the HQL statement verifies or is unchanged, the
plug-in permits the user to leave the page, and saves the HQL in the report.
If the page is not complete the plug-in prompts the user to verify the query.

Listing 19-58 shows the code for the canLeave() method.

Listing 19-58 The canLeave() method

public boolean canLeave()
{
if (!isPageComplete())
{

setMessage(Messages.getString
("error.selectColumns"), ERROR);
return false;

}
return true;
}

■ savePage()

The savePage() method is called when the ODA framework calls the
collectDataSetDesign() method. This action occurs when the user presses
the Finish button on the new data set wizard or the OK button on the data
set editor is pressed. The savePage() method saves the query to the report,
as shown in Listing 19-59.

Listing 19-59 The savePage() method

private boolean savePage()
{
IConnection conn = null;

D e v e l o p i n g a H i b e r n a t e O D A e x t e n s i o n 457

try
{

IDriver hqDriver = new HibernateDriver();
conn = hqDriver.getConnection(null);
IResultSetMetaData metadata =
getResultSetMetaData(dataSetDesign

.getQueryText(), conn);
setResultSetMetaData(dataSetDesign, metadata);

}
catch(OdaException e)
{

dataSetDesign.setResultSets(null);
}
finally
{

closeConnection(conn);
}
}

■ getResultSetMetaData()

The savePage() method calls the getResultSetMetaData() method when
saving the report design. This method retrieves the query metadata that
setResultSetMetaData() uses to create the data set columns.

Listing 19-60 shows the code for the getResultSetMetaData() method.

Listing 19-60 The getResultSetMetaData() method

private IResultSetMetaData getResultSetMetaData
(String queryText, IConnection conn)
throws OdaException

 {
 java.util.Properties prop =

new java.util.Properties();
if(m_hibconfig == null)m_hibconfig = "";
if(m_mapdir == null)m_mapdir = "";
prop.put("HIBCONFIG", m_hibconfig);
prop.put("MAPDIR", m_mapdir);
conn.open(prop);
IQuery query = conn.newQuery(null);
query.prepare(queryText);
return query.getMetaData();

}

■ setResultSetMetaData()

The savePage() method calls the setResultSetMetaData() method when
saving the report design. This method uses the DataSetDesign and the
ResultSetMetaData objects for the query to create the columns in the data set
for use in the report design.

Listing 19-61 shows the code for the setResultSetMetaData() method.

458 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

Listing 19-61 The setResultSetMetaData() method

private void setResultSetMetaData
(DataSetDesign dataSetDesign,

IResultSetMetaData md) throws OdaException
{

ResultSetColumns columns =
DesignSessionUtil.toResultSetColumnsDesign(md);

ResultSetDefinition resultSetDefn =
DesignFactory.eINSTANCE
.createResultSetDefinition();

resultSetDefn.setResultSetColumns(columns);
dataSetDesign.setPrimaryResultSet(resultSetDefn);
dataSetDesign.getResultSets().setDerivedMetaData(true);

}

■ collectDataSetDesign()

The plug-in calls this method when creating or modifying the query finishes.
The plug-in passes the current design to this method.
collectDataSetDesign() then verifies that a query exists and sets the design
query to the value of the query text. The savePage() method saves the
design and creates the columns in the data set.

Listing 19-62 shows the code for the collectDataSetDesign() method.

Listing 19-62 The collectDataSetDesign() method

protected DataSetDesign collectDataSetDesign
(DataSetDesign design)

{
if(! hasValidData())

return design;
design.setQueryText(queryText.getText());
savePage(design);
return design;

}

Building the Hibernate ODA UI plug-in
To build and deploy the org.eclipse.birt.report.data.oda.hibernate.ui plug-in
using the Eclipse PDE Manifest Editor, perform the following tasks:

■ On Build, specify the Build Configuration to include the following items:

■ In Runtime Information, add the hibernateodaui.jar file.

■ In Binary Build, select the following files and folders:

❏ META-INF

❏ plugin.xml

Build Configuration appears, as shown in Figure 19-46.

D e v e l o p i n g a H i b e r n a t e O D A e x t e n s i o n 459

Figure 19-46 Build Configuration settings

■ On Overview, in Exporting, choose Export Wizard and perform the
following tasks:

■ In Options, verify that Package plug-ins as individual JAR archives is not
selected.

■ In Destination, choose the directory, $INSTALL_DIR\birt-runtime-
2_1_0\Report Engine, as shown in Figure 19-47.

Figure 19-47 Using the Export wizard

460 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

Testing the Hibernate ODA UI plug-in
You can test the Hibernate ODA UI plug-in using a run-time instance of the
Eclipse PDE workbench.

How to launch the Hibernate ODA UI plug-in

1 On the Eclipse PDE Manifest Editor, in Overview—Testing, choose Launch
an Eclipse application.

2 In the run-time workbench, choose the Report Design perspective.

3 In Report Design, create a new report project and create a new blank report.

How to specify a data source and data set

1 In Report Design, choose Data Explorer. Data Explorer appears.

2 In Data Explorer, right-click Data Sources and choose New Data Source, as
shown in Figure 19-48. New Data Source appears.

Figure 19-48 Choosing New Data Source

On New Data Source, choose Create from a data source type in the following
list and select Hibernate Data Source as the data source type, as shown in
Figure 19-49. Choose Next.

Figure 19-49 Selecting Hibernate Data Source

Hibernate Data Source appears, as shown in Figure 19-50. On Hibernate
Data Source, select the Hibernate configuration file and mapping directory
or leave these items blank if you use the hibfiles directory. Choose Finish.

D e v e l o p i n g a H i b e r n a t e O D A e x t e n s i o n 461

Figure 19-50 Configuring the Hibernate Data Source

Data Explorer appears with the new data source in Data Sources, as shown
in Figure 19-51.

Figure 19-51 New data source in Data Explorer

3 In Data Explorer, right-click Data Sets and choose New Data Set, as shown in
Figure 19-52.

Figure 19-52 Choosing New Data Set

New Data Set appears, as shown in Figure 19-53.

Figure 19-53 New Data Set

462 C h a p t e r 1 9 D e v e l o p i n g a n O D A E x t e n s i o n

Choose Next. Hibernate Data Set appears.

4 On Edit Data Set, perform the following tasks:

1 In Enter HQL and Verify Query, type:

select ord.orderNumber, cus.customerNumber,
cus.customerName

from Orders as ord, Customer as cus
where ord.customerNumber = cus.customerNumber
and cus.customerNumber = 363

Edit Data Set displays the query, as shown in Figure 19-54.

Figure 19-54 Editing the HQL query

2 Choose Verify Query.

3 Choose Finish. Edit Data Set appears. Choose Preview Results. Preview
Results appears as shown in Figure 19-55.

Figure 19-55 Previewing the data set

Choose OK. Data Explorer appears.

D e v e l o p i n g a H i b e r n a t e O D A e x t e n s i o n 463

5 On Data Explorer, expand Data Sets. The new data set lists three columns, as
shown in Figure 19-56.

Figure 19-56 Data set in Data Explorer

6 To build a report that uses the data set, perform the following tasks:

1 On Data Explorer, drag Data Set to the layout editor. The layout appears
as shown in Figure 19-57.

Figure 19-57 Report design in the layout editor

2 To view the output for new_report_1.rptdesign, choose Preview. The
Preview appears as shown in Figure 19-58.

Figure 19-58 Preview of the report design

This page intentionally left blank

G l o s s a r y 465

G l o s s a r y

abstract base class

A class that organizes a class hierarchy or defines methods and variables that
apply to descendant classes. An abstract base class does not support the creation
of instances.
Related terms
class, class hierarchy, descendant class, object, method, variable

Active Server Page (ASP)

A web server technology that Microsoft Corporation developed. ASPs support
the creation of dynamic, interactive sessions. The technology contains both
HTML and embedded programming code that is written in VBScript or
JavaScript.
Related terms
hypertext markup language (HTML), JavaScript, VBScript (Visual Basic Script
Edition), web server
Contrast with
JavaServer Page (JSP)

aggregate expression

An expression that uses an aggregate function to produce an aggregate value.
For example, the expression, Total.max(row["SPEED"]), produces an aggregate
value that is the maximum value of the field, SPEED, in the data rows.
Related terms
aggregate function, aggregate value, data row, expression, field, value
Contrast with
regular expression

aggregate function

A function that performs a calculation over a set of data rows. For example,
Total.ave() calculates the average value of a specified numeric field over a set of
data rows. An aggregate expression can contain one or more of the following
aggregate functions: Total.ave(), Total.count(), Total.countDistinct(),
Total.first(), Total.last(), Total.max(), Total.median(), Total.min(),

466 G l o s s a r y

Total.mode(), Total.movingAve(), Total.runningSum(), Total.stdDev(),
Total.sum(), Total.variance(), and Total.weightedAve().

Related terms
aggregate expression, data row, function
Contrast with
aggregate value

aggregate value

The result of applying an aggregate function to a set of data rows. For example,
consider a set of data rows with a field, SPEED, which has values: 20, 10, 30, 15,
40. The aggregate expression, Total.max(row["SPEED"]), produces the aggregate
value, 40, which is the maximum value for the field.
Related terms
aggregate expression, aggregate function, data row, field, value

alias 1 In a SQL SELECT statement, an alternative name given to a database table or
column.

2 An alternative name that is given to a table column for use in an expression
or in code in a script method. This name must be a valid variable name that
begins with a letter and contains only alphanumeric characters.

Related terms
column, expression, method, SQL SELECT statement, table, variable
Contrast with
display name

ancestor class

A class in the inheritance hierarchy from which a particular class directly or
indirectly derives.
Related terms
class, inheritance
Contrast with
class hierarchy, descendant class, subclass, superclass

applet A small desktop application that usually performs a simple task, for example, a
Java program that runs directly from the web browser.
Related terms
application, Java

application

A complete, self-contained program that performs a specific set of related tasks.
Contrast with
applet

G l o s s a r y 467

application programming interface (API)

A set of routines, including functions, methods, and procedures, that exposes
application functionality to support integration and extend applications.
Related terms
application, function, method, procedure

argument A constant, expression, or variable that supplies data to a function or method.
Related terms
constant, data, expression, function, method, variable

array A data variable that consists of sequentially indexed elements that have the
same data type. Each element has a common name, a common data type, and a
unique index number identifier. Changes to an element of an array do not affect
other elements.
Related terms
data, data type, variable

assignment statement

A statement that assigns a value to a variable. For example:

StringToDisplay = "My Name"

Related terms
statement, value, variable

BIRT See Business Intelligence and Reporting Tools (BIRT).

BIRT extension

See Business Intelligence and Reporting Tools (BIRT) extension.

BIRT Report Designer

See Business Intelligence and Reporting Tools (BIRT) Report Designer.

BIRT technology

See Business Intelligence and Reporting Tools (BIRT) technology.

bookmark An expression that identifies a report element. A bookmark is used in a
hyperlink expression.
Related terms
expression, hyperlink, report element

Boolean expression

An expression that evaluates to True or False. For example, Total > 3000 is a
Boolean expression. If the condition is met, the condition evaluates to True. If
the condition is not met, the condition evaluates to False.
Related term
expression

468 G l o s s a r y

Contrast with
numeric expression

breakpoint

In BIRT Report Designer, a place marker in a program that is being debugged.
At a breakpoint, execution pauses so that the report developer can examine and
edit data values as necessary.
Related terms
Business Intelligence and Reporting Tools (BIRT) Report Designer, data, debug,
value

bridge class

A class that maps the functionality of one class to the similar behavior of
another class. For example, the JDBC-ODBC bridge class enables applications
that use standard JDBC protocol to access a database that uses the ODBC
protocol. BIRT Report Designer and BIRT RCP Report Designer use this type of
class.
Related terms
application, Business Intelligence and Reporting Tools (BIRT) Report Designer,
Business Intelligence and Reporting Tools (BIRT) Rich Client Platform (RCP)
Report Designer, class, Java Database Connectivity (JDBC), open database
connectivity (ODBC), protocol

Business Intelligence and Reporting Tools (BIRT)

A reporting platform that is built on the Eclipse platform, the industry standard
for open source software development. BIRT provides a complete solution for
extracting data, processing data to answer business questions, and presenting
the results in a formatted document that is meaningful to end users.
Related terms
data, Eclipse, report
Contrast with
Business Intelligence and Reporting Tools (BIRT) extension

Business Intelligence and Reporting Tools (BIRT) Chart Engine

A tool that supports designing and deploying charts outside a report design.
With this engine, Java developers embed charting capabilities into an
application. BIRT Chart Engine is a set of Eclipse plug-ins and Java archive (.jar)
files. The chart engine is also known as the charting library.
Related terms
application, Business Intelligence and Reporting Tools (BIRT), chart, design,
Eclipse platform, Java, Java archive (.jar) file, plug-in, report
Contrast with
Business Intelligence and Reporting Tools (BIRT) Report Engine

G l o s s a r y 469

Business Intelligence and Reporting Tools (BIRT) Demo Database

A sample database that is used in tutorials in online help for BIRT Report
Designer and BIRT RCP Report Designer. This package provides this demo
database in Derby, Microsoft Access, and MySQL formats.
Related terms
Business Intelligence and Reporting Tools (BIRT), Business Intelligence and
Reporting Tools (BIRT) Report Designer, Business Intelligence and Reporting
Tools (BIRT) Rich Client Platform (RCP) Report Designer

Business Intelligence and Reporting Tools (BIRT) extension

A related set of extension points that adds custom functionality to the BIRT
platform. BIRT extensions are:

■ Charting extension

■ Open data access (ODA) extension

■ Rendering extension

■ Report item extension

Related terms
Business Intelligence and Reporting Tools (BIRT), charting extension, extension,
extension point, rendering extension, report, report item extension

Business Intelligence and Reporting Tools (BIRT) Report Designer

A tool that builds BIRT report designs and previews reports that are generated
from the designs. BIRT Report Designer is a set of plug-ins to the Eclipse
platform and includes BIRT Chart Engine, BIRT Demo Database, and BIRT
Report Engine. A report developer who uses this tool can access the full
capabilities of the Eclipse platform.
Related terms
Business Intelligence and Reporting Tools (BIRT), Business Intelligence and
Reporting Tools (BIRT) Chart Engine, Business Intelligence and Reporting Tools
(BIRT) Demo Database, Business Intelligence and Reporting Tools (BIRT) Report
Engine, design, Eclipse platform, plug-in, report
Contrast with
Business Intelligence and Reporting Tools (BIRT) Rich Client Platform (RCP)
Report Designer

Business Intelligence and Reporting Tools (BIRT) Report Engine

A component that supports deploying BIRT charting, reporting and viewing
capabilities on an application server. BIRT Report Engine consists of a set of Java
archive (.jar) files, web archive (.war) files, and web applications.
Related terms
application, Business Intelligence and Reporting Tools (BIRT), Java archive (.jar)
file, report, web archive (.war) file
Contrast with
Business Intelligence and Reporting Tools (BIRT) Chart Engine

470 G l o s s a r y

Business Intelligence and Reporting Tools (BIRT) Rich Client Platform (RCP) Report
Designer

A stand-alone tool that builds BIRT report designs and previews reports that are
generated from the designs. BIRT RCP Report Designer uses the Eclipse Rich
Client Platform. This tool includes BIRT Report Engine, BIRT Chart Engine, and
BIRT Demo Database. BIRT RCP Report Designer supports report design and
preview functionality without the additional overhead of the full Eclipse
platform. BIRT RCP Report Designer does not support the Java-based scripting
and the report debugger functionality it provides. BIRT RCP Report Designer
can use, but not create, BIRT extensions.
Related terms
Business Intelligence and Reporting Tools (BIRT), Business Intelligence and
Reporting Tools (BIRT) extension, Business Intelligence and Reporting Tools
(BIRT) Chart Engine, Business Intelligence and Reporting Tools (BIRT) Demo
Database, Business Intelligence and Reporting Tools (BIRT) Report Engine,
debug, design, Eclipse platform, Eclipse Rich Client Platform (RCP), extension,
JavaScript, library (.rptlibrary) file, plug-in, report
Contrast with
Business Intelligence and Reporting Tools (BIRT) Report Designer

Business Intelligence and Reporting Tools (BIRT) Samples

A sample of a BIRT report item extension and examples of BIRT charting
applications. The report item extension sample is an Eclipse platform plug-in.
The charting applications use BIRT Chart Engine. Java developers use these
examples as models of how to design custom report items and embed charting
capabilities in an application.
Related terms
application, Business Intelligence and Reporting Tools (BIRT), Business
Intelligence and Reporting Tools (BIRT) Chart Engine, chart, design, Eclipse,
Eclipse platform, Java, plug-in, report, report item, report item extension

Business Intelligence and Reporting Tools (BIRT) technology

A set of Java applications and APIs that support the design and deployment of a
business report. BIRT applications include BIRT Report Designer, BIRT RCP
Report Designer, and a report viewer web application servlet. The BIRT Java
APIs provide programmatic access to BIRT functionality.
Related terms
application, application programming interface (API), Business Intelligence and
Reporting Tools (BIRT), Business Intelligence and Reporting Tools (BIRT)
Report Designer, Business Intelligence and Reporting Tools (BIRT) Rich Client
Platform (RCP) Report Designer, Java, report viewer servlet

Business Intelligence and Reporting Tools (BIRT) Test Suite

A set of test packages for BIRT. BIRT developers use these test packages to
perform regression testing when they modify BIRT source code. Report
developers and application developers do not need to install this BIRT Test
Suite.

G l o s s a r y 471

Related terms
application, Business Intelligence and Reporting Tools (BIRT), report

cascading parameters

Report parameters that have a hierarchical relationship. For example, the
following parameters have a hierarchical relationship:

Country
State

City

In a group of cascading parameters, each report parameter displays a set of
values. When a report user selects a value from the top-level parameter, the
selected value determines the values that the next parameter displays, and so
on. Cascading parameters display only relevant values to the user. Figure G-1
shows cascading parameters as they appear to a report user.

Figure G-1 Cascading parameters

Related terms
hierarchy, parameter, report, value
Contrast with
cascading style sheet (CSS)

cascading style sheet (CSS)

A file that contains a set of rules that attach formats and styles to specified
HTML elements. For example, a cascading style sheet can specify the color, font,
and size for an HTML heading.
Related terms
element, font, hypertext markup language (HTML), style
Contrast with
template

472 G l o s s a r y

case sensitivity

A condition in which the letter case is significant for the purposes of
comparison. For example, “McManus” does not match “MCMANUS” or
“mcmanus” in a case-sensitive environment.

category In an area, bar, line, step, or stock chart, one of the discrete values that organizes
data on an axis that does not use a numerical scale. Typically, the x-axis of a
chart displays category values. In a pie chart, category values are called
orthogonal axis values and define which sectors appear in a pie.

Related terms
chart, data, value
Contrast with
series

cell An intersection of a row and a column in a grid element, or table element.
Figure G-2 shows a cell.

Figure G-2 Cell

Related terms
column, grid element, row, table element

character An elementary mark that represents data, usually in the form of a graphic
spatial arrangement of connected or adjacent strokes, such as a letter or a digit.
A character is independent of font size and other display properties. For
example, an uppercase C is a character.
Related term
data
Contrast with
character set, glyph

character set

A mapping of specific characters to code points. For example, in most character
sets, the letter A maps to the hexadecimal value 0x21.
Related terms
character, code point
Contrast with
locale

chart A graphic representation of data or the relationships among sets of data.

Column 1 Column 2 Column 3

Row 1 Data Data Data

Row 2 Data Data Data

Row 3 Data Data Data

Row 4 Data Data Data

Cell

G l o s s a r y 473

Related term
data

chart element

A report item that displays values from data rows in the form of a chart. The
chart element can use data rows from the report design’s data set or a different
data set. A report item extension defines the chart element.
Related terms
chart, data, data row, data set, design, element, report, report item, report item
extension, value
Contrast with
charting extension

chart engine

See Business Intelligence and Reporting Tools (BIRT) Chart Engine.

charting extension

ABIRT extension that adds a new type of chart, a new component to an existing
chart type, or a new user interface component to the BIRT chart engine.
Related terms
Business Intelligence and Reporting Tools (BIRT), Business Intelligence and
Reporting Tools (BIRT) extension, Business Intelligence and Reporting Tools
(BIRT) Chart Engine, chart, extension

charting library

See Business Intelligence and Reporting Tools (BIRT) Chart Engine.

class A set of methods and variables that defines the attributes and behavior of an
object. All objects of a given class are identical in form and behavior but can
contain different data in their variables.
Related terms
data, method, object, variable
Contrast with
subclass, superclass

class hierarchy

A tree structure that represents the inheritance relationships among a set of
classes.
Related terms
class, inheritance

class name

A unique name for a class that permits unambiguous references to its public
methods and variables.
Related terms
class, method, variable

474 G l o s s a r y

class variable

A variable that all instances of a class share. The run-time system creates only
one copy of a class variable. The value of the class variable is the same for all
instances of the class, for example, the taxRate variable in an Order class.
Related terms
class, object, value, variable
Contrast with
class variable, dynamic variable, field variable, global variable, instance
variable, local variable, member variable, static variable

code point

A hexadecimal value. Every character in a character set is represented by a code
point. The computer uses the code point to process the character.
Related terms
character, character set

column 1 A named field in a database table or query. For each data row, the column
has a different value, called the column value. The term column refers to the
definition of the column, not to any particular value. Figure G-3 shows a
column in a database table.

Figure G-3 Column in a database table

2 A vertical sequence of cells in a cross tab, grid element, or table element.
Figure G-4 shows a column in a cross tab.

Figure G-4 Column in a cross tab

Related terms
cell, cross tab, field, grid element, query, data row, table, table element, value

Column for
itemcode data

Column 1 Column 2 Column 3

Row 1 Data Data Data

Row 2 Data Data Data

Row 3 Data Data Data

Row 4 Data Data Data

Column of cells

G l o s s a r y 475

column binding

A named column that defines an expression that specifies what data to return.
For each piece of data to display in a report, there must be column binding.
Column bindings form an intermediate layer between data-set data and report
elements.
Related terms
column, data, data set, expression, report, report element

Common Gateway Interface (CGI)

An internet standard that describes how a web server accesses external
programs to return data to the user as a generated web page. When a web user
fills out a form, a CGI program handles the data and calls other programs as
necessary.
Related terms
data, web page, web server

computed column

See computed field.

computed field

A field that displays the result of an expression rather than stored data.
Related terms
field, data, expression
Contrast with
computed value

computed value

The result of a calculation that is defined by an expression. To display a
computed value in a report, use a data element.
Related terms
data element, expression, report, value
Contrast with
computed field

conditional expression

See Boolean expression.

configuration file

In open data access (ODA), a file that specifies the ODA interface version of the
driver and defines the structure, contents, and semantics of requests and
responses between the open data source and the design tool.

Related terms
data source, interface, open data access (ODA), open data access (ODA) driver,
request, response

476 G l o s s a r y

Connection

A Java object that provides access to a data source.

Related terms
data source, Java, object

constant An unchanging, predefined value. A constant does not change while a program
is running, but the value of a field or variable can change.
Contrast with
field, value, variable

constructor code

Code that initializes an instance of a class.
Related terms
class, object

container 1 An application that acts as a master program to hold and execute a set of
commands or to run other software routines. For example, application
servers provide containers that support communication between
applications and Enterprise JavaBeans.

2 A data structure that holds one or more different types of data. For example,
a grid element can contain label elements and other report items.

Related terms
application, data, Enterprise JavaBean (EJB), grid element, label element, report
item

containment

A relationship among instantiated objects in a report. One object, the container,
incorporates other objects, the contents.
Related terms
container, instantiation, object, report

containment hierarchy

A hierarchy of objects in a report.
Related terms
hierarchy, object, report

converter A tool that converts data from one format to another format.

Related terms
data, format

cross tab A report that summarizes data from database table columns into a concise
format for analysis. Data appears in a matrix with rows and columns. Every cell
in a cross tab contains an aggregate value. A cross tab shows how one item
relates to another, such as order totals by credit rating and order status.
Figure G-5 shows a cross tab.

G l o s s a r y 477

Figure G-5 Cross tab

Related terms
aggregate value, cell, column, data, grid, report, row, table, value
Contrast with
aggregate function

CSS See cascading style sheet (CSS).

custom data source

See open data access (ODA).

data Information that is stored in databases, flat files, or other data sources that can
appear in a report.
Related terms
data source, flat file, report
Contrast with
metadata

data element

A report item that displays a computed value or a value from a data set field.
Related terms
computed value, data set, element, field, report item, value
Contrast with
label element, Report Object Model (ROM) element, text element

Data Explorer

An Eclipse view that shows the data sources, data sets, and report parameters
that were created for use in a report. Use Data Explorer to create, edit, or delete
these items. Figure G-6 shows Data Explorer.

Figure G-6 Data Explorer

478 G l o s s a r y

Related terms
data set, data source, Eclipse view, parameter, report

data point

A point on a chart that corresponds to a particular pair of x- and y-axis values.
Related terms
chart, value
Contrast with
data row, data set

data row One row of data that a data set returns. A data set, which specifies the data to
retrieve from a data source, typically returns many data rows.

Related terms
data, data set, data source, row
Contrast with
data point, filter

data set A description of the data to retrieve or compute from a data source.
Related terms
data, data source
Contrast with
data point, data row

data set field

See column.

data set parameter

A parameter that is associated with a data set column and passes an expression
to extend dynamically the query’s WHERE clause. A data set parameter
restricts the number of data rows that the data set supplies to the report.
Related terms
column, data row, data set, expression, parameter, query, report
Contrast with
report parameter

data source

1 A SQL database or other repository of data. For example, a flat file can be a
data source.

2 An object that contains the connection information for an external data
source, such as a flat file, a SQL database, or another repository of data.

Related terms
data, flat file, SQL (Structured Query Language)
Contrast with
data row, data set

G l o s s a r y 479

data type 1 A category for values that determines their characteristics, such as the
information they can hold and the permitted operations.

2 The data type of a value determines the default appearance of the value in a
report. This appearance depends on the locale in which a user generates the
report. For example, the order in which year, month, and day appear in a
date-and-time data value depends on the locale. BIRT uses three
fundamental data types: date-and-time, numeric, and string. Data sources
such as relational databases support more data types, which BIRT maps to
the appropriate fundamental data type.

Related terms
Business Intelligence and Reporting Tools (BIRT), date-and-time data type,
locale, numeric data type, report, String data type, value, variable

database connection

See data source.

database management system (DBMS)

Software that organizes simultaneous access to shared data. Database
management systems store relationships among various data elements.
Related term
data

database schema

See schema.

date-and-time data type

A data type for date-and-time calculations. Report items can contain
expressions or fields with a date-and-time data type. The appearance of date-
and-time values in the report document is based on locale and format settings
specified by your computer and the report design.
Related terms
data type, design, expression, field, format, locale, report, report item

debug To detect, locate, and fix errors. Typically, debugging involves executing specific
portions of a computer program and analyzing the operation of those portions.

declaration

The definition of a class, constant, method, or variable that specifies the name
and, if appropriate, the data type.
Related terms
class, constant, data type, method, variable

derived class

See descendant class.

480 G l o s s a r y

descendant class

A class that is based on another class.
Related term
class
Contrast with
subclass, superclass

design 1 To create a report specification. Designing a report includes selecting data,
laying out the report visually, and saving the layout in a report design file.

2 A report specification. A report design (.rptdesign) file contains a report
design.

Related terms
data, layout, report, report design (.rptdesign) file

DHTML (dynamic hypertext markup language)

See dynamic hypertext markup language (DHTML).

display name

An alternative name for a table column, report parameter, chart series, or user-
defined ROM property. BIRT Report Designer displays this alternative name in
the user interface, for example, as a column heading in a report. This name can
contain any character, including spaces and punctuation.
Related terms
Business Intelligence and Reporting Tools (BIRT) Report Designer, character,
chart, column, Data Explorer, report, report parameter, Report Object Model
(ROM), table, value
Contrast with
alias

document object model (DOM)

A model that defines the structure of a document such as an HTML or XML
document. The document object model defines interfaces that dynamically
create, access, and manipulate the internal structure of the document. The URL
to the W3C document object model is:

www.w3.org/DOM/

Related terms
extensible markup language (XML), hypertext markup language (HTML),
interface, Uniform Resource Locator (URL), World Wide Web Consortium
(W3C)
Contrast with
document type definition (DTD), structured content

document type definition (DTD)

A set of markup tags and the interpretation of those tags that together define the
structure of an XML document.

www.w3.org/DOM/

G l o s s a r y 481

Related terms
extensible markup language (XML), tag
Contrast with
document object model (DOM), schema, structured content

domain name

A name that defines a node on the internet. For example, the Eclipse
Foundation’s domain name is eclipse. The URL is:

www.eclipse.org

Related terms
node, Uniform Resource Locator (URL)

driver An interface that supports communication between an application and another
application or a peripheral device such as a printer.
Related term
interface

dynamic hypertext markup language (DHTML)

An HTML extension that provides enhanced viewing capabilities and
interactivity in a web page without the necessity for communication with a web
server. The Document Object Model Group of the W3C develops DHTML
standards.
Related terms
document object model (DOM), hypertext markup language (HTML), web
page, web server, World Wide Web Consortium (W3C)

dynamic text element

A data element that displays text data that contains multiple style formats and a
variable amount of text. A dynamic text element adjusts its size to accommodate
varying amounts of data. Use a dynamic text element to display a data source
field that contains formatted text. A dynamic text element supports plain or
HTML text.
Related terms
data, data source, field, format, hypertext markup language (HTML)
Contrast with
text element

dynamic variable

A variable that changes during program execution. The program requests the
memory allocation for a dynamic variable at run time.
Related term
variable
Contrast with
class variable, field variable, global variable, instance variable, local variable,
member variable, static variable

www.eclipse.org

482 G l o s s a r y

Eclipse An open platform for tool integration that is built by an open community of tool
providers. The Eclipse platform is written in Java and includes extensive plug-
in construction toolkits and examples.
Related terms
Eclipse platform, Java, plug-in
Contrast with
Business Intelligence and Reporting Tools (BIRT) extension

Eclipse Modeling Framework (EMF)

A Java framework and code generation facility for building tools and other
applications that are based on a structured model. EMF uses XML schemas to
generate the EMF model of a plug-in. For example, a BIRT chart type uses EMF
to represent the chart structure and properties.
Related terms
application, Business Intelligence and Reporting Tools (BIRT) technology, chart,
Eclipse, extensible markup language (XML), framework, Java, plug-in,
property, schema

Eclipse perspective

A predefined layout of the Eclipse Workbench, including which Eclipse views
are visible and where they appear. A perspective also controls what appears in
certain menus and toolbars. A user can switch the perspective to work on a
different task and can rearrange and customize a perspective to better suit a
particular task. Figure G-7 shows the Eclipse perspective.

Related terms
Eclipse, Eclipse view, Eclipse Workbench

Figure G-7 Eclipse perspective

G l o s s a r y 483

Eclipse platform

The core framework and services in which Eclipse plug-in extensions exist. The
Eclipse platform provides the run time in which plug-ins load and run. The
Eclipse platform consists of a core component and a user interface component.
The user interface component is known as the Eclipse Workbench. The core
portion of the Eclipse platform is called the platform core or the core.
Related terms
Eclipse, Eclipse Workbench, extension, framework, plug-in

Eclipse Plug-in Development Environment (PDE)

An integrated design tool for creating, developing, testing, and deploying a
plug-in. The Eclipse PDE provides wizards, editors, views, and launchers that
support plug-in development. The Eclipse PDE supports host and run-time
instances of a workbench project. The host instance provides the development
environment. The run-time instance enables the launching of a plug-in for
testing purposes.
Related terms
design, Eclipse, Eclipse project, Eclipse Workbench, object, plug-in

Eclipse project

A user-specified directory within an Eclipse workspace. An Eclipse project
contains folders and files that are used for builds, version management, sharing,
and resource organization.
Related terms
Eclipse, Eclipse workspace

Eclipse Rich Client Platform (RCP)

The Eclipse framework for building a client application that uses a minimal set
of plug-ins. Eclipse Rich Client Platform (RCP) uses a subset of the components
that are available in the Eclipse platform. An Eclipse rich client application is
typically a specialized user interface that supports a specific function, such as
the report development tools in the BIRT Rich Client Platform.
Related terms
application, Business Intelligence and Reporting Tools (BIRT), Eclipse, Eclipse
platform, framework, plug-in, report

Eclipse view

A panel on the Eclipse Workbench, similar to a pane in Windows. An Eclipse
view can be an editor, the Navigator, a palette of report items, a graphical report
designer, or any other functional component that Eclipse or an Eclipse project
provides. A view can have its own menus and toolbars. Multiple views can be
visible at one time.
Related terms
design, Eclipse, Eclipse perspective, Eclipse project, Eclipse Workbench,
Navigator, Palette, report, report item

484 G l o s s a r y

Eclipse Workbench

The Eclipse desktop development environment, which consists of one or more
Eclipse perspectives.
Related terms
Eclipse, Eclipse perspective
Contrast with
Eclipse Plug-in Development Environment (PDE), Eclipse workspace

Eclipse workspace

A user-specified directory that contains one or more Eclipse projects. An Eclipse
workspace is a general umbrella for managing resources in the Eclipse platform.
The Eclipse platform can contain one or more workspaces. A user can switch
between workspaces.
Related terms
Eclipse platform, Eclipse project
Contrast with
Eclipse Workbench

EJB See Enterprise JavaBean (EJB).

element 1 In Report Object Model (ROM), a component that describes a piece of a
report. A ROM element typically has a name and a set of properties.

2 A tag-delimited structure in an XML or HTML document that contains a unit
of data. For example, the root element of an HTML page starts with the
beginning tag, <HTML>, and ends with the closing tag, </HTML>. This
root element encloses all the other elements that define the contents of a
page. An XML element must be well-formed, with both a beginning and a
closing tag. In HTML, some tags, such as
, the forced line break tag, do
not require a closing tag.

Related terms
data, extensible markup language (XML), hypertext markup language (HTML),
property, report, Report Object Model (ROM), Report Object Model (ROM)
element, tag, well-formed XML
Contrast with
report item

ellipsis button

A button that opens tools that you use to perform tasks, such as navigating to a
file, building an expression, or specifying localized text.

encapsulation

A technique of packaging related functions and subroutines together.
Encapsulation compartmentalizes the structure and behavior of a class, hiding
the implementation details, so that parts of an object-oriented system need not
depend upon or affect each other’s internal details.

G l o s s a r y 485

Related terms
class, function, object
Contrast with
object-oriented programming

enterprise A large collection of networked computers that run on multiple platforms.
Enterprise systems can include both mainframes and workstations that are
integrated in a single, managed environment. Typical software products that are
used in an enterprise environment include web browsers, applications, applets,
web tools, and multiple databases that support a warehouse of information.
Related terms
applet, application
Contrast with
Enterprise JavaBean (EJB), enterprise reporting

Enterprise JavaBean (EJB)

A standards-based server-side component that encapsulates the business logic
of an application. An EJB can provide access to data or model the data itself.
Application servers provide the deployment environment for EJBs.
Related terms
application, data, JavaBean
Contrast with
Java

enterprise reporting

The production of a high volume of simple and complex structured documents
that collect data from a variety of data sources. A large number of
geographically distributed users who are working in both client/server and
internet environments receive, work with, and modify these reports.
Related terms
data, data source, report
Contrast with
enterprise, structured content

event An action or occurrence recognized by an object. Each object responds to a
predefined set of events that can be extended by the developer.
Related term
object
Contrast with
event handler, event listener

event handler

A Java or JavaScript method that is executed upon the firing of a BIRT event.
BIRT fires events at various times in the report generation process. By writing
custom code for the associated event handlers, the BIRT report developer can
provide special handling at the time the events are fired. Report items, data sets,

486 G l o s s a r y

and data sources all have event handlers for which the report developer can
provide custom code.
Related terms
Business Intelligence and Reporting Tools (BIRT), data set, data source, event,
Java, JavaScript, method, report, report item
Contrast with
event listener

event listener

An interface that detects when a particular event occurs and runs a registered
method in response to that event.
Related terms
event, method
Contrast with
event handler

exception An abnormal situation that a program encounters. In some cases, the program
handles the exception and returns a message to the user or application that is
running the program. In other cases, the program cannot handle the exception,
and the program terminates.
Related term
application

expression

A combination of constants, functions, literal values, names of fields, and
operators that evaluates to a single value.
Related terms
constant, field, function, operator, value
Contrast with
aggregate expression, regular expression

expression builder

A tool for selecting data fields, functions, and operators to write JavaScript
expressions. Figure G-8 shows the expression builder.

Figure G-8 Expression builder

G l o s s a r y 487

Related terms
data, expression, field, function, JavaScript, operator

extensible markup language (XML)

A markup language that supports the interchange of data among data sources
and applications. Using XML, a wide variety of applications, legacy systems,
and databases can exchange information. XML is content-oriented rather than
format-oriented. XML uses tags to structure data into nested elements. An XML
schema that is structured according to the rules that were defined by the W3C
describes the structure of the data.

XML documents must be well formed.
Related terms
application, data, data source, element, schema, tag, well-formed XML, World
Wide Web Consortium (W3C)
Contrast with
hypertext markup language (HTML)

extension A module that adds functionality to an application. BIRT consists of a set of
extensions, called plug-ins, which add functionality to the Eclipse development
environment.
Related terms
application, Business Intelligence and Reporting Tools (BIRT), Eclipse, plug-in
Contrast with
Business Intelligence and Reporting Tools (BIRT) extension,extension point

extension point

A defined place in an application where a developer adds custom functionality.
The APIs in BIRT support adding custom functionality to the BIRT framework.
In the Eclipse Plug-in Development Environment (PDE), a developer views the
extension points in the PDE Manifest Editor to guide and control plug-in
development tasks.
Related terms
application, application programming interface (API), Business Intelligence and
Reporting Tools (BIRT), Eclipse Plug-in Development Environment (PDE),
extension, framework, plug-in
Contrast with
Business Intelligence and Reporting Tools (BIRT) extension

field The smallest identifiable part of a database table structure. In a relational
database, a field is also called a column.

Related terms
column, table

field variable

In Java, a member variable with public visibility.

488 G l o s s a r y

Related terms
Java, member, variable
Contrast with
class variable, dynamic variable, field variable, global variable, instance
variable, local variable, member variable, static variable

file types Table G-1 lists the report designer’s file types.

filter To exclude any data rows from the result set that do not meet a set of conditions.
Some external data sources can filter data as specified by conditions that the
query includes directly or through the use of report parameters. In addition,
BIRT can filter data after retrieval from the external data source. Report
developers can specify conditions for filtering in either the data set or a report
item.

Related terms
Business Intelligence and Reporting Tools (BIRT), data, data row, data set, data
source, query, report, report item, report parameter, result set

flat file A file that contains data in the form of text.
Related term
data
Contrast with
data source

font A family of characters of a given style. Fonts contain information that specifies
typeface, weight, posture, and type size.
Related term
character

footer A unit of information that appears at the bottom of a page.
Contrast with
header

format 1 A set of standard options with which to display and print currency values,
dates, numbers, and times.

2 A specification that describes layout and properties of report data or other
information, for example, PDF or HTML.

Table G-1 File types

Display name Glossary term File type

BIRT Report Design report design (.rptdesign) file RPTDESIGN

BIRT Report Design Library library (.rptlibrary) file RPTLIBRARY

BIRT Report Design Template report template (.rpttemplate) file RPTTEMPLATE

BIRT Report Document report document (.rptdocument) file RPTDOCUMENT

G l o s s a r y 489

Related terms
data, hypertext markup language (HTML), layout, property, report, value
Contrast with
style

forms-capable browser

A web browser that handles hypertext markup language (HTML) forms. HTML
tags enable interactive forms, including check boxes, drop-down lists, fill-in text
areas, and option buttons.
Related terms
hypertext markup language (HTML), tag

framework

A set of interrelated classes that provide an architecture for building an
application.
Related terms
application, class

function A sequence of instructions that are defined as a separate unit within a program.
To invoke the function, include its name as one of the instructions anywhere in
the program. BIRT provides JavaScript functions to support building
expressions.

Related terms
Business Intelligence and Reporting Tools (BIRT), expression, JavaScript,
Contrast with
method

global variable

A variable that is available at all levels in an application. A global variable stays
in memory in the scope of all executing procedures until the application
terminates.
Related terms
application, procedure, scope, variable
Contrast with
class variable, dynamic variable, field variable, global variable, instance
variable, local variable, member variable, static variable

glyph 1 An image that is used in the visual representation of a character.

2 A specific letter form from a specific font. An uppercase C in Palatino font is
a glyph.

Related terms
character, font

grandchild class

See descendant class.

490 G l o s s a r y

grandparent class

See ancestor class.

grid See grid element.

grid element

A report item that contains and displays other report elements in a static row
and column format. A grid element aligns the cells horizontally and vertically.

Figure G-9 shows a report title section that consists of an image element and
two text elements that are arranged in a grid element with one row and two
columns.

Figure G-9 Grid element

Related terms
cell, column, element, image element, report, report item, row, text element
Contrast with
list element, table element

group A set of data rows that have one or more column values in common. For
example, in a sales report, a group consists of all the orders that are placed by a
single customer.

Related terms
column, data row, report, value
Contrast with
group key, grouped report

grouped report

A report that organizes data in logical groups. Figure G-10 shows a grouped
report.

Figure G-10 Grouped report

Customer group title
Orders
Customer group total

Customer group title
Orders

Customer group total

Abernathy, James

Order 1

Total: $$

Anderson, Sally

Order 1

Order 2

Total: $$

G l o s s a r y 491

Related terms
data, group, report

group key A data set column that is used to group and sort data in a report. For example, a
report developer can group and sort customers by credit rank.

Related terms
column, data, data set, group, report, sort

header 1 A unit of information that appears at the top of every page.

2 A group header is a unit of information that appears at the beginning of a
group section.

Related terms
group, section
Contrast with
footer

hexadecimal number

A number in base 16. A hexadecimal number uses the digits 0 through 9 and the
letters A through F. Each place represents a power of 16. By comparison, base 10
numbers use the digits 0 through 9. Each place represents a power of 10.
Contrast with
character set, octal number

hierarchy Any tree structure that has a root and branches that do not converge.

HTML See hypertext markup language (HTML).

HTML element

See element.

HTTP See hypertext transfer protocol (HTTP).

hyperlink

A connection from one part of a report to another part of the same or different
report. Typically, hyperlinks support access to related information within the
same report, in another report, or in another application. A change from the
standard cursor shape to a cursor shaped like a hand indicates a hyperlink.

Related terms
application, report

hypertext markup language (HTML)

A specification that determines the layout of a web page. HTML is the markup
language that tells a parser that the text is a certain portion of a document on the
web, for example, the title, heading, or body text. A web browser parses HTML
to display a web page.
Related terms
layout, web page

492 G l o s s a r y

Contrast with
dynamic hypertext markup language (DHTML), extensible markup language
(XML)

hypertext markup language page

See web page.

hypertext transfer protocol (HTTP)

An internet standard that supports the exchange of information using the web.
Contrast with
protocol

identifier The name that is assigned to an item in a program such as a class, function, or
variable.
Related terms
class, function, variable

image A graphic that appears in a report. BIRT Report Designer supports .bmp, .gif,
.jpg, and .png file types.
Related terms
Business Intelligence and Reporting Tools (BIRT) Report Designer, report
Contrast with
image element

image element

A report item that adds an image to a report design.
Related terms
design, element, image, report, report item

inheritance

A mechanism whereby one class of objects can be defined as a special case of a
more general class and includes the method and variable definitions of the
general class, known as a base or superclass. The superclass serves as the
baseline for the appearance and behavior of the descendant class, which is also
known as a subclass. In the subclass, the appearance and behavior can be
further customized without affecting the superclass. Typically, a subclass
augments or redefines the behavior and structure of its superclass or
superclasses. Figure G-11 shows an example of inheritance.

Figure G-11 Inheritance

Variable B
Variable A

Method X

Class B

= Declared in this class

= Inherited
Variable A
Method X

Class A

Method Y

Variable A
Method X

Class C

G l o s s a r y 493

Related terms
class, descendant class, file types, method, object, subclass, superclass, variable
Contrast with
abstract base class

inner join 1 A type of join that returns records from two tables that are based on their
having specified values in the join fields. The most common type of inner
join is one in which records are combined and returned when specified field
values are equal. For example, if customer and order tables are joined on
customer ID, the result set contains only combined customer and order
records where the customer IDs are equal, excluding records for customers
who have no orders.

2 When creating a joint data set in BIRT, a type of join that returns all rows
from both data sets if the specified field values are equal. For example, if
customer and order data sets are joined on customer ID, the joint data set
returns only combined customer and order rows where the customer IDs are
equal.

Related terms
Business Intelligence and Reporting Tools (BIRT) technology, data set, field,
join, result set, row, table, value
Contrast with
outer join

input source

See data source.

instance See object.

instance variable

A variable that other instances of a class do not share. The run-time system
creates a new copy of an instance variable each time the system instantiates the
class. An instance variable can contain a different value in each instance of a
class, for example, the customerID variable in a Customer class.
Related terms
class, value, variable
Contrast with
class variable, dynamic variable, field variable, global variable, local variable,
member variable, static variable

instantiation

The action of creating an object.
Related term
object
Contrast with
class

494 G l o s s a r y

interface 1 The connection and interaction among hardware, software, and the user.
Hardware interfaces include plugs, sockets, wires, and electrical pulses
traveling through them in a particular pattern. Hardware interfaces include
electrical timing considerations such as Ethernet and Token Ring, network
topologies, RS-232 transmission, and the IDE, ESDI, SCSI, ISA, EISA, and
Micro Channel. Software or programming interfaces are the languages,
codes, and messages that programs use to communicate with each other and
to the hardware and the user. Software interfaces include applications
running on specific operating systems, SMTP e-mail, and LU 6.2
communications protocols.

2 In Java, an interface defines a set of methods to provide a required
functionality. The interface provides a mechanism for classes to
communicate in order to execute particular actions.

Related terms
application, class, Connection, Java, method, protocol

internationalization

The process of designing an application to work correctly in multiple locales.
Related terms
application, locale
Contrast with
localization

IP address

The unique 32-bit ID of a node on a TCP/IP network.
Related term
node

J2EE See Java 2 Enterprise Edition (J2EE).

J2SE See Java 2 Runtime Standard Edition (J2SE).

JAR See Java archive (.jar) file.

Java A programming language that is designed for writing client/server and
networked applications, particularly for delivery on the web. Java can be used
to write applets that animate a web page or create an interactive web site.
Related terms
applet, application, web page
Contrast with
JavaScript

Java 2 Enterprise Edition (J2EE)

A platform-independent environment that includes APIs, services, and
transport protocols, and is used to develop and deploy web-based enterprise
applications. Typically, this environment is used to develop highly scalable

G l o s s a r y 495

web-based applications. This environment builds on J2SE functionality and
requires an accessible J2SE installation.
Related terms
application, application programming interface (API), enterprise, enterprise
reporting, Java 2 Runtime Standard Edition (J2SE), protocol
Contrast with
Enterprise JavaBean (EJB), Java Development Kit (JDK)

Java 2 Runtime Standard Edition (J2SE)

A smaller-scale, platform-independent environment that provides supporting
functionality to the capabilities of J2EE. The J2SE does not support Enterprise
JavaBean or enterprise environment.
Related terms
enterprise, Enterprise JavaBean (EJB), Java 2 Enterprise Edition (J2EE)
Contrast with
Java Development Kit (JDK)

Java archive (.jar) file

A file format that is used to bundle Java applications.
Related terms
application, Java
Contrast with
web archive (.war) file

Java Database Connectivity (JDBC)

A standard protocol that Java uses to access database data sources in a platform-
independent manner.
Related terms
data source, Java, protocol
Contrast with
data element, schema

Java Development Kit (JDK)

A Sun Microsystems software development kit that defines the Java API and is
used to build Java programs. The kit contains software tools and other
programs, examples, and documentation that enable software developers to
create applications using the Java programming language.
Related terms
application, application programming interface (API), Java
Contrast with
Java 2 Enterprise Edition (J2EE), Java 2 Runtime Standard Edition (J2SE),
JavaServer Page (JSP)

Java Naming and Directory Interface (JNDI)

A naming standard that provides clients with access to EJBs.

496 G l o s s a r y

Related term
Enterprise JavaBean (EJB)

Java Virtual Machine (JVM)

The Java SDK interpreter that converts Java bytecode into machine language for
execution in a specified software and hardware configuration.
Related terms
Java, SDK (Software Development Kit)

JavaBean A reusable, standards-based component that is written in Java that encapsulates
the business logic of an application. A JavaBean can provide access to data or
model the data itself.
Related terms
application, data, encapsulation, Java
Contrast with
Enterprise JavaBean (EJB), enterprise reporting

JavaScript

An interpreted, platform-independent language that is used to enhance web
pages and provide additional functionality in web servers. For example,
JavaScript can interact with the HTML of a web page to change an icon when
the cursor moves across it.
Related terms
hypertext markup language (HTML), web page, web server
Contrast with
Java

JavaServer Page (JSP)

A standard Java extension that simplifies the creation and management of
dynamic web pages. The code combines HTML and Java code in one document.
The Java code uses tags that instruct the JSP container to generate a servlet.
Related terms
hypertext markup language (HTML), Java, servlet, tag, web page

JDBC See Java Database Connectivity (JDBC).

JDK See Java Development Kit (JDK).

JNDI See Java Naming and Directory Interface (JNDI).

join A SQL query operation that combines records from two tables and returns them
in a result set that is based on the values in the join fields. Without additional
qualification, join usually refers to one where field values are equal. For
example, customer and order tables are joined on a common field such as
customer ID. The result set contains combined customer and order records in
which the customer IDs are equal.

Related terms
field, query, result set, SQL (Structured Query Language), table, value

G l o s s a r y 497

Contrast with
inner join, join condition, outer join, SQL SELECT statement

join condition

A condition that specifies a match in the values of related fields in two tables.
Typically, the values are equal. For example, if two tables have a field called
customer ID, a join condition exists where the customer ID value in one table
equals the customer ID value in the second table.
Related terms
field, join, table, value

joint data set

A data set that combines data from two data sets.
Related terms
data, data set

JSP See JavaServer Page (JSP).

JVM See Java Virtual Machine (JVM).

keyword A reserved word that is recognized as part of a programming language.

label element

A report item that displays a short piece of static text in a report.
Related terms
report, report item
Contrast with
data element, text element

layout The designed appearance of a report. Designing the layout of a report entails
placing report items on a page and arranging them in a way that helps the
report user analyze the information easily. A report displays information in a
tabular list, a series of paragraphs, a chart, or a series of subreports.

Related terms
chart, listing report, report, report item, subreport

layout editor

A window in a report designer in which a report developer arranges, formats,
and sizes report elements.

Related terms
design, report
Contrast with
previewer, Property Editor, report editor, script editor

lazy load The capability in a run-time environment to load a code segment to memory
only if it is needed. By lazily loading a code segment, the run-time environment
minimizes start-up time and conserves memory resources. For example, BIRT

498 G l o s s a r y

Report Engine builds a registry at startup that contains the list of available plug-
ins, then loads a plug-in only if the processing requires it.
Related terms
Business Intelligence and Reporting Tools (BIRT) Report Engine, plug-in

library A collection of reusable and shareable report elements. A library can contain
embedded images, styles, visual report items, JavaScript code, data sources, and
data sets. A report developer uses a report designer to develop a library and to
retrieve report elements from a library for use in a report design.

Related terms
Business Intelligence and Reporting Tools (BIRT) Report Designer, data set, data
source, design, JavaScript, report element, report item, style
Contrast with
file types

library (.rptlibrary) file

In BIRT Report Designer, an XML file that contains reusable and shareable
report elements. A report developer uses a report designer to create a library file
directly or from a report design (.rptdesign) file.
Related terms
Business Intelligence and Reporting Tools (BIRT) Report Designer, design,
extensible markup language (XML), report design (.rptdesign) file, report
element
Contrast with
file types, report design (.rptdesign) file, report document (.rptdocument) file,
report template (.rpttemplate) file

link See hyperlink.

listener See event listener.

list element

A report item that iterates through the data rows in a data set. The list element
contains and displays other report items in a variety of layouts.
Related terms
data, data row, data set, element, layout, report item,
Contrast with
grid element, table element

listing report

A report that provides a simple view of data. Figure G-12 shows a listing report.

G l o s s a r y 499

Figure G-12 Listing report

Related terms
data, report

local variable

A variable that is available only at the current level in an application. A local
variable stays in memory in the scope of an executing procedure until the
procedure terminates. When the procedure ends, the run-time system destroys
the variable and returns the memory to the system.
Related terms
application, procedure, scope, variable
Contrast with
field variable, global variable

locale A location and the language, date format, currency, sorting sequence, time
format, and other such characteristics that are associated with that location. The
location is not always identical to the country. There can be multiple languages
and locales within one country. For example, China has two locales: Beijing and
Hong Kong. Canada has two language-based locales: French and English.
Contrast with
localization

localization

The process of translating database content, printed documents, and software
programs into another language. Report developers localize static text in a
report so that the report displays text in another language that is appropriate to
the locale configured on the user’s machine.
Related terms
locale, report
Contrast with
internationalization

manifest A text file in a Java archive (.jar) file that describes the contents of the archive.
Related term
Java archive (.jar) file

master page

A predefined layout that specifies a consistent appearance for all pages of a
report. A master page typically includes standard headers and footers that
display information such as page numbers, a date, or a copyright statement.

500 G l o s s a r y

The master page can contain report elements in the header and footer areas
only, as shown in Figure G-13.

The master page’s header and footer content appears on every page of the
report in paginated formats, as shown in Figure G-14.

Figure G-13 Master page layout

Figure G-14 Master page content

Related terms
Business Intelligence and Reporting Tools (BIRT), Business Intelligence and
Reporting Tools (BIRT) Report Designer, footer, grid element, header, hypertext
markup language (HTML), layout, previewer, report, template

member A method or variable that is defined in a class and provides or uses information
about the state of a single object.

Related terms
class, method, object, variable
Contrast with
global variable, instance variable, static variable

member variable

A declared variable within a class. A set of member variables in a class contains
the data or state for every object of that class.

Header

Footer

Header content

Footer content

G l o s s a r y 501

Related terms
class, data, declaration, object, variable
Contrast with
class variable, dynamic variable, field variable, global variable, instance
variable, local variable, static variable

metadata Information about the structure of data that enables a program to process
information. For example, a relational database stores metadata that describes
the name, size, and data type of objects in a database, such as tables and
columns.
Related terms
column, data, data type, table

method A routine that provides functionality to an object or a class.
Related terms
class, object
Contrast with
data, function

modal window

A window that retains focus until explicitly closed by the user. Typically, dialog
boxes and message windows are modal. For example, an error message dialog
box remains on the screen until the user responds.
Contrast with
modeless window

mode An operational state of a system. Mode implies that there are at least two
possible states. Typically, there are many modes for both hardware and
software.

modeless window

A window that solicits input but permits users to continue using the current
application without closing the modeless window, for example, an Eclipse view.
Related terms
application, Eclipse view
Contrast with
modal window

multithreaded application

An application that handles multiple simultaneous users and sessions.
Related term
application

Navigator In BIRT Report Designer, an Eclipse view that shows all projects and reports
within each project. Each project is a directory in the file system. Use Navigator
to manage report files, for example, deleting files, renaming files, or moving
files from one project to another. Figure G-15 shows Navigator.

502 G l o s s a r y

Figure G-15 Navigator

Related terms
Eclipse project, Eclipse view, report

node A computer that is accessible on the internet.
Contrast with
domain name

null A value that indicates that a variable or field contains no data.
Related terms
data, field, value, variable

numeric data type

A data type that is used for calculations that result in a value that is a number.
Report items that contain expressions or fields with a numeric data type display
numbers, based on the formats and locale settings that are specified by your
computer and the report design.
Related terms
data type, design, expression, field, format, locale, report, report item, value

numeric expression

A numeric constant, a simple numeric variable, a scalar reference to a numeric
array, a numeric-valued function reference, or a sequence of these items, that are
separated by numeric operators. For example:

row["price"] * row["quantity"]

Related terms
array, constant, function, operator, variable
Contrast with
Boolean expression

object An instance of a particular class, including its characteristics, such as instance
variables and methods.
Related terms
class, instance variable, method, variable

object-oriented programming

A technique for writing applications using classes, not algorithms, as the
fundamental building blocks. The design methodology uses three main
concepts: encapsulation, inheritance, and polymorphism.
Related terms
application, class, encapsulation, inheritance, polymorphism

G l o s s a r y 503

Contrast with
object

octal number

A number in base 8. An octal number uses only the digits 0 through 7. Each
place represents a power of 8. By comparison, base 10 numbers use the digits 0
through 9. Each place represents a power of 10.
Contrast with
hexadecimal number

ODA See open data access (ODA).

online help

Information that appears on the computer screen to help the user understand an
application.
Related term
application

open data access (ODA)

A technology that enables accessing data from standard and custom data
sources. ODA uses XML data structures and Java interfaces to handle
communication between the data source and the application that needs the
data. Using ODA to access data from a data source requires an ODA driver and
typically also includes an associated tool for designing queries on the data
source. ODA provides interfaces for creating data drivers to establish
connections, access metadata, and execute queries to retrieve data. ODA also
provides interfaces to integrate query builder tools within an application
designer tool. In BIRT, ODA is implemented using plug-ins to the Eclipse Data
Tools Project.
Related terms
application, Business Intelligence and Reporting Tools (BIRT), Connection, data,
data source, driver, extensible markup language (XML), interface, Java,
metadata, open data access (ODA) driver, plug-in, query

open data access (ODA) driver

An ODA driver communicates between an arbitrary data source and an
application during report execution. An ODA driver establishes a connection
with a data source, accesses metadata about the data, and executes queries on
the data source. Each ODA driver consists of a configuration file and classes that
implement the ODA run-time Java interfaces that conform to ODA. In BIRT,
ODA drivers are implemented as an Eclipse plug-in to the Data Tools Platform
project.
Related terms
application, BIRT technology, class, Connection, data, data source, driver,
Eclipse, interface, Java, metadata, open data access (ODA), plug-in, query

504 G l o s s a r y

open database connectivity (ODBC)

A standard protocol that is used by software products as one of the database
management system (DBMS) interfaces to connect reports to databases that
comply with this specification.
Related terms
database management system (DBMS), interface, protocol, report
Contrast with
Connection, data source, Java Database Connectivity (JDBC)

operator A symbol or keyword that performs an operation on expressions.
Related terms
expression, keyword

outer join 1 A type of join that returns records from one table even when no matching
values exist in the other table. The two kinds of outer join are the left outer
join and the right outer join. The left outer join returns all records from the
table on the left in the join operation, even when no matching values exist in
the other table. The right outer join returns all records from the table on the
right in the join operation. For example, if customers and orders tables are
left outer joined on customer ID, the result set will contain all customer
records, including records for customers who have no orders.

2 When creating a joint data set in BIRT, a type of join that returns rows from
one data set even when no matching values exist in the other data set. The
two kinds of outer joins are the left outer join and the right outer join. The
left outer join returns all rows from the data set in the join operation, even
when no matching values exist in the other table. The right outer join returns
all rows from the data set on the right in the join operation. For example, if
customers and orders data sets are left outer joined on customerID, the joint
data set returns all customer rows, including rows for customers who have
no orders.

Related terms
Business Intelligence and Reporting Tools (BIRT) technology, data set, join,
query, result set, row, table, value
Contrast with
inner join

Outline An Eclipse view that shows all report elements that comprise a report design,
report library, or report template. Outline shows the report elements’
containment hierarchy in a tree-structured diagram. Figure G-16 shows Outline.

G l o s s a r y 505

Figure G-16 Outline

Related terms
design, Eclipse view, hierarchy, library, report, report element, template

package A set of functionally related Java classes that are organized in one directory.
Related terms
class, Java

Palette An Eclipse view that shows the visual report elements for organizing and
displaying data in a report. Figure G-17 shows Palette.

Figure G-17 Palette

Related terms
data, Eclipse view, report, report element

parameter A report element that provides input to the execution of the report. Parameters
provide control over report data selection, processing, and formatting.

Related terms
data, format, report, report element
Contrast with
cascading parameters, data set parameter, report parameter

parent class

See superclass.

506 G l o s s a r y

password An optional code that restricts user name access to a resource on a computer
system.

pattern A template or model for implementing a solution to a common problem in
object-oriented programming or design. For example, the singleton design
pattern restricts the instantiation of a class to only one object. The use of the
singleton pattern prevents the proliferation of identical objects in a run-time
environment and requires a programmer to manage access to the object in a
multithreaded application.
Related terms
class, design, instantiation, multithreaded application, object, object-oriented
programming

perspective

See Eclipse perspective.

platform The software and hardware environment in which a program runs. Linux,
MacOS, Microsoft Windows, Solaris OS, and UNIX are examples of software
systems that run on hardware processors made by vendors such as AMD,
Apple, Intel, IBM, Motorola, Sun, and Hewlett-Packard.

plug-in 1 An extension that is used by the Eclipse development environment. At run
time, Eclipse scans its plug-in subdirectory to discover any extensions to the
platform. Eclipse places the information about each extension in a registry,
using lazy load to access the extension.

2 A software program that extends the capabilities of a web browser. For
example, a plug-in gives you the ability to play audio samples or video
movies.

Related terms
application, Eclipse, extension, lazy load
Contrast with
Eclipse Plug-in Development Environment (PDE)

plug-in fragment

A separately loaded plug-in that adds functionality to an existing plug-in, such
as support for a new language in a localized application. The plug-in fragment
manifest contains attributes that associate the fragment with the existing
plug-in.
Related terms
application, localization, manifest, plug-in

polymorphism

The ability to provide different implementations with a common interface,
simplifying the communication among objects. For example, defining a unique
print method for each kind of document in a system supports printing any
document by sending the instruction to print without concern for how that
method is actually carried out for a given document.

G l o s s a r y 507

Related terms
interface, method, object

portal A web page that serves as a starting point for accessing information and
applications on the internet or an intranet. The basic function of a portal is to
aggregate information from different sources.
Related terms
application, web page
Contrast with
portlet

portlet A window in a browser that provides a view of specific information that is
available from a portal.
Related term
portal

previewer A design tool that supports displaying a report or data.
Related terms
data, design, report
Contrast with
layout editor, script editor, Standard Viewer

procedure A set of commands, input data, and statements that perform a specific set of
operations. For example, methods are procedures.
Related terms
data, method, statement

process A computer program that has no user interface. For example, the process that
runs a BIRT report is a process.
Related terms
Business Intelligence and Reporting Tools (BIRT), interface, report

project See Eclipse project.

Properties A grouped alphabetical list of all properties of visual report elements in a report
design. Experienced report developers use this Eclipse view to modify any
property of a report item. Figure G-18 shows Properties.

Figure G-18 Properties

508 G l o s s a r y

Related terms
design, Eclipse view, property, report, report element, report item
Contrast with
Property Editor

property A characteristic of a report item that controls its appearance and behavior. For
example, a report developer can specify a font size for a label element.
Related terms
font, label element, report item, value
Contrast with
method

Property Editor

An Eclipse view that displays sets of key properties of visual report elements in
a report design. The report developer uses Property Editor to modify the
properties of report items. Figure G-19 shows Property Editor.

Figure G-19 Property Editor

Related terms
design, Eclipse view, property, report, report element, report item
Contrast with
Properties

protocol A communication standard for the exchange of information. For example, in
TCP/IP, the internet protocol (IP) is the syntax and order in which messages are
received and sent.
Related term
syntax

publish To copy files to a shared folder to make them available to report users and
developers. Libraries and resource files are published to the resources folder.
Templates are published to the templates folder.

Related terms
library, report executable file, resource file, template

G l o s s a r y 509

query A statement that specifies which data rows to retrieve from a data source. For
example, a query that retrieves data from a database typically is a SQL SELECT
statement.
Related terms
data row, data source, SQL SELECT statement

range A continuous set of values of any data type. For example, 1–31 is a numeric
range.

Related terms
data type, value

regular expression

A JavaScript mechanism that matches patterns in text. The regular expression
syntax can validate text data, find simple and complex strings of text within
larger blocks of text, and substitute new text for old text.
Related terms
data, expression, JavaScript, syntax
Contrast with
aggregate expression

rendering extension

A BIRT extension that produces a report in a specific format. For example, BIRT
provides rendering extensions for HTML and PDF.
Related terms
Business Intelligence and Reporting Tools (BIRT), Business Intelligence and
Reporting Tools (BIRT) extension, extension, hypertext markup language
(HTML), report

report A category of documents that presents formatted and structured content from a
data sources, such as a database or text file.

Related terms
data source, format, structured content

report design (.rptdesign) file

An XML file that contains the complete description of a report. The report
design file describes the structure and organization of the report, its constituent
report items and their style attributes, its data sets, its data sources, and its Java
and JavaScript event handler code. BIRT Report Designer creates the report
design file and the BIRT Report Engine processes it.
Related terms
Business Intelligence and Reporting Tools (BIRT), Business Intelligence and
Reporting Tools (BIRT) Report Designer, Business Intelligence and Reporting
Tools (BIRT) Report Engine, data set, data source, design, event handler,
extensible markup language (XML), Java, JavaScript, report, report item, style

510 G l o s s a r y

Contrast with
file types, library (.rptlibrary) file, report document (.rptdocument) file, report
template (.rpttemplate) file

report document (.rptdocument) file

A binary file that encapsulates the report item identifier and additional
information, such as data rows, pagination information, and table of contents
information.
Related terms
Business Intelligence and Reporting Tools (BIRT) Report Engine, data row,
report item
Contrast with
file types, library (.rptlibrary) file, report design (.rptdesign) file, report
template (.rpttemplate) file

report editor

In BIRT Report Designer, the main window where a report developer designs
and previews a report. The report editor supports opening multiple report
designs. For each report design, the report editor displays these five pages:
layout editor, master page editor, previewer, script editor and XML source
editor.
Related terms
Business Intelligence and Reporting Tools (BIRT) Report Designer, design,
extensible markup language (XML), master page, layout editor, previewer,
report, script editor
Contrast with
report design (.rptdesign) file

report element

A visual or non-visual component of a report design. A visual report element,
such as a table or a label, is a report item. A non-visual report element, such as a
report parameter or a data source is a logical component.
Related terms
data source, design, element, label element, report, report item, report
parameter, table element

report executable file

A file that contains instructions for generating a report document.
Related terms
file types, report

report item

A report element that you add to a report design to display content in the report
output. For example, a data element displays data from a data set when you run
a report.

G l o s s a r y 511

Related terms
data, data element, data set, design, report, report element, run

report item extension

A BIRT extension that implements a custom report item.
Related terms
Business Intelligence and Reporting Tools (BIRT), Business Intelligence and
Reporting Tools (BIRT) extension, extension, report, report item

report library file

See library (.rptlibrary) file.

Report Object Model (ROM)

The set of XML report elements that BIRT technology uses to build a report
design file. ROM defines report elements for both the visual and non-visual
components of a report. The complete ROM specification is at:

http://www.eclipse.org/birt/ref/ROM

Related terms
Business Intelligence and Reporting Tools (BIRT) technology, design, element,
extensible markup language (XML), report, report element
Contrast with
Report Object Model (ROM) element

Report Object Model definition file (rom.def)

The file that BIRT technology uses to generate and validate a report design.
rom.def contains property definitions for the ROM elements. rom.def does not
include definitions for report items that are defined by report item extensions,
such as the chart element.
Related terms
Business Intelligence and Reporting Tools (BIRT) technology, chart element,
design, property, report, report item, report item extension
Contrast with
Report Object Model (ROM), Report Object Model (ROM) element, Report
Object Model (ROM) schema

Report Object Model (ROM) element

An XML element in rom.def that defines a report element.
Related terms
element, extensible markup language (XML), report element, Report Object
Model definition file (rom.def)
Contrast with
report item, Report Object Model (ROM) schema

512 G l o s s a r y

Report Object Model (ROM) schema

The XML schema that defines the rules for the structure of report design files.
All BIRT report design files must conform to this schema. To validate a report
design, open the file in a schema-aware XML viewer such as XML Spy. The
ROM schema is at:

http://www.eclipse.org/birt/2005/design

Related terms
Business Intelligence and Reporting Tools (BIRT), design, extensible markup
language (XML), report, Report Object Model (ROM), schema
Contrast with
Report Object Model definition file (rom.def)

report parameter

1 See parameter.

2 A report element that contains a value. Report parameters provide an
opportunity for the user to type a value as input to the execution of the
report.

Related terms
parameter, report, report element, value
Contrast with
cascading parameters, data set parameter

report template

See template.

report template (.rpttemplate) file

An XML file that contains a reusable design that a report developer can employ
when developing a new report.
Related terms
design, extensible markup language (XML), file types, report, style, template
Contrast with
file types, library (.rptlibrary) file, report design (.rptdesign) file, report
document (.rptdocument) file

report viewer servlet

A J2EE web application servlet that produces a report from a report design
(.rptdesign) file or a report document (.rptdocument) file. When deployed to a
J2EE application server, the report viewer servlet makes reports available for
viewing over the web. The report viewer servlet is also the active component of
the report previewer of BIRT Report Designer.
Related terms
application, Business Intelligence and Reporting Tools (BIRT) Report Designer,
Java 2 Enterprise Edition (J2EE), previewer, report, report design (.rptdesign)
file, report document (.rptdocument) file, servlet, web server

G l o s s a r y 513

request A message that an application sends to a server to specify an operation for the
server to perform.

Related term
application
Contrast with
response

reserved word

See keyword.

response A message that a server sends to an application. The response message contains
the results of a requested operation.
Related term
application
Contrast with
request

resource file

A text file that contains the mapping from resource keys to string values for a
particular locale. Resource files support producing a report with localized
values for label and text elements.
Related terms
label element, locale, localization, resource key, text element, value

resource key

A unique value that maps to a string in a resource file. For example, the resource
key, greeting, can map to Hello, Bonjour, and Hola in the resource files for
English, French, and Spanish, respectively.
Related terms
label element, locale, localization, resource file, text element, value

result set Data rows from an external data source. For example, the data rows that are
returned by a SQL SELECT statement performed on a relational database are a
result set.
Related terms
data, data row, data source, SQL SELECT statement

Rich Client Platform (RCP)

See Eclipse Rich Client Platform (RCP).

ROM See Report Object Model (ROM).

row 1 A record in a table.

2 A horizontal sequence of cells in a grid element or table element.

Related terms
cell, grid element, table, table element

514 G l o s s a r y

Contrast with
data row

RPTDESIGN

See report design (.rptdesign) file.

RPTDOCUMENT

See report document (.rptdocument) file.

RPTLIBRARY

See library (.rptlibrary) file.

RPTTEMPLATE

See report template (.rpttemplate) file.

run To execute a program, utility, or other machine function.

schema 1 A database schema specifies the structure of database objects and the
relationships between the data. The database objects are items, such as
tables.

2 An XML schema defines the structure of an XML document. An XML
schema consists of element declarations and type definitions that describe a
model for the information that a well-formed XML document must contain.
The XML schema provides a common vocabulary and grammar for XML
documents that support exchanging data among applications.

Related terms
application, data, element, extensible markup language (XML), object, report,
table, well-formed XML

scope The parts of a program in which a symbol or object exists or is visible. Where
the element is declared determines the scope of a program element. Scopes can
be nested. A method introduces a new scope for its parameters and local
variables. A class introduces a scope for its member variables, member
functions, and nested classes. Code in a method in one scope has visibility to
other symbols in that same scope and, with certain exceptions, to symbols in
outer scopes.
Related terms
class, function, member, method, object, parameter, variable

script editor

In the report editor in BIRT Report Designer, the page where a report developer
adds or modifies JavaScript for a report element.
Related terms
Business Intelligence and Reporting Tools (BIRT) Report Designer, JavaScript,
report, report editor, report element
Contrast with
layout editor, previewer

G l o s s a r y 515

scripting language

See JavaScript and VBScript (Visual Basic Script Edition).

SDK (Software Development Kit)

A collection of programming tools, utilities, compilers, debuggers, interpreters,
and APIs that a developer uses to build an application to run on a specified
technology platform. For example, the Java SDK allows developers to build an
application that users can download across a network to run on any operating
system. The Java Virtual Machine (JVM), the Java SDK interpreter, executes the
application in the specified software and hardware configuration.
Related terms
application, application programming interface (API), Java, Java Virtual
Machine (JVM), platform

section A horizontal band in a report design. A section structures and formats related
report items. A section uses a grid element, list element, or table element to
contain data values, text, and images.

Related terms
data, design, grid element, image, list element, report, report item, table
element, value

select 1 To highlight one or more items, for example, in a report design. A user-
driven operation then affects the selected items. Figure G-20 shows selected
items.

Figure G-20 Selected items

2 To highlight a check box or a list item in a dialog box.

Related terms
design, report

SELECT See SQL SELECT statement.

series A sequence of related values. In a chart, for example, a series is a set of related
points. Figure G-21 shows a bar chart that displays a series of quarterly sales
revenue figures over four years.

516 G l o s s a r y

Figure G-21 Series in a chart

Related terms
chart, value
Contrast with
category

servlet A small Java application that runs on a web server to extend the server’s
functionality.
Related terms
application, Java, web server

slot A construct that represents a set of ROM elements that are contained within
another ROM element. For example, the body slot of the report design element
can contain one or more of any type of report item. Figure G-22 shows a body
slot.

Figure G-22 Body slot

Related terms
design, element, report, report element, report item, Report Object Model
(ROM) element

sort To specify the order in which data is processed or displayed. For example,
customer names can be sorted in alphabetical order.

Body slot contains a text element
and a table element

G l o s s a r y 517

Related term
data
Contrast with
sort key

sort key A list of one or more column names or expressions. The order of the items in the
sort key specifies the sort order of data rows. For example, a sort by State and
Date is different from a sort by Date and State.
Related terms
column, data row, expression, sort

SQL (Structured Query Language)

A language that is used to access and process data in a relational database. For
example, the following SQL query accesses a database’s customers table and
retrieves the customer name and credit limit values where the credit limit is less
than or equal to 100000. The SQL query then sorts the values by customer name:

SELECT customers.customerName,
customers.creditLimit
FROM customers
WHERE customers.creditLimit >= 100000
ORDER BY customers.customerName

Related terms
data, query, sort, table, value
Contrast with
SQL SELECT statement

SQL SELECT statement

A statement in SQL (Structured Query Language) that provides instructions
about which data to retrieve for a report.
Related terms
data, report, SQL (Structured Query Language), statement

Standard Viewer

A viewer that appears after the user runs a report. In the Standard Viewer, the
user can perform basic viewing tasks, such as navigating the report, viewing
parameter information, exporting data, and using a table of contents.
Related terms
data, parameter, report
Contrast with
previewer, report viewer servlet

state See instance variable.

statement A syntactically complete unit in a programming language that expresses one
action, declaration, or definition.

518 G l o s s a r y

static variable

A variable that is shared by all instances of a class and its descendant classes. In
Java, a static variable is known as a class variable. The compiler specifies the
memory allocation for a static variable. The program receives the memory
allocation for a static variable as the program loads.
Related terms
class, class variable, descendant class, Java, variable
Contrast with
dynamic variable, field variable, global variable, instance variable, local
variable, member variable

String data type

A data type that consists of a sequence of contiguous characters including
letters, numerals, spaces, and punctuation marks.
Related terms
character, data type
Contrast with
string expression

string expression

An expression that evaluates to a series of contiguous characters. Elements of
the expression can include a function that returns a string, a string constant, a
string literal, a string operator, or a string variable.
Related terms
character, constant, expression, function, operator, variable
Contrast with
String data type

structured content

A formatted document that displays information from one or more data
sources.
Related terms
data source, format
Contrast with
report

Structured Query Language (SQL)

See SQL (Structured Query Language).

style A named set of formatting characteristics, such as font, color, alignment, and
borders, that report designers apply to a report item to control its appearance.
Related terms
design, font, format, report, report item
Contrast with
cascading style sheet (CSS)

G l o s s a r y 519

style sheet

See cascading style sheet (CSS).

subclass The immediate descendant class.

Related terms
class, descendant class
Contrast with
superclass

subreport A report that appears inside another report. Typically, the subreport uses data
values from the outer report.

Related terms
data, report, value

superclass

The immediate ancestor class.

Related terms
ancestor class, class
Contrast with
descendant class, subclass

syntax The rules that govern the structure of a language.

tab The label above a page in a dialog box that contains multiple pages.
Contrast with
label element

table A named set of columns in a relational database.

Related term
column
Contrast with
table element

table element

A report item that contains and displays data in a row and column format. The
table element iterates through the data rows in a data set. Figure G-23 shows a
table element.

Figure G-23 Table element

520 G l o s s a r y

Related terms
column, data, data row, data set, element, report item, row
Contrast with
grid element, list element, table

tag An element in a markup language that identifies how to process a part of a
document.

Related term
element
Contrast with
extensible markup language (XML)

template In BIRT Report Designer, a predefined structure for a report design. A report
developer uses a report template to maintain a consistent style across a set of
report designs and for streamlining the report design process. A report template
can describe a complete report or a component of a report. BIRT Report
Designer also supports custom templates.

In Figure G-24, New Report displays the available templates and Preview
displays a representation of the report layout for the selected My First Report, a
customer-listing-report template.

Figure G-24 Template

Related terms
Business Intelligence and Reporting Tools (BIRT), Business Intelligence and
Reporting Tools (BIRT) Report Designer, design, layout, listing report, report,
report design (.rptdesign) file
Contrast with
report template (.rpttemplate) file

Customer listing report layout

G l o s s a r y 521

text element

A report item that displays user-specified text. The text can span multiple lines
and can contain HTML formatting and dynamic values that are derived from
data set fields or expressions.
Related terms
data set, expression, field, format, hypertext markup language (HTML), report
item, value
Contrast with
data element, dynamic text element, label element

text file See flat file.

theme A set of related styles that are stored in a library (.rptlibrary) file. A theme
provides a preferred appearance for the report items in a report design. A
library file can store multiple themes. A report design can use styles from a
single theme as well as styles defined in the report design itself.
Related terms
design, library (.rptlibrary) file, report, report item, style
Contrast with
cascading style sheet (CSS)

tick A marker that occurs at regular intervals along the x- or y-axis of a chart.
Typically, the value of each tick appears on the axis.
Related term
chart
Contrast with
tick interval

tick interval

The distance between ticks on an axis. Figure G-25 shows a tick interval in a
chart.

Figure G-25 Tick interval

Related terms
chart, tick

toolbar A bar that contains various buttons that provide access to common tasks.
Different toolbars are available for different kinds of tasks.

translator See converter.

Tick Interval = 1 hour

522 G l o s s a r y

type See data type.

Unicode A living language standard that is managed by the Technical Committee of the
Unicode Consortium. The current Unicode standard provides code points for
more than 65,000 characters. Unicode encoding has no dependency on a
platform or software program and therefore provides a basis for software
internationalization.
Related terms
code point, character, internationalization

Uniform Resource Locator (URL)

A character string that identifies the location and type of a piece of information
that is accessible over the web. http:// is the familiar indicator that an item is
accessible over the web. The URL typically includes the domain name, type of
organization, and a precise location within the directory structure where the
item is located.
Related terms
character, domain name, hypertext transfer protocol (HTTP)
Contrast with
Universal Resource Identifier (URI)

universal hyperlink

See hyperlink.

Universal Resource Identifier (URI)

A set of names and addresses in the form of short strings that identify resources
on the web. Resources are documents, images, downloadable files, and so on.
Contrast with
Uniform Resource Locator (URL)

URL See Uniform Resource Locator (URL).

value 1 A quantity that is assigned to a constant, variable, parameter, or symbol.

2 A specific occurrence of an attribute. For example, blue is a possible value for
the attribute color.

Related terms
constant, parameter, variable

variable A named storage location for data that can be modified while a program runs.
Each variable has a unique name that identifies it within its scope. Each variable
is capable of containing a certain type of data.
Related terms
data, data type, scope
Contrast with
class variable, dynamic variable, field variable, global variable, instance
variable, local variable, member variable, static variable

G l o s s a r y 523

VBScript (Visual Basic Script Edition)

A Microsoft Windows scripting engine. VBScript is a subset of the Visual Basic
language with some added functionality. Internet Explorer, Active Server Pages,
and Windows Script Host support VBScript as a scripting language.

When used in Internet Explorer, VBScript processes code that is embedded in
HTML. VBScript is similar in function to JavaScript. Stand-alone applications
that were created using VBScript require Internet Explorer to run.
Related terms
Active Server Page (ASP), hypertext markup language (HTML), JavaScript

view A predefined query that retrieves data from one or more tables in a relational
database. Unlike a table, a view does not store data. Users can use views to
select, delete, insert, and update data. The database uses the definition of the
view to determine the appropriate action on the underlying tables. For example,
a database handles a query on a view by combining the requested data from the
underlying tables.

Related terms
data, query, table
Contrast with
Eclipse view

viewer See previewer and Standard Viewer.

Visual Basic Script Edition

See VBScript (Visual Basic Script Edition).

web archive (.war) file

A file format that is used to bundle web applications.
Related terms
application, format
Contrast with
Java archive (.jar) file

web page A page that contains tags that a web browser interprets and displays.
Related term
tag

web server

A computer or a program that provides web services on the internet. A web
server accepts requests that are based on the hypertext transfer protocol (HTTP).
A web server also executes server-side scripts, such as ASPs and JSPs.
Related terms
Active Server Page (ASP), hypertext transfer protocol (HTTP), JavaServer Page
(JSP), request, web page

524 G l o s s a r y

well-formed XML

An XML document that follows syntax rules that were established in the XML
1.0 recommendation. Well-formed means that a document must contain one or
more elements and that the root element must contain all the other elements.
Each element must nest inside any enclosing elements, following the syntax
rules.
Related terms
element, extensible markup language (XML), syntax

World Wide Web Consortium (W3C)

An international, but unofficial, standards body that provides
recommendations regarding web standards. The World Wide Web Consortium
publishes several levels of documents, including notes, working drafts,
proposed recommendations, and recommendations about web applications that
are related to topics such as HTML and XML.
Related terms
application, extensible markup language (XML), hypertext markup language
(HTML)

workbench

See Eclipse Workbench.

workspace

See Eclipse workspace.

XML (extensible markup language)

See extensible markup language (XML).

XML element

See element.

XML PATH language (XPath)

XPath is a subset of XSLT that supports addressing an element or elements
within an XML document based on a path through the document hierarchy.
Related terms
element, extensible markup language (XML)

XML schema

See schema.

XPath See XML PATH language (XPath).

525

I n d e x

Symbols
" (double quotation mark) character

command line arguments and, 28
JavaScript code and, 225

, (comma) character, 347
\ (backslash) character, 225
… button, 484

A
absolute paths, 36, 38, 42
abstract base class, 465
Access databases, 26, 89
accessing

BIRT Report Designer, 15
charts, 37, 222
component libraries, 55
custom data sources, 131, 366
data sets, 53, 214
data structures, 211
demo database, 25, 26
design model objects, 153
Eclipse PDE, 275
Export Wizard, 292
external data sources, 68, 366
formatted output, 203
images, 37, 89, 201
installation demo, 5
Java classes, 108, 109, 116
Java objects, 131, 139
metadata, 150
Navigator, 104
ODA data sources, 366, 371
report components, 155, 156
report designs, 154, 181, 204, 206

report elements, 181, 204
report items, 181, 204, 207, 209, 210
report properties, 155
report viewer, 34, 36
reports, 36, 40, 203
resource files, 187, 206
script editor, 91
source code, 4, 267

Acrobat Reader, 203
action handler, 188, 189, 201
Active Server Pages. See ASPs
adapter classes, 112, 117, 118, 339
Add CVS Repository dialog, 257, 258
Add Entry dialog, 288
Add External JARS button, 355
Add Folder button, 289
Add Library button, 288
adding

charts to designs, 232, 246, 250
custom drivers, 53
data sources, 390
lists, 67
ODA drivers, 366
ODA user interfaces, 366, 367
report items, 67, 213, 299, 301, 318
scripted data sets, 131, 134
scripted data sources, 133
tables, 67
update sites, 294

addScriptableJavaObject method, 187
Adobe Acrobat Reader. See Acrobat Reader
afterClose events, 82, 120, 121
afterClose method, 120, 121
afterDataSetFilled method, 83
afterDrawAxisLabel method, 83

526 I n d e x

afterDrawAxisTitle method, 83
afterDrawBlock method, 83
afterDrawDataPoint method, 83
afterDrawDataPointLabel method, 83
afterDrawFittingCurve method, 84
afterDrawLegendEntry method, 84
afterDrawMarkerLine method, 84
afterDrawMarkerRange method, 84
afterDrawSeries method, 84
afterDrawSeriesTitle method, 84
afterFactory events, 83, 123
afterFactory method, 102, 103, 123
afterGeneration method, 84
afterOpen events, 82, 120, 121
afterOpen method, 76, 120, 121
afterRender events, 75, 83, 123
afterRender method, 123
afterRendering method, 84
aggregate data. See aggregate values
aggregate expressions, 465
aggregate functions, 465
aggregate package, 164, 165
aggregate values, 466
aggregating data, 53
aliases, 99, 128, 466
All Extensions section (Extensions), 284
alternate names. See aliases; display names
ancestor classes, 466

See also superclasses
annotation element, 268
annotations, 268, 285
Ant scripts, 290
Apache Derby databases, 8, 25
Apache Tomcat manager accounts, 39
Apache Tomcat servers, 33, 34
api extension package, 318
API Javadoc, 146
api packages, 145, 181
APIs. See application programming

interfaces
APPCONTEXT_HTML_RENDER_

CONTEXT constant, 201
APPCONTEXT_PDF_RENDER_CONTEXT

constant, 201
appinfo attribute, 268
applets, 466
application context, 94, 187, 200
application context objects, 36, 126

application programming interfaces (APIs)
BIRT engines and, 52
BIRT extensions and, 267
charts and, 219, 239
custom data sources and, 366
custom report designers and, 56
custom report generators and, 56
defined, 467
report designs and, 185
report engine and, 147, 148
report items extensions and, 301
report rendering extensions and, 329
reporting applications and, 145, 181, 182,

183
application servers, 26, 33, 40, 147
applications

See also multithreaded applications
accessing report designs for, 154, 181, 204,

206
accessing report items for, 204
accessing report viewer for, 36
configuring engine home for, 186
connecting to external sources and, 202,

366, 380
creating stand-alone, 56, 185
customizing, 56
debugging, 190
defined, 466
deploying, 36, 183
developing, 145, 181, 183, 267
generating charts from, 23, 163, 219, 239
generating reports from, 181, 182, 185,

203, 204
getting context for, 94, 126, 200
installing plug-ins for, 184, 271
integrating with Eclipse, 47
rendering environments for, 181
running reports and, 147, 148
validating report designs for, 52

application-wide scriptable objects, 148
archive files

See also jar files; war files
BIRT packages in, 3, 23
BIRT Samples and, 28, 29
BIRT Test Suite and, 29
chart engine and, 24
demo database and, 25
downloading, 14, 15, 17

I n d e x 527

archive files (continued)
report engine and, 27
unpacking, 5, 14

arguments, 119, 467
See also functions; parameters

array properties, 99
arrays

column values and, 99
connection properties and, 101
defined, 467
executable expressions and, 60
images and, 89
ODA result sets and, 386
row objects and, 99
scripted data sets and, 141, 142
user-defined properties and, 60

ASCII files. See text files
ASPs, 465
assignment statements, 467
attribute package, 165, 170, 172
attributes

See also elements; properties
complex properties and, 210
plug-in extension points and, 286, 299
report item extensions and, 268, 284
report parameters and, 195
ROM elements and, 62, 63
XML schemas and, 268, 283

AutoDataBinding charting example, 247
AutoDataBindingViewer class, 247
axes properties (charts), 223, 228
axes values, 228, 229, 230

See also charts
axis.jar, 34
axis-ant.jar, 34

B
background colors, 96
backslash (\) character, 225
BEA WebLogic servers, 33
beforeClose events, 82, 120, 121
beforeClose method, 120, 121
beforeDataSetFilled method, 84
beforeDrawAxisLabel method, 84
beforeDrawAxisTitle method, 84
beforeDrawBlock method, 84
beforeDrawDataPoint method, 84
beforeDrawDataPointLabel method, 84

beforeDrawFittingCurve method, 84
beforeDrawLegendEntry method, 84
beforeDrawMarkerLine method, 84
beforeDrawMarkerRange method, 84
beforeDrawSeries method, 85
beforeDrawSeriesTitle method, 85
beforeFactory events, 83, 123
beforeFactory method, 76, 123
beforeGeneration method, 85
beforeOpen events, 82, 101, 120, 121
beforeOpen method, 76, 101, 120, 121
beforeRender events, 75, 83, 123
beforeRender method, 76, 123
beforeRendering method, 85
Binary Build section, 288, 290
binary files, 55, 181
binding data sets to charts, 232
binding data sets to report items, 216
BIRT, xx, 468
BIRT API Test Reference.doc, 29
BIRT applications, 47, 48, 51

See also applications
BIRT Chart Engine, 7, 23, 468

See also chart engine; chart engine API
BIRT Chart Engine package, 14
BIRT components, 47
BIRT Demo Database, 8, 469

See also Classic Models sample database
BIRT Demo Database package, 14, 25
birt directory, 42
BIRT documentation, xix, xx, xxi, 146
BIRT engines, 48, 52

See also specific engine
BIRT extensions, 469

See also extensions
BIRT model API, 205
BIRT open source projects, xvii

See also projects
BIRT RCP Report Designer

See also BIRT Report Designer; rich client
platforms

accessing sample database for, 8, 25
compared to BIRT Report Designer, 51
defined, 470
downloading packages for, 3, 23
installing, 3, 16–18
removing cached pages for, 18
software requirements for, 5

528 I n d e x

BIRT RCP Report Designer (continued)
starting, 19
testing installations for, 18
updating, 31, 32

BIRT Report Designer
See also designs
accessing sample database for, 8, 25
adding charting functionality for, 24
compared to BIRT RCP Designer, 51
compatibility with Eclipse, 6, 7
configuring, 7
defined, 469
downloading packages for, 3, 23
extending functionality of, 54, 267
installing, 4, 14–15
installing auxiliary files for, 14
integrating report engine with, 147
integrating with ODA drivers, 53, 366
overview, 51
removing cached pages for, 18
scripting and, 73, 91, 111, 132
software requirements for, 6–7
starting, 15, 19
testing installations for, 15
tracking method execution with, 102, 103,

104
updating, 31

BIRT Report Designer Full Eclipse Install, 5,
15–16

BIRT Report Designer perspective, 15
BIRT Report Designer tools, 49
BIRT Report Engine, 9, 26, 469

See also report engine; report engine API
BIRT Report Engine package, 14
BIRT report object model, 59

See also ROM
BIRT reporting platform, xix
BIRT Samples archive, 28
BIRT Samples package, 9, 14, 28, 470
BIRT source code. See source code
BIRT technology, 47, 470
BIRT Test Suite, 470
BIRT Test Suite package, 9, 29
BIRT web site, xvii
BIRT.exe, 18
birt.war, 34
BIRT_FONT_PATH variable, 40
BIRT_HOME variable, 27, 148, 186

BIRT_VIEWER_IMAGE_DIR parameter, 37
BIRT_VIEWER_LOG_DIR parameter, 37
BIRT_VIEWER_LOG_LEVEL parameter, 37
BIRT_VIEWER_SCRIPTLIB_DIR

parameter, 37
BIRT_VIEWER_WORKING_FOLDER

parameter, 36, 37, 42
blank strings, 43
bookmarks, 192, 467
Boolean class, 109
BOOLEAN data type, 100
Boolean expressions, 467
break reports. See grouped reports
breakpoints, 468
bridge class, 468
bridge driver, 26
browsers. See web browsers
buffered emitters, 340
bug reports, 11
Bugzilla, xvii
Build All command, 290
Build Automatically command, 290
Build Configuration page, 288
Build page (PDE Manifest Editor), 279, 287
build settings, 279
build.properties file, 268, 279
build.properties page (PDE Manifest

Editor), 279
building

BIRT open source projects, 253–256
design tools, 153
Hibernate driver plug-in, 439
Hibernate ODA UI plug-in, 458
ODA extensions, 368
plug-in extensions, 287–290
report design tools, 154
report viewer, 262
reports, 76, 78
rotated label report item extension, 301
update sites, 294
user interfaces, 320, 321
web viewer, 262

builds, 10, 14, 16, 17
BuildViewer.xml, 263
BundleActivator interface, 272
Business Intelligence and Reporting

Tools, 47, 468
See also BIRT

I n d e x 529

byte arrays, 89

C
cache, 271
cache conflicts, 18, 24
cached pages, 18, 24
calculated columns. See computed fields
canInherit attribute, 372
canInherit property, 309
canLeave method, 456
capitalization. See case sensitivity
captions (charts), 86, 164
carriage return characters, 347
cascading parameter groups, 193, 196
cascading parameters, 193, 196, 197, 198, 471
cascading style sheets, 62, 184, 185, 471
CASCADING_PARAMETER_GROUP

value, 194
case sensitivity, 472
category, 472
category axes. See axes values
category series, 228, 230

See also data series
category values, 472

See also charts
cell elements. See cells
cell interfaces, 124, 125
cell items. See cells
Cell objects, 124, 125
CellHandle class, 157
cells

adding grid elements and, 67
adding list elements and, 78
building programmatically, 124, 125, 339
defined, 472
determining contents of, 208
labels in, 213
writing to CSV files and, 345, 347

CGI (defined), 475
changeLogLevel method, 190
changing

charts, 86, 222
connection properties, 101
data set bindings, 216
data sources, 215
locales, 21
plug-in project settings, 278, 279
queries, 101

report designs, 185, 204, 206, 211
report elements, 205
report item properties, 211, 212
report items, 211
URL context roots, 36

character patterns, 509
character sets, 472
character strings. See strings
characters

CSV output files and, 347
defined, 472
JavaScript code and, 99, 225
trimming, 381

chart areas, 223
chart builder, 54, 249
chart classes, 163, 226
chart components. See chart items
chart elements, 473

See also charts
chart engine

avoiding caching conflicts for, 24
defined, 468
installing, 23–24
overview, 53
software requirements for, 7

chart engine API, 145, 163, 164
chart engine API library, 184
Chart Engine archive, 24
chart engine classes, 164
chart engine documentation, 24
chart engine package, 14
chart event handler methods, 83, 85
chart events, 83, 87
chart examples plug-in, 246
chart generator, 145
chart instance objects. See chart objects
Chart interface, 164
chart item extensions, 52
chart items

See also charts
defined, 54
developing, 231
displaying, 52
setting dimensions of, 232
setting properties for, 231

chart model implementation classes, 163
chart model packages, 163, 165

530 I n d e x

chart objects
See also charts
accessing, 85, 86
getting, 222
instantiating, 164, 226, 231
modifying, 163

chart package, 24, 145, 163
chart properties

changing, 222
chart instance objects and, 227–228
chart items and, 231
charting applications and, 222–224
getting, 86
setting, 87, 164

chart reportitem plug-in, 301
chart script context objects, 83, 85
chart scripting, 224, 225
chart subtypes, 86, 87
chart types, 86, 87, 164, 227
chart wizard. See chart builder
Chart3DViewer application, 248
chartengineapi.jar, 184
charting APIs, 219, 222, 225, 239
charting application sample plug-ins, 470
charting applications, 219, 221, 233
charting examples, 219, 246, 301
charting extensions, 301, 473
charting library. See chart engine
ChartModels class, 247, 250
charts

See also chart elements; chart items
accessing, 37, 222
adding interactive features to, 87, 247
adding series to, 224, 228–230
adding to designs, 232, 246, 250
applying styles to, 248, 250
binding data sets to, 232
changing, 86, 222
creating, 54, 164, 225, 231, 239
defined, 472
defining event handlers for, 83–89, 224–

225, 248
defining sample data for, 87, 226, 231
exporting to CSV files and, 337
generating, 53, 221, 247
getting data sets for, 232
getting primary base axis for, 228
getting type, 86

outlining areas in, 227
rendering as images, 201
scripting for, 83, 85, 88
setting properties for. See chart properties
specifying type, 87, 227

ChartScriptContext objects, 83, 85
ChartWithAxes interface, 164
ChartWithAxes type, 223
ChartWithoutAxes interface, 164
ChartWizardLauncher charting

example, 249
ChartWizardLauncher class, 249
cheat sheets, 56
checking out source code, 256, 259
choice definitions, 63
ChoiceType element, 63
class attributes, 286
class definitions, 63
Class element, 63
class element, 309
class files, 110, 116, 286
class hierarchy, 473
class loaders, 371
class method definitions, 64
class names, 109, 118, 269, 473
class property, 308, 335
class variables, 474

See also instance variables; variables
classes

accessing, 109
accessing report parameters and, 193
associating with report elements, 116
building report designs and, 153, 154, 157
changing chart objects and, 163
compiling rotated label plug-in and, 302,

308, 309
creating, 63, 111, 112
customizing ODA drivers and, 365, 368,

426
defined, 473
deploying applications and, 183
deploying Java, 141
developing with, 145, 181
extending adapter, 339
generating CSV output and, 338, 339, 355
generating reports and, 148, 151, 186
hierarchical diagrams for, 146
loading, 371

I n d e x 531

classes (continued)
naming conventions for, 117
referencing, 109, 139
registering, 225
running plug-in instances and, 272
scripting and, 108, 109, 139, 140
setting attributes for, 286
setting properties for, 287

classes directory, 110
Classic Models sample database

See also demo database
accessing, 25, 26
installing, 8, 25
testing installation for, 25
writing event handlers for, 104

Classic Search page (PDE Manifest
Editor), 283

ClassicModels directory, 25
ClassLoader objects, 436
classpaths

charting applications and, 221
CSV ODA driver extensions and, 370
CSV rendering extension and, 334
Hibernate ODA drivers and, 420, 436
Java event handler classes and, 112, 116
Java packages and, 108, 109
plug-in extensions and, 278
scripted data sources and, 140

–clean option, 18
clean-up code, 78, 102, 103, 140
clean-up processing phase (events), 78
CLI library, 184
close events, 82
close method

generating reports and, 200
Hibernate drivers and, 430, 434
report designs and, 217
report items and, 103
scripted data sets and, 122, 140
scripted data sources and, 121, 132

closeTag method, 341, 348
closing

connections, 380, 381, 434
cursors, 380
data sets, 82, 121, 122, 140
data sources, 82, 120, 121, 132, 135
output files, 344
report engine objects, 183

code
accessing data sources and, 131
accessing Java source, 4, 267
accessing sample, 297
adding event handlers and, 74, 81, 91
changing run-time connections and, 101
checking for errors in, 105
checking out, 256, 259
compiling, 254, 290
creating Eclipse projects and, 256
customizing, 73
defining executable, 67
deploying applications and, 183
developing applications and, 145, 182,

183
developing Hibernate drivers and, 420
developing ODA extensions and, 367
downloading, 302
editing, 470
executing reports and, 93
extracting URL parameters and, 95
generating CSV files and, 329, 330, 359
initializing report designs and, 83
loading, 271, 497
specifying repository location for, 257
tracking method execution in, 102, 103

Code page. See script editor
code points, 474
codec library, 184
collectCustomProperties method

CSVFilePropertyPage, 406
CSVFileSelectionPageHelper, 407
CSVFileSelectionWizardPage, 409
HibernateDataSourceWizard, 452
HibernatePageHelper, 449, 451
HibernatePropertyPage, 452

collectDataSetDesign method, 458
collections, 61, 194, 195, 196
color settings, 60, 96, 230
column aliases, 99, 128
column bindings, 216, 475
column headings, 99, 128
column names

accessing CSV data and, 367
defining, 122
getting, 99, 128, 387
retrieving values and, 99

columnar layouts, 67

532 I n d e x

columnBindingsIterator method, 216
columnNumbers variable, 345
columns

See also fields; computed fields
accessing, 99, 128, 215
adding to designs, 137
counting, 86, 87, 99, 128
defined, 474
defining output, 135
dynamically generating, 82
getting information about, 99
getting type, 100, 128
getting values in, 99, 380
iterating through, 100
naming. See column headings; column

names
comma (,) character, 347
comma tag, 348
command line applications, 147
command line arguments, 28
comma-separated values. See CSV formats
comma-separated values rendering

extension. See CSV report rendering
extension

commit method, 430
commit operations, 380, 430
Common Gateway Interface, 475
CommonConstant class, 382, 389, 427
communications protocol, 508
compiler preferences, 254
compiling, 116, 254, 289, 290
complex properties, 209, 211, 212
compliance settings, 255
component hierarchy (BIRT), 47
component libraries, 51, 55
component package, 165, 173
component palettes. See Palette view
components

See also report elements; report items
accessing, 155, 156
adding report items and, 53, 67
extending functionality of, 54
saving, 51
setting properties for, 67

computed columns. See computed fields
computed data. See computed values
computed fields, 100, 128, 138, 475
computed values, 138, 475

concatenation, 225
Concurrent Versions System repository. See

CVS repository
conditional expressions. See Boolean

expressions
config variable, 94
configuration files, 36, 37, 38, 450, 475
Configuration Markup section, 284
configuration objects, 148, 187
configuring

Eclipse workspace, 254
engine home, 186
extension points, 284
Hibernate drivers, 420, 427, 438, 439, 450
report engine, 148, 187, 188
report viewer for alternate locations, 36

Connection class, 381, 426, 428
Connection objects

defined, 476
ODA drivers and, 380, 381, 426
report engine and, 182

connection properties, 101
connection wizards, 404
connectionProfile extension point, 404, 442
connections

BIRT drivers and, 203
external data sources and, 68, 202
getting, 388, 428
Hibernate data sources and, 428, 429, 434
JDBC data sources and, 101
ODA data sources and, 53, 101, 380, 381
ODA drivers and, 380, 381, 382, 428
report engine and, 182

constants, 108, 405, 476
Constants class, 405
constructor code, 476
constructSessionFactory method, 428, 436,

438
container elements, 67
containers, 476
containment, 476
containment hierarchy, 476
content. See structured content
content objects, 344
content package, 339, 340
ContentEmitterAdapter class, 338
ContentEmitterVisitor objects, 342
ContentType property, 340

I n d e x 533

context mapping, 36
context objects, 94, 126, 200
context parameters, 36, 38
context root, 36
context-param element, 38
contributors, 29, 253
converters, 476
copying .jar files, 38
core API library, 184
core plug-ins, 267
coreapi.jar, 184
counters, 104, 106
Create Ant Build File command, 290
Create Java Project dialog, 354
create method, 164
create_classicmodels.sql, 26
createAndInitCustomControl method, 406,

449, 451, 452
createCustomControl method, 407, 449
createGetParameterDefinitionTask

method, 193
createPageControl method, 409, 453
createPageCustomControl method, 408, 449,

451, 452
createRenderTask method, 200
createRotatedText method, 321
createRunAndRenderTask method, 199
createRunTask method, 199
creating

BIRT projects, 253–256
charting applications, 220, 221, 233
charts, 54, 164, 225, 231, 239
Eclipse projects, xvii, 256–261
event handler class, 111, 112
event handlers, 73, 74, 91, 112, 118

tutorial for, 104–108
Hibernate driver plus-ins, 420
Java applications, 56, 147
Java classes, 63, 111, 112, 355
lists, 67
ODA driver extensions, 366, 379
ODA driver plug-ins, 368, 379
ODA drivers, 365, 367, 419
plug-in extensions, 279–287
queries. See queries
report designs, 55, 153, 205, 217
report elements, 124, 125, 213
report engine, 148

report item extensions, 299, 312
report items, 54, 213, 299, 300, 318
reporting applications, xix, 181, 182, 183,

185, 204
reports, 154, 182
ROM elements, 64
scripted data sets, 131, 134
scripted data sources, 131, 132, 133
stand-alone applications, 56, 185
tables, 67
update sites, 294

criteria. See parameters
cross tabs, 476
cross tabulation. See cross tabs; cross-tab

reports
cross-tab reports, 476
CSS files, 184, 185, 471

See also cascading style sheets
CSV data structures, 367
CSV files

accessing data in, 367, 381
connecting to, 381
creating designs for, 359
developing ODA extensions for, 365, 379
initializing output streams for, 342
printing, 341
rendering options for, 349
structuring, 341
viewing content of, 357
writing to, 329, 339, 341, 346, 357

CSV formats, 337, 339, 349, 357
CSV ODA driver extension examples, 297,

367, 381
CSV ODA driver extensions

compiling and debugging, 368
creating, 366, 379
downloading plug-ins for, 367
implementing, 371
setting dependencies for, 370
specifying run-time settings for, 370

CSV ODA driver interfaces, 379
CSV ODA driver plug-in project, 365, 368,

390
CSV ODA driver plug-ins, 368, 414
CSV ODA drivers, 367, 371
CSV ODA extensions, 367
CSV ODA interfaces, 381
CSV ODA plug-ins, 367

534 I n d e x

CSV ODA UI extension, 368, 390–403
CSV ODA UI plug-in, 393, 403
csv package, 341, 381
csv plug-in, 350, 367
CSV report rendering extension

changing report engine API and, 348
creating projects for, 331, 353
developing, 330
downloading required plug-ins for, 330
implementing content interfaces for, 339,

340
launching, 353, 354
overview, 337
running, 341, 356
setting dependencies for, 334
testing, 350
viewing output for, 357

CSV report rendering plug-in
building, 350
launching, 353, 354
testing, 350

csv ui plug-in, 367, 368, 390
csv ui wizards plug-in, 405
CSV writer, 341, 342, 343
CSVBufferReader class, 381, 385
CSVFileDriver class, 381, 382
CSVFilePropertyPage class, 405, 406
CSVFileQuery class, 381, 382
CSVFileSelectionPageHelper class, 405, 406
CSVFileSelectionWizardPage class, 405, 408
csvODA.jar, 370
CSVPlugin class, 341
CSVRenderOption class, 348, 349
CSVReportEmitter class, 341, 344
CSVReportEmitter method, 342
CSVTags class, 341, 348
csvTest.reportdesign, 359
CSVWriter class, 341, 348
current release, 267
currentSession method, 439
cursors, 380, 386
CurveFittingViewer application, 248
custom chart generator, 145
custom data sources, 366

See also ODA data sources
custom Java classes, 140
custom report design tool, 154
custom report designer, 56, 62, 147

custom report generators, 56, 145
custom status handlers, 187
customizing

applications, 56
BIRT packages, 29
colors, 60
ODA drivers, 53, 57, 366
output formats, 199, 300, 330
report emitters, 57
report engine, 147
report items, 54, 57, 301
reports, 185
source code, 73
user interfaces, 195
XML elements, 60

CVS perspective, 257
CVS repository, 256, 257, 267, 302
CVS Repository Exploring command, 257

D
data

See also data elements; values
defined, 477
exporting, 183, 337
extracting, 150, 183, 337
filtering, 53, 56, 193
generating sample, 87, 226, 231
retrieving, 53, 131, 139, 196

data access components, 53
data adapter API library, 184
data adapters. See adapter classes
data components. See data elements
data drivers, 148
data elements, 68, 477

See also data
data engine, 53, 366
data engine extension, 53
Data Explorer, 477
data extension names, 128
data filters, 488
data package, 165, 174
data points, 478

See also charts
data rows, 478

See also rows
data series

See also charts
adding, 224, 228–230

I n d e x 535

data series (continued)
building queries for, 229, 230
changing properties for, 224
defined, 515
getting properties for, 86
setting properties for, 87, 230
setting type, 164

data set classes, 215
data set elements, 68, 82, 120, 372

See also data sets
data set extension properties, 128
data set fields. See columns
data set instance interface, 128
data set objects, 128

See also data sets
data set page (Hibernate UI plug-in), 420,

449
data set page (ODA UI plug-in), 367
data set parameters, 478

See also parameters
data set types, 380
data sets

See also data set elements; data set objects
accessing, 53, 214
accessing columns in, 99, 128
binding to charts, 232
binding to report items, 216
building programmatically, 128
changing data sources for, 215
changing properties for, 215
changing queries for, 101
closing, 82, 121, 122, 140
creating scripted, 131, 134
customizing drivers for, 53
defined, 478
defining event handlers for, 82, 91, 120,

122, 128
developing ODA extensions for, 366, 380,

382, 390, 420
fetching, 129, 138, 140
filtering data in, 193
getting data sources for, 128
getting metadata for, 128
getting names, 129
getting number of columns in, 99, 128
getting properties for, 215
getting query strings for, 100, 129
getting type, 129

opening, 82, 121, 122, 139
setting properties for, 215
setting query strings for, 129

data source classes, 214
data source connection wizards, 404
data source drivers. See drivers
data source elements, 68, 82, 120, 371, 372

See also data sources
data source extension points, 367, 404, 441
data source objects, 478

See also data sources
data source page (Hibernate UI plug-

in), 419, 449
data source page (ODA UI plug-in), 367
data source plug-ins, 366, 371
data sources

See also specific data source type
accessing, 68, 131, 214, 366
adding, 390
changing, 215
changing properties for, 101
closing, 82, 120, 121, 132, 135
connecting to. See connections
creating scripted, 131, 132, 133
defined, 478
defining event handlers for, 82, 91, 120
developing ODA extensions for, 366, 419
getting, 128
opening, 82, 120, 121, 135
retrieving data from, 53
unsupported, 53

data structures, 211
Data Tools platform (Eclipse), 53, 257, 365,

366
data transform components, 53
data type mappings, 372, 378
data types

columns and, 100, 128
CSV files and, 382
defined, 479
Hibernate data sources and, 425
ODA drivers and, 382, 388
ODA result sets and, 386
report parameters and, 195
ROM metadata structures as, 65
XML schemas and, 268, 299

dataadapterapi.jar, 184
database drivers. See JDBC drivers

536 I n d e x

database management systems, 479
database platforms, 8
database schemas, 514
databases, 365
DataCharts charting example, 246
DataChartsViewer application, 246
datafeed package, 164, 165
DataSet element, 68, 82, 120, 372
dataSet objects, 128

See also data sets
DataSetAdapter class, 120
DataSetHandle class, 214, 215
DataSetMetaData class, 382, 388, 427, 430
dataSetPage element, 395
dataSetUI page wizard, 449
dataSetWizard attribute, 395
DataSetWizardPage class, 404, 452
DataSource element, 68, 82, 120, 371, 372
dataSource extension point, 367, 404, 441
dataSource plug-in, 366, 371
DataSource property, 101
dataSource.exsd, 366, 374
DataSourceAdapter class, 120
DataSourceEditorPage class, 404
DataSourceHandle class, 157, 214
DataSourceWizardPage class, 404
datatools directory, 367
Datatools repository. See Data Tools platform
dataTypeMapping element, 378, 425
dataTypeMapping type, 372
DataTypes class, 382, 388, 427
date values, 479
date-and-time data type, 479
DATETIME data type, 100
DBMS (defined), 479
Debug mode, 353
debugger, 74
debugging

applications, 190
defined, 479
ODA driver extensions, 368

DECIMAL data type, 100
declarations, 479
default engine configuration, 148
default values, 154, 194
DefaultDataServiceProviderImpl class, 249
defaultDisplayName attribute, 371, 372
defaultDisplayName property, 309
defaultStyle property, 308

defaultValue attribute, 372
defaultValue property, 309
definitions, 465
deleteGlobalVariable method, 94, 126
deletePersistentGlobalVariable method, 94,

126
deleting

cached information, 18, 24
global variables, 94, 126
temporary files, 148

demo database, 469
See also Classic Models sample database

demo database package, 14, 25
dependencies (plug-ins), 279, 305, 392
Dependencies option (PDE Editor), 279
Dependencies page (PDE Editor), 278, 305
deploying

applications, 36, 183
Hibernate ODA UI plug-in, 458
Java classes, 141
plug-in extensions, 268, 291–296
report designs, 204
report item extensions, 302, 324
report viewer, 33, 51
reports, 33, 110, 112

Derby databases, 8, 25
derived classes. See descendant classes
descendant classes, 480
describe events, 82
describe method, 122
design elements, 66, 82, 122
design engine, 52, 54, 204
design engine API, 145, 153, 154, 157, 181

See also report model API
design engine class, 154
design environments. See BIRT; Eclipse
design files

accessing report items in, 222
associating with reports, 42
defined, 509
generating, 52, 56, 154
generating reports from, 147, 182, 190,

200, 206
installing report viewer and, 35, 36
loading, 149
naming, 326
opening, 62, 182, 190, 206

examples for, 104, 191
overview, 55

I n d e x 537

design files (continued)
referencing in URLs, 37, 41, 42
renaming, 232
running, 150, 200
specifying paths for, 37
validating, 52

design interfaces, 124
design model objects, 153
design perspective, 14
design properties, 66
design tools, 51, 153, 154
DesignChoiceConstants interface, 209, 211
DesignConfig objects, 206
DesignElement element, 66
DesignElementHandle class, 156, 210, 317
DesignEngine class, 154, 206, 317
DesignEngine objects, 206
designer packages, 4, 13, 31
designer ui extensions package, 316
designers, 13, 51, 56, 147

See also BIRT Report Designer; BIRT RCP
Report Designer

designing reports, 56
See also designs

designs
See also page layouts
accessing, 154, 181, 204, 206
accessing Hibernate data sources for, 441
accessing items in, 204
accessing properties for, 155
accessing ROM schema for, 62
adding charts to, 232, 246, 250
adding data sources to, 390
adding report items to, 67, 207, 213, 301
changing, 185, 204, 206, 211
connecting to external sources and, 202
creating, 55, 153, 205, 217
defined, 480
defining event handlers for, 74, 75, 82, 91,

122
deploying, 204
developing, 204
extending functionality of, 57
generating CSV files and, 359
getting parameters in, 194
initializing, 76, 83, 102, 123
retrieving data for, 366
reusing, 51

saving, 204, 217, 232
setting location of, 36, 37, 42
setting properties for, 191
testing for parameters in, 194
validating, 52, 62, 65
viewing report items in, 77

desktop applications. See Java applets
desktop reporting application, 147
destroy method, 148
detail processing phase (events), 80
detail reports. See subreports
detail rows, 80
detailType property, 309
developing

applications, 145, 181, 183, 267
Hibernate ODA UI extensions, 441, 448
ODA extensions, 365, 366, 419
plug-ins, 268, 275
rendering extensions, 329, 330, 337
report designs, 153, 204
reports, 13, 73

development environments, 74
development languages, 494

See also scripting languages
development tools, 267
device package, 164, 166
DHTML (defined), 481
DialChart interface, 164
DialChartViewer application, 248
Dimension attribute (charts), 87
directories

accessing fonts and, 201
accessing Java classes and, 110, 140
accessing report designs and, 36, 37, 42
creating event handlers and, 38
creating images and, 37, 201
deploying applications and, 183, 186
displaying reports and, 34
installing language packs and, 20
installing plug-ins and, 267, 268, 271
installing report viewer and, 36
saving temporary files and, 187
unpacking program archives and, 5
updating designer applications and, 32

disk writes, 147
display names, 371, 372, 480
displaying

charts, 52

538 I n d e x

displaying (continued)
error messages, 105, 108
extension point descriptions, 283, 284
HTML pages, 41
PDF files, 41
PDF reports, 203
project settings, 278
property annotations, 285
reports, 40, 51, 52

displayNameID property, 309
displayText property, 309, 320
distributing reports. See deploying reports
__document parameter, 41, 42
document files

accessing data in, 150
creating, 183, 199
defined, 510
generating reports from, 181, 182, 190,

192
opening, 149, 182, 191
overview, 55
referencing in URLs, 41
setting location of, 42
writing to disk, 150

document object model. See DOM
document type definitions, 480
documentation, xix, xx, xxi, 24, 146
documentation attribute, 269
documents, 181, 192, 203, 337

See also reports
DOM (defined), 480
domain names, 481
double quotation mark (") character

command line arguments and, 28
JavaScript code and, 225

download sites, 14
downloadable archives, 5
downloading

Apache Tomcat servers, 34
BIRT Report Designer packages, 23
BIRT Samples package, 28
BIRT Test Suite, 29
chart engine archive, 24
demo database, 25
Eclipse Modeling Framework, 7
Eclipse SDK software, 6
extension examples, 297
Graphics Editor Framework, 7

iText PDF library, 15, 16, 17
JDK software, 5, 6
language packs, 20
program archives, 14, 15, 17
report engine archive, 27
sample database, 9
source code, 302

driver classes, 101
driverClass attribute, 371
drivers

See also specific type
accessing external sources and, 366
connecting to, 202, 203
creating ODA, 53, 365, 367, 419
customizing, 57
defined, 481
installing, 35
registering, 436
required, 185
setting location of, 148
specifying interfaces for, 379

drivers directory, 35, 436
drivers subdirectory, 185
DTD (defined), 480
dteapi.jar, 184
DTP ODA classes, 365, 366
DTP ODA extension points, 366
DTP ODA framework, 404
DTP ODA interfaces, 365, 366, 379
dynamic data. See data
dynamic hypertext markup language. See

DHTML
dynamic images, 89
dynamic text elements, 481
dynamic variables, 481

E
e.reports. See reports
Eclipse compiler, 254
Eclipse Data Tools Platform, 53, 257, 365, 366
Eclipse desktop development environment.

See Eclipse Workbench
Eclipse environments, 74, 482
Eclipse frameworks, 48
Eclipse Modeling Framework, 7, 482
Eclipse perspective, 482
Eclipse platform, 6, 48, 267, 483

See also Eclipse Rich Client Platform

I n d e x 539

Eclipse Plug-in Development
Environment, 267, 275, 483

See also PDE Workbench
Eclipse projects, xvii, 47, 256–261, 483

See also projects
Eclipse Rich Client Platform, 483

See also rich client platforms
Eclipse SDK software, 6
Eclipse views, 278, 483
Eclipse Workbench, 73, 277, 325, 484
Eclipse workspace, 254, 484
ECMAScript language, 91
Edit Script command, 138
editor attribute, 308
editor pages, 395
EJBs, 131, 485
element, 269
element definitions (ROM), 64
Element element, 64
element method definitions (ROM), 65
ElementDetailHandle class, 161
ElementFactory class, 213
ElementFactory objects, 231
elements

See also report elements; ROM elements
accessing CSV files and, 371
customizing plug-ins and, 268
defined, 484
defining plug-in extension, 283
plug-in extension points and, 286, 299

ellipsis (...) button, 484
embeddable HTML output, 200
embedded fonts, 201, 202
embedded HTML, 200
embedded report engine, 147
EMF (defined), 482
EMF libraries, 185
EMF software, 7
emitter csv plug-in, 341, 350
emitter extension points, 330, 335
emitter extensions, 300, 363
emitter interfaces, 337
emitter objects, 342
emitter package, 329
emitter plug-in, 337, 338
emitters

customizing, 57
defining rendering options for, 349

extending functionality of, 330, 335
generating CSV output and, 341, 350
generating reports and, 52, 188
rendering extensions and, 330
setting properties for, 336

emitters package, 335
emitters plug-in, 300
emitters.exsd, 300, 330
encapsulation, 484
encoding, 522
end method, 343
endCell method, 347
endRow method, 347
engine API library, 184
engine api package, 145, 151, 152
engine APIs. See chart engine API; report

engine API
engine extension package, 317
engine home, 183, 186
engine home directory, 183
engine plug-ins, 148, 331
engine variable, 202
engineapi.jar, 184
EngineConfig class, 148
EngineConfig objects, 148, 186, 187, 190
EngineConstants class, 348, 349
EngineEmitterServices class, 339
EngineException exceptions, 203
engines, 48, 52, 366

See also specific engine
enterprise, 485
Enterprise JavaBeans. See EJBs
enterprise reporting, 485
enterprise systems, 485
enumeration classes, 163, 165
environment-dependent processing, 147
environments, 506
error messages, 105, 108, 382
errors, 105
evaluateQuery method, 197
event firing sequence, 74–75
event handler classes, 111, 112, 116, 118, 123
event handler interfaces, 112, 117, 118
event handlers

accessing JAR files for, 38
adding logging code to, 81
adding to designs, 74, 82, 91, 122
associating context objects with, 94, 126

540 I n d e x

event handlers (continued)
associating with report elements, 116–117
building charts and, 83–89, 224–225, 248
building data sets and, 82, 120, 122, 128
building data sources and, 82, 120, 121
creating, 73, 74, 91, 112, 118

tutorial for, 104–108
defined, 485
executing, 74–81, 93
mapping to report viewer and, 37
rendering report elements and, 61, 95, 111
rendering report items and, 61, 81, 119
rendering sequence for, 75

event listeners, 486
event package, 164, 166
events

See also event handlers
accessing data sources and, 82
building data rows and, 78
building dynamic columns and, 82
controlling page breaks and, 75
creating report designs and, 82, 122
defined, 485
firing, 61, 74–75
generating reports and, 75, 76, 78
generating table or lists and, 78–81
running reports and, 74, 76–81, 93
scripting for, 73, 74, 104, 118
subscribing to, 273

example charting applications, 24
example database, 8

See also Classic Models sample database
example extensions, 297
exception package, 164, 168
exceptions, 210, 486
executeQuery method, 384, 433
ExecuteReport class, 357
executing reports, 74, 76, 93
execution processes, 93
execution sequence (events), 74, 75–81
Experts. See wizards
export options, 292
Export Wizard (PDE), 291
exporting data, 183, 337
exporting plug-in extensions, 292, 302
Exporting section (Overview), 292
expression builder, 486
expression property type, 61

expressions
defined, 486
defining aggregate values and, 465
manipulating numeric values and, 502
manipulating string data and, 518
matching text patterns and, 509
returning Boolean values from, 467
setting properties and, 61

ex-property property type, 61
.exsd files, 268
extended-item name element, 62
ExtendedItemHandle class, 317
ExtendedItemHandle objects, 226, 231, 232
extensible markup language. See XML
extension APIs, 145
extension element, 271
Extension Element Details section, 283
extension IDs, 308, 335, 371, 393
extension names, 128, 269
extension package (report engine), 301
extension point identifier, 308, 335, 371, 393
extension point schema definitions, 268, 283
Extension Point Selection page, 281, 335
extension points

accessing external sources and, 366
accessing Hibernate data sources

and, 441, 444
adding report items and, 299
customizing ODA drivers and, 53, 371
defined, 487
defining, 279
displaying descriptions of, 283, 284
finding, 283
generating output and, 330, 335
implementing, 267, 299
selecting, 284, 310, 395

Extension Points page (New Extension), 310,
395

Extension Points page (PDE Editor), 279
extensionName property, 308
extensionProperties array, 101
extensions

adding chart items and, 54
adding report items and, 299, 301
building plug-in, 287–290
creating, 62, 279, 283, 299
customizing report items and, 54
declaring, 279

I n d e x 541

extensions (continued)
defined, 487
deploying, 268, 291, 296
developing ODA, 53, 365, 366, 419
naming, 308, 335, 393
overview, 57, 267
rendering reports and, 329, 356
sample projects for, 297
selecting export options for, 292
setting class attributes for, 286
setting contents of, 284
specifying, 281
structuring, 279–282
testing, 291

extensions package, 316
Extensions page (PDE Editor), 279, 281, 283
external connections, 202
external data sources, 68, 366, 379
external libraries, 108
external objects, 85

F
factory method, 149
factory package, 165, 168
Factory processes, 93, 95
Feature License dialog, 32
Feature Updates dialog, 31
Feature Updates page, 293
features, 11, 293
fetch method, 122, 132, 138, 140
field variables, 487

See also member variables; variables
fields

See also columns; computed fields
accessing CSV data and, 367
changing data sources and, 215
defined, 487
exporting CSV output and, 337, 339

File class, 381, 382
file objects, 381, 382
file types, 54, 488
FileDialog method, 450
files

See also specific type
accessing resource, 187
creating, 102
downloading program archive, 14, 15, 17
extracting program archive, 5, 14

generating output and, 181
installing Tomcat servers and, 35
mapping to report viewer, 36
overview, 54–55
rendering output and, 182
tracking method execution in, 102, 103

FileSelectionWizardPage class, 405, 409
filtering data, 53, 56, 193
filters, 488
finalization code, 78, 102, 103, 140
Find and Install command, 293
Find declaring extension point option, 283
findDataSet method, 214
findDataSource method, 214
findElement method, 207
finding extension points, 283
finding program updates, 31
findTOC method, 191
flat file data sources, 365
flat file plug-in, 365
flat files, 488

See also flat file data sources; text files
FLOAT data type, 100
flute.jar, 184
folders, 289
font files, 40
font style constants, 211
fontFamily style specification, 63
fonts, 40, 201, 488
footer grids, 76
footer rows, 80
footers, 80, 232, 488
form e-capable browser, 489
__format parameter, 41, 43
format property, 335
format styles. See styles
FormatCharts charting example, 247
FormatCharts class, 247
FormatChartsViewer class, 247
formatQueryText method, 383
formats

adding CSV, 349
customizing report generation and, 52, 56
defined, 488
exporting data and, 337
generating output and, 181, 199, 329
getting output, 94, 127
rendering images and, 201

542 I n d e x

formats (continued)
rendering output and, 200, 201
setting output, 182

formatted output, 181, 203
formatting data. See formats
Formula Editor. See expression builder
formulas. See expressions
frame objects, 109
frameset servlet, 41
framework, 489
Full Eclipse Install (BIRT Report

Designer), 5, 15–16
function declarations, 88
function stubs, 87, 88, 112
functions

See also methods
accessing, 95
defined, 489
defining chart events and, 88, 225
selecting, 97

fundamental data types. See data types

G
GEF software, 7
GeneralCategoryWrapper class, 321
generating

charts, 53, 221, 247
CSV files, 329, 339, 341, 346, 357
design files, 154
formatted output, 203
HTML reports, 43, 149, 150, 199, 200
lists, 78–81
master pages, 76
output, 43, 181, 329
PDF documents, 43, 149, 150, 199, 201
report design files, 52, 56, 154
reports, 182, 185, 200, 203
sample data, 231
tables, 78–81

generation engine, 50, 51, 52
generation-time events, 74, 75
generators (custom), 145
genReport script, 27
get method, 208
getAllExtensionProperties method, 128
getAppContext method, 94, 126
getBlock method, 86
getBody method, 207

getCategoryTabs method, 321
getChartInstance method, 85
getChildren method, 191
getColumnAlias method, 99, 128
getColumnCount method, 99, 128, 130, 345
getColumnLabel method, 99, 128
getColumnMetaData method, 99, 128
getColumnName method, 99, 128, 130, 387
getColumnNativeTypeName method, 100,

128
getColumnType method, 100, 128
getColumnTypeName method, 100, 128
getColumnValue method, 129, 130
getConfigVariableValue method, 94
getConnection method, 382, 388, 428
getContents method, 194
getDataSet method, 129
getDataSets method, 214, 215, 232
getDataSource method, 128
getDataSources method, 214, 215
getDataType method, 195
getDefaultValue method, 194
getDefaultValues method, 194
getDescription method, 86
getDesignHandle method, 206
getDimension method, 86
getElementFactory method, 231
getExtendedProperties method, 86
getExtensionID method, 129
getExtensionProperty method, 129
getExternalContext method, 85
getGlobalVariable method, 94, 126
getGridColumnCount method, 86
getHibernateProp method, 439
getHibernatePropTypes method, 439
getHttpServletRequest method, 94, 126
getInt method, 386
getInteractivity method, 86
getLabel method, 195, 319
getLegend method, 86, 227
getLocale method, 85, 94, 127
getLogger method, 85
getMaxConnections method, 428
getMaxQueries method, 429
getMeasure method, 212
getMessage method, 94, 127
getMetaData method, 429, 433
getName method, 129

I n d e x 543

getNext method, 208
getOutline method, 227
getOutputFormat method, 94, 127
getPageNumber method, 192
getParameterDefn method, 194
getParameterDefns method, 194
getParameterType method, 194
getParameterValue method, 94, 101, 127
getParameterValues method, 195
getPersistentGlobalVariable method, 94, 95,

127
getPlot method, 86, 227
getPrimaryBaseAxes method, 228
getPrimaryOrthogonalAxis method, 228
getProperty method, 191
getPropertyDefinitions method, 320
getQuery method, 410
getQueryColumnNames method, 411
getQueryString method, 95
getQueryText method, 129
getResult method, 435
getResultSetColumn method, 216
getResultSetExpression method, 216
getResultSetMetaData method, 412, 457
getRow method, 386
getSampleData method, 86
getScript method, 86
getSelectionList method, 195
getSelectionListForCascadingGroup

method, 198
getSeriesDefinitions method, 230
getSeriesForLegend method, 86
getSeriesPalette method, 230
getSeriesThickness method, 86
getSQLStateType method, 431
getString method, 388, 435
getStyle method, 209
getStyles method, 86
getSubType method, 86
getSupportedImageFormats method, 201
getTitle method, 86
getType method, 86
getTypeCode method, 389
getUnits method, 86
getURI method, 208
getValue method, 195
getVersion method, 86
getWidth method, 209, 212

global options (report engine), 148
global variables, 92, 95, 126, 489

See also variables
Glossary, 465
glyph, 489

See also character sets; fonts
grandchild classes. See descendant classes
grandparent classes. See ancestor classes
graphical report design tool, 51
graphical user interfaces. See user interfaces
graphics. See images
Graphics Editor Framework, 7
GraphicsUtil class, 321
graphs. See charts
grid cells. See cells
grid elements, 490
grid items, 67, 77, 213
GridColumnCount attribute, 86, 87
grids, 67, 86, 87, 490

See also grid elements; grid items
group fields. See group keys
group headers, 491
group keys, 491
group slots, 208
grouped lists, 79, 80
grouped reports, 490
grouped tables, 79, 80
grouping data, 53, 56

See also groups
GroupOnXSeries charting example, 246
GroupOnXSeries.rptdesign, 246
GroupOnYAxis charting example, 246
GroupOnYAxis.rptdesign, 246
groups, 78, 490
GUI components, 53

See also user interfaces

H
handle classes, 156
handle objects, 211
handler class, 112

See also event handler classes
hardware interfaces, 494
HashMap objects, 202
HashMap value, 151
header grids, 76
header rows, 80
headers, 80, 491

544 I n d e x

headings. See column headings
help, 503
hexadecimal numbers, 491
Hibernate Core for Java, 365, 366
Hibernate data sets, 420, 449
Hibernate data sources, 419
Hibernate data types, 425
Hibernate libraries, 441
Hibernate objects, 131
Hibernate ODA driver plug-in, 420, 439
Hibernate ODA drivers, 419, 420, 427
Hibernate ODA extension example, 426
Hibernate ODA extensions, 419, 420
Hibernate ODA UI example, 420
Hibernate ODA UI extension points, 444
Hibernate ODA UI extensions, 441
Hibernate ODA UI plug-in

building, 458
creating projects for, 442
deploying, 458
described, 419
developing, 448
launching, 460
specifying dependencies for, 443
specifying run-time settings for, 443
testing, 460–463

hibernate package, 426
hibernate plug-in, 419, 420, 439
Hibernate Query Language. See HQL

statements
hibernate ui plug-in, 419
hibernate.cfg, 420
HibernateClassSelectionPage class, 452
HibernateDataSourceWizard class, 448, 452
HibernateDriver class, 426, 428
HibernateHqlSelectionPage class, 449
HibernatePageHelper class, 448, 449, 452
HibernatePropertyPage class, 448, 452
HibernateUtil class, 427, 428, 436, 439
hibfiles directory, 420, 436
hierarchy, 491
HOME property, 372
homeDir parameter, 382
host applications, 147
host instance (PDE Workbench), 277
HQL (defined), 365
HQL statements

adding user interface for, 449

creating, 419, 429
executing, 433
retrieving data with, 435
verifying, 454

HTML (defined), 491
HTML elements, 484
HTML emitter configuration property

type, 187
HTML emitters, 52, 187, 188
HTML formats, 329
HTML frames, 41
HTML reports

See also web pages
configuring properties for, 202
generating, 43, 149, 150, 199, 200
opening, 203
rendering unpaginated, 150
setting up rendering context for, 201
viewing, 41
writing to disk, 147

HTML tags, 489
HTMLCompleteImageHandler objects, 188
HTMLEmitterConfig objects, 187
HTMLRenderContext class, 201
HTMLRenderContext objects, 200
HTMLRenderOption class, 150, 151, 182, 200
HTMLServerImageHandler objects, 188
HTTP (defined), 492
HTTP request objects, 95
HttpServletRequest objects, 94, 126
hyperlinks, 337, 340, 491
hypertext markup language pages. See web

pages
hypertext markup language. See HTML
hypertext transfer protocol. See HTTP

I
IAdvancedQuery interface, 381
IBandContent interface, 339
IBM WebSphere servers, 33
IBounds interface, 340
ICascadingParameterGroup interface, 193
ICell interface, 124
ICellContent interface, 339
ICellInstance interface, 125
IChartEventHandler interface, 88
IChartScriptContext interface, 83, 85
IColumnMetaData class, 99

I n d e x 545

IColumnMetaData interface, 128
IConnection interface, 380, 426
icons, 54, 308
IContainerContent interface, 339
IContent package, 340
IContentEmitter interface, 338
IContentVisitor interface, 340
ICU library, 184
id attribute, 371, 372, 394
ID property, 308, 335, 371, 393
id property, 335
IDataContent interface, 339
IDataExtractionTask interface, 150
IDataExtractionTask objects, 183
IDataSetEventHandler interface, 120
IDataSetInstance interface, 128
IDataSetMetaData interface, 380, 427
IDataSetRow interface, 129
IDataSourceEventHandler interface, 120
identifiers, 492
IDriver interface, 371, 380, 426, 428
IElement interface, 340
IEmitterServices interface, 338
IEngineTask interface, 149
IForeignContent interface, 340
IGetParameterDefinitionTask interface, 149
IGetParameterDefinitionTask objects, 194
IGetParameterDefnTask interface, 193
IHTMLActionHandler interface, 188
IHTMLImageHandler interface, 188
IHyperlinkAction interface, 340
IImageContent interface, 340
ILabelContent interface, 340
image constants, 209
image elements, 492
image files, 36, 201
image formats, 201
image handler, 188
ImageHandle objects, 208
images

accessing, 37, 89, 201
defined, 492
exporting to sample CSV report rendering

extension and, 337
rendering context and, 201
rendering rotated text as, 319, 321

IMessages interface, 318
impl packages, 163, 165
import statements, 109

importing Java packages, 109, 139
importPackage method, 109, 139
in_count parameter, 142
incrementing record counters, 106
index.jsp, 35
information. See data
inheritance, 492
initCustomControl method, 408, 449, 451
initialization code, 83, 102, 139
initialize events, 83, 123
initialize method

building report designs and, 76, 102, 123,
154

creating event handlers and, 94
creating output files and, 102
creating output streams and, 342
importing Java packages and, 109

initializeControl method, 454
initializing report designs, 76, 83
initSessionFactory method, 436
inner joins, 493

See also joins
input parameters, 141
input sources. See data sources
input streams, 217
inputParams array, 141, 142
installation

BIRT Chart Engine, 23–24
BIRT components, 5
BIRT Demo Database, 25
BIRT RCP Report Designer, 3, 16–18
BIRT Report Designer, 4, 14–15
BIRT Samples package, 28
BIRT Test Suite, 29
JDBC drivers, 35
JDK software, 5, 6
language packs, 19–21
plug-ins, 184, 271
report engine, 17, 27
report viewer, 34–35, 36
testing, 15, 18, 25, 27
troubleshooting, 18–19
TrueType fonts, 40

installation demo, 5
instance interfaces, 125
instance property, 226, 231
instance variables, 493

See also class variables; variables
instances. See objects

546 I n d e x

instantiation, 493
INTEGER data type, 100
integrated debugger, 74
interactive features (charts), 87
InteractivityCharts charting example, 247
interfaces

See also application programming
interfaces; specific programming
interface

adapter classes compared to, 118
chart engine API and, 163, 164
CSV report rendering extension, 338, 339
data row objects and, 129
data set objects and, 128
defined, 494
design model objects and, 153
developing with, 145
event handlers and, 111, 112, 118, 123
extending adapter classes and, 112
Hibernate ODA drivers and, 428
hierarchical diagrams for, 146
naming conventions for, 117, 118
ODA extensions and, 365, 371, 379
overview, 123
report elements and, 124–126
report engine API, 152
rotated label plug-in, 316
run-time drivers and, 379

International Components for Unicode. See
ICU library

internationalization, 23, 494
See also locales

IP addresses, 494
IPageContent interface, 340
IParameterDefnBase interface, 193
IParameterGroupDefn interface, 193
IParameterMetaData interface, 381
IParameterSelectionChoice class, 195
IParameterSelectionChoice interface, 193
IPlatformContext interface, 187, 188
IPropertyDefinition interface, 318
IPropertyTabUI interface, 316
IQuery interface, 380, 427
IRenderOption interface, 200, 349
IRenderOption objects, 182
IRenderTask interface, 150, 200
IRenderTask objects, 182
IReportContent interface, 341

IReportContext interface, 126
IReportDocument interface, 149
IReportDocument objects, 182, 191
IReportElement interface, 124
IReportEventHandler interface, 122
IReportItem interface, 318
IReportItemFactory interface, 318
IReportItemLabelProvider interface, 316
IReportItemPresentation interface, 317
IReportItemPropertyEditUI interface, 316,

320
IReportRunnable interface, 149, 190
IReportRunnable objects, 182, 191
IResultSet interface, 380, 427
IResultSetMetaData interface, 380, 427
IRowContent interface, 340
IRowData interface, 129
IRowInstance interface, 126
IRowSet interface, 317
IRunAndRenderTask interface, 150, 199, 200
IRunAndRenderTask objects, 182, 202
IRunTask interface, 150, 199
IRunTask objects, 202
IScalarParameterDefn interface, 193
IScalarParameterDefn objects, 194
isComputedColumn method, 100, 128
IScriptedDataSourceEventHandler

interface, 121, 122
isEmpty method, 194
isEncryptable attribute, 372
isEncryptable property, 309
isNameRequired property, 308
__isnull parameter, 41, 43
isRowInFooterBand method, 346
IStatusHandler interface, 187
IStyle interface, 340
IStyleModel interface, 317
ITableBandContent interface, 340
ITableContent interface, 340
iterator method, 208, 435
iterator objects, 140
iText open source library, 5, 6, 7
itext-1.3.jar, 15, 16, 221, 261
ITextContent interface, 340
ITextItem interface, 124

J
J2EE applications, 26, 40

I n d e x 547

J2EE environments, 13, 17, 494
J2SE environments, 5, 6, 495
.jar files

adding to classpaths, 113
building projects and, 261
building update sites and, 294
configuring report engine and, 148
copying, 38
creating charting applications and, 221
creating event handlers and, 112
default location for, 110
defined, 495
deploying Java classes and, 141
deploying plug-ins and, 268, 281, 291
deploying to JBOSS servers and, 34
developing ODA extensions and, 368
generating, 268
installing JDBC drivers and, 35
running report projects and, 353
selecting external, 355
developing ODA extensions and, 370

JAR Selection dialog, 355
Java. See Java programming language
Java 2 Enterprise Edition. See J2EE

environments
Java 2 Runtime Standard Edition. See J2SE

environments
Java APIs, 52
Java applets, 466
Java applications

See also applications
adding charting capabilities to, 23, 219
adding reporting capabilities to, 26
creating, 56, 147
generating designs and, 52

Java archives. See .jar files
Java Attribute Editor, 286
Java Build Path page, 112
Java Class dialog, 114
Java classes

See also classes
accessing, 108, 109, 116
associating with report elements, 116
creating, 63, 111, 112, 355
default location for, 110
deploying, 141
developing ODA extensions and, 368
developing with, 145

importing, 109
naming, 115
referencing, 109, 139
registering, 225
scripting for, 108, 109, 139, 140
setting properties for, 287

Java code, 73, 108, 110, 111, 494
Java command, 354
Java compiler, 116
Java Database Connectivity. See JDBC
Java development environment, 74
Java Development Kit. See JDK software
Java editor, 115
Java event handler classes, 111, 116, 120
Java event handlers, 74, 87, 111, 120, 224
Java interfaces, 123, 494
Java Naming and Directory Interface, 495
Java naming conventions, 117
Java objects, 95, 109, 131, 139
Java packages, 108, 109, 110, 139
Java perspective, 354
Java programming language, 494
Java programs, 74, 495
Java Project option, 354
Java projects, 113, 116
Java report generator, 56
Java run-time API, 273
Java Runtime Environment, 33
Java Settings page, 354
Java source files, 114
Java Virtual Machines. See JVMs
java.lang package, 109
JavaBeans, 496
JavaScript

accessing data sources and, 131
accessing Java classes for, 108, 109
accessing ROM elements and, 95
defined, 496
entering variables in, 92, 95
indexing column position and, 99
line breaks in, 225
previewing, 98
setting properties with, 96
tracking method execution and, 102
tutorial for, 104
wrapping Java code in, 108, 110
writing event handlers and, 73, 87, 91, 225

JavaScript array properties, 99

548 I n d e x

JavaScript library, 184
JavaScript objects, 109
JavaScript palette, 107
JavaScriptViewer application, 248
JavaServer Pages. See JSPs
JavaViewer application, 248
JBOSS servers, 33, 34
JDBC (defined), 495
JDBC connections, 101
JDBC data sources, 365
JDBC drivers, 35, 420, 436
JDK software, 5, 6, 9, 254, 495
JFrame objects, 109
JNDI (defined), 495
join conditions, 497
joins, 68, 496
joint data sets, 68, 493, 497
JointDataSet element, 68
JRE software, 33
js.jar, 184
JSPs, 496
JUnit libraries, 29
JUnit Regression Testing Framework, 10
JVMs, 19, 496

K
keywords, 497

L
label elements, 497
label items, 213
labels, 96, 319, 497
LabelStyleProcessor class, 250
language packs, 19–21
language-specific environments. See locales
Launch an Eclipse application option, 291
layout editor, 300, 497
layout package, 165, 176
Layout page. See layout editor
layouts, 497

See also page layouts; master pages
lazy load, 497
legend area (charts), 86, 223, 227
Legend block (charts), 86
legend line properties (charts), 227
Legend objects, 227
Level class, 190

level-break listings. See grouped reports
lib directory, 35, 112
libraries

See also component libraries
accessing, 55, 181
accessing properties in, 156
building plug-in extensions and, 279, 288
changing, 55
creating reporting applications and, 181,

204
defined, 498
deploying applications and, 183
deploying reports and, 112
naming, 289
required, 184
reusing designs and, 51
running Hibernate drivers and, 441
scripting and, 108
selecting, 289

Libraries page (Java Settings), 354
library files, 55, 204, 498
LibraryHandle class, 156, 205
licenses, 32
line break characters, 225
line breaks (JavaScript), 225
LineAttribute objects, 227
LineSeries objects, 228, 229
links. See hyperlinks
Linux platforms, 23
list elements, 66, 213, 498
list execution sequence (events), 79, 80
list items, 67, 77
list processing phase (events), 79
list setup phase (events), 79
listeners. See event listeners
Listing element, 66
listing reports, 80, 498
ListingGroup elements, 80
ListingGroup items, 80
lists, 67, 78–81

See also list elements; list items
load_classicmodels.sql, 26
loading

class files, 286
document files, 149
metadata, 154
plug-ins, 280

I n d e x 549

loading (continued)
report designs, 149, 206

examples for, 191
source code, 271, 497

local variables, 92, 499
See also global variables; variables

__locale parameter, 41, 43
Locale objects, 85
locale-independent formats, 193
locales

building charts for, 85
changing, 21
converting strings and, 193
defined, 499
getting, 94, 127
installing language packs for, 19–21
managing programmatically, 149
specifying, 21, 43

localization, 19, 23, 499
See also locales

locating extension points, 283
locating program updates, 31
log files, 36, 187, 190
log messages, 37, 85, 148, 190
log package, 165, 169
Logger class, 190
Logger objects, 85
logging classes, 190
logging code, 81
logging configurations, 190
logging levels, 37, 190
Logging property type, 187
logging threshold, 190

M
Manage Configuration command, 293
manifest files, 271, 275, 277, 279, 499
manifest headers, 277
manifest.mf, 277, 279
mapping to report viewer, 36
markers (charts), 86
markup languages, 481, 487, 491

See also elements; tags
master pages, 66, 76, 499
MasterPage element, 66
Math class, 109
matrix reports. See cross-tab reports
Member element, 65

member variables, 500
See also field variables; variables

members, 65, 500
messages, 94, 127, 513

See also error messages; log messages
Messages class

CSV ODA driver extension, 382, 388
CSV ODA UI extension, 404
Hibernate ODA extension, 427, 449

messages.properties file, 404, 449
metadata

accessing, 150
accessing Hibernate data sources

and, 433
accessing ODA data sources and, 380,

382, 383
defined, 501
defining ROM elements and, 63–66
getting column information from, 99, 128
getting data set, 128
loading, 154

metadata interface, 128
MeterChartExample application, 250
method definitions, 64, 65
Method element, 64, 65
Method metadata definition (ROM), 65
Method property, 67
methods

See also functions
accessing column information and, 99,

128
accessing data sets and, 120, 122, 128, 132
accessing data sources and, 82, 120, 121
accessing report components and, 156
accessing report designs and, 155
accessing report items and, 207
building charts and, 83, 85, 86, 87
building data rows and, 78, 129
building tables or lists and, 79, 80
creating event handlers and, 94, 111, 118,

126
creating report designs and, 123
defined, 501
defining ROM elements and, 61, 65
executing reports and, 76, 78, 95
generating report elements and, 124, 125
generating report items and, 81, 119
importing Java packages and, 109

550 I n d e x

methods (continued)
overriding, 118
providing external values for, 187
rendering CSV output and, 342, 344
running rotated text plug-in and, 273
scripting with, 108
selecting, 96, 97
tracking execution of, 102–104
viewing arguments for, 119

methods array, 60
Microsoft Access databases, 26, 89
Microsoft Windows. See Windows systems
milestone builds, 11
milestone release, 31
MIME types, 335
mimeType property, 335
modal windows, 501
mode, 501
model attribute, 269
model element, 308
model extension element, 308
model package (charts), 165, 169
modelapi.jar, 185
modeless windows, 501
ModifyListener method, 450
ModuleHandle class, 155
Mozilla Rhino, 91, 108, 110
multicolumn page layouts, 67
Multipurpose Internet Mail Extensions. See

MIME types
multithreaded applications, 501
myChart.chart file, 221
mysql command line interface, 26
MySQL databases, 8, 26
MySQL installation scripts, 441

N
name attribute, 372
name collisions, 109
name element, 309
Name property, 308, 335, 371, 393
name property, 309
name variable, 202
names

See also aliases; display names
accessing Java packages and, 109
changing context root, 36
defining properties and, 61

getting column, 99, 128
retrieving values and, 99, 128

name-value pairs, 60
naming

data set columns, 122
event handler classes, 117, 118
Java classes, 115
ODA data source extensions, 371
ODA data source UI extensions, 393
output files, 200
plug-in libraries, 289
report design files, 326
report item extensions, 269, 308
report items, 207
report rendering extensions, 335
scripted data sets, 134
scripted data sources, 134

naming conventions, 117
nativeDataType property, 373
nativeDataTypeCode property, 372
Navigator, 104, 501
Navigator command, 104
New Class command, 355
New Data Set wizard, 134
New Data Source wizard, 133
New Extension wizard, 281
New Java Class wizard, 355
New Java Project wizard, 354
new line characters, 347
new line tag, 348
New Plug-in Project wizard, 275, 276, 277
New Project wizard, 275
New Report command, 326
New Report wizard, 326
New Source Folder dialog, 289
New Update Site wizard, 295
newDataSourceWizard attribute, 394
newElement method, 213
newExtendedItem method, 231
newQuery method, 429
newReportItem method, 318
newSession method, 154, 206
newsgroups, xvii, 5
next method, 386, 435
nightly builds, 11
–nl command line argument, 21
node, 502
NonGroupOnXSeries.rptdesign, 246

I n d e x 551

NonGroupOnYAxis.rptdesign, 246
non-scripted data sets, 131
non-scripted data sources, 131
non-visual elements, 59, 205
null values, 43, 502
Number class, 109
numeric data types, 502
numeric expressions, 502
N-up reports. See multicolumn page layouts

O
Object class, 109
object libraries. See component libraries
object references, 140
object-oriented programming, 502
objects

accessing, 131, 139
defined, 502
getting, 222
instantiating, 139, 271
registering service, 273
saving, 127

octal numbers, 503
ODA (defined), 503
ODA API, 365, 366, 379
ODA API Reference, 214, 366
oda csv package, 381
oda csv plug-in, 367
ODA data set extension elements, 372, 376
ODA data set extensions. See ODA

extensions
ODA data sets, 82, 215, 372, 380, 382, 390
ODA data source extension elements, 371,

372, 374
ODA data source extension points, 371, 373,

395, 441
ODA data source extensions. See ODA

extensions
ODA data sources

accessing, 366, 371
adding, 390
committing changes to, 380
connecting to, 380, 381
defining event handlers for, 82
designing for, 404
getting columns in, 380
moving through rows in, 380
querying, 380, 381, 384

retrieving data from, 365, 379
setting connection properties for, 101

oda dataSource extension point, 367
oda dataSource plug-in, 366, 371
ODA driver constants, 389
ODA driver extension examples, 297, 367,

381
ODA driver extensions

compiling and debugging, 368
creating, 366, 379
implementing, 371
setting dependencies for, 370
specifying run-time settings for, 370

ODA driver interfaces, 379
ODA driver plug-in project, 365, 368, 390
ODA driver plug-ins, 368, 414
ODA drivers

adding to BIRT framework, 366
adding user interface for, 366, 371
connecting to, 380, 381
creating, 53, 365, 367, 419
customizing, 57, 366
defined, 503
defining error messages for, 382
setting extension elements for, 371
specifying run-time interface for, 379

ODA extension example (Hibernate), 420
ODA extension identifiers, 371
ODA extension points, 366, 371
ODA extensions

See also ODA driver extensions
accessing CSV data sources and, 367
adding user interfaces for, 367
building, 368
data type mappings and, 372
defining run-time settings for, 371
developing, 365, 366, 419
display names for, 372
downloading code for, 367
overview, 366
run-time properties and, 101
setting display names for, 371
setting properties for, 371
specifying, 376

ODA framework, 53
ODA interfaces, 371, 379, 381
ODA packages, 366
oda plug-in, 368, 371, 379

552 I n d e x

ODA plug-ins, 371, 379, 381
oda ui dataSource plug-in, 366
ODA UI extension, 368
ODA UI extension points, 393
ODA UI extensions, 390–403
ODA UI plug-ins, 367, 368, 393, 403
ODA user interface, 366, 367
ODA_DEFAULT_CHARSET variable, 405
OdaDataSetHandle class, 215
OdaDataSourceHandle class, 214
odaDataSourceUI element, 396, 398, 400
odaDriverClass property, 101
ODAHOME variable, 405
odaPassword property, 101
odaScalarDataType property, 373
odaURL property, 101
odaUser property, 101
odaVersion attribute, 371
ODBC (defined), 504
ODBC drivers, 26
onCreate events, 61, 75, 81
onCreate method

listing groups and, 80
report items and, 81, 119

onFetch events, 82, 121
onFetch method, 99, 121
onFinish method, 80
online documentation. See documentation
online help, 503
online reports. See web pages
onPageBreak events, 61
onPageBreak method, 119
onPrepare events, 61, 81
onPrepare method, 76, 81, 119
onRender events, 61, 75, 81
onRender method, 81, 119
onRow method, 80
onRowSets method, 319
open data access, 503

See also ODA
open database connectivity. See ODBC
open events, 82
Open extension point description

option, 283, 284
open method

Hibernate drivers and, 428
iterator objects and, 140
scripted data sets and, 122, 135, 139

scripted data sources and, 121, 132
Open Services Gateway Initiative. See OSGi
open source projects. See projects
open source software development. See

Eclipse
opening

class files, 286
configuration files, 38
connections, 380, 381
cursors, 380
data sets, 82, 121, 122, 139
data sources, 82, 120, 121, 135
document files, 149, 182, 191
Export Wizard, 292
HTML reports, 203
Navigator, 104
output files, 343
PDF documents, 203
Plug-in Development perspective, 275
report designs, 62, 182, 190, 206

examples for, 104, 191
openReportDesign method, 149, 182, 190
openReportDocument method, 149, 182, 191
operators, 504
optional parameters (URLs), 41
options (rendering), 200
orthogonal axis values, 228, 472
OSGi Alliance web site, 273
OSGi API, 273
OSGi class loader, 372
OSGi platform, 273, 277
OSGi resource bundles, 272, 277
out_msg parameter, 142
outer joins, 504

See also joins
outline attribute, 308
Outline view (Eclipse), 278, 504
outlining chart legends, 227
output

accessing formatted, 203
creating CSV files and, 329, 339, 341, 346,

357
creating HTML reports and, 200
generating, 43, 181, 203, 329
generating with conditions, 95
rendering, 52, 56, 138, 300
setting options for, 200
validating, 62, 65

I n d e x 553

output (continued)
writing to disk, 147

output columns, 135
Output Columns view, 136
output files

accessing, 203
adding method calls to, 102
closing, 344
displaying, 357
naming, 200
opening, 343

output formats
customizing, 199, 300, 330
getting, 94, 127
rendering context and, 201
rendering designs as, 363
rendering options for, 181, 200
rendering output and, 329
setting, 43, 56, 182, 335
specifying MIME types for, 335

output parameters, 141
output streams, 102, 181, 200, 204, 342
outputParams array, 141, 142
overriding methods, 118
overriding report parameters, 28
Overview page (PDE Editor), 278, 292

P
–p command line argument, 28
package (defined), 505
Package Explorer, 262, 278
packages, 3, 7, 23, 146
Packages object, 108
Packages prefix, 109
page breaks, 75
page footers, 488
page headers, 491
page layouts

See also designs; master pages
building multicolumn, 67
creating lists and, 67
creating tables and, 67
defined, 497

pageBreak events, 75
palette element, 308
Palette view, 54, 505
parameter definitions, 150, 194
parameter groups, 193, 194

PARAMETER_GROUP value, 194
parameters

See also data set parameters; report
parameters

accessing information about, 149
assigning null values to, 43
creating scripted data sets and, 141
defined, 505
defining session-specific, 154
developing ODA extensions and, 381
getting values for, 101, 127, 183, 194
overview, 44
running reports and, 41, 95
setting values for, 95, 127, 195, 200

code example for, 195, 197
validating, 150, 151

param-value element, 38
parent class. See superclasses
parse method, 195
passwords, 101, 506
paths

charting applications and, 221
context mapping, 36
event handlers, 38
fonts and, 201
image files and, 201
report design files, 36, 42
report designer, 37
report engine and, 186
scripted data sources and, 140

patterns, 506
See also object-oriented programming

PDE (defined), 483
PDE Manifest Editor, 278, 353
PDE Workbench, 277–296

See also Eclipse Plug-in Development
Environment

PDF documents
building charts for, 221, 247
displaying, 41
generating, 43, 149, 150, 199, 201
installing fonts for, 40
missing content in, 40
opening, 203
setting up rendering context for, 201
writing to disk, 147

PDF emitter, 52
PDF formats, 329

554 I n d e x

PDF reports. See PDF documents
PDFChartGenerator charting example, 247
PDFChartGenerator class, 247
PDFRenderContext class, 201
PDFRenderContext objects, 200
PDFRenderOption class, 150
peek method, 344
persistent global variables, 95
persistent variables, 94, 126, 127
perspectives, 482
platform, 506
Platform context property type, 187
Platform Plug-in Developer Guide, 296
PlatformServletContext objects, 188
plot area (charts), 223, 227
Plot block (charts), 86
Plot objects, 227
plot properties (charts), 223, 227
Plugin class, 272
Plug-in Development Environment, 267,

275, 483
See also PDE Workbench

Plug-in Development perspective, 275
plug-in directories, 267
plug-in drivers, 366
plugin element, 271
plug-in extensions

building, 287–290
creating, 279–287
customizing BIRT and, 267
deploying, 268, 291–296
examples for, 297
selecting export options for, 292
setting class attributes for, 286
specifying, 281, 335
testing, 291
viewing descriptions of, 283, 284

plug-in fragments, 506
plug-in manifest files, 271
Plugin package, 318
plug-in registry, 271, 330
plug-in run-time class, 271, 272
Plug-in Selection dialog, 279, 306
plugin.xml, 268, 271
Plug-in.xml page (PDE Manifest Editor), 279
plug-ins

accessing CSV data sources and, 367, 368
accessing source code for, 4

building CSV report rendering extension
and, 330, 334, 348

building rotated label report item
extension and, 302, 305

caching conflicts and, 18, 24
compiling code for, 290
creating Hibernate driver, 420, 439, 448
creating Hibernate ODA UI, 458
defined, 506
defining extension points in, 299
deploying applications and, 183
developing, 268, 275
developing ODA extensions for, 366, 372,

379, 381
editing project settings for, 278, 279
extending application development

and, 267
extending functionality of, 279
installing, 184, 271
instantiating objects in, 271
integrating with Eclipse, 47
loading, 280
running report engine and, 183, 330
selecting run-time libraries for, 289
setting dependencies for, 279, 305
setting properties for, 277
setting up projects for, 275–277
testing, 268, 277, 353
updating, 293
verifying run-time archive for, 281
viewing information about, 278
viewing project settings for, 278

plugins folder, 368
plug-ins subdirectory, 183
Point property, 308, 335, 371, 393
polymorphism, 506
pop method, 344
portal, 507
portlets, 507
predefined layouts. See master pages
predefined values, 476
preference example (charts), 250
preferences (Eclipse workspace), 254
PreferenceServlet charting example, 250
preparation phase (events), 76
prepare method, 383, 431
prepareMetaData method, 383

I n d e x 555

presentation engine
components of, 50
customizing output formats for, 300, 330
generating reports and, 51
overview, 52

presentation extensions, 300
presentation plug-in, 307, 309
presentations, 319
presentation-time events, 74, 75
previewer, 51, 74, 75, 507
previewing

reports, 51, 147
scripts, 98
source code, 105

primary base axis (charts), 228
print method, 341
printing, 66, 341
println method, 103
PrintWriter objects, 102, 103
private styles, 212
PrivateStyleHandle class, 212
procedures, 507

See also functions; methods
process, 507
Product Configuration dialog, 294
program archives, 5, 14, 15, 17
program requirements

BIRT Chart Engine, 7
BIRT Demo Database, 8
BIRT RCP Report Designer, 5
BIRT Report Designer, 6–7
BIRT Report Engine, 9
BIRT Samples, 9
BIRT Test Suite, 9–10

program updates, 31, 291, 293
programming environments, 74
programming interfaces, 123, 494

See also application programming
interfaces; interfaces

programming languages, 494
See also scripting languages

programming tools, 267
projects

adding event handler classes to, 112, 116
building BIRT, 253–256
building plug-in extension, 288, 290
building update site, 294
changing settings for, 278, 279

checking out, 256
creating

CSV ODA driver, 368
CSV report rendering, 331, 353
Eclipse, xvii, 256–261
Hibernate ODA driver, 421, 422
Hibernate UI plug-in, 442
plug-in, 275–277
report item extension, 303
rotated label report item, 302–305

developing ODA extensions and, 367
running, 353
selecting, 113
viewing settings for, 278

properties
accessing, 155, 208
charting applications and, 222–224
charts and, 86, 87, 164, 227–228, 231
customizing, 60
data sets and, 129, 215
data source connections and, 101
defined, 508
event handlers and, 95, 96
Hibernate data sources and, 451, 452
Java classes and, 287
Java packages and, 108
libraries and, 156
ODA extensions and, 371
plug-ins and, 277
report designs and, 66, 155, 191
report elements and, 67, 125, 206
report emitters and, 335, 336
report engine and, 186, 187
report item extensions and, 307
report items and, 67, 96, 208, 209, 211, 212
ROM elements and, 60, 61, 62, 66
selecting, 96
user sessions and, 154
visual components and, 67

properties files, 19, 127
properties list, 507
Properties page. See Properties view
Properties view, 507
property annotations, 285
property collections, 61
property definitions, 60
Property Edit Page, 308
Property Editor, 508

556 I n d e x

property editors, 268, 316, 390
property element, 62
property handles, 212
property pages, 404, 448
Property property, 67
property property type, 60
property sheets, 63

See also Properties view
property types, 60, 67, 318
property-list property type, 60
propertyPage element, 308
propertyPage extension point, 441
propertyPages extension point, 404
PropertyProcessor class, 317
PropertyType class, 318
protocol, 508
public classes, 115
publish, 508
push method, 344

Q
queries

See also HQL statements; SQL statements
accessing Hibernate data sources

and, 431, 433, 435, 449, 454
changing, 101
defined, 509
defining chart series and, 229, 230
developing ODA extensions for, 365, 380,

381
executing, 384
extending functionality of, 300
retrieving data with, 196

query preparation extensions, 300
query strings (request objects), 95
queryText property, 101
quotation mark characters. See double

quotation mark character

R
range, 509
RCP (defined), 483

See also rich client platforms
readLine method, 385
record counters, 104, 106
records. See rows
referencing

Java classes, 109, 139
report designs, 37, 41
report documents, 41

registering service objects, 273
registry (plug-ins), 271, 330
regression testing, 470
Regression Testing Framework (JUnit), 10
regular expressions, 509
relational databases, 365

See also databases
relative paths, 36, 42
release builds, 10, 14, 16, 17
removing. See deleting
renaming report design files, 232
render option classes, 150, 151, 200
render option objects, 150, 151, 200
render package, 165, 177
render processes, 93, 94, 95
rendering classes, 341
rendering context, 201
rendering environments, 147, 181
rendering extension API, 329
rendering extensions

creating projects for, 331, 353
defined, 509
developing, 329, 330, 337
naming, 335
overview, 329
running, 356
sample for, 329, 337
setting dependencies for, 334
viewing output for, 357

rendering options, 200, 349
rendering plug-ins, 337, 353
rendering sequence (events), 75
rendering services, 147
RenderOptionBase class, 348, 349
__report parameter, 41, 42
report body processing phase (events), 76,

77
report components, 155, 156

See also components
report context objects, 94, 126, 200
report descriptions, 55, 59
report design elements, 66, 82, 122
report design engine, 52, 54, 204
report design engine API, 145, 153, 157, 181

See also report model API

I n d e x 557

report design engine class, 154
report design environments. See BIRT;

Eclipse
report design files

accessing report items in, 222
associating with reports, 42
defined, 509
generating, 52, 56, 154
generating reports from, 147, 182, 190,

200, 206
installing report viewer and, 35, 36
loading, 149
naming, 326
opening, 62, 182, 190, 206

examples for, 104, 191
overview, 55
referencing in URLs, 37, 41, 42
renaming, 232
running, 150, 200
specifying paths for, 37
validating, 52

report design perspective, 14
report design properties, 66
report design tools, 51, 153, 154
report designer packages, 4, 13, 31
report designer ui extensions package, 316
report designers, 13, 51, 56, 147

See also BIRT Report Designer; BIRT RCP
Report Designer

report designs
See also page layouts
accessing, 154, 181, 204, 206
accessing Hibernate data sources for, 441
accessing items in, 204
accessing properties for, 155
accessing ROM schema for, 62
adding charts to, 232, 246, 250
adding data sources to, 390
adding report items to, 67, 207, 213, 301
changing, 185, 204, 206, 211
connecting to external sources and, 202
creating, 55, 153, 205, 217
defined, 480
defining event handlers for, 74, 75, 82, 91,

122
deploying, 204
developing, 204
extending functionality of, 57

generating CSV files and, 359
getting parameters in, 194
initializing, 76, 83, 102, 123
retrieving data for, 366
reusing, 51
saving, 204, 217, 232
setting location of, 36, 37, 42
setting properties for, 191
testing for parameters in, 194
validating, 52, 62, 65
viewing report items in, 77

report document files
accessing data in, 150
creating, 183, 199
defined, 510
generating reports from, 181, 182, 190,

192
opening, 149, 182, 191
overview, 55
referencing in URLs, 41
setting location of, 42
writing to disk, 150

report documents. See documents; reports
report editor, 510
Report element, 62
report element interfaces, 124–126
report elements

See also specific type
accessing, 181, 204
adding, 66
applying styles to, 62
associating event handlers with, 91, 111,

116–117
changing, 205
creating, 124, 125, 213
defined, 510
developing ODA extensions for, 371, 372
getting formats for, 344
loading property definitions of, 154
operations unique to, 156
providing services for, 156
rendering, 337
scripting for, 95, 118
setting properties for, 125, 206
validating, 52

report emitters. See emitters
report engine

accessing external data sources and, 379

558 I n d e x

report engine (continued)
configuring, 148, 187, 188
configuring HTML emitter for, 188
connecting to data sources and, 182
creating, 148, 186
customizing, 147
defined, 469
defining default location for, 186
defining platform context for, 187, 188
deploying report viewer and, 33
extending report items and, 54
generating output and, 363
generating report items and, 300
getting output formats for, 330
implementing CSV report rendering

extension and, 348
installing, 17, 26, 27
logging messages for, 37
overview, 52
platform context for, 188
running, 330
services provided by, 147
setting as stand-alone application, 189
setting global options for, 148
setting properties for, 186, 187
shutting down, 183
software requirements for, 9
testing installation for, 27

report engine API, 147, 148, 152, 181
report engine API package, 145, 151, 348
Report Engine API Reference, 181
report engine classes, 148, 151
report engine content package, 329, 339
report engine emitters package, 329, 335
report engine emitters plug-in, 300
report engine extension package, 301, 317
report engine hierarchy, 50
report engine home directory, 183
report engine package, 14, 183
report engine plug-in, 331
report examples (charts), 250
report executable files, 510

See also report object executable files
report execution process (events), 76–81
report file types, 54, 488
report files, 54–55

See also specific type
report generation services, 147

report generators, 56, 145
report item API, 301
report item elements, 67

See also report items
report item emitter extension point, 300
report item events, 119
report item extension points, 299, 307, 310
report item extension sample plug-in, 297,

301, 470
report item extensions

creating, 299, 312
defined, 511
defining dependencies for, 305
deploying, 302, 324
designing reports and, 301
developing, 54, 301–315
displaying reports and, 52
downloading sample code for, 297
implementing classes and interfaces

for, 316
implementing presentation plug-in

for, 307, 309
naming, 269, 308
overview, 299–301
setting up projects for, 303
testing, 324
XML schema definitions for, 268, 269, 284

report item interfaces, 316
report item model extension points, 299
report item palette, 300
report item query extension point, 300
report item run-time extension point, 300
report item UI elements, 308
report item UI extension points, 300
report items

accessing, 181, 204, 207, 209, 210
adding, 67, 213, 299, 301, 318
applying styles to, 212
binding data sets to, 216
changing, 211
changing properties for, 211, 212
creating, 54, 213, 300
customizing, 54, 57, 301
defined, 67, 510
defining event handlers for, 61, 74, 76, 81,

119
determining level of, 77
examining, 208

I n d e x 559

report items (continued)
extending functionality of, 57, 62, 299
generating output for, 300
getting handles to, 155, 156
getting properties for, 208
localizing, 43
naming, 207
overview, 53–54, 207
rendering, 81
retrieving from design files, 222
setting properties for, 67, 96, 210, 211
writing to CSV files, 341

report layouts. See report designs; page
layouts

report library files, 55, 204, 498
report model API, 153, 154
report model api extension package, 318
report model api package, 145, 153, 157, 317
report object model. See ROM
report objects. See reports
report parameter collections, 196
report parameters

See also cascading parameters
accessing, 192, 193
converting, 193
defined, 512
getting attributes of, 195
getting default values for, 194
getting value of, 101, 195
overriding, 28
overview, 44
running reports and, 41
setting values for, 195, 197, 200, 202
testing for, 194
validating, 151

report previewer, 51, 74, 75
report projects. See projects
Report Rendering Extension API. See

rendering extension API
report rendering sample plug-in, 297
report sections, 515
report specifications. See report designs
report template files, 55, 512
report templates, 56, 520
Report templates section (New Report), 326
report viewer

accessing reports for, 36, 40
building, 262

changing configurations for, 36
components of, 50
default location for, 36
deploying, 33, 51
developing for, 147
generating charts for, 53
generating reports from, 182
installing, 34–35, 36
installing auxiliary files for, 35
integrating report item extensions

with, 324
mapping to, 36
overview, 51
placing Java classes for, 110
referencing report designs for, 37, 41
referencing report documents for, 41, 42
running on Apache servers, 34, 36, 39
setting context parameters for, 38
starting, 34, 39
testing installation of, 35

report viewer servlet, 51, 512
reportContext objects, 94, 126
ReportDesign element, 66, 82, 122
ReportDesign events, 74, 75, 82, 123
ReportDesignHandle class, 155, 156, 205,

207
ReportDesignHandle objects, 154, 155, 206,

222
ReportElement element, 66
ReportElementHandle class, 159
ReportEngine class, 148, 186, 193
ReportEngine objects, 148, 182, 186

See also report engine
ReportEventAdapter class, 122
reporting applications. See applications
reporting platform. See BIRT
ReportItem element, 66, 67
ReportItem events, 74
reportitem plug-in (charts), 301
ReportItemFactory class, 318
reportitemGeneration plug-in, 300
reportitemGeneration.exsd, 300
ReportItemHandle class, 160
ReportItemLabelProvider class, 319
reportItemLabelUI element, 285, 308
reportItemModel plug-in, 299, 301, 307, 308
reportItemModel.exsd, 299
reportitemPresentation package, 309

560 I n d e x

reportitemPresentation plug-in, 300, 302,
307

reportitemPresentation.exsd, 300
ReportItemPresentationBase class, 319
reportitemQuery plug-in, 300
reportitemQuery.exsd, 300
reportitemUI plug-in, 283, 300, 301, 307, 308
reportitemUI.exsd, 268, 300
ReportParameterConverter class, 193
reports

accessing, 36, 40, 203
associating styles with, 65, 66
building, 76, 78
controlling generation of, 73
creating, 154, 182
customizing, 185
defined, 509
deploying, 33, 110, 112
designing. See designing reports; designs
developing, 13, 73
displaying, 40, 51, 52
generating, 182, 185, 200, 203
personalizing, 56
previewing, 51, 147
rendering environments for, 181
rendering output for, 52, 56, 147
rendering specific pages for, 149
running, 74, 76, 93
selecting language for, 20
setting default styles for, 62
testing report viewer for, 35
writing to disk, 147

Repository Location command, 257
request objects, 95
requests, 94, 126, 513
Required Plug-ins section, 279, 280
reserved words. See keywords
resource bundles, 272, 388
resource files, 94, 187, 206, 513
Resource files property type, 187
resource keys, 513
resources, 293
response, 513
response messages, 513
result sets

See also data sets
accessing, 380
defined, 513

developing ODA extensions for, 365, 379,
380, 382

getting Hibernate data source, 430, 435
getting number of columns in, 99
returning, 68

ResultSet class, 382, 385, 427, 435
ResultSetMetaData class, 382, 387, 427
rich client platforms, 51, 73, 483
rollback method, 430
rollback operations, 380, 430
ROM, 54, 59, 511
ROM API Reference, 181
ROM definition file, 511
ROM Definitions Reference, 59
ROM element design interfaces, 118
ROM element handles, 204
ROM element instance interfaces, 118
ROM elements

accessing, 204
applying styles to, 62
as visual components, 67
creating, 64
customizing properties for, 60
customizing XML code for, 60
defined, 511
defining event handlers for, 61, 112
defining executable code for, 67
overview, 59, 66, 68
scripting for, 95, 118
setting properties for, 60, 63
viewing metadata definitions for, 63–66

ROM report item elements, 67
ROM report item extensions, 299, 307
ROM schemas, 62, 512
ROM slots, 61
ROM specification, 54, 59
ROM types, 60
rom.def, 63, 511
rotated label extension points, 287
rotated label manifest file, 271
rotated label plug-in, 273, 301, 302, 316
rotated label plug-in project, 278
rotated label report item extension

creating projects for, 302–305
defining dependencies for, 305
deploying, 302
developing, 301, 312, 316
downloading BIRT plug-ins for, 302, 305

I n d e x 561

rotated label report item extension
(continued)

downloading source code for, 302
implementing, 301
overview, 301
specifying extension points for, 307–312
viewing property annotations in, 285

rotated text items, 318, 319, 321
rotated text report item extension. See rotated

label report item extension
rotatedlabel plug-in, 273, 301, 302, 316
RotatedLabelGeneralTabUIImpl class, 320,

321
RotatedLabelItemFactoryImpl class, 318
RotatedLabelPlugin class, 273
RotatedLabelPresentationImpl class, 319
RotatedLabelPropertyEditUIImpl class, 320
RotatedLabelReportItemImpl class, 320
RotatedLabelUI class, 319
rotateImage method, 322, 323
rotationAngle property, 309, 320
Row element, 69
row execution sequence (events), 78
Row instance interface, 126
row objects

See also rows
fetching data sets and, 129
getting column information from, 99
getting query statements from, 100
populating, 121, 122

rows
accessing columns in, 99
building, 78, 80, 129, 138
defined, 513
getting information for, 129
incrementing cursors for, 386
iterating through, 140, 380
returning from Java objects, 140
returning result sets and, 69

.rptdesign files. See report design files

.rptdocument files. See report document files

.rptlibrary files. See report library files

.rpttemplate files. See report template files
run, 514
Run dialog, 356
run method, 203
Run mode, 353
run report project, 353, 354

run servlet, 41
runnable variable, 202
running reports, 74, 76, 93
RunReport class, 355
run-time archives (plug-ins), 268, 281
run-time connections, 101
run-time drivers, 379
run-time environments, 271
Runtime Information section, 288
run-time instance (PDE Workbench), 277
run-time libraries, 289
Runtime page (PDE Manifest Editor), 279,

281
run-time workbench, 325

S
sac.jar, 185
SalesReport application, 250
sample charting applications, 24
sample data, 87, 226, 231
Sample Data containment reference

(charts), 87
sample database, 8

See also Classic Models sample database
sample extensions, 297
Samples package, 9, 14, 28, 470
save method, 217
saveAs method, 217
savePage method, 413, 456
saving

report components, 51
report designs, 204, 217, 232

scalar data types, 373
scalar parameters, 193, 194
schema directory, 268
schema element, 268
schema-aware tools, 62
schemas

BIRT extension points and, 335
custom formats and, 300
defined, 514
Eclipse extensions and, 283
ODA extensions and, 366
presentation extensions and, 300
query extensions and, 300
report item extensions and, 307, 312
report item generation and, 300
report item user interfaces and, 300

562 I n d e x

schemas (continued)
report object model and, 62
report rendering extensions and, 330
ROM report items and, 299
validating designs and, 62

scope, 92, 93, 514
script API library, 185
Script attribute (charts), 86, 87
script editor, 91, 514
script package, 165, 178
Script tab, 87, 91
script window, 95, 96
scriptable external objects, 85
scriptable objects, 148
scriptapi.jar, 112, 185
ScriptCharts class, 248
ScriptDataSetHandle class, 215
ScriptDataSourceHandle class, 214
scripted data set elements, 69, 82
scripted data sets

See also data sets
accessing Java classes for, 139
accessing ODA data sources for, 215
accessing parameters for, 141–142
closing, 82, 122, 140
creating, 131, 134
defining event handlers for, 82, 122
defining output columns for, 135
initializing, 135, 139
opening, 82, 122, 139
specifying type, 122

scripted data source elements, 68, 82, 121,
122

Scripted Data Source option, 133
scripted data sources

See also data sources
accessing Java objects and, 139
closing, 82, 121, 132, 135
creating, 131, 132, 133
defined, 131
defining event handlers for, 82, 121
initializing, 132
opening, 82, 121, 135
tutorial for, 133–138

ScriptedDataSet element, 69, 82
ScriptedDataSet interface, 122
ScriptedDataSource element, 68, 82, 121, 122
ScriptedDataSource events, 82

ScriptedDataSourceAdapter class, 121, 122
ScriptedDataSrc.rptdesign, 133
ScriptHandler class, 165
Scripting configuration property type, 187
scripting context, 149
scripting engine, 523
scripting languages, 73, 74, 91, 515
scripting specifications, 91
ScriptingJava.html, 110
scripts

accessing Java classes and, 108, 109, 116
accessing ROM elements and, 95
additional references for, 110
building charts and, 83, 85, 88, 224, 225
concatenating code for, 225
creating, 108, 110

tutorial for, 104–108
executing events and, 74–81, 93
generating reports and, 73
importing Java packages and, 109, 139
overview, 73, 91
previewing, 98
providing external values for, 187
referencing Java classes and, 109, 139
returning parameter values and, 101
tracking method execution and, 102–104
variables in, 92, 95
writing event handlers and, 73, 74, 91, 118

ScriptViewer charting example, 248
scrollable methods list, 97
scrollable properties list, 97
SDK package, 515
SDK software, 6, 14
SDO Runtime component, 7
search paths, 40
searching for extension point

information, 283
searching for program updates, 31
sections, 515
security, 56
select, 515
SELECT statements. See SQL statements
selection formulas. See parameters
SelectionAdapter method, 450
semantic validators, 66
SemanticValidator element, 66
sequential files. See flat files
serializable objects, 127

I n d e x 563

serialize method, 217
series

See also charts
adding, 224, 228–230
building queries for, 229, 230
changing properties for, 224
defined, 515
getting properties for, 86
setting properties for, 87, 230
setting type, 164

Series Thickness attribute (charts), 86, 87
SeriesDefinition objects, 230
SeriesDefinitionImpl interface, 230
SeriesImpl interface, 164, 228
SeriesPalette objects, 230
server.xml, 36
servers, deploying to, 33, 34, 110
service applications, 273
Service Data Objects component, 7
service objects, 273
service registry, 272
services, 156, 267, 272
ServletContext class, 188
servlets, 516
session handles, 206
session parameters, 154
SessionFactory objects, 436
SessionFactory operations, 420, 428
SessionHandle class, 154, 217
SessionHandle objects, 154, 206
setAbsolute method, 212
setActionHandler method, 189
setAppContext method, 200
setBaseImageURL method, 201
setBaseURL method, 201
setBlock method, 87
setChartInstance method, 85
setConfigurationVariable method, 187
setContext method, 201
setDataSet method, 214, 216
setDataSource method, 215
setDescription method, 87
setDimension method, 87
setEmbeddedFont method, 202
setEmitterConfiguration method, 187, 189
setEngineContext method, 187, 188
setEngineHome method, 186
setExtensionProperty method, 129

setExternalContext method, 85
setFontDirectory method, 201
setGlobalVariable method, 94, 127
setGridColumnCount method, 87
setImageDirectory method, 201
setImageHandler method, 188
setInitialProperties method, 451, 452
setInteractivity method, 87
setLogConfig method, 187, 190
setLogger method, 85
setName method, 207
setParameterValue method, 95, 127, 195, 200
setParameterValues method, 200
setPersistentGlobalVariable method, 95, 127
setQueryText method, 129
setResourcePath method, 187
setResultSetMetaData method, 412, 457
setSampleData method, 87
setScript method, 87, 225
setSeriesThickness method, 87
setStatusHandler method, 187
setSubType method, 87
setSupportedImageFormats method, 201
setTempDir method, 187
setThreadContextClassLoader attribute, 371
settings. See properties
setType method, 87
setULocale method, 85
setUnits method, 87
setup phase (events), 79
setupConfigLocation method, 450
setupFileLocation method, 407
setURI method, 210
setVersion method, 87
shared styles, 212
SharedStyleHandle class, 212
simple properties, 209
singleton pattern, 506
site.xml, 294
slot handles, 207, 208, 216
Slot property, 68
slots, 61, 207, 516
Software Development Kit, 6, 14, 515

See also JDK software; SDK package
software interfaces, 494
software requirements

BIRT Chart Engine, 7
BIRT Demo Database, 8

564 I n d e x

software requirements (continued)
BIRT RCP Report Designer, 5
BIRT Report Designer, 6–7
BIRT Report Engine, 9
BIRT Samples, 9
BIRT Test Suite, 9–10

Software Updates command, 293
sort, 516
sort fields. See sort keys
sort keys, 517
sort-and-group-by fields. See group keys
sorting data, 53
source archives, 288
Source Build section, 288
source code

accessing data sources and, 131
accessing Java, 4, 267
accessing sample, 297
adding event handlers and, 74, 81, 91
changing run-time connections and, 101
checking for errors in, 105
checking out, 256, 259
compiling, 254, 290
creating Eclipse projects and, 256
customizing, 73
defining executable, 67
deploying applications and, 183
developing applications and, 145, 182,

183
developing Hibernate drivers and, 420
developing ODA extensions and, 367
downloading, 302
editing, 470
executing reports and, 93
extracting URL parameters and, 95
generating CSV files and, 329, 330, 359
initializing report designs and, 83
loading, 271, 497
specifying repository location for, 257
tracking method execution in, 102, 103

source data. See data sources
source extension point, 288
source files, 114
SQL (defined), 517
SQL data sources, 131
SQL databases, 8, 26
SQL language, 517
SQL statements, 100, 101, 129, 366, 517

See also queries
stable builds, 11
stand-alone applications, 56, 163, 185
stand-alone environments, 187
stand-alone report engine, 147
stand-alone web pages, 41
Standard Viewer, 517

See also report viewer
start method, 343
starting

BIRT RCP Report Designer, 19
BIRT Report Designer, 15, 19
report viewer, 34, 39

startRow method, 345
startTable method, 345
startText method, 346
state. See instance variables
Statement class, 427, 431
statements, 381, 517
static constants, 108
static variables, 518

See also dynamic variables; variables
Status handling property type, 187
StockReport application, 250
streams. See input streams; output streams
String class, 109
STRING data type, 100
String data type, 518
string expressions, 518
string properties, 211
strings

concatenating, 225
converting, 193, 387
defining URL parameters and, 43
getting, 95
writing to CSV files and, 341

stringToInt method, 387
Structure element, 65
structure property type, 61
structured content, 518
Structured Query Language. See SQL
structured report items, 208
StructureHandle class, 162
structures, 65
stubs, 119
style attributes, 62, 63, 68, 210
Style class, 317
style definitions, 65

I n d e x 565

Style element, 65
style elements, 61
style properties, 154
style property, 62
style sheets, 62, 184, 185, 471
StyleChartViewer application, 248
StyleHandle class, 212
StyleProcessor charting example, 248
StyleProcessor class, 248
StyleProperty property, 68
styles

accessing, 156
applying to report items, 212
associating with reports, 65, 66
charts and, 248, 250
creating, 62
defined, 518
getting, 209, 212
setting attributes for, 63, 68, 210

Sub Type attribute (charts), 87
subclasses, 519

See also descendant classes
subreports, 519
subroutines. See procedures
summary data. See aggregate values
Superclass Selection dialog, 115
superclasses, 115, 519

See also ancestor classes
supportedFormats element, 309
supportsMultipleResultSets method, 430
__svg parameter, 41, 43
SvgInteractivityViewer application, 247
Swing applications, 239, 247
SwingChartViewersSelector application, 249
SwingInteractivityViewer application, 247
SwingLiveChartViewer application, 249
SWT applications, 247, 248
SWTchartViewerSelector application, 249
SwtInteractivityViewer application, 247
syntax (programming languages), 519
syntax conventions (documentation), xxv

T
table cells. See cells
table elements, 66, 213, 519

See also tables
table execution sequence (events), 78, 79, 80
table items, 67, 77

table of contents, 191
table of contents markers, 149
table processing phase (events), 79
table setup phase (events), 79
tables

See also table elements; table items
adding columns to, 137
building data rows for, 78
creating, 67
defined, 519
defining pageBreak events for, 75
generating, 78–81

tabs, 519
See also page

tab-separated values. See TSV formats
tabular layouts, 67
tabular result sets, 68
tags, 520

See also elements
template files, 55, 512
templates, 51, 56, 181, 205, 520
Temporary file location property type, 187
temporary files, 37, 148, 187
test packages, 470
Test Suite. See BIRT Test Suite
test.rptdesign, 35
testCharts.chart, 249
testing

BIRT installations, 15, 18
CSV ODA UI plug-in, 414
CSV report rendering extension, 350
Demo Database installations, 25
Hibernate ODA UI plug-in, 460–463
plug-in extensions, 291
plug-ins, 268, 277, 353
report engine installations, 27
report item extensions, 324
report viewer installations, 35, 39

Testing section (PDE Manifest Editor), 325,
353

text, 67, 75
See also text elements; text items

text elements, 301, 521
text file data sources. See text files
text files

See also CSV files
creating rendering extensions for, 330
exporting data to, 337

566 I n d e x

text files (continued)
tracking method execution in, 102, 103

text item design interface, 124
text items

adding, 67
rendering as images, 319, 321
rotating, 301, 321

text objects. See text
text patterns, 509
text strings. See strings
TextItem objects, 124
themes, 156, 521

See also styles
this object, 95, 96
thread context class loader, 371
tick, 521
tick interval, 521
time data type, 479
Title block (charts), 86
Tomcat manager accounts, 39
Tomcat servers, 33, 34
toolbars, 521
top-level report items, 67, 76
transactions, 380, 430
transient files. See temporary files
translators. See converters
troubleshooting installation problems, 18–19
TrueType fonts, 40
TSV formats, 337
tutorials

creating event handlers, 104–108
creating scripted data sources, 133–138

.txt files. See text files
type attribute, 372
Type attribute (charts), 86, 87
Type elements, 68
type package, 165, 176
type property, 309
types. See data types
typographic conventions

(documentation), xxiv

U
ui extensions package, 316
ui plug-in, 367, 368
UiPlugin class, 404
ULocale objects, 85
ungrouped lists, 79, 80

ungrouped tables, 79, 80
Unicode, 522
Unicode encoding, 522
Uniform Resource Locators. See URLs
Units attribute (charts), 86, 87
universal hyperlinks. See hyperlinks
Universal Resource Identifiers. See URIs
UNIX platforms, 19, 23
unknown values, 43
unpacking BIRT archives, 5, 14
unpaginated HTML formats, 199
unsupported data sources, 53
Update Manager, 31
Update Site Editor, 291
Update Site Map page, 296
Update Site Project page, 295
update site projects, 294
update sites, 291, 293, 294
updates, 31, 291, 293
updating

designer packages, 31
plug-ins, 293
report designers, 32

upgrades, 31
uploading update sites, 294
URIs, 208, 210, 522
URL parameters, 41–44, 250
URLClassLoader objects, 372
URLs

accessing reports and, 36, 40, 95
BIRT Samples and, 28
BIRT Test Suite and, 29
changing context roots for, 36
chart engine and, 24
data source connections and, 101
defined, 522
demo database and, 9
Eclipse Modeling Framework and, 7
Eclipse SDK software, 6
ECMAScript specification and, 91
Graphics Editor Framework and, 7
image files and, 201
installation demo and, 5
iText PDF library and, 15, 16, 17
JDK software and, 5, 6
program archives and, 14, 16, 17
report design files and, 37, 41
report document files and, 41, 201

I n d e x 567

URLs (continued)
report engine and, 27
report parameters in, 41, 44
report viewer and, 35, 36

user interface extensions, 269
user interfaces

accessing ODA data sources and, 53
building, 320, 321
creating chart reports and, 54
creating custom report designer and, 56
customizing, 195
HQL queries and, 449
ODA drivers and, 366, 367
replicating parameters and, 194
report design tools and, 154
report item extensions and, 268, 300, 307,

308
user names, 101
user sessions, 154, 206
user-defined property definitions, 60
UserID parameter, 101
userProperties array, 60
UserProperty objects, 60
util package, 165, 179

V
validateParameters method, 150, 151
validateQueryText method, 383
validating report designs, 62, 65
validating report output, 62, 65
validator classes, 65
validator definitions (ROM), 65
value axes. See axes values
value series. See data series
values

See also data
defined, 522
defining URL parameters and, 43
displaying external, 193
getting parameter, 94, 101, 127, 194
getting property, 191
overriding parameter, 28
retrieving, 99
setting parameter, 95, 127, 195, 200

code sample for, 195, 197
setting property, 212

var identifier, 92
variables

See also specific type
creating, 92, 93
defined, 522
deleting, 94, 126
getting, 94, 126
scripting and, 92, 95
setting, 94, 127

VBScript, 523
verifyQuery method, 454
Version attribute (charts), 86, 87
version numbers, 267
viewer applications (charts), 247
Viewer charting example, 248
viewer. See report viewer; web viewer
viewing

charts, 52
error messages, 105, 108
extension point descriptions, 283, 284
HTML pages, 41
PDF files, 41
PDF reports, 203
project settings, 278
property annotations, 285
reports, 40, 51, 52

views, 483, 523
visitor interface, 340
visitor objects, 342
Visual Basic Script Edition. See VBScript
visual components, 53, 67

See also report elements; report items
visual elements, 59, 66

W
.war files, 34, 36, 38, 187, 523
web applications

accessing report viewer for, 36, 51
configuring engine home for, 187
external connections and, 202
generating reports and, 147
integrating custom report generator

with, 56
web archive files, 34, 36, 38, 523
web browsers, 40, 203, 489
web pages, 41, 200, 523

See also HTML reports
web servers, 33, 523
web sites, xvii, 291
web standards, 524

568 I n d e x

web viewer, 262
See also web browsers

web.xml, 34
webapps directory, 34
web-based reports, 147

See also web applications
WebLogic servers, 33
WebSphere servers, 33
well-formed XML, 524
windows, 96, 501
Windows platforms, 19, 23
wizardPageClass property, 449
wizards, 275, 390, 404, 441
wizards package, 405
wizards plug-in, 404
workbench projects, 73, 277

See also Eclipse workbench; projects
workspace. See Eclipse workspace
workspace directory, 32
World Wide Web Consortium (W3C), 524
wrapping Java objects, 131
wrap-up processing phase (events), 79
writer objects, 342

X
x series items, 230

See also data series
x-axis items, 164
x-axis values. See axes values
XML (defined), 487
XML documents, 524
XML elements, 59, 60, 268, 484
XML Extension-Point Schema Definition

files. See XML schema files
XML files, 59, 62

XML formats, 337, 339
XML manifest files, 275, 277
XML PATH language, 524
XML schema files, 268
XML Schema language, 62
XML schemas

BIRT extension points and, 335
creating extensions and, 268, 283
custom formats and, 300
defined, 514
ODA extensions and, 366
overview, 268
presentation extensions and, 300
query extensions and, 300
report item extensions and, 307, 312
report item generation and, 300
report item user interfaces and, 300
report rendering extension and, 330
ROM report items and, 299
validating designs and, 62

XML streams, 131
XML writer, 337, 339
xml-property property type, 60
XMLSpy utility, 62
XMLWriter class, 339, 341
XPath expressions, 524

Y
y series items, 228, 229, 230

See also data series
y-axis values. See axes values

Z
.zip files. See archive files

	Integrating and Extending BIRT
	Contents
	Foreword
	Preface
	About this book
	Who should read this book
	Contents of this book
	Typographical conventions
	Syntax conventions

	Acknowledgments
	Part I: Installing and Deploying BIRT
	Chapter 1 Prerequisites for BIRT
	Requirements for the BIRT report designers
	Prerequisites for other BIRT packages
	About types of BIRT builds

	Chapter 2 Installing a BIRT Report Designer
	Installing BIRT Report Designer
	Installing BIRT Report Designer Full Eclipse Install
	Installing BIRT RCP Report Designer
	Troubleshooting installation problems
	Installing a language pack

	Chapter 3 Installing Other BIRT Packages
	Installing BIRT Chart Engine
	Installing BIRT Demo Database
	Installing BIRT Report Engine
	Installing BIRT Samples
	Installing BIRT Test Suite

	Chapter 4 Updating a BIRT Installation
	Using the Eclipse Update Manager to update BIRT Report Designer installation
	Updating BIRT RCP Report Designer installation

	Chapter 5 Deploying a BIRT Report to an Application Server
	About application servers
	Placing the BIRT report viewer on an application server
	Placing fonts on the application server
	Viewing a report using a browser

	Part II: Understanding the BIRT Framework
	Chapter 6 Understanding the BIRT Architecture
	Understanding the BIRT integration
	About the BIRT applications
	About the BIRT engines
	About the types of BIRT report items
	About the ROM
	About the types of BIRT files
	About custom Java applications
	About extensions to BIRT

	Chapter 7 Understanding the Report Object Model
	About the ROM specification
	About the ROM schema
	About the rom.def file
	About the primary ROM elements
	About the report item elements
	About the data elements

	Part III: Scripting in a Report Design
	Chapter 8 Using Scripting in a Report Design
	Overview of BIRT scripting
	Understanding the event handler execution sequence
	About a report item event handler
	About data source and data set event handlers
	About ReportDesign event handlers
	Writing event handlers for charts
	Getting a dynamic image from a Microsoft Access database

	Chapter 9 Using JavaScript to Write an Event Handler
	Using BIRT Report Designer to enter a JavaScript event handler
	Using the reportContext object
	Using the this object
	Using the row object
	Getting column information
	Getting and altering the query string
	Getting a parameter value
	Changing the connection properties of a data source
	Determining method execution sequence
	Tutorial 1: Writing an event handler in JavaScript
	Calling Java from JavaScript

	Chapter 10 Using Java to Write an Event Handler
	Writing a Java event handler class
	Making the Java class visible to BIRT
	Associating the Java event handler class with a reportelement
	BIRT Java interface and class naming conventions
	Writing a Java event handler
	Understanding the BIRT interfaces

	Chapter 11 Using a Scripted Data Source
	Creating a scripted data source and scripted data set
	Tutorial 2: Creating and scripting a scripted data source
	Using a Java object to access a data source
	Using input and output parameters with a scripted data set

	Part IV: Integrating BIRT Functionality into Applications
	Chapter 12 Understanding the BIRT APIs
	Package hierarchy diagrams
	About the BIRT Report Engine API
	About the design engine API
	About the BIRT Chart Engine API

	Chapter 13 Programming with the BIRT Reporting APIs
	Building a reporting application
	Generating reports from an application
	About programming with a report design

	Chapter 14 Programming with the BIRT Charting APIs
	About the environment for building a charting application
	Verifying the development environment for charting applications
	Using the charting API to modify an existing chart
	Using the charting APIs to create a new chart
	Using the BIRT charting API in a Java Swing application
	Understanding the chart programming examples

	Part V: Working with the Extension Framework
	Chapter 15 Building the BIRT Project
	About building the BIRT project
	Creating Eclipse projects
	Building the web viewer

	Chapter 16 Extending BIRT
	Overview of the extension framework
	Understanding the structure of a BIRT plug-in
	Working with the Eclipse PDE
	Creating the structure of a plug-in extension
	Creating the plug-in extension content
	Building a plug-in extension
	Deploying the extension plug-in
	Downloading the code for the extension examples

	Chapter 17 Developing a Report Item Extension
	Understanding a report item extension
	Developing the sample report item extension
	Understanding the rotated label report item extension
	Deploying and testing the rotated label report item plug-in

	Chapter 18 Developing a Report Rendering Extension
	Understanding a report rendering extension
	Developing the CSV report rendering extension
	Understanding the sample CSV report rendering extension
	Testing the CSV report rendering plug-in

	Chapter 19 Developing an ODA Extension
	Understanding an ODA extension
	Developing the CSV ODA driver extensions
	Implementing the CSV ODA driver plug-in
	Understanding the sample CSV ODA driver extension
	Developing the CSV ODA UI extension
	Understanding the sample CSV ODA UI extension
	Testing the CSV ODA UI plug-in
	Developing a Hibernate ODA extension

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

