
Guerrilla Capacity Planning

Neil J. Gunther

Guerrilla
Capacity
Planning
A Tactical Approach to Planning
for Highly Scalable Applications and Services

With 108 Figures and 37 Tables

123

Neil J. Gunther
Performance Dynamics Company
4061 East Castro Valley Blvd.
Suite 110, Castro Valley
California 94552
USA
http://www.perfdynamics.com/

Library of Congress Control Number: 2006935329

ACM Computing Classification (1998): C.4, K.6.2, D.2.8

ISBN-10 3-540-26138-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26138-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Typesetting: by the Author
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig
Cover: KünkelLopka, Heidelberg

Printed on acid-free paper 45/3100YL - 5 4 3 2 1 0

Go forth and Kong-ka!

Preface

This book is based largely on the material used in the professional training
course of the same name. Currently, the Guerrilla Capacity Planning (GCaP)
classes are usually conducted every calendar quarter by Performance Dynam-
ics Educational Services (www.perfdynamics.com) in Pleasanton, California.
The same course has also been taught privately at such international organi-
zations as: Amdahl Corporation, AT&T Wireless, Boeing Companies, Federal
Express, Peter Harding and Associates (Australia), Sun Microsystems (USA
and France), System Administrators Guild of Australia, and Thales Naval
(Holland).

Some of the material originates from 1997, when I began teaching a similar
class under the title Practical Performance Methods, at the Stanford Univer-
sity Western Institute for Computer Science summer extension program. My
class replaced a similar one that had been taught jointly for many years by
Ed Lazowska, Ken Sevcik, and John Zahorjan. Their course and the accom-
panying book (Lazowska et al. 1984) (now out of print) has provided much
inspiration for all my books. Sadly, while writing this book, I learned that
Ken Sevcik had passed away.

A major motivation for writing this book was to provide GCaP gradu-
ates with a more detailed version of the lecture notes for their later review
and reference. Another motivation is to make the same material available to
a wider audience who, although they may not be able to attend the GCaP
classes, could nonetheless benefit from applying GCaP methods. In these days
of ever-shortening planning horizons and contracting times to market, tradi-
tional approaches to capacity planning are often seen as inflationary for pro-
duction schedules. Rather than giving up in the face of this kind of relentless
economic pressure to get things done more quickly, GCaP tries to facilitate it
through opportunistic and rapid forecasting of capacity requirements. A more
detailed list of the advantages of GCaP and guidelines for applying it can be
found in the Guerrilla Manual located in Appendix F.

VIII Preface

Book Structure

This book is not broken into conventional sections, rather there are several
themes running concurrently throughout all the chapters. These themes can
be grouped as follows:

Guerrilla Tactics

This is the dominant theme that provides the rationale for the title of the book.
Put bluntly, the planning horizon has now been reduced to about three months
(i.e., a fiscal quarter), thanks to the influence of Wall Street on project cycle
times, and only GCaP-style tactical planning is crazy enough to be compatible
with that kind of insanity.

The Guerrilla theme explains and motivates the GCaP approach to capac-
ity management by identifying opportunistic circumstances in team meetings
where capacity planning issues can be brought up, whether they were part of
the meeting agenda or not; key concepts, such as the performance homunculus
and the universal law of computational scalability; and the use of lightweight
tools, such as spreadsheets and operational formulae. The core of this theme
is introduced in Chap. 1.

Chapter 2 continues the introduction to the GCaP theme by demonstrating
how it is also a natural fit with other standardized IT management frameworks
such as ITIL (Information Technology Infrastructure Library). Chapter 11
presents an entirely independent report written by contributing author James
Yaple, who took the GCaP theme and tailored it to meet the immediate
capacity management needs of his data center.

Guerrilla Scalability

Another major theme is the concept of scalability assessment in the context
of capacity management, and in particular, the scalability of application soft-
ware. Many people use the word “scalability” without defining it clearly. Most
people cannot define it quantitatively, and if you cannot quantify it, you can-
not guarantee it!

Chapters 4, 5, and 6 address that need by presenting the universal law of
computational scaling. The notion of ideal parallelism, as it relates to hardware
scalability, is used as a springboard to go beyond such well-known models as
Amdahl’s law and multiuser concurrency, to arrive at the universal law of
scalability for hardware. A queue-theoretic argument, based on Theorem 6.2
in Chap. 6, which states:

Amdahl’s law for parallel speedup is equivalent to the synchronous
throughput bound of the repairman queueing model of a multiprocessor

is invoked to extend the universal law to the prediction of application soft-
ware scalability. Many examples, based on difficult to obtain hardware and

Preface IX

software scalability measurements, are discussed in these three core chapters.
The universal scaling law is also applied, in GCaP style, to the analysis of
capacity planning data in later chapters. Although many of these ideas have
been developed and applied by the author since about 1991, this book repre-
sents the first time they have been brought together and demonstrated in one
place.

An important advantage of this universal scaling law is that it provides the
underpinnings for a virtual load testing environment. It allows the reader to
take a sparse set of load measurements (e.g., 4–6 data points) and determine
how an application will scale under larger user loads than can be generated in
the physical test lab. Moreover, and in keeping with the GCaP theme, much
of this scalability analysis can be done in a spreadsheet like Excel.

Guerrilla Victories

The remaining chapters comprise detailed examples of successful applications
of the other two themes. Chapter 8 presents the author’s success in apply-
ing GCaP to a large-scale Web site capacity planning in the Silicon Valley.
In particular, it demonstrates how some more traditional capacity planning
techniques that originated on mainframe computer systems can be adapted
to modern servers. Chapter 9 presents GCaP techniques for planning the ca-
pacity of gargantuan computing environments such as peer-to-peer systems.

Chapter 10 provides an overview of the peculiar impact of certain Internet
packet behavior on buffer sizing for routers and servers. The reason this is po-
tentially very important for capacity planning is due the veritable “paper mill”
of academic papers written on so-called self-similar Internet traffic. This self-
similarity refers to long-term clustering of Internet packets first observed in the
famous Bellcore measurements circa 1990. Many of these papers, however, are
mathematically very sophisticated and impenetrable to the typical network
capacity planner. This chapter attempts to provide a simpler mathematical
treatment than is generally available, but without any loss in accuracy. The
chapter concludes with some recent measurements and analysis done in the
U.K. that indicates the severity of these self-similar packet-clustering effects
may have been overplayed.

Intended Audience

Each of the three themes just described can be used to advantage by a broad
diversity of IT professionals. At the executive level there are chief information
officers (CIOs), chief technology officers (CTOs), and vice presidents (VPs).
Mid-level management that could benefit from understanding and champi-
oning GCaP concepts include directors, senior management, and project man-
agers. GCaP methodologies are useful for mainframe capacity planners in the

X Preface

process of broadening their skills, performance engineers, and software en-
gineers, system architects, software developers, system analysts and system
administrators.

One suggested grouping of themes with professional expertise is shown in
the following table.

Theme Audience Chapters
Guerrilla tactics CIOs, CTOs, directors, VPs, Chaps. 1–2

senior managers, project managers
Guerrilla scalability Mainframe capacity planners, Chaps. 4–6

performance and software engineers,
QA and test engineers,
system architects,
software developers,
system administrators and analysts

Guerrilla victories CTOs, project managers, Chaps. 1–11,
mainframe capacity planners, Chaps. 4–10
performance and Software engineers,
software developers,
software and performance engineers,
system administrators and analysts

Acknowledgments

This book has benefited from the insight and assistence of several people, and
they deserve my explicit thanks for their contributions.

Steve Jenkin inspired me to put together The Guerrilla Manual in Ap-
pendix F by pointing out that employees in the trenches often find themselves
in the position where being able to point to an authoritative list of methods
and aphorisms can make the difference between getting their point across or
not. He also suggested the organization of workload types in Table 6.9 based
on the range of values for the contention (σ) and coherency (κ) parameters of
the universal scalability law for software in Chap. 6.

Ken Christensen performed the event-based simulations that provided em-
pirical support for Theorem 6.2. He also corroborated the findings of Field
et al. (2004) regarding self-similar packetization using his own IEEE-validated
Ethernet simulation model.

Greg Dawe, Jamie Rybicki, and Andrew Sliwkowski at RSA Security per-
formed the painstaking application measurements which enabled me to de-
velop the PDQ performance models used in Chap. 7. In typical eclectic fash-
ion, Andrew Sliwkowski also drew my attention to the software variant of
Amdahl’s law, which provided the bridge to open Chap. 6.

Finally, it is my pleasure to thank Giordano Beretta, Ken Christensen,
Mark Friedman, Kathy Hagedon, Jim Holtman, J. Scott Johnson, Scott John-

Preface XI

son, Robert Lane, Pedro Vazquez and Lloyd Williams for providing feedback
on early drafts of various chapters, and otherwise improving the overall con-
tent of this book. Any remaining shortcomings are mine alone.

Warranty Disclaimer

No warranties are made, express or implied, that the information in this book
and the associated computer programs are error free, or are consistent with
any particular standard of merchantability, or that they will meet your re-
quirements for any particular application. They should not be relied upon for
solving a problem the incorrect solution of which could result in injury to
a person or loss of property. The author disclaims all liability for direct or
consequential damages resulting from the use of this book.

In Sect. 5.6.2 some precision problems with the values computed by Excel
are noted. A more careful analysis is provided in Appendix B. Because of its
potential precision limitations, as noted by Microsoft (support.microsoft.
com/kb/78113/), you are advised to validate any numerical predictions made
by Excel against those calculated by other high-precision tools, such as Math-
ematica, R, S-PLUS or Minitab.

Palomares Hills, California N.J.G.
October 12, 2006

Contents

Preface . VII

1 What Is Guerrilla Capacity Planning? . 1
1.1 Introduction . 1
1.2 Why Management Resists Capacity Planning 1

1.2.1 Risk Management vs. Risk Perception 2
1.2.2 Instrumentation Just Causes Bugs 3
1.2.3 As Long as It Fails on Time . 4
1.2.4 Capacity Management as a Homunculus 5

1.3 Guerrilla vs. Gorilla . 6
1.3.1 No Compass Required . 7
1.3.2 Modeling Is Not Like a Model Railway 8
1.3.3 More Like a Map Than the Metro 8

1.4 Tactical Planning as a Weapon . 9
1.4.1 Scalability by Spreadsheet . 10
1.4.2 A Lot From Little . 11
1.4.3 Forecasting on the Fly . 13
1.4.4 Guerrilla Guidelines . 14

1.5 Summary . 16

2 ITIL for Guerrillas . 17
2.1 Introduction . 17
2.2 ITIL Background . 17

2.2.1 Business Perspective . 19
2.2.2 Capacity Management . 21

2.3 The Wheel of Capacity Management . 21
2.3.1 Traditional Capacity Planning . 21
2.3.2 Running on the Rim . 23
2.3.3 Guerrilla Racing Wheel . 24

2.4 Summary . 25

XIV Contents

3 Damaging Digits in Capacity Calculations 27
3.1 Introduction . 27
3.2 Significant Digits . 28

3.2.1 Accuracy . 28
3.2.2 Precision . 29

3.3 Sifting for SigDigs . 30
3.3.1 Count by Zeros . 30
3.3.2 Significance and Scale . 32

3.4 Rounding Rules . 32
3.4.1 Golden Rule . 34
3.4.2 Sum Rule . 34
3.4.3 Product Rule . 34

3.5 Planning With Dollars and Sense . 35
3.5.1 Cost Metric . 35
3.5.2 Significant Digits . 36

3.6 Expressing Errors . 37
3.6.1 Absolute Error . 37
3.6.2 Relative Error . 37
3.6.3 Standard Deviation . 37
3.6.4 Standard Error . 38
3.6.5 Error Bars . 38
3.6.6 Instrumentation Error . 39

3.7 Interval Arithmetic . 39
3.8 Summary . 40

4 Scalability—A Quantitative Approach . 41
4.1 Introduction . 41
4.2 Fundamental Concepts of Scaling . 41

4.2.1 Geometric Scaling . 42
4.2.2 Allometric Scaling . 43
4.2.3 Critical Size . 44
4.2.4 Sizing Examples . 45

4.3 Hardware Scalability . 47
4.3.1 Ideal Parallelism . 48
4.3.2 Amdahl’s Law . 49
4.3.3 Multiuser Scaleup . 52
4.3.4 Serial-Parallel Duality . 55
4.3.5 Scaled Speedup . 56

4.4 Universal Scalability Model . 56
4.4.1 The Role of Coherency . 58

4.5 Other Scalability Models . 63
4.5.1 Geometric Model . 63
4.5.2 Quadratic Model . 63
4.5.3 Exponential Model . 64

4.6 Multicores and Clusters . 66

Contents XV

4.7 Summary . 68

5 Evaluating Scalability Parameters . 71
5.1 Introduction . 71
5.2 Benchmark Measurements . 72

5.2.1 The Workload . 72
5.2.2 The Platform . 74
5.2.3 The Procedure . 75

5.3 Minimal Dataset . 75
5.3.1 Interpolating Polynomial . 76
5.3.2 Regression Polynomial . 76

5.4 Capacity Ratios . 77
5.5 Transforming the Scalability Equation . 77

5.5.1 Efficiency . 78
5.5.2 Deviation From Linearity . 78
5.5.3 Transformation of Variables . 79
5.5.4 Properties of the Regression Curve 80

5.6 Regression Analysis . 82
5.6.1 Quadratic Polynomial . 82
5.6.2 Parameter Mapping . 83
5.6.3 Interpreting the Scalability Parameters 85
5.6.4 Error Reporting . 86

5.7 Less Than a Full Deck . 87
5.7.1 Sparse Even Data . 88
5.7.2 Sparse Uneven Data . 90
5.7.3 Missing X(1) Datum . 91

5.8 Summary . 94

6 Software Scalability . 97
6.1 Introduction . 97
6.2 Amdahl’s Law for Software . 98
6.3 Universal Software Scalability . 100
6.4 Concurrent Programming and Coherency 102
6.5 UNIX Multitasking Application . 103

6.5.1 The Workload . 103
6.5.2 The Platform . 104
6.5.3 Regression Analysis . 104

6.6 Windows-Based Applications . 107
6.6.1 The Workload . 107
6.6.2 The Platform . 108
6.6.3 Regression Analysis . 109

6.7 Multitier Architectures . 110
6.7.1 The Workload . 111
6.7.2 The Platform . 111
6.7.3 Regression Analysis . 112

XVI Contents

6.7.4 Why It Works . 114
6.8 Classification by Workload . 115
6.9 Summary . 116

7 Fundamentals of Virtualization . 117
7.1 Introduction . 117
7.2 The Spectrum of Virtual Machines . 118

7.2.1 VM Spectroscopy . 118
7.2.2 Polling Rates and Frequency Scales 119

7.3 Microlevel Virtual Machines: Hyperthreading 119
7.3.1 Micro-VM Polling . 122
7.3.2 Thread Execution Analysis . 123
7.3.3 Missing MIPS Explained . 124
7.3.4 Windows 2000 Production Server . 126
7.3.5 Guerrilla Capacity Planning . 127

7.4 Mesolevel Virtual Machines: Hypervisors 127
7.4.1 Fair-Share Scheduling . 129
7.4.2 Meso-VM Polling . 132
7.4.3 VMWare Share Allocation Analysis 134
7.4.4 J2EE WebLogic Production Application 135
7.4.5 VMWare Scalability Analysis . 137
7.4.6 Guerrilla Capacity Planning . 138

7.5 Macrolevel Virtual Machines: Hypernets . 138
7.5.1 Macro-VM Polling . 139
7.5.2 Bandwidth Scalability Analysis . 140
7.5.3 Remote Polling Rates . 141
7.5.4 Guerrilla Capacity Planning . 142

7.6 Summary . 142

8 Web Site Planning . 143
8.1 Introduction . 143
8.2 Analysis of Daily Traffic . 144

8.2.1 The Camel and the Dromedary . 144
8.2.2 Unimodal but Bicoastal . 146

8.3 Effective Demand . 148
8.3.1 Modeling Assumptions . 149
8.3.2 Statistical Approach . 149

8.4 Selecting Statistical Tools . 150
8.4.1 Spreadsheet Programming . 150
8.4.2 Online Support . 150

8.5 Planning for Data Collection . 151
8.5.1 Commercial Collectors: Use It or Lose It 151
8.5.2 Brewing in the Background . 151

8.6 Short-Term Capacity Planning . 152
8.6.1 Multivariate Regression of Daily Data 152

Contents XVII

8.6.2 Automation Using Spreadsheet Macros 153
8.7 Long-Term Capacity Planning . 155

8.7.1 Nonlinear Regression of Weekly Data 155
8.7.2 Procurement Curves . 156
8.7.3 Estimating Server Scalability . 157
8.7.4 Calculating Capacity Gains . 158
8.7.5 Estimating the Doubling Period . 161

8.8 Summary . 162

9 Gargantuan Computing—GRIDs and P2P 165
9.1 Introduction . 165
9.2 GRIDs vs. P2P . 166
9.3 Analysis of Gnutella . 167
9.4 Tree Topologies . 168

9.4.1 Binary Tree . 169
9.4.2 Rooted Tree . 169
9.4.3 Cayley Tree . 169

9.5 Hypernet Topologies . 169
9.5.1 Hypercube . 170
9.5.2 Hypertorus . 170

9.6 Capacity Metrics . 170
9.6.1 Network Diameter . 170
9.6.2 Total Nodes . 171
9.6.3 Path Length . 171
9.6.4 Internal Path Length . 171
9.6.5 Average Hop Distance . 171
9.6.6 Network Links . 172
9.6.7 Network Demand . 172
9.6.8 Peer Demand . 172
9.6.9 Bandwidth . 173

9.7 Relative Bandwidth . 173
9.7.1 Cayley Trees . 173
9.7.2 Trees and Cubes . 174
9.7.3 Cubes and Tori . 175
9.7.4 Ranked Performance . 176

9.8 Summary . 176

10 Internet Planning . 179
10.1 Introduction . 179
10.2 Bellcore Traces . 180
10.3 Fractals and Self-Similarity . 182
10.4 Fractals in Time. 186

10.4.1 Short-Range Dependence . 186
10.4.2 Long-Range Dependence . 188

10.5 Impact on Buffer Sizing . 190

XVIII Contents

10.5.1 Conventional Buffer Sizing . 190
10.5.2 LRD Buffer Sizing . 192

10.6 New Developments . 193
10.6.1 Ethernet Packetization . 194
10.6.2 LRD and Flicker Noise . 196

10.7 Summary . 197

11 Going Guerrilla—A Case Study . 199
11.1 Introduction . 199
11.2 Guerrilla Monitoring Phase . 199
11.3 The Basic Solution . 201

11.3.1 Implementation Details . 202
11.3.2 Orca Output Examples . 203
11.3.3 Round-Robin Database . 203

11.4 Extending the Basic Solution . 206
11.4.1 Mainframe Data Processing . 206
11.4.2 Guerrilla Planning Phase . 207
11.4.3 Monitoring With ORCAlerts . 208

11.5 Future Developments . 209
11.6 Summary . 210

Appendix

A Amdahl and the Repairman . 213
A.1 Repairman Queueing Model . 213
A.2 Amdahl’s Law for Parallel Subtasks . 214

A.2.1 Single Task . 215
A.2.2 Two Subtasks . 215
A.2.3 Multiple Subtasks . 215

A.3 Amdahl’s Law for Concurrent Multitasks 217
A.4 Note On Nelson’s Approach . 217

B Mathematica Evaluation of NUMA Parameters 219
B.1 Mathematica Packages . 219
B.2 Import the Data . 219
B.3 Tabulate the Data . 220
B.4 Plot Normalized Data . 220
B.5 Nonlinear Regression . 221
B.6 ANOVA Report . 221
B.7 Maximal CPU Configuration . 222
B.8 Plot of Regression Model . 222

Contents XIX

C Abbreviations and Units . 223
C.1 SI Prefixes . 223
C.2 Time Suffixes . 223
C.3 Capacity Suffixes . 224

D Programs for Chapter 3 . 225
D.1 Determine SigDigs in VBA . 225
D.2 Determine SigDigs in Mathematica . 226
D.3 Determine SigDigs in Perl . 227

E Programs for Chapter 8 . 229
E.1 Example Data Extractor in Perl . 229
E.2 VBA Macro for Calculating Ueff . 231

F The Guerrilla Manual . 235
F.1 Weapons of Mass Instruction. 235
F.2 Capacity Modeling Rules of Thumb . 238
F.3 Scalability on a Stick . 240

F.3.1 Universal Law of Computational Scaling 240
F.3.2 Areas of Applicability . 241
F.3.3 How to Use It . 241

Bibliography . 243

Index . 249

1

What Is Guerrilla Capacity Planning?

The enemy advances, we retreat; the enemy camps, we
harass; the enemy tires, we attack; the enemy retreats,
we pursue.

—Mao Tse-tung

1.1 Introduction

Performance experts, like any other group, have a tendency to regurgitate
certain performance clichés to each other, and to anyone else who will listen.
Here are two such clichés:

1. Acme Corporation just lost a $40 million sale because their new applica-
tion cannot meet service level targets under heavy load. How much money
do they need to lose before they do capacity planning?

2. Company XYZ spent a million dollars buying performance management
tools but they won’t spend $10,000 on training to learn the capacity plan-
ning functionality. They just produce endless strip-chart plots without
regard for what that data might imply about their future.

Several years ago I stopped mindlessly reiterating statements like these and
took a hard look at what was happening around me. It was then that I re-
alized not only were people not gravitating toward capacity planning, they
actually seemed to be avoiding it at any cost! From this standpoint, we per-
formance experts appeared more like clergy preaching from the pulpit after
the congregation had well and truly vacated the church.

In trying to come to grips with this new awareness, I discovered some
unusual reasons why capacity planning was being avoided. Later, I began to
ponder what might be done about it (Gunther 1997). My thinking has evolved
over the years (Gunther 2002b), and my current position is presented in this
chapter. Since I see performance management differently from most, you may
find my conclusions rather surprising and, it is hoped, inspiring.

1.2 Why Management Resists Capacity Planning

Capacity planning has long been accepted as a necessary evil in the context of
mainframe upgrades and network device procurement. The motivation is sim-

2 1 What Is Guerrilla Capacity Planning?

ple: The hardware components are expensive and budgets are always limited.
Why then has capacity planning become less accepted today? Once again the
reason is simple: Hardware is far less expensive than it used to be (even for
mainframes!). So there is no need to plan, because you can just throw more
hardware at any bottlenecks when they arise or, better yet, simply over en-
gineer the system in the first place. If you are trying to do capacity planning
in the trenches, I am sure this kind of management resistance is very familiar
to you.

Underlying this general resistance from management is a set of unspoken
assumptions, which, if you fail to recognize them, will pretty much doom you
to periodic bouts of despair. Some of the assumptions are:

1. The new performance limits are in software, not hardware.
2. There is a big difference between perceiving risk and managing it.
3. Product production is more important than product performance.
4. Schedules are the only measure of success.
5. There are plenty of commercial tools that can do capacity planning.
6. Most software is plug-and-play, so it does not need to be measured.
7. We do not need instrumentation in our software. It just causes bugs!

Well, you know how it goes. On the other hand, when you do recognize these
assumptions and consider them more carefully, you will quickly realize that
management is not simply behaving like a brain-dead curmudgeon, although
it often appears that way. Some of these assumption present very real con-
straints, and they are not likely to change. You can go on trying to fight them
and lose, or you can factor them into your capacity planning and succeed in
spite of them. This book is about the latter approach, and it forms the basis
of the Guerrilla capacity planning methodology. Let us look at some of these
assumptions in more detail.

1.2.1 Risk Management vs. Risk Perception

Consider an executive manager who has to fly to another city for an important
executive meeting. While he is getting ready to go to the airport, he hears
a news report about a plane crash where many people were killed. Now, he
starts to feel nervous because he is about to board an aircraft and he cannot
help thinking that he might suffer the same fate. Moreover, his knuckles start
to turn white as he continues to turn over the aircraft disaster while he is
driving on the freeway to the airport. What’s wrong with this picture?

You probably already know that common statistics indicates that there is
a greater risk of being killed on the freeway than on any airline (by a factor of
more than 30 times, it turns out). Our intrepid traveler has also heard these
same statistics. He is not dumb, he is an executive, after all. So, why does he
not simply remind himself that the statistics are in his favor on the aircraft
and look forward to his flight? Try it yourself. It does not work. We all get a

1.2 Why Management Resists Capacity Planning 3

little apprehensive when a plane crashes, particularly if we are about to get
on one. This is not an issue of rational thought, it is a psychological issue.

On the freeway, our intrepid driver feels like he is in control because he
has his hands firmly on the steering wheel. But on the aircraft, he is just
another fearful passenger strapped into his seat. This fear is registered at a
deep personal level of (false) insecurity. He remains oblivious to the possibility
that he could have been completely obliterated by another careless driver on
the freeway.

This is the essential difference between risk perception and risk manage-
ment. Managers are paid to be in control. Therefore, the perception is that
bad things will not happen to their project because that would be tantamount
to admitting that they were not really in control. Incidentally, our traveler’s
best strategy is actually to fly to the airport!

Nowadays, however, hardware has become relatively cheap—even main-
frame hardware. The urge to launch an application with over engineered hard-
ware has to be tempered with the less obvious caution that bottlenecks are
more likely to arise in the application design than in the hardware. Throwing
more hardware at it will not necessarily improve performance. In this sense,
capacity planning has not gone away. Time is money, even if you have all
the hardware in the world. The new emphasis is on software scalability, and
that impacts the way capacity planning needs to be done. The traditional
approach to capacity planning on a monolithic mainframe can no longer be
supported. In the brave new world of distributed computing we have many
software pieces in many hardware places.

1.2.2 Instrumentation Just Causes Bugs

To make a difficult environment even more confusing, we have the following
limitations to contend with:

• Little or no instrumentation in third-party applications.
• No such thing as UNIX. Rather, we have: AIX, HPUX, Solaris, BSDI,

FreeBSD, MacOS X, RedHat Linux, Debian Linux, ... pick one.
• No such thing as Windows. Rather, we have: 2000, XP, and Vista.
• Scripts built on one platform are almost guaranteed not to work on an-

other.
• Multiple commercial off-the-shelf (COTS) software running on multiple

platform types.
• No universal performance database such as that available on mainframes.
• Most commercial performance management software has mainframe roots

and thus is server-centric in its data collection capabilities. Additional
tools are needed to incorporate network and application data.

• Comprehending resource consumption across hundreds of platforms and
tiers is still problematic.

4 1 What Is Guerrilla Capacity Planning?

The Universal Measurement Architecture (UMA) standard from The Open-
Group (1997) might have helped to surmount some of these difficulties by nor-
malizing both performance data and the functionality of performance man-
agement tools (Gunther 1995; Gunther and Traister 1995), but vendors saw no
significant financial returns for investing in the UMA standard. Even worse,
they foresaw the possibility of their own proprietary performance tools losing
ground in the marketplace to UMA-based tools. But the real the coup de
grâce probably came from the fact that UMA was designed by committee and
therefore, almost by definition, was dead on arrival. Similarly, the Application
Resource Measurement (ARM) standard, also from The OpenGroup (2002),
has had better but still limited success.

The wholesale adoption of performance measurement standards like ARM
and UMA has been thwarted to a large degree by the necessity of compiling
their instrumentation code into each application. Most software developers
have a real problem with this approach. One objection is that the instrumen-
tation code simply opens up the opportunity to introduce more bugs into the
application, thus inflating the release schedule. This argument is not without
merit. Since ARM and UMA were designed, less intrusive technniques have
been developed, e.g., instrumenting Java bytecodes (See Gunther 2005a, Ap-
pendix D), and this newer approach may help to disseminate the notion that
performance instrumentation is a necessary evil.

So today, we build more complex architectures with less instrumentation
available to manage them. I do not know about you, but I am glad Boeing
does not build aircraft this way.

1.2.3 As Long as It Fails on Time

Some managers believe they do not need to do anything about capacity plan-
ning, but this is a misperception about risk. Risk management is often sub-
verted by a false perception of risk. It will always be someone else that loses
$40 million because of poor performance.

Management is generally employed to oversee schedules. To emphasize this
fact to my students, I tell them that managers will even let a project fail—as
long as it fails on time! Many of my students are managers and none of them
has disagreed with me yet. In other words, managers are often suspicious that
capacity planning will interfere with project planning. Under such scheduling
pressures, the focus is on functionality first. Unfortunately, new functionality
is often overprescribed because it is seen as a competitive differentiator. All
the development time therefore tends to be absorbed by implementing and
debugging the new functionality. In this climate, applications often fail to
meet performance expectations as a result of management pressure to get the
new functionality to market as fast as possible.

Let us face it, Wall Street rules our culture. Time-to-market dictates the
schedules that managers must follow. This is a fact of life in the new millen-
nium, and a performance analyst or capacity planner who ignores that fact

1.2 Why Management Resists Capacity Planning 5

puts his or her career in peril. It is therefore imperative that any capacity
planning methodology not inflate project schedules.

Remark 1.1. When Einstein was asked by the press what he considered to be
the greatest force in the universe, he quipped “Compound interest!” Today,
he might well have said “Wall Street!”

1.2.4 Capacity Management as a Homunculus

Capacity management can be thought of as a subset of general systems man-
agement activities. Systems management typically includes areas like:

• backup/recovery
• chargeback management
• security management
• distribution of software
• capacity management

Looked at in this way, capacity management is simply another bullet item on
the list. But this is another of those risk misperceptions. In terms of com-
plexity, it is arguably the most significant item. It is more like the difference
between the human body and the medical homunculus in Fig. 1.1.

Fig. 1.1. The homunculus shows the human body in sensory proportion rather than
the usual geometric proportion

Indicating the location of an ailment to your doctor has meaning because
references are made to your body in geometric proportion. The homunculus,
on the other hand, represents the sensate proportion of our bodies. Reflecting
this sensory weight, the hands and the mouth become huge, whereas the

6 1 What Is Guerrilla Capacity Planning?

thorax and head appear relatively small (Fig. 1.1). This is because we receive
vastly more sensory information through our fingers and tongue than we do
via the skin on our chest, for example.

The same proportionality argument can be applied to capacity manage-
ment. Capacity management is to systems management as the homunculus
is to the human corpus. Almost every other item on the above list can be
accommodated by purchasing the appropriate COTS package and installing
it. Not so for capacity management.

In terms of coverage, capacity management can be broken into three major
subareas:

1. performance monitoring
2. performance analysis
3. performance planning

Most attention is usually paid to level 1, performance monitoring, because it
is generally easiest to address. If you want to manage performance and capac-
ity, you have to measure it. Naturally, this is the activity that the majority of
commercial tool vendors target. As a manager, if you spend $250,000 on tools,
you feel like you must have accomplished something. Alternatively, UNIX and
Microsoft Windows system administrators are very good at writing scripts to
collect all sorts of data as part of their system administration duties. Since al-
most nobody sports the rank of Performance Analyst or Capacity Planner on
their business card these days, that job often falls to the system administrator
as part of the systems management role. But data collection just generates
data. The next level is performance analysis. The usual motivation for doing
any analysis these days is to fire-fight an unforeseen performance problem that
is impacting a release schedule or deployed functionality. With a little more
investment in planning (level 3), those unforeseen “fires” can minimized. But,
level 3 is usually skipped for fear of inflating project schedules. How can this
Gordian knot be cut?

1.3 Guerrilla vs. Gorilla

In my view, a more opportunistic approach to capacity planning is needed.
Enter Guerrilla Capacity Planning! The notion of planning tactically may
seem contradictory. At the risk of mixing metaphors, we can think of tradi-
tional capacity planning as being the 800-pound gorilla! That gorilla needs to
go on a diet to produce a leaner approach to capacity planning in the mod-
ern business environment (Table 1.1). By lean, I do not mean skinny. Skinny
means remaining stuck at level 1, where there is a tendency to simply monitor
everything that moves in the false hope that capacity issues will never arise
and thus, planning can be avoided altogether. Monitoring requires that some-
one watch the “meter needles” wiggle. Inherent in this approach is the notion

1.3 Guerrilla vs. Gorilla 7

that no action need be taken unless the meter redlines. But performance “me-
ters” can only convey the current state of the system. Such a purely reactive
approach does not provide any means for forecasting what lies ahead. You
cannot forecast the weather by listening to leaves rustle.

Table 1.1. Comparison of traditional (800-lb. gorilla) and Guerrilla methods

Attribute Gorilla Guerrilla

Planning Strategic Tactical
Horizon 12 to 24 months 3 mins to 3 months
Focus Hardware performance Application performance
Budget Not an issue None that you know of (see Chap. 11)
Title On your office door Not even on your business card
Style Opulent and ponderous Lean and mean
Tools Expensive commercial Mix of commercial and open-source

(see Table 1.3)
Reporting Routine, written, formal Opportunistic, verbal, informal
Skills Specialized, more quantitative Eclectic, more qualitative (Sect. 1.3.1)

The irony is that a lot of predictive information is likely contained in
the collected monitoring data. But, like panning for gold, some additional
processing must be done to reveal the hidden gems about the future. Keeping
in mind the economic circumstances outlined earlier, moving to levels 2 and 3
must not act as an inflationary pressure on the manager’s schedules. Failure
to comprehend this point fully is, in my opinion, one of the major reasons
that traditional capacity planning methods have been avoided.

1.3.1 No Compass Required

Traditional capacity planning has required relatively high precision because
hardware was expensive and many thousands of dollars were attached to each
significant digit of the calculation (see Chap. 3). Today, however, the price of
hardware has declined dramatically, even for traditional mainframe planning.
Predicting capacity with high precision is much less of a requirement than it
used to be historically. Managers are generally looking for a sense of direction
rather than the actual compass bearing. In other words, should we go this way
or that way? In this sense, the precision of capacity predictions has become
less important than its accuracy. There is little virtue in spending several
months debugging and validating a complex simulation model if the accuracy
of a simple spreadsheet model will suffice.

Let us not overlook the fact that any performance model is only as accurate
as the data used to parameterize it. Performance data provided by kernel
instrumentation in operating systems such as Windows, UNIX (Vahalia 1996),
or Linux, can only be assumed to be accurate to within a margin of about

8 1 What Is Guerrilla Capacity Planning?

±5%. Such operating system instrumentation was originally implemented for
the benefit of operating system developers (Gunther 2005a), not for the grand
purpose of capacity planning. Nonetheless, every capacity planning tool in
existence today primarily relies on those same operating system counters with
little modification.

1.3.2 Modeling Is Not Like a Model Railway

Sometimes the compass bearing is required, if not by management, by you. It
may be desirable for you to check your results with higher accuracy than you
are going to present them. The goal of capacity planning is to be predict ahead
of time that which cannot be known or measured now. Prediction requires a
consistent framework in which to couch the assumptions. That framework is
called a model. The word model, however, is one of the most overloaded terms
in the English language. It can mean everything from a model railway to a
fashion mannequin. Consider the model railway. The goal there is to cram
in as much detail as the scale will allow. The best model train set is usually
judged as the one that includes not just a scale model of the locomotive, and
not just a model of an engineer driving the scaled locomotive, but the one that
includes the pupil painted on the eyeball of the engineer driving the scaled
locomotive!

This is precisely what a capacity planning model is not. For capacity plan-
ning, the goal is to discard as much detail as possible while still retaining
the essence of the system’s performance characteristics. This tends to argue
against the construction and use of detailed simulation models, in favor of the
use of spreadsheets or even automated forecasting. The skill lies in finding
the correct balance. Linear trending models may be too simple in many cases,
while event-based simulation models may be overkill. To paraphrase Einstein:
Keep the model as simple as possible, but no simpler.

1.3.3 More Like a Map Than the Metro

Sometimes we need a compass and a map. To take the model railway analogy
a step further, a capacity plan and the capacity models which support it are
more like a map of the metro railway than the metro railway itself. A map
of the San Francisco Bay Area Rapid Transit (BART) rail system offers an
excellent example of this difference. The map in Fig. 1.2 is an abstraction
containing just enough detail for a commuter to visually decipher the correct
route between their departure and destination. It easy to tell if you need to
change trains, and how far you can go by train versus other modes of public
transportation. There is just enough encoded information and this achieved
by suppressing all realistic details. In fact, the map is not even close to the
real railway system. A more realistic representation would require a satel-
lite image, e.g., maps.google.com/maps?ll=37.579413,-122.343750&spn=
.755799,.960205&t=h&hl=en, but this kind of additional information does

1.4 Tactical Planning as a Weapon 9

Fig. 1.2. A metro railway map that encodes the rail lines and the respective sta-
tions with just enough information to allow a commuter to visually decipher the
correct route between their departure and destination. All other realistic details are
suppressed (c© 2005 Bay Area Rapid Transit System. Used with permission)

not help in finding your way around on BART. In fact, it is too much informa-
tion and is more likely to confusing than helpful. Guerrilla capacity planning
models have the same requirement: abstract simplicity.

To summarize, so far, Guerrilla Capacity Planning (GCaP) tries to facili-
tate rapid forecasting of capacity requirements based on available performance
data in such a way that management schedules are not inflated. Let us look
at a brief description of guerrilla capacity planning in action.

1.4 Tactical Planning as a Weapon

As I have already indicated, tools alone are not the answer. In fact, the tools
can be quite cheap. Furthermore, the tools needed are likely to be less sophis-
ticated the better trained are the people who use them. If the people doing
the performance analysis and capacity planning have the appropriate training
in capacity planning methods, they are more likely to be able to improvize
with tools like Excel. Consistent investment in a human capacity planning
infrastructure is one of the more cost-effective things a company can do.

An important reason for doing any capacity planning is the need to stay
ahead in the procurement cycle. If capacity demand is not forecast sufficiently

10 1 What Is Guerrilla Capacity Planning?

far ahead the additional servers, when they are finally procured and installed,
may have their capacity consumed instantly by latent user-demand that has
built up in the meantime. The next three examples show how that problem
can be avoided, Guerrilla style.

1.4.1 Scalability by Spreadsheet

First, we briefly outline a relatively simple and fast method for quantitatively
determining application scalability. Application scalability is a perennial hot
topic that involves concepts of performance and planning, yet few people are
able to quantify the term.

Fig. 1.3. Virtual load-test environment in Excel including a plot showing the re-
sults of performing regression analysis (dashed curve) on measured throughput data
(squares)

Scalability has to do with laws of diminishing returns and therefore can
be expressed as a mathematical function (Chaps. 4–6). Figure 1.3 shows an

1.4 Tactical Planning as a Weapon 11

example of actual load test measurements of application throughput plotted
against the number of users or load generators on the x-axis.

Fig. 1.4. Quantitative scalability model equations set up in Excel. The theoretical
foundations of this model are presented in Chap. 4

Superimposed on these data (squares) is the corresponding scalability function
(dashed curve) defined in Chap. 4. Since it takes the form of a simple equation,
it does not require any queueing theory or event-based simulations. Therefore,
sizing server capacity for applications can be accomplished relatively quickly
by entering the scalability equation into a spreadsheet (Fig. 1.4).

This scalability equation involves just two parameters the values of which
can be determined using the regression tools built into Excel (See, e.g., Levine
et al. 1999). An example of the entire setup is shown in Fig. 1.3. The two
model parameters have clear physical interpretations. One is identified with
contention delays, e.g., time spent waiting on a database lock, while the other
is identified with coherency delays, e.g., time to fetch a cache-miss. The actual
cause of these delays can reside in hardware, software, or a combination of
both. The details of this technique are presented in Chap. 5.

Another way to look at this approach is that it represents a virtual load test
environment (Fig. 1.3). The required input data for Excelregression analysis
can come from a test platform comprising a relatively small processor and user
configuration. For example, Fig. 1.3 shows only a few hundred users executing
on a 16-way multiprocessor. Since it is neither a production platform (a “real
simulation”) nor an event-based simulation, it is a virtual test platform.

An essential feature of this capacity model is that it can predict retrograde
throughputs like those shown in Fig. 1.3. Retrograde throughput means that
the throughput decreases as the load on the system increases. This effect
cannot be modeled easily using conventional queueing solvers or simulators
without a lot of additional work. As noted in Sect. 1.3, this amount of effort
tends to be more gorilla than Guerrilla.

1.4.2 A Lot From Little

Einstein is purported to have said about physical models that if the data does
not fit the model, change the data. What he meant was that there are certain

12 1 What Is Guerrilla Capacity Planning?

fundamental laws that cannot be violated and if some measurements disagree
with those laws, the measured data must be wrong. Let us look at an example
of how that can happen in the context of capacity planning.

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350 400

Client Threads (N)

R
e
s
p
o
n
s
e

T
im

e
 (

m
s
)

Fig. 1.5. Measured times R that client requests spend in the test system as a
function of increasing load N

A fundamental law in computer performance analysis is Little’s law:

N = XR , (1.1)

which states that the number of active requests N in the system is given by
the product of the throughput X and the time spent in the system R (Gunther
2005a). Consider the load-test data plotted in Fig. 1.5. These data show that
above about N = 120 clients driving the test system, the response time data
R becomes constant.

That the response time can remain essentially constant under higher and
higher loads defies all the laws of queueing theory, and Little’s law in particu-
lar. Put simply, these data are wrong! The measurements need to be repeated,
but as Guerrilla capacity planners we would like to make the case for doing
that. We can employ Little’s law to that end.

In Table 1.2 Ninit is the number of client threads that are assumed to be
running. The number of active threads should also be equal to the product of
the measured X and R data according to Little’s law (1.1). We see immediately
in the fourth column of Table 1.2 that no more than 120 threads (in boldface)

1.4 Tactical Planning as a Weapon 13

Table 1.2. Distinguishing intitiated from running client threads. The last three
entries in column four show that only about 120 threads are actually running even
though up to 400 threads have been initiated

Client System Response Running Idle
threads throughput time threads threads

Ninit Xinit Rinit Nactive Nidle

1 24 40 0.96 0.04
5 48 102 4.90 0.10

10 99 100 9.90 0.10
20 189 104 19.66 0.34
40 292 135 39.42 0.58
60 344 171 58.82 1.18
80 398 198 78.80 1.20

120 423 276 116.75 3.25
200 428 279 119.41 80.59
300 420 285 119.70 180.30
400 423 293 123.94 276.06

are actually active on the client side, even though up to 400 client processes
were initiated. In fact, there are Nidle = Ninit−Nactive threads that remain idle
in the pool. This throttling by the client thread pool shows up in the response
data of Fig. 1.5. By the way, if your company does produce a product with a
response time like that in Fig. 1.5, ship it!

A common fallacy is to treat data as divine. The significant cost and effort
required to set up a load-test system can lead to a false sense of security that
the more complex it is, the more sacrosanct are the data it produces. As we
shall see in Chap. 3, nothing could be further from the truth. As the example
above demonstrates, such reverence is not only misplaced, if the data are not
changed it almost certainly guarantees a sure ticket to production hell when
the application finally goes live.

1.4.3 Forecasting on the Fly

The spreadsheet equations in Fig. 1.4 can also be applied to Web site traffic
analysis where the rapid increase in traffic growth demands a more tactical
approach to capacity planning. Although the number of high-growth Web
sites has diminished since the “dot.bomb” period of several years ago, server
capacity still needs to keep pace with demand. As already noted, Web site
architects know they need capacity, but the concept of planning is not typically
part of that culture.

A useful metric that I have devised for this high growth Web sites is the
capacity doubling period (Gunther 2001). This is simply the time until the
amount of processing capacity consumed becomes twice that which is being
consumed currently. In some cases this can be as short as six months. That
is about ten times faster than typical data processing centers and four times

14 1 What Is Guerrilla Capacity Planning?

faster than Moore’s Law. Such exponential demand for server capacity can
lead to a new definition of bankruptcy—if you have to purchase a lot of cheap
servers, pretty soon, you are talking real money! This forces the need to plan
capacity well in advance of the procurement cycle.

Once again, the capacity doubling period can be determined with the use
of elementary tools like spreadsheets. For example, if the processor utilization
ρ is measured at regularly scheduled intervals, the long term in consumption
can be estimated by assuming an exponential trend:

ρW = ρ0 eΛW , (1.2)

where Λ is the growth rate determined by using the Add Trendline facility in
Excel, and W is the number of weeks over which the data are being fitted.
The doubling time τ2 is then given by

τ2 =
ln(2)

Λ
. (1.3)

An exponential growth model was chosen because it is the simplest function
that captures the notion of compounded growth. It is also reflective of supra-
linear revenue growth models. The details of this technique are presented in
Chap. 8. If you decide to get more involved in statistical models, you might
want to consider using more robust tools like Minitab or R, which are listed
in Table 1.3.

The next task is to translate these trends into procurement requirements.
Since the trend lines only pertain to the measurements on the current system
configuration, we need a way to extrapolate to other possible system config-
urations. For that purpose, I used the scalability functions in Fig. 1.4. The
details of how this is done can be found in Chap. 8.

1.4.4 Guerrilla Guidelines

What are the benefits of this guerrilla sizing methodology? Apart from avoid-
ing queueing theory or simulation models, perhaps the most significant benefit
is not the technical merits of the model but the fact that a framework is cre-
ated against which the consistency of the load measurements can be checked.
If the data do not fit your capacity planning model, there is very likely a
problem with the measurement process that may be worth a more detailed
investigation. For example, each of the parameters in the scalability model
(Fig. 1.4) has a well-defined physical interpretation (the details are presented
in Chap. 4). It has been my experience that engineers, when presented with
performance information based on those parameters, quickly identify the spe-
cific parts of the application or platform that need to be tuned to improve
scalability. In this way, scalability can be forecast without inflating the release
schedule.

1.4 Tactical Planning as a Weapon 15

Table 1.3. Some weapons of choice used by Guerrilla planners

Weapon Remarks

Excel Well-known commercial spreadsheet application.
You probably have it already as part of Microsoft Office.
office.microsoft.com (See, e.g., Levine et al. 1999)

Mathematica Commercial symbolic and numerical computation application.
Uses its own C-like functional programming language.
Gold standard with a golden price tag around $2000.
www.wolfram.com/products/mathematica/index.html

Minitab Commercial statistical package.
A step beyond Excel priced around $1200
www.minitab.com

Net-SNMP Open source data acquisition using SNMP MIBs.
net-snmp.sourceforge.net

PDQ Pretty Damn Quick. Open-source queueing modeler.
Supporting textbook with examples (Gunther 2005a)
www.perfdynamics.com/Tools/PDQ.html

R Open source statistical analysis package.
Uses the S command-processing language.
Capabilities far exceed Excel (Holtman 2004).
www.r-project.org

SimPy Open-source discrete-event simulator
Uses Python as the simulation programming language.
simpy.sourceforge.net

As I hope the examples in this section have demonstrated, GCaP does
provide an approach to assessing application scalability that matches man-
agement’s requirement to keep a tight rein on project schedules. In many
situations where there is a tendency to avoid traditional capacity planning,
the Guerrilla approach can provide management with a simple framework
whereby disparate groups can be brought together and unforeseen perfor-
mance issues revealed. Once revealed, they can then be addressed within the
context of existing schedules. In this way, GCaP can help to keep projects
on schedule and minimize revisions. Think of it as a way of managing hidden
time-sinks. It is also a way of replacing risk perceptions with risk manage-
ment. Sometimes, the biggest hurdle preventing the introduction of GCaP is
simply getting started.

Aspects of capacity planning that have not been discussed here include:
floor-space, power, cooling, disk storage, tape storage, etc. Many of these
issues can be addressed with spreadsheet models similar to those presented in
this chapter.

16 1 What Is Guerrilla Capacity Planning?

1.5 Summary

So, what is GCaP? Here are the primary attributes that distinguish the Guer-
rilla approach from traditional capacity planning:

Tactical Planning: Prima facie, this looks like an oxymoron because plan-
ning, by definition, is strategic. But strategic planning essentially has no
role in today’s business environment. It is 2006, not 1966. Most planning
horizons rarely extend beyond the next financial quarter, if that. Rather
than trying to fight these economic constraints, GCaP tries to embrace
them.

Opportunistic Intervention: Given the need for tactical planning, and
generally little support for any kind of capacity planning in many work
environments, a more opportunistic approach is required. Rather then
proselytizing the virtures of what could be achieved with capacity plan-
ning, just look for opportunities to demonstrate it on the spot. One simple
way to start this process is to ask the right kind of performance questions
in your next “Tiger Team” meeting. If there is resistance to your inter-
vention, retreat and try another day.

Rapid Analysis: Opportunistic intervention means you need to be fast on
your feet, and that is where light weight tools can help. Any capacity
planning models should not be too complex: They should be more like
a map than a metro (Sect. 1.3.3). I have given some examples based on
Excel in Sect. 1.4. You may have your own preferred tools (Table 1.3).

Methods vs. Madness: All capacity planning, and GCaP in particular, is
about methodologies rather than recipes. Methods are generalizable to
many different circumstance. Recipes tend to be case-specific. Methods
applied consistently can help to reduce the madness of short planning
horizons. In this chapter, and throughout the rest of this book, I present
general methods that I hope can be easily translated to meet your partic-
ular capacity planning requirements.

A much more extensive list of GCaP attributes and guidelines can be found in
Appendix F, the Guerrilla Manual. You may also come up with some of your
own attributes based on aspects of Table 1.1 and the case study presented in
Chap. 11.

To paraphrase the words of a more notorious guerrilla planner: 1

Management resists, the guerrilla planner retreats.
Management dithers, the guerrilla planner proposes.
Management relents, the guerrilla planner promotes.
Management retreats, the guerrilla planner pursues.

Finally, after reading the remaining chapters with this book’s epigraph in
mind, I hope that you too will become another Guerrilla capacity planner
able to go forth and “Kong-ka!”
1 See the rubric for this chapter (Taber 1969, p. 27).

2

ITIL for Guerrillas

2.1 Introduction

This chapter is the only place in the book where I emphasize the process of
capacity planning and how it relates to the business side of the operation,
rather than the tools and techniques that support the discipline of capacity
planning. An internationally recognized framework that emphasizes business
processes for IT is called ITIL. The acronym ITIL stands for Information
Technology Infrastructure Library; ITIL is quite literally a collection of related
manuals and copyrighted books. The objective of this chapter is to outline the
ITIL framework and provide some ideas for how Guerrilla capacity planning
(GCaP) can be included within the ITIL framework.

One of the more significant benefits that derive from understanding the
ITIL framework is that it forces you think about the business impact of ca-
pacity planning rather than remaining narrowly focused on the tools and
technologies used to achieve capacity planning. One example is to avoid using
overly technical capacity planning terminology when presenting the conclu-
sions of your analysis to your ITIL customers. Use their business terminology
and units rather than performance metrics like throughput and utilization.

2.2 ITIL Background

Historically, ITIL was initiated in the 1980’s by British Office of Govern-
ment Commerce (OGC) as a set of best practices for IT Service Management
(ITSM), and they own the copyright. The original outcome has now come to
be known as ITIL version one. Since then it has been updated and published
as version two. Although it has been used widely in the UK, allied British
Commonwealth countries, and some European countries, it has found much
slower adoption in the USA. To further ITIL promotion, a number of user
groups have been established. The IT Service Management Forum (itSMF)
is an international user group with a Web site at www.itsmf.com, whereas

18 2 ITIL for Guerrillas

www.itsmfusa.org is the corresponding USA Web site. ITIL is intended to
integrate with other standards such as:

ISO: (International Organization for Standardization, www.iso.org) Per-
haps best known for the ISO 9000 standard, which has become an interna-
tional reference for quality requirements in business-to-business dealings;
ISO 14000 looks set to achieve at least as much, if not more, in helping
organizations to meet their environmental challenges.

COBIT: (Control Objectives for Information and Related Technology) www.
isaca.org COBIT is an IT governance framework and supporting toolset
that allows managers to bridge the gap between control requirements,
technical issues and business risks.

CMM: (Capability Maturity Model) CMM for Software, Carnegie Mellon
Software Engineering Institute (SEI), has been a model used by many
organizations to identify best practices useful in helping them increase
the maturity of their processes.

MOF: (Microsoft Operations Framework) A set of Microsoft publications
containing their guidelines for IT service management. Although MOF is
not the same as ITIL, the framework is built on best practices from ITIL,
but directed at the Windows Server platform.

The ITIL framework (Fig. 2.1) addresses seven management areas:

1. service support
2. service delivery
3. planning to implement service management
4. information communication technology infrastructure management
5. applications management
6. the business perspective
7. security management

In this chapter, we focus on ITIL management area 2 (service delivery), be-
cause that is where the capacity management processes are defined.

Recall from Sect. 1.2.4 that the performance and capacity planning com-
ponents do not have equal weighting in terms of significance or resources
with these other areas of systems management. Capacity management can
rightly be regarded as just a subset of systems management, but the infras-
tructure requirements for successful capacity planning (both the tools and
knowledgeable humans to use them) are necessarily out of proportion with
the requirements for simpler systems management tasks like software distri-
bution, security, backup, etc. It is self-defeating to try doing capacity planning
on the cheap.

Remark 2.1. The adoption rate for ITIL in the USA runs the gamut from
those companies adopting it wholesale, to others seeing it as just another
fad. As a GCaP planner, it should be pretty obvious which environment you
are in. Nonetheless, it may be prudent for you to become conversant with

2.2 ITIL Background 19

Fig. 2.1. The ITIL framework showing the relative location of the service level
management process and the capacity management process

some of the ITIL framework. There are barriers to entry, unfortunately. One
of the greatest that I ran into was trying to obtain introductory literature
on ITIL, just to see whether I needed to investigate it more thoroughly or
not. The published manuals and books comprising the ITIL library are not
written at an introductory level and are also prohibitively expensive for an
individual to purchase. The closest I came to an “ITIL for Dummies” type of
exposition was a complimentary booklet (Rudd 2004) published by itSMF.
Try requesting it via email: publications@itsmf.com. The ITIL Toolkit
(www.itil-toolkit.com) is another resource designed to guide the novice
through the ITIL diagram and acronym jungle. It contains a whole series of
resources to help simplify, explain, and manage the process.

2.2.1 Business Perspective

ITIL views IT as a business, so it emphasizes process rather than tools, in
order to provides an appropriate interface between business processes and
technology. Internal IT shops that were accustomed to having a captive audi-
ence or customer base, now find this is no longer true because of the advent
of such things as outsourcing. To encompass the broader scope imposed by
these recent developments, requires a broader framework. Part of the ITIL
framework is to recognize that IT products, such as application hosting, are
actually comprised of services that utilize devices, such as servers, storage,
and networks.

20 2 ITIL for Guerrillas

Within the context of ITIL management area 2 (service delivery), service
level management (SLM) provides the interface to the business (Fig. 2.2). The
SLM process negotiates, agrees to, and reviews service requirements for the
business side such as SLAs (service level agreements). SLM further specifies
service targets that are contained in a set OLAs (Operational Level Agree-
ments).

Fig. 2.2. The relationship of the capacity management process (and its possible
GCaP implementation) to other immediate ITIL processes and the capacity man-
agement database (CDB)

Although ITIL is quite literally a collection of related manuals and copy-
righted books that document best practices for ITSM, these materials should
not be regarded as providing stepwise procedure manuals. ITIL is more about
what needs to be done to provide and efficient coupling between IT and busi-
ness rather than how that coupling is to be achieved. The actual implementa-
tion details are left open. Therefore, a lot is left to individual interpretation.
In many respects, best practices are really an admission of failure. Copying
someone else’s apparent success is like cheating on a test. You may make the
grade, but how far is the bluff going to take you? Very quickly you reach the
point where the implementation details are needed, and in the area of ITIL
capacity management, that is where GCaP comes in.

2.3 The Wheel of Capacity Management 21

2.2.2 Capacity Management

The capacity manager is an ITIL process owner responsible for such things
as supply and demand, cost-benefit analysis, capability, and requirements. To
satisify these responsibilities under ITIL requires structure, discipline, and or-
ganization. Compare this with the capacity homunclulus discussed in Chap. 1.
To implement the ITIL capacity management process requires skills, technol-
ogy, and enterprise wide support. The idea is that the ITIL processes should
surmount typical organizational boundaries.

One of the most important components with the ITIL specification for
capacity management is the Capacity Management Database (CDB) shown
in Fig. 2.2. This repository is intended to be far more encompassing than
the typical database of operating system performance metrics supplied with
commercial performance management products. It can and should include
previous capacity reports, various statistical analsyes, and capacity planning
models.

2.3 The Wheel of Capacity Management

Modern business practice demands rapid product development to meet narrow
market windows. Time to market is everything, so management is constantly
forced to seek ways of shrinking product development schedules. Traditional
engineering practices, such as design reviews, prototyping, and performance
analysis, have become common casualties of such schedule squeezing. This
creates a dilemma for the performance analyst. The product is expected to
perform, but performance analysis tends to get squeezed out of product design.
In this climate, performance analysis is reduced to mere post mortem evalua-
tion long after the crucial design decisions have been made, or even long after
the product has actually been released. Here I am using the terms business,
market, customer, and product in their most generic sense. A product may be
a full-blown commercial offering or an artifact for internal consumption only.
The product may be a piece of computer hardware, a software application, or
an integrated computer system.

2.3.1 Traditional Capacity Planning

The frustration of today’s capacity planner stems from trying to combat these
business pressures. The purist’s position, that capacity management is the
“right thing to do” because it helps to ensure a more cost-effective product,
tends to fall on deaf ears. On the other hand, it is relatively easy to cite an
ongoing litany of multimillion-dollar computer projects that have failed as a
consequence of a more short-sighted approach to system design. To help clarify
the nature of this paradox, we introduce a visual aid: the wheel of capacity
management in Fig. 2.3.

22 2 ITIL for Guerrillas

Model

Design

Measure

Build

Deploy

Fig. 2.3. The gorilla wheel of capacity management

The wheel is read clockwise starting at any position and consists of five
segments corresponding to nominal phases in the development cycle any prod-
uct:

Measure: Measurements are made on the current product, if it exists, or
when a completely new product line is being developed. Back-of-the-
envelope estimates (with appropriate fudge factors) can be based on the
previous generation of product. These measurements might be made as
part of quality assurance, for example, and these data are are fed into the
modeling phase.

Model: Since capacity planning involves predictions (by definition), perfor-
mance models are a natural part of any capacity plan. Relevant param-
eters are extracted from performance data collected in the measurement
phase and are used to define the inputs of the performance model, e.g.,
the spreadsheet scalability models discussed in Chaps. 1 and 5.

Design: Architectural design decisions should be inclusive of capacity and
performance projections from the modeling phase. Elsewhere (Gunther
2000) I have called this approach performance-by-design because it is a
cost-effective way to build performance into the product, which, in turn,
increases the chances that it will meet performance expectations. That
keeps costs down and customers happy.

Build: In general, the capacity planner will be less involved during this en-
gineering phase, but it is still worthwhile to participate in the relevant
engineering meetings, where useful information may be acquired for use
in modeling phases of the future, e.g., unit test or functional test data.

Deploy: The day of reckoning. The greater the investment in the modeling
and design phases, the more likely the product will meet performance
expectations and remain on track for the capacity plan. Like the build
phase, measurements should be made where possible, and that is more
easily facilitated if some degree of instrumentation (data collection points)
is built into the product as part of the design phase.

2.3 The Wheel of Capacity Management 23

The phases apply to either hardware or software artifacts, no matter whether
those artifacts are built for internal use or as part of a commercial product.
Figure 2.3 is meant to convery the more traditional approach as practiced in
the heyday of centralized mainframe computing—what I referred to as gorilla
capacity planning in Chap. 1. The appropriate visual, therefore, would seem
to be a big, fat, tractor tire capable of doing a lot of heavy lifting.

Design

Build

Deploy

Fig. 2.4. Running the wheel of capacity management (Fig. 2.3) on the rim because
the important capacity planning phases have been dismissed as inflationary for the
product schedule (Sect. 1.2.3)

2.3.2 Running on the Rim

To much of modern management, capacity planning conjures up this image
of tractor tire, viz., a cumbersome expander of time that tends to inflate
precious product development schedules. Under prevailing business pressures,
managers tend to react to this “tractor tire” image by rushing to the other
extreme, whereby the measurement and modeling phases are dropped alto-
gether (or are never included in the first place), and decision making is largely
reduced to guesswork. As Fig. 2.4 shows, it certainly shortens the skeletonized
development cycle of guess, build, and guess again, but it also makes for a
rather bumpy and uncertain ride because the development cycle is running
partly on the rim.

Remark 2.2. As if this were not bad enough, there are other compelling incen-
tives for pursuing this approach. The strategy in Fig. 2.4 is aimed exclusively
at releasing a product within a narrow market window. Once the product
becomes available and adopted, so-called performance enhancements merely
provide additional revenue as part of the customer service contract. There-
fore, management can hardly be faulted for concluding that, if customers are
willing to pay more for the next “performance version,” why design it in? In

24 2 ITIL for Guerrillas

short, performance analysis gets dropped on the proverbial floor, products are
released with inferior performance, and the customer ends up financing the
enhancements. Against this kind of economic incentive, the purist does not
stand a chance.

Things look bleak for the modern capacity planner. Is there any hope? As
the old adage goes, if you can’t beat ’em, join ’em! In Chap. 1 we pointed
out that your management might be more receptive to your input if you can
offer them capacity management that is streamlined to meet their own high-
pressure constraints.

Model

Design

Measure

Build

Deploy

Fig. 2.5. The leaner and meaner GCaP wheel of performance. It has exactly the
same periodic phases, in exactly the same order (cf. Fig. 2.3), but with an emphasis
on higher planning efficiency (see Table 1.1)

2.3.3 Guerrilla Racing Wheel

Enter the racing wheel of GCaP (Fig. 2.5). It repairs the broken wheel of per-
formance (Fig. 2.4) by reinstating the modern capacity planner as an active
player in today’s fast-paced development process. Notice also that Figs. 2.3
and 2.5 look similar. That is because the basic methodologies are very sim-
ilar. In fact, in Chap. 8 I discuss a GCaP approach to Web site capacity
planning that derives from a mainframe technique called latent demand. Main-
frame methods are mature, and many of them (e.g., queueing models) can be
adapted to the analysis of modern computing environments (Gunther 2005a).
The important difference between Figs. 2.3 and 2.5 is that no matter which
capacity planning techniques you choose, they must be a good match for the
high-pressure demands of shortened development cycles. Since management
is unlikely to change its ways, you have to change yours.

Assuming that the GCaP approach to capacity planning depicited in
Fig. 2.4 is actually implemented, one has to remain vigilant against unbri-
dled enthusiasm in the measure and model phases, otherwise the GCaP wheel

2.4 Summary 25

Model

Design

Measure

Build

Deploy

Fig. 2.6. The GCaP wheel becoming overweight because of unbridled enthusiasm
in the capacity planning phases

can end up looking more like Fig. 2.6. In other words, those phases can be-
come overinflated. It is important to keep in mind that management today is
very sensitive to such inflationary expansion of their schedules (Sect. 1.2.3).
Management no longer focuses on the speed of the product as much as the
speed of producing the product. Nowadays, production performance matters
more than product performance. GCaP requires that you remain cognizant
of this management constraint and, accordingly, keep your capacity planning
style lean and mean.

Clearly, I have somewhat oversimplified things to make a point. The real
world is usually more confused than I have described it here. These days,
when it comes to the trade-off between the speed with which a decision can
be made and its accuracy, speed wins. Purists find this point difficult to accept.
Most design decisions, however, do not require fine detail, and the decision
makers are usually just looking for a sense of direction rather than a precise
compass bearing. If they do no want precision, why waste time providing
it? Moreover, design decisions are often revised many times throughout the
product development cycle, so precision gets lost in the flux.

2.4 Summary

This chapter has provided a brief overview of the ITIL framework and its
history. How widely it is adopted, and for how long, remains to be seen. The
formal copyright structure, expense, and lack of early regional advocate groups
have slowed the adoption of ITIL in the USA. This has started to change over
the last few years.

Our focus in this chapter was on the position of capacity management
within the ITIL framework. We saw (Fig. 2.1) that it resides within the service
level management process, which, in turn, resides within the service delivery

26 2 ITIL for Guerrillas

area, one of the seven top-level components of the ITIL framework. Although
the ITIL framework emphasizes process over procedure, and the actual imple-
mentation details are left open to interpretation, we suggested in Sect. 2.3 that
GCaP was intrinsically compatible with ITIL processes and best practices.

Perhaps one of the most significant benefits to come out of understanding
the ITIL framework is that it forces you think about the business impact of
capacity planning rather than remaining narrowly focused on the tools and
technologies of capacity planning. Having acknowledged that point in this
chapter, we now go on to examine in detail the tools and methodologies that
can be applied to Guerrilla capacity planning.

3

Damaging Digits in Capacity Calculations

O, pardon! Since a crooked figure may
Attest in little place a million;
And let us, ciphers to this great accompt,
On your imaginary forces work.

—William Shakespeare, Henry V

3.1 Introduction

In this chapter, we are going to discuss something that all engineers do: mea-
sure, measure, measure, end up with a set of different numbers, and finally
use them to calculate something. For the Guerrilla planner the measurements
might comprise certain performance metrics. Inevitably, the measurements are
used to calculate a final result. This presents a subtle and often overlooked
problem. For example, suppose you have the following three measurements:
2.95, 32.7, 1.414 (the units are not important here), and you want to add them
together. How many digits should appear after the decimal point in the final
result? The answer to that question (see Example 3.6) depends on something
called significant digits or “sigdigs,” and that is what we shall discuss in this
chapter.

Note that in this chapter we shall be discussing the manipulation of digits
within numbers, not the representation of those numbers in a finite amount of
computer memory, e.g., whether to use fixed-point or floating-point represen-
tations. However, when it comes to questions of precision and accuracy there
is some overlap between these topics, so we visit that briefly in Sect. 3.7.

Possibly, you have heard of the sin of omission, where you omit some
details because you were not explicitly asked about them, but you also know
that declaring them would alter the outcome. The problem of significant digits
is more akin to a sin of precision, where more detail gets included in the
outcome than is justified by the preciseness of the initial information.

Sins of precision can occur in a variety of ways, but each of them arises
out of a failure to recognize two possible classes of numbers:

1. Exact numbers. These are numbers identified with the positive integers,
e.g., 42, 137, also known as cardinal or counting numbers in mathematics.

2. Measured numbers. These numbers, e.g., 12.345, 3.14, are identified with
the real numbers in mathematics.

28 3 Damaging Digits in Capacity Calculations

Exact numbers are numbers that are exact by definition, e.g., there are 3600
seconds in one hour (Table C.2 in Appendix C). There can be no question
about it because it is true by definition. Mathematically, exact numbers are
associated with the integers. When you ask for seating at a restaurant, the
number of people you give the mâıtre d’ is an integer—an exact number—
because people only come in integral multiples, not fractions.

Measured numbers, on the other hand, are estimates that do not have the
benefit of any integer multiplier. Mathematically, measured values are associ-
ated with the real numbers. The real number π refers to the measurement of
a circle’s circumference using the diameter as the yard stick. As the Greeks
discovered to their dismay, the circumference is not an exact multiple of the
diameter. It cannot be expressed as an integer, and therefore it is given the
Greek meta name, π, instead.

Averaging is another process closely associated with measurements and
estimates. For example, even though people occur naturally in integral multi-
ples, the average family size in the USA during the 2000 census (factfinder.
census.gov) was found to be 3.14 members. This is an estimate, not an exact
number, and is expressed here to 3 significant digits, or 3 sigdigs.

Remark 3.1. The process of averaging causes information to be lost. In fact,
the simpler process of adding numbers together loses information. If you are
presented with the addends 3 and 4, you know unequivocally that the sum is
3 + 4 = 7. However, if the situation is reversed and you are presented with
the number 7, you no longer know with certitude which one of the 15 possible
combinations of addends, e.g., 3 + 4, 6 + 1, 5 + 2, was used. That information
has been lost.

Performance monitoring tools of the type discussed in Chaps. 1, 8, and 11
collect data and report them as time-based averages over some specified sam-
pling interval. Once again, these number are not and cannot be exact numbers.
To make these distinctions clearer, we now define some terms more precisely.

3.2 Significant Digits

A significant digit is one that is actually measured. The number of significant
digits in a measurement depends on the type of measuring device. No matter
what the measuring device, there will always be some uncertainty in the mea-
surement. Both the device and the observer add their own uncertainty to the
measurement. This point reached world wide significance during the confusion
surrounding the Florida vote count in the 2000 US presidential elections (see
Example 3.2).

3.2.1 Accuracy

In everyday parlance, we tend to use the words accuracy and precision synony-
mously, but in science and engineering they are clearly distinguished. Accuracy

3.2 Significant Digits 29

Fig. 3.1. Archery target analog of accuracy. Holes are grouped together around the
bull’s eye

refers to how close a measurement is to the expected value. Using an archery
analogy (Fig. 3.1), where an arrow hole represents a measurement and the
bull’s eye represents the expected (or accepted) value, accuracy corresponds
to the distance between the arrows and the bull’s eye. Mathematically speak-
ing, it is the maximum error we introduce because we truncate the digits. By
convention, this is taken to be one half of the value of the least significant
digit.

3.2.2 Precision

Again, using the archery target analogy, precision is the distance between
each hole, irrespective of where they lie on the target with respect to the
bull’s eye. The grouping of arrow holes could be tightly clustered but a long
way from the bull’s eye. Mathematically, it is the number of digits available to

Fig. 3.2. Archery target analog of precision. Holes are grouped together but well
away from the bull’s eye

represent the mantissa. 1 Exact numbers (or integers) have infinite precision.
But beware! As Fig. 3.2 shows, it is possible to have high precision with poor
accuracy.

Example 3.1 (Calculating π).
In 1853 William Shanks published a calculation of π to 607 decimal places.
1 The part of the number after the decimal point.

30 3 Damaging Digits in Capacity Calculations

Twenty years later he published a result that extended this precision to 707
decimal places. It was the most precise numerical definition of π for its time
and adorned many classroom walls.

In 1949 a computer was used to calculate π, and it was discovered that
William Shanks’s result was in error, starting at a point near the 500th decimal
place all the way to the 707th decimal place. Nowadays, with the benefit of a
value for π correct to 100,000 decimal places, we can say that William Shanks’s
techniques generated a precise value, but not an accurate value. ��
Example 3.2 (Voting and Precision).
Prior to the year 2000 presidential election in the USA, voting was assumed

to have infinite precision, i.e., it was a straightforward counting problem. As
noted in Sect. 3.1, counting is exact but measurement is not. The gross count
in Florida had roughly the same number of votes in favor of each presidential
candidate, and this led to the problem of determining the very small difference
between two very large numbers. The precision required was on the order of 1
part in 6 million, or 0.0000166667%. The measurement process, including bal-
lot machines and human inspectors, was not capable of producing this kind
of precision, and gave rise to the infamous “hanging chad” and “pregnant
dimple” ballot classifications. The Florida component of the presidential elec-
tion degenerated into a philosophical question of, What is a vote? rather than
addressing the narrow margin of measurement error by using the scientific
process of repeated measurement. ��

3.3 Sifting for SigDigs

We now write down the steps for manually assigning significance to a digit.
The first thing to remember is that all nonzero digits are counted as significant.
We also need to consider if the number is exact (integer) or a decimal fraction
(real).

3.3.1 Count by Zeros

The steps required to correctly determine the number of significant digits can
be expressed by the following algorithm.

Algorithm 3.1 (Significance).
Scan the number left → right.
Is there an explicit decimal point?

Yes: Scan and locate the first nonzero digit.
Count it and all digits to its right. (including zeros)

No: Append a decimal point.
Scan and locate the last nonzero digit prior to the decimal point.
All zeros trailing that digit should be ignored.

3.3 Sifting for SigDigs 31

We consider some examples that demonstrate how to apply Algorithm 3.1.

Example 3.3. Let 200300 be the number. There are two nonzero digits: 2 and
3, shown in bold:

2 0 0 3 0 0

So, we have at least 2 sigdigs, so far. Is there a decimal point? No. So, we
append it to produce:

2 0 0 3 0 0 .

Now we scan from left to right and locate the last nonzero digit prior to the
decimal point. That is the digit 3.

2 0 0 3̌ 0 0 .

Every digit to the right of the 3 is now ignored and what remains is

2 0 0 3

which has 4 significant digits. ��
Consider another example, using a real number this time.

Example 3.4. Suppose 0.000050 is the number. There is one nonzero digit: the
5 shown in bold.

0 . 0 0 0 0 5 0

Is there a decimal point? Yes. Hence, we scan from left to right and locate the
first nonzero digit. Once again, that is the 5. We start counting from there
and include any zeros. Therefore, there are two significant digits. ��

Finally, here is a table of examples for you to practice with at any time.

Example 3.5. Cover up everything in the following table of numbers except
the first column, and using the above procedure, determine the number of
sigdigs.

Number SigDigs Remark
50 1 See Sect. 3.5 for an application

0.00341 3
1.0040 5
50.0005 6
6.751 4
0.157 3
28.0 3

40300 3 Implicit decimal point
0.070 2
30.07 4
65000 2 Implicit decimal point
0.0067 2

6.02 × 1023 3 Explicit decimal point in scientific notation

32 3 Damaging Digits in Capacity Calculations

This skill of determining the number of significant digits can be honed with
a little consistent practice. ��
That is it in a nutshell! As you might expect, this manual process gets rather
tedious, and if you do not use it frequently you might forget the algorithm
altogether. Surprisingly, the above algorithm is not readily available in tools
like calculators, spreadsheets, or mathematical codes. To help help rectify this
situation Appendix D contains the sigdigs algorithm in several languages. It
should be clear from those examples how to translate sigdigs into your favorite
programming dialect, e.g., SAS, APL, etc.

3.3.2 Significance and Scale

According to Algorithm 3.1, each of the numbers 1100, 11 and 0.011 have
the same number of significant digits. But, how can that be? Surely more
effort was put into measuring the second and third decimal places of the
third number.

To understand why this is an illusion, imagine you are getting a doctor’s
prescription filled at a pharmacy. The pharmacist may be required to measure
out 11 milliliters of a liquid to make up your prescription. A milliliter means
one one-thousandth of a liter, so 0.011 liter is the same as 11 milliliters (often
abbreviated to ml). The pharmacist would use a graduated cylinder that has
milliliter (ml) intervals marked on it. If the size of the cylinder held a total of
100 ml of liquid, there would be 100 major intervals marked on the side. With
this device, it is very easy to sight and read off 11 ml (and even fractions of
a milliliter, using the minor intervals).

Similarly, 1100 ml is the same as one and one-tenth of a liter. In that case,
the pharmacist might use a liter-size graduated cylinder to measure 1100 ml
in two steps. First, a full liter (1000 ml) is measured out. Then, the same
graduated cylinder is used to measure out one tenth of a liter (a deciliter),
and the two volumes are added together to produce 1100 ml. There are two
things to notice about these measurements:

• The amount of reading effort is about the same in each case.
• The real difference is the size of the measuring device used.

In other words, the quantities 1100, 11, and 0.011 only distinguish scale, not
precision. The precision is the same in each case (2 sigdigs), but the scale or
measurement unit to which they refer is different. Hence, it makes no difference
to the precision whether I write 0.011 liters or 11 milliliters.

3.4 Rounding Rules

Consider the number 7.246, which has 4 sigdigs. We would like to express
it correctly with only 3 sigdigs. We need to eliminate the “6”. We round up

3.4 Rounding Rules 33

the “4” because the “6” is greater than 5, and the result is 7.25, correct to 3
sigdigs. But what if the number was 7.245? I was also taught to round up the
“4” when the next digit is “5” or greater. It turns out that this rule has been
modified recently because the old rule was introducing a bias into the results.

Definition 3.1 (Parity). The parity of an exact number N (integer) is even
if Nmod 2 ≡ 0; otherwise N is odd.

Remark 3.2. Definition 3.1 should not be confused with bit wise parity. If a
binary string of digits contains an even number of 1’s (bitwise XOR or mod-2
addition), it is said to have even parity. Otherwise, it has odd parity.

The new rounding rule requires that we look at digits beyond the “5” (if
any exist) as well as determine if the digit preceding the “5” is odd or even.
In this case, there are no digits beyond the “5” and the digit preceding it is
even. The new rule says to drop the ‘5’ and leave the “4” alone, producing
7.24 correct to 3 sigdigs; not 7.25 as you might have anticipated using the old
rule. If the number had been 7.235, the digit preceding the “5” is odd, so the
new rule requires that the “3” be incremented to a “4”. Same result, different
reason. Checking the parity compensates for the old rounding bias. In general,
for a terminating string of digits:

. . . X Y Z

we can express the new rounding rules in the following Algorithm.

Algorithm 3.2 (Rounding).

a. Examine Y
b. If Y < 5 then goto (i)
c. If Y > 5 then set X = X + 1 and goto (i)
d. If Y ≡ 5 then examine Z
e. If Z ≥ 1 then set Y = Y + 1 and goto (a)
f. If Z is blank or a string of zeros then
g. Examine the parity of X
h. If X is odd then set X = X + 1
i. Drop Y and all trailing digits

The old rule corresponds to steps (a–c) and (i), whereas the new procedure
introduces the parity checking steps (d–h).

Using the old rule, you would round down if the next digit was any of (1,
2, 3, or 4), but you would round up if the next digit was any of (5, 6, 7, 8, or
9). In other words, looked at over a large number of rounding samples, you
would tend to round down four out of nine times but round up five out of
nine times. This is where the bias comes from. By selecting out the “5” as a
special case, we are left with rounding up if the next digit is one of (6, 7, 8,
or 9), i.e., 4/9-ths of the time. In the case of “5” exactly, we only round up

34 3 Damaging Digits in Capacity Calculations

only half time based on whether or not the preceding digit is odd. The overall
effect is to make the rounding process balanced.

Many tools, e.g., Excel use the old rule. You can check this by setting the
Cell Format to General. Then:

=ROUND(7.245, 2) → 7.25

Be aware that the second parameter in the round function indicates the
number of places after the decimal point, and not the number of sigdigs.

3.4.1 Golden Rule

When a calculation involves measurements with different numbers of signif-
icant digits, the result should have the same number of significant digits as
the least of those among the measurements.

3.4.2 Sum Rule

A sum or difference can never be more precise than the least precise number in
the calculation. So, before adding or subtracting measured quantities, round
them to the same degree of precision as the least precise number in the group
to be summed.

Example 3.6 (Addition).
Sum the quantities 2.95, 32.7, and 1.414 correct to three significant digits. The
least precise values have 3 sigdigs. Setting the sigdigs under their respective
columns, and using a diamond to indicate the absence of a digit in that
column, we have:

2 . 9 5 ♦
3 2 . 7 ♦ ♦

+ 1 . 4 1 4

After rounding using Algorithm 3.2, the summands become:
3 . 0 ♦ ♦

3 2 . 7 ♦ ♦
+ 1 . 4 ♦ ♦

3 7 . 1

and the result 37.1 is correct to 3 sigdigs. (cf. Algorithm 3.1) ��

3.4.3 Product Rule

When two numbers are multiplied, the result often has several more digits than
either of the original factors. Division also frequently produces more digits in
the quotient than the original data possessed, if the division is continued to
several decimal places. Results such as these appear to have more significant
digits than the original measurements from which they came, giving the false
impression of greater accuracy than is justified. To correct this situation, the
following rules are used:

3.5 Planning With Dollars and Sense 35

1. Equal Sigdigs. In order to multiply or divide two measured quantities
having an equal number of significant digits, round the answer to the same
number of significant digits as are shown in one of the original numbers.

2. Unequal Sigdigs. If one of the original factors has more significant digits
than the other, round the more accurate number to one more significant
digit than appears in the less accurate number. The extra digit protects
the answer from the effects of multiple rounding.

3. Final Rounding. After performing the multiplication or division, round
the result to the same number of sigdigs as appear in the less accurate of
the original factors.

Example 3.7 (Multiplication).
Suppose measured throughput is X = 2.95 transactions per second, and the
measured service demand is D = 904.62 ms. We wish to calculate the server
utilization using Little’s law U = X × D (see, e.g., Gunther 2005a).

Converting the timebase to seconds, the product becomes 2.95 × 0.90462.
Note there are 3 sigdigs in the first factor (the least precise number). However,
applying product rule 2 we retain 4 sigdigs in the second factor, i.e., 0.9046.
Hence, we find:

X × D = 2.95 × 0.90462 ,

⇒ 2.95 × 0.9046 ,

= 2.66857 ,

U ⇒ 2.67(rounded up) ,

or 267% busy, which also matches the least number of significant digits. The
⇒ symbol should be read as “becomes” to distinguish it from the “=” sign
since that step involves a nonmathematical transformation with regard to
precision. ��

3.5 Planning With Dollars and Sense

In an interesting paper entitled “How to Communicate and Define the Value
of Performance in Dollars and Cents,” Acree et al. (2001) employ a quantity
D100 to represent the number of dollars per 100th of a second 2 of response
time amortized over a 218-day work-year.

3.5.1 Cost Metric

The formula for D100 is given by:

D100 =
$50 per hour

3600x100
× 5, 500, 000 trans. per day

1 work day
× 218 work days

year
(3.1)

2 $/ms would be more consistent with SI units (Appendix C).

36 3 Damaging Digits in Capacity Calculations

Based on this formula the authors claim that the cost of 100th of a second is
D100 = $166,528. Let us examine this claim more closely.

The number with the least significant digits is the first factor, viz., $50.
From Example 3.5, we know that 50 has only 1 sigdig. This number is not exact
since it is not a defintion. It is actually a guess as to what a department might
charge on an hourly basis for its services. Asking different people in different
departments would produce different estimates for the hourly charge. In this
sense, it is equivalent to a measurement that should be written as 50 ± ε.
However, no indication of the measurement error ε is provided by Acree et al.
(2001).

Remark 3.3. It is noteworthy that financial people never include explicit error
ranges in their calculations, even though a lot of the input data comes either
from measurements or guesswork (“guesstimates”). For example, try asking
your accountant for an estimate of the error on your income tax returns.

The number of transactions per day is also expected to have some errors
associated with it. The value will differ statistically each day. But because it
is a quantity that is measured directly by the computer system, the number
of sigdigs is likely to be higher than the hourly charge estimate. However, no
error margin was provided for that quantity either.

3.5.2 Significant Digits

Dropping the units in (3.1) for simplicity, leads to the following calculation
where we take significant digits into account:

D100 =
50

360, 000
× 5, 500, 000 × 218 , (3.2a)

= 0.000138888 × 5, 500, 000 × 218 , (3.2b)
⇒ 0.0001389 × 5, 500, 000 × 218 , (3.2c)
= 166, 541.1 , (3.2d)
⇒ 200, 000.0 (rounding up) . (3.2e)

In other words, the cost factor D100 = $200,000.00, correct to one signifi-
cant digit, thereby matching the least accurate of the measured or estimated
quantities used in the calculation.

You may be thinking we could have reached this conclusion immediately
by simply rounding up the published result for D100. The above detailed calcu-
lation is needed, however, to confirm that we need to round up and not down.
If the value in (3.2d) had turned out to be 136,541.1 instead of 166,541.1,
we would have been justified in rounding down to D100 = $100,000.00 as the
final result.

Moreover, in (3.2c) we kept 4 sigdigs in the first factor (one more than the
value with the most sigdigs, i.e., 218, which has three sigdigs). This shows the
variant of product rule 2 in action. It is applied by convention to retain as
much information as possible until the final rounding.

3.6 Expressing Errors 37

3.6 Expressing Errors

There are several acceptable ways to express the magnitude of errors. In gen-
eral, we have some measured quantity Y and some discrepancy ∆Y such that
the reported should be expressed as:

Y ± ∆Y . (3.3)

The most appropriate form of ∆Y depends on the context.

3.6.1 Absolute Error

Denoting the actual or expected value by y and the measurement or estimated
value by ŷ, the error is the difference:

∆y = ŷ − y . (3.4)

The absolute error is |∆y|. Equation (3.4) is similar to the definition of the
residual:

ri = yi − ŷi , (3.5)

which is used in statistical regression and analysis of variance. It provides a
measure of the vertical displacement between a given data point yi and the
regression line.

3.6.2 Relative Error

δy ≡ ∆y

y
=

ŷ − y

y
. (3.6)

The percentage error is 100 times the relative error.

3.6.3 Standard Deviation

The standard deviation σ is the square root of the variance:

σ2 =
N∑
i

∆yi

N − 1
. (3.7)

Choosing ∆Y ≡ σ in (3.3) gives the measure of the precision of the measure-
ment. Often, the value of the standard deviation is used to serve as the error
bars for the data (Sect. 3.6.5). Notice that the standard deviation is positive
and has the same units as the estimated quantity itself.

It can be shown that there is a 68% probability that an individual mea-
surement will fall within one standard deviation (±1σ) of the true value.
Furthermore, there is a 95% chance that an individual measurement will fall
within two standard deviations (±2σ) of the true value, and a 99.7% chance
that it will fall within ±3σ of the true value.

38 3 Damaging Digits in Capacity Calculations

3.6.4 Standard Error

The standard error (SE) is the square root of the sample variance s divided
by the number of samples (N):

SE =
√

s

N
. (3.8)

3.6.5 Error Bars

Error bars are used in plots like Fig. 3.3.

Example 3.8. In the response time calculation of Sect. 3.5, the least precise
input value of $50 has only 1 sigdig. That sigdig resides in the 10’s column. An
appropriate way to express the error is half that sigdig viz., 10/2 = 5, using
(3.9). The hourly rate then would be expressed as $50±$5, which corresponds
to ±5/50 or ±10%, and gives the following range:

$180, 000 < D100 < $220, 000

for the cost per 100th of a second. Notice that the published value of
D100 (Acree et al. 2001) lies below this range and is therefore an underes-
timate of the proposed metric, even though it has the appearance of being a
more precise value. ��

-500

0

500

1000

1500

2000

2500

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225

Users

S
c
ri
p
ts

 p
e
r

H
o
u
r

Modeled

Measured

Fig. 3.3. Error bars associated with throughput measurements

3.7 Interval Arithmetic 39

Error bars can and should be included on all data plots. In reality, because
the degree of error can differ for each data point, (vertical) error bars should
have different heights to reflect that fact. The error bars in Fig. 3.3 simply used
the Y Error Bars tab in Excel, which automatically computes the standard
error. Although not entirely realistic, it is better than having no visual cue
for error margins.

3.6.6 Instrumentation Error

Each instrument has an inherent amount of uncertainty in its measurement.
Even the most precise measuring device cannot give the actual value because
to do so would require an infinitely precise instrument. A measure of the
precision of an instrument is given by its uncertainty. A good rule of thumb
for determining instrument error (IE) is:

IE =
1
2

smallest sigdig , (3.9)

Equation (3.9) states that the uncertainty of a measuring device is 50% of the
smallest subdivision on the scale of the measuring device. The accuracy of an
experimental value is expressed using its percent error (Sect. 3.6.2).

3.7 Interval Arithmetic

Some performance metrics, such as the load average, use fixed-point arith-
metic (see e.g., Gunther 2005a, Chap. 4), while others use floating-point (see
e.g., Hennessy and Patterson 1996, Appendix A). Each of these methods can
run into precision problems.

One way around this problem is to use interval arithmetic. The idea behind
interval arithmetic is to represent a real number by two numbers, a lower and
an upper bound. This helps to avoid classical rounding errors of the type
discussed in Sect. 3.4.

Remark 3.4. The rules for calculating with intervals look like this:

1. [a, b] + [c, d] = [a + c, b + d].
2. [a, b]×[c, d] = [min(a×c, a×d, b×c, b×d), max(a×c, a×d, b×c, ‘b×d)].

Symbolic computation systems, such as Mathematica mentioned in Chap. 1,
already have interval arithmetic capabilities built in. ��

A large body of literature has emerged on numerical computing with real
intervals. See e.g., www.cs.utep.edu/interval-comp/books.html.

40 3 Damaging Digits in Capacity Calculations

3.8 Summary

All performance measurements contains errors that need to be tracked to
avoid wrong conclusions and misleading results. The Golden Rule in Sect. 3.4.1
states that the result of a calculation should not have more significant dig-
its than the least precise number used. If you have absorbed the points of
this chapter, you now know there are 3 sigdigs in the number 50.0 but only
1 sigdig in the number 50. You can verify that by manually applying Algo-
rithm 3.1 or using the programs in Appendix D. The rules for rounding num-
bers to the appropriate sigdigs have been modified in recent times and the
latest conventions are incorporated in Algorithm 3.2. The NIST guidelines at
physics.nist.gov/cuu/Uncertainty/index.html present even more com-
plex expressions of uncertainty in measurement.

Now, you also appreciate why CPU utilization data is never displayed with
more than 2 sigdigs. If you see a CPU busy reading of CPU% = 20 output
by your favorite performance monitoring tools, you now know that it really
should be reported with an error margin along the lines of CPU% = 20 ± 5.
Ignoring error margins leads to the sin of precision, or possibly worse!

4

Scalability—A Quantitative Approach

You can drop a mouse down a mine shaft and on
arriving at the bottom it gets a slight shock and walks
away. A rat is killed, a man is broken, but a horse
splashes.

—J. B. S. Haldane

4.1 Introduction

As the biologist J. B. S. Haldane pointed out in his famous essay entitled
“On Being the Right Size,” size does matter for biological systems (Haldane
1928). Haldane’s essay (available online at www.physlink.com/Education/
essay haldane.cfm) is an elaboration on Galileo’s observation, almost three
hundred years earlier, that size also matters for mechanical structures like
buildings and bridges. What Haldane could not have foreseen is that size also
matters for computer systems.

In this chapter we explore the fundamental concept of scaling with a view
to quantifying it for the purposes of doing Guerrilla-style capacity planning.
In Chap. 6 we extend the same ideas to software scalability, and in Chap. 10
we shall see how recursive scaling in certain types of Internet traffic impacts
the size of buffers.

4.2 Fundamental Concepts of Scaling

No doubt, you are familiar with the fairy tale of Jack and the Beanstalk from
childhood. Did you ever wonder how big the giant was? It seems not to be
mentioned in the original versions of the story. For that matter, did you ever
wonder how big a beanstalk can be? It not only has to support Jack and the
giant on the way down, it also has to support its own weight. Compared with
the largest trees known, e.g., the giant redwoods in California, a beanstalk
that reaches above the clouds is no mean feat. (See Examples 4.1 and 4.2 for
a more quantitative discussion).

The first of the Two New Sciences discussed by Galileo Galilei (1638) is
the science of materials and their strength. He recognized, over 350 years ago,
that there was a natural limit to the size of physical structures; the inherent

42 4 Scalability—A Quantitative Approach

strength of materials does not permit arbitrary dimensions for real objects.
Neither giant beanstalks nor a gorilla with the physical dimensions of King
Kong is possible.

The simplest notion of scaling is to take every dimension, e.g., length,
width, and height, and multiply them by the same factor, e.g., double the di-
mensions. This is called geometric scaling (Sect. 4.2.1). Of course, the volume
V grows as the cubic power of the length, width, and height. If the linear
dimensions belong to a cube, then V = L3 quite literally. Therefore, if you
double the sides of the cube, you increase its volume by a factor of eight! As
we shall see, this introduces the concept of power laws into any discussion of
scalability. We shall revisit power law scaling in Chap. 10.

Galileo and Haldane recognized that any volume not only occupies space,
it has a mass (since it is made of some kind of material), and that mass has
weight (here on earth, anyway). As the volume grows, so does the weight. At
some point, the volume will weigh so much that it will literally crush itself!
That suggests that there must be some critical size that an object can have
just prior to crushing itself.

It turns out that a similar notion of critical size applies to scaling up
computer systems and the applications they run. In this chapter we intro-
duce a universal scaling law (Sect. 4.4) for hardware, and later for software
in Chap. 6, which contains within it the notion of critical size, i.e., a criti-
cal number of processors or users. This universal scalability law is based on
rational functions, rather than power laws.

4.2.1 Geometric Scaling

Definition 4.1 (Geometric Growth). Arithmetic growth can be expressed
by a sequence that increases by an additive constant or common difference δ
applied to a first term a, i.e., a, a + δ, a + 2δ, a + 3δ, Geometric growth
is represented by a sequence that increases by a multiplicative constant or
common ratio φ, i.e., a, aφ, aφ2, aφ3,

A useful method for the subsequent discussion is known as dimensional
analysis. The three engineering dimensions: mass m, length L, and time t, are
chosen as basic because they are easy to measure experimentally. Dimensions
are not the same as units. For example, the physical quantity speed may
be measured in units of m/s, or miles per hr, but irrespective of the units
used, the speed can always be expressed in terms of a fundamental dimension
of length L divided fundamental dimension of time t, so we say that the
dimensions of speed are L/T . A common notational convention is to write the
dimensions of a quantity using square brackets [], e.g., [speed] = L/T .

The surface area A can be expressed of its length dimension as:

[A] = L2 , (4.1)

and similarly for the volume V :

4.2 Fundamental Concepts of Scaling 43

[V] = L3 . (4.2)

Alternatively, we can express the volume solely in terms of the area. Start-
ing with (4.2) written as:

V = A L ,

= A
√

A from (4.1) ,

= A3/2 . (4.3)

Equation (4.3) has the general form of a power law function:

y = axb . (4.4)

Taking the logarithms of both sides produces:

ln(y) = b ln(x) + ln(a) , (4.5)

and substituting Y = ln(y), X = ln(x), and c = ln(a) into (4.5) simplifies to:

Y = bX + c , (4.6)

which is a linear function that can be fitted using the method of linear least
squares (Levine et al. 1999), as we shall demonstrate in Chap. 5.

4.2.2 Allometric Scaling

Definition 4.2 (Allometric Growth). Geometric similarity cannot con-
tinue indefinitely. When an organism changes shape in response to size
changes (i.e., does not maintain geometric similarity), we say that it scales
allometrically (allo: different, metric: measure). Allometric scaling is com-
mon in nature, both when comparing two animals of different sizes and when
comparing the same animal at two different sizes (i.e., growth).

The density :
d =

m

V
≡ const. (4.7)

is assumed to be a constant, i.e.,

[V] ∝ m . (4.8)

We further assume that:

• The weight m × g, where g is terrestrial acceleration due to gravity, is
proportional to the volume V . This follows from (4.2). The weight is also
called the mechanical load.

• Mechanical strength is proportional to the cross-sectional area A. In other
words, the strength of a rigid body can be measured by the applied pressure
P , or force per unit area: P = m × g/A.

44 4 Scalability—A Quantitative Approach

Fig. 4.1. Allometric scaling as a function of weight (m× g). As long as the system
strength (curve) exceeds its weight (line), growth is sustainable. Beyond the critical
point, where the two curves cross, the system will collapse

Substituting (4.2) into (4.3) it follows that m = A3/2 or , after rearranging:

[A] ∝ m2/3 . (4.9)

Using (4.9), the pressure P or load per unit area can be written as:

mg

A
∝ m3/3

m2/3
= m1/3 ,

or equivalently:
[P] ∝ m1/3 . (4.10)

The mechanical strength (4.10) also tells us how the bulk V scales with the
surface area A: [

V

A

]
∝ m1/3 . (4.11)

The mechanical strength associated with (4.10) appears as a curve in
Fig. 4.1, when plotted as a function of m. The total weight m × g, on the
other hand, is a linear function of m (since g is constant). At some value of
the body’s weight the two curves cross, and beyond that critical point the
body becomes prone to complete collapse due to its weight exceeding its me-
chanical strength.

4.2.3 Critical Size

If we consider various organisms (including giants), we know that the crushing
strength of bone is essentially constant for all of them. Since the pressure

Plot@8V, P<, 8m, 0, 2<, AxesLabel -> 8"mg", "y"<,

GridLines Ø 881<, None<, PlotStyle -> 88GrayLevel@0.6D<, 8GrayLevel@0.1D<<D;

0.5 1 1.5 2
mg

0.5

1

1.5

2

y

LogLogPlot@8V, P<, 8m, 0, 2<, AxesLabel -> 8"logHmgL", "logHyL"<,

GridLines Ø 881<, None<, PlotStyle -> 88GrayLevel@0.6D<, 8GrayLevel@0.1D<<D;

0.05 0.1 0.2 0.5 1 2
logHmgL

0.15

0.2

0.3

0.5

0.7

1

1.5

2

logHyL

Hardware Scaling

Cpara = p;

Camdahl =
p

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + s Hp - 1L

;

Plot@8Cpara, Camdahl< ê. s Ø 0.10, 8p, 0, 5<,

AxesLabel -> 8"p", "Speedup"<, PlotStyle -> 88GrayLevel@0.6D<, 8GrayLevel@0.1D<<D;

1 2 3 4 5
p

1

2

3

4

5

Speedup

AlloScaling.nb 2

4.2 Fundamental Concepts of Scaling 45

0.05 0.1 0.2 0.5 1 2
logHmgL

0.15
0.2

0.3

0.5

0.7

1

1.5
2

logHyL

Fig. 4.2. Any allometric curve of the form y = axb in Fig. 4.1 becomes a straight
line on a log-log plot, and the growth parameter b can be determined from the slope
of that line

function given by (4.10) is a monotonically increasing function, there must be
the critical size for each organism. This becomes particularly apparent if we
plot both (4.8) and (4.10) using log-log coordinates like Fig. 4.2.

4.2.4 Sizing Examples

We consider some estimates of critical size.

Example 4.1 (Can Giants Exist?). In his essay “On Being the Right Size,”
Haldane (1928) takes issue with the notion of giants in such fairy tales as
Jack and the Beanstalk. One fairy tale has a giant that is ten times as tall an
a human and scaled in geometric proportion. If we take the typical human
attributes to be:

• height: L = 1.8 m
• weight: w = 90 kg

The critical weight wc for bone is assumed to be 10×w = 900 kg. Taking the
giant’s (geometric) attributes as:

• height: LG ≡ 10 × L = 18 m
• volume: VG = (10L)3 = 1000 × V m3

• weight: wG ∼ 1000 × w = 90, 000 kg, which is close to 100 US tons!

Clearly, such a humanoid would be crushed under their own weight. The criti-
cal size for a human involves more than just weight, e.g., pulmonary capacity,
size of capillaries, etc. The Guinness record is held by a man 8 ft 4 in tall
(2.54 m), which is less than twice the typical human height. ��

46 4 Scalability—A Quantitative Approach

Example 4.2 (Beanstalks). In the Jack and the Beanstalk story, assume the
cloud base is 1000 ft (fairly low), and instead of a beanstalk, consider a tree.
Taking the typical tree attributes to be:

• height: L = 100 ft
• radius: R = 1.5 ft
• weight: w = 10, 000 lb (approx. 5 US tons)

Treating the tree as a simple cylinder, its volume is given by V = πR2 × L.
Scaling the tree geometrically means L → 10 L and R → 10 R, so the volume
and therefore the weight increases by a factor of 1000. At 5000 tons, not only
is a 1000-ft tree unlikely to be sustainable, a 1000-ft beanstalk is even less
likely to be able to bear its own weight, let alone the giant in Example 4.1.

��
Example 4.3 (Space Elevator). Although perhaps not too far removed from
the realm of fairy tales, but much more likely than giants and cloud-climbing
beanstalks, is the so-called space elevator (www.elevator2010.org/site/
primer.html). This proposed alternative means of putting payloads into earth
orbit will be constructed from a ribbon of carbon nanotubes having the 30
times the tensile strength of steel.

• height: Lse = 62, 000 miles (99,779,328.0 m)
• width: Wse = 3 ft (1 m)
• weight: wse = 1000 tons (907,184.74 kg)

Using (4.7), the density of this new material is:

d =
wse

g × Lse × Wse
,

=
907, 184.74

9.82 × 1 × 99, 779, 328
,

= 0.000925856 kg/m2 ,

or about 1 gm/m2, which is close to the density of the plastic-wrap used to
preserve food items. ��

To summarize the key points so far, we have seen that scaling is primarily
a geometric notion. Conceptually, you can make a system bigger or smaller
by merely stretching it equally in every dimension (isometrically). However, it
has been documented since the time of Galileo that mechanical and biological
systems have inherent limitations to growth (and to shrinkage). As we scale
up a physical system, intrinsic overheads (such as weight) begin to dominate
and eventually cause the system to fail beyond some critical point. Therefore,
scaling is actually allometric (Fig. 4.1).

Remark 4.1. Even something like nanotechnology (the technology of scaling
down) suffers from intrinsic limits. That is why a nanoscale version of say, an
electric motor, is constructed in a way completely different from the way a
terrestrial-scale electric motor is built.

4.3 Hardware Scalability 47

As we shall see in the remainder of this chapter and the rest of this book,
computer systems can also be scaled up in terms of their computing capac-
ity. Indeed, they also scale in a monotonically increasing fashion, not unlike
the strength curve in Fig. 4.1. But, just like physical systems, they also have
intrinsic limits such that the computer system cannot be scaled indefinitely.
These limits do not usually lead to catastrophic system failure, but the in-
creasing overhead can degrade system performance (Fig. 4.3) and therefore
can also have a significant impact on capacity planning.

1 2 3 4 5
p

1

2

3

4

5

Speedup

Fig. 4.3. Ideal linear speedup (dashed) compared with more realistic nonlinear
speedup (solid). Unlike Fig. 4.1, however, there is no critical intersection. Instead,
speedup shows diminishing returns from the outset at small p-processor configura-
tions.

4.3 Hardware Scalability

It is easiest if we begin our discussion of computer system scalability from the
standpoint of hardware scalability, and then extend those concepts to software
scalability later. In this chapter we lay down the fundamental concepts and
theorems for a universal law of scalability, and then show how to apply them
in Chap. 5. Our approach is universal because it applies to any hardware,
including symmetric multiprocessors (SMPs), chip multiprocessors (CMP) or
multicores, and clusters. And, as we shall see in Chap. 6, it also applies to the
scalability of applications software.

Since, at root, scalability is intimately tied up with the concept of parallel
workloads, we start by reviewing the simple notion of ideal parallelism.

48 4 Scalability—A Quantitative Approach

4.3.1 Ideal Parallelism

It is useful to begin by distinguishing between the terms speedup and scaleup.
The former term is commonly associated with a measure of parallel numer-
ical performance, while the latter is more appropriate for commercial sys-
tem workloads. Speedup quantifies the reduction in elapsed time obtained by

Single processor execution time

 T1

parallel

Time

reduction

Fig. 4.4. Ideal parallelism. The uniprocessor execution time T1 is reduced to T1/p
by equipartitioning the workload across p physical processors

executing a fixed amount of work on a successively greater number of pro-
cessors. This notion underlies the motivation for an aircraft designer to use
a supercomputer—she wants the same complex calculations to be executed
faster. This is not, however, the reason that commercial businesses invest in
additional processing power.

More commonly, a commercial enterprise needs to support more users
in such a way that the additional workload does not adversely impact the
response times of the current user community. This, in turn, requires that the
capacity of the computing system be increased by scaling it up in proportion
to the additional load.

Whereas the concept of speedup assumes a fixed size workload with the
execution time being scaled down in proportion to the number of processors
applied to it, scaleup assumes the converse constraints: maintaining a fixed
execution time (or response time) per user while scaling the workload up
in proportion to the number of processors applied to it. We shall denote this
scaled up capacity C(p), where p is the number of processors in the system. To
establish some terminology for our later discussion, we give a formal definition
of speedup S(p).

4.3 Hardware Scalability 49

The simplest notion of speedup applies to what might best be described
as “naive parallelism” depicted in Fig. 4.4. Naive parallelism assumes that a
workload that runs on a uniprocessor in time T1 can be equally partitioned
and executed on p processors in one pth of the uniprocessor execution time,
viz., T1/p. This is tantamount to linear speedup.

4.3.2 Amdahl’s Law

It was Gene Amdahl’s seminal observation (Amdahl 1967), almost forty years
ago, that most workloads cannot be partitioned in this ideal way because
there is some portion of the workload that is sequential and, therefore, can
only be executed on a single processor. We denote this serial portion of the
execution time by the parameter σ. The remainder of the workload is said to
be parallelizable. Fig. 4.5 shows this effect grapically. The execution time for a

Single processor execution time

T1

parallel

Smaller

reduction

serial

Fig. 4.5. Amdahl’s law recognizes that ideal parallelism (Fig. 4.4) cannot be
achieved in general because there are certain portions of the workload that can
only be executed sequentially (gray). That aggregate portion of the total execution
time is called the serial fraction

fixed-size workload on a uniprocessor is the same as Fig. 4.4. The uniprocessor
time can be split into two portions: a portion that can be made to execute in
parallel and a portion that remains sequential or serial.

Definition 4.3 (Serial fraction). The serial fraction σ of the total execution
time is the cumulative time for which the workload executes in purely sequen-
tial of serial fashion. The serial fraction takes values in the range: 0 < σ < 1.

The serial fraction is depicted as the dark segment of Fig. 4.5. Only the
remaining portion of the total time (1 − σ)T1 can be run in parallel by sub-
dividing that part of the workload into p equal subtasks and executing those

50 4 Scalability—A Quantitative Approach

subtasks on p physical processors. This is depicted by the divisions on the
middle bar of Fig. 4.5.

The reduced execution time to perform the complete computation with p
processors is depicted by the shorter bar in the lower right of Fig. 4.5. We
see immediately that the ratio of the parallel portion to the serial portion
grows as the parallel portion is made smaller (finer granularity). What are
the consequences of this effect? Using the above notation, we can write this
time reduction as:

Tp = σT1 +
(1 − σ)T1

p
. (4.12)

Definition 4.4 (Speedup). The speedup:

S(p) =
T1

Tp
(4.13)

is defined as the ratio of the elapsed time on a uniprocessor T1 to the elapsed
time on a p-way multiprocessor Tp. The smaller the denominator Tp can be
made, the greater the speedup that can be achieved.

Substituting (4.12) into (4.13) produces:

S(p) =
T1

σT1 +
(

1−σ
p

)
T1

, (4.14)

which simplifies to:
S(p) =

p

1 + σ(p − 1)
(4.15)

after canceling the common factors of T1 and rearranging terms. Hereafter,
we shall refer to (4.15) as Amdahl’s law.

Remark 4.2. It is noteworthy that (4.15) does not appear in Gene Amdahl’s
1967 paper. In fact, there are no equations at all in that three-page paper.
Its content is entirely empirical. Equation (4.15) is usually considered to be
due to Ware (1972). One has to admire the skill in having an equation named
after you that you never wrote down. But Amdahl did not have it all his
own way. A major goal was to convince people that multiprocessors were not
cost effective because of the difficulty in achieving parallel performance (see
Remark 4.3). On this score he lost badly. Not only are most servers today
multiprocessors, but Amdahl’s law has its highest citation frequency in the
parallel processing literature.

This speedup function has the characteristic curve shown in Fig. 4.6. Sim-
ilar models have been used to express speedup bounds on various types of
parallel platforms, e.g., speedup of vector parallel processors, where p is iden-
tified with the ratio of vector to scalar speed, and σ is interpreted as the
fraction of time spent in scaler mode. According to (4.15), significant speedup

4.3 Hardware Scalability 51

20 40 60 80 100
p

2

4

6

8

10

12
Speedup

Fig. 4.6. Amdahl speedup (solid) compared to linear scalability (dashed). The serial
fraction σ = 0.010 corresponds to the asymptotic ceiling at σ−1 = 10

is likely only for a relatively high percentage of vectorization which leads to
the ironic conclusion that, to first order, supercomputer performance is deter-
mined by its scalar speed rather than its vector speed.

If the seriality parameter vanishes (σ = 0) then the speedup would follow
the ideal linear rising trajectory in Fig. 4.6. The presence of non-zero seriality
(σ
= 0) in the denominator of (4.15), however, means that as the number of
processors is increased to compute the parallel portion of the workload, the
scaling curve falls away from linear. The rate at which it diverges is determined
by the actual value of σ.

Theorem 4.1 (Amdahl asymptote). As p → ∞, (4.15) approaches the
upper bound σ−1 shown in Fig. 4.6

Proof. Rewrite (4.15) in the form:

S(p) =
1

1
p + σ (p−1)

p

. (4.16)

As p → ∞, the first term in the denominator vanishes and the second term
approaches σ. Hence, S(p) ∼ σ−1 for large p. ��

Note, as the parallel execution time is reduced, the constant serial portion
of the workload begins to dominate the speedup ratio. Put another way: the
greater the parallelism, the greater the serial proportion. And this phrasing
captures the motivation behind Amdahl’s original observation. His interest as
a mainframe manufacturer was not in understanding the benefits of parallel

52 4 Scalability—A Quantitative Approach

architectures but to provide a simple, intuitive demonstration that a very
fast single processor is likely to be more cost effective than the overhead of
orchestrating many slower processors.

Remark 4.3. This conclusion is also consistent with a well-known result in
queueing theory (See Gunther 2005a, Chap. 2). When comparing the response
time performance of a fast M/M/1 queue with an M/M/m queue, where the
m-servers have the same total capacity as the single server, the fastest single
server is always the best choice! This is the basis for the canonical argument
favoring mainframes. See Remark 4.2.

In evaluating parallel systems, another important performance measure is
efficiency.

Definition 4.5 (Efficiency). The efficiency is defined in terms of the speedup
S(p) in Definition 4.4 as:

E(p) =
S(p)

p
, (4.17)

which is the average speedup per processor.

Using Definition 4.5 together with (4.15), and assuming the variable p
can take on continuous values, Karp and Flatt (1990) point out the following
relationship between efficiency and the seriality parameter:

d
dp

E−1(p) = σ , (4.18)

which provides a useful additional performance metric. The seriality can be
viewed as a direct measure of the change in efficiency as the system is scaled
up. In the ideal case, E−1 increases linearly with p. Any deviation of E−1 from
linear is a sign of lost parallelism. The value of the seriality can be ascertained
from direct measurements of S(p) by virtue of the relationship

σ =
(p/S) − 1

p − 1
, (4.19)

which is just a rearrangement of (4.15).

4.3.3 Multiuser Scaleup

Database applications represent ideal candidates for parallelism since each
transaction is a relatively small, independent task that can be run on separate
processors. The capacity function C(p) is defined as the throughput achieved
using p processors, Xp, relative to that achieved on a uniprocessor, X1.

Definition 4.6 (Scaleup). The scaleup capacity is given by the ratio

C(p) =
Xp

X1
, (4.20)

which is equivalent to a normalized throughput.

4.3 Hardware Scalability 53

We further assume that each processor is optimized with respect to process
concurrency, i.e., enough users or transaction generators are executing to fully
utilize the available cycles on each processor without causing an inordinate
amount of context switching. Only one transaction generation process runs at
a time on a single processor. In general, a processor will not be doing useful
work if it has to do other things such as:

• wait for a bus transfer from another processor memory
• wait for a disk or network I/O completion
• serial wait on a database latch

We suppose that a uniprocessor performs compute-intensive operations at
100% utilization (i.e., no significant wait I/O) and completes C1 transactions
with response time T1. The uniprocessor throughput is given by:

X1 =
C1

T1
. (4.21)

The impact of multiuser scaleup on response time is shown in Fig. 4.7.

Per user response time

T1

multiprocessor

uniprocessor

Serial latency due to

(p - 1) processors

Fig. 4.7. The effect of multiuser scaleup is to stretch the response time in proportion
to the number of physical processors

To understand the effect of scaleup on response time, consider the case
where the size of the workload is doubled so that twice the number of unipro-
cessor transactions are completed. The dual processor capacity is expected be
twice that of the uniprocessor:

C2 = 2C1 . (4.22)

Moreover, the uniprocessor should only take twice as long to complete twice
the number of transactions, viz., 2T1, because the throughput is already sat-
urated and therefore remains as X1.

54 4 Scalability—A Quantitative Approach

Doubling the compute capacity by adding another processor (p = 2), we
might expect, naively, that the dual-processor system will complete C2 trans-
actions with the same response time it takes the uniprocessor to complete
C1 transactions. We know, however, from queueing theory and from mea-
surements on real multiprocessor systems that the dual-processor consistently
completes slightly less than 2C1 transactions in time T1.

Referring to Fig. 4.7, and following the notation established in our deriva-
tion of speedup (4.15), we suppose that the stretch in user-response time for
a dual processor is some fraction σT1 of the uniprocessor response time:

T2 = T1 + σT1 . (4.23)

Since the dual processor time T2 is longer than T1, the throughput will be
somewhat less than expected. To see this in more detail, we use (4.21), (4.22),
and (4.23), to derive the explicit dual processor throughput. The steps are:

X2 =
C2

T2
,

=
2C1

T1 + σT1
,

=
2

1 + σ

C1

T1
,

which simplifies to:

X2 =
2X1

1 + σ
. (4.24)

What is the significance of this result? Clearly, for any nonzero value of σ, the
dual processor throughput capacity is less than twice that of the uniprocessor
system. Suppose, for example, that σ is only 3% of T1, then the capacity
scaleup C(2) = X2/X1 is only 1.94 times the capacity of the uniprocessor.
Consequently, if the uniprocessor is capable of 100 transactions per second
(within some specified response time period), the dual processor will achieve
only 194 transactions per second; not 200 transactions per second as would
be expected on the basis of naive parallelism.

Extending this argument by analogy with (4.23), the three-way multipro-
cessor response time gains another time increment σT1:

T3 = T1 + σT1 + σT1 = T1 + 2σT1 ,

such that the corresponding throughput becomes:

X3 =
3X1

1 + 2σ
. (4.25)

Generalizing this line of argument, the throughput for a p-way multiprocessor
is given by:

4.3 Hardware Scalability 55

Xp =
p C1

T1 + (p − 1)σT1

=
pX1

1 + σ(p − 1)
.

and from (4.20), the p-way scaleup is:

C(p) =
p

1 + σ(p − 1)
. (4.26)

This result is very surprising. Equation (4.26) for scaleup is identical to Am-
dahl’s law (4.15) for speedup, even though we used entirely different logical
arguments to arrive at each. How can it be explained?

4.3.4 Serial-Parallel Duality

The reason for the underlying identity between the scalability laws (4.15) and
(4.26) is contained in the following theorem.

Theorem 4.2 (Gunther (1998)). Let (σ, π) be a continuous dual-parameter
pair, where σ the serial fraction and π the parallelizable fraction of the work-
load. Then, the ratio σ/π is invariant under scaling by an integer number of
physical processors p ∈ N.

Proof. Consider each case separately.

Speedup: Referring to Fig. 4.5, σ corresponds to the shaded region in the
top part of the diagram, while π = 1−σ corresponds to the white region.
In this case, σ is held fixed while π is reduced in integral multiples of p
(the meaning of “parallelism”). We can summarize this transformation as:

σ

π
→ σ

π′ ≡
σ

π/p
(4.27)

Scaleup: Referring to Fig. 4.7, π corresponds to the shaded region in the bot-
tom part of the diagram, while σ corresponds to each accumulated white
region. In this case, π is held fixed while σ is expanded in integral multi-
ples of p (the meaning of “scaleup”). We summarize this transformation
as:

σ

π
→ σ′

π
≡ pσ

π
(4.28)

Since the rescaled ratios in (4.27) and (4.28) are identical, the ratio σ/π
remains invariant under configuration transformations. ��
Remark 4.4. In the case of speedup, the elapsed time becomes σ+π′ = σ+π/p,
which corresponds to the denominator in (4.14). For scaleup, however, the
elapsed time becomes:

56 4 Scalability—A Quantitative Approach

π + σ′ = π + pσ

= (1 − σ) + pσ

= 1 + (pσ − σ)

which leads to (4.26).

4.3.5 Scaled Speedup

Another form of scaling that appears in the literature is called scaled speedup
[Gustafson 1992] which shall denote here by Css(p). The form of Css(p) can
easily be derived using Figure 5-4.

The total uniprocessor elapsed time, T (1), can be trivially rewritten as
the sum of two terms viz., T1 = σT1 + (1 − σ)T1. The assumption of a fixed
size workload is now replaced by the alternative notion that the parallelizable
portion of the workload can be increased to p times the uniprocessor workload.
As a consequence, the serial portion no longer dominates the speedup ratio.
Rewriting the speedup (4.15) to reflect this workload scaleup gives:

Css(p) =
[σ + (1 − σ)p] T1[

σ + (1−σ)p
p

]
T1

, (4.29)

which immediately simplifies to the linear form:

Css(p) = σ + (1 − σ)p . (4.30)

Equation (4.30) suggests that it is possible to beat Amdahl’s law (4.26) since
capacity now scales linearly with the number of processors; provided the
amount of work (single problem size) is also scaled concomitantly. Workloads
of this type are referred to as data-parallel and gives rise to the term SPMD
(single program multiple data) in contrast to SIMD (single instruction multi-
ple data).

Linear scaling on scientific problems was reported by Sandia National Lab-
oratories in 1998. This kind of quasi-linear speedup is difficult to achieve in
reality because communications overhead begins to dominate; a term not ac-
counted for in this simple formulation (See e.g., Gelenbe 1989).

4.4 Universal Scalability Model

We now turn to an assessment of capacity when a parallel architecture is
running an online transaction processing workload. As more processors are
added, both the speedup S(p) and the multiuser scaleup C(p), respectively,
approach the asymptote σ−1 as p → ∞. Although both these scaling models
include degradation effects due to serialization, neither accounts for the ad-
ditional overhead due to interprocessor communication (Gunther 1993, 1996,
2000).

Typical sources of multiprocessor overhead include:

4.4 Universal Scalability Model 57

• code paths in the operating system
• exchange of shared writable data between processor caches
• data exchange between processors and main memory
• spin lock synchronization (serialization) of shared writable data accesses
• waiting for an I/O or memory access to complete

In database management systems, the server processes may need to commu-
nicate with each other via the supervising database process when there are
updates to database tables.

Per user response time

T1

multiprocessor

Serial latency due

to (p - 1) processors

uniprocessor Coherency delay

between p(p - 1)

processors

Fig. 4.8. Multiuser scaleup showing the per-user response time growing linearly with
the number of processors due to serial delays (cf. Fig. 4.7), and the additional, but
smaller, coherency delays increasing quadratically due to point-to-point exchanges
between processors

Assuming, for the moment, there is only one database process per physical
processor, any process may communicate with up to (p − 1) other processes.
Figure 4.8 shows that, on average, the interaction between processes will grow
like p(p − 1) � p2 (quadratically) for a large number of processes.

Definition 4.7 (Coherency). The magnitude of this additional point-to-
point latency is denoted by a new parameter κ ≥ 0.

Following the same steps we used to derive (4.26), this additional term
must appear in the denominator of the capacity formula. The result is:

C(p) =
p

1 + σ (p − 1) + κ p(p − 1)
. (4.31)

The universal scaleup characteristic is shown in Fig. 4.9 together with Amdahl
scaling, which corresponds to κ = 0. It is a concave function. Comparison
with Fig. 4.1 shows that although the computer system does not fail beyond
p∗ = 25, its available capacity does degrade significantly.

58 4 Scalability—A Quantitative Approach

Remark 4.5 (Previous Versions). Elsewhere, (4.31) is written:

C(p) =
p

1 + σ
[
(p − 1) + λp(p − 1)

] . (4.32)

and I called it the super-serial model in deference to Amdahl’s law (Gunther
1993, 1998, 2000). Note the position of the square brackets. They imply a
dependency between the coherency λ and the contention σ, viz., if σ = 0
(no contention) then the value of λ is irrelevant. This is true for the tightly-
coupled SMP architectures from which (4.32) was originally derived. In mod-
ern loosely-coupled systems it is possible to have coherency latencies inde-
pendent of contention latencies, e.g., NUMA architectures. To reflect these
trends, the two parameters σ and κ are now treated as independent in (4.31),
thus making it universal. In terms of the previous super-serial model, κ = σ λ.

Definition 4.8 (Rational Function). Universal scalability as given in (4.31)
is defined by a rational function rather than a power law (cf. Sect. 4.2). R(x)
is a rational function if it can be expressed as the quotient of two polynomials
P (x) and Q(x):

R(x) =
P (x)
Q(x)

.

That this scaling function is associated with certain fundamental aspects of
queueing theory (see Appendix A), has some very important implications for
physically achievable computer system scalability.

If σ > 0, then as κ → 0 (4.31) reduces to the simpler scaleup equation
(4.26). In terms of the effect on elapsed times in Fig. 4.7, the coherency term in
(4.31) dilates the multiprocessor elapse time even more, as shown in Fig. 4.8.

Remark 4.6. The term concave function is being used here in the mathemat-
ical sense. Concave refers to the fact that the function has a bump shape
(�), when viewed from the x-axis, and therefore has a unique maximum (see
Figs. 4.9 and 5.14). Conversely, a convex function is bowl shaped (), when
viewed from the x-axis, and therefore has a unique minimum. For more details,
the interested reader should see mathworld.wolfram.com/ConcaveFunction.
html and mat.gsia.cmu.edu/QUANT/NOTES/chap2/node6.html.

4.4.1 The Role of Coherency

Universal scalability in (4.31) incorporates three important effects in the de-
nominator of a single equation:

1. Concurrency: The first term in the denominator. If there were no inter-
action between the processors the capacity function would scale linearly,
i.e., C(p) = p.

4.4 Universal Scalability Model 59

20 40 60 80 100
p

2

4

6

8

10

12
CHpL

Fig. 4.9. Universal scalability characteristic (solid) compared with Amdahl scaling
(dashed), which corresponds to a coherency value of κ = 0 in (4.31). A key feature of
universal scaling is that a maximum can develop (here located at p∗ = 25) depending
on the values of σ and κ in (4.33). Comparison with Fig. 4.1 shows that although
the system does not fail beyond p∗, its available capacity can degrade significantly

2. Contention: The second term in the denominator. It represents the de-
gree of serialization on shared writable data and is parameterized by the
constant σ.

3. Coherency: The third term in the denominator. It represents the penalty
incurred for maintaining consistency of shared writable data (see e.g.,
Hennessy and Patterson 1996, Appendix E) and is parameterized by a
separate constant κ. When κ = 0, the universal model reduces to Amdahl
scaling.

These three effects determine the characteristic profile shown in Fig. 4.9.

Example 4.4 (Database Coherency Delays). Consider a hotel reservation sys-
tem running on an SMP platform. The reservation database application in-
volves shared writebale data. When a room is allocated to a customer, certain
database tables have to be updated to reflect the fact that that room is no
longer available, and so on. Since the central reservation system supports
more than one user terminal or Web browser and typically a single database
instance handles more than one hotel location, this is a perfect application
for an SMP. Let us track what happens to a particular user process.

• A user process in the system that needs to write into a table, must first
contact the database management system (DBMS). Since there are likely
other database processes also wanting to access table rows, the DBMS will

60 4 Scalability—A Quantitative Approach

only grant the DB row lock to one process while all the others wait in a
queue for that same DB lock. This is the contention or serialization phase
associated with the value of σ in (4.31).

• Finally, our user process is granted the DB lock, but it discovers that it
cannot write in the appropriate table. Why not? Even though it has per-
mission from the DBMS (and has possession of the DB lock), there is also
considerable likelihood that another process already wrote into the same
table entry, but it did so while executing on another CPU. Therefore, the
most recent copy of the data now resides in the cache of a different CPU.
Our process sees that a flag has been set in its local cache indicating that
its copy of the data is “stale.” Consequently, our process must continue to
wait while its local data instance is made consistent with the most recent
copy by fetching it from the other cache.

This last step is responsible for the coherency delay associated with the value
of κ in (4.31). ��
Remark 4.7. It does not take much imagination to realize that a similar ar-
gument also explains virtual memory thrashing (see e.g., Gunther 2000, Part
III). The universal scalability law makes no distinction between fetching a
cache line and fetching a set of memory pages, other than through the specific
values of the parameters σ and κ. See Sect. F.3 of the Guerrilla Manual.

By definition, the location on the x-axis of the maximum (or minimum) of
a function is given by the roots of its derivative, i.e., values of x where the
gradient is zero.

Theorem 4.3 (Maximum Capacity). The location on the p-axis of the
maximum in (4.31) is given by

p∗ =

⌊√
1 − σ

κ

⌋
, (4.33)

where �·� denotes the floor function. The magnitude of the corresponding ca-
pacity maximum is given by Cmax = C(p∗). (See Fig. 4.9.)

Proof. Let
F (p) = 1 + σ(p − 1) + κp(p − 1) , (4.34)

and rewrite (4.31) as
C(p) = pF−1 .

The derivative with respect to p is

C ′(p) = F−1 − [κp(p − 1) + κp2 + σp]F−2 .

We seek the value of p when the gradient is zero i.e., the location of the
maximum in the concave function C(p). Setting C ′(p) = 0 produces:

4.4 Universal Scalability Model 61

0
20

40
60

80
100

p

0

0.0005

0.001

0.0015
k

0

10

20

30

CHpL

20
40

60
80

100

0

0.0005

0.001
k

Fig. 4.10. The effect of increasing the coherency parameter from κ = 0 to
κ = 0.0015 (z-axis). A maximum forms, and the effective capacity decreases as that
maximum progressively moves diagonally leftward toward the origin at the rear of
the plot

F = κp(p − 1) + κp2 + σp . (4.35)

Substituting the definition (4.34) into (4.35) and simplifying leads to

(1 − σ) = κp2 ,

which has the solution

p∗ = ±
√

1 − σ

κ
.

The positive root is equivalent to (4.33). ��
Corollary 4.1. The following properties of (4.33) control the profile of the
universal scalability function (Fig. 4.10):

(i) p∗ → 0 as κ → ∞
(ii) p∗ → ∞ as κ → 0
(iii) p∗ → κ− 1

2 as σ → 0
(iv) p∗ → 0 as σ → 1

As κ increases (with σ held constant), property (i) states that the maxi-
mum occurs at progressively lower values of the speedup and simultaneously

62 4 Scalability—A Quantitative Approach

p∗ moves backwards to the origin. Such behavior is clearly undesirable for
scalability.

Property (ii) states that universal scalability in (4.31) reduces to Amdahl’s
scaleup in (4.26) as κ vanishes. Property (iii) states that a maximum can exist,
even in the absence of contention. Conversely, as contention reaches its max-
imum value (100%), p∗ also moves toward the origin because the asymptotic
threshold is σ−1 = 1.

Once the scalability curve develops a maximum due to κ � 0, the precise
mathematical form of the function beyond the point p∗ is usually of little
interest because a monotonically decreasing function represents severe per-
formance degradation. As the curves in Fig. 4.11 reveal, there is little virtue
in having more than two parameters in a scalability model based on rational
functions. The more important question is how to improve performance by
reducing κ, recognizing that it may be unrealistic to make κ = 0.

50 100 150 200 250 300
p

5

10

15

20

25

30

35
CHpL

2-param'
3-param
2-param
1-param

Fig. 4.11. This plot indicates why more than two parameters are superfluous in a
scalability model based on rational functions. The third parameter is associated with
a cubic term in the denominator of Eqn.(4.31), but offers no significant purchase
over an adjusted two-parameter model (primed)

Remark 4.8. Since the universal parameters have definite physical meaning,
they can employed as a heuristic to determine where to make performance
improvements. The details of how this can be accomplished are presented
in Chap. 5.

4.5 Other Scalability Models 63

4.5 Other Scalability Models

In Sect. 4.4 we showed the advantages of extending Amdahl’s law. The intro-
duction of a second parameter (κ) allows us to model capacity degradation
due to coherency losses or thrashing-type effects. There are a number of other
possible scalability models, and we briefly compare some of them in this sec-
tion.

4.5.1 Geometric Model

Geometric speedup Sφ(p) on p processors is defined by:

Sφ(p) =
1 − φp

1 − φ
, (4.36)

which is the sum of p− 1 terms from the geometric sequence in Definition 4.1
with a = 1. The parameter φ is known as the MP factor. Since it refers to the
remaining fraction of available processor capacity after various computational
overheads have been subtracted out, its value lies in the range 0 < φ ≤ 1;
generally it is closer to one than zero.

Like Amdahl’s law, (4.36) is a single-parameter model used by a number
of well-known hardware vendors. Its origin is unclear, but that is not too
surprising since its form is based on the rather obvious notion of compound
interest (Gunther 2004a).

I have discussed this model in great detail in (Gunther 2000, Chap. 14).
More recently, however, I discovered that the geometric model of multipro-
cessor systems is unphysical for large processor configurations in that each
processor corresponds to a stage in a Coxian server queueing model (Gun-
ther 2002a). Since the overall residence time is proportional to the number of
Coxian stages, larger processor configurations take longer. This is completely
counter to the rationale for large-scale multiprocessors.

4.5.2 Quadratic Model

Quadratic speedup Sγ(p) on p processors is defined by:

Sγ(p) = p − γp(p − 1) , (4.37)

where the overhead parameter 0 ≤ γ < 1. I developed this single-parameter
model in 1991 (Gunther 2000, Chap. 14) because, unlike Amdahl’s law, it has
a critical point at:

p∗γ =
⌊

1 + γ

2γ

⌋
. (4.38)

One sees immediately the similarity with (4.33) for the universal model in
Sect. 4.4. Historically, the quadratic model can be considered as a precursor
to universal model.

64 4 Scalability—A Quantitative Approach

The unphysical aspect of (4.37) pertains to the negative sign in front of
γ. This means that the scalability curve is an inverted parabola (Fig. 4.12),
which in turn requires that (4.37) has two roots. The smaller root is always at
the origin (p = 0), but the existence of a larger positive root (p = 2p∗γ) means
that there is a definite processor configuration beyond which speedup Sγ(p)
becomes negative!

50 100 150 200
p

-20

-10

10

20

30

40

50

SgHpL

Fig. 4.12. Profile of quadratic scalability from Eqn.(4.37) showing the presence of
two roots and the concomitant negative speedup, which makes the model unphysical

4.5.3 Exponential Model

Exponential speedup Sα(p) on p processors is defined by:

Sα(p) = p(1 − α)(p−1) , (4.39)

where single parameter α lies in the range 0 ≤ α < 1. Equation (4.39) does
exhibit a critical point and is very sensitive to the value of α.

For large processor configurations, (4.39) becomes:

lim
p→∞Sα(p) = p e−α(p−1) (4.40)

It is noteworhty that (4.40) resembles the continuous (large population) model
of ALOHA packet-radio throughput (Gunther and Shaw 1990; Gunther 2000;
Bertsekas and Gallager 1987). From this we can infer that it represents a
single shared-bus model.

4.5 Other Scalability Models 65

25 50 75 100 125 150
p

5

10

15

20

25

30
SHpL

Universal law
Amdahl Corp.
Amdahl's law

Fig. 4.13. Scaling profile of the Amdahl Corp. model in Eqn.(4.39) compared with
Amdahl’s law Eqn.(4.15) and the universal scalability model Eqn.(4.31)

Ironically, I first became aware of this model while presenting a training
class at Amdahl Corporation in 1999. I was told that performance engineers
had been using (4.40) for many years to do internal SMP sizing and capacity
planning. In Fig. 4.13, we see that although (4.40) is valid for small-processor
configurations, the predicted onset of capacity degradation for large-processor
configurations is often too severe.

Table 4.1. Comparative properties of scalability models

Model Parameters Critical point Remark

Amdahl σ No Models contention only
Exponential α Yes Contention and coherency

are mixed in parameter α
Geometric φ No Inconsistent with Coxian

queueing theory
Quadratic γ Yes Second root is unphysical
Universal σ, κ Yes Physical. Contention and

coherency are separated

From Definition 4.8 we know that scalability models like Amdahl’s law
(4.26) and the universal model (4.31) are defined by rational functions.

Conjecture 4.1. Two parameters are necessary and sufficient for scalability
models based on rational functions.

66 4 Scalability—A Quantitative Approach

The other scalability models in Table 4.1 are not rational functions, and
are defined in terms of just one parameter. This makes them simpler to apply,
but as we shall discover in Chap. 5, the added degree of difficulty can be
handled using statistical methods and the analysis is more revealing.

4.6 Multicores and Clusters

We have implicitly presented the universal scaling model in the context of mul-
tiprocessor hardware, but there is nothing specific in the model that restricts
(4.31) to multiprocessors. Moreover, there is nothing in (4.31) that tells us
anything about the type of hardware being modeled. In particular, it includes
no terms representing the kind of interconnect technology between processor
nodes e.g., a hypercube or torus topology. Since the universal model has no
intrinsic structure, it can be used to model more general computer systems
such as multicores and clusters. Figure 4.14 shows how this might be done.

(a) (b)

(c) (d)

Fig. 4.14. Integer partitioning of p = 8 processors (black stripes) among (a) n = 1,
(b) n = 2, (c) n = 4, and (d) n = 8 nodes

Definition 4.9 (Cluster Parameters).

• n: nodes
• pn = p/n: processors per node
• σg: global internode contention

4.6 Multicores and Clusters 67

• κg: global internode coherency

For n = 1, σg = 0 so that (4.41) reduces to (4.31). The partitioning of p
processors among n nodes in Fig. 4.14 result from the integer partitions:

n pn p
1 8 8
2 4 8
4 2 8
8 1 8

such that the total number of processors is always given by the product
p = n × pn.

These definitions allow us to write a generalization of (4.31) for predicting
universal cluster scalability:

C(p, n) =
n C(p)

1 + σg (n − 1) C(p) + κg n(n − 1) C2(p)
, (4.41)

where C(p) is the intranode scalability defined by (4.31). In order to apply
(4.41), one has to be able to measure both the local and global buses shown
in Fig. 4.15 independently. The other important assumption is that the nodes
and the processors are homogeneous. This assumption is most likely to hold
for a multicore system (see Chap. 7), but may not be as appropriate for certain
inhomogeneous clusters with mixed node types (see Chap. 9).

Global Bus

Node 1

Local bus

Processors

Node 2

Local bus

Processors

Fig. 4.15. Local bus connecting processors on each node and the global bus con-
necting each node

One would want to perform this kind of analysis to see where certain
configurations match one another in capacity. In Fig. 4.16, these configurations
correspond to the points where the scalability curves cross each other.

68 4 Scalability—A Quantitative Approach

2.5 5 7.5 10 12.5 15
p

2.5

5

7.5

10

12.5

15

CHp,nL

n = 16
n = 8
n = 4
n = 2

Fig. 4.16. Scalability curves for a cluster partitions with intranode parameters
σ = 0.03 and κ = 0.0015, and internode parameters σg = 0.01, κg = 0.001. Such
undesirable parameter values have been chosen merely to demonstrate the ability of
(4.41) to display comparative scalability across multiple node configurations

4.7 Summary

In this chapter we started out by examining the general concept of scaling in
some detail. We shall make further use of these ideas in Chap. 10. The key
idea is that scaling cannot be unbounded. In a physical system, is bounded by
a critical point where the weight exceeds the physical capability of the system
to support itself.

We showed that a similar idea exists for computer systems. They cannot
be scaled indefinitely because certain internal overheads accrue at a critical
point where the processing capacity is consumed more by overhead cycles than
application cycles. All of this is expressed in the universal scalability model
given by (4.31).

The universal scalability model is a two-parameter model defined by a
rational function. We conjecture that any scalability model based on rational
functions requires no more than two parameters. The model is universal in
that it is not restricted to a particular architecture or workload—there are no
terms in (4.31) to account for them. Conversely, in the case where performance
is considered inferior (the critical capacity maximum sets in too early), it
cannot be used in reverse to resolve which subsystem needs to be tuned to
improve it. However, since the parameters σ and κ do have a definite physical
meaning, viz., contention and coherency delay, respectively, we can use them
as a heuristic to determine where to make performance improvements (see,
e.g., Sect. 6.4).

4.7 Summary 69

The burning question becomes, how can the universal scalability model
be applied to real computer systems? Moreover, since it is a two-parameter
model one might anticipate that its usage would be very difficult because we
have to determine two parameters rather than one, as would be the case for
Amdahl’s law. After all, Gene Amdahl based his conclusions on a tedious
analysis of the serial delay in individual test workloads. For a two-parameter
model, this looks like a daunting and unpalatable task. But ye of little faith,
never fear; mathematical statistics to the rescue!

5

Evaluating Scalability Parameters

With four parameters I can fit an elephant.
With five, I can make his trunk wiggle!

—John von Neumann

5.1 Introduction

In this chapter we are going to take the theoretical discussion of Chap. 4 and
show how it can be applied to assessing the scalability of a particular hardware
platform running a well-defined workload. Scalability, especially application
scalability, is a perennial hot topic. See for example the following Web links
discussing the scalability of:

Linux: lse.sourceforge.net
P2P: www.darkridge.com/∼jpr5/doc/gnutella.html
PHP: www.oreillynet.com/pub/wlg/5155
Windows: www.techweb.com/wire/story/TWB19991015S0013

Yet few authors are able to quantify the concept of scalability. The two-
parameter universal scalability model

C(p) =
p

1 + σ(p − 1) + κp(p − 1)
, (5.1)

derived in Chap. 4, predicts the relative capacity:

C(p) =
X(p)
X(1)

, (5.2)

for any workload running on p physical processors.
For the purposes of this chapter, the main points established in Chap. 4

can be summarized as follows. Scalability, as defined quantitatively by (5.1),
is a concave function. The independent variable is the number of physical
processors p belonging to each hardware configuration. It is assumed that
there are N homogeneous processes executing per processor such that the
ratio N/p is held constant across all processor configurations. In other words,
each additional processor is assumed to be capable of executing another N
processes. The concavity of C(p) is controlled by the parameters σ and κ in

72 5 Evaluating Scalability Parameters

(5.1). The σ parameter is a measure of the level of contention in the system,
e.g., waiting on a database lock, while the κ parameter is a measure of the
coherency delay in the system, e.g., fetching a cache line.

Remark 5.1. If κ = 0, C(p) reduces to Amdahl’s law. This is why Amdahl
scaling is necessary (to explain contention) but not sufficient (it cannot exhibit
a maximum).

In Sect. 5.5 of this chapter, we calculate the universal scalability param-
eters based on benchmark measurements which span a set of processor con-
figurations up to and including the full complement of processors allowed on
the backplane. In Sect. 5.7, we consider how these scalability predictions differ
when only a relatively small subset of processor configurations are measured—
the latter being the most likely situation in practice. All of the examples are
presented using Excel (Levine et al. 1999)).

5.2 Benchmark Measurements

We begin by describing the particulars of the benchmarked system. More
details can be found in (Atkison et al. 2000).

5.2.1 The Workload

The ray-tracing benchmark (Atkison et al. 2000) (available from sourceforge.
net/projects/brlcad/) referred to throughout this chapter consists of com-
puting six reference images from computer aided design (CAD) models
(Fig. 5.1). These optical renderings are compared with reference images and
verified for correctness. The images consist of 24-bit RGB pixel values (8 bits
for each color channel). Images are considered correct if pixel channel values
differ by no more than 1 from the reference. This accommodates the vari-
ability due to differences in floating-point representation of the various CPU
architectures.

The six reference models used represent differing levels of complexity. The
first three (moss, world, and star) represent simple validation of correctness
tests. The latter three models (Bldg391, M35, and Sphflake) strongly resem-
ble those used in production analysis. The inclusion of these models assures
that there is a strong correlation between performance on the benchmark and
performance in actual use.

The benchmark reports the number of ray-geometry intersections per-
formed per second during the ray-tracing phase of the rendering. Time spent
reading the model into memory and performing setup operations is not in-
cluded in the performance evaluation. This gives a more realistic prediction
of actual performance, since typical applications spend relatively little time in
I/O and setup compared to ray tracing. The amount of time the benchmarks
spend doing I/O and setup is about equal to that spent raytracing.

5.2 Benchmark Measurements 73

Moss World Star

Bldg391 M35 Sphflake

1 f

Fig. 5.1. Reference images used in the ray-tracing benchmark

Table 5.1 summarizes the ray tracing benchmark results. It is generally
more illuminating to plot these data as shown in Fig. 5.2 in order to reveal the
shape of the throughput curve. The homogeneity of the ray-tracing benchmark
workload makes it a very useful candidate for analysis using our universal
capacity model (5.1). To that end we now present in detail how to evaluate
the σ and κ parameters from the data in Table 5.1.

Table 5.1. Ray tracing benchmark results on a NUMA architecture

Processors Throughput
p X(p)

1 20
4 78
8 130
12 170
16 190
20 200
24 210
28 230
32 260
48 280
64 310

74 5 Evaluating Scalability Parameters

5.2.2 The Platform

The benchmark platform is an SGI Origin 2000 with 64 R12000 processors
running at 300 MHz. The Origin 2000 runs the IRIX operating system—a
UNIX-based operating system with SGI-specific extensions1.

The Origin 2000 is a nonuniform memory architecture (NUMA) architec-
ture in which the memory is partitioned across each processor. These phys-
ically separate memory partitions can be addressed as one logically shared
address space. This means that any processor can make a memory reference
to any memory location. Access time depends on the location of a data word
in memory (Hennessy and Patterson 1996). The performance did not increase
uniformly with the number of processors. Three of the benchmark codes exhib-
ited a definite ceiling in performance between p = 10 and p = 12 processors.
All of the benchmark codes showed considerable variability in each experi-
mental run.

0

50

100

150

200

250

300

350

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Processors (p)

K
R

a
y
s
 p

e
r

S
e

c
o

n
d

Fig. 5.2. Scatter plot of the benchmark throughput data in Table 5.1

Each processor board contained two CPUs, local memory, and two remote
memory access ports. Up to six processors can be interconnected without a
router module to the crossbar switch. Up to eight CPUs can be placed in a sin-
gle backplane. To accommodate more than eight CPUs, multiple backplanes
1 At the time of writing SGI has announced that production of its IRIX/MIPS line

will end on 29th December 2006.

5.3 Minimal Dataset 75

are interconnected through their respective memory buses. Accesses from one
CPU module to another are satisfied in the order of the bus distance to the
CPU module containing the desired data. Thus, when large numbers of CPUs
contend for common data, CPUs in the neighborhood of a cluster can starve
remote CPUs of access. The great variability of performance in higher num-
bers of CPUs can be explained by the distribution of the computation across
the available nodes of the system. Work appears to be distributed randomly
across the available CPUs, but during execution the operating system may
reschedule work on different a CPU without any apparent reason.

5.2.3 The Procedure

Below, we summarize the steps to be carried out in the remainder of this chap-
ter for analyzing the scalability of the ray-tracing benchmark. As the following
steps are carried out, they can be incorporated into an Excel spreadsheet like
that shown in Fig. 5.3.

The procedural steps for the calculation of σ and κ and C(p) are as follows:

1. Measure the throughput X(p) for a set of processor configurations p.
2. Preferably include an X(1) measurement and at least four or five other

data points.
3. Calculate the capacity ratio C(p) defined in (5.2) (Sect. 5.4).
4. Calculate the efficiency C/p, and its inverse p/C (Fig. 5.3).
5. Calculate the deviation from linearity (Sect. 5.5.2).
6. Perform regression analysis on this deviation data to calculate the

quadratic equation coefficients a, b, c (Sect. 5.5).
7. Use these coefficients a, b, c to calculate the scalability parameters σ, κ

(Sect. 5.6.2).
8. Use the values of σ, κ to calculate the processor configuration p∗ where

the maximum in the predicted scalability occurs—even though it may
be a theoretical configuration (Sect. 5.6.3). p∗ is defined by (4.33) in
Chap. 4.

9. Use σ and κ to predict the complete scalability function C(p) over the
full range of p processor configurations (Fig. 5.7).

5.3 Minimal Dataset

In this chapter we are going to use a form of polynomial modeling (Box et al.
1978, p. 482). An nth degree polynomial in the variable x has n + 1 terms
such that:

ŷ = αnxn + · · · + α1x + α0 . (5.3)

The basic idea is to estimate the value of ŷ by determining the n+1 coefficients
on the right-hand side of (5.3).

76 5 Evaluating Scalability Parameters

Measured KRays/Sec RelCap Efficiency Inverse Linearity Deviation

CPU (p) X(p) C=X(p)/X(1) C/p p/C p-1 (p/C)-1

1 20 1.00 1.00 1.00 0 0.00

4 78 3.90 0.98 1.03 3 0.03

8 130 6.50 0.81 1.23 7 0.23

12 170 8.50 0.71 1.41 11 0.41

16 190 9.50 0.59 1.68 15 0.68

20 200 10.00 0.50 2.00 19 1.00

24 210 10.50 0.44 2.29 23 1.29

28 230 11.50 0.41 2.43 27 1.43

32 260 13.00 0.41 2.46 31 1.46

48 280 14.00 0.29 3.43 47 2.43

64 310 15.50 0.24 4.13 63 3.13

Fig. 5.3. Example spreadsheet including the normalized capacity, efficiency, and
linear deviation calculations

Polynomial models are sometimes referred to ambiguously as linear or
nonlinear models. This is because (5.3) is linear with respect to the model
coefficients α1, since the degree of all the parameters is equal to one, but it is
nonlinear with respect to the x-variables since there are terms with exponents
greater than one. We want to estimate the value of the model coefficients α1.
How many data points do we actually need to estimate the parameters in our
universal scalability function? There are two ways to look at this question.

5.3.1 Interpolating Polynomial

One possibility for esimating the parameters in the universal scalability model
is to require the polynomial curve to pass through all the data points. The
simplest polynomial is a straight line:

ŷ = α1x + α0 , (5.4)

which has one variable (x) and two coefficients. We need at least two data
points to unambiguously determine the slope and the y-intercept.

The general rule is that we need at least n+1 data points to unambiguously
determine an nth-degree polynomial. In Table 5.1 there are eleven data points;
therefore we could unambiguously determine a tenth-degree polynomial.

As we shall see in Sect. 5.5.1, our universal scalability model can be as-
sociated with a second-degree polynomial or a quadratic equation. From the
standpoint of unambiguously determining the interpolating polynomial, we
should only need three data points. However, because the measured through-
puts involved systematic and statistical errors (see Chap. 3), we cannot expect
those data to lie exactly on the curve corresponding to the universal scalability
model. For this, we need regression analysis.

5.3.2 Regression Polynomial

Regression analysis is a technique for estimating the values of the coefficients
in (5.3) based on statistical techniques to be described in Sect. 5.6. In general,

5.5 Transforming the Scalability Equation 77

we more than the three data points required to determine a simple interpo-
lating polynomial.

On the other hand, you do not necessarily require a data set as complete
that in Table 5.1. In Sect. 5.7, we discuss how to perform scalability analysis
with fewer measured configurations. In any event, it is advisable to have at
least four data points to be statistically meaningful. This is to offset the fact
that it is always possible to fit a parabola through three arbitrary points.
Hence, four data points should be considered to be the minimal set.

5.4 Capacity Ratios

Having collected all the benchmark throughput measurements in one place,
let us now turn to the second step in the procedure outlined in Sect. 5.2.
Referring to the benchmark data in Table 5.1, we first calculate the relative
capacity C(p) for each of the measured configurations. The single-processor
throughput is at X(1) = 20 kRays/s. Therefore, that capacity ratio (5.2) is:

C(1) =
X(1)
X(1)

=
20
20

= 1.0 .

Similarly, with p = 64 processors:

C(64) =
X(64)
X(1)

=
310
20

= 15.50 .

All intermediate values of C(p) can be calculated in the same way.

Remark 5.2. This result already informs us that the fully loaded 64-way plat-
form produces less than one quarter of the throughput expected on the basis
of purely linear scaling.

Additionally, we can compute the efficiency C/p and the inverse efficiency
p/C for each of the measured configurations. The results are summarized in
Table 5.2. We are now in a position to prepare the benchmark data in Excel
for nonlinear regression analysis (Levine et al. 1999) of the type referred to
in Sect. 1.4.

5.5 Transforming the Scalability Equation

Unfortunately, since (5.1) is a rational function (see Definition 4.8), we cannot
perform regression analysis directly using Excel. As shall see in Sect. 5.5,
Excel does not have a option for this kind of rational function in its dialog
box (Fig. 5.5). We can, however, perform regression on a transformed version
of (5.1). The appropriate transformation is described in the following sections.

78 5 Evaluating Scalability Parameters

Table 5.2. Relative capacity, efficiency, and inverse efficiency

p C C/p p/C

1 1.00 1.00 1.00
4 3.90 0.98 1.03
8 6.50 0.81 1.23

12 8.50 0.71 1.41
16 9.50 0.59 1.68
20 10.00 0.50 2.00
24 10.50 0.44 2.29
28 11.50 0.41 2.43
32 13.00 0.41 2.46
48 14.00 0.29 3.43
64 15.50 0.24 4.13

5.5.1 Efficiency

As a first step, we divide both sides of (5.1) by p to give:

C(p)
p

=
1

1 + σ(p − 1) + κp(p − 1)
. (5.5)

This is equivalent to an expression for the processor efficiency (cf. Defini-
tion 4.5 in Chap. 4).

5.5.2 Deviation From Linearity

Second, we simply invert both sides of (5.5) to produce:

p

C(p)
= 1 + σ(p − 1) + κp(p − 1) . (5.6)

This form is more useful because the right-hand side of (5.6) is now a sim-
ple second-degree polynomial in the p variable. Overall, (5.6) is a quadratic
equation having the general form:

y = ax2 + bx + c (5.7)

defined in terms of the coefficients: a, b, and c. The shape of this function
is associated with a parabolic curve (see, e.g., www-groups.dcs.st-and.ac.
uk/∼history/Curves/Parabola.html). The general shape of the parabola is
controlled by the coefficients in the following way:

• The sign of a determines whether (5.7) has a maximum (a > 0) or a
minimum (a < 0).

• The location of the maximum or minimum on the x-axis is determined by
−b/2a.

5.5 Transforming the Scalability Equation 79

• c determines where the parabola intersects the y-axis.

Equation (5.7) is the nonlinear part of the regression referred to in Sect. 5.4.
Excel, as well as most other statistical packages, can easily fit data to such a
parabolic equation.

5.5.3 Transformation of Variables

Finally, we need to establish a connection between the polynomial coefficients
a, b, c in (5.7) and the parameters σ, κ of the universal model (5.1). Note,
however, that we have more coefficients than parameters. In other words, we
have more degrees of freedom in the fitting equation than the universal model
allows. Since we are not simply undertaking a “curve-fitting” exercise, we need
to constrain the regression in such a way that:

• There are only two scaling parameters: σ, κ.
• Their values are always positive: σ, κ ≥ 0.

This can most easily be accomplished by reorganizing the inverted equation
(5.6) by defining the new variables:

Y =
p

C(p)
− 1 , (5.8)

and
X = p − 1 , (5.9)

so that (5.6) becomes:
Y = κX2 + (σ + κ)X (5.10)

Notice that (5.10) now resembles (5.7) with c = 0, which means that the
y-intercept occurs at the origin (see Fig. 5.4). Eliminating c is the necessary
constraint that matches the number of regression coefficients to the two pa-
rameters in (5.1).

This change of variables, (5.8) and (5.9), is only necessary if you do the
regression analysis in Excel since it does not offer rational functions as a
modeling option. The transformed variables can be interpreted physically
as providing a measure of the deviation from ideal linear scaling discussed
in Sect. 5.5.2. Table 5.3 shows some example values for the ray-tracing
benchmark described in Sect. 5.2.

The parabolic shape of the regression curve (5.10) can be seen clearly in
Figs. 5.10 and 5.13. It is not so apparent in Fig. 5.7 because the overall
deviation from linearity is milder and the regression curve is therefore very
close to a straight line. This is explained further in Sect. 5.5.4.

Theorem 5.1. In order for the scalability function (5.1) to be a concave func-
tion, the deviation from linearity (5.7) must be a convex function, viz., a
parabola (Fig. 5.4).

80 5 Evaluating Scalability Parameters

Proof. Equation (5.7) is the inverse of (5.1). See the discussion in Sect. 5.5.2.

Theorem 5.2. The relationship between the universal model parameters σ, κ
and the nonzero quadratic coefficients a, b is given by:

κ = a , (5.11)

and
σ = b − a . (5.12)

Proof. Equate coefficients between (5.7) and (5.10):

a = κ , (5.13)

which is identical to (5.11), and

b = σ + κ . (5.14)

Substituting (5.13) into (5.14) produces (5.12). The c coefficient plays no role
in determining σ and κ because its value was set to zero. ��

In Chap. 4 we derived (4.33) to calculate the location p∗ of the maximum
in the scalability function C(p). We can also use (5.13) and (5.14) to write it
explicitly in terms of the regression coefficients, viz.

p∗ =

⌊√
1 + a − b

a

⌋
, (5.15)

which can be useful as an independent validation in spreadsheet calculations.

5.5.4 Properties of the Regression Curve

It is important that both of the scalability parameters, σ and κ, are always
positive in order that the physical interpretation presented in Sect. 4.4.1 be
valid. The positivity of these parameters is tied to the values of the regression
coefficients a and b, which in turn depend very sensitively on the values of
the transformed variables X and Y associated with the measured data. In
particular, the requirements:

(i) a, b ≥ 0
(ii) b > a

ensure that σ, κ cannot be negative. They are requirements in the sense that
they cannot be guaranteed by the regression analysis. They must be checked
in each case. If either of the regression coefficients is negative, in violation of
requirement (i), the analysis has to be reviewed to find the source of the error.
Similarly, requirement (ii) means that the magnitude of the linear regression
coefficient b always exceeds that of the curvature coefficient a.

5.5 Transforming the Scalability Equation 81

20 40 60 80 100
X

10

20

30

40

50

Y

a = 0, b Ø 0
a = 0, b > 0
a > 0, b > 0

Fig. 5.4. Schematic representation of the allowed regression curves (5.10) for the de-
viation from linearity Y defined by (5.8) versus X defined by (5.9). The upper curve
corresponds to the most general case of universal scalability (σ, κ > 0) with regres-
sion coefficients a, b > 0 in (5.7), viz., a parabola. The middle curve corresponds
to Amdahl scaling (κ = 0) with regression coefficients a = 0, b > 0 (straight line).
The bottom curve represents the approach to ideal linear scalability with regression
coefficients a = 0 and b → 0 (horizontal line).

Corollary 5.1. It follows from Theorem 5.2, together with requirement (ii)
(b > a) and the Definition 4.3 of seriality (σ < 1), that

a ≤ b < a + 1 . (5.16)

Theoretically, the regression coefficient a > 0 can have an arbitrary value on
R

+, but in practice a � 1 and is often close to zero.

Figure 5.4 depicts the allowed regression curves for (5.10). It shows why
the above requirements must hold. The upper curve is a parabola which meets
requirement (i) and corresponds to the most general case of universal scalabil-
ity. The middle curve is a straight line corresponding to universal scalability
with κ = 0, or equivalently, regression coefficients a = 0, b > 0. This regression
curve belongs to Amdahl’s law discussed previously in Sect. 4.3.2. The bottom
curve is a nearly horizontal line with regression coefficients a = 0 and b → 0
representing the approach to ideal linear scalability previously discussed in
Sect. 4.3.1.

Another way to understand the above requirements is to read Fig. 5.4 as
though there was a clock-hand moving in the anticlockwise direction starting
at the X-axis. As the clock-hand moves upward from the X-axis, it starts to
sweep out an area underneath it. This movement corresponds to the regression
coefficient b starting to increase from zero while the a coefficient remains

82 5 Evaluating Scalability Parameters

zero-valued. As the b clock-hand reaches the middle inclined straight line,
imagine another clock-hand (belonging to a) starting in that position. At
that position, the area swept out by the b clock-hand is greater than the
area sweep out by the a clock-hand, since the latter has only started moving.
Hence, requirement (ii) is met. As we continue in an anticlockwise direction,
the two clock-hands move together but start to bend in Daliesque fashion to
produce the upper curve in Fig. 5.4.

Having established the connection between the regression coefficients and
the universal scalability parameters, we now apply this nonlinear regression
method to the ray-tracing benchmark data of Sect. 5.2.

Table 5.3. Deviations from linearity based on the data in Table 5.2

X = p − 1 Y = (p/C) − 1

0 0.00
3 0.03
7 0.23
11 0.41
15 0.68
19 1.00
23 1.29
27 1.43
31 1.46
47 2.43
63 3.13

5.6 Regression Analysis

The simplest way to perform the regression fit in Excel is to make a scatter
plot of the transformed data in Table 5.3. Once you have made the scatter plot,
go to the Chart menu item in Excel and choose Add Trendline. This choice
will present you with a dialog box (Fig. 5.5) containing two tabs labeled Type
and Options.

5.6.1 Quadratic Polynomial

The Type tab allows you to select the regression equation against which you
would like to fit the data. Usually, there is a certain subjective choice in this
step, but not in our case. We are not seeking just any equation to fit the data;
rather we have a very specific physical model in mind, viz., our universal
scalability model. Therefore, according to Sect. 5.5.3, we select a Polynomial
and ratchet the Degree setting until it equals 2. This choice corresponds to
the quadratic equation (5.10) in the regressor variable X.

5.6 Regression Analysis 83

Fig. 5.5. Type dialog box for the Excel Trendline

Next, select the Options tab, as shown in Fig. 5.5. The corresponding
dialog box for this choice is shown in Fig. 5.6. Select each of the checkboxes
as follows:

• Set intercept = 0 (this numerical value may have to be typed in)
• Display equation on chart
• Display R-squared value on chart

The first checkbox forces the c coefficient in (5.7) to be zero, as required by
the discussion in Sect. 5.5.3. Checking the second box causes the numerical
values of the regression coefficients calculated by Excel to be displayed as part
of the quadratic equation in the resulting chart (see Fig. 5.7). Checking the
third box causes the corresponding numerical value of R2 to be displayed in
the chart as well.

Remark 5.3. The quantity R2 is known to statisticians as the coefficient of
determination (See e.g., Levine et al. 1999). It is the square of the correlation
coefficient, and is interpreted as the percentage of variability in the data that is
accounted for by (5.10) and, by inference, the universal seriality model. Values
in the range 0.7 < R2 ≤ 1.0 are generally considered to indicate a good fit.

5.6.2 Parameter Mapping

The result of this Trendline fit in Excel is shown in Fig. 5.7. The Excel chart
shows the transformed data from Table 5.3 along with the fitted quadratic

84 5 Evaluating Scalability Parameters

Table 5.4. Regression coefficients as reported by Excel in Fig. 5.7 for the deviation
from linearity

Coefficient Value

a 5 × 10−6

b 0.0500
c 0.0000

R2 0.9904

Fig. 5.6. Options dialog box for the Excel Trendline

curve (dashed curve) as well as the calculated quadratic equation and the R2

value. The calculated a, b coefficients are summarized in Table 5.4. We see
that R2 = 0.9904, which tells us that better than 99% of the variability in the
benchmark data is explained by our scalability model.

The scalability parameters σ and κ can be calculated by simply substi-
tuting the values from Table 5.4 into (5.11) and (5.12). The results are sum-
marized in Table 5.5. This ends the regression analysis, but we still need to
generate the complete theoretical scaling curve using (5.1) and interpret the
significance of the σ and κ values for these benchmark data.

Remark 5.4 (Excel Precision Problems). The values computed by Excel in Ta-
ble 5.5 suffer from some serious precision problems. You are advised to read
Appendix B carefully for more details about this issue. This raises a dilemma.
It is important from a GCaP standpoint that you learn to perform quanti-
tative scalability analysis as presented in this chapter, and Excel provides a

5.6 Regression Analysis 85

y = 5E-06x2 + 0.05x

R2 = 0.9904

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Effective Processors (p - 1)

L
in

e
a
r

D
e
v
ia

ti
o
n

Fig. 5.7. Regression curve (dashed line) for deviation from linearity based on
all measured configurations. The exceedingly small value of the x2 coefficient
a = 5 × 10−6 indicates that the deviation is very slight and the regression curve
is only weakly parabolic

Table 5.5. Universal scalability parameters calculated by substituting the regression
coefficients of Table 5.4 into Eqns. (5.11), (5.12), and (5.15)

Parameter Value

σ 0.0500
κ 5 × 10−6

p∗ 435

very accessible tool for doing that. However, because of its potential precision
limitations, known to Microsoft (support.microsoft.com/kb/78113/), you
should always consider validating its numerical results against those calculated
by other high-precision tools, such as Mathematica, R, S-PLUS or Minitab.

5.6.3 Interpreting the Scalability Parameters

The resulting scalability curve is compared to the original measurements in
Fig. 5.8. Several remarks can be made.

Table 5.6 shows that the largest discrepancy between the model and mea-
surement is 10% at p = 4 processors. The contention parameter σ at 5% is

86 5 Evaluating Scalability Parameters

relatively large, as we saw in our discussion of Amdahl’s law in Chap. 4. It
was later determined that this high contention factor was due to efficiencies
in the NUMA bus architecture and certain compiler issues. The coherency
parameter κ, on the other hand, is relatively small. This suggests that there
are likely to be few cache misses, very little memory paging, and so on.

The maximum in the scalability curve is predicted by (5.15) to occur
at p∗ = 435 processors. Clearly, this is a purely theoretical value, since it is
almost seven times greater than the maximum number of physical processors
that can be accommodated on the system backplane.

0

50

100

150

200

250

300

350

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Processors (p)

K
R

a
y
s
 p

e
r

S
e

c
o

n
d

Modeled

Measured

Fig. 5.8. Theoretical scalability (dashed line) predicted by (5.1) with the parameter
values in Table 5.5. It is a concave function. As expected, very few data points actu-
ally lie on the curve. Inferior performance of configurations in the range 16 < p < 32
suggests significant performance improvements may be possible

5.6.4 Error Reporting

Because the theoretical scalability function in Fig. 5.8 is monotonically in-
creasing, it is preferable to use the absolute errors in Table 5.6 rather than
the relative or percentage errors described in Chap. 3. The largest absolute
error occurs at p = 12, whereas the last two columns in Table 5.6 shows,
that largest relative error occurs at p = 4 with the relative errors for larger
configurations monotonically decreasing.

5.7 Less Than a Full Deck 87

Example 5.1. Consider a small p-configuration that has a measured through-
put of, say, 4 units and a deviation between the measured and modeled value of
1 unit. This will produce a percentage error of 25%. At larger p-configurations
where the measured throughput is, say, 100 units, the same deviation only pro-
duces a percentage error of only 1%. ��

The absolute errors or residuals in Table 5.6 provide a point estimate for
the error. Error reporting can be improved even further by repeating multi-
ple throughput measurements at each p-configuration. Then, a complete set
of statistics can be generated using analysis of variance (ANOVA) in Ex-
cel (Levine et al. 1999). We did not have repeated measurements in this case.
The F -test indicates the significance of the overall regression (Box et al. 1978).
The larger the F-value, the more significant the regression. Statistical p-values
from an ANOVA table in Excel provides a significance test of the parameter
regression. We take up this ANOVA procedure in more detail in Chap. 8.

Table 5.6. Error reporting for the scalability data in Fig. 5.8

Processor Estimated Measured Absolute Relative
p X(p) X(p) Error Residual Error Error%

1 20.00 20.00 0.00 0.00 0.00 0.00
4 69.56 78.00 8.44 8.44 0.12 12.13
8 118.50 130.00 11.50 11.50 0.10 9.71
12 154.78 170.00 15.22 15.22 0.10 9.83
16 182.74 190.00 7.26 7.26 0.04 3.97
20 204.94 200.00 4.94 −4.94 0.02 2.41
24 222.98 210.00 12.98 −12.98 0.06 5.82
28 237.93 230.00 7.93 −7.93 0.03 3.33
32 250.51 260.00 9.49 9.49 0.04 3.79
48 285.63 280.00 5.63 −5.63 0.02 1.97
64 306.97 310.00 3.03 3.03 0.01 0.99

5.7 Less Than a Full Deck

You may be thinking that the universal scalability model worked well in the
previous example because the measured data set spans intermediate processor
configurations up to a fully loaded system containing 64 processors. How well
does this regression method work when there is less data? We consider the
following typical cases:

(a) A sparse subset of data that is evenly spaced.
(b) A sparse subset of data that is unevenly spaced.
(c) The X(1) datum (used for normalization) is absent.

88 5 Evaluating Scalability Parameters

Keep in mind that one of the advantages of this regression procedure is that
it can be applied to sparse data, and, what is more important, sparse data
from small-processor configurations.

A significant virtue of applying regression analysis to the universal scala-
bility model is that it can make scalability projections based on a limited
number of measurements. Modeling projections can be more cost-effective
than actual measurements. Remember that there are always significant er-
rors in measured performance data. (See Chap. 3) In particular, setting up
and performing measurements on small platform configurations are usually
much less expensive than large platform configurations.

5.7.1 Sparse Even Data

Suppose we only had a subset of the benchmark measurements on the four pro-
cessor configurations shown in Table 5.7. Note that the corresponding scatter
plot appears in Fig. 5.9

Table 5.7. Benchmark measurements on four evenly spaced small-processor config-
urations

Processors Throughput
p X(p)

1 20
4 78
8 130
12 170

These data should correspond to a low-load or low-contention region in the
scalability curve. Recall from Sect. 5.3 that four data points is the minimum
requirement for meaningful regression (see Fig. 5.10). The projected scalability
in Fig. 5.11 is strikingly different from Fig. 5.8. The estimated σ value is only
one fifth of the original regression analysis in Table 5.5, whereas the estimated
κ value is one thousand times higher!

Table 5.8. Regression coefficients and scalability parameters for the evenly spaced
small-processor configurations in Table 5.7

Regression Scalability
Coefficient Value Parameter Value

a 0.0023 σ 0.0103
b 0.0126 κ 0.0023

R2 0.9823 p∗ 20

5.7 Less Than a Full Deck 89

However, R2 = 0.9823 suggests that the regression fit is very good. The
σ value implies that serial contention is not an issue. Rather, it is the ex-
tremely high value of κ which suggests that some kind of thrashing effect at
play—presumably in the memory architecture—is responsible for pulling the
throughput maximum down by a factor of twenty-five.

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10 12 14

Processors (p)

K
R

a
y
s
 p

e
r

S
e

c
o

n
d

Fig. 5.9. Scatter plot of benchmark throughput data for the uniformly spaced
configurations in Table 5.7

Another interpretation of Fig. 5.11 is that scalability is being prematurely
throttled around p = 16 processors, but it then displays a tendency to begin
recovering above p = 32 processors, which lies outside the measurement range
in the scenario we are considering here. Referring to the platform architecture
described in Sect. 5.2.2, p = 16 processors implies the existence of two inter-
connect buses. The temporary adverse impact on scalability observed in the
data could be a result of coherency delays to memory references across these
multiple buses.

90 5 Evaluating Scalability Parameters

y = 0.0023x2 + 0.0126x

R2 = 0.9823

0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Effective Processors (p - 1)

L
in

e
a

r
D

e
v
ia

ti
o

n

Fig. 5.10. Linear deviation for the benchmark data in Fig. 5.9

This is precisely how it should be. Predictions based on the universal scal-
ability model depend significantly in the amount of data provided as input
to parameterize the model. As with all models, providing either additional
data values or new values for previously measured configurations can heav-
ily influence the modeling projections. This is another reason that error
reporting (Sect. 5.6.4) is so important.

5.7.2 Sparse Uneven Data

Next, suppose we have the subset of four nonuniformly spaced data points in
Table 5.9 and Fig. 5.12. What effect does this spacing have on the scalability
predictions?

The fitted deviation from linearity is shown in Fig. 5.13. Again, these data
are expected to correspond to a low-contention region in the scalability curve.
The projected scalability in Fig. 5.14 now appears to be more intermediate in
shape between that of Fig. 5.11 and Fig. 5.8. However, R2 = 0.9979 indicates
that the regression fit is still very good.

The estimated σ value in Table 5.10 is now increased to approximately
twice the value in Table 5.8. On the other hand, the estimated value of κ is
reduced by more than one third of the value in Table 5.8. As a consequence,
the maximum in the scalability curve has moved upward to p = 28 processors.

5.7 Less Than a Full Deck 91

0

50

100

150

200

250

300

350

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Processors (p)

K
R

a
y
s
 p

e
r

S
e

c
o

n
d

Modeled

Unknown

Measured

Fig. 5.11. Predicted scalability for the limited benchmark data in Table 5.7 (black
dots) compared with the complete dataset (crosses) in Table 5.1, which is assumed
to be unknown in this example. Clearly, the predicted scalability depends quite
sensitively on what is known and what is unknown. This is exactly how it should be

Table 5.9. Benchmark measurements on four small-processor configurations span-
ning nonuniform intervals

Processors Throughput
p X(P)

1 20
4 78
8 130
28 230

The reason for this impact on the regression analysis derives from the fact that
we have more information about the system throughput at larger processor
configurations. The fourth data point in Table 5.9 carries information about
the slight recovery from memory thrashing noted in Sect. 5.7.1.

5.7.3 Missing X(1) Datum

The procedure described in this chapter is based on normalizing the bench-
mark throughput measurements to X(1) the single processor throughput
value. Unless the performance measurements are planned with the univer-
sal scalability model in mind, it is not uncommon for X(1) to be absent, thus

92 5 Evaluating Scalability Parameters

0

50

100

150

200

250

0 5 10 15 20 25 30

Processors (p)

K
R

a
y
s
 p

e
r

S
e

c
o

n
d

Fig. 5.12. Scatter plot of benchmark throughput data for the nonuniformly spaced
configurations in Table 5.9

y = 0.0012x2 + 0.0211x

R2 = 0.9979

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Effective Processors (p - 1)

L
in

e
a

r
D

e
v
ia

ti
o

n

Fig. 5.13. Linear deviation for the benchmark data in Fig. 5.12

5.7 Less Than a Full Deck 93

0

50

100

150

200

250

300

350

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Processors (p)

K
R

a
y
s
 p

e
r

S
e
c
o
n
d

Modeled

Unknown

Measured

Fig. 5.14. Predicted scalability for the limited benchmark data in Fig. 5.12 (black
dots) compared with the complete dataset (crosses) in Table 5.1 which is assumed
to be unknown in this example. Clearly, the predicted scalability depends quite
sensitively on what is known and what is unknown. This is exactly how it should be

Table 5.10. Regression coefficients and scalability parameters for the small-
processor unevenly spaced configurations in Table 5.9

Regression Scalability
Coefficient Value Parameter Value

a 0.0012 σ 0.0199
b 0.0211 κ 0.0012

R2 0.9979 p∗ 28

rendering this form of regression analysis unusable. Is there any way around
this problem?

There are two answers to this question. First, having read this far, you
should make every effort to make universal scalability analysis part of your
future Guerrilla capacity planning. Second, you can do a form of regression
analysis on the raw data without normalizing it, but this may involve more
trial and error than described in this chapter.

A simpler rule of thumb is to simply estimate X(1) by taking the first
measured throughput value, say X(p0), and dividing by that processor con-
figuration p0:

X̂(1) =
X(p0)

p0
. (5.17)

94 5 Evaluating Scalability Parameters

This estimate for the p = 1 datum is likely to be too low because it is tanta-
mount to assuming linear scalability in the range p = 1 to p = p0. Worse yet,
(5.17) may cause the regression parabola to develop a negative curvature, i.e.,
a < 0 in (5.7) in violation of requirement (i) in Sect. 5.5.4 If this situation
arises, it can be corrected by manually adjusting (5.17) upward with some
usually small amount ∆, so that the corrected estimate becomes:

X̂(1) =
X(p0)

p0
+ ∆.

Example 5.2. Suppose the X(1) datum was missing from the benchmark data
in Table 5.1. We can estimate it using the first available value X(4) = 78.
Using (5.17):

X̂(1) =
X(4)

4
= 19.50 . (5.18)

In this case ∆ = 0.5, so it makes no appreciable difference to the regression
analysis in Excel. X̂(1) and X(1) are the same number, to 2-sigdigs (see
Chap. 3). ��

Finally, it is worth remarking that this kind of estimation scheme may
be more applicable for the assessment of software-based scalability where a
single-user load measurement may have its own peculiar set of challenges. We
take up this point in Chap. 6.

5.8 Summary

In this chapter we have applied our universal scalability model (5.1) to a
ray-tracing benchmark executing on a distributed-memory NUMA architec-
ture, despite the lack of any terms in the equation which account for that
architecture. How is that possible?

Conjecture 4.1 states that the two parameters in the universal model are
necessary and sufficient: σ > 0 means that C(p) becomes sublinear, while
σ, κ > 0 means it becomes retrograde. A capacity maximum is not evident
in the ray-tracing benchmark data, although one is predicted to occur out of
range at p = 435 processors.

Moreover, (5.1) does not contain any explicit terms representing the inter-
connect, type of processors, cache size, operating system, application software,
etc. All that information is contained in the respective regression values of σ
and κ. It is in this sense that (5.1) is universal, and therefore must contain
NUMA as an architectural subset. As validation, in Sect. 5.6.3 we uncovered
bus-contention in our analysis that suggested potential performance improve-
ments which indeed were implemented.

The procedural steps for applying regression analysis in Excel to estimate
the scalability parameters was described in Sect. 5.2.3. Rather than requiring

5.8 Summary 95

three or more parameters, the physical nature of the universal model con-
strains the number of regression coefficients to just two; thus avoiding von
Neumann’s criticism.

We now move on to examine how these quantitative scalability concepts
can be applied to software applications.

6

Software Scalability

Program testing can be used to show the presence of
bugs, but never to show their absence!

—Edsger Dijkstra

6.1 Introduction

In this chapter we demonstrate how to apply the universal law of computa-
tional scaling, developed in Chaps. 4 and 5, to software scalability testing.

Section A: 180 lines Section B: 20 lines

Consider the two code segments shown above, which together represent a
program consisting of 200 lines of code. For our purposes, the actual code and
what is does is unimportant. What matters is that section A comprises 180

98 6 Software Scalability

lines (not all of which are displayed here), while section B consists of just 20
lines. Suppose the objective is to improve the run-time performance of the
entire program. Since section A represents 90% of the program, and section
A represents only of 10% of the program, should we try to optimize section
A or section B?

The obvious choice is to look for opportunities in the largest body of code.
For example, we would expect a significant improvement if we could make
section A run 90 times faster than the current implementation. But suppose
we also determine that section A only executes 10% of the time, while section
B accounts for 90% of the current runtime T . What performance improvement
can be expected under these circumstances?

One way to assess the performance improvement is to consider the ratio of
the unimproved runtime T = TA +TB to the improved runtime (TA/90)+TB .
We also know that TA = 0.10 T and TB = 0.90 T , so the overall runtime
performance improvement is given by:

T
1
90TA + TB

=
1

1
90

(
0.10

)
+ 0.90

= 1.11 . (6.1)

In other words, a very significant reduction in the execution time of section
A (assuming we can achieve it) will only produce slightly better than a 10%
improvement over the current application performance.

On the other hand, if we were able to reduce the execution time of section
B by just a factor of 10, then the overall run-time performance improvement
would be:

T

TA + 1
10TB

=
1

0.10 +
(

1
10

)
0.90

= 5.26 . (6.2)

So, reducing the execution time of section B by a smaller factor than we
assumed for section A produces better than 500% improvement in overall
application runtime. This win follows from the fact that section B is executed
nine times more often than section A.

For many readers, this will be the most likely application of the universal
scalability law. Moreover, since some virtual-user loads lie beyond those avail-
able on the real platform, either because the hardware configurations cannot
support heavier loads or the number of virtual users is restricted by licens-
ing costs, we can think of this approach as being like a virtual load-testing
environment.

6.2 Amdahl’s Law for Software

Following Sect. 4.3.4, we denote by π that portion of the run time we are
interested in reducing, and denote the fractional time reduction by φ. Sec-
tion B corresponds to π = 0.90 such that TA and TB can be replaced by
TA = (1 − π) T and TB = π T . The desired time reduction is φ = 1/10, hence
(6.2) can be written more generally as:

6.2 Amdahl’s Law for Software 99

Ssw =
1

(1 − π) + φπ
. (6.3)

Theorem 6.1. Software speedup as defined by (6.3), and used in the analysis
of in Sect. 6.1, is identical to Amdahl’s law in Chap. 4.

Proof. Assume that π can be broken into N smaller tasks. Replace φ by 1/N
and (1 − π) by σ in (6.3) to produce:

Ssw =
1

σ + 1
N (1 − σ)

,

=
N

σN + (1 − σ)
.

Rearranging terms in the denominator gives:

Ssw =
N

1 + σ(N − 1)
. (6.4)

Equation (6.4) has the same form as (4.15), and is identical to it if we assume
that each task is assigned to its own processor, i.e., N = p. ��
Remark 6.1. Some readers might recognize (6.3) from the following version of
Amdahl’s law:

Speedupoverall =
1(

1 − Fractionenhanced

)
+ Fractionenhanced

Speedupenhanced

(6.5)

appearing in (Hennessy and Patterson 1996, p. 30). Quite apart from the utter
clumsiness of writing Amdahl’s law in this wordy way, those wordy terms are
ambiguous. Subsituting

Fractionenhanced ≡ π

Speedupenhanced ≡ φ−1

into (6.5), produces (6.3).
To understand why Theorem 6.1 works, recall the rationale provided in

Sect. 4.3.2 and compare it with Fig. 6.1. In Sect. 4.3.2, the longest portion
of the run time was associated with code that could be equipartitioned into
N smaller pieces and executed on N = p physical processors. In the software
case, the longest portion of the run time π is reduced by a fraction φ = 1/N .
As Fig. 6.1 shows, the formal result is the same.

Corollary 6.1. From (6.3) it follows that Ssw → (1 − π)−1 as φ → 0. Since
(1 − π) ≡ σ (see proof of Theorem 6.1), this is equivalent to Ssw → σ−1, in
agreement with the Amdahl asymptote of Theorem 4.1 in Chap. 4.

100 6 Software Scalability

Execution time T

�T

� �T

Fig. 6.1. The software execution time associated with the largest run-time portion
π is reduced by a fraction φ = 1/N . Clearly, as N → ∞ the fraction φ → 0, and
the run time approaches the irreducible execution σ = 1 − π. This is precisely the
meaning of Amdahl’s law

A more formal derivation of (6.4) can be given which is based on a par-
ticular queue-theoretic model of a multiprocessor known as the repairman
model (See Gunther 2005a, Sect. 2.8).

Theorem 6.2 (Gunther (2002a)). Amdahl’s law as given by (6.4) is equiv-
alent to the synchronous relative throughput bound of the repairman queueing
model with mean uptime Z and service time S.

Proof. The proof hinges in part on the identity

σ =
S

S + Z
(6.6)

between the serial fraction σ and the queueing model variables Z and S. See
Appendix A and Gunther (2002a, 2004b, 2005b) for details. ��

Recall from Chap. 4 that scalability is a function. The effective capac-
ity function C(·) is defined in terms of the normalized throughput. Amdahl’s
Law corresponds to the extreme case where all N requests are either execut-
ing on N = p processors (“up” in repairman terminology) or serialized for
service (“down” in repairman terminology). In this sense Amdahl scalability,
expressed as Ssw ≡ C(N), reflects synchronous queueing in an application.

6.3 Universal Software Scalability

We can now generalize the analysis of Sect. 6.2. We already know that the
universal scalability law of Chap. 4 contains Amdahl’s law (for hardware) as a
special case. Since we also know that Amdahl’s law can be applied to software,
we can also safely assume that that version of Amdahl’s law is also subsumed
by a software version of the universal scalability law:

6.3 Universal Software Scalability 101

Csw(N) =
N

1 + α(N − 1) + βN(N − 1)
. (6.7)

Here, the scalability function C(N) is expressed in terms of the number of
active user processes N or load generators in a benchmark environment. We
also replace the parameters σ and κ by α and β, just to remind ourselves
that we are considering software scalability rather than hardware scalability.
Otherwise, their interpretation remains the same as in Chaps. 4 and 5.

The procedural steps for the calculation of α, β and C(N) are as follows:

1. Measure the throughput X(N) for a set of user loads N .
2. Preferably include an X(1) measurement and at least four or five other

data points.
3. Calculate the capacity ratio C(N) defined in (6.7).
4. Calculate the efficiency C/N , and its inverse N/C.
5. Calculate the deviation from linearity. (cf. Sect. 5.5.2).
6. Perform regression analysis on this deviation data to calculate the

quadratic equation coefficients a, b, c. (cf. Sect. 5.5).
7. Use these coefficients a, b, c to calculate the scalability parameters α, β.

(see Sect. 5.6.2).
8. Use the values of α, β to calculate the user load N∗ where the theoretical

maximum in the predicted scalability occurs.
9. Use α and β to predict the complete scalability function C(N) over the

full range of N users.

When following this procedure, it is very important to keep the following
assumptions in mind:

Hardware Measurements: In Chap. 5 we measured C(p) as a function of
the number of physical processors p; the latter is the independent variable.
The underlying assumption is that the number of processes N executing
on each processor remains constant across all measured configurations.
In other words, the ratio N/p is determined on a single processor (e.g.,
N = 10) and remains fixed so that at p = 4 processors, the configuration
is assumed to be capable of running N = 40 processes in aggregate.

Software Measurements: In this case, we measure C(N) as a function of
the user load N ; the latter being the independent variable. The underlying
assumption is that the platform processor configuration remains fixed for
all measured load points N .

Finally, you may be wondering if there is also a queueing model repre-
sentation of (6.7), similar the repairman model for Amdahl’s law? Indeed,
there is. It is the repairman model (Appendix A), but with a load-dependent
server. The details would take us well outside the scope of this book, but the
interested reader can find a related example in Gunther (2005a, Chap. 10).

102 6 Software Scalability

6.4 Concurrent Programming and Coherency

In a paper entitled, “The Free Lunch Is Over: A Fundamental Turn Toward
Concurrency in Software,” Herb Sutter (2005) of Microsoft, points out that
the shift towards multicores (Sect.4.6) will demand an increased focus on
issues related to software concurrency. Associated presentations are available
online:

Paper: www.gotw.ca/publications/concurrency-ddj.htm
Slides: gotw.ca/publications/SoftwareAndConcurrencyPARC.pdf
Talk: www.parc.com/cms/get article.php?id=533

Sutter’s thesis is largely qualitative, so it is of interest to see if some of his
points can be related to the quantitative perspective on software scalability
presented in this chapter.

The main thrust of his argument can be summarized as follows. Appli-
cation programmers have come to expect the continuing exponential growth
in processor cycles identified with Moore’s law. As a side effect of this ex-
pectation, they have tended to write programs using simpler sequential code
constructs, with little or no attention paid to achieving significant concur-
rency. Because of recent changes in the way microprocessors are now being
produced, however, that exponential growth in processor power (the “free
lunch”) has come to an end. Therefore, the habit of writing sequential code
will now have to be changed (I would say, reversed), but this change will be
relatively difficult because the available programming-language constructs for
implementing concurrency control are difficult to apply. We are likely to have
to live with Hoare-style monitors and locks to control synchonization in a
concurrent environment (see, “Guidlines for Making Multiprocessor Applica-
tions Symmetric,” Gunther 2000, Appendix C). Ultimatley, Sutter concludes
that concurrency-oriented programming will supercede the current paradigm
of object-oriented (OO) programming.

Why have we fallen off the Moore’s law curve? Sutter does not explain that,
but part of the reason has to do with the thermal barrier that accompanies
high clock frequencies in CMOS. To first order, the dynamic power dissipated
by CMOS circuitry is given by:

P = CV 2f , (6.8)

where P is the power, C is the effective switch capacitance, V is the supply
voltage, and f is the frequency of operation (closely associated with the system
clock frequency). The power dissipation occurs from charging and discharging
of nodal capacitances found on the output of every logic gate in the circuit.
Each logic transition in the CMOS circuit incurs a voltage change, which
draws energy from the power supply.

What is worse than (6.8), is the power per unit area (P/A) or power den-
sity. As microprocessor geometries continue to shrink, A becomes smaller and

6.5 UNIX Multitasking Application 103

increases the power density that has to be dissipated in the form of heat.
Combine that with increasing clock frequency in (6.8) and heat dissipation
quickly becomes a very serious problem—especially in the personal computer
and laptop marketplace. To ameliorate this problem, microprocessor manu-
facturers have decided to place more, lower speed, and therefore lower power,
processor cores on the same die, viz., multicores (see Sect.4.6).

Whether or not you agree with the details of Sutter’s thesis, from the
standpoint of (6.7) and Sect. 4.4.1, it is likely to be substantially correct be-
cause his observations are not entirely new. Similar issues are well-known
in the context of concurrent programming on symmetric multiprocessors
(SMPs). The major difference between multiprocessors and multicores is one
of scale. Instead of having multiple processors in a single box, we are beginning
to see multiple processors on a single silicon die.

Experience with SMP platforms, both historically (e.g., porting database
management applications to SMPs during the 1990s) and theoretically (e.g.,
Chap. 4), tells us that when it comes to shared data in general, and shared-
writable data in particular, not only is minimizing contention (α) important,
but minimizing the coherency delay (β) is vital. The only way these values
can be known is by system measurement, as we show in the following sections.

6.5 UNIX Multitasking Application

As a first application of (6.7), we consider a controlled workload from the
SPEC System Development Multitasking (SDM) benchmark suite (www.spec.
org/osg/sdm91/), which is currently part of the Open Systems Group (OSG)
working group within the SPEC organization. The data for the subsequent
scalability analysis is derived from the SDET component of the SDM suite.
The analytic method is the same as that described in Chap. 5, viz., regression
analysis.

6.5.1 The Workload

The SDET workload simulates a group of UNIX software developers doing
compiles, edits, as well as exercising other shell commands. These multiuser
activities are emulated by concurrently running multiple copies of scripts con-
taining the shell commands. The relevant performance metric is the throughput
measured in scripts per hour.

Remark 6.2. An historical account of the development of the SDET bench-
mark by Steve Gaede, the benchmark’s author, can be found online at
www.spec.org/osg/sdm91/sdet/SDETPerspectives.html.

A very important distinguishing feature of the benchmark is that it does
not rely on a single metric (as does CPU2000, www.spec.org/osg/cpu2000/,

104 6 Software Scalability

for example). Rather, a graph showing the complete throughput characteristic
must be reported. There are run rules for SPEC SDM that indicate how this
throughput data must be collected and presented.

6.5.2 The Platform

The results I will use in the subsequent analysis come from SPEC SDET data
reported in June 1995 for a 16-way Sun SPARCcenter 2000. You can download
the full report from www.spec.org/osg/sdm91/results/res9506/.

Table 6.1. SPEC SDET Benchmark on a 16-way Sun SC2000

Concurrent Throughput Normalized
generators scripts/h throughput

0 0.00 0.00
1 64.90 1.00
18 995.90 15.35
36 1652.40 25.46
72 1853.20 28.55
108 1828.90 28.18
144 1775.00 27.35
216 1702.20 26.23

Table 6.1 and Fig. 6.2 summarize those data. The most significant features
of this benchmark from the SPEC SDM standpoint are:

1. The full throughput profile has to be reported.
2. The peak throughput is 1853.20 scripts/hour.
3. It occurs at 72 generators or virtual users.
4. Beyond the peak, the throughput becomes retrograde .

Remark 6.3. In an ironic twist of fate, the measurements in Table 6.1 were
carried out at Amdahl Corporation in Sunnyvale, California; the company
founded by Gene Amdahl!

6.5.3 Regression Analysis

As already mentioned, the regression analysis can be carried out using an
Excel spreadsheet (see Chap. 5). The relationship between the regression co-
efficients in Table 6.2 and the universal scalability parameters is given by the
equations:

α = b − a . (6.9)
β = a . (6.10)

N∗ =
⌊√

1 − α

β

⌋
. (6.11)

6.5 UNIX Multitasking Application 105

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 50 100 150 200 250

Concurrent Users

S
c
ri
p
ts

 p
e
r

H
o
u
r

Fig. 6.2. SPEC SDET graph of data in Table 6.1

These equations are the same as (5.11), (5.12) and (5.15).

Table 6.2. Regression coefficients for the data in Table 6.1

Coefficient Value

a 8 × 10−5

b 0.0171
c 0.0000

R2 0.9961

Clearly, the maximum measured throughput is 1853.20 scripts/hour. The
SC2000 benchmark platform was configured and tuned to generate this max-
imum value (that is what the SPEC benchmarking is about). Moreover, part
of the tuning effort is to make the system CPU-bound, not memory-bound
or I/O-bound. So, we can presume the SPARC processor was a dominant
bottleneck governing throughput performance.

Contrast this with the regression analysis in Table 6.3. The maximum
throughput is predicted to occur at N = 110 virtual users. Using (6.7) together
with X(1) = 64.90 from Table 6.1, the corresponding throughput in Fig. 6.3
can be calculated as:

106 6 Software Scalability

Table 6.3. Universal scalability parameters corresponding to the regression coeffi-
cients in Table 6.2

Parameter Value

α 0.0170
β 0.0001

N∗ 110

Xsw(110) =
110 × 64.90

1 + (0.0170 × 109) + (0.0001 × 110 × 109)
= 1761.85 .

This difference is accounted for by keeping mind that the actual benchmark is
aimed at finding the peak throughput, whereas the application of regression
analysis using the universal scalability model tries to smooth out such peaks
in favor of predicting a more average profile.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 50 100 150 200

Concurrent Users

S
c
ri
p
ts

 p
e
r

H
o
u
r

Modeled

Measured

Fig. 6.3. Universal scalability model (dashed line) of SPEC SDET data in Table 6.1

If we ignore the relatively small value of β, the dominance of the contention
parameter α can be understood from the standpoint of Amdahl’s law. The
Amdahl bound represents a worst-case scenario where all the users issue their
requests simultaneously (see Appendix A). Consequently, all N requests get
piled up at the CPU. Moreover, all the users have to wait until all the requests
have been serviced and returned to their respective owners before any further

6.6 Windows-Based Applications 107

“thinking” can be done. This is an all-or-nothing situation; all users who have
requests are either waiting in the run-queue or thinking. Both these phases
represent relatively low throughput. The proportion of time spent all thinking
to all waiting during some measurement period is what determines the actual
value of σ.

Remark 6.4. As I suggest to students in my classes (www.perfdynamics.com/
Classes/schedule.html), if the SPEC SDM multiuser benchmark looks rel-
evant for your capacity planning needs, you might consider purchasing a copy
of the benchmark code from SPEC www.spec.org/cgi-bin/osgorder but
use it merely as a harness for your own workload scripts. This Guerrilla-style
approach could be a lot more cost-effective than purchasing more expensive
commercial load-testing tools.

6.6 Windows-Based Applications

In this section we apply the our universal scalability law (6.7) to a Microsoft
Windows application—the SQL Server relational database management sys-
tem. The regression analysis, used to determine the α, β parameters, is iden-
tical to that presented in Chap. 5.

The reader should keep in mind that our purpose here is to understand
how to apply the universal scalability law to software applications, and not
to determine which platform or application combination has the best perfor-
mance. To demonstrate the point, we have deliberately chosen to analyze older
versions of both Microsoft Windows and the Microsoft SQL Server relational
database management system. Those data and a comparative analysis with
Windows 2000 and later versions of SQL Server are discussed by Bass (2000).

Although SQL Server 6.5 provides an excellent departmental database,
many users are aware that the software is not scalable to the enterprise level.
SQL Server 7.0 dramatically changes that situation. Microsoft has refreshed
the product from the ground up. Numerous architectural enhancements have
boosted the scalability of SQL Server 7.0 into the enterprise arena. As a
result, Enterprise Resource Planning (ERP) vendors have readily adopted
SQL Server 7.0.

6.6.1 The Workload

To stress the server configurations adequately, a CPU-intensive benchmark
based on the Benchmark Factory for Databases from Quest Software (www.
quest.com/benchmark factory) was used. Benchmark Factory simulates real
database application workloads by generating loads using industry standard
benchmarks, e.g., TPC-B, TPC-C, TPC-D. It enables users to evaluate scal-
ability of databases, test hardware, and configurations. Standard benchmarks
provide a more valid comparison between different environments, database
platforms, and hardware.

108 6 Software Scalability

6.6.2 The Platform

The platform was a Dell PowerEdge 8450 with the Profusion architecture
chipset based on 400 MHz Pentium Xeon processors1. Baseline measurements
were taken on both the Windows NT 4.0 Enterprise Edition with Service
Pack 6 and Windows 2000 Advanced Server operating systems. The SPEC
CINT2000 benchmark CPU ratings are available at www.spec.org/cpu2000/
results/res2001q2/cpu2000-20010424-00592.pdf.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

VUsers

T
P

S

4-way

6-way

8-way

Fig. 6.4. Throughput measurements of SQLServer transactions per second (TPS)
as a function of 1 to 30 VUsers on a Windows NT platform with p = 4, 6, 8-way
hardware configurations

The throughput measurements are shown in Fig. 6.4. Prima facie, we can
see a distinct drop in throughput beyond N = 25 virtual users (VUsers) for
both the 4-way and the 6-way processor configurations. This is similar to the
retrograde throughput analyzed in the SPEC SDM benchmark in Sect. 6.5.
Even the 8-way throughput appears to have saturated at the same VUser
load. As we shall see in the next section, appearances can be deceiving.
1 The reader is reminded that most scalability data is kept confidential, especially

when it comes to the lastest system performance. Our analysis methods, however,
are valid for any system speeds.

6.6 Windows-Based Applications 109

6.6.3 Regression Analysis

These data can be inserted into the same spreadsheet layout as shown in
Fig. 5.3. The coefficients that result from performing regression on the appro-
priately transformed data are summarized in Table 6.4. Notice also that each
of the R2 values is better than 95%.

0.00

0.50

1.00

1.50

2.00

2.50

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

VUsers

T
P

S

4-way

6-way

8-way

4-wayM

6-wayM

8-wayM

Fig. 6.5. Universal scalability models (dashed lines) for the data in Fig. 6.4

Table 6.4. Regression coefficients for the data in Fig. 6.4

Coefficient 4-Way 6-Way 8-Way

a 2.3 × 10−3 2 × 10−4 2 × 10−5

b 0.0813 0.0804 0.0566
c 0.0000 0.0000 0.0000

R2 0.9948 0.9628 0.9853

Applying the relations (6.9)–(6.11) we determine the universal scaling pa-
rameters as summarized in Table 6.5. Now, we can perceive a deeper ex-
planation of the throughput measurements. The degree of contention (rep-
resented by the α parameter) is almost the same for both 4-way and the

110 6 Software Scalability

6-way platforms. The coherency delay (represented by the β parameter), how-
ever, is larger in the 4-way system by an order of magnitude. This explains
why its throughput becomes severely retrograde in the 4-way above N∗ = 20
VUsers. On the other hand, the 6-way throughput would reach its maximum
at N∗ = 67 VUsers—beyond the current set of measurements.

Table 6.5. Universal scalability parameters corresponding to the regression coeffi-
cients in Table 6.4

Parameter 4-Way 6-Way 8-Way

α 0.0790 0.0802 0.0566
β 0.0023 0.0002 0.0000

N∗ 20 67 217

Contrary to initial impressions, the 8-way platform has the least contention
and coherency delay of the three platforms, and therefore does not reach its
theoretical maximum throughput until N∗ = 217 VUsers. In other words, the
saturation effect seen in the data beyond 25 VUsers is really a false alarm.

Without the perspective offered by the universal scalability model, the
question of possibly extending the load beyond 30 VUsers, simply would not
arise. Alternatively, one can take the view that these data are sufficient and the
projections obtained from the universal scalability model are to be accepted
as part of the virtual load-testing methodology.

6.7 Multitier Architectures

Many of today’s production applications, such as e-commerce or other Web-
based services, run on multitier architectures like that shown in Fig. 6.6.
Application scalability is a perennial issue (Williams and Smith 2004), and the
usual tool for assessing it is a load-test environment that spans a distributed
platform involving:

1. PC front-end drivers.
2. multiple Web servers.
3. application servers or clusters.
4. back-end database server with attached storage.

Each tier is connected via a network, such as 1000Base-T switched Ethernet.
Testing up through thousands of potential users is expensive both in terms
of licensing fees and the amount of hardware needed to support such intense
workloads, and very time consuming. The question naturally arises, Can the
universal scaling model be applied in the sense of providing the virtual load-
test environment described in Chap. 1 to reduce the number of physical test
configurations?

6.7 Multitier Architectures 111

Fig. 6.6. Multitier performance testing environment showing the front-end drivers
(typically PCs) that run the load-test scripts, multiple Web servers running HTTP
daemons, application servers (e.g., WebLogic or WebSphere) and the database back
end

In this section we draw on scalability data reported in Buch and Pentkovski
(2001) for a 3-tier e-business application tested using Microsoft’s Web Applica-
tion Stress (WAS) tool, which can be downloaded from www.microsoft.com/
technet/ at URL archive/itsolutions/intranet/ downloads/webstres.
mspx. These results demonstrate clearly how the universal scaling model can
be applied to more complex multitier systems and applications.

6.7.1 The Workload

The flow of an application transaction can be understood with reference to
Fig. 6.6. The load-driver client sends an Web request (e.g., an HTTPGet) to
the Web server tier. A script (e.g. ASP or JSP) or Java servlet runs on the
Web server and communicates with a business object (e.g., using COM, EJB)
on the application server tier (e.g., WebLogic or WebSphere). The business
object uses a database connection (e.g., ODBC or JDBC) to send a query
to the database server. The database server responds with the result of the
query. The business object processes the result and sends the response back
to the Web server tier. The Web server formats this response and sends it
back to the client—in the case of the performance-testing environment—the
load drivers. The overall response time of the transaction is also measured.

6.7.2 The Platform

The measurement platform employed middleware at the application layer.
Middleware technologies, e.g., WebLogic, are commonly used to separate busi-

112 6 Software Scalability

ness process logic from the front-end presentation layer and enterprise data
access at the back end (See Gunther 2005a, Chap. 9).

Table 6.6. Combined measurement and modeling results for the three-tier platform
depicted in Fig. 6.6. Both throughput and response time data are shown

Concurrent Measured Modeled Measured Modeled
WAS threads HTTPGets/s throughput delay (s) delay

1 24 24.00 0.039 0.042
2 48 44.32 0.039 0.045
4 85 74.19 0.044 0.054
7 100 97.50 0.067 0.072
10 99 104.94 0.099 0.095
20 94 93.35 0.210 0.214

The load-test results for throughput (i.e., HTTPGets per second) and re-
sponse times (i.e., time to receipt of last byte) are summarized in Table 6.6.
The Intel-based hardware configuration remains fixed throughout, with one
each of a web server, an application server running the middleware, and a sin-
gle database server, while the number of concurrent Web Application Stress
tool threads executing on the load drivers acts as the independent variable in
the range from N = 1 to N = 20. Unfortunately, these authors have only mea-
sured the minimal number of data points needed for statistically meaningful
regression analysis, but it is sufficient.

Table 6.7. Excel regression coefficients corresponding to the data in Table 6.6

Coefficient Value

a 7.5 × 10−3

b 0.0755
c 0.0000

R2 0.9956

6.7.3 Regression Analysis

Performing the by now familiar regression analysis described in Chap. 5, we
determine the parameters for the deviation from linearity shown in Table 6.7.
Coincidentally, we note that a and b happen to be numerically equal.
We note from Table 6.8 that the coherency delay parameter β = 0.1103 is
almost twice as large as the contention parameter α = 0.0680, so we expect
to see some retrograde behavior in the throughput data, and indeed Fig. 6.7
confirms it.

6.7 Multitier Architectures 113

Table 6.8. Universal scalability parameters corresponding to the regression coeffi-
cients in Table 6.7

Parameter Value

α 0.0680
β 0.1103

N∗ 10

0

25

50

75

100

125

0 5 10 15 20

Concurrent WAS threads (N)

G
E

T
S

 p
e
r

S
e
c
.
(G

P
S

)

Modeled

Measured

Fig. 6.7. Comparison of the multitier load-test throughput measurements and the
universal scaling model (dashed line) using the parameter values in Table 6.8

Since the measurements were taken in steady-state (see Gunther 2005a,
Chap. 8), and there are a finite number of e-business transactions executing
during steady state, we can apply the so-called interactive response time law :

R(N) =
N

X(N)
− Z , (6.12)

for a closed queueing system. See (A.2) and the discussion in Appendix A.
The underlying queueing model (the so-called Repairman model) is discussed
in (Gunther 2005a, Chap. 2). Substituting the modeled values for the through-
put from Table 6.6 into X(N) in (6.12), we see from Fig. 6.8 that it provides
very good agreement with the response times measured by the WAS tool.
The interested reader can find an alternative queue-theoretic treatment of
this same example using a load-dependent PDQ queueing model in (Gunther
2005a, Chap. 10).

114 6 Software Scalability

0.000

0.050

0.100

0.150

0.200

0.250

0 5 10 15 20

Concurrent WAS threads (N)

S
e
c
o
n
d
s

Modelled

Measured

Fig. 6.8. Comparison of the multitier load-test response time measurements and
the universal scaling model (dashed line)

6.7.4 Why It Works

So, why does the universal scalability model work for multitier architectures?
First, performance metrics like the throughput and response time are mea-
sured at the system level. The aggregate transactions are measured, not
the individual subtransactions. In addition, the test platform configuration
is treated like a black box and kept constant throughout the measurement
process. Second, as noted in Sect. 4.6, the universal scaling model (6.7) is
independent of any particular choice of interconnect topology.

The key assumption that facilitates the use of (6.7) for multitier architec-
tures is homogeneity. Homogeneity means we assume that the test platform:

1. executes a homogeneous workload, rather than multiple classes of work or
subtransactions

2. maintains a homogeneous configuration of fixed hardware components as
the user-load N is varied

Under these assumptions, the multitier architecture in Fig. 6.6 can be treated
purely as a set of subsystems operating on the same workload. This is the same
set of assumptions we used when analyzing more tightly-coupled platforms in
Chaps. 4 and 5. There also, we were not aware of the performance of individual
subsystems, e.g., processors, memory, disk, and networking. The system was
treated holistically.

6.8 Classification by Workload 115

The interested reader should compare this simpler holistic approach with
the more detailed measurements required to apply queueing models. For ex-
ample, the PDQ queueing model presented in (Gunther 2005a, Chap. 10)
demonstrates that the first-tier Web server is load-dependent and therefore
responsible for the retrograde behavior of the throughput characteristic. We
could have reached a similar conclusion using (6.7), by noting that the κ value
was larger than expected. However, because of the homogeneity assumption,
we would not be able to single out the first-tier Web server as the cause,
without deeper investigation.

6.8 Classification by Workload

It might help software engineers and application developers to relate more
easily to the universal scaling law (6.7) if they can approach it from the
standpoint of the software applications they develop (S. Jenkin, private com-
munication, 2005). To this end, I have collected a set of typical applications
in Table 6.9 and arranged them according to their expected α and β values.

Table 6.9. Classification of software applications and systems according to their
predominant values of the universal scaling parameters, N (concurrency), α (con-
tention), and β (coherency)

Class A Class B
Ideal concurrency (α, β = 0) Contention-only (α > 0, β = 0)

Shared-nothing platform Message-based queueing (e.g., MQSeries)
Google text search Message Passing Interface (MPI) applications
Lexus–Nexus search Transaction monitors (e.g., Tuxedo)
Read-only queries Polling service (e.g., VMWare) See Chap. 7

Peer-to-peer (e.g., Skype) See Chap. 9

Class C Class D
Incoherent-only (α = 0, β > 0) Worst case (α, β > 0)

Scientific HPC computations Anything with shared writes
Online analytic processing (OLAP) Hotel reservation system
Data mining Banking online transaction processing (OLTP)
Decision support software (DSS), Java database connectivity (JDBC)
etc., (See Gunther 2000, Chap. 6)

Example 6.1 (Google). Depending on who you talk to, Google.com is consid-
ered to operate the world’s largest commercial Linux cluster comprising with
anywhere between 10,000 and 80,000 blades. (see, e.g., www.computerworld.
com.au/index.php/id;1306281842;fp;16;fpid;0). It also depends on how
you count. There are at least two mirrors on opposite coasts of the USA for
disaster recovery. More important, from a scalability point of view, the un-
derlying reason why Google can scale to anything like these proportions is

116 6 Software Scalability

because their workload is of the Class A type in Table 6.9. This kind of scal-
ability is eminently achievable with indexed text processing. ��
Example 6.2 (OLTP Workloads). When a user process in a database system
needs to write into a table, it must first be granted the lock by the database
manager. Since there are likely other database processes also wanting to access
tables, the database manager will only grant permission to certain processes
while all the others must wait for the lock. This is the contention or serial-
ization phase quantified by σ. Eventually, the user process is granted the DB
lock, but it cannot always execute because there is a considerable likelihood
that another process already updated the same table entry while executing
on another processor. The user process must continue to wait until its local
cache is made consistent with the cache that has the most recent entry. This
is the coherency phase associated with the value of κ. Since σ and κ are both
nonzero, this is a Class-D workload in Table 6.9. ��

6.9 Summary

In this chapter we have demonstrated that the universal scalability law, orig-
inally developed in the context of hardware capacity planning in Chaps. 4
and 5, is also applicable to software capacity planning. This is by no means
obvious and a more formal queue-theoretic argument is presented in Ap-
pendix A. We applied the software version of the universal scalability law
(6.7) to measurements based on the SPEC SDM benchmark on a UNIX plat-
form, a database benchmark measured on a Windows NT platform, and the
analysis of a multitier application.

For many readers, this version of the universal scalability law will most
likely be the typical application. We termed this a virtual load-testing environ-
ment. In particular, some user loads of interest will lie beyond those achievable
on the real test platform, either because the hardware configurations cannot
be confiigured or the number of generators is limited by licensing costs.

We have examined the connection between concurrent programming, con-
tention α and coherency delays β. Sect. 6.4 considered the thesis that the
advent of multicore processors has brought concurrent programming back
into the foreground for application development on multicores. We empha-
sized that this view can be made more quantitative in terms of (6.7) for
concurrent-programming scalability.

7

Fundamentals of Virtualization

Reality is merely an illusion, albeit a very persistent one.

—Albert Einstein

7.1 Introduction

This chapter is about illusions, the illusion of the virtual. In particular, mod-
ern computer systems are now sufficiently powerful to present users with the
illusion that one physical machine is really multiple virtual machines, each one
running a separate instances of a different operating system (OS). This is one
reason for the resurgence of interest in virtualization technologies. The idea
of creating virtual resources, like software emulators and virtual memory, is
not new (See www.kernelthread.com/publications/virtualization/ and
references therein). Virtualization is a hot topic from a capacity planning
standpoint because of the opacity of modern virtual implementations to con-
ventional performance measurement tools.

This chapter attempts to provide a more unified picture of modern virtual-
ization by recognizing that many of the apparently disparate forms of virtual
machines (VMs) can be considered to lie on a discrete spectrum—the virtual
machine spectrum or VM-spectrum—comprised of three principal regions:

Microlevel VMs: Represented by the hyperthreaded processors.
Mesolevel VMs: Represented by hypervisors and virtual machine monitors.
Macrolevel VMs: Represented by the GRID services and peer-to-peer (P2P)

architectures.

The inclusion of GRIDs and P2P under the umbrella of virtualization is an
unconventional step, but the idea is to use the VM-spectrum both as a clas-
sification scheme, and as a quantitative framework for explaining some well-
known performance anomalies in a variety of VM systems. Macrolevel VMs
are discussed in more detail in Chap. 9.

The tendency has been to organize VM capacity planning issues according
to whether they are implemented in hardware or software (See e.g., Johnson
2003; Ding et al. 2003; Brady 2005; Fernando 2005). Macrolevel VMs have not
featured in such discussions, as far as I am aware. Consequently, anomalous
capacity planning with hyperthreaded hardware and software hypervisors,

118 7 Fundamentals of Virtualization

have been presented as distinct effects. The VM-spectrum paradigm, however,
views these effects as arising from a single architectural feature that is common
to both hardware and software implementations; a form of scheduling which
we define in Sect. 7.2.2 as proportional polling. In particular, proportional
polling provides a simple explanation for the observed Missing MIPS problem
reported by those using hyperthreaded processors (see Sect. 7.3.3). The VM-
spectrum also leads to the notion that performance management of modern
VMs is a function of the time and distance scales on which their respective
polling mechanisms operate.

7.2 The Spectrum of Virtual Machines

In this section, we consider the notion of a VM spectrum in more detail.
Throughout this chapter, VM means virtual machine, while VMM stands for
virtual machine monitor.

VisibleX-rays Microwaves

Hyperthreading Hypernets

Mesolevel MacrolevelMicrolevel

Ultraviolet Infrared

Hypervisors

Fig. 7.1. Finite virtual machine spectrum constructed by analogy with the contin-
uous electromagentic spectrum. Hypervisors are arguably more “visible” from the
capacity planning viewpoint than either hyperthreads or hypernets

7.2.1 VM Spectroscopy

Just as the electromagnetic spectrum or EM-spectrum can be grouped into
the ultra-violet (UV), visible and infra-red (IR) regions, the VM-spectrum can
be similarly grouped into the micro-VM, meso-VM, and macro-VM spectral
regions depicted in Fig. 7.1. The EM-spectrum is, of course, a continuous
function of the frequency (or wavelength) of the electromagnetic radiation.
The VM-spectrum is a discontinuous or discrete function of the respective VM
polling rate or VM frequency shown in Table 7.1. It is this polling frequency
that determines the relative position of each VM in the spectrum.

The so-called visible region on the EM-spectrum is an anthropocentric
term. Certain snakes, for example, can see IR radiation (detect heat) and

7.3 Microlevel Virtual Machines: Hyperthreading 119

bees can see UV light. In a similar way, only meso-VMs are “visible” to the
capacity planner via conventional performance tools, in the sense of providing
an immediate view of performance and thereby some level of potential control.
Conversely, micro-VMs and macro-VMs tend to be invisible to those same
tools, so they remain largely beyond our capacity management control.

Table 7.1. VM-spectrum length and time scales associated with Fig. 7.1

Spectral Size Polling
region scale (m) Period Frequency

Macro 102 to 106 min to day mHz to µHz
Meso 100 to 102 ms to min kHz to mHz
Micro 10−6 to 10−3 ns to µs GHz to MHz

From this standpoint, the distinction between VMs according to whether
they are implemented in hardware or software, seems artificial—as artificial
as the distinction between heat and light. Recognizing each as different man-
ifestations of the same spectrum can lead to important insights. As we reveal
in the remainder of this chapter, the VM-spectrum classification is more than
mere whimsy.

7.2.2 Polling Rates and Frequency Scales

A key observation of this chapter is that relative position of each VM sub-type
on the VM-spectrum (Fig. 7.1) is determined by the rate at which polling is
carried out by the underlying scheduling subsystem. To make this statement
more quantitative, we refer to a case where the polling periods are well docu-
mented: meso-VM scheduling (see Sect. 7.4.2). The polling period Tp, for the
scheduler to associate physical resource consumption with a each active OS
instance (software VM), is once every 4000 ms or Tp = 4 s. The frequency is
therefore f = 1/Tp = 0.25 cycles per second or 250 mHz.

We assume (because it is not documented) that the micro-VM polling pe-
riod lies in the range of ns (the processor GHz clock frequency) to µs (MHz
frequency). Macro-VMs can take minutes or days to detect active peer hori-
zons. These frequencies are key VM performance determinants. For those who
prefer to think in terms of size, a distance scale d (in meters) can be loosely
related to the period Tp by d = vTp where v is the phase velocity of the com-
munication signal. Typically, v = c, where c is the speed of light. All these
scales are summarized in Table 7.1.

7.3 Microlevel Virtual Machines: Hyperthreading

We begin a detailed analysis of VMs starting with the highest frequency
(smallest size) scale on the bottom of the VM-spectrum in Fig. 7.1; virtu-

120 7 Fundamentals of Virtualization

alization of physical processing resources. Intel, for example, refers to this
form of processor virtualization as hyper-threading technology (HTT)) or mul-
tithreading (MT) on its Xeon and Pentium 4 product lines. The rationale is to
maximize throughput performance by utilizing idle cycles. Part of the current
confusion over hyperthreading performance stems from two possible views of
what HTT offers.

Definition 7.1 (1 + ε Model). This is the hardware perspective where ε is
a small fractional quantity. Since there is a only one execution unit—which
is often under-utilized—by simply duplicating a small number of registers, it
becomes possible to have another thread ready to utilize any idle cycles. Intel
quotes typical performance gains ranging from ε = 0.1 to 0.3.

Definition 7.2 (2 − δ Model). This is the software perspective as seen by
the OS and thus, performance management tools. An HTT-enabled processor
presents itself to the OS as two logical or virtual processors (VPUs). The OS
literally detects the number of VPUs (amongst other things) by interrogating
Architecture State (AS) registers EAX and EBX on the chip (Fig. 7.2) using
the APIC (Advanced Programmable Interrupt Controller) and CPUID IA-32
instructions. Ideally, one might expect δ → 0, but in reality 0 � δ < 1 so
compute cycles appear to be lost viz., the “Missing MIPS” problem.

The relationship between these two views can be summarized simply as:
δ = 1 − ε. We take the (2 − δ) view because it best represents the source of
confusion for many performance analysts and capacity planners. As we shall
see, the starting point is closer to δ = ε = 0.5 for best case cpu-intensive
workloads in both controlled benchmarks and some production workloads.
More typically, since ε � 0.5 it follows that δ � 0.5 which results in a virtual
capacity of (2− δ) � 1.5 VPUs. This already tells us that part of the Missing
MIPS problem is an illusion.

Hyperthreading can also be combined with multicore technology (Kumar
et al. 2005), where multiple physical CPUs are interconnected (like an SMP)
on the same VLSI die. Sun Microsystems refers to this as a chip multiprocessor
(CMP) and offers it with the UltraSPARC T1 processor comprising 8 cores
with 4 threads per core for a total of 32-way VPUs. All the measurements
presented in this section, however, were made on Intel processors with HTT
capability.

To further disambiguate physical CPUs from virtual VPUs in the sub-
sequent discussion, we employ the simple mnemonic of a generic polling sys-
tem (Gunther 2005a) in which multiple queues or buffers are multiplexed onto
a common server or execution unit (Fig. 7.3). In the case of HTT processors
there are just two queues corresponding to single-entry thread buffers viz., the
AS state registers in Fig. 7.2. It is the state of these buffers that are monitored
by the OS scheduler. Threads are taken off the run-queue and placed in the
next empty AS buffer. On chip, each thread buffer is serviced by the single
execution unit in some order e.g., round-robin for “fairness” (cf. Sect. 7.4.1),

7.3 Microlevel Virtual Machines: Hyperthreading 121

Multiprocessor

Processor

Execution

Resources

Architectural State

Processor

Execution

Resources

Architectural StateArchitectural State

Processor

Execution

Resources

A SA S A SA S

Hyperthreading

Fig. 7.2. Simple block diagram comparing a 2-way SMP (left) with an HTT-capable
Intel processor (right). The two blocks labeled AS (Architectural State) are registers
which present themselves to the OS as two VPUs

although the exact protocol may be quite complex and undocumented as part
of micro-VM opacity. In this chapter, CPU shall refer to the execution unit or
core processor, while VPU shall refer to the two AS registers or thread buffers.
The polling model has not been widely recognized in this context and differs
from the tandem-queue model presented in (Ding et al. 2003). The reader
should note we are not suggesting that a constant polling delay (on the order
of nanoseconds in Table 7.1) is responsible for the measured variation in HTT
performance. That extension to the polling model is developed next.

Thread registers

Execution
Unit

OS
run-queue

Fig. 7.3. Simple polling model of a generic hyperthreaded processor with one exe-
cution unit servicing four thread registers or single-entry buffers (e.g. UltraSPARC
T1). The AS registers in Fig. 7.2 correspond to two thread buffers (e.g. Intel Xeon)

122 7 Fundamentals of Virtualization

7.3.1 Micro-VM Polling

Polling systems are not new e.g., token-ring networks use this principle, and
are in common use for high-speed data network switches and routers. The
performance characteristics of network polling systems are notoriously difficult
to solve analytically (Gunther et al. 2003).

Careful measurements of hyperthreaded processors indicate that exe-
cution times can depend significantly on the type of applications being
run (Sect. 7.3.2). Tools like Intel’s VTune (www.intel.com/cd/software/
products/asmo-na/eng/vtune/vpa/219898.htm) and thread analysis tools
(www.intel.com/.../eng/threading/index.htm) can be helpful here. While
hyperthreading improves performance in many instances, some tests suggest
that thread processing times are dependent on the load being borne by the
thread-scheduler. Moreover, there are internal complexities such as how con-
text switching is handled, whether L1 caches are shared as in Intel processors
or independent L1 caches per core as in Sun’s T1, so on. These invisible con-
tributions to variability in processing times can lead to erroneous capacity
forecasting without an appropriate performance model (See e.g., Fernando
2005; Brady 2005; Ding et al. 2003; Johnson 2003).

Internet
clients

Application server

Multi-threaded Server

Blocked

CPUs

Runnable Running

Threads

Fig. 7.4. Extended PDQ model of a threaded web-application showing the load-
dependent thread server

An M/G/1 queue can be used to represent the performance of polling
systems, but that requires rarely measured first and second moments of the

7.3 Microlevel Virtual Machines: Hyperthreading 123

service time (Gunther et al. 2003; Gunther 2005a). Instead, we accommodate
thread-state variability in Fig. 7.4 by aggregating the thread-buffers with the
execution unit into separate load-dependent servers. Taken together with the
OS run-queue this composite model more closely resembles an M/M/m queue
with a non-constant mean service time (M/M/2 for HTT).

7.3.2 Thread Execution Analysis

We apply the composite PDQ model of Sect. 7.3.1 to measurements of micro-
VMs. Sect. 7.3.2 compares a multithreaded test workload with HTT enabled
and disabled. Sect. 7.3.4 is based on measurements of a production application
with HTT enabled.

Johnson (2003) constructed a test program to consume all available CPU
cycles by configuring the number of executing threads. The test platform
comprised a dual-processor HP-Compaq ML530 equipped with 2.4GHz Intel
Xeon processors running Microsoft Windows 2000. A BIOS utility provided
the ability to enable and disable HTT. Elapsed time was measured at 1 s
resolution using the time function. System and user processing time were
measured using GetProcessTimes at 100 ns resolution which included the
activity of all process threads.

Table 7.2. Throughputs Calculated from (Johnson 2003)

m Xoff XPDQ
off Xon XPDQ

on

1 0.004739 0.0046989 0.004975 0.004698
2 0.009302 0.0093970 0.009434 0.009397
3 0.009288 0.0093970 0.012000 0.014096
4 0.009346 0.0093970 0.014493 0.018794
8 0.009346 0.0093970 0.014546 0.018794
16 0.009373 0.0093970 0.014599 0.018794

Throughputs in Table 7.2 were calculated from the data reported in (John-
son 2003) using the definition:

X = m/Tm , (7.1)

where m is the number of active threads and Tm the test program elapsed time.
Xon denotes HTT enabled and conversely for Xoff . Fig. 7.5 compares these
calculated throughputs with those predicted by a polling model in PDQ (Gun-
ther 2005a). With HTT disabled (lower curve), measurement and prediction
are almost identical and a knee occurs at m = 2 (or 2 CPUs). With HTT
enabled (4 VPUs), the knee occurs earlier than m = 4 and prevents predicted
throughput from being achieved. This is the “Missing MIPS” problem referred
to in Sect. 11.1. The explanation is provided by analyzing the runtimes.

124 7 Fundamentals of Virtualization

2.5 5 7.5 10 12.5 15
m

0.0025

0.005

0.0075

0.01

0.0125

0.015

0.0175

X HTPSL

Fig. 7.5. Predicted throughput (solid curves) and measurements for a test program
exercising m = 1, 2, . . . , 16 threads on a 2-way Intel platform with HTT disabled
(squares) and enabled (stars). The “Missing MIPS” are quite apparent in the latter
case

7.3.3 Missing MIPS Explained

Fig. 7.6 compares runtime data with polling model predictions. With HTT
disabled (2 CPUs), the data fall on the upper curve with the expected knee
occurring at m = 2. With HTT enabled (4 VPUs), the data points lie above
the predicted lower curve by about 30%. The predicted curves in Fig. 7.6
assume a constant mean service time per thread S0. For a processor-intensive
workload with a finite number of threads active during each measurement,
the predicted runtime curve should increase linearly above saturation (m = 2
or 4) because it is a closed queueing system (cf. Ding et al. 2003). But these
data are super-linear relative to the lower curve.

We can equate runtime measured by the OS to residence time R at the
VPU. In Fig. 7.6 the residence time:

R0(m ≤ 4) = S0 , (7.2)

is simply the constant service time S0 at the foot of the “hockey stick”, signi-
fying a processor is always available to service threads and no waiting time is
incurred. When m > 4, however, all processors become saturated and threads
begin to queue in the buffers of Fig. 7.3. For a saturated closed queueing
model, X(m) = 1/S0 and the residence time above m = 4 is:

R0(m > 4) = mS0 − Z , (7.3)

which is linear rising in m (cf. Fig. 7.7). For these data, the thinktime Z = 0
so that processors are 100% busy during the tests. Previous authors have
speculated that increased wait time (mS0) may be responsible for the observed

7.3 Microlevel Virtual Machines: Hyperthreading 125

2.5 5 7.5 10 12.5 15
m

250

500

750

1000

1250

1500

R HsL

Fig. 7.6. Predicted elapsed times and measurements for Fig. 7.5. Without HTT
the data (squares) match PDQ predictions (upper curve) very closely with the knee
occurring at m = 2 (i.e., 2 CPUs), but the expected improvement with HTT enabled
(lower curve) is not fully realized for m ≥ 4 (stars)

2.5 5 7.5 10 12.5 15
m

250

500

750

1000

1250

1500

R HsL

Fig. 7.7. The longer elapsed times under HTT can be accounted for by increasing
the service time in the PDQ model by 20% (dashed line). The service times are
constant but a transition to a longer service time begins at m = 3

increase in R (See e.g., Johnson 2003; Ding et al. 2003; Fernando 2005), but
with a fixed number of threads, how can the thread-wait time increase super-
linearly? The answer is, S0 has increased to a new value Sb > S0. In other
words, (7.3) has now become:

Rb(m > 4) = mSb , (7.4)

such that Rb is still linear rising (dashed curve in Fig. 7.7), but at a increased
angle relative to R0. Of the 30% increase in Rb, PDQ reveals that 20% is
due to a sudden increase in the thread-service time. It seems reasonable to

126 7 Fundamentals of Virtualization

conclude that this increase (Sb −S0) is associated with the extra time needed
for internal state management, as described in Sect. 7.3.1, when the number
of thread requests exceeds the number of VPUs (empty buffers in Fig. 7.3).

Using the terminology of Fig. 7.2, the dual-core HP-Compaq ML530 has
two independent sets of AS buffers denoted 1a0, 1a1 belonging to core 1, and
2a0, 2a1 on core 2. In Fig. 7.7, the elapsed times start out on the lower hockey
stick because threads are likely being assigned to available VPUs (empty
thread buffers) in the order 1a0, 2a0 i.e., one thread per core. The third
thread has to be assigned to a core that is already busy (probably 1a1). No-
tice that the elapsed time for m = 3 in Fig. 7.7 appears to “lift off” the lower
hockey stick, reflecting the extra time needed for internal management of the
micro-VM registers and caches. The fourth thread is then assigned to buffer
2a1 on already busy core 2, whereupon the transition to the upper hockey
stick (dashed curve) in complete. The increase in service times is reflected in
OS measurements as prolonged execution times.

The foregoing analysis was based on the controlled cpu-intensive work-
load in (Johnson 2003). IO-intensive workloads would likely show a different
elapsed time profile but our expectation is that that they too can be analyzed
using the same or a similar PDQ model (See e.g., Sect. 7.4.4).

7.3.4 Windows 2000 Production Server

Missing MIPS are also seen in production workloads. (Fernando 2005) dis-
cusses performance measurements analyzed with BMC Perform/Predict. The
production system is a dual-core Dell 2650 platform with HTT enabled and
running Microsoft Windows 2000. The puzzle is to account for web appli-
cation “CPU-wait” in spite of available processor capacity (cf. Brady 2005).
Specifically, high-priority CPU busy never exceeds 85% during peak demand,
and Perform/Predict also indicates that CPU time is the major component
of response time, rather then disk IO or memory accesses.

Drill-down analysis shows that the system was configured with 4 VPUs,
since HTT was enabled, and the available processing capacity was therefore
reported by Perform/Predict as 400%. Of this, 323.26±5% was being utilized
by the web application, with an average of 80.82% per VPU. From Sect. 7.3,
we can write (2 − δ) = 1.62 VPUs per core or ε = 0.62. Even allowing for 5%
measurement error, this corresponds to excellent HTT efficiency so, we can
assume that each physical execution unit is actually running at 100% busy
with no idle cycles remaining. In other words, there are no more processor
cycles available to do real work.

The paradox is resolved by noting that each processor is being reported as
81% busy (up to 85% at peak) by the performance management software, but
that utilization is calculated incorrectly on the basis of VPUs. From Sect. 7.3
we know that the implied under-utilization is a misdirection. On the other
hand, because of the aforementioned micro-VM opacity, performance man-
agement tools have nothing else to go on.

7.4 Mesolevel Virtual Machines: Hypervisors 127

7.3.5 Guerrilla Capacity Planning

Micro-VMs, in the form of VPUs, should not be regarded on the same footing
as physical CPUs. They are more properly regarded as sophisticated polling
systems, polled at rates in the GHz to kHz range, with the number of VPUs
corresponding to the number of single-entry thread buffers. Internal state
management in these micro-VMs introduces an intrinsic and often variable
overhead.

The preceding performance analysis shows that the perceived (2−δ) miss-
ing MIPS problem is really an illusion due to not recognizing that the number
of VPUs is actually 1+ε where ε = 1 − δ. The sudden prolongation of elapsed
times can be explained by the prompt increase in service time required for in-
ternal micro-VM management when the VPU buffers are fully occupied. This
overhead is invisible to the OS and cannot be tuned; only disabled on Intel
CMPs.

The value of ε is also likely to vary between CMP releases from the same
vendor, as well as across CMPs from different vendors. Because of the afore-
mentioned lack of visibility on the VM-spectrum, qualifying micro-VMs, pos-
sibly using some of the methods in Sects. 7.3.2 and 7.3.4, should become a part
of your GCaP practice during hardware procurement and software acceptance
testing.

7.4 Mesolevel Virtual Machines: Hypervisors

VMWare (www.vmware.com) and Xen (www.xensource.com) are two examples
of software-based VMs which offer a useful of array of new capabilities such
as server consolidation, co-located hosting, distributed web services, isolation,
secure computing platforms and application mobility. If the VMs are likened
to musicians in an orchestra, the conductor is called the hypervisor or virtual
machine monitor (VMM).

The partitioning resources in a physical machine to support the concurrent
execution of multiple VMs poses several challenges (Fig. 7.8). First, the VMs
must be truly isolated from one another. It is unacceptable for the execution
of one VM to adversely affect the performance of another. This is particularly
true when virtual machines are owned by mutually untrusting users. Second,
it is necessary to support a variety of different OS instances to accommodate
the heterogeneity of popular applications. Third, and most importantly from a
capacity planning standpoint, the performance overhead introduced by VMMs
should be small.

Most VMM implementations rely on something called a fair-share sched-
uler, as opposed to the more common time-share scheduler.

Definition 7.3 (Time-share Scheduling). Time-share (TS) scheduling gives
every user the illusion that they are the only active user on the system. All the

128 7 Fundamentals of Virtualization

Fig. 7.8. Xen 3.0 hypervisor is aimed at supporting Linux, Linux SMP, and Win-
dows XP meso-VMs

thousands of lines of code in the operating system, which support time-slicing,
priority queues, etc., are there merely to provide that illusion.

Definition 7.4 (Fair-share Scheduling). Fair-share (FS) scheduling gives
every user the illusion that each of them or each user group has their own
private CPU whose service time is reduced in proportion to their share enti-
tlement.

Whereas TS scheduling provides each user with the illusion that she is the
only user of the physical processor, FS scheduling provides each user (or group
of users) with the illusion that she possesses an entire platform—a virtual
machine—whose performance is scaled according to her resource entitlement.
Entitlement (E in Table 7.4) is awarded by the system administrator through
the allocation of shares (like owning shares in a corporation).

The Xen hypervisor uses a form of FSS called borrowed virtual time
(BVT) as the default scheduler (Fig. 7.8). Other OS options include real-time
scheduling (Barham et al. 2003). BVT provides proportional FSS for proces-
sor scheduling based on weights. Each runnable domain receives a share of the
processor in proportion to its weight. A single processor VMWare guest OS
gets 1000 shares by default (VMware 2005). The impact of share allocation
on performance is discussed in Sect. 7.4.3.

7.4 Mesolevel Virtual Machines: Hypervisors 129

7.4.1 Fair-Share Scheduling

Enterprise UNIX platforms have taken leaf out of the mainframe manage-
ment book by providing for more automated control over the consumption
of server capacity. Some of the latest implementations of commercial UNIX
to offer this level of capacity management on enterprise servers include AIX
Workload Manager (WLM), HP-UX Process Resource Manager (PRM), and
Solaris Resource Manager (SRM).

The ability to manage server capacity is achieved by making significant
modifications to the standard operating system so that processes are inher-
ently tied to specific users. Those users, in turn, are granted only a certain
entitlement to system resources. Resource usage is automatically monitored
by the system and compared with each users entitlement to gauge how the
assigned consumption constraints are being met. This mechanism is called a
fair-share (FS) scheduler (Kay and Lauder 1988).

Shared system resources that can be managed in this way include pro-
cessors, memory, and mass storage. Prima facie, this appears to be exactly
what is needed for the system administrator to do rational capacity plan-
ning. State-of-the-art resource management, however, is only equivalent to
that which has been provided on mainframes more than a decade ago, but
UNIX resource management had to start somewhere.

In the context of computer resources, the word fair is meant to imply
equity, not equality in resource consumption. In other words, the FS scheduler
is equitable but not egalitarian. This distinction becomes clearer if we consider
shares in a publicly owned corporation. Executives usually hold more equity
in a company than other employees. Accordingly, the executive shareholders
are entitled to a greater percentage of company profits. And so it is under the
FS scheduler. The more equity you hold in terms of the number of allocated
resource shares, the greater the percentage of server resources you are entitled
to at run time. The entitlement is the number of the shares belonging to a
particular user relative to the share pool.

Definition 7.5 (Entitlement). The entitlement of user i is defined as:

Ei =
Si∑
k Sk

, (7.5)

where Si is the number of shares granted to user i and
∑Sk is the total

number of shares in the pool.

The actual number of shares you own is statically allocated by the system
administrator. This share allocation scheme seems straightforward. However,
under the FS scheduler there are some significant differences from the way
corporate shares work. Although the shares allocated to you is a fixed number,
the proportion of resources you receive may vary dynamically because your
entitlement is calculated as a function of the total number of active shares,
not the total pool of shares.

130 7 Fundamentals of Virtualization

Definition 7.6 (Fair-Share Goal). For each pair of users with entitlements
Ei and Ej such that i
= j, the goal of the FS scheduler can be stated as:

lim
t→∞

ρi

ρj
=

Ei

Ej
, (7.6)

where ρi and ρj are the CPU utilizations due to each pair of users.

In other words, the FS goal is to try and match the sampled ratio of
utilizations to the ratio of their entitlements, in the long run.

Suppose you are entitled to receive 10% of processing resources by virtue
of being allocated 10 out of a possible 100 system wide processor shares. In
other words, your processing entitlement would be 10%.

Further suppose you are the only user on the system. Should you be enti-
tled to access 100% of the processing resources? Most system administrators
believe it makes sense (and is fair) to use all of the resources rather than have
a 90% idle server. But can you access 100% of the processing resources if you
only have 10 shares? You can if the FS scheduler only uses active shares to
calculate your entitlement. As the only user active on the system, owning 10
shares out of 10 active shares is tantamount to a 100% processing entitlement.

This natural inclination to make use of otherwise idle processing resources
really rests on two assumptions:

1. You are not being charged for the consumption of processing resources. If
your manager only has a budget to pay for a maximum of 10% processing
on a shared server, then it would be fiscally undesirable to exceed that
limit.

2. You are unconcerned about service targets. Its a law of nature that users
complain about perceived changes in response time. If there are opera-
tional periods where response time is significantly better than at other
times, those periods will define the future service target.

There can, however, be potential problems due to user-perceived changes in
performance. Consider the following example based on the analogy of capacity
planning for a wedding reception.

Example 7.1 (Reception Room). Suppose you decide to throw a big party or
reception in a hotel. You invite 200 guests and purchase 2 reception rooms
with catering from the hotel for $2000. Each reception room is designed to
hold 100 people comfortably.

Capping Enabled: It turns out that 220 guests actually show up, so things
are a little cramped in the 200 room occupancy (Fig. 7.9(a)), but you are
getting what you paid for. It would not have been wise to purchase an
extra room for such a small overflow. This situation is analogous to FS
scheduling with capping enabled.

7.4 Mesolevel Virtual Machines: Hypervisors 131

(a) 220 guests occupy the 2 purchased reception rooms intended to
hold 100 people each. Dashed line represents the least upper bound

(b) 220 guests temporarily occupy 3 rooms intended for 100 people
each until the other party arrives. The uncomfortable congestion
upon regrouping into 2 rooms will be noticed by the guests. Dashed
line represents the greatest upper bound

(c) Only 100 guests show up and although they occupy both pur-
chased rooms, they tend to congregate near the buffet table on the
left. The purchased room capacity is underutilized

Fig. 7.9. Reception room analog of fair-share capping

Capping Disabled: The hotel grants you permission to occupy the third
reception room (Fig. 7.9(b)) until the other party, who have purchased
that room, actually arrives. This eases your congestion temporarily until
other party does arrive. Then, your guests are going to feel uncomfort-
able dealing with the congestion of regrouping back into your two rooms.

132 7 Fundamentals of Virtualization

This situation is analogous to FS scheduling with capping disabled or not
implemented.

Capping Inactive: Another possibility is that only 100 guests show up to
your party (Fig. 7.9(c)). You have now purchased more capacity than you
actually needed but your guests are comfortable. This is analogous to TS
scheduling, since the capping boundary is not exercised.

The state of entitlement capping can have a critical impact on the observed
performance of applications running under FS control. ��

In Example 7.1, if capping depends on the number of active shares in the
total pool (as opposed to the total allocated pool), then Fig. 7.9(a) corre-
sponds to the least upper bound on capacity, while Fig. 7.9(b) corresponds
to the greatest upper bound. Such dynamically changing capacity can have
detrimental consequences for both performance perceived by the users, and
the overall capacity allocation strategy.

One logical consequence of such dynamic resource allocation is the in-
evitable loss of control over resource consumption altogether. If users perceive
that their performance could be better sometimes, they may ultimately try
to achieve that performance all the time. This could be accomplished by pur-
chasing more shares and having the corresponding capacity written into the
next cycle of service level agreement (SLA) discussions. In which case, the
system administrator may as well spare themselves the effort of migrating to
a FS scheduler in the first place.

If the enterprise is one where chargeback and service targets are impor-
tant, then your entitlement may need to be clamped at 10%. This is achieved
through an additional capping parameter. Not all FS implementations offer
this control parameter. The constraints of chargeback and service level ob-
jectives have not been a part of traditional system administration, but are
becoming more important with the advent of application consolidation, and
the administration of large-scale server configurations (e.g., major Web sites).
The capping option can be very important for enterprise capacity planning.

7.4.2 Meso-VM Polling

The most important attribute of FSS for this discussion is that it employs a
polling mechanism to govern resource sharing at runtime. Fig. 7.10 shows a
PDQ model of TSS with three different process classes (Nr, Ng, Nb) each of
which is in one of three possible states: runnable (waiting in the run-queue),
running (on a processor) or suspended (in the upper part of the diagram).
If a request has not completed execution when the time-quantum expires
(e.g., 10 ms or 50 ms in VMWare) it is returned to the tail of the run-queue.
Processes waiting for other resources (e.g., I/O requests) are suspended.

The PDQ model of FSS in Fig. 7.11 shows the (Nr, Ng, Nb) user-process
of the TSS model having been allocated their own VM whose service time is
scaled by their respective share entitlements Eg running under the supervision

7.4 Mesolevel Virtual Machines: Hypervisors 133

Users/groups

Run-queue

Physical CPU

Sr ,Sg,Sb{ }

N = Nr,Ng,Nb{ }

Fig. 7.10. Time-share scheduler model

of the VMM. Consequently, the actual service time Sg for guest instance g
becomes the virtual service time

SV M
g =

Sg

Eg
, (7.7)

as indicated by the runtimes in Table 7.4. Each guest virtual server (VM) is
polled by the VMM on behalf of the processors in the physical platform. The
polling rate operates at a frequency of around 250 mHz (Table 7.1). Note the
similarity with Fig. 7.3.

FSS introduces a scheduling superstructure above conventional TSS to
connect processes with users and their resource entitlements as represented in
the following, highly simplified, pseudocode (Gunther 1999):

VM Share Scheduling: Polls every 4000 ms (f = 250 mHz) to compare
physical processor usage per user entitlement (Fig. 7.11).

for(i = 0; i < USERS; i++) {

usage[i] *= decayUsage;

usage[i] += cost[i];

cost[i] = 0;

}

VM Priority Adjustment: Polls every 1000 ms (f = 1 Hz) and decays in-
ternal FSS process priority values (Fig. 7.11).

priDecay = Real number in the range [0..1];

for(k = 0; k < PROCS; k++) {

sharepri[k] *= priDecay;

}

priDecay = a * p_nice[k] + b;

Time Share Scheduling: Polls every physical processor tick (f = 100 MHz)
to adjust process priorities (Fig. 7.10).

134 7 Fundamentals of Virtualization

S
b
VM =

S
b
E
b

S
r
VM =

S
r
E
r

CPU

S
g
VM =

S
g
E
g

N
g
VM

N
b
VM

N
r
VM

Fig. 7.11. Fair-share scheduler polling model of a meso-VM like Fig. 7.8. The
hardware platform has the same logical association to the guest VMs as the physical
CPU does to the VPUs in Fig. 7.3

for(i=0; i<USERS; i++) {

sharepri[i] += usage[i] * p_active[i];

}

Process-level polling is essentially the same as standard TSS, while VM-share
polling controls process-level capacity consumption.

7.4.3 VMWare Share Allocation Analysis

In this section we analyze examples of meso-VM performance based on re-
ported benchmarks for the VMware ESX Server (VMware 2005), and a We-
bLogic production application.

VMware ESX Server 2.5.1 provides a middleware layer that enables users
to create multiple independent VMs on the same physical server. Benchmark
experiments employed processor-intensive workloads which consumed 100 per-
cent of available processing resources. A single application called 164.gzip
from the SPEC CPU2000 benchmark suite (www.spec.org), was used as
the workload. The SPEC version of the GZIP data compression code does
not perform any file I/O other than reading the input, and all compres-
sion/decompression is performed in memory. More importantly, the workload

7.4 Mesolevel Virtual Machines: Hypervisors 135

runs in user-space and therefore induces very little overhead between guest
OS kernel and the VMM. See Sect. 7.4.6 for more on these limitations.

With the in mind, this VMWare study is nonetheless useful from the stand-
point of quantifying the potential impact of different share allocation choices
on meso-VM performance. Such data are otherwise often difficult to come
by. The benchmark tests were conducted on an 4-way HP ProLiant DL580
server employing 2.2GHz Intel Xeon processors with HTT disabled. Although
the SPEC gzip benchmark does not represent a very realistic workload, we
note that (Brady 2005) has reported performance anomalies for a production
tar/gzip file-compression application running on a system with IBM z/VM as
the hypervisor.

Table 7.3. ESX 2 Benchmark Measurements (VMware 2005)

Active VMs Shares per VM Runtime (s)

VMhi VMlo $hi $lo Rhi Rlo

1 7 2000 1000 1296 2352
1 7 2333 1000 1157 2357
1 7 2000 857 1153 2350

2 6 2000 1000 1470 2363
2 6 3000 1000 1159 2359

3 5 5000 1000 1159 2360

Table 7.3 summarizes the benchmark results with different share alloca-
tions for the 8 VMs where between 1 and 3 VMS are executed at high priority
i.e., a larger proportion of the share pool. Table 7.4 summarizes the corre-
sponding performance prediction using a PDQ model based on Fig. 7.11. The
runtimes (Rhi) for the high-priority VMs are in very close agreement with the
measurements. The increasing divergence between the predicted and measured
values of Rlo is easily explained by noting that the tests allowed each instance
of the SPEC gzip code to run to completion, whereas PDQ assumes the tests
are run in steady state. In the tests, when a high-priority VM completed those
processor cycles became available to the high-priority VMs, allowing then to
complete in near constant time.

7.4.4 J2EE WebLogic Production Application

Missing MIPS are also observed in production meso-VM applications. Fig. 7.12
shows transaction per second (TPS) measurements for a J2EE/WebLogic ap-
plication accessing a Sybase database. Measurements were conducted on an
isolated Dell PowerEdge 1750 server with dual 3.06 GHz Xeon processors.
HTT was enabled under Windows Server 2003 Enterprise Edition. LoadRun-
ner generated a controlled workload with N = 1, 2, . . . , 30 virtual users and
the maximum achieved throughput was 100 TPS. JXInsight provided traces

136 7 Fundamentals of Virtualization

Table 7.4. PDQ Model Predictions for Table 7.3

Active VMs Entitlements Runtime (s)

VMhi VMlo Ehi Elo Rhi Rlo

1 7 0.2222 0.7778 1296.00 2592.00
1 7 0.2500 0.7500 1152.12 2687.90
1 7 0.2500 0.7500 1151.86 2688.11

2 6 0.4000 0.6000 1440.00 2880.00
2 6 0.5000 0.5000 1152.00 3456.00

3 5 0.7500 0.2500 1152.00 5760.00

from which PDQ service times were extracted as well as revealing that Sybase
was not the bottleneck.

5 10 15 20 25 30
N

20

40

60

80

100

120

140

X HTPSL

Fig. 7.12. Predicted throughput (solid curves) and measurements (dots) on a We-
bLogic J2EE production application. The PDQ model exposes the missing MIPS

Each WebLogic server (or VM) has a single execute queue supported by
25 threads. If all 25 WebLogic threads could do real work, PDQ predicts a
maximum application throughput of 415 TPS starting at N = 25 vusers. In
fact, Fig. 7.12 shows that we only observe 100 TPS or about one quarter of
the expected throughput. The explanation is as follows. With HTT enabled,
we have 2-way × 2 = 4 VPUs virtual capacity from Sect. 7.3. The WebLogic
architecture involves listen threads (not to be confused with the TCP/IP lis-
ten queue) that gate work onto the execute queue. WebLogic assigns 2 listen
threads per processor which, from the viewpoint of WebLogic/Windows OS
on this HTT-enabled platform, translates to initiating 4 VPUs × 2 = 8 lis-
ten threads. The knee in the throughput profile is therefore more properly
expected at N = 8 vusers, corresponding to a system throughput of 133
TPS (upper curve in Fig. 7.12). The observed throughput, however, exhibits

7.4 Mesolevel Virtual Machines: Hypervisors 137

a premature knee at N = 6 or about 75% of the assumed VPU capacity (cf.
Fig. 7.5). From Sect. 7.3, we recognize that there are only 2-way × 1.5 = 3
VPUs or 6 active WebLogic listen-threads running concurrently, hence the
knee at N = 6 and the observed maximum throughput of only 100 TPs. De-
spite having a pool of 25 threads available to service the WebLogic execute
queue, these six listen threads are the performance limiter. With HTT dis-
abled, the expected maximum throughput would be only 67 TPS at N = 4
vusers i.e., 2-way × 2 = 4 listen threads.

7.4.5 VMWare Scalability Analysis

In the preceding example, a meso-VM is running on a micro-VM such that
the results might be confounded by possible interactions between VM levels.
To separate these effects out, Fig. 7.13 shows measured VMWare throughput
as a function of active VMs together with with HTT separately enabled and
disabled.

2.5 5 7.5 10 12.5 15
VM

20

40

60

80

100
X HSPHL

Fig. 7.13. VMWare throughput measured in scripts/hr as function of active guests
with HTT disabled (squares) and enabled (stars)

With HTT disabled, the 4-way ProLiant DL580 exhibits no missing MIPS.
Besides a moderate decline of about 5 SPH (scripts per hour), possibly due to
increasing VMM overhead, the throughput ceiling of 66 SPH commences at
4 VMs or guests. With HTT enabled, the 4-way HP ProLiant DL580 server
presents 4-way × 2 = 8 VPUs to VMWare and should therefore exhibit a
knee at 8 VMs. Recalling Sect. 7.3 however, it is more realistic to expect the
actual virtual capacity to be closer to 4-way×1.5 = 6 VPUs. Fig. 7.13 reveals
that even this expectation is not met when the micro-VM and meso-VM levels
interacting. Presumably the loss in throughput is due to overheads in VMWare

138 7 Fundamentals of Virtualization

in this case. Without additional instrumentation, this level of detail remains
opaque.

7.4.6 Guerrilla Capacity Planning

Meso-VMs are also implemented as polling systems operating at rates in
the kHz to mHz range. Proportional shares are used to create software
VPUs in which the service rate is scaled by share-based entitlements accord-
ing eqn.(7.7). Proper share allocation can be critical for capacity manage-
ment Gunther (1999) and controlled measurements like those in Sect. 7.4.4
should be considered essential for proper capacity planning.

All meso-VM measurements should be made in steady state i.e., where the
difference between the average number of requests and the average number
of completions becomes vanishingly small (Gunther 2005a). This would ex-
clude potentially misleading side-effects, like early completions benefiting late
completions in Table 7.3.

In contrast to the limited perspective offered by the SPEC gzip work-
load in Sect. 7.4.3, the interested reader can find a more encompassing set of
benchmark data in (Barham et al. 2003). These data show that both Xen and
VMWare may exhibit significant performance degradation relative to CPU-
bound workloads due to VM overhead. For example, the SPEC WEB99 bench-
mark shows 70% degradation relative to SPEC CPU2000, while an OLTP
workload shows as much as 90% relative degradation. Unfortunately, these
results were not measured relative to share allocations, which was the pur-
pose in Sects. 7.4.3 and 7.4.5.

Moreover, exercising more realistic workloads in no way detracts from the
usefulness of our PDQ models because the service time Sg in (7.7) is the sum
of user-time and kernel-time, and both contributions are measured as part of
the system response to the workload. If this were not true, then the analysis
of the production system in Sect. 7.4.4, which involves network interactions
with the Sybase database, could not be validated.

7.5 Macrolevel Virtual Machines: Hypernets

In this section we consider virtualization associated with large-scale macro-
VMs such as GRIDs and peer-to-peer (P2P) hypernet networks. The latter
include Gnutella (Fig. 7.14), Napster, Freenet, Limewire, Kazaa, SETI@Home,
BitTorrent, Skype (see Chap. 9), instant messaging, WiFi, PDAs and even
cellphones. They have progressed from simple one-off file transfers to a scal-
able means for distribution of applications such as games, movies, and even
operating systems.

Although P2P networks and GRIDs share the common focus of harnessing
resources across multiple administrative domains, they can be distinguished
as follows. GRIDs support a variety of applications with a focus on providing

7.5 Macrolevel Virtual Machines: Hypernets 139

Fig. 7.14. Cayley trees with degree-4 vertices similar to those used in P2P networks
like Gnutella and Napster

infrastructure with quality-of-service to moderate-sized, homogeneous, and
partially trusted communities (Foster 2005). P2P supports intermittent par-
ticipation in vertically integrated applications for much larger communities of
untrusted, anonymous individuals. P2P systems provide protocols for sharing
and exchanging data among nodes. The network architecture tends to be more
decentralized, and dynamics requiring resource discovery.

GRID computing has focused on scientific and engineering applications
where it attempts to provide diverse resources that interoperate (Gilbert et al.
2005). The concept behind the GRID is analogous to the electrical power grid.
When you throw the switch, you expect the light to come on. GRID computing
is most often discussed within the context of scientific and engineering appli-
cations because they are generally very CPU-intensive. ASCI BlueMountain,
part of ASCI-Grid with 6144 processors, employs FSS job scheduling (Kleban
and Clearwater 2003). The interested reader should see (Strong 2005) for an
overview of the potential application of GRIDs in the commercial enterprise.

These technologies are not mutually exclusive. P2P technologies could be
used to implement GRID systems that avoid or alleviate performance bottle-
necks (Talia and Trunfio 2004). Although these technologies are still rapidly
evolving, applications are becoming more robust (it’s not just about music
files anymore), so capacity planners should prepare themselves for the occa-
sion when these macro-VMs connect into your data center.

7.5.1 Macro-VM Polling

Polling protocols are employed by macro-VMs in at least two ways: main-
taining connectivity between peers, and security on the network. Each type
of polling protocol has important ramifications for network performance and
capacity. Although generally more nebulous and system specific than micro-
VM or meso-VM polling mechanisms, the particular case of wireless networks
(see IEEE 802.11 standard) provides an illustrative example of their potential
performance impact.

When carrying both voice and data, VoIP packets require contentionless
periods in the transmission protocol, whereas data packets can tolerate con-
tention (simple retry). Wireless access points poll, regardless of whether data

140 7 Fundamentals of Virtualization

is available for transmission or not. When the number of stations in the ser-
vice set grows, the polling overhead is known to become large. Without some
kind of service differentiation, performance degrades. One enhancement that
has been considered to increase network capacity is a polling list where idle
nodes are dynamically deleted or active ones are added. This helps to increase
the number of contentionless periods thereby improving WLAN capacity by
about 20%.

Polling to maintain P2P network security is employed in the sense of col-
lecting opinions or votes. Providing security for distributed content sharing
in P2P networks is an important challenge due to vulnerabilities in many
protocols for sharing the “reputations” of peers. Certain polling protocols
are subject to attacks which can alter the results of any voting procedure.
Securing macro-VM networks has capacity planning implications.

The goal of macro-VMs is to enable scalable virtual organizations to pro-
vide a set of well-defined services. Key to performance is the network topology
and its associated bandwidth. To assess the scalability of network bandwidth,
this section draws on performance bounding techniques described in (Gunther
2005a, Chap. 5).

7.5.2 Bandwidth Scalability Analysis

The main results are summarized in Table 7.5 which shows each of the topolo-
gies ranked by their relative bandwidth. The 20-dimensional hypercube out-
ranks all other contenders on the basis of query throughput. For an horizon
containing 2 million peers, each servant must maintain 20 open connections,
on average. This is well within the capacity limits of most TCP/IP implemen-
tations. The 10-dimensional hypertorus is comparable to the 20-hypercube in
bandwidth up to an horizon of 1 million peers but falls off by almost 10% at
2 million peers.

Table 7.5. P2P hypernet topologies ranked by maximal relative bandwidth (BW),
showing connections per peer (C/N), average number of network hops (H), and the
number of supported peers (N) in millions

Hypernet Topology C/N H N × 106 BW

20-Cube 20 10 2.1 100
10-Torus 20 11 2.1 93
20-Cayley 20 6 2.8 16
8-Cayley (Napster) 8 8 1.1 13
4-Cayley (Gnutella) 4 13 1.1 8

The 20-valent Cayley tree is included since the number of connections per
peer is the same as that for the 20-cube and the 10-torus. An horizon of 6 hops
was used for comparison because the peer population is only 144,801 nodes at 5

7.5 Macrolevel Virtual Machines: Hypernets 141

hops. Similarly for 8-Cayley, a 9 hop horizon would contain 7.7 million peers.
These large increments are a direct consequence of the high vertex degree
per node. The 4-Cayley (early Gnutella network in Fig. 7.14) and 8-Cayley
(Napster network) show relatively poor scalability at 1 million peers (Ritter
2002). Even doubling the number of connections per peer produces slightly
better than 50% improvement in throughput.

Because bandwidth in these topologies grows in proportion to added
nodes or peers (Fig. 7.15), no throughput ceiling of the type appearing in
Figs. 7.5, 7.12 and 7.13 is observed. BitTorrent is a P2P file-sharing protocol
which effectively implements higher-order topologies dynamically in software.
Every client downloading a file from the network usually donates part of its
own bandwidth, making it much faster than earlier P2P technologies like
Gnutella or Kazaa.

1µ 10
6

2µ 10
6

3µ 10
6

4µ 10
6

5µ 10
6

N

200000

400000

600000

800000

1µ 10
6

Bandwidth

Cayley08
Cayley20
Hypercube

Fig. 7.15. Predicted bandwidth as a function of peers (N) for different hypernet
topologies in Table 7.5

7.5.3 Remote Polling Rates

Though BitTorrent is a good protocol for broadband, it is less effective for
dial-up, where dropped connections are common. On the other hand, many
HTTP servers drop connections over several hours, while many torrents exist
long enough to complete a multiday download often required for large files.

142 7 Fundamentals of Virtualization

An uploading client is flagged as snubbed if the downloading client has not
received any data from it in over 60 seconds.

Some BitTorrent clients also report the share ratio, a number relating the
amount of data uploaded to the amount downloaded. A share ratio of 1.0
means that a user has uploaded as much data as they have downloaded. Some
networks, for example, prevent access to new torrents for the first 24–48 hours
(i.e., up to 1.7× 105 seconds in Table 7.1) that the torrent is active to people
with overall ratios of less than 1.0 and a certain amount of data uploaded.

7.5.4 Guerrilla Capacity Planning

It is more difficult to make many practical recommendations for meso-VMs
because they are still emerging technologies. Sun Microsystems CEO Jonathan
Schwartz, a major proponent of enterprise GRID computing, recently stated:

“Behind the corporate firewall, the transformation toward multitenant
grids has been slower. Frankly, it’s been tough to convince the largest
enterprises that a public grid represents an attractive future. But
things are changing.”

Nonetheless, from a GCaP standpoint, it would be advisable to regard GRIDs
and P2P as legitimate compenents of the VM-spectrum (Fig. 7.1).

Two important points for capacity planners. First, adding nodes in macro-
VMs adds bandwidth, so the throughput ceilings seen in Figs. 7.5, 7.13
and 7.12 are not expected to appear. Second, macro-VMs are mostly in-
visible to standard performance management tools, but some of the same
performance analysis techniques discussed in Sects. 7.3.5 and 7.4.6 should be
applicable as these technologies begin to connect to your data center.

7.6 Summary

Modern computing systems that abstract virtual resources from physical re-
sources have surpassed the measurement paradigms of most performance man-
agement tools, thus they remain largely opaque to the performance analyst
and capacity planner.

In this chapter, we introduced the spectrum of virtualization that spans
microlevel VMs, e.g., hyperthreaded processors, through mesolevel hypervi-
sors to macrolevel networked applications, e.g., GRIDs. Each of these regions
has an identifiable proportional polling algorithm, and the polling frequency
sets the location on the VM-spectrum. We used this framework to assess
various performance case studies reported in the literature. It is clear from
these studies that a lot of work remains to be done to better integrate VM
performance instrumentation with current capacity management tools.

8

Web Site Planning

So schaff’ ich am sausenden Webstuhl der Zeit,
Und wirke der Gottheit lebendiges Kleid.

—J. W. von Goethe, Faust

8.1 Introduction

Today’s websites are configured as a networked collection of MS Windows,
UNIX and Linux servers. The culture that belongs to these mid-range server
environments typically has never embraced the concept of capacity planning
(for reasons similar to those presented in Chap. 1). Moreover, many of the
larger commercial websites are large because they are success disasters. The
original business model was implemented in a somewhat ad hoc fashion, but
was later discovered to be far more attractive to users than the Web site
architects had originally envisaged. Ultimately, the Web site was faced with
growing levels of user traffic, and it was concern over the volume of resources
being consumed by the high traffic volume that pushed capacity planning into
the forefront. Many established Web sites, e.g., Amazon.com and eBay.com,
are examples of success disasters that have now evolved and adopted capacity
planning methods.

Web site capacity planning inevitably has an impact on application scal-
ability (Chap. 6), but one often sees two extreme approaches to trying to
ensure Web site scalability:

1. Overengineer the Web site so that no planning is required
2. Add capacity only when it is seen to be required

The fallacy in item 1 is that it cannot accommodate performance limitations
in software, e.g., single-threaded processing. This was discussed in Chap. 1.
The fallacy in item 2 is that procurement of new servers requires that you
look further ahead than current performance measurements. Additional server
capacity has to be foreseen in order that it be procured well in advance of when
it is actually needed. Otherwise, by the time the new servers arrive, traffic will
have grown to the point where the additional capacity will be immediately
absorbed with no advantage gained from the significant fiscal outlay.

This chapter presents Guerrilla capacity planning techniques developed
by the author for one of the world’s hottest Web sites (which must remain

144 8 Web Site Planning

nameless for reasons of confidentiality). In accordance with Chap. 1, a notable
attribute is that the performance models used for planning are lightweight and
flexible to match the fast-paced growth of this environment. The key topics
covered in this chapter include: the effect of time zones on Web traffic pat-
terns, extracting the effective demand on server capacity from measured server
utilization, forecasting capacity consumption, and determining the procure-
ment cycle. The centerpiece of this chapter falls into two parts. Section 8.6
presents the short-term analysis of daily performance statistics, while Sect. 8.7
uses summary statistics from the short-term phase to project long-term server
growth. The new metric introduced for expressing capacity consumption is the
doubling time, which sets the pace for the hardware procurement schedule.

In the subsequent analysis, we focus on the bottleneck resource, which
turns out to be the back-end database server, not a Web server. Every Web
site has multiple bottlenecks, each in different network segments. The net-
work segment that contained the database server was the highest ranking
bottleneck at this website. Since any complex networked environment can
be decomposed into smaller networked subsystems, the techniques presented
in this chapter are completely general. The reader should also keep in mind
the Law of Bottlenecks: You never remove a bottleneck, you merely move it
around (or change its rank). More general Web site capacity planning and
performance modeling techniques are discussed in Gunther (2005a, Chap. 10)

8.2 Analysis of Daily Traffic

Because the revenues per user tend to be rather marginal for Web sites, when
compared to more traditional business models, success is usually measured
in terms of a website’s ability to attract high volumes of Internet traffic. The
assumption is that financial growth is associated with growth in user traffic to
the website. But as many e-commerce websites have discovered (perhaps to the
chagrin of Wall Street), connections per second and dollars per connection are
not always correlated. Nonetheless, it is vital for successful capacity planning
to have a quantitative understanding of Web site traffic profile, which we look
at in this section.

One of the most striking features of e-commerce traffic is the unusual vari-
ance in its intensity during the day. Mainframe capacity planners are already
familiar with the bimodal behavior of conventional commercial workloads due
to user activity on a centralized server. This bimodality is sometimes referred
to as the Camel Curve.

8.2.1 The Camel and the Dromedary

The “camel” designation in Fig. 8.1 refers to the dominant twin peaks in
server utilization occurring around 9–10 am and 2–3 pm (local time) within

8.2 Analysis of Daily Traffic 145

0

25

50

75

100

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00

Time of Day

S
e
rv

e
r

L
o
a
d
 (

%
)

Fig. 8.1. Classic daily loading profile for a mainframe showing the two main peaks
around 9 am and 2pm, which are responsible for the name “camel curve”

each day shift. There are two peaks because of the lunchtime slump in system
activity around midday.

On the web, however, the day shift can last for 24 hours, across 37 time
zones (Fig. 8.2), and together with randomized traffic, it becomes unclear
what the characteristic traffic profile looks like. It turns out that worldwide
access 24 hours a day, 7 days a week, across all time zones would produce a
traffic profile that was very broad without any discernible peaks. On the con-
trary, measurements from many high-volume Web sites shows there is always
a dominant peak around 2:00 hr UTC (Coordinated Universal Time). The sin-
gle “dromedary” peak in Fig. 8.3 also shows up consistently in the measured
processor utilization of in situ Web site servers as well as the measurements
of packets inbound to the website. Moreover, this traffic characteristic seems
to be quite universal for many heavily trafficed Web sites. The reason for its
existence can be understood as follows.

North American Web traffic can be thought of as being comprised of two
major contributions: one from the east coast and the other from the west coast.
This naive partitioning corresponds to the two major population regions in
the USA. If we further assume the traffic intensities (expressed as a percent-
age) are identical but otherwise phase-shifted by the three hours separating
the respective time zones, Figure 8.3 shows how these two traffic profiles com-
bine to produce the dominant peak. As the west coast contribution peaks at

146 8 Web Site Planning

Z A B C D F G H INOPQRSTUW E

STANDARD TIME ZONES
Corrected to April 2003
Zone boundaries are approximate

Daylight Saving Time (Summer Time),
usually one hour in advance of Standard

Time, is kept in some places

Map outline © Mountain High Maps
Compiled by HM Nautical Almanac Office

Z
A
B
C
C*
D
D*
E

 0
+ 1
+ 2
+ 3
+ 3 30
+ 4
+ 4 30
+ 5

E*
F
F*
G
H
I
I*

+ 5 30
+ 6
+ 6 30
+ 7
+ 8
+ 9
+ 9 30

K
K*
L
L*
M
M*
M†

+10
+10 30
+11
+11 30
+12
+13
+14

N
O
P
P*
Q
R
S

- 1
- 2
- 3
- 3 30
- 4
- 5
- 6

T
U
U*
V
V*
W
X
Y

- 7
- 8
- 8 30
- 9
- 9 30
-10
-11
-12

h h h hh mmmmm

No Standard Time legally adopted‡

Standard Time = Universal Time + value from table

VX K L

P

Q

Q

R

V

U T

S

R
Q

P*

T
S

A

AZ

B

C

Z

A B

B

B

C

S

S

S

R

H I*
K

K

M

M

‡

‡

H

H

H

I K

E F
G

E
D*

**

*C

C
D

F

G

H

D
E

F

H

IG

C
D

D

E

K L M

Z

Z
P

N

0˚ 30˚E 60˚E 90˚E 120˚E 150˚E30˚W60˚W90˚W120˚W150˚W180˚ 180˚

M

N

N

O

O

Z

Z

Z

C

D

D

E

E

E*
E*

F*

K
L*

*

L

L MM

Q

O

Q

A

SU

W

V*

A

YML M Y

P

K

H

M

X X

W

W

X

M*

W
M* M*

M M

L

F

M

Z

M†

K

I
D

F

G I

I

I

K
L

L

P

Z

International D
ate L

ine

International D
ate L

ine

R

C

B

B

A

P

R

I

H

P

C

Fig. 8.2. World time zones labeled alphabetically (J is not used)

100% around 4:00 hours UTC, the east coast contribution is already in rapid
decline because of the later local time (7:00 hours actual UTC). Therefore,
the aggregate traffic peak occurs at about 2:00 hours UTC.

Figure 8.3 show the measured daily traffic intensity at a USA site (circles).
The single dominant peak (solid line) at 2 am UTC is the sum of contributions
from the east coast (dotted line) and the west coast (dashed line) phase-
shifted by 3 hours for the respective time zones. As the western contribution is
peaking, the eastern contribution is declining rapidly because of the later local
time. A benign bimodal character can be seen in the aggregate data of Fig. 8.3
with a small hump occurring around 16:30 hours UTC. This corresponds to
a much more distinct bimodality in both component traffic profiles and is
reminiscent of the bimodal mainframe traffic characteristic mentioned earlier
but now reversed and shifted in time.

8.2.2 Unimodal but Bicoastal

Another important conclusion can be drawn from this simple, Guerrilla-style
traffic analysis. There is no significant traffic coming from time zones in Eu-
rope, Asia, Australia, or the Pacific. If these regions were contributing, even at
a relatively lower intensity, they would tend to broaden the dromedary peak
significantly. Hence, the bimodal profile so familiar in the mainframe context
can be understood as belonging to very localized usage where most users are

8.2 Analysis of Daily Traffic 147

0

25

50

75

100

7:30 10:30 13:30 16:30 19:30 22:30 1:30 4:30

Time of Day (UTC)

L
o
a
d
 (

%
)

Fig. 8.3. Daily loading profile data (circles) for a typical web site. In contrast to
the bimodal curve in Fig. 8.3, the data is multimodal (due to access in multiple
time zones) but exhibits a dominant peak around 1:30 UTC. These data can be
explained in terms of the superposition (solid line) of two component component
curves (dashed lines) that are identical but phase-shifted by three hours

connected to a centralized server (mainframe or otherwise) by terminals or
workstations which are active in the same local time zone. Although Web
traffic is delocalized into multiple time zones, it is still confined mostly to
North America and within that continent, it is dominated by the activity of
the coastal populations (Fig. 8.4).

A couple of corollaries follow from these observations about such traffic
patterns. If the dromedary curve appears in measurements of daily traffic
profiles, we can confidently assume we are looking primarily at North Amer-
ican users. This activity is also usually reflected in the consumption of other
Web site resources such as processor utilization across supporting servers and
inbound network bandwidth. Secondly, we can use the dromedary curve as a
quick validation of any capacity planning predictions

In the subsequent sections, we shall focus entirely on back-end server ca-
pacity rather than network capacity. The site in this study had plenty of OC12
bandwidth to handle inbound and outbound packets, so network capacity
never caused any performance limitations. Since the measured server utiliza-
tion is bounded above by 100% busy, a peak in server utilization caused by
the characteristic traffic profile discussed above would remain obscured. One

148 8 Web Site Planning

Fig. 8.4. Composite satellite image of the North American continent at night reveals
the bicoastal population distribution in the United States. Image credit: NASA
Visible Earth (http://visibleearth.nasa.gov)

of the objectives in this study was to reproduce a server utilization profile
that included the daily dromedary peaks. To this end we now introduce the
concept of effective server demand.

8.3 Effective Demand

Effective demand is a measure of the work that is being serviced as well as the
work that could be serviced if more capacity was available. It is similar to the
mainframe notion of latent demand (Forst 1997). This metric is dimensionless
in the same way that CPU-busy is dimensionless. However, unlike CPU-busy,
which is bounded above by 100%, the effective demand can be expressed as
an unbounded percentage.

For example, an effective demand of 167% means that the application
workload could have been serviced by one and two-thirds servers, even though
only one completely saturated server was physically available to accommodate
the workload. Once a server becomes saturated, the run-queue necessarily be-
gins to grow, and this can have an adverse impact on user-perceived response
time (Gunther 2005a, Chap. 3). Although user-based response time measure-
ments are possible, they are by no means simple to carry out in the context of
a website. In general, it requires a combination of external and internal mea-

8.3 Effective Demand 149

surements together with some additional statistical analysis. Even then, such
quantification does not provide much insight into the qualitative perceptions
of the user.

8.3.1 Modeling Assumptions

As we shall describe in Sect. 8.6, the effective demand metric can be calcu-
lated using statistical regression analysis. The predictor is the effective de-
mand (expressed as a percentage), and appropriate regressor variables can be
determined from a factorial design of experiment. (See e.g., (Box et al. 1978),
(Jain 1990, Chaps. 16–23), and (Lilja 2000, Chap. 9) for a fuller discussion
of this technique.) Typical regressors might include CPU clock frequency, the
number of user submitting work to the system, the run-queue length, I/O
rates, etc. One performance metric that cannot be used is the measured CPU
utilization itself, since that is the variable we are trying to predict (Forst
1997).

As with any statistical forecasting, we assume that the workload is CPU-
intensive and will remain that way for the duration of the capacity forecast
as more work is added. This is an assumption because it could turn out that
adding more capacity to the CPU subsystem removes the CPU bottleneck
alright, but only to bring disk or memory bottlenecks into play as the new
scalability inhibitor.

8.3.2 Statistical Approach

Statistical forecasting projects trends based on current data. The current data
cannot, by definition, contain information about future bottlenecks as the
workload increases. This is one of the limitations of statistical data modeling.
One way to forecast unseen bottlenecks is with the aid of multiclass queueing
models Gunther (2005a). The downside to using queueing models is that they
require the construction of an underlying system abstraction which embodies
all significant bottleneck resources. This is a very time-consuming process and
demands more sophisticated measurements than than are generally available
to parameterize the queueing model. So, for complex systems where planning
time is limited, statistical models can offer a powerful approach, as long as
the underlying assumptions are kept in mind.

In this case, about ten weeks of performance data collected from the back-
end database server and containing some 200–300 metrics were reviewed for
numerical stability. During that period, many upgrades were performed on
the server, including: faster CPUs, larger caches, more recent version of the
database, and modifying the application software across the entire website.
Consequently, only an eight-week subset of the reviewed performance data
was found to be stable enough for use in statistical forecasting.

150 8 Web Site Planning

8.4 Selecting Statistical Tools

As mentioned in Sect. 8.3.1, it was decided to undertake statistical regression
analysis of these raw server performance data to derive the daily effective
demand. Since these data represent a time series, the type of regression which
can take into account time-dependent correlations is called autoregression or
AR analysis (Box et al. 1978). This allows one to pick out seasonal effects and
so on. Since we are only going to be analyzing a few weeks of server data,
we do not expect to see such seasonal effects. Therefore, resorting to ordinary
(time-independent) regression analysis is legitimate.

Having elected to apply statistical analysis, the next issue is to select the
statistical tools to use for the analysis and, in particular, whether to pur-
chase statistical software or build a custom application integrated into the
current environment. This step in the Guerrilla capacity planning process
was discussed in Chap. 1. The methods discussed here, however, had not been
used previously by the author and this meant that some prototyping was in-
evitable. It was also not clear at the outset which statistical functions would
be required in carrying out the regression analysis. For example, implement-
ing a set of statistical regression functions in C code (Press et al. 1988) or
Perl scripts (Gunther 2005a) is one option, but it would also be more time
consuming than using an environment where a reasonably complete set of
statistical functions was already available.

8.4.1 Spreadsheet Programming

The choice became obvious once it was realized that almost every desktop
at the Web site (including all the management offices) had a PC running
Microsoft Office and thereby had Excel readily available. What is not generally
appreciated is that Excel is not just a spreadsheet (Levine et al. 1999); it is a
programming environment with Visual Basic for Applications (VBA) as the
programming language. VBA is a quite a reasonable prototyping language
because it is object-oriented, comes with an integrated debugger, and contains
a macro recording facility. Excel also comes with a considerable amount of
embedded Help documentation, and is quite a good source for basic instruction
in statistical analysis.

8.4.2 Online Support

There are several Internet news groups, such as: comp.apps.spreadsheet and
microsoft.public.excel.programming, devoted to spreadsheets and VBA
programming where expert-level help is readily available for the most obscure
VBA programming problems. In addition, there is Microsoft’s own website
http://office.microsoft.com/en-us/FX010858001033.aspx. As we shall
see later, data importing and data filtering are also very useful capabilities
integrated into Excel. Plotting is also integrated into Excel and can also be

8.5 Planning for Data Collection 151

accessed via VBA. A broad set of standard statistical analysis functions (e.g.,
regression, ANOVA, moving average) are available by default. Excel, as pack-
aged with Microsoft Office, does not include the more sophisticated analysis
tools for time-series analysis, but these can often be found on the Internet or
as commercial add-on packages. Finally, there is an option to publish spread-
sheets as HTML pages.

8.5 Planning for Data Collection

Generally, operations and capacity planning are distinct functions. The for-
mer is focused on the tactical monitoring, while the latter is focused on the
strategic planning. But modern economics demands a leaner infrastructure to
the point where these two traditional functions become merged. Data cen-
ter operations understands the need to collect performance data and many
operations managers are prepared to spend hundreds of thousands of dollars
on performance management software. What is often overlooked is the pur-
pose for which the performance data is being collected. In each case it is very
different.

8.5.1 Commercial Collectors: Use It or Lose It

Commercial data collection products have a set of default time boundaries
across which they aggregate the collected data into coarser time intervals.
This is primarily done to conserve disk space.

For example, performance data might be sampled every few minutes, but
after 12 hours all those sampled statistics (e.g., CPU utilization) are averaged
over the entire 12-hour period and thereby reduced to a single number. This is
good for data storage and it does not impede performance monitoring, but it
is no so good for capacity planning. Such averaged performance data is likely
far too coarse for meaningful statistical analysis. Some commercial products
offer separate databases for storing monitoring and modeling data. Either the
default aggregation boundaries should be reset, or operations management
needs to be prescient about saving capacity planning data prior to the ag-
gregation boundaries. In either case, data collection and data modeling may
need to be scheduled differently and well in advance of any data aggregation.
This idea is foreign to many Web site managers and administrators.

8.5.2 Brewing in the Background

And so it was with the Web site described here. Fortunately, alternative
data were available because the platform vendor had installed their own non-
commercial data collection tools on the back-end server. It was called SE
Percolator (Cockcroft and Pettit 1998) (See also Chap. 11). Thankfully, SE

152 8 Web Site Planning

Percolator was sufficiently unsophisticated that it retained 2-minute samples
of more than 200 Solaris performance metrics. These data were used in our
subsequent statistical modeling.

8.6 Short-Term Capacity Planning

As discussed in Sect. 8.3, the effective server demand is calculated using sta-
tistical regression techniques. We new present that technique in more detail
using Excel, but the reader should be aware that it can also be calculated
using other statistical tools like those mentioned in Chap. 1, e.g., R (Venables
and Ripley 2002; Faraway 2004).

8.6.1 Multivariate Regression of Daily Data

Because of a prior succession of changes that were made to the system configu-
ration, only five weeks of data were stable enough to show consistent trending
information. An Excel macro was used to analyze the raw metric samples and
predict the effective demand using a multivariate linear regression model

Ueff = α1X1 + α2X2 + · · · + α6X6 + β , (8.1)

where each of the X’s is a regressor variable, and the α’s and β are the
coefficients determined by an ANOVA analysis of the raw performance data.
Here, Ueff is the estimated effective utilization of the server and it can exceed
100%. Multivariate regression is also known as multiple regression.

The random variables X1, X2, . . . in (8.1) are identified with the half dozen
collected performance metrics appearing in columns C through H of Fig. 8.5,
i.e., the dispersion measures of the utilization U and the run-queue length Q.

Example 8.1. If we were to carry out the regression procedure manually in
Excel, it would unfold as follows:

1. All the data in Fig. 8.5, except AvgU , are used to determine the regression
coefficients α1, α2, . . . , β as described in Fig. 8.6.

2. The coefficient values for our example are shown in Fig. 8.7.
3. The effective utilization Ueff is calculated for each row of the spreadsheet

in Fig. 8.5 using (8.1) using the evaluated coefficients and the values for
each of the performance metrics in that row.

4. The resulting value of Ueff for each row would generate a new column in
the spreadsheet.

Section 8.6.2 explains how this process can be automated within Excel. ��
It is important to make sure you have the Analysis Tools Pack loaded

into Excel. The Regression application is invoked from the Tools menu as
Tools>Data Analysis ... which brings up a dialog box from which you choose

8.6 Short-Term Capacity Planning 153

Fig. 8.5. Extracted performance data from the back-end server imported into an
Excel spreadsheet in preparation for multivariate regression analysis

Regression function. This function is essentially the same as the Trendline
function used in Chap. 5 with the limitation that the assumed functional form
is a straight line rather than a polynomial, i.e., it performs linear regression.

Indeed, the regression statistic labeled R Square or (R2) in cell K6 in
the output of Fig. 8.7 is called the coefficient of determination, and it is an
important figure of merit for the regression model. It tells us how much of the
variance in the data is explained by the multivariate model (8.1). In this case,
better than 98% of the variance is explained by our model. A higher R2 value
can be produced by adding more regressors. Another figure of merit is the
SignificanceF value in cell O13. The smaller this value, the better. Higher
F values are produced by fewer regressors.

8.6.2 Automation Using Spreadsheet Macros

A Perl script, like that in Sect. E.1 of Appendix E, extracts the raw SE
Percolator data (Sect. 8.5.2) and averaging it over 15-minute samples of the
relevant time-stamped performance metrics for each day of interest. The ex-
tracted data is then read directly into a spreadsheet using the Excel Web
Query facility. This produces about 100 rows of data in the spreadsheet. Two
macros are then applied to this data.

154 8 Web Site Planning

Fig. 8.6. Dialog box for the Excel regression tool. The Input Y range field is iden-
tified with the measured average processor utilization. These data reside in column
B of Fig. 8.5 and provide values for the dependent or response random variable in
the calculation of the α coefficients. The Input X range is identified with the set of
six extracted performance metrics. These independent random variables X1, X2, . . .
or regressor variables in (8.1) reside in columns C through H. Since labels are used
for each of the columns in Fig. 8.5 the Labels box is checked. The Output range field
can be a single cell which defines the top left cell of Fig. 8.7

The first of these filter out any row if it contains a measured CPU utiliza-
tion of 95% or greater. Such rows are eliminated from the ANOVA calcula-
tions as being too biased for use by (8.1). The regressor variables (labeled X1

through X6 in (8.1) are then used by the macro in Sect. E.2 of Appendix E
to calculate the coefficients of (8.1). Once these coefficients are known, the
estimated value of the server utilization Ueff is computed for each row of the
spreadsheet in Fig. 8.5 using (8.1), and then inserted as a new column into
the same spreadsheet. In general, the estimated and measured utilization will
be fairly close until it gets near to saturation (e.g., 95% or greater), in which
case significantly larger values of are estimated, as shown in Fig. 8.8.

8.7 Long-Term Capacity Planning 155

Fig. 8.7. Coefficients α1, α2, . . . , β for the effective utilization model (8.1), as cal-
culated by Excel, appear at the bottom of column J. The labels used for these
coefficients are the same as the headers for columns C–H in Fig. 8.5

8.7 Long-Term Capacity Planning

Summary statistics from the short-term multivariate model described in
Sect 8.6 are then taken over into a weekly spreadsheet. About eight weeks
worth of these summary statistics are needed to make reasonable long-term
growth predictions.

8.7.1 Nonlinear Regression of Weekly Data

For this phase of the exercise, a nonlinear regression model was also con-
structed using spreadsheet macros. The maxima of the weekly effective de-
mands UW , calculated from the multivariate model in Sect. 8.6, were fitted
to a an exponential model:

UW = U0 eΛW (8.2)

which has only a single parameter Λ. An exponential growth model, chosen
to reflect the expected server capacity, is likely to be needed to accurately
forecast capacity beyond simple linear growth. Similar nonlinear models are
often used for financial projections of business growth, and there was some
additional evidence for exponential growth in the measured data for inbound
network traffic.

156 8 Web Site Planning

0

50

100

150

7/6/99
21:36

7/7/99
0:00

7/7/99
2:24

7/7/99
4:48

7/7/99
7:12

7/7/99
9:36

7/7/99
12:00

7/7/99
14:24

7/7/99
16:48

7/7/99
19:12

7/7/99
21:36

7/8/99
0:00

7/8/99
2:24

E
ff
e
c
ti
v
e
 u

ti
liz

a
ti
o

n
 (

%
)

Fig. 8.8. Daily server utilization measurements (circles) over the course of one
week. These data cannot exceed 100%, by definition. As explained in Sect. 8.2,
the effective utilization Ueff calculated from a statistical performance model (solid
line) is unbounded, by definition. The spike in the effective utilization near 16:48
hr indicates that more than 1.5 servers were needed theoretically to service the user
demand at that time

The long-term capacity consumption UW is expressed in terms of the num-
bers of weeks W since the data analysis began. The constant U0 is the server
utilization at the zeroth week when the capacity study commenced, and the
parameter Λ is fitted using the Trendline function in Excel. Λ specifies the
growth rate or curvature of the exponential curve. For the data in Fig. 8.9 the
fitted parameters are U0 = 133.12 and Λ = 0.03090.

8.7.2 Procurement Curves

The final task is to extrapolate the results from the analysis of weekly growth
in effective demand into a set of requirements for server upgrade procurement.
This kind of forecast is best expressed as a set of curves corresponding to
different possible CPU configurations, cache sizes, and clock speeds. Since the
multivariate regression model only pertains to measurements on the current
system configuration, we need a way to extrapolate to other possible CPU
configurations. This can be accomplished using the methods of Chaps. 4–6.

8.7 Long-Term Capacity Planning 157

y = 135.91e0.0309x

R2 = 0.9349

0

25

50

75

100

125

150

175

200

0 1 2 3 4 5 6 7 8

Regression Week (W)

E
ff
e

c
ti
v
e

 U
ti
liz

a
ti
o

n
 (

%
)

Fig. 8.9. Exponential regression (dashed line) on 8 weeks of peak effective utiliza-
tion (circles) statistics carried over from the short-term multivariate model. The
curvature parameter is Λ = 0.0309

8.7.3 Estimating Server Scalability

Recall from Sect. 4.4 that the normalized capacity C(p) of a server with p
physical processors is defined by the function

C(σ, κ, p) =
p

1 + σ(p − 1) + κp(p − 1)
. (8.3)

This function can be fitted to the throughput data measured on an arbitrary
set of processor configurations. The actual throughput X(p) for a particular
configuration can be predicted by multiplying C(p) by X(1). Fitting (8.3) to
a set of throughput measurements produces estimates for the two parameters
σ and κ.

The question becomes one of finding appropriate throughput measure-
ments of the Web site applications of interest for capacity planning. At the
time, the developers of this Web site were not in a position to characterize
their own Web application in any consistent way. A useful fallback position, in
this situation, is to look for similar measurements of application performance
from other groups, such as quality assurance (QA). Unfortunately, this In-
ternet company was only in the early stages of setting up a load test and
a software QA group. If either of these groups had been further advanced in
their data collection, it might have been possible to use those measurements to

158 8 Web Site Planning

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

0 10 20 30 40 50 60 70

Number of Processors

R
a
ti
o
n
a
liz

e
d

T
h
ro

u
g
h
p
u
t
(T

P
M

)

SeriesA*

SeriesB

SeriesC*

SeriesD

SeriesE

Fig. 8.10. Vendor performance data for a suite of processor products. The data used
in this chapter belong to the particular products denoted Series A and Series C

improve some of the following capacity projections. In the meantime, this Web
site needed to make some fiscally challenging decisions regarding server pro-
curement and they needed to make those decisions quickly—a typical Guerrilla
situation where a sense of direction is more important than a compass bearing
(see Chap. 1).

In lieu of doing Web site-specific workload characterization, it was decided
to approach the server vendor for some initial input regarding the scalabil-
ity of their platforms. The result was that they delivered a set of company-
internal measurements like those shown in Fig. 8.10, which can be regarded
as being similar to renormalized throughput values for the TPC-C benchmark
(www.tpc.org). These data were fitted using the scalability model (8.3) to cal-
culate the respective scalability parameters, viz., σ = 0.0061 and κ = 0.0016.
These parameters were then used to estimate the corresponding capacity gains
summarized in Table 8.1.

8.7.4 Calculating Capacity Gains

The back-end servers at this Web site were running a database management
system with CPU configurations up to a 64-way. The vendor scaling estimates
in Table 8.1 indicate that adding 12 more Series C processors to the existing
52-way configuration would produce a 15% gain in CPU headroom. Alter-

8.7 Long-Term Capacity Planning 159

Table 8.1. Throughput numbers are derived from vendor-supplied data in Fig. 8.10.
Reading horizontally corresponds to increasing the processor clock frequency
(∆CLK) for the same CPU configuration, while reading vertically corresponds to
increasing the number of physical processors (∆CPU) with the same clock speed.
These differences are also expressed as ratios. The most important ratio is the bold
number in the bottom right-hand corner. It is the maximum possible upgrade ra-
tio formed from the bold numbers along the diagonal. The difference between the
52-way Series C (base configuration) in column 2 and the 64-way Series A (maximal
configuration) in column 3 produces the bold value in column 4. That number is
then expressed as a ratio in column 5 relative to the base configuration

Vendor performance data for upgrading from Series C to Series A

N-way Series C Series A ∆CLK Ratio

52-way 115,755 152,432 3,667 0.316850
64-way 133,629 175,969 4,234 0.316847

∆CPU 17,874 23,537 60,214 –
Ratio 0.154412 0.154410 – 0.520185

natively, keeping the CPU configuration fixed at 52-way and increasing the
CPU model from Series C to Series A shows a 32% gain. Performing both
upgrades simultaneously shows a 52% gain. These capacity projections seem
rather optimistic for a database application.

Table 8.2. Recalibrated vendor throughput based on adjusted parameters σ and
κ in Eqn.(8.3). The table is read in the same way as described for Table 8.1. The
maximum possible upgrade ratio is the bold number in the bottom right-hand corner,
and the smaller value (cf. vendor-derived value in Table 8.1) reflects the higher
expected overhead for database accesses

Recalibrated performance data for upgrading from Series C to Series A

N-way Series C Series A ∆CLK Ratio

52-way 57,605 75,859 18,254 0.316882
64-way 60,875 80,165 19,290 0.316879

∆CPU 3,270 4,306 22,560 –
Ratio 0.056766 0.056763 – 0.391633

In my experience, the contention factor (σ) for database management sys-
tems (e.g., ORACLE) is typically around 3% (i.e., σ = 0.030) while the co-
herency term is highly dependent on other factors. Here, it appears to be
relatively small. It was decided, therefore, to adjust the σ value in this way
and leave the κ more or less the same. The impact of this adjustment on
overall scalability can be seen in the envelopes of Fig. 8.11.

This adjustment to the scalability parameters allowed for the more realistic
estimate of capacity factors shown in Table 8.2 for the server configurations of

160 8 Web Site Planning

0

50000

100000

150000

200000

0 10 20 30 40 50 60 70 80

Number of processors

R
a
ti
o
n
a
liz

e
d
 t
h
ro

u
g
h
p
u
t

(T
P

M
)

Vendor

Recal

Fig. 8.11. Comparison of predicted scalability based on the vendor data (dark
disks) in Fig. 8.10 and (8.3) using recalibrated σ and κ parameters (light disks).
The envelope formed by the disks in each case represents a region where actual
throughput might be measured. The upper side of each envelope corresponds to
scalability using the highest performance Series A processor, while the lower side
corresponds to the current Series C processor configuration

interest. Using these more conservative estimates, we see that adding 12 more
CPUs to the 52-way Series C, at the same clock speed, predicts a 6% gain in
headroom. Keeping the CPU configuration fixed at 52-way but increasing the
CPU clock speed from Series C to Series A shows a 32% gain in headroom.
Performing both of these upgrades together produces a 39% headroom gain.

We consider upgrading from a Series-C to a Series-A clock while main-
taining a 52-way configuration on the backplane and using the vendor scaling
data in Table 8.2.

Example 8.2. We first calculate the increase in processor capacity ∆CPU from
the tabulated throughput values:

∆CPU52 =
XA − XC

XC
,

=
75, 859 − 57, 605

57, 605
,

= 0.32 , (8.4)

which is the ratio in column 5 of Table 8.2. ��

8.7 Long-Term Capacity Planning 161

Next, this increase in processor capacity is used to adjust the weekly
growth curve Uw in (8.2) downward so that the new curve takes longer to
reach saturation.

Example 8.3. At week 20, the effective utilization is UC(20) = 246.97 for
the baseline server. By maximally upgrading to Series A, we know Series A
∆CPU = 0.3169, and therefore the corresponding decrease in the effective
demand is given by:

UA(20) = UC(20) (1 − ∆CPU) ,

= 246.97 (1 − 0.3169) ,

= 168.71% (8.5)

The expected server utilization at week 20 is only 168.71% (or approximately
one and two-thirds servers) after the upgrade rather than 246.97% (or almost
two and one-half servers) without the upgrade. ��

The long-term growth envelopes are shown in Fig 8.12. The x-axis shows
the number of weeks since the data analysis was begun, and week 20 cor-
responds to a fiscal-year boundary. The horizontal gridlines can also be in-
terpreted as the number of servers being consumed in a given week. Each
of these scenarios could have been made more accurate if actual workload
measurements had been available.

8.7.5 Estimating the Doubling Period

A more intuitive grasp of the significance of the growth parameter Λ = 0.0309
evaluated in Sect. 8.7.1 comes from calculating the time it takes to double
the load on the database server. The doubling period can be calculated very
simply by dividing the natural logarithm of two by the value of Λ as it is
displayed in Fig. 8.9:

T2 =
ln(2)

Λ
= 22.43 , (8.6)

which corresponds to approximately 6 months. In other words, every six
months, twice as much server capacity (Fig. 8.13) will be consumed as is
being consumed now!

This the growth rate is extremely fast. It is at least an order of magnitude
faster than the growth of typical mainframe data processing workloads and
three times faster than Moore’s law, which states that the number of transis-
tors that can be packed into VLSI circuitry doubles roughly every 18 months.
Nonetheless, this startling rate of growth agrees with growth of network traffic
measured at this website.

Referring back to the Guerrilla attributes listed in Table 1.1, a plot like
Fig. 8.13, which shows the number of servers that need to be procured stacked
up every six months, may be a more significant Guerrilla graph than the
more technical rendition of exponential doubling presented in Fig. 8.12. Fully

162 8 Web Site Planning

0

100

200

300

400

500

0 5 10 15 20 25 30 35 40

Regression weeks (W)

E
ff
e
c
ti
v
e
 u

ti
liz

a
ti
o
n
 (

%
)

Vendor

Recal

Fig. 8.12. Projected long-term capacity envelopes predicted by the vendor (gray)
and our more conservative analysis (black). The horizontal gridlines can also be
interpreted as the number of servers being consumed in a given week

loaded, high-end database servers cost many millions of dollars each. A dou-
bling period of six months, even for the most lucrative of today’s Web sites,
would constitute a serious financial burden. So much for the view that capacity
planning is not necessary for today’s Web sites.

8.8 Summary

In this chapter we have shown how multivariate regression can used to analyze
short-term effective demand in highly variable data. The effective demand is
a measure of the work that is being serviced as well as the work that could be
serviced if more capacity was available. Daily data was collected and the ef-
fective demand calculated using spreadsheet macros. A weekly summarization
of the peak effective demand was then used to generate a nonlinear regression
model for long-term capacity consumption and to further characterize that
consumption by introducing the doubling period as a growth metric. This
metric provides a convenient basis for describing procurement curves.

A doubling period of six months was immediately recognized by manage-
ment as having potentially devastating implications for the fiscal longevity
of the Web site, and additional servers were ordered. In the meantime, sev-
eral software engineering actions (that were not predicted by this capacity

8.8 Summary 163

Fig. 8.13. Schematic representation of the financial burden presented by the ex-
ponential doubling in server capacity. When presenting your capacity planning con-
clusions, this may be a more significant Guerrilla graph than the technical form of
exponential doubling presented in Fig. 8.12

planning model) were immediately undertaken to provide some additional
breathing space since procurement was already behind where it should have
been.

Almost all the significant traffic at this Web site was discovered to be
coming from two time zones in North American with very little coming from
other regions. Such regionally localized web traffic is responsible for the dom-
inant single peak discussed in Sect. 8.2. This profile is common to many web-
sites in North America. As Web applications continue to flourish, operations
management must think beyond the immediate visual feedback of standard
performance monitoring and develop a longer-term capacity plan like the one
presented in this chapter.

9

Gargantuan Computing—GRIDs and P2P

9.1 Introduction

In this chapter we are going to consider GCaP capacity planning techniques
for gargantuan-scale computer systems such as so-called peer-to-peer (P2P)
networks and computational GRID networks. One of the best known working
examples of a GRID-style computing system is SETI@Home (Search for Ex-
traterrestrial Intelligence at Home), where a scientific workload, viz., process-
ing radio-telescope signals, is farmed out to a gargantuan number of floating-
point operations per second (FLOPS) in the guise of millions of otherwise idle
personal computers—many being home PCs.

One of the best known working examples of a P2P-style computing system
is Skype (www.skype.com), which allows millions of people to use their PCs
like a free telephone by forming its own gargantuan network (Fig. 9.1) which
supports the voice over Internet Protocol (VOIP). Other well-known P2P ar-
chitectures include Gnutella, Napster, Freenet, Limewire, Kazaa, BitTorrent,
instant messaging, WiFi, PDAs and even cellphones. Mnay of these architec-
tures have progressed from simple file transfer protocols to a viable means
for distribution of applications such as games, movies, and even operating
systems.

This class of system offers the potential for very large-scale implemen-
tations. Consequently, it is appropriate to draw on the concepts of system
scalability developed in Chap. 4 as well as the concepts of virtualization devel-
oped in Chap. 7. The general goal for these architectures is to enable scalable
virtual organizations that can provide a set of well-defined services.

Key to the performance of these systems is the particular choice of network
topology and its associated bandwidth. To assess the scalability of network
bandwidth, this chapter draws on performance bounding techniques described
in (Gunther 2005a, Chap. 5). We shall apply those same techniques to the per-
formance analysis of a particular P2P network called Gnutella (commencing
in Sect. 9.3) since the pros and cons of its capacity have been so well docu-

166 9 Gargantuan Computing—GRIDs and P2P

mented. First, we review some of the distinctions between GRIDs and P2P
networked computer systems.

9.2 GRIDs vs. P2P

P2P networks and GRIDs share the common focus of harnessing resources
across multiple administrative domains. Therefore, they may be distinguished
in the following way:

GRID: Supports a variety of applications with a focus on providing infras-
tructure with quality of service to moderate-sized, homogeneous, and par-
tially trusted communities (Foster 2005). Grid toolkits provide secure ser-
vices for submitting batch jobs or executing interactive applications. The
network architecture tends to be more centralized, hierarchical, and static.

P2P: Support intermittent participation in vertically integrated applications
for much larger communities of untrusted, anonymous individuals. P2P
systems provide protocols for sharing and exchanging data among nodes.
The network architecture tends to be more decentralized, and dynamics
require resource discovery.

It should be kept in mind that both these technologies are very much in the
process of evolving and have by no means reached a final form. Because they
are likely to become more ubiquitous, it is important for our purpose as GCaP
planners to understand something about them.

Fig. 9.1. The Skype network showing the network connectivity between its three
main entities: supernodes (black circles), ordinary nodes (gray circles), and a login
server (gray octagon)

9.3 Analysis of Gnutella 167

GRID computing is focused on scientific and engineering applications and
attempts to provide diverse resources that interoperate. The concept behind
the GRID is analogous to the electrical power grid. It is available on demand
and it does not matter where you are. When you throw the switch, you expect
the light to come on. Consequently, GRIDs should be built from standard
interfaces and protocols, and the Open Grid Services Architecture (OGSA)
provides The Globus Toolkit as an implementation of such a standard based on
Web services and technologies. OGSA is a product of the GRID community
at large, and it has a major focal point in the Global Grid Forum (GGF).
Members of the Globus Alliance have made significant contributions to the
development of OGSA. The interested reader can find more information about
goals, toolkits, and implementations at the OGSA website www.globus.org/
ogsa.

These technologies are not mutually exclusive. The P2P model could help
to ensure GRID scalability. Architects could employ P2P technologies and
techniques to implement decentralized GRID systems in order to avoid or al-
leviate performance bottlenecks. A recent example of this approach is GRID-
nut (Talia and Trunfio 2004) based on Clip2, the original Gnutella protocol
specification www9.limewire.com/developer/gnutella protocol 0.4.pdf,
to which we now turn our attention.

9.3 Analysis of Gnutella

The Gnutella network is a class of open-source virtual networks known as
peer-to-peer networks. Compared to the more ubiquitous client–server dis-
tributed architectures, every P2P node (or servant) can act as both a client
and a server. Many client-server applications, e.g., commercial databases, have
multiple clients accessing a centralized server (see Gunther 2005a, Chap. 9).
Conversely, P2P network applications are usually completely decentralized.

Finding applications that can make efficient use of P2P is the current
gating factor for their widespread adoption. So far, P2P networks have been
employed for such applications as the Napster (www.napster.com) music file-
sharing service and the SETI@Home project (setiathome.berkeley.edu), al-
though both those implementations rely on a significant centralized server
component.

The initial release of Gnutella in 2000 led to the perception that the intrin-
sic architecture may not be capable of scaling to meet the sharing demands of
millions of anticipated1 users. Similar concerns about scalability have arisen
in the context of hypergrowth traffic impinging on popular e-commerce Web
sites (see Chap. 8). Based on measurements of popular queries, it was proposed
that Gnutella scaling problems could be ameliorated through the implemen-
tation of appropriate caching strategies. Other measurements indicated that
1 In 2001, the size of the Napster network was 160,000 simultaneous users, down

from a peak of 1.6 million reported by Webnoize in February, 2001.

168 9 Gargantuan Computing—GRIDs and P2P

there were more readers than writers involved in file sharing. They suggested
that a propensity for reading could lead to higher than expected load on
the P2P network, thereby degrading its performance as well as increasing its
vulnerability to fragmentation.

A mathematical analysis by Ritter (2002) (one of the original developers
of Napster) presented a detailed numerical argument demonstrating that the
Gnutella network could not scale to the capacity of its competitor, 2 the
Napster network. Essentially, that model showed that the Gnutella network is
severely bandwidth-limited long before the P2P population reaches a million
peers. In each of these previous studies, the conclusions have overlooked the
intrinsic bandwidth limits of the underlying topology in the Gnutella network:
a Cayley tree (Rains and Sloane 1999) (see Sect. 9.4 for the definition).

Trees are known to have lower aggregate bandwidth than higher dimen-
sional topologies, e.g., hypercubes and hypertori. Studies of interconnection
topologies in the literature have tended to focus on hardware implementa-
tions (see, e.g., Culler et al. 1996; Buyya 1999), which are generally limited
by the cost of the chips and wires to a few thousand nodes. P2P networks,
on the other hand, are intended to support from hundreds of thousands to
millions of simultaneous peers, and since they are implemented in software,
hyper-topologies are relatively unfettered 3 by the economics of hardware.

In this chapter, we analyze the scalability of several alternative topologies
and compare their throughput up to 2–3 million peers. The virtual hypercube
and the virtual hypertorus offer near-linear scalable bandwidth subject to
the number of peer TCP/IP connections that can be simultaneously kept
open. We adopt the abbreviation hypernet for these alternative topologies.
The assumptions about the distribution of peer activity are similar to those
employed by Ritter (2002). This is appropriate since our purpose is to rank the
relative performance of these hypernets rather than to predict their absolute
performance.

9.4 Tree Topologies

In the subsequent discussion, the P2P network is treated as a graph, i.e., a set
nodes or vertices connected by a set of edges or links. The nodes correspond
to network peers, and the links to the links to network connections.

Because the tree structure of the Gnutella network has been such a hidden
determinant underlying the conclusions drawn in previous scalability studies,
we commence our performance comparisons by distinguishing clearly among
2 At the height of the media attention, Napster’s legal problems drove some 50,000

users per day over to Gnutella such that peers connected by 56 Kbps phone lines
caused the P2P network to fragment into disconnected “islands” of about 200
peers.

3 As the SETI@Home project has demonstrated, 2.8 million desktops (and 10
PetaFLOPS) can be harnessed for free.

9.5 Hypernet Topologies 169

the relevant tree topologies. Topologically, all trees are planar and thus have
d = 2 spatial dimensions.

9.4.1 Binary Tree

The binary tree is familiar in the computing context by virtue of its ubiquity
as a parsing and storage data structure. There is a unique root node that is
connected only to two sibling nodes, and each of those siblings is connected
to another pair of sibling nodes, and so on. At each level h in the tree, there
are 2h nodes. Therefore, the number of nodes grows as a binary exponential
number. Because of its relatively sparse nodal density, the binary tree is rarely
employed as a bona fide interconnection network.

9.4.2 Rooted Tree

A rooted tree is simply the generalization of a binary tree in which each node
(other than the root) has a vertex of degree v. The total number of nodes is
the sum of a geometric series:

Nbin(h) =
vh − 1
v − 1

. (9.1)

9.4.3 Cayley Tree

A Cayley tree (Rains and Sloane 1999) has no root. Recalling the binary tree,
what was the root of the parent binary tree now has a link to an another
binary subtree of height one less than the parent. All nodes thus become
trivalent with v = 3 at every level. More generally, for a v-valent tree, the
total number of nodes is given by:

Ncay(h) = 1 +
∑

v (v − 1)h−1 , (9.2)

and therefore is denser than the number of nodes in (9.1).
This is the central formula used in the scalability analysis of Ritter (2002).

The network he analyzed is thus a Cayley tree with vertex degree v cor-
responding to the number of open network connections per servant. Ritter
analyzed valences in the range v = 4 . . . 8; the former value being the default
setting in the original Gnutella release, and the latter more closely resembling
the number of peers claimed for the contemporaneous Napster network.

9.5 Hypernet Topologies

An alternative to bandwidth-limited trees is a topology with higher dimension-
ality. We examine the performance attributes of two hypernets in particular:
the binary hypercube and the hypertorus, each in d dimensions.

170 9 Gargantuan Computing—GRIDs and P2P

9.5.1 Hypercube

In a Boolean or binary hypercube each node forms the vertex of a d-
dimensional cube. The number of nodes is simply 2d, and the degree of each
vertex v is equal to the dimensionality d of the network. Hence, each node can
be enumerated or addressed using a base-2 (binary) d-digit number. Moreover,
since neighboring nodes differ in address by only 1 digit, sending a message
on the hypercube becomes a simple matter of shifting successive bits as the
binary address passes each node between source and destination.

In d = 3 dimensions the hypercube is simply a cube. Each vertex has
degree v = 3, so there are 23 = 8 nodes. A 4-dimensional hypercube, can
be visualized as spatially translating a 3-cube such that the locus of its four
vertices trace out the additional connections.

9.5.2 Hypertorus

A d-dimensional hypertorus is a d-dimensional grid with each node connected
to a ring of nodes in each of the d orthogonal dimensions. The hypertorus re-
duces to the binary hypercube when there are only two nodes in each ring. The
simplest visualization is, once again, in three dimensions. A two-dimensional
grid is first wrapped about one axis such the edges join to form a tube. The
tube is wrapped about the orthogonal axis to form a ring such that the open
ends of the tube become joined. The result is a 3-torus, otherwise known as a
donut.

All of these topologies fall into a class known as single stage networks, and
they are relatively easy to implement in software. The more exotic topologies,
such as cube-connected cycles, butterflies, and other multistage networks, are
not considered here because they are likely to be more difficult to implement.

9.6 Capacity Metrics

9.6.1 Network Diameter

The notion of a network diameter is analogous to the diameter for a circle.
There, it is the maximum chordal length between two points on the circumfer-
ence. For a network, it is the maximum number of communication links that
must be traversed to send a message to any node along the shortest path. It
represents a lower bound on the latency to propagate messages throughout
the entire network. In 1997 the Web was estimated to comprise more than
half a million sites (Gray 1996). By 2001, it was estimated (OCLC 2004) to
have grown to 3.1 million publicly accessible sites.

The diameter of the Web has been estimated to be about 20 hops. If the
Web is modeled as a Cayley tree, its height would be half the diameter, i.e.,
h = δ/2 = 10 hops (Table 9.1). A vertex degree of 5 (connections per node)
would contain just under half a million nodes, while a vertex degree of 6 would
contain nearly 3 million (2,929,687) nodes.

9.6 Capacity Metrics 171

Table 9.1. Network diameter

Topology δ

Tree 2h
Hypercube d

Torus dN1/d/4

9.6.2 Total Nodes

Next, we determine the total number of peer nodes in the P2P network. For
a binary tree:

N(h) =
h∑

k=1

2k−1 . (9.3)

For a d-dimensional binary hypercube the number of nodes is 2d.

9.6.3 Path Length

The path length is the maximal distance between a leaf node and the root. For
a tree, it is half the diameter. The path length corresponds the peer horizon
used by (Ritter 2002) in his analysis. A better measure of network latency is
the average number of hops H, which we shall define shortly.

9.6.4 Internal Path Length

The internal path length is the total number of paths between all nodes. For
a binary tree of depth h, the total number of paths is:

P (h) =
h∑

k=1

k N(k) . (9.4)

9.6.5 Average Hop Distance

Since the network diameter is a maximal distance, it tends to overestimate
message latency. A better measure is the average number of hops between
source and destination. This quantity is found by dividing the internal path
length in (9.4) by the total number of nodes in (9.3)

H =
P

N
. (9.5)

It corresponds to the average number of network hops traversed by a P2P
query.

172 9 Gargantuan Computing—GRIDs and P2P

9.6.6 Network Links

This is a measure of the number of physical network links. As revealed in
Table 9.2, L scales with the number of physical nodes N for the topologies we
are considering.

Table 9.2. Number of network links

Topology L

Tree Ntree

Hypercube dNcube/2
Torus dNtorus

9.6.7 Network Demand

The transit frequency across a link flink is a measure of the average query size
per link. Under the assumption of uniform message routing, it can be defined
as:

flink =
H

L
. (9.6)

If the latency across a link is denoted by Slink, then the total service de-
mand (Gunther 2005a, Chap. 2) is:

Dlink = flink Slink . (9.7)

For simplicity and without loss of generality, we normalize the network de-
mand to unit periods, i.e., Slink = 1.

9.6.8 Peer Demand

In a manner similar to the definition for the time spent on a link Slink, we
define Speer for node latency. Under the assumption of uniform message rout-
ing:

fpeers =
1
N

, (9.8)

and the total peer service demand is:

Dpeers =
Speer

N
. (9.9)

Again, we normalize the peer demand to unit periods (Speer = 1) in the
subsequent discussion.

9.7 Relative Bandwidth 173

9.6.9 Bandwidth

It follows from Little’s law, U = XD (Gunther 2005a, p. 44) that when any
node in the network reaches saturation i.e., U = 1, the maximum in the system
throughput is determined by:

Xmax =
1

Max(Dpeers, Dlink1, Dlink2, ...)
. (9.10)

The node with the longest service demand Dmax is the system bottleneck. The
service demand at the bottleneck therefore determines the maximum system
throughput. With these metrics defined, we are in a position to compare the
asymptotic performance of each of the topologies described in Sects. 9.4 and
9.5.

9.7 Relative Bandwidth

Since we are interested in network scalability up to a few million peers, it
is sufficient to base the comparison on the asymptotic network throughput
defined in (9.10). In particular, we will rank the above hypernets according
to their relative maximal bandwidth,

Xrelative = Xmax(N)/N , (9.11)

where N is the number of peers in the horizon (Table 9.3 at the end of this
section). Xrelative = 1.0 corresponds to linear scalability since Xmax = N in
(9.11).

In several respects our approach is similar to that taken by (Culler et al.
1996) for their LogP model of assessing parallel hardware performance. In
both approaches, the respective network topology enters into the performance
model via the network demand defined in Sects. 9.7 and 9.9.

9.7.1 Cayley Trees

First, we consider the relative performance of tree topologies. Figure 9.2 shows
the normalized bandwidths of a fourth-degree rooted tree, a 4-valent Cayley
tree and an 8-valent Cayley tree.

The 4-valent Cayley tree represents the default peer connectivity in the
original release of Gnutella. Similarly, the 8-valent Cayley tree corresponds to
Ritter’s comparison with Napster scalability. The curves in Fig. 9.2 terminate
at different peer populations because the population is an integral multiple
which is dramatically affected by the vertex degree and the height of the tree.

We see immediately that the 8-valent Cayley tree has the greatest band-
width up through 2 million peers. The 4-valent Cayley tree has the lowest
bandwidth, even lower than the rooted tree. This follows from the fact that
at its root the 4-tree has the same connectivity as the 4-Cayley tree, but all
its descendants have vertices of 5 degrees. Even for the 8-Cayley, at 2 million
peers the bandwidth is less than one quarter of linear scalability.

174 9 Gargantuan Computing—GRIDs and P2P

500000 1µ 10
6

1.5µ 10
6

2µ 10
6

2.5µ 10
6

Peers

50000

100000

150000

200000

Throughput

Cayley8

Cayley4

Rotree4

Fig. 9.2. Relative throughput of binary and Cayley trees

9.7.2 Trees and Cubes

We next consider the relative performance of high-degree trees and hyper-
cubes. In particular, Fig. 9.3 shows the normalized bandwidths for an 8-Cayley

500000 1µ 10
6

1.5µ 10
6

2µ 10
6

2.5µ 10
6

Peers

200000

400000

600000

800000

1µ 10
6

Throughput

Cayley20

Cayley08

Hypercube

Fig. 9.3. Relative throughput of Cayley trees and hypercubes

9.7 Relative Bandwidth 175

(the best throughput of the trees considered in Fig. 9.2), a 20-Cayley, and a
binary hypercube. The d-dimensional hypercube clearly exhibits superior scal-
ability.

9.7.3 Cubes and Tori

Of these high-order topologies, the binary hypercube offers linearly scalable
bandwidth beyond one million active peers (Fig. 9.4). The ten-dimensional
hypertorus has comparable scalability up to one million peers but degrades
beyond that point. The three-dimensional hypertorus is also shown for com-

500000 1µ 10
6

1.5µ 10
6

2µ 10
6

Peers

500000

1µ 10
6

1.5µ 10
6

2µ 106

Throughput

3-d Torus

5-d Torus

10-d Torus

HyperCube

Fig. 9.4. Relative throughput of hypercubes and hypertori

parison since that topology has been used in large-scale hardware implemen-
tations up to several hundred nodes per cluster, e.g., HP NonStop s88000
server (formerly the Tandem Himalaya).

176 9 Gargantuan Computing—GRIDs and P2P

9.7.4 Ranked Performance

The main results of our analysis are summarized in Table 9.3, which shows
each of the topologies ranked by their relative bandwidth as defined in (9.11).
The 20-dimensional hypercube outranks all other contenders on the basis of
query throughput. For an horizon containing 2 million peers, each servant
must maintain 20 open connections, on average. This is well within the capac-
ity limits of most TCP/IP implementations. The 10-dimensional hypertorus
is comparable to the 20-hypercube in bandwidth up to an horizon of 1 mil-
lion peers but falls off by almost 10% at 2 million peers. The 10-torus is also
arguably a more difficult topology to implement.

Table 9.3. Topologies ranked by maximal relative bandwidth

Network Connections Hops to Peers ×106 Relative (%)
topology per peer horizon in horizon bandwidth

20-Cube 20 10 2.1 100
10-Torus 20 11 2.1 93
5-Torus 10 23 2.1 22

20-Cayley 20 6 2.8 16
8-Cayley 8 8 1.1 13

4-Tree 4 11 1.4 12
3-Torus 6 96 2.1 10

4-Cayley 4 13 1.1 8

The 20-valent Cayley tree is included since the number of connections per
peer is the same as that for the 20-cube and the 10-torus. An horizon of 6
hops was used for comparison because the peer population is only 144,801
nodes at 5 hops. Similarly for 8-Cayley, a 9-hop horizon would contain 7.7
million peers. These large increments are a direct consequence of the high
vertex degree per node.

The 4-Cayley (modeling early Gnutella) and 8-Cayley (modeling the Nap-
ster population) show relatively poor scalability at 1 million peers. Even dou-
bling the number of connections per peer produces slightly better than 50%
improvement in throughput. This confirms the conclusions reached by Ritter
(2002) and, moreover, supports our proposal to consider hypernet topologies.

9.8 Summary

Previous studies of Gnutella scalability have tended to overlook the intrinsic
bandwidth limits of the underlying tree topology. The most thorough and
accurate of these studies is that presented by Ritter (2002). Unfortunately,
his analysis could be accused of straining at a gnat. As a viable candidate

9.8 Summary 177

for massively scalable bandwidth, our analysis demonstrates that trees are
essentially dead wood.

Conversely, by going to higher dimensional virtual networks (and the hy-
percube in particular) near linear scalability can be achieved for populations
on the order of several million peers each with only 20 open connections. Ac-
cording to Sect. 9.6, this level of scalability would already match the number
of nodes present in the entire Web.

The dominant constraint for hardware implementations of high-dimensional
networks is the cost of the physical wires on the interconnect backplane. Since
the hypernets discussed here would be implemented in software, no such con-
straints would prevent reaching the desired level of scalability. In this sense,
hypernets appear to offer good (g)news for Gnutella-like P2P networks.

10

Internet Planning

Mountains are not cones, clouds are not spheres, trees
are not cylinders, neither does lightening travel in
a straight line. Almost everything around us is non-
Euclidean.

—Benoit Mandelbrot

10.1 Introduction

In Chap. 4 we considered the fundamental concepts of scaling. In particular,
we observed that a material volume not only occupies space, but it has a
mass, and that mass has weight. As the volume is scaled up (by multiplying
each of its three linear dimensions), its weight increases until, at some point,
the volume will weigh so much that it literally crushes itself. Therefore, there
must be a critical size that an object can attain before it finally collapses. This
is the concept of allometric scaling, and the relationship between a physical
quantity like material strength (y) and the weight (x) is given by a power law
of the form:

y = xα (10.1)

where 0 < α < 1. For the discussion in Chap. 4, we found α = 0.3333.
In this chapter, we shall see that power laws of the form:

y = x−α (10.2)

(note the negative exponent) can be used to explain a peculiar form of recur-
sive scaling observed in many types of Internet traffic and often associated
with Pareto distributions (see, e.g., Downey 2001; Park and Willinger 2000).

Fractals are a mathematical object that scale according to (10.2), so they
have become a kind of common currency for explaining so-called self-similar
traffic (see, e.g., Crovella and Bestavros 1997). This is important because
(10.2) also belongs to a class of functions that have persistent correlations.
Correlations of this type produce long packet-trains that can potentially over-
flow buffers in routers and servers on the Internet. From the Guerrilla capacity
planning standpoint the question is, How big should these buffers be sized so
as to accommodate the possibility of such large packet trains?

180 10 Internet Planning

Moreover, the fractal nature of these correlations also means that many
of the conventional assumptions used to develop queue-theoretic models (see,
e.g., Gunther 2005a) are in serious jeopardy. Strong correlations violate the
usual Poisson independence assumptions invoked to make queueing network
models soluble. If not queueing models, how should we do capacity planning
for these effects?

Surprisingly, as crucial as this knowledge would appear, it has remained
inscrutable to many of those who could use it most—performance engineers
and capacity planners. This is strikingly reminiscent of the impenetrability of
queueing theory for performance engineers, which led me to write books (Gun-
ther 2000, 2005a) that made that topic a little more transparent and directly
applicable. That is another purpose of this chapter: to make the concepts
behind self-similar Internet traffic approachable enough for you to draw your
own conclusions regarding how you should take it into account to size buffers
for your local routers and Web servers. In the last couple of years some new
insights have emerged that indicate the fear, uncertainty, and doubt about
how to model networks that has been generated in the literature over the
past decade may have been overplayed.

10.2 Bellcore Traces

The genesis of this subject goes back to certain network measurements taken
at Bellcore (now morphed into Lucent Technologies) in the late 1980s and
early 1990s (Leland et al. 1993). The motivation for these measurements came
from AT&T wanting to understand the nature of broadband network usage for
both voice and data. Broadband at that time meant Broadband Integrated
Services Digital Network (B-ISDN) or just ISDN. ISDN is a set of CCITT/ITU
standards for digital transmission over ordinary telephone copper wire as well
as over other media.

An example of the network probe architecture used by Bellcore engineers
is shown in Fig. 10.1. The Ethernet local area network (LAN) comprised some
140 hosts and routers which served Bellcore researchers engaged in everything
from software development to prototyping new services for the telephone sys-
tem. The traffic was mostly from services that used the internet protocol (IP)
to perform such things as remote login or email, and Network File System
(NFS) file services from NFS servers to workstations. Some audio from a local
radio station was also carried on the Ethernet LAN.

Notice that the probe is an Ethernet monitor on their local network and the
Ethernet connection to the Internet is via a separate IP router. The network
probe recorded packet traces over an initial period of 3–4 years, with trace
files ranging in size from about 50 MB to 15 GB (Fig. 10.2).

The monitor was programmed to gather the packets off the network being
studied as they arrive, place them in buffers, and record a timestamp and sta-
tus information for each packet. For each packet seen on the Ethernet under

10.2 Bellcore Traces 181

Ethernet Monitor

BridgeIP Provider Router

IP

Provider network

and Internet

T-1 Link

W. S. . . . server
File

Bridge

W. S.server
File

server
File File

server

Bridge Bridge

. . .

Repeater

Wing A

Rest of MRE

Facility and

Bellcore

controlled

Fig. 10.1. Network schematic showing the location of the ethernet probe for the
January 1990 measurements (Leland et al. 1993)

study, the monitor recorded a time stamp consisting of a 48-bit integer num-
ber of 4-µs intervals since the start of the trace. This time stamp represents
the arrival time of the end of the packet rather than the time the packet was
placed on the Ethernet; the latter can easily be calculated. The monitor also
recorded the packet length, the status of the Ethernet interface (which con-
tains information about whether the packet is well-formed or whether packets
were lost since data on the last one was taken), and finally the first 60 bytes
of data in each packet. The system delivered time stamps accurate to within
20 µs for the arrival time of each packe; the system was used to gather the
most recent data set used in the analysis.

Some tools capable of capturing and analyzing IP packets, include:

Columbia: www.cs.columbia.edu/∼hgs/internet/tools.html
Ethereal: www.ethereal.com
LASS: www.samsi.info/TR/tr2004-07.pdf
LBL tools: ita.ee.lbl.gov/html/software.html
LBL traces: ita.ee.lbl.gov/html/traces.html
SELFIS: www.cs.ucr.edu/∼tkarag/Selfis/Selfis.html
Web traces: www.web-caching.com/traces-logs.html

182 10 Internet Planning

0 100 200 300 400 500 600 700 800 900 1000

0

20000

40000

60000

(a)
Time Unit = 100 Seconds

Pa
ck

et
s/

Ti
m

e
Un

it

0 100 200 300 400 500 600 700 800 900 1000

0

2000

4000

6000

(b)
Time Unit = 10 Seconds

Pa
ck

et
s/

Ti
m

e
Un

it

0 100 200 300 400 500 600 700 800 900 1000

0

200

400

600

800

(c)
Time Unit = 1 Second

Pa
ck

et
s/

Ti
m

e
Un

it

0 100 200 300 400 500 600 700 800 900 1000

0

20

40

60

80

100

(d)
Time Unit = 0.1 Second

Pa
ck

et
s/

Ti
m

e
Un

it

Pa
ck

et
s/

Ti
m

e
Un

it

0 100 200 300 400 500 600 700 800 900 1000

0

5

10

15

Fig. 10.2. Evidence of self-similarity: Ethernet traffic (packets per time unit) on five
different time scales. (Different gray levels are used to identify the same segments
of traffic on the different time scales (Leland et al. 1993)

10.3 Fractals and Self-Similarity

It has been known for a long time that the coastlines of different countries
(presumably as measured in an atlas) fall along different straight lines with
very similar negative slopes (Mandelbrot 1983). As S gets smaller, L gets
bigger. From the axes in Fig. 10.3, we see that the relationship is linear and
therefore can be written as:

log(L) = −D log(S) , (10.3)

where D is a constant of proportionality. But this is the same as:

log(L) = log(1/S)D . (10.4)

Taking the antilogarithm of both sides of (10.4) produces:

10.3 Fractals and Self-Similarity 183

1 1.5 2 3
LogHSL

3

LogHLL

Fig. 10.3. Log-log plot of Lewis Richardson’s coastline data (Mandelbrot 1983) for
the Australian coast (top band), the German land frontier (middle band), and the
west coast of Britain (bottom band). The x-axis is the step size S (e.g, separation of
compass legs) and the y-axis is the estimated length L of the respective coastline in
an atlas. Note that each band appears to fall along a set of approximately parallel
lines sloping downward from left to right

L =
1

SD
= S−D . (10.5)

Formally speaking, this function is a hyperbola.

Remark 10.1. If we had plotted log(L) against log(1/S) in Fig. 10.3, we
would have produced straight lines with positive slopes. Both representations
are equivalent. The positive slope matches that seen in the Bellcore data
(Fig. 10.4).

The quantity D in (10.3) represents the slope of any one of the lines in
Figs. 10.3 and 10.4, and since (10.5) has the same form as (10.2), it repre-
sents power law scaling. For the Bellcore data in Fig. 10.4 the y-axis, labeled
log10(r/s), corresponds to a quantity called the rescaled range. It is the ratio
of the range r of the data, i.e., minimum to maximum, and the sample stan-
dard deviation s. This is the logical equivalent of the coastline length. The
x-axis, labeled log10(d), is the logarithm of the sample size d. It is the logical
equivalent of the step size.

Example 10.1. If the sample consisted of 10 measurements, you could take
pairs (d = 2), or triples (d = 3), and so on. For Bellcore traces, the samples are:
100s, 1000s, etc. On a logarithmic scale they become: log(d) = 2, log(d) = 3,
etc. ��

184 10 Internet Planning

log10(d)

lo
g1

0(
r/s

)

0 1 2 3 4 5

0
1

2
3

4

Fig. 10.4. Log–log plot of rescaled range data from a Bellcore trace file. Data
clusters around a straight having an estimated slope of D = 0.79 (Leland et al.
1993)

Fig. 10.5. Schematic representation showing how the inverse relationship between
the step size S and the estimated length L arises. As S gets smaller it can get into
more nooks and crannies, so the length L of the irregular line becomes longer. It
also explains the downward slope of the bands corresponding to irregular coastlines
in Fig. 10.3

10.3 Fractals and Self-Similarity 185

In the unbounded hyperbola (10.5), L becomes infinite as S approaches the
origin, and conversely L approaches zero as S goes to infinity. This is a signal
of infinite variance and long-range correlations seen in both the Bellcore data
and the ragged coastlines. We discuss this further in Sect. 10.4. Figure 10.5
shows how the inverse relationship given in (10.5) arises. As the step size S
gets smaller it can fit into more nooks and crannies, so the estimated length
L of the irregular line increases. This is the connection between traditional
Euclidean geometry and the non-Euclidean behavior of fractals alluded to in
the rubric to this chapter. It also explains the downward slope of the bands
corresponding to irregular coastlines in Fig. 10.3.

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

Fig. 10.6. Example of a geometrical fractal with D = −1.5849

What are the defining features of a fractal like the one shown in Fig. 10.6?
They all start with an initiator and a generator and an iterating procedure
that is applied to the initiator repetitively. In addition, fractals possess:

Iteration: Some aspect of the iterated limiting object is infinite e.g., total
length, perimeter, or surface area. Some aspect of the limiting object re-
mains finite e.g., area of the covering triangle in Fig. 10.6.

Self Similarity: At any step in the iteration, a piece of the object resembles
a scaled down but otherwise identical copy of the previous iteration. It
appears self-similar (SS).

The fractal dimension D is a nonspatial dimension that measures the degree
to which a fractal curve fills space. It also called the Hausdorff measure (Man-
delbrot 1983).

186 10 Internet Planning

10.4 Fractals in Time

Many readers will have seen the phrase “second-hand smoke” in the popular
press. This phrase refers to the risk of suffering deleterious health effects from
cigarettes that someone else is smoking. For example, you are in a restaurant,
a train, or some other confined space when suddenly, you become aware of
pungent cigarette smoke entering your nose. Although the smell can be quite
strong and may seem like the cigarette is very close by, you often have to
scan around carefully to see that the source of the smoke is actually coming
from a smoker on the other side of the room. Since there is no breeze in a
confined space, how did their cigarette smoke get into your nose? The answer
is, diffusion. Diffusion, in this case, refers to the process of smoke moving from
a region of high concentration (the cigarette) to a region of low concentration
(the extremities of the room in general and your nose in particular). The
modern explanation of diffusion in terms of the smoke particles being spread
by incessant collisions with air molecules would have been met with skepticism
just 100 years ago.

10.4.1 Short-Range Dependence

1905 was a very good year for Albert Einstein because he wrote several seminal
scientific papers, one of which explained how smoke particles (among other
things) diffuse. In that paper (see English translation in Einstein 1956), he
proposed that the smoke particles do not simply drift across the room with
some average speed. Rather they are jostled back and forth in an entirely
erratic way by means of a gargantuan number of independent microscopic
shocks from unseen air molecules (Fig. 10.7). These stochastic shocks are
associated with a probability distribution whose variance σ2 was shown by
Einstein to vary linearly with the elapsed time t:

σ2(t) = 2Dt . (10.6)

Here, D is the so-called diffusion coefficient; a quantity that can be measured
directly. Equation (10.6) leads to what has become known as the Einstein
relation:

σ(t) =
√

2Dt . (10.7)

Previous attempts to measure the average speed or velocity of smoke particles
had failed because their instantaneous zig-zag motion meant the velocity is
essentially infinite.

Using the same notation as (Gunther 2005a), where E(X) denotes the
expected or mean value of a random variable X, the mean displacement in
the one dimension is:

µ(t) = E(X(t)) , (10.8)

and the variance V ar(X) about that mean is given by:

10.4 Fractals in Time 187

Fig. 10.7. A sample path for a random walk process—a discrete space version
of the diffusion process. Although the overall displacement is not great, there are
a multitude of small steps taken to get there. These small steps have a common
mean free path between events that correspond to collisions of a smoke particle
with surrounding air molecules

σ2(t) ≡ V ar(X(t)) = E(X2(t)) − µ2(t) . (10.9)

If we place the cigarette at the origin, then a smoke particle has equal prob-
ability of being knocked to the left or the right, so that µ(t) = 0 and the
variance reduces to the mean squared displacement E(X2(t)). In other words,
(10.7) states that the average spreading of the smoke particles is proportional
to the square root of the elapsed time since they left the cigarette (H = 0.5
in Fig. 10.8). Technically speaking, we are considering just one short puff on
the cigarette.

More important, Einstein showed that his physical model given by (10.7)
held independently of the size of the smoke particles and the size of the sur-
rounding particles in which they were immersed. The only thing that changed
was the time scale over which they spread; bigger particles take longer to
spread over the same average displacement. In fact, the smoke particles could
be as big as dust particles, which can be seen more easily under a microscope,
and those dust particles could be suspended in a liquid like water, rather than
a gas like air. In that case, when viewed under a microscope, the dust particles
can be seen literally jiggling around erratically as if they were alive (which
was once thought to be the explanation). This stochastic motion (Fig. 10.7)
is called Brownian motion (Einstein 1956) after its original observation by
Robert Brown in 1828. Using (10.7), Einstein calculated that a typical size
dust particle immersed in water would undergo an average displacement of
about 6 µm at room temperature. Within a year, this prediction was con-

188 10 Internet Planning

2 4 6 8 10 12 14
t

2

4

6

8

10
sHtL

H=0.50
H=0.75
H=1.00

Fig. 10.8. Stochastic spread of σ(t) as a function of elapsed time corresponding to
various Hurst parameter values H = 0.5 (diffusion), H = 0.75, and H = 1.0

firmed experimentally and together with the fact that Einstein’s model was
as simple as possible but no simpler (see Sect. F.2 in Appendix F), it con-
vinced most skeptics that atoms and molecules must really exist despite the
fact that they could not be observed directly.

For the purposes of this chapter, the invariance of Einstein’s model to
particle size means that Brownian motion is fractal-like or SS. Going to smaller
and smaller time subdivisions produces the same kind of erratic path. It is
essentially a fractal in time.

Writing (10.7) in a slightly more skeletal form as:

σ(t) ∼ t
1
2 , (10.10)

we can consider generalizing the exponent in (10.10) to something that can
take on values greater then 1

2 . Physically speaking, the random walk in
Fig. 10.7 develops large excursions or “jumps” that are greater than the typi-
cal mean free path between collisions (see Fig. 10.9). These jumps are known
as Levy flights and can be simply described by introducing a new parameter,
the Hurst parameter H ∈ (1

2 , 1), into the exponent of (10.10). This extension
can be written symbolically as:

σ(t) = t0.5︸︷︷︸
Einstein

−→ tH︸︷︷︸
Levy

(10.11)

10.4.2 Long-Range Dependence

One mechanism that has been proposed to explain the generalized power
law in (10.11) is a multisource on/off Pareto model (Crovella and Bestavros

10.4 Fractals in Time 189

Fig. 10.9. Levy flights correspond to the occurrence of occasional large excursions
or jumps. Compare this with the mean displacement in Brownian motion (Fig. 10.7)
which results from a multitude of relatively small steps taken in succession

1997). The idea is that to produce traffic with long-range dependent (LRD)
correlations on the Internet requires multiplexing many different sources (user-
initiated requests) into a network segment or network router, and that each
source causes the emission of files that are sometimes very large (mammoths)
and other times relatively small (mice) according to a Pareto-like distribution
in time.

The relationship between LRD and SS is subtle, and one has approach
these attributes with caution because there are SS processes that are not
LRD (e.g., Brownian motion), and it is possible to have time series with long-
term correlations that are not SS. This ambiguity can be removed by judicious
choice of definitions from time series analysis (see, e.g., Box et al. 1994), which
leads to Theorem 10.1. Using (10.8) we define the autocovariance as:

γ(s, t) ≡ Cov(X(s), X(t)) = E([X(s) − µ(s)][X(t) − µ(t)]) . (10.12)

Definition 10.1 (Weak Stationarity). A time series is called second-order
or weakly stationary if it satisfies the following conditions:

1. µ(t) = µ and σ2(t) = σ2 for all t.
2. γ(s, t) = γ(s + k, t + k); (10.12) is time-translation invariant.

Definition 10.2 (Weak Self-Similarity). Weak SS requires that the auto-
covariance satisfy

γ(k) =
1
2
σ2

[
(k + 1)2H − 2k2H + (k − 1)2H

]
, (10.13)

190 10 Internet Planning

where H is the Hurst parameter.

Theorem 10.1 (Equivalence of SS and LRD). For a weak SS process, if
H ∈ (1

2 , 1) in (10.13) then SS ⇔ LRD.

Proof. The interested reader can find a detailed proof of this equivalence
in (Leland et al. 1993) and (Park and Willinger 2000, Chap. 1).

The autocorrelation function is defined as:

ρ(k) =
γ(k)
σ2

. (10.14)

For H ∈ (1
2 , 1) (10.14) behaves asymptotically (k → ∞) as:

ρ(k) ∼ k−β , (10.15)

where β ∈ (0, 1).
In summary:

• Aggregated time series are analyzed using the autocorrelation function.
• LRD time series are analyzed using the autocovariance function.
• LRD in the frequency domain (inverse time) are analyzed using the power

spectra (see Sect. 10.6).

10.5 Impact on Buffer Sizing

Usually, one expects to apply basic queueing theory (see, e.g., Gunther 2005a,
Chap. 2) to estimate the size of a buffer required to hold a waiting line of
packets that are to be processed by a single-server router.

10.5.1 Conventional Buffer Sizing

The usual assumption is that the arrival of packets is statistically indepen-
dent. In other words, the occurrence of arrival events follows a Poisson dis-
tribution, and therefore the mean time between arrivals (denoted by λ−1) is
exponentially distributed. This kind of statistical independence property of
the exponential distribution means that what happened in the past has no in-
fluence in the current period. For this reason such statistical independence in
time is called a memoryless process or Markovian processes (denoted M) (see
Gunther 2005a, Appendix C). If the mean interarrival period λ−1 and the
the mean service period S both belong to an exponential distribution, then a
queue of this type is denoted in Kendall symbols as M/M/1; the first M refers
to the Markovian arrival process and the second M referrs to the Markovian
service process with a single server (Fig. 10.10).

As packets arrive at the router, the expected time to be routed, i.e., the
residence time, consists of two components:

10.5 Impact on Buffer Sizing 191

Server

Waiting line

Arriving
packet

Routed
packet

Fig. 10.10. Simple M/M/1 queueing model of an Internet router showing the
waiting line or buffer and the service facility that does the routing. The queue
length Q refers to the total number of packets in the buffer plus the one that is
currently being routed with server utilization ρ ∈ (0, 1)

1. The expected time to process packets already waiting for service, i.e., the
queueing component.

2. The expected service time for the arriving packet, i.e., the service compo-
nent.

If we assume that the mean service time S is the same for every packet and
the average queue length is Q, the expected time for the arriving packet to
reach the server is QS. The two components of the residence time can then
be written as:

R = QS + S . (10.16)

If there are no packets ahead of the arriving packet, then Q = 0 (no queueing)
and the residence time is precisely R = S. Otherwise, the arriving packet has
to join the end of the line and wait.

Substituting Little’s law (Q = λR) into (10.16) produces:

R = (λR) S + S , (10.17)

and solving for R we find:

R =
S

1 − λS
. (10.18)

A further substitution of the utilization law (ρ = λS) into the denominator
of (10.18) leads to:

R =
S

1 − ρ
. (10.19)

Equation (10.19) allows us to determine the average residence time, even if
the arrival rate is not known. The measured utilization of the server can be
used instead.

We can also interpret (10.19) as an inflated service time. The inflation
factor is (1 − ρ) for a single server. Since ρ can be interpreted as the fraction
of time the server is busy during any measurement interval, the quantity (1−ρ)

192 10 Internet Planning

can be interpreted as the fraction of time the server is available. If the server
is available (ρ = 0), then R = S because there is no queueing.

Multiplying both sides of (10.19) by λ produces:

Q =
ρ

1 − ρ
, (10.20)

which is the average queue length expressed entirely as a function of the
server utilization ρ. It is also equivalent to the mean number of requests in the
system—a single buffer and a single router in this case. Since the utilization
is bounded ρ ∈ [0, 1), it follows that Q = 0 when ρ = 0, whereas the buffer
rapidly approaches an infinite length as ρ → 1. This happens because the
queue length becomes unbounded when the stability condition λ < S−1 is no
longer satisfied at ρ = 1.

Convential rules of thumb for M/M/1 buffer sizes are:

Q = 0, when ρ = 0;
Q = 1, when ρ = 1/2;
Q = 3, when ρ = 3/4;

based on (10.20). These rules are also visually evident for the curve labeled
H = 0.5 in Fig. 10.11.

These conventional rules of thumb become invalid, however, if a router is
subjected to packet arrivals that are not Markovian due to LRD effects.

10.5.2 LRD Buffer Sizing

To get some idea of how radically different buffer sizing considerations be-
come under the influence of LRD effects, Norros (1994) generalized (10.20) to
include the Hurst parameter H in the following model:

Q =
ρ

1
2(1−H)

(1 − ρ)
H

1−H

. (10.21)

The dramatic significance of (10.21) for sizing packet buffers is shown in
Fig. 10.12. Moreover, a comparison with actual network measurements in
Fig. 10.12 shows strikingly good agreement.

In this model, the “burstiness” of Internet packet arrivals is characterized
the by Hurst parameter H ∈ (1

2 , 1). For H = 1
2 , (10.21) is identical to the

M/M/1 sizing model (10.20). For H > 1
2 , however, the highly correlated ar-

rivals of LRD traffic produce both very large and very small packet trains,
sometimes referred to as the mammoth and mouse effect. The shocking con-
clusion of this model is that such fractal-like correlations between packets can
cause buffers to grow unbounded at intermediate traffic intensities! In other

10.6 New Developments 193

0.2 0.4 0.6 0.8 1
r

2

4

6

8

10
QHrL

H=0.5
H=0.8
H=0.9

Fig. 10.11. Queue length of the generalized buffer model (10.21) as a function
of network traffic load. Compared to the statistically independent traffic (M/M/1)
corresponding to H = 0.5, highly clustered packets represented by H > 0.5 cause
the mean queue length to grow very rapidly at much lower loads

words, buffer overflow becomes a significant possibility at relatively low traffic
intensities. This not only defies conventional queueing theory, it is completely
counter intuitive. This is yet another reason good capacity planning models
are important.

10.6 New Developments

The conclusions of Sect. 10.5.2 appear devastating for sizing buffers in local
routers and servers and Internet capacity planning in general (Paxson and
Floyd 1995), including the inability to use simulation tools (Paxson and Floyd
1997).

The dim prospect of this conclusion is so alarming, in fact, that I under-
took to interviewing various network engineers, especially those responsible
for monitoring and planning large-scale websites, to determine what method-
ologies they employed to address these important LRD phenomenon. To my
great surprise, the results of my unscientific poll indicated that buffer over-
flows of the type discussed in Sect. 10.5 are either never observed, or, if they
are present, they are too subtle to be measured. Contrast this with the well-
known, frequent occurrence of so-called denial-of-service attacks that can also
cause buffer overflows in the TCP/IP listen queues of Internet servers.

Moreover, it was suggested to me by several network engineers that even if
LRD clustering of IP packets occurred on the Internet backbone, those packet
trains would simply lead to a higher than average drop rate, which would, in

194 10 Internet Planning

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100

Load (%)

B
u

ff
e

re
d

 p
a

c
k
e

ts

H=0.9

H=0.8

M/M/1

Fig. 10.12. Measured buffer occupancy due to self-similar traffic generated on an
isolated test network. Note the resemblance to the buffer model in Fig. 10.11

turn, cause the dropped packets to be retransmitted. This is precisely how it is
supposed to be in order to maintain routing stability. The further implication
is that any serious LRD effects are therefore likely to be much more localized
on the Internet, e.g., within a given website.

10.6.1 Ethernet Packetization

Add to this list of counterexamples a recent publication (Field et al. 2004) in
which the authors not only measured localized network traffic, but monitored
traffic on their 1000Base-T switched ethernet LAN, which was coupled to the
Internet via a router. This is very similar to the monitoring architecture for
the original Bellcore traces. Comparing the Bellcore monitoring architecture
in Fig. 10.1 with the 1000Base-T network monitored near the Web server Net-
work Interface Card (NIC) in Fig. 10.13, these authors discovered a number
of interesting results that may be summarized briefly as:

• External packet arrivals from the router into the Web server are typically
Markovian rather than fractal. In other words, since the arriving packets
were Poisson, they alone could not be responsible for any measured power
law behavior.

10.6 New Developments 195

Operating system

Ether device driver

File system

Router

Internet

S(f) ~ 1/fS(f) ~ const.

Inbound pkts Outbound pkts

Fig. 10.13. Ethernet switch measurement architecture reported in Field et al.
(2004). The power spectrum S(f) being constant on the input side corresponds
to Poisson arrivals, but it is power law S(f) ∼ f−1 on the output side of the Web
server. This implies the power law behavior typically associated with self-similar
traffic is due to the Ethernet packetization process

• Packetization interarrival periods (E in Fig. 10.13) within the operating
system (Linux in these experiments) are power-law, like (10.2), and, in
particular, they are Cauchy distributed.

• Requested file sizes (L in Fig. 10.13) are also Cauchy distributed (i.e.,
power law or fractal-like).

• Ethernet frame sizes (or packet sizes B in Fig. 10.13) occur as 1518 Byte
multiples (or less for padding).

• Outbound packet are LRD correlated with 1/f power spectrum.

The conclusion that follows from these observations is that the Ethernet
packetization process alone appears to be responsible for the LRD behavior
seen in the outbound packet traces, and it is relatively insensitive to the
interarrival periods between packetization requests. This result sits in stark
contrast to the multisource on/off Pareto model mentioned in Sect. 10.4.

K. Christensen (private communication, 2005) has been able to corrobo-
rate the findings of Field et al. (2004) for nonaggregated arrivals using his
own Ethernet simulations (private communication, 2005). This ethernet sim-
ulation model has been extensively validated and data generated by it was
presented to the IEEE 802.3 working group. A switched Ethernet simulation is

196 10 Internet Planning

equivalent to a single-station shared-bus model with no CSMA/CD or binary
exponential backoff, and going from 10 Mbps to 1 Gbps is just a parameter
scaling.

10.6.2 LRD and Flicker Noise

Based on Sect. 10.6.1 we now understand that LRD packet trains do not
require that the arrivals be power law, rather the power-law correlations are
more closely associated with a so-called “flicker noise” or “pink noise” or
“1/f” noise, which has a spectral density S(f) given by:

S(f) ∼ 1
f

, (10.22)

where f is the frequency of the measurement periods in Fig. 10.14. This for-
mulation is the frequency-domain counterpart of the time-domain fractals
discussed in Sect. 10.4. Flicker noise has been known for a long time and was
studied by Schottky in 1918 because of its presence in thermionic tubes and
other early electrical circuits.

1 10 100 1000 10000
Log f0.0001

0.001

0.01

0.1

1

Log SHfL

Fig. 10.14. Log–log plot of the frequency spectrum S(f) as a function of frequency
f showing white noise (left), “flicker noise” (center), and Brownian noise (right).
Compare these curves with the coastline fractal data in Fig. 10.3

More generally, the spectral density or power spectrum S(f) is Fourier
transform of autocorrelation function ρ(t). If ρ(t) ∼ tα−1 then (10.22) be-
comes:

S(f) ∼ 1
fα

, (10.23)

10.7 Summary 197

which has the same form as (10.2) with x replaced by the frequency f . The
form of (10.23) on a log–log plot is shown in Fig. 10.14, and like Figs. 10.3
and 10.4 the slope is determined by the value of the exponent α.

The following noise models can also be associated with the value of expo-
nent in (10.23):

White noise: α → 0
Flicker noise: α → 1
Brownian process: α → 2

as depicted in Fig. 10.14. In this way, several apparently different random
processes can be unified by virtue of the power law exponent α. At the time
of writing, there is still no universal physical model of 1/f noise.

10.7 Summary

In this chapter we have tried to provide an overview of an important topic
regarding the peculiar impact of self-similar Internet traffic on buffer sizing
for routers and servers. The reason this is potentially very important for ca-
pacity planning is due to LRD clustering of Internet packets of the type first
observed in the Bellcore measurements circa 1990. Such fractal-like cluster-
ing potentially leads to buffer overflow at much lower than conventionally
expected traffic intensities.

Unfortunately, most of the details concerning LRD effects are contained in
academic papers that are mathematically very sophisticated and impenetrable
to the typical network capacity planner. This chapter has attempted to provide
a simpler mathematical treatment than is generally available, but without any
loss in accuracy. We concluded with some recent measurements and analysis
that indicate the severity of these LRD effects may have been overestimated.
Nonetheless, even if LRD effects are less important now than is currently
portrayed, the wise GCaP planner will use the tools listed in Sect. 10.2 to
monitor Internet traffic for their appearance in the future as multi-media
payloads become more commonplace.

11

Going Guerrilla—A Case Study

Contributed by James A. Yaple

11.1 Introduction

This chapter presents an account of the real-world experience of applying
Guerrilla capacity Planning (GCaP) techniques to the management of Sun
Solaris UNIX platforms deployed at the United States Department of Vet-
eran’s Affairs.1 We review some basic concepts, pertinent issues, and risks
together with an assessment of the open source toolsets we employed to de-
liver results at low cost and in a timely fashion. Solaris-specific tools, such as
the SE toolkit (SEtk) and the open source Orca data collection package, are
discussed in detail. We also describe how these collected performance data
were aggregated and uploaded to a z/900 mainframe for later processing with
SAS statistical software.

The overall objective of this project was not to establish a best practice, but
rather to convey the experience of using a guerrilla-style approach to capacity
planning. The Austin Automation Center (AAC) began with essentially no
budget and a desire for results on an accelerated schedule. As described in
Chap. 1, the focus was on quickly determining a sense of direction as opposed
to spending a lot of time getting a fix on a compass bearing using an expensive
global positioning (GPS) device. From the perspective of management, they
just wanted to know which city they should fly to, not how to read GPS
coordinates and fly the aircraft themselves.

11.2 Guerrilla Monitoring Phase

In the summer of 2003, I read several online articles that Dr. Neil Gunther had
written for the professional organization known as the Computer Measurement
Group (www.cmg.org). In some of these articles, Gunther (2003) introduced

1 James Yaple is with the Austin Automation Center, US Department of Veteran’s
Affairs in Austin, Texas. This chapter is an updated version of (Yaple 2004).

200 11 Going Guerrilla—A Case Study

the notion of Guerrilla Capacity Planning. A central notion leverages the
fact that many of the factors in performance management are unknown or
uncertain (including monitored performance data), so aiming for a high degree
of accuracy gains little and therefore tends to waste a lot of time. The Guerrilla
approach (Chap. 1), on the other hand, aims to provide managers and other
decision makers with a less accurate but more immediate sense of direction,
rather than a precise, but late, compass bearing. According to Gunther (2003),
performance management can be partitioned into three evolutionary phases:

1. performance monitoring
2. performance analysis
3. performance prediction

Performance monitoring, therefore, is the foundation component in the de-
velopment of any Guerrilla capacity plan. Moreover, performance monitoring
typically gets the most attention within the overall performance management
effort because it is easiest to address with scripts developed by administrators
or commercial tools.

But what about those situations where performance monitoring is a re-
quirement, but commercial tools have not been selected and deployed, and
consistent home-grown scripts do not exist? How can performance measure-
ments be made consistently across dozens of production systems? Can a Guer-
rilla approach be applied in this case?

This was the case at the ACC. The AAC is a recognized, award-winning
federal data center within the Department of Veterans Affairs (VA). As one
of six VA Enterprise Centers, the AAC provides e-government solutions and
enterprise best practices to support the information technology needs of cus-
tomers within the federal sector. The AAC transitioned into a fee-for-service
enterprise operation in 1994. This allows the Center to record a “profit” for
identifying efficiencies, managing service levels, and implementing recovery
and chargeback policies.

The AAC had realized for some time that if you do not measure it, you
cannot manage it. Consequently, the ACC had already been involved in a
large-scale competitive analysis to procure and implement a commercial per-
formance monitoring facility. Unfortunately, the procurement cycle turned out
to be long and would have taken months before a final vendor was selected and
a suitable monitoring solution implemented. A different strategy was needed
to get capacity planning data in the short term. The essence of this chapter
is to demonstrate how an enterprise application-hosting center was able to
implement a guerrilla-style approach to developing the monitoring phase of
performance management for its UNIX systems.

In accordance with Gunther’s prescription, our Guerrilla approach ex-
ploited opportunism, and developed tiny tools with little or no available bud-
get (cf. Sect. 1.3). The final result, including data collection, aggregation, and
alerting will ultimately be replaced with a commercial package. However, by

11.3 The Basic Solution 201

sharing the AACs experiences with other organizations, it was felt that they
might also be able to improve their own attempts at GCaP.

11.3 The Basic Solution

In 2001, the AAC began to explore how to keep track of an increasing number
of UNIX servers, mostly Sun Solaris. The process at that time was a mixture of
system administrator scripts and a rapid response if new data were required.
There was no budget for sophisticated tools, and the number of servers that
needed to be managed was growing rapidly.

Fig. 11.1. ACC monitoring architecture

The core of the solution (Fig. 11.1) was based on an open source package
known as Orca (www.orcaware.com/articles/1999 07 01 sunworld.html),
originally developed by Blaire Zajac. Orca was intended to meet the following
requirements:

• The ability to monitor many systems.
• Measure and display short (daily) and long term (yearly) trends.
• Allow easy comparison of the same type of measurement between different

systems.
• Allow easy viewing of all system measurements on different time scales.
• Plots are always up to date and always available.
• The act of measuring a system should not adversely affect it (e.g., by

placing a large additional load on the CPUs and degrading throughput).

202 11 Going Guerrilla—A Case Study

Generically, an Orca implementation consists of several functions. First and
foremost is the data collector, which typically accesses the /proc table and
other UNIX kernel data structures. Second, a method is needed to aggregate
these data into a single location. Yet another component takes these raw data
and generates graphical output on a Web page. Viewing the results is then
performed with a Web browser.

11.3.1 Implementation Details

The AAC started with a relatively generic Orca configuration. Since the tar-
get environment was mostly Solaris, data collection was accomplished using
orcallator.se developed by Zajac from the Solaris SEtk (Cockcroft and
Pettit 1998) component known as percollator.se (cf. Sect. 8.5.2). Data
from multiple clients was moved to a central server using the open source
tool rsync (samba.anu.edu.au/rsync). Orca, with embedded round robin
database (RRD) (rrfw.sourceforge.net). library functions processed the
aggregated data and produced the files for display. Apache HTTP server 1.3
provided a suitable Web display.

The orcallator.se program, written in the SymbEL scripting language,
traces its lineage back to the SEtk written by Cockcroft and Pettit (1998).
Orcallator is an enhanced version of SEtk percollator.se, which, in turn,
collects most of the measurements shown in the SEtk zoom.se script (Cock-
croft and Pettit 1998). Data collected by orcallator.se are appended as
a single line to a text file every five minutes for later processing and view-
ing. The data are columnar with a varying number of columns based on
the system configuration. A configuration with more disks or network in-
terfaces would have more columns of data, but each observation is still con-
tained on a single line. Data are transferred from those hosts running the
data collector to a central host using rsync, an open-source utility for fast
incremental file transfer which is freely available under the GNU General
Public License, version 2. The use of rsync for this purpose is described
in “Capacity Planning for the Masses—Using the SE Toolkit and Orca”
(www.samag.com/documents/s=8965/sam0314a/0314a.htm). At AAC, files
are transferred using a secure shell (ssh) configuration for encryption of the
data stream.

The final component is the Orca script itself. Orca is a Perl script that
reads a configuration file (orcallator.cfg), describing where its input text
data files are located, the general format of the input data files, where its
RRD data files should be located, and the root of the HTML tree to be gener-
ated. The orcallator.cfg file contains an informational link to the Orcaware
Web site. The link appears as a hyperlink in the resulting Web presentation,
describes the data being plotted, and offers some guidelines on what might
constitute a good or bad performance value. The AAC has found these guide-
lines to be somewhat generic, but they often provide a good starting point

11.3 The Basic Solution 203

for further analysis as well as historical information on the evolution of the
orcallator.se counters.

11.3.2 Orca Output Examples

The previous sections explained the circumstances and motivation for the
Guerrilla approach. Figures 11.2–11.6 show a collection of graphical Orca
outputs which demonstrate its versatility in helping us achieve our Guerrilla
monitoring plan.

Fig. 11.2. CPU utilizations broken down by user, system, wait IO, and idle per-
centages for the host logger2. Each metric can be displayed in its own color (not
shown here). Each value is provided at the current time, as well as a minimum,
maximum, and average for the specific time period. This is a daily graph, showing
the pattern of metric behavior over some 20 h. In this case, each major grid line
represents one hour

11.3.3 Round-Robin Database

The ability to read the collected data files and generate GIF plots is facilitated
by Orca through the use of the RRD library written by Tobias Oetiker. Some
users of tools such as the Multi Router Traffic Grapher (MRTG) may be
familiar with RRD. It provides a flexible binary format for the storage of
numerical data measured over time.

A convenient function provided by RRD is data consolidation. Consolida-
tion of input data reduces the amount of disk space required for long-term
data storage. The consolidated data is used by Orca when it creates charts
that span long periods, e.g., yearly plots of performance data. Consolidation

204 11 Going Guerrilla—A Case Study

Fig. 11.3. Free memory on the Solaris host shilling is displayed across one
week. This metric is physical bytes of free memory. On a Linux system using the
procallator data collector, this metric is shown as a percentage of memory free.
Each metric is provided as a current value, as well as a minimum, maximum, and
average for the specific time period. In this case, each major grid line represents six
hours

Fig. 11.4. Weekly graph of Ethernet input and output bits per second on the ge1

interface of host deimos. Each metric is provided as a current value, as well as a
minimum, maximum, and average for the specific time period, and can be displayed
in its own color (not shown here). Major grid lines represent six hours

is one of the key features of RRD: The data files do not grow significantly over
time. In Orca’s case, 5-minute data are kept for 200 h, 30 min averaged data
are kept for 31 d, 2 h averaged data are kept for 100 days, and daily averaged
data for 3 years. Such a data file is typically about 50 KB. Another feature of
RRD is that it can read an arbitrary number of RRD files and generate GIF
plots. Plots will either show a daily, weekly, monthly, or yearly view of the
data in question.

11.3 The Basic Solution 205

Fig. 11.5. System-wide disk activity for host janus. Read and Write activity can
be presented in a specific color (not shown here) as an area graph. Each metric is
provided as a current value, as well as a minimum, maximum, and average for the
specific time period. In this case, each major grid line represents one hour

Fig. 11.6. Weekly display of the disk usage on various file systems on the host
earth. Each file system can be shown in its own color (not shown here). Each
metric is provided as a current value, as well as a minimum, maximum, and average
for the specific time period. In this case, each major grid line represents six hours

206 11 Going Guerrilla—A Case Study

In its normal mode, Orca runs continuously, sleeping until new data are
placed by orcallator.se into the output data files. Once new data are writ-
ten to a file by orcallator.se, Orca updates the RRD data files and recre-
ates any dependent GIF charts. By starting with a basic Orca installation,
the AAC realized several advantages very quickly. Orca is freely available
in terms of cost and access to the source code. Open source allows sites to
adjust parameters in response to local needs, and provides access to the ex-
periences of other users via e-mail support lists and user contributions to the
project. The orcallator.se script runs as a single process on each system
and does not fork any new processes. In this way it collects performance data
from each system without becoming one of the performance problems that
needs to be investigated. Orca is able to work with almost any text data file.
The AAC accepted some of the basic limitations in the data collection por-
tion, orcallator.se and the SEtk. For now, these tools are only available
on SPARC and x86 Solaris platforms. To support Orca monitoring on new
platforms, a new data collection tool would have to be deployed.

11.4 Extending the Basic Solution

While the AAC uses Orca to provide some level of monitoring, additional
needs demanded further extensions be made to the basic implementation.
Most of the AAC performance and capacity planning staff were mainframe-
oriented and had been schooled in classic methods and techniques. The data
consolidation functions within Orca and RRD helped control the volume of
data, but there was a desire to maintain the entire history of collected data. In
addition, the burden of manually reviewing performance data on every system
was extremely time-consuming.

11.4.1 Mainframe Data Processing

The AAC addressed the first issue by creating a method to feed data into
mainframe datasets, where it could be stored, analyzed, and managed accord-
ing to the existing volume management practice.

On a daily basis, the individual data files, each representing a host, are
consolidated into a single data file on the central Orca collection platform
by a locally developed Perl script. The script uploads the combined data
file to the mainframe by secure FTP. The AAC typically maintains several
months of data online before archiving it to tape. Each day, a mainframe job
runs to consolidate the data from the 5-minute Orca intervals to 15-minute
slices in SAS format (see Sect. 11.1). This collection of generational datasets
constitutes the open systems performance database (PDB) that allows reports
and graphs to be generated by the existing staff without requiring the mastery
of a completely new toolset.

11.4 Extending the Basic Solution 207

Additional jobs, such as a consolidation of seven-day data into a single
file, along with reports and graphs, were developed on an ad hoc basis. The
acknowledged limitation of loading data to the mainframe is the time delay
incured. Data can be up to 24 hours old before it is analyzed and reported.

11.4.2 Guerrilla Planning Phase

The third phase of performance management described in Sect. 11.2 is perfor-
mance prediction. Collection of historical performance data over long periods
(in the monitoring phase) provided the foundation for performance projections
by AAC capacity planning staff for future system upgrades and budgeting.
Here we see the fruition of the Guerrilla approach to capacity planning. For
example, data collated on the mainframe were processed in Excel to produce
a chart of CPU utilization (Fig. 11.7) for one customer.

System Usage Analysis Peak Hours 8-11

0

25

50

75

100

6
/2
0
/0
2

7
/2
0
/0
2

8
/2
0
/0
2

9
/2
0
/0
2

1
0
/2
0
/0
2

1
1
/2
0
/0
2

1
2
/2
0
/0
2

1
/2
0
/0
3

2
/2
0
/0
3

3
/2
0
/0
3

4
/2
0
/0
3

5
/2
0
/0
3

6
/2
0
/0
3

7
/2
0
/0
3

8
/2
0
/0
3

9
/2
0
/0
3

1
0
/2
0
/0
3

1
1
/2
0
/0
3

1
2
/2
0
/0
3

1
/2
0
/0
4

P
e
rc

e
n
t
U

ti
liz

a
ti
o
n

Note: 466 mhz processors

Fig. 11.7. Tracking production CPU utilization

The customer’s application runs on a Sun E10000 production domain with
24-way processors. Their application is BEA Tuxedo transaction processing,
which presents a load of about 4 million services per day. The application
servers access an Oracle database located on the same domain. This customer
was very interested in maintaining overall performance and invested consider-
able development effort in capturing the elapsed service times for each trans-
action. Over time, the AAC identified a specific server/transaction type that
maps to overall performance of the system. Used as a benchmark, it shows sig-
nificant degradation in performance when aggregate CPU utilization exceeds
80%. The 80% threshold was used as an upgrade indicator.

208 11 Going Guerrilla—A Case Study

In true Guerrilla fashion, this is not an exact number, but it is sufficient to
provide managers with a general sense of direction (cf. Sect. 11.2). There are
limitations to this justification. Since this is based on a daily average, there
may be times where the system exceeds 80% utilization. The staff must con-
tinually monitor the system to identify changes in activity, and work with the
customer to identify application deployment plans. In addition, other factors,
such as disk I/O rates and memory usage, enter into the upgrade discussion.

Based on the data in Fig. 11.7 and excellent cooperation from the customer
about their plans for future deployment, the AAC was able to predict that
this system would come close to the upgrade point somewhere around March
2005. Since the customer operated on an annual budget, this estimate was
sufficient. The lead time for identifying capital requirements is long, but by
utilizing historical data in the way described here, a general time frame can
be determined and a greater sense of direction provided.

11.4.3 Monitoring With ORCAlerts

The volume of data Orca collected across a large number of platforms con-
tinued to grow, and the ability to regularly review key metrics on all of the
systems being monitored became problematic. To assist in prioritizing the re-
view of Orca data, an idea arose to analyze and respond to data as it was
collected via a script that had the ability to notify staff via e-mail or text
pager. The AAC calls these notifications ORCAlerts. For example, as usage
on a specific file system on a particular host exceeds 90%, the Orca process in
place reports the data to the collection point. Using a script to evaluate the
collected data, crossing the 90% threshold is detected, and an email or page
is generated for human analysis and possible action.

The key elements required for ORCAlerts included the identification of
metrics to monitor and trigger an alert as well as the ability to set values on
an individual host basis. Several additional elements, such as logging, message
filters, and suppression of repeat alerts for the same conditions, were also
implemented. As noted in Sect. 11.3.1, system data for each host is appended
as a single line to a text file every five minutes for later processing and viewing.
Based on AAC hardware configurations, current text lines range from less than
200 columns to about 1000 columns.

The code required to manipulate such a large number of columns tends to
be beyond what the Guerrilla approach considers tiny tools as described in
Chap. 1. However, included with the Orca distribution is the orcallator\
column.pl Perl script, which provides the ability to isolate a list of columns for
individual analysis, thereby allowing individual data elements to be selected.
The specific line modified is reproduced below:

my @default_column_regexs =
qw(usr% sys% wio% idle% 5runq scanrate smtx/cpu ncpus

swap_avail freememK tcp_estb disk_runp_*);

11.5 Future Developments 209

Since the existing Orca data on the collection platform resided in a directory
hierarchy (e.g. /orca/data/orcallator\ clients/〈project\ name〉/〈host\
name〉), it was an easy scripting task to recursively descend the directory and

evaluate the last line of the collected output file. Using the <project name>
and <host name>, thresholds specific to each host can be determined. The
most recent five-minute data were examined subject to the following con-
straints:

• CPU %usr + %sys > 80%
• CPU %sys > 20% and > %usr
• CPU %iowait > %usr
• CPU smtx > 500/CPU
• Disk space > 90% in use
• Disk space > 50% increase usage over last 4 h
• Free memory < lotsfree
• Page scans > 200 pages over 5 min
• TCP connections > 50% over weekly high-water mark
• Processes in run queue > number of CPU over last 15 min

When the AAC first activated the ORCAlert script, there was a large volume
of notifications. For several weeks, the staff met regularly to determine the
causes. In response, many of the threshold values triggering the alerts for
specific systems have been readjusted. It is expected that the experience of
evaluating thresholds will be valuable during the future implementation of
commercial monitoring tools.

There is a level of alerting built in to the basic orcallator.se data col-
lector for Solaris. This is visible as the character string wwwwwwwggwg in each
line of observed data. It is an indicator of the color, or severity, of various
counters, as identified in the SEtk documentation. By examining this string,
various threshold violations can be detected. While this approach can be used
in a Solaris implementation, it is not supported by data collection scripts for
other platforms.

11.5 Future Developments

It is not clear what role our Guerrilla monitoring and planning solution, based
on Orca, will take in the future plans of the AAC. The organization is in the
process of rolling out a commercial solution. However, there are also plans
for performance monitoring to be charged back to the customer, and it is
not clear what percentage of them will be able to justify a business case
for those charges. The initial implementation of the commercial performance
management solution will focus on shared AAC components, e.g., enterprise
wide backup systems, file and print services as well as email services. Many of
these facilities reside on Microsoft Windows platforms for which there is no

210 11 Going Guerrilla—A Case Study

Orca port. Orca will likely remain a part of the UNIX performance monitoring
picture for the foreseeable future.

Recently, several customers initiated plans to develop and launch projects
on platforms other than Sun Solaris. Future deployments will includes varia-
tions of Linux and AIX. These plans already escalated an identified issue with
the existing solution because the original Orca data collector only runs on the
Solaris operating system.

Fortunately for Linux platforms, the Orcaware site www.orcaware.com/
orca/ also provides a Perl data collector called procallator.pl as part of
its distribution. Community input and contributions are a common benefit
of many open-source projects. When a need arises, one or more people con-
tribute a solution. For Linux data collection, Guilherme Carvalho Chehab
stepped forward with the solution. The AAC is very close to implementing
the Linux collector into the existing Orca data collection, storage, presen-
tation, and alerting infrastructure. On the AIX platform, a similar solution
was provided by Jason D. Kelleher and Rajesh Verma. The current version of
orca-aix-stat.pl supports AIX 4.3 and 5.

11.6 Summary

The AAC has now implemented Orca-based monitoring on IBM AIX 5.2 and
RedHat Linux AS 3.0 servers. While this has uncovered several issues related
to how the various UNIX operating systems collect and populate their ker-
nel performance counters, the support from the Orca community has been
effective.

The Orca-based solution is not for everyone. It requires some level of anal-
ysis for a successful implementation. In its basic form, it can provide a sig-
nificant amount of information about certain aspects of system health. In our
environment (Sect. 11.4.1), Orca-based data collection also provided a foun-
dation for some level of alerting and capacity planning. However, Orca will
not put any of the commercial monitoring companies out of business. Those
tools provide richer data collection agents, analysis tools, and performance-
modeling capabilities. That said, if your organization is interested in using an
open-source approach to gather capacity planning data, Orca can be a worthy
component of that effort.

Moreover, based on the experience reported here, the AAC can now make
the case that using Orca for Guerrilla monitoring helped to refine the process
of selecting and implementing a commercial monitoring product. By knowing
what data elements are commonly collected, it made it easier to distinguish
when a tool vendor was really adding value with their product. The effort
and discussions involved in identifying key metrics and thresholds for alerting
can be transferred into any implementation of a commercial product. In ad-
dition, the ease of manipulating historical data using familiar tools required

11.6 Summary 211

the vendors to better justify the value of the proprietary components in their
products.

Implementing a GCaP solution was valuable for quickly instantiating a
data collection and planning framework under rather severe time and budget
constraints. So it enabled us to meet the intended goal, but it is only the first
step on an otherwise long road. Now that we have established a performance
database, the focus will be on managing it and using it to provide more value
to the organization in the future.

A

Amdahl and the Repairman

This Appendix reveals the connection between Amdahl’s law and the repair-
man queue-theoretic model. In particular, Sect. A.3 contains the proof of
Theorem 6.2.

A.1 Repairman Queueing Model

The machine repairman model (Allen 1990; Gunther 2005a) is a closed queue-
ing network comprised of a finite number of machines N (shown in the upper
part of Fig. A.1) that break down after a mean lifetime Z and queue for re-
pairs at a single repairman (lower part of Fig. A.1) who takes a mean time
S to service them. Our interest is in expressions for the system throughput

N, Z

S

R(N)

X(N)

Fig. A.1. Repairman queueing model with N workstations

X(N) and residence time R(N). Subsequently, we shall relate these quantities
to Amdahl’s law.

214 A Amdahl and the Repairman

Because the closed queue in Fig. A.1 is a self-regulating, negative-feedback
loop, the arrival rate into the repair station is not constant. Of the N total
machines, there are X×Z machines (on average) still “up”, and Q(N) “down,”
such that the mean throughput is the difference:

X(N) =
1
Z

(
N − Q(N)

)
. (A.1)

Since there is no independent analytic expression for Q(N), we cannot evaluate
X(N) directly. An alternative approach is to apply mean value analysis (MVA)
techniques (Lazowska et al. 1984; Gunther 2005a).

Remark A.1 (Repairman Asymptote). For a large number of stations N → ∞,
the repairman becomes saturated, i.e., the utilization becomes ρ = XS = 1,
and the throughput X approaches the asymptote 1/S (cf. Theorem 4.1).

Definition A.1 (Round-Trip Time). The mean time to tour the entire
circuit in Fig. A.1 is called the round-trip time (RTT). It is the sum of the
workstation lifetime Z and the residence time R at the repairman:

RTT = R(N) + Z =
N

X(N)
. (A.2)

Equation (A.2) can be derived from Little’s law Q = XR (Lazowska et al.
1984; Gunther 2005a) by writing N = RTT × X.

Definition A.2 (Mean Throughput). The mean throughput can be ex-
pressed by a simple rearrangement of (A.2):

X(N) =
N

R(N) + Z
. (A.3)

We now derive Amdahl’s law from the repairman queueing model. In fact,
there are two possible derivations of Amdahl’s law related to the duality The-
orem 4.2. One follows from the conventional representation for parallel sub-
tasks (Sect. A.2), while the other follows from the representation for concur-
rent multitasking (Sect. A.3). The former could be considered as the hardware
perspective, whereas the latter might be regarded as the software perspective.

A.2 Amdahl’s Law for Parallel Subtasks

In this section, the repairman queueing variables are interpreted as follows:

• N represents the number of physical processors or parallel subtasks.
• Workstation lifetime Z represents the mean execution time of a task.
• Repair time S represents an unspecified serial delay.
• RTT (A.2) represents the elapsed time TN .

Consider a succession of parallel workloads starting with a single task.

A.2 Amdahl’s Law for Parallel Subtasks 215

A.2.1 Single Task

Amdahl’s law, as derived in Sect. 4.3.2, assumes that the amount of work has
a fixed total size. The round-trip time for N = 1 is simply:

RTT = S + Z . (A.4)

From Definition 4.4, the speedup (4.13) is:

S(N) =
T1

TN
=

S + Z

S + Z
. (A.5)

Since there is only one task S(1) = 1 in (A.5), so there is no speedup.

A.2.2 Two Subtasks

Divide the single unit of work in two halves, so that the mean execution time
is also halved, i.e., Z → Z/2. This corresponds to N = 2 workstations in
the repairman model or two separate processors in a multiprocessor model.
The serial delay, however, remains fixed because, although there are two equal
subtasks, their service times are also assumed to be halved, viz., S → S/2.
The round-trip time (A.2) becomes:

RTT = 2
(

S

2

)
+

Z

2
, (A.6)

and the speedup corresponding to (A.5) is:

S(N) =
S + Z

S + Z
2

> 1 . (A.7)

A.2.3 Multiple Subtasks

Generalizing to N subtasks executing on N processors results in the following
expression for the speedup:

S(N) =
S + Z

S + Z
N

. (A.8)

Comparing (A.8) with Eqn.(4.14), leads to the identifications:

S = σ T1 and Z = (1 − σ) T1 (A.9)

Remark A.2. As the number of subtasks N becomes large, the repairman
speedup (A.8) approaches the asymptote:

lim
N→∞

S(N) =
S + Z

S
. (A.10)

216 A Amdahl and the Repairman

Definition A.3. From Theorem 4.1, S(p) ∼ σ−1 as p → ∞. Comparison
with (A.10) suggests:

σ =
S

S + Z
, (A.11)

which expresses the serial fraction (Definition 4.3) in terms of purely queue-
theoretic variables.

Rewriting (A.5) as
Z

S + Z
= 1 − S

S + Z
, (A.12)

and substituting (A.11) for the second term, produces:

Z

S + Z
= 1 − σ . (A.13)

Combining (A.11) with (A.13), the ratio

1 − σ

σ
=

Z

S
, (A.14)

is the repairman service ratio (see, e.g., Highleyman 1989, p. 129) expressed
in terms of the Amdahl serial-fraction parameter.

Dividing the speedup (A.8) by S produces:

S(N) =
(

S + Z

S

)
1

1 +
(

Z
S

)
1
N

. (A.15)

Substituting the identities (A.11) and (A.14) into (A.15) leads to the simpli-
fication:

S(N) =
(

1
σ

)
1

1 +
(

1−σ
σ

)
1
N

, (A.16)

=
1

σ + 1−σ
N

, (A.17)

which, on rearrangement, gives Amdahl’s law:

S(N) =
N

1 + σ(N − 1)
, (A.18)

corresponding to Eqn.(4.15) with p = N .
Amdahl’s law for parallel speedup results from partitioning the fixed-size

workload N = 1 into shorter duration subtasks Z → Z/N while the serializa-
tion delay S remains fixed. Under these conditions the only queueing is within
the server and no waiting line forms.

A.4 Note On Nelson’s Approach 217

A.3 Amdahl’s Law for Concurrent Multitasks

In this section, rather than partitioning the original fixed-size workload into N
smaller subtasks, N identical units of work are added to the system. Consider
the synchronous throughput where R(N) = NS. Then, from Definition A.2
we can write the synchronous throughput as:

Xsyn =
N

NS + Z
. (A.19)

Remark A.3. Although the bound (A.19) is noted in (Lazowska et al. 1984),
its connection with Amdahl’s law has apparently gone unnoticed.

The concurrent speedup can be defined in terms of the normalized through-
put ratio:

S(N) =
Xsyn(N)
Xsyn(1)

, (A.20)

which, using (A.19), becomes

S(N) =
N

NS + Z
× (S + Z) , (A.21)

=
NS + NZ

NS + Z
. (A.22)

Equation (A.22) can be expanded as:

S(N) =
N(D + Z)

D + Z + ND − D
, (A.23)

=
N

1 + (D
D+Z)N − (D

D+Z)
. (A.24)

Substituting the identity (A.11) into the denominator leads to the simplifica-
tion:

S(N) =
N

1 + σN − σ
=

N

1 + σ(N − 1)
, (A.25)

which proves Theorem 6.2.
Amdahl speedup for concurrent tasks results from increasing serialization

time S → NS due to synchronous queueing, while the mean execution time
per task Z remains fixed. The fact that (A.18) and (A.25) are formally iden-
tical is another manifestation of the duality Theorem 4.2.

A.4 Note On Nelson’s Approach

L. Williams (private communication, 2006) asked me to compare Theorem 6.2
with the work of Nelson (1996). The distinctions are marked but subtle, so I
summarize them briefly here.

218 A Amdahl and the Repairman

The motivation of Nelson’s paper is quite different from my own. His pur-
pose (along with many other authors) is to find clever ways to defeat Amdahl’s
law; mine is to understand it. Ironically, we both end up resorting to queue-
theoretic models to gain more insight into the various issues; an open queue
in Nelson’s analysis, a closed queue in mine. There are two parts to Nelson’s
paper:

1. An attempt to unify (4.15) and (4.30) into a single speedup function.
2. Extend that new speedup function with a measure of waiting time.

The overarching goal is to find waiting-time optima for this unified speedup
function. Unification is achieved by purely algebraic manipulations and does
not rest on any queue-theoretic arguments. The connection with an open
queueing model is introduced later, also in a rather ad hoc fashion, to incor-
porate waiting time based on queue length. His analysis thereafter is based
mostly on simulations and departs radically from my goals.

Conversely, I have shown elsewhere (Gunther 2005b) that both Amdahl’s
law (4.15) and Gustafson’s law (4.30) are unified by the same queueing
model; the repairman model. Theorem 6.2 tells us that Amdahl’s law corre-
sponds identically to synchronous throughput of the repairman. Synchronous
throughput is worst case because it causes maximal queueing at the repair-
man (Fig. A.1) or bus. In that sense, Theorem 6.2 represents a lower bound
on throughput and therefore is worse than the mean throughput. Once this
interpretation understood, it follows immediately that Amdahl’s law can be
defeated, much more easily than proposed in (Nelson 1996), by simply requir-
ing that all requests be issued asynchronously !

B

Mathematica Evaluation of NUMA Parameters

This Appendix shows how to calculate the parameters σ and κ using Mathe-
matica applied to the scalability data in Chap. 5. Mathematica employs infi-
nite precision numbers and this highlights a limitation of using Excel, which
seriously underestimates κ and overestimates p∗.

B.1 Mathematica Packages

We note the version of Mathematica being used in all of the following calcu-
lations.

$Version

5.1 for Mac OS X HOctober 25, 2004L

<< Statistics`NonlinearFit`

B.2 Import the Data

cpuRawData = ReadList@"êUsersênjgêBooksêSpringer GCAPê
GCaP MathematicaêNLFitêHardware-X1êNUMAdata.txt",
Number, RecordLists Ø TrueD

881, 20<, 84, 78<, 88, 130<, 812, 170<, 816, 190<,
820, 200<, 824, 210<, 828, 230<, 832, 260<, 848, 280<, 864, 310<<

We check that the first column is the processor p-configuration, and that the
second column contains the measured throughput values by reformatting the
output in TableForm.

220 B Mathematica Evaluation of NUMA Parameters

B.3 Tabulate the Data

cpuRawData êê TableForm

1 20

4 78

8 130

12 170

16 190

20 200

24 210

28 230

32 260

48 280

64 310

This data agrees with Table 5.1. For regression analysis, it is necessary to
extract the single processor throughput value X(1) to provide the correct
normalization.

X1 = Flatten@cpuRawDataDP2T

20

B.4 Plot Normalized Data

ListPlot@cpuNormData, PlotStyle Ø PointSize@0.025D,
PlotRange Ø 80, 16<, AxesLabel Ø 8"p", "CHpL"<D;

10 20 30 40 50 60
p

2

4

6

8

10

12

14

16
CHpL

This plot agrees with the scatter plot in Fig. 5.2.

B.6 ANOVA Report 221

B.5 Nonlinear Regression

Mathematica has the powerful ability to directly fit the regression parameters
to a rational-function (see Definition 4.8). Applying NonlinearRegress to the
universal scalabilty model (5.1):

NonlinearRegressAcpuNormData,

p
ÅÅ
1 + s Hp - 1L + k p Hp - 1L

, 8p<, 88s, 0, 0.1<, 8k, 0, 0.01<<,

RegressionReport Ø 8BestFitParameters<E

8BestFitParameters Ø 8s Ø 0.0497973, k Ø 0.0000114344<<

B.6 ANOVA Report

If the RegressionReport argument is not suppressed, NonlinearRegress also
displays the complete set of analysis of variance (ANOVA) statistics.

NonlinearRegressAcpuNormData,

p
ÅÅ
1 + s Hp - 1L + k p Hp - 1L

, 8p<, 88s, 0, 0.1<, 8k, 0, 0.01<<E

9BestFitParameters Ø 8s Ø 0.0497973, k Ø 0.0000114344<, ParameterCITable Ø

Estimate Asymptotic SE CI

s 0.0497973 0.00320716 80.0425422, 0.0570524<

k 0.0000114344 0.0000693348 8-0.000145412, 0.000168281<

,

EstimatedVariance Ø 0.242613,

ANOVATable Ø

DF SumOfSq MeanSq

Model 2 1166.53 583.263

Error 9 2.18352 0.242613

Uncorrected Total 11 1168.71

Corrected Total 10 187.327

,

AsymptoticCorrelationMatrix Ø J
1. -0.927523

-0.927523 1.
N,

FitCurvatureTable Ø

Curvature

Max Intrinsic 0.0292726

Max Parameter-Effects 0.0705461

95. % Confidence Region 0.484701

=

For comparison, the parameters calculated using Excel are shown in Table B.1.
Using the algorithms in Chap. 3, σ = 0.0500 is sufficiently close to the Math-
ematica value σ = 0.04979 after rounding the latter with Algorithm 3.2. The
Excel value κ = 0.5 × 10−5, however, is an underestimate of the Mathematica
value κ = 1.14344 × 10−5 by more than a factor of two.

222 B Mathematica Evaluation of NUMA Parameters

Table B.1. Model parameters calculated using Excel from Sect. 5.6.2

Parameter Value

σ 0.0500
κ 5 × 10−6

p∗ 435

B.7 Maximal CPU Configuration

$%%%%%%%%%%%%%1 - s
ÅÅÅÅÅÅÅÅÅÅÅÅ
k

288.271

As a consequence of the underestimation of κ by Excel in Sect. B.6, the
corresponding value of p∗ in Table B.1 is overestimated by about 50% because√

κ appears in the denominator of Eqn.(4.33).

B.8 Plot of Regression Model

Show@
Block@8$DisplayFunction = Identity<,
8ListPlot@cpuNormData,
PlotStyle Ø PointSize@0.025D, AxesLabel Ø 8"p", "CHpL"<D,
Plot@univModel, 8p, 1, 64<D<D

D;

10 20 30 40 50 60
p

2.5

5

7.5

10

12.5

15

CHpL

This plot can be compared with Fig. 5.8.

C

Abbreviations and Units

C.1 SI Prefixes

Throughout this book we use the conventions of the basic International System
of Units (SI) for physical quantities summarized in Table C.1.

Table C.1. Prefixes for general SI units

Large Small

Symbol Name Factor Symbol Name Factor

da deka 101 d deci 10−1

h hecto 102 c centi 10−2

k kilo 103 m milli 10−3

M mega 106 µ micro 10−6

G giga 109 n nano 10−9

T tera 1012 p pico 10−12

P peta 1015 f femto 10−15

E exa 1018 a atto 10−18

Y yotta 1024 y yocto 10−24

C.2 Time Suffixes

Table C.2 summarizes the conventional units for time. The units in the lower
half of Table C.2 are not officially a part of the SI unit system but occur
frequently enough to be accepted implicitly.

224 C Abbreviations and Units

Table C.2. Units of time

Symbol Name SI unit

s second 100 s
ms millisecond 10−3 s
µs microsecond 10−6 s
ns nanosecond 10−9 s

min minute 60 s
h hour 60 m = 3, 600 s
d day 24 h = 86, 400 s

C.3 Capacity Suffixes

Units of digital computer capacity present some ambiguities. Although phys-
ical quantities like cycles per second (Hz) are measured in base-10 (decimal)
units, digital quantities involving binary digits are measured in base-2 (bi-
nary) units. The International Electrotechnical Commission (IEC) published
unambiguous computing technology units in 1998. Further details are available
at the NIST web site (http://physics.nist.gov/cuu/Units/index.html).
This proposed convention has not yet been widely adopted in the industry, so
we do not use it either. For completeness, we summarize the usual computer
industry units that we do use, together with the IEC units in Table C.3. A

Table C.3. Units of computer capacity

Symbol Name IEC symbol IEC name Decimal unit Power of 2

b bit b bit 1 b 20 b
B byte B byte 8 b 23 b
KB kilobyte KiB kibibyte 1, 024 B 210 B
MB megabyte MiB mebibyte 1, 048, 576 B 220 B
GB gigabyte GiB gibibyte 1, 073, 741, 824 B 230 B
TB terabyte TiB tebibyte 1.099, 511, 6 × 1012 B 240 B

kilobyte refers not to 1,000 bytes but the power of two closest to that number
viz. 1,024 bytes = 210 B; similarly for the other prefixes shown in Table C.3.
Therefore, one has to know the context to know which interpretation of kilo
applies. The strict SI convention introduces a new set of prefixes to remove this
ambiguity. For example, 1,024 B would be referred to as a kibibyte (meaning,
a kilobinary byte) and denoted 1 KiB.

D

Programs for Chapter 3

D.1 Determine SigDigs in VBA

Function SigFigs(number)

’ Assumes EXCEL 2000 or later.

’ Created by Neil J. Gunther, Wed Jun 5 18:02:29 2002

’ Updated by Neil J. Gunther, Tue Jun 18 10:00:06 2002

Dim numString As String

Dim numParts As Variant

’Treat the number as a string literal

numString = CStr(number)

If (numString Like "*.*") Then ’check for decimal point

’Separate integer and fractional parts

numParts = Split(numString, ".")

’Concatenate sans decimal point

digString = numParts(0) & numParts(1)

nlength = Len(digString)

i = 1

’Match FORWARDS from LEFTmost digit...

’non-zero digit preceding zero or more digits

patString = "[1-9]*"

Do While i < nlength

If (digString Like patString) Then

Exit Do

End If

’prepend any digit metacharacter

patString = "?" & patString

i = i + 1

Loop

SigDigs = nlength - i

Else ’no decimal point so, scan number as is ...

nlength = Len(numString)

226 D Programs for Chapter 3

i = 0

’Match BACKWARDS from RIGHTmost digit...

’zero or more digits preceding a non-zero digit

patString = "*[1-9]"

Do While i < nlength

If (numString Like patString) Then

Exit Do

End If

’append any digit metacharacter

patString = patString & "?"

i = i + 1

Loop

SigDigs = nlength - i

End If

SigFigs = SigDigs ’Return result to spreadsheet cell

End Function

D.2 Determine SigDigs in Mathematica

SigFigs[] :=

(* Created by Neil J. Gunther, Tue Jun 18 09:18:54 2002 *)

(* Updated by Neil J. Gunther, Tue Jun 18 16:29:01 2002 *)

Module[

{numString, digString, intList, realList},

numString = InputString[": "]; (* force string literal *)

If[StringMatchQ[numString, "*.*"],

(*** must be REAL - valued ***)

(* elide decimal point *)

digString = StringReplace[numString, "." -> ""];

realList = ToExpression[Characters[digString]];

(* Walk list from LEFTmost digit *)

While[Length[realList] != 0,

If[First[realList] == 0,

realList = Rest[realList], (* delete from head *)

(* first non-zero digit! *)

Return[{FullForm[numString], Length[realList]}]

];

],

(*** Else: must be an INTEGER ***)

intList = ToExpression[Characters[numString]];

(* Walk list from RIGHTmost digit *)

While[(len = Length[intList]) != 0,

If[Last[intList] == 0,

intList = Take[intList, len - 1], (* delete from tail *)

(* first non-zero digit! *)

Return[{FullForm[numString], Length[intList]}]

];

D.3 Determine SigDigs in Perl 227

];

] (* end of If *)

] (* end of Module *)

D.3 Determine SigDigs in Perl

#! /usr/bin/perl/ -w

#

Created by Neil J. Gunther, Tue Jun 4 22:55:41 2002

Updated by Neil J. Gunther, Tue Jun 18 12:27:16 2002

Available from www.perfdynamics.com/Tools/sigfigs.txt

Read the number in from the keyboard.

print "Enter a number: ";

$numstring = <STDIN>;

chomp($numstring); # Toss the carriage return

$skipzero = ’’; $i = 0;

Check for presence of decimal point

if ($numstring =~ /\./) {

Separate integer and fractional parts

($int, $frac) = split(/\./, $numstring);

Concatenate sans decimal point

$digstring = $int . $frac;

$numfigs = length($digstring);

Find position of first non-zero digit

while ($i < $numfigs) {

Compare FORWARDS from LEFTmost digit ...

if ($digstring =~ /^$skipzero(\d)/) {

$sigfigs = $numfigs - $i;

last if ($1 ne ’0’);

}

$skipzero = $skipzero . ’.’;

$i++;

}

}

else { # No decimal point, so just scan the integer...

$numfigs = length($numstring);

Find position of first non-zero digit

while ($i < $numfigs) {

Compare BACKWARDS from RIGHTmost digit ...

if ($numstring =~ /(\d)$skipzero$/) {

$sigfigs = $numfigs - $i;

last if ($1 ne ’0’);

}

$skipzero = $skipzero . ’.’;

$i++;

}

228 D Programs for Chapter 3

}

Print out the result.

print "The number ’$numstring’ contains $sigfigs significant

digits.\n";

E

Programs for Chapter 8

E.1 Example Data Extractor in Perl

#! /usr/local/bin/perl

#

Parse data collector logs over fifteen min intervals

to make output format compatible with EXCEL macro input.

#

Created by Neil J. Gunther

Performance Dynamics Company

use Time::Local;

while (<>) {

next if ($_=~/Time$/);

($dummy, $load, $dummy, $dummy, $dummy, $sys, $usr, $dummy,

$dummy, $dummy, $dummy, $dummy, $dummy, $dummy, $dummy, $dummy,

$dummy, $dummy, $dummy, $dummy, $dummy, $dummy, $dummy, $dummy,

$localt) = split(/\t/);

($date, $hms) = split(" ", $localt);

($month, $mday, $year) = split("/", $date);

($hr, $minute, $second) = split(/:/, $hms);

$timestamp = timelocal($second, $minute, $hr, $mday, $month-1,

$year-1900);

$starttime=$timestamp;

$endtime=($timestamp + 1800);

$hour=($hr . ":" . $minute);

$busy=($usr + $sys);

$count{$hour}++;

$cpu{$hour}+=$busy;

$load{$hour}+=$load;

$cpumax{$hour}=$busy;

$cpumin{$hour}=$busy;

230 E Programs for Chapter 8

$loadmax{$hour}=$load;

$loadmin{$hour}=$load;

while (($timestamp < $endtime)) {

if (!eof) {

$d=<> ;

($dummy, $load, $dummy, $dummy, $dummy, $sys, $usr, $dummy,

$dummy, $dummy, $dummy, $dummy, $dummy, $dummy, $dummy,

$dummy, $dummy, $dummy, $dummy, $dummy, $dummy, $dummy,

$dummy, $dummy, $localt) = split(/\t/,$d);

($date, $hms) = split(" ", $localt);

($month, $mday, $year) = split("/", $date);

($hr,$minute,$second)=split(/:/,$hms);

$timestamp = timelocal($second, $minute, $hr, $mday,

$month-1, $year-1900);

if (($timestamp < $endtime)) {

$busy=($usr + $sys);

$count{$hour}++;

$cpu{$hour}+=$busy;

$load{$hour}+=$load;

find min, max

($cpumax{$hour}=$busy) if ($busy > $cpumax{$hour});

($cpumin{$hour}=$busy) if ($busy < $cpumin{$hour});

($loadmax{$hour}=$load) if ($load > $loadmax{$hour});

($loadmin{$hour}=$load) if ($load < $loadmin{$hour});

} else {

$starttime=$timestamp;

$endtime=($timestamp + 1800);

$hour=($hr . ":" . $minute);

$busy=($usr + $sys);

$count{$hour}++;

$cpu{$hour}+=$busy;

$load{$hour}+=$load;

$cpumax{$hour}=$busy;

$cpumin{$hour}=$busy;

$loadmax{$hour}=$load;

$loadmin{$hour}=$load;

}

} else {

last;

}

}

}

print "Date Time AvgU MaxU MinU AvgQ MaxQ MinQ

SumQ\n";

foreach $time (sort(keys %count)) {

E.2 VBA Macro for Calculating Ueff 231

printf ("%s\t%s\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n",

$date,

$time,

($cpu{$time}/$count{$time}),

$cpumax{$time},

$cpumin{$time},

($load{$time}/$count{$time}),

$loadmax{$time},

$loadmin{$time},

$load{$time},

);

}

E.2 VBA Macro for Calculating Ueff

Sub DoDaily()

’

’ Daily Macro created by Neil J. Gunther

’

’ This macro performs regression analysis on 24 hours worth of

’ extracted web DB server metrics.

’

’

’ Make sure stats Add-Ins are installed in EXCEL

AddIns("Analysis ToolPak").Installed = True

AddIns("Analysis ToolPak - VBA").Installed = True

’ Declare globals

Dim ddepth As Integer

Dim fdepth As Integer

Dim lastDayRow As Integer

Dim DailyMax As Integer

DayMax = 7 * 90 ’ some nominal value < 100 intervals

Dim regYcol As Integer

Dim regXcol1 As Integer

Dim regXcol2 As Integer

Dim tval As String

Dim bookName As String

bookName = "MulitVarRegression.xls" ’ Current name of model

Dim sheetName As String

sheetName = "Hourlys"

Dim chartName As String

chartName = "Hourlys Chart"

’ Check if Dailys chart already created

Application.DisplayAlerts = False

For Each chartObj In Workbooks(bookName).Charts

If chartObj.Name = chartName Then

232 E Programs for Chapter 8

answer = MsgBox("Remove current Hourly chart? ",

vbOKCancel)

If answer = vbOK Then

chartObj.Delete

Exit For

End If

End If

Next chartObj

Application.DisplayAlerts = True

’ Insert selection criteria

Worksheets(sheetName).Activate

Range("J1").Value = "MinU"

Range("K1").Value = "MaxU"

Range("J2").Value = ">1"

Range("K2").Value = "<90"

’ Cut and paste filtered data

Range("A1:H300").Select

Range("A1:H300").AdvancedFilter _

Action:=xlFilterCopy, _

CriteriaRange:=Range("J1:K2"), _

CopyToRange:=Range("L1:S300"), _

Unique:=False

’ How many rows of data are there?

’ Input data column depth ...

Range("A1").Select

Cells(1, ActiveCell.Column).End(xlDown).Select

ddepth = ActiveCell.Row

’ Filtered data column depth ...

Range("L1").Select

Cells(1, ActiveCell.Column).End(xlDown).Select

fdepth = ActiveCell.Row

’ Which row to append to in Dailys?

Worksheets("Dailys").Select

Range("A1").Select

tval = ActiveCell.Value

If tval = "DateTime" Then

Cells(1, ActiveCell.Column).End(xlDown).Select

lastDayRow = ActiveCell.Row

Else ’ nothing copied there yet

lastDayRow = 1

End If

lastDayRow = lastDayRow + 1

’ Calculate regression coeffs ...

Worksheets(sheetName).Select

Range("N1").Select

E.2 VBA Macro for Calculating Ueff 233

regYcol = ActiveCell.Column

Range("P1").Select

regXcol1 = ActiveCell.Column

Range("S1").Select

regXcol2 = ActiveCell.Column

Application.Run "ATPVBAEN.XLA!Regress", _

ActiveSheet.Range(Cells(1, regYcol),

Cells(fdepth, regYcol)), _

ActiveSheet.Range(Cells(1, regXcol1),

Cells(fdepth, regXcol2)), False, True, , _

ActiveSheet.Range("W1") _

, False, False, False, False, , False

’ Insert model results

Range("c1:c300").Insert (1)

Range("c1").Value = "Ueff"

Range("c2").Select

Range("c2").NumberFormat = "#,##0.00"

ActiveCell.Formula = _

"=Y17+Y18*F2+Y19*G2+Y20*H2+Y21*I2"

Range("c2").Copy Destination:= _

Range(Cells(3, 3), Cells(ddepth, 3))

’ Plot the results

Range(Cells(1, 1), Cells(ddepth, 5)).Select

Charts.Add

With ActiveChart

.ChartType = xlXYScatterSmoothNoMarkers

.SetSourceData Source:=Sheets(sheetName).Range("A1:E91"), _

PlotBy:=xlColumns

.Location Where:=xlLocationAsNewSheet, Name:=chartName

.HasTitle = False

.Axes(xlCategory, xlPrimary).HasTitle = False

.Axes(xlValue, xlPrimary).HasTitle = True

.Axes(xlValue, xlPrimary).AxisTitle.Characters.Text =

"%Ucpu"

.HasLegend = True

.Legend.Select

Selection.Position = xlBottom

End With

’ Append to Dailys ?

answer = MsgBox("Update Dailys? ", vbYesNo)

If answer = vbYes Then

’Check if there’s already 7 contiguous days inserted

If lastDayRow >= DayMax Then

MsgBox "Dailys is full with 1 week of data. Move it to

Weeklys!"

234 E Programs for Chapter 8

Exit Sub

End If

’ Paste the fieldnames anyway ...

Worksheets(sheetName).Select

Application.CutCopyMode = True

Worksheets(sheetName).Range(Cells(1, 1), Cells(1, 5)).Copy

Worksheets("Dailys").Select

Range(Cells(1, 1), Cells(1, 5)).Select

ActiveSheet.Paste

Application.CutCopyMode = False

’ Copy data from Hourlys ...

Worksheets(sheetName).Select

Application.CutCopyMode = True

Worksheets(sheetName).Range(Cells(2, 1), Cells(ddepth, 5)).Copy

’ and append it to the Dailys ...

Worksheets("Dailys").Select

Range(Cells(lastDayRow, 1), _

Cells((lastDayRow - 2) + ddepth, 5)).Select

Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone,

SkipBlanks:= _

False, Transpose:=False

Application.CutCopyMode = False

Range("A2:A700").NumberFormat = "m/d/yy h:mm"

Range("B2:C700").NumberFormat = "#,##0.00"

Worksheets("Dailys").Activate

End If

’Cleanup Hourly data ...

Worksheets(sheetName).Select

Application.CutCopyMode = True

Worksheets(sheetName).Range(Cells(2, 3), Cells(ddepth, 3)).Copy

Range(Cells(2, 3), Cells(ddepth, 3)).Select

Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone,

SkipBlanks:= _

False, Transpose:=False

Application.CutCopyMode = False

Range(Cells(2, 3), Cells(ddepth, 3)).NumberFormat = "#,##0.00"

’ Range("K1:AE50").Delete

Range(Cells(1, 11), Cells(fdepth, 30)).Delete

Worksheets(sheetName).Activate

End Sub

F

The Guerrilla Manual

Management resists, the guerrilla planner retreats;
Management dithers, the guerrilla planner proposes;
Management relents, the guerrilla planner promotes;
Management retreats, the guerrilla planner pursues.

Hit-and-Run Tactics You Can Use on Your Boss or Throw Around in a
Tiger Team Meeting

This chapter is both a preview and a summary. It is a preview of what is
contained in this book, if you have not read it before; it is a summary of
all the important points, if you have. The intent is to provide you with an
authoritative list of key ideas and aphorisms from which you can draw at any
time to underscore your Guerrilla capacity planning point for those who need
to be convinced by something more than a verbal discussion. This material is
also available online at www.perfdynamics.com.

F.1 Weapons of Mass Instruction

The following distillations have been extracted from the chapters in this book,
my training classes of the same name, as well as my other book, Analyzing
Computer System Performance with Perl::PDQ (Gunther 2005a).

Why Go Guerrilla? The planning horizon is now 3 months, thanks to the
gnomes on Wall Street. Only Guerrilla-style tactical planning is crazy
enough to be compatible with that kind of insanity.

Selling Prevention: Capacity planning is about prevention and someone
told me “You can’t sell prevention!” Then explain the multibillion dollar
dietary-supplements industry!

Why Capacity Planning is Nontrivial: Capacity planning is complicated
by your brain thinking linearly about a computer system that operates
nonlinearly.

Capacity planning techniques, such as the universal scalability model
(in Sect. F.3), help us to describe and predict these nonlinearities.

The Performance Homunculus: Capacity management is to systems man-
agement as the homunculus (sensory proportion) is to the human body
(geometric proportion). See Fig. 1.1 in Chap. 1.

236 F The Guerrilla Manual

Capacity management can rightly be regarded as just a subset of
systems management, but the infrastructure requirements for suc-
cessful capacity planning (both the tools and knowledgeable humans
to use them) are necessarily out of proportion with the requirements
for simpler systems management tasks like software distribution, se-
curity, backup, etc. It is self-defeating to try doing capacity planning
on the cheap.

Self Tuning Applications: Self-tuning applications are not ready for prime
time. How can they be when human performance experts get it wrong all
the time!?

Performance analysis is a lot like a medical examination, and medical
Expert Systems were heavily touted in the mid 1980s. You do not
hear about them anymore. And you know that if it worked, HMOs
would be all over it. It is a laudable goal but if you lose your job, it
will not be because of some expert performance robot.

Squeezing Capacity: Capacity planning is not just about the future any-
more.

Today, there is a serious need to squeeze more out of your current
capital equipment.

When Wrong Is Right: Capacity planning is about setting expectations.
Even wrong expectations are better than no expectations!

Planning means making predictions. Even a wrong prediction is useful.
It means either (i) the understanding behind your prediction is wrong
and needs to corrected, or (ii) the measurement process is broken
somewhere and needs to be fixed. Start with a SWAG. Next time, try
a G. If you aren’t making iterative predictions throughout a project
life cycle, you will only know things are amiss when it is too late!

The Overengineering Gotcha: Hardware is cheaper today, but a truck-
load of PCs will not help one iota if all or part of the application executes
single-threaded.

My response to the oft-heard platitude: “We don’t need no stinkin’
capacity planning. We’ll just throw more cheap iron at it!” The ca-
pacity part is easy. It is the planning part that is subtle.

Network Performance: It is never the network!
If the network is out of bandwidth or has interminable latencies, fix
it! Then we will talk performance of your application.

Can’t Beat This! If the measured round-trip times (RTTs) for an applica-
tion produce a relatively flat or concave curve (like that in Fig. 1.5) as a
function of increasing load, SHIP IT! Only if you do not understand basic
queueing theory would you press on in spite of such data.

Modeling Errors: When I am asked, “But, how accurate are your perfor-
mance models?” my canonical response is, “Well, how accurate are your
performance data!?”

Most people remain blissfully unaware of the fact that all measure-
ments come with errors, both systematic and random. An important

F.1 Weapons of Mass Instruction 237

capacity planning task is to determine and track the magnitude of
the errors in your performance data. Every datum should come with
a “±” attached (which will then force you to put a number after it).

Data are Not Divine: Treating performance data as something divine is a
sin.

Data comes from the devil, only models come from God.
Just Digging the Hole Deeper: Busy work does not accrue enlighten-

ment.
Western culture too often glorifies hours clocked as productive work.
If you do not take time off to come up for air to reflect on what you
are doing, how are you going to know when you are wrong?

Little Things: Little’s law means a lot! Learn Q = XR by heart.
I use it almost daily to cross-check that throughput and delay data are
consistent, no matter whether those data come from measurements
or models. More details about Little’s law can be found in (Gun-
ther 2005a, Chap. 2), Analyzing Computer System Performance with
Perl::PDQ. Another use of Little’s law is calculating service times,
which are notoriously difficult to measure directly. See the Rules of
Thumb in Sect. F.2.

Bigger is Not Always Better: Beware the SMP wall!
The bigger the symmetric multiprocessor (SMP) configuration you
purchase, the busier you need to run it. But only to the point where
the average run-queue begins to grow. Any busier and the user’s
response time will rapidly start to climb through the roof.

If They Snooze, You lose: Spend as much time on developing the presen-
tation of your capacity planning conclusions as you did reaching them.

If your audience does not get the point, or things go into the weeds
because you did not expend enough thought on a visual, you just
wasted a lot more than your presentation time-slot.

Bottlenecks: You never remove a bottleneck, you just shuffle the deck.
Benchmarks: All benchmarks represent institutionalized cheating.
Consolidation: Gunther’s law of consolidation: Remove it and they will

come!
Control Freaks Unite! Your own applications are the last refuge of perfor-

mance engineering.
Control over the performance of hardware resources, e.g., proces-
sors and disks, is progressively being eroded as these things simply
become commodity black boxes, viz., multicore processors and disk
arrays. This situation will only be exacerbated with the advent of
Internet-based application services. Software developers will there-
fore have to understand more about the performance and capacity
planning implications of their designs running on these black boxes.
(see Sect. F.3)

Best Practices: Best practices are an admission of failure.

238 F The Guerrilla Manual

Copying someone else’s apparent success is like cheating on a test.
You may make the grade but how far is the bluff going to take you?

F.2 Capacity Modeling Rules of Thumb

Here are some ideas that might be of help when you are trying to construct
your capacity planning or performance analysis models.

Keep It Simple: A performance model should be as simple as possible, but
no simpler!

I now tell people in my GCaP classes, despite the fact that I repeat
this rule of thumb several times, you will throw the kitchen sink into
your performance models; at least, early on as you first learn how to
create them. It is almost axiomatic: the more you know about the
system architecture, the more detail you will try to throw into the
model. The goal, in fact, is the opposite.

More Like The Map Than The Metro: A performance model is to a
computer system as the BART map (Fig. 1.2) is to the BART rail system.

The BART map is an abstraction that has very little to do with the
physical train. It encodes only sufficient detail to enable transit from
point A to point B. It does not include a lot of irrelevant details such
as altitude of the stations, or even their actual geographical proximity.
A performance model is a similar kind of abstraction.

The Big Picture: Unlike most aspects of computer technology, performance
modeling is about deciding how much detail can be ignored!

Look for the Principle: When trying to construct the performance repre-
sentation of a computer system (which may or may not be a queueing
model), look for the principle of operation. If you cannot describe the
principle of operation in 25 words or less, you probably do not under-
stand it yet.

As an example, the principle of operation for a time-share computer
system can be stated as: Time-share gives every user the illusion that
they are the ONLY user active on the system. All the thousands of
lines of code in the operating system, which support time-slicing,
priority queues, etc., are there merely to support that illusion.

Guilt is Golden: Performance modeling is also about spreading the guilt
around.

You, as the performance analyst or planner, only have to shine the
light in the right place, then stand back while others flock to fix it.

Where to Start? Have some fun with blocks; functional blocks!
One place to start constructing a PDQ model is by drawing a func-
tional block diagram. The objective is to identify where time is spent
at each stage in processing the workload of interest. Ultimately, each

F.2 Capacity Modeling Rules of Thumb 239

functional block is converted to a queueing subsystem like those
shown above. This includes the ability to distinguish sequential and
parallel processing. Other diagrammatic techniques e.g., UML dia-
grams, may also be useful. See (Gunther 2005a, Chap. 6).

Inputs and Outputs: When defining performance models (especially queue-
ing models), it helps to write down a list of inputs (measurements or es-
timates that are used to parameterize the model) and outputs (numbers
that are generated by calculating the model).

Take Little’s law Q = XR, for example. It is a performance model,
albeit a simple equation or operational law, but a model nonetheless.
All the variables on the right side of the equation (X and R) are
inputs, and the single variable on the left is the output. A more
detailed discussion of this point is presented in (Gunther 2005a, Chap.
6).

No Service, No Queues: You know the restaurant rule: “No shoes, no ser-
vice!” Well, this is the PDQ modeling rule: no service, no queues. In your
PDQ models, there is no point creating more queueing nodes than you
have measured service times for.

If the measurements of the real system do not include the service
time for a queueing node that you think ought to be in your PDQ
model, then that PDQ node cannot be defined.

Estimating Service Times: Service times are notoriously difficult to mea-
sure directly. Often, however, the service time can be calculated from other
performance metrics that are easier to measure.

Suppose, for example, you had requests coming into an HTTP server
and you could measure its CPU utilization with some UNIX tool like
vmstat, and you would like to know the service time of the HTTP
Gets. UNIX will not tell you, but you can use Little’s law (U = XS)
to figure it out. If you can measure the arrival rate of requests in
Gets/sec (X) and the CPU %utilization (U), then the average service
time (S) for a Get is easily calculated from the quotient U/X.

Change the Data: If the measurements do not support your PDQ perfor-
mance model, change the measurements.

Closed or Open Queue? When trying to figure out which queueing model
to apply, ask yourself if you have a finite number of requests to service or
not. If the answer is yes (as it would be for a load-test platform), then it
is a closed queueing model. Otherwise use an open queueing model.

Opening a Closed Queue: How do I determine when a closed queueing
model can be replaced by an open model?
This important question arises, for example, when you want to extrapolate
performance predictions for an Internet application (open) that are based
on measurements from a load-test platform (closed).

An open queueing model assumes an infinite population of requesters
initiating requests at an arrival rate λ (lambda). In a closed model, λ
(lambda) is approximated by the ratio N/Z. Treat the thinktime Z

240 F The Guerrilla Manual

as a free parameter, and choose a value (by trial and error) that keeps
N/Z constant as you make N larger in your PDQ model. Eventually,
at some value of N, the OUTPUTS of both the closed and open
models will agree to some reasonable approximation.

Steady-State Measurements: The steady-state measurement period should
on the order of 100 times larger than the largest service time.

Transcribing Data: Use the timebase of your measurement tools. If it re-
ports in seconds, use seconds, if it reports in microseconds, use microsec-
onds. The point being, it is easier to check the digits directly for any
transcription errors. Of course, the units of ALL numbers should be nor-
malized before doing any arithmetic.

Workloads Come in Threes: In a mixed workload model (multiclass streams
in PDQ), avoid using more than three concurrent workstreams whenever
possible.

Apart from making an unwieldy PDQ report to read, generally you
are only interested in the interaction of two workloads (pairwise com-
parison). Everything else goes in the third (AKA “the background”).
If you cannot see how to do this, you are probably not ready to create
the PDQ model.

F.3 Scalability on a Stick

The following points explain how to quantify notions of scalability:

1. A lot of people use the term “scalability” without clearly defining it, let
alone defining it quanitatively. Computer system scalability must be quan-
tified. If you cannot quantify it, you cannot guarantee it. The universal
law of computational scaling provides that quantification.

2. One the greatest impediments to applying queueing theory models (whether
analytic or simulation) is the inscrutibility of service times within an appli-
cation. Every queueing facility in a performance model requires a service
time as an input parameter. As noted in Sect. F.2, No service time, no
queue. Without the appropriate queues in the model, system performance
metrics like throughtput and response time, cannot be predicted. The uni-
versal law of computational scaling leapfrogs this entire problem by NOT
requiring ANY low-level service time measurements as inputs.

F.3.1 Universal Law of Computational Scaling

The relative capacity C(N) (the dashed line in Figs. 6.3 or 6.5) is given by:

C(N) =
N

1 + αN + βN(N − 1)
(F.1)

where N is either:

F.3 Scalability on a Stick 241

1. The number of users or load generators on a fixed hardware configura-
tion. In this case, the number of users acts as the independent variable
while the CPU configuration remains constant for the range of user load
measurements.

2. The number of physical processors or nodes in the hardware configuration.
In this case, the number of user processes executing per CPU (say, 10)
is assumed to be the same for every added CPU. Therefore, on a 4 CPU
platform you would run 40 virtual users.

with α the contention parameter, and β the coherency-delay parameter. The
latter accounts for the retrograde throughput seen in Fig. 6.3, for example.

• The objective of using Eq.(F.1) is not to produce a curve that passes
through every data point. That is called curve fitting and that is what
graphics artists do with splines. As von Neumann said, “Give me four
parameters and I will fit an elephant. Give me five and I will make its
trunk wiggle!” (At least I only have two).

• When the coherency-delay parameter vanishes i.e., β = 0, Eq.(F.1) reduces
to Amdahl’s law, as expcted. See Eq.(4.15) in Chap. 4.

F.3.2 Areas of Applicability

This universal model has wide spread applicability. Some areas are:

• Modeling such effects as VM thrashing, and cache-miss latencies.
• Modeling disk arrays, SANs, and multicore processors.
• Modeling certain types of network I/O.
• User-load performance testing is one of the most common applications.
• Using it in combination with measurement tools like LoadRunner, Bench-

mark Factory, etc.

That is why Eq.(F.1) is called universal.

F.3.3 How to Use It

Virtual Load Testing: The universal model in Eq.(F.1) allows you take a
sparse set of load measurements (4–6 data points) and determine how
your application will scale under larger user loads than you may be able
to generate in your test lab. This can all be done in a spreadsheet like
Excel. See, e.g., Fig. 1.3 in Chap. 1 and Fig. 5.3 in Chap. 5.

Detecting measurement problems: Equation (F.1) is not a crystal ball.
It cannot foretell the onset of broken measurements or intrinsic patholo-
gies. When the data diverge from the model, that does not automatically
make the model wrong. You need to stop measuring and find where the
inconsistency lies.

242 F The Guerrilla Manual

Performance Heuristics: The relative sizes of the α and β parameters tell
you respectively whether contention effects or coherency effects are re-
sponsible for poor scalability.

Performance Diagnostics: What makes Eq.(F.1) easy to apply also limits
its diagnostic capability. If the parameter values are poor, you cannot use
it to tell you what to fix. All that information is in there alright, but it is
compressed into the values of those two little parameters. However, other
people, e.g., application developers (the people who wrote the code), the
systems architect, may easily identify the problem once the universal law
has told them they need to look for one.

Bibliography

Acree, N., Howard, J., and Wohlgemuth, D. (2001). “How to communicate
and define the value of performance in dollars and cents”. In Proc. CMG
Conf., pages 781–787, Anaheim, CA.

Allen, A. O. (1990). Probability, Statistics, and Queueing Theory with Com-
puter Science Applications. Academic Press, San Diego, 2nd. edition.

Amdahl, G. (1967). Validity of the single processor approach to achieving
large scale computing capabilities. Proc. AFIPS Conf., 30:483–485.

Atkison, T., Butler, L. A., and Miller, E. (2000). “Comparing CPU perfor-
mance between and within processor families”. In Proc. CMG Conf., pages
421–430, Orlando, FL.

Barham, P. T., Dragovic, B., Fraser, K., Hand, S., Harris, T. L., Ho, A.,
Neugebauer, R., Pratt, I., and Warfield, A. (2003). “Xen and the art of vir-
tualization”. In SOSP (ACM Symposium on Operating Systems Principles),
pages 164–177.

Bass, J. (2000). “A look at eight-way server scalability: The Dell PowerEdge
8450 gives a good bang for the buck”. Network World.

Bertsekas, D. and Gallager, R. (1987). Data Networks. Prentice-Hall, Engle-
wood Cliffs, NJ.

Box, G. E. P., Hunter, W. G., and Hunter, J. S. (1978). Statistics for Exper-
imenters: An Introduction to Design, Data Analysis, and Model Building.
Wiley, New York.

Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (1994). Time Series Analysis.
Prentice-Hall, Engelwood Cliffs, NJ, third edition.

Brady, J. F. (2005). Virtualization and CPU wait times in a Linux guest
environment. J. Computer Resource Management, 116:3–8.

Buch, D. K. and Pentkovski, V. M. (2001). Experience in characterization of
typical multi-tier e-Business systems using operational analysis. In Proc.
CMG Conf., pages 671–681, Anaheim, CA.

244 Bibliography

Buyya, R., editor (1999). High Performance Cluster Computing: Architectures
and Systems, volume 1. Prentice-Hall.

Cockcroft, A. and Pettit, R. (1998). Sun Performance and Tuning. SunSoft
Press, Mountain View, California, 2nd. edition.

Crovella, M. E. and Bestavros, A. (1997). “Self-similarity in world wide web
traffic: Evidence and possible causes”. IEEE/ACM Transactions on Net-
working, 5(6):835–846.

Culler, D. E., Karp, R. M., Patterson, D., Sahay, A., and Santos, E. E.
(1996). “LogP: A practical model of parallel computation”. Comm. ACM,
39(11):79–85.

Ding, Y., Bolker, E. D., and Kumar, A. (2003). “Performance implications of
hyper-threading”. In Proc. CMG Conf., pages 21–29, Dallas, TX.

Downey, A. B. (2001). “Evidence for long-tailed distributions in the internet”.
In Proc. ACM SIGCOM Conf., pages 1037–1044, Atlanta, GA.

Einstein, A. (1956). “On the movement of small particles suspended in a
stationary liquid demanded by the molecular-kinetic theory of heat”. In
Fürth, R. and Cowper, A. D., editors, Investigations on the Theory of the
Brownian Movement, pages 1–18. Dover, New York, USA.

Faraway, J. J. (2004). Linear Models with R. CRC Press, Boca Raton, FL.
Fernando, G. (2005). “To V or not to V: A practical guide to virtualization”.

In Proc. CMG Conf., pages 103–116, Orlando, FL.
Field, T., Harder, U., and Harrison, P. (2004). “measurement and modeling

of self-similar traffic in computer networks”. Technical report, Imperial
College, London, UK.

Forst, F. (1997). “Latent demand: The hidden consumer”. In Proc. CMG
Conf., pages 1011–1017, Orlando, FL.

Foster, I. (2005). “Service-oriented science”. Science, 308:814–817.
Galilei, G. (1638). “Discourses and mathematical demonstrations concerning

two new sciences pertaining to mechanics and local motions”. In Drake, S.,
editor, Two New Sciences. Wall & Emerson, Toronto, Canada (2000), 2nd
edition.

Gelenbe, E. (1989). Multiprocessor Performance. Wiley, NY.
Gilbert, L., Tseng, J., Newman, R., Iqbal, S., Pepper, R., Celebioglu, O.,

Hsieh, J., and Cobban, M. (2005). “Performance implications of virtual-
ization and hyper-threading on high energy physics applications in a grid
environment”. In Proc. 9th IEEE International Parallel and Distributed
Processing Symposium, page 32a, Denver, CO.

Gray, M. K. (1996). “Web growth summary”. www.mit.edu/people/mkgray/
net/web-growth-summary.html.

Gunther, N., Christensen, K., and Yoshigoe, K. (2003). “Characterization of
the burst stabilization protocol for the RR/CICQ switch. In IEEE Conf.

Bibliography 245

on Local Computer Networks, Bonn, Germany.
Gunther, N. J. (1993). “A simple capacity model for massively parallel trans-

action systems”. In Proc. CMG Conf., pages 1035–1044, San Diego, CA.
Gunther, N. J. (1995). “Thinking inside the box: The next step in TPC

benchmarking”. TPC Quarterly Report, 12:8–17.
Gunther, N. J. (1996). “Understanding the MP effect: Multiprocessing in

pictures”. In Proc. CMG Conf., pages 957–968, San Diego, CA.
Gunther, N. J. (1997). “Shooting the RAPPIDs: Swift performance techniques

for turbulent times”. In Proc. CMG Conf., pages 602–613, Orlando, Florida.
Gunther, N. J. (1998). The Practical Performance Analyst. McGraw-Hill,

New York, NY.
Gunther, N. J. (1999). “Capacity planning for Solaris SRM: All I ever wanted

was my unfair advantage (And why you cant get it!)”. In Proc. CMG Conf.,
pages 194–205, Reno, NV.

Gunther, N. J. (2000). The Practical Performance Analyst. iUniverse, Lincoln,
NE, Reprint edition.

Gunther, N. J. (2001). “Performance and scalability models for a hypergrowth
e-Commerce Web site”. In Dumke, R., Rautenstrauch, C., Schmietendorf,
A., and Scholz, A., editors, Performance Engineering: State of the Art and
Current Trends, volume # 2047, pages 267–282. Springer–Verlag, Heidel-
berg.

Gunther, N. J. (2002a). “A new interpretation of Amdahl’s law and Geometric
scalability”. xxx.lanl.gov/abs/cs.DC/0210017.

Gunther, N. J. (2002b). “Hit-and-run tactics enable guerrilla capacity plan-
ning”. IEEE IT Professional, July–August:40–46.

Gunther, N. J. (2003). “Guerrilla capacity planning: Hit-and-run tactics for
website scalability”. www.cmg.org/measureit/issues/mit02/m 2 2.html,
www.cmg.org/measureit/issues/mit04/m 4 7.html.

Gunther, N. J. (2004a). “Celebrity boxing and sizing: Alan Greenspan vs.
Gene Amdahl”. Invited presentation. CMG 2002, Reno, NV.

Gunther, N. J. (2004b). “On the connection between scaling laws in parallel
computers and manufacturing systems”. Canadian Operations Research
Society Conference, Banff, CANADA.

Gunther, N. J. (2005a). Analyzing Computer System Performance with
Perl::PDQ. Springer-Verlag, Heidelberg, Germany.

Gunther, N. J. (2005b). “Unification of Amdahl’s law, LogP and other per-
formance models for message-passing architectures”. In IASTED 17th
Intl. Conf. on Parallel and Distributed Computer Systems, pages 569–576,
Phoenix, AZ.

Gunther, N. J. and Shaw, J. G. (1990). “Path integral evaluation of ALOHA
network transients”. Information Processing Letters, 33(6):289–295.

246 Bibliography

Gunther, N. J. and Traister, L. M. (1995). “Implementing performance flight-
recorders in a distributed computing environment with A+UMA”. IEEE
TCOS (Technical Committee on Operating Systems) Bulletin, (7)3.

Haldane, J. B. S. (1928). “On being the right size”. www.physlink.com/
Education/essay haldane.cfm.

Hennessy, J. L. and Patterson, D. A. (1996). Computer Architecture: A Quan-
titative Approach. Morgan Kaufmann, San Francisco, CA, 2nd. edition.

Highleyman, W. H. (1989). Performance Analysis of Transaction Processing
Systems. Wiley, New York.

Holtman, J. (2004). “Using R for system performance analysis”. In Proc.
CMG Conf., pages 791–802, Las Vegas, NV.

Jain, R. (1990). The Art of Computer Systems Performance Analysis. Wiley,
New York, NY.

Johnson, S. (2003). “Measuring CPU time from hyper-threading enabled Intel
processors”. In Proc. CMG Conf., pages 369–378, Dallas, TX.

Karp, A. H. and Flatt, P. H. (1990). “Measuring parallel processor perfor-
mance”. Comm. ACM, 33(5):539–543.

Kay, J. and Lauder, P. (1988). “A fair share scheduler”. Comm. ACM.,
31:44–55.

Kleban, S. D. and Clearwater, S. H. (2003). “Hierarchical dynamics, interar-
rival times and performance”. In Proc. SuperComputer2003, pages 28–34,
Phoenix, AZ.

Kumar, R., Tullsen, D., Jouppi, N., and Ranganathan, P. (2005). “Heteroge-
neous chip multiprocessors”. IEEE Computer, 38(11):32–38.

Lazowska, E. D., Zahorjan, J., Graham, G. S., and Sevcik, K. C. (1984). Quan-
titative System Performance: Computer System Analysis Using Queueing
Network Models. Prentice-Hall, Engelwood Cliffs, NJ. Out of print but avail-
able online at http://www.cs.washington.edu/homes/lazowska/qsp/.
Cited Jun 12, 2004.

Leland, W. E., Taqqu, M. S., Willinger, W., and Wilson, D. V. (1993). “On
the self-similar nature of ethernet traffic” (extended version). Technical
report, Bellcore, NJ, Morristown. DRAFT.

Levine, D., Berenson, M., and Stephan, D. (1999). Statistics for Managers
Using Microsoft EXCEL. Prentice–Hall, New Jersey, 2nd. edition.

Lilja, D. J. (2000). Measuring Computer Performance: A Practitioner’s
Guide. Cambridge University Press, Cambridge, UK.

Mandelbrot, B. B. (1983). The Fractal Geometry of Nature. W. H. Freeman,
New York.

Nelson, R. D. (1996). Including queueing effects in Amdahl’s law. Comm.
ACM, 39(12es):231–238.

Bibliography 247

Norros, I. (1994). “A storage model with self-similar input”. Queueing Sys-
tems, 16:387–396.

OCLC (2004). “Web characterization: Size and growth statistics ”. www.
oclc.org/research/projects/archive/wcp/stats/size.htm.

OpenGroup (1997). Systems management: Universal measurement architec-
ture. www.opengroup.org/bookstore/catalog/c427.htm.

OpenGroup (2002). The application response measurement. www.opengroup.
org/tech/management/arm/.

Park, K. and Willinger, W., editors (2000). Self-Similar Network Traffic and
Performance Evaluation. John Wiley & Sons, Inc., New York, NY.

Paxson, V. and Floyd, S. (1995). “Wide area traffic: The failure of Poisson
modeling”. IEEE/ACM Transactions on Networking, 3(3):226–244.

Paxson, V. and Floyd, S. (1997). “Why we don’t know how to simulate the
internet”. In Proc. Winter Simulation Conf., pages 1037–1044, Atlanta,
GA.

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1988).
Numerical Recipes in C. Cambridge Univ. Press, Cambridge, U. K.

Rains, E. M. and Sloane, N. J. A. (1999). “On Cayley’s enumeration of alkanes
(or 4-valent trees)”. Journal of Integer Sequences.

Ritter, J. (2002). “Why Gnutella can’t scale. No, really.”. www.darkridge.
com/∼jpr5/doc/gnutella.html.

Rudd, C. (2004). An Introductory Overview of ITIL. itSMF Ltd., Reading,
UK.

Strong, P. (2005). “Enterprise grid computing”. ACM Queue, 3:50–59.
Sutter, H. (2005). “The free lunch is over: A fundamental turn toward con-

currency in software”. Dr. Dobb’s Journal, 30(3).
Taber, R. (1969). The War of the Flea: A Study of Guerrilla Warfare Theory

and Practice. Paladin, London, UK.
Talia, D. and Trunfio, P. (2004). “A P2P grid services-based protocol: De-

sign and evaluation”. In 10th International Euro-Par Conf. on Parallel
Processing, pages 1022–1031, Pisa, Italy.

Vahalia, U. (1996). UNIX Internals: The New Frontier. Prentice-Hall, Upper
Saddle River, NJ.

Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S.
Springer, New York, NY, 4 edition.

VMware (2005). “ESX server performance and resource manage-
ment for CPU-intensive workloads”. www.vmware.com/pdf/ESX2 CPU
Performance.pdf.

Ware, W. (1972). The ultimate computer. IEEE Spectrum, 9:89–91.

248 Bibliography

Williams, L. G. and Smith, C. U. (2004). “Web application scalability: A
model-based approach”. In Proc. CMG Conf., pages 215–226.

Yaple, J. (2004). “A practical implementation of Guerrilla monitoring”. In
Proc. CMG Conf., pages 715–721, Las Vegas, NV.

Index

Active Server Pages (ASP), 111
Allometric scaling, 43, 179
ALOHA network, 64
Amdahl’s law, 49–51, 55–57, 62, 63, 65,

69, 72, 81, 85, 98–101, 104, 106,
116

Application Resource Measurement
(ARM), 3

Bellcore
packet traces, 180
self-similar packets, 182

BitTorrent, 138, 165
Bottleneck law, 144

Capacity (binary) unit suffixes, 224
Cayley tree, 138, 140, 168–170, 173, 174
Clusters, see Scalability clusters
Coefficient of determination, 153
Concave function, 58
Concurrency, VIII, 53, 58, 102, 115,

127, 137, 217
Concurrent programming, 102, 116
Concurrent users, 103, 106, 112, 113,

217, 240
Convex function, 58
Coxian server, 63
Critical size, 45

Dell PowerEdge 8450, 108
Doubling period, 13, 161

Enterprise JavaBeans (EJB), 111
Ethernet monitor, 180

Excel, 9–11, 14–16, 104, 150, 152, 153,
156, 225, 229, 241

Exponential model, 64

F value, 153
Fair-share scheduler, 127, 129–131, 134,

142
Fiscal year, 162
Forecasting, 13, 144, 149, 155, 156
Fractal

Brownian motion, 188, 193
coastline, 185
dimension, 185
geometric, 179, 182, 185
Hausdorff measure, 185
long-range dependence, 196, 197
power law, 179
time-based, 186

Functional test, 22

Geometric model, 63
Geometric scaling, 41, 42
Giants, 45
Gnutella, see P2P
GRID

Global Grid Forum, 167
Globus toolkit, 167
OGSA (Open Grid Services

Architecture), 167
versus P2P, 166

GRID computing, 117, 138, 139, 142,
165, 166

Guerrilla
attributes, 7

250 Index

capacity planning, 1, 127, 138, 142
case study, 199
graph, 162
guidelines, 14
management, IX
mantra, 16
Manual, VII, 16, 235
scalability, VIII
schedules, 4
successes, IX
tactical planning, 1
tactics, VIII, 6
tools, 9–11, 13, 15

Guerrilla Capacity Planning (GCaP),
VII–IX, 1, 9

Hardware scalability, 47
Homunculus

medical, 6
performance, 5

Hyper-Threading Technology (HTT),
119

Hyperthreading, 119
Hz (SI unit), 224

Information Technology Infrastructure
Library (ITIL)

defined, 17
Information Technology Infrastructure

Library(ITIL), 17, 18, 20, 25
business perspective, 19
capacity management, 21
wheel of performance, 21

Integrated Services Digital Network
(ISDN), 180, 197

Interconnect
technology, 66
topology, 66, 114, 165, 168–170, 172,

173, 175, 176
Internet planning, 179
Interval arithmetic, 39

Jack and the Beanstalk, 46
Java

bytecodes, 4
servlet, 111

Java 2 Platform, Enterprise Edition
(J2EE), 135

Java Database Connectivity (JDBC),
111

Java Server Pages (JSP), 111

Linux, see Unix
Little’s law, 11, 35, 191, 214
Long-Range Dependence (LRD), 188,

192, 193, 195–197

Mathematica, XI, 14, 15, 39, 85,
219–222, 226, 253

Minitab, XI, 15, 85
Moore’s law, 161
Multi-tier architectures, 110, 116
Multicores, see Scalability chip

multiprocessor (CMP)
Multiuser model, 52

Object-oriented programming, 102
Open Database Connectivity (ODBC),

111

P2P
Gnutella, 138, 165, 167
Skype, 138, 165

Packet
traces, 180
trains, 182

Parameters
coherency, 58
contention, 55, 58
heuristic, 62, 68

Pareto distribution, 179
Peer-to-peer, see P2P
Performance

analysis, 6
homunculus, 5
monitoring, 6
planning, 6

Perl, 202, 206, 208, 210, 227
Planning

strategic, 6, 16
tactical, 6, 9, 16

Power law, 41, 58, 179, 188, 194, 196,
197

Quadratic model, 63

R, XI, 15, 85
Rational function, 42, 65, 77

Index 251

Risk
management, 2
perception, 2

Scalability
chip multiprocessor (CMP), 47, 66
clusters, 66
Guerrilla style, VIII
hardware, 49, 52, 56, 63, 66
multicores, 47, 66
software, 97, 98, 100, 103, 107
spreadsheet, 10
symmetric multiprocessor (SMP), 47,

52, 56
Scalability model

Amdahl, 49
Exponential, 64
Geometric, 63
Multiuser, 52
Quadratic, 63
software, 97
Universal, 56

Scaling
allometric, 43
geometric, 41, 42
power law, see Power law
self-similarity, see Self-similar traffic

Schedule
inflation, 7, 9, 15
product, 4, 6
success measure, 1

Self-similar traffic, 179, 180, 182, 185,
190, 193, 197

Service Level Agreement (SLA), 20, 132
SGI

IRIX, 74
Origin 2000, 74

SI prefix conventions, 223
Skype, see P2P
Space elevator, 46
SPEC

CINT2000 benchmark, 108
SDM benchmark, 103

SQL Server
scalability, 107
version 6.5 vs. 7.0, 107

Sun
E10000 server, 207
SEtoolkit, 199, 202
Solaris, 199, 201, 210

SPARCcenter 2000, 104
Superserial model, see Universal

scalability

Testing
functional, 22
unit, 22
virtual, 98, 110

threads, 11
Time unit suffixes, 223
Topology, see Interconnect

UltraSPARC T1, 119
Unit test, 22
Units

capacity suffixes, 224
SI prefixes, 223
time suffixes, 223

Universal Measurement Architecture
(UMA), 3

Universal scalability, 56, 71, 77, 82, 87,
100, 103, 107

Unix
AIX, 3, 210
BSD, 3
HPUX, 3
instrumentation, 4, 142
IRIX, 74
Linux, 3, 8, 127, 143, 209, 210
MacOS X, 3
Solaris, 3, 199, 201, 202

Virtual
load-testing, 10, 98, 110
processing, 117
servers, 117

Virtual machine monitors, 127
Virtual machines, 118, 119, 127, 138
VTune, 122

WebLogic, 111, 134–136
WebSphere, 111
Wheel of performance, 21
Windows

2000 Advanced Server, 108, 123
2000 Production Server, 126
2003 Enterprise Edition, 135
instrumentation, 4, 142
NT Enterprise Edition, 108
scalability, 107
XP, 127

Colophon

This colophon is here to remind me and tells others what tools I used to create
this book. I also want to proclaim the shear brilliance of MacOS X, Preview
3.0.7, and its intrinsic PDF image capture capability (especially from other
tools such as PowerPoint, Excel, and Mathematica) for producing a camera-
ready book manuscript. Combined with pdfLATEX, MacOS X enabled me to
complete the majority of this book in an aggregate time of about six months.

Why do I use LATEX? It takes flat ASCII text∗ as its typographic source.
Flat ASCII is both the universal program interface† and the immutable data
repository. LATEX2ε is also monetarily free and therefore not subject to the
whimsy of commercial interests. As a consequence it also remains asymptot-
ically bug free, and some of the best ports of LATEX2ε are available on the
Power Macintosh platform.

The source text for this book was composed in BBEdit 8.2.4 and type-
set with pdfLATEX 3.14159-1.10b-2.1 (via Gerben Wierda’s www.rna.nl/ i-
Installer program ii2.sourceforge.net) using Springer’s SVMono macro
package driven by OzTEX 5.3b2 as the front end. The platform was a Power-
Mac model MDD equipped with a 1-GHz PowerPC G4 CPU running MacOS
10.4.7, 1.25-GB RAM, and two ATA disk drives (60-GB IBM and 80-GB
Seagate). The bibliography was generated by BibTeX 0.99c using natbib and
apalike styles. The index was formatted by MakeIndex 2.14. Mathematica pro-
grams were written using version 5.1 for both Power Macintosh and Windows
XP.

∗ By flat ASCII I mean text that is devoid of any formatting or special encoding
that might prevent it from being read in the future by tools that did not write it.

† This is aligned with an important tenet of UNIX philosophy due to Doug McIlroy,
the inventor of UNIX pipes (en.wikipedia.org/wiki/Unix philosophy), viz.,
write programs to handle text streams, because text is a universal programmatic
interface.

	0-front-matter.pdf
	01-What Is Guerrilla Capacity Planning.pdf
	02-ITIL for Guerrillas.pdf
	03-Damaging Digits in Capacity Calculations.pdf
	04-Scalability—A Quantitative Approach.pdf
	05-Evaluating Scalability Parameters.pdf
	06-Software Scalability.pdf
	07-Fundamentals of Virtualization.pdf
	08-Web Site Planning.pdf
	09-Gargantuan Computing—GRIDs and P2P.pdf
	10-Internet Planning.pdf
	11-Going Guerrilla—A Case Study.pdf
	12-back-matter.pdf

