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 Front cover A numerically severe storm (a)
 

 

 

 
 

 

This animation is used to study the water and ice structure of a severe storm, the 
movement and rotation of air in and around the storm, and the different physical 
processes which influence storm rotation near the ground. The cloud formation and 
movement, as well as the movement of other elements in the animation, was created 
numerically from mathematical equations which are based on contemporary laws of 
physics.The measurements for this model were taken from a severe storm that occured 
in Oklahoma on April 3, 1964. Produced by the Visualisation Group, National Center 
for Supercomputing Applications, University of Illinois at Urbana-Champaign. 
 

 

 

 
 
 Back cover Particle Dreams (waterfall)
 

 

 

 
 

 This waterfall is part of a group of animations entitled Particle Dreams, which are all 
created using particle systems, created by Karl Sims at Optomystic. 
 

 

 

 
 
 Back cover Wet, misty road  
 

 

 

 

 



 

  This plate is taken from research at at the Electric Machinery Laboratory, Hiroshima 
University, into the creation of a light model aiming at drive simulators 
 

 

 

 
 
 Back cover Flight simulator  
 

 

 

 

 
 

 
A two and a half ton flight simulator from Rediffusion Simulation. Its 6 hydraulic legs 
move the 'cockpit', in synchronisation with the cockpit display, to realistically 
reproduce the flight movements generated by the 'pilot'. 
 

 

 

 

 
 Plate 1 Storyboard  
 

 

 

 

 
 

 
 

Created by Mick Winning (now at Splash Computer Graphics Ltd., Cardiff) for S4C to 
demonstrate an animation idea (not transmitted). The scene opens with mountains 
reflected in rippling water, reflections turn into the number '4' and lift from the water, 
bands of light and water orbit the '4' and then form the letters 'S' and 'C'. 

  

Plate 2 Stills from the storyboard
 
 

 
 
 Three stills from the storyboard (Plate 1), generated on a Paintbox.
 

 

 

 
 
 Plate 3 Rendering sampler  
 

 

 

 

 

 

 Examples of quick Lambert shading, smoother Gouraud shading and raytracing, which 
includes shadows and reflections. 
 

 

 

 



 

  Plate 4 Luxo Jnr. 
 
 

 

 

 

 

 

From an award-winning animated short film created at Pixar in 1986 by John Lasseter 
with William Reeves, Esten Ostby and Sam Leffler. At the time, the fire broke new 
ground in its ability to imbue inanimate objects with personality and emotion using 
computer animation. It is the first 3-D computer animated film to be nominated for an 
Academy Award. 
 

 

 

 
 
 Plate 5 Tin Toy  
 

 

 

 

 

 

 

This 1988 Pixar production is the first computer animated film to ever win an Oscar. A 
3-D model of the baby's body was digitized from clay figures and merged with a 
skeletal description of the character. Special software fits the body model to animation 
of the skeleton, so that the body moved and flexed according to the animator's 
directions. 
 

 

 

 
 
 Plate 6 Sunlight on water  
 

 

 

 

 

 

 

From Light-water interaction using Backward Beam Tracing, SIGGRAPH Proceedings 
1990 by Mark Watt of Digital Pictures. A fuller treatment is given in Advanced 
Rendering & Animation Techniques: Theory and Practice, (pub) Addison Wesley 
1991. 
 

 

 

 
 
 Plate 7 Mutations  
 

 

 

 

 

 

 Produced by William Latham with Stephen Todd at the IBM UK Scientific Centre, 
Winchester. The programs used were Esme, Mutator and Winsom. 
 

 

 



 
 
 Plate 8 Numerically severe storm (b)
 

 

 

 
 
 See the description of the front cover plate.
 

 

 

 

 
 Plate 9 Quarry  
 

 

 

 

 
 
 
 From an animated simulation of a quarry created for an environmental impact analysis 
(EIA) by 3C Systems, Worcester. 

  

 



PART ONE  
 
 

  



 

Chapter 1— 
The Nature of Animation 

 

 
 

 
 

 

It is often desirable to produce animated images. The motive may be entertainment, 
scientific clarity, commercial persuasion or other, but the means is to present a 
sequence of images, called frames, at a rate such that the observer will accept the 
succession of discrete images as being one of continuous movement. The rate at which 
this illusion of movement is considered adequate is normally between twenty and thirty 
frames per second, and will often be determined by a secondary medium onto which 
the animation is saved, i.e. film or video. 
 

 

 

 

 

 
 

The ability of the viewer to construct the illusion of movement from discrete images is 
strong, and if the movement being watched is understood at an intellectual level then 
relatively few visual clues may be needed to support the illusion. For example a 
walking figure is so familiar that a few frames from the gait cycle may be 'padded out' 
by the viewer's experience to match the known experience. The frequency of these 
frames maybe low enough for them to be recognised as being separate without the 
illusion being lost. The illusion is particularly easy to sustain if the frames are 
synchronised to the tempo of the 'real life' experience. 

  

1.1— 
Frame Rates  

 
 

  
 



 

It is therefore possible to simulate continuous time with a sequence of discrete frames 
(analogue to digital?), but at what speed does the description of this as animation 
become justified? The question is probably more interesting than the answer, which 
varies according to context and is ultimately subjective. Persistence of vision has been 
claimed to be sufficient at 12 frames per second (fps) but is more often considered 
acceptable at between 18 and 24 fps. There are, however, fixed frame display speeds 
associated with different media, which should be listed. Old 16-mm home movies run 
at 18 fps, standard movie films run at 24 fps, TV in the United Kingdom runs at 25 fps 
and in the USA at 30 fps. (In order to show films at the correct speed on American TV 
every fourth frame is shown twice, on British TV films just end earlier.) On a 
computer, frames can usually be run at varying rates, and it is interesting to find for 
yourself the lowest speed at which you are satisfied with the credibility of an animated 
sequence. 
 

 

 

 
 

 

Whilst talking about timing, it is a good moment to introduce the concept of 'real-time'. 
Often used in connection with visual applications of computing, it is used to imply that 
there is a one-to-one relationship between the speed at which things are displayed on 
the screen and the speed at which they happen in real life. In the context of computer 
animation, a real-time display is one in which the computer displays the images at the 
same number of frames per second at which they should be finally viewed. It might be 
that they are generated AND displayed in real-time, or merely that they are generated 
over a longer period and saved up for subsequent real-time display. The reason for the 
latter method, as we will see, is that the computer may require minutes, or even hours, 
to generate complex frames. 
 

 

 

 

 

 
 

In more general terms, real-time can be used to refer to the computer's ability to display 
an image as it is input. This is a desirable feature in a paint system, for instance, where 
any delay between drawing on an input pad and seeing the corresponding mark appear 
on screen creates problems. Since the computer's electronics has to do some work on 
the input before it can be displayed, it can never be truly real-time, but is described as 
such if the delay is not perceptible. In the case of interactive animation, it is essential 
that generation and display are both done in real-time, which either requires a powerful 
computer or simple images. 

  

1.2— 
Animation Devices  

 
 

  
 



 

Mechanical devices with wonderful names like the Thaumatrope, the Phenakistoscope, 
the Zoetrope and the Zoopraxiscope date back to early last century, and brought the 
wonder of simple animation into Victorian parlours. Flicker books, and their grown-up 
cousins the peep shows (or 'What-the-butler-saw' machines) can still be seen today, and 
are not to be derided. Only recently, I was obliged to make a flicker book from 
computer plots, in order to see the movement I was attempting to construct, because the 
main-frame computer was taking half a minute to produce each frame and video 
problems prevented the sequence being recorded. It can also prove a quick and 
effective way of bringing a storyboard to life, and of carrying it around in your pocket. 
A flicker book is simply made by building a stack of sequential images on paper, fixing 
them at one edge, and flipping through them with your thumb. (It is necessary to align 
the sheets cleanly at the edge you flip, or preferably cut that edge after the book is 
assembled.) It is also quick and practical to draw the images roughly on sequential 
pages of a sketch book, though aligning each image with the previous one can be a 
problem. 
 

 

 

 
 

 1.3— 
Storyboards  

 

 

 

 

 
 

 
 

Animations need to be planned to be effective. It is possible to improvise at the 
computer keyboard, without any prior plan, but nothing of any ambition is likely to 
arise this way. A central most usual device for planning an animation is the storyboard, 
a sequence of pictures illustrating key moments in the script, which not only forces the 
transition from ideas to images, but does so in a form which is easily communicated to 
all those involved (Plates 1 & 2). The storyboard may be preceded by discussions 
between artist, production team and client, and by sheets of source material and 
drawing where environments and characters are developed, depending on the context in 
which the animation is being created. The variety of applications of computer 
animation will be discussed in the next chapter, when it will be seen that the general 
case implied here is subject to various degrees of modification. A scientific simulation, 
for instance, would require different planning to a TV commercial. 

  

At the storyboard level, aesthetic changes can be made, the technical consequences 
considered and the cost calculated in both financial and computing terms. In a production 
environment accurate assessment of time and cost determines whether your firm still 
exists to make any more animations, so expensive ideas may not be given the free reign 
that an academic or research environment might be able to offer. The requirements for 
producing a three-year doctoral thesis are different from those for producing a thirty-
second commercial on a two week deadline. Many of the techniques described later in 



the book are too close to the sharp end of the discipline to be viable production tools at 
the moment, but the history of the field is one of very rapid development. Also, 
commercial pressures and the animator's own satisfaction will both demand that new 
things be tried. 
 
 

 

 

 

Whilst a good storyboard presents a clear visualisation of the animation to come, it 
takes experience to picture how the images will look in movement and how long 
different passages of movement should be. It is likely, for instance, that each picture in 
the storyboard will not represent the same amount of display time, a number of pictures 
perhaps being needed to adequately describe a second of complex activity. A simple 
improvement is to produce a cross between a storyboard and a flicker book, by putting 
the storyboard images into the computer and displaying each image for the same time 
that the sequence it represents will last. At this point the time steps can be interactively 
tuned. Alternatively, a rough animatic can be produced quickly, probably on a small 
micro, sacrificing detail in order to preview movement and general layout, before 
making the commitment to full scale production. Such an animatic is particularly 
helpful to the client, who may well be inexperienced in picturing the final result of his 
large investment. A comprehensive storyboard does not, of course, preclude changes 
during production or post-production. 
 

 

 

 
 

 1.4— 
Traditional Methods  

 

 

 

 

 
 

 
 

Before considering the role of the computer in animation, let us look briefly at the most 
common traditional techniques. Hand-drawn animation, with each frame individually 
crafted by an artist, requires a lot of skill, a lot of patience and very little equipment. 
The drawing is usually done on a cel (a clear sheet) which allows previous frames to 
show through, or on backlight paper, and the cels have alignment holes punched out so 
that they can be registered by pegs. Each frame can be recorded on film or video, and 
the amount of work going in to an animation of any size is staggering. A feature film 
containing the production of 250,000 individual drawings would take fifty years of 
labour if all were to be drawn by one person [Halas 1974]. Needless to say it is not 
often done by one person. It will be coordinated by one person, but worked on by a 
number of artists who will delegate jobs, such as filling in areas, to juniors. The senior 
artists will draw the key-frames (frames where something significant changes) and 
junior artists will draw up the frames coming between the key-frames. It is remarkable 
to see vast rooms, filled with rows of tables, at each of which sits a figure with a 
paintbrush, all to produce a few minutes of a children's cartoon perhaps. 

  



 
 

 

 

 

Whilst all the detail can be painted on to every frame, it is more likely that the frame 
will be compiled from several cels at the point of filming. The background may be on 
one cel, static characters on another and the moving character on top. In this way the 
bottom two cels can be used in a number of frames. It might also be that the cels are 
moved relative to one another in successive frames, without being redrawn, so that, for 
instance, a background could be scrolled past to suggest the movement of the character 
in front. Because of the potential enhancement of the sense of space in the picture by 
creating movement on several superimposed layers, it is sometimes referred to as 2 1/2-
dimensional(2 1/2-D). 
 

 

 

 
 

 
 

The source images may come straight from the artist's imagination (established by 
years of critical observation), or can be taken from live-action film or video. The 
process of tracing images, one at a time, off a screen is known as rotascoping. The 
source material may be already available, perhaps archival footage, or might be 
specially created in order that the animator can work from it. Whilst it is very 
convenient to be able to copy directly from live-action material, it is only appropriate to 
do so if the material exactly matches the script. Film of a horse galloping past the 
camera is no help if you are required to draw a horse galloping towards the camera. 

  

1.4.1 Model Animation  
 
 

 
 

 

In the same way that two dimensional drawings can be individually recorded in a 
sequence, it is equally possible to manipulate objects in front of the camera. This is 
known as model animation, and is a sort of staccato puppetry, where, instead of 
drawing something at each stage of its movement, you move and film the thing itself. 
The subject can be a rigid object, an articulated object or even a flexible, transforming 
object (can everyone remember the ball of clay that turns itself into a man then into an 
animal then back into a ball?), and the process can be recognised in many children's TV 
shows. Sometimes it is the camera that moves, rather than the object, and very large 
sets may be built for model animation, perhaps a miniature town covering a thousand 
square feet. In this case, a 'fly through' of the town is likely to require a 'motion-control 
rig', in which a specialised camera, fixed to overhead tracks, is controlled along a very 
precise path through the scene. The camera may record the scene through a 'snorkel 
lens' (an inverted periscope) which allows it to work in the heart of the model, where 
the main camera body will probably not fit. 
 

 

 



 
 

 

A technique sharing some properties of cel animation and others of model animation is 
the manipulation of two dimensional cutouts under the camera (if the camera points 
down, gravity holds your scene in place). It is most easily achieved using a rostrum 
camera. The rostrum camera is a versatile tool, in which a vertically mounted, movable 
camera points down at a movable, horizontal bed on which the artwork is held. This 
setup allows for a flexible range of camera and subject movements relative to one 
another, and can be enhanced by replacing the single bed with several transparent 
levels for multi-level cel work and 3-dimensional (3-D) effects. All the moving parts 
are controlled with a high degree of accuracy according to a detailed shooting script. 
The various animation techniques described are not exclusive, but can be, and often 
are, combined. 
 

 

 

 
 

 1.5— 
Keyframing  

 

 

 

 

 

 

 

An important concept in animation, which has already been mentioned in passing, is 
that of the key-frame. If an object was to move smoothly (and unchanged) in a straight 
line from A to B, it would be possible to draw the two end positions, and then 
rationalise all the positions that the object had passed through from those two end 
positions. A more complicated motion can usually be decomposed into shorter sections, 
between the extremes of which, further positions can be interpolated. This incremental 
change from one key-frame to another is known as 'in-betweening' (Fig 1.5). 
 

 

 

 
 

 

 

 



  
 

Fig 1.5 
Two keyframes are defined and four inbetween frames created 

 

 

 
 

It might be that different parts of an object, or scene, can be seen as having different 
key points, for instance, the first and last frames of a cartoon figure dropping from the 
top of the screen to the bottom might suffice as key-frames, but if the mouth is moving 
as the figure drops it will require more detailed attention. Therefore, although the term 
'key-frame' will often be applied to the entire frame at a key moment, it will soon be 
seen that the concept can usefully be applied to different elements within a scene. It 
will also be seen that the movement path between key-frames is often defined by a 
curve instead of by a straight line, and that both the rate of change of the curve and the 
timesteps along the path need not be equal. 

  

 1.6— 
The Role of Computers  

 
 

 
 

 

If a feature film containing the production of 250,000 individual drawings would take 
fifty years of labour if all were to be drawn by one person, it is clear that automation of 
parts of the animation process could be very productive. It is often said that the role of 
computers should be to relieve humans of the need to undertake tedious chores, and 
there are certainly some repetitive chores involved in traditional animation. Whether 
the fresh chores brought by the use of computers are preferable to the existing ones is a 
matter of personal opinion (and financial assessment), but their use pushes forward the 
creative and production horizons of the medium. 
 

 

 

 
 

 

Computers can be used in animation in two main ways: as tools to improve the 
application of traditional methods; and as a means of generating material not possible 
traditionally. Between these two poles lies the possibility that computers may 
sometimes be able to improve on the speed, cost or accuracy of traditional animation 
techniques to the extent that projects which were previously technically possible, but 
impractical in scale, could be attempted. An example of this is the computer control of 
a motion-control rig, where camera movements of much greater precision and 
flexibility are possible, and with the major advantage of total repeatability. By storing a 
complete record of all parameters digitally, any sequence can be repeated, in whole or 
part, with the total accuracy vital for multiple exposures. 
 

 

 

 



 

 

 

It is often necessary to synchronise motion-control shots with material generated within 
the computer. A recent advertisement for 'Smarties' (a button-sized chocolate sweet) 
had the camera sweeping through school classrooms following the progress of flying 
Smarties. The Smarties, and incidents during their flight, were computer generated, and 
had to be synchronised exactly to the film shot by the camera in a set of classroom 
models. Because the computer controlling the camera held a complete digital record of 
all camera positions and angles against time, it was relatively straightforward to use the 
same information in the computer generation of matching images. Similar numerical 
control can also be applied to the rostrum camera. 
 

 

 

 
 

 
 

The production of program titles and credits is particularly suited to computer 
assistance. Two-dimensional typography can be produced by a paint system and three-
dimensional letter forms by a modelling system, with all the consequent advantages of 
scaling, positioning and colour changes being made simple by the computer. Text can 
be 'wrapped' around objects with an ease that encourages experiment, rather than with 
the labour that discourages subsequent change. Most applications have their own built-
in range of fonts, and specialised machines exists just to produce captions 
electronically, having up to a thousand different fonts included and the ability to accept 
fresh ones created by the graphic designer. The 'Aston' caption generator ('cap-gen') is 
to be found in the corner of most studios that I have visited, and in one studio, heaving 
with the latest computer wizardry, was cited as their single, most reliable source of 
income. It can also be used during live transmission for presentation, for instance, of 
sports results. 

  
 
 

 
 

 1.7— 
Manipulation by Computer  

 

 

 

 

 
 



 

By their very nature, computers are good at doing certain things. Repeating a set of 
instructions any number of times is one thing they are good at, and animation often 
gives them scope to prove it. Interpolation between key-frames involves repeated 
incremental steps of sufficient quantity to match the action to the required time span. If 
an object has to move 20 units along the X (horizontal) axis and at the same time rotate 
once around its Y (vertical) axis, taking two seconds to complete the move, then we 
can derive a set of instructions to achieve the necessary change between successive 
frames. Given a frame rate of 25fps then we have 50 frames to complete the 2-second 
move. In the course of 50 frames there are 49 frame changes, so the amount the object 
must move in each frame is 20/49 units, and the amount it must rotate is 360/49 
degrees. We can therefore say: 
 

 

 

 
 

 
For each frame from 1 to 50: 
move the object 20/49 units along X 
rotate the object 360/49 degrees around Y
 

 

 

 

 

 
 

This is virtually the way that we would write it in a computer program using the 
common structure called a 'loop', though the need to do so could well be hidden from 
us by a friendly interface. We would merely define for the machine the start frame, the 
end frame and the total movements required, and then leave it to get on with it. In the 
example above, the changes between frames are even, but it would take little extra 
definition to introduce acceleration or other change of pace. If you consider an army of 
similarly mindless objects moving across a surface, it can be seen that the same rules 
determining the movement of one object can be applied to all the others. The addition 
of a single line to our loop could lead to the movement of a hundred objects through the 
fifty frames: 

  
 
 

 
 

 
For each frame from 1 to 50: 
For each object from 1 to 100: 
move the object 20/49 units along X 
rotate the object 360/49 degrees around Y
 

 

 

  
 



 

The saving in time and effort over doing the same job manually is obvious and the ease 
with which repetitive things can be done has sometimes lead to them being done for 
their own sake. It is equally easy to produce an incremental change in a 2-D shape or in 
the form of a 3-D object by defining the two extremes of shape, the number of frames 
over which the change must occur, and then having the computer calculate a percentage 
change at each frame. This transformation must not confuse the 2-D representation of a 
3-D object with the 3-D object, which serves to distinguish between image based and 
parameter based keyframe interpolation (Fig 1.7). 
 

 

 

 
 

 

 
 

 

 

Fig 1.7 
Transformations 

  

 
 

 

Another repetitive function is the production of patterns. These can be generated 
mathematically or created by repeating any image or part of an image. Even the most 
basic systems allow you to 'cut out' and then manipulate areas of the image which can 
be repetitively combined to form patterns. The cut areas can often also be moved 
around under machine or hand control to invite fresh variations on animation 
procedures. The block of screen defined could represent a character, or part of a 
character, and this is the basis of 'sprite' animation. The animation in a games program 
might include a little figure who walks around the screen (albeit in a rather wooden 
fashion), and it takes little observation to see that each position in which he is shown is 
composed from a library of body parts, each drawn in a range of different attitudes. 
Various techniques allow the computer to compose and move the various figure 
combinations at great speed, enabling the animation to be interactive if desired. 
 

 

 

  
 

 



 1.8— 
Paint Systems  

 

 

 

 

 

 

 

Paint systems have been mentioned several times, and, although they are not tools 
specific to computer animation, they usually become involved in the production 
process at some point. A paint system is a combination of computer, software, monitor 
and input device, which allows the electronic simulation of drawing and painting on a 
screen (technical drawing being best handled by other specialist systems). Input is often 
via a stylus, held and manipulated like a pen, the movements of which on a sensitive 
surface are translated, in real-time, into marks on the screen. These marks can be 
predefined to appear similar to those created by different size brushes, with paint of 
different transparency, or to other mark-making devices offering different textures, 
such as charcoal, pencil or airbrush. The ability to draw straight lines, curves, boxes 
and to use text is included, and the more sophisticated machines duplicate almost all 
the tools a graphic designer could want, including powerful masking functions. Images 
can be input from other sources via a video camera, digitiser or scanner, and utilised in 
conjunction with all the other tools. Colours can be defined and mixed up to a total 
palette size of several million. 
 

 

 

 
 

 
 

This is the briefest summary of a piece of equipment which is revolutionising the 
practice of graphic design, but it hopefully gives an inkling of its potential. At any 
stage the current image can be saved digitally for recall later, permitting numerous 
permutations on a visual idea to be developed quickly. Different colour ways and 
combinations can be tried in seconds, (red swapped for green, the green darkened a 
little, no, let's try the red again but make it warmer, and so on) and limited animation 
facilities may be included. It is more likely, in the context of animation, however, that 
the paint system will be used to create art work which is manipulated elsewhere or else 
be used for post production work on imported frames of animation. 

  
 
 

  
 



 

One part of the traditional animation process which it would be very advantageous to 
automate, is that of painting-in the cels by hand. Currently labour intensive, and, 
therefore, often farmed out to distant places where labour is cheap, the chore of filling 
in thousands of consecutive images of the same subject with the same colours seems a 
job ideally suited to a computer. It can now be undertaken with specialised resources, 
but is not as straightforward as it might at first sight seem. A level of intelligence on the 
computer's part is necessary in order to enable it to follow each area as it is transformed 
from frame to frame (i.e. recognising changing views of the figure's head). There is 
also the problem created when an area leaves and rejoins the screen, where the clean 
edge of an area breaks up and where a clean edge is not intended between adjacent 
areas. Difficulties such as these mean that currently available techniques are of limited 
application, and that the hand still reigns supreme. 
 

 

 

 
 

 
 

Surprisingly, perhaps, it has been possible to persuade computers to colour old black 
and white movies. The computer is given a colour model for each new set and character 
and can then be 'trained' to recognise that character when it reappears. If John Wayne 
changes his shirt, the machine is given details of the new one, and continues following 
its progress. Whilst I do not think that a colour version of 'Stagecoach' or 'Battleship 
Potemkin' would be at all desirable, as it flies in the face of the aesthetic judgments 
brought by the original directors, in a society used to TV and films being in colour 
there is a market for these new renderings, some people apparently feeling cheated with 
mere monochrome. The technique seems more appropriate for recolouring old and 
faded film stock, and apparently the new, improved 'Gone With the Wind' has been 
given a fresh lease of life at the box office. I do not currently have much information on 
that system, but projecting forward from possible methods suggests the future use of 
intelligent edge detection to automate rotascoping. 

  
 
 

 
 

 1.9— 
Other Roles for the Computer
 

 

 

  
 



 

One further area where computers are set to revolutionise animation, and film 
production in general, is in the storage and subsequent manipulation of digital media. 
Instead of recording images on film or video tape, it is increasingly possible to save 
them digitally on a range of media. This offers a massive improvement in the flexibility 
of post-production work (work, such as editing, which is done after the initial images 
have been produced). Any frames can be accessed, almost instantly, in any sequence 
and rearranged, combined or altered (possibly many times) without loss of quality. The 
ease of handling and improved image quality allow techniques which were previously 
impractical, such as the building of sequences with, perhaps, forty or more layers of 
images. This would result in an unacceptable loss of quality if built up on video tape. 
 

 

 

 
 

 

These, then, are ways in which computers can aid, complement or update traditional 
animation. Much more interesting, however, and the main subject of this book, are the 
ways in which computers offer a completely fresh set of tools for the animator to use. 
They push the limits of the discipline far forward, allowing work of unimagined 
sophistication and complexity to become an everyday reality, and, at the leading edge, 
cement a new marriage between art and science. They can also be used to do the 
accounts. 
 

 

 

 
 

 
 

It has become a truism to point out that computers can only push numbers around, and, 
in the final analysis, can only distinguish between zero and one. They can, however, do 
so extremely fast, and as we have come to understand that much of our knowledge 
about the world can be meaningfully reduced to numbers, we are in a position to use 
computers to manipulate that knowledge. Objects and scenes from the real world, or 
from an imaginary world, can be conjured out of these numbers, can interact, can be 
subjected to the application of physical laws, and, most importantly, can be made 
visible and hence accessible. Modern communication and media ensure that the results 
of this newly acquired skill is made available, for better or worse, to hundreds of 
millions of people throughout the globe, in their very homes. 

  

1.10— 
Three Dimensions  

 
 

  
 



 

One of the most impressive advances that new technology offers animators, is the 
ability to build three dimensional objects and scenes in the memory of the computer. 
Instead, then, of having to invent and draw separate cels for each change of viewpoint 
or object movement, it is now possible to define all the ingredients of the scene in three 
dimensions (form, scale, colour, surface qualities, lighting conditions, camera position) 
and to animate any or all parts of the model at will. Much of the book will look at how 
this can be done, but it is the conceptual leap as much as the technical one that is 
astounding. Actually to have enough information about Midtown Manhattan stored in a 
few micro-electronic components, to allow you to 'fly' down Broadway from Central 
Park, turn left at West Thirty-third Street and sweep up the elevation of the Empire 
State Building still seems remarkable, even when it can be done (at a simple level) on a 
cheap home computer. Today's 'simple level' is, of course, yesterday's 'state-of-the-art', 
and it can be safely assumed that everything described here as pushing the discipline to 
its extremes will be commonplace in a few years using the cheapest equipment. 
 

 

 

 
 

 

The automatic calculation of perspective, which enables our imaginary 3-D scene to be 
rendered on our 2-D monitor screen, still seems a breathtaking piece of magic, whose 
wonder is not diminished by understanding the mathematics and programming 
involved. New developments which allow us to enter and explore that same scene, with 
all the apparent sensory clues of true 3-D, herald the dawning of a new way of looking 
at, responding to and understanding our world. They promise to vastly extend the role 
of animation (perhaps now 'hyper-animation'?), and find it new and exciting uses 
within a range of fresh disciplines. 
 

 

 

 
 

 
 

Less dramatic conceptually, but visually remarkable (some might say insidious), is the 
manipulation of flat, 2-D surfaces in 3-D space. The ability to 'turn' a page of electronic 
type, to 'wrap' a picture of a politician around a dustbin (which has been created as a 3-
D computer model), to fragment and 'blow away' the image of a woman's face in a 
cosmetics advertisement, or to 'roll' a flat electronic image into a cone and 'spin' it 
around the screen, is taken for granted many times during every night's television 
viewing. 

  

1.11— 
Kinematics / Dynamics  

 
 

  
 



 

The work of the animator to date has been mainly kinematic, which means that the 
operator has to specify the position of everything in the scene at any moment in time. 
This may be relieved by setting key-frames, between which we now know we can 
interpolate, and by defining relationships between objects which the program will be 
forced to observe (such as determining that the forearm must remain connected to the 
upper arm by a hinge joint with a defined range of movement). It still leaves the 
animator to mimic the effects of forces on all his 'actors', to decide how high a ball 
should bounce or how flat a cat should be squashed. (A useful convention has arisen 
whereby objects interacting with one another, or with their 'set', are referred to as 
'actors', a term coined by Hewitt in 1971. He defined an actor as an object that can send 
or receive messages, a definition which is helpfully intuitive, and derives from an 
object orientated approach. Using similar references Reynolds [1987] calls an actor the 
computational, abstraction that combines process, procedure and state.) 
 

 

 

 
 

 

In a dynamic animation, physical laws, such as the effect of gravity and collisions, are 
'known' to the program, which can then derive an object's movement from their 
application. Being able to describe these rules to the computer and then leave it to deal 
with all the movements and interactions, relieves the animator of much work and 
increases the complexity of the material which can reasonably be dealt with. It also 
presents the opportunity for direct simulation, where the animator may establish the 
starting conditions and then sit back as a spectator. The amount of information that 
needs to be specified for a scene of any complexity is enormous, and rapidly outstrips 
the ability of the user to supply it directly, so that any attempt at realistic motion 
suggest the computer's intervention. 
 

 

 

 
 

 1.12— 
Rule-Based Systems  

 

 

 

 

  
 



 

 

Rules that can be specified include those of the animator or storyboard (e.g. the logo 
will continuously rotate about all three axes during its move from A to B), those 
imposed by physical laws (e.g. once the ball has been thrown, it will decelerate, fall to 
the ground and bounce) and behavioural rules (e.g. the bees will fly from A to B in a 
compact swarm, without flying into one another or the ground). The animator's rules 
may, of course, have been derived intuitively, or by observation, from physical laws. 
The level at which the animator chooses, or is forced, to work varies from the highest 
level ('implicit') where it is necessary to specify the actors, their starting points plus 
constraints, if appropriate, and leave them to work out how to move themselves; to the 
lowest level ('explicit') where every motion, through every degree of movement, of 
every actor, for every frame, has to be specified individually. In some circumstances, of 
course, the user may want to 'interfere' with a 'high-level' animation in order to refine 
movement details at a 'lower' level. 

  
 
 

 
 

 

Consider the case of a cartoon cat leaping off a cliff. Typically, it is suspended in mid-
air at cliff-top height for some seconds, before being overcome by a sudden and 
dramatic plunge to the ground, probably hitting the ground some seconds before its ears 
catch up with it. Now consider an attempt to model accurately the movement of 
snooker balls across the green baize. In both cases the movement is proscribed by rules. 
In the first instance the rules are the intuitive 'falling cat' rules of the animator, at once 
based on, and yet suspending our understanding of, gravity. In the second instance the 
rules are exclusively those of dynamic analysis, dealing with the mass of the balls, the 
compression of the cushions, the friction of the baize, the force of the cue's strike and 
the angles of collision. 
 

 

 

 
 

 
 

Perhaps one rule-based system could control both instances. If all the Newtonian laws 
of motion were somehow built into the system, together with rules for the actor(s) to 
obey, it would be easy for the animator to set one rule for the snooker model: ''Obey the 
laws of motion'', and three extra for the cat. 1: "gravity is ten times the normal for 
falling cats", 2: "there is a 2-second delay for the effect of gravity on cats" and 3: "there 
is a 3-second delay for the effect of gravity on cats' ears". He could then set the 
boundary conditions and take a lunch break while the animations create themselves. A 
crucial difference between kinematic and dynamic animation, however, is that the first 
can be storyboarded but the second is open-ended. Therefore in the kinematically 
specified world things can happen in a specified sequence and take a specified time, but 
once the dynamic snooker balls have been set in motion there is no external control 
over when they stop (if ever). 

  



1.13— 
Artificial Intelligence  

 
 

 

 

 

A further removal of the need for operator intervention can be achieved by applying 
'artificial intelligence' (AI). This scientific field is involved with building features 
associated with natural intelligence into machines. Dealt with at greater length in 
Chapter 11, AI offers the potential for creating actors that can be given scripts and then 
left to get on with producing their own animation! If an actor (remember that we are 
using the word in the broad sense to refer to anything that interacts in our scene) 
'understands' how to respond in any given situation, then we need give it much less 
direction. This understanding could encompass not only physical responses (such as 
how to modify a gait pattern as speed changes and how to respond to collisions), but 
environmental ones (such as how to plan an optimal route from A to B and how to 
avoid obstacles) and also behavioural ones (such as what positional relationship to hold 
with other actors and how to react to conflicting demands). Actors could be given 
motivation and emotions which would condition their responses to situations they find 
themselves in, but could hopefully be stopped short of temperamental refusal to work. 
Work on applying AI techniques to animation is in its early stages but interest is strong, 
as the concept is very much in tune with the time, and the development complements 
other current research. 
 

 

 

 
 

 
 

Simulation is an area which can make good use of dynamics and AI. Part of the real 
world can be isolated and reproduced by obeying rules that are deduced from scientific 
observation, a simple example being the snooker balls mentioned earlier. Parameters 
can be changed in order to observe their effect in a theoretical world (e.g. gravity could 
be doubled, the mass of the balls decreased, the roughness of the baize changed, etc.) 
and the simulation run with the same, or with fresh, starting conditions. This discipline 
has many applications, as will later be shown, but in any context there is a very special 
appeal about watching a story unfold on the screen, apparently of its own volition, 
without having written the ending. It is worth pointing out that whilst visual 'cheating' 
plays a big part in commercial animation it can obviously have no part in a simulation. 

 



Chapter 2— 
Applications of Computer Animation
 
 

 
 

 

The increasing ability to produce computer animation at an acceptable cost and speed, 
and to employ it on a wide range of machines, is opening up many new opportunities 
for the medium. Almost everyone in the western world is being regularly exposed to 
the medium through commercial and entertainment uses on television, with dreaded 
"flying logos" swooping past the eyes at frequent intervals (very neatly parodied in a 
showreel from Conn, Homer and Associates). This increased exposure leads, of course, 
to increased familiarity and then, as the medium is accepted along side more traditional 
ones, to increased demand. Things in the real world are constantly moving, and the 
ability to mimic or simulate that quality breathes life into the inanimacy of the frozen 
image. A single image can capture "the decisive moment", which might have become 
lost during a sequence, but many situations demand greater truth to turbulent reality. 
 

 

 

 
 

 
 

In science, business, entertainment and education, frontiers are being pushed back 
through the insights which computer animation alone can offer. Finding visual form for 
impenetrably large collections of numbers has offered revelations to mathematicians, 
doctors have been led to new diagnoses and treatments, space missions have been 
rehearsed in safety and TV graphics has been revolutionised. Some phenomena in the 
world are only visible when they are moving, a fact demonstrated by a square of dots 
seen against a field of dots (where the square is invisible until it moves). Although this 
might seem an obscure example, it shows how much information could be hiding in a 
stack of data, and how animation could provide the vehicle for extracting it. 

  
 
 

 
 

 2.1— 
TV Graphics  

 

 

 

 

  
 



 

Because it is the most public use of the medium, TV graphics is a good place to start 
considering current applications of the medium. It has been taken on board so readily 
by producers and designers, wanting their programme introduction or promotion to 
have more punch than its rivals, that it has almost become the de facto standard. As a 
spin-off, it has unfortunately brought to millions of people, in the privacy of their 
homes, some of the most vulgar and needlessly expensive images of the century. The 
best examples of the genre have, however, become minor classics which enlighten and 
contribute to the discipline of graphic design. It will be interesting to see what effect 
the imminent proliferation of satellite TV stations has on the cost and quality of 
computer animation. The medium is properly used when it either extends the range of 
things the designer can do visually, or makes easier, quicker or cheaper an existing part 
of the design process. Whether the presentation and manipulation of a logo is poetic or 
crass depends on the skill of the designer and the sensitivity of whoever commissions 
it, it is not a property of the medium itself. It is, however, often the case that a medium 
stimulates ideas and visions to grow in a particular direction. If the designer is 
constrained by the hardware and software available, with a machine designed for 
typographical aerobatics and with a "chrome" rendering option, then the results maybe 
predictable, and the existence of those features on his machine will be the partly the 
result of market forces. The good designer will always be breaking new ground, and 
consequently pushing hardware and software to its limits, but he will rarely be in a 
position to write software to push beyond the current limits of his application. There is, 
therefore, at graphics' leading edge, a growing liaison between designers, programmers 
and engineers. 
 

 

 

 
 

 
 

Quantel has been the name associated with computer paint systems for a number of 
years and is still the yardstick against which others are measured. It may or may not be 
the best, but it is clearly identified with the revolution in TV graphics, and helped 
moved designers to a more central role in production. Designers at the BBC found that 
it so speeded up their jobs that they were prepared to forsake their families and work 
during the night if that was when the machine was free. Its relevance to animation was 
less marked until the Harry system was coupled to it. Harry is a digital editing suite 
which gives enormous flexibility in the manipulation of images from a range of 
sources, including live action video, without the generation loss which inhibits normal 
video work. It allows an animated sequence to be worked on (either frame by frame or 
in its entirety), added to and processed indefinitely without loss of quality, and with 
intuitive ease. 

  
 
 

  
 



 

The combined system, perhaps with the addition of an effects generator, gives the 
animator great creative freedom. Although its uses are often so unassuming as to pass 
notice (for instance replacing a car numberplate throughout a sequence, or 'painting' out 
the lighting rigs in a studio shot and adding a fresh surround), it permits the accretion 
of hand drawn images, images input from photographic sources, and computer 
generated images together with existing stock in an animatic potpourri which is 
currently popular in pop videos. It is not a system for the creation of 3-D scenes 
(though scenes generated on suitable machines can be imported and worked on) but 
successive layers of images can be added to build 2 1/2-D scenes. The mixing of 
computer-generated images with computer-amended images and with straightforward 
live film in a single sequence should be noted, as it is very commonly used in a range 
of contexts, though it is not to be dealt with in this book. 
 

 

 

 
 

 
 

One of the most well known and enduring examples of computer animation on British 
television is of the Channel 4 'ident' (station identity): a brightly coloured figure "4" 
breaking into sections which fly and tumble past the camera before reforming. 
Certainly the work of Martin Lambie-Nairn, and with many other people claiming part 
of the credit, the piece has a simple elegance which has endured since 1983. The 
apparent simplicity of the image does not mean that it was easy to create, and, just 
seven years ago, it was not possible for all the work to be done in this country. The rate 
of development of systems, however, means that many home micros today could match 
the choreography, if not the resolution, of that sequence. (An interesting detail is that 
the Channel 4 logo is shown in orthographic projection, which means it has no 
perspective. Since it needed to be shown in a perspectival projection in order for its 
flight to make visual sense, it was necessary to "cheat" a little in the opening and 
closing frames to move from one system to the other.) 

  
 
 

 
 

 

It is hard to generalise about the use of computer animation on television as its function 
and form will vary according to the context, but there are several areas where it is 
currently popular. Station idents, programme title sequences, information graphics and 
advertisements all make heavy use of the medium and it is almost universal, at the 
moment, for news programmes to employ computers in the production of their 
introductions. News programmes are something of a flagship for the stations, and are 
an important part of establishing their housestyle. The graphics may need to evoke 
qualities of honesty, seriousness, topicality and grittiness, define the relevant locality, 
reinforce the station's image, and be accompanied by a matching soundtrack. The 
images used are usually iconic (the globe, the parliament building), the typography 
prominent, the movement smooth and pacey, and the overall feel often symbolic 
(reaching out across the airways, flying to the nation's pulse). 
 

 

 



 
 

 

Strings of letterforms, in 2-D, or more often 3-D, lend themselves to geometric 
manipulation in 3-space and are able to retain a high degree of legibility throughout 
major transformations. In simple cases it is also very straightforward to accomplish 
with relatively basic machines (Fig 2.1), and so is frequently seen, though it is 
interesting to notice that these animations can last as little as half a second, possibly 
just re-establishing the station ident between two separate pieces of programme 
material. 
 

 

 

 

 

 

The use of basic machines can even include the use of home micros to provide 
broadcast material. Relatively crude pieces of animation, often used in games shows, 
are found acceptable at a low resolution, with a limited range of perhaps sixteen 
colours, and can be produced quickly and cheaply on sixteen-bit machines such as the 
Atari ST and Amiga. The short, hectic animated graphics on pop music programmes is 
often made using similar machines, and in some cases combined with more 
sophisticated hardware in the production of 'quality' images. (Some of these machines 
also have excellent music and sound control capacities using a 'midi' interface.) The 
next generation of home computers will be able to produce broadcast quality material 
as a matter of course. 
 

 

 

 
 

 

Television weather forecasts usually employ a range of computer animated material, in 
addition to their 'intro', and are interesting in that the weather charts themselves, need 
to be remade, perhaps several times each day. A system is therefore required which 
will allow the rapid production of fresh images from meteorological information. This 
might be the animation of digitised satellite photographs, moving isobars or 'raining' 
clouds and 'shining' sun icons. This means that information must be received at regular 
intervals from a meteorological source, and that there must be a quick method of 
getting from production of the charts to the point of broadcast. One method, allows the 
charts to be compiled on cheap micro computers using a customised library of icons, 
which then automatically controls a Quantel paintbox in down-time to produce top 
quality graphics. In the Cardiff studio of Stylus Video Graphics, who developed such a 
system, there is an infrared video link to the TV station using their weather material. 

 

 

 

 

  



 
 
 

Fig 2.1 
Exploding letterforms from a student project 

  

 
 

 2.2— 
Scientific Visualisation  

 

 

 

 

 



 

  

 

Weather is also a subject for scientific visualisation. In order to study the growth and 
development of weather patterns, a vast amount of numerical information on winds, 
temperatures, barometric pressures and other relevant data must be accumulated. This 
information arrives in the form of millions of numbers, which need to be presented in a 
way which will make sense of them. The data relating to any one moment in time can 
be plotted manually, or with the aid of a computer, but the development of any 
meteorological phenomenon requires that it be observed over a period of time. The 
computer can readily build a sequence of diagrams which can be played back as an 
animation. This is the essence of visualisation (sometimes called Visual Data Analysis 
or ViSC - Visualisation in Scientific Computing): to convert impenetrably large 
amounts of data into a visual form which will prove revealing. It is possible to select 
from the data in different ways in order to reveal different things, and to find different 
forms of presentation to show the relationship of several variables. There are several 
neat quotations to be taken from McCormick [1987]: 1: "Richard Hamming observed 
many years ago that 'The purpose of (scientific) computing is insight, not numbers'. 
The goal of visualisation is to leverage existing scientific methods by providing new 
scientific insight through visual methods." 2: "Today's data sources are such fire hoses 
of information that all we can do is gather and warehouse the numbers they generate." 
3: "Scientists not only want to analyse data that results from super-computations; they 
also want to interpret what is happening to the data during super-computations." 4: 
"The ability of scientists to visualize complex computations and simulations is 
absolutely essential to insure the integrity of analyses, to provoke insights and to 
communicate with others." 

  
 
 

 
 

 

Several hundred years ago, overlaying the location of deaths from cholera, on a map of 
available water pumps, traced the cause of a London epidemic. Held separately the two 
pieces of information yield nothing, but the importance of the knowledge gained from 
combining the two, explains the search for increasingly sophisticated methods with 
which to draw conclusions from separate pieces of data. The need for this development 
has been accelerated by the quantity of data which computer technology can generate, 
and the impossibility of making useful judgments about it. Papathomas [1988] points 
out that storage capacity increases are not keeping up with those of computational 
speed and quotes Upson as concluding that a researcher can compute more than he can 
store and can store more than he can comprehend. Visualisation can lead to revelation. 
 

 

 

 

 



 

A graph showing acceleration, for example, plots speed against time, and has a clarity 
and immediacy which is lacking in the raw data from which it is constructed. A two-
dimensional graph shows the relationship between factors whose proportions are 
indicated on two axes (i.e. plotting X against Y, plotting house prices against year). A 
three-dimensional graph extends the factors that can be compared by adding a third 
axis (i.e. plotting X against Y and then extending into Z, plotting house prices against 
year in different regions). The information from several 2-D graphs can thus be 
condensed into one 3-D graph with a potential increase in clarity (Fig 2.2). It is 
necessary to be careful about the scale of axes to preserve accuracy, and to find an 
appropriate presentational form to prevent 3-D information being obscured. The 3-D 
contour map which can be created in a 3-D graph, can have its surface overlaid with a 
further layer of data, effectively creating a 4-D image. It is also possible to plot 
diagrammatic information over a 'realistic' 3-D form, such as overlapping an operating 
temperature map for a disc brake over a 3-D model of the disc [Jern 1990]. 
 

 

 

 
 

 

In business graphics today, histograms (bar charts), pie charts and other devices have 
become a common place, but the trend is now towards animated presentation which 
adds another axis, that of time. Whatever the form of presentation, it is not likely to be 
practical commercially if a visualisation specialist with esoteric programs is required to 
produce the material. Demand has therefore given rise to a range of accessible 
applications which can be used 'in house', or quickly and relatively inexpensively by a 
bureau. At the other end of the scale, the magnificent animated study of a numerically-
modelled severe storm (Plate 8 & front cover), from the Scientific Visualisation 
Program at the National Center for Supercomputing (USA), required a range of 
workstations and computers including a Cray-2, and lists thirteen people in its credits 
for animation, research, support, script and audio. It shows very graphically in a 3-D 
animation, the growth of a storm using a cloud-like simulation containing within it 
diagrammatic information about air flow and other relevant features. The ground plane 
is divided into a grid mapped out with temperature distributions and colour coding 
continues throughout the model to make the storm's development understandable at 
several visual and intellectual levels. It is also richly impressive as an image in its own 
right, and conveys both the power and complexity of the phenomenon to the viewer, 
regardless of its meteorological content. 
 

 

 



 
 
 

Fig 2.2 
3-D graph 

  

2.3— 
Simulation  

 
 

 

 

 

An American firm specialises in creating animated computer simulations for use in 
lawsuits. It recreates car crashes which have involved the litigants, incorporating 
parameters based on those present in the actual accident, in order that the incident can 
be studied in court. This is in accord with one definition of simulation as: the 
reproduction of the conditions of a situation, etc. as in carrying out an experiment. It is 
more problematic as a piece of legal evidence if an alternative definition of simulate is 
tried: to make a pretence of, to feign. A simulation must embody truth about the 
situation it seeks to reproduce, but at the same time need not pretend to be that actual 
situation. Whilst recognising that we are looking at organisations of pixels denoting 
two automobiles on a flat screen, we can derive useful information about what two real 
vehicles would do in a given situation, if the representations have been programmed to 
make accurate responses in terms of the masses, forces and frictions involved in real 
life. Simulations seek to model reality with different levels of fidelity. 
 

 

 

  
 



 

As well as being able to recreate an incident from the past, it is practical, and more 
usual, to want to create a simulation of a theoretical event. What would happen if one 
of the cars had been travelling twice as fast? At what point would a bearing fracture if 
it were put under an increasing load? By providing the right forces to a model which 
''knows'' how to respond, we can watch the event unfold before us, then vary the 
parameters and observe the changes. This also allows us, in the right circumstances, to 
build and animate a scene by describing the physical rules which will apply, rather than 
having to kinematicaly control every element. The suspension of a car, for instance, can 
be tested in a dynamic model, and in some circumstances the operator can be 
interactively involved with the simulation, providing feedback which determines the 
model's future behaviour. 
 

 

 

 
 

 
 

'Man-in-the-loop' simulation has developed over the last few years to the point where it 
can play a real part in the development of engineering projects, and in the case of the 
automobile, in subsequent driver training. In aeronautics, engineers can study the 
effects of stresses and strains on the airframe by simulating meteorological extremes, 
G-forces, etc., and subsequently check modifications against the same conditions. This 
leads to an understanding of the operational limits and to the definition of the aircraft's 
flight envelope. 

  
 
 

 
 

 2.4— 
Flight Simulators  

 

 

 

 

 
 

 

A 'top-of-the-range' flight simulator will model the experience of flying an aircraft with 
such accuracy that flight sickness can be a genuine problem. At the cost of several 
millions of pounds, the pilot can sit in the aircraft of his choice, confronted with an 
authentic cockpit display, with a full set of 'working' controls, a realistic view of his 
chosen airport visible through the windscreen, appropriate engine noises, and can 'fly' 
the plane in any chosen conditions, with the correct flight characteristics. Hydraulic 
rams under his 'cockpit' tilt and rock him just as a real aircraft would do (see back 
cover), and the combination of physical and visual stimuli is so convincing that it is 
necessary to concentrate very hard in order to have any doubt in the reality of the flight 
experience. In some military simulators, the addition of snug hydraulic suits through 
which pressure can be increased on the body, and seat belts which can exert sudden 
tension on the pilot, allow the stresses of acceleration and increased G-forces to be 
reproduced. Even the relatively crude visual display of a flight simulator on a home 
micro is considered, by qualified pilots, to have a useful level of realism. 
 

 

 



 
 

 

Our interest is centred on the visual display, and a number of clever shortcuts may be 
implemented in order to be able to move realistically through a scene in real-time. 
Dusk and night simulations require less detail to feel realistic, and point light sources 
alone (which are easier to manipulate than polygons) may provide much of the visual 
information about an airfield at night. Instead of 'building' a city from polygons it might 
be possible to 'stick' pictures of the city onto highly simplified shapes, similarly it is 
sometimes appropriate to produce authentic looking clouds by 'sticking' cloud pictures 
onto simple blocks, and shadows will often be acceptable if they are exist as silhouettes 
in an idealised ground plane and fail to adapt to contours and obstructions. 
 

 

 

 

 

 
 

Flight simulators, of course, are more than just sophisticated fairground rides. They 
save aircraft, lives and money by allowing for efficient ground training, where landings 
and take-offs from obscure airports can be practice repeatedly, responses to in- flight 
emergencies rehearsed and pilots 'converted' to new types of aircraft. Military pilots 
can practice bombing runs, in-flight refuelling and landings on aircraft carriers without 
risk of dangerous and expensive mistakes. These principles can also be applied to other 
types of vehicle and equipment, train cabs, oil tanker bridges and anti-aircraft guns can 
all be simulated using similar techniques. A rather sombre spin-off from using flight 
simulators, is that crash investigators can sometimes use the data from the 'black box' 
flight recorder, salvaged from a crashed aircraft, to relive, and to analyse, the problems 
that caused the accident. 

  
 
 

 
 

 2.5— 
Military  

 

 

 

 

 
 

 

The military has always been an important client for many applications of computing, 
and graphics and animation provide no exceptions. Noakes [1988] points out that the 
initial impetus for the development of computer animation came from experiments with 
simple analogue computer systems originally used in anti-aircraft viewfinders, and says 
that it was John Whitney Snr. who reversed this military application of computers, 
enabling him to develop computer controls and imaging in the early 1950s. Interest by 
the military in a discipline can result in significant research funding, the findings of 
which can spill over into other applications, and is said that cruise missile technology 
was important to computer paintbox development. 
 

 

 

 



 

  

 

Simulation is an area of obvious military interest, both for developing and testing 
possible confrontation scenarios, and for crew training with transport and weapon 
systems, etc. The difficulty of testing out many military projects in peace time, and, 
indeed, the possibility that some systems can never be tested until the time comes for 
them to be used in anger, renders the option of evaluation through simulation vital. It 
also imposes great pressure on the simulation to prove accurate. Recent developments 
in aircraft cockpit displays, which include projection on to the helmet visor, enhanced 
stereoscopic vision, night vision ability, simulated vision through animation in 
headsets, and interfaces operated by speech and glance, are all being exploited in other 
computer graphic contexts. 

  

2.6— 
Space  

 
 

 
 

 

It is even more difficult to rehearse something which will happen half way across the 
solar system, and so space research makes heavy use of simulation and visualisation. 
The resulting material is also important in the fight for project finance, and it has been 
suggested that the fine computer animated previews of the Voyager spaceprobe played 
a big part in winning funding for the mission. The quality of movement of objects in 
space - that smooth, slow, cleanly defined pace - seems well matched to the sort of 
motion which computer animation produces most easily. Its silky accuracy often looks 
odd when applied to earthbound activity, but outside the earth's atmosphere everything 
appears to move like a flying logo. The particular clarity, and spatial depth of images 
from space, with its limited number of light sources, is well mimicked by the computer, 
and it is also convenient that most of the man-made objects, which are the subject of 
these animations, are constructed using the geometry which computers most readily 
generate. 
 

 

 

 
 

 

The Voyager example does bring to light an interesting question about the ethics of 
changing things to make them more visible. If a 20-hour fly past of Jupiter is 
condensed into 3 minutes, how true to the real event can the simulation be said to be. 
Similarly, it is often desirable to change the contrast ratio of an image to facilitate its 
reproduction in a newspaper, or to change the colour range to suit television 
reproduction, but this could be seen as tampering with evidence on which scientific 
judgement is based. When images are returned from distant places in the universe, the 
colours used in their reproduction are likely to be altered in order to make certain 
features more visible, and any notion of a "true" record must be balanced accordingly. 
 
 



 
 

 
 

It is particularly important for astronauts to have access to simulators of the vehicles 
and conditions which space will present since the moon is not a good place to make 
your first attempt at flying a lunar module. Specialised variations on flight simulators 
provide that opportunity. Space scientists can also rehearse proposed trajectories 
without the risk of losing a valuable payload, and data from unmanned space missions 
can be used to generate authentic looking flights over the surface of distant planets 
prior to manned landings. The construction of space stations can be rehearsed, 
amended, demonstrated and practice in an environment where gravity can be switched 
on and off at will. 

  
 
 

 
 

 2.7— 
Architecture  

 

 

 

 

 
 

 

Towns and buildings are straightforward to model on a computer, and this ability is 
increasingly utilised by architects, not only to experiment with different structures but 
also to demonstrate their choices to the client before large amounts of money are spent. 
Having modelled a proposal within its local environment (Plate 9), it is then possible to 
move around the model, viewing the building (or structure) from any position, viewing 
the surroundings from within the building and assessing the total physical relationship 
of the building to its surroundings. The shadows cast by the building, by its neighbours 
and by trees on site can all be anticipated with far greater ease than previously possible, 
and on a sophisticated model it might be possible to simulate airflow around and 
through the new site. 
 

 

 

 
 
 

 

It is equally possible to travel through the building to preview the internal appearance 
and layout, to try different permutations of lighting, different decors, changes of ceiling 
height and position of windows, for instance. The same data base from which the 
model is constructed might be accessed by an expert system to calculate percentage 
area of windows, heat loss under different conditions and conformity to changing 
building regulations. The possibility of anticipating traffic flow problems by watching 
them develop on screen, or of seeing the shadow from the new office tower creep round 
to engulf the nearby housing estate, is sufficiently clear to believe that it will become a 
major planning tool. An architect designing a child-care centre has already been able to 
'test out' his design by moving around it 'as a child', in this case exploiting technology 
(described later) which enabled him to actually move like a child as well as see from a 
child's viewpoint. 



  
 

 

 

 
 

In a simpler case, the remodelling of a foyer or a domestic kitchen can be previewed 
much more clearly by a client who has no experience of reading plans, than 
traditionally, where those plans were likely to be supplemented only by an artist's 
impression or single perspective view. A floor plan can be entered into the computer 
and 'extruded' to make a basic 3-D model in a few moments, after which you can 'move 
around' anywhere inside or outside that space. This offers the improved efficiency of 
making and viewing changes in company with the client, and together with others in 
the design team. A reservation about computer modelling is that it has an immediate 
believability and appearance of finality which a rough sketch avoids. The sketch is 
somehow pregnant with possibilities which the computer model has tidied out of the 
way, and the two techniques can most usefully co-exist. There is also a superficial 
credibility about a clean computer model which might disguise flaws and design 
weaknesses from the layman. 

  
 
 

 
 

 2.8— 
Archaeology  

 

 

 

 

 
 

 

It would be possible to pick on almost any discipline area and find applications for 
computer animation, this chapter, therefore, selects just a few. Since the examples 
given tend to be the more obvious ones, I include mention of a perhaps less expected 
example of the use of the medium in the field of archaeology. An archaeological 
excavation involves the investigation of a 3-D space over a period of time, and the 
acquisition of large amounts of data. Computers have already proved their use in the 
management of the data that accrues, but the vital recording of continuing changes to 
the site, and the locating of finds, suggests a 3-D model able to reflect those sequential 
changes. 
 

 

 

  
 



 

Paul Reilly [1990] describes a simulated excavation site named Grafland, of which he 
built a three-dimensional computer model showing soil layers with various features 
(such as pits and post holes) cut into them, which constitutes a record of the data 
inevitably destroyed in the course of excavation. An animation shows a green 'field' 
falling away to leave a block of ground which represents the excavation volume. This 
volume is manipulated to show various features: the major layers, sections through pits 
and post holes, buried items, etc. Individual features can be isolated and observed, a 
hypothetical artifact assemblage can be shown in situ, and layers can be removed in 
sequence or added in reverse sequence. The whole piece provides a graphic record of 
the site, and changes to it, which traditional methods would find hard to match. 
 

 

 

 
 

 
 

Computers are also being increasingly used to construct models of buildings, and such 
like, from the parts revealed by excavations. It is much easier to hold components in 
the spatial relationships in which they are found in the gravity-less computer model, 
than in a real world model, and to subsequently manipulate them and, perhaps, change 
the model's scale. Much more complete structures, such as the Roman baths at Bath, 
can be explained and explored with animated computer models, and are becoming a 
familiar educational resource at such sites. The reconstruction of artifacts from a 
complex jigsaw of pieces has also been facilitated by computers, although the spatial 
manipulations which are required to be enacted are not usefully discussed as animation.

  
 
 

 
 

 2.9— 
Medical  

 

 

 

 

 
 

 

The ability to extract data from scans taken of patients, and construct from it 3-D 
computer models, is proving an important new diagnostic tool. Previous technology 
only presented 2-D pictures of internal structures, and it was necessary to resort to 
surgery in order to confront organs in 3-D. This new method makes it possible to build 
skulls, vertebrae, hearts and brains in the computer and then to manipulate them on 
screen. Volume visualisation (described later) permits a 3-D model of a body to be 
peeled back in layers to reveal the organ the doctor requires to see. Ambiguities about 
the exact form are then removed as the part is animated. The animation can even 
provide a reconstruction of the patient's pulsing heart, through which abnormalities can 
be seen that no other method would so clearly reveal. Similarly blood flow through a 
faulty artery or organ can be shown more dynamically than before, acting as a teaching 
tool as well as a diagnostic aid. 
 

 

 

 



 

  

 

In all cases of medical imaging (and indeed any specialised area), it is important to 
recognise that the computer operator must be working with someone who knows what 
is being looked for and what needs to be seen. Whilst I can look at a computer 
animation of a group of articulating vertebrae and be impressed with the clarity with 
which their movements are shown, the animation is useless if it does not reveal what 
the doctors need to see. It is the person with medical skills who must decide what is 
needed and the job of either the system or the operator to manipulate the data to 
provide it. Increasingly friendly and intelligent systems are likely to mean that the 
doctor and the operator are often one and the same person, but at this stage of 
development that is unlikely to be the case. 

  
 
 

 
 

 

The reconstruction of shattered bones or rebuilding of a deformed skull, involves a 3-D 
jigsaw that can be rehearsed on the computer model. Also of assistance to plastic 
surgeons is a skin simulation which will allow intended operations to be tried on the 
computer before being used on the patient, and more general operation simulators are 
being developed which will permit doctors to practice surgery in simulated 3-D reality. 
This idea extends to operations being carried out by doctors hundreds of miles from the 
patient, which is seriously suggested as a future space flight scenario. 
 

 

 

 
 

 2.10— 
Film  

 

 

 

 

 
 

 

At some point in this book, John Lasseter must have special mention, and this is the 
moment. Working at Pixar in California, he is a key figure in the team which has 
produced several of the most stunning pieces of computer animation. In each of the last 
four years the films 'Luxo Jr.', 'Red's Dream', 'Tin Toy' and 'knicknack' have provided 
the yardsticks against which all the other entries in computer film festivals have been 
judged. Their strength lies in the combination of skills which are brought together in 
the team. Lasseter worked for Walt Disney and brings to the films all the professional 
skills of a top animator, whilst others at Pixar are leading programmers, artists and 
computer researchers. The films are remarkable for the seamlessness with which the 
varied skills brought to their creation merge. They operate at the technical limits of the 
discipline yet are unassuming in the demonstration of that skill. 
 

 

 

 
 



 

 

An earlier Lasseter computer animation is 'The adventures of Andre and Wally B.' 
which broke new ground in the way that it used a storyboard which made few 
concessions to the limitations of production on a computer, and incorporated technical 
advances such as motion blurring, but it does not use the new medium as 
unselfconsciously as his later work. 'Luxo Jr.' (Plate 4), however, is a miniature 
masterpiece in which the medium has become completely invisible and we enjoy the 
animation for itself. The stars are two anglepoise (Luxo) lamps, mother and child, who 
act out a scene (in which the youngster plays with a ball watched by his parent) with a 
level of characterisation that is close to human. It is a classic example of the technology 
being handmaiden to the art, though in this case the technology has been developed to a 
very high level of sensitivity. Telling details include the understated set and palette (in 
computer graphics all the colour knobs are too often set to maximum), the pinpoint 
accuracy of the few sound effects, and the proportioning of the child lamp. Instead of 
being a small version of the parent, it is proportioned in the same relationship of human 
child to adult - small light shade but same size bulb, shorter support rods and springs 
but with the same diameter [Lasseter 1987]. 

  
 
 

 
 

 

'Red's Dream' followed, with a wonderful level of detail in an early scene, where the 
interior of a bicycle shop, including shadows from two of the five light sources, was 
rendered using the equivalent of 4.5 million polygons. This was followed by 'Tin Toy' 
(Plate 5), which won the first Oscar awarded to a computer animation, and which was 
estimated to be the result of twelve trillion calculations per image (Time Magazine, 
May 1989). Despite the fascinating attempt in this film to model a human baby 
crawling across the floor, it does draw attention to the fact that computers much prefer 
to build from geometric shapes (as in the tin toy of the title) than to deal with flexible 
baby skin. After taking on the massive technical challenges of the previous films, the 
team chose to enjoy themselves with 'knicknack', which is again a superbly made, and 
very funny, animation attempting to break down fewer technical barriers, but which 
brought the house down at SIGGRAPH 89. It is also shown in 3D, which is now 
becoming commonly available. 
 

 

 

 

 

 

Computer animation in this context is an art/entertainment medium. It does exactly the 
same job as 'Tom and Jerry', 'Fantasia' and 'When the wind blows' (the nuclear war 
parable) but is able to call on the computer as an additional tool in the process. The 
same production motives can be attributed and the same value judgments applied. 
Lasseter says that it is interesting to hear people call his work pioneering but that it is 
not, it is just a matter of applying fifty-year-old principles from Disney to a new way of 
working [Swain 1987]. 
 

 

 

 



 

  

 

In the context of much else in this book, it is interesting to be reminded that what 
Lasseter and his team do is largely subjective. The application of Newton's laws of 
motion is not for Wally B., his is the world of 'squish and stretch', terms from 
traditional animation which describe the way a character distorts in order to accentuate 
a movement. In this world the character also displays anticipation of what is to come, 
priming the audience and involving them as more than mere spectators. The formulae 
for making an anglepoise lamp look excited come from animators not physicists, and 
much of the excitement of working at Pixar must come from the intimate mixing of 
science and art. 

  
 
 

 
 

 2.11— 
Special Effects  

 

 

 

 

 
 

 

As the credits roll on many feature length films today, reference will be seen to 
computer special effects. The ability to generate impossible visions 'realistically' is all 
in a day's work for the computer, and has come to be widely exploited. The classic 
example is in space films, where computer modelled spacecraft, planets, meteorite 
showers and the like can be created and choreographed with some ease, often intercut 
or merged with live or model shot material. One advantage of computer generated sets, 
as oppose to hand built models, is that they can be destroyed as often as you like and 
then restored at the touch of a button. This has to be set against the additional time 
currently taken to construct and render a complex computer model, though improving 
hardware and techniques will soon give the computer method a clear edge. Computer 
control of equipment, in particular the camera, is also of great use in coordinating 
shots. 
 

 

 

 
 



 

 

It is estimated at Industrial Light & Magic, a company renowned for special effects 
production, that only about two percent of their effects currently use computers, and 
that whilst that per centage will increase, it will not take over entirely from the model 
makers who have honed their skills over a number of years. One of their stocks-in-trade 
is dirt and the ageing of models, which often seems alien to computer graphics 
programmers, and is not always easily implemented when required. It is also difficult, 
at the moment, for computer models to match the subtlety of lighting that exists on a 
real set, and the primary requirement of special effects is that they MUST match the 
look of the rest of the film. A major advantage of computer graphics and animation, 
however, is that the 'virtual' camera and lights have zero dimensions. There is nowhere 
that the computer camera cannot go, no gap is too narrow for its passage and it can pass 
through walls to order. Similarly, scenes can be illuminated without the physical 
presence of real lights to contend with, so there are no cables to hide, nothing to keep 
out of shot, and no problems with heat or power. 

  
 
 

 
 

 

Much of the use of computers in special effects is in details rather than in the 
construction of complete images, undertaking tasks such as removing supporting wires 
from shots of real models. Also, most special effects involve combining together a 
number of pieces of image in each frame, only some of which may be computer 
generated. One well known space sequence has nearly two dozen separate parts 
composited together in each frame, though the complexity is, of course, invisible to the 
viewer. Optical compositing is versatile but suffers from generation loss (a degradation 
in image quality with each successive process) whilst the digital computer medium 
avoids generation loss but currently has lower resolution than film. This is a problem 
on a 50-foot screen. Film can be scanned into digital form, manipulated digitally, and 
then scanned back to film, but with the above limitations. (Filmed images also tend to 
take up more memory than computer generated images, as adjacent pixels are less 
likely to be similar on grainy film. Data compression is dealt with in Chapter 6.3.) 
 

 

 

  
 



 

'Tron', from Wait Disney, was one of the first attempts at using a lot of computer 
animation (about 15 minutes' worth) in a full-length feature film, though unfortunately 
its limited commercial success inhibited similar developments. 'Star Trek II' contained 
the 'Genesis Demo' sequence (which is discussed in Chapter 10.1) which shows the 
creation of life on a distant planet, but it was the 'Star Wars' series that really perfected 
and popularised many of the techniques with which we are now familiar. It is strange to 
feel convinced by the flight of an imaginary space-fighter through channels on the 
surface of an imaginary death-star or by the aerial acrobatics of imaginary combatants 
in deep space when we have no direct experience against which to judge it. The film 
makers, however, have looked carefully at archival footage of World War Two dog 
fights, at film coming back from NASA space flights and at planetary simulations, to 
create rules for motion that can be credibly extrapolated from our second hand 
experiences. The sci-fi scenario where a live actor steps into a machine/space/alien 
world is tailor made for a computing solution. 
 

 

 

 
 

 
 

In 'The Abyss' a remarkable special effect from Industrial Light & Magic shows a pool 
of water growing an arm-like tentacle which retains all its clear, reflective and 
transparent properties while it extends, moves towards actors, transforms its end into a 
face, and is touched by an actress. Its smooth, gently rippling motion makes it totally 
like water and yet doing things wholly impossible for water. The brilliant sequence 
took six people, with the assistance of part-timers, six to eight months to produce 75 
seconds of film (close to one second of animation per person per month). It also took 
four and a half hours to render each frame, with a number of steps to ensure that fog, 
shading, reflection, refraction and highlights were all correctly shown. By coincidence, 
the research team at London's Electric Image, was developing a similar effect at the 
same time, which serves to suggest that the leading edge of the discipline is 
internationally spread. 

  
 
 

 

 
 

 

Transformations can sometimes use digital technology to advantage, and are quite 
common in fantasy films where a frog might metamorphose into a prince, for instance, 
or into an icecream. In the film 'Willow' an interrupted transformation from goat to 
ostrich to turtle to tiger to woman was required, and was achieved by computer 
animating between animatronic puppets of the creatures. In 'Indiana Jones and the Last 
Crusade' a major character had to disintegrate from flesh to dust, and director Spielberg 
insisted it be accomplished in one continuous take. The 'morfing' technique pioneered 
on 'Willow' was adapted to metamorphose seamlessly between three puppet heads 
successively mounted on the same motion-control rig. In 'Willow', however, the 
individual elements were composited optically, whilst for 'Indiana Jones.' the image 
was entirely composited digitally within the computer. Similar transformations can be 
carried out in 2-D with much less difficulty. 



  
 

 
 

 2.12— 
Advertising  

 

 

 

 

 

 

 
 

There is nothing unique about the computer animation techniques used in advertising, 
which distinguishes advertisments from material produced in any other context. Their 
existence is justified by their ability to sell their product, and very large budgets may be 
available for very short animations. It is an area where art directors have to be 
responsive to stylistic fashions, and where the sensitive balance of cost and creativity is 
in the client's hands. A production is likely to be handled by an agency using designers 
and facilities which may be found both in, and out, of house. Specialists firms may be 
brought in to deal with motion control, rendering, post-production, etc., or one 
company may deal with everything from design to final tape. The brief may be tightly 
defined by the client, or the design team may be given a great degree of freedom. 

  
 
 

 
 

 2.13— 
Corporate Video  

 

 

 

 

 
 

 

Increasingly firms are using video for point-of-sale promotions, for corporate 
presentations and for staff training. Since these applications do not necessarily require 
the highest sophistication or resolution they can be produced in-house or by small 
companies. A team of one or two people with a video camera and 32-bit computer can 
produce cost effective material, and can develop a house image through working for the 
one firm. Desktop video (DTV) is briefly discussed later. 
 

 

 

 

 

 

Presentations which have, in the past, been given as slide shows, can now be animated 
at little, or no, extra cost, but with great extra effect. The 'pulling power' of a moving 
image can be used in traditional or innovative ways to enrich either the firm's product 
or their message, according to the context. In- house training material can more easily 
be updated with video and subsequently overlaid or inter-cut with animated material to 
produce visually rich instruction. 
 

 

 

   



 

 2.14— 
Education  

 

 

 

 

 
 

 
 

The use of video material in education has grown with the technology, and it is a 
natural development that computer animation should become one of the production 
tools. The increase in specifically educational programs shown on television, such as 
the Open University in the UK, has created a market which can utilise both high-end 
and low-end animation. Sometimes the presentation can be simply like business 
graphics, with bar charts and such like, but in a learning situation these basic 
visualisation techniques can be most valuable. At other times more sophisticated 
techniques may be appropriate, and whilst the educational budget is rarely high, if 
production times are less rushed then economies can be made. The product can also be 
expected to stay on the market for a number of years and benefit a large number of 
users (though, no doubt, at a time of education cut-backs, the employment of such 
media will be seen by some as an excuse for staffing reductions). 

  
 
 

 

 

 

A particularly inspired set of videotapes called 'Project Mathematics!' has been 
produced by Jim Blinn (long-time computer graphics guru and past simulator of the 
Pioneer and Voyager missions) to teach high-school mathematics, with funding from 
several sources, including SIGGRAPH. It is, perhaps, easy to imagine how the 
mathematics underlying all of computer graphics could be readily employed in the 
service of explaining that same mathematics. How immediate the relationship between 
a viewing transform (which converts data about 3-D space in order to display it on a 2-
D screen) and an animated demonstration of aspects of trigonometry. Once again, 
however, it is the coming together of mathematical and visual skills which proves so 
productive. 
 

 

 

  
 



 

In common with other fields, educationalists are very interested in multi-media 
presentation, where sound, live video, still images, animation and text can all come 
together. The laser disc is the medium which has precipitated development in this area, 
though it might be overtaken by other digital media. Also the increased memory of the 
latest, and future, computers, together with greatly improved data compression 
techniques, suggests multi-media in a single, intelligent box. A particular advantage of 
this technology is that it need not be linear, and is rarely designed to be so. It is not 
switched on and followed from beginning to end, but is used interactively, with the user 
determining the route, and speed, taken through the information. Each user, therefore, 
effectively constructs his own course according to his own interests and pace of 
learning, although hopefully under qualified supervision. 
 

 

 

 
 

 
 

Improvements in machine speed also make viable interactive animation, which can be 
used in a learning environment. A research project running at Exeter University, which 
utilises artificial intelligence techniques in a text-based application for teaching English 
as a foreign language, has considered an animated 'front end'. What better way to show 
the user's microworld, or to explain concepts about spatial relationship, than to have 
them acted out on screen, ideally being 'driven' by the user? Computer-based 
microworlds have been built for children on the simplest micros, enabling them to 
explore the vocabulary and interactions within a limited, specified domain, and the 
added resource of interactive animation makes them that much richer. 

  
 
 

 
 

 2.15— 
Games  

 

 

 

 

 

 

 

Animation is almost a prerequisite of computer games. Whether it is Pac-man gobbling 
up opponents as he traverses a maze, space creatures advancing to be destroyed in a 
'shoot-em-up' game, or just chess pieces moving themselves in response to your move, 
games abhor a static screen display. Because the display is attempting to be interactive 
on a simple home computer, the complexity of the moving image has to be relatively 
simple, but games creators take great pride in optimising routines and hacking corners 
to improve their performance. The big brother of the home computer game is to be 
found in amusement arcades, where more advanced graphics on more sophisticated 
hardware lets you crash cars and kill aliens much more spectacularly. Arcades also 
have a brash, noisy atmosphere and add a social dimension which enhances the games 
for aficionados. 
 

 

 

 



 

 

 

Arcade games can be exciting, involving and even addictive. Dramatic perspective, 
colour and speed are typical features, but some of the latest machines borrow heavily 
from state-of-the-art simulators to condense the sensation of landing a jumbo-jet, or 
flying a spitfire in battle, into a small cubicle at a cost of, perhaps, one pound. The 
realism is eerie as you battle with the controls of an aircraft coming into J F Kennedy 
airport in the corner of a pub in Soho, and is still credible sitting in your living room at 
the keyboard of your home micro. On a grander scale, the 'Body Wars' ride at Wait 
Disney World EPCOTT Center in Florida simulates a journey through the human body 
for the audience of a small theatre mounted on a hydraulic platform. The ride is not 
interactive, but consists of 2 minutes of computer animation, generated at film 
resolution, matched by the movement of the platform. 
 

 

 

 
 

 
 

Other games require less effort in their participation but can prove just as addictive. It 
was suggested that the game of 'Life', devised in 1970 and introduced through the 
Scientific American magazine, was responsible for more than half the world's computer 
time being stolen, as fanatical users sat mesmerised at their screens. Probably an 
exaggeration, but I can remember the widespread enthusiasm for this simple game, and 
as someone without my own computer at that time I was resigned to covering my floor 
in sheets of graph paper as hand-played games developed. It is hardly a game at all, as 
no-one wins or loses, it is necessary merely to set the starting conditions, and watch as 
a few simple rules (the number of neighbouring cells at any point in time determines 
whether a cell is destroyed or created) create patterns which take on an apparent life of 
their own. The fascination is in the feeling that the game is underwritten with some 
universal truth. 

  
 
 

 

 

 

Other non-games, which involve little user input, are more like house pet substitutes. 
One involves little computer figures inhabiting a cross-sectional house on the screen, 
living their lives, albeit rather restrictedly, for the entertainment of the user, whilst 
another has computer fish swimming on the screen. Although these games might not be 
very meaningful, a number of scientists are creating stimulus-response animations, in 
which cellular automata respond according to rules governing their behaviour. The 
rules can involve response to environment, to 'hunger', to population density, etc., and 
the social orders achieved can be controlled by varying the rule parameters and can be 
studied in relationship to those of real creatures. 
 

 

 

 
 

 2.16— 
Art  



  
 

 
 

 

 

It is, unfortunately, neither practical nor closely relevant to discuss the nature of art 
here, nor to find wherein it lies the role of the computer. Suffice it to say that artists use 
computers, that some use animation, and that whilst all art is not visual, animation is 
necessarily so. The aesthetic criteria for the judgement of computer generated art 
should be no different from those applied to other media but unfortunately they have 
tended to become suspended for judgement of this new art form and most 'computer art' 
to date has been rather bad. One reason is the usual one for a new medium, that it starts 
by mimicking existing media before it learns to stand on its own two feet (as did 
photography in the early years). Another is that 'computer art' has often been merely the 
output which computer scientists thought attractive. Brian Reffin Smith [1989] 
expresses his views forcibly: 
 

 

 

 
 

 

''Let us first agree that most 'computer art' is old-fashioned, boring, meretricious 
nonsense; and then that most of it is done by people whose knowledge of contemporary 
art and its problems is more or less zero; and then that most of this 'art' is actually a 
demonstration of the power of a few companies' graphics systems; then that most of the 
'art' is really graphic design, produced for graphic design-like (and thus not art-like) 
reasons; and finally that there is a sort of 'mafia' of people who produce, teach, write 
about, judge at competitions and generally celebrate and curate this 'art' (the present 
author not excluded).'' 
 

 

 

 
 

 

There are, however, signs that the medium is not all bad. William Latham has created 
sculptures on a computer which could not exist in real life (Plate 7), and the obvious 
way to view an imaginary sculpture is to move round it and through it in an animation. 
He uses constructional solid geometry and texture mapping (both described later), to 
create delicate, magical structures sometimes resembling hallucinogenic seashells. 
These are variously presented as photographs, on computer screens or in animations 
where the viewer is 'flown' through the intricate coloured tunnels of the sculpture 
without the inhibitions of gravity or reality. 
 

 

 

  
 



 

The mathematical basis for some forms of art (remember 'op art'?) leave it open to 
obvious development by computer. This readily applies to work in 2-D and 3-D, where 
there has been a consistent interest for a number of decades, but can also be extended 
into the fourth dimension. It has been exploited with film but can be explored with 
much more flexibly on a computer, where experiments with the time-base might be 
compared sympathetically to tempo in music, music also having a strong mathematical 
basis. 
 

 

 

 
 

 
 

Artists are also creating expressive, abstract animations and exploring formal problems 
with the added dimension of time. Art colleges often have a media area where time-
based studies are available, together with computers, and in that situation the two are 
obviously going to get used together. The distinction between 'art' and 'film' as 
discipline headings becomes too blurred to be relevant. Sometimes animations made in 
a completely different context, perhaps scientific visualisation, could be said to have 
the beauty and integrity to take on the additional mantle of art objects. 

  

2.17— 
Multimedia  

 
 

 

 

 

Multimedia is not a separate discipline area, but a much vaunted merging of a range of 
different media, including animation. The ability to combine text, graphics, animation, 
video and sound into a single, interactive, screen-based medium is hyped as a 
communications revolution which will make books obsolete. These claims are balanced 
by critics expressing strong reservations about the impact and potential of the new 
medium, and, in fact, questioning whether it can be described as a new medium at all. It 
seems clear, however, that people's expectation of communication media will grow to 
encompass all these forms. 
 

 

 

  
 



 

Many of the discipline areas described in this chapter would be able to make obvious 
use of a medium which combined all these different ways of communicating 
information into one friendly package. Most obvious, perhaps, is education. A student 
could interactively learn from (and with?) the system at the best pace to suit the 
individual, drawing on the richness of all the media at the system's disposal. 
Educationalists might have reservations about the desirability of this means of gaining 
knowledge, and I would be cautious about the degree to which it might be substituted 
for real experience, but it seems destined for heavy use in some areas. Business 
presentations will be sure to incorporate multimedia, and how much more useful would 
a car manual be if it was possible to animate the diagrams at will, call up a video of a 
process being carried out, have a voice talking you through, and interrogate the manual 
when it was not clear. 
 

 

 

 
 

 
 

Already multimedia is providing the environment for manufacturers to demonstrate 
their latest hardware, and computer trade shows abound with screens showing multiple, 
resizing windows containing all of the above media being displayed simultaneously. 
The animation one can envisage being used in such a context stretches across the whole 
range from animated bar charts to photographically realistic 3D. The success of the 
medium relies on the newly available high-capacity storage devices such as optical 
discs, on fast, high-resolution hardware, and on improved video interfacing. It remains 
to be seen whether the visual capability of those taking up the medium is always 
adequate for the task, and bad multimedia will surely be more intrusive than bad 
desktop publishing. The medium might also prove vulnerable to copyright problems, 
with material too easily copied without regard for necessary permissions. 

  
 
 

 
 

 2.18— 
Conclusion  

 

 

 

 

 
 

 
 

None of the application areas described is exclusive, they overlap to varying extents, 
sometimes almost entirely. For instance, the only difference between flight simulators 
and arcade game simulators is in the level of sophistication and the motivation for 
using them. Visualisation, in particular, is a label which could be loosely applied to all 
the other areas, as computer animation is very much about making visible ideas about 
experiences which are visual, conceptual and/or narrative. Computers have 
revolutionised mathematics, directing attention towards iteration for example, and 
animated visualisation is providing a window onto previously inaccessible areas of the 
discipline. It offers very real potential as a tool in man's search for understanding of 
himself and his universe. 



Chapter 3— 
Basics of Computer Graphics
 
 

 
 

 

This chapter will outline sufficient of the basic principles of computer graphics that 
anyone new to the area should be able to make sense of the rest of the book. It does not 
pretend to go into much depth as the main focus of this book is movement, but it should 
provide a familiarisation with the main concepts involved in producing and displaying 
an image. In the main, issues that are likely to be 'transparent' to us as animators, such 
as the algorithms for polygon filling or clipping are not discussed, we will merely leave 
it to the machine to take care of them. We will concentrate on working in 3D, the 
principles for 2D usually being similar and simpler, but less relevant to the rest of the 
book. It is hoped that the brevity does not introduce too much imprecision, and it is 
expected that many readers will have enough experience of the area to skip the chapter. 
A few books, from the vast range on the market covering these topics in greater detail, 
are listed in the bibliography for those requiring more information. 
 

 

 

 
 

 3.1— 
Pixels  

 

 

 

 

 
 

 
 

The basic unit with which an image is built up on a normal computer monitor, or a 
television screen, is the pixel (a word shortened from 'picture element') which can be 
round, square (Fig 3.1a) or rectangular. In the same way that a newspaper photograph 
is made up of many rows of dots, rows of pixels (each row a 'scan line'), shoulder to 
shoulder across the screen (Fig 3.1b), give the illusion of a continuous image if they are 
in sufficient quantity and viewed from an appropriate distance. The horizontal rows of 
pixels are scanned by an electron beam in the cathode tube of the monitor, and the 
pattern of scan lines is known as a 'raster'. 

  
 
 

  
 

 



 

 

 

 

 

 

 

Fig 3.1a 
An enlarged letter-form 

showing its construction  
from square pixels 

 

 

 

 

 

 

 

 

 

Fig 3.1b 
Round pixels forming  
two intersecting lines 

  
 



 

 

The density of pixels largely determines the resolution of the image. The more pixels, 
the higher the resolution, and the clearer the picture. The screen I am working at to 
write this has 400 rows with 640 pixels in each row, i.e. a little over a quarter of a 
million pixels on a screen about 220mm by 150mm, and is described by its 
manufacturer as being high resolution. In other situations this might be thought of as a 
rather low resolution, but unfortunately there is no standard for defining what is to be 
called high, medium or low resolution and the definition shifts according to 
manufacturer, machine type (i.e. micro or workstation), and the current state of the 
technology. On my monitor the pixels are either 'on' or 'off'. If they are switched 'on' 
they are illuminated and display as white, if they are 'off' they appear as black, thus 
giving a black and white display. A pattern of black and white pixels, in suitable 
proportions, gives the appearance of grey. Other machines may be able to display a 
'grey scale' by varying the intensity of illumination of each pixel. On a colour monitor 
each pixel will be illuminated as a colour defined as a mixture of red, green and blue 
(the three primary colours of light) in an 'RGB' system. All red, with no green or blue, 
produces a red pixel. An equal mixture of all three colours produces a white pixel and 
by varying the intensity of the three primaries a range of colours (including greys) can 
be produced. Other systems exist for defining colours, such as 'HLS' where the colour 
is defined by parameters of hue, luminance and saturation. The size of the palette, and 
the maximum number of colours which can be displayed on screen at the same time, 
varies according to the machine. The number of 'bits' (a unit of computer memory) 
allocated to each pixel determines how large the maximum palette can be. A 16 bit 
home micro may be able to display 16 colours from a palette of 512 at a resolution of 
320×200, whilst a 24 bit workstation may display any of a palette of 16.7 million at a 
resolution of 1280×1024. Three common standards established for PCs are: 

  
 
 

 

 
 
 'CGA' with 320×200 pixels, 4 colours
 

 

  
 
 
 'EGA'  
 

 

 

 

 

 
 
 640×350 
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 'VGA'  
 

 

 

 

 

 
 
 640×480 
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Boards with 4096×4096 pixels (16,777,216 colours) are available while resolutions 
exceeding 8000×8000 are being developed and the highest currently available 
resolutions produce images almost as fine as hand drawings. Although one would 
expect the realism of an image (taken from the real world) to increase with the size of 
the palette, there is a point at which the eye can no longer discriminate between close 
colours. Beyond this point, which is considered to be about 350,000 colours, little 
advantage is gained in increasing the palette but larger numbers are often available due 
to hardware/ memory considerations. The smooth gradations available with a large 
palette give an illusion of higher resolution than an image using a smaller palette. 
 

 

 

 
 

 3.2— 
Coordinates  

 

 

 

 

 
 

 
 

An individual pixel can be defined by its column and row number, for example: 
'column 3 row 3' addresses a pixel near the top left of the screen, '320,200' addresses 
one at the centre of my screen. (Some systems internally define '0,0' at the bottom left, 
some at top left.) In the same way that a point on a map can be referred to by its grid 
coordinates, so any point on the screen can be referred to by its Cartesian coordinates, a 
system developed by René Descartes, the 16th century philosopher and mathematician. 
A horizontal axis (labelled 'X') and a vertical axis (labelled 'Y') are sufficient to locate 
any point in 2 dimensional space relative to an origin (0,0) (Fig 3.2a). 

  
 
 

 
 

 

 
 

 

 

Fig 3.2a 
Positive 2D Cartesian coordinates, and the four quadrants  

surrounding the origin which show nwgative as well as positive axes 
  
 



 

It is often convenient to set the origin at the centre of the screen, and to convert pixel 
co-ordinates accordingly, the coordinates being either positive or negative. In 3-space 
(meaning 3-D space) an additional 'Z' axis is required, orthogonal to the plane of the 
XY axes (Fig 3.2b). 
 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.2b 
3D Cartesian coordinate system 

 
 

 
 

This is slightly complicated by the fact that some systems are 'left-handed', in which the 
Z coordinate numbers increase as they go away from the viewer, and some are 'right-
handed, in which the Z coordinate number increases as they come towards the viewer 
(Fig 3.2c). 

  
 
 

 
 

 

 
 

 

 

Fig 3.2c 
Right-handed and left-handed 3-D coordinate systems 

  
 



 
A commonly used 2-D alternative to the Cartesian system is the polar coordinate 
system (Fig 3.2d), in which distance (from the origin) and angle (between the positive 
X axis and a line from origin to the point) are used to determine position. 
 

 

 

 
 

 

 
 

 

 

Fig 3.2d 
Polar coordinates (left), spherical coordinates (right) 

 
 

 
 

In 3-D this becomes the spherical co-ordinate system, requiring two angles plus the 
distance from origin to point. This can be useful in the real world where it more 
naturally matches our assessment of spatial position, and it also lends itself to 
trigonometric investigation, but is normally converted to the Cartesian system within 
the computer. (In order to simplify the mathematics used to manipulate coordinates a 3-
D point can be represented by a four number vector to create an 'homogeneous 
coordinate system'. Whilst this will not concern us here it is mentioned in order to 
account for the extra number that might otherwise appear confusing in some 
calculations.) 

  
 
 

  
 



 

The coordinates used for defining an object in the real world need not be the same as 
those used for defining its position on screen (or any other output device), and in fact 
rarely are. In fact the coexistence of several related coordinate systems can simplify 
object description. For example: a stamp could be defined as being near the top right 
hand corner of an envelope whilst the envelope is at the centre of a table and the table 
against one wall of a room. If the table is then moved within the room it is not 
necessary to redefine the position of the stamp as it has maintained a fixed relationship 
to the table. The local coordinate systems of the envelope, which defines the position of 
the stamp, and of the table, which defines the position of the envelope, are unchanged, 
only the position of the table within the local coordinate system of the room is new. It 
is also clear that since the monitor screen is in 2D, some manipulation of 3-D 
coordinates must take place in order that they can be displayed in a meaningful way. In 
fact a mathematical viewing transformation is used to create a 2-D perspective view of 
a 3-D scene from a given viewing point in 3-space (Fig 3.2e). The required position of 
the observer of the scene is defined using the world coordinate system. It is simple to 
display objects using projection systems other than the single viewpoint system (e.g. an 
orthographic engineering drawing) and to distort perspective at will. 
 

 

 

 
 

 

 
 

 

 

Fig 3.2e 
The viewing transform 

  

3.3— 
Raster/Vector  

 
 

  
 



 

It is, of course, possible to use a 2-D, single viewpoint description of an object, as in a 
photograph. This, however, does not contain the information necessary to manipulate 
objects in 3-D though the 2-D image can be manipulated in the plane of the screen. 
(For example an image can be can be broken up and the different elements moved 
about the screen. Those elements might correspond to individual objects and can be 
handled as 'sprites'.) Sprite animation is widely used in computer games. 
 

 

 

 
 

 

If an object is represented by the pixel intensities which make up its two dimensional 
image, it is described as a raster image. If it is represented by the spatial relationships 
between the 2-D or 3-D vertices that define the object, then it is a 'vector' image. For 
example a square could be defined as being all the pixels from columns 100 to 200 in 
rows 350 to 450 (a raster description), or (if a 'unit' was set to be the same size as a 
pixel) as 10 units up, 10 across, 10 down and 10 back, starting at a particular point 
represented by screen coordinates 100,450 (a 2-D vector image), each unit being 
displayed as ten pixels in this case. 
 

 

 

 
 

 It is easy to overlook the need for an algorithm to draw lines on screen, but few line 
descriptions are likely to map exactly to pixel locations. 
 

 

 

 
 

 

 
 

 

 

 

Fig 3.3 
The appearance of straight 
 lines on a normal screen 

  
 



 

 

Newman [1984] points out that a straight line should appear straight, should terminate 
accurately, should have constant density, should have a density independent of line 
length and angle and should be drawn rapidly. One of the most widely used algorithms 
is that of J E Bresenham, which was originally developed for use on incremental 
plotters, and neatly avoids the repeated use of division or multiplication (which are 
relatively slow calculations for a computer). It can be seen that whilst a vector 
description of a line is completely accurate, the accuracy with which it can be displayed 
is limited by the resolution of the output device (Fig 3.3). 

  
 
 

 
 

 3.4— 
Transformations 
 

 

 

 

 
 

 Once an object has been defined using a coordinate system it should require only 
simple mathematics to modify or to move it (Fig 3.4). 
 

 

 

 
 

 

 

 



  
 

Fig 3.4 
The effect of applying coordinate  

maths to a simple shape 

  

For instance, working in two dimensions, if we take a square we can see the effect of 
simple operations on the coordinate numbers. Add 2 to all the X coordinates, replot the 
square, and it has moved 2 units to the right, do the same to the Y co-ordinates and it 
moves up. This is known as 'translation' and already we have the means to animate the 
square by sequentially adding to the coordinates. Subtracting from the coordinates will 
move the square in a negative direction and the application of some basic trigonometry 
will allow us to rotate it about itself. We can scale it by multiplying the X and Y 
coordinates by a scaling factor, either proportionately or by different factors in each axis. 
Shearing results from proportional translation. 
 
 

 
 

 

If it is required that the transformation is about the centre of the object then rotation, 
scaling and shearing require that the object is translated to the origin before being 
manipulated and then returned to position afterwards. If it is necessary to perform 
several transformations then the operations can be carried out in sequence. A particular 
form of mathematics is often used for these manipulations, with each transformation 
being represented by a matrix and the separate matrices representing a compound 
transformation can be concatenated into one. Compound transformations, however, are 
likely to produce different results according to the order in which they are carried out, 
and give rise to easily made errors. 
 

 

 

 
 

 

These transformations can all be applied to 3-D objects with little extra complication. 
With the added refinement of their being carried out relative to an arbitrary point, 
hinging and jointing of compound objects becomes possible. If a hierarchy of local 
coordinate systems is established, each one positioned with a fixed relationship to the 
next one (a 'parent/child' relationship), then an object such as an arm can be articulated. 
The upper arm jointed about the shoulder, the lower arm hinged about the upper arm, 
the hand about the lower arm, etc., down to the sets of finger joints. We will see later, 
that in a case such as this, it is possible to define the limitations of movement at each 
joint so that undesirable movement is avoided, i.e. the arm bending backwards at the 
elbow. 
 

 

 

  
 

 



 3.5— 
Modelling  

 

 

 

 

 

 

 

A number of types of descriptions are available for 3-D objects, the commonest in the 
context of computer animation being the boundary representation method, known as 'b-
rep'. This polygonises the surface of an object and stores the description as a list of 
vertices (the corners of the surface polygons), a list of lines joining the vertices (the 
edges of the polygons) and a?? st of faces (identifying the individual polygons). For the 
purposes of rendering the object these polygons are usually triangulated (since triangles 
are necessarily planar and so unambiguous surfaces) but this is not necessary to the 
description of the object. 
 

 

 

  
 
 

 
 

 

 
 

 

 

Fig 3,5a 
A bottle shaped template and the object created by spinning it 

  



 
 
 

Fig 3.5b 
A triangular template spun to form objects with 3, 

 10 and 75 sides; a template spun 250 degrees and a template 
 offset from the centre of rotation, spun 250 degrees 

  

A 2-D section can be swept through 3-space to define a 3-D object, creating a 'swept 
surface' model. If the section is described in X and Y, a rotation of the section about 
either of those axes (normally around Y) would produce a 'spun' object, such as a bottle 
(Fig 3.5a, 3.5b). If the sweep is in a direction orthogonal to the section the object is 



described as 'extruded', a simple case being a square section extruded along a straight 
path to produce a cube (Fig 3.5c, 3.5d). It is possible for the section to change at points 
along the extrusion path, in which case a more complex object, like a ship's hull, could 
be defined. The path need not be straight, however, and subtle objects can be created by 
extrusion along curved paths. 
 
 

 

 

 

 
 

 

 

Fig 3.5c 
A cube extruded from a square template 

  



 
 
 

Fig 3.5d 
A triangular template extruded along a straight line; 

 along a curved path; and along a curved path with twisting. 
 The bottom object was created by extruding a pentagonal 

 template along a path with a smooth bend and an angular bend. 
 

  
This is similar to 'lofting', a widely used technique in which cross-sections through an 
object are joined by 'triangulation', which is a standard technique for creating an optimal 
surface of triangular patches between the edges of consecutive sections. The cross-
sections could be thought of as being similar to geographical contour lines defining a 



hill, and the triangular patches as describing the surface of the hill itself. The precision of 
the technique obviously depends on the detail of the cross-section and the closeness of 
the sections. It is likely that the sections would be input using a digitising pad, and the 
triangulation then computed with a simple program, which may have to deal with 
problems like the sections having different numbers of points. 
 
 

 

 

 

A curve can merely be approximated by a continuous sequence of straight lines but can 
be accurately described mathematically. Bezier, working for Renault, evolved one of 
the most commonly known formulations in order to be able to describe the curved 
panels of car bodies. The Bezier curve is defined by a parametric equation which uses 
'control points' to establish varying degrees of curvature along a line (Fig 3.5e, 3.5f). 
 

 

 

 
 

 

 
 

 

 

 

Fig 3.5e 
A spline curve changed by the 
 movement of control point 'P' 

  



 
 
 

Fig 3.5f 
A letterform created using Bezier curves.  

The image is taken directly from the screen  
in order to retain the tangents (which are made 

 visible as an aid to editing the shape. 
 
 

 

Moving the points changes the local curvature and the fact that the curve is tangential 
at the endpoint means that continuity of curve can be maintained with any other curve 
sharing that endpoint. If a curved surface was defined using the b-rep method, it too 
would only produce an approximation, since polygons drawn onto a curved surface 
would have curved edges and would not be planar. A complex surface (a teapot is the 
classic example) can be broken up into surface 'patches' which can be individually 
defined by extending the principle of the Bezier curve into three dimensions. The 
simplest Bezier curve or patch is quadratic (to the power of 2) but greater control can 
be achieved with cubic (to the power of 3) or higher order equations, at the cost of 
requiring more control points and more maths. 
 

 

 

 
 

 
 

A further modelling method, popular in CAD systems, is constructive solid geometry, 
referred to as CSG. In this approach, an object is represented as a combination of 
simple 'primitives' such as cube, sphere and cylinder. These basic solids are used as 
building blocks for more complex objects by the use of Boolean set operations of 
'union', 'intersection' and 'difference'. The primitives can be scaled, joined (union), 
subtracted from one another (intersection) and an object can be defined by the area of 
overlap of two other intersecting objects (difference) (Fig 3.5g). 

  



 
 

 

 

 

 
 

 

 

Fig 3.5g 
CSG modelling illustrated by  

an intersecting cube and wedge 
 

 

 

It is also possible within the system to define primitives by the use of 'half-spaces', 
which are infinite surfaces dividing 3-space into solid or void, to define objects. Any 
point exists either in the solid, the void or on the division, and several half spaces can 
combine to define the space enclosing an object. CSG is very economical in the 
information it needs to store but may need to be converted to b-rep in order for the 
object to be rendered. 
 

 

 

 
 

 
 

A simple method which is of increasing interest, and which has found particular 
application in the field of medical imaging, is 'spatial occupancy enumeration'. 3-space 
is divided into cubic units called 'voxels', of whatever size is suitable, and the object is 
described by recording the units it occupies (Fig 3.5h). Because this method currently 
requires extensive storage in order to define an object at a useful resolution, the 
technique of 'octree decomposition' is often employed. 

  
 
 

  



 

 

 

 

 

 

 

 

 

Fig 3.5h 
Voxel representation of a solid 

 

 

 

This starts with large units and allows the unit size to be reduced in steps only in those 
areas where greater resolution is required. Although the method awaits the wider 
availability of computers with big memories in order to come to fruition, it does have a 
number of advantages in some contexts, and is easy to render. Particle systems are a 
particularly interesting, though rather specialised, method of modelling. They consist of 
a large number of 'particles' (typically between 104 and 106) each of which represents a 
single point in 3-space. In quantity, a group of these particles can constitute an object, 
and it is a method associated with modelling fuzzy phenomena such as clouds, fire and 
grass. Reeves [1983] describes as advantages of the method, that a particle is very easy 
to define, create and move. 
 

 

 

 
 

 

Another means of modelling irregular surfaces is to use fractals which build the surface 
in a semi-random or probabilistic way. They have the intriguing property that the 
mathematics which defines them can generate an infinite level of detail. This real world 
property is obvious when you consider approaching a mountain range, which the 
technique has typically been used to generate. The mountains reveal the same level of 
detail whether viewed from ten miles or ten inches, but it would be impossible to store, 
in a computer, all the detail of a mountain range down to the level of each grain of 
sand. In one dimension, fractals can be used to recursively subdivide sections of a line 
with a predetermined offset to create a 'crinkly' line with a degree of crinkle 
proportionate to the offset (Fig 3.5i). The same principle can be applied in 2D to 
polygons (Fig 3.5i), and in three dimensions to the facets of an object, as is used in the 
construction of fractal mountains. Applied in four dimensions, fractals can be used to 
control the motion of complex irregular moving objects, such as a leaf in the wind 
[Magnenat-Thalmann 1985]. 

  
 
 



 
 

 

 
 

 

 

Fig 3.5i 
The fractal division of a line and of a polygon 

 
 

 
 

It can be seen that the techniques which are appropriate for describing a cube (or the 
spheres much loved by manufacturers when promoting their products) are unlikely to 
be the best for describing fog or water. Nature tends to avoid right angles but CAD 
systems, for designing man-made objects, revel in them. Angular planes can be 
efficiently defined by a collection of edge vertices, but curved surfaces lend themselves 
to more abstract mathematical descriptions. Whilst a usable representation of a sphere 
can be created with a b-rep system it is impossible to use that method to describe a 
perfect sphere for, however small the polygons used, they can never be more than an 
approximation of the surface. It might require the storage of 45,000 coordinates alone 
to describe a moderately smooth b-rep sphere (in addition to the necessary edge and 
face information) whilst a perfect sphere can be defined in a CSG system by four 
numbers: the three coordinates of the centre point plus the radius. It may be necessary 
to model flexible or articulated objects, and the methods described lend themselves 
readily to the construction of elements which can be hinged together. One way of 
building a flexible object is to define its surface by facets whose vertices are point-
masses connected into a mesh by dampened springs (Fig 3.5j). 

  
 
 

 
 

 

 

 

 



  
 

 

Fig 3.5j 
The construction of a flexible object 

 

 

 

Rooney [1987] says ''there exist two fundamentally different approaches to the problem 
of describing objects and systems, namely: 'declarative' representations and 'procedural' 
representations. The difference between them is essentially that between a description 
of the state of the object, and a description of the process needed to obtain the object. It 
is a bit like the difference between the physical shape of a cake and the recipe for 
making the cake.'' He goes on to suggest that both forms must represent both 
topological and geometric aspects. Attributes of the declarative form include: vertices, 
edges and faces; points, lines, surfaces and volumes; positions and orientation; equality 
and inequality. Attributes of the procedural form include: paths and cycles; translation 
and rotation; algorithms and procedures; (also pointers and records, which are 
structures used in programming). 
 

 

 

 
 

 3.6— 
Hidden Surfaces  

 

 

 

 
 

 
 

Having created a numerical description of the desired model it is necessary to decide on 
a form in which to display it on the computer screen. The simplest representation (and 
quickest to display) is a 'wireframe model' in which all of the edges are shown as lines. 
Because it was the earliest form of representation of an object on a computer screen it 
is still sometimes called for when a scene is required to have a 'computer generated' 
feel to it. This can be confusing to view, however, as we are able to see the back as well 
as the front of the object and this lends itself to the manifestation of optical illusions. 
Some improvement can be achieved by using intensity modulation to strengthen close 
lines and make distant lines fainter, but unless it is transparent, the front surfaces of a 
real object obscure the back surfaces, an important factor in our visual understanding of 
the object. In fact, even a transparent object usually has the back surfaces modified in 
some way by being viewed through the front ones, either changed by a shift in colour 
or tone or by refraction. A wireframe view can only be constructed, of course, from a 
model which has been built from vertices, such as in the b-rep system, or else can be 
converted to such a system at this stage. An improvement on a wireframe model is a 
'hidden line' version in which the front surfaces obscure those behind, resulting in a 
marked decline in ambiguity. 

  
 
 

  
 



 
This ability to create a more realistic view is so important that many algorithms have 
been created to do the job (Fig 3.6a). The manner in which they work depends on the 
way in which the model data is held and on the level of accuracy required. 
 

 

 

 
 

 

 
 

 

 

Fig 3.6a 
The legibility of a model using four representations: wireframe, 

 hidden line, shaded and shaded with edges of facets shown 

  

There is usually a trade-off between sophistication and speed, as a general purpose 
algorithm (which might not be able to deal with special cases) is likely to be much faster 
than one which is built to test for, and resolve, all conflicts it might meet. Applications 
often provide a quick method for draft work, at which stage errors might be more 
acceptable than time delays (Fig 3.6b), and a more efficient method for final work when 
the extra time taken is an acceptable overhead. 
 
 

 
 

 

 
 

 

 

Fig 3.6b 
An example of the errors which can arise with unsophisticated hidden line  

routines. (This can also be seen in Fig 2.1



although it is not visible when animated) 
 
 

 

The simplest way of using hidden line removal to improve on a wireframe model is by 
'back-face culling' in which surfaces pointing away from the viewer are removed. The 
direction in which a face is pointing is established by checking the angle between the 
viewer's line of sight and the 'surface normal', a perpendicular to the surface in 
question, using vector mathematics (both surface normals and vectors have many 
applications in computer graphics). The back-face cull is a rather crude method, 
however, as it does not deal with objects overlapping one another and usually proves 
inadequate for objects of any complexity. 
 

 

 

 
 

 
 

A number of more efficient methods are available, employing different principles, to 
achieve the goal. Commonly used is the 'z-buffer' method in which the spatial depth of 
each surface is checked at each pixel location, and the the closest surface (i.e. the one 
with the smallest Z value) is displayed. Another is the 'painter's algorithm' which 
displays the furthest surface and then works forward through space "overpainting" with 
closer surfaces (although the distance of a surface can often prove ambiguous).It is in 
the nature of some rendering methods, such as 'ray tracing', to solve the hidden surface 
problem as we will briefly see. 

  

 3.7— 
Rendering  

 
 

 
 

 

The description so far, of the generation of computer images, suggests a rather 
diagrammatic representation of the real world.To create a realistic image of the world 
our objects need more treatment than just having their hidden surfaces removed. 
Objects in the world are illuminated by light of different colours and qualities coming 
from a range of sources and directions, they cast shadows, they have different degrees 
of reflectivity and transparency, they have different surface qualities. The interaction of 
these qualities gives us a rich understanding about them and the scene they inhabit. 
 

 

 

  
 



 

There are several lighting types, available in even the simplest applications. A 'point 
source' is a light source such as a spotlight, in which the beam spreads out from a 
specific point and may be restricted in its arc by a shade of some sort. It can be subject 
to the 'inverse square law' in which the light intensity decreases in proportion to its 
distance from the source. To simulate a source such as the sun, however, the rays are 
given direction but are treated as parallel and of consistent strength (not strictly 
accurate, but the distance of that particular point source is so great that the 
approximation is adequate). A third light type is 'ambient', which is calculated to 
illuminate all surfaces with consistent strength and without direction, and is often found 
useful in relieving the totally shadowed areas created by directional light sources in 
simpler lighting models. It is possible, of course, to fill in surfaces, pixel by pixel, with 
a painting program but it is rather more practical to employ algorithms for dealing with 
the effects of light on surfaces. As you will have come to expect, they range from fast, 
crude renderings that are almost immediate, to slower, more subtle methods that can 
take hours, or even days, to complete. 
 

 

 

 
 

 
 

The simplest one is 'Lambert shading' (Fig 3.7a), which uses the cosine of the angle 
between the ray of light hitting the surface and the surface normal, to establish what the 
intensity of the surface should be (hence its alternative name of 'cosine shading'). As 
the light source comes to be closer to a perpendicular from the surface, so the angle 
decreases and the surface becomes lighter. When the light is at right angles to the 
surface the angle is zero and the light intensity is at maximum. Despite its simplicity, it 
adds enormously to our perceptual understanding of the object and, since it can be 
applied extremely fast, is usually included as the basic shading method in applications. 
It does, however, produce flat shaded polygons which emphasise the artificiality of the 
model, and lacks any gradation across planes. 

  
 
 

 
 

 

 

 

 

 



  
 

 

Fig 3.7a 
Lambert shading. The cosine of the angle 

 between the surface normal 'n' 
 and the light ray is used to calculate 

 the intensity of the surface 
 

 

 

Henri Gouraud gave his name to an improved shading model published in 1971 (Plate 
3). It averages the light intensities at the edge of each polygon and then interpolates 
along each scan line across the plane lying between these averages to give a smooth, 
eggshell like gradation. An extension of his model also allows the individual facets to 
become hidden by interpolating across facet edges. Two years later, a paper by Bui 
Tuong Phong introduced a method which added specular highlights to smooth shading. 
Phong shading calculates the intensity at each point along a scan line from its 
approximated normal, that approximation being arrived at by interpolating from the 
normals at the edges on that scan line, which are in turn interpolated from the normals 
at the points bounding that edge. Surfaces with different levels of shininess can be 
simulated by employing a gloss parameter to determine the size of the highlight area. 
This 'specular' highlight depends on viewpoint, unlike a diffused surface which is 
independent of the eye position. 
 

 

 

 
 

 
 

An odd effect of both these methods is that an object, such as a polygonised sphere, can 
be beautifully smooth across its surface, but will still have an horizon made up of the 
straight polygon edges. This requires additional treatment. It is also necessary to make 
sure that objects which are meant to look polygonal do not unintentionally have their 
edges smoothed over. The surface can also be made to approximate that of specific 
materials by the addition of some extra calculations (derived from real materials by 
James Blinn) to the Phong algorithm, and applications often have a small library of 
surface types, such as silver and brass, available. 

  
 
 

  
 



 

A more recent method, called 'ray tracing' (Plate 3), employs a different technique to 
great effect. The principle is simple, tracing a ray back from the viewing position 
through each pixel to the first surface it meets. The ray is then reflected from this 
surface on into the scene, reflecting off subsequent surfaces until it reaches a light 
source or leaves the scene. The pixel is then set according to the intensity and colour of 
the light remaining after the contribution of intervening surfaces. A lot of computation 
is required, increasing with resolution, and a limit must be set to the number of times a 
ray can be allowed to reflect before a final result is accepted. The more reflections each 
ray is allowed, the more accurate the result. The method produces arresting images and 
automatically deals with shadows with refraction and with transparency but is currently 
too slow to be practical in many situations. It is good at dealing with specular light but 
poor with diffuse light. It is useful to have shadows dealt with automatically as they can 
otherwise be time consuming to calculate, and a number of shadowing algorithms have 
been developed over the years. Chin [1989] describes previous work and presents a 
method which achieves interactive performance for polygonal environments of modest 
size on appropriate hardware, and uses a shadow volume approach as one of its two 
methods. 
 

 

 

 
 

 
 

Even slower, though good at dealing with diffuse light, is the 'radiosity interchange 
method' which developed with the field of architectural design in mind. It works from 
the assumption that the light energy striking a surface must equal the energy reflected, 
transmitted and absorbed. The first requirement is that the whole scene is divided up 
into surface patches (which may prove to be the way it has already been modelled) and 
each patch is effectively treated as a secondary light source. Extensive calculations 
consider the effects of every one of those patches on every other and would be almost 
impossible to compute if it were not the case that most of the patch pairs will prove to 
have a nil relationship. This method produces very credible subtlety within shadows 
and penumbra, and has the advantage that the computations are independent of viewer 
position which means they need only be done once per scene (provided that nothing 
within the scene changes). This would be convenient for animating movement through 
a fixed scene but impossibly painstaking for moving anything within the scene, since 
all the calculations would have to be repeated each frame. 

  
 
 

  
 



 

New lighting models are being developed all the time, to deal with some of the subtle 
and complex situations that can arise in real life. By way of example, we can look 
briefly at two that have been presented this year. Mark Watt [1990] uses a variation of 
backward ray tracing (where the ray starts at the light source rather than at the eye) to 
render specular to diffuse phenomena such as the interaction of light with water. His 
method incorporates information about caustics, which deals with reflection and 
refraction by curved surfaces. With this technique he has produced some elegant and 
convincing animations of the delicate patterns that dance around on underwater 
surfaces (Plate 6). It is fascinating to see how evocative they are of other qualities we 
are all familiar with in swimming pools, recalling the memory of being actually in the 
water. Nakamae [90] looks at rendering road surfaces under various weather 
conditions, which has particular relevance to the development of driving simulators. 
His team has presented animations of road surfaces drying out, in which muddy 
puddles evaporate (requiring analysis of the minute undulations of the asphalt), but 
more exciting are those of cars driving at night. In order to simulate the effects of 
oncoming headlights he had to allow for diffraction due to the pupil of the human eye 
and even that due to eyelashes. The results are uncannily effective (see back cover), 
and the most significant clue to the computer origination of the sequence, lies not in the 
rendering, but in the smoothness of the car's motion. 
 

 

 

 
 

 3.8— 
Textures  

 

 

 

 

  
 



 

 

Most real objects do not have the smooth, uniform, unblemished surfaces which most 
of our shading models will produce. They are patterned, rough surfaced, reflective, 
transparent and probably dirty. One way of increasing the realism of our models is to 
wrap them in suitable surfaces, which has the advantage of adding surface detail 
without increasing the complexity of the model itself. The texture can be either two 
dimensional, like the graphics on a carton, or 3-D, like the surface of a shag-pile carpet. 
The technique is called 'texture wrapping' or, more accurately, 'texture mapping', and 
often offers the bonus of increasing depth perception since the scale of the texture can 
be seen to decrease as it recedes in space. Mapping functions for a flat surface are quite 
simple, but curved surfaces require more complex parametric descriptions, and models 
with complicated surfaces (consider the teapot again) will need to be broken into 
separate patches. This lends itself to awkward discontinuities of texture which require 
careful planning to avoid. 'Image mapping' transfers a 2-D image, which might be a 
photograph, a pattern or a graphic, from its location elsewhere in memory to the 
object's surface using an appropriate mapping function. A typical use would be to put 
the world map onto a sphere. The image which is mapped may be animated, as may the 
surface it is mapped to, and it is common to see a rotating cube with animated images 
on each face. 'Reflectance mapping' simulates a reflective surface by mapping a picture 
of the object's environment onto its surface. 'Procedural mapping' uses a suitable 
mathematical procedure to generate the texture values, and has been used to employ 
fractals in the simulation of rust on a surface. 'Bump mapping', or 'perturbation 
mapping', creates 3-D textures by perturbing the surface normals according to a 
function or a bump map. The illusion is created because the shading model (which uses 
the surface normals to decide which way a surface is facing in order to set the intensity) 
is now presented with a variety of normals across a single plane. The surface of an 
orange is the standard example. 

 

 

 
 

An alternative to surface texture is 'solid texture' which involves mapping from a 3-D 
texture space to the 3-D object. This is a very simple exercise, involving little more 
than scaling, and has the advantage that it is independent of the surface complexity of 
the object being mapped to. The texture can be thought of as running right through the 
object (like the old "gob-stopper" sweet) which means that the object will reveal 
consistent texture if it is cut or modified. This makes it ideal for modelling the grain in 
wood but not for laying a graphic onto an object. Because of the enormous storage 
requirements of a 3-D texture map, and the complications of trying to input data 
digitised from a 3-D source, the information is usually generated procedurally when 
required. 

  

3.9— 
Artifacts  

 
 

  
 



 

A number of errors commonly arise in the production of computer generated images 
(CGI), usually as a result of the fact that computers, and their display devices, work in 
discrete steps whilst the world we operate in is smoothly continuous. This results in our 
often having to match specific points in time and space to the nearest available points 
in computer time and space, with a small margin of error proving unavoidable. It 
might, for instance, be that our viewing transform converts a point in 3-space to an 
ideal screen location which is not exactly centred on a pixel. The best we can then do is 
to set the point at the nearest pixel, introducing an error (the potential magnitude of 
which will increase as the screen resolution decreases). This type of error is described 
by a branch of mathematics known as 'sampling theory' and is particularly evident in 
CGI as spatial aliasing. A straight line drawn on screen horizontally or vertically will 
appear perfectly straight since it will run along one row or column of pixels. A line 
drawn at 45° will run diagonally through pixel locations lying in a straight line, but 
consider a line lying at an angle close to, but not at, those described. The requirement 
to match the desired line to the nearest pixel locations results in an uneven, stepped 
effect. As jagged edges ('the jaggies') can be quite destructive of the illusion we wish to 
create, much effort goes into removing it, or, more accurately, disguising it. 
 

 

 

 
 

 'Anti-aliasing' is a technique (which might be considered counter intuitive) for 
disguising these effects by "softening" the edges of the line (Fig 3.9). 
 

 

 

 
 

 

 
 

 

 

Fig 3.9 
Anti-aliasing the border between a light and a dark area 

  

Instead of representing the line with pixels entirely of the required intensity, the intensity 
of each pixel crossed by the line is set at a level between that of the line and that of the 
background, in proportion to the percentage of the pixel covered by the line. Where the 
line coincides with a pixel exactly it takes the line intensity, where the line crosses the 
boundary between two pixels they are both set at an intensity half way between the line 
intensity and background intensity. The percentage is arrived at by dividing the pixels 



into 'sub-pixels' for the purposes of the intensity calculations, and then averaging the 
values to arrive at an intensity for the screen pixel. (This is an example of 'super 
sampling', which is the academically correct means of dealing with aliasing problems.) 
 
 

 
 

 

On a micro-computer, where its low-resolution display would most benefit from anti-
aliasing, it is likely that the palette will be too small for it to be carried out effectively, 
and on the highest resolution machines the problem is far less important. In the middle 
area, however, the technique is so important that a long, expensive, legal battle has 
recently been fought in the London High Court over patent rights associated with it. 
Other methods of dealing with the problem are the 'dither matrix' which changes the 
intensity of a pixel on each scan sequence, and 'pixel phasing' where the screen location 
of individual pixels can be shifted fractionally by automatic adjustment of the electron 
beam. 
 

 

 

 
 

 

'Temporal aliasing' is a manifestation of the same problem in time, rather than space, 
and therefore of interest to us in animation. One of its manifestations is clear in old TV 
westerns, where the stagecoach wheels sometimes appear to be static or rotating 
backwards. The spokes of the wheel are frozen in each frame of film, and the apparent 
direction of movement is determined by whether the spokes have been frozen before or 
after their relative position in the preceding frame. If the wheel takes 1/25th of a second 
to rotate and the camera shutter is recording it 25 times a second, then it will appear to 
be in the same position in each frame. According to whether it rotates faster or slower 
than the shutter speed (or a multiple of the shutter speed) it will appear to be rotating 
forwards or backwards. Super sampling again provides a solution. By rendering more 
frames per second than required, and merging them together, the artifact is replaced by 
'motion-blur' which is visually acceptable. 
 

 

 

 
 

 

'Mach banding' is a phenomenon, particularly associated with Lambert shading, in 
which a surface that should be smoothly shaded appears to have dark streaks on it. This 
anomaly is a product of our edge detection abilities and is most easily improved on by 
decreasing the size of the polygons. 
 

 

 

 

 

 

'Illegal colours' can be a problem at a production level, since it is possible to generate 
colours on screen which can not be accurately recorded onto video tape or broadcast. A 
waveform device monitor, which is like an oscilloscope, can be used to spot the 
offending colours. 
 

 

 



 
 

 

'Precision errors' are inherent to digital computers. The computer can only allocate a 
limited amount of memory to each number it uses, and if this space is insufficient to 
store the complete number it becomes truncated. The imprecisions thus created can 
accumulate to create noticeable errors, but their avoidance is a programming issue 
which will not concern us. It is interesting to see, however, that in an engineering 
drawing application I have used, if 10 inches is converted to millimetres, and then 
straight back to inches again, the result is not exactly 10 inches. In another context, 
these rounding errors have been blamed, in the past, for false nuclear alerts! 
 

 

 

 
 

 3.10— 
Hardware  

 

 

 

 

 
 

 
 

Although mentioned elsewhere in the book, it is worth briefly noting at this point, that 
the fast running of some of the algorithms described in this chapter has been found to 
be crucial to the practical production of computer animation. In some cases, therefore, 
these algorithms have been built into the machine itself, often then being referred to as 
'firmware', since it embodies 'software' in 'hardware' form. Examples might be anti-
aliasing, hidden line removal, fast polygon filling and shading algorithms. Data 
compression, described in Chapter 6.3, is an area of current interest in which 
algorithms built into chips are becoming standard in workstations, and in specialised 
situations, such as flight simulation, it might prove cost effective to custom build chips 
for a specific job. It is also now common, even in home micros, to include specialised 
chips such as graphics management chips to relieve the CPU (central processing unit) 
of the chore of looking after the graphics, and thus allowing it to work much faster on 
other jobs. 

  

3.11— 
Expense  

 
 

 
 

 

It is interesting to compare the computational expense of different actions relating to 
graphics, by measuring them in terms of the number of assembly instructions necessary 
to carry out each action. This gives an insight into the relative time that various 
operations will take, though the scale of the action must also be considered. The 
following examples have been given: 
 

 

 



 

 

 
 Zoom  
 

 

 

 

 

 

 
 : 
 

 

  

 

 
24
 
  

 

 
 Pan  
 

 

 

 

 

 

 
 : 
 

 

  

 

 
24
 
  

 
 
 Pan + zoom  
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40
 
  

 

 
 Back surface cull  
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40 (per facet)
 
  

 
 
 3-D rotation  
 

 

 

 

 

 
 
 : 
 

 

  

 
 
72
 
  

 

 
 Perspective  
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150 (per point)
 
  

 
 
 Clipping  
 

 

 

 

 

 
 
 : 
 

 

  

 
 
1000 (per line)
 
  

 
 
 Depth cueing  
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3200
 
  

 
 
 Anti-aliasing  
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4000 (per line)
 
  



   

 
 Polygon shading  
 
 

  
 
 : 
 

 

  

 
 
8000
 
  

 
 
 Hidden surface removal  
 

 

 

 

 

 
 
 : 
 

 

  

 
 
10000
 
  

 
 
 Light-source shading  
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20000+
 
   

 



 Chapter 4— 
Movement Control  

 
 

 
 

 

Movement control is the very heart of animation. To point out that the difference 
between an animation and a static image is that the animation moves, is a truism which 
disguises the subtle complexity of the distinction. It is often the case that it is the 
quality of movement that establishes the credibility of a piece of animation, and the 
refined skills of a true animator are not readily matched by a simple program loop. It is, 
however, very easy to achieve certain types of movement with a computer, and this 
ease could tempt the less critical, or less experienced, animator to minimise the 
problem which needs to be tackled. If you are working at a machine which offers you 
one particular way of moving an object, it is inconvenient to admit that the method 
offered is inappropriate. I prefer the term 'motion control' to that of 'movement control', 
but since the former is normally used to refer to the control of a moving camera, I will 
use the latter. 
 

 

 

 
 

 
 

It is by closely observing the real world at first hand and at second hand (through media 
such as film and photography) that you come to understand how real things move. It 
also sensible to be familiar with animation precedent, and to accept, in passing, the 
possibility that the conditioning it offers might be inhibiting. When a motion is one of 
pure invention, such as tumbling letterforms across the screen, the roots of its 
credibility may still lie in the viewer's knowledge of movement in the real world. It is 
this knowledge that enables a triangle to not only walk or run, but to do so cheerfully or 
miserably. I'm sure that many people have identified motion as having been generated 
by a computer because of its unworldly adhesion to a clearly mathematical path, 
perhaps a dead straight line or a perfectly formed curve, but paths such as these can still 
provide the basis for believable movement. We sometimes need to be presented with a 
facsimile of real life, and at other times can accept conventions which distort, enhance 
or idealise. 

  
 
 

  
 



 

Early paintings by the artist Edgar Degas depict galloping horses with both front legs 
stretched forward and both rear legs stretched backward like a rocking horse. He was a 
critical observer of life, but the horses' gait was simply too fast to be caught by the 
human eye. It was only after the analytical photographs of Edweard Muybridge had 
shown the true pattern of equine locomotion that Degas, and subsequent painters, were 
able to represent moving horses in what we now understand to be correct postures. 
Despite the proven 'correctness' of the new paintings, they were castigated by some 
leading contemporary critics who accepted the truth of the images but recommended 
the old representation as being more attractive. Images of the horse throughout history, 
and through different cultures, have struggled to find ways of displaying the power, 
grace, speed and functionality of the animal, with means that were acceptable at that 
time and in that place. Our own (Western) views about representation are based on 
post-Renaissance and post-photographic single viewpoint perspective, and it is 
interesting to speculate about how animation would be achieved within other aesthetic 
frames. In a system which uses size to indicate importance rather than distance from 
the picture plane, or a system which incorporates several viewpoints into a single 
representation of an object, animation as we think of it might contradict the illusion the 
system strives to create. Our acceptance of the representation of movement is likely to 
be as constrained by the visual conventions with which we have grown up as our 
acceptance of any other image. 
 

 

 

 
 

 4.1— 
Paths  

 

 

 

 

 
 

 
 

It is often useful to think of the movement of an object in terms of the path along which 
it travels. Different parts of an object can have their own separate paths which might be 
defined within the object coordinate frame or within the world coordinate frame. The 
overall path of Betty Boop might be straight, but she will not move along it as a frozen 
mass. Her hips will be swaying, her arms swinging and her legs striding, but each of 
these parts of the actor could be considered to have its own repetitive path within the 
overall character. A complex path might also be considered as a number of subpaths, 
the termination points of which might define key-frames (a change of direction will 
often provide an appropriate moment at which to define a key-frame). Having picked 
on Betty as an example, it is only fair to point out that her particular gait and 
mannerisms are very much the product of hand-drawn animation, and the principles of 
paths and subpaths, whilst still valid, would be very intuitively applied. 

  
 
 

  
 



 

The transition from one point in space or time (or one keyframe) to another, is likely to 
be achieved smoothly, though not necessarily in even steps. In the simplest case, an 
object might move from A to B in a straight line (i.e. along a straight path), and if we 
create equally spaced points along that line, corresponding to the number of frames the 
sequence must take, those points will identify the position of the object in subsequent 
frames. Since, in that instance, the object would be moving at a constant speed 
throughout its journey, it would be satisfactory for dealing with an object which had 
already reached its travelling speed, and which was to continue at that speed beyond 
the final point. The even spacing of the points, however, does not allow for acceleration 
at the beginning of the move (if the object had been stationary), or deceleration at the 
end of the move (if the object was to stop). In order to accelerate the object from 
standstill to its cruising speed, we need to start the path with points much closer 
together, and then stretch the gap between points until they are at their constant 
distance. This is known as 'cushioning' (or 'easing' or 'fairing') and is frequently applied 
to a motion to avoid sudden jerky transitions. It can also be applied between sub-paths 
to smooth changes of speed. 
 

 

 

 
 
 4.1.1 Curved Paths  
 

 

 

 

 

 

 
 

It is likely that a path more complex than a straight line will be needed, and much of 
movement control (and motion control) is concerned with defining suitable curved 
paths along which to move actors. It is not easy to draw by hand a smooth line 
encompassing all the points on an object's proposed route, but aids have evolved in 
other disciplines which can help. The 'French curve' is a template of curve profiles 
which draughtsmen utilise, and from shipbuilding comes a more complete solution. In 
order to draw the smooth curves of sections through ships' hulls, thin, flexible strips of 
wood or metal (called 'splines') were held down at key points by weights (called 
'ducks'), and their natural, internal tension led them to take up a smooth curve through 
the weighted points. Mathematical equivalents of the shipbuilders' spline have been 
developed, to provide us with a ready method of establishing a smooth path defined by 
a few controlling points. This is in contrast to a circle generated by a mathematical 
equation, for instance, whose smoothness depends on the number of points which have 
been used in its generation and display. 

  
 
 

  
 



 

In order to generate a curve by specifying only a few key points, rather than have to 
specify every point along the curve, we must turn to these methods (Fig 3.5e). The 
Bezier curve (already mentioned) and the B-spline curve are two of the most 
commonly used, their main functional difference being that all control points in a single 
Bezier curve influence the final curve, whilst those in a B-spline curve (which is made 
up of a number of curve sections) have only local influence. This results in a 
consistently smooth curve with the Bezier formulation, but one in which isolated local 
changes can be difficult to make. The curves do not necessarily pass through the 
control points, and are, in fact, likely not to do so. A β-spline (beta-spline) is a 
formulation of B-spline curve segments in which additional parameters (such as 
'tension') are added to give global control over the curve. Amongst other curve types, 
less frequently referred to, which can be compared to those of Bezier (who developed 
them for Renault) are Ferguson or Hermite and de Casteljou (after a scientist working 
for Citroen). NURBS (non-uniform rational B-splines) do not require control points to 
be evenly placed and are associated more with surface modelling than with movement 
control. They add a 'weighting' to control points. Most accounts of splines and curves 
back up their explanations with some fairly serious mathematics, but since I intend to 
avoid doing so here, I select Watt [89] as being one of the clearest of the many 
references the reader might choose to follow up. 
 

 

 

 
 

 
 

A spline is defined as a piecewise polynomial satisfying continuity conditions between 
the pieces, and it is necessary to mention this in order to explain several other terms 
that are often associated with splines. A polynomial is a mathematical expression 
consisting of a sum of terms which include variables raised to a power. If the highest 
power used is 2 (i.e. the variable is squared) the polynomial is 'quadratic', if it is 3 (i.e. 
the variable is cubed) the polynomial is 'cubic'. Whilst higher powers offer the ability to 
represent more complex curves, it is usually found in practice that quadratic 
polynomials are insufficiently sensitive, that high order polynomials are too 
complicated (involving a lot more mathematical calculation and therefore slower), but 
that cubic polynomials offer a satisfactory compromise. A complex curve is most easily 
divided into pieces which can each be described by cubic polynomials. 'Continuity' 
refers to the way in which the different pieces of the curve meet up with one another, it 
usually being necessary that one piece should blend into the next one smoothly, giving 
a continuous curve. There are several mathematical orders of continuity which define 
the various possible relationships between curve sections. 

  

 
 



 

 
 
 

Plate 1 
Storyboard (right) 

 
 

 

 

 

 

Plate 2 
Scenes from storyboard(below). 

Courtesy of Mick Winning 
 
 

 

 

 

 



Plate 3 
Rendering samples courtesy of 3C Systems. Lambert shading (left), 

 Gouraud shading (centre), Raytracing (right) 

  

 
 

 

 
 
 

Plate 4 
Luxo Jnr. 

© 1986 Pixar 
 
 

 

 
 

 

 

Plate 5 
Tin Toy. 

© 1988 Pixar 
  
 



 

 
 

 

 

Plate 6 
Sunlight on water. 

Courtesy of Mark Watts 
 
 

 

 
 

 

 

Plate 7 
(from) Mutations. 

© William Latham + IBM UKSC 
 
 

 

 
 

 

 

Plate 8 
A numerically severe storm. 

 Courtesy of the National 
 Centre for Supercomputing, 

 University of Illinois 



 
 

 

 
 

 

 

Plate 9 
(from) Environmental impact analysis 

 simulation of quarry. 
 © 1991 3C Systems 

  

 

 

 

In order to create a 3-D spline path we input the XYZ coordinates of the control points 
for the spline. Since the curve will be controlled by the points without necessarily 
passing through them, we need to pay special attention to any point which we 
specifically require the curve to visit, ensuring that it is at the end of a curve section. A 
friendly interface is particularly helpful for designing a path through 3-space, ideally 
showing you the 3-D path within the scene through which it will be passing. The 
typical CAD display with separate top, side and front views, together with a movable 
'camera' view, is good for this, allowing you to position the control points directly 
within the scene, and view the path they create relative to other scene elements. It may, 
of course, be necessary to employ the accuracy of numerical input, but whatever 
method is used, the path can be amended locally by repositioning control points until 
satisfactory, and it is for this reason that the B-spline is particularly suitable for 
animation. The speed of movement along the path is also required, and a particularly 
helpful interface is available in some applications (such as S-Dynamics from 
Symbolics), where an intuitive graph of speed against time can be drawn, and the 
acceleration thus expressed converted by the software into frame positions along the 
path. 
 

 

 

  
 



 

 

To animate the object, it is then only necessary for it to be positioned at subsequent 
frame points along the path (it is important to distinguish between the control points 
which are used to create the curve, and the frame points which are later created along 
the curve when it is divided up according to the length of the sequence). Rather than 
drag the object impassively along the spline, it might be necessary to relate the object's 
local coordinate system to the spline, and to animate the object within that system 
(possibly even using localised splines). It would thus be possible to have one set of 
movements rotating the Moon in its orbit around the Earth (within the Earth's local 
coordinate system), while the Earth's coordinate system orbits the Sun (within the Sun's 
local coordinate system) and so on. Alternatively, Betty Boop's hips sway and her eyes 
roll within her local coordinate system, while her local coordinate system travels along 
the spline path. 

  
 
 

 
 
 4.1.2 Other Uses  
 

 

 

 

 

 

 

Splines have a wider use than moving actors around. They can equally well be used for 
moving the virtual camera in an application or the real camera on a motion control 
shoot. If computer-generated material has to be synchronised with motion control shot 
material, the spline data can be shared by the real and virtual cameras. Viewpoint can 
similarly be controlled, so that one spline can control the position of the camera and a 
second spline can control the point at which the camera is looking. The use of splines 
to set the positions of actors, camera and viewpoint is simple but needs careful thought, 
probably being best set up one at a time. Without experience it is easy for the spline 
combinations to produce overdramatic motion which can leave the viewer feeling 
seasick. 
 

 

 

 
 

 

Any variable which changes during a sequence can be under the control of a spline, 
which does not need to be in 3D. A curve setting quantity against time is sufficient to 
control light intensity or the application of forces, for example, and constraints can be 
similarly controlled. 
 

 

 

 
 

 4.2— 
Kinematics  

 

 

 

 

 



 

  

 

The kinematic method requires the specific positioning of the object's movements over 
time. It is necessary to first seek the ''essential'' element of the movement, the quality 
that makes the movement of that object characteristic or unique. In the case of an 
articulated figure, for example, this might be arrived at by direct observation, by 
rotascoping (digitising joint coordinates from film or video, requiring at least two 
orthogonal views), or by instrumentation. The real-time capture of live movement can 
be achieved by methods including the use of goniometers (which record position in 3-
space), by making a film recording of LEDs (light emitting diodes) attached to the 
subject, or by using the DataGlove/DataSuit which will be described in Chapter 13. 

  
 
 

 
 

 4.3— 
Parametrics  

 

 

 

 

 
 

 

An alternative method of moving an object is to do so parametrically. After each frame, 
the parameters determining the position of the object are amended to move it to its next 
position, typically, being updated by a mathematical function on each pass through a 
program loop. For example, the variable denoting the X position of an object could be 
increased by 2 (i.e. X=X+2) each frame, and for a 20-frame sequence that segment of 
the program would be repeated 20 times. At the completion of 20 loops the object 
would have been moved 40 units along the X-axis. Key-frames are still likely to be 
used as points where the length and content of subsequent loops are changed, so that at 
frame 20 (a key-frame for our purposes) the loop controlling our object could be 
amended to X=X+4,Y=Y+2, and the loop length to 30. Over the 30 frames, therefore, 
the object would double the speed at which it was moving along the X-axis and start 
moving simultaneously along the Y-axis. (Cushioning could be implemented to smooth 
the transition occuring in our example at frame 20.) 
 

 

 

 
 

 4.4— 
Dynamics  

 

 

 

 

 
 



 

 

Dynamics provides a further means of animating objects. By assigning an object a mass 
and a speed in a particular direction, its progress can be controlled by the application of 
forces such as gravity and friction. The trajectory of a projectile is thus easily 
calculated, with the option of setting forces to be natural or unnatural (i.e. no gravity or 
increased air friction). In fact this can be considered another form of parametric 
control, but using rules derived from physics rather than the animator's imagination (it 
has already been pointed out that the animator's imagination is primed by a natural 
awareness of physical laws). It is, of course, the way to drive a simulation, which will 
be looked at in Chapter 9. We will also consider the possibility of objects in a scene 
interacting spontaneously, such as in response to self-recognised collision. 

  
 
 

 
 

 4.5— 
Inverse Control  

 

 

 

 

 
 

 

Though it will be mentioned again, we can acknowledge here that both dynamics and 
kinematics have a 'flip side'. Whilst kinematics deals with the shifts and rotations 
necessary to manoeuvre to a goal, it can prove easier to use inverse kinematics to start 
from the goal and work backwards to a starting position. This can be imagined from an 
example such as that of an articulated arm reaching out to grip a target object when it 
can be easier to calculate backwards from the successful grasp of the target to the 
starting position, since the two end states are known. Similarly, it can be useful to 
employ inverse dynamics to work backwards from the forces and torques existing in 
the end position, rather than to try and drive the object from the start position by the 
intuitive application of appropriate forces along the way. 
 

 

 

 
 

 4.6— 
Hybrid Control  

 

 

 

 

  
 



 

 

It is often convenient to be able to employ several different control methods in one 
animation. For example, a figure walking in a straight line might be controlled 
dynamically, whilst secondary movements of the figure, such as hand gestures, could 
be better controlled kinematically. In a scientific simulation it would be impossible to 
allow kinematic interference with the play of natural laws, but in other contexts it 
might be very convenient to let physically based controls drive primary movements, 
and leave details to the animator's kinematic control. Since an approximate application 
of natural laws often underpins an animation, it is convenient to let a dynamic system 
take care of that side of things and for the animator to be able to concentrate on details, 
subtleties and deviations from those natural laws by use of other means. 

  
 
 

 
 

 4.7— 
Control Level  

 

 

 

 

 
 

 

As well as considering the method being used to move the actors, the animator will also 
be concerned with the level at which he has control. The level is a measure of the 
degree to which the animator is removed from the underlying mechanics of making 
things move. At a low level in a kinematic system he would have to specify the 
position of every part of every actor in each frame. At a higher level, a kinematic 
system might take responsibility for maintaining the correct relationships along the 
hierarchical chain of body parts of an articulated actor, and might support keyframing. 
That part of the animator's work is then reduced to positioning the actor in keyframes. 
 

 

 

 
 

 

It can also enhance the total flexibility and extensibility of a system if it accepts input 
in the form of a computer language. Whilst this can allow very low level control, it can 
also constitute a script to drive any level of system with little, or no, subsequent user 
intervention. One particular virtue of a computer is its ability to iterate (to repeat 
instructions) and this can be employed to make workable, processes too tedious or time 
consuming to be practical if done by hand. 
 

 

 

 
 

 4.8— 
Metamorphosis  

 

 

 

 

  
 



 

 

Simple interpolation between coordinate positions in keyframes can sometimes be used 
to move objects, but we have already seen that it can prove problematic in 3D. It is best 
considered as being shape transformation. This carries with it the possibility of 
transforming one shape into an identical shape in another position, which will be 
visually synonymous with moving it. A particularly smooth shape metamorphosis can 
be achieved by interpolating between the control points in the start and finish frames of 
shapes defined by Bezier curves. It is not possible, however, to make a clean 
transformation between shapes (or, in 3-D, between objects) having different 
topologies, and an amount of engineering may be necessary to ensure the keyshapes 
have the necessary similar topologies. 

  
 
 

 
 

 

To move from one keyshape to another using 'in-betweening' is straightforward. Each 
keyshape is decomposed into the separate line segments of which it is made, and the 
points defining each end of the line are moved from their position in the first keyframe 
to their position in the next keyframe in steps corresponding to the number of frames 
between the keyframes (i.e. if there are 10 frames to pass through, the point will be 
transposed one tenth of the way to its final position in each successive frame). The 
computer calculates the linear distance between points and divides it by the number of 
frames to arrive at the inbetween positions (Fig 4.8). 
 

 

 

 
 

 

 
 

 

 



Fig 4.8 
The metamorphosis of a dragonfly into a square 

  

In order to accomplish a coherent transformation it is obviously necessary to ensure that 
each point is paired with the correct corresponding point in the next keyframe, and this is 
most easily achieved by creating the lines in each keyframe in the same order, so that the 
first point in keyframe 1 matches the first point in keyframe 2 and so on through all the 
points. This requires that the keyshapes are composed of the same number of lines, 
which is rarely the case, and a preprocessing step is, therefore, usually required. In this 
step the line-segments in the shape having the fewer line-segments, must be broken into 
smaller segments until the number matches that of the other keyshape. The interpolation 
need not be linear, and whilst the interpolation path is normally straight, it does not have 
to be so. To interpolate between complex images it can be simpler to derive simple 
skeletal elements for interpolation, and to add the detail subsequently. It is also possible 
to apply different interpolation rules to selected points or groups of points to create more 
satisfactory movement. 
 
 

 
 

 4.9— 
Displacement Animation  

 

 

 

 

 
 

 
 

Displacement animation [Schafer 1989] allows the mixing of aspects of keyshapes 
without having to pass directly through them. The effect of the keyshapes on the 
transforming shape is in some ways similar to the influence of control points on a 
Bezier curve, controlling without necessarily being incorporated. It is suggested that 
this kind of animation is very good for simulating the movements involved in breathing 
or sitting down, for example, where rigid mathematics does not provide a sufficiently 
natural description. It is also suitable for in-betweening key-objects, Schafer's example 
being the use of a cube as an intermediate starting point in the transformation of an 
engine to a teddy bear. The cube can be turned into the two key-objects, but during the 
animation need not, itself, be passed through. He further points out that "as we test the 
animation we may discover an unappealing intermediate position. We can take this 
position, retouch it, and then have it influence the animation during the critical period. 
This direct interaction at the animation stage gives us tremendous flexibility and allows 
us to get the best results in the shortest time". 

  

4.10— 
Rotation  



 
 

 

 

 

Although the complexity is likely to be hidden from us by the interface, to rotate an 
object in 3-space is not as intuitive as it might seem. Saying "rotate an object" suggests 
that the object rotates about its own centre, but as there are alternative centres of 
rotation, it is necessary to define which is to be used. Typically an object might rotate 
about its own centre, one of its own extremities, the centre of a group that it is in, or the 
centre of its universe. The default of an application is likely to be that it will rotate 
about the 'origin' at centre of the application's universe (where X=Y=Z=0). In order that 
it should rotate about any other centre, the object must be moved before the rotation is 
made, such that the required rotation point coincides with the origin, rotated, and then 
shifted back to its original position. These three transformations (translate, rotate, 
translate back) can be conveniently concatenated using matrix mathematics. It is also 
likely that an object will be made up of parts which have their own centres of rotation, 
for example, a car has a centre of rotation whilst each of its wheels has its own centre 
of rotation. 
 

 

 

 
 

 

A further complication is that the required rotation is likely not to coincide with one of 
the three coordinate axes. Consider the illustration of the unpeeling sphere (Fig 4.10), 
where each facet hinges about the junction with its neighbouring facet, but where no 
two of the lines about which the facets rotate share the same axis alignment. It is 
therefore necessary, having translated the line so that it passes through the origin, to 
rotate about the X- and Y-axes until the Z-axis is aligned with the line, to make the 
required rotation, and then rotate back around X and Y and translate back to position. A 
well designed interface will hide these complications from the user. 
 

 

 

 
 

 
 

Because the elements of a rotation matrix are not independent, a problem arises if you 
try to interpolate between the orientations of an object when such matrices are being 
used. There is the likelihood that the object will become deformed in the in-between 
frames. Several papers over the last few years have revived the idea from last century 
of using quaternions to specify rotation, a method already in use in the aviation 
industry (where the additional problem of 'gimbal lock' must be avoided). Euler has 
shown that any displacement of an object about a fixed point can be represented by a 
single rotation about some axis, and Shoemake [1985] suggests the use of quaternions 
for rotations in keyframe systems. They are economical in use and can be converted 
(internally) to and from a representation with which the animator may be more familiar.

  



 
 
 

Fig 4.10 
An unpeeling sphere 

  

  
 
 

  
 

 



 4.11— 
Motion Blur  

 

 

 

 

 

 

 

A computer animation will normally display a single, discrete image representing an 
infinitely small moment of time in each frame (unlike a camera shutter which will be 
open for a finite, even though short, moment of time). When we view a movement in 
real life it is continuous, rather than broken up into a number of separate moments, and 
the difference in quality between seeing real movement and viewing computer 
animated movement can prove obvious. Although it does not match the way we 
actually see things, the blurring of an object, which is caused by the object moving 
during the time a camera shutter is open, can help the impression of movement, 
particularly in a single image. It is consequently useful to be able to match the 
phenomenon in an animation. Other cartoon conventions, such as streaking lines from 
the rear of the moving object, can also aid the understanding of movement. (Since these 
streaks do not really exist, it is interesting to speculate about the extent to which the 
ability to understand them is learnt, rather than derived from real life observation.) 
 

 

 

 

 

 
 

A number of methods have been developed for achieving the effect of motion blur, one 
of which uses an accumulation buffer [Haeberli 1990]. This buffer integrates a number 
of images that are then rendered into the frame buffer, the images having been created 
at a number of points in time between. It is, effectively, temporal super sampling, so 
that, if used in animation, each frame shows not only the state of movement at that 
moment in time, but this accumulation of images made at points in time much closer 
than the frame rate. If, for instance, the frame rate is 25fps and the movement is to be 
sampled 23 times between each frame point (their sample rate), then the image will be 
sampled 575 times each second, and the frame buffer will be fed the accumulation of 
23 images to build up each single frame. The accumulation buffer was originally 
conceived of to deal with aliasing, but proves to deal effectively with depth of field, 
soft shadowing and motion blur as well. The number of samples per image determines 
the smoothness of the blurring. 

  
 
 

  
 



 

Another method uses distributed ray tracing [Cook 1984], which also samples at a 
number of points in time for each image. Rather than take multiple time samples at 
every spatial location, the rays are distributed in time so that each location is sampled 
only once but locations are sampled at different times. This technique adds little to the 
complexity of the ray tracing process, and also has the ability to deal with depth of 
field, penumbras, translucency and fuzzy reflections. A delightful, overhead image of 
colliding pool balls is frequently used as an illustration of this process, evoking the 
sense of movement immediately but also offering, on closer observation, a more 
detailed history of the captured moment. The differing speeds of the balls, and in one 
case a change of direction following a collision, are clearly seen. 
 

 

 

 
 

 4.12— 
Conclusion  

 

 

 

 

 
 

 

Although intrinsic to animation, movement on a computer screen is not difficult to 
achieve, and the principles are not basically complex. Moving a single rigid object is 
almost trivial, but complexity rapidly arises from the interaction of the parts of an 
articulated object, and from the interaction between actors and scene elements 
(including other actors). Some means for dealing with these interactions are described 
in later chapters and in the final chapter I propose the user friendly 'Eric' as an example 
of an actor of the future, who knows how to move himself. 
 

 

 

 



Chapter 5— 
The Human/Computer Interface
 
 

 
 

 

When someone uses a tool, an interface exists between the tool and the user. That 
interface is the common boundary between the two and determines how they 
communicate with one another; how the operator is able to control the tool and how the 
tool is able to feed back information about its state to the operator. The quality of the 
interface largely determines the efficiency with which that tool can be used, and thus 
the amount of benefit that can be gained from its use. 
 

 

 

 

 

 

Even in a tool as simple as a pen, the size, weight, grip, nib type and ink all contribute 
to its ease of use, and the ease with which it can be used has a major effect on when 
and how it is used. There is no perfect pen, however, no single ergonomic and aesthetic 
solution to pen design which will be best for everyone. There are, nevertheless, 
parameters within which most functional pens are created, based on established hand 
proportions, writing surface requirements (the pen/ paper interface?) and general 
preferences. This means that most people can pick up most pens and write most things 
on most writing surfaces, though somewhere in the world there is probably a "jumbo" 
marker pen designed exclusively for left-handed people to write underwater. 
 

 

 

 
 

 
 

A slightly more complicated tool, like a fighter aircraft, has a rather more complicated 
interface. It also carries more serious consequences if the interface is badly designed. 
The threshold at which an aircraft/pilot interface proves inadequate or inappropriate 
may be discovered when travelling at the speed of sound. Our concern is with a tool 
somewhere in complexity between a pen and a fighter aircraft, but sharing some 
requirements of each. I'm sure some computer animation companies would say that 
flying at the speed of sound is child's play compared with meeting their production 
deadlines. 

  
 
 

 
 

 5.1— 
Requirements  

 

 

 

 

  
 



 

It is tempting to launch straight into a discussion of the relative merits of various input 
devices, but let us first consider the animator's requirements and environment. In the 
broadest sense, the interface must be psychologically sound as well as ergonomically 
effective. It is not within the power of the system's designer to determine whether the 
animator works in monastic silence or with Wagner playing at full volume, nor whether 
the lighting is from soft uplighters or glaring spotlights, but these factors form part of 
the total interface. It is also the case that scientific visualisation, for instance, is likely 
to be carried out in a very different environment to that for the creation of a TV 
commercial, and that the personnel will have very different backgrounds. Someone 
with a scientific background, who has probably become familiar with computers and 
programming as a general purpose tool, is likely to be more comfortable inputting 
numbers through a keyboard than a graphic designer with, perhaps, no background in 
mathematics. The designer, on the other hand, will feel immediately comfortable 
holding a stylus that may be alien to the scientist, yet they may both need to use the 
same computer system. (By 'system' we mean the combination of the hardware and the 
applicatio or applications, it runs.) 
 

 

 

 
 

 
 

Is a good interface one that is immediately comfortable or is it acceptable that the 
operator spends time adjusting to it? For someone who is to spend most of his working 
day at one machine, it may be that weeks can be allowed to get used to it, but if access 
is occasional or brief or shared by personnel with different levels of involvement, then 
a more immediate rapport may be preferable. ''Friendly'' is a word often used in value 
judgments about HCI (human/computer interface), probably because early computers 
were anything but friendly, and they are still treated with reserve by many. My first 
experience of them, 20 years ago, was of hours spent punching cards in a noisy, 
communal punch room, followed by the presentation of several boxes of cards to the 
computer operators through a mysterious hatch in the wall, and a day or two waiting for 
a print-out to be returned. If one hole was punched in the wrong place on one card then 
the program didn't run. Not the environment for which most designers would choose to 
abandon their drawing boards and putty rubbers. 

  
 
 

 

 
 

 

First impressions of the friendliness of the interface are very important, both to a 
decision to buy the product, and to the level of ambition and confidence with which one 
starts to use it. In working with most art students it has proved important to produce the 
first images quickly, and with the minimum of "computing", in order to allay justifiable 
doubts about the degree of machine intervention in the creative process. Once a few 
clicks and sweeps with the mouse (or preferably the stylus on a graphics pad) have 
loaded a program, built a model, coloured it and spun it around on the screen, the 
audience is much more prepared to entertain the use of the keyboard as an alternative 
input device. 



  
 

 

 

 

When a process such as drawing a freehand circle, with which we are all familiar using 
pencil and paper, is being undertaken on the machine, it is easiest to use an HCI that 
simulates the process with which we are familiar. In that instance using a stylus is 
manually identical to using a pencil, but with the initially disconcerting difference that 
you don't see the result of your drawing on the pad, but on the screen in front of you. A 
fresh coordination needs to be acquired between hand and eye. A mouse also requires 
the hand to be moved in a circle, but, being gripped differently, excludes the subtle 
finger control we would normally expect to exercise. Cursor keys present a further 
level of removal from the real-world experience and sitting down to write a program to 
draw the required circle is probably as far as you can get from using a pencil. (A screen 
cursor is a positional indicator, often a small arrow, which is displayed on the screen, 
and controlled by an input device.) 
 

 

 

 
 

 5.2— 
Input Devices  

 

 

 

 

 
 

 
 

An input device is a piece of hardware which allows us to put data into the system. This 
input may be coded (such as a typed instruction) or positional (such as perhaps traced 
off a map). As animators we might often find ourselves concerned with inputting data 
in drawn form. 

   
 
 

 

 
 5.2.1 Keyboard  
 

 

 

 

 
 
 

 

The ubiquitous keyboard is familiar from the typewriter, and usually conforms to the 
same layout of letters, figures and symbols (with some regional variations amongst the 
non-alphanumeric characters). It often has an additional numeric keypad to speed up 
numerical input, four cursor keys which move the screen cursor left, right, up and 
down, and 'function' keys which can be configured by the user (or the current 
application) to do prescribed jobs. Depression of a key, either on its own or in 
conjunction with another (e.g. SHIFT, CONTROL, ALTERNATE) generates a unique 
electronic digital code which is interpreted by the computer's CPU. The code is 
normally the international standard ASCII (pronounced "askey"). 



  
 

 

 

 

If a key is held down too long it will send its message more than onceeeeeeee. This is 
because the keyboard is checked by the CPU (or a delegated management chip) at 
regular intervals, which are set at 1/50 or 1/60 second by the 'interrupt clock'. Whilst 
the system may not respond to the repetition of messages from some keys, it is likely to 
do so with all the alpha-numeric keys, which can give rise to errors. Once a key has 
been recognised as having been pressed the significance of the code is considered 
according to an established priority, so that QUIT or BREAK, for example, maybe 
given priority over everything else that is going on. An interrupt which is given priority 
over everything else is called an 'NMI' (non-maskable interrupt). 
 

 

 

 
 
 5.2.2 Mouse  
 

 

 

 

 

 

 
 

The mouse is a device that fits in the palm of the hand and is rolled over a smooth 
surface. A ball in the base of the mouse is rotated by the movement across a surface 
and these rotations are translated into data which moves a screen cursor on a 
corresponding path. This screen cursor is often not the same as the keyboard cursor, 
and may change its form according to the function it is currently fullfilling. The 
translation can be achieved mechanically or optically. Move the mouse to the right and 
the screen cursor moves a proportional distance to the right, move it forward (assuming 
a horizontal surface) and the cursor moves up the screen (assuming a vertical screen). 
The ratio of mouse movement to screen movement can often be set by the user. The 
mouse normally also has one, two or three buttons at the finger tip end, whose 
functions are set by the application, and is usually connected to the keyboard by a 
flexible lead. Some designers still make it difficult for mice to be used left handed, 
though cordless mice are now available, which are less restricting, more expensive and 
are ambidextrous. In general the mouse is cheap, simple and relatively low resolution. 
It is important to remember that the coordinates returned by the mouse are relative to 
the position on the last occasion that the ball was turned. If the mouse is taken off the 
surface its absolute position is lost. 

  
 
 

 

 
 5.2.3 Tracker Ball  
 

 

 

 

  
 



 

The 'tracker ball' is similar to an inverted mouse and is operated by turning the ball 
with the fingertips. It moves a screen cursor in the same way as a mouse but is slightly 
less intuitive to use. One of its advantages, however, is that it remains stationary and 
for this reason has become incorporated into some laptop computers. As the size of the 
ball is increased, so subtle movements become easier whilst big movements require the 
ball to be spun more. A giant tracker ball has been suggested as a control device for 
handicapped users who have difficulty making fine movements. 
 

 

 

 
 
 5.2.4 Joystick  
 

 

 

 

 
 

 

A 'joystick' controls the screen cursor by pressure on a small, vertical lever similar to 
an aircraft control column. Pressing to the right moves the cursor to the right, pressing 
forward moves it up the screen and so on, and sustained pressure allows continued 
movement of the cursor. It is commonly found in use with computer games, on control 
panels for 'caption generators' and some have been specially built for use with design 
programs. 
 

 

 

 
 

 
 

One manufacturer has produced a control device which consists of a pressure sensitive 
ball, of gripable size, mounted on a plinth with buttons. The action of twisting the ball 
towards the direction required controls screen position and sustained pressure leads to 
sustained movement. 

  
 
 

 
 
 5.2.4 Digitising Pad  
 

 

 

 

  
 



 

'Digitisers' have a pad, normally between A4 and A0 size, on which the position of a 
hand held sighting device called a 'puck' can be detected with great accuracy. They can 
also be used with digitising tables of much greater size for higher levels of precision, 
though not typically in the context of animation. The puck has a small window showing 
cross hairs, which are to be aligned with the current data point, and buttons to 
determine the use that is to be made of that data. Either the pad or the puck transmits 
continuous signals which the other receives, and can be electromagnetic, electrostatic, 
ultrasonic or infrared. The signals translate into X,Y positions with an accuracy of up to 
0.001 of an inch, and the pads are widely used as a means of transferring data from a 
drawing on paper to the computer. Before starting work the digitiser must be orientated 
to the sheet of paper, so that verticals remain vertical and the origin is correctly located.
 

 

 

 
 

 

If the puck is replaced by a stylus (a pen-like device) then the same principles allow 
freehand drawing, such as might be useful in a paint program. In this context the 
digitising pad is often referred to as a 'graphics tablet'. Whilst the puck is often used to 
input data without reference to a display monitor, the stylus operator normally uses the 
monitor for positional feedback. The use of the stylus is associated more with 
continuous movement and the puck with the input of discrete points. Some styluses are 
pressure sensitive, which is a great advantage in trying to match the subtlety of normal 
hand media. Both puck and stylus are normally connected to the pad with a flexible 
lead though cordless versions are now available, with the disadvantage that they are 
easier to mislay. 
 

 

 

 

 

 
 

The digitising pad can often be configured by the user, allowing the relationship 
between its drawing area, and the screen area it maps, to be flexible. Some applications 
cover part of the pad with menu overlays relating to program functions, and when the 
stylus or puck is used to select from this menu it is said to be used as a 'pick'. The same 
applies to the use of pick or stylus to move the screen cursor in order to select from any 
screen menu displayed. The stylus, in particular, is often used to select data from the 
current screen image for further treatment, for example in a paint program to select one 
colour from the screen image for use elsewhere. 

  
 
 

 
 
 5.2.5 Other Devices  
 

 

 

 

  
 



 
Light sensitive pens can be used to interact directly with the screen, though this is now 
rarely found to be convenient or accurate. Touch sensitive screens share the same 
limitations but can be useful when an interface is required with the general public. 
 

 

 

 
 

 

Analogue devices, such as simple knobs connected to potentiometers, can also be 
usefully employed as input devices. When working on a 3-D scene it can be much 
clearer to allocate separate knobs to rotations around each axis, and to functions such as 
'zooming', than to have them all operated by a single device such as a mouse. If the 
control knobs are geared down, it also allows very fine tuning of parameters. Buttons 
and switches are further simple input devices, and can have their functions defined 
either by the user or the application, thus comprising a PFK (programmed function 
keyboard). The means for inputting complex images, such as photographs, are 
described in Chapter 6.8. 
 

 

 

 
 

 
 

The systems described so far have been used for inputting 2-D information, and this 
may, of course, provide the basis for building a 3-D model. It is, however, possible to 
input 3-D information directly, though the equipment for doing so is not yet widely 
found. The position of a stylus tip, moving in 3-space, can be tracked using acoustic, 
mechanical, optical or electromagnetic means. An object can thus be traced over with 
the stylus, but care must be taken to select logically suitable points on its surface for 
digitising. (From the June 1990 Design magazine's report of the National Computer 
Graphics Association conference and exhibition comes word of a new device for the 
input of 3-D information into a computer. A sonic digitiser uses four microphone 
sensors to calculate distance from a stylus tip emitting an ultrasonic signal at a rate of 
up to 60 times per second.) Commonly, the object would have a mesh grid drawn over 
its surface, and the intersection points would be those digitised. The process is time-
consuming and painstaking. Laser scanning provides an alternative method, but all 
systems have problems with objects containing inaccessible areas. 

  
 
 

  
 



 

Three forms of input which are in their infancy are 'OCR' (optical character 
recognition), in which an intelligent system reads printed (or sometimes even 
handwritten) text; direct speech, in which a system understands human speech (in a 
currently limited vocabulary); and the 'DataGlove' which translates movements of the 
operator's hand (encased in the DataGlove) into comparable movements in the 3-space 
of a robotic hand which might exist or merely be a computer model. The DataGlove is 
one tool of 'virtual reality' in which the operator is able to enter into a 3-D computer-
generated space, and the potential and implications of virtual reality are so great that it 
will be dealt with at length later in the book. A directional hand tool (a palm-held ball 
shape, tapering to a pointer, with input buttons) has been developed to allow someone 
in a virtual environment to 'fly' through the virtual space that surrounds him. 
 

 

 

 
 

 5.3— 
Feedback  

 

 

 

 

 
 

 

When an input device is used it is usual to expect some sort of feedback to confirm its 
satisfactory operation. It would be difficult to input the data for our freehand circle, 
using a stylus and graphics tablet, if the VDU (visual display unit) screen did not 
demonstrate our progress. Input from a drawing, using the puck, might only produce 
the numerical coordinates on screen, but in this case we have visual coordination 
between the source drawing and the puck, which the numerical coordinates can be used 
to double check. If an image is produced by a written program, there might be a long 
delay between writing the program and producing the image, possibly days or weeks so 
that direct visual feedback is impossible. Some rendering techniques might also 
produce a delay of hours or even days. 
 

 

 

  
 



 

 

Since the essence of animation is visual, this could be a major problem. An artist relies 
on instantaneous feedback in order to be able to produce a drawing, if even a small 
delay is introduced between making a mark and seeing it appear it is likely to prove 
impossible to continue coherently. Interruptions to this flow of consciousness are 
impossible to avoid at all points in the production of animation, but are less critical at 
some times than at others. In a process requiring hand/eye skills their avoidance is 
essential. When building a model, the decision to create a cube, for example, has a 
completeness which will not be corrupted by a short delay. A subsequent decision 
(based on its appearance on screen) to change its scale, is similarly amenable to a short 
delay. If, however, its scale or position needs to be subjectively modified relative to 
another object on screen, then it is necessary to be able to see the changes to the cube 
appear as they occur, or the process will deteriorate into one of successively refined 
error correction. I specify "subjective" to distinguish the example from one where the 
cube's required transformations could be described mathematically. 

  
 
 

 
 

 

Rendering delays have become accepted as normal, but this has merely served to 
modify the way in which rendering decisions are made. The incentive is to set a 
complete global model in a single action, rather than to build one up light source by 
light source, changing lighting positions, intensities and colours in response to their 
effect, as would be the case if it could be achieved interactively in real-time. This 
results in a strong sense, in much computer imagery, of rendering by formula (which 
relies on the experience of the operator), though increases in rendering speed in the 
next few years will remove the need for this shortcut. The incentive may be even 
stronger if the images are produced by a program custom-written for the task, in which 
case the whole cycle of editing and compilation adds further to the delay, and to further 
removal from the direct experience. 
 

 

 

 
 

 

Possibly the most problematic area is that of movement, for the ability to evaluate the 
quality of a movement requires that it should be viewed at real speed. If that can only 
be done by slowly generating individual frames and then dumping them one at a time 
to video, then the delay between initiating and seeing the movement can be enormous. 
This problem is usually minimised by previewing a reduced, possibly wireframe, 
version of the final scene, which can be generated and replayed quickly within the 
memory of the computer. It still invites major surprises in the final rendered version, 
however, when unforeseen elements effect the expected result. Again, experience 
proves to be the main judgmental tool. 
 

 

 

  
 

 



 5.4— 
The Screen Environment  

 

 

 

 

 

 

 
 

The computer's operating system (OS) protects the user from the need to become too 
intimate with the low level requirements of the system. (The 'level' of operation refers 
to the closeness of the user to the machine workings of the computer, 'low' being close, 
'high' being removed from the need to know how the machine performs required tasks.) 
Amongst other things, the OS translates high level user input (such as typing in a 
command word, or hitting the BREAK key) into instructions to which the machine can 
respond. The application, sits 'above' the operating system, and is likely to share the 
same interface, possibly providing alternative levels of control and alternative input and 
output devices. Our main interest is likely to be in the VDU screen, in what it tells us 
and in how we can communicate through it. Some form of graphical user interface 
('GUI', pronounced "gooey") is now almost standard. 

  
 
 

 
 

 

The word processor application, with which I am working, uses a WIMP environment 
but is not fully WYSIWYG (pronounced whizywig)! WIMP is an acronym for 
"windows, icons, menus and pointers", WYSIWYG stands for "what you see is what 
you get". The term WYSIWYG is most often applied to DTP (desktop publishing) 
applications, where the means of mapping fonts to the screen could be different from 
that used on a laser printer, for example, and consequently would effect the precise 
appearance of the layout. It is possible to employ the same means to ensure that the 
screen and printer images are the same (within the limits of the resolution of the two 
devices), and the 'PostScript' language is one which is currently being employed to 
drive both devices. In a broader sense, it is possible for screen information not to be 
updated immediately, in which case the screen fails to give an accurate description of 
the state of the application, and impairs the ability of the user to make sound 
judgments. 
 

 

 

  
 



 

 

The WIMP environment is analogous to a desktop, with sheets of paper laid on its 
surface, the sheets corresponding to the 'windows' which contain views of the 
application. These windows may contain text or images, and can be moved around the 
screen (which has become the 'desktop') and overlapped just as papers can be organised 
on a desk (Fig 5.4a). Current papers can be moved to the top of the pile and documents 
can be laid side by side for cross-referencing, the maximum number of windows 
available at any one time being determined by the system. The windows can also be 
'sized' (interactively reproportioned) which accounts for their name, since rather than 
actually "being" the document or image itself, the window offers a view onto the 
document or image. As I write this, my growing document scrolls past the currently 
live window, which overlaps a window containing my bibliography document, and in 
some more powerful systems, the various windows can even be running animations or 
live video. 

  

 
 

 

 
 
 

Fig 5.4a 
A simple WIMP desktop 

  
 



 

 
 

 

 

Fig 5.4b 
A wordprocessor screen 

  

  
 
 

  
 



 

 

At the top of my screen are several words: File, Edit, Block, Style and Help. Each one 
is a menu heading, and if I move the screen cursor over one of those words then a list, 
or 'menu', of related functions appears on screen (Fig 5.4b). For instance, if I 'pull 
down' the ''style'' menu I am offered a choice of typeface styles that I can use in my 
document, such as: Bold, Underline and Italic. I select the style I want by moving the 
cursor over the appropriate selection and 'clicking' the mouse button. The menu thus 
allows easy access to a wide range of facilities that are available in the application, 
without the clutter of having them all on screen at once. In more complex applications 
menus may be 'nested' hierarchically in order to arrange logically a large number of 
options. In that case the selection of a menu item causes a sub-menu to be written on 
screen, and possibly the selection of an item on the sub-menu will reveal a further sub-
menu. The choice of wording in a menu needs to be clear, but in its attempt to be brief 
may use jargon which will need to be learnt. Icons are graphical symbols designed to 
be identified with particular functions that are available, and may be used in 
conjunction with menus, or may replace them in simple situations. They are selected by 
the screen cursor. Standardisation of icons is poor between applications, though there 
are some familiar ones on most desktops, for instance a dustbin (trashcan) icon for 
removing redundant files when they are dragged to the icon. A problem with icons is 
the need to visually evoke a particular function, which may be complex and esoteric, 
within the confines of a grid (perhaps 10 pixels square), in such a way that its meaning 
is instantly apparent to the operator. In fact this is rarely possible, and the icons will 
need to be learnt, but they should provide a visual shorthand for a function. A further 
complication is that the icon may need to describe a function which is completely new 
to the operator, in terms of imagery which is already understood by him, and should 
also be international (do all cultures have dustbins that look the same?). It is an 
interesting problem to create a universal icon to stand for an obscure process or 
function, and one which has led to some magnificently confusing failures. A recent 
research project on computer-based iconic language has led to the development of 
hierarchical icons which can be interrogated to give static or animated iconic 
explanations of themselves [Mealing 1990]. 

  
 
 

 

 

 

The use of static icons is being supplemented by MICONS (motion icons) in which the 
iconic image was originally a repeating morsel of live video. Whilst these have the 
potential for fuller description they also have the potential for turning the desktop into 
an animated theatre of confusion, and should be used sparingly. As well as effectively 
being a mini video, a typical, stylised icon can be animated. An icon can also be a 
photographic quality image, and as such is referred to as a PICON (picture icon) and 
can have sound associated with its operation, such as a suitable noise to accompany 
'dragging' a file to the trashcan. 
 

 

 

  
 



 

Some functions (such as for the volume of sound) require graduated control and this is 
often achieved by using a variable screen device imitating a mechanical one. For 
instance, a virtual 'slider' on screen can be dragged by a mouse to match the effect of a 
mechanical slider on a hi-fi set. Alternatively a numerical display (such as of volume 
on a scale from 0 to 10) can be controlled by 'plus' and 'minus' buttons, or, of course, by 
keyboard. One function which has led to a number of control solutions is that of colour 
mixing, where the type of intuition that can be brought to bear depends on the 
operator's background. An artist and a physicist might be expected to feel comfortable 
with different analogies. Colour is often set by three sliders corresponding to the 
numerical balance of the three primary colours (in this context) of red, green and blue, 
but can also be set by the separate selection of hue and intensity from graded 2-D 
charts. In the case of a limited computer palette, direct selection is an option, but in 
some paintbox applications the manual mixing of colours on a real palette is effectively 
simulated, using a stylus. Since mixing red and green paint produces khaki, whilst 
mixing red and green light produces yellow, the computer is required to convert 
internally between different colour systems. One other option is to select from a 3-D 
colour model, but this presents problems since it is displayed in 2-D on screen. 
 

 

 

 
 

 
 

'Pointers' are the mechanism for selecting an icon, selecting from a menu, or 
determining the screen location for a prescribed event to occur (such as my now using 
the mouse to locate the screen cursor at the location where I want the text cursor to 
allow me to insert a missing letter). The pointer can be controlled by a range of input 
devices, and can change its visual form as a reminder of the function it is currently 
fulfilling. In conjunction with the rest of the WIMP environment, it allows the operator 
to entirely control much of the current application through a simple device like a 
mouse. Our animator's screen could then, at any one moment, contain wireframe and 
rendered views of the 3-D model he is working on, a text window at which he edits the 
program that is producing the model, a window in which his model is animated, and 
menus and icons for controlling the application. 

  
 
 

 
 

 

Familiarity contributes to the apparent friendliness of the interface and many 
"traditional" computer operators prefer the 'command line' control which was universal 
before WIMP arrived. This requires that commands are typed in at the keyboard, from 
a repertoire of often many hundreds, with a syntax which takes the uninitiated time to 
acquire. Whilst not seeming a convenient system to many users, it sometimes offers the 
opportunity to briefly express a wider range of options. It might not seem obvious that 
the screen image is much different from the final image produced by another output 
device, but in some cases the difference is significant. 
 

 

 

   



 

 5.5— 
The 3-D Environment  

 

 

 

 

 
 

 

Is it possible to navigate a 3-D environment when viewed "through" a 2-D screen? 
Whilst perspective and hidden-line removal give us a lot of assistance, real world depth 
clues are often much more subtle. We have mentioned that texture can help to evoke 
spatial depth by diminishing in scale with distance, but aerial perspective is more 
difficult. This change in the apparent colour and clarity of distant objects, due to 
atmospheric influences, can be simulated, but only at the expense of computing time. 
Both texture and aerial perspective are also mainly relevant when the space in question 
is great. 
 

 

 

 
 

 
 

Most 3-D modelling packages offer three or four views of the current scene on screen 
at once in separate windows. Top view (plan), front view (front elevation) and side 
view (side elevation) offer three coordinated diagrams which allow positions in 3-space 
to be evaluated accurately but not intuitively. All the windows are updated as close to 
simultaneously as the application will allow, but inevitable delays can make interactive 
navigation tedious, and it is common to use wireframe views when possible for the 
sake of speed. The choice of views can usually be set to determine whether the view is 
of top or bottom, front or back, left or right, and additionally a 'camera' view gives a 
perspectival view from a defined point in 3-space corresponding to the viewer's 
imagined position. 

  
 
 

  
 



 

The need to position objects in space by rotating them around X-, Y- and Z-axes has 
found different solutions. Sometimes the three axes are controlled similarly but 
separately, perhaps by knobs or by mouse after the appropriate axis icon is selected, but 
more often rotation about the axis orthogonal to the screen plane (i.e. the Z-axis) has a 
different control. Rotations around the X- and Y-axes are typically controlled by virtual 
sliders aligned along the X- and Y-axes, or by horizontal and vertical movements of the 
mouse (because horizontal movements to left and right can be seen as analogous to 
turning a freely held object around the Y-axis, and vertical movements around the X-
axis). It is less easy to find a method of mimicking rotation around the Z-axis which is 
consistent with those of X and Y, and a less intuitive use of the same devices is often 
implemented. Research on the problem has produced a number of inventive solutions 
which represent the movements in terms of circles or spheres, and different 
manufacturers have their own preferences. The movement of the object might be made 
in real time, in which case control of positioning can be interactive, and it is likely that 
numerical positioning will be available for greater accuracy. The axes around which the 
object rotates by default are normally the world axes, which are unlikely to coincide 
with any of the object's axes (except when the object is in its canonical position or has 
been shifted without rotation). The pressure sensitive ball device, that has already been 
mentioned, represents one mechanical solution to the problem. 
 

 

 

 
 

 
 

None of these methods matches our own use of binocular vision to interpret spatial 
position. Our brain uses the difference in information received from our two eyes to 
understand depth, and even slight head movements can be enough to clarify spatial 
ambiguities. Stereoscopic viewing is available for use in conjunction with computers, 
but tends to be used for viewing the final result rather than for interactive creation and 
manipulation. The method used involves replacing the single screen image viewed by 
both eyes, with separate images for each eye. Spectacles can hold separate mini-screens 
in front of each eye, or can be used to filter separate information for each eye from a 
single screen by the familiar red/green lenses, or by polarising lenses at right angles to 
one another. Alternatively the screen information intended for each eye can be 
presented in turn whilst the lens covering the opposite eye is blacked out electronically, 
the synchronisation being controlled by the computer presenting the images. If the 
information for both eyes is shown on a single screen, then the display can be 
confusing for a viewer without the appropriate spectacles. 

  
 
 

  
 



 

An additional complication with a 3-D environment is that you can only see all of the 
scene if you are outside of it. Once you have moved your viewpoint into the scene you 
may find that objects lie behind you, and if you have stayed outside the scene but 
magnified your view by 'zooming in', your reduced field of view may have cut off your 
sight of all objects. Most interface tools are not expressive enough to deal with these 
problems in an intuitive way. VDUs don't have wing mirrors and it becomes a little like 
negotiating the room you are in whilst looking through a cardboard tube. Perhaps a 
stylus that operates in 3-D, instead of being confined to rest on a 2-D pad, might 
evolve, rather like the input device for a 3-D digitiser. A veritable magic wand to fly 
the operator through space, and indeed I have just read (in Design magazine, June 
1990) that the 'Flying Mouse' from Simgraphics performs like a standard three-button 
mouse until it is lifted from the pad, at which time it moves into 3-D mode and can be 
used to manipulate objects with six degrees of freedom of movement. 
 

 

 

 
 

 
Alternatively, virtual reality tools will allow you to enter into the same space as your 
objects, and manipulate them from there, though this may not always prove preferable 
to viewing the scene from the outside. 
 

 

 

 

 

 
 

Another spatial problem arises in setting the position and direction of light sources in 
the scene and there have been a number of very different methods employed by various 
applications. If the light source is not directional then only the position of the light 
itself has to be established, and methods vary from placement in top/side/ front 
windows to dragging a patch which represents the light around the surface of a sphere 
which stands for the boundary of the objects' world. It is also possible to position the 
light, not by setting its position in space, but by demonstrating its effect on a symbolic 
object in the scene, as seen from the current viewpoint. A directional light has to be 
similarly positioned in space but also has to have the direction of its beam established, 
and probably the angle of the beam as well. This is quite effectively done in some 
applications by siting the light in the 3-D environment and dragging out a line 
representing the beam direction vector from the light to another point in 3-space. If the 
beam angle is variable then lines can be used to represent the edges of the beam instead 
of the beam's central direction, which has the advantage of increasing the accuracy with 
which a beam can be positioned. 

  
 
 

 
 

 5.6— 
HCI for Animators  

 

 

 

 

 



 

 

 

Does animation make any special demands of the human/ computer interface? One 
consideration which has already been mentioned, is the potential variety of 
backgrounds which users may bring to the system. Because, as we have shown in an 
earlier chapter, computer animation is being created within disciplines throughout the 
spectrum from pure science to pure art, it is difficult to make assumptions about the 
user preferences which will be brought to the system. In many instances it will be 
appropriate to "remove" the animator as far as possible from the "computing", whilst in 
others the animator may need to operate at a low level, perhaps writing code in 
assembly language. The most versatile system would incorporate a high-level interface 
yet still allow the animator to ''get his hands dirty" with low-level operations. There are 
a number of reasons why this is not always the case, and, it must be acknowledged, a 
number of situations in which the double facility would prove superfluous. 
 

 

 

 
 

 

It is not easy to specify an ideal interface for an animator, given the many intentions 
and disciplines using the medium. It is only a little easier to define the exact functions 
that the animator should have control over, but the chapter on software will give an 
idea of what is currently available. Facilities will be required, however, for modelling 
(either in 2, 21/2, or 3 dimensions), for controlling colour and texture and (in 3D) 
lighting and rendering, and for choreographing movement. 

 



Chapter 6— 
Hardware Considerations 

 

 
 

 
 

 

'Hardware' describes the physical components of a computer system, the machinery 
itself, as opposed to 'software', which refers to the programs that control the hardware 
and the applications that run on the hardware. Your paint program is a piece of 
software, the box which sits on your desk and runs the paint program is hardware, 
together with its monitor and peripherals. The same terms apply in other areas, and we 
will also look here at relevant video hardware. Since most computers can be persuaded 
to do most general purpose tasks at some level, it could be said that too many people 
get too involved with the subtle distinctions between different machines (encouraged, 
of course, by sales hype). Similarly, any car is likely to get you from A to B, but if you 
want to complete the journey fast or in great comfort then a more particular vehicle 
might be required. Also if you wish to take a dozen passengers, cross a river en route, 
tow a caravan or impress your friends, then a more specific choice is needed. This 
chapter will give a brief overview of the types of hardware that get mentioned in the 
context of computer animation. 
 

 

 

 
 

 

As with all things, there is a hierarchy in computers which stretches, in this case, from 
the humble home micro up to the super-computer. Starting with the last generation of 
micros, the 8-bit machine, which is now largely superseded (though still in many 
homes and schools), as you move up the list, machines get 'bigger', 'faster', 'more 
powerful' and more expensive, but only the meaning of the last term is self-evident. We 
need to know what 'bigger' and 'faster' mean, whether machines can be meaningfully 
compared, what the extra size and speed will do for our animation, and if the 
improvements justify any extra expense, (we will discover that speed is important for 
graphics applications and for animation in particular). A computer is made up of five 
basic units, the features of which determine the limits of its performance, and they are: 
the central processing unit (CPU), the memory associated with the CPU, the secondary 
storage and the input and output devices. The last chapter looked at input devices, and 
this chapter will briefly consider each of the others in turn, and consider their 
significance to animation. 
  

 

 

  
 
 

 
 

 6.1— 
Bits and Chips  

 

 

 

 



 
 

 

The CPU is the heart of the computer, where the instructions specified by the program 
are carried out, and where the operation of all other elements of the computing process 
is coordinated. It is built as a tiny integrated circuit (IC), often referred to as a chip, and 
has shrunk so much in the last 30 years that a computer as powerful as the basic 
machine sitting on my desk would then have filled a room. There are several families 
of chips which are commonly used, and each has particular features which cause 
manufacturers to build machines around it. For instance the Motorola 68000 chip is a 
16-bit chip which has provided the basis for several graphics orientated computers: the 
Apple Mac, the Atari ST and the Commodore Amiga. As the chip has developed its 
added capabilities are indicated by a higher reference number, so that the the Motorola 
68020 is a full 32-bit device, the 68030 adds technical enhancements (like multi-
tasking)and the 68040 develops further still (incorporating a high degree of 
parallelism). The three machines mentioned have all provided the foundation for more 
advanced models based around the improved chips, and computers often find 
themselves referred to by their chip number as it gives a general indication of their 
performance. It is interesting to note that the 68000 chip incorporates 68,000 transistors 
(guess where it got its name from) but the 68040 builds in a massive 1.2 million 
transistors. VLSI technology (Very Large Scale Integration) permits the fabrication of 
this number of transistors on a single chip. 
 

 

 

 
 

 
 

'Bit' is short for 'Binary digiT', and is the smallest unit of storage in the computer. 
Groups of bits are classified as 'nibbles', 'bytes' and 'words', and a 16-bit machine is one 
that uses a word size of 16 bits, (a byte is normally 8 bits, and can conveniently be 
thought of as the amount of memory required to hold a single character such as 'S', '?' 
or '5'). The size of the word determines how much information can be handled at any 
one moment, and the bigger the word size the faster an amount of information can be 
processed. Home machines are now commonly 16-bit, with 32-bit machines just 
starting to come close to a 'home budget' price, but the current speed of development of 
computer hardware suggests that 32-bit machines will soon be 'bottom of the range' and 
64-bit machines more commonplace. The word size is determined by the architecture 
of the chip, and is sometimes confused by the description of a chip as being, for 
example, '16/32 bit'. This distinguishes between the word size that can be handled 
internally by the chip, and the word size which it can handle when communicating 
externally. 

  
 
 

  
 



 

The speed at which operations are carried out by the CPU is determined by the 'clock 
rate', measured in megahertz (MHz), a megahertz representing one million cycles per 
second (the 68000 chip typically being run at 8 MHz).The faster the clock rate the 
faster information is processed, but since different machines do a different amount of 
work in one cycle it is not sufficient merely to compare clock rates. Bench marks are 
used to compare the speed of different machines, and time each machine as it 
completes the same tasks, but whilst these tests are accurate they are not necessarily 
helpful. It might be that the tasks accomplished in the bench test are not relevant to the 
application in mind, that the machine is optimised to produce good bench test results, 
or even that the machine is too clever for the tests. (Some of the tests require the 
computer to perform large numbers of unproductive loops, where it repeats part of a 
program without doing anything, and good optimising compilers can spot this wasted 
energy and bypass the loop.) 
 

 

 

 
 

 
 

The speed of operation is now popularly described in 'mips' (millions of instructions 
per second) and 'mega-flops' (millions of floating point operations per second), with 
alternative prefixes 'giga-' (one billion) and 'tera-' (one trillion) increasingly being used 
to whet the appetite. A new machine from Hewlett-Packard (the HP 9000 Series 400), 
for example, is described as running a Motorola 68040 chip at 25 MHz to do 20 mips 
and 3.5 mega-flops, with 26 mips and 4.5 mega-flops possible at 33 MHz, whilst the 
older 68030 chip will deliver 12 mips at 50 MHz. For graphics applications it is often 
more useful to know how many polygon fills it can achieve in a second, or how many 
vectors it can draw in a second, a calculation directly related to the end product and 
which takes into account any special graphics hardware aboard. 

  
 
 

 
 

 

The basic chip is often supplemented by others which do specialised jobs and take part 
of the workload from the CPU. The most common is the maths co-processor, which 
relieves the CPU of much of the burden of mathematical calculation, and is often 
available as an optional extra. Sometimes an I/O processor handles input and output, 
and we will be interested in graphics co-processors which take over graphics chores. 
These supplementary chips are optimised to undertake their limited functions more 
efficiently than any general purpose chip, and allow the whole process to be markedly 
speeded up. 
 

 

 

 
 

 6.2— 
Architecture  

 

 

 

 

 



 

  

 

The traditional arrangement of elements in a computer is the von Neumann 
architecture, in which the memory and processor are separated by a databus, an 
organisation designed to make best use of the components originally available. A 
consequence of this arrangement is that most computer time is spent moving words up 
and down the databus which creates a bottleneck, and none of the improvements that 
have been made can avoid the problem. This architecture is 'sequential'. The real world 
is concurrent, however, which means that lots of things happen at the same time, and 
this is reflected in parallel architecture computers. By connecting memory and 
processor directly in a single unit which can be used in quantity, it is practical to build a 
concurrent machine. These units are assigned tasks which can be carried out 
simultaneously, and the topology of their connection is variable. Whilst it has been 
shown that increasing the size of a von Neumann machine does not greatly increase its 
processing power, this is not the case with a parallel machine. The idea of parallel 
computers has been around for at least forty years [Watts 1989] but technological 
changes have only recently made it viable, and it is suggested that this new direction 
may prove to be particularly useful for graphics. 

  

RISC chips and transputers are the processors currently associated with parallel 
machines. 'RISC' stands for Reduced Instruction Set Computer and is a development 
arising from the observation that most processors spend most of their time working on 
only a few instructions out of the many of which they are capable. A RISC chip is 
therefore optimised to do the few most common instructions extremely fast, and to 
construct the rarer ones from the reduced set when needed. A transputer is a chip with its 
own memory that effectively constitutes a complete processor, and is intended to be used 
in conjunction with other transputers (a 'farm' of transputers) to co-operate on 
processing, each transputer completing its delegated part of a calculation. 
 
 

 

 

 

Transputers are commonly arranged in a 2-D grid or in a cubic configuration known as 
a hypercube, and there are two main types of parallel computer. One is the SIMD 
(single- instruction multiple-data) computer, where the processors carry out the same 
operations on many pieces of data at the same time. They are particularly good at 
image processing, for instance, where fragments of picture are analysed in the same 
way simultaneously. In MIMD (multiple-instruction multiple-data) computers, 
however, processors carry out different operations at the same time. They are better at 
solving problems that require each processor to execute its own program on its own 
data, communicating periodically with its neighbours [Watts 1989]. 
 

 

 

 
 



 

At the moment the performance limits of the various technologies are leapfrogging one 
another, but parallelism is favoured to increase in importance. The obvious attraction of 
a machine that can do many things at the same time, is currently offset by the problem 
of distributing a problem efficiently between the processing elements, and by 
bottlenecks elsewhere in the system. Certain graphics algorithms have been highlighted 
as potentially able to exploit parallelism, one example being raytracing, where each ray 
could ultimately have its own processor. 
 

 

 

 
 

 
 

Machines are often described as 'multi-tasking', meaning that they can be doing several 
jobs at once, but this is not a strictly accurate definition and should be distinguished 
from true parallel processing. A multi-tasking system gives the appearance of doing 
more than one thing at once by switching its CPU time between several jobs in 
progress. Since many applications will leave the CPU relatively idle (a good example 
being the word processing I am currently engaged upon) the spare time can be usefully 
employed to do something else in the background. Partitioning the memory and 
allocating parts to several applications, which can then be switched between, is also 
now common. It requires the complete state of each application to be frozen when it is 
switched from, and then restored when it is switched to, and does not mean that any 
application but the current one is active. Mainframes are often required to switch their 
time between different users and different applications, often using a predetermined 
priority of allocation. The unpredictability of time allocation makes real-time animation 
on such a system impossible, and the potential delays in polling users rules out the use 
of an interactive device like a mouse. 

  
 
 

 
 

 6.3— 
Memory  

 

 

 

 

 
 
 

 

Computer memory is where data is stored, either permanently, or while calculations are 
carried out with it. It size is usually described in kilobytes and megabytes ('k' and 
'meg'), which stand respectively for thousands and millions of bytes, though sometimes 
it is described in words rather than bytes, which renders the description machine 
specific. (Strictly the value of a kilobyte is 210 or 1,024 bytes and of a megabyte is 220 or 
1,084,576 bytes.) Most memory is random access memory (RAM) in which memory 
locations can be written to and read from without having to work through a sequence of 
storage locations, and its contents are normally volatile (disappearing when the 
machine is switched off). Read only memory (ROM) is non-volatile, can only be read 
from (as a protection from being overwritten), and is therefore typically used to hold 
information such as the operating system. 



  
 

 

 

 

Mainframes swap chunks ('pages') of memory between RAM and secondary storage, so 
when a program is running it might not all be in main memory at once, but will be 
called up in sections as needed. This requires very fast secondary storage and efficient 
paging techniques. 'Virtual memory' describes the use of secondary storage as if it were 
RAM, by use of paging techniques. 'Caching' can be used to improve on access times to 
secondary storage by holding in RAM the data which an algorithm deems most likely 
to be required next. 
 

 

 

 
 

 

Secondary storage is most commonly provided by disc drives which hold information 
on magnetic 'floppy' discs loaded into the drive (currently having about 1 megabyte of 
storage capacity), and hard drives which use permanently mounted discs with very fast 
access times (typically holding 20 - 120 megabytes). Of these two, only the hard drive 
is suitable for the creation of virtual memory. Tape provides an alternative magnetic 
storage medium (one use being in 'tapestreamers' which can be used for backing-up 
hard discs), and graphics applications can benefit from specialised storage, such as the 
frame store, which will be mentioned later. Laser technology can dramatically increase 
memory storage capacity and improve access times, but is only just starting to become 
commonly available for computers, having already established itself in CD players for 
hi-fi systems. Fast solid state secondary storage is also becoming used and its 
progressive availability is likely to be inversely proportional to the price of the 
material. The CPU can handle information faster than it can take it from secondary 
storage, and, therefore, slow access times can cause severe processing bottlenecks, 
which becomes a very real concern for animation. A machine's memory can be 
extended since secondary storage can be bought 'off the shelf' and plugged in 
externally, and additional RAM chips can often be added to increase internal memory. 
New operating systems and applications increasingly allow secondary storage to be 
treated as 'virtual' memory so that a hard drive can effectively be used as if it was 
RAM, though access times are slightly slower than true RAM. 
 

 

 

  
 



 

 

It is possible to maximise the use of storage space by compressing information when it 
is stored and then decompressing it when it is retrieved. For graphics applications, one 
commonly used compaction technique is 'run-length' encoding. Rather than separately 
store the actual intensity of every pixel, run-length encoding stores the intensity of a 
pixel and the number of following pixels with that same intensity. Imagine a single 
pixel being ON at the centre of a 640 × 400 pixel display. Instead of individually 
recording the state of all 256,000 pixels, it would be sufficient to record that the first 
127,999 pixels were OFF, the next one was ON, and the remaining 128,000 were OFF. 
The efficiency of the technique is greatest in images with blocks of similarly set pixels 
and would become inefficient in the rare case that no pixel was the same intensity as its 
neighbour. A number of other methods for compression are available, and some 
applications can select from a library of different techniques after assessing which is 
most efficient for each given image. The encoding and decoding can sometimes be 
achieved in real time using either software or dedicated hardware methods. 

  
 
 

 
 

 

If you consider the amount of storage required to store one second of high-resolution, 
24-bit colour animation, it is clear that efficient compression algorithms are essential if 
we are to be able to develop the medium. Even at 640×480 pixels, one second of 24-bit, 
30 fps video requires 30 MB of memory, and one minute needs 1.8 gigabytes. 
Assuming the storage is available there remains the problem of getting that much data 
to the screen fast enough for real-time display. Another problem arises if that 
information is to be sent over a phone line, since it will take about 15 minutes per MB 
using a 9600-bps (baud per second) modem. A single, full-colour, A4 size image, 
scanned at 300 dpi (dots per inch) and 24-bits per dot would take about 6 hours to 
transmit [Baran 1990]. 
 

 

 

  
 



 

A common method of compacting animation is to store the first frame in its entirety 
and, thereafter, to store only the changes between subsequent frames. This is extremely 
efficient when few pixels have changed between frames, which may often be the case 
in computer generated sequences. It is likely to be far less efficient in handling 
sequences from a video source, since random changes are likely to be occurring to 
pixels throughout every frame, even in areas of apparently unchanging colour. Two 
standard algorithms are emerging: the Joint Photographics Experts Group (JPEG) 
algorithm for still images, and the Motion Picture Experts Group (MPEG) algorithm 
for motion picture images [Calvigioli 1990, 1991]. The JPEG algorithm can compress 
an image by 25 to 1 with minimal loss of quality, but can take 15 minutes to compress 
a 25MB image in software (on a 25-MHz 68030 machine). Built into hardware, 
however, specialised compression processors have the performance to sustain video 
rates. The algorithms must, of course, be able to decompress as efficiently as they 
compress, and the JPEG algorithm is an example of a symmetrical algorithm which 
uses the same number of operations for both processes, and hence the same time [Baran 
1990]. 
 

 

 

 
 

 6.4— 
Types of Computer  

 

 

 

 

 
 

 

Computers are often categorised with rather vague labels that imply some position in a 
performance hierarchy. Amongst the terms used are: 'home micro', 'micro', 'PC', 
'workstation', 'mini', 'mainframe' and 'super-computer', which might variously be 
qualified with 'humble', 'low-end', 'high-end' or 'turbo'. As performance has increased 
across-the-board, any valid distinctions that existed between these different types have 
become blurred, and the middle ground occupied by the workstation has become one of 
the most competitive areas. 'Micro' loosely refers to unspecialised 8,16 and 32-bit 
machines, small enough to sit on a table top and sold in the general marketplace. 'Home 
micro' qualifies a micro as being one that can be expected to be commonly found at 
home, I tend to use that term, in a rather vague fashion, when indicating that a 
technique under discussion does not require any specialist hardware. 'PC' stands for 
Personal Computer and is associated with IBM desk top business machines and their 
numerous imitators. A 'workstation' is likely to be a fast 32-bit machine with good 
resolution and graphics capability, in which the main computer is housed in a small 
'tower unit' beside the desk. The performance standard defining a high-end workstation 
(according to 'Managing Automation', April 1989) has evolved from 1 MIPS in 1984 to 
50 MIPS in 1989, during which period the ability to create 3-D vectors has risen from 
20,000 to 1 million per second, and the ability to draw Gouraud polygons has risen 
from 0 to 100,000 per second. 
 

 

 

 



 

  

 

A 'mainframe' is a big machine, housed in an air-conditioned room, usually used where 
large volumes of data are processed, accessed by a number of users on separate 
terminals, and named because its component parts were originally racked up on frames. 
There is a movement away from mainframes towards individual machines, sometimes 
'networked' together in order to share resources. When computing is distributed, 
mainframes are often used now as fileservers, giving access to files and applications 
which no longer need to be separately held by each machine. 'Minis' have the power 
previously attributed to mainframes but may be only be the size of a large suitcase, and 
in their most powerful incarnations are referred to as 'super-minis'. 'Supercomputers' 
are big, massively powerful machines exploiting the latest technologies and accessible 
by few people. The much vaunted 'Cray' supercomputers are often used as a yardstick 
against which other machines are measured, and they look the part when seen in 
photographs, standing in spotlight isolation with glowing liquid coolant flowing 
through their veins. 

  

The physical size required to house a particular level of machine performance is 
shrinking fast, and in some markets portables are outselling desktop machines. The 
descriptions given for machines that can be moved around easily range from 'luggable' 
(describing an over-optimistically named portable) through 'portable' and 'laptop' to 
'pocketable'. Screen technology has already enabled a number of machines to offer flat 
monochrome screens with 640 × 400 resolution and better, and higher resolutions with 
full colour will arrive before too long. An important requirement of the screen, and of 
other components, in a portable machine is that they do not use too much electrical 
power, since battery technology is responding more slowly than hoped to the challenge. 
A high specification machine which can run off its batteries for only 20 minutes is of 
limited use. Portables often manage to include hard discs as well as external drives, and 
will be amongst the first machines to avail themselves of solid-state storage when 
available. Their ultimate size seems controlled by the keyboard, which has an ergonomic 
minimum size, but alternative future input devices, and also screen replacements 
(electric glasses?), suggest that workstation power will be pocketable in the foreseeable 
future. 
 
 

 

 



 

 

A number of input devices have already been described in the chapter on HCI, 
examples of output devices being printers, plotters, video recorders and VDUs. It is 
important to recognise that the display shown by any output device can only be faithful 
to an image held in the memory of the computer within its own device limitations. It is 
often thought that the image seen on a computer monitor IS the image held in the 
computer, but it is merely a representation of that internal image, displayed to the best 
ability of the monitor hardware. The same internal image, displayed by a different 
monitor, or produced by a printer, will show changes in colour and resolution, for 
example, that are specific to the output device alone. A perfect circle can be stored in 
the computer's memory by three numbers, the X,Y coordinates of its centre and its 
radius, but when it is displayed on a VDU it will become a ragged approximation of a 
true circle, the 'staircasing' of the line becoming less noticeable as the resolution 
increases (Fig 6.4). A plotter, however, may produce a true circle. The primary output 
device to which the operator will refer is normally a VDU screen, the maximum 
resolution and maximum colour range which it can display being determined by its 
hardware, and the actual resolution and colour range displayed being determined by the 
hardware of the computer and the application that is running.  

  

 
 
 

Fig 6.4 
The relative smoothness of circles shown at  

different screen resolutions 
  
 

 



   
 
 

 

 

 
 

 6.5— 
Display  

 

 

 

 

 

 

 
 

The technicalities of different screen technologies are beyond the scope of this book, 
but we can make several pragmatic distinctions. Most displays use cathode ray tubes 
(CRTs) which are flexible and relatively inexpensive emitter displays (discussed 
clearly in Salmon [1987]). Another type usefully mentioned here is the liquid crystal 
display, which is currently used in 'laptop' computer screens, and is set for much wider 
use as the technology develops. The CRT screen is incorporated, with its associated 
electronics, into a monitor. For our purposes this can be expected to be a 'raster 
scanned' monitor, in which an electron beam systematically scans the whole screen area 
in horizontal lines from top to bottom. American TV has 525 raster scan lines, 
European TV uses 625 lines, but new standards for high definition television (HDTV) 
are being proposed, of 1125 lines at 60Hz and 1250 lines at 50Hz, and programmes are 
already being produced to these standards. The alternative, a 'vector refresh' monitor, 
steers the beam around the screen along vectors, and its high resolution is typically 
used in cockpit instrument displays and sometimes in computer aided design. 

  
 
 

  
 



 

The raster scan sets the pixel intensities, and the speed at which the scan is repeated is 
the 'scan rate'. The higher the scan rate, the less 'flicker' the display exhibits, and the 
less strain is experienced in its use, (flicker can also be reduced by the use of longer 
persistence phosphors in the screen manufacture). Animation flicker is avoided by 
synchronising the moment at which each new frame is displayed to the screen's vertical 
retrace. My black and white monitor refreshes the whole image 70 times a second (70 
Hz)and produces a very stable picture, which is particularly desirable when it is being 
closely observed, as in word processing. A colour monitor would typically run at 50 
Hz, which is the television broadcasting standard in the UK (60 Hz in the USA), and be 
acceptably stable when broadcast because the moving image is not scrutinised 
minutely, but more tiring to work with closely. The capability of a monitor is often 
described by its 'bandwidth' which is calculated from the scan rate and number of 
pixels in the display, a high bandwidth (typically 88 MHz) indicating a high 
performance, and likely to be reflected in a high price. Television is broadcast using 
interlaced raster scanning, in which alternate raster lines are scanned in each pass, first 
odd lines then even lines, etc. (Fig 6.5). This means that the rate at which the complete 
screen is refreshed is 25 Hz (30 Hz in the USA) and leads to economies in the design of 
the electronics with subsequent cost savings. TV sets are often used as monitors for 
home micros but are not satisfactory for demanding work. 
 

 

 

 
 

 
 

Monitors usually have an external control for roughly adjusting the colour balance and 
internal controls for fine adjustment, together with control over screen brightness. This 
should be limited in order to reduce eyestrain and screen radiation (which is easier to 
do if the room is not brightly lit). If images are to be broadcast then the monitor may be 
supplemented by a small waveform monitor which is used to check for 'illegal' colours 
that can be created on the main monitor but not broadcast satisfactorily. It is also 
common to have a second monitor to show the image as it would appear when 
broadcast, since edges of the image can come to be cut off, and perhaps a monochrome 
monitor may be added to display menus and commands used by the application.  

  

 
 
 

Fig 6.5 
Raster scanning. Non-interlaced (left), interlaced (right) 

 

 
 

   

 



  
 

 

 

 

 

In order to display an image the monitor needs to receive an input signal which will 
control the electron beam that scans the screen. This signal synchronises the horizontal 
scans, the vertical moves between the scans and the intensity at which each pixel is set. 
To display colour it additionally requires information in the form of the red, green and 
blue components of each colour, and it also needs sound information if present. (The 
monochrome component of a colour television signal is the 'luminance', the colour part 
of the signal, relating to the hue and saturation, but not brightness, is the 
'chrominance'.) Broadcast television supplies all this information combined into one 
signal known as 'composite video', which is fed into the TV aerial socket. If the signal 
components are kept separate it is 'component video'. Since the signals suffer a reduced 
bandwidth by being encoded into one and cannot then be perfectly decoded on 
reception, it is desirable to use component video between machines up until the final 
moment of broadcast. A composite signal is used by the main broadcast systems of 
PAL and SECAM in Europe and NTSC in the USA, but new transmission proposals 
are for component systems. 
 

 

 

 

 

 
Describing and transmitting colour is dealt with in a number of ways, and the area has given rise to a 
mine field of abbreviations. It is not necessary to deal with them in detail here, but the main ones that 
may be come across are - 

 

 

 

 

 

  
 
 

 

 
 
 Transmission standards:  
 

 

 

 

 
 
 
 PAL  
 

 

 

 

 

 
 
 Phase Alternation Line - (much of Europe)
 

 

  
 
 
 SECAM  
 

 

 

 

 

 
 
 Sequentiel Couleur a Memoire - (France and USSR)  
 

 

 

 

 
 
 

 
 



 NTSC  
 
 

 

 

 
 National Television System Committee - (USA and Japan) (also, 
allegedly ''Never Twice the Same Colour'') 
 

 

  
 

 
 MAC  
 

 

 

 

 

 

 
 Multiplexed Analogue Components - (proposed new standard)
 

 

  
 
 
 CCIR  
 

 

 

 

 

 
 

 Comite Consultatif International des Radio-communications (UN 
regulatory body for communications) 
 

 

  
 

 
 Colour description systems:  
 

 

 

 

 
 
 
 RGB  
 

 

 

 

 

 
 
 Red, Green, Blue - (used for screen display)
 

 

  
 

 
 CMY  
 

 

 

 

 

 

 
 Cyan, Magenta, Yellow - (used for hardcopy)
 

 

  
 

 
 HSI  
 

 

 

 

 

 

 
 Hue, Saturation (chroma), Intensity - (or 'HIS')
 

 

  
 
 
 HSV  
 

 

 

 

 

 
 
 Hue, Saturation, Value
 

 

  
 

 
 HSB  
 

 

 

 

 

 

 
 Hue, Saturation, Brightness
 

 

  
 

  
 

  



 HLS  
 
 

 

 

 

 Hue, Lightness, Saturation
 
 

  
 
 
 DLP  
 

 

 

 

 

 
 
 Dominant wavelength, Luminance, Purity
 

 

  
 
 
 YIQ  
 

 

 

 

 

 
 
 Intensity, flesh tone, other colour info - (used by NTSC)  
 

 

 

 

 
 

 
 YUV  
 

 

 

 

 

 

 
 Intensity, mixture of RGB info - (used by PAL)
 

 

  
 
 
 CIE  
 

 

 

 

 

 
 

 Commission Internationale L'Eclairage - (based on a 2D colour 
diagram) 
 

 

   
 
 
 

 6.6— 
Frame Buffers  

 

 

 

 

  
 



 

 

The size of the palette that can be represented depends on the number of bits allocated 
to each pixel in memory. One bit can have the binary value 0 or 1, which means the 
pixel can be shown either off or on. Two bits can have the values 00, 01, 10 and 11 
which allows us to show four (=22) different brightness levels. Three bits allows eight 
(=23) levels, eight bits allows 256 (=28) levels, twelve bits allows 4096 (=212) levels etc. 
If eight bits were to be allocated to each of the three component colours, red, green and 
blue, then 256 × 256 × 256 = 16,777,216 different colours could be represented using a 
total of 24 bits. A special area of memory is usually allocated to hold this screen 
information, either a reserved area of RAM in a machine with a limited palette or an 
external 'frame buffer' when a large palette is to be available. A frame buffer which is 
24 bits 'deep' will allocate 24 bits to each pixel over its whole area, which might 
typically be 1024 × 1024 pixels (some frame buffers are dimensioned with respect to 
screen ratio, i.e. 640 × 400). The bits are allocated to planes which would typically be 
three 8-bit planes in a 24-bit buffer, one for each colour, although other permutations 
may be chosen if different information is needed about each pixel. A 32-bit buffer will 
typically hold 24-bit colour information, and have a further 8 bits available for 
describing transparency, or other pixel information. 

  
 
 

 
 

 

'Lookup tables' provide an alternative way of storing pixel information which is 
memory efficient for limited palettes. Instead of storing the RGB values for each 
individual pixel, a table of colours values is created and the pixel colour is referred to 
by the location in the table of its colour value. This has the advantage that in order to 
change a colour throughout the image, it is only necessary to change the values at one 
place in the lookup table, rather than at every frame buffer location where it occurs. 
Obviously if the lookup table was to contain more colours than there are pixels, it 
would use more memory than a frame buffer, and carries the added memory burden of 
storing the pointers. This colour mapping with lookup tables also permits a limited 
form of animation, where sequential changes of the colour table can can suggest 
movement. For example if the colours of pixels describing water are set in a range 
between blue and white and then cycled through a blue/white palette, there can be a 
suggestion of movement in the water. Alternatively colour cycling can have the same 
effect of movement as advertising hoardings made up of light bulbs, such as are 
regularly filmed outside Las Vegas casinos. 
 

 

 

 
 

 6.7— 
Saving the Image  

 

 

 

 

  
 



 

 

It would be very limiting if images generated by the computer could not be saved. The 
best medium for saving them depends on their intended use, and the most usual would 
be in secondary storage (for future recall by a computer), on video tape (for broadcast 
or local use), on film (either still or cine-film) and on paper (as an end product or to be 
used as part of a longer process). To save to tape, film or paper requires an output 
device and the needs of animation prove more particular than those for saving single 
images. Although animation consists of a series of single images, the accuracy with 
which they must be located in time and space is crucial to the credibility of the 
animation. 

  
 
 

 
 
 6.7.1 Hard Copy  
 

 

 

 

 
 

 

The most obvious output device is the printer, of which there are several types. The 
cheapest and most popular is the 'dot matrix' printer, which strikes the paper through an 
inked ribbon with a number of fine pins. The pins are carried in a moving head and the 
image is made up of a number of small dots, the resolution of which is determined by 
the number of pins in the head, and the subtlety of the software driving it. A basic 
printer has nine pins, twenty-four pin machines are now common and higher pin 
numbers have recently become available. Many dot matrix printers can be equipped 
with colour ribbons (comprising bands of magenta, cyan, yellow and black) through 
which the pins selectively strike, but the results are not very convincing and are liable 
to be inconsistent as the ribbon fades. Laser printers employ electrophotographic 
technology (first developed in photocopiers), are more expensive but produce very 
good quality results in black and white, typically with a resolution of 300 dots per inch 
(dpi), and will soon be available with higher resolutions and with colour. (The human 
eye can distinguish separate dots up to about 1000 dpi.) 
 

 

 

 
 

 
 

Several technologies have been employed to produce better colour reproduction, and 
inkjet machines (which shoot precise jets of coloured ink onto the paper) are 
reasonably priced, quiet, and give clean colour, whilst thermal transfer printers (which 
use special paper) are effective but relatively expensive. It will always be the case (with 
foreseeable technology), that screen colour will fail to match printed output accurately, 
due to the different ways in which the images are formed. The additive colour (RGB) 
of screens is fundamentally different from the subtractive colour (CYM) of printing, 
which requires an additional true black (K), and mapping RGB to CYMK is not easy. 
Pantone have produced a set of matches between printing colours and screen colours, 
which is important in areas such as DTP, but an accurate match requires particular 
combinations of screen and video card under controlled conditions. 



  
 
 

 
 

 

Plotters produce hardcopy by drawing on paper with pens which can move along the X-
axis and be raised from, or lowered to, the surface of the paper. Either the pens can also 
move along the Y-axis or the paper can be moved along that axis past the pens. 
'Flatbed' plotters hold the paper fiat in either horizontal or vertical plane and can vary 
from A4 size to 10 ft long. 'Drum' plotters take less floor space to produce large plots 
on cut, or continuous roll, paper, by wrapping the paper over a drum roller, or by 
moving it from one roller to another. The plotter usually has between 4 and 10 pens, 
selected under software control. Since the pen can produce only lines and dots, and 
must combine these styles to produce shading, it is best suited to linear or 
diagrammatic images only. The software that drives the plotter cannot convert raster 
images to plotable form. 
 

 

 

 
 

 

Whilst printing or plotting onto paper does not, of itself, produce animation, it can 
provide a useful record of a stage in the process, perhaps feeding back into the 
storyboard. It is often possible to send a sequential file of a wireframe animation to a 
plotter, which will intelligently organise the images on the sheet of paper into a 
storyboard. This can again provide a useful reference, or can be cut up and made into a 
flicker book animation. Up until a few years ago, many computer animations were 
made by filming individually plotted images, but the fashion for glowing, linear images 
(produced by backlighting negatives made from the plots) passed and technology has 
moved on to make rendering easier. Images from the plotter or printer can also find 
subsequent use as material for traditional animation. 
 

 

 

 
 
 6.7.2 Film  
 

 

 

 

  
 



 

 

Saving a single image to film from the screen is simple provided care is taken. The 
camera must be set up on a tripod, daylight balanced film used, a shutter speed slower 
than the screen refresh rate used, and ambient light must be prevented from falling on 
the screen and causing reflections (usually by improvising a hood to enclose screen and 
camera). It is also desirable to run tests to find the ideal exposure and best screen 
contrast to set, the maximum contrast available on the screen being outside the range of 
film to record accurately (colour prints having a lower contrast ratio than 
transparencies). The maximum resolution will be that of the screen, however, and the 
scan lines may be more obvious in the photograph than on the screen itself. There is 
also likely to be some distortion of the image due to the curvature of the screen. In 
order to guarantee the highest possible quality images, special film recorders have been 
developed. These contain a very high resolution black and white monitor with a flat 
screen and three coloured filters, to which the camera must be accurately aligned. The 
three colour planes in the frame buffer are separately displayed through the appropriate 
filter, and recorded onto the same piece of film. The resultant resolution is far greater 
than on a colour monitor since the black and white screen is not restricted by the 
shadow mask required by the former. It is also possible to bypass the frame buffer and 
send the image to the recorder as a sequence of single scan lines which can result in a 
resolution higher than even the film can resolve. Bureaux are available to produce 
slides at a resolution of 4000 to 8000 lines. The same principles apply to recording 
sequential images on cine film, with the added problem that the camera must be 
capable of reliable single framing, preferably under the control of the computer. It is 
not practical to film animation of any quality from screen in real time because 
synchronisation problems between the shutter and the scanning are added to those 
described for still images. 

   
 
 

 
 
 6.7.3 Video  
 

 

 

 

 

 

 
 

Video tape is the most commonly used medium for recording animation today. A large 
number of formats are already available, and more are developing, with great increases 
in quality. Whilst it is still generally true that the larger the tape width, the greater the 
potential quality, improvements in tape technology mean that excellent results are now 
practical on narrower tapes which are associated with smaller (often cheaper) 
machines, though not necessarily to broadcast standard. Traditionally tape has been 
used for analogue recording, but increasingly digital technology is invading the market 
place, and can be expected to grow in influence over the next few years. Digital storage 
allows images to be subject to manipulation without loss of quality, and is in the form 
needed to be handled by computers. 

  
 
 



 
 

 

There are many video formats, as one might expect of a (relatively) newly popular 
medium, which reflect the range of qualities, sizes and prices of systems available for 
use from home to professional broadcast standard. A significant distinction is between 
those that store either the Red, Greeen and Blue signals or the Luminence and Chroma 
information separately (component) and those that merge them together (composite). 
The highest standard professional formats are component, but broadcast transmissions 
are currently composite. The most commonly encountered formats are: 
 

 

 

 

 
 
 Domestic and semi-pro -  
 

 

 

 

 
 
 
 Video8 (V8)  
 

 

 

 

 

 
 
 Aprox 250 lines horizontal resolution
 

 

  
 
 
 VHS  
 

 

 

 

 

 
 
 Aprox 250 lines horizontal resolution
 

 

  
 
 
 VHS-C  
 

 

 

 

 

 
 
 Compact size VHS
 

 

  
 
 
 Betamax  
 

 

 

 

 

 
 
 Less common than VHS
 

 

  
 
 
 Hi-8  
 

 

 

 

 

 
 
 Aprox 400 lines horizontal resolution
 

 

  
 
 
 Super VHS (S-VHS)  
 

 

 

 

 

 
 
 Aprox 400 lines horizontal resolution
 

 

  



   

 
 S-VHS-C  
 
 

  
 
 Compact size S-VHS
 

 

  
 
 
 Professional only -  
 

 

 

 

 
 
 
 U-Matic lowband  
 

 

 

 

 

 
 
 Aprox 450 lines resolution
 

 

  
 
 
 U-Matic highband  
 

 

 

 

 

 
 
 Aprox 550 lines resolution + timecode
 

 

 

 

 
 

 
 Umatic SP  
 

 

 

 

 

 

 
 Superior U-matic
 

 

  
 
 
 Betacam  
 

 

 

 

 

 
 
 High quality, component
 

 

  
 
 
 Betacam SP  
 

 

 

 

 

 
 
 Superior Betacam
 

 

  
 

 
 DI  
 

 

 

 

 

 

 
 Digital, component
 

 

   
 
  
 



 

 

It is often possible to plug a home micro into a domestic video tape recorder (VTR) and 
record live animation without further complication, many computers offering 
composite and RGB outputs. Sometimes an external modulator is needed, or an internal 
video card, but the main restriction is that domestic VTRs are not able to record single 
frames, and can rarely be controlled by the computer. Since most animation is not 
generated in real time, and only a limited amount can be saved in RAM for replay in 
real time, it is necessary to move up to High-band U-Matic standard before a timecode 
can be added to the tape to achieve this. As well as being relatively expensive, there is 
also the need for additional hardware to allow the machine to be controlled by the 
computer, which can then generate a frame, 'drop' it to tape, and move the tape on one 
frame to await the next frame. In fact the High-band U-Matic machine winds the tape 
back to a 'parking' place beyond the limits of the recording, and then runs the tape 
through to build up to the correct speed before a frame is dropped, exact 
synchronisation being possible due to a time code on the tape. It is also unacceptable to 
leave the tape heads at one point on the tape for too long, and machines will normally 
cut out after seven minutes, which might prove insufficient time to generate each 
frame. VITC (Vertical Interval Time Code) is a relatively new development which 
permits frame-accurate editing on low-cost formats, and may be adopted for use with 
desk-top animation. 

  
 
 

 
 

 

Other pieces of electronic hardware are necessary for different video related chores. If 
there is more than one video signal a 'genlock' is needed to synchronise and lock them 
together, a common requirement being the superimposition of a computer generated 
sequence onto a sequence from another source, known as an 'overlay'. (One hindrance 
to the development of multimedia is the fact that owning video and computer 
equipment does not guarantee that they can be used together easily.) For the less 
frequent requirement of converting material between broadcasting standards, 
sophisticated equipment is needed, and is usually found only in specialist bureaux. 
 

 

 

  
 



 

Having recorded animation to tape it is often necessary to edit the material, and the 
minimum requirement for this is two VTRs and an edit controller (though modern 
portable video cameras can sometimes be used as source machine and controller). 
Since it is likely that frame accurate editing will be required, the minimum standard is 
again High-band U-Matic, and you can see that the computer can often prove to be the 
cheapest part of an animation set-up. Professional edit suites can be hired by the hour, 
and major animation companies may have their own in-house. A major problem with 
video is that every time it is transferred to a another tape, such as when editing, is 
suffers 'generation loss' which lowers the quality. The degree of loss is determined by 
the format used and the quality of equipment, but it precludes sequences being built up 
by successively adding layers of images. New digital technology, however, preserves 
the quality intact through any number of processes if a solid state device is used (and 
with very limited loss if digital tape is used), and has allowed video 'collages' to 
become commonplace (notably in pop music videos). 
 

 

 

 
 

 

Desktop video (DTV) is heralded as opening up a whole new video world accessible to 
everyone. At the moment the "everyone" needs to be able to spend quite a lot of 
money, and is, therefore, likely to be a professional video worker, but DTV is already 
cost- effective and due to become a lot cheaper. It is suggested that a Macintosh based 
system, for instance, can already offer 75 per cent of the effects and quality of a top-
level system costing more than three times as much, and can cut production costs to a 
tenth. The compromises involved in the cheaper system are quite acceptable in many 
contexts, and a few more price reductions will put DTV within reach of a big, new 
market. The future development of DTV is compared with the growth of desktop 
publishing (DTP), which has never threatened the high-end publishing systems but has 
led to much publishing being done in-house, and many more people becoming layout-
literate. The memory taken up by a frame of 24-bit colour video is 1.2Mb and an 
obvious problem of a DTV system is finding sufficient storage for a worthwhile 
amount of video. For this reason data compression, described in Chapter 6.3, is 
important and chips are available that offer compression of up to 150:1 [Hodgson 
1990]. 
 

 

 

  
 
 

 
 

 6.8— 
Image Input Devices  

 

 

 

 

  
 



 

 

Manual input devices were considered in the last chapter on human/computer 
interfaces, but we are likely to need to import complete images intact from a range of 
sources, as well as to create them by hand. Flat art work can be imported using a 
'scanner', in which the material is placed face down on a glass plate, and scanned using 
similar technology to a photocopier, producing a file in a common format. Until 
recently they were only available for black and white reproduction, but are now 
available for use with colour. Their usual image size is about A4, and small hand 
scanners are available which cover a width of about four inches, whilst being dragged 
manually down the image. Problems can arise if the copy is slightly misaligned, or, in 
the case of the hand scanner, the dragging is not even, but the latest software 
improvements have largely overcome these faults. When text is imported, the use of 
OCR software can produce a portable ASCII file (ASCII, pronounced "askey", forms 
an internationally used character set). For example newspaper page could be scanned 
and converted to a standard ASCII file which could then be reset using a typographic 
package. 

  
 
 

 
 

 

It is also common to import material from a video source, which might be either direct 
through a video camera, or using prerecorded material through a VCR. A vertically 
mounted camera is usually to be found in the corner of computer graphics studios 
standing ready to import flat art work, which might, of course, be in the form of 
traditional animation cels. It is equally possible to import live video sequences, even 
simple equipment being able to digitise (black and white images at least) at the video 
rate of 25/30 frames per second. A problem, however, is storage, since ten seconds of 
video requires the storage of 250 images (at UK standards). A versatile solution is 
found in the digital editor 'Harry' from Quantel, which saves over 3000 frames on 
Winchester Disk Drives on-line, and can swap any part of this material with that held 
on VTRs under its control. 
 

 

 

 
 

 6.9— 
Standards  

 

 

 

 

  
 



 

Hardware standards appear to be honoured more in the breach than in the observation. 
Whilst many attempts have been made to standardise aspects of computing hardware, 
the interests of the consumer and the manufacturers are not the same. It is likely, and 
desirable, that designers will seek to improve on existing products, but if it is seen as 
commercially advantageous to create a captive market by introducing an element which 
is incompatible with other manufacturers' systems, then that is likely to happen (try and 
fit a VW exhaust pipe to a Ford). Some things appear similar on different pieces of 
equipment, such as RS232 sockets, but the fact that one plug fits another socket does 
not guarantee that they are wired the same way internally. The whole area of 
interfacing is a potential minefield, and whilst organisations of any size will have 
experts to deal with such problems, the individual may experience difficulty. 
 

 

 

 
 

 
 

It is not even necessarily safe to stick with a single manufacturer, since it is common 
for updated models to prove incompatible, or only partially compatible, with the 
previous range. The humble disc drive might appear to accept your size discs (3.5 inch 
and 5.25 inch being the most common), but is it single sided, double sided, single 
density, double density or high density? If your disc is taken from a different make of 
computer it is likely that the new machine will require it to be formatted differently, 
and there is no certainty that the drive will even access the disc at a constant speed 
(whilst drive units themselves are often interchangeable, they can be controlled 
differently by various operating systems). Output devices such as monitors, printers 
and plotters are more likely to prove easily compatible with a range of machines, and it 
is in the interest of third party manufacturers to ensure as big a market for their product 
as possible. 

  
 
 

 
 

 6.10— 
Hardware for Animation  

 

 

 

 

  
 



 

Whilst the animator's aim will be to generate real-time material directly on the 
computer, he must currently be resigned to the fact that even the fastest of hardware 
will not be able to generate complex images at video rates. The two obvious 
alternatives are either to wait (for minutes, hours, or days) for the sequence to be 
generated frame by frame and saved on a medium which can be replayed at the correct 
speed, or to settle for a simple display which it is within the power of the available 
hardware to generate in real-time. A compromise is the most likely solution, with a 
simplified image being animated as close to real time as practical (8 fps might be 
acceptable), in order to check the quality of movement, a few keyframes being fully 
rendered to check the image quality, and then the image in its full, technicolour, ray-
traced complexity, being produced in the computer's own best time. Specific 
production requirements might effect the balance of the compromise. In the event that 
it is chosen to animate a simplified image, the level of simplification will again be 
determined by the power of the computer. The system might be able to substitute a 
Lambert shaded model, a wireframe model or just a wireframe of the convex hulls in 
order to get the complexity of the object down within its limits for acceptable speed of 
animation. 
 

 

 

 
 

 
 

When talking about a 'system' we are describing the entire hardware and software 
package. The best hardware in the world will not produce any animation at all without 
suitable software to drive it, and that will be the subject of the next chapter. It serves as 
a reminder, however, that the suitability of the hardware for animation cannot be 
considered alone, and a machine with a marvellous internal specification might be 
totally unsuitable for your particular purposes. Until recently, business machines paid 
little attention to their graphics capability, and even though paint and animation 
packages were available for them, their performance was markedly inferior to some 
much less powerful machines which had been designed with graphics in mind. 
Similarly, when a new machine comes onto the market it is likely to have a better 
specification than existing machines in its class, but until it has sold well enough to 
create a sizeable user base software houses might be reluctant to write applications for 
it. It is an anomaly, therefore, that the biggest range of software is likely to be available 
for the outdated machine. It should go without saying that a system must have 
'extensibility' to deal with future needs. 

  

 

  



Chapter 7— 
Software 

 

 
 

 
 

 

An application is a program designed to do a specific job. Its expression in computer-
readable form constitutes a piece of software, and the two words often prove 
interchangeable. It is the software that instructs the hardware to operate to our ends, 
whether interactively (at a high, visible level) as in a paint package or, unseen in the 
background, controlling the operating system. Animation is one of the few areas in 
computing where software development is ahead of the available hardware. The 
computational expense of graphics and animation algorithms requires extremely 
powerful hardware, and developments in areas such as rendering, coupled with the 
desire to improve resolution, constantly stretch hardware to its absolute limits. Since 
effective animation can be produced on the simplest of computers, however, this 
chapter will look at the facilities that software can be expected to provide at the bottom 
as well as at the top of the range. 
 

 

 

 
 

 7.1— 
Choice  

 

 

 

 

 
 

 
 

It is the case that software prices will be conditioned by the size of the user base, 
because the expectation of few sales for a package which might represent several year's 
work will force high prices to justify the effort, and because a bigger user base leads to 
more software competition which, in turn, keeps prices down. It will also be affected 
by the cost of the machine (if you can afford an expensive machine you can expect to 
have to afford expensive software), and by the market at which the machine is aimed 
(business users are led to expect to pay more for software than home users will for 
similar packages). There is even a credibility factor: ''if the software is a lot less than 
the competition it can't be any good''. I have found that software for some popular 
micros can be only one-tenth the price of inferior software for more 'prestigious' 
machines. 

  
 
 

  
 



 

Higher up the market, the software might cost as much as the machine, and you are 
then effectively choosing the software first and then finding a machine to run it. If the 
machine is to be dedicated to one purpose, in our case producing animation, it makes 
sense to consider the availability of suitable software as part of any decision on the best 
hardware for your particular use. It is not much use having the latest machine with its 
superb specification if no-one has yet written the software that you need to run on it. 
Whilst this must seem obvious, I know people who have bought state-of-the-art micros 
and have been waiting 2 years for the software they need to appear, by which time their 
machine is starting to look dated. It is worth noting that software which proves 
successful on one machine is sometimes rewritten for other machines, but that its 
performance is likely to be modified by the requirements of the new host architecture. 
 

 

 

 
 

 
 

It is often difficult to get competent demonstrations of cheaper software, particularly in 
such a specialised area as ours, since salesmen cannot be expected to be familiar with 
the vast number of packages available. When buying expensive packages (£10,000 
plus) which are dedicated for use on particular machines, then the pricing should 
include an allowance for an experienced demonstrator and after sales training. It is 
obviously necessary to approach any purchase with a clear idea of the features required 
both now and in the foreseeable future. Whilst I would happily recommend 
machine/software combinations to anyone purchasing today (for those situations with 
which I am familiar) those recommendations are sure to be superseded in a year's time. 
Also, as this book hopes to be relevant to people working in a wide range of areas, with 
an equally wide range of different priorities, it is not practical to try and make 
generalised suggestions. 

  

7.2— 
Examples  

 
 

 
 

 

As a means of explaining the capabilities of current software, I will start by describing, 
in some detail, an inexpensive 16-bit package, and then see what changes and 
improvements are added to packages as we move 'up market' from there. Figs 7.2 show 
screen interfaces from the software mentioned. The functionality of the software will 
be considered in each of the three stages of creating a computer animation: building the 
objects, choreographing their movement and rendering. 
 

 

 

  
 



 

The software described first is the 'Cyber Studio' series for the Atari ST from Antic 
Publishing Inc., which is now several years old but still very powerful, (it is interesting 
to discover that Tom Hudson, the creator of its central program, made a point of 
finding out what was possible on workstations at that time, and then trying to fit the 
same features into his 16-bit program, with some success). Examples of the features 
available in programs for more powerful machines are taken from 'Swivel 3D' from 
Paracomp, which can run on a basic 16-bit Apple Macintosh, but can also take 
advantage of the added power of 32-bit Macintosh machines, the 'Explore' range from 
TDI for Silicon Graphics workstations, and the 'S-' range from Symbolics for their own 
workstations. The packages from Antic, TDI and Symbolics comprise a suite of 
programs designed to be used together, whilst Swivel 3D is a single program which can 
be used alone, or in conjunction with software from other manufacturers to increase its 
versatility. It is not intended to give thorough descriptions of any of the packages, but 
to draw from them examples of the sort of facilities currently on offer. As good 
software is subject to regular updating, it can be expected that the packages described 
will offer more advanced features by the time this is read. 
 

 

 

 
 
 7.2.1 Modelling  
 

 

 

 

 

 

 
 

The basic model building tools in the Cyber Studio package are the fairly standard ones 
of extruding and spinning objects (from 2-D templates usually drawn with a mouse) 
and using readymade, scalable primitives (cube, wedge, cylinder, sphere, toroid, cone, 
prism). Additionally objects can be created from 2-D cross-sections positioned along 
the object's length (a ship's hull could thus be built from sections through the hull). 
Objects of any complexity are made by combining basic shapes, created with one of the 
above methods, and by using Boolean functions to add, subtract, 'difference' and stamp 
the parts (as described under CSG modelling). The objects are seen in three views 
(normally top, right and front view) and in a 'camera' view which enables you to move 
your viewpoint around the object. Using these tools, parts of the object can be created, 
aligned (by dragging with the mouse and by rotating around any axis), scaled (in any or 
all dimensions) and cloned (exactly duplicated). Simultaneous viewing of the object 
along three axes facilitates creation, whilst interactive movement of the viewpoint 
allows the object to pictured 'in the round'. 

  



 
 
 

Fig 7.2a 
CAD-3D main screen showing icons for  
object creation, manipulation and viewing 

 
 

 

 
 

 

 

Fig 7.2b 
CAD-3D light positions are set by dragging the lamp 

 icons into position inside or outside the object's world 

  



 
 
 

Fig 7.2c 
Cybersculpt model manipulation interface 

 
 

 

 
 

 

 

Fig 7.2d 
Cybersculpt 3-D path editor. The path can be used 

 in the creation of an object by extrusion or by spiraling 

  

 



 

 
 
 

Fig 7.2e 
Object creation windows of Swivel 3D 

 
 

 

 
 

 

 

Fig 7.2f 
Object manipulation and linkage window  

of Swivel 3D. Object property windows overlaid 

  



 
 
 

Fig 7.2g 
Symbolics modelling interface showing a  

comprehensive menu of actions that can be used 
 
 

 

 
 

 

 

Fig 7.2h 
The same interface as above but showing the use



 of the command window to program manipulations 

  

 
 
 

Fig 7.2i 
An interactive graph in the Symbolics sketch editor  

window showing movement against a horizontal timebase 
  
 



 

 
 

 

 

Fig 7.2j 
Diagramatic representation of a sequence in the Symbolics script  

editor allowing several simultaneous 'displacements' to be synchronised 

  

 
 
 

Fig 7.2k 
Animating a logo along a spline path using 'Explore' from TDI 

 



 

 

 

 
 

 

 

Fig 7.21 
Applying a deformation to an object in a TDI 'Explore' modeller 

  

   
 
 

 
 

 

The scaling of objects can be achieved by percentage changes (either positive or 
negative) achieved by dragging 'virtual' sliders using mouse or keys, or by entering 
numerical data. It is thus possible to 'spin' a bottle, build a table from 'extrusions', and 
then by keying in their required dimensions, arrive at exactly the right relative 
proportions. Any of the viewing windows can be enlarged to enable detailed alignment 
to be made. Distances within the object's world can be measured with a 'virtual' tape 
measure. Objects can be manipulated individually or in defined groups and the ability 
to define arbitrary centres of rotation enables hinging to be accomplished. 
 

 

 

 

 



 

Within the package a more sophisticated modelling tool allows models to be modified 
vertex by vertex, line by line and face by face, either singly or in selected groups. The 
chosen element(s) can be dragged, bent, rotated, skewed, mirrored and scaled relative 
to the rest of the object, or the object as a whole can be similarly manipulated. Any of 
these elements can also be detached, attached or deleted, and new facets can be 'hand 
built' or redefined. A 'magnet' tool allows selected elements to be moved proportionally 
towards (or away from) the cursor, and this comprehensive range of tools allows 
sophisticated tuning of models made from basic shapes. 
 

 

 

 
 

 
 

Objects can not only be created by sweeping templates along a straight path in the 
extrude tool, but can be extruded along other user-defined, three dimensional paths, and 
can be twisted during the extrusion (either evenly or with uneven twist). These paths 
are created by laying down control points in 3-space which are connected by either 
straight line sections, splines or combinations of the two. The template can be rotated a 
specified amount during its extrusion, and the ends of the extruded object can be left 
open or capped. Polygon creation and spline tools simplify template construction, and 
the number of sections created by the extrusion is definable (the more sections created, 
the smoother the passage around a curve, but the added complexity of the object carries 
with it computational overheads). 

  
 
 

 
 

 

Similar paths can be defined for the creation of sectional objects, so that a teapot spout, 
for example, could be created by connecting reducing cross-sections along a curved 
path. Objects created by sweeping a template around an axis can be 'spun' by a defined 
number of turns or degrees, and the template can be moved along a path as previously 
described. This enables corkscrew shapes to be made, for instance, the smoothness 
again being subject to the number of sections defined. At all stages of the modelling 
process, grids and viewing scale changes are available to make manipulation more 
accurate, and input is usually available either from mouse or keyboard. It is usually 
possible to 'undo' the last action though prior stages will be 'fixed', and it is, therefore, 
wise to save a copy of the object at each stage of the construction in case it becomes 
necessary to return to an earlier stage. 
 

 

 

  
 



 

Swivel 3D approaches object creation somewhat differently, and the program is likely 
to be used in conjunction with a more sophisticated modelling package for the 
construction of complex objects. Objects are created using four view windows, by 
dragging points on a default object (a cube), or by use of a freehand polygon-creation 
tool. Each part of the object is, therefore, built from a 3-D block rather than 2-D 
templates, though this can leads to similar objects to those made with spin and extrude 
tools. Objects can be rotated by selecting the appropriate axis icon and then positioning 
with the mouse, during which movement the object is replaced by a cuboid convex hull 
to facilitate real-time action. 
 

 

 

 
 

 
 

Whilst less sophisticated in its modelling tools, the package has an impressive joint 
definition facility, from which it presumably gets its name. Parent/child relationships 
are easily defined by dragging the mouse from one object to another, the relationship 
locked to form a joint (e.g. hinge, ball and socket) or left free, and the degree of 
permitted movement around each axis ('yaw', 'pitch' and 'roll') entered numerically. For 
this reason the package is very good for the simple creation of hierarchical animation. 

  

Moving up to top commercial software, a host of additional sophisticated features 
appear. Edges can be bevelled, non-linear transformations (such as twisting) can be 
effected on objects, and freeform deformation is possible. Much larger and more 
complex objects and scenes can be manipulated at an acceptable speed and features such 
as multiple windowing allow the screen to be customised (these features resulting from 
the power of the hardware required to run this level of software). Object information 
(such as surface normals and bounding box centres) can be handled, and non-polygonal 
modelling is available. The ability, for instance, to use particle systems is now built into 
some packages. 
 
 

 
 
 

 

One of the biggest improvements in modelling at this level comes with the ability to 
generate curved surfaces. Interactive manipulation of lines, profiles, networks and 
surfaces, and software exploiting NURBS to simplify curve creation, provides a rich 
vocabulary of shape generation. 'Skinning' (creating a skin around a skeletal object) and 
the automatic, smooth connection of surface patches extends the range of object types 
which can be simply built. A high level of interaction can be expected throughout the 
modelling process to help foster a friendly creation environment, but the greatly 
increased range of facilities now available leads to a more complex interface. Menus 
are likely to be longer and hierarchical, and designed in the expectation that more time 
will be devoted to familiarisation with the system. User intuition now requires more 
support from training, though if the system has the ability to keep a full history of the 
construction process it becomes possible to undo previous actions. 



  
 

 

 
 7.2.2 Rendering  
 

 

 

 

 
 

 
 

One of the most obvious differences between the Cyber Studio package and those for 
more powerful machines lies in the rendering facilities available. Very fast hardware, 
large amounts of storage and high resolution are usually required of the host machine 
before a package offers sophisticated rendering. It is also common in more advanced 
packages, for one application to be used to build the models and for a second to accept 
the model files for subsequent rendering. The Atari ST has a resolution in black and 
white of 640×400, and offers 16 colours (from a palette of 512) at a resolution of 
320×200, which is not sufficient to make good use of anti-aliasing, for example. It 
would also take a long time to raytrace a simple image, and cannot be expected to 
produce smooth gradations of a range of colours within a scene. 

  
 
 

 

 

 

Objects can be displayed in four forms: as wireframe images (in which mode the 
viewpoint can be moved interactively using the mouse), as images with hidden lines 
removed, as solid, shaded images and as solid images with edges drawn ('outlined'). 
There are two hidden line routines available, the 'draft' routine being quick but subject 
to mild errors, and the 'final' routine being slower but accurate. The shading routine 
uses the cosine method, and three light sources can be defined in addition to ambient 
light. The light sources can be positioned within the object's world, in which case they 
function as spotlights (with diverging beams), or outside the world, in which case they 
have a parallel beam (effectively like the sun). Lights are positioned using three view 
windows separate from the object view windows, which makes their relationship to the 
objects less intuitive than with some other methods. The intensity of each light source 
can be set separately. Once hidden line and shading are in use, the viewpoint can no 
longer be moved interactively using the mouse, the new position is set and then enacted 
by clicking within the 'camera' viewing frame. 
 

 

 

 
 

 

In black and white, each object is assigned a position on a 15-point tonal scale. In lower 
resolutions colours can be assigned to objects in several ways. Either each object can 
have a single colour (the maximum colours available being 14, plus two for 
background and outline), or fewer colours can be used to achieve a tonal range within 
each colour (the maximum tonal range being 14 tones of one colour). Texture mapping 
of primitive shapes is possible. 
 

 

 



 
 

 
Swivel 3D offers fairly similar rendering options, but is able to make use of a much 
larger palette when running on suitable hardware. It also permits texture mapping of 
objects created in the program, and special effects, such as antialiasing, are available. 
 

 

 

 
 

 
 

At the highest level - texture mapping, 3-D texturing, bump mapping, reflection 
mapping, transparency mapping, full anti-aliasing, shadows (with variable softness), 
fog and textured light sources become available. Ray tracing also becomes a realistic 
option. 

  

7.2.3 Choreography  
 
 

 
 

 

The central application in the Cyber Studio package allows animation of the models to 
be carried out 'manually', each movement in each frame being made individually, and 
then the frame saved in an animation file. The full range of rotations, shifts, scalings, 
creations and removals can be enacted on the object(s), which can have individual 
rotation points set to facilitate articulated movement. Viewpoint, lights and colour can 
also be controlled. It is very trying and time consuming to create any but the simplest 
animation this way, however, and it is also very easy to make an irrevocable slip in 
frame 199 out of 250 which will ruin the sequence. The program Cybercontrol, which 
loads as a desk accessory, makes life much easier by allowing all the operations to be 
put under the control of a BASIC-like program. 
 

 

 

 
 

 

In Cybercontrol other camera types become available, allowing fly-throughs by the 
definition of camera coordinates plus either the coordinates of the point viewed or 
heading/pitch/bank (plus focus in stereo mode). Motion paths for objects, lights and 
camera can be controlled by B-splines, by splines which pass through the control points 
and by 'linear splines' (which are not true splines but connect control points with 
straight lines). Support for the definition of parent/ child relationships (in conjunction 
with defined centres of rotation and joint limitation) makes hierarchical movement 
much easier to carry out, and other minor features make the whole animation process 
far smoother. The ease of having an animation create itself while you take a teabreak, 
makes the whole process less precious and therefore encourages changes to be made 
and variations to be tried. 
 

 

 

 



 

 

 

Swivel 3D animates by tweening, the first and last frames being set manually, and the 
specified number of inbetween frames being calculated by the program. These frames 
can be saved in a suitable form for playing back in another application if rendered, and 
can be previewed within Swivel 3D in wireframe form. Linked or separate objects can 
be animated, and multiple keyframes can be used for more complex motions. Paths can 
be smoothed with Bezier curves and cushioning is available. 
 

 

 

 
 

 
 

The top systems offer a range of methods for animating objects. Traditional keyframe 
control is available together with keyframe control offering position or temporal 
priority, inverse kinematics helps in the animation of articulated structures, and control 
can be by data from an external program or script. Object metamorphosis allows real-
time transformations, and hierarchical articulation is strongly supported. The 
establishment and manipulation of paths is interactive, and real-time line testing is 
immediate. 

  
 
 

 

 
 7.2.4 2D  
 

 

 

 

 
 

 

The emphasis in this book is on 3-D rather than on 2-D. This is partly because the 
principles of 2-D are similar to (though simpler than) 3-D, but mainly because whilst 2-
D work follows on quite closely from traditional animation, in the area of 3-D the 
medium offers completely new horizons and insights and is therefore the focus of most 
current research and development. Following the initial surge of interest in 3-D, 
however, there has been a renewed recognition of the role that two dimensional 
animation can play, not least by way of economy. A 3-D sequence may cost from 5 to 
50 times as much as a 2-D sequence of similar length, and consequently rule itself out 
on budgetary grounds. Even when a budget can cover the cost of 3-D, the money is 
wasted if a 2-D sequence could be produced to do as effective a job. Paint systems can 
be central to the creation of 2-D animation and a useful tool in 3-D animation. 
 

 

 

 
 



 

 

Cyberpaint is a 2-D paint and animation program that will accept animation files 
created in Cyber Studio and can therefore be used for 'post-production'. It can also 
accept digitised video sequences and be used to create cel animation, allowing material 
from a range of sources to be collaged together. Facilities such as 'blueing' (a term 
coming from printing) are incorporated, to allow information from the previous frame 
to be overlaid on the current frame for registration purposes. The animation can be built 
up in superimposed layers, and cut and pasting is available for both single images and 
sequences. A range of 'effects' such as anti-aliasing, 'tiling' and 'dissolves' is 
incorporated, and a powerful feature which allows the enlarging, shrinking, shifting and 
rotation in three dimensions of single frames or animated sequences. Tweening is also 
available in conjunction with many of the operations. Output from the Cyberstudio 
programs can be routed to one of the standard formats accepted by other packages on 
the Atari, though this is likely to mean dealing with sequences frame by frame. 

  

Swivel 3D does not include specifically 2-D features but its output can be saved in a 
format which is accessible to the many paint and 2-D animation packages available for 
the Apple Macintosh. Indeed it is intended that other packages will be used for the 
display of Swivel 3D animation, and this compatibility is part of the Mac philosophy. 
 
 

 

 

 

Images from high-end machines may be output to specialist paint systems such as the 
Quantel Paintbox, but are increasingly likely to offer their own integrated, top 
specification paint package, with 2-D animation options. The specification for S-Paint 
includes, for example, unlimited brushes, including specialist brushes such as airbrush, 
blend, diffuse, speckle, scatter, tile, rubber, stamp and wash (the brush names referring 
to the traditional tools and processes they emulate and extend). Subpixel positioning 
and small anti-aliased brushes make it easier to draw fine lines in detailed work. 
'Scatter' and 'randomise' features allow you to break up images into fragments and 
disperse them across the canvas. Gradients for any shape can be created, using multiple 
colours and/or opacities, whilst operations such as copying, squeezing, stretching, 
canvas scaling, mirroring and applying digital optical effects are available. Digital 
image manipulation features permit the use of image processing techniques, including 
adjustments to luminance, colour balance and contrast of images. 'Unpainting' and 
'repainting' facilities are not only convenient but can provide the basis for real-time 
animation of simple imagery, the powerful ability to generate versatile mattes is 
supported, stencils can be animated and digital compositing allows infinite layering of 
images. 
 

 

 

 
 
 

 7.3— 
Customised  

 



  
 

 
 

 

 
 

Production houses often choose to write some of their own software. This might be 
because of a specialist requirement, such as the need for a particle system, in order to 
update or improve existing software, such as a renderer, or to enable the interfacing of 
miscellaneous equipment. Similarly, in a research situation, it is likely that the research 
process will require specialised software to be written. It is also possible that existing 
software may need to be customised to meet the particular requirements of the current 
user or his system. At the simplest level this might involve amending the assign system 
(which tells the program where to find all the files it needs), loading appropriate device 
drivers or setting up macros to be associated with function keys. At a more 
fundamental level it might be necessary to insert, delete or change code in the program 
itself, in order to fulfil a particular objective, although applications are often not 
amenable to this sort of interference. My personal preference would always be for an 
application to include the ability to accept user generated code. 

  
 
 

 
 

 7.4— 
Compatibility  

 

 

 

 

 
 

 

Since no single piece of software includes every feature you might desire, it is 
convenient to be able to move between applications and take full advantage of all their 
features. Many applications are written with the intention of providing solutions to just 
one part of a process, providing just modelling facilities or just rendering perhaps. In 
the case of these specialist programs it is reasonable to expect greater sophistication 
than in a single program trying to deal with everything. Several of the packages already 
referred to divide the total process into separate, compatible pieces of software. The 
crucial word, of course, is 'compatible', describing the ability of individual applications 
to create files which can be read by other applications, and to read files created by other 
applications (in addition, of course, to being machine compatible). It is noticeable that 
this compatibility is now strongly emphasised in the promotion of applications, the 
advertising material including an increasingly long list of file types that can be read and 
written. Although this serves to confirm the lack of universal file standards, it does 
allow the user the opportunity to assemble a package of software components to suit his 
own particular requirements. There is also increased development of file conversion 
software to allow portability between different hardware bases. 
 

 

 

  
 



 

 

Whilst the packages from Symbolics and TDI aim to be very comprehensive, providing 
everything necessary to produce superb broadcast quality animation (possibly with the 
addition of some post production work), the current version of Swivel 3D is normally 
described as being used in conjunction with other software for the most comprehensive 
results. As part of the pattern of Macintosh development, its large user base has 
encouraged the development of separate applications at a range of levels to match its 
range of hardware, from basic home machine to the latest Macintosh hardware which 
has workstation performance. This means that anyone with a 'Mac', and the curiosity to 
look at animation, is catered for, whilst the cost of top-end systems rules out all but the 
really serious. Although it is impractical to be specific about the cost of complete top-
level systems, a rough indication would be to expect to pay as much as for a house 
(systems ranging from modest to grand, just like houses). 

  
 
 

 
 
 7.4.1 Standards  
 

 

 

 

 

 

 

A number of attempts have been made, and are continuing to be made, to develop 
standards for computer graphics systems. These efforts are coordinated by the ISO 
(International Standards Organisation). Unfortunately the timescales and requirements 
for the functioning of a committee and for development in the marketplace are not 
closely matched, but the evolution of even an imperfect standard does offer a starting 
point for greater compatibility. The standards require the definition of graphics 
functions as a set of abstract specifications, together with a language binding which 
defines how the functions are to be accessed from a particular programming language. 
 

 

 

 
 

 
 

Of the suggestions put forward, the ISO chose to develop GKS (Graphical Kernel 
System) which is a purely two-dimensional system, and has developed GKS-3D to 
extend the current standard into three dimensions. Many graphics functions are defined, 
their specification being in English rather than directly in any computer language, in 
order that maximum independence should be maintained, and the standard covers not 
only image manipulation, but also device handling, and, therefore, deals with input, 
storage and display. A more powerful system called PHIGS (Programmers' 
Hierarchical Interactive Graphics System) has been developed by ANSI (American 
National Standards Institute) but neither PHIGS nor GKS covers lighting and shading, 
and PHIGS + has evolved to include these controls and others. In the area of image 
transfer and exchange, the CGM (Computer Graphics Metafile) is often used on 
hardware from micro level up to workstations, as are file formats such as GIF and 
TIFF. 



  

7.4.2 PostScript  
 
 

 
 

 

PostScript is a page description language which is normally invisible to the user. It 
describes to an output device exactly how to present either text or images at the best 
resolution of which the device is capable. An application will generate the PostScript 
code from the page(s) created by the user, and this can then be read by any device with 
a PostScript interpreter, whether it is a laser printer at 300 dpi or a Linotronic printer 
with a resolution of 2,400 dpi. Since the output device can also be a monitor, it is 
possible to have an accurate screen representation of a page as it is developed, true 
'WYSIWYG'. PostScript can also be handwritten and sent to an output device and, as 
such, has been used to create simple animations, but this is not its most usual role. 
 

 

 

 
 
 7.4.3 Renderman  
 

 

 

 
 

 

Whilst formats exist for transferring 3-D object information between different hardware 
bases, the same has not been true of scene descriptions, each package having its own 
method for specifying surface, lighting and camera parameters. Pixar has now come out 
with a very comprehensive package called 'RenderMan' which accepts files using RIP 
(RenderMan Interface Protocol) commands to describe a scene, and offers high level 
rendering. It hopes to establish RIP as a standard for the exchange of files, and may 
prove more successful than previous attempts since it is already being taken up by 
some major companies. It is also possible to import RIP files into a device, such as a 
film printer, which has its own RenderMan interpreter and can translate the file 
contents for its own use. The RenderMan features are summarised in promotional 
literature as: 
 

 

 

 
 
 1. Primitive surfaces  
 

 

 

 

 

 
 Quadratic surfaces (surfaces of revolution)
 
 

 

  
 

 



 Disk  
 

 

 

 

 

 
 Sphere  
 
 

 

 

 
 
 Cone  
 
 

 

 

 

 
 Hyperboloid 
 
 

 

 

Paraboloid  
 
 

 

 
 Torus  
 
 

 

 

 
 
 Polygons  
 
 

 

 

 

 
 Parametric surfaces  
 
 

 

 

 
 
 Uniform surfaces  
 
 

 

 

 

 
 Bilinear  
 
 

 

 

 
 
 Bicubic  
 
 

 

 

  
 



 Non-Uniform Rational B-Splines (NURBS)
 

 

 

 
 
 2. Hierarchical modeling  
 

 

 

 

 
 
 3. Motion blur  
 

 

 

 

 

 
 4. Depth of Field  
 

 

 

 

 
 
 5. Filter Mechanisms  
 

 

 

 

 

 
 6. Extensive I/O Capabilities  
 

 

 

 

 

 
 (RenderMan will read and write a ranges of files)
 
 

 

 
 

 

The files describe the geometry of objects and attributes of objects, light sources and 
ambient conditions using what Pixar calls 'shaders'. For example, an object can thus be 
defined as being of wood, marble or perhaps a 'home made' material, with a specific 
degree of specularity, transparency or reflectance, having an image-mapped or distorted 
surface, lighted by a particular combination of light sources, and immersed in a fog of 
defined density. It is anticipated that customised shaders will be marketed in the same 
way as fonts for DTP use. The quality and level of detail of the resultant RenderMan 
image is very impressive, though current examples tend towards the 'photographic 
realism' school which is prevalent. 
 

 

 

 
 

 7.5— 
Device Control  

 

 

 

 



 
 

 
 

As well as being used to produce images, software often needs to control external 
devices such as printers and VTRs. If your application doesn't have the correct printer 
driver, it can't send anything to your printer. If your application can't control your VTR 
then dropping single frames to tape is going to be either tedious or impossible. A 
further area which can give rise to compatibility issues, therefore, is that of input and 
output devices, which the software must be able to 'talk' to. It is not sufficient that the 
software can accept input from a digitising pad, it must be able to accept it from the 
particular type of pad that you are going to connected it to (and with the right cable). 

  
 
 

 

 
 7.5.1 Multimedia  
 

 

 

 

 

 

A critical part of the development of multimedia is the software. It must not only be 
able to communicate with a range of different devices but must also ensure a smooth 
interaction between them. A sophisticated interface becomes necessary to enable the 
operator to handle text, graphics, animation, live video and sound. At the same time, of 
course, a suitable hardware base is needed. Apple is having a big hand in establishing 
multimedia as a viable resource, by developing (and encouraging the development of) 
the appropriate applications for its Macintosh range. Their 'HyperCard' application, sets 
the tone for multimedia with its interactive access to databases of potentially different 
media, and by packaging it with all new Macs since late 1987, Apple has ensured that a 
growing userbase is familiar with its concepts. Underlying the functioning of 
HyperCard is the object-orientated language 'HyperTalk', which normally remains 
invisible to the user but can be used fairly simply to program the environment and to 
control devices. 
 

 

 

 

 

 

The predicted boom in multimedia will increase demand for animation, and it is sure to 
become an accepted and expected part of presentations and publications. It remains to 
be seen whether multimedia authors will recognise the need to acquire design and 
animation skills, but the pattern of competence will probably be similar to that of DTP. 
The cost of investing in professional systems will not encourage the unskilled. 
 

 

 

 
 
 

 7.6— 
Conclusion  

 



  
 

 
 

 

 
 

The capability of the software that is available (at every level of hardware) is increasing 
very fast. Every time I returned to the draft of this chapter it seemed necessary to add 
more features in order to keep up to date, but the best that can be expected is that the 
state of the area is described at one moment in time, and that the relativity of 
performance at different levels will remain. Improvements are not just being made in 
the available hardware and in the algorithms used, but also in the expectation of the 
user. Increased exposure to sophisticated, high quality animation has led to greater 
demands from the user, and in a market driven economy this demand is likely to be 
met. 

  
 
 

 
 

 

Whilst low resolutions and limited palattes are not satisfactory for convincing ray-
tracing or anti-aliasing, both these features are now becoming available as standard in 
rendering packages for all machines. However, machines with the resolution, palette 
size and speed to use such features to good purpose are now available at reasonable 
prices, and there is a rush by all manufacturers to provide competitive graphics 
performance. New versions of machines which have usually been thought of as 
predominently for business use, such as those in the PC range, and which were 
notoriously difficult to program for effective graphics, have now been updated to 
produce good quality images. It is now realistic to expect to have available Lambert, 
Gouraud and Phong shading models together with ray-tracing, image and texture 
mapping and anti-aliasing. 
 

 

 

 
 

 
 

It is noticeable that many packages for modelling and rendering now include animation 
facilities, but that these are mainly limited to basic keyframe systems. Whilst these 
might be adequate for simple presentation graphics they have obvious limitations for 
more ambitious work. It is likely that the market is too new for it to be clear what level 
of facilities is going to be required, but that the more people who have the opportunity 
to become involved with animation the more sophisticated will become the demand. It 
is also likely that this demand will be encouraged by a reduction in the cost of saving 
the animation to a suitable secondary medium, and that the development of digital 
technologies will enable this to happen. 

 



Chapter 8— 
Language Considerations 

 

 
 

 
 

 

It is not the intention, in this book, to discuss programming in any depth. The subject 
deserves a shelf of books to itself, and many have already been written, but it is worth 
considering the relationship of the program to the end result. The choice between, on 
the one hand, taking a programming route to building an animation and, on the other, 
exploiting a fully written application, has implications for the final product. In the case 
of the first route, the choice of language used also has an effect, as its structure and 
peculiarities can steer the user in particular directions. Having said that, it is possible to 
do most things with most languages, and our brief summary will merely aim to 
familiarise the reader with the most common options available. 
 

 

 

 

 

 
 

The computer program is a medium through which to instruct the computer to do 
something (hopefully something useful) and a range of languages exists for writing 
computer programs which may, or may not, be transparent to the user. It is increasingly 
possible to use a computer without any knowledge of, or interest in, programming, but 
it is equally possible to communicate with the machine only through writing programs. 
Both approaches can be appropriate in the field of computer animation but a middle 
course often proves most fruitful. Without access to programming skills you are 
resigned to work within the limitations of the available applications and there is always 
a point where the software won't do quite what you want. On the other hand, many 
applications are not written with the intention of their being open to addition or 
amendment. Some of the most versatile packages allow both. It should be noted that 
'debugging' a program (tracing and correcting errors and removing unwanted side 
effects) is usually a much longer task than writing the initial program code, and that 
many professional programmers spend their time updating and improving existing 
code, rather than writing fresh programs. 

  
 
 

 

 

 

Important properties of a language are the ability to carry out 'assignment' (attributing 
numerical values) and 'iteration' (repeating pieces of program many times), selection 
using 'conditionals' (making choices based on the current state of the program) and 
'modularity' (breaking down the program into reusable units called 'subroutines', 
'procedures' or 'functions'). 
 

 

 

  
 



 8.1— 
Language Types  

 

 

 

 

 

 

There are a large number of computer languages in existence, some outdated, some still 
waiting to reach fruition, some widely used, and some esoteric. All have been created 
to address specific needs that existed at specific moments in time, either designed to 
work efficiently with a particular hardware configuration or to satisfy the demands of a 
particular task (such as animation). They can be classified in a number of ways. 
 

 

 

 
 
 8.1.1 Low Level/High Level  
 

 

 

 

 

 

 

The ''height'' of a language describes how far it distances itself from the innermost 
workings of the computer, low level languages are computer orientated whilst high 
level languages are problem orientated. The only true low-level language is machine 
code which is a binary notation directly translated into computer operations by the 
electronic circuits. It would, however, take a strange and very particular mentality to 
choose to create an animation by sending individual numbers to specific computer 
memory locations and registers. 
 

 

 

 
 

 
 

Whilst early computers could only be programmed in that way, it did not take long 
before languages evolved which were more comprehensible to their users, and which 
allowed programmers to instruct their machines in a form more easily identified with 
each instruction's actual function. This development was not only for the sanity of the 
programmer but was also the only realistic way in which long programs could be 
written and maintained without error. These 'high level' programming languages use 
commands close to written English but are converted by the computer into machine 
code, the conversion being transparent to the programmer. This enhanced 'readability' 
is vital to the sure comprehension of a program, particularly when worked on by 
numbers of people, as is usually the case. 

  
 
 

  
 



 

It is sometimes necessary to resort to low-level programming in the search for 
maximum efficiency and speed, but this is considered the province of the hardened 
programmer rather than the animator. Modern high-level languages are getting much 
closer to the speed of lower ones, and are able to remove the user still further from the 
machine workings, to the extent that the user need have little or no understanding of 
how his instructions produce the results he gets. This is not always a good thing, 
particularly if the results prove not to be what was expected, but, with the advent of 
increasingly intelligent interfaces, it is the way the art will progress. 
 

 

 

 
 
 8.1.2 Interpreted/Compiled  
 

 

 

 

 
 

 

A program written in a high-level language has to be translated into machine 
instructions that can be acted on by the hardware. This can be done line by line as the 
program is running ('interpreted') or the whole program can be converted in advance of 
being run ('compiled'). A compiler may first translate the source program into an 
assembly language program, and then use its own assembler to complete the translation 
to machine code. An 'optimising' compiler will attempt to improve the efficiency of the 
code produced, the use of optimisation being an option set by the user. 
 

 

 

 

 

 
 

Languages are normally either interpreted or compiled, but some versions of a few 
languages (e.g. BASIC) allow you to use either method. The advantage of interpreters 
is that they can provide a friendly development environment, easing debugging by 
running the program up to the point where an error is encountered and then halting, 
usually returning to the source code at the point the error was discovered. A 
disadvantage is that the program running speed is compromised by the need to 
undertake translation into machine language whilst running, and that repeated parts of 
the program (loops etc.) have to be freshly translated each time they are used. Modern 
interpreters are much quicker, relative to compilers, than in the past, but the speed 
required for animation would seem to favour compilers. 

  
 
 

  
 



 

Compiled programs are often a lot faster, and the 'object' code produced can be run 
without the presence of the application that produced it (interpreter applications 
sometimes include a run-time package which allows a stripped-down version of the 
translator to be attached to the source code, so that it can be run on its own). Compilers 
are generally less friendly towards the inexperienced programmer, though more 
versatile, and a bigger part of the development cycle seems to be spent in frustrating 
delays while the source code is compiled yet again. Compilers thus encourage a 
different working method for debugging and a convenient combination can be to use 
the interpreted method at this stage, and then to compile before final use. Compiled 
programs can take advantage of other already-compiled programs, so that it is possible 
to compile just the current part of a larger program and 'link' it to completed parts. 
 

 

 

 
 
 8.1.3 Procedural/Declarative  
 

 

 

 

 

 

 
Procedural languages (e.g. FORTRAN, BASIC and C) tell the computer what to do, 
declarative languages (e.g. Lisp and Prolog) tell it what you want to accomplish and 
things it should know, and are hence good for dealing with knowledge and facts. 
 

 

 

 

 
 8.1.4 Object-Orientated  
 

 

 

 

 
 

 
 

Object-orientated languages ("object-oriented" in the USA), known as 'OOPS' 
languages, are finding great favour at the moment, and it has been suggested that they 
present the form of the next generation of computing languages. Simula, Smalltalk, 
Object Pascal and C + + are examples of OOPS languages and they operate by passing 
messages between active objects which are analogues of things which exist in the real 
world. These objects (in some languages called 'classes') are self-reliant, combining 
their own data with the functions that operate on them. Sub-classes can be inherited 
from existing classes, and the model OOPS presents is often much closer to the way the 
real world works than traditional languages. 

  
 
 

  
 



 

Object-orientation encourages the production of efficient, self-contained units of code 
which can be easily employed by a number of programmers, and are therefore 
particularly useful on large projects. It provides a highly extensible programming 
environment, and has an intuitive affinity with graphics and animation. Computer 
Graphics conferences are currently including a growing number of papers on the 
advantages of OOPs for CG. 
 

 

 

 
 

 
(It is worth noting that the term 'oject-orientated' is also used in other contexts, notably 
to distinguish vector graphics from raster based (or 'bit-mapped') graphics in contexts 
such as fonts for DTP systems.) 
 

 

 

 
 
 8.1.5 Parallel/Sequential  
 

 

 

 

 

 

 

The architecture of a computer is reflected in the structure of its language. Most 
procedural languages are associated with traditional von Neumann computers, and are 
structured in a way that mirrors their sequential operation. They require each operation 
in a series to be carried out before the next can be attempted. Languages for parallel use 
allow different operations to be carried out at the same time, and must have the ability 
to provide the correct sequencing for the enactment of tasks which depend on one 
another. They must allocate tasks to different processors when appropriate, and ensure 
efficient 'housekeeping'. At the time of writing, occam is the only language specifically 
designed for parallel use, but parallel versions of existing languages are becoming 
available. 
 

 

 

 
 
 8.1.6 Dedicated Languages  
 

 

 

 

  
 



 

 

A number of packages have been written especially for animation, or for graphics with 
an animation facility included, three examples of which are given. PICASO is graphics 
library written at Middlesex Polytechnic, England [Vince 1986] (initially in 
FORTRAN), which provides a large number of graphics routines that can be called 
from a host language. MIRA-3D is a graphical extension to PASCAL developed by 
Magnanet-Thalmann [1983] which has led on to the animation language CINEMIRA, 
and MIRANIM system [Magnenat-Thalmann 1985]. The Clockworks is an object 
oriented test-bed animation system implemented in C, developed at Rensselaer 
Polytechnic Institute, New York [Getto 1987]. 

  
 
 

 
 

 

Such packages are normally extensions to existing languages rather than new languages 
in their own right. They do, however, provide a fresh range of commands relevant to 
the graphics/ animation discipline, and sometimes their own syntax, so can reasonably 
be considered alongside languages. Such packages are often developed for a particular 
context or project and rarely have more than a small user-base. Watt [1989] suggests 
that an animation language will reduce the conceptual distance between a program and 
script and its effect, and should be accessible to animators who are not necessarily 
skilled programmers. 
 

 

 

 

 
 8.1.7 Hybrid Languages  
 

 

 

 

 
 

 

Many language applications allow the linking of compiled code written in different 
languages, thus permitting the various advantages of more than one language to be 
incorporated into a single program. This might be useful, for instance, if an expert 
system, typically written in PROLOG, was to be used within a program written in C. A 
number of hybrid languages exist which have been developed to combine procedural 
and declarative modes, such as ORIENT 84/K offering features of Smalltalk and 
PROLOG [Tokoro 1984], and EXPERTMIRA combining Mira with PROLOG 
[Thalmann 1986]. 
 

 

 

 
 

 8.2— 
Relevant Languages  

 

 

 

 

  
 



 

 

Of the many languages available, those most likely to be met in the course of reading 
about computer animation are listed below in alphabetical order. Of these, BASIC is 
common in books at an introductory level, and PASCAL and C are most used at a 
higher level. Pseudocode is often used as an explanatory medium which can be 
converted into a range of high level languages. 

  
 
 

 
 
 8.2.1 Algol  
 

 

 

 

 
 

 

A procedure orientated programming language, whose name derives from 
ALGOrithmic Language, ALGOL exists in many variations and is internationally used 
by the scientific community. It is only mentioned here because a number of books on 
computer graphics describe the programming of algorithms using an ALGOL-like 
pseudo code. 
 

 

 

 

 
 8.2.2 Assembler  
 

 

 

 

 
 

 

Assembler developed in the 1950s as a sort of machine code shorthand, using a series 
of very basic instructions that correspond to the architecture of the processor, and 
which are then translated into the binary code which the computer understands. Given 
that machine code is too problematic for normal use, assembler produces the fastest, 
most compact code and allows programmers the greatest access and control over the 
machine's inner workings. Its use requires an understanding of computers at a low 
level, its superficial form reflects how the computer works rather than what the 
program is meant to do, it often takes a number of assembler statements to achieve the 
same result as one high-level language statement, and it is unforgiving. In order to get 
the best of all worlds, it is common for programs to be written in a high level language 
which will then call in pieces of assembler at points where fast code is particularly 
important. Assembler is also needed sometimes in device drivers (programs which 
assist the operating system in working with external hardware, such as a plotter). 
 

 

 

 

 
 8.2.3 Basic  
 

 

 

 

 



 

  

 

The name is an acronym for Beginner's All-purpose Symbolic Instruction Code, and it 
was designed in 1964 as an easy-to-use language for non-computer scientists. It is 
usually interpreted, although compiled versions are now available, and has often been 
criticised for slow speed and the encouragement of poor programming style. Its ease of 
use has led to it being packaged with many machines, which has guaranteed a big user-
base, and it has provided many people's introduction to programming. It handles text 
better than some other popular languages, but is rarely chosen for serious graphics use, 
and comes in a wide range of dialects which inhibits its portability. Recent versions 
show major speed improvements. 

  
 
 

 
 
 8.2.4 C  
 

 

 

 

 
 

 

The C language was developed in the early seventies by Dennis Ritchie at Bell 
Laboratories, and the standard text on the language is by Kernhigan and Ritchie. 
Apparently APL (A Programming Language!) begat BCPL begat the language B begat 
C, and its development is intertwined with that of the UNIX operating system. The 
widespread use of UNIX guarantees a long life for C and it is often described as the 
most popular language today, currently seeming fashionable to the point of being a 
cult. Its popularity derives from the way it manages to combine aspects of high- and 
low-level programming in a general purpose language "which features economy of 
expression, modern control flow and data structures and a rich set of operators...its 
absence of restrictions and its generality make it more convenient and effective for 
many tasks than supposedly more powerful languages" [Kernighan 1988]. 
 

 

 

 
 

 

It has a small vocabulary of key words, 32 in the approved ANSI standard version 
(compared with over 400 in some BASICS), an economy which is achieved through the 
addition of a standard library using 15 headers to provide various functions and 
definitions. Being independent of the architecture of any particular machine, it is 
possible to write programs which will run on a variety of machines, though the highest 
level of portability requires taking some care in the writing of the program. Its 
economy allows you to write code which can be almost impenetrable to an outsider, 
and sometimes to the programmer himself after a week's absence, so full accompanying 
comments become essential. 
 

 

 

 

 



 
It has been suggested that if computer languages were bicycles, BASIC would be a 
pushbike, PASCAL would be a motorbike with a sidecar and C would be a motorbike 
with no sidecar and no brakes. 
 

 

 

  
 
 

 

 
 8.2.5 C + +  
 

 

 

 

 
 

 

An object-orientated superset of C, C + + was developed in the eighties by Bjorn 
Stroustrup at AT&T Bell Laboratories. It incorporates all of standard and ANSI C, 
enhances C with a number of small, helpful improvements, and adds support for object-
orientation. Weiner [1988] describes the additions as including: data abstraction (the 
association of a data type with the operations available to it), encapsulation (the process 
of defining an object which includes the definition of how it interacts with other 
objects), inheritance (the ability to create a subclass of objects which inherits 
characteristics from a 'parent' class) and polymorphism (the ability of an object and its 
subclasses to respond to the same message in their individually defined ways). It has 
considerable potential for use with graphics and is likely to find widespread use. Apple 
has just written the new operating system (System 7) for its Macintosh range in the 
language, and a number of manufacturers have extended their C languages to include 
support for object orientation. In some cases these extensions are described as supersets 
of C and subsets of C + + rather than as being full C + +, but there is not, at the time of 
writing, an ANSI standard for C + +. 
 

 

 

 
 
 8.2.6 Forth  
 

 

 

 

 
 

 

Not a commonly used language in our context, the name FORTH comes from 
FOURTH generation language (4GL), and it was developed in 1970 for the direct 
control of equipment (initially in the observatory of its astronomer creator, Charles 
Moore). It is mentioned here because it can be used for robotics and arcade games 
[Pfaffenberger 1990], and can be good for controlling external devices. 
 

 

 

 

 
 8.2.7 Fortran  
 

 

 

 



 
 

 

The name is an acronym for FORmula TRANslation and the language is primarily used 
in scientific and technical contexts for handling mathematical formulae and 
expressions. It is one of the earliest high level computer languages and is still quite 
widely used because of its compact notation, and the problem of replacing the large 
quantity of existing code. It also has a considerable history in computer graphics 
because many graphics libraries were, and still are, FORTRAN callable. Being highly 
portable from machine to machine it can also survive the replacement of its host 
hardware. There are a number of versions of FORTRAN, with variations of features 
and syntax, but it tends not to be used in our context except when a base of FORTRAN 
code already exists to be exploited. The latest version is FORTRAN 8X which includes 
specific parallel facilities. 
 

 

 

  
 
 

 
 
 8.2.8 Lisp  
 

 

 

 

 

 

 

Lisp was designed in the mid-1950s by John McCarthy who wanted a list processing 
language for artificial intelligence work on the IBM 704. It is potentially useful for 
graphics because lists of items are commonly found here (e.g. lists of vertices and 
facets) and a number of drafting systems have LISP interpreters (e.g. AUTOCAD). 
Some graphics workstations have been designed to work directly on LISP but there is 
no ANSI standard yet, 'common LISP' being the closest to a standard. To programmers 
brought up on traditional procedural languages a conceptual adjustment is required, 
though it has been argued that the principles of LISP are, in fact, more intuitive. 
 

 

 

 
 
 8.2.9 Logo  
 

 

 

 

 

 

 
 

Designed by Seymour Papert to help teach children about computing, LOGO is based 
on LISP and has commands built into the language which are very suitable for basic 
animation. A key feature of the language is 'turtle graphics', in which a wheeled 'turtle' 
supporting a pen is directed across a drawing surface by the computer, under 
instruction as simple as to 'go forward', 'turn right' and so on. Recursion is made simple. 
LOGO provides the basis for the animation language DIRECTOR (by Kahn) and 
ASAS (by Reynolds) which develops the former into 3-D [Magnenat-Thalmann 1985].



  

8.2.10 Occam  
 
 

 
 

 

Created for programming on parallel architecture machines, OCCAM is not used yet in 
mainstream animation. It seems to have met some resistance from programmers new to 
parallel systems, who prefer to carry on with more familiar languages. Makers of 
parallel machines usually indulge this inclination by permitting the use of traditional 
languages, although they might not yet have the efficiency of OCCAM in this context. 
It is listed here, solely because the reader is likely to come across reference to it when 
parallelism is mentioned. 
 

 

 

 
 
 8.2.11 Pascal  
 

 

 

 

 
 

 

Pascal was named after Blaise Pascal, the french mathematician, by its creator Niklaus 
Wirth and was written primarily as a teaching language designed to support the 
concepts of structured programming. It is straightforward to learn since a formal 
language like Pascal is essentially similar to a sentence, can have a syntax diagram, and 
even ends with a full-stop. Many books on computer graphics give coding examples in 
Pascal, and since many programmers will have passed through Pascal in their training it 
is a convenient language for this job. 
 

 

 

 
 

 

It is a heavily 'typed' language, which means that everything has to be explicitly 
defined, and this makes it intolerant of errors and forces discipline on the user's 
programming style. This intolerance is a virtue as some other languages allow you to 
write very confused code which does not lend itself to error checking. An object 
orientated version called 'Object Pascal' has recently emerged, and 'Modula-2' (created 
by Wirth) has been described as a Pascal that lets you get your hands dirty (i.e. lets you 
deal directly with things at a lower level than Pascal itself). Some recent versions of the 
language have improved graphics capability. 
 

 

 

 
 
 8.2.12 Prolog  
 

 

 

 

 



 

  

 

Prolog is a 'descriptive' language used for solving problems which involve 'objects' and 
the relationships between them, and was to be the language of the much vaunted 
Japanese ''fifth generation'' of computers (of which little is currently heard) which were 
to make heavy use of artificial intelligence. It is made up of a number of 'clauses' 
containing either a fact about the data or a rule about how the solution may relate to, or 
be inferred from, the given facts. A Prolog program is a collection of facts and rules 
which establish a knowledge base, used to answer questions about the objects and their 
relationships using a formal system of logic. Its name comes from PROgramming 
LOGic. 

  
 
 

 
 
 8.2.13 Pseudocode  
 

 

 

 

 
 

 

Pseudocode is not an authentic programming language, but is mentioned here for the 
sake of completeness. It is often desirable to explain the general principle of the 
construction of a piece of code, without giving an example which is language specific 
(even within a single language it can be necessary to avoid being dialect specific). 
Pseudocode presents a generalised version of the way in which a real language would 
be written, and should be able to be readily coded into any chosen language using the 
same structures. It is not standardised, though usually procedural, and is often 
reinvented by each author as required. 
 

 

 

 
 
 8.2.14 SmallTalk  
 

 

 

 
 

 

The first object orientated language, and often claimed to be the purest. Every 
operation is carried out by an object, even the function of a mathematical operand such 
as an addition sign. The language itself includes a large number of readymade objects 
and includes its own graphical user interface. Although it has not become a mainstream 
language it has been very influential in the development of others, notably HyperTalk 
(the programming language for HyperCard from Macintosh, itself an influential 
application). Some versions of SMALLTALK include graphical abilities which can be 
used for animation [Magnenat-Thalmann 1985]. 

  



 8.3— 
Choice of Language  

 
 

 

 

 

In practice, the choice of a suitable computer language is often inhibited by pragmatic 
constraints. The decision may be influenced by the architecture of the available 
hardware (e.g. parallel or sequential), the language used by the favoured application 
(e.g. LISP is used by graphics applications running on Symbolics hardware), 
compatibility with existing software (e.g. if millions of lines of FORTRAN have 
accumulated over a number of years there might be a strong incentive to continue with 
it), the languages available (it is no small matter to add another language to a 
mainframe, for instance), and the existing skills of the programming team. It is also 
worth bearing in mind that the most difficult part of writing a graphics program is often 
the part which fits it to display its images on your particular hardware. 
 

 

 

 
 

 

C is almost certainly the most popular language in use for animation and graphics 
today, but my own prediction is that the rapid growth of interest in object-orientation 
will continue, and that C + + is the natural choice of language to use by those already 
working with C since it can work with all the existing code. The natural tendencies to 
(a) stick with a language that works, or (b) use the latest language because it 'must' be 
better, can be reconciled in C+ +, where the new conceptual simplicity can be 
implemented with relatively few additions to the old language. 
 

 

 

 
 

 

It is interesting to note the comments of Simon Ritchie [1989] who suggests that C is, 
in fact, particularly unsuitable for graphics. Although it is inappropriate to get into 
much depth on the subject, for the programmers who are reading this book I list his 
main reservations, which are (a) that its untyped argument passing mechanism is 
inadequate, (b) that arguments are always passed 'by value' (rather than optionally' 
called by reference'), and (c) that it shares the typical inability of high-level languages 
to handle objects other than numbers (e.g. matrices and points) pleasantly by permitting 
operator overloading. He also suggests that some features of C make it a puzzling first 
programming language, particularly for teaching Graphic Design students for instance, 
and it is hard to disagree with this. 
 

 

 

  
 



 

 

The example that (Simon) Ritchie gives using C + + to build a simple graphics library, 
employs Stroustrup's 'programming with data abstraction' through the use of classes, 
but does not fully exploit object-orientation he says, suggesting it is more appropriate 
for a more complex piece of software. This serves as a warning that the use of the tools 
of object-orientated programming is not the same as programming with object- 
orientation. In fact it is equally possible to use the object- orientated paradigm with 
ordinary C, it is just less convenient to do so than with the additional tools offered by C 
+ +. At the same time C + + offers improved handling in the context of graphics than C 
without it being necessary to resort to OOPS. 

  
 
 

 
 

 
 

In the final analysis, of course, what matters is that the chosen language does the 
required job for the current user. The corners of a facet are no sharper, and the reds no 
warmer, in a program written in C + + rather than BASIC. It is sensible, however, to be 
aware of the potential advantages and disadvantages of the languages available to you, 
in order to work effectively and efficiently in your particular environment. 

 



PART TWO  
 
 

  



 

Chapter 9— 
State-of-the-Art: 
Simulation 

 

 
 

 
 

 

In the context of this book, simulation is taken to be a special case of computer 
animation in which the aim is to model an occurrence dynamically using physical laws. 
(Dynamics being the branch of mechanics concerned with the forces that change or 
produce the motion of bodies, and the occurrence being either of the real world, for 
instance a car crash, or of a hypothetical world where forces and masses can be defined 
arbitrarily.) A simulation is a scientific experiment and is solved incrementally, each 
successive frame being dependent upon the calculation of the previous frame. 
Simulation is an empirical method used where it is necessary to evaluate the 
circumstances in order to determine the result, rather than simply to draw the result 
[Reynolds 1986]. 
 

 

 

 
 

 9.1— 
Dynamics  

 

 

 

 

 
 

 
 

Dynamics deals with the way masses move under the influence of forces and torques 
(unlike kinematics which studies the movement of objects without regard to cause). 
The application of basic physical laws enables the realistic simulation of the motion of 
bodies, and cannot only be applied to separate complex bodies, but can automatically 
describe the conduct of bodies in collision. It therefore takes little effort to simulate a 
raindrop falling or a ball being thrown, by specifying mass, starting velocity and 
direction to a system that knows what gravity is, perhaps that there is a cross-wind and 
how to apply the rules. A little more information is needed to cope with friction and 
bouncing, and more again if the object is articulated, flexible or asymmetrical, but 
although the number and length of the required equations grows, the governing rules 
remain clear. The body of literature on the subject is considerable and the papers by 
Jane Wilhelms [1987a,b,c] are particularly clear and explicit. 

  
 
 

  
 



 

The simplest object to deal with is a particle. This is a single point in 3-space, fully 
describable by its X,Y,Z coordinates and with three degrees of freedom of movement 
(Fig 9.1a) i.e. it can move in any direction, but since the rotation of a point is 
meaningless it is denied the further three degrees of freedom available to a 3-D body 
which can be translated and rotated relative to each of the three axes. As a particle is, in 
theory, infinitely small, it could be said not to have a mass but it often proves 
convenient to attribute it with one. This equates with the fact that it needs to have a 
physical display size in order to be visible to us. 
 

 

 

 
 

 

 
 

 

 

Fig 9.1a 
Degrees of freedom of movement 

 
 

 
 

We can describe the movement of a particle under the control of forces, such as 
gravity, by the application of Newton's three laws of motion which he formulated in 
1687 (Appendix B). If you know the original position and velocity of the particle and 
how the force varies with time, you can write an equation which will tell you its 
position at any time in the future (Fig 9.1b). 

  



 
 
 

Fig 9.1b 
A dynamic particle system. The top picture shows the paths  
of 3-D particles propelled into space against a vector wind'.  
The lower picture shows the paths of particles attempting to  

use their randomly assigned forces to follow a circling target,  
whilst resisting the force of gravity. (Particles 'die' on collision) 

  

From the force on the particle you can find its acceleration. You integrate the 
acceleration with respect to time to get the velocity and you integrate the velocity to get 
the position [Balch 1989b]. Fortunately, for anyone with a non-mathematical 



background, it is possible to apply the formulae without understanding them! Since even 
the simplest dynamic simulation can prove totally engrossing, an appendix gives basic 
information for the reader who might like to experiment with the area. 
 
 

 
 

 

A simple method is provided by combining the formulations of Newton and the 18th 
century Swiss mathematician Euler (Appendix B). A limitation of the Newton/Euler 
method of numerical integration is that inaccuracies arise if the time-step used is not 
relatively small (Fig 9.1c). This means that it might well be necessary to make all the 
calculations several times for each frame, but the simplicity of the method often 
outweighs the requirement to keep increments small. It is beyond the scope of this book 
to describe the rival merits of different dynamic formulations, but papers on the subject 
most commonly refer to those of Newton, Euler, Lagrange, Runge-Kutta, Gibbs-
Appell, Armstrong and Featherstone. Some of them benefit from recursion and all of 
them are appropriate in different situations when it may be necessary to trade off cost 
against ease of use or generality. 
 

 

 

 
 

 

Most objects in the real world have the additional ability to spin and are therefore no 
longer point masses but are extended masses. In order to manipulate the extended mass 
it becomes necessary to know the centre of mass of the object and how the mass is 
distributed about the centre. For symmetrical objects the mass distribution requires the 
calculation of three moments of inertia, one about each axis, though it is often 
sufficient for the calculations of a 'shaped' object to be made on its bounding box (Fig 
9.1d). (A bounding box is a simple space-frame, typically cuboid, which closely 
contains a more complex form. It can be substituted for the form it contains in order to 
simplify calculations when absolute accuracy is not essential.) A non-symmetrical 
object requires the additional calculation of three products of inertia. The extra three 
(rotational) degrees of freedom of an extended mass mean that turning forces (torques) 
as well as straight, directional forces can be applied. Forces applied other than at the 
centre of mass also produce torque. 
 

 

 

 
 

 
 

It will often be the case that a single rigid body does not provide a sufficiently 
sophisticated representation of the object to be manipulated. A skeleton and an 
anglepoise ('Luxo') lamp, for example, are constructed of rigid elements which hinge 
about one another, each element subject individually to internal and external forces and 
to the effect of similar forces on its connective neighbours. The cumulative effect of all 
these forces determines the global movement of the object. 

  



 
 
 

Fig 9.1c 
The difference in the paths of the particles in the two pictures 
 (calculated using the Newton/Euler method) is due soley to 

 the different size of the time step used (0.02 seconds in top picture, 
 0.04 seconds in lower picture). Their starting conditions were the same 

  



 
 
 

Fig 9.1d 
A model of a building (shown in front, side, 

 top and three-quarter views) contained in a bounding box 
 

 
   
 

 

 

 

 
 

 
 

Dynamic analysis continues to offer a prediction of realistic movement, and as the 
complexity of kinematic specification becomes too great, becomes a more amenable 
method, even given its high computational cost. Many types of motion, such as falling 
or reacting to collisions, can be found automatically and the description of the object 
can readily incorporate appropriate limitations to the freedom of movement of each 
joint. It is possible to specify motion at a limited subset of body joints and have the 
dynamics calculate motion at the rest, i.e. the movement of a hand can be specified and 
the movements of the wrist, lower arm and upper arm can be calculated. This broaches 
the problem of inverse kinematics (working backwards from the desired end position to 
find acceptable joint positions) as the hand can reach its target equally well by realistic 
and unrealistic routes, i.e. it might be possible for the arm to remain bent and for the 
legs and body to manoeuvre the hand, which would not normally be considered 
realistic movement. The problem will be discussed in a later chapter. 

  
 
 

 
 

 9.2— 
Physically Based Modelling  

 

 

 

 



 
 

 

''A physically based model is a mathematical representation of an object (or its 
behaviour) which incorporates forces, torques, energies, and other attributes of 
Newtonian physics. With this approach, it is possible to simulate realistic behaviour of 
flexible and rigid objects, and cause objects to do what we wish them to do (without 
specifying unnecessary details)'' [Barr 1989a]. 
 

 

 

 
 

 

So having defined a ball and a surface we can 'drop' the ball and watch it bounce 
around until coming to rest. If we care to drop a properly defined cup onto a properly 
defined pillow we can witness its progress at a level of accuracy prescribed by our 
definitions. Snooker balls can interact realistically, articulated figures can trampoline 
and leaves can gently flutter down in a breeze. Not surprisingly, some things are easier 
to define than others and many things are too complex for it to be practical to attempt a 
definition. Nevertheless there is always an addictive magic about witnessing even a 
simple occurrence unfolding under its own (apparent) initiative. 
 

 

 

 
 

 

Having set the starting conditions for an incident, the animator (or should it be 
simulator?) can take a lunch break whilst his machine works through the calculations, 
creating and storing each frame, and return to watch, as a spectator, the event running 
in real-time. For a complex simulation he may currently need to take a vacation rather 
than a lunch break, but hardware progress is moving us towards calculation and display 
happening in real-time. This state would then have the exciting potential for real-time 
interaction with the model, tweaking parameters as the incident unfolds, perhaps 
changing forces and constraints to exactly meet production requirements. 
 

 

 

 
 

 
 

A crucial difference between a kinematic animation and a simulation is that the first is 
storyboarded and the second open-ended. In the first case specified things must happen 
in a specified sequence and take a specified time (a 'two-point boundary problem'), in 
the second case (an 'initial value problem' of forward simulation) once the incident has 
been set in motion there is no external control over when it stops (if ever). This can 
prove an impossible production constraint if, for instance, an object is required to come 
to rest at point xyz in frame 150. Inverse dynamics can help to work backwards from 
an end state to calculate the required initialising forces. 

  
 
 

  
 

 



 9.3— 
Constraints  

 

 

 

 

 

 

 

It is often desirable, and sometimes essential, in the course of animating an object, to 
observe certain limitations to its movement. This might be as simple as requiring 
objects not to pass through the plane of the floor on which they are resting, or as 
complex as requiring the bones of a skeleton to retain the correct connections and 
appropriate degrees of freedom of movement at all joints. These limitations to the 
uninhibited movement of an object are 'constraints' upon it. Kinematically, the object 
need never be placed below the floor plane, but in a dynamic simulation the constraints 
may be enforced by the physics built into the scene i.e. the object may be prevented 
from passing through the floor because it recognises an upward force offered by the 
floor, equal to its own mass. 
 

 

 

 
 

 
 

If your shoe is fixed to the floor with a single nail then your foot is constrained to stay 
on the ground, though able to rotate about the nail in the plane of the floor, and the rest 
of your body is constrained by its natural joint linkages, with their various degrees of 
freedom of movement. If your shoe is glued to the floor then the constraint on your foot 
is total (as long as the floor stays put!) and the rest of your body movements limited 
accordingly. A rubber band connecting your shoe to a nail in the floor restricts the 
amount of movement you can take away from that point, and increases the force on 
your foot to return to that spot in proportion to the amount you try to move away. The 
limit of your movement in the latter case is determined either by the maximum stretch 
of the rubber band or your ability to pass the band's breaking point. Extending this 
bondage analogy: handcuffs constrain your wrists to remain within a limited distance of 
one another, though not to any particular spatial point, with consequent limitations 
along your hierarchical links. A room constrains your spatial freedom, an appointment 
constrains your temporal freedom, a lack of clothes (usually) constrains your 
behavioural freedom, and your physical condition constrains the height you can jump 
in the air to protest at all these other constraints. In real life there are always some 
limitations to movement, and it is desirable in an animation, and essential in a 
simulation, that they can be incurred automatically. A number of papers [Barzel 1988, 
Isaacs 1987, Witkin 1987,1988, Platt 1989] deal with the problem at some length, and 
it is an area of much current interest. 

  
 
 

  
 



 

Barzel and Barr [1988] say that their modelling system, based on dynamic constraints, 
consists of instantiating primitive bodies, connecting and controlling them with 
constraints, and influencing their behaviour by explicitly applying external forces. The 
geometric constraints are implemented by solving an inverse dynamics problem which 
requires the determination of forces needed to meet and maintain a constraint (unlike 
forward dynamics which determines an object's behaviour given the forces acting upon 
it). Their constraint library includes: 
 

 

 

 
 

 'Point-to-nail' constraint, which fixes a point on a body to a user-specified location in space and 
allows the body to swivel and swing about the point. 
 

 

 

 
 

 'Point-to-point' constraint, which forms a joint between two bodies (the bodies remaining free to 
move). 
 

 

 

 
 
 'Point-to-path' constraint, with which a point can be required to follow a user-specified path.  
 
 

 

 
 
 'Orientation' constraint, which aligns objects by rotating them.
 
 

 

 
 

 Other constraints include those to restrict a point to lie on a given line, and those to require two 
spheres to touch (whilst allowing them to slide along each other). 
 

 

 

 
 

 

As well as creating and maintaining the constraints it is necessary to decide how the 
constraint should be met: along what path the object should move to meet the 
constraint, and at what speed. If the constraints are being used to initialise positions in a 
scene then these issues are not important, but if they are being enacted during an 
animation then they must be considered (in the Barzel/Barr system a user-specified 
time constant controls the exponential rate of decay of deviation of the constrained 
point). 
 

 

 

  
 



 

 

Each constraint force is supposed to produce its desired behaviour taking into account 
all other forces in the system, producing a linear system of simultaneous equations 
describing the constraint forces and their relationship to each other. Constraint-force 
equations can be under-constrained, in which case they can have many solutions which 
will produce the desired result, or over-constrained, in which case the constraint can 
not be fully met. In both cases it is necessary to make an additional judgment about the 
desired result either explicitly or by embedding rules in the system (e.g. 'use the 
solution with the smallest magnitude' or 'get as close as possible'). At an early stage in 
the development of their system, Barzel and Barr acknowledged that it was necessary 
to have a good physical intuition in order to apply constraints effectively (though this 
reservation appears not to have been repeated in later papers). 

  
 
 

 
 

 

It has been suggested [Kass 1989] that Aristotelian dynamics, which is intuitively good 
though strictly inaccurate, works well for constraints and is automatically critically 
damped. (Newton said Force = mass* acceleration, Aristotle said Force = 
mass*velocity.) 
 

 

 

 
 

 9.4— 
Collisions  

 

 

 

 

 

 

 

When objects are in motion in a dynamic animation, it is likely that collisions will 
occur between them (and between them and their environment, if defined). It is 
necessary, therefore, to check for collisions and to implement an appropriate response 
once detected. (The former is fundamentally a kinematic problem involving the 
positional relationship of objects in the world. The latter is a dynamic problem, in that 
it involves predicting behaviour according to physical laws [Moore 1988].) An 
unsophisticated detection algorithm may be sufficiently visually convincing when 
dealing with simple interactions of rigid masses. However, in a true simulation there 
are complex issues to consider with a proportional expense in computation time, further 
complicated if articulation and flexibility are involved. 
 

 

 

 
 
 9.4.1 Collision Detection  
 

 

 

 

  
 



 

 

A detection check which is simple to implement uses a spherical bounding box and 
computes the distance of each object from each of the others in turn. If the distance is 
less than the sum of the radii of the two bounding spheres, then the spheres intersect 
and a collision has been detected. It is sometimes only necessary to know that an object 
has been in a collision, without the need for information on further collisions which 
might effect the response. In that case the response can be speeded up by removing all 
objects found to have been in collision from the calculation at the moment the collision 
is detected. The time step at which the collision check is made must be small enough to 
exclude the possibility of an object passing through another within the period chosen, 
or other tests implemented. 

  
 
 

 
 

 

Though possibly adequate for production purposes, the bounding box test provides only 
a crude judgment about the relative positions of complex objects. To determine the 
moment and point of collision between two chairs, for example, it would be necessary 
to check all surfaces of one chair for intersection with all points on the other chair at 
each moment in time. It would be sensible, however, to use the quick bounding box test 
to see whether the chairs were within touching distance, and only then to implement the 
more sophisticated tests. Similarly it would be possible to use relatively large time 
steps until a collision had been found to have occurred and then to work back and forth 
with reducing time steps to calculate more accurately the moment of collision. (The 
Cyrus-Beck algorithm [Rogers 1985] includes an example of a simple 2-D test to tell 
whether a point is inside a convex polygon.) 
 

 

 

 
 

 

A number of interpenetration algorithms, more subtle than our spherical bounding box, 
have been proposed [Moore 1988, Uchiki 1983] particularly in the field of CAD/CAM 
and robotics, but the necessity of checking for penetration of each facet (in a B-rep 
model) can be expensive. Methods for dealing with CSG and voxel-based models are 
also available. 
 

 

 

 
 

 
 

Further economy would be possible by reducing the indiscriminate collision checking 
of every object (or vertex) against every other, using a method such as a space-
occupancy check with an octree search. In this case divisions of space would be 
examined to see if they contained more than one object, and if they did would be sub-
divided and re-examined until a suitably small area was found to contain more than one 
object. At this point suitable collision tests would be introduced. The efficiency of this 
procedure would depend on the population of objects and its distribution at the time. 

  



9.4.2 Collision Response  
 
 

 
 

 

Having detected a collision it is necessary to initiate a response. Response to non-
anticipatory detection can be dealt with by physical laws. This would be more 
straightforward in the case of colliding snooker balls than in the case of a boomerang 
hitting a doughnut or a cow falling downstairs, but the laws to deal with all cases exist. 
The response can be calculated analytically by considering the linear velocity, angular 
velocity, mass, centre of mass and inertial tensor of the colliding masses. This is 
computationally expensive but usually applied only once for each collision (linear and 
angular momentum must be preserved and a new direction vector sought). It would 
lend itself readily to a simulation of gas molecules in an enclosed space, for example, 
when (if the coefficient of restitution is one) the molecules would ricochet off the walls 
and off one another indefinitely. 
 

 

 

 
 

 

Alternatively, a more intuitive method is to temporarily insert a stiff spring between the 
points of closest approach (or deepest interpenetration) of the two objects. The spring 
force is applied equally and in opposite directions to the two objects, and the direction 
of force is such as to push them apart (or reduce their depth of interpenetration). Whilst 
this is simple to implement, it will generally have to be applied over a large number of 
small time steps. Friction between colliding surfaces should also be considered (if they 
are infinitely rough the objects will come to rest!) but a simple approximation will 
often suffice. It might also, in some situations, be useful to have a merely didactic 
response such as 'if in collision, turn red', so that the status of objects in a simulation 
can be more clearly followed. 
 

 

 

 
 
 9.4.3 Collision Avoidance  
 

 

 

 

 
 

 
 

Collision detection is normally implemented in order that a response can be made, but 
the types of response can be varied. If the collision can be anticipated then feedback 
may be provided which can prevent the collision taking place, either by activating 
immediate behavioural rules on the part of the object, or by causing the path-planning 
procedures to back-step and recalculate. (A physically based object is, of course, 
resigned to collisions unless credited with foresight.) 

  

Back-stepping and replanning is probably inappropriate in a simulation unless it is 



assuming the role of long range vision, as it implies a static path through a dynamic 
world. It could readily form part of the learning process of a sophisticated object, 
however, where success and failure at navigating an environment lead to an improved (= 
collision free) path. Jane Wilhelms [1987a) suggests that collision avoidance done "on 
the fly" is better described under the heading of stimulus-response control, which 
involves the two steps of: (a) recognising the state of the environment, and (b) 
developing a response to it. 
 
 

 
 

 

Another method of preventing collisions in a scene is to build force fields around the 
objects to repel contact. These fields (which can be recognised using the bounding box 
method) can be graduated according to the distance from interception, in order to 
produce gentle deceleration or diversion. A problem arises, however, when an object is 
travelling straight down a 'force beam', because a standoff results unless some rules 
have been added to deal with this special case. It is analogous to the rejection forces of 
opposing magnetic poles and could, perhaps, be used as the method for enacting a 
behavioural response. 
 

 

 

 

 

 

The Lozano-Perez [1979] algorithm provides an alternative to iterative collision 
detection (repeatedly checking for collisions at each timestep) by specifying constraints 
on the vertices of the moving object, and solving for a path that obeys constraints 
simultaneously. 
 

 

 

 
 

 9.5— 
Behaviour  

 

 

 

 

 
 

 

An actor may display intentioned behaviour which could be set to include goal seeking. 
It is likely that spatial goal-seeking will require the ability to avoid obstacles, possibly 
through simulating vision, and, as such, is relevant to us here. The area of behavioural 
animation, however, is sufficiently important to have earned a chapter to itself, and 
these issues are discussed there. 
 

 

 

 
 

 9.6— 
Teleological Modelling  

 

 

 

 



 
 

 

A term recently imported to computer graphics (from the fields of philosophy and 
biology) is that of teleological modelling. Derived from the Greek word 'teleos', 
meaning end or goal, it provides an extension of the current definitions of modelling to 
include a number of recent developments, and provide a model which is goal-
orientated. It is a mathematical representation which calculates the object's behaviour 
from what the object is 'supposed' to do. Alan Barr [1989b] suggests that it has the 
potential to extend the scientific foundation of computer graphics and to vastly extend 
the state-of-the-art for computer graphics modelling. He says that teleological methods 
can create mechanistic mathematical models with predictive capability, and produce 
compact formal descriptions of complex physical states and systems. 
 

 

 

 
 

 

It seems that teleological modelling does not offer new methods, but provides a 
conceptual framework within which recent (and future) methods governing an object's 
purpose, can be related to existing modelling methods. The teleological model of an 
object includes time-dependent behavioural goals as part of the object's fundamental 
representation. 
 

 

 

 
 
 Barr [1989b] presents a hierarchy of abstractions for objects:
 

 

 

 
 
 1. An object is a timeline of 'goals': Teleological modelling primitives  
 

 

 

 

 

 
 2. An object is its Newtonian behaviour: 3-D physical modelling primitives  
 

 

 

 

 
 
 3. An object is its shape: 3-D kinematic primitives
 

 

 

 

 
 4. An object is an image: 2-D modelling primitives
 

 

 

  
 



 
Quoting directly from that SIGGRAPH paper: "Perhaps the simplest abstraction of an 
object is its graphical appearance (4). The 'object-as-image' is represented by two 
dimensional primitives, primarily consisting of pixel images and vector drawings. 
 

 

 

 
 

 
 

The next abstraction is that of shape (3). The Greeks created the polyhedra and the 
conic sections; graphics has not progressed significantly beyond this modelling 
approach (certainly there has been some progress - the Greeks did not invent bicubic 
patches!). The 'object-as-shape' is represented with polygons, patches and the like. The 
next abstraction is that an object is represented through its physical behaviour (2). Isaac 
Newton's physics was founded very much on the same principles derived by the 
Greeks, although it was derived nearly two millennia afterwards. 'Objects-as-behaviour' 
are represented as rigid and flexible physical bodies. 

  
 
 

 
 

 

The final abstraction is teleological(1). A teleological model incorporates time-
dependent 'goals of behaviour' or 'purpose' as the fundamental representation of what 
the object is. Just as physics incorporates 'geometry' as an integral part of its world 
view, the teleological approach incorporates physics. Examples of teleological objects 
are 'objects-as-timelines' or 'objects-as- set-of-goals'. 
 

 

 

 

 

 

The teleological approach makes possible a new graphics pipeline. The user gives the 
teleological system a timeline of motion and position goals; inverse dynamics and other 
teleological techniques are used to produce a physics of interaction of the objects; 
physical simulation then produces the positions and orientations of the objects, via 
polygons, bicubic patches, and other kinematic modelling elements. Finally, rendering 
techniques such as ray tracing and depth buffering techniques are used to convert the 
shape of the object into an image." 
 

 

 

 

 

 
 

Applied in animation, a teleologically modelled object will do what you want it to (or, 
at least, do what you say you want it to), the object 'being' its physical behaviour. It 
could be said to consist of physics + 'what you want'. The links of a chain created by 
Barzel and Barr [1988] leap to join one another, and span the gap between two 
supports, because the knowledge of their role in the chain is a part of their model 
definition. In doing so, they avoid one of the main problems in animation by dynamics, 
that of attaining time/space goals. 

 



Chapter 10— 
State-of-the-Art: 
Soft Modelling 

 

 
 

 

 

 

Computer modelling has always lent itself to building mathematically defined shapes. 
Architecture, machinery and letterforms can be usually built from cubes, cylinders and 
other regular primitives; most designs that are created with drawing boards, parallel 
rules and set squares can readily be converted into data on which the computer can act. 
Consider how much of the real world these methods will enable us to satisfactorily 
model. 
 

 

 

 
 

 
 

If I glance aside from my VDU, and look towards the window, little of what I see could 
be constructed from geometric shapes. The window frame is made of regular 
mouldings and the window catches are regularly defined shapes, but surrounding them 
are draped curtains and beyond them are bushes, trees, grass, clouds and my wife 
talking to a neighbour. A nearby wall appears to be a regular grid of similar, 
rectangular bricks, but my own front wall is a clumsy construction of old, battered 
bricks of visibly different sizes. No part of my wife seems easily described by 
formulae. I know that her head of hair is a collection of simple filaments, but cutting, 
styling and standing in the wind has transformed it into a far more complex object. 
Similarly, her clothes are constructed from clearly defined pieces of planar fabric, 
joined with simple, repetitive stitching but this knowledge seems of minimal help in 
understanding the folds and creases wrought by fashion, gravity and wind around her 
'convex hull'. 

  

The natural world rarely, if ever, matches the geometric predictability that is the result of 
man-made mass production in the Western world, yet it is unlikely that animators would 
be willing to restrict their subject matter to cars driving through cities or to telephones in 
office interiors. Whilst the future might conveniently be pictured as formally more 
regular, our pre-machine past (or the present of a jungle tribe) is clearly not so. It is 
therefore necessary to find ways of dealing with more informal structures, and this 
pursuit is often referred to as 'soft modelling'. It will be found that soft modelling often 
aims to match the appearance of an object or phenomenon without plagiarising its actual 
construction, whilst 'traditional' modelling often uses that construction as its starting 
point. 
 
 

  
 



 

Over the last few years great interest has been shown in the area, partly enabled by 
dramatic hardware improvements which have facilitated previously impractical 
methods. This interest in things which are not clearly defined finds parallels in other 
disciplines, such as artificial intelligence, where 'fuzzy' logic [Zadeh 1965, 1983] 
contributes to a more realistic model of knowledge representation and decision making 
than 'crisp' formal logic. A technique which is often employed at some stage in the soft 
modelling process, in order to allow departure from certainty (in time or space), is the 
use of stochastics. Controlled stochastics employs randomness within prescribed limits 
to automatically produce variations on a theme. 
 

 

 

 
 

 10.1— 
Particle Systems  

 

 

 

 
 

 

A particle has already been identified as a single point in 3-space. A particle system is a 
collection of these particles, normally in large quantity (between 104 and 106). 
Typically, each particle will be created with a position, lifespan, and velocity (probably 
randomly determined between fixed limits), will change its position according to 
algorithmic rules, may change its colour or transparency, and will age and 'die'. The 
simple 'typhoon' animation illustrated (Fig 10.1a) uses eleven parameters (including 
four which establish the span of the random numbers) to sweep particles up a spiral 
path, changing them during their lifespan from white to red. 
 

 

 

 

 

 
 

Particle systems have, in recent years, been used to represent fuzzy objects such as 
cloud, smoke, fire and spray in either dynamic or static states, and to grow hair and 
grass, and they have the potential for doing much more. When used to describe a fuzzy 
form, the boundary of the object is not defined by surface primitives, but by a cloud of 
particles defining its volume. As its attributes are normally defined by a set of 
constrained stochastic processes, the surface is not cleanly defined (though there is no 
reason why the position should not be defined by a mathematical description of the 
object, in which case the particles could offer a 'clean' description). It is obviously 
appropriate that a cloud should not have a precisely defined edge, but there may be a 
situation where a cube of particles is called for. The particles are also not normally 
static in space or time, so the appearance of the object changes with time (though, 
again, there is no reason why it should not be deterministic).  

  



 
 
 

Fig 10.1a 
A particle system 'typhoon' develops 

 
  
   

 

  
 



 

Reeves [1983], who has been credited with coining the term 'particle system', describes 
several advantages of his systems over classical surface-orientated techniques. The 
most obvious is that a particle is much simpler to define than a polygon, to create and 
to move, so it demands less computing time. He also points out that its simplicity 
makes it easy to simulate the blurring associated with movement, by extending the 
point into a line tracing its recent path (and optionally reducing its intensity or changing 
its colour along that path). The second advantage is that it is procedurally defined, 
which means that a highly detailed model does not necessarily require more time to 
build than a simple one. It can also adapt its level of detail to the viewing parameters, 
so that detail can increase as you get closer (as with fractals). Thirdly, the collection of 
particles changes form over a period of time, which can be difficult to duplicate using 
surface modelling techniques. He also cites a number of examples of their use in video 
games, flight simulators, smoke models, for star creation and death in a galaxy, and for 
producing images of the rings of Saturn. It can readily be seen to be appropriate for 
dust, cloud and spray, since these natural phenomena are made up of particles (of 
water, for example, or dust particles in suspension). 
 

 

 

 
 

 
 

A system need not be a constant size but can grow or shrink by changing the particle 
birth and/or death rate, death being controlled by age, position, intensity level, colour 
or other parameter. It is also possible for each particle to be the parent of another 
particle system, up to a theoretically unlimited level of hierarchy, with the parent 
having global control over its children. This method was used in the much quoted 
'Genesis Demo' sequence from the movie 'Star Trek II': The Wrath of Khan' [Reeves 
1983], where an expanding wall of fire is made to spread across a planet's surface. 
Reeves describes a two-level hierarchy, where the top-level system was centred at the 
impact point of the 'Genesis' bomb (which caused the fire) and generated child systems 
randomly on concentric rings spreading from the impact point, at times related to their 
distance from the impact. The second-level systems were modelled to look like 
explosions on the surface of the planet, with particles flying up at a random ejection 
angle and falling on a parabolic path under the influence of gravity. Other parameters, 
such as colour, were inherited from the parent system but varied with the same 
constrained stochastics. These features have also been used to model fireworks [Reeves 
1983]. 

  
 
 

  
 



 

Grass and hair could be 'grown' by 'seeding' the surface with particles (which will 
represent the tip of the filament), ejected outwards with random variations from a 
perpendicular to the surface. If the particles are dynamic (responsive to gravity, etc.), or 
at least obey rules approximating response to appropriate forces, they will define a 
suitable parabola, and by connecting each point passed through by the particle, a 
filament is created. The process can be halted when the length is satisfactory and 
'frozen' as a model of a lawn or head of hair, or the filaments can be allowed to 
continue growing. If each filament is allowed to articulate at each of the points defining 
its length, and the dynamics is continued down the hierarchical chain, then the filament 
can flow and bounce in response to outside forces such as wind or surface movement. It 
would require some subtlety in the definition of the hair's structure (straight, curly, 
permed ?), in the subsequent collision responses and in the usual range of constrained 
stochastics, but it is all possible. Unfortunately it would be practical to deal 
dynamically with little more than a small moustache using current hardware, but the 
principles are sound. 
 

 

 

 
 

 

A particularly effective and attractive animation of a waterfall (see back cover) was 
constructed by Karl Simms [1989a] in ''Particle Dreams''. He applied gravity to blue 
particles which flowed over a 'cliff' and bounced off spherical 'rocks', exhibiting 
friction and resilience, turning white on bouncing and fading back to blue. The 'camera' 
tracked over the scene, and the sparkling splashes remarkably evoked similar emotions 
to viewing a real waterfall. 
 

 

 

 

 

 
 

A mildly 'intelligent' particle system of my own [Mealing 1989] was able to make 
decisions on matters such as goal seeking and grouping as well as being dynamic, and 
evolved as a test-bed for motion control algorithms (Fig 10.1b). It soon became clear 
that the interaction of simple behavioural rules created complex motion patterns from 
which those same rules could not be deduced. It also seemed that the particle system 
could provide the heart of a more complex movement control system, able to handle 
actors more sophisticated than point masses by using the particle as a reference point in 
the local coordinate system of the new actor. The definition of the new actor would 
include the additional mathematics that its sophistication required, a property made 
easy by the use of C + + as the programming language. In this way the simplicity and 
elegance of particle systems could be employed to 'drive' more complex animations. 
The system's knowledge, experience and intelligence could be local to the individual 
particles or communal, allowing the particle cloud to maintain a single identity if 
required, and this area (distributed artificial intelligence) is fruitfully explored by 
Reynolds[1987] with his flocking birds, which are described later. 

  



 

 

 
 
 

Fig 10.1b 
The patterns of three versions of a particle system  

(each given different starting conditions) 
 attempting to make optimal use of  

available forces to follow a moving target. 
 In the bottom picture, particles can be  

seen bouncing off a horizontal plane 

  

 



 

 

 

Computer memory is quickly eaten up as a particle system grows, and if the particles 
are to interact then very efficient algorithms are needed to keep calculation times 
within acceptable limits. The definition of a particle system seems to lend itself to 
parallelisation, and the question has been addressed by Simms [1989a], but again, 
interaction causes problems by creating potential bottlenecks. It seems likely, however, 
that new computer architectures will be particularly amenable to the problems of 
particle systems, and their potential is not yet realised. 
 

 

 

 
 

 
 

Several papers address the question of how to render particle systems [Reeves 1983, 
1985, Glazzard 1987, Inakage 1988] and the subject will not be dealt with here. It is, 
however, of interest to mention Inakage's [1988] emphasis on the aesthetic virtues of 
using particle systems to model fuzzy objects and also to create 3-D textures, and 
Reeves' [1983] use of the systems in tree simulations by rule based construction (i.e. 
not surface modelled). His algorithm starts with the main trunk and constructs the tree 
by recursively generating sub-branches, having stochastically assigned a set of initial 
characteristics and dimensions randomly drawn from distributions associated with the 
type of tree. The regularity of the trees' structure is modified to simulate the effects of 
natural forces by post-processing their 3-D descriptions using various bending and 
warping algorithms. The elements generated with particle systems were combined with 
elements computed using other techniques, such as texture- mapped truncated cones. 

  

10.1.1 Globular Dynamics  
 
 

 
 

 

It is relevant, whilst considering particle systems, to look briefly at 'globular dynamics', 
describedby Miller and Pearce [1989]. They present a connected particle system for 
modelling viscous fluids which allows for dynamic collision detection between 
particles and obstacles, both stationary and mobile, and allows solid objects to break 
and melt (temperature being a potential parameter). The elements of the connected 
particle system are called 'globules', and have radial force fields which lead to a 
'dynamically changing topology of interactions'. 'Soft' collisions are permitted between 
globules (avoiding the rigid stacking exhibited by marbles) in which the rejection 
forces between globules are proportional, in strength and damping, to their depth of 
interpenetration. Globules are thus allowed to cluster or break off, either individually or 
in clusters, and are covered with a (virtual) isosurface for rendering. 
 

 

 

 

 



 

The method is described as using a coarse approximation of the molecular movement 
within the fluid, and by tuning the damping and radial forces, can be used to simulate 
materials of different viscosity (powder has a short range repulsion and limited 
damping, liquid has damping forces of twice the repulsion term, and foams have 
medium term attraction). For more accurate simulation it will be necessary to use 
density distributions in real fluids to compute pressures, and hence forces, on particles. 
It offers the advantage that, compared with particles, relatively few globules are needed 
in a typical simulation as they are much bigger, but up to 30 time-steps per frame are 
required by the dynamics calculations, corresponding to movements of a small fraction 
of the globules' radius. it is suggested that the method lends itself to parallel processing.
 

 

 

 
 

 10.2— 
Parametric Modelling  

 

 

 

 

 
 

 
 

Many objects have smoothly curved surfaces and blended edges which are not readily 
represented by conventional methods such as polygon meshes or CSG models. 
Parametric modelling provides a compact and easily manipulated representation in 
which the need to store the large numbers of coordinates otherwise required is avoided. 
Instead of considering a curve in its analytic form (as the relationship between X, Y 
and Z coordinate values) in its parametric form it is specified in terms of other 
variables or parameters. 

  
 
 

 
 
 10.2.1 Clouds  
 

 

 

 

 
 

 

A relatively simple representation is often desirable, as in a flight simulator, where 
real-time updating of the scene is computationally heavy and the production of clouds 
presents an interesting problem. They have been created using particle systems and by 
other methods based on the accurate modelling of cloud physics, but the mathematics 
involved has a high computational cost. 
 

 

 

  
 



 

Gardner [1985] describes a method from a study at the Grumman Corporate Research 
Center to develop cost- effective scene simulation technology, which constructs the 
visual appearance of clouds parametrically. Note that this models only the appearance 
of clouds, and as such need only be a 2-D representation, unlike the fully 3-D model 
which might be constructed with a particle system model, for instance. The technique, 
however, can model different cloud types viewed from a range of angles and distances. 
He identifies three basic cloud types: cirrus (wispy, high altitude clouds), stratus (low, 
layered clouds without distinct detail) and cumulus (low, heaped clouds). Clouds which 
combine these basic characteristics are described with combinations of the basic names 
(e.g. stratocumulus). Cloud formations can develop horizontally (layers) or vertically 
(cumuliform). A cloud layer can be modelled by a single textured plane in the sky with 
the solidity and density of the layer defined by functions governing translucence and 
spectral content. This plane can be viewed satisfactorily from a distance and can be 
combined with 3-D cloud models. It can be animated by changing the texturing 
function parameters with time, and by moving the entire texture pattern. 
 

 

 

 
 

 
 

His 3-D model uses ellipsoids as building blocks and modifies surface shading intensity 
and translucence using sine wave functions. "This approach results in a very compact 
data base because the same texture pattern can be used for any number of ellipsoids". 
Ellipsoids can be used singly or linked to build complex cloud forms, though this 
involves additional work to avoid unnatural boundaries. Horizontal and vertical cloud 
formations are achieved by variously modifying the size, orientation and position of the 
ellipsoids, by creating hierarchical levels of clusters of ellipsoids, and even by using a 
dummy terrain map to set cloud heights to simulate updrafts. 

   
 
 

 
 
 10.2.2 Waves  
 

 

 

 

 
 
 

 

Waves have also been effectively modelled parametrically [Fournier 1986], in this case 
in conjunction with particle systems. Fournier describes the most common waves as 
resulting from the disturbing force of wind and the restoring force of gravity and bases 
his model on water particles describing circular or elliptical stationary orbits effected 
by the topology of the ocean floor. From these mechanical principals a parametric 
surface is derived, modified with our now familiar stochastics, and enhanced with foam 
and spray generated with particle systems. At the rendering stage a moving bump map 
simplifies the representation of the surface perturbations which give rise to 
shimmering. As a further reminder of how far we are from real time simulation, note 
that a short animation using this method took 10 hours and 21 minutes per frame to 
compute on their computer. 



  
 

 

 
 10.2.3 Plant Models  
 

 

 

 

 
 

 

One of the subjects which has received much research attention within the area of 
modelling natural forms, is that of plant image synthesis. Many of these models start 
with an analysis of the plant's architecture and build the plants by repetitively applying 
a few rules thus derived. Some recent attempts use a developmental model with which 
it is possible to animate the growth and ageing of herbaceous plants [Prusinkiewicz 
1988] and trees and herbs [de Reffye 1988]. This has the added advantage that, as well 
as being able to produce a single model of a particular plant, a range of models of the 
same plant can be created at different stages in its development, allowing botanists and 
agronomists to study environmental and other effects (which can be introduced as 
parameters). Their models incorporate the botanical laws which determine the 
architecture and growth of plants and include tropisms (the tendency to develop in 
response to stimuli such as light and gravity), external forces (such as wind) and 
knowledge about growing conditions. Note that here is a rich literature illustrating a 
range of other methods of building plants, including the use of fractals [Oppenheimer 
1986]. 
 

 

 

 
 

 10.3— 
Voxels  

 

 

 

 

 
 

 

An interesting plant modelling method using a voxel data base is described by Greene 
[89]. "Models are 'grown' from predefined geometric elements according to rules based 
on simple relationships like intersection, proximity, and occlusion which can be 
evaluated more quickly and easily in voxel space than with analytic geometry." 
(Voxels, you will remember, are the cubic volume elements into which 3-space can be 
divided.) Greene suggests that this method simplifies sensing of the environment by the 
growth process and he calls the growth processes that sense and react to the voxel 
environment 'voxel space automata'. Being affected by local conditions and 
environment, the growth pattern mimics natural growth processes, the growth rules are 
based on simple spatial relationships like intersection, proximity and obstruction 
avoidance, and by response to light. 
 

 

 

  
 



 

The method involves checking randomly propagated growth against the rules and 
selecting the best fit. It is a method which represents a generalised developmental 
model and is not designed for realistic plant simulation. It does, however, create some 
very usable images, particularly interesting for the manner in which they can be 'grown' 
around objects in a visually similar manner to clinging ivy. The growing model is 
described as feeling its way through voxel space by sensing the voxel representation of 
objects in its environment. 
 

 

 

 
 

 10.4— 
Fractals  

 

 

 

 

 

 

 
 

The word 'fractal' was coined by Benoit Mandelbrot [1977, 1982], and relates to his 
concept of fractional dimensions. In computer graphics its principles are often 
employed as a means of fragmenting a surface or object in a pseudo-random manner in 
order to produce credible detail, without recourse to a large data bank. This can be seen 
to be very valuable with an object such as a mountain or cloud, where it is necessary to 
display a satisfactory level of detail at any magnification. To build a model of the 
Himalayas which was detailed over its whole extent, down to the last rock, would be an 
impossible task, but fractal techniques allow us to generate the required level of detail, 
in the chosen area, when required. (The key is self-similarity, since a rock could be 
seen as very much like a small mountain.) In the right circumstances this can be 
generated in real-time, and thus readily used in an animation or flight simulator. The 
technique has also been used to create clouds, planets and eroded surfaces. 

  
 
 

 
 

 

Fractals have been used to turn the immaculate, idealised forms produced by modelling 
systems into real-world objects by the addition of dirt, rust, stains, corrosion and 
blemishes [Becket 1990]. The algorithmic generation of textures such as these can be 
made dependent on the surface geometry, so that scratches and rust, for instance, can 
be realistically positioned near exposed edges. The technique, as described, deals with 
the application of surface texture, and might be interestingly combined with the effects 
of wear and tear to provide a further area of investigation. Correct placement of marks 
such as stains does require some knowledge of the history of the stained surface, and 
Becket must have engaged in some unusual research to establish rules for the correct 
location of coffee drips, coffee rings from cup bases, and 'smearing transformations' to 
mimic cups being moved across the surface. The rule-based approach avoids the need 
to attempt complicated simulation and is relatively quick to apply. 
 

 

 

 



 

 

 

The simplest example is the recursive subdivision of a triangle by randomly displacing 
a point on each of its sides and joining these three points with three straight lines. This 
creates four smaller triangles, which are then treated to the same process, and the 
iteration continues until a suitable level of decomposition is reached. If points in 3-
space are similarly treated, fractal surfaces are generated, and the potential level of 
detail is infinite. A 4-sided pyramid could thus be transformed into a mountain, 
approximately retaining its original shape, with the displacement parameters 
determining its degree of self-similarity. Suitably rendered, scenes have been generated 
with high levels of realism using this basically simple technique. 
 

 

 

 
 

 
 

The standard example of fractals in nature, is shown in the attempted measurement of a 
coastline, where the total length of coastline will increase as the measuring device is 
reduced. If, for example, a one metre measuring stick is 'walked' around the coastline it 
will map large rocks but will not be fine enough to cope with pebble-sized details. A 
one centimetre measuring stick would deal with pebbles (and therefore indicate a 
greater perimeter length) but could not negotiate individual grains of sand and so on, 
and so on. 

  
 
 

 

 
 10.4.1 Iterated Function Systems
 

 

 

 
 

 

Fractals have been described as the language of geometry. They cannot be directly 
viewed like the elements of Euclidian geometry (i.e. the line and circle), but are 
expressed in algorithms. Jurgens [1990] describes how, "once one has a command of 
the fractal language, one can describe the shape of a cloud as precisely and simply as 
an architect might describe a house with blueprints that use the language of traditional 
geometry". In the same way that European languages are based on a finite alphabet, but 
do not carry meaning until they are built up into words and phrases, so Euclidian 
geometry can construct complex objects from its limited elements. Fractals, however, 
can be compared to a language such as Chinese which are made up of a potentially 
infinite range of symbols that have meaning themselves, the 'symbols' of fractal 
geometry being algorithms. Iterated function systems (IFSs) have already been used to 
employ this fractal language in the construction of natural objects, such as ferns, and 
research is likely to extend their use. 
 

 

 

 

 



 

 

Although not specifically relevant to soft modelling, it is appropriate to mention 
another role of IFSs at the same time. Fractals represent a compact way of storing 
information which can be expanded to provide the description for a complex shape, 
pattern or object; IFSs can work backwards from a given image to provide a fractal 
which will imitate it. This method has produced compression ratios of 10,000 to I on 
the storage space required for some images, which is an important saving when an 
uncompressed image might require 130 Megabytes of memory. The method is proven 
on limited types of image as yet, and would seem useful with a non-algorithmic image 
(i.e. a painting) only in proportion to the degree of approximation that was acceptable. 
However, although the compression and decompression is expensive in computer time, 
the potential memory savings are considerable, and the method is being developed. 

  
 
 

 
 

 10.5— 
Finite Element Methods  

 

 

 

 

 
 

 

It is commonly necessary in computer graphics, to generalise a line, shape or object 
into convenient size pieces within which further detail is ignored. A smoothly curved 
surface can never be more than approximated by a polygonised surface, even if it is 
defined at a sub-pixel scale. Even on an implicit surface, where every point is fully 
defined mathematically, it is inherent to the rendering process that the final image will 
be broken into units of a size dependent on the output device. Whilst high resolution 
output may offer a satisfactory appearance, surfaces do not have truly smooth 
continuity. 
 

 

 

 
 

 

If an engineer wishes to test a model of a bridge (either a computer model or a 
constructed model) he can select points on the structure at which to apply and measure 
forces, and might expect to increase the accuracy of the test in proportion to the number 
of points used. He can only select a finite number of points, however, despite the fact 
that there are an infinite number contained in the model. The selection of sample points 
to produce a discretised model, which will give a true representation of the whole 
structure, is the essence of finite element analysis. It finds regular application in 
computer modelling, both intentionally and as an unintentional result of the modelling 
methods commonly employed. 
 

 

 

  
 



 

In computer modelling a number of methods deform surfaces by applying deformation 
to a discretised model, perhaps a grid standing for a surface, and then reconstitute the 
surface by spline interpolation. Free-form deformation (FFD) [Sederberg 1986] applies 
local or global deformation by applying transformations to a containing cage of control 
points. In FFDs, a simple cage with few control points can be used to sculpt complex 
solids. 
 

 

 

 
 
 10.5.1 Cloth  
 

 

 

 

 
 

 
 

One of the animations that I always find fascinating is a short sequence showing a 
square of cloth being dropped. This mundane occurrence is elevated to the status of a 
minor ballet through the focus given it in a simulation by Jerry Weil [1986]. The cloth 
is lifted at discrete points and allowed to float gently down when dropped, later being 
given the potential to wrap itself over objects in its path, like a tablecloth being draped 
over a table. The potential of this synthesis is enormous as it points, amongst other 
things, towards complex cloth surfaces (e.g. clothes) being draped dynamically over 
complex, perhaps articulated, forms (e.g. people). Although the simulation is, in fact, 
only approximate, it is highly convincing, automatically creating folds that are far more 
realistic than the more common method of texture mapping a rigid surface. 

  
 
 

 
 

 

The cloth is first represented as a grid of 3-D coordinates with constraint points 
defined, and an approximation is made to the surface within the convex hull of those 
points. The constraints on the cloth are then applied by 'relaxing' all points in 
successive stages and subsequently adding further points between the constraint points. 
These are placed along the paths of the curves ('catenary' curves) which threads would 
naturally adopt, and further stages determine the position of the initial grid points from 
which the polygonised surface can be constructed. A coarse grid can be used to keep 
calculations to a minimum and the remaining points then created by spline 
interpolation. 
 

 

 

 
 
 

 

Different cloth stiffness can be built into the model to approximate different materials 
and various rendering techniques can be used, with cloth texture being added if desired. 
The method suggested by Weil, however, is that of raytracing cylindrical line segments 
representing the actual threads. The effect created is not without computational cost, 
but is very lifelike and amenable to development. Consider raytracing the shadow of a 
patterned net curtain, blowing in the wind, onto an interior scene! 



  
 

 
 

 10.6— 
Texels & Fur  

 

 

 

 

 

 

 
 

Traditional methods of introducing fine detail into high resolution images cause severe 
aliasing problems, and an alternative approach is to treat the detail as texture rather 
than to try and model it geometrically. This is the solution to the long standing problem 
of rendering furry surfaces which is presented by Kajiya [1989]. He arrives at a very 
lifelike teddy bear by use of the 'texel', a three-dimensional texture map which can be 
rendered without the need for an underlying surface model, and in which the rendering 
time is independent of the complexity of the surface. More specifically, a texel is ''a 
three-dimensional array of parameters approximating visual properties of a collection 
of microsurfaces'' and could be used to describe a surface in the same way as a tree 
covered mountain. It can be seen as a close relation of the voxel, which, although only 
briefly mentioned here, is open to development. 

  
 
 

 
 

 10.7— 
Stochastics  

 

 

 

 

 
 

 

It is often appropriate to introduce random elements into the modelling process (Fig 
10.7) in order to move away from the precision that geometry, or fixed rules, can lend. 
This is particularly relevant to the sort of models described in this chapter, in order that 
a simple set of rules can be used to produce a variety of waves, clouds or plants. Total, 
uncontrolled randomness would rarely be useful, but constrained stochastics (the 
employment of randomness within set limits) can be used to provide a predetermined 
level of variation on a basic theme and computers are good at producing an 
approximation to randomness. In a typical particle system, for instance, most of the 
parameters could be subject to random variation (i.e. the degree of randomness in the 
spatial initialisation would determine the spread of the initial particle cloud). It also 
becomes possible, and often entertaining, to regenerate sequences with fresh random 
variables, and produce very different results. A slight change can prove to have a 
dramatic effect, as chaos theory has shown. 
 

 

 

  
 



 

 

If you don't mind what number is produced, you are looking for an arbitrary, rather 
than random, number. A random number is a precisely defined mathematical concept in 
which every number should have an equal likeliness of occurrence (which requires a 
limit to their range), and whilst a random number might be arbitrary, the opposite is not 
true. The nature of computers makes it impossible to generate truly random numbers 
and it is common instead, to access a data bank of pre-randomised numbers. Pseudo-
random numbers can be generated simply with an accuracy that might be acceptable, 
but whilst you can't tell from a sequence of pseudo-random numbers that they are not 
random, if you know the formula in use then you can predict the next number. Since 
the computer will generate the same sequence each time, it is standard to 'seed' the 
number generator with a fresh number each time, although the same seed will provoke 
the same sequence. Also, the type of 'randomness' can vary: are you, for instance, 
sampling without replacement (i.e. as in 'Bingo'), or with replacement (in which case a 
selected number becomes available for reselection, and could be selected many times in 
a row). 

  
 
 

 
 

 

 
 

 

 

Fig 10.7 
Stochastics was used to determine 

 the number, size, position and orientation  
of trees and branches in this 'forest' 

 
 

 10.8— 
Conclusion  

 

 

 

 

  
 



 

It can be seen, from the examples given here, that the non-geometric world can be 
represented in a computer model with increasing subtlety and sophistication. A flea-
bitten dog might still be more difficult to model than a red cube, but as new hardware 
and improved algorithms make the former achievement more accessible, animation will 
have access to a much less restrained vocabulary. It is self-evident that many computer 
animation models produced to date have been influenced by the ease with which 
geometric primitives can be created and manipulated. Whilst, however, it is 
commercially necessary, and often artistically desirable, that limitations should exist, in 
talented hands the future of computer animation can prove much richer for the 
development of soft modelling. 
 

 

 

 



Chapter 11— 
State-of-the-Art: 
Behavioural Animation 

 

 
 

 

 

 

There can be few dynamic scenes involving living creatures that can be explained 
purely by physics. The motivations and rationale governing the unfolding of a sequence 
of actions will often provide the motivation for an animation, and even when animating 
'inanimate' objects it is often desirable that the objects should display intention and 
response. In another situation it might be necessary to attempt to simulate movement 
patterns occurring in 'real life' situations by attributing needs, desires and the means to 
satisfy them. An interesting example is "Electric Anthill", a simple interactive 
installation by Michael Travers [1989], in which aspects of an ant colony are enacted 
on a computer screen by ants homing in on a food source. 
 

 

 

 
 

 
 

The behaviour of a ball in collision with a wall is determined by physical laws, though 
the speed of the ball, angle at which it hits the wall, surface of the wall and other 
variables effect its response. Different degrees of inflation will provoke different 
responses in otherwise similar balls in the same conditions. A cat in collision with a 
wall will be subject to the same physical laws as the ball, but is likely to show an 
additional, emotional response provoked by stimuli such as pain, fear and loss of 
dignity. The cat's behaviour is likely to be modified for a period of time after the 
collision, whilst the ball (unless damaged) will continue as it was before. The 
difference between the responses of the cat and the ball derives largely from the animal 
having a nervous system and brain which the ball lacks. The cat might also attempt to 
avoid the impending collision, an action which would require of it: a recognition of the 
existing conditions, an extrapolation from them to a recognition of future conditions, 
the ability to devise a method of avoidance, and the means to effect it. Such incidents 
fill the existence of all living things, and to have such behavioural traits (instinctive and 
acquired) automatically enacted by our actor moves the required level of animation 
another notch higher. 

  
 
 

 
 

 

My dictionary offers several definitions of behaviour. Those which are helpful in the 
context of explaining behavioural animation are: "the aggregate of all the responses 
made by an organism in any situation", "a specific response of a certain organism to a 
specific stimulus or group of stimuli" and ''the action, reaction or functioning of a 
machine, chemical substance, etc. under normal or specified circumstances" (Collins 
English Dictionary, 1986). 

 

 



 

 
 

 11.1— 
Artificial Intelligence  

 

 

 

 

 

 

 

There is a lot of interest in making computer models of animate objects in the real 
world act naturally. Much recent work has centred on attempts to impose physical laws 
automatically and with an increasing complexity. An area which has received a lot less 
attention, but which is now ripe for investigation, is that of artificial intelligence (AI), 
potentially, perhaps, able to build on the foundations offered by physically-based 
modelling towards the goal of total simulation. 
 

 

 

 
 

 

The field of artificial intelligence is involved with building features associated with 
natural intelligence into machines. This implies a clear understanding of natural 
intelligence, of the mental and behavioural abilities that can be found in humans and 
other animals, and the history of the discipline shows that such an understanding is, at 
the least, incomplete. Mary Boden [1987] describes AI as being the use of computer 
programs and programming techniques to cast light on the principles of intelligence in 
general and human thought in particular. Minsky is often attributed (e.g. by Simons 
[1984]) with the quotation: "artificial intelligence is the science of making machines do 
things that would require intelligence if done by men". 
 

 

 

 

 

 
 

A mechanist philosopher would point out that if all knowledge can be formalised then 
the human self can be matched, in principle, by a machine, and that analysing the 
problem is the only hard part. We are, however, understandably reluctant to confer the 
dignity of being thought intelligent on an evidently simple machine. Since the 
judgment of intelligence is more a reflection on what we understand than on what we, 
or machines, can do, it is not surprising that as soon as any process or performance has 
been mechanised it must be removed, with qualifications and apologies, from the list of 
intelligent (or creative) performances. 

  
 
 

 
 
 11.1.1 Distributed AI  
 

 

 

 

  
 



 

Whilst this next section is not yet important in the context of animation, I include it in 
the expectation that it will become so, as well as to indulge my own interest. Most AI 
research investigates how a single agent can exhibit intelligent behaviour such as 
problem solving using heuristic or knowledge based methods, planning, understanding 
and generating natural language, perception and learning. Several recent developments 
have together provoked interest in concurrency and distribution in AI; the development 
of powerful concurrent computers, the proliferation of multinode computer networks, 
and the recognition that much human problem solving and activity involves groups of 
people. Distributed artificial intelligence (DAI) is the subfield of AI concerned with 
concurrency in AI computations at many levels [Bond 1988]. A flock of birds is an 
example of a robust, self- organising distributed system. 
 

 

 

 
 

 
 

DAI can be divided into three main areas. Research in Distributed Problem Solving 
(DPS) considers how the work of solving a particular problem can be divided among a 
number of modules, or 'nodes', that cooperate at the level of dividing and sharing 
knowledge about the problem and about the developing solution. A second area, called 
Parallel AI (PAI), is concerned with developing parallel computer architectures, 
languages and algorithms for AI. In a third area, called MultiAgent (MA) systems, 
research is concerned with coordinating intelligent behaviour among a collection of 
(possibly pre-existing) autonomous intelligent 'agents', how they can coordinate their 
knowledge, goals, skills and plans jointly to take action or to solve problems. The 
agents in a multiagent system may be working toward a single global goal, or toward 
separate individual goals that interact. Like modules in a DPS system, agents in a 
multi-agent system must share knowledge about problems and solutions. But they must 
also reason about the processes of coordination among the agents [Bond 1988]. 

  
 
 

 

 

 

An interesting tool relevant to DAI is the 'blackboard system', which is a set of 
processes, typically called knowledge sources (KSs), which share a common data-base 
or 'blackboard' of symbolic structures, often called (and indeed denoting) hypotheses. 
Each KS is an expert in some area, and may find a hypothesis it can work on, solve that 
hypothesis, create new hypotheses, and modify existing hypotheses. The set of 
processes thus c0-operate by sharing the common blackboard, rather like a group of 
human experts, each endowed with expertise and a piece of chalk, and using a common 
blackboard [Bond 1988]. I find the analogy very apt, not only as a description of a 
number of individuals co-operating, but also as a model of the way an individual might 
solve a problem over a period of time by solving sub-problems, leaving them to 
develop and interact on the mental 'blackboard', and adding fresh knowledge in the 
light of experience, until all the ingredients are present for a solution. 
 

 

 

 



 

  The basic questions that DAI must address are summarised, again by Bond [1988] as:
 
 

 

 

 

 how to formulate, describe, decompose, and allocate problems and synthesise results 
among a group of intelligent agents; 
 

 

 

 
 

 how to enable agents to communicate and interact: what communication languages or 
protocols to use, what and when to communicate etc; 
 

 

 

 

 

 how to ensure that agents act coherently in making decisions or taking action, 
accommodating the global effects of local decisions and avoiding harmful interactions;
 

 

 

 
 

 
how to enable individual agents to represent and reason about the actions, plans, and 
knowledge of other agents in order to coordinate with them; how to reason about the 
state of the coordinated process (e.g. initiation and termination); 
 

 

 

 
 
 
 
and how to recognise and reconcile disparate viewpoints and conflicting intentions 
among a collection of agents trying to coordinate their actions; how to synthesise views 
and results. 

  

11.1.2 Expert Systems  
 
 

 
 



 

Expert systems have been defined [d'Agapeyeff 1983] as "problem-solving programs 
that solve substantial problems generally conceded as being difficult and requiring 
expertise. They are called 'knowledge-based' because their performance depends 
critically on the use of facts and heuristics used by experts". The systems currently 
acquire a body of knowledge from humans who are expert in the subject area 
concerned, and whose skills in the area are formalised into a database. The domain of 
the subject area is necessarily limited, but within that area the expert system can offer 
intelligent advice and make intelligent decisions based on the information available in 
its database. 
 

 

 

 
 

 

One of the main reservations about existing expert systems is their inability to stray 
outside their own limited domain. This immediately limits their application to search 
areas which have already been chosen by outside agents, although the possibility exists 
for a number of expert systems to interact (perhaps on a 'blackboard' or under the 
supervision of an expert system trained to supervise). If systems are allowed to develop 
by learning, and expert systems in related domains are allowed to cooperate, it is 
possible that expert systems themselves may prime future generations of expert 
systems. 
 

 

 

 
 

 
The information in a system is stored as a collection of simple rules which can be 
searched in order to make inferences which will provide the basis for decisions, and 
can be 'weighted' according to probability of correctness e.g. 
 

 

 

 
 

 Rule 1: If the dog is grey 
             then it may be a wolfhound (10% chance)
 

 

 

 
 

 Rule 2: If the dog is a wolfhound 
             then it is friendly (99% chance)
 

 

 

 

 

 
Rule 3: If it is a wolfhound 
             and it lives at my house
             then its name is Ogam 
 

 

 

 



 

  

 

Having incorporated knowledge such as this, we can 'chain' forwards or backwards 
through the rules to draw inferences. If we start from the conclusion, we can 'backward 
chain' to find what evidence is available to enable that conclusion to be reached. If we 
start with the evidence, we can 'forward chain' to arrive at a conclusion. The emphasis 
on rule-based programming implies use of a language such as PROLOG, but interest is 
being shown in C++ as a potential language for creating expert systems [Hu 1989]. 

  
 
 

 
 

 

Within a specific domain an expert system could be designed to produce an animation 
from 'raw' data. For example, the daily television weather charts could be produced and 
animated directly from the relevant data, since the layout, symbols and house-style are 
all tightly defined, and the rules for applying them are relatively simple. 
 

 

 

 
 
 11.1.3 Human Intelligence  
 

 

 

 

 

 

 

In order to be able to approach the richness of human decision making, a system needs 
to be able to deal with different modes of thinking such as deductive (inference), 
inductive (classification) and abductive (guessing and testing); to be able to deal with 
uncertainty, weighted probabilities and 'fuzzy' logic [Zadeh 1965]; to deal with other 
representations of knowledge, such as 'frames' [Fikes 1985] which are data structures 
for representing stereotypical situations that can be organised into taxonomies of 
classes; and perhaps to be able to deal with ideas like 'naive physics' [Hayes 1969] 
where the system understands that, for example, water is wet. One further characteristic 
which we might want a system to possess, is the ability to learn. "An animal that learns 
is one which is capable of being transformed by its past environment into a different 
being and is therefore adjustable to its environment within its individual lifetime" 
[Weiner 1969]. If a system was empowered to learn, this learning could be 
programmed as ontogenetic (of the individual) or phylogenetic (of the race, or in the 
object-orientated case, of the class). 
 

 

 

 
 

 11.2— 
Grouping  

 

 

 

 

 
 



 

 

The title of Craig Reynold's stimulating paper 'Flocks, herds and schools: a distributed 
behavioural model' [1987] goes straight to the heart of the grouping issue. It 
immediately conjures up a vivid mental picture of natural groups with which we are all 
familiar, and points to the problem of understanding how a collection of individual 
intelligences can combine to create a group with a single behavioural momentum. He 
concerns himself primarily with flocking birds, describing a flock as a group of objects 
that exhibit the general class of polarised, non-colliding, aggregate motion (the term 
'polarisation' is from zoology, meaning alignment of animal groups). He points out, 
however, how small modifications to his model renders it suitable for describing 
schools of fish, herds of animals, hybrid groups of imaginary creatures or even traffic 
patterns. 

  
 
 

 
 

 

Natural grouping appears to arise from an instinctive belief that company is preferable 
to isolation. The 'safety in numbers' philosophy is of proven effect against predators. As 
an example, the number of animals in the vulnerable perimeter of a herd under attack 
by lions increases by only a linear factor when the total herd size increases by the 
square of the factor. (Grouping is, perhaps, less helpful to lemmings?) Whilst the 
motivation for grouping is an interesting and complex study, it might not be a 
necessary part of a simulation. If it is possible to deduce positional rules from the 
observation of natural grouping, then the application of these rules will result in a 
satisfactory mimicking of the grouping, whether of ants or commuters, bypassing the 
behavioural rationale. It is equally possible to contrive groupings in a system of actors 
by applying purely invented rules, so that starlings could 'flock' in a perfect cube with 
geometric precision, or particles could group in the form of a house (or of a starling). 
 

 

 

 
 

 

Reynolds points out that "a flock exhibits many contrasts. It is made up of discrete 
birds yet overall motion seems fluid: it is simple in concept yet is so visually complex. 
It seems randomly arrayed and yet is magnificently synchronised. Perhaps most 
puzzling is the strong impression of unintentional, centralised control. Yet all evidence 
indicates that flock motion must be merely the aggregate result of the actions of 
individual animals, each acting solely on the basis of its own local perception of the 
world." A large number of individual intelligences subordinate their identity to the 
group gestalt, to a corporate intelligence. It might be considered as a particularly 
focused example of similar behaviour in human society, and perhaps as a prerequisite 
for, or even definition of, a society. It is highlighted in 'mob rule', 'team spirit' and 
warfare, but is also present in more mundane activities such as queuing or building 
communities. 
 

 

 

  
 



 

Controlling the movement of a flock by scripting is clearly too complex in all but the 
simplest case, but a rule-based dynamic system should deal with it easily, in principle. 
Matching nature's 'constant time algorithm' is rather more difficult. With a constant 
time algorithm the speed of computation would not increase with the size of the flock, 
though in nature, of course, each additional flock member brings its own processor 
with it. A behavioural routine, however, which requires a comparison to be made with 
every other flock member, increases in work required as the square of the flock's 
population. 
 

 

 

 
 

 
As a first attempt at simulating a natural group, it would be possible to control the path 
of an individual group member and require the other members to follow the leader, or, 
perhaps, surround the leader (Fig 11.2a). 
 

 

 

 
 

 

 
 

 

 

Fig 11.2a 
The view from within Craig Reynold's flock  

(courtesy of Craig W. Reynolds, Symbolics, Inc.) 
  
 



 

 

The weakness of such a model would be revealed when obstacles were encountered, 
since the leader's avoidance of an obstacle would not guarantee that those surrounding 
him also avoided collision. It would certainly not permit a flock to split up and reform, 
in order to pass an obstacle as birds would. Another model might build attraction and 
repulsion (or negative attraction) fields around group members, which would bring 
them into a group but maintain a predetermined optimum gap between members. At the 
moment when all the fields had been brought to zero then the group would represent a 
'relaxation' solution to the fields' constraints, but the same collision dilemma remains. 

  
 
 

 
 

 

An expert system could provide rules which members must observe, but, in an open 
system, there is no guarantee that conflicts would not arise between the constraints 
proposed by the rules. Reynolds [1986] points out (in another context) that isolated 
constraints are easy to maintain, but multiple, interacting constraints can prove more 
difficult, if not impossible, to satisfy. This is because solving one constraint might 
violate another. A constraint system can be diagrammed as a network of dependencies. 
If the dependency diagram for a given situation forms an acyclic graph (no loops) it is 
possible to maintain all constraints simultaneously; but if there are cyclic dependencies 
it may be impossible to fully satisfy all the constraints at one time. 
 

 

 

 

 

 The rules Reynolds requires to be observed in his flock model, in decreasing order of 
precedence are: 
 

 

 

 
 
 1. collision avoidance: avoid collisions with nearby flockmates;
 

 

 

 
 
 2. velocity matching: attempt to match velocity with nearby flockmates;  
 

 

 

 

 

 
 3. flock centring: attempt to stay close to nearby flockmates.
 

 

 

  
 



 

 

He points out that static collision avoidance and dynamic velocity matching are 
complementary, and that 'nearby' is a key word as it indicates that a flock member 
navigates by a local view of the world, rather than all flockmates being directly 
responsive to a single source of stimuli. He then goes on to explain how the flock rules 
are enforced by prioritised acceleration allocation. This is the means of handling the 
suggestions about which way to steer, which are generated by the three behavioural 
urges described by the rules. The easiest way to combine acceleration requests is to 
average them, and because they have 'strength' factors according to priority in a 
particular dynamic set of conditions this becomes a weighted average. This apparently 
produces reasonable results (Fig 11.2b) except in a crisis, when conflicts require a 
speedy solution. 

  
 
 

 
 

 

 

 



  
 

Fig 11.2b 
The flock maintains its identity whilst negotiating  

obstacles (courtesy of Craig W. Reynolds, Symbolics, Inc..) 

  

This is because acceleration requests lying in roughly opposite directions will largely 
cancel out and give rise to a very small turn which may not be sufficient to avoid a 
collision. 
 
 

 
 

 

Prioritised acceleration allocation improves on this by considering requests in priority 
order and adding them into an accumulator, the magnitude of the request being added 
into another accumulator. The process continues until all the available acceleration is 
used, having ensured that the most pressing needs have been given as much 
acceleration as they need (or as is available). Reynolds found that an interesting result 
of his experiments was the discovery that a limited localised view of the world is 
actually a requirement for flocking. 
 

 

 

 
 

 

An interesting, but apparently undocumented, project at Atari Systems Research is 
referred to by Wilhelms [1987a] and Reynolds [1986]. Unofficially nicknamed 
''fishbrains", it sought to create a dynamic aquarium simulation. Reynolds says of it that 
"an important aspect of the design of the characters was that they were required to react 
to each other in a variety of ways. One solution was to provide each character with a 
fair amount of internal state - the fishbrains might be hungry or full, alert or tired, calm 
or frightened". This brings into the arena the additional option of behavioural response 
determined by changing internal state, and it is interesting to speculate about a group 
response based on the internal state of its individual members. 
 

 

 

 
 

 11.3— 
Goal Seeking  

 

 

 

 

  
 



 

 

In the context of movement control, the term 'goal seeking' is usually used to describe 
the progress through space of an object, from its starting position to its target position, 
encompassing its attempts to navigate an efficient, collision free route. It can also refer 
to its attempts to reach a more comprehensive target state which might include, for 
example, having accomplished tasks en route, or changed shape. The attempt to find a 
route is also known as 'trajectory planning' and this has been defined by Brady [1982] 
as the process of converting a task description into a trajectory. A trajectory is defined 
as a sequence of positions, velocities and accelerations. As the trajectory is executed, 
the tip of the end effector traces a curve in space and changes its orientation. This curve 
is called the path of the trajectory. 

  

Intention in a system implies a future dimension. A system including goal seeking can 
not, therefore, be fully described by its past and present states alone. The two 
perspectives that can be taken on goal seeking are either that of the object itself or that of 
God: in the first instance each problem is navigated as it is reached, in the second 
instance an overview allows the whole journey to be mapped out in advance. This is an 
unrealistically complicated view to take in a dynamic simulation, and is usually 
employed only when negotiating a fixed environment with a single object. It might, 
however, be possible to have a basic overview which is updated in the light of 
experience. 
 
 

 

 

 

An holistic approach to determining the optimal path is preferable, because although 
the shortest route between two points is the sum of the shortest sub-routes, the optimal 
path to a more complex goal is not necessarily made up of optimal sub-paths (the best 
team is not made up of the best individual players). It implies, however, a global 
perspective, with the problems already expressed, though it can be useful in many 
situations. 
 

 

 

 
 

 

Obstacle detection is required in advance in order to implement a diversion, and can be 
carried out with an 'inflated' bounding box, either around the obstacle, or, more usually, 
around the actor. The degree of inflation determines how much warning is given of a 
forthcoming collision, i.e. a box much larger than the actor recognises imminent 
collisions earlier than one which is a snug fit. Whilst a spherical bounding box would 
be simple, and may be appropriate around an obstacle, a forward weighted system 
(corresponding to forward vision) seems more suitable for a moving actor. It could be a 
sphere transposed forward along the actor's direction vector, a cone (tapering towards 
the actor) or a shape more closely matching a particular range of vision. 
 

 

 

 



 

  

 

Having recognised the presence of an obstacle, it is necessary to decide what the actor's 
'view' of it should be. Should it be that of a blind man with a stick - knowing something 
is there, but not what it is; or that of the local god - knowing the full dimensions and 
position of the obstruction; or that of a camera - able to see the edges of the obstacle in 
each direction, but not able to see what is around the corner. The efficiency with which 
a path can be planned is determined by the amount of information available to the 
navigator. If the information is not complete then the path will be designed at random, 
or by algorithm (where a solution is guaranteed by following a defined set of rules or 
instructions [Simons 1984]), or by heuristic (using empirical strategies akin to 'rules of 
thumb' [Simons 1984]), with the option of allowing the actor to learn from his 
mistakes. Learning, problem solving, decision making and their application to path-
finding, are all areas of interest within the fields of artificial intelligence, cybernetics 
and robotics. 

  
 
 

 
 

 

If the obstacle is not stationary then some understanding of its own path must enter into 
the calculations, and if the moving obstacle is credited with a level of intelligence then 
it might even be necessary to consider its motives for taking a particular course. If two 
actors are trying to avoid one another, and are applying exactly the same rules to the 
problem, they can reach an impasse, escape from which may only be possible if their 
rules introduce a random factor at an appropriate moment. 
 

 

 

 

 

 

It is likely that avoidance of the obstacle will not be the actor's only criterion. If other 
factors, such as grouping rules or the need (in a production environment) to be in a 
particular position at a particular frame, also need to be considered, then further control 
is necessary. It might then be appropriate to refer the problem to an arbitration function 
which can then try to resolve the differing desires. Similarly, if the actor has limited 
motor resources at his disposal, then it will be necessary for some agency to apportion 
them in the best way, having knowledge of what is 'best' in a given situation. This is the 
case with the flocks of Reynolds [1987]. 
 

 

 

 
 

 11.4— 
Vision  

 

 

 

 

 
 



 

 

Synthetic vision provides a means of supplying the actor with a valuable input for his 
use in dealing with a range of situations. If an actor can ''see", the knowledge of the 
environment that he acquires is substantial and can be used for much more than for his 
obvious navigational advantage. If you think of the uses you make of your own sight, it 
is clear that the sense is of vital importance to our normal functioning (regardless of the 
fact that other senses, and devices, can partly substitute in its absence). The nature of 
the artificial vision with which our actor is imbued need not match that of a human to 
be useful, but could ultimately be wider ranging, extending, for instance, to a broader 
band of the electromagnetic spectrum than the human eye can see. 

  
 
 

 
 

 

It is likely, however, that an early goal of an artificial vision system for a mobile actor 
will be obstacle recognition, and the handling of the subsequent avoidance, as already 
mentioned. It is also probable that the vision will initially be passive rather than 
controlled, i.e. the visual sensory mechanism will have a fixed relationship to the actor, 
rather than having the ability to 'look' in different directions and to focus. The actor will 
indiscriminately receive information within the limits set by the system parameters 
(which, in the case of a spherical bounding box model of vision, would be 
omnidirectional). Researchers in the field of robotics, as well as in our own, have 
looked at the vision of humans, birds, insects and fish, but have been less interested in 
duplicating the mechanism as in duplicating the effect. 
 

 

 

 

 

 

Renault [1990] describes a system based on Displacement Local Automata (DLAs). 
These are similar to scripts written to describe specific instances, and which contain the 
information necessary to generate a suitable response. The script concept was 
introduced in the area of natural language processing, an example of a script being the 
attempt to book a hotel room, where all the actions and responses relating to that 
limited domain are specified (from entering the hotel, through conversing with the 
reception clerk, to finding the room). At a high level it is necessary to have specific 
knowledge corresponding to the current situation, unlike the basically algorithmic 
handling of perception and navigation at a low level. In the case of Renault's actor the 
task is to move automatically in a corridor avoiding objects and other synthetic actors, 
and to that end his DLAs include 'displacement-in-a-corridor', 'obstacle-avoidance', 
'crossing-with-another-synthetic-actor' and 'passage-of-a-door'. The DLA concept 
permits the description grain (the level of detail) to be increased and decreased by 
tuning a more general DLA, and allows simple situations to be dealt with by combining 
DLAs. 
 

 

 

  
 



 

 

The DLAs must either activate themselves (perhaps having identified the need from a 
situation 'chalked' on a 'blackboard') or be activated by another agent - a controller. In 
the first case, the DLA would be responsible for taking relevant action (and possibly 
coordinating that action with those of other DLAs which are operating), in the second 
instance (as used by Renault) the controller is the thinking part of the system. The DLA 
method has proved capable of dealing with collision avoidance in a dynamic 
environment and Renault concludes of the project that "this is certainly a new 
interesting vivarium for artificial intelligence". 

  
 
 

 
 

 11.5— 
Stimulus-Response Animation
 

 

 

 
 

 

The behaviour of an actor can be described in terms of his response to stimuli within 
his environment and that response may be qualified by his internal state (if he is 
credited with one). It is described in psychological literature how simple movements of 
geometric objects can be interpreted by observers as the intentioned behaviour of 
intelligent/emotional creatures [Lethbridge 1989], and the movement of objects as 
simple as particles becomes mysteriously organic when the rules governing the 
movement are hidden [Mealing 1989]. It is intriguing to see how simple rules 
mimicking animal behaviour (such as moving towards the light, avoiding obstacles), 
and mimicking internal states (such as hunger and anger) can interact to produce 
complex movement patterns which give the appearance of animate intelligence. 
 

 

 

 
 

 

It might be that a system capable of causing actors to respond according to stimuli 
could be used to simulate animal behaviour, though the understanding of the 
mechanism of such behaviour is incomplete, and could be expected to provide no more 
than an external approximation. This level of simulation, however, could be used in the 
construction of animations where actors, or groups of actors, were given behavioural 
traits and left to interact with themselves and with their environment. These 
behavioural traits could exist in conjunction with dynamic behaviour and constraints, 
and provide a behavioural 'background' for task-directed control. 
 

 

 

  
 



 

 

The actors could be given the 'virtual' senses with which to recognise a range of 
stimuli, corresponding to (or extending beyond) those recognised by a higher animal. 
As well as 'seeing' the position, size, colour and direction of obstacles and fellow 
actors, sounds could be 'heard', winds 'felt', emotions 'sensed', and invisible scalar fields 
(such as of barometric pressure or population density) recognised. The potential 
responses could be simply directional, using internal motors, or more comprehensive 
such as changing form or colour. Movement in any direction might be qualified by 
low-level routines defining gait patterns or other motion characteristics, so the 
stimulus-response (s-r) level of animation could be used to drive complex actors with 
their own embedded motion rules. The ability of the actor to sense his environment 
might be modelled in different ways, with different degrees of correspondence to the 
real world. For instance the actor in a 'sensory' world can be constantly aware of his 
surroundings, but in an object-orientated world must rely on messages being passed 
between himself and his environment. Lethbridge [1989] points out that the external 
metaphor need not map to the algorithm used internally. 

  
 
 

 
 

 

Wilhelms [1989] describes a method of interactively implementing behavioural control, 
by providing an interface which allows the operator to map between sensors and 
effectors present in the objects (the effectors usually have the effect of the internal 
motors described already, but could alter other qualities). Since both sensors and 
effectors can be present in different parts of the object, different sensors will 
simultaneously register different distances from an obstacle, and the appropriate 
effectors will receive different strength inputs which will contribute to avoidance of the 
obstacle. Sensors and effectors are connected through nodes (which are functions that 
can modify the signals passing through them) thus forming a network. A diagram of the 
network can be interactively modified by the user to set the behaviour which will 
control the animation. The sensors respond according to their location and orientation 
on the object, according to their distance from the stimulus, and according to the range 
of simultaneous stimuli present. 
 

 

 

  
 



 

 

Having nodes between the sensors and effectors permits more complex mappings than 
if they were directly connected, as the parameters of the node function can be altered to 
fine-tune the response. The nodes can have multiple input and output connections to 
accommodate a rich variety of connections to the (potentially) multiple sensor outputs 
and effector inputs. A range of node types is implemented, such as an 'avoid' node 
which passes output values that increase exponentially as objects approach. Another 
node type is 'random', which can break up cycles that can occur and also take the 
smoothness out of a motion. (It is interesting to compare with Lethbridge [1989] who 
avoids stochastics on the grounds that the complexity of his stimulus environment 
makes repetitive behaviour rare. His concern, in that instance, is with the appearance of 
the behaviour, Wilhelms' [1989] is with the appearance of the movement.) 

  

11.6— 
Arbitration  

 
 

 
 

 

The potential conflicts of interest in behavioural systems between, for instance, 
pursuing a target, avoiding a collision and refuelling (or feeding), require a mechanism 
to arbitrate on simultaneous requests to response devices. The subtlety required of this 
arbitration increases with the number and range of the inputs to it, and must play a 
large part in the apparent conviction of the system's behaviour. 
 

 

 

 
 

 

Consider how the complex human system copes with meeting an oncoming human in a 
doorway. The need for collision avoidance is clear to both pedestrians, but the means of 
achieving it requires (usually unspoken) co-operation. Often one party will step aside 
due to a decision based on the dress, sex, age or manner of the other (and conditioned 
by background, training and experience), but both parties may either step aside or step 
forward (their behavioural systems are balanced?), in which case a fresh assessment of 
the situation is made. We have probably all been in a situation where a short stalemate 
arises from both parties repetitively taking the same action. In an even more 
anonymous situation such as confronting someone on a pavement, who moves left, who 
moves right and who carries straight on? How far apart are the first evasive measures 
initiated? How seldom do you actually make contact with someone on a crowded 
pavement? 
 

 

 

 
 

 11.7— 
Conclusion  

 

 

 

 



 
 

 
 

We are moving towards a high level of animation control, which might be closer to the 
direction given to human actors. An actor can be given a goal, which might be merely 
positional - "reach XYZ", or perhaps rather more philosophical - "survive". He can 
'know' the rules governing his existence - to avoid collisions, to eat actors half his size. 
His responses can be modified by age and anger. He can be 'conditioned' to operate as a 
communal or a lone organism. If his performance is not satisfactory, the 'director' can 
amend his motivation and replay the scene. 

 



Chapter 12— 
State-of-the-Art: 
Synthetic Humans 

 

 
 

 

 

 

One of the longest standing goals in computer animation is the lifelike simulation of 
human beings. Each year the films shown at conferences such as SIGGRAPH illustrate 
research developments taking us nearer that goal, and in the last few years a number of 
the improvements have, for the first time, been very convincing. Human gait is an 
example where one cannot now, within a limited range, distinguish current computer 
simulation from animation rotascoped from film of a live figure. The search for means 
of simulating humans also feeds a more general aspiration to create believable fantasy 
figures, which are often built from exaggerations of human form. 
 

 

 

 
 

 
 

The human being is a complex, potentially self-propelled object. It comes in a variety 
of sizes and in two main types (or 'sexes'). It comprises a large, roughly symmetrical 
collection of articulated components in proportions which vary with age and sex. The 
joints are constrained in their range of movements, the skeletal levers are powered by 
groups of muscles inside the convex hull and the whole structure is covered by a 
flexible membrane (or 'skin'). The thickness, taughtness and texture of the membrane, 
the constraint limits of joints, and the relationship of components in a neutral state (or 
'posture') all vary with age, sex and environmental conditioning. All these factors effect 
the efficiency and style variation of the object's mobility pattern (or 'gait). Additionally 
the colour of the object is conditioned by racial, genetic and environmental factors. 

  

The object has motivation and emotions, is goal-directed, enters into complex spatial and 
psychological relationships with other like objects and with the rest of its environment, 
and is self-reproducing. It gathers information from its environment through senses 
including tactile, auditory and visual, it learns, it makes decisions based on current and 
past states, and it can operate in conjunction with others of its species to arrive at 
corporate decisions. It obeys complex grouping rules and communicates through 
language and expression. We may need to recognise that it is often clothed. It is not 
going to be easily modelled using cubes. 
 
 

  
 



 

Even this rudimentary description of some of the more obvious features of a human 
being, makes it immediately clear that the task of synthesising such an object is going 
to be formidable. Synthesis is "the process of combining objects or ideas into a 
complex whole" (Collins English Dictionary) and it is apparent that the construction of 
the complex whole needs to be decomposed into a number of manageable sub-tasks. 
We will look here at the current state of resolution of some of these sub-problems, 
discover that a number of disciplines are involved in their solution, and will later 
extrapolate into the near future. 
 

 

 

 
 

 

The minimum properties that the synthetic human should possess will vary according 
to the situation in which it is to be used. In order to make an ergonomic evaluation of 
an environment the figure does not need expression or colour, for example, and may 
not require any sophisticated modelling of skin. To be viable as a surgical model, the 
figure might need a full set of internal organs, perhaps including circulating blood, but 
may not need any mobility or speech facility. To recreate a scene from a soap opera, 
the external appearance of the figure might have a high priority, with intelligence far 
less important. 
 

 

 

 

 

 
 

Boisvert [1989] suggests that synthetic actors should match the appearance and 
behaviour of real persons, have their own personality, be directed by task level 
commands, be conscious of their environment, be able to walk, speak, have emotions 
and grasp objects, and that their faces should naturally deform during motions. This is 
not a complete list of attributes, but includes many that would be desirable in an actor 
available for an animation. He also adds, provocatively, that existing people, dead or 
alive, can be recreated as synthetic actors, and his point is illustrated with an animation 
of a synthetic Marilyn Monroe. 

  

12.1— 
Locomotion  

 
 

  
 



 

Making a character walk must be one of the oldest problems in animation, and one of 
the primary means of establishing characterisation. The exaggerated gaits of Felix the 
Cat, Popeye, Roadrunner and other cartoon characters immediately give us strong clues 
about the actor's identity, and the gait definition is often arrived at by extrapolating 
from the animator's first hand experience of the root character. In the early days of the 
Wait Disney studios, even the most senior animators were required to attend life 
drawing classes in which the models were animals, and Bambi was derived from direct 
observation of young deer brought into the film studio and drawn from life. For any 
animator there can be no substitute for looking and drawing, and even photography 
should be an addition rather than a replacement. Even the characterisation of an 
anglepoise lamp in "Luxo Jnr." must owe a lot to the artist's observation of people and 
things moving in the real world. 
 

 

 

 
 

 

It is easier, however, to make a potato walk 'convincingly' than to make a human figure 
walk in a believable manner. This is because we have so much first and second hand 
experience of walking that we instinctively recognise any aberrations in the complex 
gait cycle. For this reason it is often the human characters in a cartoon that are the least 
effective. Rotascoping (tracing off film) is one way of improving the appearance of the 
motion, but this requires film to have been shot from all the angles which will later be 
required to be drawn. Kinematic rules can be derived, which are visually credible, but 
which increase in complexity as the changes involved in walking uphill, downhill, or 
on a camber are added. Consider deriving rules to explain the changing stride pattern of 
an accelerating horse! 
 

 

 

 
 

 
 

These walking rules for a simple figure are proposed by Peter Balch [1989a]: Each leg 
is either down on the ground or up off it. If one leg is down, the other must be up. If the 
up foot is more than a certain distance in front of the point below the centre of the body 
then we start to place it down on the ground. Similarly if the down foot is more than the 
same distance behind the point below the centre of the body then we start to lift it up. 
On level ground, this 'certain distance' is one half of the step length. If the ground 
slopes the distance is lessened by the difference in heights under the two feet. If the 
foot is up and is in front of the centre of the body, it moves forward at twice the speed 
of body movement. If it is up and is behind the centre of the body, it moves forward at 
such a rate that it will be directly under the body just as the other foot passes under the 
centre. (This helps keep both legs in antiphase.) The body moves forward at a constant 
rate and the down leg is kept straight. The height of the up foot increases linearly as the 
foot rises, stays constant, then decreases linearly as the foot is put down. 

  
 
 

  
 



 

Whilst a skilled animator can achieve a passable appearance of human locomotion, he 
must either produce a large number of key frames or specify in terms of joint rotations 
over time. The latter method requires coordination of movements within each limb, 
within the body as a whole, and a recognition of the figure's interaction with its 
environment. The complexity of specifying walking kinematically is very great and to 
be a realistic option requires inverse kinematic algorithms to work backwards from the 
end position to produce suitable joint angles. This is far from intuitive, and often 
specified in terms of forces and torques, whilst the animator will usually want to 
describe the desired locomotion at a high level, in terms of obvious visual 
characteristics. (This is, of course, making presumptions about the uses that are likely 
to be made of such a system. Instead of the implied animator merely requiring the 
appearance of a figure walking, the application could be medical or ergonomic, in 
which case the specification of forces and torques might be appropriate.) Although 
movements like walking and running are conceptually well understood, a complete 
dynamic solution is complicated by problems like balance and coordination. On the 
other hand, kinematic animation tend can prove inflexible and tends to produce a 
weightless, unrealistic movement, and a system combining dynamic and kinematic 
would be helpful. 
 

 

 

 
 

 
 

KLAW (Keyframe-Less Animation of Walking) is a system developed by Bruderlin 
[1989] which uses dynamic analysis to deal with movement control but allows high 
level specification. The operator determines the velocity, step length and step 
frequency and can set 28 ''locomotion attributes" which individualise the gait (such as 
lateral distance between the feet and list of the pelvis). The business of moving the 
figure using the parameters defined by the operator is dealt with by dynamics and the 
system proves to produce extremely convincing movement. It deals satisfactorily with 
starting, stopping and with changing stride lengths and tempos, though modifications to 
the dynamic model would be required for running. It is also suggested that it would 
adapt to modelling locomotion systems with more than two legs, and is being extended 
to deal with other motion tasks, such as grasping, standing up and turning. 

  
 
 

  
 



 

An interesting diversion from the problem of legged locomotion is attempting to mimic 
the motion of legless creatures such as worms and snakes. Gavin Miller [1988] 
simulates the movement with a simple mass spring model. Directional friction allows 
the leading mass to move forward as the spring expands, and allows the trailing mass to 
move forward when the spring contracts, a number of spring mass sections linked 
together becoming a worm. By keeping the total volume of the worm constant, the 
contracting sections bulge and the stretching sections narrow. A snake's skeleton leads 
to a different movement pattern from a worm, and is simulated on the mass spring 
model by sending compression waves down each side of the model 180 degrees out of 
phase. The model is responsive to changes in grip, and to external forces such as 
gravity, and is very realistic in simulating the three most common of the four basic 
ways in which a snake moves. The realism is clear in the animations "Eric the dynamic 
worm", "Her Majesty's secret serpent" and ''The Audition" by Miller. 
 

 

 

 
 

 12.2— 
Tasks  

 

 

 

 

 
 

 
 

It would be useless to choreograph the figure without reference to its environment. In a 
constraint based system the orientation of each body part can be specified relative to its 
neighbours or to the actor coordinate system or the world. The gesture of a hand may 
be defined relative to the arm, but for a foot to be flat on the floor, it must reference the 
world coordinate system regardless of the orientation of the pelvis [Boisvert 1989]. 
Even the most commonplace of tasks involving our synthetic actor, is likely to require 
his interaction with the rest of his world, and this is likely to require the solution of 
many apparently simple problems. What could be simpler than closing the door, sitting 
down in an armchair and picking up a cup of tea? If you try and explain how you 
manage to accomplish these tasks, they start to sound anything but simple, yet are dealt 
with in real life at an almost reflex level. It is also true that authentic movement is 
about far more than just mechanics, experience playing a big part in causing toddlers to 
walk differently from adults, for example, and a synthetic human might even benefit 
from learning how to use his limbs by trial and error. 

  
 
 

  
 



 

It would often be desirable for the animator to specify movement with commands such 
as ''sit down" and "close the door", but there is no single sequence of movements which 
will satisfy either of these instructions in more than one case. In each instance, the 
spatial position and current pose of the actor will effect his response, as will the 
position, height and orientation of the chair or door. A solution requires both cognitive 
and motor problem solving [Zeltzer 1988]. An application which would immediately 
benefit from the solution of this problem is that of ergonomic environment evaluation, 
such as occurs in the design of an aircraft cockpit. 
 

 

 

 
 

 

Badler [1990] describes the problems of ergonomic simulation and evaluation by what 
is now called a 'human factors engineer'. In his system he works with a seventeen 
section torso, with each section having its own joint limits, and as well as being able to 
watch the figure attempt a task within its domain, it is possible to see the figure's view. 
Objects seen by foveal and peripheral vision can be distinguished. A task for the figure, 
such as taking a load from a surface in front of it and lifting it above its head, can be 
modified by changing the figure's strength or the load's weight. It is fascinating to see 
that these changes lead to the adoption of changing motion strategies, rather than with 
just repetition of the same movement path through the action. You don't try and lift a 
hundredweight the same way as a pound, it is necessary to bring a heavy load closer to 
the body than a light one, before raising it up. In this model it is possible to measure 
and display the comfort/discomfort levels of the figure, and the torques at each moment 
in any joint, in all degrees of freedom. "The strength model dictates acceptable 
kinematic postures. The resulting algorithm offers torque control without the tedious 
user expression of driving forces under a dynamic model" [Lee 1990]. (Instinctive 
anticipation of a the weight of a load is also a factor in real life, and a mistake at this 
pre-lift stage can prove disastrous, since experience will have lead to muscles being 
primed to counteract the expected load.) 
 

 

 

  
 



 

A discipline which is centred on human movement is ballet, and a number of people 
have attempted to use the computer as a choreographic aid. Whilst no systems have 
(yet) come close to matching the subtlety and expression of real dancers, they can be 
effectively used to plan and animate dance sequences. The relative crudeness of the 
animation, however, probably requires an experienced eye to be able to extrapolate 
from it to a human performance. COMPOSE is an interactive system for the 
composition of dance from menus of postures and sequences [Schiphorst 1990] which 
addresses itself to the provision of a suitable environment for the creative process in 
this context. A specific attempt is made, therefore, to allow the artist to engage and 
interact with the idea, rather than with the tools of the interface. Whilst one would hope 
this was always the case, it is particularly important in an environment such as this that 
the animator is not constrained by having to deal with the mechanics of articulation. 
The rationale behind animation in this context is quite different from that implied in the 
previous part of the chapter. The task could, perhaps, be described as 'inverse scripting', 
in that the process is not concerned with acting out of a pre-existing script but with 
composing a script by interaction with the screen dancers and (probably) a piece of 
music. 
 

 

 

 
 

 

The COMPOSE main screen shows a menu of simple figures, from a library of 500 
stances, an adjustable view of the stage area, and a range of menus and controls. For 
each scene the dancers' stances are positioned using the mouse, and their facings 
adjusted, with the option of creating fresh postures by interactively positioning the 
limbs and torso of a figure on a second 'body' screen. Composition can be created 
spatially on the stage or temporally in a timeline; splines are fitted to a mouse-drawn 
movement path, and can be edited; the timing is initially linear but can be subsequently 
adjusted. It is intended to develop a knowledge base for the system together with the 
ability to reason about the knowledge contained in it, so that the system will develop 
level of intelligence. 
 

 

 

 
 

 12.3— 
Appearance  

 

 

 

 

  
 



 

 

Once models have started to deal satisfactorily with the mechanics of human 
movement, it becomes a higher priority to investigate the subtleties of surface change 
brought about by that movement. Another little gem from the researchers in Ohio is 
"Bragger Bones" [Chadwick 1989]. This hip little cartoon character swaggers down the 
street (in his SIGGRAPH t-shirt and shades!) with biceps bulging as his arms flex and 
with cheeks puffing out and relaxing. As well as increasing realism in an animation, the 
ability of the surface of the figure to deform in accordance with internal and external 
forces is in the great cartoon tradition of elephants inflating into balloons and cats being 
squashed paper thin under ten ton weights. The prototype system ("Critter"), which 
produced Bragger Bones, builds the figure in physical (and conceptual) layers. These 
layers maintain a relationship defined by parametric constraints and describe how the 
figure moves in general in response to specifically defined movements. By putting a lot 
of emphasis on defining the layers and their relationship, the animation can be scripted 
at a high level and the lower levels can look after themselves. 

  
 
 

 
 

 

The four layers defined for Critter are: the behaviour layer, at which motion is 
specified; the foundation layer, where the skeleton is found; the shape transition layer, 
where the muscle and fatty tissue are found; and the surface layer, where Critter has 
skin, fur or clothing. The muscle layer surrounding the skeleton is distorted by Free 
Form Deformation (FFD). This method surrounds the object with a three-dimensional, 
cubic lattice which deforms like a jelly (jello) cube, distorting objects embedded in it 
accordingly. 
 

 

 

 
 

 

Surprisingly, perhaps, since the geometry of the area seems easier to understand than 
much of the face, the eyes are the least convincing part of many facial models. It may 
be that eye contact is such an important part of human interaction that we are 
particularly familiar with that region of the face. Also that we are skilled at making 
intuitive interpretations of mood from subtle eye-area clues, and are, therefore, more 
tuned to representational deficiencies. This might provide a clue to the practical 
problems of satisfactorily modelling a human. Not that we fully match all its visual 
properties (although that is an ultimate aim) but that we devote most care and attention 
to the features which are most telling in real-life observation. How many people could 
you recognise by their eyes alone? how many fewer by their ears? how many with 
paper bags over their heads? 
 

 

 

  
 



 

 

I remember seeing on exhibition stands a few years ago, stationary figures 
convincingly giving a sales monologue for the product they represented. On closer 
inspection they proved to be immobile white models on whose faces were projected 
movie film of a real actor speaking the lines. They remained convincing after the 
artifice was revealed, and demonstrated how strong the right visual clues can be. 

  

12.4— 
Facial Animation  

 
 

 
 

 

A major vehicle for communicating the internal state of a person is the face (Fig 12.4). 
Emotions are expressed by variations of the surface topology, the lips and mouth 
externalise speech and the general topology distinguishes one person from another. To 
be able to convey anger, happiness or fear is a challenging task, and to recreate the 
appearance of speech another. Both are being attempted with some degree of 
resolution, and the vision of a synthetic human actor, driven only by a Shakespearean 
text, is not wholly remote. 
 

 

 

 

 

 

The first obvious problem in creating a facial animation, is getting the data from which 
to construct the face model. Measurements of a real face can be taken with a laser scan 
or other 3-D digitising technology, but a method accessible enough for anyone to use is 
photographic. The subject's face can be divided into suitable polygons drawn onto the 
skin, and photographed in front view and side view. The X,Y values of the points 
making up the polygons can be extracted from the front view and the Z values added by 
matching the points in the side view. It might be acceptable to build just one side of a 
face and mirror it along a vertical axis to create the entire face, since in a model such as 
Keith Waters' [1987] it will be possible to operate the muscles on each side of the face 
independently. 
 

 

 

  
 



 

But how should the division of the face into polygons be established? In a static model 
it is only necessary to deal with changes of surface plane at a degree of subtlety 
appropriate to the rendering method, but if the model is to be animated then the 
articulation or deformation of the polygons must be considered. The underlying 
structure which gives rise to the surface characteristics can be taken into account. Bone, 
subcutaneous fatty tissues and epidermis could all be modelled in the cause of a 
dynamic model [Waters 1989] but the effects of analysing muscle structure and 
deriving muscle vectors alone is impressive. Waters [1987] arrives at "a model for the 
muscles of the face that can be extended to any non-rigid object and is not dependent 
on specific topology or network". 
 

 

 

 
 

 
 

He points out that previous parameterisation techniques have dealt principally with the 
surface characteristics rather than with the underlying dynamics, and that the main 
alternative to parameterisation is key framing. This is very data intensive (as each 
positional extreme, or difference between extremes, has to be completely specified) and
is lacking in the specific manipulation required for subtlety. Amongst other things, his 
model has been applied to the caricatured head of Margaret Thatcher from "Spitting 
Image" (the satirical/political TV puppet show). The Waters [1989] model for facial 
tissue, which offers increased realism, replaces the representation of skin as an 
infinitesimally thin membrane with a three-dimensional lattice. In this, the nodes of the 
lattice are connected by springs (whose conduct is governed by Hooke's law), and by 
varying the spring constants in each of three layers in the lattice, the elasticity of the 
skin can be approximated and muscle action applied. 

  



 
 
 

Fig 12.4 
Facial animation on a Symbolics workstation 

  

 
 

 

The use of a polygonal mesh for mimicking facial soft tissue is used by Pieper [1989] 
in the context of a plastic surgery simulator. This is an application which most people 
would not think of when picking up a book on computer animation, but serves to 
reinforce how diverse are the uses of the discipline. To be able to contribute to the 
health and wellbeing of people requiring cosmetic surgery, or to assist in the training of 
their surgeons, makes all the flying logos seem an acceptable loss-leader. 
 

 

 



 
 

 

A display which has caught the attention at recent exhibitions of computer graphics 
hardware, demonstrates real-time animation of a shaded facial model, in this case on 
Silicon-Graphics hardware. A range of lip, mouth, eyebrow and nostril movements are 
realistically and smoothly variable, and in the hands of an experienced puppeteer 
generate surprising life and character using a simple interface. The team that produced 
this system (The Performance Animation System [deGraf 1989]) also used it to convert 
the oldest living cartoon character, Felix the Cat, to a three-dimensional model, with 
two puppeteers controlling eight different functions using controls such as joysticks 
[Sørenson 1989]. Surprisingly, it was in some ways harder to animate Felix than a 
realistic person, despite the fact that he was basically a sphere plus nose, ears and tufts 
of fur, with eyes and mouth flush to the head. In order to preserve the characterisation 
of the 2-D original, it was necessary for there to be a collection of different mouths for 
different purposes, and for the mouth to slide around the head so that it always faced 
the camera. Using the same system, however, ninety seconds of lip-sync was 
completed for another project in less than a week. 
 

 

 

 

 

 

The localised muscle action controlling the lips and jaw requires special consideration 
in order that realistic synchronisation to speech can be attained. Phonemes (individual 
speech units) can be associated with lip positions, and work with the deaf long ago led 
to the compilation of lip-reading charts. Books on hand drawn cartooning usually 
include illustrations of mouth positions corresponding to speech. It is not sufficient, 
however, merely to match phonemes to textbook lip positions, as the preceding and 
following phonemes must also be considered. 
 

 

 

  
 
 

 
 

 12.5— 
Characterisation 
 

 

 

 

  
 



 

In the context of caricature, it is necessary to focus on, and exaggerate, features which 
characterise an individual; to identify the ways in which the subject deviates most from 
a physical mean, rather than the ways in which he conforms to it. Similarly, a 
characterisation might develop the extremes of expression or behaviour of the 
character. Although this chapter has implied only the accurate simulation of humans 
the animator has it in his power to ammend and distort the simulation. The traditional 
animator's techniques such as "squash" and "stretch" can be applied to models built 
using the methods described here, or joint limitations can be set to allow a knee the 
freedom to bend forward if the animator so chooses. 
 

 

 

 
 

 
 

It is important to recognise that the construction of a synthetic human, in whole or part, 
has merely provided a passive actor ready for direction. Whilst the direction in an 
ergonomic simulation would be imposed by the forces inherent in the scene, direction 
in a narrative context requires creative skills very different from the skills used in 
creating the model. It is disappointing to see how often demonstrations of innovative 
scientific development in our field are let down by poor visual presentation, simply 
because the research basis of the work does not allow for artistic skills in the 
production team. There is no reason why the programmer should expect to be a good 
designer, or the animator should be a skilled computer scientist, but it is necessary to 
recognise when additional skills are required and to acquire or import them. The Pixar 
team (Chapter 2.10) is a classic example of a group containing all the required skills 
and this shines through in their work. 

 



Chapter 13— 
The Future Today 

 

 
 

 
 

 

The pace of development in computing means that predictions about the future are 
likely to be overtaken by fact in months rather than years. Machine speeds seem to 
double every time you open a new computer magazine, storage quadruples and prices 
halve. Today's state-of-the-art is standard in tomorrow's home-micro. When I started 
writing this book I pencilled in a chunk of this 'Future' chapter to describe 'virtual 
reality', which was just emerging, but since then most of the material I proposed has 
been covered in daily newspapers and popular TV science programs. I therefore talk 
about the future in the confident expectation that it will have become history by 
publication day. 
 

 

 

 
 

 13.1— 
Virtual Reality  

 

 

 

 

 

 

 
 

At the 1989 SIGGRAPH conference I saw a man moving objects that weren't there. He 
wasn't a mime artist, and he was neither drunk nor 'high' (or at least if he was it wasn't 
relevant), though what he was doing has immense potential and yet has been likened to 
a dream experience. (It has also been likened to a drug experience though with the 
caveat, expressed at SIGGRAPH '90, that it will take a long time before it 
approximates the price/performance ratio of LSD!) The clue to what he was doing lay 
in the strange electronic mask and glove that he wore. He was trying out the latest 
human/computer interface, the DataGlove. Instead of viewing the representation of a 
three-dimensional computer generated scene on a two-dimensional screen, he was 
entering into the scene itself, and interacting with the objects therein, he had entered a 
'virtual' reality. Picking up one object that wasn't there and stacking it on another that 
wasn't there either, but with total conviction. Spectators were able to follow the results 
of his efforts through a traditional 2-D animated screen display. 

  
 
 

  
 



 

The obvious uses for this infant technology are remarkable, the less obvious uses are 
staggering, and despite the fact that it has only just reached the marketplace in 1989 it 
is expected to revolutionise many disciplines. Surgeons will be able to practice 
convincing operations on 'virtual' patients, astronauts can already practice space 
manoeuvres on the ground, anyone can be a 'virtual' racing driver in his own living 
room, and the animator can define an actor's path through 3-space with a sweep of his 
hand. Whilst the ultimate video game scenario is one promise offered, there are many 
more uses for the DataGlove and its allied technology, both mundane and outrageous. 
You can tell that something quite different is afoot when technical authors start quoting 
Marshall McLuhan, go on to describe the founder of VPL (the DataGlove company) as 
a guru and sage, and feel obliged to mention his dreadlocks. Jaron Lanier is the man in 
question, with Tom Zimmerman and Young Harvill being credited with the invention 
and development of the DataGlove. Virtual reality has grown from concepts such as 
'artificial reality' (a term coined some years back by Myron Krueger) and is currently 
typified by its enabling encumbrances like the glove, mask and suit. 
 

 

 

 
 

 
 

The DataGlove is an input device which is worn like a glove and translates hand and 
finger movements into electric signals. Combined with an absolute position and 
orientation sensor, the glove translates movements made by the operator's hand into 
information which can be used to duplicate the movements in the computer's 3-space. It 
is thus possible to control movement in the computer scene by hand movement, and 
one obvious application is to create a computer model of a hand which can mimic the 
operator's hand. It is then easy to create an object in the computer's scene and to grasp 
it with the model hand which inhabits that same scene, under the control of the 
DataGlove. The glove is also an output device, as tactile-feedback devices can give the 
operator the same touch clues as he would expect from manipulating a real object. 
Whilst the glove can be used with a 2-D VDU screen to display what is happening in 
the scene, this falls short of providing the total control which participation in the 3-D 
scene would give. The glove is therefore used in conjunction with a stereoscopic 
headset which provides a separate screen for each eye and allows the user to look 
around the scene as he would in real life, presenting fresh views as it senses the head 
being moved, and utilising all the spatial depth clues that the user would normally 
expect. 

  
 
 

  
 



 

The gloves can, as you would expect, be used in pairs, and a DataSuit has also been 
constructed to allow the whole body of the operator to interface with the machine. The 
only obvious limitation on the feedback from these devices at the moment is the lack of 
force-feedback. It is possible to feel the surface of an object, but not to feel its weight 
when 'picked up'. A more effective force-feedback device is the 'joystick' built by 
Richard Feldmann of the National Institutes of Health, which is a T-shaped bar held in 
space by nine taut wires. The T-bar can be manipulated by the operator and forces and 
torque feedback can be returned to the operator through tension on the wires. This sort 
of feedback might be essential if the interface was being used to keep its operator out of 
a hazardous environment, for example if containers of radioactive material had to be 
moved by robot under the operator's control. Forces and torques can be applied to a 
hand control, but currently only as part of a substantial machine rather than in the 
compact and mobile form required (Iwata [1990] describes a surface-mounted device 
which applies reaction forces to the fingers and palm of the operator). The possibility 
of using 'memory metals' to push against the skin in the DataGlove has been considered 
as a response to the force-feedback limitation [Foley 1987]. No doubt someone has also 
considered bypassing the body as a feedback interface, and going direct to the brain. 
 

 

 

 
 

 
 

NASA has a team working on virtual reality worlds, which must have at least two 
obvious attractions for them. One is the possibility of rehearsing elements of space 
missions on the ground, and the other is of using parallel environments where an 
astronaut can work in a safe virtual world that mirrors a real world in open space. The 
possibility of control being exercised from a virtual world on the Earth must also have 
been considered, although interactive feedback would be delayed by current signal 
transmission methods. This project, together with the Aspen Movie Map project which 
initiated the research into virtual reality, first used video before moving to computer 
graphics, (the town of Aspen could be toured at will from a computer via a videodisc). 
There are other examples of virtual worlds being used already, for instance the ability 
of architects to 'walk' about buildings that have not yet been constructed, but it is the 
encompassing interactivity of the new technology that sets it apart. 

  
 
 

  
 



 

Sam Kiley described, in The Sunday Times (17 June 1990) an experience in which he 
had 'flown' using the DataGlove technology and added ''The equipment I was playing 
on cost $250,000, but Lanier plans to bring the price down to an affordable level. By 
hooking up with a toymaker, Age Inc. of New York, 18 months from now, Lanier's 
outfit in Silicon Valley could be releasing technology on to the market which could be 
more influential than television and more fun than the telephone - at about half the 
price of a video recorder. Computer buffs predict that by the end of the century, most 
households will have access to computer universes they will create themselves.'' As 
well as being able to build your own dream world to retreat to, there will be off-the-
shelf worlds as accessible as videotapes, in which you will be able to play golf with 
Arnold Palmer and dance with Marilyn Monroe, or vice versa if you prefer. 
 

 

 

 
 

 
 

I am tempted to say that you could BE Palmer or Monroe, in the same way that articles 
describing virtual reality talk about BEING a lobster, for instance. However, whilst 
your body could drive a model of the figure of your choice, you would be acting that 
person rather than feeling what it was like to be them. Of course you might expect to 
share the same reactions from people you meet in your virtual world as would the 
person you are mimicking, and this would constitute part of the feeling of being that 
person. Lanier has broader visions of what you might become. In an interview in Whole 
Earth Review (Fall 1989) he says "The computer that's running the Virtual Reality, will 
use your body's movements to control whatever body you choose to have in Virtual 
Reality, which might be human or might be something quite different. You might very 
well be a mountain range or a galaxy or a pebble on a floor. Or a piano ... I've 
considered being a piano. I'm interested in being musical instruments quite a lot. Also 
you can have musical instruments that play reality in all kinds of ways aside from 
making sound in Virtual Reality. That's another way of describing arbitrary physics. 
With a saxophone you'll be able to play cities and dancing lights, and you'll be able to 
play the herding of buffaloes made of crystal, and you'll be able to play your own body 
and change yourself as you play the saxophone. You could become a comet in the sky 
one moment and then gradually unfold into a spider that's bigger than the planet that 
looks down at all your friends from high above." It is also promised that there will be 
virtual mirrors available in these virtual worlds, which will presumably enable you to 
amend the body you are inhabiting while you watch. 

  
 
 

  
 



 

In a panel session at SIGGRAPH 1990, entitled 'Hip, Hype and Hope - the three faces 
of virtual reality' a number of interesting suggestions were made. Warren Robinette 
was sure that the head mounted device will display to all the senses, the most important
perhaps being sight, hearing, smell and force-feedback. He suggested that the future 
experience would be like the telephone, TV, hi-fi, cinema and video games all rolled 
into one; that it would enable synthetic experience to be superimposed onto the real 
world; that it came close to X-ray vision (think of the virtual surgery example); and that 
anyone's vision could be made available to everyone. His example of the latter, was the 
view from someone on a hill being passed to someone hidden behind the hill to enable 
that person to see 'through' the hill, with obvious military overtones. William Bricken 
suggested, amongst other things, that the cumbersome pixel-view headset would be 
replaced by a device inscribing the image directly on the retina with a low-level laser, 
and that we should be able to address the fabric of space as well as objects in that 
space. He also pointed out that the technology has become commercially available 
before the scientific community understands what it is. The session was at one stage 
described as the most significant event in the history of humanity, and virtual reality as 
the first scientific tool of metaphysics, but it was also pointed out that we are getting 
very excited about something we know next to nothing about (probably only 20 people 
having spent more than 15 hours in VR). 
 

 

 

 
 

 
 

The consequences of believable virtual worlds are mixed and, as yet, little understood. 
Considered superficially as a home entertainment medium they might be more 
addictive than television, but even if they provided further incentive to stay at home 
every night they would require the use of imaginative participation and could be a 
powerful learning medium. As well as trips to your private holiday island (weather at 
your discretion, of course) you could tour the virtual Tate Gallery whenever you chose, 
and your incentive to keep fit might be increased by joining in with Jane Fonda in her 
exercise session. If the virtual world eventually provides a totally convincing sensation, 
will it still be necessary to have the real experience? If all experience can be brought to 
you, what reason will there be to go anywhere? Such questions have already been 
asked in science fiction and soon we might be testing out the answers. As far as the 
present is concerned, we still have the problem of rendering the images representing the 
virtual world in convincing detail at sufficient speed. At the moment the choice is 
between interaction in a simple scene and viewing a post-processed complex scene (a 
current VR system just on the market, at the same cost as a low price workstation, can 
display 30K polygons per second at 20 fps with a resolution of 640 × 400). We can, 
however, confidently assume that hardware improvements will alleviate the problem. 

  
 
 

 
 
 

 13.2— 
Interfaces  

 



  
 

 
 

 

 

Other interface developments that are already being tested present information to the 
user in the form of 'head-up' displays, typically in a pilot's helmet. Representations of 
the scenery the pilot is flying over can be presented with greater clarity than might be 
possible in reality because of weather conditions or night flying. Related data can also 
be presented in the same display as the scene, and the display will follow the pilot's 
head. Eye tracking will allow the pilot to select from menu choices presented with the 
scene, and voice recognition provides another possible input device. The DataGlove 
can be part of a new interface, with pointing or sign language being readily interpreted 
as input. 
 

 

 

 
 

 
 

A head-up display helmet for an aircraft technician might incorporate a mixture of the 
real world of a stripped down engine, a diagrammatic version using VR technology and 
overlays of relevant written instruction. The system would recognise the context of the 
technician's operations and use an expert system to make available appropriate 
information, either visibly or audibly, on request. The ability to access the information 
otherwise held in dozens of manuals, at the moment of need, and in a form which might 
be superimposed on the user's live view of the situation, has equal potential for a 
mechanic, surgeon or football coach. 

  

Flight simulators could easily change from being massive and very expensive mockups 
of real cockpits mounted on hydraulic rams, to individual units comprising DataGloves, 
a headset and a chair driven by small rams. A dozen pilots could all fly the same virtual 
plane at the same time in the same room, and to change aircraft it becomes necessary 
only to change the data file which sets the virtual cockpit display and aircraft 
characteristics. It would not even be necessary to have a real joystick, as a virtual one 
would be indistinguishable. The same system would perhaps be applicable to any seated 
simulation, and with the addition of a DataSuit and force-feedback could be used for any 
simulation at all. The same unit would be used for instructional training and 
entertainment. 
 
 

 
 

 13.3— 
Digital Dough  

 

 

 

 

  
 



 

If a 3-D lattice was created to define an object, then the object could be deformed by 
moving points in that lattice. If the points were interconnected with springs then the 
deformations would transmit through the solid and the consistency of the object could 
be defined by the tension of the springs. (We have already looked at skin models using 
this principle and Sederberg [1986] describes a method for freeform deformation of 
solid geometric models by displacing control points in a surrounding frame.) If we now 
let this object exist in a virtual world accessible to the DataGlove, then it can be hand-
modelled like clay - a sort of digital dough. By putting on the gloves we can squeeze, 
stretch and shape the object like a sculptor, and, by changing the tension of the springs 
at any time, can change the object's consistency. This becomes a much more intuitive 
modelling method than those with a more visible mathematical basis. 
 

 

 

 
 

 13.4— 
ERIC  

 

 

 

 

 
 

 
 

If we take an articulated human figure model, as previously described, and let its parts 
be defined as digital dough, then we have a lay figure which can be hand modelled to 
suit any requirements. We can make it short and fat, tall and skinny, with a big head or 
large feet, can create caricatures or likenesses, and could easily 'tweak' the quantities of 
dough available in any particular area. Once sculpted to taste, the figure can be 
animated using all the existing techniques, including dynamics, but the glove 
technology also offers the option of combining them with interactive positioning. The 
figure could be taken through its movements like a puppet, set in key-frame positions 
which could be interpolated between, even being deformed during the movement. The 
degree of refinement of the figure would be determined by the closeness of the lattice 
points, but since we are looking to the future we can assume the hardware to cope with 
anything. 

  
 
 

 
 

 

We can now create a scene with animated actors as simply as a child can play with 
clay, but with the additional option of using 'traditional' modelling techniques when 
appropriate. We can define characteristics such as gait pattern with 'conventional' 
methods or by real-time demonstration using the figures themselves (the figures have 
become plural, because it is, of course, trivial to clone a crowd). Facial expression can 
be similarly controlled, and artificial intelligence can be attributed as desired. 
 

 

 

  
 



 

It might be useful to have a dynamic articulated figure always available for use from 
within any program. It could wait in the desktop to be called on to demonstrate, or to 
test for ergonomic soundness, equipment designed on the computers, and as this is the 
first task for which it is being considered the ERgonomic figure In our Computer will 
be called ERIC. If ERIC was called with no application running, he would exist in an 
empty three-dimensional desktop world, and if called from within an application, 
would have to map his world to that of the application. He would be controlled and 
rendered by his host application, but we will conveniently ignore the interfacing 
problems involved in doing so. ERIC's digital dough properties would be switchable, 
so that DataGlove techniques could be used to customise your own ERIC (perhaps 
creating an ERICA), but need not be available during his use. His proportions could 
also be entered numerically to ensure the accuracy needed for scientific testing. 
 

 

 

 
 

 
 

He would, of course, be a contestant in computer games, and could be programmed to 
learn if required, or to diplomatically lose to the operator. He could, with his cloned 
siblings, take part in team pursuits, and be used to test out strategies in sports or 
wargames. Networked games would allow you to test your ERIC against anyone else's, 
and events similar to computer chess contests would become common. ERIC and his 
friends would become the animator's flexible actors, capable of being exploded, 
squashed and metamorphosed indefinitely without any problems from unions. They 
might even be persuaded to act out the complete works of Shakespeare that you have 
on disc. As a human/computer interface ERIC might be the perfect go between, being 
able to communicate more eloquently than any icon. 

  
 
 

 
 

 13.5— 
Hardware  

 

 

 

 

 
 

 

Hardware will be faster, smaller, more powerful and, at the same time, cheaper. The 
magnitudes of each change are unpredictable, but looking at the pattern of the past 40 
years suggests an exponential growth curve in many areas. Pocket-sized workstations 
might not get given away free with petrol (what petrol?) but they will become 
commonplace. The resultant increase in portability will not just add to convenience, but 
will change attitudes to computers, an ever-available handheld box losing the 
preciousness of a desk-bound machine available during office hours. Increased 
networking, particularly using telephone and satellite links, moves towards the idea that 
all computers could ultimately be linked to produce a single global machine with 
massive computing power and access to all recorded knowledge. 
 

 

 



 
 

 

Speech input will reduce much of the need for keyboards (currently effecting the 
minimum size of machines) but will not be appropriate in all situations, and a virtual 
keyboard might prove a useful spacesaver. For individual viewing, screens can be built 
into glasses or contact lenses, or perhaps replaced by holographic displays, and 
resolution will be sufficiently high to be indistinguishable from non-electronic media. 
HDTV will soon prepare the general public to expect greater image quality and 
eventually a watercolour and computer generated image could look the same. 
 

 

 

 

 

 

Storage capacity will be massive and solid-state in the relatively near future, and data 
will be stored in very compressed form. Data compression will be one of the first 
hurdles to be crossed in the development of the next generation of systems and it is 
possible that brain-function analogies may lead to new data access techniques, 
providing the additional handling speed that will be required. 
 

 

 

 
 

 
 

Distributed intelligence and parallel processing are likely paradigms if we extrapolate 
from current technologies, but a number of people have speculated on biological 
computers. Durham [1987] suggests that there is nothing implausible about the idea 
that biological processes and materials should be used to construct computing devices 
on a scale 100 or 1000 times smaller than today's VLSI chips. He quotes James 
McLear: "If you took all the information in all the computers existing in the world 
today and used biomolecular technology, it would fit into one sugar cube". Macro-
engineering is being seriously considered as a means of constructing things at an 
atomic level. 

  
 
 

 
 
 13.5.1 Nanotechnology  
 

 

 

 

  
 



 

The beginnings of nanotechnology are attributed to suggestions made in 1959 by 
Richard Feynman, the term now used to describe the ultraminiaturisation which he 
envisaged coming from the Greek word for dwarf, and the prefix 'nano' denoting 10-9 (a 
nanometre therefore being one thousand-millionth of a metre). Nanotechnology deals 
with manufacturing technologies and machine systems with dimensions and tolerances 
in the range 0.1 to 100 nanometres, this is a range from the size of an atom to the 
wavelength of light. Picotechnology (pico = 10-12) is a sub-nanometric technology 
dealing with the manipulation and modulation at the level of individual atomic bonds 
and orbitals, and work has already been carried out at resolutions of 1 to 10 picometres 
[Schneiker 1988]. 
 

 

 

 
 

 

The applications of nanotechnology extend far beyond our immediate concerns as 
computer animators, but the potentially extreme diminution of hardware can interest us. 
It is suggestive of increased power, accessibility and perhaps even democratisation of 
access. This new technology is also interwoven with ideas about self-replicating 
systems, and one wonders about parallel systems and networks being able to extend 
themselves by replicating their own processors and nodes. 
 

 

 

 
 

 13.6— 
Multimedia  

 

 

 

 

 

 

 
 

Multimedia, and its predicted growth, have been mentioned several times in the book, 
but the media to be included in future systems might include holography, virtual reality 
and references to other senses than sight and hearing. The first ventures will probably 
be called 4-D multimedia, and will give Hypercard-like, interactive access to sensory 
microworlds. The distinction between video, animation and participation will become 
irresistibly blurred. Interactivity will become the norm, and the currently somewhat 
self-conscious interaction that is developing through the use of CDs and hypermedia 
will become smoothly intuitive. 

  
 
 

  
 



 

Alvey Ray Smith suggested in Byte magazine (September 1990) that "much modelling 
will be made redundant by the selection, from electronic catalogues, of ready-made 
models. The user becomes a 'spatial editor' inserting the model(s) into the 3-D scene, 
sizing and customising to taste". This principle is likely to apply to much in the multi-
media area, and with world-wide data banks linked electronically there will be a 
massive amount of visual, audio and written material to use (and to abuse). 
 

 

 

 
 

 13.7— 
Conclusion  

 

 

 

 

 

 

 Eighty per cent of the information we receive comes through our eyes, sight is our key 
sensory medium. 
 

 

 

 
 

 Computer hardware is now able to support highly detailed and sophisticated visual 
imagery and will become universally available. 
 

 

 

 
 

 
Animation provides an extra dimension to still images, for without diminishing their 
information content it allows them to be discursive (in the same way as spoken 
language). 
 

 

 

 
 

 Film, television, and now multi-media, have led us to subsume the moving picture into 
our vocabulary of communication. 
 

 

 

 

 

 
Computers allow us to bring all this together to provide one of the most powerful tools 
yet devised for education, communication and dissemination - that of computer 
animation. 
 

 

 

  
 



 
 
The medium will be well used, and it will be badly used. It will enable great 
discoveries to be made, and it will allow great deceits to be perpetrated. It is just 
starting. 

 



APPENDIX A— 
BOOK RECOMMENDATIONS
 
 

 
 

 The following books are singled out from the bibliography as being particularly 
recommended. 
 

 

 

 

 

 
'Computer graphics for designers and artists' [Kerlow 1986] is a clear, simple and well 
illustrated introduction to computer graphics, intended for those with a visual 
background, that goes into enough depth to be very useful. 
 

 

 

 
 

 'Television Graphics - from pencil to pixel' [Merritt 1987] is a heavily illustrated book, 
full of good examples and explanations of TV computer graphics including animation. 
 

 

 

 

 

 
'Animation - a guide to animated film techniques' [Noake 1988] gives a very well 
illustrated guide to traditional and modern animation methods, and ends with a chapter 
on computer animation. 
 

 

 

 
 

 
 

'Animation - from script to screen' [Culhane 1988] offers a methodical guide to the 
complete process of creating an animation. Mainly dealing with traditional methods, 
but with a chapter on computer animation, it includes a number of practical appendices 
on issues such as running a business. 

  

'Computer graphics' [Hearn 1986] is a particularly balanced and readable account of the 
subject area. It has good diagrams, illustrations and coding examples. 
 
 

 
 

 
'Computer graphics - principles and practice (2nd Edition)' [Foley 1990] is an update 
of one of the "bibles" of CG. Extensive, authoritative, up-to-date and with many colour 
plates 
 

 

 

 



 

 
 
'Computer graphics - systems and concepts' [Salmon 1987] is one of many books 
dealing with computer graphics theory, but is more comprehensive than many in 
dealing with input, hardcopy and HCI. Also deals with the GKS graphics standard. 
 

 

 

 

 

 'Fundamentals of three-dimensional computer graphics' [Watt 1989] is one of the few 
books devoted specifically to 3D. It is comprehensive, well written and up-to-date. 
 

 

 

 
 

 'A programmer's geometry' [Bowyer 1983] brings together all the geometry required 
for computer graphics, with straightforward explanations and simple diagrams. 
 

 

 

 

 

 

'Computer graphics - an introduction to the mathematics and geometry' [Mortensen 
1989] is a particularly comprehensive account o the maths relating to computer 
graphics, and includes straightforward introductions to vectors, matrices, etc., for those 
not familiar with them. 
 

 

 

 
 

 
'Soft computing' [Reffin Smith 1984] provides a useful antidote to mainstream 
computer writing. It is intelligently questioning and deals with visual aspects of the 
medium. 
 

 

 

 

 

 

'Que's computer user's dictionary' [Pfaffenberger 1990] is a very good guide to 
computing terms. Its range is more practical than most, including major applications 
and machines. It offers explanations rather than definitions, and adds many helpful tips 
and cautions. 

 



APPENDIX B— 
DYNAMICS FORMULAE
 
 

 
 

 
This appendix gives the most basic formulae necessary to create a dynamic point mass. 
Wilhelms [1987c] 'Dynamics for everyone' gives a concise account of the area from 
which you can develop things further. 
 

 

 

 

 
 Newton's laws of motion  
 

 

 

 

 
 
 Formulated in 1687, they can be stated as follows.
 

 

 

 
 

 1. An object continues in a state of rest or constant velocity unless acted on by an 
external force. 
 

 

 

 
 

 
2. The resultant force acting on an object is proportional to the rate of change of 
momentum of the object, the change of momentum being in the same direction as the 
force. 
 

 

 

 

 

 3. If one object exerts a force on another then there is an equal and opposite force 
(reaction) on the first object exerted by the second. 
 

 

 

 

 

 (The first law was discovered by Galileo, and is both a description of inertia and a 
definition of zero force. 
 

 

 

 
 
 The second law provides a definition of force based on the inertial property of mass.
 

 

 

  



 

  The third law is equivalent to the law of conservation of linear momentum). [6]  
 
 

 

 

 

 

 

Chapter 9.1 introduces the Newton/Euler method as a simple means of numerical 
integration, but with the limitation that inaccuracies arise if the time-step used is not 
relatively small. The simplicity of the method, however, often outweighs the 
requirement to keep increments small. 
 

 

 

 
 
 The dynamics of a particle can be stated as:
 

 

 

 

 
   
 

 

 

 

 
 
 F = force in Newtons (kilograms-metres/seconds2

 

 

 

 

 
 m = mass in kilograms  
 

 

 

 

 
 
 a = acceleration in metres/seconds
 

 

 

 
 

 This is a vector equation representing the scalar equations for each of the cartesian 
axes: 
 

 

 

 

 

 
 
 

 

 

 

 

 
 



 If, therefore, the particle mass and applied force are known, then:
 
 

 

 
 
   
 

 

 

 

 
 
 is the vector to find the acceleration.
 

 

 

 
 

 If the present velocity (v) at time i is known, then to find the velocity a bit (∂t) further 
on in time, we have the vector equation: 
 

 

 

 
 
   
 

 

 

 

 
 
 Given the new velocity, the vector equation to find the new position (p1+1) is:  
 

 

 

 

 

 
   
 

 

 

 

 
 

 

To move a particle, therefore, we need only to initialise its position and mass and apply 
the external force acting on it, probably as a 3-D vector. This external force may be the 
sum of a number of forces acting on the particle, such as the force of gravity which is 
about 9.81 metres/second2 on Earth, acting towards the Earth's centre, times the 
particle's mass. 
 

 

 

 
 
   
 

 

 

 

  
 



 

 

If you want to detect collisions a simple check to implement uses a spherical bounding 
box and computes the distance of each object from each of the others in turn. If the 
distance is less than the sum of the radii of the two bounding spheres, then the spheres 
intersect, i.e. 

  

 
 

 

 
 
 

 

 
 

 

 

 

 

 
 
 or to avoid the expensive square-root calculation, this can be ammended to:  
 

 

 

 

 
 
 
 

 

 

 

 

 

The response to a collision can be calculated analytically by considering the linear 
velocity, angular velocity, mass, centre of mass and inertial tensor of the colliding 
masses, which is computationally expensive but usually applied only once for each 
collision (linear and angular momentum must be preserved and a new direction vector 
sought). 
 

 

 

  
 



 

 

 

 

 
 
 these equations can be solved for xyz, for example:
 

 

 

 

 
 
 

 

 

  

This would lend itself very readily to a simulation of gas molecules in an enclosed space, 
when, if the coefficient of restitution is one, the molecules would ricochet off the walls 
and one another indefinitely: 
 
 

 
 

 

 
 

 

 

 

 
 
 An object could also be bounced off a plane using the surface normal (N) of the plane:
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This paper is reproduced by kind permission of Apple Computer, Inc. and is included 
as an interesting record of the complete process of making a computer animation. In 
particular, it includes an indication of the problems that must be dealt with during 
production, often to tight deadlines. Since the paper was circulated at the Bristol 
Animation Festival in 1989 (in conjunction with an impressive demonstration), and it 
describes a project from 1987/8, it can be understood that significant improvements 
have been made in much of the hardware and software now available. 
 

 

 

 
 
 Abstract  
 

 

 

 

 
 

 
 

The Advanced Technology Group at Apple Computer, Inc. recently produced an 
animation entitled Pencil Test, created entirely with Macintosh II and Macintosh Plus 
equipment. This paper discusses the challenges and obstacles faced, and the set of 
solutions chosen in producing an animation on a platform that had not previously been 
utilized by the animation industry. Animation is both an entertaining and effective 
communication tool. The conclusions set forth in this paper present some of the issues 
that need to be addressed to facilitate easier creation of animation on personal 
computers. 

  

1— 
Introduction  

 
 

  
 



 

In the fall of 1987 Apple's Advanced Technology Group decided that it was time to 
create a production quality animation for SIGGRAPH. The goal was to produce a piece 
of 3D character animation with high quality rendering. The challenge was to create this 
piece entirely on Apple computers, specifically on the Macintosh II. In just six months 
we formed a group that designed, produced, and scored our first animation, Pencil Test, 
which debuted at SIGGRAPH in July 1988. 
 

 

 

 
 

 The 3D animation problem can conveniently be divided into six steps: design, 
modeling, animation, rendering, sound and the final transfer to some medium. 
 

 

 

 
 

 
Design is the creation of a story and script, storyboards (pictorial representations of 
changes in action), and animatics (video recordings of the storyboard that show the 
timing of the transitions). 
 

 

 

 

 

 Modeling is the creation of three-dimensional models for every object and character 
shown in the storyboards. 
 

 

 

 
 

 

These models, along with the animatics, are used to create the animation, where all of 
the objects are placed, scaled, and rotated to their actual positions within a scene. A 
scene consists of all actions that take place from one camera position (or sequence of 
camera positions as in a pan, zoom, or fly-by). As soon as the camera alters its position, 
orientation, or path of motion, there is a change of scene. All camera and object 
movement within a scene is achieved by defining key-frames (set positions, scales and 
orientations of an object throughout a scene). A keyframe animation system 
interpolates between key-frames to produce all of the intermediate frames. 
 

 

 

 

 

 

Rendering takes these frames along with the models and generates two-dimensional 
images from the three-dimensional mathematical descriptions. In computer animation 
this generally involves modeling a natural environment where there are lights and a 
camera, and objects have color, material properties and even textures. A software 
rendering package will then take this information and, depending on the algorithm, 
generate images as simple as cartoon frames or as rich as photographs. 
 

 

 

 



 

  

 

These images are then transferred to some medium, usually film or videotape. In some 
cases this tape needs additional editing. For example, for special effects like fades or 
for overlayed credits, this tape must be taken to an editing studio where these effects 
can be achieved. 

  

The sound track is usually designed while the graphics are being produced. Generally, a 
professional recording studio is used to record and lay the sound track to tape. 
 
 

 
 

 2— 
Overview  

 

 

 

 

 
 

 

The high-end systems that are typically used for animation projects have large, 
integrated software packages to create animations. There is no such software for the 
Macintosh. Instead we used existing programs to solve parts of the problem and 
integrated them with custom software (Fig 1). We chose to do all of the design by hand. 
For modeling we chose Super 3D from Silicon Beach Software. We convinced the 
author of Twixt, a public domain animation package from Ohio State University, to 
port his code to the Macintosh for us (MacTwixt). The majority of rendering software 
was written in-house. We used a scanner and SuperPaint from Silicon Beach Software 
to create some of the textures. The credits were generated during the rendering process 
and we chose Microsoft Word to format them. A big breakthrough occurred when we 
realized that we could create the entire sound track on the Macintosh, something that 
high-end systems generally do not address. In producing the sound, we used one 
package for editing sound effects (Sound Designer by Digidesign), another for 
composing the score (Professional Performer by Mark of the Unicorn), and a third for 
cuing the sound to video tape (Cue Sheet by Digidesign). Finally, there was no 
software or hardware in place to help us transfer our piece to video tape; we had to 
provide these ourselves. All of the components shown in Figure 1 that are not discussed 
in this paragraph were written by us specifically for this project. 
 

 

 

 
 

 3— 
Design  

 

 

 

 

 

 



 

 

Though the primary motivation for this work was technical, we were not without 
artistic goals. We wanted our piece to tell a story; to be funny and endearing. The 
design we developed had to accomplish this while allowing for the limitations of the 
software and the hardware. We were working with beta, alpha, and pre-alpha software, 
and many of the tools were relatively primitive by Apple standards. To achieve 
simplicity, we decided that our story would have only one primary character. The rest 
of the objects would, for the most part, remain stationary and have few or no movable 
joints. 

  

 
 
 

Fig 1 
Software flow diagram 

 

  
 

 

Note 1. VideoWorks does not provide the timing control needed to 
stage animatics from handdrawn storyboards, and it is much too 
complicated to use for such a basic process. Upon reflection, 
HyperCard probably would have sufficed if we had scanned the 
storyboards and then written a script that allowed timed playback and 
manipulation. 

 



   
 

 
 

 
   
 

 

 

 

 
 

 
 

With these criteria in mind we wrote a script that we thought would be reasonable to 
work with and still satisfied our artistic goals. Unfortunately, there was no existing 
software for the Macintosh to aid in the process of storyboarding and creating 
animatics [note 1], so we contracted an artist to do this work for us. When we received 
our first set of storyboards and started to work with the character, we realized that as 
unadorned as our initial design had been, it wasn't going to be simple enough. The main 
character had been visualized as an articulate, curvy pencil that bent and twisted in all 
directions (Fig 2a). All we had to work with was a polygonal modeler and an animation 
package that did not allow us to animate control points on a flexible object. If we 
wanted to model the pencil with splines we were going to have to write an animation 
package that let us animate splines. We reconsidered the motions for the pencil and 
came up with the segmented polygonal design as it exists today (Fig 2b). 

  
 
 

 
 

 

 
 

 

 

Fig 2 
Character design (a) original curvy design, (b)  

final segmented design 
 

 

 
In all we devoted about two months to design, including writing the script, creating 
storyboards, shooting the animatic, and designing the character and objects. At this 
point we were ready to begin modeling. 
 

 

 



 
 

 4— 
Modeling  

 

 

 

 

 

 

 
 

Modeling was the one phase of this project where we solicited involvement from as 
many people as possible (with the hopes of encouraging further participation). Any 
interested party could model one of the many objects that appeared on the desk (Fig 3). 
Because the majority of these people had no previous modeling experience, we needed 
a modeler with a simple user interface and straight-forward tools like revolution and 
extrusion. In addition, the modeler had to have a published data format or at least 
export the model data in ASCII so that we could import our models into the animation 
and rendering software. Based on these criteria we chose Super3D by Silicon Beach 
Software. 

  
 
 

 
 

 

 
 

 

 

Fig 3 
Sample modeled objects 

 
 

 

Though the version of Super3D that we worked with was a beta version, the software 
was relatively reliable and easy to work with. It maintained the click and drag interface 
of the Macintosh in the 3D environment by having a third scroll bar that controlled 
motion in the Z dimension. The scroll bars controlled rotation, while clicking on pan 
and zoom icons controlled the translation and scale. There were, however, a few 
setbacks working with this package. One of the greatest difficulties was the lack of 
visual feedback. Because the only solid visual feedback was a flat shading mechanism, 
approximated for an eight bit frame buffer, it was very difficult to tell if an object was 
closed or inside out. Smooth shading and data consistency checking should be included 
in this kind of modeling package to guarantee a model's data integrity. Data anomalies 
did appear and greatly hindered us later in the project. 
 

 

 



 
 

 
 

Super3D exported its data in a very intelligible ASCII format that we could easily parse 
and convert. Our first (but certainly not our last) data conversion program, ToTwixt, 
was written to take this output and convert it into a format that the animation software 
could use. The objects could then be placed within the 3D environment. 

  

5— 
Animation  

 
 

 
 

 

From the start it was never really clear what the quality of the rendering was going to 
be for the final piece. However, we did know that limitations in rendering time would 
not allow for photo-realistic rendering. This increased the importance of concentrating 
on the quality of the animation. If the story wasn't successfully told by the 
expressiveness of the main character and the information carried in the sound it would 
not be understood. We needed an animation package that would allow us to squash and 
stretch our objects and define transformational relationships between objects. It also 
had to create good curved interpolations for the paths of motion. 
 

 

 

 
 

 

It was fortunate that MacTwixt satisfied these criteria, for it was the only 3D animation 
package available to us (by coercion) on the Macintosh. Working with MacTwixt was a 
new experience for us point-and-click Macintosh users. It had a command line interface 
and lacked the ability to move objects relative to their current position (i.e. move object 
x one unit to the right). In addition, the software was not able to do real-time playback 
of animation. Drawing one 1/4 screen wireframe image on the screen took anywhere 
from 2 to 15 seconds. This made it impossible to view our motion. 
 

 

 

 

  

 
Note 2. MacTwixt does not run under MultiFinder, which is why 
MovieCamera had to be a desk accessory if it was to be used 
simultaneously with MacTwixt. 

 

  

 

 

  
 



 

As a result, we wrote a desk accessory (MovieCamera) that we could run with 
MacTwixt [note 2] to capture all of the drawing commands and play them back in 
something approximating real-time (timed to the refresh rate of the monitor). In this 
way we could see clips of the basic wireframe animation and study our motion. 
However, that was not quite good enough. We then wanted to see a series of scenes 
strung together. MovieCamera was modified to save the captured bitmaps in a file and 
another desk accessory was written (MovieTheater). That could take a collection of 
these files and string them together for playback. By playing back the scenes in 
sequence we were able to get an idea of the overall timing. 
 

 

 

 

  
 Note 3. This was due to a bug in the ported version of Twixt and not 
an inherent limitation in the MacTwixt application.  

  

 

 

 
 

 
 

After scenes had been animated, MacTwixt would write out scene files, which were a 
collection of transformation matrices for every object at every frame. Depending on the 
scene, this process could take anywhere from one to twenty-four hours, an unexpected 
delay [note 3]. We minimised this process by editing these scene files by hand for 
simple changes, and by writing out very small subsections of scenes and cutting them 
into the larger files for more complex changes. These scene files were the frame 
descriptions used by the renderer. 

  
 
 

 
 

 6— 
Rendering  

 

 

 

 

 
 

 

Our plan was always to get the best quality rendering possible in the allotted 
development time (approximately three months). At the very least we had to have 
smooth shading, and we aimed for Phong shading which would produce specular 
highlights. We also needed texture mapping because much of the information relating 
to the story was told by texture maps appearing on the Macintosh screen (Fig 4). Anti-
aliasing was also necessary or the quality would not suffice for the SIGGRAPH Film 
and Video Show. Though it was not clear how time-consuming the rendering process 
was going to be, we knew that we would need a distributed system to allow for time to 
render several versions of the film. With this in mind we initiated the renderer project 
and the distributed systems project. 
 

 

 



 
 

 

 
 

 

 

Fig 4 
A texture mapped screen showing  

the Macintosh in the startup sequence 
 

 
 6.1 Preparation  
 

 

 

 

 
 

 
Before we could render any of our objects we needed to modify them to include 
various rendering attributes. We wrote a program called Edit that allowed us to assign 
colors, smooth edges, material properties and surface textures to the objects. 
 

 

 

 

 

 

Some early rendering tests revealed topological inconsistencies in our model data. The 
anomalies fell into three categories: zero area polygons and multiple neighbor polygons 
causing cracks in the shaded models; open solids (where one or more polygons of the 
model were missing) resulting in holes in the shaded model; and reversed polygon 
normals, appearing as holes or causing the entire object to appear inside-out. To fix 
some of these problems we wrote TCheck, a program that would read in the objects, 
remove zero area polygons, and flag all the other bad data. All models that failed to 
pass TCheck were rebuilt in Super3D. This cycle was extraordinarily time consuming. 
Each object was broken into its subparts and all the subparts were run through TCheck. 
Any part found with bad data was rebuilt and checked until all of the parts were 
renderable. Then the object could be reassembled, and read into Edit to be recoloured 
and resmoothed. 
 

 

 

  
 
 

  
 



 

An early addition to our rendering environment was a program to preview rendered 
objects. Parscene began as a model that parsed scene description files from MacTwixt 
and object description files from Edit. It then converted them into a form usable by the 
renderer. At this point it was expanded to be an interactive front end that allowed us to 
read in a scene and display the frames on a 24-bit monitor, using an experimental 24-bit 
version of Color QuickDraw for the Macintosh II and a prototype 24-bit video card. 
Once this was accomplished we added an interface that allowed us to interactively 
move the camera, add and manipulate lights, and experiment with different rendering 
methods. We could also remove one degree of freedom and use the mouse to move the 
camera and lights. 
 

 

 

 
 
 6.2 Renderer  
 

 

 

 

 
 

 

All of the rendering code was written in-house. The renderer we implemented provided 
flat shading, smooth shading, and Phong shading. Multiple (four) colored light sources 
were implemented; up to three sources of white light were used in Pencil Test. A 24-bit 
Z-buffer was used to eliminate hidden surfaces (16-bit was not able to resolve front-
most polygons in the ranges with which we were working). 
 

 

 

 

  
 Note 4. We did not implement mapping onto arbitrary curves because 
we did not have any objects constructed with patches.  

  

 

 

 
 

 
 

Texture mapping allowed planar mapping of textures onto polygons [note 4] Mip 
Mapping was the fundamental technology used here and a utility program called 
MakeMip was written to create multiple resolution MipMaps from texture files (RLE 
or PICT format). 

  

 

  

 

Note 5. This is clearly not the fastest method of doing anti-aliasing. 
However, it was the most quickly implemented, given the limited 
amount of time that we had remaining to develop the piece. Certainly, 
one of the first changes to our system will be to implement a faster 
method of anti-aliasing. 

 

  

 

 



 
 

 These input files could be either scanned data (the woodgrain for the desk) or painted 
images created with SuperPaint (screen shots for the Macintosh). 
 

 

 

 
 

 

Anti-aliasing was achieved by rendering each frame at higher than target resolution (4, 
9, or 16 times) and then decimating the image with a digital filter (Lanczos Windowed 
Sinc Function) to the target resolution [note 5]. As a result, even machines with eight 
megabytes of memory could not compute a whole frame with a large number of objects 
and textures at nine times the resolution. We therefore modified our renderer to render 
small bands of the image. This became very useful when setting up network rendering 
because it allowed us to render on more memory limited machines. We also 
implemented antialiased wireframe output for the production of flicker-free wire-frame 
test [note 6]. 
 

 

 

 

  

 

Note 6. There are several additions we would have made to the 
renderer if we had had more time. The obvious is an enhanced anti-
aliasing algorithm. Another would have been a cheap implementation 
of shadows. Without shadows our objects sometimes appeared as 
though they were floating in a space slightly above the desk. 

 

  

 

 

 
 
 6.3 Optimizations 
 

 

 

 

 

 

 

Because rendering is so time-consuming we needed to take any shortcuts available to 
speed up rendering time. The first of these shortcuts was to convert the computations of 
the renderer from floating point to fixed point. However, peculiar results like tearing 
textures indicated that we were exceeding the numeric range of our fixed point 
numbers. As a result, the radix location for any given variable depended on the number 
range for that variable, meaning that we had to keep track of the radix location for 
every variable. However, we found that we achieved an order of magnitude 
performance improvement using fixed point over the hardware floating point on the 
Macintosh. 
 

 

 

  
 



 
An additional performance improvement was added to the Phong shading algorithm: 
Gouraud shading was automatically used instead of Phong shading if a quick test 
indicated negligible specular reflection in a given polygon. 
 

 

 

 
 
 6.4 Extras  
 

 

 

 

 
 

 
 

The credits were done by formatting a high resolution bitmap and then decimating it to 
the target size (as was done with our antialiased frames). The text was laid into a long 
scroll file whose scan-lines were indexed by frame number. Once the section of credits 
was determined it was composited onto the background frame. This compositing 
(blending, not overwriting) meant that we could lay the credits onto any colored 
background. 

  
 
 

 

 

 

A few special effects were achieved. To avoid having to do post-production, we 
implemented our own fade to black. The only trick here was realizing that the Y value 
in YUV is not a pure luminance value. Decreasing this Y value does not bring all color 
to black. As a result, all of the components had to be scaled. 
 

 

 

 
 

 

We also implemented a cheap form of motion blur for one scene involving a fast 
camera pan that produced rough motion. The difficulty here was that we were not set 
up to render fields (our animation files were keyed to the frame rate and our renderer 
shaded full frame images). Our solution was to first reduce the vertical resolution to 
that appropriate for fields, and then estimate the motion difference between frames and 
approximate the blur of the horizontal pan with a horizontal smear. 
 

 

 

 

 
 6.5 Distributed System  
 

 

 

 

  
 



 

Fortunately, we anticipated that we were going to require a distributed rendering 
system to be able to compute frames in a realistic amount of time. This was later 
confirmed when timings showed that it took approximately thirty minutes to render a 
frame (96 days to render the entire film on one Macintosh II). However, when the 
project began there was no renderer to work with, so the distributed computational 
environment had to be implemented as an independent module from the renderer. The 
environment set up was a master/slave system where the master handled the data and 
file management, and the slave controlled the actual rendering. The master was a 
modified version of Parscene (see section 6.1) that parsed the scene file and broke it 
into individual frames. The slave was a generic module that attached to any program to 
handle I/O, data transfer and program initiation. Because this slave was generic we 
were able to continually modify the renderer and simply attach new versions to the 
slave. This process was so robust that we could even substitute renderers while the 
slave programs were running [note 7]. The slave program communicated with the 
master, telling the master its available resources, such as memory. The master then 
selected an appropriate job (e.g. a frame renderable within the slave's memory 
constraints) and passed back the name of the current rendering program, the frame file 
to render as well as the location of this file and the output file. The slave would then 
fetch objects and textures from a file server and initiate the attached renderer. The 
output frame was passed back to the server where it was stored until recording. 
 

 

 

 

  
 Note 7. It would be simple to take a slave and attach it to any 
distributed process.   

  

  

 
 

 

In the end we were able to have 25 to 30 Macintosh IIs running at any given time. 
There were approximately 5000 frames to be rendered, each frame taking anywhere 
from 20 to 40 minutes to compute (depending on the amount of texture mapping and 
the number of reflective surfaces). One complete turn of the animation could be 
completed in just over three days. 
 

 

 

 
 

 7— 
Sound  

 

 

 

 

  
 



 

The sound track to Pencil Test needed to be much more than pretty background music. 
It was very important that the sound effects be dramatic because they were conveying 
parts of the story that were not represented graphically (e.g. you are aware of a human 
presence even though you never see a human figure). The accompanying music needed 
to be finely tuned to these sound effects to help emphasize but not overpower them. At 
the same time the music needed to help set the mood and pace of the piece. This careful 
timing required sequencers and an electronic cue sheet. 
 

 

 

 
 

 

Sound effects were gathered from existing prerecorded sources and from hand-recorded 
sounds. We discovered immediately that a normal sound taken out of context (like a 
footstep) is unrecognizable without visual cues and the natural acoustic environment 
that normally surrounds it. We therefore needed to record greatly exaggerated sounds. 
For example, the footsteps of a person leaving the room were recorded by having a 
large person walk loudly across a cafeteria table. The sounds were then edited using 
Sound Designer by Digidesign and external effects boxes (reverb, etc.) all controlled 
with a Macintosh Plus. 
 

 

 

 

 

 
 

The music was performed and edited using Professional Performer, a Macintosh 
sequencer. This program enabled easy experimentation with ideas of sequences and 
orchestration. Once the music was created, it was carefully cued to the timing of the 
animation. Individual bars of the music were fit to actions within the film. This 
stretching and scaling of time on a bar by bar basis required a powerful sequencer. 

  
 
 

 
 

 

Though the sound effects were synchronized to particular frames of action within the 
film, much additional tweaking was needed to compensate for the psycho-acoustical 
properties of the effect, i.e. the moment you expect to hear the sound based on what 
you see. This often required bumping sounds backwards and forwards by as much as 
five frames from the actual event, and demanded at least half frame accuracy. All of 
this was done with Cue Sheet and the Opcode Time Code machine (which performed 
with 100% reliability). This kind of editing requires VITC equivalent timecode, which 
is a vertical interval timecode that is frame accurate (a longitudinal time code can not 
maintain accuracy when single-stepping through tape). In general, a thorough 
understanding of SMPTE, differences between drop frame and non-drop frame striping 
and other additional timing complexities were needed to lay the sound to tape. This 
volume of expertise should be hidden from the user in future systems. 
 

 

 

  
 



 

We have received many favorable comments on how well the music and the sound 
effects worked with each other. It was important to make sure that the music did not 
cover sound effects that gave pertinent information to the story line. Yet too much 
sound and not enough score tended to slow down the motion of the piece. The synergy 
was due to the sound effects people and the music people working together constantly, 
not because of a particular software package. However, the software was well enough 
integrated to allow the various people to work together and share information. 
 

 

 

 
 

 8— 
Output  

 

 

 

 

 

 
 8.1. Images to Tape  
 

 

 

 

 
 

 
 

When it came time to put the animation to tape we faced some very large problems. 
First, the Macintosh has no direct video output so we could not transfer the frames in 
the analogue domain. Second, to save the entire film in RGB format without some kind 
of compression would have required seven gigabytes of storage (about 10,000 
floppies). Finally, to transfer these digital frames to a digital frame store over Ethernet 
would take minutes a frame, translating into days for the entire film. 

  
 
 

 
 

 

To circumvent the lack of video output we decided to use the Abekas A60 to transfer 
our files to tape. The Abekas is a digital sequence store that can be written to one frame 
at a time, and can play back 25 seconds of digital video in real-time. The Abekas' frame 
store saves frames in YUV format. A procedure was written to convert our RGB 
frames to YUV. These frames were then compressed using the standard Macintosh 
PackBits routine, packing each component separately (a scan line of Y, a scan line of U 
and then a scan line of v). We were able to compress the entire video down to 
approximately 1.7 gigabytes from the original 7 gigabyte figure. This fit easily on our 
2.4 gigabyte file server (four 600 megabyte Racet drives). 
 

 

 

 

  
 

 
Note 8. This number was further limited because of bugs in the file 
server. For some unknown reason, the file server could handle no 
more than 30 clients. 

 



   
 

 
 

 

 

Though this compression solved the storage problem, these frames still needed to be 
transferred to the Abekas. To accomplish this we wrote our own Ethernet protocol to 
communicate with the Abekas. This worked reasonably well when communication was 
happening between two nodes on the same subnet, but it failed miserably when trying 
to cross bridges. This limited the number of machines we could actually use for 
rendering [note 8]. Shipping compressed frames to the Abekas over Ethernet still 
turned out to be a very time-consuming process. For every frame it took about 10 
seconds to decompress the frame and another 10 seconds to transfer it to the Abekas. 
We finally reduced this time by abandoning Ethernet altogether and transferring the 
images via SCSI. This reduced our transfer time to about one second. 
 

 

 

 
 

 
Once the images were on the Abekas they could be recorded, in real-time, onto video 
tape. For recording we used a Sony D1 digital tape drive. By using a digital medium we 
were able to prevent one generation loss in the recording process. 
 

 

 

 

 
 8.2 Gotchas  
 

 

 

 

 
 

 
 

While these steps solved all of the known problems, we still encountered a few 
unknowns that were almost devastating to the project. The most pronounced of these 
was the 'disappearing file syndrome'. With only a few days left until the submission 
deadline we found that some of our files began to disappear. They still occupied space 
on the disk, but the directories no longer had any record of them. Fortunately we were 
using the D1 for recording, and this became our backup device. As soon as we rendered 
something, we shipped it to the Abekas and then transfered it to the D1. If there were 
problems with individual frames in a scene, we could copy the scene from the D1 to the 
Abekas where we could replace those frames and then transfer the entire scene back to 
tape. However, by the time we grasped what was happening we had lost about one third 
of the film and many of the frames needed to be rerendered. 

  
 
 

 

 
 8.3 Sound to Tape  
 

 

 

 

 



 

 

 

Once all of the graphics were laid to tape we were ready to lay down the sound track. 
Our original intention was to use a Macintosh-controlled 24-track studio for recording. 
However, after laying the first pass of the sound track to tape in such a studio, we 
realized that with two Macintoshs and three samplers we could record the entire sound 
track live with a mix down instead of taking the time to lay all of the sound effects onto 
different tracks of tape. In addition, synchronizing to the 24-track tape deck was no 
simple feat, whereas controlling the samplers with the Opcode machine was much 
more reliable. However, to record live, all of the sound effects had to be staged and 
divided between the three samplers to avoid generating overlapping sounds. This was 
done by hand with a giant multi-colored scheduling chart. Though this was manageable 
for a three minute piece it would be a nightmare for anything longer. Using the 
information from this scheduling chart, the cue sheet was filled with the location and 
destination of the music and sound effects, and the sound was loaded into the 
sequencers. The score was then ready to be laid to tape. This was an entirely 
Macintosh-driven process. In fact, there were no people in the sound lab when the 
music was laid to tape because everyone went into the graphics lab to watch the video, 
a dramatic climax to end our production! 
 

 

 

 
 

 9— 
Conclusions  

 

 

 

 

 
 

 
 

One of the most prominent problems throughout the creation of the piece was the lack 
of data interchangeability between software packages. Different stages of the project 
produced 19 distinct file formats (Fig 5), with the development of all conversion 
software up to us. This is completely unmanageable for an animator and even for most 
engineers. However, in the personal computer environment it is unreasonable to expect 
a single developer to provide an all-in-one package doing modeling, animation, 
rendering, I/O, etc. The environment is such that developers produce high-quality 
solutions for particular portions of the animation process, giving the user the flexibility 
to pick the packages that best meet her needs. Therefore, someone, preferably Apple, 
should define a common data format for modeling and animation and encourage the 
development of animation frameworks that provide presentation and data integration 
[note 9]. 

  
 
 

 

 



 

 
 

 

 

Fig 5 
File flow diagram 

 

  

 

Note 9. This problem also holds true outside of Apple. Developers 
for high-end workstations like the Silicon Graphics Iris machine tend 
to supply one-package solutions, and there are several such packages. 
However, there are no common data formats that would allow an 
animator to select a modeler, an animation module, and a renderer, 
each from a different vendor. 

 

  

 

 

 
 

 
 

Sound technology seems to be much further ahead than the graphics technology, and 
Apple has taken a lead here in promoting interchangeability. There are already timing 
and music data standards that are well accepted, and passing music and sound effects 
from one program to another is virtually standardized. Synchronising to video is 
possible because there is already a mechanism for synchronizing to prerecorded 
material, a process that requires precision beyond that of video frame rates. However, 
there is still room for progress. A clearly defined interface to sound does not yet exist. 
The concepts of cut and paste, duplicate, etc. are very well understood methods of 
manipulating graphics, but the same ease of use and standard interaction protocol for 
sound is not in place. Apple should provide basic techniques for interaction with time 
ordered operations like sound and animated graphics. 

  
 
 

  
 



 

Regardless of the speed of your computer, it is always possible to find a rendering 
algorithm that is complex enough to prevent rendering from happening in real-time; if 
you are using a personal computer this is almost a given. A standard method for using a 
distributed system to perform rendering (or any other computationally intensive 
activity) is an attractive solution, allowing differing qualities of animation to be 
produced in a reasonable amount of time. This applies not only to distribution across a 
network, but also to coprocessors within the host machine. We made a start at solving 
this problem by designing a generic slave that could be attached to any distributed task. 
Further efforts are needed to make distributed computing a standard on low-end 
machines [note 10]. 
 

 

 

 

  

 

Note 10. In the same vein, if frames are not going to be produced in 
real-time it is essential that personal computers provide some sort of 
frame-by-frame control along with the video output to allow standard 
recording equipment to be used. This is the area where enormous 
amounts of money are spent. To get work to video tape, one needs to 
buy a frame-by-frame controller or high-end video editing 
equipment. Both are expensive and neither is a reasonable solution 
for low-end computing. 

 

  

 

 

 
 

 

Finally, to this date, the phrase 'tools for computer animation' has been synonymous 
with 'packages for the creation of high-end 3D animation'. In focusing on solutions to 
complicated 3D animation problems, we have been overlooking some of the more basic 
problems. Software does not exist to manage the hoards of information that is 
generated for an animation. For example, there is no software to generate animatics 
from storyboard drawings or to manage scheduling data for music and sound effects. In 
addition, people have not been using computers to produce exciting 2-1/2D animation 
environments, something that is feasible for personal computers to achieve in real-time. 
Currently, the 2-1/2D world consists of basic motion control animation (moving 
bitmaps). Consider all the exciting work that could be done with animating splines and 
filled regions! Furthermore, interesting work can be done by combining the 3D and 2D 
environments which will reduce rendering time to something more manageable. 
 

 

 

 
 

 We need to be creative in finding new solutions for real-time interactive animation. In 
some ways, this may be the most challenging problem. 
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GLOSSARY OF COMMON USAGE
 
 

 
 

 1-Dimensional When referring to spatial dimensions: having length but no 
breadth, such as a straight line. 
 

 

 

 

 

 2-Dimensional (2-D) When referring to spatial dimensions: having two 
dimensions (length and breadth, or length and height), such as a plane. 
 

 

 

 
 

 2 1/2-Dimensional (21/2-D) Usually referring to an animation created in several 
flat layers to give some of the depth effects of true 3-D. 
 

 

 

 
 

 3-Dimensional (3-D) When referring to spatial dimensions: having three 
dimensions (length, breadth and height), such as an object. 
 

 

 

 

 
 3-Space Three-dimensional space.
 
 

 

 
 

 4-Dimensional Usually referring to three spatial dimensions plus the added 
dimension of time. 
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 Actor A term now used to refer to anything in an animation which moves (though 
originally having a far more specific definition). 
 

 

 

 
 
 

 ADC Analogue to Digital Converter.



  
 

 

 

 AI Artificial Intelligence is involved with building features associated with natural 
intelligence into machines. 
 

 

 

 
 
 
 
Algorithm A set of instructions given to the computer in order for it to do a 
specific task. In other contexts a recipe or a knitting pattern could be described as 
an algorithm. 

  

         Aliasing (see spatial aliasing, temporal aliasing).
 
 

 
 

 ALU Arithmetic and Logical Unit. The computer component which carries out the 
arithmetical calculations. 
 

 

 

 

 

 Analogue (analog) Dealing with events as continuous rather than as sequences of 
separate moments (see digital). 
 

 

 

 
 

 Animatic A presentation of storyboard frames, at appropriate time intervals, in 
order to get some 'feel' of an intended animation. 
 

 

 

 
 
 Animation The presentation of images over time to give a sense of movement.
 
 

 

 
 
 Aliasing (see spatial aliasing, temporal aliasing).
 
 

 

 
 
 

 Anti-aliasing The removal of aliasing artifacts, most commonly involving the 
smoothing of jagged edges on output displays. 



  
 

 

 

 
Artifact Used to describe some part of the image which has been inadvertently 
created, or is unsatisfactory as a result of deficiencies in the system, and constitutes 
an error. 
 

 

 

 
 

 ASCII (Pronounced "askey") An internationally agreed set of characters as 
produced by a standard keyboard. 
 

 

 

 

 
 Axis The line about which an object rotates.
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 B-rep Boundary Representation method for creating objects by defining a 
polygonised surface mesh. 
 

 

 

 
 
 Back-face culling A simple, but crude, hidden line removal method.  
 
 

 

 

 
 

 
Bandwidth Strictly a measure of the range of frequencies in a given situation, the 
term is more generally used to describe the breadth of information a system or 
device can handle. 
 

 

 

 
 

 
Behavioural animation An animation in which the actors respond to stimuli in a 
scene as a result of their inbuilt rules. Simple, animal-like behaviour, for example, 
can be effectively simulated. 
 

 

 

  
 



 

Bezier He invented a mathematical description of a curve, based on the definition 
of a few points, for use in the car industry. It is widely used in computer graphics, 
often in a context where the curve is to be 'tuned' interactively, to create 2-D lines, 
2-D and 3-D paths and 3-D surfaces. 
 

 

 

 

 

 
Bicubic patch A means of describing a curved surface using cubic functions. 
Typically a surface may be divided into a number of patches with suitable 
continuity at boundaries. 
 

 

 

 
 
 
 Bit From 'binary digit'. The basic unit of computer information (which can be 
represented by either 0 or 1). 

  

Bit map The representation of the screen image in memory, stored as pixel 
intensities. 
 
 

 
 

 Blitter A hardware device, usually a 'chip', designed to speed the movement of bit 
maps around the screen. 
 

 

 

 

 

 
Boolean operations Operations based on the logical relationships of AND, OR 
and NOT (union, difference and intersection). In CSG modelling, for instance, the 
logical operators can be used to join or cut existing objects into new objects. 
 

 

 

 
 

 
Bounding box A simple spaceframe which can act as a temporary substitute for a 
more complex object in order to simplify calculations when a quick approximation 
(of a movement, for example) is needed. 
 

 

 

 

 

 
Buffer An area of memory (which may be internal or external) 
temporarilyreserved to hold information which is currently required. A frame 
buffer, for example, holds the displayed image as a matrix of intensity values. 
 

 

 



 
 

 Bump mapping By perturbing surface normals across a flat surface suitable 
rendering algorithms will produce what appears a bumpy surface. 
 

 

 

 
 
 Byte A set of (usually eight) contiguous bits.
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Cartesian coordinates Two dimensional points which can be located by reference 
to calibrated horizontal (X) and vertical (Y) axes. In three dimensions an additional 
axis (Z) establishes depth. 
 

 

 

 
 

 
Canonical position The expected, default position of an object on creation and 
before it is moved. Normally centred on the origin and with key facets orthogonal 
to axes. 
 

 

 

 

 

 Cel animation A traditional animation technique in which each frame is drawn on 
a transparent cel. The term has been carried forward into the computer animation. 
 

 

 

 
 
 CGI Computer Generated Imagery.
 
 

 

 
 
 Chip A miniature electronic circuit, typically the size of a postage stamp.  
 
 

 

 

 
 
 

 
Chromakey A technique in which a prescribed colour in a scene allows itself to be 
replaced by another layer of visual information. Typically, a particular blue in a 
video shot has another scene electronically superimposed. 



  
 

 

 
 Clock rate The rate at which operations are carried out by the CPU.  
 
 

 

 

  

Colour cycling A limited illusion of movement can sometimes be created by 
changing selected colours in the palette in a defined sequence. 
 
 

 

 

 
Compositing Assembling a number of separate visual elements together in a 
single scene. Synchronised live action, computer generated material and a painted 
background might be brought together in each frame of a sequence. 
 

 

 

 
 
 Constraints Limitations applied, particularly to the movement of an object.  
 
 

 

 

 
 
 Continuity The degree of smoothness with which line and surface sections join.
 
 

 

 

 
 Convex hull The 'skin' created by enclosing all the extreme points of an object.
 
 

 

 
 

 Coordinates (See Cartesian coordinates, polar coordinates and spherical 
coordinates.) 
 

 

 

 
 
 Cosine shading (See Lambert shading.)
 
 

 

 
 
 CPU Central Processing Unit. The heart of the computer.
 
 

 

 



 

  CRT Cathode Ray Tube. Provides the screen of most monitors.
 
 

 

 

 

 CSG Constructive Solid Geometry. A modelling method in which primitives, such 
as cubes and spheres, are combined using Boolean operations. 
 

 

 

 
 

 
Cushioning The acceleration or deceleration which may be added at either end of 
a movement (and which adds realistic softening to otherwise abrupt changes of 
speed). 
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 DAC Digital to Analogue Converter.
 
 

 

 
 
 DAT Digital Audio Tape.  
 
 

 

 

 

 

 

Data compression The algorithmic reduction in size of data files. Since images 
with large palettes and high resolutions contain a large amount of data, the issue of 
reducing the data size to manageable proportions, and of being able to store and 
retrieve it fast enough for real time animation, is of great current interest. 
 

 

 

 
 

 de Casteljou Inventor of an alternative method of describing curves to that of the 
more well known Bezier. 
 

 

 

 

 

 Default state The state in which something will exist until it is consciously 
changed. 
 
 



 
 

 
 

Degrees of freedom of movement The number of singular ways in which an 
object can move. For example, a particle has three degrees of freedom of 
movement (along X, Y or Z), a rigid body has six (along X, Y and Z plus rotation 
around X, Y and Z). 

  
 
 

 Desktop A visual metaphor used in a WIMP environment whereby the VDU 
screen is organised as if it was a real desktop. 
 

 

 

 
 

 Digital The representation of something in the form of separate digits. Compare 
the digital watch with one having continuous sweep hands (see analogue). 
 

 

 

 

 

 

Digitiser (3-D) A device for acquiring and inputting spatial data about the surface 
of an object. Currently relatively slow and expensive, the method of use can be to 
manually triangulate the surface of the object and then use a stylus to collect the 
coordinates of the vertices thus created. 
 

 

 

 
 

 
Digitising tablet An input device with a flat, sensitive surface which can be drawn 
on with a stylus in the manner of a pencil and paper. A puck may be used to 
acquire 2-D coordinates from drawings aligned on the tablet. 
 

 

 

 
 

 

Disc drive A secondary storage device in which data are saved on a removable 
rotating disc (which can be conveniently stored or used to transfer data between 
computers). The most common storage medium is magnetic but optical drives are 
developing. 
 

 

 

 
 

 
Distributed AI Artificial intelligence attributed to a group rather than to an 
individual e.g. to a flock of birds or to the farm of transputers in a parallel 
computer. 
 

 

 

 



 

  Dithering One means of simulating a larger palette of colours than is actually 
available. 
 

 

 

 
 
 DMA Direct Memory Access.
 
 

 

 
 
 DRAM Dynamic Random Access Memory.
 
 

 

 

 
 DTP Desktop Publishing.  
 
 

 

 

 
 
 DTV Desktop Video.  
 
 

 

 

 

 
 DVI Digital Video Interactive technology.
 
 

 

 
 

 
Dynamics The branch of mechanics dealing with the way masses move under the 
influence of forces and torques. Increasingly used to drive animations by the 
application of physical laws (see kinematics). 
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 Easing Another term for cushioning.
 
 

 

 

 

 
Expert system Provides a means of solving 'significant' problems by applying 
rules to a data bank of relevant information culled from human experts in the field 
concerned. 



  

Explicit control Low level control where the animator has to specify every detail 
of every frame (see implicit control). 
 
 

 

 

 
Extrusion A swept surface method of modelling, where a 2-D template is dragged 
through 3-space along a path, in the simplest case at right angles to the plane of the 
template. 
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 Facet A planar surface which constitute one face of a polygonised model.  
 
 

 

 

 
 
 Fairing Another term for cushioning.
 
 

 

 

 

 Feedback Information returned as a result of an action which can then cause future 
actions to be modified. 
 

 

 

 
 

 
FFD Free Form Deformation. A method of deforming an object by applying 
transformations to a cage of control points. Objects can be created by using FFDs 
on primitives, and the same principles can be used to animate a change of shape. 
 

 

 

 
 

 
Firmware The embodiment in hardware of a function normally associated with 
software. For example some frequently used rendering algorithms might be built 
into a chip in order to gain substantial speed increases. 
 

 

 

 
 
 

 FLOPS FLoating Point Operations per Second.



  
 

 

 

 fps Frames Per Second. E.g. The PAL standard observed in the UK requires a 
VTR to run at 25 fps. 
 

 

 

 
 

 
Fractal A term used to describe the self-similarity of some phenomena when 
viewed at different levels of detail. The principle is typically used in computer 
graphics to generate mountains, clouds and such like, from a very small data base. 
 

 

 

 

 
 Frame A single image from an animation sequence or film.
 
 

 

 
 

 Frame buffer A piece of specialised memory (which may be internal or external) 
reserved to hold one or more images for quick access and/or processing. 
 

 

 

 
 

 

Fuzzy As well as describing visual phenomena which are not clearly defined, the 
word is applied to a branch of logic which can be used for decision making in 
unclearly defined situations, and is likely to find use in animation/simulation in 
this context. 
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 Genlock To synchronise two video signals. Also used to describe the hardware 
which does the job. 
 

 

 

 
 
 
 GKS Graphics Kernal System. A 2-D graphics standards that has been established 
by the International Standards Organisation (ISO). 

  



GUI Graphical User 
Interface. 
 
 

 

 

 Gouraud shading A shading model which improves on Lambert shading by 
smoothing intensity across surfaces. 
 

 

 

 
 

 
Granularity A rough description of the level of detail at which an operation is 
conducted (e.g. rough-grained = low level of detail, fine-grained = high level of 
detail). 
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Hard disc A sealed unit for secondary storage which is constructed internally like 
tiers of disc drives. It combines larger storage space (typically 20 - 160 
Megabytes) and relatively quick access. 
 

 

 

 
 
 Hardcopy Output in permanent form such as on paper or film.
 
 

 

 

 

 Hardware Refers to the physical components of a computer system i.e. the boxes 
that sit on your desk. 
 

 

 

 
 

 HCI Human Computer Interface. The boundary between the machine and the user 
at which they communicate with one another. 
 

 

 

 

 
 

 
Hidden line/surface It can be visually confusing to display all edges of a model as 
in wireframe, and a number of algorithms exist to remove lines or surfaces which 
we would expect to be obscured when viewed from a specified direction. 



  
 

 

 

 
High level In this context, a high level operation is one in which the operator does 
not need to involve himself with the details of how the operation is carried out. 
(See low level.) 
 

 

 

 
 

 HDTV High Definition TeleVision (several proposals exist for a standard, all in 
excess of 1000 scan lines). 
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 IC Integrated Circuit. An electronic circuit (or circuits), of microscopic size, built 
into a single chip. 
 

 

 

 
 

 Icon A graphical symbol designed to be identified with a particular function of the 
system. 
 

 

 

 

 

 
IFS Iterated Function System. Used to derive a simple set of fractal rules from 
complex data, such as an image, and thus allow potentially extreme data 
compression. 
 

 

 

 
 

 Illegal colours Colours which can be generated on screen but are outside 
broadcastable range. 
 

 

 

 
 

 Image mapping A means of applying a picture to a surface or of wrapping a 
picture around an object. 
 

 

 

 



 

  
 
Implicit control High level control where the animator specifies the starting 
conditions and constraints and leaves the system to deal with the movement (see 
explicit control). 

  

Inbetween ('Tween') To produce the required number of frames in between the key 
frames. Refers to both the process and the frames created. 
 
 

 
 
 Incremental Developed in steps (or increments).
 
 

 

 

 
 Input Information entered into the computer.
 
 

 

 
 

 Interactive Allowing the user to respond to the running of an application with 
fresh input while it is in progress. 
 

 

 

 

 

 
Interlaced A raster scan in which alternate scan lines are refreshed on each pass. 
This means that less information needs to be handled at any one moment than in a 
non-interlaced scan, but that the complete image is refreshed less often. 
 

 

 

 
 

 Interpolation The calculation of values at predetermined intervals between two 
end values. 
 

 

 

 

 

 Inverse dynamics Working backwards from known end forces to find the correct 
joint positions. 
 

 

 

 
 

 Inverse kinematics Working backwards from the desired end position to find 
acceptable joint positions. 



  
 

 

 
 I/O Input/output.  
 
 

 

 

 
 

 Iteration Repetition, usually of a piece of a computer program (in which case it is 
called a loop). Something that computers are particularly good at doing. 
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 Jaggies An informal term for the jagged lines in a pixelated image which it is 
usually desirable to minimise. 
 

 

 

 
 

 JPEG algorithm Joint Photographics Experts Group algorithm for data 
compression of still images. 
 

 

 

 
 
 K  
 

 

 

 

 
 

 
Keyframe A frame, from a sequence, at which a significant event (such as a 
change of direction) takes place. Keyframes are traditionally drawn by the leading 
animator, and the inbetween frames created by juniors (or by the computer). 
 

 

 

 

 

 

Kinematics The study of movement without regard to cause (see dynamics). To 
animate kinematically involves the specification of everything in the scene at any 
moment in time by the animator himself, though techniques such as key-framing 
can assist. 
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 Lambert shading A basic shading model in which each facet is evenly shaded 
according to the angle at which the light hits it. 
 

 

 

 
 
 Lathe The term is sometimes used instead of 'spin'.
 
 

 

 

 
 
 Line test A test of the pace and feel of a piece of animation by creating it in 
wireframe without time-consuming shading or rendering. 

  

 

 Lofting Connecting cross-sections through an object by triangulating a surface 
between their edges. 
 
 

 

 

 Lookup table A way of storing pixel information which is memory efficient for 
limited palettes. 
 

 

 

 
 

 Low level A level of operation where the operator is required to become involved 
with the detail of the machine or process. (See high level.) 
 

 

 

 

 
 Lurp An abbreviation of 'linear interpolation' (to interpolate in a straight line).
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 Mach banding A phenomenon in which a smoothly shaded surface appears to 
have dark streaks on it. 
 

 

 

 

 

 Mapping (See bump mapping, image mapping, reflection mapping, texture 
mapping.) 
 

 

 

 
 

 Metamorphosis A change of physical form, often easily animated by interpolation 
between the start and end forms. 
 

 

 

 

 
 Micon An animated icon.  
 
 

 

 

 
 
 MIPS Million Instructions Per Second.
 
 

 

 
 
 Model animation Animation by the manipulation of real 3-D models.  
 
 

 

 

 
 

 Modelling The construction of objects in a scene prior to rendering or 
choreographing movement. 
 

 

 

 
 

 
Motion blur The apparent blurring of a moving object typified in still 
photographs. It is sometimes seen as appropriate to duplicate the phenomenon in 
separate frames of an animation. 
 

 

 

 

 

 

Motion control rig A specialised camera, moving along overhead tracks, which 
can be controlled on a precise path relative to a constructed scene. Computer 
control of such a rig enables accurate synchronisation with computer generated 
material. 
 

 

 



 
 

 Mouse A common input device which fits in the palm of the hand and is rolled 
over a flat horizontal surface to control the movement of a screen cursor. 
 

 

 

 
 

 MPEG algorithm Motion Picture Experts Group algorithm for data compression 
of motion picture images. 
 

 

 

 

 

 
Multimedia A term used to describe the mixed use of still and moving visual 
media, together with sound, normally under the control of a computer and 
potentially created by computer. 
 

 

 

 
 

 
 

Multi-tasking The ability of some computers to work on several tasks at the same 
time. In fact, although things appear to be happening at the same time, the machine 
is normally swapping from one task to another to optimise use of available CPU 
time. Not to be confused with parallel computing. 

 
 
 N  
 

 

 

 

 

 

 Non-interlaced A raster scan in which each scan line is refreshed on each pass 
(see interlaced). 
 

 

 

 
 

 NURB Non-Uniform Rational B-spline. A type of B-spline which is particularly 
flexible in interactive use. 
 

 

 

 

 
 Normal See surface normal.
 
 

 

 
 
 

 NTSC Broadcast standard used in USA and Japan.



  
 

 
 
 O  
 

 

 

 

 

 

 

Object orientated Describes a type of programming language, which is growing 
in popularity, in which program elements are considered as separate objects which 
can communicate with one another. The term is also used to refer to an image 
which is defined as a number of separate parts and their relationships to one 
another (as opposed to one defined by its pixels). 
 

 

 

 
 
 Object space The 3-D space of the object's world.
 
 

 

 
 
 OCR Optical Character Recognition.
 
 

 

 
 

 
Octree A data structure which records the spatial position of elements in an object 
(or of objects in a scene). Hierarchical methods avoid the need to individually deal 
with every unit of the space. 
 

 

 

 
 
 OOPS Object Orientated Programming System.
 
 

 

 
 

 Origin The point at the centre of a coordinate system where X, Y and Z all equal 
zero. 
 

 

 

 
 
 OS Operating System.  
 
 

 

 

 

 
 

 Output Material printed or displayed by the computer.
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Paging Swapping chunks of memory back and forth from secondary storage to 
RAM in order to run programs bigger than the available RAM can hold at one 
time. 
 

 

 

 
 

 Painters' algorithm A simple method of removing hidden surfaces by 
overpainting. 
 

 

 

 

 

 Paint system An electronic simulation of the materials used for drawing and 
painting, with which the operator can create images on the computer screen. 
 

 

 

 
 
 PAL Broadcast standard used in much of Europe.
 
 

 

 
 

 Palette The range of colours available. Dependent on hardware and software 
constraints, the range can stretch from 2 to more than 6,000,000. 
 

 

 

 
 
 Path The course along which something moves.
 
 

 

 
 
 
 
Parallel architecture A design of computer in which a number of tasks can be 
carried out simultaneously i.e. 'in parallel'. Sometimes refered to as 'non-von' since 
it is a departure from the traditional von Neumann computer architecture. 

  
 
 

  
 



 Parallel processing The simultaneous processing carried out in a parallel 
computer, (see parallel architecture). 
 

 

 

 

 
 Parameter A value which, when varied, changes another.
 
 

 

 
 

 Particle A single point in 3-space. Theoretically infinitely small, but often treated 
as a small mass limited to three degrees of freedom of movement. 
 

 

 

 

 

 
Particle system A system containing a number of particles (typically between ten 
thousand and a million) which might be used to model 'soft' objects or to animate 
flow through a medium for example. 
 

 

 

 
 
 PC Personal Computer.  
 
 

 

 

 

 
 PDL Page Description Language e.g. PostScript.
 
 

 

 
 

 PHIGS Programmers' Hierarchical Interactive Graphics System. A 3-D graphics 
standard established by the American National Standards Institute (ANSI). 
 

 

 

 

 

 
Physically based modelling The representation of a model in terms of its physical 
attributes, such as mass and forces. Such a model can be controlled by the 
application of the laws of physics, and is thus ideal for simulation. 
 

 

 

 
 
 Phong shading A smooth shading method which incorporates specular highlights.
 
 

 

  
 



 Picon An icon made of a small picture.
 

 

 

 
 

 Pixel From 'picture element', the smallest element out of which a screen display is 
made. 
 

 

 

 
 

 
Plotter An output device in which a pen, or selection of pens, is raised and 
lowered whilst being carried across the surface of a piece of paper. Traditionally 
associated with engineering and architectural drawing. 
 

 

 

 

 

 
Polar coordinates A point in two dimensions can de defined by its distance from 
the origin, and the angle between the positive X axis and a line from the origin to 
the point. 
 

 

 

 
 
 Polygon A planar figure bounded by straight sides.
 
 

 

 

 

 Post production Work, such as editing, carried out after the initial work has been 
produced. 
 

 

 

 
 

 

Precision errors Errors arising from the inability of the computer to accurately 
store numbers beyond a certain length. If the result of a calculation is a long 
decimal number the machine might need to truncate it for storage, thus introducing 
a small error which could become exaggerated in further calculations. 
 

 

 

 
 

 
Primitive A simple object (such as a cube or sphere) which is provided in a 
modelling system. A limited number of primitives provide basic units for the 
production of more complex models. 
 

 

 

  
 



 
Puck A device similar to a mouse, but with a cross-hair sight for accurate 
alignment, used for the input of points (for instance from a drawing). See 
'digitising tablet'. 
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 Radiosity The radiosity interchange method is a ponderous but effective shading 
method which is particularly good at dealing with diffuse light. 
 

 

 

 
 
 RAM Random Access Memory.
 
 

 

 
 

 
Raster image Often used to describe a pixel based image (in which the image is 
recorded as a collection of pixel intensities) as opposed to one which is vector 
based (and can therefore be displayed at the best resolution of the output device). 
 

 

 

 
 
 Raster scan The scanning of a monitor screen by the electron beam.  
 
 

 

 

 

 

 Ray tracing A simple, though currently time consuming, rendering method which 
automatically produces 'realistic' shadows and reflections. 
 

 

 

 
 
 Real time A one to one relationship between display time and real-life time.  
 
 

 

 

 
 

 
Recursion A self-referential process such as when a computer program calls itself. 
(A traditional computing joke is that the entry in a dictionary under 'recursion' 
should say ''see recursion''.) 
 

 

 

 



 

  Reflection mapping A means of applying a picture of an object's surroundings (or 
imaginary surroundings) to its surface in order to simulate reflection. 
 

 

 

 
 
 Refresh rate The rate at which an image is redrawn on a screen.
 
 

 

 

 
 

 
Render To make the internal mathematical model of a scene visible. Usually 
referring to the algorithmic realisation of the effects of lighting, surface colour, 
texture, and reflection. 
 

 

 

 

 
 
 Resolution Although a number of factors effect resolution, it is generally taken to 
describe the apparent level of detail an output device is capable of resolving. 

  

RGB A colour system where all colours are defined as a mixture of red, green and 
blue (as in a TV). 
 
 

 

 
 RISC Reduced Instruction-Set Computing.
 
 

 

 
 
 ROM Read-Only Memory.
 
 

 

 

 

 Rostrum stand (animation rostrum) A movable, vertically mounted camera 
pointing down at artwork held on a movable base. 
 

 

 

 

 
 Rotascoping The process of tracing moving images, one at a time, off a screen.
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 Sampling theory The branch of mathematics which explains aliasing.  
 
 

 

 

 
 

 Scanner A 2-D image input device which scans an image in the same way as a 
photocopier. 
 

 

 

 

 

 
Scientific visualisation The translation into visual form of scientific data, in order 
to make it more comprehensible. This is becoming a particularly important skill as 
our ability to generate vast quantities of data increases. 
 

 

 

 
 
 Screen space The two dimensional space of the screen image. See 'object space'.
 
 

 

 
 
 SECAM Broadcast standard used in France, Russia and elsewhere.  
 
 

 

 

 
 

 SIGGRAPH ACM (Association of Computing Machinery) Special Interest Group 
in Graphics. 
 

 

 

 
 

 Simulation In this context, an animation in which the aim is to accurately model 
an event by applying physical laws. 
 

 

 

 

 
 SIMD Single Instruction Multiple Data. An architecture for parallel processing.
 
 

 

 
 
 Soft modelling The modelling of non-geometric, often natural, forms.  
 
 

 

 



 
 

 Software Refers to the programs, expressed in machine readable language, that 
control the hardware. 
 

 

 

 
 

 Solid texture Instead of texture being applied to the surface of an object the 
texture pattern runs right through the volume of the object. 
 

 

 

 

 

 Spatial aliasing A problem of discontinuity arising from trying to match correct 
locations to the nearest available point on an output device. See jaggies. 
 

 

 

 
 

 Spatial occupancy enumeration A volume modelling method where the object is 
defined by the presence or absence of voxels. 
 

 

 

 
 
 
 Spherical coordinates An extension of the polar coordinate system which deals 
with 3D by incorporating an extra angular measurement. 

  

Spline A flexible strip of wood used to create smooth curves (originally in 
shipbuilding), the same result is now achieved mathematically. 
 
 

 

 

 Sprite A piece of screen image which has its own identity and can thus be readily 
moved around. It provides the basis for much computer games animation. 
 

 

 

 
 

 Spinning Process of creating a swept surface by rotation of a 2-D template around 
an axis. 
 

 

 

 

 
 Staircasing (see jaggies)  

 

 

 



 

 

 

 Stochastic Random within prescribed limits. Stochastics are often employed to 
produce variations on a basic theme. 
 

 

 

 
 

 Stop-frame Animation generated one frame at a time, with pauses for each new 
frame to be composed or generated. 
 

 

 

 
 
 Storyboard A sequence of pictures illustrating key moments in the script.  
 
 

 

 

 
 

 Stylus A pen-like device used in conjunction with a digitising 'tablet, mainly used 
for the freehand creation and input of images. 
 

 

 

 
 

 Sub-pixel Theoretical division of a pixel into smaller units for the purpose of 
calculations. 
 

 

 

 
 

 
Super sampling Conducting calculations at a finer resolution than the output 
device will be able to implement. Used as a means of dealing with aliasing by 
sampling at a sub-pixel level. 
 

 

 

 
 

 Surface normal A vector orthogonal to a surface. Central to many computer 
graphics calculations. 
 

 

 

 

 
 Swept surface A 3-D surface created by passing a 2-D template through 3-space.
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Temporal aliasing A problem of discontinuity arising from trying to match 
accurate moments in time to the nearest available time-point on an output device 
(such as a VTR running at 25 fps). An example of the problem this causes is the 
stagecoach wheel appearing to rotate backwards. 
 

 

 

 
 

 
Teleological modelling An extension of physically based modelling to include 
goal-orientation. The attributes of an object include a knowledge of how it should 
act. 
 

 

 

 

 
 
 
Texture mapping Used to describe both the wrapping of a 2-D representation of 
texture onto a surface in object space, (although this might be better referred to as 
image mapping) and the transfer of an external bump map to a surface. 

  

Texture space The space inhabited by the 3-D textural information used in solid 
texturing (where the texture runs through the object like grain through wood). 
 
 

 
 

 Texel TEXture ELement. A single unit of texture (which might be compared with 
a pixel or a voxel). 
 

 

 

 
 

 
Transformation The alteration of shapes or objects by applying geometrical rules 
to their coordinates, e.g. translation (movement in a straight line), scaling and 
rotation. 
 

 

 

 
 

 Transputer A chip for parallel processing, containing its own memory and 
processing unit. 
 

 

 

  
 



 
Triangulation Division of a surface into triangular facets. The division is often 
required because a triangular facet is necessarily planar, and non-planar facets 
would create problems during other calculations (such as at the rendering stage). 
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 VDU Visual Display Unit. Normally refers to the monitor screen.  
 
 

 

 

 
 

 

Vector Usually referring to the storage of image data in terms of relative 
measurements (which can therefore be displayed at the best resolution of the 
output device) as opposed to storage of an image in terms of pixel intensities. In 
mathematics a vector is a value having magnitude and direction, and in modelling 
a point can be represented by a vector and transformed using matrices. 
 

 

 

 
 

 Vertex A point in 2-D or 3-D space which is connected to others in order to build 
shapes or facets. 
 

 

 

 
 

 Viewing transformation The mathematical conversion of 3-D information so that 
it can be presented in 2D, as if viewed from a given point (with perspective). 
 

 

 

 

 

 
Virtual Appearing to be something it is not. Hence virtual memory describes the 
use of secondary storage as if it was main memory and virtual reality describes a 
simulated situation which aims to be indistinguishable from one of real life. 
 

 

 

 
 
 ViSC Visualisation in Scientific Computing.
 
 

 

  
 



 Visualisation Making complex information (often being large quantities of 
scientific data) understandable through presentation in a visual form. 
 

 

 

 

 

 Volume visualisation The rendering of 3-D volumes by voxel methods (see 
spatial occupancy enumeration). 
 

 

 

 
 
 
 Von Neumann architecture The traditional computer architecture in which 
operations are carried out sequentially (as opposed to concurrently). 

 
  

  
 
 

 
Voxel From 'volume element'. A cubic unit of 3-D volume defined at a size 
appropriate to the required resolution, sometimes described as the 3-D equivalent 
of a pixel. 
 

 

 

 
 
 VR Virtual Reality (See virtual.)
 
 

 

 

 
 VTR Video Tape Recorder
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 WIMP Windows, Icons, Menus and Pointers used in an interface.  
 
 

 

 

 
 

 Wireframe A representation of an object using only the edges of its constituent 
polygons. 
 

 

 

 



 

  WORM Write Once Read Many. Refers to a storage device from which 
information can be read but to which it cannot be written. 
 

 

 

 
 

 

WYSIWYG What You See Is What You Get. Describes a system where the 
screen representation exactly represents the hard-copy output. The two are 
otherwise often not the same since the device resolution determines how accurately 
images can be shown, and this represents a common problem in many graphics 
situations (such as DTP). 
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 X-axis The horizontal axis in a Cartesian coordinate system.
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 Y-axis The vertical axis in a Cartesian coordinate system.
 
 

 

 
 
 Z  
 

 

 

 

 
 

 

Z-axis The axis representing the dimension of depth in a 3-D Cartesian coordinate 
system. In its most usual presentation the Z-axis can be thought of as going back at 
rightangles to the vertical plane on which the X- and Y-axes exist. (This is a left-
handed system. In a right-handed system the Z-axis would come forward from the 
XY plane.) 
 

 

 

 

 



 Z-buffer An area of memory holding the depth (Z) values of each surface as 
represented at each pixel location. 
 

 

 

 

 
 Zel Occasionally used to refer to a unit of depth.
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