
CHARLIE: A NEW ROBOT PROTOTYPE FOR IMPROVING COMMUNICATION AND

SOCIAL SKILLS IN CHILDREN WITH AUTISM

AND

A NEW SINGLE-POINT INFRARED SENSOR TECHNIQUE FOR DETECTING

BREATHING AND HEART RATE REMOTELY

By

Laura Boccanfuso

Bachelor of Arts
George Mason University, 1990

Master of Science
Bowling Green State University, 2001

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in

Computer Science

College of Engineering and Computing

University of South Carolina

2014

Accepted by:

Jason M. O’Kane, Major Professor

Manton Matthews, Committee Member

John Rose, Committee Member

Yan Tong, Committee Member

Ruth K. Abramson, Committee Member

Lacy Ford, Vice Provost and Dean of Graduate Studies



© Copyright by Laura Boccanfuso, 2014

All Rights Reserved.

ii



ACKNOWLEDGMENTS

Thanks to my family. My amazingly supportive and bright husband Tony who never

blinked when I told him that I wanted to go back to graduate school to complete a Ph.D.

Thank you for being an incredible source of support, springboard and resource for me. I

could not have completed this work without you. Carolina, Michael, Ana: thank you for

understanding when I had to carve out a “little" time here and there to work during family

time. You are each so remarkable in your own way and I am exceedingly proud to be your

mom. You inspire me!

Many thanks to Jason M. O’Kane. Thank you for your valuable input and insightful

guidance along the way. The countless electrical, mechanical and strategic implementation

efforts you provided were key to building and making CHARLIE and the remote stress

detection system work effectively. I’ve learned so much from you and I am grateful for the

opportunity to step into the HRI research domain. It has made all the difference.

I also want to extend my heartfelt gratitude to Ruth K. Abramson, Harry H. Wright

and Alicia V. Hall. Thank you for your unwaivering support in refining and field testing

CHARLIE and for generously sharing your valuable time to make the CHARLIE study

successful. Your insight and expertise was crucial to completing this research.

Thanks to Manton Matthews, John Rose and Yan Tong. I am honored to have each of

you on my committee. Thank you for the many ways in which you helped me get through

the program to the finish!

Finally, many, many thanks to Sarah Scarborough. I’ve been so very fortunate to have

had the opportunity to work with you this past year. You have selflessly devoted well over

100 hours to field testing CHARLIE in addition to the many lives you regularly change

through your important work. I am grateful for your generosity, insight and expertise.

iii



ABSTRACT

This research delivers a new, interactive game-playing robot named CHARLIE and a novel

technique for remotely detecting breathing and heart rate using a single-point, thermal in-

frared sensor (IR). The robot is equipped with a head and two arms, each with two degrees

of freedom, and a camera. We trained a human hands classifier and used this classifier along

with a standard face classifier to create two autonomous interactive games: single-player

(“Imitate Me, Imitate You”) and two-player (“Pass the Pose”). Further, we developed and

implemented a suite of new interactive games in which the robot is teleoperated by remote

control. Each of these features has been tested and validated through a field study including

eight children diagnosed with autism and speech delays. Results from that study show that

significant improvements in speech and social skills can be obtained when using CHAR-

LIE with the methodology described herein. Moreover, gains in communication and social

interaction are observed to generalize from child-to-robot to co-present others through the

scaffolding of communication skills with the systematic approach developed for the study.

Additionally, we present a new IR system that continuously targets the sub-nasal region of

the face and measures subtle temperature changes corresponding to breathing and cardiac

pulse. This research makes four novel contributions: (1) A low-cost, field-tested robot for

use in autism therapy, (2) a suite of interactive robot games, (3) a hand classifier created

for performing hand detection during the interactive games, and (4) an IR sensor system

which remotely collects temperatures and computes breathing and heart rate.

Interactive robot CHARLIE is physically designed to be aesthetically appealing to young

children between three and six years of age. The hard, wood and metal robot body is cov-
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ered with a bright green, fuzzy material and additional padding so that it appears toylike

and soft. Additionally, several structural features were included to ensure safety during

interactive play and to enhance the robustness of the robot. Because children with autism

spectrum disorder (ASD) often enjoy exploring new or interesting objects with their hands,

the robot must be able to withstand a moderate amount of physical manipulation without

causing injury to the child or damaging the robot or its components. CHARLIE plays five

distinct interactive games that are designed to be entertaining to young children, appeal to

children of varying developmental ability and promote increased speech and social skill

through imitation and turn-taking.

Remote breathing and heart rate detection Stress is a compounding factor in autism

therapy which can inhibit progress toward specific therapeutic goals. The ability to non-

invasively detect physical indicators of increasing stress, especially when they can be cor-

related to specific activities and measured in terms of length and frequency, can relay im-

portant metrics about the antecedents that cause stress for a particular child and can be used

to help automate the evaluation of a child’s progress between sessions. Further, collecting

and measuring critical physiological indicators such as breathing and heart rate can enable

robots to adjust their behavior based on the perceived emotional, psychological or physi-

cal state of their user. The utility and acceptance of robots can be further increased when

they are able to learn typical physiological patterns and use these patterns as a baseline for

identifying anomalies or possible warning signs of various problems in their human users.

We present a new technique for remotely collecting and analyzing breathing and heart

rates in real time using an autonomous, low cost infrared (IR) sensor system. This is

accomplished by continuously targeting a high precision IR sensor, tracking changes in the

sub-nasal skin surface temperature and employing a sinusoidal curve-fitting function, Fast

Fourier Transform (FFT), and Discrete Wavelet Transform (DWT) to extract the breathing

and heart rate from recorded temperatures.
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CHAPTER 1

INTRODUCTION

The use of robots for cooperative work with humans is becoming increasingly pervasive

across an ever widening range of disciplines. Medical procedures using robots are reported

to be less invasive, result in faster recovery times and are estimated to have nearly tripled

from 2007 to 2010 [1]. Robots have been employed for use in post-stroke rehabilitation [2],

as assistive feeding systems for the physically handicapped [3] and in therapeutic roles such

as robotic pets for the elderly in nursing homes [4]. Engineers across multiple disciplines

have capitalized on the unique qualities of robots to perform autonomously and predictably

and repeat mechanical tasks consistently. These characteristics also make robots well suited

as part of an early intervention strategy for many autistic children who tend to perceive

them as nonthreatening and intrinsically interesting.

Robots have been used to effectively engage autistic children in interactive game play-

ing and research has demonstrated that robot-assisted autism therapy promotes increased

speech and increased child-initiated interactions in children with Autism Spectrum Disor-

der (ASD) [5, 6]. However, more research is needed to develop definitive paradigms that

describe which types of autonomous robot designs and interactive modalities will most

benefit children with autism.

According to a 10-state study conducted by the Center for Disease Control (CDC) [7]

the number of diagnosed autism cases increased an average of 57% from 2002 to 2006. In

early 2013 the CDC reported that the occurrence of autism spectrum disorders (ASD) in

the United States was 1 in 88 births. Not only does this translate to a growing population of

autistic children but it also means that existing resources used to treat and care for children
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with autism are under greater strain. Further, because of the added expense of therapy

and specialized medical care, the cost of raising an autistic child in the United States is

estimated to be between 8.5 to 9.5 times greater than raising a typically developing child.

This additional financial burden may mean that some families have to choose whether to

incur significant debt to get the proper care for their child or limit the amount of therapy

their child receives. Even though robots have been proven to be effective for promoting

communication with some autistic children, there are few existing robots currently in use

for autism therapy and those that do exist are cost prohibitive for widespread use.

Our research focuses on achieving two primary objectives. The first objective is to

design and develop an interactive robot that can be used to promote speech and social in-

teraction among children with autism, is suitable and sufficiently robust to be handled by

children and is financially accessible to those who would most benefit from its use. Our

second research focus is inspired by the desire to make human-robot interactions more nat-

ural and productive by providing a technique for remotely detecting subtle physiological

changes that correspond to stress. The two most important questions this research seeks to

answer are: (1) Can a simple, low-cost robot design be effective for promoting human-to-

human interaction with autistic children? and (2) Can minimal temperature data collected

with a single-point, non-contact infrared sensor be sufficient to accurately calculate breath-

ing and heart rate?

A simple, low-cost robot design for promoting imitation and turn-taking skills

Basic turn-taking and imitation skills are imperative for effective communication and social

interaction [8]. Research has shown that interactive games using turn-taking and imitation

have yielded positive results with autistic children who have impaired speech or social

skills [9]. In [10] we present research in which we designed and built a toy-like robot with

face and hand detection capabilities to autonomously engage autistic children in interactive

games using imitation and turn-taking skills. The robot is equipped with a head and two
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Figure 1.1: Complete robot (top left). Snap-off arm (top right). Snap-off head (bottom)

arms, each with two degrees of freedom, and a camera. For robustness and safety during

play, the robot’s arms and head are fully detachable (Figure 1.1). Additionally, a human

hands detector was trained and subsequently, this detector was used along with a standard

OpenCV face detector [11] to create two autonomous interactive games: single-player

(“Imitate Me, Imitate You”) and two-player (“Pass the Pose”.)

In “Imitate Me, Imitate You”, the robot has both passive and active game modes. In

the passive mode, the robot waits for the child to initiate an interaction by raising one or

both hands. In the active game mode, the robot initiates interactions by assuming a pose
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and detecting when the child imitates. The “Pass the Pose” game engages two children in

cooperative play by enlisting the robot as a mediator between two children who alternately

initiate and imitate poses. These games were expressly designed to increase joint attention

and encourage child-led interactions through games that are based on turn-taking and im-

itation. Because the frequency and duration of each child’s participation is continuously

measured, the robot is able to adapt its game mode(s) based on the perceived interest of the

child. Three additional teleoperated, human-in-the-loop games were also developed where

CHARLIE is employed as a catalyst for improved social interactions. During gameplay in

one of the teleoperated modes, children learn and practice verbal requests with the robot

(and receive positive reinforcement for each attempt) before generalizing the game to co-

present others. The three new contributions presented in this part of our research are: (1)

a new low-cost robot design which measures and adapts its behavior according to a child’s

actions, (2) five new interactive games (two are autonomous and three are teleoperated)

and, (3) a new hand classifier used for hand detection, which is now freely available for use

in various kinds of human-robot interactions.

Remote collection of breathing and heart rate

Remote breathing and heart rate detection is valuable for a multitude of applications in-

cluding rehabilitative robotic applications such as post-stroke and post-operative cardiac

therapies, socially assistive robots used to help developmentally disabled children and cog-

nitively impaired adults, search and rescue robots which may evaluate the physical condi-

tion of victims found at a disaster site and personal or home robots which work in close

proximity to humans. Our approach is an important potential improvement in scenarios

where user mobility is an inherent part of the therapy, when users have a general aversion

to being fitted with sensors or when the use of biofeedback sensors is otherwise impracti-

cal. Further, due to its relatively small size and modular design, existing robot systems can

be retrofitted with the proposed detection system to enhance and extend their functionality.

4



Detecting and tracking the physiological state of humans is an important focus for

research in human-robot interaction (HRI) because it promises to make robots better-suited

to work in close proximity and more cooperatively with humans. Collecting and using

physiological indicators can enable robots to adjust their behavior based on the emotional,

psychological or physical state of their user. In addition, the overall utility of robots can

be further increased when they are able to learn typical physiological patterns and use

these patterns as a baseline for identifying anomalies or possible warning signs of various

problems in their human users. For example, if an autistic child becomes distraught during

the course of therapy, he or she may not be able to appropriately communicate this fact to

the therapist or teacher. A robot that can detect and monitor a child’s breathing and heart

rate may track subtle shifts in his or her emotional state and change its behavior before the

child’s frustration escalates.

Additionally, a robot that continuously collects heart rate and breathing data from a

patient undergoing post-stroke therapy can adjust the amount of exertion in a given exercise

or the duration and number of repetitions so as to challenge the patient without pushing

them beyond their physical limits. Finding an efficient way to accurately detect stress

remotely for real-time applications is the necessary next step towards fully realizing this

potential.

Contact modalities exist for obtaining physiological information from a user but they

require that the user wear specialized sensors or that the user make repeated or continu-

ous contact with the part of the robot fitted with a specialized sensor. These techniques

have relied on wearable sensors such as thermistors, respiratory gauge transducers, pulse

oximeters and acoustic sensors. While contact devices typically deliver accurate physi-

ological data, they are not suitable for many mobile applications or for people who are

generally averse to wearing sensors. Further, although solutions exist using non-contact

methods such as infrared video cameras, radar and doppler techniques, these approaches

rely on high-cost equipment and collecting and analyzing very large amounts of data at a
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Figure 1.2: Single-point FAR infrared sensor.

high processing cost.

In a submission to the International Conference on Biomedical Robotics and Biomecha-

tronics (BioRob) [12], we present a new technique for capturing changes in the sub-nasal

skin surface temperature to monitor breathing events remotely. Temperatures are recorded

in real-time using a high precision, single-point infrared (IR) sensor and the breathing

rate is automatically extracted using a sinusoidal curve-fitting function which provides an

estimated rate in breaths per minute. Results from preliminary tests show this system ef-

fectively captures breathing rates within an error rate of under 2 breaths per minute in

approximately 70% of typical test cases.

In subsequent research presented at the International Conference on Social Robotics

(ICSR) [13], we extend the IR technique to perform real-time collection and analysis of

heart rate using the same IR sensor system we used for breathing detection. Due to the

sometimes poor curve-fitting performance that resulted from occasional irregularities in
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breathing and given that heart rate data is known to be nonstationary, we implemented a

Discrete Wavelet Transform (DWT) to process collected temperatures. Accuracy was im-

proved over initial results obtained from applying the Fast Fourier Transform (FFT) tech-

nique and experiments showed that in 72.7% of typical cases heart rate was successfully

detected within 0-9 beats per minute over a ten-minute session as measured by root-mean-

square error (RMSE).
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CHAPTER 2

RELATED RESEARCH

2.1 AUTISM, IMPACT AND COMPUTER-ASSISTED THERAPIES

Social psychology literature emphasizes three basic developmental milestones in human

social interaction during the first year of life between a child and the caregiver [14,15]:

One to two months of age - Initiates and reciprocates eye contact with a

caregiver; exchanges vocal and facial expressions, establishing a pattern of

interaction based on prompt and response between child and caregiver.

Three to nine months of age - The child expresses his/her desires, displea-

sure and pleasure and the caregiver interprets and responds. Gradually the

child begins to develop the ability to predict the caregiver’s response, mak-

ing their interactions more symmetric.

Ten months and up - Child-caregiver interactions continue to develop, re-

sulting in the emergence of joint attention (where two people attentively

look at the same object, as a result of either by pointing or directing their

gaze.) Moreover, their attentiveness is sometimes accompanied by an aware-

ness of the emotional assessment associated with the object. This important

step includes vocalizations and facial expressions which relay an interpre-

tation or meaning of the target of joint attention.
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These critical social milestones provide the framework for identifying cognitive im-

pairments relating to communication disorders. Since it was first described in 1943 by Leo

Kanner, autism has been classified as a pervasive development disorder or cognitive im-

pairment characterized by deficiencies in communication, social interaction, and creative

or imaginative play [16]. The American Psychiatric Association’s Diagnostic and Statisti-

cal Manual-IV (DSM-IV) provides standardized criteria describing the major impairments

characterisitic of children diagnosed with autism which include :

Social (non-verbal) impairments - Marked impairment in the use of non-

verbal behaviors such as eye-to-eye gaze, facial expressions, body postures,

and gestures used for social interactions. Also characterized by a failure

to develop peer relationships appropriate to developmental level, a lack of

spontaneous seeking to share enjoyment, interests, or achievements with

other people and/or a lack of social or emotional reciprocity.

Linguistic (verbal) impairments - Delay in, or total lack of, the develop-

ment of spoken language (not accompanied by an attempt to compensate

through gesture or mime.) For individuals with adequate speech, a marked

impairment in the ability to initiate or sustain a conversation with others.

Additionally, stereotyped and repetitive use of language or idiosyncratic

language and a lack of varied, spontaneous make-believe play or social im-

itative play appropriate to developmental level.

Imaginative impairments - Encompassing preoccupation with one or more

stereotyped and restricted patterns of interest that is abnormal either in in-

tensity or focus. Apparently inflexible adherence to specific, nonfunctional

routines or rituals stereotyped and repetitive motor manners (e.g., hand or

finger flapping or twisting, or complex whole-body movements) persistent
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preoccupation with parts of objects.

The Autism Society of America (ASA) [17] estimates that the annual cost for services

for autistic persons is $90 billion, with 90% of these costs dedicated to adult services. In

addition, the ASA projects 10-17% annual growth in the occurrence of autistic diagnoses

and the annual cost to be approximately $200-$400 billion in 10 years. To add to the

sizeable financial strain and the emotional toll it takes, raising an autistic child can be

taxing on relationships between family members.

The substantial impact of autism on familial relationships, steep medical costs and the

debilitating challenges faced by those diagnosed with the disorder, has driven research

over the last few decades to study the possible causes and to design reliable diagnostics

and effective therapies for autism. It has been estimated that lifelong costs of care can be

reduced by as much as 2/3 when autism is diagnosed and treated at an early age [17].

Since autistic children tend to show a partiality for interacting with computers, pro-

grams for the treatment of young autistic children have included various computer-aided

therapies aimed at improving vocabulary and grammar acquisition [18]. While the imme-

diate goal of teaching autistic children some of the basic tools use for language and expres-

sion using computer-assisted methods is often achieved, the ultimate measure of success

in autism therapy encompasses more than acquiring the semantics of language. Success-

ful therapies should promote long-term social integration and effective human-to-human

communication. An example of computer-assisted autism therapy designed to mediate and

promote social communication is a program designed at Stanford called SIDES.

In 2006, a group of researchers from Stanford University [19] designed a case study

featuring a cooperative tabletop computer game aimed specifically at developing the social

skills of children with Asperger’s Syndrome (considered “high functioning” on the spec-

trum of autism disorders.) The Stanford team’s experiment included 12 middle school stu-

dents, most of whom had been diagnosed with Asperger’s Syndrome and exhibited some
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challenge in social interaction. Over a six-month period they conducted interviews with

school mental health therapists and attended discussions to learn how to identify potential

solutions for teaching group work skills. They learned that games had been frequently used

in therapy sessions and that highly visual games were most effective for teaching children

with Asperger’s. The resulting game design was SIDES (Shared Interfaces to Develop Ef-

fective Social Skills) which encourages face-to-face interaction and promotes “listening,

negotiation, and group work skills.”

The tabletop computer game showed promise with the group of high-functioning stu-

dents with Asperger’s while raising additional questions about the best way to teach ef-

fective communication among the participants. The premise of the game, which features

frogs and insects and an electronic game panel for each participant, challenges the players

to play cooperatively to find the best path for the frog to eat the insect. One very positive

outcome from the experiment was that the students were so engrossed in playing the game

that they did not realize they were actively working in a group and building confidence in

their own social abilities. The SIDES game proved to be engaging for the students and

promoted positive social interaction among the participants.

2.2 ROBOT-ASSISTED THERAPIES FOR AUTISTIC CHILDREN

Autism therapy should ultimately seek to promote human-to-human interaction. The aim

of the Stanford study reflects the direction of much of the autism therapy research being

carried out today. The intent to ultimately promote human-to-human interaction is realized

with the SIDES game, where players must collaboratively work together and communi-

cate effectively in order to succeed. The proliferation of robots in our culture today has

presented similar challenges for developers of robust, modern robots. The recent focus

on Human-Robot Interaction (HRI) and Socially Assistive Robots (SARs), has accelerated

the efforts of robotics researchers toward developing approaches to promote effective and
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natural communication between humans and robots. As this type of research progresses,

the utility of robots and the benefits we receive from them increases. Autism treatment

is a prime example of the direct benefits possible with natural and effective human-robot

interaction.

It is widely accepted that autistic children tend to prefer computers and mimic robots.

Recent research conducted by a team of psychologists from the University of Padua, Uni-

versity of Melbourne and Royal-Hollaway University of London, provides empirical evi-

dence that “interaction with robots can trigger imitative behavior in children with autism”

[20]. The study featured a group of twelve high-functioning autistic children, twelve nor-

mally developing children, a human model and a robot with a remotely controlled robotic

arm. The experiment consisted of two basic conditions and one basic action. In the first

condition, a participant was seated at a small table across from a human model. The human

model reached for a small ball in the center of the table. Once this action was completed,

a sound would signal for the study participant to perform the same reach-to-grasp object.

The second condition, featured the same action, this time with a robot arm performing the

reach-to-grasp action.

Results showed that autistic participants had faster response times and displayed more

consistent responses with the robotic arm whereas control participants had faster response

times with the human model. Researchers concluded that children with autism are visually

primed predominantly by robots over humans, thus confirming what had been observed

by other therapists. Because human action is characterized by great variability, the same

human action repeated 20 times produces 20 unique trajectories and kinematics. It is likely

that minute variances in human actions are overlooked by neurologically healthy children

while children with autism may not know how to deal with such differences and therefore,

respond better to action which is more predictable and repetitive. This study provided

insight into the reasons some autistic children tend to prefer interacting with computers or

robots over people.
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The observations documented in the robotic arm study show great promise for success-

ful robot-assisted therapy. Still, to be completely effective in this capacity, robots must be

used for more than just visual priming and prompting action in the autistic child. Robots

must be implemented as mediators whose role is more dominant at the start of therapy and

becomes less so as the autistic child progresses. While empirical validation of visuomotor

priming with robots is a fairly new course of research, the introduction of robots to autism

therapy is not new.

The first experiment using a robot as a therapeutic tool for autistic children was con-

ducted in 1976 by Weir and Emanuel [21]. Using the LOGO programming language (de-

veloped by MIT in the 1960s and widely used for teaching children), Weir and Emanuel

designed a remote-controlled turtle robot to act as a catalyst for communication with an

autistic child. Although the robot did not act autonomously and did not interact physically

with the children in the study, the results from their research demonstrated the therapeutic

potential that exists when pairing robots with autistic children and provided the foundation

for the research that has since followed.

Another more recent example of robot-assisted autism therapy was conducted by artifi-

cial intelligence researchers at the University of Hertfordshire who initiated the AURORA

(AUtonomous RObotic platform as a Remedial tool for children with Autism) Project in

1998. AURORA consists of a multidisciplinary research team dedicated to the explo-

ration of the role of robots in autism therapy. According to their website (www.aurora-

project.com), AURORA researchers are using the “robotic platform to attempt to bridge

the gulf between the stable, predictable and safe environment of a simple toy (robot), and

the potentially unpredictable world of human contact and learning.” By introducing a sim-

plified, predictable, interactive world with the robot, and gradually integrating more com-

plicated interactions, it is believed that an autistic child can acclimate to the world at their

own pace.

The initial approach of the AURORA project was to introduce robotic agents as social
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mediators to provide a stable environment which would disarm the autistic child’s fears

and reduce the stress and pressure inherent to social interaction. During a symposium on

Intelligent Robotics Systems in 1999 [22], Werry and Dautenhahn proposed that the robot‘s

ability to provide structure and repetition as a friendly agent, makes it an ideal candidate

for therapeutic use. Although robots have traditionally been designed to perform a task or

to carry out a specific set of actions, researchers involved in the AURORA project make

the distinction that the emphasis for robots in autism therapy will be on the interactions and

expression of actions, not necessarily the completion of a given task. This is a fundamental

departure from the standard design of robots and means that even simple tasks or actions

can have significant impact if they are successful in producing the intended response. For

example, if the sole objective of a robot is to establish and build trust in a user, the set

of actions implemented can be effectively small so long as the actions are predictable,

repetitive and non-threatening.

Of course, building trust is just one of the objectives for robots used in autism ther-

apy. The robots must also be fun, intriguing and engaging in a non-threatening way for the

children to remain actively interested. The original robot used by the AURORA team was

a relatively small, flat-topped mobile robot with eight infrared sensors used for avoiding

obstacles and a single positional heat sensor. A behavior-based architecture was imple-

mented featuring a central decision module which would select appropriate actions from a

menu of available choices. The architecture was further broken down into two levels. The

first (lower) level actively monitored data read from the sensors, maintained the timer and

was in charge of avoiding obstacles. The second level managed the selection of behaviors,

deciding when to activate each new behavior and for how long.

The initial study included a group of five children, each of whom was given the oppor-

tunity to interact individually with the robot designed for the experiment. When the child

became disinterested or showed signs of boredom, the supervising teacher would end the

session. The team reported a number of very positive and promising results from the initial
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interaction sessions observed. First, the study participants showed no fear of the robot and

engaged in a positive manner for a relatively extended period of play. Second, the chil-

dren enjoyed the robot interaction so much that they responded with laughter, vocalization

and substantial eye focusing and attention focusing which is typically uncharacteristic of

children with autism. The children were so engaged by the robot that stereotypical autistic

“empty gazing” and repetitive behaviors were also reduced.

At the conclusion of this study, Werry and Dautenhahn reported that robots have an im-

portant role in rehabilitation partly because they are able to produce consistent, repeatable

and reliable behaviors. Consistency is the key in establishing a level of trust between the

robot and each participant, and serves as the basis for introducing gradual changes without

provoking fear. Finally, but equally importantly, robots have proven that they can capture

a child’s attention and engage a child in activities that promote long-term learning.

2.3 DESIGNS FOR ROBOT-ASSISTED AUTISM THERAPY

Although the last decade has seen a significant rise in the development of humanoid robots,

not all researchers agree that increasingly lifelike robots are more effective for all appli-

cations [5]. Dautenhahn argues that using human models for creating life-like robots can-

not be applied universally for designing robotic social actors. She explains that creating

robots to be as life-like as possible anthropomorphizes the robot and sets up unrealistic

expectations which are likely to go unmet. Once behavioral expectations are not met, the

believability of the agent is severely reduced. Furthermore, giving a robot life-like qualities

drastically limits its usefulness. The example she uses to support this concept is a child and

a simple wooden stick. Since the stick is not well-defined, it allows for creative play to take

place and, with imagination, the stick can become a sword, an Indian’s arrow, or a simple

tool used for reaching a kite in a tree. Instead of creating a robot which closely imitates the

unpredictability of real-world human behavior, she proposes introducing a fairly ritualized

predictable robot which initially mediates between the autistic child and the unpredictable
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world and gradually incorporates increasingly complex behaviors as the child develops.

Another interesting viewpoint of hardware design is based on the exploration of how

autistic children interact with specific kinds of robots. In 2007, a study was conducted

to examine the extent to which proprioceptive perception can be used to identify various

positions and movements which indicate whether a child is carrying, rolling or throwing

a robot named Roball [23]. The study featured a spherical robot (Roball) equipped with

three accelerometers and three tilt sensors which were used to collect information about

the robot’s position and orientation. The data collected was then used to make inferences

about its own state. Sensory information from the accelerometers was analyzed to deter-

mine three physical states including: (1) Alone, (2) Interaction and (3) Carrying (being

carried.) Tilt sensor information was used to determine two additional states: (4) Spinning

and (5) No Condition. The results of the study were mixed. The robot was highly likely

to determine its correct state (greater than 90% accurate) when its sensors were consistent

with Alone and Carrying. It was fairly likely to determine its state when the sensory data

mapped to Spinning (77%) but highly unlikely to determine Interaction (10%).

Ultimately, this experiment confirmed that general environmental conditions can be de-

tected through the collection of relatively crude sensory information. Information about

how the user interacts with the robot is important information that may be insightful for

both inferring the emotional state of the user and as a determinant for robot behavior. The

authors expect that this type of proprioceptive information be used to adapt the robot’s

behavior to “create and sustain more meaningful and a broader range of interactions.” Al-

though there is still much research to be done in the area, this implementation of proprio-

ceptive perception is one approach that seeks to integrate emotional or stress detection into

the overall architecture of the robot.

Another study explores the use of robot sensors to collect and analyze tactile informa-

tion during interactive play with autistic children by employing force sensors located at

strategic points on the robot’s body [24]. Touch is a necessary and important part of so-
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cial development and is one of the most basic forms of communication. For many autistic

children, it is the primary vehicle for exploring the world around them. The authors of

this paper incorporate force sensors on the KASPAR robot in order to capture and classify

characteristic touch patterns by autistic children engaged in interactive play with the robot.

Three sensors are placed on each of KASPAR’s hands, three on each arm, two on each

shoulder and two on the head.

While preliminary, the study concluded that there is strong indication for high fre-

quency of touch occurring in the hands, arms and head, autistic children tend to focus on

one part of the robot’s body during interaction (with the exception of the hands) and that

it is possible to detect the length, location and extent of touch using the simple sensors

included in this study. The total cost of the system is approximately 2500 USD.

Over the last 2 years, there has been a rapid acceleration of research which uses the hu-

manoid NAO robot in intervention studies for children with ASD [25], [26], [27], [28], [29].

The NAO is a sohpisticated and versatile robotic research platform with 25 degrees of free-

dom, two cameras, four microphones, a sonar rangefinder, two IR emitters and receivers,

one inertial board, nine tactile sensors, eight pressure sensors, a voice synthesizer, LED

lights, and two high-fidelity speakers. For research purposes, the NAO provides a robust

programmable platform which affords scientists and skilled educators the opportunity to

employ the robot for many diverse investigative purposes. However, there are several func-

tional factors that greatly limit the NAO’s translational value outside of the laboratory or

clinic as a socially assistive device for children with autism. First, the NAO is an expensive

robot that is prone to damage from falling or overheating. Further, because each joint re-

quires precise control for the robot to actuate smoothly and receive input from its sensors,

even subtle damage can significantly affect the robot. Hardware such as force sensors,

accelerometers, tilt sensors, servos and actuators give the robot more sophisticated capa-

bilities and potentially deliver a richer set of data for the robot to base its decision-making.

However, the incremental trade-off for incorporating each additional hardware component
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is a corresponding increase in overall cost, complexity and, especially if deliberate atten-

tion is not given to protecting the structural integrity of the robot, a decrease in the robot’s

utility. In summary, complex and expensive robots are inaccessible to the majority of the

large population of users for which they are intended and have limited translational and

research value. As described earlier, physical manipulation and tactile exploration is an

essential part of learning for children with and without ASD. Therefore, robots that are

designed without careful regard for the human-robot interactions that will necessarily be

part of their use, further limits the robot’s overall practical usefulness.

Minimalistic Robot Designs

Over the past decade, the use of robots as social mediators has been explored as a tool

for supplementing traditional autism therapies in order to teach and improve social skills.

Robots are uniquely suited for engaging children with ASD since they tend to be perceived

as predictable, non-threatening, and are able to perform repetitive tasks consistently and

reliably [20, 30]. Most importantly, an increase in basic social and interaction skills has

been observed when using robots for turn-taking and imitation games [31]. Some of the

most promising results from robot-assisted autism therapy include an increased attention

span, eye contact, child-led speech, improved turn-taking and imitative game playing skills

and overall use of language [32]. Since social behavior is known to be very complex and

subtle in nature, social interaction can appear to be unpredictable and extremely difficult to

comprehend for a child with ASD and impaired social skills.

In one study, the use of a minimally expressive humanoid robot named KASPAR is

tested as a communication facilitator for children with ASD [33]. KASPAR is a child-

sized robot which uses an 8-degree of freedom (DOF) head, two 3-DOF arm movements

and minimal facial expressions to interact with a human. Research with KASPAR assesses

improvements in and the acquisition of interaction competencies of children with ASD

while interacting with the robot by measuring body movement, eye gaze and non-verbal
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communication with co-present others.

Experiments included a child with ASD, the investigator and the child’s caregiver (i.e.,

teacher or parent), and were videotaped for subsequent analysis by a social psychologist.

Trials were designed to allow the child(ren) to interact freely with the robot, in order to al-

low the child to explore the robot under their own terms and establish a level of trust. If the

child indicated interest in interacting physically with the robot, they were allowed to touch,

handle or teleoperate the robot using a remote control. In some scenarios, the investigator

or caregiver would manipulate the robot. Preliminary observations of the interactions be-

tween KASPAR and children with ASD indicated that the combination of subtle changes

in facial expression along with simple gestures was sufficient to convey various emotions

to the child.

Field studies with KASPAR revealed that relatively low functioning children with ASD,

who would not normally seek physical or eye contact, directly engaged with the robot and,

in some cases, proactively touched and gazed at co-present others during sessions with

KASPAR. Three successful cases were highlighted. In the first case, a six year-old girl

with severe autism was introduced to KASPAR. At the time of the study, the child did not

talk and refused all eye contact, even with her own family members. The girl was brought

into the room by her mother and after a short acclimation period, she indicated her interest

in KASPAR by reaching out to the robot. After she was moved closer to the robot, the girl

used her hands to explore the robot’s face, paying particular attention to its eyes. When

KASPAR played the tamborine, the child attempted to imitate the motion. At one point,

the girl even focused her attention on the investigator and reached out her hand to him,

demonstrating the same kind of interactional practice she had shown with the robot.

The second case included a boy with severe autism who would interact regularly with

family members at home, but would not proactively seek interaction with others at school.

The child immediately showed interest in the robot, especially focusing on its face and

eyes. The child was able to touch and explore KASPAR’s face and eyes and he later turned
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to his teacher to touch her eyes and then his own. After several sessions with KASPAR,

the child began to share his excitement with his teacher by turning to her, reaching out to

her and non-verbally encouraging her to engage her in the game with KASPAR.

Research with a robot named Keepon [34] has shown that it is also possible to pro-

mote social and communication skills in children with ASD using a non-humanoid robot.

Keepon is a small, toylike robot with four degrees of freedom, with a simple physical design

and is used for nonverbal interaction with children. Keepon’s predecessor, Infanoid [35],

is an upper-torso robot with 29 actuators, capable of expressing its attention and emotions

(using eyebrows and lips.) Due to its many moving parts and the large amount of informa-

tion that is conveyed when gestures and facial expressions are used, researchers found that

the robot was perceived by some children with ASD to be overwhelming.

As a result, the research team developed Keepon which is capable of conveying emotion

in a simplistic manner. The robot can convey excitement by bobbing up and down, pleasure

by rocking from side to side, and fear by vibrating. The cameras in each of the robot’s

eyes and the robot’s ability to orient its head provide the capability for establishing and

measuring eye contact, directing gaze and identifying objects of joint or shared attention.

By combining these simple actions, the robot can convey not just what the object of interest

is, but also how it perceives the target.

Three sets of experiments were conducted. In the first tests, three age groups of typi-

cally developing children 9 months to 3 years old were allowed to interact with Keepon in

a controlled setting. These experiments showed that children in each age group interacted

with the robot in fundamentally different ways. The youngest test group (0-1 year olds)

primarily explored the robot using their hands or mouth and although they did not seem

to respond to Keepon’s directed attention, they responded positively to the robot’s emotive

actions by laughing or bobbing their bodies when the robot bobbed its own body. The mid-

dle group (1-2 year olds) also examined the robot through tactile exploration, but showed

an awareness of the robot’s attention focus, sometimes even following its gaze. Addition-
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ally, several children in this age group mimicked the robot’s positive emotive expressions

by bobbing and rocking their own bodies. The oldest age group (2+ year olds) showed a

progressive understanding of the robot. Upon first being introduced to it they would watch

it carefully and watch how the caregivers interacted with it. Then, upon recognizing that

its actions were predicated not only on an object of interest but also by an appraisal of the

object of its attention, would begin to treat it as a social agent - showing it toys, stroking

its head and verbally interacting with it.

The second tests were conducted in a preschool playroom with approximately 30 typ-

ically developing children between 3 and 4 years of age, where the robot was present but

no instructions for when or how to interact with Keepon were given to the children. Obser-

vations regarding how the robot’s various actions were interpreted, expressed and shared

among the children were documented. Four basic styles of play among the children were

observed: (1) Violent/Protective, (2) Caregiving, (3) Demonstrative and (4) Self-conscious.

Each of these expressions during play are indicative of the children’s perception of the robot

as more than a mobile “thing.” Instead, the children attributed communicative meaning to

the robot’s simple gestures and sounds. Further, during free-play time dyadic interactions

between one child and the robot were observed in addition to several cases of n-adic in-

teractions. In the n-adic interactions, the robot became an object of shared interest which

spawned interpersonal play with other children and the school teacher.

The last set of experiments were conducted in a day-care center for children with some

form of autism between 2 and 4 years of age, over a period of 3 years. Of the approx-

imtely 30 children observed during the course of this study, three representative cases were

detailed in the research.

The first child was a non-verbal 3-year-old girl diagnosed with autism and moderate

mental retardation. In her first 4 sessions the girl would avoid the robot, keeping her dis-

tance and averting her eyes from its gaze. After observing a boy interacting with the robot

(during the 5th session), the girl went to her therapist, pulled her by the arm and indicated
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that she wanted the therapist to imitate the boy’s actions. During her last few observed

sessions with the robot (sessions 11-15), the girl would clothe the robot, look into its eyes,

kiss it and vocalize non-words to it. Of specific value are the dyadic interactions between

the girl and the robot that emerged from the first and the last sessions.

The second case featured another non-verbal 3-year-old girl with autism and moderate

mental retardation. Her participation in the study lasted approximately 17 months, and

about 40 sessions. For the first 9 sessions the girl would not interact or pay attention to

the robot at all, even though she would glance at it occasionally when it made a noise.

After her 10th session, the girl began to touch and interact with the robot. During the 16th

session she poked the robot in the nose, causing the robot to bob up and down. The girl

showed her surprise and smiled while the others in the playroom burst into laughter. In

subsequent sessions, the girl would interact with the robot, smile and look referentially at

her therapist and mother. For the last 10 sessions or so, the girl would regularly participate

in a game of imitation and turn-taking with the robot, while repeatedly and referentially

looking at her therapist and mother. The marked change from non-interaction to triadic

interaction, especially given her reluctance to engage in this kind of play prior to the test,

is an important observation.

The last case describes a boy (of an undisclosed age) diagnosed with Asperger’s syn-

drome and mild mental retardation. In his first encounter with the robot, the boy acted

aggressively towards it and knocked it over but in later sessions began to act protectively

and interacted with the robot as if it were capable of perceiving the emotional valence of

its environment and understood spoken language.

Through their experiments with the Keepon, Kozima et. al. learned that an appropri-

ately designed robot can facilitate not only dyadic interaction between a child with ASD

and the robot but also triadic interaction and empathetic interactions. Further, it was shown

that a very simple robot interface could be used to attract and maintain the attention of

children with ASD and facilitate social interaction.
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Adaptive Robot Design

Research conducted at the University of Southern California explored the use of a robot

whose actions are contingent on user actions to determine the effect on social interaction in

children with ASD [36]. Results obtained from the Bubblebot research show that human-

robot and human-human social interaction is increased with a robot that responds in a

predictable way to user commands. Bubble-blowing games are a common technique for

diagnosing children with autism since they tend to provoke social behavior including joint

attention and pointing. The interesting aspect of the Bubblebot research is that two distinct

robot modes are tested to evaluate whether the actions of the robot effect the behavior of

the children participating in the study. In the first mode, the robot would blow bubbles

randomly and in the second mode, the robot would only blow bubbles when a large button

on the robot’s body is pushed.

Five participants (4 with ASD and 1 typically developing) were included in the prelim-

inary pilot study and ranged from approximately 1.5-12 years of age. Quantitative mea-

surements such as the number of social behaviors exhibited by the children in the study and

qualitative observations such as the type of behavior (human-human, human-robot) were

collected during each of the play modes. During the trial, video recordings were annotated

to identify speech, gestures, movement and physical contact in addition to the target(s) of

the behavior (the robot or a co-present parent) and whether the event was proactive or in

response to the parent or robot.

Results show that all the selected social behaviors measured by this study increased

when the robot operated in contingent mode. Total speech increased from 39.4 to 48.4

utterances. Total robot interactions increased from about 43.4 to 55.3 and total directed

interactions (those which were clearly directed toward the robot or parent) increased from

approximately 62.7 to 89.5. The definitive increases in social interactions presented by this

study provide a compelling case for the design and use of adaptive robots which are in

some way responsive to the user.
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Interactive Game Design

More recently, research in the area of robotics for children with special needs has yielded

a comprehensive study by the IROMEC project [37] which describes the types of robot

technologies and play scenarios most effective for children with various disabilities, how

robots can be best used in therapeutic or educational settings, as well as detailed accounts

involving the use of robots used for play activities and possible play-based methodologies.

The IROMEC project [38] identifies three play scenarios and five distinct developmental

areas most beneficial for collaborative, interactive play with children with ASD [39]. The

testing protocol developed for the introduction and use of CHARLIE as a play tool for

children with autism is based on the guidelines detailed in the IROMEC study.

CHARLIE incorporates key characteristics from each of the above studies. The toylike,

non-humanoid appearance of the Keepon and the user-directed modality of the Bubblebot

were used as the basis for the development of the robot architecture and the three types

of play scenarios identified in the IROMEC study, (1) turn-taking, (2) sensory reward and

(3) imitation were used to design the games detailed in this paper. One of the unique

contributions made by this research is the low-cost robot design and additional functionality

provided by the hand classifier. With hand detection, the robot is not only able to participate

in qualitatively different interactive games but it also allows the robot to collect pertinent

information regarding a child’s specific progress that may be difficult or impossible to

obtain otherwise.

2.4 REMOTE STRESS DETECTION

Studies related to the remote collection and use of physiological information have been

published across multiple disciplines including computer vision [40], image and signal

processing [41], human-computer interaction [42], biomedical engineering [43], plant sci-
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ence [44] and robotics [45].

Traditional approaches rely on devices which capture changes in air temperature, the

circumference of the chest or abdomen, or the sound created by breathing events. Ther-

mistors measure the air temperature near the nasal region during inhalation and exhalation

to detect breathing events [46] while respiratory belt transducers rely on changes in the

circumference of the chest or abdomen to capture the breathing cycle [47]. A third ap-

proach uses battery-powered wearable sensors to detect the sound created by turbulence

occurring in the human respiratory system [48]. In addition to being impractical for use

in many real-world scenarios, these devices are generally uncomfortable or impractical to

wear. Respiratory belt transducers can sometimes even interfere with the breathing process.

None of these options are suitable for mobile applications or for people who are sensitive

or disinclined to wearing sensors of any kind.

The detection and tracking of stress in humans has become a major focus of current

research in robotics and promises to lead to many exciting breakthroughs. The ability to

detect shifts in human physiological and/or physical patterns has numerous applications in-

cluding airport security, military reconnaissance, autonomous home robots, entertainment,

and a wide array of medical diagnoses and therapies. Two branches of robotics currently

exploring this field of study are Human-Robot Interaction and Socially Assistive Robotics.

Socially Assistive Robotics (SAR) is a relatively new field in robotics which focuses on

designing robots to assist people through social interaction while Human-Robot Interaction

(HRI) focuses on algorithms which promote more natural and effective communication

between people and robots. Both fields require a multidisciplinary approach drawing on

the expertise of computer scientists, psychologists and cognitive scientists. In addition,

both fields share research with robots whose actions are determined by the emotional state

or mindset of the user with whom they are interacting. Due to recent advancements of

technology in this area and the collaboration of experts across multiple disciplines, both

fields are poised to make substantial contributions in the very near future. It is quite feasible
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that stress-sensing robots will be a pervasive, cross-culture technology useful in many areas

of life.

Stress Detection Techniques

One of the earliest examples of stress detection is the polygraph. In 1908, an English doc-

tor named James McKenzie designed a device called the “ink polygraph” that measured

fluctuations in pulse and blood pressure. It was not until several years later that this par-

ticular technology was used to determine whether a subject was being deceptive. Over the

years, the device has remained essentially the same, adding the measurement of breathing

and perspiration to pulse and blood pressure. In terms of detecting deceptiveness, the relia-

bility of the polygraph has long been a source of controversy, however, its ability to detect

physiological changes that are known indicators of stress is undisputed.

One major limitation of the polygraph is the requirement that a subject be “hooked up”

to a number of measurement devices. In controlled environments, collecting physiological

information from a stationary subject may be effective and useful, but in the majority of

real-world applications, subjects are mobile and this mode of data collection is not prac-

tical. Since the advent of the polygraph, a variety of sensor/receptor designs have been

developed which employ the use of specialized sensors placed on a subject and physiolog-

ical information is wirelessly transmitted back to a central computer. The application of

wireless technology has yielded many new possibilities in general, and specifically, in the

field of robotics.

A robotics team at the University of Calgary presented a poster at the Human-Robot

Interaction 2009 Conference in LaJolla, California [49], which uses a reasonably-priced

commercially-available device to control an iRobot Roomba. In the first phase of their

experiment, they tried to issue direct motion commands to the iRoomba, which yielded

unreliable results. During the second experiment, they used the biofeedback signals from

an OCZ NIA neural impulse actuator (typically used for video games) to influence the
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iRobot’s movements.

The OCZ NIA is basically a headband that “reads bioelectric signals that are amplified,

digitized and further de-convoluted into computer commands.” The “de-convolution” is

used in video game applications where sensor readings are mapped to specific keystrokes

used in various computer games. For the purposes of their experiment, the Calgary team

customized this convolution to control the iRobot Roomba through its API (application

programming interface). Since the most reliable information collected by the OCZ NIA

was muscle tension, the team focused solely on interpreting muscle tension readings which

it used to infer a person’s emotional state. Instead of directly controlling the robot’s actions

using the level of muscle tension, the emotional state is estimated from muscle tension

readings and that state is used to influence the robot’s behavior.

Every five seconds, muscle tension readings were averaged and mapped onto one of

four stress levels. The higher the muscle tension, the higher the stress level inferred. When

the user is experiencing high levels of stress (levels 3-4), the robot’s corresponding action

is to enter cleaning mode and avoid the user. When the stress level is low (level 1), the

robot will approach the user and stop, behaving as a pet would. Saulnier and his colleagues

concluded that crude stress-level readings can be a useful tool for influencing a robot’s

behavior. In addition, although trying to directly control robot actions produces unreliable

results, using inferred emotional states based on stress levels to influence corresponding

robotic behavior can be implemented in a fairly simple, straightforward way.

In another experiment, with the support of a grant from the National Science Foun-

dation and the NASA Institute for Advanced Concepts, a team of researchers at Vander-

bilt University applied the fundamental concept of human-stress detection to the study of

autism therapy [50]. The basic objective of the Vanderbilt team was to “teach” a robot to

recognize physiological indicators of stress and determine when to respond with help.

The principal investigator, Nilanjan Sarkar, enlisted the help of a psychologist in order

to design stress tests that would be used to produce physiological symptoms of stress.
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The tests included playing video games, anagram word puzzles and solving mathematical

equations. The team fitted subjects with several (wearable), biofeedback sensors which

measured heart rate variability, skin conductivity, eyebrow movement, jaw clenching, and

body temperature. The sensors then relayed the information from the subject to a computer

through a cell phone-sized data acquisition box which is also worn by the subject. To

complete the circuit, the computer was used to communicate wirelessly with the robot.

While biofeedback sensors continuously collected physiological data, the robot mon-

itored the anxiety level of the subject using wavelet signal processing to analyze the sen-

sory data. Results from the data analysis were then used to develop indices correlating to a

person’s anxiety level. These indices form the basis for building the robot’s control archi-

tecture, defining for the robot some threshold anxiety level which initiates a state change

(i.e, respond and help.)

The key to this approach includes designing an affective control architecture and cre-

ating rules by which the robot decides how to respond when the threshold anxiety level is

reached. In preliminary studies, Sarkar and his colleagues created rules that directed the

robot to simply offer assistance when a specific level of stress registered. Later, however,

the robot learned to make choices between response options such as protecting itself, mov-

ing toward a human to offer assistance, or sounding an alarm. According to Sarkar, the

action plan executed by the robot may require the robot to change its level of autonomy or

simply adjust the priority of tasks within the same autonomy level.

The modes of collecting physiological data described by Sarkar et. al. have been ef-

fective but have limitations similar to those presented by the polygraph. Both methods

still require that the subject be fitted with the proper biofeedback sensors. In certain con-

trolled settings and with certain subjects, this may not be an issue. However, its efficacy in

many real-world settings is still somewhat limited. For example, broad applications such

as stress-sensing technology in airports, military reconnaissance and other dynamic envi-

ronments where subjects to be studied cannot be fitted with biofeedback sensors, cannot be
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effective without some way to conduct stress-sensing remotely. Another major limitation

is with persons (namely children and children with autism, in particular) who are averse to

wearing sensors of any kind.

According to a study conducted in 1994 persons with autism may be particularly prone

to stress [51]. From an insightful book by Olga Bogdashina [52] “Many a time autistic

individuals have been ’pushed’ beyond their limits of sensory endurance. Often this is due

to those relating to them not having understood how ’painful’ it is to be overloaded by

too much sound; visual stimulation; emotional and/or physical demand and environmental

expectation.” For these individuals, effective treatment requires the reliable detection of

stress and the minimization (or elimination) of stressors like potentially invasive therapies

that require wearing sensors of any kind.

Another study conducted at the Washington University in St. Louis set out to explore

the remote detection of stress through the use of Laser Doppler Vibrometry (LDV) [53].

The research team included a professor of psychiatry, university experts in the fields of

computer vision and psychology, and researchers in the photonics group at the Boeing

Company. The project goal seeks to use LDV to obtain useful physiological information

by directing a laser beam at exposed skin.

LDV devices have traditionally been used for the inspection of mechanical compo-

nents, structural dynamics and even for eardrum diagnostics and detecting insect commu-

nication. Where LDVs have shown great promise is in the detection of landmines. Sound

is introduced to the area to be inspected (through the use of a loudspeaker, for example),

and ground vibrations are measured. If there is a landmine, the area above it will pro-

duce enhanced ground velocity at the resonance frequency of the mine-soil system. LDV

technology is widely used in industrial and military applications, but their use in studying

human physiology has not been widely explored. Technology like the LDV device, when

customized, could feasibly close the gap between machines and humans, where affective

computing meets human-robot interaction in the most natural way possible.
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Experiments were carried out at Washington University, where an LDV device was

aimed at the general area on the neck which overlies the carotid artery. Skin vibrations

resulting from the pulsating artery were measured for approximately five-minute intervals,

three times over a period of several months. Each time, the LDV signal was downsampled

to 1kHz and the raw data was extracted. The raw signal easily identified the cardiovascular

spike which corresponds to the same R wave in an electrocardiogram (ECG.)

Some of the drawbacks posed by using LDV for physiological data collection are vari-

ances in physiology and tracking. It is still unclear how much natural human movement

can be tolerated before adversely affecting the accuracy of measurements taken by the LDV.

Additionally, it is not known if these variances in tracking can be overcome and whether

the differences in physiology can be normalized to a specific population. More research is

required to determine the limitations of this type of technology in order to ascertain its po-

tential role in remote human stress-sensing in general, and more specifically, its usefulness

in autism therapy.

Stress-Detecting Robots

While the collection of physiological data for diagnosing disorders and stress in humans

is not new, remotely recovering this information for use in robotics is an emerging field.

Recently, a remote-controlled robot was developed that is capable of detecting motion and

breathing though building walls using millimeter-wave miniaturized radars [54]. Although

such systems have high utility for search and rescue, military and law enforcement appli-

cations, they are not suitable for most HRI scenarios because of their size, cost and the fact

that they are non-autonomous. Other important research contributions in robotics using

contact sensors have shown that physiological responses alone can be used to successfully

recognize anxiety in humans [55].

A study using a reasonably-priced, commercially-available device to control an iRobot

Roomba [49] obtains biofeedback signals from an OCZ NIA neural impulse actuator (typ-
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Figure 2.1: Remote breathing monitoring system. Front view (left) and profile view (right).

ically used for video games) and deduces a user stress state to adapt the Roomba’s move-

ments accordingly. The OCZ NIA is basically a headband that collects bioelectric signals,

amplifies, digitizes and further de-convolutes the signals to convert into computer com-

mands. For the purposes of their experiment, researchers customized this convolution to

control the iRobot Roomba. Since the most reliable information collected by the OCZ NIA

was muscle tension, the team focused solely on interpreting muscle tension readings which

it used to infer a person’s emotional state. Instead of directly controlling the robot’s actions

using the level of muscle tension, one of four stress states is estimated from muscle tension

readings and that state is used to influence the robot’s behavior. The higher the muscle

tension, the higher the stress level inferred. When the user’s stress state was perceived to

be high, the robot would enter cleaning mode and avoid the user. When their stress level

was perceived to be low the robot will approach the user and stop, behaving as a pet would.

An important contribution of this paper was the finding that crude stress-level readings can

be a useful tool for influencing a robot’s behavior.
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Another study applies the fundamental concept of human stress detection to the study

of autism therapy [50]. The basic objective was to “teach” a robot to recognize physio-

logical indicators of stress and determine when to respond with help. Stress tests were

designed to produce physiological symptoms of stress and included activities such as play-

ing video games, solving anagram word puzzles and mathematical equations. Participants

of the study were fitted with biofeedback sensors which measured heart rate variability, skin

conductivity, eyebrow movement, jaw clenching, and body temperature. The sensors then

relayed the information from the subject to a computer which communicated wirelessly

with the robot.

While biofeedback sensors continuously collected physiological data, the robot moni-

tored the anxiety level of the subject using wavelet signal processing to analyze the sensory

data and indices correlating to a subject’s anxiety level were developed. These indices form

the basis for building the robot’s control architecture, defining for the robot some threshold

anxiety level which initiates a state change. The key to this approach includes designing

an affective control architecture and creating rules by which the robot decides how to re-

spond when the threshold anxiety level is reached. Ultimately, the robot learned to make

choices between response options such as protecting itself, moving toward a human to offer

assistance, or sounding an alarm.

The modes of collecting physiological data described in these studies have been effec-

tive but each method still requires that the subject be fitted with the proper biofeedback

sensors. In certain controlled settings and with certain subjects, this may not be an is-

sue. However, their efficacy in dynamic environments where people cannot be fitted with

biofeedback sensors or in medical or therapeutic settings where persons are averse to wear-

ing sensors is still somewhat limited.
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Remote Stress Detection

Remote breathing detection can be used in many applications when it is important to mea-

sure changes in breathing rate but it is not practical to attach sensors or receive frequent

feedback from the user. One of the first published works which measures breathing rate re-

motely uses an active radar detector to measure movements of the chest caused by cardiac

and breathing events [56]. Since then, other non-contact modalities have been explored in-

cluding laser doppler vibrometry (LDV) and mid-wave infrared video cameras. The LDV

study remotely collected physiological information to deduce the stress state of an individ-

ual based on vibrations of the skin directly covering the carotid artery [53]. The objective

of the study was to obtain useful physiological information such as that provided in an elec-

trocardiogram (ECG) by directing a laser beam at exposed skin. However, two significant

limitations posed by this approach include the challenge of tracking accurately caused by

variances in physiology and the prohibitive cost of the equipment used.

The biomedical engineering field has published a great deal of research dedicated to the

acquisition of a wide variety of physiological information. One recent study uses a mid-

wave infrared camera to capture breathing rate based on air temperature changes near the

nasal region [57]. This particular implementation was initially designed for polysomnog-

raphy, or sleep studies, and relies initially on the manual identification of a primary region

of interest, tracking the location of the nostrils and, more specifically, the outer extent of

the nostril region. Because of the large amount of image and data processing required and

the small size of the nostril location to be tracked, segmentation becomes challenging and

computationally expensive.

Medical applications including polysomnography and the diagnosis and management

of respiratory diseases may require a high level of precision that demands the collection

and analysis of data relating to the entire breath waveform not just the number of breathing

events. Our research uses a simpler, less expensive method to monitor changes in breathing

and heart rate. It does not require capturing a large amount of precise data relating to the
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full breath spectrum.
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CHAPTER 3

INTERACTIVE ROBOT

It is widely known that the incidence of autism has been increasing over the last decade,

with some reports citing a 57% increase in autism prevalence between 2002 and 2006 [7].

Two of the most significant problems stemming from the increased prevalence of autism

are the additional strain placed on existing resources for treating children with ASD and

the additional financial strain placed on families who care and seek treatment for their chil-

dren. The costs associated with additional therapy, specialized and medical care for a child

with ASD are estimated to be approximately 8.5 to 9.5 times more than raising a typically

developing child [58]. For some families, this additional financial burden may mean hav-

ing to choose between incurring significant debt in order to get the proper care for their

child(ren) or limiting the amount of therapy their child receives. Although several existing

robots have been used with children with ASD, they are still generally cost prohibitive for

widespread use by special education instructors and therapists.

In response to these existing needs, the long term vision of our research is to produce a

low-cost, adaptable robot which is widely accessible to a large population of autism ther-

apists, teachers and parents for use as part of an overall early intervention strategy for

children with ASD. Because the social and communication skills of children with autism

vary as much as their individual preferences, one robot design will not be universally ac-

cepted or effective. However, while a one-size-fits-all approach is not appropriate, simple

robot and game designs can be achieved which target a specific set of communication tasks

or social skills. In addition to focusing on the careful design and development of hardware

and software that is known to be effective for children with ASD, we paid special attention
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Figure 3.1: CHARLIE. [left] Completed robot. [right] Internal structure.

to developing an appropriate testing protocol.

3.1 METHODOLOGY AND APPROACH

The physical design of CHARLIE addresses three major objectives. First, the outward ap-

pearance of the robot was designed to be toylike and pleasant so as to invite the attention

of young children with ASD and avoid being intimidating to the greatest extent possible.

Second, we carefully designed the robot structure so as not to allow the robot, nor its con-

stituent parts, to harm the child interacting with it. Third, we made the robot more robust

by adding features to protect its mechanical components and allow children to explore and

interact more freely with the robot without excessive concern for the physical integrity of

the robot.

Our approach to the design of CHARLIE’s interactive games is based on the integration

of robot and game designs that are known to be effective with children with autism. Each

game was designed to be entertaining to young children and to promote two fundamen-

tal requirements for communication: imitation and turn-taking. Further, we created three

different types of games to appeal to children with varying levels of communication and
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social skill. For children who are reluctant to play with a completely autonomous robot

or for those who would benefit from a period of exploration before they begin playing the

interactive games, the robot can be teleoperated using a simple remote control. For those

who are ready to play directly with the robot, but who are not necessarily ready to play a co-

operative game with another child, the single-player interactive game is available. Finally,

a two-player interactive game was created to appeal to those children who have established

some level of simple imitation and turn-taking but could use more practice with these skills

using the robot as a social mediator.

3.2 PHYSICAL DESIGN

We deliberately designed the outward appearance of CHARLIE with the end-user in mind.

Recent research has shown that robots with a simple interface are generally better received

initially by children with autism, than robots with a more realistic, human-like appearance

[59]. The implication is that low-tech robots, when designed appropriately for the particular

needs of the child(ren) with ASD they will serve and the context in which they will be

used, can be used effectively to teach and promote social skills. In addition to the low-cost

design, CHARLIE’S physical appearance is intended to be toylike to create a friendly and

approachable outward appearance and to more easily attract the attention of a child.

Basic hardware components

CHARLIE’s hardware includes 6 servos, 3 pan-tilt platforms, an 8 channel servo controller,

a consumer-grade web cam, and 2 D-cell battery packs. The robot’s body is padded for

safety, and its outer surfaces are covered with a bright green, fur-like material to achieve

a non-threatening appearance. During active game play the child’s attention is typically

focused near CHARLIE’s hands, so one LED is embedded in each of the hands to provide

positive feedback during interactive games. A speaker is also included in CHARLIE’s body
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Figure 3.2: [top] Snap off arm. [bottom] Snap off head.

in order to provide optional auditory instructions for playing interactive games and positive

feedback. Exclusive of the computing hardware, the retail cost of the robot’s components

is approximately $200 USD. In a production version of this robot, a computer could be

integrated into the robot’s body, or users could connect via USB to a standard laptop or

desktop PC.

Features for robustness and safety

In general, children are curious about robots and many enjoy exploring the physical features

of the robot as much as interacting with it. This can present hazards to both the child and

to the robot’s mechanical hardware. In order to minimize potential hazards and to improve

the robustness of the robot, we included two characteristics in the robot’s design. First,

the body of the robot is secured to a platform that may be strapped to a desk or table.

Immobilizing the robot in this way prevents the child from being able to pick up the robot

and potentially harm him/herself, others in the room or the robot itself. Second, the arms

and head of the robot are attached to the robot’s body using snap fasteners so that excessive

force will not cause damage to the servo motors, but will instead allow that piece to snap
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off. Furthermore, allowing the arms and head of the robot to detach, affords the child

more continuous free play since there will be less concern over the child’s safety and the

integrity of the robot’s hardware. As described in the IROMEC study [37], while the adult

must fulfill a more active role for promoting play skills with children with ASD, “much

of the literature on childhood play emphasizes the importance of free play and the need to

interfere as little as possible in the child’s actions, thus underscoring the creative aspects

that in essence cannot be controlled or oriented.” We expect that longer, uninterrupted

interactions will maximize the opportunity for each child to benefit from each session.

3.3 INTERACTIVE SOFTWARE DESIGN

We used the Open Source Computer Vision Library (OpenCV) [11], a cross-platform li-

brary for real-time computer vision applications, for training the hand classifier and for the

implementation of hand and face detection. OpenCV provides a facility for object detec-

tion based on an extended set of Haar-like features [60]. Informally, this method works

by screening small portions of an image for visual characteristics of the target object. To

train a classifier to identify a specific class of objects, OpenCV uses Adaptive Boosting

(AdaBoost) [61] to create a cascade of boosted classifiers defined over these features. We

then included the resulting hand classifier along with a standard OpenCV face classifier to

detect user hands, track the user’s face and provide position information for managing three

interactive games. In the first game the robot waits for the child to initiate an interaction

by raising one or both hands. In the second game, the robot initiates interactions. The pri-

mary objective of our game designs is to increase attention, promote turn-taking skills and

encourage child-led verbal and non-verbal communication through simple imitative play.
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Figure 3.3: CHARLIE poses. From top to bottom, left to right : Left hand high. Both
hands high. Right hand high. Peek-a-boo. Neutral.

Face detection and tracking

We relied upon the frontal face classifier provided by OpenCV (more specifically, a cascade

of boosted classifiers working with Haar-like features) for face detection. Haar-like features

are used as an abstraction of RGB pixel values for object detection since image intensities

are computationally expensive to work with. Each feature type is used to screen a given

portion of an image for different characteristics of the target object. The extended sets of

rectangular Haar-like features used for the face and hand detectors described in this paper

are applied to assess whether a particular rectangular portion of a video frame contains a
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Figure 3.4: Face and hand detection.

face or hand by summing the pixels contained within the rectangle and determining whether

it matches the characteristics of the target object as defined by the classifier.

To make the overall program as efficient as possible, we implemented a face tracking

algorithm instead of repeating the computationally intensive detection process for each

frame. Face tracking was accomplished using the Continuously Adaptive Mean Shift

(CAMSHIFT) algorithm [62]. CAMSHIFT incorporates the MEANSHIFT algorithm which

is based on a nonparametric technique for climbing density gradients to find the peak of

the probability distribution of the position of a given target object. For face tracking, this

translates to identifying the center of the target color distribution in a given video frame.

In order to make face tracking fast and relatively robust (and appropriate for use in real-

time tracking applications), we used the CAMSHIFT technique. This tracking method

improves performance by eliminating the need to repeat the face detection for each frame

of the video. To overcome errors resulting from drift in the CAMSHIFT algorithm, the

robot periodically repeats the full face detection process. In the event that the robot cannot

detect the face, the robot head is reset to a neutral position and searches outward in an

increasingly larger area.
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Figure 3.5: Sample images used to train the hand detector. [top] Positive examples. [bot-
tom] Negative examples.

Whereas face detection is a well-studied problem [63, 64], and effective face classi-

fiers are freely available through OpenCV, robust and real-time hand detection in diverse

environments is a topic of continuing research.

Hand classifier and hand detection

Numerous approaches for developing robust hand detectors have been explored [65, 66],

but the resulting classifiers have not been made available to the research community. Fur-

ther, some hand classifiers that are freely available such as the gesture letter “A” detector by

Juan Wachs from the Ben Gurion University of the Negev, Israel and Washington Hospital

Center [67], are too narrow in scope for use in this context and others are not accurate or

efficient enough for our application. In order to implement a hand detector suitable for our

purposes, we trained a new hand classifier to detect hands in various lighting conditions,

rotations, scales and finger positions. Approximately 750 positive hand images of vari-

ous size, color and position and approximately 3300 negative images were collected and

cropped to a uniform pixel size of 40x40. Representative examples are shown in Figure 3.5.
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To create additional positive training samples representing variations in lighting, rotation

and scale, ten distortions were applied to 100 of those samples, yielding a total of approx-

imately 1750 positive hand samples. The resulting vector files were then merged and the

AdaBoost training procedure was initiated using the combined vector file representing all

positive hand samples and the complete set of negative samples.

Interactive game design

Research in robot-assisted autism therapy typically emphasizes specific objectives for ideal

human-robot interaction including an increased attention span, eye contact, proactive in-

teraction with the robot initiated by the child, verbal and non-verbal cues, turn-taking,

imitative game playing and overall use of language.

First, we defined the play scenario in terms of: (1) a main target group, (2) a play type,

(3) actors involved, (4) a setting, and (5) the duration of the play activity. The main target

group consists of a small group of children ages 4 to 11 who have been diagnosed with

autism and have documented communication deficiencies. The play type consists of a very

simple game of imitation with a basic set of rules and is designed to engage one teacher

or one child at a time. The tests take place in a closed classroom, where both the child

and teacher are seated across from the robot and the robot will be seated atop and securely

attached to a nearby desk so that the robot’s head is at approximately the same height as the

child’s. The duration of the play activity is variable. The length of a typical session with

the robot is based on the normal amount of session time allotted for that particular child,

the perceived benefit of the robot to the child’s development and the child’s interest in the

robot.

Second, we prepared a detailed description of how CHARLIE is introduced to each

child and how play proceeds during the first and subsequent sessions. Prior to introduction,

a baseline for communication skills and developmental ability is established for each child

using assessment information provided by the child’s teacher. At the first meeting, the
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teacher introduces CHARLIE and explains and/or demonstrates how to play the imitation

game. The teacher then invites the child to play with robot and provide guidance, when

necessary. For children who prefer to examine the robot and learn about its capabilities

independently, the teacher assumes a more passive role, as an observer and guide.

Third, we identified measures of success using the baseline communication skills iden-

tified prior to the child’s first session. Initially, the child’s level of interest in CHARLIE

is noted in addition to any specific robot characteristics that are especially interesting to

the child. During each session, communication between the child and robot, and the child

and teacher is documented by the teacher or researcher (the author). Because the robot

measures successful imitations between the robot and child it is not necessary to document

these interactions, but other nonverbal and verbal communication occurring during the ses-

sion is noted for subsequent analysis. Measures of success and user information collected

during an interactive game can be used to assess the child’s readiness for more advanced,

child-initiated games such as collaborative group play and story-telling.

Ultimately, we designed and implemented two additional interactive games to appeal

to children with ASD of a wider range of ability and skill. The original game developed

is a single-player game which engages a child in a game called “Imitate Me, Imitate You”.

In this game, the child may either initiate a pose for the robot to imitate (“Imitate Me”) or

the child may follow the robot’s pose (“Imitate You”). The single-player game is intended

for the child with ASD who is comfortable interacting with an autonomous robot but who

may not be ready for turn-taking with another child.

Single-player “Imitate Me, Imitate You”

The “Imitate Me, Imitate You” game is detailed in Figure 3.6 and consists of two primary

modes: passive and active. Within each of the two modes, there are five poses: neutral

(both hands down), left hand raised, right hand raised, both hands raised and peek-a-boo,

as shown in Figure 3.3. In order to give the child initial control over the robot’s actions, the
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Figure 3.6: State diagram for CHARLIE’s “Imitate Me, Imitate You” autonomous interac-
tive game.

default robot state is the passive game mode. Once the robot detects and begins tracking

the child’s face and hands, the robot indicates that it is ready to interact by moving to the

neutral pose and blinking the LEDs in its hands three times. The robot then immediately

enters the passive game mode and waits for the child to initiate a game by raising one or

both hands. As the child’s hand movements are detected, the robot responds by imitating

the child’s hand positions and lighting the LED in the corresponding hand while simultane-

ously detecting any additional hand movements. If ten seconds elapse without any detected

hand movement, the robot will transition to the active game mode.

During the active game mode, the robot initiates a new game and attempts to engage

the child by raising or lowering one or both arms, or beginning a game of peek-a-boo. Each

pose assumed by the robot in the active game state is selected randomly in order to avoid

repetitive patterns of poses. When a positive outcome is detected (the child successfully

imitates the robot’s pose), positive sensory feedback is generated by the robot. A positive

sensory response entails the robot lighting a small LED in the hand corresponding to the
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Figure 3.7: State diagram for CHARLIE’s “Pass the Pose” autonomous interactive game.

raised hand or hands of the imitated pose. As with the passive game mode, the robot will

wait ten seconds for the child’s response. If ten seconds elapse and a positive response has

not been detected, the robot will transition back to the passive game mode, waiting again

for the child to initiate a new game.

Two-player “Pass the Pose”

The second interactive game is a two-player game described in Figure 3.7 called “Pass the

Pose”. In this game, two players interact directly with the robot and indirectly with one

another. With the optional sound enabled, the “Pass the Pose” game works as follows:

Game play begins with CHARLIE describing how to play “Pass the Pose” and asking the

first player (seated to the right of the robot) to assume a pose. Once she has detected the

pose, CHARLIE indicates that she has learned the pose by saying “Ok, I got it. Now let

46



me try”, turns to the second player (seated to the left of the robot), asks the child to follow

her and then assumes the same pose learned from the first player. If the second player

successfully imitates the pose assumed by CHARLIE, she responds by saying “You got

it!”, claps her hands and giggles. If the player does not immediately imitate the correct

pose, CHARLIE will ask the child to try again. If the child does not correctly assume the

pose after three tries, the robot asks the current player to initiate a new pose and the game

continues, this time with the second player initially “passing” the pose to the robot.

If the sound is disabled, we expect that the teacher, therapist or parent will describe

how to play the “Pass the Pose” game. When the players are ready the teacher will start

the game and CHARLIE will turn to the first player and wait for the child to assume a

pose. Once CHARLIE has detected the pose, she turns to the second player and assumes

the same pose. If the child correctly imitates the pose, CHARLIE claps her hands and

waits for the second player to initiate the next pose. If the second player does not correctly

imitate the pose, CHARLIE lowers her head and shakes it slowly from side to side. Should

the child fail to imitate the pose correctly after three tries, CHARLIE resumes a neutral

position and waits for the second player to start a new game. This two player game is

ultimately designed to promote shared attention and cooperative play. We anticipate that

the “Pass the Pose” game will be most useful for children who have already demonstrated

some level of proficiency with turn-taking and imitation and who are able to play a game

with a simple set of rules.

Teleoperation

In addition to the two autonomous games, we developed and implemented software that

allows for the robot to be teleoperated so that when a button is pushed on the remote, the

player is given complete control over CHARLIE’s limbs and head. While each of the four

push buttons on the remote correspond to specific pre-programmed poses, the two joystick

buttons provide continuous control for the movement of each arm and a single directional
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button allows for continuous control of the head. We expect this game play to be useful

for the child with ASD who may be initially wary or hesitant to interact with the robot.

By temporarily disabling the robot’s autonomous actions, the child is given the freedom to

learn about CHARLIE’s various capabilities at his or her own pace.

3.4 DATA COLLECTION

There are two distinct kinds of user interaction information collected by the robot. In-

formation pertaining to the user’s overall progress such as (1) the total length of active

engagement (time spent actively engaging in either passive or active mode), (2) number

of child-led actions and (3) the number of successful interactions is continuously captured

during each session. At the end of the session, this information is used to create a user

progress report for analysis and for future sessions with the same child. The second type

of user information, such as the length of the intervals between interactions, is used for

controlling the robot state.

3.5 INITIAL ROBOT EXPERIMENTS

Experimental setup

Face detection, tracking and hand detection results

As a proof-of-concept for CHARLIE’s effectiveness, we conducted preliminary tests using

the single-player game with a small group of typically developing children. See Figure 3.8.

A relatively large age range (4-11 years) was selected to test the reaction times of the robot

when used with children of varying levels of ability. Each child participated in an 8-10

minute session, in which both game modes (passive and active) were tested and the accu-

racy of the hand and face detectors was measured. The duration of each game mode was

recorded to ensure that adequate time is given for the child to respond before a transition
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Figure 3.8: Children Interacting with CHARLIE.

is made to the alternate game mode and the effectiveness of the positive sensory feedback

(LEDs in hands indicating successful detection) was assessed.

Experiments were conducted to measure the speed and accuracy of the face and hand

detector and to assess the appropriateness of CHARLIE’s timed responses during game

play (Table 3.1). The accuracy of the face detector and tracker was determined by calcu-

lating the ratio of successful face detection time to the total session time. The face detector

averaged an accuracy of 86% across all sessions and users. In a typical session, users aver-

aged 33 child-initiated hand movements and imitated 16 robot movements per minute. The

hand detector accurately detected the child’s hands an average of 92% of the total session

time, with 244 hits out of 265 total hand events.

While face detector accuracy includes the time during which a false positive or detec-

tion failure occurs, it also counts as misses the aggregate time during which the child’s face
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Table 3.1: Data collected from an interactive session with CHARLIE.

Participant Child1 Child2 Child3 Child4 Average

Age (years) 8 8 4 11 7.75

Interaction time 152s 198s 156s 144s 162s

Lost face time 22s 30s 36s 18s 26s

Face detection hit rate 87.0% 87.0% 81.0% 89.0% 86.0%

Passive time 30s 124s 89s 118s 90s

(19.7%) (62.6%) (57.0%) (82.0%)
Active time 122s 74s 67s 26s 72s

(80.3%) (37.4%) (43.0%) (18.0%)
Actual passive hand actions 29 48 37 84 50

Passive hand detections 24 41 35 81 45

Passive hand hits 83.0% 85.0% 95.0% 96.0% 90.0%

Actual active hand actions 19 39 4 5 17

Active hand detections 17 38 4 4 16

Active hand hits 89.0% 97.0% 100.0% 80.0% 92.0%

is actually not within the camera’s field of view. Since an absent face is not possible to

detect, the observed accuracy for face detection may be artificially low. Conversely, the

accuracy of the hand detector may be artificially high since it is only based on the number

of hand events successfully detected and not on the actual time required to detect them.

A twenty-stage cascade was trained on these samples, yielding an error rate on the train-

ing set approaching zero. Section 3.5 presents a quantitative evaluation of the classifier

performance.

Nearly all of the children expressed a preference for the passive game mode, where the

robot imitates the child’s hand actions, and their comments were supported by the signifi-

cantly greater amount of time each of those children spent in the passive mode compared to

the active mode during their respective sessions. These preliminary results as an important

proof-of-concept in preparation for controlled tests with children with ASD.
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3.6 FIELD STUDY WITH CHARLIE AND EIGHT CHILDREN WITH AUTISM

Experiment Objectives

Recently, the robotics community has seen a rapid acceleration of research in the develop-

ment and testing of socially assistive robots (SAR) for children with ASD [27, 28, 68]. A

number of qualitative studies describe the therapeutic benefits of using interactive robots in

therapy such as increased speech, social interaction, joint and directed attention [6,33,36],

but few studies exist which quantify observed communication increases using assessment

instruments accepted by the autism and speech therapy communities. Even fewer provide

a statistical evaluation comparing the benefits received through speech therapy with those

obtained through an additional robot intervention. Further, no field studies have employed

a robot prototype that is sufficiently robust and reasonably easy to operate for cooperative

use by the therapist in the clinic, the family at home, and the special education teacher at

school to deliver generalizable results.

We designed and conducted a pilot field study to achieve three primary objectives: (1)

to quantitatively assess the effectiveness of a robust, interactive robot named CHARLIE

for increasing spontaneous speech, overall communication and social skills in children

with autism, (2) to compare communication and social skills increases obtained through

therapy(ies) supplemented with a robot-assisted intervention to increases achieved with-

out robot intervention and, (3) to explore a new interactive, human-in-the-loop therapeutic

methodology for generalizing learned social behaviors that extend child-to-robot interac-

tions to child-to-co-present-other exchanges.

Institutional Review Board approval was sought to conduct this study and obtained

on February 19, 2013 under study identification number Pro00023119, and the study ti-

tle: “Effectiveness of CHARLIE the Robot for Improving Verbal and Nonverbal Skills in
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Children with Autism.” The approved study protocol is included in Appendix A.

Target Population

We recruited a study group of eight children, between 3 and 6 years of age, who have

been diagnosed with autism and a speech deficiency as confirmed by the Autism Diagnos-

tic Observation Schedule (ADOS) and a speech pathologist, respectively. Children were

invited to participate in the study based on the information provided in the Prescreening

Questionnaire (Appendix B) and confirmation of autism and speech deficiency diagnoses.

Recruitment Procedures and Experiment Location(s)

Flyers were provided to local autism support groups, physicians and clinicians and posted

at local area pediatricians’ offices, speech therapy clinics, diagnostic clinics and nearby el-

ementary schools (see Appendix C). Prior approval was sought from each organization or

place of business before flyers were posted or distributed. Additionally, in order to recruit

as many participants as possible, participant enrollment was conducted on a rolling basis

between April and October 2013.

To determine whether each child was a good candidate for the study, the Prescreening

Questionnaire was administered to the prospective participant’s caregiver over the phone.

The questions on the prescreening form were used to confirm that: (1) a formal diagno-

sis of autism was received (also, who made the diagnosis and when it was made), (2)

the child’s language ability was delayed for their chronological age (and to what degree),

(3) the child’s nonverbal communication ability (pointing, shaking/nodding head, etc) was

delayed for their chronological age (and to what degree), (4) the child did not have any

diagnosed hearing impairment and, (5) the child’s current therapy schedule would allow

for additional therapy sessions with the robot. Most of the children in the study were con-

currently receiving other forms of intervention, but 3 of the 8 children were not receiving
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any other intervention at the time of their participation in the study.

If the child did not meet the requirements to participate in the study, the information col-

lected over the phone during the prescreening process was destroyed and the child was not

invited to participate in the study. If the child was determined to be a good candidate, a nu-

meric identifier was assigned to each child and the completed Prescreening Questionnaire

was stored in a secure office, in a locked drawer. Copies of any prior, formal diagnoses

of autism or speech and language delays by a licensed professional were requested upon

selection for the study. Upon receipt, these documents were also secured in a locked office

cabinet inside a locked office. All identifiers were removed from the data and replaced with

a participant number. A password-protected file matching participant names with partici-

pant numbers was stored on a password-protected laptop computer.

Once all required documents were obtained and the child was invited to participate in

the study, the first face-to-face meeting was scheduled at the USC School of Medicine’s

Department of Neuropsychiatry and Behavioral Sciences located at 3555 Harden Street

Extension, Suite 301, Columbia, SC 29201. The second meeting and subsequent sessions

with CHARLIE, the researcher and the speech pathologist took place at the USC Speech

and Hearing Research Center located at 1601 Saint Julian Place, Columbia, SC 29204.

Obstacles in recruitment and retention

• Excessive absences

Participants were allotted a total of three allowable misses during the entire six-week

intervention. If a participant exceeded three absences in the six-week study period,

that participant’s scores for the duration of the study were not considered accurate

since s/he would have missed more than 25% of the total session time and reasonable

consistency between one subject and the next could not be assured. Participants 5
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and 6 missed four and five out of the 12 sessions, respectively, and were consequently

excluded from the study results.

• Limited clinic and family availability

The second diagnostic meeting and all sessions with CHARLIE were conducted at

the USC Speech and Hearing Research Center. Clinic space and participant avail-

ability significantly limited the number of children that could concurrently receive

therapy during each six-week period. The center has a limited number of therapy

rooms, and maintains a schedule of clients who regularly receive speech therapy

each week. Additionally, many of the children who were invited to participate in the

study were enrolled in school at the time of the study and were not available during

daytime hours. Finally, many of the participants’ parents worked during the day. To

accommodate study participants, their caregivers and the USC Speech and Hearing

Center schedule as much as possible, sessions with CHARLIE were scheduled two

days a week, in the evenings.

• Inability to complete study

An additional obstacle to retention was the loss of interest in or inability to complete

the study. Two prospective participants completed the prescreening quetionnaire but

did not follow through by attending the first meeting at the USC Department of Neu-

ropsychiatry and Behavioral Sciences. Four participants completed the prescreening

questionnaire and signed the informed consent, but did not continue in the study

by attending the first diagnostic meeting at the Speech and Hearing Research Center.

Several prospective participants were already receiving multiple therapies at the time

of their invitation to the study and it is quite possible that their caretakers chose not

to participate due to their already very demanding schedules (especially given that
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some of them also had young siblings.)

Finally, Participant 1 completed the 12 sessions with CHARLIE, but did not attend

the final evaluation due to the child and his family traveling out of the country for

two months before final session data could be collected. Since the final VABS-II and

the final MLU were both missing, statistical analyses for this study did not included

data collected from Participant 1.

Experiment Protocol

First Meeting The first meeting with the caregiver(s) of each child participating in the

study included the completion and signing of the informed consent, signing of releases

for medical records form(s) documenting a diagnosis of autism and a speech impairment,

completion of the Vineland Adaptive Behavior Scale II (VABS-II) [69], and the Social

Communication Questionnaire (SCQ) [70]. To confirm the diagnosis of autism, the results

from the Autism Diagnositic Observation Schedule (ADOS) [71] for children (if available)

was requested.

The VABS-II is designed to measure personal, communication and social skills espe-

cially for special needs populations such as individuals with mental retardation, autism, and

attention-deficit/hyperactivity disorder (ADHD). It is comprised of four domains: Com-

munication, Daily Living Skills, Socialization, and Motor Skills. The Communication Do-

main measures receptive, expressive, and written communication; the Daily Living Skills

Domain assesses personal, domestic, and community skills; the Socialization Domain mea-

sures interpersonal relationships, play and leisure time, and coping skills; and the Motor

Skills Domain measures gross and fine motor skills. Scores from the Communication and

Socialization Domains in the VABS-II were used to establish a basal score for each partic-

ipant and stored for later comparison with scores recorded at the end of the study.
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The SCQ is a brief questionnaire which aids in the evaluation of communication skills

and social functioning in children who may have autism or autism spectrum disorders [72].

Typically, the SCQ is a fast way to determine if an individual should be referred to a qual-

ified professional for a complete diagnostic evaluation. The SCQ was used in this study

as an additional measure to confirm the child’s autism diagnosis. A cutoff score of 15 or

greater was used as an indication of possible ASD; any participant scoring below 15 on the

SCQ was not invited to participate in the study.

The duration of the first meeting was approximately one hour.

Consent and Risk Parents of children with autism identified as potential study partici-

pants were asked to read and sign the informed consent at the first meeting. They were

provided a copy of the signed Autism Study Consent Form (Appendix D) and a copy of

the Study Session Methodology (see Appendix E) which details each step of the study pro-

cedure and approach for intervention with the robot. There were very few risks associated

with participating in this research except a slight risk of breach of confidentiality.

To assist in documenting each child’s progress, sessions were videotaped and cata-

logued using the date and a unique identifier assigned to the individual child. Video-

recorded sessions were highly useful for calculating Mean Length Spontaneous Utterance

Determination (MLSUD) [73] measures throughout the six-week study period for each

child and for making note of any significant changes in the child’s response as new parts of

the intervention were introduced. The original informed consent document was revised in

order to include language that allows for demonstration of recorded videos for research and

educational purposes. The two parents who had signed the original consent form before

the revision was made, also agreed to sign the revised consent form and their signatures
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were subsequently obtained.

Second Meeting The second meeting took place at the USC Speech and Hearing Re-

search Center where the senior clinical instructor and the researcher conducted three addi-

tional screenings. To assess motor imitation ability the Motor Imitation Scale (MIS) [74]

and the Unstructured Imitation Assessment (UIA) [75] were administered. The Expressive

Vocabulary Test 2 (EVT2) [76] was also administered to assess expressive vocabulary and

word retrieval ability. At the conclusion of the second meeting, the video-recorded ses-

sion was reviewed in order to perform an additional measure of verbal utterances using the

MLSUD. The MLSUD provides a total score for spoken meaningful language during the

1.0-1.5 hours assessment period. The MLSUD score is derived by assigning one point for

each spoken morpheme divided by the total number of utterances in the session.

Sessions with CHARLIE Following the second meeting, each child received two 30-

minute sessions per week for a duration of six weeks, or 12 sessions of intervention with

the robot. The room designated for the study sessions included one child-sized table, two

child-sized chairs, one or two adult-sized chairs, the robot and several hats and accessories

for game play (Figure 3.9). The senior clinical instructor from the USC Speech and Hear-

ing Research Center, Sarah Scarborough, was regularly present (with few exceptions) to

provide guidance and intervention expertise throughout each child’s therapy. Additionally,

the researcher was always present to provide continual monitoring and periodic operation

of the robot during each session.

Recognizing that children with autism tend to experience high levels of stress in new

situations, we also provided a second room where children could go to jump on a trampo-

line, roll on a large ball or read a book. The “break” room was used by participants on an
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Figure 3.9: Therapy room at the USC Speech and Hearing Research Center.

as-needed basis.

Six phases were initially identified for introducing the child to and engaging the child

with the robot. Each phase was designed to address specific therapeutic goals, including

increased speech and social skills, for interactions between study personnel, the child and

the robot. The original intervention methodology developed for the study is described in

Appendix E. However, upon completing sessions with the first two participants, the inter-

vention strategy was revised to achieve improved study outcomes. A detailed discussion

of the initial and revised intervention methodologies and the rationale for doing so, is de-

scribed below.
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Approach for Conducting Therapy with CHARLIE

Initial Approach The initial study procedure (Appendix E) was developed over a series

of weekly meetings with the researcher, two experts in autism diagnosis and treatment and

an expert in speech therapy. Before including activities in the study procedure that promote

specific speech and social skills and directly engage a child through interactive play with

CHARLIE, the study group agreed that including exercises to facilitate the child’s trust of

the robot should precede any direct engagement. Therefore, the first two phases detailed

in the study procedure describe objectives that encourage the child to manipulate the robot

physically and explore controlling CHARLIE’s motions through teleoperation. This af-

fords the child the opportunity to observe CHARLIE’s range of motion, kinematics and

hear the sound(s) of the servo motors in a manner that gives the child control over the robot

to the greatest extent possible. The objectives in Phases III-VI focus on promoting founda-

tional skills required for communication and socialization through robot-assisted play.

Once the interventionist deems that a basic level of trust and acceptance has been estab-

lished through Phases I and II, she will lead the child to begin Phase III which specifically

promotes joint attention, imitation and turn-taking. Phase III introduces interactive play

between the child and the robot where CHARLIE autonomously plays either “If you’re

happy and you know it” or “Wheels on the bus” while performing appropriate hand/arm

motions. The interventionist and the researcher direct their attention toward CHARLIE,

perform the appropriate hand motions and actively encourage the child to imitate as well.

If the child indicates a willingness to participate by directing his/her attention and engag-

ing in some hand play with CHARLIE and demonstrates that s/he would like to continue

imitative play with the music, the song or songs are played several times (as directed by

the child). Should the child indicate that s/he is no longer interested in the music/hand play

or the child has already engaged in music play several times, the interventionist offers the

remote control and introduces a new game of imitation that builds on the same concepts
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played with the music/hand play imitation. In the remote control-based imitation game, the

child uses the remote control to move the robot to pose in a particular way and all others in

the room play along by imitating the robot’s pose.

Phases IV, V and VI focus on introducing two new interactive games for further prac-

ticing joint attention, imitation and turn-taking skills. The single-player version of the

imitation game, called “Imitate Me, Imitate You”, is intended to enable the child to control

the robot without a remote. By initiating hand poses and observing CHARLIE imitating

the same pose, the child is encouraged to practice fundamental one-to-one turn-taking and

imitation skills through the cause and effect nature of the game. The two-player imitation

game called “Pass the Pose” requires a more advanced understanding of communication

and social interaction. Successful game play in this mode requires that the child is already

mastering turn-taking and imitation in a one-to-one scenario and is ready to practice turn-

taking and imitation in a triadic exchange. As the child progresses through Phases V and

VI, more child-directed play is encouraged and the child is able to choose from a menu of

activities and is expected to communicate - either through gesture or speech - of her/his

preference.

An important aspect of the study protocol is that each preceding phase provides the

opportunity to build the basic skills necessary for succeeding in subsequent phases of the

intervention. By first engendering trust and confidence, the exercises which follow can fo-

cus on scaffolding increasingly more challenging social and communication skills that rely

on a well-established protocol with which the child has already become familiar.

Lessons Learned Early in the field study, study personnel made several significant ob-

servations that were contributing to and limiting success with the robot intervention. First,
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the music and hand play featured in Phase III did effectively capture the attention of study

participants. Most of the children in the study seemed to enjoy the music, directed their

attention to CHARLIE and engaged in at least some imitation.

Second, the exercises described in Phases I and II for promoting trust by familiarizing

the child with the robot’s kinematics were accomplished in a much shorter period of time.

Some of the children participating in the study completely bypassed the first two phases

and were ready to engage directly with the robot from the outset, while the remaining chil-

dren progressed through the first two phases within minutes of their first session.

Third, the “Imitate You, Imitate Me” and “Pass the Pose” games, as designed, were

ineffective in practice. Motor imitation games without any kind of positive sensory rein-

forcement were not effective for attracting a child’s attention or maintaining his/her inter-

est. Instead, what we discovered is that a key component driving productive, interactive

gameplay is the robot’s reaction. The increases in attention, eye contact, communication,

speech and social interaction we observed as a result of the robot reacting in an amusing

way were dramatic.

Finally, while other studies have shown that a robot can be used to effectively catalyze

communication by encouraging attention, motor imitation and turn-taking, generalizing

these behaviors to co-present others has remained a challenge. In our field study, general-

izing robot-child games to child-to-co-present others is easily facilitated when others in the

room engage in gameplay using the same amusing reaction performed by the robot.

Improved Approach As a result of these important observations, the original study pro-

cedure was modified. While some of the phases in the initial procedure remained un-

changed, new software was written to deliver a new interactive game, the existing tele-
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operated imitation game was modified, less emphasis was placed on Phases I and II, and

more emphasis was placed on child-directed play. This last modification effectively led

to more child-initiated creative play, where speech introduced by study personnel to play

robot-assisted games was often spontaneously generalized by the child to communicate a

need or to engage in a different (but related) game created by the child. All modifications

were made to introduce or emphasize positive sensory reinforcement received by the child

when s/he successfully engages in interactive social play.

The description of Phases I and II include the child making eye contact with and greet-

ing the robot and others in the room, touching and moving the robot’s arms. These exer-

cises remain unchanged from the original study procedure. However, instead of devoting

one or two sessions to this activity these are all included as part of Phase I (and because the

approach is based on scaffolding these skills, are also integrated into each subsequent ses-

sion). Additionally, the improved approach features the robot responding by saying “hello”

or “goodbye” and waving its hand as part of the greeting and parting process. Requiring

that the child say “hello” and “goodbye” and/or wave to the robot and co-present others

encourages social interaction, motor imitation and, in most cases, verbalization. Several

participants enjoyed being able to “cause” the robot to respond in this way so much that

they would practice this greeting repeatedly, seemingly enjoying their control over the robot

and the predictability of its response.

The revised Phase II also features the addition of the simple game of peek-a-boo. Be-

cause this game requires some manipulation of the robot’s arms and the game is at or

below the developmental level of all the children participating in the study, this is an activ-

ity that the participants can master and enjoy early in their intervention; especially, when

paired with the amusing response the child receives when the robot says “boo!”. Moreover,

the game easily generalizes to co-present others and establishes the practice of rehearsing
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games with the robot and then immediately generalizing them to others in the room.

Phase III remains unchanged except for the modification of the teleoperated game of

imitation. While the original study procedure describes allowing the child to fully control

the robot’s motions with the remote control to familiarize her/him with the robot’s kinemat-

ics and sounds and to encourage the child’s trust of CHARLIE, Phase III of the improved

study procedure places more emphasis on reinforcing motor imitation by providing pos-

itive sensory feedback for the child’s participation through one-to-many (robot-to-others)

group imitation. This revised version of the teleoperated game of imitation promotes joint

attention, motor imitation and turn-taking gameplay.

Revisions made to Phases IV, V and VI were significant. The “Imitate You, Imitate Me”

and “Pass the Pose” games were excluded from the study procedure and replaced by a new,

interactive game called “the Hat Game”. Inspired by one of the participants in the study

who, when asked a question, enjoyed shaking his head in response, the “Hat Game” mainly

features CHARLIE responding in an amusing way to questions posed by the child or a co-

present other. For example, when one of several hats is placed on CHARLIE’s head and the

child or co-present other asks, “CHARLIE, do you like your hat?”, the robot responds by

shaking its head and saying “Nooooo”. This typically elicits surprise and laughter from the

child (and co-present others), thereby encouraging her/him to ask again or to try another

hat.

Since its inception, the “Hat Game” has been expanded to include an assortment of

accessories including several kinds of hats, sunglasses, a scarf, a flower clip and wolf ears

and now features an alternative, more positive response of, “Yeah!” As the child becomes

more able to ask the appropriate question, even if only in part, the game is generalized to

the child and to others in the room. When it is the child’s turn, all others in the room direct
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their question to the child and wait for him/her to respond. When it is another person’s

turn, the child is encouraged to face that person and verbalize the question while pointing

his/her finger at the person wearing the accessory.

The “Hat Game” is an important part of our intervention strategy which effectively

encourages and improves eye contact, directed attention, speech and social interaction by

providing a positive sensory response to reinforce each child’s efforts to communicate.

Moreover, because the game is simple enough to be played in any setting, with almost any

accessory, the increases in verbal utterances observed during gameplay in the clinic often

generalize to other settings. In fact, several of the participants’ caregivers reported that

their child began initiating and/or playing the game at home and in the car during their

participation in the study.

The last significant change to the original study procedure, was the addition of a visual

schedule for many of the children participating in the study. By offering a visual menu of

choices from which each child could select an activity, the child is encouraged to actively

participate in the direction of the session and to communicate his/her choice for the next

exercise. While child-directed activity is part of Phase VI in the original study procedure,

the improved version incorporates this aspect using the visual schedule from the very first

few phases of the intervention.

3.7 FIELD STUDY RESULTS

Five evaluative tests were administered at the outset and at the completion of each child’s

participation in the study. These tests include the: (1) VABS-II, (2) MLSUD, (3) MIS,

(4) UIA and (5) EVT2. A within-subject t-test statistic was performed on scores obtained

from evaluative tests and a discussion of results collected is provided in the “Within-study

data results” subsection below. Four additional analyses were conducted to compare results
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recorded for the within-study group data with results extracted from similar autism inter-

vention studies which used the same clinical instruments to assess improvements in mo-

tor imitation, speech, communication and socialization. The comparative analyses cross-

evaluate data collected from the: (1) VABS-II, (2) MLSUD and (3) UIA and are included

in the subsection entitled, “Comparative data analysis”.

Within-study data results

Raw data from the five evaluative tests administered during the field study are presented

in Tables 3.2, 3.4, 3.5, 3.6. Pre- and post-communication and pre- and post-socialization

composite scores are included in Table 3.2. MLSUD scores recorded during the prelimi-

nary session, two intermediate sessions and the final session with participants are presented

in Table 3.4 and results from the Unstructured Imitation Assessment - including data for

social, requesting and joint attention behavior - are included in Table 3.5. Finally, result

from the Expressive Vocabulary Test and Motor Imitation Scale are included in Table 3.6.

T -test statistics. A paired-samples t-test statistic was computed to evaluate the signifi-

cance of increases reported for each of the seven evaluative categories: (1) VABS-II Com-

munication Domain, (2) VABS-II Socialization Domain, (3) VABS-II Receptive and Ex-

pressive Communication V-Scale Scores, (4) MLSUD, (5) UIA social imitation, (6) UIA

requesting, (7) UIA joint attention, (8) MIS and (9) EVT2. For each of these categories,

the raw data collected for each participant was used to compute a difference score:

di = Xpost
i −Xpre

i (3.1)

where the difference score, di, is the reported change between the pre-test, Xpre
i and post-

test, Xpost
i , scores. Next, the mean between the difference scores was calculated:

x =
( N∑

i

di

)
/N (3.2)
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and used to determine whether the average difference score was large compared to the

variability in the difference scores:

t = x/(σ/
√
N) (3.3)

The resulting t value was used as a significance measure of pre- and post-test scores

collected for each individual where x is the computed mean of difference scores, σ is the

standard deviation of collected data and N is the number of sample pairs collected. The

t value was then converted into a probability, p, which describes the probability of the

difference in collected data being due to sampling error. In other words, the p-value is the

area under the null distribution curve that is in bigger disagreement with the null hypothesis

than the observed test statistics. A critical t value, tcrit, is the cutoff threshold value which

determines when samples give cause to reject or fail to reject the null hypothesis of a test

statistic and is defined for all t-tests performed herein as tcrit = ±2.36 with seven degrees

of freedom and a two-tailed alpha threshold p value of 0.05. Six out of nine of the t-tests

performed demonstrate that field tests resulted in statistically significant increases as they

exceed the following requirements:

tcrit ≥ 2.36, p < 0.05 (3.4)

A detailed discussion of the raw data collected and results from the within-subject t-

tests performed are presented, by category, below.

VABS-II. The VABS-II questionnaire was completed by a caretaker for each child in the

study group. Composite communication and socialization scores were extracted from each

pre- and post-test VABS-II questionnaire to present within-study data for expressive and

receptive communication and social skills results.
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Table 3.2: Parent/Caregiver Reported Vineland Adaptive Behavior Scale Results. Par-
ticipant identifier and beginning age are followed by (from left to right): (a) Composite
communication pre-test score, (b) Composite communication post-test score, (c) Change
in composite communication scores, (d) Composite social interaction pre-test score, (e)
Composite social interaction post-test score, (f) Change in composite socialization scores.

Part Pre-test
Comm.

Post-test
Comm.

Percent
Change

Pre-test
Social

Post-test
Social

Percent
Change

2 49 59 +20.41% 61 61 0.0%

3 42 40 -4.76% 51 49 -3.92%

4 79 79 0.0% 72 79 +9.72%

7 83 91 +9.64% 83 95 +14.46%

9 69 72 +4.35% 74 97 +31.08%

10 54 67 +24.07% 57 86 +50.88%

11 57 61 +7.02% 61 81 +32.79%

12 85 83 -2.35% 74 81 +9.46%

AVG 64.7 69.0 +6.65% 66.6 78.6 +18.02%

Field study results show a mean increase of 6.65% in overall communication and a

18.02% mean increase in social interaction skills as reported by caregivers on the Vineland-

II Parent/Caregiver Rating Form (Table 3.2). The range of increases in composite commu-

nication scores collected was approximately 28.8% and the range of composite socializa-

tion scores was approximately 54.8%. Five out of the eight participants demonstrated an

increase in the Communication Domain and six out of eight showed an increase in the So-

cialization Domain.

There are a few possible causes for the lack of improvement in the VABS-II Commu-

nication Domain recorded for a few of the participants in our study. First, the VABS-II

provides graduated scores based on the chronological age of the child being assessed. It

is likely that the participants moved from one age class to another during the course of

their involvement in the study and this change in classification may have diminished any

increases that would have otherwise been reflected in their scores. Second, the commu-
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nication composite scores include 3 areas of communication: (1) receptive, (2) expressive

and (3) written. Lack of increases or relative decreases in the written portion of the com-

munication composite may have also diminished actual gains in expressive and receptive

communication.

Because our study does not address written communication, results and analysis for

the VABS-II V-Scale Scores representing the Receptive and Expressive Communication

Domain scores are provided for comparison with the Communication Composite Scores

(Table 3.3). As illustrated, average overall increases in composite communication scores

were approximately 6.65% while mean increases in the combined receptive and expressive

communication domains were slightly higher at approximately 9.84%.

Results from the within-subject t-test show a mean improvement rating of t(7) =

±2.14, where p < 0.0699 for the Communication Domain and a mean improvement rating

of t(7) = ±3.06, where p < 0.0184 for the Socialization Domain. These results demon-

strate that while increases recorded for the VABS-II Communication Composite Domains

do not indicate that the null hypothesis can probabilistically be ruled out, mean increases

observed for the Socialization Domain are confirmed to be statistically significant. Addi-

tionally, t-test results for the Receptive and Expressive Domain scores show a statistically

significant mean gain of t(7) = ±2.51, where p < 0.0404.

MLSUD. A total of four separate MLSUD measures were collected; scores were com-

puted at the first meeting with the child, during sessions 4 and 8 and at the very end of the

six-week intervention period (Table 3.4). Only MLSUD scores from the preliminary and

final evaluation sessions are included and used to perform comparative assessments and

the t statistic analysis of increased speech since intermediate sessions featured a significant

amount of rote (non-spontaneous) speech that was used to engage in games with CHAR-
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Table 3.3: Parent/Caregiver Reported VABS-II Combined Receptive and Expressive
Communication V-Scale Results. Participant identifier and beginning age are followed
by (from left to right): (a) Total receptive and expressive communication v-scale pre-test
score, (b) Total receptive and expressive communication v-scale post-test score, (c) Change
in receptive and expressive communication pre-test/post-test v-scale scores and (d) Change
in composite communication scores

Part. Pre-test
V-Scale

Post-test
V-Scale

Percent
Change in

Pre/Post-Test
V-Scores

Percent
Change in
Composite

Comm Scores

2 12 14 +16.67% +17.0%

3 8 7 -12.5% -4.76%

4 21 21 0.00% 0.0%

7 16 19 +18.75% +9.64%

9 20 20 0.00% +4.35%

10 13 17 +30.77% +24.07%

11 14 16 +14.29% +7.02%

12 18 20 +11.11% -2.35%

AVG. 15.25 16.75 +9.84% +6.65%

LIE and with co-present others.

A mean increase of 35.3% in spontaneous speech as calculated by the Mean Length

Spontaneous Utterance Determination measure (Table 3.4) was observed after a 6-week

intervention with CHARLIE. The range of preliminary MLSUD scores was from 0.00 to

2.76 and final MLSUD scores ranged from 0.00 to 3.77. All participants but one demon-

strated an increase in MLSUD score. The single participant whose MLSUD did not im-

prove throughout the course of the intervention was nonverbal at the start of his 6-week

intervention and did not demonstrate any acquired speech during the final evaluation. Al-

though his scores for the VABS-II and EVT2 also did not improve, the child’s scores did

improve in each of the three categories included in the UIA evaluation. This might suggest

that while the participant did not make any significant gains in communication or speech,
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Table 3.4: Mean Length of Spontaneous Utterance Determination (MLSUD) Results.
Participant identifier and beginning age are followed by (from left to right): (a) Preliminary
evaluation MLSUD, (b) Session 4 MLSUD, (c) Session 8 MLSUD, (d) Final evaluation
MLSUD, (e) Greatest increase in MLSUD, (f) Change in pre-test/post-test MLSUD.

Part. Age Prelim Mid1 Mid2 Final Greatest
change

Pre/Post
Change

2 4:10 0.37 1.17 1.52 1.08 +305.3% +188.0%

3 4:1 0.0 0.0 0.0 0.0 0.0% 0.0%

4 3:5 2.76 2.90 3.26 3.77 +36.6% +36.6%

7 3:10 1.75 3.24 3.98 1.86 +127.4% +6.3%

9 6:2 2.38 3.13 3.21 3.18 +34.9% +33.6%

10 6:5 1.55 1.72 1.97 1.83 +27.1% +18.1%

11 6:5 1.41 2.42 2.95 2.5 +109.2% +77.3%

12 3:3 1.80 2.92 2.25 2.05 +62.2% +13.9%

AVG. 4:10 1.50 2.19 2.39 2.03 +59.3% +35.3%

Note: Mid1 and Mid2 changes include some rote speech learned for gameplay. Spontaneous speech
increases are evaluated using only the Pre/Post percentage changes listed above.

Table 3.5: Unstructured Imitation Assessment Results. Participant identifier followed
by the percentage of successful imitations for: (1) Preliminary UIA-social, (2) Final UIA-
social and, (3) Change between preliminary and final social scores; (4) Preliminary UIA-
requesting, (5) Final UIA-requesting and, (6) Change between preliminary and final re-
questing scores; (7) Preliminary UIA-joint attention, (8) Final UIA-joint attention and, (9)
Change between preliminary and final joint attention scores.

Part. UIA-
Soc(A)

UIA-
Soc(B)

Change UIA-
Req(A)

UIA-
Req(B)

Change UIA-
JA(A)

UIA-
JA(B)

Change

2 28.0% 83.0% +196.4% 20.8% 45.8% +120.2% 23.3% 33.3% +42.9%

3 5.0% 22.2% +344.0% 4.2% 25.0% +495.2% 3.3% 23.3% +606.1%

4 50.0% 66.7% +33.4% 33.3% 33.3% +0.0% 30.0% 46.7% +55.7%

7 100% 100% 0.0% 20.8% 45.8% +120.2% 13.3% 30.0% +125.6%

9 39.0% 56.0% +43.6% 20.8% 71.0% +241.3% 13.3% 66.7% +401.5%

10 33.3% 28.0% -15.9% 17.0% 41.7% +145.3% 20.0% 40.0% +100.0%

11 28.0% 78.0% +178.6% 29.0% 45.8% +57.9% 40.0% 33.3% -16.8%

12 61.1% 100.0% +63.7% 20.8% 91.7% +340.9% 43.3% 90.0% +107.9%

AVG 42.4% 66.7% +57.3% 20.8% 50.0% +140.4% 22.9% 45.4% +98.3%
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Table 3.6: Expressive Vocabulary Test (EVT) and Motor Imitation Scale (MIS) Re-
sults. Participant identifier followed by: (a) Preliminary EVT(A), (b) Final EVT(B), (c)
Percent change in EVT score, (d) Preliminary MIS(A), (e) Final MIS(B), (f) Percent change
in MIS score.

Participant EVT(A) EVT(B) CHANGE MIS(A) MIS(B) CHANGE

2 42 73 +73.8% 44.0% 44.0% 0.0%

3 42 42 0.0% 0.0% 0.0% 0.0%

4 114 121 +6.1% 81.3% 90.6% +11.4%

7 97 114 +17.5% 84.0% 94.0% +11.9%

9 111 105 -5.4% 100.0% 100.0% 0.0%

10 87 69 -20.7% 100.0% 88.0% -12.0%

11 94 94 0.0% 94.0% 100.0% +6.4%

12 114 119 4.4% 87.5% 96.9% +10.7%

AVERAGE 87.6 92.1 +5.1% 73.8% 76.7% +3.9%

some fundamental imitation and attention skills - key precursors to communication and

speech - were improved throughout the course of the study.

The paired-samples t-test showed a mean improvement of t(7) = ±3.56, where p <

0.0092 for the MLSUD category. These t-test statistics again confirm that the increases

observed in the collected raw data are significant for the population of children included in

our study.

UIA. The UIA is one of the two assessments we used to evaluate growth in imitation

ability in three major areas: (1) social interaction, (2) requesting and (3) joint attention

and consists of a total of 24 measures. Pecentages included in Table 3.5 reflect the ratio of

the total number of points received by each child to the total number of points achievable

on the assessment. Points provided for each measure reflect the number of examples suc-

cessfully demonstrated by the child during the 60-minute initial and final evaluations. The

maximum number of points assigned for each of the 24 measures is “3”, giving a total of
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72 points possible. Analysis of the raw UIA data show that mean increases for each of the

three UIA areas - social imitation, requesting and joint attention - were 57.3%, 140.4% and

98.3%, respectively.

Within-subject t-test results show a significant increase in the social interaction do-

main (t(7) = ±3.02, where p < 0.0193), the requesting domain (t(7) = ±3.79, where

p < 0.0068) and the joint attention domain (t(7) = ±3.23, where p < 0.0145). Interest-

ingly, these test results reveal that the most significant improvements were achieved in the

requesting domain - a primary focus area of the intervention provided. The t-test statis-

tic confirms that the observed increases in UIA pre- and post-test scores for all three UIA

domains were each statistically significant.

MIS. The MIS is the only instrument used to assess motor imitation ability and was ad-

ministered at the beginning of the study period and at the end, for each participant. The

MIS evaluates motor imitation using a total of 16 measures which assess a child’s ability to

imitate meaningful and nonmeaningful actions and body movements. Percentages included

in Table 3.6 reflect the ratio of the total number of points received by each child to the total

number of points achievable. The maximum number of points assigned for each of the 16

measures is “2”, giving a total of 32 points possible for the MIS. A “2” indicates a passing

score, a “1” indicates an emerging skill and “0” indicates a failure for that particular skill.

Mean increases in scores for the MIS were marginal, improving by only 3.9%. Since

activities included in the intervention did not primarily focus on improving motor imitation

skills as much as social interaction, communication and speech, these results were not

unexpected. T test results showed a mean improvement of t(7) = ±1.07, where p <

0.3182, which were not statistically significant for this population in this study.
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EVT2. The Expressive Vocabulary test was administered primarily to provide additional

data regarding each child’s progress in word acquisition and retrieval as a secondary mea-

sure of communication skill. The EVT2 consists of a total of 190 items and is typically

administered by a speech-language pathologist, psychologist or early childhood special-

ist. The test features a series of pictures depicting objects, people and situations and is

administered by the examinee who prompts the child to name or describe a picture after

being provided a stimulus question. Scores reported in Table 3.6 are based on the extracted

Growth Scale Values (GSVs), a metric used for easily measuring each child’s progress over

time.

Improvements in the EVT2 were also slight and were not found to be statistically

significant for this population of children using this intervention (t(7) = ±0.86, where

p < 0.4166). Again, given that the our primary study objectives did not include target-

ing the acquisition of new vocabulary or improving word retrieval ability, these statistical

conclusions are not surprising. Instead, they do provide additional information about other

mitigating factors that may contribute to an individual’s performance on other tests ad-

ministered during the study. For example, a child with apraxia of speech may improve

marginally on the VABS-II Communication Domain, the MLSUD and the EVT2, but show

greater improvements in the VABS-II social domain, the MIS and the UIA. Given that

a few of the study participants had other known medical diagnoses, including some that

limited the physical ability of the child, a future study with a larger study population and

further analysis would shed light on the possible effects these complicating factors.

Comparative data analysis

Results obtained from the VABS-II, UIA and MLSUD were also evaluated in compari-

son with data reported from other, similar autism intervention studies using these same

instruments to measure improvements in communication and socialization. These three in-

73



CHARLIE
Eikeseth

LeGoff

 55

 60

 65

 70

 75

 80

 85

 4  5  6  7  8  9  10  11  12  13

V
A

B
S

 I
I 

C
D

 −
 S

C
O

R
E

AGE

Vineland Adaptive Behavior Scales II − Communication Domain

(6 weeks)
7.30%

27.0%
(1 year) 11.6%

(3 years)

Figure 3.10: Reported communication composite scores for the Vineland Adaptive Behav-
ior Scale obtained through three studies; Red line: CHARLIE, Green line: Eikeseth and
Blue line: LeGoff.

struments were selected for comparison primarily because each test sufficiently measures

a specific, fundamental communication skill targeted in our intervention from more than

one point of view. For example, two composite scores from the VABS-II - Socialization

and Communication - were extracted for evaluation and comparison since they directly

measure the child’s progress in overall expressive and receptive language and socialization

from the caregiver’s viewpoint. This is an important assessment because caregivers can

evaluate their child’s improvement given their performance in different settings and with

different people. The 3-part UIA assesses three fundamental communication skills (social

interaction, requesting and joint attention) that were instrumental for playing several of

CHARLIE’s interactive games. Finally, the MLSUD is a widely-used tool for measuring

progress in speech. Comparative analyses are provided, by category, below.
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Figure 3.11: Reported socialization composite scores for the Vineland Adaptive Behavior
Scale obtained through three studies; Red line: CHARLIE, Green line: Eikeseth and Blue
line: LeGoff.

Table 3.7: Comparing average reported points for the VABS communication composite
scores increases obtained from the CHARLIE, Eikeseth, LeGoff studies.

Study VABS Pre
Communication

VABS Post
Communication

Points increased
per hour of

therapy

CHARLIE 62.00 66.60 0.767

Eikeseth 58.23 73.93 0.015

LeGoff 67.20 75.00 0.034
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Table 3.8: Comparing average reported points for the VABS socialization composite scores
increases obtained from the CHARLIE, Eikeseth, LeGoff studies.

Study VABS Pre
Socialization

VABS Post
Socialization

Points increased
per hour of

therapy

CHARLIE 65.50 77.30 1.967

Eikeseth 59.92 69.92 0.010

LeGoff 62.27 82.95 0.090

Comparing VABS-II Results In this subsection, we provide a comparative analysis of

the VABS-II results obtained in our study with those obtained from two different research

studies.

Eikeseth et al., 2002. A study conducted in 2002 with a population of 25 children with

autism, aged 4 to 7 years, examined the efficacy of an intensive behavioral treatment based

on the University of California at Los Angeles (UCLA) treatment model [77]. Participants

in the study were evaluated by a pediatric neuropsychologist, child psychiatrist, child psy-

chologist and a speech pathologist and confirmed the diagnosis of autism based on results

from the administration of the VABS, either the Wechsler Preschool and Primary Scale of

Intelligence-Revised (WPPSI-R) or the Wechsler Intelligence Scale for Children - Third

Edition (WISC-III) and the Gilliam Autism Rating Scale (GARS). The research compared

gains achieved through the behavior modification treatment with gains achieved through

an eclectic intervention consisting of sensory-motor therapy, applied behavior analysis and

methods derived from the clinician’s personal experience. Children who participated in the

study received a minimum of 20 hours of treatment per week for the period of one year

(or approximately 1,040 hours of intervention). This study demonstrated that for both the

Communication and Socialization Domains of the VABS-II, the group receiving behavioral

treatment showed the greatest improvements.
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We compared the VABS-II Communication and Socialization scores obtained from our

study group, which received a robot-assisted intervention for only 6 weeks (or approxi-

mately 6 hours), to the behavioral test group, which demonstrated the most increases in

these domains. Over the one year study period, children in the Eikeseth et al study showed

a mean increase of 16.7% in the VABS-II Socialization Domain, and a 27.0% increase in

VABS-II Communication Domain. Comparative graphs, based on VABS-II scores from

our study and those from the Eikeseth study are included in Figures 3.10 and 3.11.

LeGoff et al., 2006. A second comparative analysis of recorded VABS-II scores was

performed using another research study from 2006 which included 60 children with autism,

with a mean age of 9 years at the start of the study [78]. Children participating in the study

had a confirmed autism diagnosis based on the results from Autism Diagnostic Interview-

Revised (ADI-R), deviation IQ of 50 or more on the WPPSI-R or a ratio IQ of 50 or

above on the Bayley Scales on Infant Development-Revised and the absence of major med-

ical conditions other than autism. The study group included in the study received LEGO

therapy once per week for 90 minutes, for a total period of 3 years. This equates to ap-

proximately 230 hours of intervention. While participants in the study group showed an

average increase of 33.2% in VABS-II Socialization Domain they also demonstrated an

11.6% improvement in the VABS-II Communication Domain. Results comparing VABS-

II scores from our study with those reported in the LeGoff study are included in Figures

3.10 and 3.11.

Two additional tables are provided to compare point increases observed per hour of

intervention for the VABS communication and socialization components for each of the

three studies (Tables 3.7 and 3.8).

Comparing UIA Scores. A study published in 2010 from Ingersoll et al ( [75]), ex-

plores the effects of Reciprocal Imitation Training (RIT) for object and gesture imitation

on language behavior. Specifically, researchers sought to determine whether adding ges-
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Figure 3.12: Unstructured Imitation Assessment scores for two studies; Red line: CHAR-
LIE, Green line: Ingersoll.

Table 3.9: Comparing average reported points for the Unstructured Imitation Assessment
from the CHARLIE and Ingersoll studies.

Study UIA Pretest
Average Score

UIA Posttest
Average Score

Points increased
per hour of

therapy

CHARLIE 28.7 54.0 4.22

Ingersoll 16.9 40.6 0.79
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ture imitation training improved the overall rate of appropriate language use and whether

children were more likely to engage in verbal imitation during object or gesture imitation

training using RIT. The study included four children, between 35 and 47 months of age who

received 1 hour of intervention each day, 3 days per week for a total period of 10 weeks

(or approximately 30 hours of therapy). Children showed a mean increase of 140.7% in

UIA scores in pre- and post-intervention scores. Figure 3.12 compares cumulative UIA

increases using the number of intervention hours received and the pre-test and post-test

scores recorded for each participant in each study.

An additional table demonstrating score increases (per hour of intervention) for each of

the two studies is included for comparison (Table 3.9).

Comparing MLSUD Scores. A final comparative analysis was performed using a study

published in 2002 by Hancock et al [79]. The research study included four children be-

tween 2.5 and 5.0 years of age who received an intervention based on Enhanced Milieu

Training (EMT). Children who participated in the study received the EMT intervention

two times per week for a total of 24 15-minute sessions (equivalent to approximately 6

hours of total intervention). The primary goal of the research was to examine the effects of

Enhanced Milieu Teaching on the social communication skills of preschool children with

autism. Mean Length Spontaneous Utterance Determination scores for participants in the

study showed a mean increase of 30.7% over the study period and are included along with

MLSUD scores collected for participants in our study in Figure 3.13.

Reported MLSUD scores for the Hancock study and our study demonstrate compara-

ble results obtained from two different but fundamentally similar interventions. EMT is

described as a set of language tools that facilitates communication in children. Five of the

key strategies of EMT include:

• Setting up an Interactive Context
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• Responsive Interaction

• Modeling and Expanding Play

• Modeling Communication Targets

• Environmental Arrangement Strategies

Although the EMT model does not include a robot, several of the intervention strategies

listed above are incorporated as part of the intervention used in our study. By introducing a

non-threatening robot “playmate”, an interactive context is facilitated in which opportuni-

ties for communicating and connecting socially with each child are created. Teaching and

reinforcing basic communication and social skills are further enhanced through responsive,

fun interactions with the robot and co-present others. Finally, modeling and expanding play

by varying communication targets is an integral part of our intervention. For example, the

“Hat Game” relies on an interventionist modeling behavior and speech for the child to im-

itate and then expanding play through turn-taking with co-present others. However, the

differences between our study and an EMT intervention are many.

While EMT relies on a naturalistic, conversation-based approach that expands on a

child’s interests and initiations as opportunities to model and prompt language in everyday

contexts, our intervention strategy with CHARLIE provides a more structured environment

that doesn’t require initiation on the child’s behalf. This is especially useful for children

who don’t often initiate communication or explicitly demonstrate interests and in situations

when time is limited. Further, all participants for the Hancock study were screened to en-

sure that they were already verbally imitative and possessed an expressive vocabulary of at

least 10 spontaneous words. Neither of these requirements were used to screen participants

in our study. In fact, two of the eight children in the CHARLIE study were nonverbal at

the outset of their participation in the study.
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3.8 INTERACTIVE ROBOT CONCLUSIONS

Conclusions and contributions This portion of our research resulted in the design and

development of a low-cost, adaptive robot and several interactive games for use in robot-

assisted autism therapy. One of the aims of our research is to create a robot that is finan-

cially accessible to a greater population of therapists and families with children with ASD

in order to broaden the impact of traditional therapies. Another objective was to develop

a hand detector enabling a larger scope of interactive games in which the robot can en-

gage a child autonomously. Achieving this second objective allows for real-time collection

of important user interaction information specific to the preference and progress of each

child undergoing autism therapy. Collectively, these contributions produce a new robot

which is designed to be child-centered and adaptive to user preference, while fulfilling a
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key supportive role for therapists by automatically generating user progress reports.

Additionally, measuring improvements in communication, social interaction and speech

through the combined use of a manipulable robot with a specific sequence of interactive

games provides critical insight as to the viability of using simple robots like CHARLIE as

a widely-accessible tool for autism therapy. Our intervention promotes speech, communi-

cation and social interaction by scaffolding basic proficiencies through a series of imitation

and turn-taking games. Our technique also employs a robot that can withstand some phys-

ical manipulation by children which encourages child-initiated interactions and ultimately

leads to the generalization of acquired skills with co-present others.

While foundational skills such as motor imitation and turn-taking are key to facilitat-

ing communication and socialization, these skills must be practiced in a context that is

conducive to interaction and that provides responses which make the learning fun and in-

teresting. Providing an environment that promotes imitation and turn-taking by rewarding

the child with a fun response is an effective strategy for increasing speech, communication

and social interaction. Further, our study demonstrates that children with autism can learn

to effectively generalize learned behaviors from robot-child interactions to human-human

interactions

Finally, although there has recently been growing interest in increasing the autonomy

of robots in robot-assisted autism interventions, a semi-autonomous robot may actually

be preferable for certain activities. For example, rewarding a child appropriately during

social interactions and after child-initiated speech is of critical importance to reinforcing

socialization and communication. A human expert who can discern between a child who is

having trouble articulating a request from a child who is not making the effort can appro-

priately provide the robot’s positive response, when it is warranted. Our human-in-the-loop

method emphasizes the importance of leveraging the expertise of therapists, teachers and
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caregivers to direct the course of the robot intervention. A crucial characteristic of the

method is the way the robot responds when prompted. By relying on the discretion of

a human operator to assess a child’s ability to perform a particular task (on a particular

day) s/he can control the progression of gameplay and determine when a sensory reward is

appropriate.
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CHAPTER 4

REMOTE STRESS DETECTION

Numerous robotics applications stand to benefit from remote stress detection. Stroke and

post-cardiac surgery patients undergoing physical therapy may be asked to engage in exer-

cises that repeatedly work a particular limb or muscle. A robot that is able to monitor the

patient’s heart and breathing rate during therapy can adjust the workload based on those

physiological indicators. Search and rescue robots designed to measure stress remotely

can potentially assess the physical condition of victims found in an emergency or disaster

scenario and relay this information back to a base station. Assistive robots employed to

help the elderly live independently can monitor breathing and heart rate on a regular basis

and detect possible warning signs that signal an impending health crisis. Remote stress de-

tection can also be an important tool for robots interacting with people with developmental

and physical disabilities by providing critical physiological information to teachers, thera-

pists and caregivers in many aspects of their lives.

A variety of methods have been used to collect data about a user’s emotional or stress

state including measuring the amount of eye contact, body pose, number, quality and con-

tent of verbal utterances, and several physiological indicators such as galvanic skin re-

sponse, EEG, breathing and heart rate. Galvanic skin response measures changes in the

electrical conductance of skin [80] while EEG is used to measure the voltage fluctuations

resulting from ionic current flows within the neurons of the brain [81]. Breathing is a phys-

iological indicator which has been referred to as the “neglected vital sign" and is used as a

critical measure of a user’s psychophysiological state [82, 83].

Two basic modalities have been employed to capture breathing events: contact and non-
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contact. Contact approaches have used wearable sensors such as thermistors, respiratory

gauge transducers and acoustic sensors. These devices typically deliver accurate breathing

data, but are not suitable for mobile applications or when the use of wearable sensors is oth-

erwise impractical. In addition, although solutions exist using non-contact methods such as

infrared video cameras, radar and doppler modalities, these approaches rely on high-cost

equipment and collecting and analyzing very large amounts of data at a high processing

cost. Some existing non-contact modalities may be suitable for medical applications such

as polysomnography which require in-depth recovery of very specific breathing informa-

tion, but the computational and equipment cost is not reasonable for most human-robot

interaction (HRI) applications where recovery and analysis of breathing information must

occur in real-time and sensor costs are just one component of the total system expense.

Another important distinction between existing non-contact methods and our approach is

that we are interested in recording changes in basic breathing and heart rate as an indicator

of a user’s psychological or physical state, not in diagnosing medical conditions.

One of the novel contributions of our research is a simple, autonomous and low cost

system for the real-time collection and monitoring of breathing and heart rate. Our research

presents a new non-contact breathing and heart rate measurement technique suitable for

most HRI applications. This is accomplished by continuously targeting a high precision

infrared (IR) sensor, tracking changes in the sub-nasal skin surface temperature, curve-

fitting a sinusoidal function to extract the breathing rate and performing a Discrete Wavelet

Transform (DWT) to automatically compute the heart rate from recorded temperatures.

4.1 METHODOLOGY AND APPROACH

Our research presents a new technique for remotely capturing and measuring breathing and

heart rates to ultimately deduce a user stress state and use this state information to adapt

the behavior of an interactive robot. Although resting breathing and heart rates may vary

from one individual to the next, healthy adults have a typical resting breathing rate between
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8-16 breaths per minute [84] and a resting heart rate of 60-120 beats per minute [85].

Normal breathing consists of three phases: inspiration, expiration and a postexpiratory

pause. Inspiration occurs when the diaphram contracts, creating negative pressure inside

the chest cavity and the passive process of expiration follows as a function of the elastic re-

coil property of the lungs [86]. For this research, one complete breathing cycle is measured

as the interval between the beginning of the expiration phase and the beginning of the next

expiration phase.

Each beat of the heart consists of a series of deflections reflecting the time evolution

of electrical activity in the heart that is responsible for initiating muscle contraction. A

single heartbeat is typically decomposed into five constituent parts labeled : P, Q, R, S,

and T. The largest-amplitude portion of the ECG is the QRS complex, caused by currents

generated when the ventricles depolarize prior to their contraction. We are most interested

in measuring the QRS component of the cardiac cycle where one heart beat is measured

from the beginning of one QRS cycle to the beginning of the next.

The breathing and heart rate measurement system employs a single-point infrared sen-

sor (see Figure 2.1). To measure breathing and heart rate with this sensor, the system: (1)

aims the sensor at a pre-defined sub-nasal target region using the location of the nose as

extracted from the most recent video frame and, (2) extracts the temperature information

provided by the sensor analog signal. To achieve these objectives, a specific combination

of hardware and software was included in the overall system design.

Remote Breathing and Heart Rate Detection Hardware

The remote breathing and heart rate measurement method presented herein relies on col-

lecting temperatures using the same custom-built actuated platform, on which a non-contact

infrared temperature sensor and a camera are mounted. The primary hardware components

of this system are enumerated below.

1. Infrared Sensor: The infrared sensor is a FAR infrared (spectral range 8 − 14 mi-
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Figure 4.1: Single-point FAR infrared sensor.

crons) sensor, manufactured by Micro-Epsilon, model “thermoMETER CX-SF15-

C8.” The sensor is capable of reading a range of temperatures between 30− 150◦C.

This single-point sensor has an optical resolution of 15 : 1 with a reading precision

or temperature resolution of 0.025◦C and an accuracy of approximately ±1◦C or 1%

of the reading. Power is supplied to this sensor using an Arduino microcontroller,

and digitizes its output analog signal using a standard 6.5 digit bench multimeter.

2. Camera: A consumer-grade USB camera is mounted below the IR sensor to assist

maintaining a correct aim of the IR sensor at the user’s sub-nasal region.

3. Pan-tilt platform: Both the IR sensor and the camera are mounted on a direct-drive

pan-tilt platform, actuated by two titanium gear servos. The servos are powered by

a 7.4V, 2100mA lithium polymer battery, and controlled over USB via an 8-channel

servo controller board.

Remote Breathing and Heart Rate Detection Software

The software that was developed for measuring breathing and heart rate achieves five main

objectives: (1) infrared sensor positioning, (2) infrared temperature collection, (3) data pre-
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Figure 4.2: Nose and infrared sensor regions of interest.

processing, (4) breathing rate calculation and, (5) heart rate calculation. Sensor positioning

is accomplished through repeated nose detection and automatic adjustment of the infrared

sensor’s pan and tilt angles in order to maintain the region of interest within a pre-defined

target. Temperatures are obtained by sampling the IR sensor and processing the signal to

convert to a Fahrenheit temperature reading. Finally, the data set is smoothed with a low-

pass filter, curve-fit to extract the breathing rate and transformed using a DWT to calculate

the heart rate.

Positioning the IR sensor

A camera is used to assist with the positioning of the infrared sensor. Because the camera

is mounted on the same pan-tilt platform as the infrared sensor, the center of the sensor’s

target region remains at a constant (x, y) offset from the center of each camera image. In

our research, the sensor’s target region is referred to as the “infrared region of interest"

(irROI.) For the sensor to be positioned properly, a corresponding target point on the image

of the subject’s face is defined and aligned with the irROI from one image to the next.
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The nose classifier from the freely-available OpenCV library [11] is used to perform nose

detection, extract the nose region of interest (ROI) and compute the (x, y) coordinates of the

nose centroid. Positioning the sensor to point at the sub-nasal target area is accomplished

by maintaining the nose centroid within the irROI in each image video frame.

Algorithm 1 Track Infrared ROI
repeat

get image frame
find nose in image
while nose not found do

get another image frame
check for nose in the image

end while
// obtain centroid for nose ROI
centroid.x← (noseROI(xpos)+noseROI(width))/2
centroid.y ← (noseROI(ypos)+noseROI(height))/2

// Check sensor’s position
if centroid.x < irROI.lowerLeft.x then

pan the platform left 1
end if
if centroid.x > irROI.upperRight.x then

pan the platform right 1
end if
if centroid.y < irROI.lowerRight.y then

tilt the platform down 1
end if
if centroid.y > irROI.lowerRight.y then

tilt the platform up 1
end if

until program exit

The irROI is large enough to accommodate variances in physical features, but small

enough to ensure that temperature fluctuations occurring during the breathing cycle will

be detected. In this system, the irROI covers about 5% of the total image area. Since

the infrared sensor reading reflects the average temperature of its target surface area, the

primary requirement is that at least a sufficiently large portion of the target contains the

sub-nasal area.
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Continuous positioning of the infrared sensor is driven by repeated nose detections

which provide the (x, y) coordinates of the centroid of the nose ROI. This centroid position

must be maintained within the rectangular irROI in order to keep the sensor in a stable

position. Should the nose centroid move outside of the irROI, incremental pan and tilt

commands are automatically generated and executed until the sensor returns to a stable

position. Algorithm 1 illustrates the process for positioning the IR sensor.

Infrared Temperature Collection

Collecting data for breathing rate extraction The infrared sensor is initially sampled

for 30 seconds, the temperature data set is stored and an initial breathing and heart rate

are computed. Subsequent data sets consist of the last 25 seconds from the previous data

set and the next 5-second window of temperature data. Samples are collected at a rate of

approximately 20-30 samples per second and each is recorded along with a corresponding

timestamp. The breathing rate is recalculated each time a full 5-second window of breath-

ing data is collected. This “sliding window" approach enables the system to detect subtle

changes in the breathing rate quickly since small increases or decreases in breathing begin

to affect the overall breathing rate within a few seconds (Figure 4.3).

Collecting data for heart rate extraction The infrared sensor is continuously sampled

until a window of 32 time-stamped samples or approximately 1.6 seconds of temperature

data has been collected. Various window sizes were tested in order to evaluate the system’s

performance during periodic heart rate fluctuations. Although larger window sizes provide

higher stability in computed heart rates, they are prone to excessive smoothing and reduce

the system’s ability to detect short-lived heart rate increases or descreases. Further, while

small window sizes are susceptible to being dominated by relatively small errors that can be

introduced when temperatures are collected during re-targeting, they provide more resilient

and responsive heart rate detection overall. Two representative samples of collected raw IR

data are included in Figure 4.4.
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Figure 4.3: Successive sliding windows of IR sensor readings. Solid line corresponds to
infrared temperature data. Dashed line corresponds to the curve-fit results.
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Figure 4.4: 30-second window of unprocessed infrared data (top). Detailed 8-second view
of raw data (bottom).

Data Pre-Processing

Data pre-processing mitigates minor errors occurring from temperatures collected during

sensor re-positioning and occasional noise. Temperatures are continuously sampled from

the infrared sensor regardless of whether the sensor is stable or not. For this reason, read-

ings too low to be considered human body temperature are assumed to be room temperature

or another non-human source and are excluded from the collected data set. Additionally,

in order to smooth out occasional noise from the sensor signal, a low-pass filter is applied

to each set of data collected by the infrared sensor. Finally, to make the IR data suitable for

processing with a DWT and extracting the heart rate, the 0-mean is computed for all the

samples in each window.
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Breathing Rate Calculation

We obtain individual breathing rates for the infrared sensor data sets by fitting a sinusoidal

curve to the infrared data. The best curve-fitting results were observed using four basic

fitting parameters: period T , mean B, amplitude A, and offset C.

FittedSine(x) = A sin(2π/Tx+ C) +B (4.1)

Based on the results of this curve-fitting operation, the value assigned to the variable T

is used as the breathing rate output of the system. We performed curve fitting using

the curve-fitting command provided by the freely-available graphing utility, gnuplot [87].

Gnuplot uses an implementation of the nonlinear least-squares Marquardt-Levenberg al-

gorithm, where a user-defined function is fit to a set of input data. After each iteration of

the algorithm, the quality of the fit is determined by the sum of the squared differences or

“residuals" between the input data points and the function values, evaluated at the same

places. Each iteration of the algorithm attempts to minimize the residuals, and terminates

only when a specific residual minimum or limit is reached. In the current implementation,

data sets are curve-fit in real-time so it is important to set the residual low enough for an

accurate fit but not so low that computation causes delay in processing each consecutive

data set. After testing several values, we found the best residual limit to be 10−15. The

function we defined to fit the collected temperature data sets is a sinusoidal curve, with

several fitting parameters added.

To help in assessing the quality of the curve-fit and the resulting breathing rate output,

a running average of the residuals was computed for each data set and an error threshold

was defined. Residuals in excess of five times the residual average for each data set were

not considered successful and were classified as “no response." This technique allows the

system to determine when it has succeeded in fitting a curve to the infrared data and to

avoid generating erroneous results when this is not the case.
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Figure 4.5: Level 3 DWT coefficients.

Heart Rate Calculation

Heart rates are computed using a DWT [88] on each window of collected infrared data. A

DWT is used to process the IR data for two fundamental reasons : (1) heart rates are not

stationary since they have varying frequency components at different time intervals and,

(2) we are interested in the temporal information associated with each reading. Unlike Fast

Fourier Transforms (FFTs), DWTs are capable of extracting specific frequencies occuring

at particular time intervals.

The DWT first sends samples through a low pass filter which yields approximation

coefficients and a high pass filter which results in one or more detail coefficients. The

outcome of this filtering technique is that the component signal frequencies are cut in half

and according to Nyquist’s rule, half the samples can be discarded. Although this process

halves the time resolution and each output has half of the input frequency band (since

only half of each filter output characterizes the entire signal), the frequency resolution is

effectively doubled with each decomposition.

The decomposition process is recursively repeated in order to increase the frequency

resolution until no further decompositions are possible. Once the decomposition is com-

pleted, a set of coefficients are output that were produced at various scales and at different
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time intervals of the signal. The coefficients can then be analyzed to extract frequency

information for particular time intervals or for the signal in its entirety.

Due to the nature of this technique, the number of samples processed in a given data

set by the DWT must be in powers of two. Pre-processed IR data sets are padded in

order to meet this requirement. Our system uses the daubechies(6) wavelet to perform

the transform and collects temperature readings at a rate of 20 samples per second so the

highest frequency that can be extracted is 10 samples per second or 10 Hertz (Hz). The

range of frequencies in which we are most interested for this research are 0.8-1.90 Hz

because they correspond to heart rates between 48 bpm and 114 bpm. The DWT levels of

decomposition which contain the detail coefficients within that frequency range are found

at levels 3 and 4 and represent frequencies between 1.25-2.5 Hz. (level 3) and 0.625-1.25

Hz. (level 4). Figure 4.5 illustrates a representative level 3 coefficient file produced for one

set of pre-processed IR data.

Finally, the heart rate is extracted by (1) computing and comparing the average am-

plitude of the detail coefficients at levels 3 and 4, (2) selecting the level with the largest

average amplitude, (3) counting the number of zero crossings for the coefficients at the

selected level and, (4) multiplying that number by 37.5.

4.2 REMOTE BREATHING AND HEART RATE TESTING

Breathing Detection Tests

We conducted experiments to test and measure the effectiveness of a single-point infrared

sensor for monitoring breathing rate. In order to evaluate the performance of various parts

of the system, preliminary tests were conducted before formal tests were carried out.
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Informal Preliminary Tests

Early tests underscored various limitations in nose detection, curve-fitting and self-reporting

of breathing rates using a push button to record expiration. The OpenCV nose classifier

used in the nose detection system is prone to drifting caused by excessive ambient light and

changes in the angle of the nose. Additionally, because typical breathing tends to vary in

terms of breath length and frequency of breaths, temperature data collected do not always

conform to a sinusoidal wave which is characteristically consistent within each data set. Fi-

nally, collecting the ground truth for breathing using manually reported data is susceptible

to inconsistencies caused by participants failing to report breaths.

To reduce complications with the nose detection system, we subsequently conducted

formal testing in a temperature-controlled setting with controlled lighting conditions. In

order to manage errors resulting from a poor fit of the sine wave function to the breathing

data, the sum of squares residuals were extracted from curve-fitting results in order to

assess the quality of the fit between each data set and the curve generated. Inaccuracies in

manually reported data were mitigated by removing instances when it was clear that the

study participant failed to report breathing events. It would be impossible to remove all

inaccurately reported data since a participant may fail to report just one or two breaths per

minute for a given data set. However, data sets in which manually reported breaths were

0.00 per minute for a given window were discarded. Even though the error contributed

by each of these factors was minimized, it was not completely eliminated. Consequently,

we believe that it is likely that formal test results were still somewhat influenced by errors

from limitations in nose detection, curve-fitting and manually reported data and resulted in

higher residual values and lower values for accuracy.

Formal tests

We conducted formal experiments with ten study participants, four females and six males,

between the ages of 18 and 60. Individuals who participated in this study were not tak-
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Data Sets Typical Anomaly All

Successful response 74.8% 16.4% 68.8%

No response 25.2% 83.6% 31.2%

Figure 4.6: Response rate across data sets.

ing medication which could interfere with their breathing at the time of the experiment.

Each participant sat in a chair that was placed approximately 30 inches from a rolling ta-

ble equipped with the infrared sensor system and a laptop computer. Each study subject

watched a video playing on the laptop computer for approximately 10 minutes. The pri-

mary purpose of the video was to maintain the participant’s attention in a forward-facing,

relatively still position. In addition, participants were provided a push-button sensor to

self-report their breaths. This self-reported data was used as ground truth to evaluate our

system’s performance. Each individual was asked to breathe naturally through the nose

and to push the button through the entire expiration phase.

As with the infrared temperature collection, manual reports of each expiration were

collected in 15-second windows and subsequent data sets consist of the last 10 seconds

of the previous window and the next 5-second window. Each data entry in the window

includes a time stamp and a corresponding “high" (expiration) or “low" (other) tempera-

ture. Breathing rates based on manually reported expirations are calculated by dividing the

number of complete breaths recorded in a given window by the total number of seconds

elapsed between the beginning of the first complete expiration and the beginning of the last

reported expiration.

Experiment Results

Ten test sets, consisting of approximately 120 infrared and 120 manually reported breath-

ing rates each, were collected and analyzed. Of those 10 sets, three were identified as

anomalous due to frequent nose detection problems observed while the test was being con-
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Data Sets Typical Anomaly All

< 4 bpm 94.1% 76.9% 91.2%

< 3 bpm 86.9% 71.2% 83.2%

< 2 bpm 70.9% 53.8% 63.5%

< 1 bpm 42.4% 38.5% 37.4%

Figure 4.7: Successful response results in breaths per minute.

ducted or a large number of missing manually reported entries. The other 7 test sets contain

typical data collected when the nose detection and tracking was working properly and there

were few, if any, missing manually reported entries. Approximately 75% of the typical test

sets yielded breathing rates at or below the residual threshold (five times the residual aver-

age) and were classified as “successful" compared to approximately 25% of the anomalous

test sets. Data from both typical and anomalous test sets exceeding the error threshold

were classified as “no response." A summary of the successful and “no response" rates for

typical and anomalous data sets is shown in Figure 4.2.

Accuracy was evaluated by computing the difference between breathing rates detected

by the infrared sensor and breathing rates reported by study participants. Typical and

anomalous test sets were analyzed separately and accuracy was measured in breaths per

minute (bpm). Breathing rate entries were classified into one of four basic categories: (1)

under 4 bpm, (2) under 3 bpm, (3) under 2 bpm and, (4) under 1 bpm, as illustrated in

Figure 4.2.

An important factor in assessing the accuracy of test data is the error threshold for de-

termining which breathing rates were fitted successfully with the curve-fitting function and

which were not. As the error threshold is increased, the number of breathing rates in the

“no response" category decreases along with the number of breathing rates in the “suc-

cessful" category. Conversely, with a very low error threshold, the number of successful

breathing rates increases as does the number of breathing rates classified as “no response."

A relatively low error threshold was selected so as to evaluate only the data which most
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Figure 4.8: IR heart rate (dashed line) and ECG heart rate window (solid line).

accurately reflects the effectiveness of the infrared sensor. If a higher error threshold were

used, the number of breathing rates with a poor fit would be increased and the resulting

accuracy would reflect more about the performance of the curve-fit function and less about

the sensor’s ability to detect temperature changes corresponding to breathing.

Heart Rate Detection Tests

Experiments were conducted to measure the effectiveness of the single-point infrared sen-

sor for detecting heart rates remotely. A representative graph of extracted heart rates as

detected by the IR sensor and by the ECG illustrates typical results over a period of ap-

proximately 90 seconds in Figure 4.8.

Formal Tests

Experiment setup

The proposed system’s accuracy were quantitatively measured by collecting temperature

data with the infrared sensor, computing the heart rate and comparing the results with heart

rate data obtained from an ECG. Additionally, anti-aliasing testing was performed to ensure
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that fluctuations detected by the IR sensor were not due to resolution limitations of the

sensor. The sensor sampling rate, independent from any other processing, is approximately

300 samples per second. The sensor was targeted at a surface with a constant temperature

and flucutations were measured for over 10 seconds. Temperatures for the entire 10 second

period fluctuated 0.001◦F.

For the ECG data collection, participants were each fitted with 3 electrodes attached

to a bioradio which continuously transmitted heart rate data to a nearby computer. ECG

information is collected at approximately 600 samples per second and a heart rate is com-

puted for each 960 samples, or 1.6-seconds of ECG data, so that IR and ECG heart rates

can be easily processed and compared.

Range of RMSE in bpm Percentage of All Cases

< 4 25.0%

< 9 66.7%

< 14 83.4%

< 19 91.8%

< 24 95.9%

< 29 100.0%

Figure 4.9: All test set results by root-mean-square error.

Range of RMSE in bpm Percentage of Typical
Tests

< 4 27.3%

< 9 72.7%

< 14 90.9%

< 19 100.0%

Figure 4.10: Typical test set results by root-mean-square error.

Because the ECG data collected during experiments consists of a heart rate without a

time-stamp, part of the system performance analysis includes an auto-correction for the

100



temporal alignment of data between ECG heart rates and IR-derived heart rates by compar-

ing the root-mean-square errors (RMSE) of various offsets for each window of coefficients

computed.

Experiments included 24 study participants, 17 females and 7 males, between the ages

of 18 and 35. Individuals who participated in this study were not taking medication which

could interfere with their heart rate at the time of the experiment. Each participant was

asked to sit in a chair that was situated approximately 1 meter from a rolling table equipped

with the infrared sensor system and a laptop computer. During the course of each 10-

minute test session study subjects watched a video playing on the laptop computer. The

primary purpose of the video was to maintain the participant’s attention in a forward-facing,

relatively still position.

Experiment Results

Twenty four test sets, each consisting of approximately 10 minutes of heart rate data were

collected and analyzed. Of those 24 sets, two were identified as anomalous due to persistent

nose detection problems observed while the test was being conducted. The remaining 22

test sets contain typical data collected when the nose detection and tracking was working

properly. Approximately 73% of the typical test sets averaged heart rates within 0-9 beats

per minute compared to average heart rates produced by the ECG over the entire 10-minute

test set (Figure 4.2).

Overall system accuracy was measured by computing the difference between the re-

ported ECG heart rate and the IR detected heart rate for each 1.6-second window (Fig-

ure 4.2). Typical and anomalous test sets were analyzed separately and accuracy was as-

sessed in beats per minute (bpm). Six categories were used to classify our results: (1) 0-4

bpm, (2) 5-9 bpm, (3) 10-14 bpm, (4) 15-19 bpm, (5) 20-24 and (6) 25 and higher bpm.

An additional consideration in the assessment of system performance is the system’s

ability to effectively track increases and decreases in heart rate even when the baseline is

101



Figure 4.11: Offset of IR heart rate (lower line) and ECG heart rate (upper line).

shifted by an offset as shown in Figure 4.11. Test sets that mirror heart rate fluctuations as

reported by the ECG but are offset by a certain amount will produce higher RMSE scores on

average even though increases and decreases in heart rate are accurately detected. Future

work will include an evaluation of these cases to determine if they can still be used to

provide valuable information pertaining to changes in heart rate that are indicative of stress

state.

4.3 REMOTE BREATHING AND HEART RATE DETECTION CONCLUSIONS

Our research presents a new non-contact technique for monitoring changes in the sub-nasal

skin surface temperature to calculate the breathing and heart rate of a user. Heart rate and

breathing rate information may be useful for deducing the user’s stress state and adapting

the behavior of an interactive robot. Our main research objectives were to examine the

effectiveness of using a non-contact, computationally lightweight and low cost sensor for

accurately measuring breathing and heart rate. Overall, the results obtained from the first

sets of formal experiments for collecting and measuring breathing and heart rates are very

promising. Data from typical test sets clearly demonstrate that a single-point infrared sen-
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sor, when accurately positioned, can detect the subtle temperature changes corresponding

to respiration and cardiac pulse. Given the small size of the sensor and the minimal com-

putation required to perform non-contact monitoring (as compared to existing methods),

this research demonstrates the usefulness of this sensing modality for a variety of HRI

applications.

The first round of testing for monitoring breathing rate highlighted limitations with

the methods used to position the sensor, collect ground truth and automatically compute

breathing rates using a curve-fitting approach. Several enhancements were made to the

system software for the heart rate detection tests which followed. These improvements

made it possible to collect more samples per second which, in turn, allowed us to use the

more accurate DWT method for the automatic calculation of heart rate.

Positioning the IR sensor properly and precisely is based on the detection of a subject’s

nose using a nose classifier which is “trained” with various samples of noses. However,

feature detectors that are based on trained classifiers are susceptible to differences in il-

lumination, scale and rotation. The nose detection system used in our research can be

improved in one of several ways. First, the nose classifier can be replaced with one that we

train to detect noses in a greater range of poses, scales and lighting conditions. Second, the

camera was originally positioned approximately 6-8 inches below the subject’s nose. By

adjusting the position of the camera in the heart rate detection tests, so that it is at the ap-

proximate level of the user’s face caused a significant reduction in drifting errors that were

caused by the system’s inability to detect a nose. Although breathing tests were conducted

with the camera positioned below the user’s face, in subsequent tests for calculating heart

rate the camera was placed at the approximate height of the user’s nose. As a result, we

experienced a much lower rate of drifting and false positive nose detections.

Collecting ground truth via self-reporting introduces two undesirable factors. First,

the “true” breathing rate reported by the user may be unreliable since the experiment is

conducted while the subject is engaged in watching a short film and s/he may become
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distracted and forget to depress the button to report a breath. Second, the natural pattern

of breathing is disrupted when a subject is intentionally conscious of their breathing. This

may lead to an unnaturally longer or anomalous inspiration/expiration pattern and produce

results which are not reproducible when the subject is unaware that breathing is being

measured. During our second set of experiments, ground truth was automatically collected

using a respiratory belt tranducer and ECG making it much less susceptible to human error.

The sinusoidal curve-fitting function that was used to automatically compute breath-

ing rates, sometimes yields inconsistent or inaccurate results due to variances in the typ-

ical wave period from one user to the next and anomalies in breathing patterns that com-

monly occur within a single session. In order to obtain a more robust data set and im-

prove the accuracy of the automatic breathing rate computation, the software is now multi-

threaded so that the two processes managing face detection/tracking and temperature col-

lection/analysis are now executed separately. This simple modification resulted in an in-

crease to the collected samples per second (sps) from 6 sps to 20-30 sps. Additionally, a

Fast Fourier Transform (FFT) was implemented for extracting the frequency of the temper-

ature intensities collected. Due to the significant increase in the number of sps collected

and the way in which FFT analyzes the data, the estimate of breaths and pulses per minute

was consistently more accurate.
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CHAPTER 5

RESEARCH PLAN

Table 5.1: Dates of completion for research goals

Timeline Description of Work Completed
January 2011 Robot prototype
January 2011 Face detection and tracking
January 2011 New hand classifier / hand detection

June 2011 Single-player interactive game
June 2011 Tests for single-player game
July 2011 Teleoperation and Two-player interactive game

August 2011 Infrared sensor system built
October 2011 Remote breathing detection

November 2011 Tests for breathing detection
March 2012 Remote heart rate detection
March 2012 Tests for heart rate detection
July 2012 Proposal defense

August 2012 Identify team of autism, psychology, speech, hearing experts
October 2012 Develop field study protocol, test design for field study
January 2013 Obtain IRB approval, Advertise field study

February 2013 Order and obtain testing materials for field study
February 2013 Recruitment of study participants

April 2013 Initiate field tests
November 2013 Complete field tests
December 2013 Dissertation defense

My dissertation defense was approved on December 12, 2013.
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1 Abstract
This research presents a new, autonomous, interactive game-playing robot named CHAR-
LIE. The robot is equipped with a head and two arms, each with two degrees of freedom,
and a camera. We trained a human hands classifier and used this classifier along with a
standard face classifier to create two autonomous interactive games : single-player (“Imi-
tate Me, Imitate You”) and two-player (“Pass the Pose”.) Further, we implemented a third
setting in which the robot is teleoperated by remote control. This research will makes three
novel contributions: (1) A new low-cost robot design for use in autism therapy, (2) three
autonomous, interactive robot games and (3) a new hand classifier created for performing
hand detection and trained for use with the interactive games.

CHARLIE is physically designed to be aesthetically appealing to young children be-
tween three and six years of age. The hard, wood and metal robot body is covered with
a bright green, fuzzy material and additional padding so that it appears toylike and soft.
Additionally, several structural features were included to ensure safety during interactive
play and to enhance the robustness of the robot. Because children with autism spectrum
disorder (ASD) often enjoy exploring new or interesting objects with their hands, the robot
must be able to withstand a moderate amount of physical manipulation without causing
injury to the child or damaging the robot or its components. CHARLIE plays three distinct
interactive games that are designed to be entertaining to young children, appeal to chil-
dren with varying levels of communication and social skill and promote two fundamental
requirements for communication : imitation and turn-taking.
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2 Background and Significance
The use of robots for cooperative work with humans is becoming increasingly pervasive
across an ever widening range of disciplines. Medical procedures using robots are reported
to be less invasive, result in faster recovery times and are estimated to have nearly tripled
from 2007 to 2010 [1]. They have been employed for use in post-stroke rehabilitation [2], as
assistive feeding systems for the physically handicapped [3] and in therapeutic roles such as
robotic pets for the elderly in nursing homes [4]. Engineers across multiple disciplines have
capitalized on the unique qualities of robots to perform autonomously and predictably and
repeat mechanical tasks consistently. These characteristics also make robots well suited as
part of an early intervention strategy for many autistic children who tend to perceive them
as nonthreatening and intrinsically interesting.

Robots have been used to effectively engage autistic children in interactive game play-
ing and research has demonstrated that robot-assisted autism therapy promotes increased
speech and increased child-initiated interactions in children with Autism Spectrum Disor-
der (ASD) [5, 6]. However, more research is needed to develop definitive paradigms for
autonomous robot designs that will most benefit children with autism.

According to a 10-state study conducted by the Center for Disease Control (CDC) [7]
the number of diagnosed autism cases increased an average of 57% from 2002 to 2006.
Not only does this translate to a growing population of autistic children but it also means
that existing resources used to treat and care for children with autism are under greater
strain. Further, because of the added expense of therapy and specialized medical care, the
cost of raising an autistic child in the United States is estimated to be between 8.5 to 9.5
times greater than raising a typically developing child. This additional financial burden
may mean that some families have to choose whether to incur significant debt to get the
proper care for their child or limit the amount of therapy their child receives. Even though
robots have been proven to be effective for promoting communication with some autistic
children, there are few existing robots currently in use for autism therapy and those that do
exist are cost prohibitive for widespread use.
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3 Specific Aims
This research focuses on the design and development of a low-cost, interactive robot that is
simultaneously capable of playing imitative games autonomously with a child and record-
ing vital interaction information for each session. The two most important questions mo-
tivating this research are: (1) What kinds of simple, low-cost robot designs are effective
for promoting human-to-human interaction with autistic children? and, (2) How much im-
provement in verbal communication and motor imitation can be observed after the use of a
robot during autism therapy?

Figure 3.1: CHARLIE poses. From left to right : Left hand high. Right hand high. Both
hands high. Neutral. Peek-a-boo.

Basic turn-taking and imitation skills are imperative for effective communication and
social interaction [8]. Research has shown that interactive games using turn-taking and
imitation have yielded positive results with autistic children who have impaired commu-
nication or social skills [9]. In [10] we present research in which we designed and built
a toy-like robot with face and hand detection capabilities to autonomously engage autistic
children in interactive games using imitation and turn-taking skills. Examining the effec-
tiveness of the robot and game designs will provide critical insight as to the viability of
using this robot as a widely-accessible tool for autism therapy.
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4 Research Design, Methods and Data Analysis
The physical design of CHARLIE addresses three major objectives. First, the outward
appearance of the robot was designed to be pleasant and cute so as to invite the attention
of young children with ASD and avoid being intimidating to the greatest extent possible.
Second, we carefully designed the robot structure so as not to allow the robot, nor its con-
stituent parts, to harm the child interacting with it. Third, we made the robot more robust
by adding features to protect its mechanical components and allow children to explore and
interact more freely with the robot without excessive concern for the physical integrity of
the robot.

Our approach to the design of CHARLIE’s interactive games is based on the integration
of robot and game designs that are known to be effective with autistic children. Each
game was designed to be entertaining to young children and to promote two fundamental
requirements for communication : imitation and turn-taking. Further, we created three
different types of games to appeal to children with varying levels of communication and
social skill. For children who are reluctant to play with a completely autonomous robot
or for those who would benefit from a period of exploration before they begin playing
the interactive games, the robot can be teleoperated using a simple remote control. For
those who are ready to play directly with the robot, but who are not necessarily ready to
play a cooperative game with another child, the single-player interactive game is available.
Finally, a two-player interactive game was created to appeal to those children who have
established some level of simple imitation and turn-taking but could use more practice with
these skills using the robot as a social mediator.

4.1 Recuitment procedures and location of study
Recruitment will take place at local elementary schools and area speech therapy clin-
ics. The administration of pre-test questionnaires and data collection will be conducted
at two sites: (1) Med Park 15 will be used to administer tests to measure cognitive abil-
ity (Vineland Adaptive Behavior Scale) and to confirm autism diagnosis (Social Commu-
nication Questionnaire), and (2) Tests to motor imitation ability (Motor Imitation Scale)
and language ability (Unstructured Imitation Assessment, Expressive Vocabulary Test and
Mean Length of Spontaneous Utterance Determination) and all therapy with the robot will
be conducted at the USC Speech and Hearing Research Center.

4.2 Physical design
We deliberately designed the outward appearance of CHARLIE with the end-user in mind.
Recent research has shown that robots with a simple interface are generally better received
initially by children with autism, than robots with a more realistic, human-like appearance
[11]. The implication is that low-tech robots, when designed appropriately for the particular
needs of the child(ren) with ASD they will serve and the context in which they will be
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Figure 4.1: [top] Snap off arm. [bottom] Snap off head.

used, can be used effectively to teach and promote social skills. In addition to the low-cost
design, CHARLIE’S physical appearance is intended to be toylike to create a friendly and
approachable outward appearance and to more easily attract the attention of a child.

4.2.1 Basic hardware components

CHARLIE’s hardware includes 6 servos, 3 pan-tilt platforms, an 8 channel servo controller,
a consumer-grade web cam, and 2 D-cell battery packs. The robot’s body is padded for
safety, and its outer surfaces are covered with a bright green, fur-like material to achieve
a non-threatening appearance. During active game play the child’s attention is typically
focused near CHARLIE’s hands, so one LED is embedded in each of the hands to provide
positive feedback during interactive games. A speaker is also included in the CHARLIE’s
body in order to provide optional auditory instructions for playing interactive games and
positive feedback. Exclusive of the computing hardware, the retail cost of the robot’s com-
ponents is approximately 200 USD. In a production version of this robot, a computer could
be integrated into the robot’s body, or users could connect via USB to a standard laptop or
desktop PC.

4.2.2 Features for robustness and safety

In general, children are curious about robots and many enjoy exploring the physical features
of the robot as much as interacting with it. This can present hazards to both the child
and to the robot’s mechanical hardware. In order to minimize potential hazards and to
improve the robustness of the robot, we included two characteristics in the robot’s design.
First, the body of the robot is secured to a platform that may be strapped to a desk or
table. Immobilizing the robot in this way prevents the child from being able to pick up
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the robot and potentially harm him/herself, others in the room or the robot itself. Second,
the arms and head of the robot are attached to the robot’s body using snap fasteners so
that excessive force will not cause damage to the servo motors, but will instead allow
that piece to snap off. Furthermore, allowing the arms and head of the robot to detach,
affords the child more continuous free play since there will be less concern over the child’s
safety and the integrity of the robot’s hardware. As described in the IROMEC study [12],
while the adult must fulfill a more active role for promoting play skills with children with
ASD, “much of the literature on childhood play emphasizes the importance of free play
and the need to interfere as little as possible in the child’s actions, thus underscoring the
creative aspects that in essence cannot be controlled or oriented.” We expect that longer,
uninterrupted interactions will maximize the opportunity for each child to benefit from each
session.

4.3 Interactive software design
We used the Open Source Computer Vision Library (OpenCV) [13], a cross-platform li-
brary for real-time computer vision applications, for training the hand classifier and for the
implementation of hand and face detection. OpenCV provides a facility for object detec-
tion based on an extended set of Haar-like features [14]. Informally, this method works
by screening small portions of an image for visual characteristics of the target object. To
train a classifier to identify a specific class of objects, OpenCV uses Adaptive Boosting
(AdaBoost) [15] to create a cascade of boosted classifiers defined over these features. We
then included the resulting hand classifier along with a standard OpenCV face classifier to
detect user hands, track the user’s face and provide position information for managing three
interactive games. In the first game the robot waits for the child to initiate an interaction
by raising one or both hands. In the second game, the robot initiates interactions. The pri-
mary objective of our game designs is to increase attention, promote turn-taking skills and
encourage child-led verbal and non-verbal communication through simple imitative play.

4.3.1 Face detection and tracking

We relied upon the frontal face classifier provided by OpenCV (more specifically, a cascade
of boosted classifiers working with Haar-like features) for face detection. Haar-like features
are used as an abstraction of RGB pixel values for object detection since image intensities
are computationally expensive to work with. Each feature type is used to screen a given
portion of an image for different characteristics of the target object. The extended sets of
rectangular Haar-like features used for the face and hand detectors described in this paper
are applied to assess whether a particular rectangular portion of a video frame contains a
face or hand by summing the pixels contained within the rectangle and determining whether
it matches the characteristics of the target object as defined by the classifier.

To make the overall program as efficient as possible, we implemented a face tracking
algorithm instead of repeating the computationally intensive detection process for each
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Figure 4.2: Face and hand detection.

frame. Face tracking was accomplished using the Continuously Adaptive Mean Shift
(CAMSHIFT) algorithm [16]. CAMSHIFT incorporates the MEANSHIFT algorithm which
is based on a nonparametric technique for climbing density gradients to find the peak of
the probability distribution of the position of a given target object. For face tracking, this
translates to identifying the center of the target color distribution in a given video frame.
In order to make face tracking fast and relatively robust (and appropriate for use in real-
time tracking applications), we used the CAMSHIFT technique. This tracking method
improves performance by eliminating the need to repeat the face detection for each frame
of the video. To overcome errors resulting from drift in the CAMSHIFT algorithm, the
robot periodically repeats the full face detection process. In the event that the robot cannot
detect the face, the robot head is reset to a neutral position and searches outward in an
increasingly larger area.

Whereas face detection is a well-studied problem [17, 18], and effective face classi-
fiers are freely available through OpenCV, robust and real-time hand detection in diverse
environments is a topic of continuing research.

4.3.2 Hand classifier and hand detection

Numerous approaches for developing robust hand detectors have been explored [19, 20],
but the resulting classifiers have not been made available to the research community. Fur-
ther, some hand classifiers that are freely available such as the gesture letter “A” detector by
Juan Wachs from the Ben Gurion University of the Negev, Israel and Washington Hospital
Center [21], are too narrow in scope for use in this context and others are not accurate or
efficient enough for our application. In order to implement a hand detector suitable for our
purposes, a new hand classifier was trained to detect hands in various lighting conditions,
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Figure 4.3: Sample images used to train the hand detector. [top] Positive examples. [bot-
tom] Negative examples.

rotations, scales and finger positions. Approximately 750 positive hand images of vari-
ous size, color and position and approximately 3300 negative images were collected and
cropped to a uniform pixel size of 40x40. Representative examples are shown in Figure 4.3.
To create additional positive training samples representing variations in lighting, rotation
and scale, ten distortions were applied to 100 of those samples, yielding a total of approx-
imately 1750 positive hand samples. The resulting vector files were then merged and the
AdaBoost training procedure was initiated using the combined vector file representing all
positive hand samples and the complete set of negative samples. A twenty-stage cascade
was trained on these samples, yielding an error rate on the training set approaching zero.

4.3.3 Interactive game design

Research in robot-assisted autism therapy typically emphasizes specific objectives for ideal
human-robot interaction including an increased attention span, eye contact, proactive inter-
action with the robot initiated by the child, verbal and non-verbal cues, turn-taking, imita-
tive game playing and overall use of language.

First, we defined the play scenario in terms of : (1) a main target group, (2) a play
type, (3) actors involved, (4) a setting, and (5) the duration of the play activity. The main
target group consists of a small group of children ages 3 to 6 who have been diagnosed with
autism and have documented communication deficiencies. The play type consists of a very
simple game of imitation with a basic set of rules and is designed to engage one teacher
or one child at a time. The tests take place in a closed classroom, where both the child
and teacher are seated across from the robot and the robot will be seated atop and securely
attached to a nearby desk so that the robot’s head is at approximately the same height as the
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child’s. The duration of the play activity is variable. The length of a typical session with
the robot is based on the normal amount of session time allotted for that particular child,
the perceived benefit of the robot to the child’s development and the child’s interest in the
robot.

Second, we prepared a detailed description of how CHARLIE is introduced to each
child and how play proceeds during the first and subsequent sessions. Prior to introduction,
a baseline for communication skills and developmental ability is established for each child
using assessment information provided by the child’s teacher. At the first meeting, the
teacher introduces CHARLIE and explains and/or demonstrates how to play the imitation
game. The teacher then invites the child to play with robot and provide guidance, when
necessary. For children who prefer to examine the robot and learn about its capabilities
independently, the teacher assumes a more passive role, as an observer and guide.

Third, we identified measures of success using the baseline communication skills iden-
tified prior to the child’s first session. Initially, the child’s level of interest in CHARLIE is
noted in addition to any specific robot characteristics that are especially interesting to the
child. During each session, communication between the child and robot, and the child and
teacher is documented by the teacher or researcher. Because the robot measures successful
imitations between the robot and child it is not necessary to document these interactions,
but other nonverbal and verbal communication occurring during the session is noted for
subsequent analysis. Measures of success and user information collected during an inter-
active game can be used to assess the child’s readiness for more advanced, child-initiated
games such as collaborative group play and story-telling.

Ultimately, we designed and implemented two additional interactive games to appeal
to children with ASD of a wider range of ability and skill. The original game developed is
a single-player game which engages a child in a game called “Imitate Me, Imitate You”. In
this game, the child may either initiate a pose for the robot to imitate (“Imitate Me”) or the
child may follow the robot’s pose (“Imitate You”). The single-player game is intended for
the child with ASD who is comfortable interacting with an autonomous robot but who may
not be ready for turn-taking with another child.

Single-player “Imitate Me, Imitate You” The “Imitate Me, Imitate You” game is de-
tailed in Figure 4.4 and consists of two primary modes: passive and active. Within each of
the two modes, there are five poses: neutral (both hands down), left hand raised, right hand
raised, both hands raised and peek-a-boo, as shown in Figure ??. In order to give the child
initial control over the robot’s actions, the default robot state is the passive game mode.
Once the robot detects and begins tracking the child’s face and hands, the robot indicates
that it is ready to interact by moving to the neutral pose and blinking the LEDs in its hands
three times. The robot then immediately enters the passive game mode and waits for the
child to initiate a game by raising one or both hands. As the child’s hand movements are
detected, the robot responds by imitating the child’s hand positions and lighting the LED
in the corresponding hand while simultaneously detecting any additional hand movements.
If ten seconds elapse without any detected hand movement, the robot will transition to the
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Figure 4.4: State diagram for CHARLIE’s “Imitate Me, Imitate You” autonomous interac-
tive game.

active game mode.
During the active game mode, the robot initiates a new game and attempts to engage

the child by raising or lowering one or both arms, or beginning a game of peek-a-boo. Each
pose assumed by the robot in the active game state is selected randomly in order to avoid
repetitive patterns of poses. When a positive outcome is detected (the child successfully
imitates the robot’s pose), positive sensory feedback is generated by the robot. A positive
sensory response entails the robot lighting a small LED in the hand corresponding to the
raised hand or hands of the imitated pose. As with the passive game mode, the robot will
wait ten seconds for the child’s response. If ten seconds elapse and a positive response has
not been detected, the robot will transition back to the passive game mode, waiting again
for the child to initiate a new game.

Two-player “Pass the Pose” The second interactive game is a two-player game de-
scribed in Figure 4.5 called “Pass the Pose”. In this game, two players interact directly
with the robot and indirectly with one another. With the optional sound enabled, the “Pass
the Pose” game works as follows: Game play begins with CHARLIE describing how to
play “Pass the Pose” and asking the first player (seated to the right of the robot) to assume
a pose. Once she has detected the pose, CHARLIE indicates that she has learned the pose
by saying “Ok, I got it. Now let me try”, turns to the second player (seated to the left of
the robot), asks the child to follow her and then assumes the same pose learned from the
first player. If the second player successfully imitates the pose assumed by CHARLIE, she
responds by saying “You got it!”, claps her hands and giggles. If the player does not imme-
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Figure 4.5: State diagram for CHARLIE’s “Pass the Pose” autonomous interactive game.
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diately imitate the correct pose, CHARLIE will ask the child to try again. If the child does
not correctly assume the pose after three tries, the robot asks the current player to initiate a
new pose and the game continues, this time with the second player initially “passing” the
pose to the robot.

If the sound is disabled, we expect that the teacher, therapist or parent will describe
how to play the “Pass the Pose” game. When the players are ready the teacher will start the
game and CHARLIE will turn to the first player and wait for the child to assume a pose.
Once CHARLIE has detected the pose, she turns to the second player and assumes the same
pose. If the child correctly imitates the pose, CHARLIE claps her hands and waits for the
second player to initiate the next pose. If the second player does not correctly imitate the
pose, CHARLIE lowers her head and shakes it slowly from side to side. Should the child
fail to imitate the pose correctly after three tries, CHARLIE resumes a neutral position
and waits for the second player to start a new game. This two player game is ultimately
designed to promote shared attention and cooperative play. We anticipate that the “Pass the
Pose” game will be most useful for children who have already demonstrated some level of
proficiency with turn-taking and imitation and who are able to play a game with a simple
set of rules.

Teleoperation In addition to the two autonomous games, we developed and implemented
software that allows for the robot to be teleoperated so that when a button is pushed on the
remote, the player is given complete control over CHARLIE’s limbs and head. While each
of the four push buttons on the remote correspond to specific pre-programmed poses, the
two joystick buttons provide continuous control for the movement of each arm and a single
directional button allows for continuous control of the head. We expect this game play to
be useful for the child with ASD who may be initially wary or hesitant to interact with
the robot. By temporarily disabling the robot’s autonomous actions, the child is given the
freedom to learn about CHARLIE’s various capabilities at his or her own pace.

4.4 Study procedures
If a child meets the criteria to participate in the study, there are two initial meetings that

will be scheduled prior to the beginning of the study:

(a) The first meeting will take place at MedPark 15. The parent will be asked to complete
a series of questionnaires without the child present. At that time, the parent will complete
three measures that will help to establish the baseline for the child:

- The Vineland Adaptive Behavior Scales (assesses the child’s behavior and estimate
the child’s cognitive age based on the parent’s report of their performance)

- The Social Communication Questionnaire (SCQ)
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(b) During the second meeting (which will take place at the USC Speech and Hearing
Research Center), the parent and the child will be introduced to CHARLIE. We will evalu-
ate the child using the following two tests:

- Unstructured Imitation Assessment (Version A)

- Motor Imitation Scale: 16-item assessment of motor imitation, especially designed
for children with autism (Version A)

- Expressive Vocabulary Test (Second edition) (Form A)

- Completion of the Mean Length of Spontaneous Utterance Determination

Experiment procedures
Following the initial evaluations, we will schedule 30-minute sessions, twice a week (semi-
weekly) for a total of 6 weeks.

(a) Each session will involve the speech therapist, a graduate student and the robot,
CHARLIE.

(b) Introducing the robot to each child and will follow these general guidelines and will
incorporate the following therapy goals:

Phase I: The robot will be situated in the room where therapy will take place. For the
first few sessions (and at the therapist’s discretion) the robot will be placed in stationary
mode to allow the child the opportunity to physically explore the robot and its components
before introducing movement.
(1) On arriving and leaving each session, the subject will briefly make eye contact with
clinician, CHARLIE and the researcher as part of his/her greeting. The child will be ready
for Phase II after the child has been observed to:
(2) Approach CHARLIE
(3) Touch CHARLIE
(4) Move CHARLIE’s arms

Phase II: The child, with the therapist’s guidance (if required) will be given the oppor-
tunity to control the robot’s arms and head with a remote control.
(1) On arriving and leaving each session, the subject will briefly make eye contact with
clinician, CHARLIE and the researcher as part of his/her greeting.
(2) During follow directions task, subject will point/operate remote/follow direction in or-
der to lead CHARLIE through an activity at least once during the session. We will be ready
to approach Phase III after the child has been observed to:
(3) Use the remote control to make CHARLIE move
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Phase III: The child, with the therapist’s guidance (if required) will be given the op-
portunity to play music and practice movement along with the robot. The robot can play If
you’re happy and you know it and The wheels on the bus with hand and head movements.
(1) On arriving and leaving each session, the subject will briefly make eye contact with
clinician, CHARLIE and the researcher as part of his/her greeting.
(2) During follow directions task, subject will point/operate remote/follow direction in or-
der to lead CHARLIE through an activity at least once during the session.
(3) During song activity, subject will participate in fingerplays/gestures with CHARLIE for
80% of opportunities.
(4) Once CHARLIE has imitated subject’s movement, subject will continue to move/interact
with CHARLIE through X turns (X to be determined from performance on baseline/previous
session). The child will be ready to approach Phase IV after the child has been observed
to:
(5) Respond to song with appropriate fingerplay/gesture
(6) Move in response to CHARLIE’s prompt/action

Phase IV: The child, with the therapist’s guidance (if required) will be given the op-
portunity to play imitation games with the robot. One-on-one games include just the child
and the robot. The Pass the pose game includes the therapist, the child and the robot.
(1) On arriving and leaving each session, the subject will briefly make eye contact with
clinician, CHARLIE and the researcher as part of his/her greeting.
(2) During follow directions task, subject will point/operate remote/follow direction in or-
der to lead CHARLIE through an activity at least once during the session.
(3) During song activity, subject will participate in fingerplays/gestures with CHARLIE for
80% of opportunities.
(4) Once CHARLIE has imitated subject’s movement, subject will continue to move/interact
with CHARLIE through X turns (X to be determined from performance on baseline/previous
session).
(5) When offered a choice of activities, subject will clearly make his/her performance
known to others in session for 80% of trials.
(6) Throughout the therapy session, subject will cooperate with a turn-taking task with
CHARLIE, parent and/or clinician through (2) turns (change this number as client pro-
gresses) each. We will be ready to approach Phase V after the child has been observed to:
(7) Imitate the robot movements on 80% of trials
(8) Imitate movements with another person in the intervention room

Phase V: The child will be given the opportunity to select from various modes of play
with the robot.
(1) On arriving and leaving each session, the subject will briefly make eye contact with
clinician, CHARLIE and the researcher as part of his/her greeting.
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(2) During follow directions task, subject will point/operate remote/follow direction in or-
der to lead CHARLIE through an activity at least once during the session.
(3) During song activity, subject will participate in fingerplays/gestures with CHARLIE for
80% of opportunities.
(4) Once CHARLIE has imitated subject’s movement, subject will continue to move/interact
with CHARLIE through X turns (X to be determined from performance on baseline/previous
session).
(5) When offered a choice of activities, subject will clearly make his/her performance
known to others in session for 80% of trials.
(6) Throughout the therapy session, subject will cooperate with a turn-taking task with
CHARLIE, parent and/or clinician through (2) turns (change this number as client pro-
gresses) each.
(7) During interactive games and songs with CHARLIE, subject will participate in a struc-
tured reciprocal play routine for (2) minutes on (3) occasions (change number as client
progresses).

Phase VI: If the child moves smoothly through the previous 5 sessions, then on the 6th
session s/he will be given the opportunity to select from various modes of play with the
robot and any member of the research staff.
(1) On arriving and leaving each session, the subject will briefly make eye contact with
clinician, CHARLIE and the researcher as part of his/her greeting.
(2) During follow directions task, subject will point/operate remote/follow direction in or-
der to lead CHARLIE through an activity at least once during the session.
(3) During song activity, subject will participate in fingerplays/gestures with CHARLIE for
80% of opportunities.
(4) Once CHARLIE has imitated subject’s movement, subject will continue to move/interact
with CHARLIE through X turns (X to be determined from performance on baseline/previous
session).
(5) When offered a choice of activities, subject will clearly make his/her performance
known to others in session for 80% of trials.
(6) Throughout the therapy session, subject will cooperate with a turn-taking task with
CHARLIE, parent and/or clinician through (2) turns (change this number as client pro-
gresses) each.
(7) When presented with communication opportunities by clinician, subject will use ges-
tures, vocalizations, or verbalizations for a variety of communicative intents on 80% of
opportunities presented.
(8) When subject desires to initiate, change or discontinue activities within the last session,
subject will make eye contact with appropriate clinician, the researcher or parent before
communicating the message.
4.5 Data collection
There are two distinct types of data that will be collected, pertaining to nonverbal and
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Figure 4.6: Children Interacting with CHARLIE.

verbal ability. Nonverbal ability will be measured using two sets of the Motor Imitation
Scale in order to measure the motor imitation skill improvement from the beginning of
the experiment to the post-test period. Verbal ability will be measured using each of the
following tests: (1) Unstructured Imitation Assessment, (2) Expressive Vocabulary Test
and, (3) Mean Length of Spontaneous Utterance Determination. One set of the verbal
assessments will be administered prior to therapy with the robot and a second set will be
used to measure improvements gained during the course of therapy.

4.6 Data analysis
Once the study is complete, a statistical analysis will be completed using the pre- and post-
test nonverbal and verbal measurements. This study will last approximately six months.
We intend to recruit 25 study participants, each of whom will receive therapy with the
robot twice a week for six weeks. Since one therapy room at the USC Speech and Hearing
Center is only available for 3 hours twice a week, the study will likely require a full six
months to complete.
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5 Human Subjects

Target Population We are looking for children between 3 and 6 years old who have a
formal diagnosis of autism by a qualified professional. Additionally, candidates for the
study will have speech or language delays and deficiencies as documented by a speech
assessment or therapist. We expect to include up to 25 children in the study. Selected study
participants will be chosen based on the information provided in prescreening questionnaire
(Appendix A) as it complies with the requirements above.

Recruiting Plans Flyers will be posted at local area pediatrician’s offices, speech ther-
apy clinics and diagnostic clinics (Appendix B.) Additionally, a take home flyer will be
provided to local area elementary schools (Appendix C.) Prior approval will be sought
from each organization or place of business before flyers are posted or distributed.

In order to determine whether the child is a good candidate for the study, the researcher
will administer the Prescreening Questionnaire to the prospective participant’s parent over
the phone. Upon hearing about the study (via flyer, teacher, therapist or physician), inter-
ested parents will contact the researcher by phone and the researcher will ask the questions
outlined in the prescreening questionnaire.

The questions on the prescreening form will be used to confirm that (1) a formal di-
agnosis of autism has been received, (2) the child’s language ability is delayed for their
chronological age and to what degree (3) the child’s nonverbal ability is delayed for their
chronological age and to what degree, (4) the child does not have any diagnosed hear-
ing disorder and, (5) the child’s current therapy schedule will allow for additional therapy
sessions with the robot.

If the child is not a good candidate, the information collected over the phone during
the prescreening process will be destroyed (shredded). If the child is a good candidate,
a numeric identifier will be assigned to each child and the completed prescreening ques-
tionnaire will be stored in a secure office, in a locked drawer, to which the researcher has
exclusive access.

Existing Data/Samples Any prior, formal diagnoses of autism or speech and language
delays by a licensed professional will be requested upon selection for the study. Copies
of these documents will be stored in a locked office in a locked drawer which is only
accessible by the researcher. All identifiers will be removed from the data and replaced
with a participant number. A password-protected file with the corresponding names and
participant numbers will be stored on the researcher’s laptop computer.

Consent Parents of autistic children identified as potential study participants will be
provided a letter, including the consent form (Appendix D) and the the Overview of Study
Procedures (Appendix E). Parents will be asked to read the consent at the first face-to-face
meeting and sign the form.

Potential Risks There are very few risks associated with participating in this research
except a slight risk of breach of confidentiality, which remains despite steps that will be
taken to protect your child’s privacy. Each videotaped session will be catalogued using the
date and a unique identifier assigned to the individual child. The real names of children par-
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ticipating in the study and their respective identifiers will be kept on a password-protected
computer in a password-protected file.

Because autistic children are individuals with widely varying interests, abilities and
personalities, it is possible that while some children may find the robot cute and interesting,
others may be fearful of it or act aggressively towards it. If a child should act/show fear or
distress, use of the robot will be discontinued and/or removed from the room.

Potential Benefits Taking part in this study may benefit your child directly. The robot
will be used as a tool during play to engage the autistic child and is intended to promote
verbal and nonverbal human-to-human communication. Results from this research may
also help us understand how to better design robots that can be used by therapists, teachers
and parents to help promote communication skills in autistic children.

Confidentiality Participation will be confidential. A unique identifier will be assigned
to each participant at the beginning of the project. This number will be used on project
records rather than your name, and no one other than the researcher will be able to link
your information with your name. Study records/data will be stored in a password protected
laptop computer in a password protected file. The results of the study may be published or
presented at professional meetings, but your identity will not be revealed.

In rare cases, a research study may be evaluated by an oversight agency, such as the
USC Institutional Review Board or the U.S. Office for Human Research Protections. If this
occurs, records that identify you and the consent form signed by you may be inspected so
that they may evaluate whether the study is properly conducted and the rights of participants
were adequately protected.

Excerpts from the video may be used for demonstrating the viability of the robot as
a therapeutic tool at research conferences and still frames selected from specific sessions
may be used in a publication of this research in conference proceedings or journal arti-
cle(s), but the name(s) of those children appearing in the photograph(s) will be kept strictly
confidential. If the parent wishes to include the child in the study, but exclude him/her from
appearing in any video excerpt or photograph to be made publicly available, they will be
given the choice of opting out.

Compensation There will be no compensation for participation in this study.
Withdrawal Participation in this study is voluntary. The parent is free to decline par-

ticipation or to withdraw their child at any time, for whatever reason, without negative
consequences. In the event that the parent does withdraw their child from this study, the
information already provided will be kept in a confidential manner.

There are a few circumstances under which the subjects participation may be terminated
without his/her consent.

Your child may be dismissed from the study without your consent for various reasons,
including the following: Your child is continually disinterested in playing with the robot
Your child experiences increased or significant distress or anxiety because of the robot
Your child is physically aggressive toward the robot or another person present because of
the robot The interventionist deems that the robot is no longer beneficial to your child If
the study sponsor decides to stop or cancel the study. If the investigators otherwise believe
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that it is not in your child’s best interest to continue in the study.
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PRESCREENING QUESTIONNAIRE

[1] Date information collected

[2] Name of parent/guardian

[3] Parent contact information

Address

City/State

County

Phone (H)

 Phone (C) 

Other

[4] Father's occupation

[5] Highest grade completed

[6] Mother's occupation

[7] Highest grade completed

[8] Marital status of parent

[9] Other languages spoken at home

[10] Name of child

[11] Date of birth

[12] Age of child... years/months

[13] Race/ethnic background of child

[14] Gender

[15] Age (years) and sex of siblings

Sibling 1 Age Sex

Sibling 2 Age Sex

Sibling 3 Age Sex

Sibling 4 Age Sex

[16] Has child had a hearing evaluation?

Newborn Hearing Screening?
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[17] Name of audiologist

[18] Date of evaluation

[19] Reported results?

[20] Has s/he received diagnosis

of autism? Yes No 

[21] When was s/he diagnosed?

[22] Where was s/he diagnosed?

[23] Who made the diagnosis?

[24] If you do not have the results

of the evaluation, are you willing

to sign a release for the results?

[25] Are there any other relatives

with a diagnosis of an autism

spectrum disorder?

If yes, please list

Maternal relatives

Paternal relatives

[26] Does your child have any other

diagnoses?

Medical diagnoses

Behavioral diagnoses
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Therapy

[27] Is s/he currently receiving therapy?

If so, what kind(s)?

Therapy #1

(a) When did s/he start?

(b) How long has s/he

          been in therapy?

(c) How often is s/he

seen?  

      – which days per week

(d) How long is the therapy

         session?

(e) Who is providing the

         therapy?

Therapy #2

(a) When did s/he start?

(b) How long has s/he

         been in therapy?

(c) How often is s/he seen?

     – which days per week

(d) How long is the therapy

                session?

(e) Who is providing the

                therapy?

Therapy #3

(a) When did s/he start?

(b) How long has s/he

                been in therapy?

(c) How often is s/he seen?
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--- which days per week

(d) How long is the 

                therapy session?    

(e) Who is providing 

                the therapy?

[28] Has s/he received a speech 

evaluation?

If yes, do you have the

If not, are you willing to

       sign a release for the 

If not, can you obtain the

[29] How would you describe your

child's language ability?

No words used?

Echoed language only?

Spontaneous phrases?

Limited for age?

      language?

Fluent meaningful

      language?

Can you give me an

results from the assessmt?

 results from the assessmt?

results from the assessmt?

Spontaneous single wds?

Fluent nonmeaningful
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example of something s/he

might say?

[30] How would you describe your

child's nonverbal ability?

Does your child point?

Does your child lead you

     by the hand?

Does your child have other

nonverbal comm such as:

       (a) shakes head for no

       (b) nods head for yes

       (c) waves goodbye

       (d) points

       (e) hand out (give me

                               that)

       (f) shoulder shrug

       (g) other

Any use of sign language?

       (a)  If yes, how many

                                 signs?

       (b)  What are they?

[31] Please describe some play

activities your child enjoys doing

(cars, books, etc)
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APPENDIX C

RECRUITMENT: FUN WITH CHARLIE THE ROBOT FLYER

(INDIVIDUAL)
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FUN WITH CHARLIE THE ROBOT!FUN WITH CHARLIE THE ROBOT!
USC SC Autonomous Robots & Research Lab

together with the USC Speech and Hearing Center and 
The USC School of Medicine 

are looking for

CHILDREN WITH AUTISM

DURATION
The duration of the
study will be 
approximately
8 weeks. 

       ELIGIBILITY 

        We are looking for children: 

     - Between 3 and 6
       years old 

 

                         - Diagnosed with autism 

                       - Speech/communication  
              difficulties 

Participation in this study is FREE of charge!
For more information, please call: 

803-237-7598 
Laura Boccanfuso 

University of South Carolina 
USC SC Autonomous Robots & Research Lab

DESCRIPTION

We are currently conducting a research study to
evaluate the effectiveness of a robot named CHARLIE
to improve the verbal and nonverbal communication 

skills in children with autism
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Department of Computer Science and Engineering

Consent Form
Adaptive Robot Design with Hand and Face Tracking for Use in Autism Therapy 

Laura Boccanfuso

Information Statement
Your child is invited to participate in a research study conducted by Laura Boccanfuso, 
Sarah Scarborough, Ruth Abramson and Harry Wright.  Laura Boccanfuso is a Ph.D. 
candidate in the Computer Science and Engineering Department at the University of 
South Carolina (USC) and she is conducting this study as part of the requirements for her 
Ph.D. degree in Computer Science.  Sarah Scarborough, M.A., is a senior clinical 
instructor in the USC, Department of Communication Sciences and Disorders, and a 
therapist at the USC, Speech and Hearing Research Center.  Ruth Abramson, Ph.D. and 
Harry Wright, M.D., are faculty members of the University of South Carolina, School of 
Medicine, and possess expertise in autism diagnosis and treatment.  

Illustration: CHARLIE

We are looking for approximately 25 children between 3 and 6 years of age and we are 
inviting your child to participate.  Sessions will take place in the presence of CHARLIE 
(the robot used as a tool to increase interaction) and an interventionist.  The purpose of 
the study is to improve communication skills in children diagnosed with Autism 
Spectrum Disorders (ASD).  This form explains what you 
will be asked to do if you decide to participate in this study. Please read it carefully and 
feel free to ask any questions you like before you make a 
decision about participating. 

For IRB Staff Use Only
University of South Carolina
 IRB Number: Pro00023119
Date Approved 1/23/2014

Version Valid Until: 1/22/2015
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Description of Study Procedures
The first visit will consist of a parent interview and will take place without the child 
present.  You will be asked to sign a release of medical records, including any 
speech/language services s/he has received.  We would like to know more about your 
child's skills at the present time and will give you two questionnaires: (1) the Social 
Communication Questionnaire (SCQ) and, (2) the Vineland Adaptive Behavior Scale.  
The first visit will likely take approximately one hour.

On your second visit, you and your child will be introduced to CHARLIE the robot and 
the interactive games it can play will be demonstrated.  The robot can engage the child in 
a number of interactive games and songs.  The robot uses a camera to track the child's 
face and detects the position of the child's hands.  Use of the robot will not continue 
should your child demonstrate any distress or fear of the robot.  If the child shows interest
in the robot, game play will continue until (a) the therapist initiates a new task, (b) the 
session time ends or (c) the child shows significant signs of distress/fear.  The second 
visit will take approximately 30 minutes.

This study will take place over the period of six weeks, with 30-minute sessions 
scheduled two times per week, and will involve both you and your child.  Each session 
will be videotaped and catalogued for subsequent analysis.  Access to the videotaped 
sessions will be limited exclusively to Laura Boccanfuso, as the primary researcher, 
Sarah Scarborough, Ruth Abramson and Harry Wright.  

Risks of Participation
There are very few risks associated with participating in this research except a slight risk 
of breach of confidentiality, which remains despite steps that will be taken to protect your
child's privacy.  Each videotaped session will be catalogued using the date and a unique 
identifier assigned to the individual child.  The real names of children participating in the 
study and their respective identifiers will be kept on a password-protected computer in a 
password-protected file.

Because autistic children are individuals with widely varying interests, abilities and 
personalities, it is possible that while some children may find the robot cute and 
interesting, others may be fearful of it or act aggressively towards it.   If a child should 
act/show fear or distress, use of the robot will be discontinued and/or removed from the 
room.  

Benefits of Participation
Taking part in this study may benefit your child directly.  The robot will be used as a tool 
during play to engage the autistic child and is intended to promote verbal and nonverbal 
human-to-human communication.  Results from this research may also help us 
understand how to better design robots that can be used by therapists, teachers and 
parents to help promote communication skills in autistic children.
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Costs 
There will be no costs to your family for participating in this study. 

Circumstances for Dismissal from the Study
List the circumstances, if any, under which the subject’s participation may be terminated 
without 
his/her consent. 

Your child may be dismissed from the study without your consent for various reasons, 
including the following: 
•  Your child is continually disinterested in playing with the robot
•  Your child experiences increased or significant distress or anxiety because of the robot
•  Your child is physically aggressive toward the robot or another person present because 
of the robot
•  The interventionist deems that the robot is no longer beneficial to your child
•  If the study sponsor decides to stop or cancel the study. 
•  If the investigators otherwise believe that it is not in your child's best interest to 
continue in the study. 

Confidentiality of Records 
Participation will be confidential.  A unique identifier will be assigned to each participant 
at the beginning of the project. This number will be used on project records rather than 
your name, and no one other than the researcher will be able to link your information 
with your name. Study records/data will be stored in a password protected computer in a 
password protected files at the University of South Carolina. The results of the study may
be published or presented at professional meetings, but your identity will not be revealed.

In rare cases, a research study may be evaluated by an oversight agency, such as the USC 
Institutional Review Board or the U.S. Office for Human Research Protections. If this 
occurs, records that identify you and the consent form signed by you may be inspected so
that they may evaluate whether the study is properly conducted and the rights of 
participants were adequately protected. 

Excerpts from the video may be used for demonstrating the viability of the robot as a 
therapeutic tool at research conferences and still frames selected from specific sessions 
may be used in a publication of this research in conference proceedings or journal 
article(s), but the name(s) of those children appearing in the photograph(s) will be kept 
strictly confidential.  If you wish to include your child in the study, but exclude him/her 
from appearing in any video excerpt or photograph to be made publicly available please 
initial here _______.

Contact Persons 
For more information concerning this research, or if you believe you may have suffered a
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research related injury, you should contact Laura Boccanfuso at 803.237.7598 or 
boccanfu@email.sc.edu, or Sarah Scarborough at 803.777.2622 or 
scarbosc@mailbox.sc.edu.  

If you have any questions about your rights as a research subject contact, Lisa Marie 
Johnson, IRB Manager, Office of Research Compliance, University of South Carolina, 
901 Sumter Street, Byrnes 515, Columbia, SC 29208, Phone: (803) 777-7095 or 
LisaJ@mailbox.sc.edu.  The Office of Research Compliance is an administrative office 
that supports the USC Institutional Review Board.  The Institutional Review Board (IRB)
consists of representatives from a variety of scientific disciplines, non-scientists, and 
community members for the primary purpose of protecting the rights and welfare of 
human subjects enrolled in research studies.

Voluntary Participation 
Participation in this study is voluntary. You are free to decline participation or to 
withdraw at any time, for whatever reason, without negative consequences. In the event 
that you do withdraw from this study, the information you have already provided will be 
kept in a confidential manner. 

Email Communication
I understand that I may request to be contacted via email for the purpose of scheduling 
appointments with your child. Please note that most standard email does not provide a 
secure means of communication. There is some risk that any protected health information
contained in email may be disclosed to, or intercepted by, unauthorized third parties. Use 
of more secure communications, such as phone or fax is always an alternative that is 
available to you. We will not give out your email address to third parties. If you consent 
for us to communicate with you via email, please provide your email address below.

_____________________________                            ___
Email address
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Signatures /Dates 
I have read (or have had read to me) the contents of this consent form and have been 
encouraged to ask questions. I have received answers to my questions. I give my consent 
for my child to participate in this study, although I have been told that I may withdraw 
my child at any time without negative consequences. I have received (or will receive) a 
copy of this form for my records and future reference. 

_______________________________________ ____________
___

Parent/Legal guardian signature Date

As a witness, I attest that the consent form was read by (or to) the subject, the research 
purpose, procedures, risks, and benefits were explained to the subject, questions were 
solicited and if the subject had any questions, they were answered to the subject’s 
satisfaction. In my judgment, the subject voluntarily agreed to participate in the study. 

_______________________________________ ____________
___

Researcher Date
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Overview of experiment procedure
I.  Pre-test Procedure 

If your child meets the criteria to participate in the study, there are two initial meetings 
that will be scheduled prior to the beginning of the study:

      (a)  The first meeting will take place at MedPark 15.  You will be asked to 
complete a series of questionnaires without your child present.  At that 
time, you will complete three measures that will help to establish the 
baseline for your child:

● The Vineland Adaptive Behavior Scales   (assesses your child's behavior 
and estimates your child's cognitive age based on your report of their 
performance)

● The Social Communication Questionnaire   (SCQ)

            ** Please plan to spend about 1 hour for this meeting.

      (b)  During the second meeting (which will take place at the USC Speech and 
 Hearing Center), you and your child will be introduced to CHARLIE.  We
 will evaluate your child using the following two tests:

● Unstructured Imitation Assessment (Version A)
● Motor Imitation Scale: 16-item assessment of motor 

imitation, especially designed for children with autism 
(Version A)

● Expressive Vocabulary Test (Second edition) (Form A)
● Completion of the Mean Length of Spontaneous Utterance 

Determination

** Please plan to spend about an hour and a half for this meeting.

Illustration : CHARLIE
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II.  Test procedure and SLP Goals

 Following the initial evaluations, we will schedule 30-minute sessions, twice a week 
(semi-weekly) for a total of 6 weeks.  

(a)   Each session will involve the speech therapist, a graduate student and the 
 robot, CHARLIE.  

(b)  Introducing the robot to each child and will follow these general guidelines  
    and will incorporate the following therapy goals:

● Phase I : The robot will be situated in the room where therapy will take 
place.  For the first few sessions (and at the therapist's discretion) the robot
will be placed in stationary mode – to allow the child the opportunity to 
physically explore the robot and its components before introducing 
movement.

SLP GOALS:
(1)  On arriving and leaving each session, the subject will briefly make eye
contact with clinician, CHARLIE and Laura as part of his/her greeting.  
We will be ready to approach Phase II after the child has been observed 
to:
(2)  Approach CHARLIE
(3)  Touch CHARLIE
(4)  Move CHARLIE's arms

● Phase II: The child, with the therapist's guidance (if required) will be 
given the opportunity to control the robot's arms and head with a remote 
control.

            (1)  On arriving and leaving each session, the subject will briefly make eye
contact with clinician, CHARLIE and Laura as part of his/her greeting.  

            (2)  During follow directions task, subject will point/operate 
remote/follow direction in order to lead CHARLIE through an activity at 
least once during the session.  We will be ready to approach Phase III 
after the child has been observed to:
(3)  Use the remote control to make CHARLIE move

● Phase III: The child, with the therapist's guidance (if required) will be 
given the opportunity to play music and practice movement along with the
robot.  The robot can play “If you're happy and you know it” and “The 
wheels on the bus” with hand and head movements.

(1)  On arriving and leaving each session, the subject will briefly make eye
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     contact with clinician, CHARLIE and Laura as part of his/her greeting. 
          (2)  During follow directions task, subject will point/operate remote/follow 

     direction in order to lead CHARLIE through an activity at least once 
     during the session.

          (3)  During song activity, subject will participate in fingerplays/gestures 
     with CHARLIE for 80% of opportunities.

          (4)  Once CHARLIE has imitated subject's movement, subject will continue
     to move/interact with CHARLIE through # turns (# to be determined 
     from performance on baseline/previous session).  We will be ready to 
     approach Phase IV after the child has been observed to:

          (5)  Respond to song with appropriate fingerplay/gesture
          (6)  Move in response to CHARLIE's prompt/action

● Phase IV: The child, with the therapist's guidance (if required) will be 
given the opportunity to play imitation games with the robot.  One-on-one 
games include just the child and the robot.  The “Pass the pose” game 
includes the therapist, the child and the robot.

          (1)  On arriving and leaving each session, the subject will briefly make eye 
     contact with clinician, CHARLIE and Laura as part of his/her 
     greeting.  

          (2)  During follow directions task, subject will point/operate remote/follow 
     direction in order to lead CHARLIE through an activity at least once 
     during the session.

          (3)  During song activity, subject will participate in fingerplays/gestures 
    with CHARLIE for 80% of opportunities.

          (4)  Once CHARLIE has imitated subject's movement, subject will continue
    to move/interact with CHARLIE through # turns (# to be determined 
    from performance on baseline/previous session). 

          (5)  When offered a choice of activities, subject will clearly make his/her 
     performance known to others in session for 80% of trials.

          (6)  Throughout the therapy session, subject will cooperate with a 
     turn-taking task with CHARLIE, parent and/or clinician through (2) 
     turns (change this # as client progresses) each.  We will be ready to 
     approach Phase V after the child has been observed to:

          (7)  Imitate the robot movements on 80% of trials
          (8)  Imitate movements with another person in the intervention room

● Phase V: The child will be given the opportunity to select from various 
modes of play with the robot.

          (1)  On arriving and leaving each session, the subject will briefly make eye 
     contact with clinician, CHARLIE and Laura as part of his/her greeting. 

          (2)  During follow directions task, subject will point/operate remote/follow 
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   direction in order to lead CHARLIE through an activity at least once 
   during the session.

        (3)  During song activity, subject will participate in fingerplays/gestures with
   CHARLIE for 80% of opportunities.

        (4)  Once CHARLIE has imitated subject's movement, subject will continue 
   to move/interact with CHARLIE through # turns (# to be determined 
   from performance on baseline/previous session). 

        (5)  When offered a choice of activities, subject will clearly make his/her 
   performance known to others in session for 80% of trials.

        (6)  Throughout the therapy session, subject will cooperate with a 
   turn-taking task with CHARLIE, parent and/or clinician through (2) 
   turns (change this # as client progresses) each. 

        (7)  During interactive games and songs with CHARLIE, subject will 
   participate in a structured reciprocal play routine for (2) minutes on (3) 
   occasions (change #’s as client progresses).

• Phase VI:  If the child moves smoothly through the previous 5 sessions, 
then on the 6th session s/he will be given the opportunity to select from 
various modes of play with the robot and any member of the research 
staff.

(1)  On arriving and leaving each session, the subject will briefly 
      make eye contact with clinician, CHARLIE and Laura as part of 
      his/her greeting.  
(2)  During follow directions task, subject will point/operate remote/follow
      direction in order to lead CHARLIE through an activity at least once 
      during the session.
(3)  During song activity, subject will participate in fingerplays/gestures 
      with CHARLIE for 80% of opportunities.
(4)  Once CHARLIE has imitated subject's movement, subject will 
       continue to move/interact with CHARLIE through # turns (# to be 
       determined from performance on baseline/previous session). 
(5)  When offered a choice of activities, subject will clearly make 
       his/her performance known to others in session for 80% of trials.
(6)  Throughout the therapy session, subject will cooperate with a 
       turn-taking task with CHARLIE, parent and/or clinician through (2) 
       turns (change this # as client progresses) each. 
(7)  When presented with communication opportunities by clinician, 
       subject will use gestures, vocalizations, or verbalizations 
       for a variety of communicative intents on 80% of opportunities 
       presented.
(8)  When subject desires to initiate, change or discontinue activities 
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        within the last session, subject will make eye contact with 
        appropriate clinician, Laura or parent before communicating the 
        message.

 (c)  Upon completion of the six weeks of treatment, follow-up assessments (to 
       measure progress achieved during the 6-week course of therapy) will include:

● Unstructured Imitation Assessment (Version B)
● Motor Imitation Scale (Version B)
● Expressive Vocabulary Test (Second edition) – (Form B)
● Completion of the Mean Length Utterance Determination 

Please plan to spend approximately an hour and a half for this meeting.
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