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Abstract In this paper, we established a Capital Asset Pricing Model (CAPM) subject to the assumption

that the asset return rates obey symmetric stable Paretian distributions. This assumption seems to be closer to

reality than the standard ones such as normality or finite variance. Conclusion similar to the original CAPM

formula is drawn in this paper.
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1 Introduction

The capital asset pricing model (CAPM) was the first attempt to explain the asset return
behavior (with one factor) and has undergone considerable theoretical development in the last
thirty years. In the context of CAPM a risky asset’s beta with respect to the market portfolio
is a sufficient statistic for its contribution to the riskiness of an individual’s portfolio. Risky
assets whose payoffs are positively correlated with those of the market portfolio have positive
premiums. In such events, the higher the beta, the higher the premium is. That is, the
equilibrium price of a risky asset price should be determined by its risk related to the market.
In practice, financial experts can use regression to calculate the beta of each security and then
work out its equilibrium price to guide their investments. In the classical versions of CAPM,
the returns of risky assets are normally distributed, and the riskiness of a portfolio is measured
by its variance. Merton[9] added a temporal dimension to CAPM by modeling asset returns
by a diffusion process. Black[1] in his“zero-beta” version relaxed the assumptions on risk-free
borrowing. Chamkerlain[2] showed that the hypothesis of normality can be replaced by the
weaker one of finite variance. But neither the original CAPM nor its extensions seemed really
satisfactory when empirically tested. All these papers assume square integrability or, more
strongly, normality of asset returns. If this is not the case, the statistical test may suffer from
inconsistency.

Perters[10] studied the frequency distributions of 5-Day and 90-Day Dow Jones Industri-
als returns from January 2, 1888 until December 31, 1991. He showed that both the return
distributions were characterized by a high peak at the mean and fatter tails than the normal
distribution. The two Dow distributions were virtually the same shape (that is, they were
similar in terms of statistics). In fact, the results of empirical researches on another capital
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market returns indicated all their return rates do not obey normal distribution, but obey the
distributions like the Dow distributions as above. Mandelbrot[7] proposed that the return rates
in the capital market have stable Paretian distributions, which have peaks at the points of
expectation, and fat tail. The distributions tend to have treads and discontinuity. Moreover it
can adjust to skewness, mostly like the observed frequency distribution of securities.

Fama[3] established a CAPM for symmetric stable Paretian returns using the mathematics
of portfolio frontier. In this paper, we also established a CAPM for symmetric stable Paretian
returns within the framework of a pure exchange economy.

2 Stable Paretian Distributions and Their Properties

A random variable, denoted by R, is said to be stable Paretian if there exists for all positive a
and b, and positive real numbers c and d ∈ R such that

aR1 + bR2
d= cR + d

where R1 and R2 are independent copies of R. Alternatively stated, R is Paretian stable if and
only if its characteristic function is of the form

ΦR(θ) = E(exp iRθ) =

⎧
⎨

⎩

exp
{
− σα|θ|α(1 − iβsignθ tan

πα

2
) + iµθ

}
if α �= 1

exp
{
− σ|θ|(1 + iβsignθ ln |θ|) + iµθ

}
if α = 1

where sign(x) is the sign function, α(0 < α ≤ 2) is the index of stability, β(−1 ≤ β ≤ 1) the
skewness parameter, σ > 0 the scale parameter, and µ ∈ R the location parameter. If α > 1,
the location parameter, µ, corresponds to the mean value of the distribution; and the scale
parameter, σ, can be regarded as a generalized version of the standard deviation.

Follow Samorodnitaky and Taqqu[13], let R = Sα(θ, β, µ). For the symmetric case, i.e.
β = 0, the characteristic function of the stable Paretian distribution reduces to

ΦR(θ) = E(exp iRθ) = exp (−σα|θ|α + iµθ)

Similarly an n-dimensional vector of random variables, denoted by R, is stable Paretian, if there
exists, for all positive a and b, a positive real number c and a vector d ∈ Rn, such that

R1 + R2
d= cR + d

where R1 and R2 are independent copies of R. The characteristic function, ΦR(θ) = E(exp (itθ′R)),
of a stable Paretian vector is given by

ΦR(θ) = exp
{
−

∫

Sn

|θ′s|α
(
1 − isign(θ′s) tan

πα

2

)
Γ(ds) + iθ′µ

}
, if α �= 1

and
ΦR(θ) = exp

{
−

∫

Sn

|θ′s|(1 + isign(θ′s) ln |θ′s|) Γ(ds) + iθ′µ
}
, if α = 1

where θ = (θ1, · · · , θn); Γ represents a finite measure on the unit sphere Sn ⊂ Rn. The spectral
measure Γ of a symmetric (about µ) stable vector R is also symmetric; and the characteristic
function is of the form

ΦR(θ) = exp
{
−

∫

sn

|θ′s|Γ(ds) + iθ′µ
}
.
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Property 2.1. If R = Sα(σ, β, µ), then for any a, b ∈ R,

aR + b = Sα(|a|σ, βsigna, µ + b).

Similar property holds for an n-dimensional stable Paretian vector.
Denote by σ(·) a function which assigns the scale parameter to a random variable, we can

show that a linear combination of the elements of a stable Paretian vector satisfies

σα(θ′R) = σα(θ1R1 + · · · + θnRn) =
∫

Sn

|θ′s|α Γ(ds).

If stable paretian distributions have the same index, skewness and location parameters, then
they are first-order stochastically ordered according to their scale parameter values . i.e. for the
distribution function F (·;α, β, σi, µ), which characteristic function is given by (2.1), we have

F (·;α, β, σ1, µ) ≥ F (·;α, β, σ2, µ), ∀ x

if and only if σ1 ≤ σ2. Given a concave utility function, the asset associated with σ1 will be
preferred, if σ1 ≤ σ2. Hence, the scale parameter is a suitable measure for risk.

Given the similarities between the variance in the Gaussion case, and quantity σα (the so-
called variation) in the non-Gaussion stable Paretian case, as measures of risk, we next discuss
the extension of the concept of covariance to that of covariation between two random variables.

Samorodnitsky and Taqqu[10] proposed the concept of covariation as a corresponding tool
for symmetric stable Paretian laws.

The covariation between two symmetric stable Paretian random variables, say R1 and R2,
with identical α’s, denoted by [R1;R2]α, is defined by

[R1;R2]α =
∫

S2

s1s2
<α−1> Γ(ds)

where x<k> = |x|ksign(x), let 0 < α ≤ 2
In the Gaussion case, α = 2

[R1;R2]α =
1
2

cov(R1, R2)

where cov(R1, R2) is the covariance between R1 and R2.

Property 2.2. If R1, R2, and R3 are three symmetric stable Paretian random variables with
identical α’s, then
a) [λR1;R2]α = λ[R1;R2]α if λ ∈ R and [R1 + R3;R2]α = [R1;R2]α + [R3;R2]α
b) [R1;λR2]α = λ<α−1>[R1;R2]α and [R1;R2 + R3]α = [R1;R2]α + [R1;R3]α
subject to the assumption that R2 and R3 are independent.

If R1 and R2 are independent, then their covariation is zero. However the converse is
generally not true. Also, covariation is generally not symmetric, i.e., in general, [R1;R2]α �=
[R2;R1]α.
Moreover, we have

[R1;R2]α ≤ σ(R1)σα−1(R2)

and
να(R) = [R;R]α = σα(R)

where να(R) = [R;R]α is the so-called variation of α-stable Paretian R random variable.
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Property 2.3. If R = (R1, · · · , Rn) is the basis of Eα which is a symmetric stable Paretian
space. Let Ψ be a linear functional on Eα, then there exists a unique vector θ ∈ Rn, such that

Ψ(·) ≡ [·; θ′R]α.

The property is based on the fact that if R = (R1, · · · , Rn) is a linearly independent family
of symmetric stable Paretian r.v. (with identical α’s), then the function measuring the variation
of a linear combination of these random variables

γ(λ) = σα(λ′R) λ ∈ Rn

is strictly convex.

3 Asset-pricing Model Under Stable Paretian Distributions

Suppose the capital market consists of K+1 limited-liability assets, one of which is riskless asset
and others are risky assets. That is , M =span{x0, · · · , xK} (represents linear space generated
by xj j = 0, · · · ,K), where xj : Ω → R, j = 0, · · · ,K. X = {xj}K

j=1 is a linearly independent
family of symmetric stable Paretian random variables (with identical α’s), x0(ω) = 1 for any
ω ∈ Ω.

As xj is limited-liability security (xj ≥ 0), we have p(xj) �= 0. The return rate of xj is
defined as

r(xj) =
xj − p(xj)

p(xj)
, j = 0, · · · ,K.

Suppose investor i = 1, · · · , I each individual has a mean-risk utility function, i.e. U i
(
C0,

EC1, να(C1)
)
, where C0, C1 denote consumption at the initial and last periods respectively

,called consumption at period-0 and period-1.
Here

∂U i
(
C0, EC1, να(C1)

)

∂EC1
> 0,

∂U i
(
C0, EC1, να(C1)

)

∂
(
να(C1)

) < 0.

Investor i has an initial endowment
(
CK

0 , CK
1 (ω)

)
, ω ∈ Ω, Ci

0 > 0, Ci
1(ω) = Ci

1, for any ω ∈ Ω,
I∑

i=1
Ci

1 > 0, and the initial endowment of assets {N i
0, · · · , N i

K},
I∑

i=1
N i

j > 0, j = 0, · · · ,K. In

order to convert money into units of consumption, we suppose there exists an exogenous price
level of consumption goods at period-0 ρ0 > 0, and price level at period-1 ρ1(ω) > 0 for any
ω ∈ Ω.

In this framework, investor i chooses {C0, N0, · · · , NK} to maximize his utility function

max U i
(
C0, EC1, να(C1)

)
(3.1)

subject to

Ci
0 +

K∑

j=0

N i
jp(xj)/ρ0 = C0 +

K∑

j=0

Njp(xj)/ρ0, (3.2)

Ci
1 +

K∑

j=0

Njxj(ω)/ρ1(ω) = C1(ω) for any ω ∈ Ω. (3.3)
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To simplify the calculations, we assume the consumption market has an exogenous inflation,
that is, ρ1(ω) = ρ1 for any ω ∈ Ω.

Using the constraint (3·3), we can rewrite the investor i’s choice problem (3·1). Substituting
the equations

EC1 =Ci
1 +

K∑

j=1

NjE(xj/ρ1),

να(C1) =
[
Ci

1 +
K∑

j=0

Njxj/ρ1;Ci
1 +

K∑

j=0

Njxj/ρ1

]

α
,

=
[ K∑

j=0

Njxj/ρ1;
K∑

j=0

Njxj/ρ1

]

α
= να(

K∑

j=0

Njxj/ρ1)

into (3.1), we have

max
{C0,N0,···,NK}

U i
(
C0, Ci

1 +
K∑

j=1

NjE(xj/ρ1), να

( K∑

j=0

Njxj/ρ1

))
(3.4)

subject to

Ci
0 +

K∑

j=0

N i
jp(xj)

/
ρ0 = C0 +

K∑

j=0

Njp(xj)/ρ0. (3.5)

Define the real return rate of asset j as

R(xj) =
xj/ρ1 − p(xj)/ρ0

p(xj)/ρ0
for any j = 0, · · · ,K

Specially, when ρ1 = ρ0, that is no inflation, the real return of assets equals nominal return
rate.

Theorem 3.1 (Optimal Consumption and Choice of Assets).
(Ci

0, C
i
1, N

i
0, · · · , N i

K) is investor i’s optimal consumption and choice of assets if and only if
it is the solution of the following equations.

E
[
R(xj)

] − R(x0) + α
( ∂U i/∂να

∂U i/∂EC1

)[
R(xj);

K∑

l=0

N i
l xl/ρ1

]

α
= 0, j = 1, · · · ,K,

(3.6)

1 + R(x0) =
∂U i/∂C0

∂U i/∂EC1
, (3.7)

Ci
0 +

K∑

j=0

N i
jp(xj)/ρ0 = Ci

0 +
K∑

j=0

N i
jp(xj)/ρ0, (3.8)

Ci
1(ω) = Ci

1 +
K∑

j=0

N i
jxj(ω)/ρ1(ω). (3.9)

Proof. Consider the Lagrange Function

£(c0 ,n0 , · · · ,NK , λ) =U i
(
C0, Ci

1 +
K∑

j=0

NjE(xj/ρ1), να

( K∑

j=0

Njxj/ρ1

))

+ λ
(
Ci

0 +
K∑

j=0

N i
jp(xj)/ρ0 − C0 −

K∑

j=0

Njp(xj)/ρ0

)
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subject to first order necessary and sufficient conditions stated as

∂£
∂C0

=
∂U i

∂C0
− λ = 0, (3.10)

∂£
∂Nj

=∂U i/∂(EC1)E(xj/ρ1) + (∂U i/∂να)(∂να/∂Nj) − λp(xj)/ρ0

=∂U i/∂(EC1)E(xj/ρ1) + (∂U i/∂να)
(
α
[
xj/ρ1;

K∑

l=0

N i
l xl/ρ1

]

α

)
− λp(xj)/ρ0

=0 for any j = 0, 1, · · · ,K (3.11)

∂£
∂λ

=Ci
0 +

K∑

j=0

N i
jp(xj)/ρ0 − Ci

0 −
K∑

j=0

N i
jp(xj)/ρ0 = 0 (3.12)

when j = 0. Since x0(ω) ≡ 1 for any ω ∈ Ω. It also follows from (3.11) that

∂U i

∂EC1

E(x0/ρ1)
p(x0)/ρ0

= λ. (3.13)

We substitute the equation 1 + R(x0) = E(x0/ρ1)
p(x0)/ρ0

into (3.10) and (3.13) and get

1 + R(x0) =
∂U i/∂C0

∂U i/∂EC1
.

Substitute (3.13) into (3.11) we get

E[R(xj)] − R(x0) + α
( ∂U i/∂να

∂U i/∂EC1

)[
R(xj);

K∑

l=0

N i
l xl/ρ1

]

α
= 0, j = 1, · · · ,K.

Definition 3.1 (Competitive Equilibrium). Competitive equilibrium is defined as the
consumption and security prices {Ci

0, C
i
1, N

i
0, · · · , N i

K}i∈I and security prices
{
p(x0), · · · , p(xK)

}

satisfing:
a) For any investor i, (Ci

0, N
i
0, · · · , N i

K) satisfy (3.1), (3.2) and (3.3) or equivalently
b) (3.6) (3.7) (3.5) and (3.9)

∑

i∈I

N i
j =

∑

i∈I

N i
j , j = 0, · · · ,K,

∑

i∈I

Ci
0 =

∑

i∈I

Ci
0,

∑

i∈I

Ci
1 =

∑

i∈I

Ci
1 +

∑

i∈I

( K∑

j=0

N i
jxj/ρ0

)
.

As for investor i, his optimal portfolio of risky assets (ωi
1, · · · , ωi

K) has a return xi
m

def=
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K∑

j=1

N i
jxj . Thus the return rate can be written as

R(xi
m) =

K∑

j=1
N i

jxj/ρ1 −
K∑

j=1
N i

jp(xj)/ρ0

K∑

j=1

N i
jp(xj)/ρ0

=
K∑

j=1

N i
jp(xj)/ρ0

K∑

l=1

N i
l p(xl)/ρ0

· N i
jxj/ρ1 − N i

jp(xj)/ρ0

N i
jp(xj)/ρ0

=
K∑

j=1

ωi
jR(xj)

where ωi
j =

Ni
jp(xj)/ρ0

K∑

l=1

Ni
l
p(xl)/ρ0

,
K∑

j=1
ωi

j = 1.

Theorem 3.2 (Investment Diversification). If {N i
0, · · · , N i

K}i∈I and
{
p(x0), · · · , p(xK)

}

are the equilibrium security allocation and prices, then N i
j > 0, j = 1, · · · ,K for any i ∈ I.

Proof. Let

Ai def
= −α

( ∂U i/∂να

∂U i/∂EC1

)
,

obviously Ai > 0,

E[R(xj)] − R(x0) =Ai
[
R(xj);

K∑

l=1

N i
l xl/ρ1

]

α

=Ai
[
R(xj);

K∑

l=1

N i
l p(xl)/ρ0

( K∑

j=1

N i
jxj

/
ρ1

)/( K∑

l=1

N i
l p(xl)/ρ0

)]

α

=Ai
[
R(xj);

K∑

l=1

N i
l p(xl)/ρ0R(xi

m)
]

α

E
[
R(xj) − R(x0)

]
=Ai

[
R(xj) − R(x0);

K∑

l=1

N i
l p(xl)

/
ρ0

K∑

s=1

ωi
s

(
R(xs) − R(x0)

)]

α

=
[
R(xj) − R(x0);

K∑

s=1

(Ai)1/(α−1)N i
sp(xs)

/
ρ0

(
R(xs) − R(x0)

)]

α
.

Let Ψ(x) = E
[
R(xj)−R(x0)

]
where x = R(xj)−R(x0). Obviously, Ψ(x) is a linear functional,

according to Property (2.3), we can obtain

(Ai)1/(α−1)N i
sp(xs)/ρ0 = (Ai′)1/(α−1)N i′

s p(xs)/ρ0, ∀i, i′ ∈ I. (3.14)

Therefore
sign(N i

s) = sign(N i′
s ), s = 1, · · · ,K, ∀i �= i′, i, i′ ∈ I.

Finally, at the equilibrium point
∑

i∈I

N i
j =

∑

i∈I

N i
j > 0,
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we have
N i

j > 0, j = 1, · · · ,K, i ∈ I.

This theorem shows that every investor will hold a strictly positive amount of each kind of
risky asset, whatever his utility function is and whatever initial amount of risky assets he holds.

Theorem 3.3 (CAPM). If {N i
0, · · · , N i

K}i∈I and {p(x0), · · · , p(xK)} are equilibrium secu-
rity allocation and prices, then ωi

j = ωi′
j , j = 1, · · · ,K for any i �= i′, i, i′ ∈ I and we have the

following equation

E[R(xj)] = R(x0) +

[
R(xj);R(xm)

]

α

να(R(xm))

(
E

[
R(xm) − R(x0)

])
, j = 1, · · · ,K.

Proof. Sum equations (3.14) for s, we get

(Ai)(1/(α−1))
K∑

s=1

N i
sp(xs)/ρ0 = (Ai′)(1/(α−1))

K∑

s=1

N i′
s p(xs)/ρ0 > 0, ∀i �= i′, i, i′ ∈ I,

therefore we get

N i
jp(xj)/ρ0

K∑

j=1

N i
jp(xj)/ρ0

=
N i′

j p(xj)/ρ0

K∑

s=1
N i′

j p(xj)/ρ0

, j = 1, · · · ,K, ∀i �= i′, i, i′ ∈ I.

Thus, according to the definition of ωi
j , we obtain

ωi
j = ωi′

j , j = 1, · · · ,K, ∀i �= i′, i, i′ ∈ I,

i.e.
R(xi

m) = R(xi′
m) def= R(xm), ∀ i �= i′, i, i′ ∈ I.

On the other hand

E
[
R(xj)

] − R(x0) =Ai
[
R(xj);

K∑

l=1

N i
l (p(xl)/ρ0)R(xm)

]

α

=Ai
( K∑

l=1

N i
l p(xl)/ρ0

)α−1[
R(xj);R(xm)

]

α
,

so we get

K∑

j=1

ωj

(
E[R(xj)] − R(x0)

)
=

K∑

j=1

ωjA
i
( K∑

l=1

N i
l p(xl)/ρ0

)α−1[
R(xj) − R(xm)

]

α

=Ai
( K∑

l=1

N i
l p(xl)/ρ0

)
α−1

[ K∑

j=1

ωjR(xj);R(xm)
]

α

=Ai
( K∑

l=1

N i
l p(xl)/ρ0

)α−1[
R(xm);R(xm)

]

α
,

i.e.,

E[R(xm)] − R(x0) = Ai
( K∑

l=1

N i
l p(xl)/ρ0

)α−1

να(xm), ∀i ∈ I.
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Since
(Ai)1/(α−1)N i

sp(xs)/ρ0 = (Ai′)1/(α−1)N i′
s p(xs)/ρ0, ∀i, i′ ∈ I,

i.e.

(Ai)
( K∑

s=1

N i
sp(xs)/ρ0

)α−1

= (Ai′)
( K∑

s=1

N i′
s p(xs)/ρ0

)α−1

, ∀i, i′ ∈ I,

we have
E

[
R(xj)

] − R(x0)
E

[
R(xm)

] − R(x0)
=

[
R(xj);R(xm)

]

α

να

(
R(xm)

) ,

i.e.,
E

[
R(xj)

]
= R(x0) + βim

(
E

[
R(xm)

] − R(xo)
)

where

βim =

[
R(xj);R(xm)

]

α

να

(
R(xm)

) , j = 1, · · · ,K.

Here R(x0) is the risk free interest rate, E[R(xj)]−R(xo) is security j’s excess return beyond
the market, E[R(xm)]−R(xo) is the market risk premium and βim is a similar measure of the
security j’s risk related to the market. Therefore, we reach a formula like the traditional CAPM
formula, when the returns obey symmetric stable Paretian distributions. This result generalizes
the CAPM theory and chare with it the same economic intuition, namely, there is no free lunch
in the investment market; if you want to get excess returns, you must undertake excess risk
related to the whole market.

4 Summary

When the asset return rates obey normal distributions, the CAPM formula given as

E
(
R(xj)

)
= R(x0) +

cov
(
R(xj), R(xm)

)

var
(
R(xm)

)
(
E(R(xm)

) − R(x0)
)

where var
(
R(xm)

)
is the variation of R(xm). In this paper, we established a similar CAPM

formula which may be written as

E
(
R(xj)

)
= R(x0) +

[R(xj);R(xm)]α
να

(
R(xm)

)
(
E(R(xm)) − R(x0)

)

when the asset return rates obey the symmetric stable Paretian distributions. However, we
should also emphasize that this model assumes symmetric return distributions, which may not
hold in a real economy. Moreover, we assume that returns have the same index of stability.
Certainly returns are not Gaussion does,not of course, imply that they have the same index of
stability. Thus, we need some weaker assumption than that a symmetric stable Paretian family
share the same index of stability. As a result, unfortunately, however we can not expect to
do the desirable properties better now. There is a long way to make our model more realistic.
At the same time empirical tests should be carried out in order to test our assumptions and
estimate parameters.
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