ot
e e e e
oot g
e
e e
e o

e
i - Evolutionary

Computer Music

(9352119 - ePUIA

g
2
5
-

Y

Evolutionary Computer Music

Eduardo Reck Miranda and John Al Biles (Eds)

Evolutionary
Computer
Music

@ Springer

Eduardo Reck Miranda, MSc, PhD John Al Biles, BA, MS, PhD

Interdisciplinary Centre for Computer Information Technology Department
Music Research (ICCMR) Rochester Institute of Technology

University of Plymouth Rochester, NY 14623

UK USA

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2006933300

ISBN 10: 1-84628-599-2 e-ISBN-10: 1-84628-600-X
ISBN 13: 978-1-84628-599-8 e-ISBN-13: 978-1-84628-600-1

Printed on acid-free paper
© Springer-Verlag London Limited 2007

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the
publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be
sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the infor-
mation contained in this book and cannot accept any legal responsibility or liability for any errors or
omissions that may be made.

987654321

Springer Science+Business Media
springer.com

Foreword

From Glorified Adding Machines
to Evolutionary Computer Music

I was very pleased when Al Biles and Eduardo Miranda asked me to write a
foreword for this delightful volume on Evolutionary Computer Music (ECM).
I have been a fan of the field from my first passing involvement as a co-author
on an ECM paper in 1991. Like many others, I have enjoyed listening to Al Biles
jam with GenJam at various conferences, and I have watched the state of the art
advance with each passing year. Evolutionary music is particularly pleasing to its
practitioners and observers alike, I believe, because it simultaneously asks deep
questions about what computers can do and what it means to be human.

Genetic algorithms (GAs) and evolutionary computation (EC) are devilish fun
partly because they permit us to tweak the noses of those who share the conventional
wisdom that ‘computers only do what you program them to do.” This cold war view
of computer as glorified adding machine is still with us, but it seems to me generally
that the accomplishments of EC must be giving those who still hold such views
some pause, as field after field is changed by the computational innovation and
creativity embodied in GAs and EC.

Perhaps nowhere is the challenge to conventional wisdom greater than in the area
of ECM. Philosophers have held that the ability to compose and perform music is
a uniquely human talent, and the current success of EC with creating music either
contradicts that proposition or suggests that the innovative—creative mechanisms
embodied in EC are powerful in ways that bear at least functional similarity to
those of human composers. Either way, the evolutionary computer generation of
digital sounds and music that please human beings challenges stereotypes about
what computers can do and what constitutes the unique province of our species.

This volume is a special contribution to the literature. It runs the topical gamut
from using EC to create pleasing digital sounds and compose or improvise musi-
cal compositions to thinking about the philosophical implications of a community
of musically inclined robots. The volume demonstrates methodological diversity
using different types of evolutionary algorithms, including those kissing cousins
of EC, particle swarms and cellular automata; as might be expected in such a
volume, emphasis is placed on exploring interactive EC techniques for using hu-
man judgments about musical aesthetics efficiently and well. In short, if you are
a practitioner or aficionado of ECM or perhaps you are one of those cold war

Vi Foreword

fuddy-duddies who still thinks computers are merely glorified adding machines, I
strongly urge you to buy this book, read it and listen to the pleasing products of
ECM creation.

October 2006 David E. Goldberg
University of Illinois at Urbana-Champaign
Urbana, IL 61801 USA

Preface

Musicians, perhaps more than any other class of artists, have always been acutely
aware of the scientific developments of their time. From the discovery almost
3000 years ago of the direct relationship between the pitch of a note and the length
of a string or pipe, to the latest computer models of human musical cognition
and intelligence, musicians have always looked to science to provide new and
challenging paradigms to study and compose music.

With the great technical and scientific advances being made at the crossroads
of computing, biology, and natural history, a new approach to music has recently
emerged: Evolutionary Computer Music.

Evolutionary computing, also referred to as evolutionary computation or EC,
can be broadly defined as a field of computer science that focuses on the use of
computational models of Darwinian-like evolutionary processes as the key ele-
ments in design and implementation of computer systems. Because EC normally
deals with complex phenomena, its development has fostered the creation of a
pool of research tools for modelling and studying complex natural phenomena
such as nervous systems, cells and living beings. It is interesting, though, that
these tools are also proving to be useful in areas as diverse as economics, social
sciences, linguistics and music. Indeed, a number of new fields of investigation
have emerged within the last 20 years or so, as a result of these developments
in a way or another. A notable example is the flourishing new field of Artificial
Life.

Evolutionary computer music is an exciting new development for composers and
musicologists alike. For composers, it provides an innovative and natural means
for generating musical ideas from a specifiable set of primitive components and
processes, reflecting the compositional process of generating a variety of ideas
by brainstorming followed by selecting the most promising ones for further iter-
ated refinement. For musicologists, EC techniques are used to model the cultural
transmission and change of a population’s body of musical ideas over time; e.g.
to model the development and maintenance of musical styles within particular
cultural contexts and their reorganization and adaptation in response to cultural
exchange. In both cases, the musical evolution can be influenced by a variety of
constraints and tendencies built into the system, such as realistic psychological

vii

viii Preface

factors that influence the way that music is experienced, learned, stored, modified,
and passed on between individuals.

This book discusses not only the applications of the EC to music, but also the
tools needed to create and study such systems. These tools are drawn in part from
research into the origins and evolution of biological organisms, ecologies, and cul-
tural systems on the one hand, and in part from computer simulation methodologies
on the other.

The opening chapter introduces the topic of EC, outlining the main technical
details and raising issues pertinent to musical applications. This chapter is in-
tended to furnish readers with the necessary background needed to understand the
remaining chapters, as well as open up a number of important themes relevant to
this collection. The second chapter complements the first by introducing music
as a problem domain for EC. The author conducts an informal task analysis of
music to identify the tasks musicians perform and surveys how EC has been used
to support these tasks.

Historically, many digital audio applications have required some form of opti-
mization, particularly replication of musical instruments in music synthesis. Recent
work has used evolutionary algorithms, such as genetic algorithms, to evolve pa-
rameters for these applications. Chapter 3 presents a survey of the use of EC in
music synthesis, music processing, and other digital audio applications such as
music recognition. Chapter 4 follows by focusing on the use of EC in creative
sound design. The author introduces two systems of his own design, MutaSynth
and Path Mutator.

Chapter 5 introduces an innovative application of EC, which is the design of
systems for musical performance. Here the authors present a prototype system that
uses a genetic algorithm (GA) to evolve performance profiles to perform pieces of
music.

Chapter 6 describes the compositional uses of the author’s own GA-based pro-
gram called GenDash. The program has been employed to compose a wide range
of pieces from short vocal works to pieces for string quartet and operas. The devel-
opment of GenDash is chronicled, the ideas behind the program are documented,
and the chapter details the pieces composed using the program. Chapter 7 fol-
lows by focusing on the application of EC to musical improvisation. After briefly
discussing the notion of improvisation and defining some musical dimensions for
improvisation, attention turns to GenJam, a pioneering EC-based real-time inter-
active improvisation system.

Chapter 8 introduces the use of cellular automata (CA) for sound synthesis and
composition. After a general introduction to CA and its potential for music, the au-
thor introduces the development of his own CA-based systems, namely Chaosynth
(for sound synthesis) and CAMUS (for composition). Complementing the use of
CA, Chapter 8 introduces the use of swarms for modelling compositional pro-
cesses with focus on the author’s Swarm Music system for real-time composition
of music with swarms.

Following the development of fields such as Artificial Life and memet-
ics, Chapter 10 proposes a computational modelling approach to Evolutionary

Preface X

Musicology: Computational Evolutionary Musicology. This involves the use of
computer modelling and simulations to study the circumstances and mechanisms
whereby music systems might originate and evolve in artificially created worlds
inhabited by communities of interacting autonomous agents. The authors describe
their own model for studying the role of mating-selective pressure in the evolution
of musical expectation. Next, they introduce a mimetic model for studying the evo-
lution of musical lexicons in a community of autonomous robots furnished with
a vocal synthesizer, a hearing apparatus and a memory device. The application of
neural networks to evolve generative sequencing rules in a community of rhythm
players and imitators is also discussed.

The accompanying music CD features pieces composed by, or with the aid of,
EC. The diversity of musical styles and compositional approaches illustrated on
this CD are clear evidence of the capabilities and scope of Evolutionary Computer
Music, which go beyond the realm of academic theory. Here are examples of
tangible practical benefits for the music industry.

We would like to express our gratitude to all contributors who kindly produced
new original chapters for this edition and provided the pieces for the accompa-
nying music CD. We are thankful to Springer’s editorial and production team
for their support, especially our commissioning editor, Helen Callaghan, for her
encouragement to edit this book.

The editors would like to dedicate this volume to the memory of the late Drew
Garlant-Jones, whose enthusiasm and contribution to the development of Evolu-
tionary Computer Music shall never be forgotten.

January 2007 Eduardo Reck Miranda
John Al Biles

Contents

FOrewWord. ..o s

Preface

(000 3155 1010170) ¢ J PN

1. An

Introduction to Evolutionary Computing for Musicians...............

Phil Husbands, Peter Copley, Alice Eldridge and James Mandelis

2. Evolutionary Computation for Musical Tasks...........c.c.coeoiiiinen.n.
John A. Biles

3. Evolution in Digital Audio Technology...............c.coceiiiiiiiiin...
Andrew Horner

4. Evolution in Creative Sound Design..........cccovvviiiiiininniiieninennnn..
Palle Dahlstedt

5. Experiments in Generative Musical Performance with a
Genetic Algorithmooooiiiiiii
Qijun Zhang and Eduardo R. Miranda

6. Composing with Genetic Algorithms: GenDash............................
Rodney Waschka I1

7. Improvizing with Genetic Algorithms: GenJam.............................
John A. Biles

8. Cellular Automata Music: From Sound Synthesis to Musical Forms...
Eduardo R. Miranda

9. Swarming and MUSICoiiiitititiiiie e enens
Tim Blackwell

vii

Xiii

28

52

79

117

137

170

xi

Xii Contents

10. Computational Evolutionary Musicology
Eduardo R. Miranda and Peter M. Todd

Appendix: The Accompanying Music CD.........c...oooiviiiiiiiiiiiiiinenen...

List of Contributors

Prof David E Goldberg

Dobrovolny Distinguished Professor

Illinois Genetic Algorithms Laboratory

(IIliGAL) Department of Industrial and
Enterprise Systems Engineering

University of Illinois at
Urbana-Champaign

117 Transportation Building

104 S. Mathews Avenue

Urbana, IL 61801

USA

Email: deg@uiuc.edu

Prof Phil Husbands

Professor of Artificial Intelligence
Cognitive and Computing Sciences
University of Sussex

Brighton, BN1 9QH

United Kingdom

Email: philh@cogs.susx.ac.uk

Dr Peter Copley

The Music Department

The Open University

Walton Hall

Milton Keynes, MK7 6AA

United Kingdom

Email: arts-music-enquiries@
open.ac.uk

Ms Alice Eldridge

Creative Systems Lab

Evolutionary and Adaptive Systems
Group

Department of Informatics

University of Sussex

Brighton, BN1 9QH

United Kingdom

Email: alicee@sussex.ac.uk

Mr James Mandelis

Creative Systems Lab

Evolutionary and Adaptive Systems
Group

Department of Informatics

University of Sussex

Brighton, BN1 9QH

United Kingdom

Email: jamesm@cogs.susx.ac.uk

Prof John Al Biles

Professor and Undergraduate Program
Coordinator Information

Technology Department

Rochester Institute of Technology

102 Lomb Memorial Drive

Rochester, NY 14623-5608

USA

Email: jab@it.rit.edu

Xiii

X1V List of Contributors

Prof Andrew Horner
Department of Computer Science
The Hong Kong University of
Science & Technology, Clear
Water Bay Kowloon Hong Kong
Email: horner@cse.ust.hk

Dr Palle Dahlstedt

IT University, Chalmers University
of Technology Innovative Design /
Art & Technology Program
SE-412 96 Goteborg

Sweden

Email: palle@ituniv.se

Ms Qijun Zhang

Interdisciplinary Centre for Computer
Music Research (ICCMR)

Faculty of Technology

University of Plymouth

Smeaton Building 206

Drake Circus

Plymouth, PL4 8AA

United Kingdom

Email: qijun.zhang@plymouth.ac.uk

Prof Eduardo R. Miranda
Professor of Computer Music
Interdisciplinary Centre for Computer
Music Research (ICCMR)

Faculty of Technology

University of Plymouth

Portland Square B326

Drake Circus

Plymouth, PL4 8AA
United Kingdom

Email: eduardo.miranda@
plymouth.ac.uk

Dr Rodney Waschka II

The Music Department

North Carolina State University
Price Music Center

2620 Cates Ave.

Campus Box 7311

Raleigh, NC 27695

USA

Email: waschka@ncsu.edu

Dr Tim Blackwell
Department of Computing
Goldsmiths College
University of London

New Cross

London, SE14 6NW

United Kingdom

Email: t.blackwell@gold.ac.uk

Prof Peter Todd

Professor of Informatics, Cognitive

Science and Psychology
School of Informatics
Indiana University
Informatics Building

901 E. 10th St.

Bloomington, IN 47408-3912
USA

Email: pmtodd@indiana.edu

1

An Introduction to Evolutionary
Computing for Musicians'

PHIL HUSBANDS, PETER COPLEY, ALICE ELDRIDGE AND
JAMES MANDELIS

1.1. Introduction

The aim of this chapter is twofold: to provide a succinct introduction to evolution-
ary computing, outlining the main technical details, and to raise issues pertinent to
musical applications of the methodology. Thus this chapter should furnish readers
with the necessary background needed to understand the remaining chapters in this
volume as well as open up a number of important themes relevant to this collection.

The field of evolutionary computing encompasses a variety of techniques and
methods inspired by natural evolution. At its heart are Darwinian search algorithms
based on highly abstract biological models. Such algorithms hunt through vast
spaces of data structures that represent solutions to the problem at hand, which
might be the design of an efficient aero engine, the production of a beautiful image,
timetabling a set of exams or composing a piece of music. The search is powered by
processes analogous to natural selection, mutation and reproduction. The basic idea
is to maintain a population of candidate solutions that evolve under a selective
pressure favouring the better solutions. Parent solutions are combined in various
ways to produce offspring solutions, which then enter the population, are evaluated
and may themselves produce offspring. As the cycle continues better and better
solutions are found. This class of techniques has attracted a great deal of attention
because of its success in a wide range of applications.

Once the Neo-Darwinian framework, which unified Darwin’s theory of nat-
ural selection with genetics, had been established in the 1930s and 1940s and
emerged as a powerful theoretical underpinning for biology (Fisher 1930; Haldane
1932; Huxley 1942), it is perhaps not surprising that computer pioneers wondered
if it was possible to abstract general problem-solving methods from the logic
of natural evolution. During the 1950s a number of prominent thinkers, such as
Alan Turing, suggested the use of artificial evolution as a possible methodology
for developing adaptive machines. He envisioned its use in developing learning

! This paper is dedicated to the memory of our late friend and colleague Drew Gartland-
Jones, who was crucial to the development of much of the thinking presented here.

2 Husbands et al.

machines. Such machines would have hereditary material (artificial genes) encod-
ing their structure, mutated copies of which would form offspring machines. A
selection mechanism would be used to favour better-adapted machines — in this
case those that were best at learning (Turing 1950). Such ideas were relatively
common at that time — the golden age of mid-century Cybernetics when biological
inspiration was rife and adventurous researchers were mapping out a visionary
landscape, but it was not until the 1960s, when computer hardware became more
powerful and easily available, that concrete instantiations began to appear. Three
different variants independently emerged. Ingo Rechenberg and Paul Schwefel
developed evolution strategies (Rechenberg 1965) to tackle engineering design
optimisation problems. Fogle et al. (1966) describe a the technique of Evolution-
ary Programming, primarily concerned with evolving finite state automata for
machine learning tasks. John Holland and his group at the University of Michigan
developed the more general genetic algorithm, which became the best known of
the methods (Holland 1975). Holland’s early work in this area was concerned with
building a powerful general formalism for adaptive systems (Holland 1962), and
this lead to his notion of a general reproductive plan (Holland 1966) which, slightly
modified, was christened a genetic algorithm by Bagley (1967). It was during the
1980s that the field really took off, when it was at first dominated by work in ge-
netic algorithms. In the 1990s general frameworks were developed, which unified
the various strands under the now widely used term of evolutionary computing
(Back and Schwefel 1993). It is beyond the scope of this chapter to look in detail
at all the historical flavours of evolutionary algorithms (EAs) that emerged during
the development of the field (see Eiben and Smith 2003; Mitchell 1996 for good
introductions), and rather the main properties of such methods will be presented
by appealing to the idea of a general class of evolutionary search algorithms which
encompasses the major sub-dialects.

Early applications of EAs were mainly in engineering optimisation of one sort
or another (see, e.g. Davis 1990; Goldberg 1989; Grefenstette 1987), but as the
method became better known and sparked the imagination of many researchers, the
range of applications became increasingly wide and soon encompassed creative
and artistic domains, including music.

The deceptively simple biological analogy at the heart of EAs is highly attractive
and provides a rich seam for further developments that many researchers have
mined and are still busy mining today. As we shall see, this has resulted in a
highly flexible framework, with far fewer restrictions on its application than for
other comparable methods, allowing plenty of scope for creative work. This is
one of the great strengths of the area and one of the reasons why it is attractive to
musicians and artists.

The next section gives a succinct introduction to the technical details of EAs. This
is followed by sections on two particularly popular areas for musical applications of
evolutionary computing: composition and sound design. Important issues arising
from the use of EAs in these areas are discussed. The chapter then continues with
a wider discussion about the place of adaptive systems in music.

1. An Introduction to Evolutionary Computing for Musicians 3

1.2. Evolutionary Search Algorithms

1.2.1. Some Biology

Most EAs are based squarely on the Neo-Darwinian framework from biology and
borrow certain key nomenclature from it. Hence it will be helpful to outline that
framework before launching into the details of EAs.

According to Charles Darwin’s theory of natural selection (Darwin 1859), evo-
lutionary change comes about because of the existence of variations in inheritable
traits in every generation. Those individuals who survive, owing to a particu-
larly well-adapted combination of inheritable characteristics, give rise to the next
generation. The individuals fittest survive to pass on those traits that helped to
make them fit.

Darwin knew very little about how these variations arose or what the mecha-
nisms underlying inheritable traits were. It was modern genetics that provided the
key to answering these problems. Hence Neo-Darwinism postulates that natural
selection acts on the genetic variations within populations — genes being the units
underlying inheritable characteristics. These variations are caused by genetic pro-
cesses such as mutations (sometimes caused by mistakes in DNA replication) and
recombination of genetic material from different sources (e.g. the two parents in
sexual reproduction).

Natural selection is usually thought of as acting on the phenotype, the out-
wards expression of the genes (the genotype), such as physical characteristics or
behaviour, the environment it inhabits and the interactions between them. This
process, together with others such as genetic drift and speciation, is a key element
of modern evolutionary theory.

1.2.2. The Basics

Fig. 1.1 outlines the general scheme of an EA. An initial population of structures
representing solutions to the problem is first created. They might be completely

_.‘

Recombination

"""""""""" Selection .
3 -, Mutation

0 B
.........

Population Offsping

(evaluate) (evaluate)

1 Replacement

FIGURE 1.1. General scheme of an evolutionary algorithm.

4 Husbands et al.

random individuals or based on a prior solution or generated using heuristics that
ensure that they have certain desirable characteristics. Each member of the popu-
lation is evaluated so that it can be assigned a fitness (usually a numerical score).
This will involve decoding the genetic representation (genotype) into a problem
solution (phenotype) and testing its fitness using some method for determining
how well it solves the problem. Parents are selected, with a bias towards fitter
members of the population, for the creation of offspring by using artificial genetic
operators such as mutation and recombination. The offspring are evaluated and
certain of them are selected to take the place of existing members of the pop-
ulation chosen according to a replacement scheme (usually biased towards the
least fit individuals). The cycle continues until a sufficiently fit individual emerges
or some stopping criteria, such as number of cycles run, is met. Most parts of
the cycle involve random, or stochastic, processes crucial to the success of the
method.

We will now look at the operation of this scheme in more detail by examining
the constituent parts of the EA. The main components of an evolutionary search
algorithm are:

* genetic representation
e evaluation function

* population structure

* selection method

* genetic operators

* replacement scheme

1.2.2.1. The Genetic Representation

The structures making up the population, i.e., the artificial genotypes, are usually
strings of numbers or symbols that represent solutions to the problem at hand.
They might be a string of real numbers that are the parameters controlling a sound
synthesis algorithm — and hence represent a sound — or they might be groups of
numbers representing information such as musical note values and durations — and
hence represent a piece of music. Complex encodings involving mixtures of num-
bers, symbols, rules and other data structures have also been successfully used;
for example, the sub-field of genetic programming is concerned with the evolution
of a particular form of LISP computer program (Koza 1992). It is also possible
to use a fairly simple genotype in combination with a complex decoding scheme
to translate it into the phenotype. Rather indirect routes to the end goal can be
taken, for instance, the genotype may specify the design of a process, or abstract
machine, which is then run to generate the end product of interest (e.g. a musical
phrase). The genotypes can be of a fixed length or, where appropriate, they can be
allowed to grow and shrink. The great flexibility available in designing a suitable
representation is one of the major advantages over more traditional methods af-
forded by the EA framework. However, not all representations for a given problem
will be equally good. In some cases the representation to use is fairly obvious and
straightforward (e.g. a string of numbers acting as the parameters of a well-defined

1. An Introduction to Evolutionary Computing for Musicians 5

process or design), in others it may not be so clear. The representation defines the
genotype space through which the EA searches looking for a combination of genes
that defines a sufficiently fit phenotype. If the representation is badly designed the
space may become impossibly convoluted and too difficult to search with any effi-
ciency, rendering the EA useless. Throughout the remainder of this book concrete
examples of representations suitable for musical systems will be found.

1.2.2.2. The Evaluation (Fitness) Function

EAs are a form of ‘generate and test’ algorithm (generate a new candidate solution
and testitto seeifitis any good) and the evaluation function — which operates on the
phenotype — providing the necessary means to measure fitness. As such it defines
the solution requirements and implicitly encapsulates the meaning of adaptation
and improvement for the particular evolutionary system. The selection method
relies on the evaluation function assigning relative fitness values to members of
the population in order to preferentially choose the fitter individuals to produce
the next generation. Fitness is often measured on some numerical scale, but as a
minimum the evaluation function must be able to distinguish between relatively
fit and unfit individuals.

The simplest form of evaluation method is a well-defined mathematical function
or procedure whose variables are directly encoded on the genotype; these are fed
into the function and a fitness value is thrown back (Eiben and Smith 2003). For
more complex phenotypes, for instance, when the genotype encodes the design of
a robot, evaluation often involves generating a computer model of the phenotype
(e.g. the robot) and then testing its behaviour in a complex simulation (Jakobi
1998). In other cases an automated analysis of some characteristics of the pheno-
type is conducted in order to derive a fitness measure. For instance, an evolved
musical composition might be analysed in terms of its closeness to some target
piece, or by using some musicological theory or technique (Wiggins et al. 1998). If
the phenotype is the design of a physical artefact, evaluation might entail analysing
various functional and aesthetic properties of the design (Bentley 1999). In exam-
ples such as these, defining a satisfactory automated fitness measure is often highly
problematic — how do we codify aesthetics, how do we formalise crucial parts of
the creative process of an artist or composer? This important issue will be revisited
in Section 1.3 and in later chapters of this book. One partial solution that is com-
monly used, having been pioneered in the application of EAs in visual art (Todd
and Latham 1992; Sims 1991), is to employ a human’s judgement as the fitness
measure. The main problem with this method, sometimes referred to as aesthetic
selection or interactive evolution, is the amount of time required to perform the
fitness judgements. This can preclude running the evolutionary method for more
than a relatively small number of cycles.

1.2.2.3. The Population Structure

In the simplest cases, the population is just a data structure containing the genotypes
and their associated information, such as fitness. The population size is often fixed,

6 Husbands et al.

but it can be variable. In some EAs the entire population is replaced on each cycle,
which is then referred to as a generation. A more sophisticated variety of EA uses
a spatially distributed population, alluding to the underlying conceptual model
of the population spread out over a 2-D grid with each individual occupying its
own cell. Members of the population interact only with those individuals that are
sufficiently close to be in their neighbourhood. Hence selection and reproduction
act asynchronously and locally allowing for highly parallel implementation of an
EA (for instance, using a network of processors — one for each cell on the grid).
This form of EA has been shown to be highly efficient (Collins and Jefferson 1991;
Hillis 1990; Husbands 1993).

1.2.2.4. The Selection Method

Selection, whereby more credence is given to fitter population members, provides
the dynamo that powers the algorithm. The fittest are more likely to pass on some
of their genes to later generations. This probabilistic element — which is found in
other parts of the method, e.g., the genetic operators — helps to account for the
technique’s power and robustness.

A simple and reasonably effective selection method is roulette selection. In
this scheme each member of the population is assigned a probability of selection
based on its relative fitness (its fitness value divided by the total population fitness).
Parents are then selected according to this probability. This is analogous to dividing
up a roulette wheel into N sectors, one for each member of the population —
sizing them according to the relative fitness of the individual represented, and then
spinning it to select parents. The bigger the relative fitness the more likely the
individual is to be selected for breeding. Note that with this scheme no member of
the population is excluded from breeding, they all have some chance of contributing
to the next generation. However, this method can result in too strong a selective
pressure in favour of individuals that are relatively good at the early stage but
may actually be far from optimal; the population prematurely converges to be
dominated by copies of such individuals.

Rank-based selection is a particularly straightforward alternative scheme that
provides more control over the selective pressure and allows strong differentiation
of the population, even at later stages when their fitness values are very close.
Using this strategy the population is ranked, or ordered, according to the fitness
values of its members. Selection is then performed by following a pre-determined
probability distribution function, such as the ones shown in Fig. 1.2. This may be
a simple linear function that constrains the first-ranked (fittest) individual to be
twice as likely to be selected as the median-ranked individual, or something more
complex.

An alternative form of selection, that makes most sense in the context of parallel
EAs, was alluded to earlier — the use of local selection rules. Briefly, the idea is that
a population is somehow split up into many subpopulations, either explicitly or
implicitly (as in the case of the spatial distribution mentioned above) and selection
occurs locally, that is, with reference only to the subpopulation and not to the

1. An Introduction to Evolutionary Computing for Musicians 7

probability of selection
probability of selection

rank rank

FIGURE 1.2. Typical rank-based selection probability distributions.

global population. Local schemes may be based on the methods described earlier
or may be simpler. For a more detailed discussion of possible selection schemes
see Eiben and Smith (2003) and Mitchell (1996).

Interactive EAs, employing human-based aesthetic selection, effectively dis-
pense with a separate selection method: individuals are picked out by the user to
act as parents for the next generation.

1.2.2.5. The Genetic Operators

The genetic operators maintain variation in the population and create new indi-
viduals from old ones. Myriad specialised operators have been developed over
the years and there are numerous variation on the standard ones. Hence only a
few of the most common generic operators will be outlined here. The two most
common are cross-over and mutation (see Fig. 1.3). Like most widely used oper-
ators, they have strong stochastic elements to their operation. Simple cross-over
involves choosing at random a cross-over point (some position along the string)
for two mating chromosomes — two new strings are created by swapping over the
sections lying after the cross-over point. Variations include two-point cross-over
where randomly selected sections of the strings are swapped over and special oper-
ators that rearrange genes during the crossing over, either in order to keep the new
solutions legal or to make them better (Michalewicz et al. 2004). Mutation changes
the value of a gene to some other possible value. Depending on the encoding, this
might entail assigning a new value at random from the entire range of possible

X-over point
cross-over —

mutation —

FIGURE 1.3. Schematic of popular genetic operators.

8 Husbands et al.

values for the gene, or randomly resetting to a value ‘close’ to the current one
(creep mutation). Mutation operators can be heuristically guided, rather than com-
pletely blind (e.g. if a gene represents a note value in a piece of music, mutation
operators might be designed to respect certain harmonic or melodic constraints —
or perhaps more interestingly to nearly always respect them). For complex encod-
ings, it often makes sense to have several different mutation operators acting in
parallel. Other operators sometimes used are inversion, which is simply a matter
of reversing a randomly chosen section of a single genotype; translocation, which
involves moving a randomly selected section to another place on the genotype; and
duplication, which entails adding extra copies of genes or groups of genes. The
latter operator makes sense only in circumstances where a variable length encod-
ing is being used; it often functions in tandem with a deletion operator. Specially
designed cross-over operators can also be used to allow genotypes to grow and
shrink (Harvey 1992). Special domain specific operators are regularly employed
to good effect. For instance, in the application of EAs to musical composition
operators based on musical transformations such as inversion and transposition
can be very useful (Biles 1994).

The operators have assigned rates that determine how likely they are to be used.
They are applied at the offspring creation stage according to a routine like the
following: When two genotypes are selected for breeding, first apply crossover
with some high probability to create two new genotypes. Next apply inversion to
these with a medium probability. Finally, each gene on the resulting genotypes
undergoes mutation (with a low probability). According to the encoding scheme
and problem area, different combinations of operators with different rates are used.
In some circumstances it makes sense to dispense with cross-over, for instance if
it is difficult to devise an encoding that works with this operation, and just use one
or more mutation operator. It is common to have to experiment with operator rates
to find good settings, which can usefully be made to vary during the search — in
some cases the rates themselves are put under genetic control (Back et al. 1991).

1.2.2.6. The Replacement Scheme

In some EAs enough offspring are produced on each cycle to replace the entire
population in one go. In others, sometimes called steady-state algorithms, new
individuals are introduced one at a time, as long as they are fitter than at least the
worst member of the population which is then replaced. This allows a more gradual
search. Other schemes use an inverse selection method to choose members of the
current population to be replaced with a bias towards the least fit.

It should be clear from this brief outline of EAs that there are many choices to
make in deciding how to apply them to any given domain and many parameters
to tweak once the basic algorithm has been designed. The various elements of
the EA must all work well together in order to achieve good results. The best
choice of operators, genetic representation, evaluation function and so on can be
either guided by what has been shown to work in the past or by experimentation
with different settings and options. However, some appreciation of the growing

1. An Introduction to Evolutionary Computing for Musicians 9

theoretical understanding of how EAs work can be very helpful and save time spent
down the blind allies of poor representations or inadequate fitness functions. EAs
are complex nonlinear stochastic systems, which makes them extremely difficult
to analyse. Hence the theoretical literature tends to be rather inconsistent and is
often contradicted by empirical results. However, there is useful information to be
gleaned and good sources include Schmitt (2001), Vose (1999) and Wright et al.
(2005).

1.2.3. Related Developments

EAs have played an important part in the development of the related fields of Arti-
ficial Life, which is concerned with the synthesis and analysis of lifelike processes
in artificial media (Langton 1995; Pollack et al. 2004) and adaptive behaviour,
which studies the mechanisms underlying the generation of adaptive behaviour in
real and artificial autonomous agents (Beer 1990; Schaal et al. 2004).

These areas have seen interesting explorations of phenomena and techniques
that have found applications in artistic endeavours. For instance, coevolutionary
systems, in which two or more ‘species’ compete (or possibly cooperate) over fi-
nite resources, have been exploited in Karl Sims’ entertaining animations, in which
primitive creatures wrestle with each other (Sims 1994), as well as in various engi-
neering applications (Husbands 1993; Juillé and Pollack 1996). This is a direction
which might hold some promise as far as computer music is concerned. Multiple
species could represent different voices in a composition or it might be possible
in some situations to have coevolving species of compositions and critics (who
evaluate the compositions) developing towards some interesting end (Werner and
Todd 1997, 1998; Hillis 1990).

Jon McCormack’s Eden is an interesting example of an installation using ideas
from these areas (McCormack 2003). In this system, simulated beings populate an
artificial world in which they can move around and make and hear sounds. These
sonic agents must compete for limited resources in their environment. The agents
generate sounds to attract mates and also to capture the imagination of the audience,
since its response has a direct affect on the virtual environment, particularly the
growth rate of food. In this work McCormack has demonstrated the successful use
of an open-ended automatic evolutionary process to generate a highly engaging
interactive artwork. This system illustrates a more implicit approach to fitness
evaluation, with a fairly oblique interaction element. Such pieces suggest a wealth
of opportunities for musical developments.

1.2.4. Applications of Evolutionary Computing in Music

There is a growing body of work involving the use of EAs in musical applications
(see Horner and Goldberg 1991; Burton and Vladimirova 1999; Bilotta et al. 2001;
Miranda 2003 for representative examples), just as there is in the visual arts and in
design (Bentley 1999). In music, the two areas that have attracted the most attention
are composition and sound design. In the former, there have been a number of

10 Husbands et al.

attempts to evolve musical pieces in the style of a particular composer, or within
a specific idiom, which have met with some success (Biles 1994; Hodgson 1999,
2002). However, extending such work to more creative and original compositions
is challenging, for reasons including those discussed in Section 1.3. In the area
of sound design, researchers have demonstrated the efficacy of the technique in
controlling sound synthesis methods, both to explore new sounds and to develop
synthesis algorithms for existing target sounds (Johnson 1999; Dahlstedt 2001;
Garcia 2001; Mandelis 2001).

Various aspects of these topics, in relation to specific systems, will be dealt with
in detail in later chapters. Musical composition with EA will be discussed in more
detail in Chapters 6-8 and EA in sound synthesis and design will be discussed in
more detail in Chapters 3, 4 and 8. The remainder of this chapter is intended to
raise a number of important issues in these areas as background and context to the
rest of the book. Fitness evaluation turns out to be a particularly thorny issue in
relation to compositional systems and it is not a trivial matter in sound design.

1.3. Evolutionary Computing in Musical Composition

1.3.1. Introduction

The main purpose of this section is not to attempt a comprehensive survey of
evolutionary computational approaches to musical composition (see Burton and
Vladimirova (1999) for a good overview as well as later chapters in this book) but
rather to highlight some of the potential problems, apparent in the literature, of too
close a marriage between the development of compositional computer programs,
and an approach to musical form derived primarily from academic theory, rather
than what many composers demonstrably do. This is a very real problem since
textbook musical form is by its nature algorithmic and has often been seen as
the ideal starting point for the development of composition programs, particularly
those based on pre-existent models of compositional practice (see Wiggins et al.
1998). The main ‘test case’ for discussion in this section will be the sonata form,
in theory and practice as this, in particular, is a type of composition that could
well prove problematic if the creative process to be modelled is not based on a
traditional textbook definition but rather, something paralleling an end product that
significant composers actually produced. This is not to suggest that the production
of an interesting sonata structure per se is a primary goal of more than a minor-
ity of practitioners in this field. Rather, that sonata form itself was a significant
tool (whether algorithmic in nature or not) in the evolution of complex musical
structure for more than 150 years in the history of Western Art Music. Its potential
to encompass so many elements that inform the creative process — exploration,
contrast, development, transformation, motivic mutation, etc. — make it an ideal
context to examine the potential limitations of EA composition programs.

The musical forms generated by an EA-based system will be implicitly re-
stricted and shaped by the design of the various components of the system — most

1. An Introduction to Evolutionary Computing for Musicians 11

importantly the genotype, the genetic operators and the fitness function. If an au-
tomatic fitness evaluation method is used, the desired musical outcome must be
somehow formally codified. Deriving sets of rules to describe particular forms
or styles is fraught with difficulties, as discussed below. If the automatic fitness
function problem is sidestepped by using human evaluation, the search space de-
fined by the genetic representation and operators must be sufficiently constrained
to avoid impossible bottlenecks in the time needed to perform the evaluations
(Biles 1994; Gartland-Jones and Copley 2003; 2005). As this will entail encoding
musical knowledge into the representation and operators, the difficulties do not
disappear.

1.3.2. Algorithmic Composition

In his book The Algorithmic Composer, David Cope stated that throughout the
history of Western Art Music, composers have used algorithms as part of the
creative process. His premise was that an algorithm could be defined as nothing
more than ‘a set of rules for solving a problem in a finite number of steps’ (Webster
1991, p. 35; cited in Cope 2000, p. 1). Clearly, this is of crucial importance to
anyone engaged in building Artificial Intelligence models of musical creativity and
assuming Cope’s premise is valid, algorithms of musical composition and form
building would be central to the construction of such models. However, while it is
perfectly possible to define some compositional processes as algorithmic, not all
fall so neatly into this category. A necessary preliminary step would be to attempt
a delineation of boundaries, as to what extent, which compositional processes can
or cannot be so defined.

Cope stated, ‘Most composers apply rules, steps, or sets of instructions when
composing music, especially when composing music in a particular style’ (Cope
2000, p. 2). Part of his support for this proposition is a series of examples of
compositional processes defined as algorithmic. These include the tenor part of
an isorhythmic motet (significantly, Cope omits discussion and illustration of the
other voices, which are freely composed), Bontempi’s rota, musical dice games
and Johann Fux’s Gradus ad Parnassum (Cope 2000, pp. 3—11). This is a wide-
ranging set of examples although, with the exception of the motet, all bear only a
peripheral relation to musical composition as actually practised by fully fledged
composers. In the seventeenth century, Giovanni Bontempi proposed that his rota as
a guide by means of which one thoroughly ignorant of the art of music can begin to
compose; a sort of musical equivalent of painting-by-numbers. Musical dice games
were similarly do-it-yourself kits for beginners, while in the eighteenth century,
Fux’s Gradus ad Parnassum was the standard instruction book for learning strict
counterpoint for much of the eighteenth century — a useful tool for the elementary
technical training of aspiring composers but bearing about the same relation to
real music as a book of finger exercises, however advanced, would have to the
performing repertoire of a professional concert pianist.

On the subject of form, Cope writes that

12 Husbands et al.

strict adherence to an established musical form constitutes yet another compositional use
of musical algorithms. For example, imagining a song form of the medieval period, a dance
form of the baroque, or a sonata allegro form of the classical period of Western music history
as symbols in a flowchart — one way to describe an algorithm — does not seem unreasonable.
(Cope 2000, pp. 3-4)

The problem arises with Cope’s unstated but implied assumption that significant
composers at all periods in the development of Western art music did indeed adhere
strictly to established musical forms in their most original work, even granting that
these forms were already in acknowledged existence at the time of writing, rather
than being deduced after the event by historians or writers of textbooks on musical
composition!

To return briefly to Fux, it is of course documented that composers Joseph
Haydn, Wolfgang Amadeus Mozart and Ludwig van Beethoven, to name but three,
worked assiduously through the exercises in the Gradus ad Parnassum or from
textbooks of a similar nature; but it is equally demonstrable that they paid scant
attention to the letfer of the majority of Fux’s rules in their compositional matu-
rity. This is not to suggest that Fux is valueless as an example of a producer of
musical algorithms, rather simply that the process of modelling anything more
than the most elementary compositional process is rather more complicated than
his citation by Cope might suggest. Historically, a large claim made for the ben-
efit of strict counterpoint study of the Fuxian variety was that it provided what
amounted to an algorithm for composing in the style of the composer Giovanni
Pierluigi da Palestrina, who had been regarded for centuries after his death as
a byword for purity of contrapuntal style. Unfortunately, this claim was largely
unfounded and was completely exploded by Morris (1922) as far back as the
1920s:

Yet the rules of Mr Rockstro [another author of a book on strict counterpoint] are not
peculiar. They are, more or less, the same as those found in almost every textbook of
counterpoint. Who invented them, goodness only knows: why they have been perpetuated,
it passes the wit of man to explain. Music written to meet their requirements is something
altogether sui generis, a purely academic by-product. ... The rules of counterpoint are
found to have no connexion with musical composition as practised in the sixteenth century:
are we to abandon the rules or to abandon the sixteenth century? Follow Byrd and Palestrina,
or follow Mr. Rockstro and Professor Prout? (Morris 1922, p. 2)

1.3.3. Is Sonata Form an Algorithm?

Sonata form expressed as an algorithm brings similar problems in its wake. Is the
algorithm to be based on textbook definitions or on what significant composers
actually produced? Furthermore, there remains the question of which variety of
sonata form as practised is to be taken as the starting point. Many commentators
(see, e.g. Rosen (1980, pp. 365-402) and Straus (1990, pp. 96-97)) are now in
agreement that there exists a fundamental distinction between what could broadly
be described as eighteenth- and nineteenth-century approaches. For a composer

1. An Introduction to Evolutionary Computing for Musicians 13

in the second half of the eighteenth century, the sonata form (not termed as such)
was an elaborated binary structure characterised by differentiated key areas. The
first part contained a tonic area and a dominant (or related key) area, although the
first area could be characterised by a modulation to the tonality of the second area.
The second part consisted of an area of rapid modulation or episode followed by a
return to the home key in which tonality the movement remained until its end. The
two-part view of sonata structure is confirmed by the prevailing eighteenth-century
practice of repeating both sections, rather than just the first part, as is usually the
case in contemporary performance.

What is set out above is just about the fullest extent of universal common
ground in composing practice that can be extrapolated from the majority of
later eighteenth century sonata structures and a composing algorithm extracted
from this would be little different from one derived from baroque binary dance
patterns, despite the two forms being in reality quite distinct from each other.
The distinction between the two is the far greater proliferation and elaboration
of material that the sonata framework came to accommodate — what could, in
fact be termed ‘free composition’. The beauty of the form lay in its flexibility.
This minimum common ground, never at this stage delineated in any contempo-
raneous textbook on composition, could accommodate not only Haydn’s largely
monothematic and developmental approach but also Mozart’s, which tended to
explore the underlying unity of two or more distinct but nonetheless contrasting
themes.

All this came to change in the nineteenth century, thanks initially to the the-
orising of Adolph Marx (1795-1866) and Karl Czerny (1791-1857), which was
largely based on the sonata practice of Beethoven (in his ‘middle period’), who
had provided yet another distinct approach to the original but still evolving model.
I give here Arnold Schoenberg’s description of the form, which corresponds to the
nineteenth-century theorists’ view, which was concerned less with the delineation
of key areas and more with thematic contrast, expressed in a ternary rather than a
binary context:

This form ... is essentially a ternary structure. Its main divisions are the EXPOSITION,
ELABORATION and RECAPITULATION. It differs from other complex ternary forms
in that the contrasting middle section (ELABORATION) is devoted almost exclusively to
the working out of the rich variety of thematic material ‘exposed’ in the first division. Its
greatest merit, which enabled it to hold a commanding position over a period of 150 years,
is its extraordinary flexibility in accommodating the widest variety of musical ideas, long
or short, many or few, active or passive, in almost any combination. The internal details
may be subjected to almost any mutation without disturbing the aesthetic validity of the
structure as a whole. (Schoenberg 1967, p. 200)

Although Schoenberg proves himself a child of the nineteenth century in his the-
matic and ternary, rather than tonal and binary, view of sonata structure — perhaps
in order to allow for his continuing to explore the form in non-tonal contexts — his
description is still loose enough to accommodate a wide variety of approaches,
including those of the later eighteenth century. The compositional algorithm

14 Husbands et al.

that could be extrapolated from this description would, however, differ little from
one derived from a simple ternary form.

For a truly distinctive sonata algorithm, resembling neither the simple binary
nor the ternary model, we would need to turn instead to the traditional theorists,
who would state that Sonata Form consists of firstly, an exposition, comprising first
and second subject groups, respectively in the tonic and dominant (or related) keys
and linked by a transition or bridge passage; secondly, a development section, in
which the original thematic material will pass through a variety of related keys and
may be extended by episodes; this will be followed (thirdly) by a recapitulation, in
which the material from the exposition returns but is mostly confined to the original
key. Various optional extras, such as introductions, codettas and codas can fill out
the scheme and may be represented as byways on a flowchart, which is Cope’s
preferred method for setting out compositional algorithms in a non-computerised
context.

Actually, this theoretical description does indeed correspond to more conser-
vative later nineteenth century practice and this lends a depressing sameness —
from a purely formal point of view to the majority of sonata-type structures from
this period. The extraordinary paradox is that the romantic nineteenth century was
far less free than the classical late eighteenth century in its interpretation of what
might be termed ‘the sonata principle’, except in the case of more progressively
minded composers, such as Franz Liszt, Hector Berlioz and Richard Wagner, who
tended to abandon the form completely. It is difficult to avoid the conclusion that
once the rules had been encapsulated in a detailed formal scheme or algorithm, the
sonata began to lose its dynamic and developmental possibilities and its various
sections took on the character of moulds into which appropriate music could be
poured. Such an approach to potential sonata material would have been psycholog-
ically impossible for any major eighteenth or early nineteenth century composer
of whose structure-building creativity generally went beyond simply following
formulae devised by others.

1.3.4. The Dangers of Too Many and Too Few Rules

It may seem that several of the preceding paragraphs address issues more cen-
tral to the concerns of musical historians, analysts and aestheticians than those
of designers of computer programs for musical composition. However, if we are
modelling musical creative processes to any degree of sophistication, it is crucial
that we base our model on something close to what composers actually did, rather
than on theoretical constructs, often established long after the creative event, that
oversimplify or distort complex thought processes in the interests of pedagogical
expediency. An excessively rule-based system stands in grave danger of produc-
ing little more than schoolroom exercises or, at best, stolid replications of good
craftsmanship because no facility has been provided for expanding a given search
space to accommodate the possibility, indeed the desirability of the unexpected,
or even iconoclastic but still meaningful musical idea or development.

1. An Introduction to Evolutionary Computing for Musicians 15

Although the explorative and stochastic nature of evolutionary search are help-
ful, this is perhaps the most challenging problem facing the designer of an EA-based
composition program, whether for general use or tailored to one particular set of
preferences. The past decade and more has shown that an EA has no difficulty in
replicating a composer in ‘hard-work’ (as opposed to ‘inspired’) mode (see Jacob
1996, p. 158). But without the most stringently defined search space an unman-
ageably large amount of potential material, mostly unusable, is apt to be produced.
Biles (1994) has described this situation as the fitness bottleneck. However, if the
search space is too strictly defined — ‘Strict adherence to an established musical
form’ (Cope 2000, pp. 3—4) — the unexpected and interesting permutation, which
is what all the hard work is supposed to uncover may not emerge at all. As Werner
and Todd (1998) pointed out:

More structure and knowledge built into the system means more reasonably structured
musical output; less structure and knowledge in the system means more novel, unexpected
output, but also more unstructured musical chaff. (p. 315)

What algorithm from textbook musical forms could have allowed for Haydn’s
unprecedented departure from the expected course of musical events in the de-
velopmental extended coda that erupts into the final variation on a theme in the
slow movement of his String Quartet, Op. 20 no. 4; Mozart’s introduction of a
modulatory and developmental theme that is not, contradicting all expectation,
the second subject of the first movement of his Haffner Symphony; Beethoven’s
‘sonata structure, accommodating variation’ (Keller 1987, p. 136) that forms the
choral finale of his 9th Symphony; or Franz Schubert’s fusion, by thematic inte-
gration of the four movement sonata scheme into a single continuous movement
in his Wanderer Fantasy?

These are not isolated, eccentric examples but the essence of a truly creative
use of form, wholly characteristic of their respective composers, which can lend
musical compositions their enduring power to fascinate and hold the attention. It is
this capacity to reinvent (or, particularly in the case of Haydn, to invent) form that
is a fundamental difference between a Joseph Haydn and a Johann Baptist Vanhal;
a Wolfgang Amadeus Mozart and a Karl Ditters von Dittersdorf; a Ludwig van
Beethoven and an Anton Diabelli; or a Franz Schubert and a Johann Hummel.
Meaningful contradiction of expectation is one expression of individuality that
distinguishes specific pieces and composers from the more typical cultural products
of whatever age in which they lived, giving the music an intrinsic value that can
transcend time and place.

To attempt to model this level of creativity is asking much of a process still in a
comparatively early stage in its development but it seems vital that the possibility
of overriding rules must be provided for in composition programs with any preten-
sions to model creative, rather than reproductive musical thought. The historical
fact that theory so often followed, and in the process distorted, practice should in it-
self be warning enough of the pitfalls of regarding compositional processes purely
as algorithms. It is natural to have recourse to algorithms when modelling cre-
ative processes, as every computer program ever devised is in essence algorithmic.

16 Husbands et al.

However, it must also be recognised that if the algorithm employed is reductive
and constricting in relation to the process it is modelling, the musical interest of
what emerges will be at best limited, if not utterly predictable.

1.3.5. IndagoSonus

Drew Gartland-Jones’ IndagoSonus system is a very interesting approach to par-
tially address some of these issues (Gartland-Jones 2003). The system uses virtual
blocks, which have the ability to both play and compose music. As the blocks are
arranged in various structures they interact with each other in ways that influence
the emerging music. Each block has a pre-composed ‘home’ musical phrase and
the ability to compose new phrases based on its home phrase and a phrase that
is passed to it from another block. A block’s compositional activity is aimed at
producing a new musical section that has a thematic relationship to both of these
pieces. To do this, it uses an EA that is initialised with the home music and has
the incoming phrase as its compositional target, allowing the use of an automatic
evaluation function that measures the closeness of fit to the target. The path taken
by the EA generates intermediate material related to the home and target pieces.
The user can stop the evolutionary processes at any stage and restart it with new
incoming phrases, as well as set parameters that control how far the evolutionary
process will travel between the two pieces. To quote the designer

any number of blocks may be chained or grouped in any 3D structure. If a block is passed
some music from its neighbour, it first recomposes itself, and then passes its new music on to
all of its neighbours, and so forth within a pre-specified range. It is important to clarify that
each block holds on to its home music throughout, enabling any music composed by it to
remain thematically related, despite the constant process of re-composition undertaken by
each block. In this way the composer of the music for all blocks maintains a compositional
thumbprint on the evolving musical structure. In effect, the listener/performer is able to
shape the overall music by choosing to send musical fragment from blocks they like to
influence other blocks. (Gartland-Jones and Copley, 2003, p. 53)

By this subtle mixing of automatic fitness evaluation and human intervention, not
to mention the use of multiple interacting EAs, the system makes some headway
in addressing the fitness bottle-neck problem while avoiding over constraining the
search space.

1.4. Evolutionary Computing in Sound Design

The use of EAs at the sound level is concerned with the manipulation of parameters
that define a sound, using a particular sound synthesis technique (SST), or with
parameters that define a particular deformation on an input stream (sound effects).

There are two broad categories of EA application in this area: as an optimisa-
tion technique for deriving the parameters of an accurate model of a particular
sound (usually a sampled sound) and for exploratory search in the investigation of

1. An Introduction to Evolutionary Computing for Musicians 17

new sounds. These areas are briefly introduced in this section while highlighting
pertinent issues.

In the optimisation case a sample of sound, often from a traditional instrument,
is used as a target waveform. An EA is put to work to derive the parameters of
a particular SST to produce a sound as close as possible to the target. A fitness
function that measures the difference between a candidate sound and the target is
usually employed and there are many technical issues involved in how best to define
this. There are a number of examples of successful uses of this approach (e.g. Garcia
2001). Sound definitions usually describe a singular point in the parameter space of
the SST without explicitly detailing how this sound changes and deforms from that
frozen point. Such deformations of sound, or movements in parameter space, are
necessary for mapping the sampled instrument to a keyboard and note scale, and
implementing other transformations that add expressivity to the sound. In order to
map those dynamics from the original source of the sampled waveform, generally
a large number of waveforms is needed. As an absolute minimal requirement, at
least three distinct waveforms would have to be used for each degree of freedom of
the original sound source. For instance, if the source is a piano sound, the degrees
of freedom of the piano would include: the key position, velocity, aftertouch and
so on. In practice most acoustic instrument sounds do not vary in a linear fashion
along their axes of freedom and far more than three samples would have to be
used for each axis. This can very easily result in a prohibitive number of samples,
which places too high a computational demand on the EA. This can be a serious
problem only if this technique is used to faithfully emulate an original sound source.
In contrast, if such fidelity is not required, then some interesting possibilities
may begin to emerge. For instance, if the specific parameters are derived from
a single waveform, then any deviation from these parameters will create sounds
that are similar to the original but with deformation characteristics that depend
on the particular SST used. For example, if a piano sound is used to derive the
parameters for a frequency modulation (FM) SST and a physical modelling SST,
then the deformations afforded by the former would be unique to this particular
implementation of FM and for the latter unique to the particular physical modelling
used. In effect there would be two instruments that would sound very similar at
some performance configuration, but at the same time they would behave very
differently in terms of sound deformation when the performance configuration
changes.

The second category of EA-based sound creation, that of developing new sounds,
requires a somewhat different approach. Although there is a large body of knowl-
edge that can at least act as a starting point in attempting to formalize the evalua-
tion process of EA-based composition systems, in the area of new sound design,
where the ‘quality’ of the sound is to be assessed, there is no equivalent source.
This is partly because of the complexity and lack of transparency of SSTs and
partly also because of the difficulty in modelling aesthetic judgements. In this
domain, the subjective usually rules over the objective. Hence the use of human-
based interactive selection is the norm (Dhalstedt 2001; Mandelis 2001; Mandelis
and Husbands 2003; Yee-King 2000; Woolf 1999), which raises the issue of the

18 Husbands et al.

evaluation bottle-neck already discussed in relation to composition; this issue will
be discussed in Chapter 4. Although there are general problems such as maintain-
ing a consistent judgement of quality, the time taken to evaluate a sound is usually
considerably less than that for a composition. This means that it is often feasible to
run the algorithm for a reasonable number of cycles. The less constrained approach
necessitated by the lack of formalised knowledge allows for a powerful exploration
of sound space — the user is free to navigate a world of sonic possibilities, turning
up interesting and unexpected new forms that can be put to good artistic use.

Genophone (Mandelis 2001, 2002) is one such exploratory system, designed in
part to allow a flexible exploration of sound spaces without the need for detailed
understandings of SSTs. We will now briefly describe aspects of the system, fo-
cusing on general issues in the way evolutionary search is used. The system makes
strong use of genetic recombination, which in biological systems is a creative pro-
cess in itself. A biological analogy would be the breeding of animals or plants,
which humans have done for millennia. When pigeons are bred, for example, it is
not normal (at least not yet) to employ gene level manipulations via genetic engi-
neering. Instead, manipulations such as artificial insemination or pair choices are
enough to manipulate the genome as a whole and consequently the resulting oft-
spring. Genophone provides analogous macroevolutionary manipulations to those
employed in organic breeding: parents can be selected by the user, particular traits
can be encouraged and manipulated. In addition, via dataglove manipulations, it
provides a local direct and interactive exploration that facilitates smaller changes
when used as a performance tool.

The issue of an instrument’s degrees of freedom and the movement in this
parametric space as ‘performance’ (Pressing 1990; Rovan et al. 1997; Wessel and
Wright 2000; Mulder 1994) was considered as an integral part of an instrument’s
(sound) definition during the design and implementation of the Genophone system.
This was achieved by evolving the particular parameter values that produce a
desired sound along with a performance mapping scheme, where a subset of those
parameters is mapped onto manipulation devices (dataglove and keyboard controls)
for use in performance (see Fig. 1.4).

The option of locking individual genes, or even whole sections of the genotype,
provides an added layer of control over the evolutionary process that helps bridge
the gap between a totally free-form search and the tight regulation offered by a
manual sound editor. The inspiration for parameter locking came from the way
genes are activated and deactivated in biological genomes, producing epigenetic
evolutionary effects (Singh and Krimbas 2000).

An important difference between the way EAs are generally used in constrained
searches towards fixed sound targets, on the one hand, and unconstrained explo-
ration of sound spaces, on the other, is the choice of initial population. In con-
strained EAs, a population of random individuals is often used to jump-start the
evolutionary process. This is partly to ensure no initial bias exists, which may di-
rect the search away from the global maximum — the perfect match to the target. In
the unconstrained exploratory case, this is not necessary; in fact experiments with
Genophone have shown that it is not even desirable. These experiments indicated

1. An Introduction to Evolutionary Computing for Musicians 19

Each Genophone . Fold and Crawl
in order to

Genotype encodes two
things;

sound space

The Performance
Sound Hyper-Volume
is defined via Macro
Evolution through
Selective Breeding

1) A Unique Point
in Sound Space

2) The way the point
moves in Sound
Space via Glove

movements)
But the exploration

within that Hyper-
Volume is done
Interactively via
the glove as
performance

All Possible
Synth Sounds

Thus Defining a
“Performance Sound
Hyper-Volume

or Cloud”

Thus implementing both discontinuous
(macro) and continuous (local) modes of
sound search

FIGURE 1.4. Exploration of sound and performance mapping spaces with Genophone (after
Mulder 1994).

that it is preferable to seed the initial population with sounds that have been pro-
fessionally hand-designed and are of some aesthetic quality. A large amount of
knowledge is embedded in the parametric definitions of these sounds, information
that ultimately encodes a set of aesthetic values, albeit in an implicit and not easily
decipherable way. By using such hand-designed sounds as points of departure for
the evolutionary search, this embedded knowledge can be exploited. Experiments
with Genophone also revealed that starting from hand-designed origins does not
necessarily mean that the resulting offspring would sound very much like their
parents. In fact sometimes they can sound surprisingly dissimilar, yet somehow
still retain some of the original quality of the hand-designed parents. It is also
very easy at each generation to ‘mate’ a preferred offspring with a newly chosen
hand-designed sound, thus rapidly diverging from the original parent set.

These two distinct uses of evolutionary computing for sound design have been
described as the ‘survival of the fittest’ and as the ‘survival of the prettiest’, drawing
an analogy with the biological processes of natural selection and sexual selection.
The first one is in essence a convergent process, whereas the second one is diver-
gent.

1.5. New Musical Possibilities Through Adaptive Systems

The themes of the previous two sections are broadened out in this section into
a discussion of evolutionary and adaptive algorithms as tools for exploring new

20 Husbands et al.

musical possibilities. In particular, it will be argued that adaptive systems can
provide a rich interactive mechanism for performing as well as composing with
the computer.

Musicians have always made use of, and arguably inspired, new technologies.
The computer opens up an unimaginable scope for developing new sounds, new
aesthetics and new composition and performance practices. Audio development
programs and languages such as Max/MSP, PD and SuperCollider are broadening
the community of computer music composers, and making the implementation of
systems for exploring new musical possibilities easier and quicker. The challenge,
of course, is to make something that anyone actually wants to listen to. Early com-
puter music composers revealed formidable new worlds of acoustic textures that
were impossible to achieve with acoustic instruments, but it has been suggested
that the diminished audiences for ‘serious’ computer music may be associated
with an over zealous enthusiasm for precise and elaborate formalisms (Garnett
2001). Eduardo R. Miranda has suggested that part of the problem for listeners is
that these formal systems ‘lack the cultural references that we normally rely on
when appreciating music’ (Miranda 2003, p. 1). Although lacking the hallmarks of
any particular catalogued musical tradition, the organisational structures of the dy-
namics of some evolutionary and adaptive systems bear strong similarities with the
morphologies and structures that appear across all musical styles. The behaviours
of some models have an inherent liveliness that has been shown to effectively
mimic certain musical phenomenon, and exhibit complex structural dynamics that
have been shown to be musically effective at all levels, from timbral morphologies
to long-term structure at the level of musical form. In addition, the responsive
nature of some adaptive systems offers an appealing mechanism for interactive
performances allowing us to integrate the aesthetically challenging possibilities of
computer music within the traditions of human performance practice.

1.5.1. Generating Structure in Time

Superficially, an evolving population of digital genes may seem to have little in
common with our concept of musical form. But this model of artificial evolution
shares with music a very fundamental characteristic: it is a temporal process.
That it exists in time is one of the few uncontroversially universal features of
music, yet consideration of dynamic form is rarely a primary consideration in
computer-assisted composition. A common problem reported by practitioners of
computer-based approaches (such as rule-based systems and neural networks as
well as some evolutionary systems) is that despite successfully creating specific
elements, there is a lack of overall musical energy or flow. For example, while
discussing constraint-based system for harmonisation Christoph Lischka notes:
‘The harmonisations are (in a sense) correct. But they are not exciting. What is
lacking is some kind of global coherency’ (Lischka 1991, p. 237). This makes the
creation of long term or hierarchical structure a real difficulty. It seems likely that
these problems are associated with the fact that time-based structures are rarely
a primary focus, a tendency that perhaps has deeper roots in the music theoretic

1. An Introduction to Evolutionary Computing for Musicians 21

principles from which many models are derived (for a discussion of the temporal
paradox in musicology see Cook 1990).

There are myriad time-based models that could be used for generating music,
and many composers have explored their possibilities. The fact that a process is
formally defined as a function of time does not in any way ensure that the musical
outcome will be engaging, nor even that the temporal dynamics can be appreciated
by the listener. Just as the application of EAs demands careful formulation of
representation schemes, fitness functions and operators, this approach relies on
the inspired selection and implementation of a suitable model and the definition
of a meaningful mapping from numerical output to musical space.

The implementation of a model is often motivated by an intuition that it shares
an organisational structure with a particular musical phenomenon or effect. The
musical success of the approach is then dependent upon mapping the numerical
output into a suitable musical domain in a way that preserves the desired structure.
In Chapter 8 Miranda describes various implementations of cellular automata
(CA) models for musical applications. In one of these, Chaosynth, a chemical
oscillator CA is used to parameterise a granular synthesis engine (Miranda 2000).
The dynamics of the chemical oscillator CA rule, as it evolves from a random state
to sustained oscillation, bear strong resemblance to the morphological evolution
of sound in the voice and many acoustic instruments: their partials converge from
a random distribution to a stable pattern of oscillation. The mappings used to
parameterise the granular synthesis engine preserve these characteristics and so the
sounds produced similarly bear these morphological features, capturing the global
spectral evolution of an acoustic note onset. Using a complex dynamic model
allows the description of the changes in amplitude of multiple frequencies over
time as well as the relations between them. These multiple levels of related dynamic
structures are not peculiar to the timbral level, indeed almost all polyphonic music
can be conceived as a complex of distinct, but interdependent voices weaving
spatio-temporal forms at many levels. The use of complex dynamic systems enables
the generation of these sorts of rich spatio-temporal structures seen at all levels of
musical organisation.

Besides modelling musical form, specific musical phenomenon can be modelled
using time-based systems, which would be difficult or impossible to capture using
other approaches. Tim Blackwell’s work on Swarm music (presented in Chapter
9) is motivated by the similarity between the self-organisation exhibited by the
swarm algorithm and the self-organisation, or structure that emerges in improvised
ensembles of live musicians:

The development of higher level musical structure arises from interactions at lower levels,
and we propose here that the self-organisation of social animals provides a very suggestive
analogy. (Blackwell and Young 2004, p. 137).

The swarm system used by Blackwell is an extension of Craig Reynolds’ Boids
algorithm (Reynolds 1987) which mimics the behaviour of a flocking birds. In
this simple model, Reynolds shows that the global organisation of the flock can
arise from simple rules which determine the movements of each bird relative to

22 Husbands et al.

each other, without the need of any leader or pre-devised plan. The model is based
on three simple principles: separation, alignment and cohesion. Separation means
each bird must steer to avoid bumping into each other or any other object in the
environment. Alignment keeps each individual moving in a similar path by taking
the average heading of local flockmates. Cohesion keeps the flock together as
each bird steers towards the average position of local flockmates. Blackwell has
employed a similar algorithm to parameterise a granular synthesis engine, creating
an eerily lifelike movement of sound swarming through time.

1.5.2. Integrating the Interactive Machine

In the Boids algorithm outlined above, note that the future position of each agent is
described in terms of the current state of the other agents: the agents are sensitive
to, and respond to changes in their environment. This is obvious when we consider
what happens to a real, or simulated flock when it encounters an obstacle: the
flock will part to avoid it before rejoining. In addition to mapping the behaviour
of the flock into musical space then, we can apply the mapping in reverse so that
sound events (created by live musicians) in the real world can be mapped into
the virtual world to influence the behaviour of the flock. This provides a novel
and interesting mechanism for interaction which extends the classic approaches to
interactive music.

Traditional approaches to interactive music are based on models of interac-
tion derived from existing musical practices, either allowing performers to control
aspects of a predetermined score (Machover 1991) mimicking interpersonal rela-
tions in performance (Winkler 1991), or extending the performer’s relation with
their instrument (Machover and Chung 1989). The interesting thing about the use
of adaptive systems in an interactive context is that the system amalgamates the
characteristics of all these categories, creating at once a responsive composition
and a dynamic, behaving instrument, which in performance can feel like another,
albeit digital, performance partner. Other practitioners have been exploring adap-
tive models in improvised performance (Eldridge 2005; Bown and Lexer 2006)
and performances made with systems such as homeostatic networks and contin-
uous time recurrent neural networks demonstrate the success of the approach in
integrating an experimental machine aesthetic within the rich traditions of live
performance.

1.6. Concluding Remarks

In addition to providing a short introduction to evolutionary computing techniques,
this chapter has described a variety of ways in which they can be used in musical
settings, highlighting a number of important issues that arise. At a technical level
it is crucial to appreciate the significance of appropriately designed components
for any EA-based system, but in an artistic endeavour such as musical composition
it is also imperative to engage fully with the wider community:

1. An Introduction to Evolutionary Computing for Musicians 23

In order to assess the usefulness of [evolutionary computing] in musically creative tasks
however, more general discussion of the musical output needs to be conducted. It needs to be
recognised that the task is not simply one of computer science, but must include discussion
in the relevant domain. This will require the skills and engagement of the wider musi-
cal academic community, and an increased number of interdisciplinary research projects.
(Gartland-Jones and Copley 2003, p. 54)

Keeping the composer and/or performer firmly in the loop is one way to help
encourage this. The development of tools to allow composers to sympathetically
exploit appropriate properties of adaptive algorithms as well as the integration of
adaptive systems within live performances, are very promising directions.

Itis early, yet there is significant potential for exciting and fruitful developments
of evolutionary and adaptive computing in music.

References

Back, T., Hoffmeister, F. and Schwefel, H. (1991). A survey of evolution strategies. In R.
Belew and L. Booker (Eds.), Proceedings of the 4th International Conference on GAs.
Morgan Kaufmann, San Fransisco, CA, pp. 2-9.

Back, T. and Schwefel, H.-P. (1993). An overview of evolutionary algorithms for parameter
optimization. Evolutionary Computation 1(1): 1-23.

Bagley, J. (1967). The Behaviour of Adaptive Systems that Employ Genetic and Correlation
Algorithms. PhD Thesis, University of Michigan.

Beer, R.D. (1990). Intelligence as Adaptive Behaviour: An Experiment in Computational
Neuroethology. Academic Press, New York.

Bentley, P.J. (Ed.) (1999). Evolutionary Design by Computers. Academic Press, London.

Biles, J. (1994). Genjam: A genetic algorithm for generating jazz solos. In Proceedings of the
International Computer Music Conference. Aarhus, Denmark. pp. 131-137. Available
online at http://www.it.rit.edu/-jab/Genjam94/Paper.html.

Bilotta, E., Miranda, E. R., Pantano, P. and Todd, P. (Eds.) (2001). Proceedings of the
ALMMA 2001 : Artificial Life Models for Musical Applications Workshop, ECAL 2001.

Blackwell, T. and Young, M. (2004). Self-organised music. Organised Sound 9(2): 137-150.

Bown, O. and Lexer, S. (2006). Continuous-time recurrent neural networks for generative
and interactive musical performance. In F. Rothlauf et al. (Eds.), Applications of Evo-
lutionary Computing: Proceedings EvoWorkshops 2006, LNCS 3907, Springer, Berlin,
pp. 652-664.

Burton, A.R. and Vladimirova, T. (1999). Generation of musical sequences with genetic
techniques. Computer Music Journal 23(4): 59-73.

Collins, R. and Jefferson, D. (1991). Selection in massively parallel genetic algorithms. In
Belew, R. and Booker, L. (Eds.), Proceedings of the 4th International Conference on
GAs. Morgan Kaufmann, San Fransisco, CA, pp. 249-256.

Cook, N. (1990). Music, Imagination, and Culture. Clarendon Press, Oxford.

Cope, D. (2000). The Algorithmic Composer. A-R Editions, Wisconsin.

Dahlstedt, P. (2001). Creating and exploring huge parameter spaces: Interactive evolution
as a tool for sound generation. In Proceedings of the International Computer Music
Conference. Habana, Cuba.

Darwin, C. (1859). The Origin of Species. John Murray, London.

24 Husbands et al.

Davis, L. (1990). The Handbook of Genetic Algorithms. Van Nostrand Reinhold, Princeton,
NJ.

Eiben, A.E. and Smith, J.E. (2003). Introduction to Evolutionary Computing. Springer,
Berlin.

Eldridge, A.C. (2005). Cyborg dancing: Generative systems for man machine musical im-
provisation. In Proceedings of the Third Iteration. Melbourne, Australia.

Fisher, R.A. (1930). The Genetical Theory of Natural Selection. Clarendon Press, Oxford.

Fogel, L.J., Owens, A.J. and Walsh, M.J. (1966). Artificial Intelligence through Simulated
Evolution. John Wiley, New York.

Garcia, R. (2001). Growing sound synthesizers using evolutionary methods. In E. Bilotta,
E. R. Miranda, P. Pantano, and P. M. Todd (Eds.), Proceedings of ALMMA 2001 Work-
shop on Artificial Life Models for Musical Applications, Cosenza, Italy. Editoriale Bios,
pp. 99-107.

Gartland-Jones, A. (2003). Music box: A real-time algorithmic composition system incor-
porating a distributed interactive genetic algorithm. In G. Raidl et al. (Eds.), Proceedings
of the EvoWorkshops/EuroGP 2003. Springer, Berlin, pp. 490-501.

Gartland-Jones, A. and Copley, P. (2003). The suitability of genetic algorithms for musical
composition. Contemporary Music Review 22(3): 43-55.

Gartland-Jones, A. and Copley, P. (2005). Musical form and algorithmic solutions. In Pro-
ceedings of the Creativity and Cognition Conference, Goldsmiths College, London. ACM,
pp. 226-231.

Garnett, G.E. (2001). The aesthetics of interactive computer music. Computer Music Journal
25(1): 21-33.

Goldberg, D. (1989). Genetic Algorithms. Addison-Wesley, Reading, MA.

Grefenstette, J. (Ed.) (1987). Proceedings of the 2nd International Conference on GAs.
Lawrence Erlbaum, Hillsdale, NJ.

Haldane, J.B.S. (1932). The Causes of Evolution, Longman, Green, London.

Harvey, I. (1992). Species adaptation genetic algorithms: A basis for a continuing SAGA.
In EJ. Varela and P. Bourgine (Eds.), Proceedings of the 1st European Conference on
Artificial Life. MIT Press/Bradford Books, Cambridge, MA, pp. 346-354.

Hillis, W.D. (1990). Co-evolving parasites improve simulated evolution as an optimization
procedure. Physica D 42: 228-234.

Hodgson, P. (1999). Modelling cognition in musical improvisation through evolution. In A.
Patrizio, G.A. Wiggins and H. Pain (Eds.), Proceedings of the AISB’99 Symposium on
Musical Creativity. SSAISB, Brightom, pp. 15-19.

Hodgson, P. (2002). Artificial evolution, music and methodology. In Proceedings of the
7th International Conference on Music Perception and Cognition. Sydney, pp. 244—
248.

Holland, J. (1962). Outline for a logical theory of adaptive systems. Journal of the Associ-
ation of Computing Machinery 3: 297-314.

Holland, J. (1966). Universal spaces: A basis for studies of adaptation. In E. Caianiello
(Ed.), Automata Theory. Academic Press, New York, pp. 218-231.

Holland, J. (1975). Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor, MI.

Horner, A. and Goldberg, D. (1991). Genetic algorithms and computer assisted music
composition. In R. Belew and L. Booker (Eds.), Proceedings of the 4th International
Conference on GAs. Morgan Kaufmann, San Fransisco, CA, pp. 437—441.

Husbands, P. (1993). An ecosystems model for integrated production planning. International
Journal of Computer Integrated Manufacturing 6(1/2): 74-86.

1. An Introduction to Evolutionary Computing for Musicians 25

Huxley, J.S. (1942). Evolution: The Modern Synthesis. Allen and Unwin, London.

Jacob, B. (1996). Algorithmic composition as a model of creativity. Organised Sound 1(3):
157-165.

Jakobi, N. (1998). Evolutionary robotics and the radical envelope of noise hypothesis.
Adaptive Behaviour 6: 325-368.

Johnson, C. (1999). Exploring the sound-space of synthesis algorithms using in interactive
genetic algorithms. In A. Patrizio, G. Wiggins and H. Pain (Eds.), Proceedings of the
AISB’99 Symposium on Al and Musical Creativity. SSAISB, Brighton.

Juillé, H. and Pollack, J.B. (1996). Co-evolving intertwined spirals. In Proceedings of the
Fifth Annual Conference on Evolutionary Programming. MIT Press, Cambridge, MA,
pp- 461-468.

Keller, H. (1987). Criticism. Faber & Faber, London.

Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge, MA.

Langton, C. (1995). Artificial Life: An Overview. MIT Press, Cambridge, MA.

Lischka, C. (1991). Understanding music cognition: A connectionist view. In G. De Poli, A.
Piccialli and C. Roads (Eds.), Representations of Musical Signals. MIT Press, Cambridge,
MA, pp. 417-445.

Machover, T. (1991). Program Notes for the International Computer Music Conference.
International Computer Music Association, San Fransisco.

Machover, T. and Chung, J. (1989). Hyperinstruments: Musically intelligent and interactive
performance and creativity systems. In Proceedings of the 1989 International Computer
Music Conference. International Computer Music Association, San Francisco, pp. 186—
190.

Mandelis, J. (2001). Genophone: An evolutionary approach to sound synthesis
and performance. In E. Bilotta et al. (Eds.). Proceedings of ALMMA Work-
shop, pp. 37-50. Available online at http://www.cogs.susx.ac.uk/users/jamesm/Papers/
ECAL(2001)ALMMAMandelis.ps.

Mandelis, J. (2002). Adaptive hyperinstruments: Applying evolutionary techniques to sound
synthesis and performance. In Proceedings of the NIME 2002: New Interfaces for Musical
Expression. Dublin, Ireland, pp. 192-193. Available online at http://www.cogs.susx.ac.
uk/users/jamesm/Papers/NIME(2002)Mandelis.pdf.

Mandelis, J. and Husbands, P. (2003). Musical interaction with artificial life forms: Sound
synthesis and performance mappings. Contemporary Music Review 22(3): 69-77.

McCormack, J. (2003). Evolving sonic ecosystems. Kybernetes: The International Journal
of Systems & Cybernetics 32(1/2): 184-202.

Michalewicz, Z. and Fogel, D.B. (2004). How to Solve It: Modern Heuristics. Springer,
Berlin.

Miranda, E. R. (2000). The art of rendering sounds from emergent behaviour: Cellular au-
tomata granular synthesis. In Proceedings of the 26th EUROMICRO Conference. Maas-
tricht, The Netherlands (published by IEEE Computer Society).

Miranda, E.R. (2003). On the music of emergent behaviour: What can evolutionary com-
putation bring to the musician? Leonardo 36(1): 55-59.

Mitchell, M. (1996). An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA.

Morris, R.O. (1922). Contrapuntal Technique In The Sixteenth Century. Oxford University
Press, Oxford.

Mulder, A. (1994). Virtual musical instruments: Accessing the sound synthesis universe
as a performer. In Proceedings of the First Brazilian Symposium on Computer Music.
Caxambu, Brazil, pp. 243-250.

26 Husbands et al.

Pollack, J., Bedau, M., Husbands, P., Ikegami T. and Watson R. (Eds.) (2004). Artificial Life
IX: Proceedings of the Ninth International Conference on the Simulation and Synthesis
of Living Systems. MIT Press, Cambridge, MA.

Pressing, J. (1990). Cybernetic issues in interactive performance systems. Computer Music
Journal 14(1): 12-25.

Rechenberg, I. (1965). Cybernetic Solution Path of an Experimental Problem. Royal Aircraft
Establishment Translation No. 1122, Ministry of Aviation, Farnborough.

Reynolds, C.W. (1987). Flocks, herds, and schools: A distributed behavioral model. Com-
puter Graphics 21(4): 25-34.

Rosen, C. (1980). Sonata Forms. Norton, New York.

Rovan, J.B., Wanderley, M.M., Dubnov, S. and Depalle, P. (1997). Instrumental gestural
mapping strategies as expressivity determinants in computer music performance. Pre-
sented at Kansei—The Technology of Emotion Workshop.

Schaal, S., Ijspeert, A., Billard, A., Vijayakumar, S., Hallam, J. and Meyer, J.-A. (2004).
From animals to animats 8: Proceedings of the Eighth International Conference on the
Simulation of Adaptive Behavior. MIT Press, Cambridge, MA.

Schmitt, L.M. (2001). Theory of genetic algorithms. Theoretical Computer Science 259:
1-61.

Schoenberg, A. (1967). In G. Strang (Ed.), Fundamentals of Musical Composition. Faber
& Faber, London.

Sims, K. (1991). Artificial evolution for computer graphics. In Proceedings of the Siggraph
"91. pp. 319-328.

Sims, K. (1994). Evolving 3D morphology and behavior by competition. In R. Brooks and
P. Maes (Eds.), Proceedings Artificial Life IV. MIT Press, Cambridge, MA, pp. 28-39.
Singh, R.S. and Krimbas, C.B. (2000). Evolutionary Genetics: From Molecules to Mor-

phology. Cambridge University Press, Cambridge.

Straus, J.N. (1990). Remaking the Past. Harvard Press, Cambridge, MA.

Todd, S. and Latham, W. (1992). Evolutionary Art and Computers. Academic Press, New
York.

Turing, A.M. (1950). Computing machinery and intelligence. Mind LIX(236): 433-
460.

Vose, M.D. (1999). The Simple Genetic Algorithm: Foundations and Theory. MIT Press,
Cambridge, MA.

Werner, G.M. and Todd, PM. (1997). Too many love songs: Sexual selection and the
evolution of communication. In P. Husbands and 1. Harvey (Eds.), Fourth European
Conference on Artificial Life. MIT Press/Bradford Books, Cambridge, MA, pp. 434—
443.

Werner, G. and Todd, P. (1998). Frankensteinian methods for evolutionary music composi-
tion. In N. Griffith and P. Todd (Eds.), Musical Networks: Parallel Distributed Perception
and Performance. MIT Press/Bradford Books, Cambridge, MA, pp. 313-339.

Wessel, D. and Wright, M. (2000). Problems and prospects for intimate musical control of
computers. Computer Music Journal 26(3): 11-22.

Wiggins, G., Papadopoulos, G., Phon-Amnuaisuk, S. and Tuson, A. (1998). Evolutionary
methods for musical composition. In Proceedings of the CASYS98 Workshop on
Anticipation, Music and Cognition. Liege, Belgium. Available online at http://www.soi.
city.ac.uk/-geraint/papers/CASY S98a.pdf.

Winkler, T. (1991). Interactive signal processing for acoustic instruments. In Proceedings
for the 1991 International Computer Music Conference. Computer Music Association,
San Francisco, CA.

1. An Introduction to Evolutionary Computing for Musicians 27

Woolf, S. (1999). Sound Gallery: An Interactive Artificial Life Artwork. MSc Thesis, School
of Cognitive and Computing Sciences, University of Sussex, UK.

Wright, A.H;, Vose, M.D.; De Jong, K.A.;nd Schmitt, L.M. (Eds.) (2005). Foundations of
Genetic Algorithms: 8th International Workshop, FOGA 2005. Lecture Notes in Com-
puter Science, Vol. 3469, Springer, New York.

Yee-King, M. (2000). AudioServe—An Online System to Evolve Modular Audio Synthesis
Circuits. MSc Thesis, School of Cognitive and Computing Sciences, University of Sussex,
UK.

2

Evolutionary Computation for
Musical Tasks

JOHN A. BILES

2.1. Introduction

If the preceding chapter was an introduction to evolutionary computation (EC) for
musicians, this chapter is intended as an introduction to music as a problem domain
for EC researchers. Since we cannot hope to provide even a bare-bones treatise on
music appreciation, much less music theory, we assume that the reader is at least
somewhat familiar with music, if not as a producer, at least as a consumer. We
will start by trying to define some musical terms to work with, including ‘music’
itself, which will lead us to a brief excursion into human—computer interaction
as a metaphor for musical performance. We will then conduct an informal task
analysis of music to define the tasks musicians perform and survey how EC has
been applied to facilitate (or obfuscate, in some cases) the performance of those
tasks. We will then summarize the various approaches that have been taken in
representation, fitness and genetic operators.

2.2. What Is Music?

Everybody knows what music is. That is not to say that everybody agrees on
what music is. Rather, everybody has a personal conception of what music is,
and that conception informs how they process the sounds they experience in their
lives. Since one person’s conception is likely very different from another’s, this
leads to disagreement over whether or not a given aural experience is good music,
or even whether or not it’s music at all. A common expression of derision is
“That’s not music; it’s noise!” While we might agree that ‘noise’ is the antithesis
of ‘music’, we probably would not agree on which aural experiences belong to
each category. Another commonly heard expression is ‘I may not know music,
but I know what I like’. Often, people who say this really mean °...I like what
I know’. The implication is that people have differing conceptions and opinions
about music, and while they are often deeply committed to these beliefs, they may
find it difficult to explain or even understand them. This clearly marks music as
a subjective domain, but it is emphatically subjective, with belief systems rising

28

2. Evolutionary Computation for Musical Tasks 29

to almost religious levels. This is one reason why music is a difficult domain for
computational methods. Not only is a clear operational definition of ‘good’ music
hard to come by, a definition of ‘music’ is often arbitrary at best.

However, there are two defining characteristics of music on which most would
agree. First, music is an aural medium — it must be heard to be experienced fully.
Second, music is a temporal medium — it must be experienced in real time. For our
purposes, then, we will operationally define music as temporally organized sound.
This rather inclusive definition certainly covers the typical music we hear on the
radio, which is not a bad definition of sounds that have acquired some societal
consensus as ‘music’, but it also includes bird songs, babbling brooks, even the
ambient sounds of daily life.

To help focus this rather nebulous definition of music as temporally organized
sound, we will examine four key properties or aspects of music — pitch, rhythm,
timbre and form. For each aspect we will define some standard terms, primarily
for the non-musician. An in-depth or even a cursory treatment of music theory is
clearly beyond the scope of this book and so our discussion is intended to provide
operational definitions of musical terms that we will use in surveying EC-based
music systems.

2.2.1. Musical Terminology

Pitch is to ear, as frequency is to oscilloscope. This is a bit oversimplified, but
the point is that pitch is a perceptual notion, not a physical notion (Pierce 1999).
Not all sounds have a specific perceivable pitch (striking a crash cymbal, for
example), but we usually can determine ‘higher’ pitch versus ‘lower’ (striking a
splash versus a crash cymbal, for example). In the realm of traditional western
musical instruments, like piano or trumpet, pitch has been well codified as the
notes available on a piano, specifically 12 equally spaced pitch classes per octave.
When pitches are arranged in a horizontal sequence, one sounding after another,
we refer to this as a melody, and we refer to the difference in adjacent pitches in a
melody as a horizontal interval. A melodic theme or idea that serves as a seed for
later development is called a motif. When pitches are arranged vertically, so that
two or more pitches sound simultaneously, we refer to this as harmony, and we
refer to the difference between pitches in harmony as a vertical interval.

Rhythm essentially refers to timing, both how long sound events last and when
they are scheduled to occur. The timing and length of each pitch in a melody defines
that melody’s rhythm. We are used to thinking of rhythm as ‘the beat’ of a piece
of music, and it is true that almost all of the music heard on the radio has an easily
discernable beat that we often track by tapping a foot or some other appendage.
Other rhythms, however, are too slow to tap one’s foot to, like the rhythm of day
and night, or too irregular, like the frantic cascades of sound produced by an avant
garde jazz group in full flight. Music, then, may be beat-oriented or pulsed, but it
need not be. If it is beat-oriented, then it usually exhibits a meter, which is basically
the number of stressed and unstressed beats in a repeating pattern. For example,
both Sousa marches and disco music are typically ‘in four’, meaning that there

30 Biles

TABLE 2.1. Musical time scales (after Roads 2001).

Time scale Time period Musical examples

Infinite Infinity Ideal sine waves of Fourier theory
Supra Days, months, years, centuries Concert, album, musical style
Macro Minutes to hours Individual composition

Meso Seconds to minutes Phrase structures, sections of a piece
Sound object Fraction of a second to seconds Note, discernable sound event
Micro Milliseconds Sound particle, grain

Sample Microseconds (sampling rate) Individual digital sample
Subsample Nanoseconds Events above Nyquist frequency
Infinitesimal 0 Ideal impulse function

are four beats per repeating pattern, and those beats happen at a tempo of around
110 beats per minute. The span of the repeating pattern is referred to as a measure
or bar. While the ‘arrhythmic’ music of the avant garde jazz group has no fixed
pulse, it definitely has rhythm in that events are organized in time. In other words,
even arrhythmic music is rhythmic.

Timbre refers to the quality, identity or origin of a sound. We are used to thinking
of the timbres of traditional orchestral instruments as the colours available in the
palette of the composer. While this evolving palate has stood composers in good
stead for centuries, it is a tiny fraction of the timbres we hear every day, and a
smaller fraction still of the possible (or impossible) sounds that can be realized
through synthesis techniques. Timbre space, then, is indeed vast.

Form refers to the organization of sounds into higher-level structures. These
structures may be prescribed, as with a 12-bar blues or sonata form, which usually
leads to a top—down method of composition. Chapter 1 in this volume provided
an excellent discussion of form as it relates to EC-based composition systems,
using sonata form as an example. Many composers ignore standard forms and
build structure bottom-up from lower-level components. Some composers even
allow structures to emerge from random events or from interactions among lots of
low-level agents, as in cellular automata music (see Chapter 8).

Regardless of how planned or unplanned a compositional form is, musical struc-
tures tend to be hierarchical. It is easy to recognize that a specific piece is made up
of sections or choruses, which are made up of phrases which in turn are made up
of notes. However, the temporal hierarchy extends beyond this in both directions.
Roads (2001) describes a comprehensive model of time scales in music, which
range from the infinitesimally brief to the infinitely long. His model defines nine
time scales for music, which are listed in Table 2.1.

The macro, meso and sound object time scales are familiar to traditional musi-
cians. The macro time scale represents the form or architecture of an individual
piece. The meso time scale includes motifs, traditional phrase structures, and
melodic, harmonic and rhythmic development. The sound object time scale deals
with the individual notes or sound events that can be perceived individually.

2. Evolutionary Computation for Musical Tasks 31

Designer’s >l Syst | User’s
Mental - Iys em "| Mental
Model mage Model

FIGURE 2.1. Donald Norman’s model for user interaction.

The micro time scale is the realm of transients, granular synthesis and other
phenomena that occur below the threshold of individual perception (see Chapters
8 and 9 in this volume). The sample and subsample time scales reflect the domi-
nance of digital audio representations, in that they exist at and above the boundary
of frequencies that can be represented digitally. At the extremes are the ideal math-
ematical notions of no duration and infinite duration, which appear in musically
useful theoretical models. Finally, the supra time scale extends beyond the length
of an individual composition to include a concert, a stylistic period or a career.
EC has been applied at time scales ranging from the supra down to the sample
level.

One ambiguity of form/organization is whose organization are we talking about —
the composer’s or the listener’s? Composers often invest considerable time and
effort in constructing complex structures that interrelate in subtle and elegant ways.
These structures, when grasped in their totality, can be stunning, but do listeners
grasp the same deep structures as the composer? Probably not, which, believe it
or not, motivates a brief discussion of human—computer interface (HCI) design.

2.2.2. Music as HCI

Donald Norman’s Design of Everyday Things (Norman 1988) is one of those books
that keeps cropping up in surprising contexts. Among other things, he proposes
an elegant model of human interaction with technology, which serves as a useful
model for how listeners experience music. Norman’s model focuses on the designer
of a system, the user of a system, and the system image that the designer creates
and the user accesses (see Fig. 2.1).

The designer of a system works from a mental model of the system, which
guides the construction of the system image. The system image is accessed by
the user, who forms his or her own mental model of the system, which guides
how the user will use the system. In the context of interface design, this simple
model elegantly highlights where many interfaces go wrong — the mental model
of the user is often inadequate to enable access to the functionality intended by
the designer, usually because the system image is not transparent enough to show
clearly what functionality is available and how to access it.

One misinterpretation of Norman’s model of interaction is the contention that
the mental model of the designer and the mental model of the user should be
the same. In all but the simplest systems, that goal is not just unrealistic — it is
pathological. The mental model of the designer includes all kinds of internal details
that are at best irrelevant to the system’s use. If the user has to understand all those
details in order to use the system, then the system is either trivial or its interface is

32 Biles

inadequate. A user-centered design seeks to help users build mental models that
facilitate the use of the system to perform the tasks they are trying to perform.

Applying Norman’s model to music, the designer is the composer, the users
are the audience and the system image is the piece being performed, with all of
its accompanying material. This includes the actual performance of the piece, the
title and any program notes, the venue (concert hall, coffeehouse, elevator), the
appearance and behavior of any performers, the review in last Sunday’s newspaper,
even the score, if it is available — in short anything perceivable by the audience.
An individual listener uses the system image to augment his or her prior musical
knowledge and experience to yield a mental model that informs how he or she
processes the piece, and that model evolves over the course of the piece. The
mental model of the composer includes the deep structure of the piece in all its
levels and subtlety, underlying melodic motifs and how they have been developed,
and myriad other details that may or may not be perceived or even be perceivable
by the audience. If the mental model of a listener is sufficiently rich, he or she
will stay more or less engaged during the performance and, hopefully, will have
something to say about the piece over coffee after the performance. If the mental
model of a listener is not rich enough, then he might merely say, ‘What was that?’,
implying that he simply ‘did not get it’. In either case, each listener will likely
come away with something different from what the composer intended. This is
unavoidable and probably one reason why we enjoy music — it speaks (or sings)
to us individually.

Norman’s mental models have a lot to do with the ‘organized’ part of ‘temporally
organized sound’. The issue really becomes: whose organization are we consider-
ing? In standard musical genres, like jazz, for instance, a listener may understand
that the tunes tend to include improvization, that the rhythm typically ‘swings’
and that the form is often theme—variations—theme. Another listener, without that
knowledge, may not understand that the middle of the tune is improvized, or even
what improvization is, in which case that listener will not ‘get’ that aspect of the
performance. However, he or she may still find the performance enjoyable or even
compelling. These listener mental models of improvization are discussed in detail
in Chapter 7 in this volume.

In the case of random or emergent organization, the mental model of the com-
poser operates at a meta-level — the specific form is not determined ahead of time
but emerges spontaneously. If listeners understand this, then they will not be de-
terred by an ‘aimless quality’ and may focus on textures or other aspects of the
music, or they may be stimulated by the whole concept of emergent or random
structure. A listener who does not get the concept of random or emergent structure
may simply zone out and find the music inaccessible. The goal of ‘music appre-
ciation’, then, is to help initialize listeners’ mental models sufficiently to enable
them to ‘get’ at least some of what the composer is trying to convey.

Getting back to our definition of music as temporally organized sound, the or-
ganization can be intended by a composer and/or inferred by a listener. Sometimes
the composer’s and listener’s organizations are similar; sometimes they are not.
Sometimes one is missing entirely. Even ambient sounds can be organized. Bird

2. Evolutionary Computation for Musical Tasks 33

songs are clearly organized by the bird/composer, and a babbling brook can be or-
ganized by a hiker/listener in the absence of any composer. Temporally organized
sound, then, simply means sounds organized in time, regardless of who does the
organizing.

2.3. Musical Tasks

Now that we have some basic concepts, let us describe what musicians do. This
is basically an informal task analysis of music, and the goal is to identify musical
tasks so that we can focus on how EC has been applied to facilitate the performance
of those tasks. This will help us organize the ways in which EC has been applied
to music and summarize the approaches researchers have taken in bending EC to
fit the musical domain. Organizing the discussion around musical tasks instead of
EC dimensions (Biles 2003; Burton and Vladimirova 1999) will hopefully convey
a more musical perspective.

We shall start with a high-level task, specifically the task of producing a concert
of original music performed by a high school jazz ensemble to feature a well-known
guest artist. This is, in fact, an annual event at the high school attended by the
author’s son and daughter, which commissions six to eight original compositions
per year for various performing groups to feature a visiting jazz artist (PMCP
2005). We will perform a decomposition of this high-level task and, along the way,
point out subtasks to which EC has been applied. After that, we will summarize
the numerous variations in genetic representation, genetic operators and fitness
approaches that have been tried and we will present recommendations for which
approaches work best in musical tasks.

The first level of decomposition of our concert task could be to break up the
concert into individual commissioned pieces, which basically shifts us from the
supra time scale of the concert to the macro time scale of individual compo-
sitions. Each piece, then, can be treated as an independent task, which can be
decomposed further into four subtasks as summarized in Fig. 2.2. This decompo-
sition highlights the different participants in the concert and reflects the tasks they
perform.

In the first task, the composer composes the piece, producing a score. This score
is submitted to the organizing committee of the concert, which selects the winning
compositions for the concert.

The main performing group, a high school jazz ensemble in this case, then
renders the score into sound: first in rehearsal and ultimately at the concert. The
featured soloist also consults the score in preparing to perform the piece, but does

Composer, composes score
Performers perform, rendering score into sound
“Sound guy” processes/records sound
Audience listens to the concert, buys a CD

FIGURE 2.2. Very high-level musical task decomposition.

34 Biles

so separately before arriving at the high school a day or two before the event. The
only time the soloist rehearses with the jazz ensemble is at a brief rehearsal the day
before the concert. Since the soloists” improvizations will be spontaneous during
the concert, this brief ‘run through’ is intended only to insure that the soloist and
jazz ensemble are both literally ‘on the same page’ and that there is no confusion
about how the piece will proceed in performance. This illustrates how the score, as
an abstraction of the piece, is sufficient to enable a performance but is necessarily
less detailed than the actual performance. In jazz, the details provided by the
improvizers in real time are obvious, but even in non-improvizational genres, the
interpretation of the performers adds content that cannot be notated completely.
Only in computer-generated ‘tape music’, where the composer generates an audio
‘tape’, is there no interpretation because the composer generates all aspects of the
piece, including the digital representation of the sound.

This brings up the issue of synthesis technology, which is an important domain
in which EC has been applied, but which is not a part of our jazz concert scenario.
Imagine that instead of a concert for jazz ensemble, we have a concert of electronic
‘tape’ music. In that case the rendering of the composer’s score to sound will be
done by digital synthesis, not human performers. As Chapters 3 and 4 in this
volume will amply demonstrate, synthesis is a fertile domain for EC.

Returning to our jazz concert, the ‘sound guy’ processes the public perfor-
mance by managing sound reinforcement and making a digital recording. Sound
reinforcement includes microphone placement to capture sound produced by the
ensemble and the soloists, application of sound processing effects like equaliza-
tion, compression and reverberation, and mixing the resulting channels to yield
balanced sound, both for the live audience and for the recording. In a tape piece,
the ‘sound guy’ is often the composer, who can extend control of the piece to the
actual sonic experience by diffusing the sound in the performance space.

In the final task in our scenario, the audience listens to the performance at the
concert, responds with enthusiastic applause, and buys the locally produced CD,
when it becomes available.

Each of the four tasks identified in this crude task decomposition (five if synthesis
is included as a separate performance or processing task) is a domain in which EA
has been applied. While the composition subtask is by far the most explored task
area in which EC has been applied, the surface has at least been scratched in the
others. We will continue our musical task analysis with the composition task.

2.3.1. Composition

Most of the EC applications that have been reported in the literature relate to
the composition task. Some comprehensive systems have attempted to generate
complete compositions (Jacob 1995, 1996), while many others have focused on
compositional subtasks. Fig. 2.3 breaks down composition into several interacting
subtasks that serve as useful categories of EC-based systems. The order of these
subtasks is arbitrary and does not necessarily imply a ‘waterfall model’ of music

2. Evolutionary Computation for Musical Tasks 35

Generate melodic motifs/ideas

Pitch sequences without rhythm

Rhythm sequences without pitches

Sequences with both pitch and rhythm
Develop (extend, enhance) melodic ideas

Generate variations and countermelodies

Combine melodic fragments into longer lines
Harmonize

Generate harmony parts

Generate chord changes
Arrange

Define individual parts for specific performers

Assign parts to instruments in the target ensemble
Structure

Adhere to a given structure top-down

Build or evolve a structure bottom-up

Do both (inside-out)

FIGURE 2.3. Subtasks of componsition.

design. A better model would be the star model from interface design (Hartson
and Hix 1993), where these subtasks are iterated typically in opportunistic ways.

EC has been applied to melody generation more frequently than to any other
musical task. In fact, GA-based melody generators are becoming a popular class
project in EC and artificial intelligence courses (Milkie and Chestnutt 2001). The
task essentially boils down to evolving populations of short, monophonic melodic
fragments or motifs, which typically range from one to eight or so measures in
length. This task breaks down further into generating pitch sequences and du-
ration sequences. Some systems evolve both pitches and durations concurrently
(Biles 1994; Jacob 1996; Marques et al. 2000), others evolve pitches and rhythm
separately (Prerau 2001), and still others ignore rhythm entirely and only evolve
pitch sequences (Ralley 1995; Johanson and Poli 1998). As we shall see when we
summarize representation, fitness and operator choices, the proliferation of these
systems has led to a wide diversity of EC techniques in melody generation.

Some systems evolve only rhythm sequences, usually one-measure percussion
patterns that can be combined and looped to generate the drum part of a tune
(Horowitz 1994; Burton 1998; Tokui and Iba 2000). Most of these systems are in-
spired by the ubiquitous drum machine — a MIDI-based device that stores digitally
represented drum sounds and provides an interface to allow the ‘programming’
of one or more measures that can be looped and sequenced to provide a rhythmic
foundation for a tune. While these systems do not really generate melody, in that
the ‘pitches’ in their sequences map to different percussion instruments rather than
different notes, their architectures tend to be similar to those used in simple melody
generators.

Melodic development has the distinction of being the first musical domain to
which EC was applied (Horner and Goldberg 1991). The specific task for this in-
augural EC music system was thematic bridging, where an initial motif is morphed
through a series of transforms into a target motif. Melodic development systems

36 Biles

extend or enhance melodies by generating variations on a motif (Ralley 1995; Jacob
1995, 1996) or a rhythm pattern (Ariza 2002), combining motifs to create longer
melodic lines (Jacob 1995, 1996), or generating melodic counterpoint (Polito et al.
1997). What all these systems have in common is that they start with motifs at their
lowest level, rather than notes, and tend to build larger or higher level structures.
This places them up the compositional hierarchy, relative to the simple melodic
generators.

Harmonization is one compositional subtask that may be approached more pro-
ductively with non-EC techniques. The classic task is to generate standard four-part
harmony for soprano, alto, tenor and bass voices (SATB) for a given melody. The
tricky part is that each of the four horizontal voices must be ‘singable’ as individual
melodies and the vertical harmonies must make sense. This essentially reduces to
a scheduling problem, which is made easier by the fact that there are well-codified
rules for voice leading and harmonic progressions that can serve as convenient
constraints. Consequently, SATB harmonization is one of the few musical tasks
that can be productively considered an optimization problem. When the input to
the system is both the melody to be harmonized and the chord changes to be nav-
igated, the problem is relatively easy (Horner and Ayres 1995). However, when
the input is only the melody to be harmonized, and the system must evolve the
chords as well as the voice leading for SATB (McIntyre 1994), the problem is much
more difficult, and other approaches, like rule-bases or neural networks, seem to
be preferable (Phon-Amnuaisuk and Wiggins 1999).

Arranging a tune typically involves assigning parts to instruments in an ensemble
and usually generating or developing those parts. Aside from the aspects of this task
covered by melodic development and harmonization, EC has not been used to attack
this task directly, but arranger components have appeared in some composition
systems (Jacob 1995).

The structuring task is probably the most difficult compositional task to get a
handle on, as described in Chapter 1 in this volume. Most EC-based composition
systems are very low level and seldom rise above the ‘phrase’ level. However,
some systems have gone all the way to full-blown compositions (Jacob 1996),
which has necessitated their working up the compositional hierarchy all the way
to the root of the tree (see also Chapter 6). Most of these are collaborative systems
that allow (or require) the user to either perform the higher-level structuring by
hand (Unemi 2002) or serve as the fitness function for an IGA ‘Arranger’ (Jacob
1995, 1996). The most exciting work in this area is the emergent systems using
communicating agents, Cellular Automata or swarms, where compelling forms can
emerge from simple elements (Gartland-Jones 2003; Gartland-Jones and Copley
2003). Cellular Automata and swarms will be discussed in more detail in Chapters
8 and 9, respectively.

2.3.2. Performance

The expressive performance of a score is an ongoing research area in musicology
and the psychology of music (Gabrielsson 1999), and it has proven to be a difficult

2. Evolutionary Computation for Musical Tasks 37

task for computers (Widmer and Goebl 2004). Some researchers have used EC to
attack aspects of this task; an example is presented in Chapter 5.

Grachten et al. (2004) used a genetic algorithm to optimize parameter values in
the cost function for a performance annotation system based on edit distance. The
edit distance between a source (score) and target (performance) sequence of notes
is the sequence of edit operations that generates the target from the source with
minimum cost. The set of available edit operations include insertion and deletion
of notes as well as transformation and ornamentation operations that represent how
notes could be performed, and each operation has an associated cost. The GA was
used to find parameter settings for the cost function that yielded the most accurate
annotations of jazz ballad performances.

Madsen and Widmer (2005, 2006) studied performance styles of 12 different pi-
anists performing the same Schubert piano piece. They first used a self-organizing
map algorithm to extract 25 performance templates, each of which encodes a
two-dimensional, loudness-tempo trajectory for a short performance segment. A
specific performance is then represented by a sequence of these templates, and an
evolutionary algorithm is used to evolve approximate matches of subsequences of
the performances, both to examine stylistic tendencies of an individual performer
and to look for similarities among performers.

In addition to studying how music is performed by musicians, EC has impacted
the audience’s experience of performances. Biles and Eign (1995) coined the term
‘audience-mediated performance’ to refer to a performance in which the content
is directly influenced by the audience. In EC music performances, this usually
takes the form of the audience serving as a collective fitness function for an
interactive genetic algorithm. This ‘fitness as performance’ concept has been used
in live concert settings (see the author’s chapter on GenJam in this volume) and
on the Internet, where websites appear from time to time that allow visitors to rate
individuals in a population of melodic fragments, which evolves over time under
the guidance of this online audience. The first of these web-evolved systems by
Putnam (1996) appeared in 1994 and was widely recognized, as evidenced by the
large number of links to his website that persisted long after the site was deleted.

Audience-mediated performance is a natural goal for sound installations. The
Sound Gallery (Woolf and Yee-King 2003) uses sensors to track the movements of
audience members in a sound space. Each corner in the space contains a separately
evolving population of evolvable hardware specifications, which are used to drive
a loudspeaker. As audience members cluster around one speaker, the fitness of its
current hardware specification increases. Periodically, the best individuals from
one corner (island) migrate to another, and individuals age and eventually die out
in order to avoid convergence.

Similarly, the Hewlett-Packard Disc Jockey (Graham-Rowe 2001) uses bio-
feedback units worn by clubbers in a disco to provide ongoing fitness for a GA-
based DJ that selects, sequences and mixes dance tracks. The HPDJ apparently
passed a “Turing test” for about a third of the audience, who thought the DJ was
a human. It was not reported, however, what proportion of the audience believed
that the DJ was a musical performer.

38 Biles

2.3.3. Processing

It is rare these days for a musical performance to be exclusively acoustic. Many
instruments are electronic and make use of synthesis technology, and even perfor-
mances by acoustic instruments are likely to be amplified to fill the performance
space. Audio processing, then, is a significant task in creating a musical experi-
ence, and EC has played a role in this task. We will briefly mention two domains
in which EC has been applied to audio processing — mixing and synthesis.

Mixing includes the application of audio effects like equalization and rever-
beration. Both of these are delay-based effects that are implemented with filters.
Filter design, then, is a foundation of audio signal processing, and it has been
accomplished successfully with EC (Sharman and Esparcia-Alcazar 2003). Re-
verberation has also been approached with EC, specifically the optimization of
reverb parameters to match the characteristics of a specific room (Mrozek and
Wakefield 1996).

EC has been applied extensively in the synthesis domain, as amply demon-
strated by other chapters in this volume. Chapter 3 focuses on EC applications to
evolve optimal parameter settings to match target sounds for a variety of synthesis
methods, and Chapter 4 looks at EC as a tool in the search for interesting tim-
bres. We shall divert discussion on EC applied in the synthesis domain to those
chapters.

2.3.4. Listening

Except for musicology, which will be covered in Chapter 10, the listening task
has not received much direct attention from EC researchers, probably because the
emphasis in EC music applications has been on generating music, not listening
to it. Federman (2003) used a learning classifier system (LCS) to predict the next
pitch is a melodic sequence. Her LCS used a GA to learn new classification rules,
and the system was tested on simple nursery tunes and chorales. While this is a
relatively primitive form of listening, it is a successful attempt to model listener
expectations.

Some composition systems have included coevolved listeners that serve as evolv-
ing fitness agents. Jacob’s composition system contains an ‘ear’ module, which
is an interactive genetic algorithm that evolves a population of filters to judge
the harmonic suitability of melodic material produced by a ‘composer’ module,
which is also implemented as a GA (Jacob 1995, 1996). The composed material
that survives the ear is then grouped together by an ‘arrange’ module (yet another
GA), which produces actual compositions.

Similarly, Todd and Werner (1999) focused on the creator—critic loop by coe-
volving male singers and female critics in a system inspired by birdsongs. Each
male ‘sings’ a 32-note song, which a set of females critique, based on the horizontal
intervals used in the song. Each female then selects the male with the best intervals
and the pair survives to the next generation. ‘Best’ in this case was defined in three
different ways: local transition preferences, which scored each horizontal interval

2. Evolutionary Computation for Musical Tasks 39

in the song and computed a sum; global transition preferences, which compared
the state-transition table of the song of the male to a similar table representing
the expectations of the female; and surprise preference, which rewards songs that
begin by meeting expectations and then violate those expectations, thereby sur-
prising the female. The most interesting, musically, was the surprise preference,
demonstrating that variety is the spice of artificial as well as real life. This work
will be discussed in more detail in Chapter 10.

2.4. Evolutionary Tools and Techniques

Now that we have described musical tasks to which EC has been applied, let us
survey the wide variety of EC tools and techniques that have been tried in EC-based
systems. This summary represents a compendium of approaches across scores of
studies. We will organize this discussion around EC issues, rather than musical
issues, specifically representation, fitness and genetic operators.

2.4.1. Representation Schemes

As every EC practitioner knows, the design of a genetic representation (genotype)
and its mapping into the actual problem domain (phenotype) is critical to the effica-
cious use of EC. This is certainly true in representing music. Two representational
dimensions have emerged from the literature, one dealing with how to represent
individual pitches and durations, and the other with how to represent sequences or
other structures in ‘chromosomes’.

2.4.1.1. Pitch and Duration Representations

There have been three primary approaches to representing pitch: absolute, relative
and scale-offset. Absolute representations provide an unambiguous mapping to a
specific pitch or pitch class plus octave, and include standard note names (like Bb4
or F#5), MIDI pitch codes (0-127, with 60 being middle C) or actual frequencies
(concert A is supposed to be 440 Hz). Relative pitch schemes represent pitches
as intervals from some reference pitch. The reference pitch might be the previous
pitch in the sequence, the pitch at the beginning of the current phrase, the root of the
current chord in the harmonic progression, the tonic note of the current section or
the entire piece, or some other pitch that can serve to anchor the chain of intervals
in a sequence to some specific pitch. The scale-offset approach has aspects of both
absolute and relative schemes. Here, pitches are represented as offsets into scales
that will change as the chords change in the underlying harmonic progression. A
given scale offset may map to a Bb using one scale or an A using another. In the
simplest case, when there is no harmonic motion, the scale-offset scheme reduces
to an absolute scheme using a single scale that avoids dissonant chromatic notes,
like a standard major scale.

40 Biles

Each approach has its advantages. The absolute scheme has the advantage of
being conceptually simple and works well with ‘toy’ melody generators, especially
when a simple tonality is enforced by using a diatonic scale (e.g., only the white
keys on a piano) or a pentatonic scale (e.g., only the black keys). Absolute frequency
is necessary if the piece is microtonal, i.e. it uses pitches that ‘fall in the cracks’
of the piano. The relative schemes are particularly useful when melodic material
will be transposed or manipulated in other general ways. The scale-offset scheme
always plays notes that are ‘on key’, even when the key changes, which can make
it preferable when a non-trivial harmonic context will be either supplied a priori
or generated as part of the composition system.

2.4.1.2. Event Sequence Representations

There have been two primary approaches to represent durations: beat-oriented
and absolute. Beat-oriented representations use traditional note length values like
quarter note or dotted half note, while absolute durations use actual times, usually
in milliseconds. Beat-oriented approaches are preferable with pulsed music, with
a meter and tempo, especially when the tempo might change. Absolute times are
likely preferable when the piece is not pulsed, i.e. sound events occur at specified
times, but there is no beat.

Chromosome structures for representing melodic lines fall into three categories —
position based, order based and tree based. Position-based chromosomes typically
represent measures or phrases, usually in a pulsed rhythmic scheme. The desired
granularity of time resolution multiplied by the number of beats per measure
will indicate the number of genes in the chromosome. For example, to represent
sixteenth notes in a 3/4 measure, one would need 12 genes in a measure—length
chromosome (four subdivisions of a beat times three beats per measure). Similarly,
if we want to represent four bars in 4/4 time with eighth-note granularity, we would
need 32 genes (four measures of four beats, with each beat subdivided into two
event windows.

The genes in this scheme could represent pitches and/or note onsets. For exam-
ple, a thythmic line on a single drum could be represented with a single bit for
each gene, where a ‘1’ could map to ‘hit the drum at that point in the measure’ and
a ‘0’ could map to ‘don’t hit the drum’. If we want a position-based chromosome
of pitches, we could use three bits and map ‘0’ to be a rest and ‘1’ through ‘7’ to
be notes in a diatonic scale. In our four-bar chromosome above, this would yield
a 96-bit chromosome that could represent any sequence of eighth notes and rests.
We could not represent quarter notes or half notes with this scheme, but if we
interpreted the ‘0’ as a ‘hold’ event, which simply held the note from the previous
gene, we could have note lengths of any multiple of an eighth note. The obvious
next step is to encode both a rest and a hold so that we can have notes and rests of
any length that is a multiple of an eighth note. We will see this scheme in GenJam
(Biles, 1994), which is detailed in Chapter 7.

Order-based representations address the note—length problem by representing
notes as pitch—duration pairs. Any of the above choices for pitch and duration

2. Evolutionary Computation for Musical Tasks 41

representations are fair game, and the various combinations provide more or less
leverage, depending on the kind of music desired. For example, absolute frequency
and absolute times in an order-based representation provide maximum ‘freedom’
in that literally any physical pitch can sound for any length of time, which might be
terrific for ethereal soundscapes but would provide no leverage at all for standard
tunes.

Tree-based representations come, not surprisingly, from genetic programming
(Spector and Alpern 1994; Johanson and Poli 1998). When representing melodic
material, the terminal (leaf node) symbols typically map to pitches or a rest, pos-
sibly with a duration included. The functions (interior nodes) map to musical
operators like sequence, repetition, chord and so on. One obvious advantage of
tree-based representations is that they can be extended to higher-level structures
that could represent the deep structure of a piece. The GPmuse system (Polito et al.
1997) used genetic programming in three interacting agents operating at different
levels to compose sixteenth-century counterpoint. Some EC researchers have ex-
tended tree-based representations to grammatical evolution of musical hierarchies
(Fox 2006; de la Puente et al. 2002).

2.4.2. Fitness

Undoubtedly the most difficult issues in applying EC to music arise from how to
implement fitness. In a few musical tasks, like SATB harmonization, which was
discussed earlier, and tweaking a synthesizer to match a target sound, which is
detailed in Chapter 3, fitness can be implemented algorithmically. However, in
most compositional tasks fitness boils down to deciding the merit of a piece of
music, and this is inherently subjective. Three general approaches have been used
to implement fitness: automatic, interactive and no fitness.

2.4.2.1. Automatic Fitness

Automatic fitness schemes are of three species: heuristic features, rule-based and
learned. Dozens of heuristic features have been devised for describing melodic
material (Towsey et al. 2001; Ames 1992). These include the range and variety
of pitches or horizontal intervals, direction or stability of melodic contours, note
versus rest density, rhythmic variety and syncopation, and a host of other readily
computable functions. Some features have a basis in traditional music theory;
others come from other theoretical perspectives like the Zipf-Mandelbrot Law
(Manaris et al. 2003); and still others fall into the category of ‘let’s see if this works
... . The overall fitness for a given melodic individual, then, combines a set of
features, usually using some kind of weighted sum of feature values or differences
relative to a set of ideal feature values. Unfortunately, these global difference
polynomials tend to be weak or brittle (Towsey et al. 2001), and the features
themselves have questionable validity. Consequently, this approach seldom yields
music that sounds good (Phon-Amnuaisuk and Wiggins 1999).

42 Biles

Rule-based approaches implement knowledge-based systems, often grounded
in music theory. Usually, the rules take the form of constraints, as in the case
of species counterpoint, which is a highly specified genre (Polito et al. 1997,
Mclntyre 1994). While these constraints can weed out things that are theoretically
bad, they are powerless to identify things that sound especially good. This leads to
both false positives (some music is theoretically correct but sounds bad) and false
negatives (some music is good because it breaks the rules in compelling ways).
In short, music theory may help explain why a piece of music sounds good, but
it ultimately cannot decide whether a piece sounds good. Whether music sounds
good is ultimately up to the listener, based, as was discussed earlier, on his or her
musical mental model.

Learned fitness schemes typically apply adaptive techniques to hopefully yield
more robust fitness values by learning from a training set of acceptable examples.
K-means techniques have been employed to learn optimal weights for feature
vectors, but the dominant technique has been to use a neural network. The input
layer of the neural network could be a feature vector, using the types of features
described earlier (Biles et al. 1996), or the musical sequence itself (Gibson and
Byrne 1991; Johanson and Poli 1998). Obviously, the choice of a training set is
critical. One approach to choosing a training set is to select exemplars from a
specific style that is to be emulated (Burton 1998). Another approach is to train on
population individuals that have emerged as musically meritorious from interactive
training (Biles et al. 1996; Johanson and Poli 1998).

While neural network fitness is intuitively appealing, it never turns out to be
an unqualified success. For example, attempts to train a neural network on the
successful survivors of an interactive breeding regimen typically resultin a network
that does not generalize beyond the exemplar set, if it can even recognize all the
exemplars successfully (Biles et al. 1996). The problem likely stems from the lack
of validity of easily computable features, in the case of feature vectors as the input
layer, or lack of information, in the case of the melodic material itself as the input
layer. In short, the results are seldom deemed musical.

2.4.2.2. Interactive Fitness

If automatic fitness methods turn out to be depressingly inadequate, then the obvi-
ous alternative is to let a human decide. Interactive fitness uses a human mentor,
who must experience each individual in a population and somehow indicate, min-
imally, which individuals should survive to the next generation. The justification
for using a mentor is obvious — if we need a human’s aesthetic judgement, and we
cannot model that judgement process algorithmically, then just let the human make
that judgement. This sounds simple, and it can be, but there are a host of issues
around using a mentor, most of which are HCI issues and many of which force a
retooling of the EC machinery in general and genetic operators in particular.
Interactive EC systems originated with Richard Dawkins in the graphics domain
(Dawkins 1986), and received a significant boost from Sims (1991). In graphics, the
paradigm is clear — the mentor views thumbnail images of the entire population

2. Evolutionary Computation for Musical Tasks 43

and inputs some indication of merit for the individuals. The mentor then turns
the EC crank to generate a new generation, and the process repeats. This sounds
simple, but let us look deeper. First, how many individuals are in the population?
In typical EC-based systems population, sizes range from dozens to hundreds.
Imagine a population on the smaller end of that continuum, say 48 individuals.
Now, imagine viewing 48 individual thumbnail images, let us say arranged in six
rows of eight images each. How many pixels can we allocate to each image? 120
by 80 would seem near the upper limit, given the resolution of a typical laptop
today and the need for some screen real estate in which to place buttons and other
interface objects within the application window. Images that are 120 by 80 pixels
are not too hard to see individually, but there are 48 of them. Suppose that your
job as mentor is to rank the images, 1 to 48. That is probably an unreasonable task
to perform, so we will just ask the mentor to assign a 1 to 100 rating to each one,
which should be easier, but is still not simple. To simplify it more we could reduce
our ratings to three categories — keeper, loser or do not care. Those that we mark
‘keeper’ will definitely survive to breed; those we mark ‘loser’ will be eliminated,
and the remainders may or may not survive.

We have achieved something that might be workable, albeit for a relatively
small population, by traditional EC standards. Now let us make this a musical
example. Instead of thumbnail images, each of our 48 population members will
be represented by a button, which, when clicked, will play the musical fragment
mapped from that individual chromosome. Now, imagine trying to rank or rate
these 48 individuals. One issue is that you cannot hear the entire population all at
once the way that you can see it all at once in the image example. Another issue
is that you have to listen to each individual one at a time, by itself, in real time.
Just going through the population once to get the lay of the land is pretty time
consuming, and making judgements as to whether one individual is better than
another is downright daunting. We could make the interface a little more usable
if we retained our prior image size for the buttons and used that space to graph a
melodic contour or maybe traditional music notation of the individual, but such a
representation is pretty abstract, especially if the mentor does not read music in his
mind’s ear. The obvious solution is to shrink the population to a more manageable
size, typically nine to 16 individuals in most applications of this type (Horowitz
1994; Unemi 2002).

What we have experienced here is a classic demonstration of the fitness bottle-
neck (Biles 1994). If a mentor has to experience and evaluate each individual in a
population, it takes time. If the domain is temporal, as is the case with music, it
takes real time, pun intended. The fitness bottleneck for temporal domains, then,
is especially narrow. Beyond the time it takes the mentor to evaluate individuals
in a population, we also need to examine the toll it takes on the mentor. Listening
carefully and critically to music requires a level of concentration that most people
seldom demonstrate. Any recording engineer will testify to the need for ‘fresh
ears’ when engaged in a mixing session, and the neighborhood piano teacher can
be slightly disoriented after a full day of ‘creative’ Suzuki interpretations. But the
task of the mentor is harder than the engineer’s or the music teacher’s. The engineer

44 Biles

and the music teacher are listening to improve something they have already heard
before, so they can focus on subtleties, but each iteration is essentially a refinement
of the same content. On the other hand, the mentor must make more fundamental
judgements about whether each individual musical fragment, which he may be
hearing for the first time, has enough potential to deserve survival. As we have
seen, there is no template for ‘good’ music, because if there were, we would have
quit after the discussion of automatic fitness.

The task of the mentor in this scenario is especially difficult because the indi-
vidual musical fragments are experienced outside of a larger musical context. If
individuals in the population map to short melodic fragments, say a measure in
length, then the mentor can feel like she is playing a variant of Name That Tune; 1
can rate that music in five notes. The advantage of short individuals is that they take
less time to hear; the disadvantage is that they are harder to evaluate validly. For
example, if we increase the length of the individuals to a four-bar phrase, then the
phrases will be easier for the mentor to evaluate, but they will take longer to listen
to. If the individuals represent entire tunes, then their context is more complete,
but they take even longer to listen to, and we introduce the granularity problem,
when the mentor really likes one section and really hates another section of the
same individual. In standard EC crossover might eventually fix that, but in our sce-
nario, the mentor probably does not want to wait for the EC machinery to stumble
across the ‘right’ crossover point. This brings up the notion of collaborative hybrid
systems (Unemi 2002; Thywissen 1999).

If automatic fitness does not seem to work and interactive fitness introduces a
fitness bottleneck, maybe we should just eliminate fitness altogether. This is not as
farfetched as it seems at first, but we will defer any real discussion of EC without
fitness to Chapters 6 and 7 in this volume.

2.4.3. Genetic Operators

Genetic operators fall into five standard categories: initialization, selection,
crossover, mutation and replacement. In the music domain, these operators of-
ten behave in ways that are outside the EC mainstream, to say the least. For each
class of operator we will survey approaches that have been used and, as we did for
representation schemes, try to point out advantages for each approach.

2.4.3.1. Initialization

There have been two main families of initialization schemes for EC-based music
systems: random and sampled. Random schemes basically start from scratch by
initializing individuals with random gene values. Many systems use a standard
uniform random number generator to initialize notes in melodic chromosomes
(Burton and Vladimirova 1997; Johanson and Poli 1998). While this is an obvious
choice from a standard GA perspective, it tends to lead to an initial population of
melodic individuals that is very unmusical, due to the large horizontal intervals
that result. This makes the task of the mentor especially onerous, as nearly all the

2. Evolutionary Computation for Musical Tasks 45

individuals in early generations will be pretty bad, and the mentor will have to
lower the aesthetic bar to get anything remotely musical. The fitness bottleneck
never seems as narrow as when nothing seems to make it through.

A more musical initial generation will generally result by using a fractal gen-
erator or a Markov chain trained on ‘real’ melodic material; see the Chapter 7 in
this volume. Fractals have been used as music generators ever since it was noticed
that the power spectrum of a classical music station exhibited fractal properties
(Voss and Clark 1978). The reasoning was that if music is fractal, maybe fractals
are musical (Gardner 1978). Markov chain music dates back even earlier (Hiller
and Isaacson 1959). The goal of these ‘smarter’ random generators is to generate
an initial generation that, at least statistically, more closely resembles the desired
finished product, in an effort to reduce the volume of sludge that has to pass through
the fitness bottleneck.

Sampled initialization operates by seeding the initial population with individuals
that are already acceptable. These can come from the user, who supplies melodic
motifs for the system to develop (Ralley 1995; Jacob 1996), or they can come from
a corpus of analyzed works in the desired style (Prerau 2001); see also Chapter
6. One could argue that systems employing this scheme are really doing melodic
development rather than pure composition, but the goal is once again to start with
an initial generation that is more musical and to reduce the volume through the
fitness bottleneck.

2.4.3.2. Selection

Three primary selection schemes have been employed in composition systems —
fitness-based, musically aware and random. Traditional fitness-based selection is
the obvious choice for maintaining EC purity and is the predominant selection
method in EC-based music systems. Standard schema theory advises that we se-
lect in proportion to fitness in order to provide selection pressure and move the
evolutionary process forward towards better and better solutions. Over succeeding
generations, the population will tend to converge on one or more highly fit individ-
uals as exploitation overtakes exploration in the search process (Goldberg 2002).
When we are looking for one best solution to emerge from the population (the
optimization model), this is not a problem. However, in most music systems the
goal is not to find one best motif, but instead to build a diverse population of good
motifs. The tendency of the EC machinery to converge can be disastrous because
the result will be minor variations on one or two motifs, which in turn will yield
a very boring tune. This yet again highlights the difference between optimization
and exploration, an issue we shall revisit later.

An alternative to standard fitness-based selection methods is to use intelligent or
musically aware selection. In this scheme, individuals are selected to breed based on
their compatibility or because they were matched by the mentor/composer (Unemi
2002). As we have seen before, collaborative systems, in which the user plays many
roles in the evolutionary process, provide more opportunity for exploration guided
by the mentor, by the author.

46 Biles

Finally, we can make selection totally random, which certainly would be ap-
propriate if we have no fitness. Clearly, if there is random selection, there will be
no selection pressure, so diversity should not be an issue. On the other hand, how
can the population improve if fitness is not considered, and selection is random?
Rodney Waschka’s GenDash, described in Chapter 6, and the autonomous version
of the author’s GenJam, described in Chapter 7, provide answers to this question.

2.4.3.3. Crossover

Crossover provides a mechanism for blending material from two or more individ-
uals. The goal is to combine the best parts of different individual parents into an
individual child whose fitness is higher than the fitness of either parent. In tradi-
tional EC, crossover operates on the genotype, and the choice of crossover point, or
points, is random. This means that most crossovers do not meet the goal of gener-
ating better individuals, and the resulting low fitness of a genetic failure will result
in its demise from the population. Over the course of many generations, however,
better individuals will eventually emerge, survive and breed their own children,
and eventually, acceptable, if not optimal, solutions will emerge. Crossover, then,
is a great mechanism for exploiting the best potential of a population.

This traditional scenario is appropriate for the few musical tasks that reduce to
optimization problems, like timbre matching and SATB harmonization, as men-
tioned earlier. However, in many musical tasks, the goal is not to simply generate
a new individual that might sound good; the goal is to develop melodic material
that will sound good. This results in intelligent or musically aware crossovers that
can greatly enhance the chances of breeding children that are at least no worse
than their parents. That intelligence appears both in the choice of crossover point
and the way in which material from the parents is exchanged.

The choice of crossover point (or points, if more than one is allowed) can be
made more intelligent by limiting it to musically advantageous points in the parent
chromosomes, often by starting with crossover points in the phenotype rather
than the genotype. Many chromosome structures in musical applications represent
sequences of notes with each note represented by a bit string. When the bit strings
are concatenated together, the resulting bit string for the note sequence represents
the genotype of the sequence. If crossovers are allowed at any point in the bit
string (genotype), then crossovers could occur within a note, which might not be a
bad thing but could generate an unattractive note at the crossover point. However,
by restricting crossover points to fall on note boundaries in the bit string, which
essentially means selecting crossover points from the phenotype, the parents’ notes
are guaranteed to survive in the children. Chapter 7 presents an extensive example
of this type of crossover, including an intelligent selection scheme to select the
best crossover point from among the musically fruitful choices.

The way in which material is exchanged between parents is another opportunity
for intelligence. The traditional single-point crossover, which simply exchanges
material after the crossover point in the parents’ genotypes is areasonable approach
for simple bit-string-based chromosome structures. However, many musical EC

2. Evolutionary Computation for Musical Tasks 47

systems use chromosome structures that encode multiple layers of information.
For example, various systems have represented notes with some of the following
attributes: pitch class, chromatic inflection, octave, duration, loudness, articulation
and timbre. Multi-attribute structures offer opportunities for variations of uniform
crossover, like exchanging the octaves of a sequence of notes in the parent chro-
mosomes without changing the pitch classes (Marques et al. 2000). A form of
uniform crossover that resulted in multi-point crossover at the genotype level was
used by Gary Lee Nelson in his Sonomorph system (Nelson 1993).

2.4.3.4. Mutation

Mutation is intended to insure that a population does not converge prematurely on
a suboptimal result. In other words, mutation attempts to insure that the solution
space is explored sufficiently, which complements crossover’s role of exploiting
promising individuals (Goldberg 2002). In traditional EC-based systems mutation
is implemented by an occasional bit flip in the genotype, which over the course of
many generations is sufficient to insure adequate exploration, provided the prob-
ability of mutation is set appropriately. Like crossover, however, this traditional
approach seldom works in non-optimization music applications, where the goal
is often to develop musical material, not just try something different. In short,
an intelligent exploration is in order, which has led many researchers to invent
intelligent mutations that effectively constrain exploration to musically promising
avenues (Biles 1994; Ralley 1995; Papadopoulos and Wiggins 1998; Thywissen
1999; Marques et al. 2000; Ariza 2002). Again, Chapter 7 in this volume details
the development of musically meaningful mutations (Biles 1994) on measure and
phrase level individuals, so we will defer an in-depth discussion of intelligent
mutation operators to that chapter.

The ultimate in intelligent mutation, however, is user intervention. Some col-
laborative systems allow users to alter individuals by hand (Unemi 2002). While
some EC purists would call this ‘cheating’, it is very appropriate if the goal of the
EC-based system is to help its user create good music, rather than demonstrate
what EC can do autonomously.

2.4.3.5. Replacement

Replacement is another operation that a user might perform in a collaborative sys-
tem. In a traditional EC-based system, though, replacement is often paired with
selection by adding the newly generated children to the existing population, com-
puting fitness values for new individuals, and then culling out enough individuals,
usually low performing ones, to restore the population to a desired size. Most
systems use some form of elitism, where the best individuals from the previous
generation are guaranteed to survive into the next generation.

Two styles of replacement have emerged: generational and continuous. In gen-
erational replacement, the entire population is turned over after all the new children
have been created for a generation. In continuous replacement new children re-
place low performing individuals as they are generated, one or two at a time, and

48 Biles

there is no clear generational boundary. EC-based music systems have used both
styles.

One use of an intelligent replacement is to increase diversity in the population
by insuring that each individual to be inserted in the population is unique with
respect to the individuals already present in the population. This is important in
systems where the entire population is used to generate musical content, as is the
case in the GenDash and GenJam systems, which are described in Chapters 6 and
7, respectively.

2.5. Final Thoughts

EA has become a useful tool for composers, performers, musicologists and other
musicians, as the existence of this volume demonstrates. Like any maturing tech-
nology, the focus inevitably shifts from demonstrating that the technology actually
works, to finding domain areas in which it can be applied successfully, to adapting
the technology away from its theoretical roots and towards the needs of problem
domains. In other words, the needs of applications domains eventually overtake
the need to adhere to theoretical dogma. In the music domain, EC is showing the
first signs of making that final transition. Music has clearly been established as a
domain in which EC can be useful, but it remains to be seen how much the musical
domain will alter EC as a technology.

References

Ames, C. (1992). Quantifying Musical Merit. Interface 21: 53-93.

Ariza, C. (2002). Prokaryotic groove: Rhythmic cycles as real-value encoded genetic algo-
rithms. In Proceedings of the 2002 International Computer Music Conference. ICMA,
San Francisco.

Biles, J.A. (1994). GenJam: A genetic algorithm for generating jazz solos. In Proceedings
of the 1994 International Computer Music Conference. ICMA, San Francisco.

Biles, J.A. and Eign, W. (1995). GenJam Populi: Training an IGA via audience-mediated
performance. In Proceedings of the 1995 International Computer Music Conference.
ICMA, San Francisco.

Biles, J.A., Anderson, P.G. and Loggi, L.W. (1996). Neural network fitness functions for
a musical IGA. In Proceedings of the International ICSC Symposium on Intelligent
Industrial Automation (IIA’96) and Soft Computing (SOCO’96). ICSC-NAISO Academic
Press, Canada/The Netherlands, pp. B39-B44.

Biles, J.A. (2003). GenJam in perspective: A tentative taxonomy for GA music and art
systems. Leonardo 36(1): 43-45.

Burton, A.R. (1998) A Hybrid Neuro-Genetic Pattern Evolution System Applied to Musi-
cal Composition. PhD Thesis, University of Surrey, School of Electronic Engineering.
Available online at http://www.tony-b.freeuk.com/phd.html.

Burton, A.R. and Vladimirova, T. (1997). Genetic algorithm utilizing neural network eval-
uation for musical composition. In Proceedings of the 1997 International Conference on
Artificial Neural Networks and Genetic Algorithms. Springer-Verlag, Berlin.

2. Evolutionary Computation for Musical Tasks 49

Burton, A.R. and Vladimirova, T. (1999). Generation of musical sequences with genetic
techniques. Computer Music Journal 23(4): 59-73.

Dawkins, R. (1986). The Blind Watchmaker: Why the Evidence of Evolution Reveals a
Universe Without Design. WW Norton, New York.

de la Puente, A.O., Alfonso, R.S. and Moreno, M.A. (2002). Automatic composition of
music by means of grammatical evolution. In Proceedings of the 2002 conference on
APL. ACM Press, New York.

Federman, F. (2003). The NEXTPITCH learning classifier system: Representation, infor-
mation theory and performance. Leonardo 36(1): 47-50.

Fox, C. (2006). Genetic hierarchical music structures. In Proceedings of the 19th Interna-
tional FLAIRS Conference. AAAI Press, Menlo Park, CA.

Gabrielsson, A. (1999). Music performance. In D. Deutsch (Ed.) Psychology of Music, 2nd
ed. Academic Press, San Diego, pp. 501-602.

Gardner, M. (1978). White and brown music, fractal curves and one-over-f fluctuations.
Scientific American 238(4): 16-27.

Gartland-Jones, A. (2003). MusicBlox: A real-time algorithmic composition system in-
corporating a distributed interactive genetic algorithm. In Applications of Evolutionary
Computing: EvoWorkshops 2003. LNCS 2611, Springer, Berlin, pp. 490-501.

Gartland-Jones, A. and Copley, P. (2003). The suitability of genetic algorithms for music
composition. Contemporary Music Review 22(3): 43-55.

Gibson, PM. and Byrne, J.A. (1991). NEUROGEN: Musical composition using genetic
algorithms and cooperating neural networks. In Proceedings of the IEE Second Interna-
tional Conference on Artificial Neural Networks. IEE, London, pp. 309-313.

Goldberg, D.E. (2002). The Design of Innovation: Lessons from and for Competent Genetic
Algorithms. Kluwer Academic, Boston.

Grachten, M., Arcos, J.L. and Lopez de Mantaras, R. (2004). Evolutionary optimization
of music performance annotation. In U.K. Wiil (Ed.), Computer Music Modeling and
Retrieval: Second International Symposium, CMMR 2004. Lecture Notes in Computer
Science 3310. Springer, Berlin, pp. 347-358.

Graham-Rowe, D. (2001). Computer DJ uses biofeedback to pick tracks. New Scientist.
Available online at http://www.newscientist.com/article.ns?id=dn1563.

Hartson, H.R. and Hix, D. (1993). Developing User Interfaces. John Wiley, New York.

Horner, A. and Goldberg, D.E. (1991). Genetic algorithms and computer-assisted music
composition. In R. Belew and L. Booker (Eds.), Proceedings of the Fourth International
Conference on Genetic Algorithms. Morgan Kauffman, San Francisco.

Horner, A. and Ayres, L. (1995). Harmonisation of musical progression with genetic algo-
rithms. In Proceedings of the 1995 International Computer Music Conference. ICMA,
San Francisco.

Horowitz, D. (1994). Generating rhythms with genetic algorithms. In Proceedings of the
1994 International Computer Music Conference. ICMA, San Francisco.

Hiller, L.A. and Isaacson, L.M. (1959). Experimental Music: Composition with and Elec-
tronic Computer. McGraw-Hill, New York.

Jacob, B. (1995). Composing with genetic algorithms. In Proceedings of the 1995 Interna-
tional Computer Music Conference. ICMA, San Francisco.

Jacob, B. (1996). Algorithmic composition as a model of creativity. Organised Sound 1(3):
157-165.

Johanson, B. and Poli, R. (1998). Gp-music: An interactive genetic programming system for
music generation with automated fitness raters. In Proceedings of the 3rd International
Conference on Genetic Programming, GP’98. MIT Press, Cambridge, MA.

50 Biles

Madsen, S.T. and Widmer, G. (2005). Exploring similarities in music performances with
an evolutionary algorithm. In Proceedings of the 18th International FLAIRS Conference.
AAALI Press, Menlo Park, CA.

Madsen, S.T. and Widmer, G. (2006). Exploring pianist performance styles with evolution-
ary string matching. International Journal of Artificial Intelligence Tools 15(4): 495-514.

Manaris, B., Vaughan, D., Wagner, C., Romero, J. and Davis, R.B. (2003). Evolutionary
music and the Zipf-Mandelbrot law: Developing fitness functions for pleasant music. In
Lecture Notes in Computer Science, 2611, Springer-Verlag, Heidelberg, pp. 522-534.

Marques, M., Oliveira, V., Vieira, S. and Rosa, A.C. (2000). Music composition using
genetic evolutionary algorithms. In Proceedings of the IEEE Conference on Evolutionary
Computation 2000. IEEE Press, New York, NY.

Mclntyre, R.A. (1994). Bach in a box: The evolution of four-part baroque harmony using the
genetic algorithm. In Proceedings of the IEEE Conference on Evolutionary Computation,
14(3). IEEE Press, New York, NY, pp. 852-857.

Milkie, E. and Chestnutt, J. (2001). Fugue Generation with Genetic Algorithms. Available
online at http://www.cs.cornell.edu/boom/2001sp/milkie/.

Mrozek, E.M. and Wakefield, G.H. (1996). Perceptual matching of low order models to room
transfer functions. In Proceedings of the 1996 International Computer Music Conference,
ICMA, San Francisco.

Nelson, G.L. (1993). Sonomorphs: An application of genetic algorithms to the growth
and development of musical organisms. In Proceedings of the Fourth Biennial Art and
Technology Symposium. Connecticut College, pp. 155-169.

Norman, D.A. (1988). The Design of Everyday Things. Doubleday, New York.

Papadopoulos, G. and Wiggins, G. (1998). A genetic algorithm for the generation of
jazz melodies. In Proceedings of STeP 98, Jyviskyld, Finland. Available online at
http://www.soi.city.ac.uk/~geraint/papers/STeP98.pdf.

Phon-Amnuaisuk, S. and Wiggins, G. (1999). The four-part harmonisation problem: A
comparison between genetic algorithms and a rule-based system. In Proceedings of AISB
99. Edinburgh, Scotland, 1999.

Pierce, J. (1999). Introduction to pitch perception. In PR. Cook (Ed.), Music, Cognition
and Computerized Sound: An Introduction to Psychoacoustics. MIT Press, Cambridge,
MA.

PMCP. (2005). Penfield Music Commission Project. Available online at http://www.penfield.
edu/phs/default.asp?section=show_page&id=158.

Polito, J., Daida, J. and Bersano-Begey, T.F. (1997). Musica ex machina: Composing 16th-
century counterpoint with genetic programming and symbiosis. In P.J. Angeline, R.G.
Reynolds, J.R. McDonnell, R. Eberhart (Eds.), Evolutionary Programming VI: Proceed-
ings of the Sixth Annual Conference on Evolutionary Programming, 1213. Springer-
Verlag, Heidelberg.

Prerau, M. (2001). On the possibilities of an analytic synthesis system. In Proceedings of
the European Conference on Artificial Life 2001 Workshop: Artificial Life Models for
Musical Applications. Prague, Czech Republic.

Putnam, J.B. (1996). A grammar-based genetic programming technique applied to music
generation. In L.J. Fogel, PJ. Angeline and T. Baeck (Eds.), Evolutionary Programming
V: Proceedings of the Fifth Annual Conference on Evolutionary Programming. MIT
Press, Cambridge, MA, pp. 277-286.

Ralley, D. (1995). Genetic algorithm as a tool for melodic development. In Proceedings of
the 1995 International Computer Music Conference. ICMA, San Francisco.

Roads, C. (2001). Microsound. MIT Press, Cambridge, MA.

2. Evolutionary Computation for Musical Tasks 51

Sharman, K. and Esparcia-Alcazar, A. (2003). Evolutionary methods for designing digital
filters. Contemporary Music Review 22(3): 5-19.

Sims, K. (1991). Artificial evolution for computer graphics. In Proceedings of SigGraph
"91. pp. 319-328.

Spector, L. and Alpern, A. (1994). Criticism, culture, and the automatic generation of
artworks. In Proceedings of the Twelfth National Conference on Artificial Intelligence,
AAAI-94. AAAI Press/The MIT Press, Menlo Park, CA, Cambridge, MA. Available
online at http://hampshire.edu/%7ElasCCS/genbebop.html.

Thywissen, K. (1999). GeNotator: An environment for exploring the application of evolu-
tionary techniques in computer-assisted composition. Organised Sound 4: 127-133.

Todd, P. and Werner, G. (1999). Frankensteinian methods for evolutionary music composi-
tion. In N. Griffith and P. Todd (Eds.), Musical Networks: Parallel Distributed Perception
and Performance. MIT Press, Cambridge, MA.

Tokui, N. and Iba, H. (2000). Music composition with interactive evolutionary computation.
In GA2000, Proceedings of the Third International Conference on Generative Art, Milan,
Italy.

Towsey, M., Brown, A., Wright, S. and Diederich, J. (2001). Towards melodic extension
using genetic algorithms. Educational Technology & Society 4(2): 54-65.

Unemi, T. (2002). SBEAT?3: A tool for multi-part music composition by simulated breeding.
In Proceedings of the Eighth International Conference on Artificial Life (A-Life VIII).
MIT Press, Cambridge, MA.

Voss, R.F. and Clarke, J. (1978). 1/f noise in music: Music from 1/f noise. Journal of the
Acoustic Society of America 63(1): 258-263.

Widmer, G. and Goebl, W. (2004). Computational models of expressive music performance:
The state of the art. Journal of New Music Research 33(3): 203-216.

Woolf, S. and Yee-King, M. (2003). Virtual and physical interfaces for collaborative evo-
Iution of sound. Contemporary Music Review 22(3): 31-41.

3
Evolution in Digital Audio Technology

ANDREW HORNER

3.1. Introduction

Replicating musical instruments is a classic problem in computer music. A system-
atic collection of instrument designs for each of the main synthesis methods has
long been the El Dorado of the computer music community. Here is what James
Moorer, the pioneering computer music researcher at Stanford University and later
director of the audio project at Lucasfilm, had to say about it (Roads 1982):

There is another musical project we have talked about but have never done. It is an enor-
mous project, the fabled ‘Lexicon of Analyzed Tones’. One could make the argument that
cataloguing orchestral instruments is an obsolete sort of thing to do. However, I could make
the counterclaim that the orchestral instruments give us immediately a wide variety of mu-
sically interesting timbres. I would like to see someone go through the entire pitch range
of each orchestral instrument at several dynamics and articulation styles and analyze and
categorize each tone. I would like to give several synthesis algorithms for each instrument;
that is, a frequency modulation algorithm, an additive synthesis algorithm, a wavetable syn-
thesis algorithm and so on. This lexicon would be the kind of Rosetta stone for computer
music we have all been looking for. Most of the computer musician’s time is spent looking
for sounds and the lexicon would help to reduce that effort.

The main reason why computer musicians struggle looking for sounds is that
most synthesis techniques require parameter optimization to replicate a musical
instrument. The notable exceptions are additive and sampling synthesis, but even
additive synthesis usually requires data reduction of the amplitude envelopes to
make them easier to handle and sampling synthesis requires smooth loop points
for sustained sounds.

During the 1970s and 1980s, before sampling became popular and memory be-
came cheap, replicating musical by instruments using techniques such as frequency
modulation (FM) was one of the ‘holy grails’ of music synthesis. Synthesizers such
as the Yamaha DX7 allowed users great flexibility in mixing and matching sounds,
but they were notoriously difficult to make sound like a given instrument. Instru-
ment design wizards practiced the mysteries of their ‘dark art’. Other methods,
such as wavetable synthesis, were less mysterious but were limited to production

52

3. Evolution in Digital Audio Technology 53

of rather static organ-like sounds. With a single wavetable, one could easily attain
a trumpet-like sound, but a realistic trumpet was still out of reach.

Then, sampling came along and soon even cheap synthesizers could sound like
realistic pianos and trumpets, as long as the desired articulations happened to match
those of the original recorded samples. Sample libraries quickly replaced sound
wizards.

Ironically, about the same time FM declined, researchers started applying evo-
lutionary algorithms to optimize parameters for FM and wavetable synthesis. The
results were about as realistic as sampled sounds, with the added benefits of in-
creased spectral and temporal control. In one instance, a synthesized French horn
even managed to pass for the real thing when a fake audition tape was submitted
to a well-known summer music program in the United States (Horner 1999). The
virtual horn player was accepted and even offered a scholarship when the initial
offer was discretely declined.

This chapter will focus on the use of evolutionary algorithms to evolve pa-
rameters for music synthesis. It will discuss the use of genetic algorithms and
other related techniques to evolve synthesis configurations and optimize param-
eter settings to replicate traditional instruments. The next section describes the
fundamentals of each synthesis method, followed by a review of parameter opti-
mization for the method, with a special emphasis on evolutionary methods. We
also discuss other digital audio applications where evolutionary algorithms have
proved fruitful.

3.2. Music Synthesis and Processing

There are numerous music synthesis techniques with various degrees of control
and accuracy for replicating musical instruments. This section describes each of
the main synthesis methods and how its parameters are derived by traditional opti-
mization methods and evolved by evolutionary methods. Some music-processing
techniques modify rather than generate a sound, such as artificial reverberation
and sound localization. Because they require filter optimization they are discussed
in the Subtractive/Filter Synthesis section.

3.2.1. Additive Synthesis

Additive sine wave synthesis is one of the most straightforward and powerful
synthesis methods. It adds a series of harmonically related sine waves, each with
its own amplitude and frequency envelope. Fig. 3.1 shows a block diagram of
the additive synthesis model. A short-time Fourier transform of a musical tone
determines the amplitude and frequency envelopes (Roads 1996, pp. 117-133).
If there is no modification of the envelope parameters, additive synthesis can
reconstruct the original waveform exactly. However, the difficulty of manipulating
so many parameters often necessitates some sort of data reduction. Piecewise-
linear approximation of additive synthesis amplitude and frequency envelopes is

54 Horner

amplitude | frequency amplitude | frequency amplitude || frequency
envelope / | envelope / envelope 2 | envelope 2 envelope n | envelope n
Ist harmonic 2nd harmonic cecssses nth harmonic
sinewave sinewave sinewave
v v o+ e v
Output

FIGURE 3.1. Additive synthesis block diagram.

one of the most common data reduction techniques used in sound synthesis. For
each envelope, a series of line segments are connected at breakpoints. Examples
of commercial digital synthesizers using additive synthesis with piecewise-linear
envelopes include the Fairlight CMI (1979), the Kurzweil 150 Fourier Synthesizer
(1986) and the Lyre Fourier Digital Synthesizer (1986).

A closed-form solution to the line segment approximation problem does not ex-
ist because the problem is nonlinear; moving just one breakpoint changes how well
the approximation matches the original envelope over the length of the neighbour-
ing segments. Several researchers have reported fitting amplitude and frequency
envelopes by hand (Risset and Mathews 1969; Grey and Moorer 1977; Cham-
berlin 1980) and at least three have proposed automated methods for reducing
the approximation error below some pre-determined threshold (Beauchamp 1969;
Strawn 1980; Serra, Rubine and Dannenberg 1990).

Moorer and his colleagues (Moorer, Grey and Snell 1977; Moorer, Grey and
Strawn 1977, 1978) gave hand-fitted line segment approximations for amplitude
and frequency envelopes to various instrument tones (violin, clarinet, oboe and the
trumpet). Engineers have since used this data extensively to test various real-time
digital synthesizers.

Beauchamp’s LINSEG method automatically determined line segment approxi-
mations with each amplitude envelope optimized separately (Beauchamp’s 1969).
After smoothing each envelope to remove micro-variations, the procedure used
a series of least-squares-fit straight lines to approximate the data. LINSEG used
the longest lines that kept the absolute difference error below a pre-determined
threshold. For complex envelopes, this method tended to generate many more line
segments than a comparable ‘hand-fit’ would.

Instead of reducing the error below a pre-determined threshold, another ap-
proach is to determine the best possible approximation for a specified number of
line segments. For example, to design an instrument patch for a keyboard synthe-
sizer constrained to only five line segments per envelope, an automatic procedure
is needed to specify how to best utilize the line segments. Strawn’s procedure
(ADJUST) attempted this, but it required an initial estimate of the solution and

3. Evolution in Digital Audio Technology 55

the solution it ultimately found was usually only slightly improved over the initial
guess (Strawn 1980). This is because ADJUST used a hill-climbing procedure to
improve the initial guess, thus simply converging to a nearby local optimum.

An alternative approach to using independent breakpoints for each envelope is
to pick the N best breakpoints that are common to all harmonics. Using common
breakpoints has the advantage that it requires less storage and runs faster, since
wavetable interpolation can be used instead of additive synthesis to crossfade pairs
of wavetables. The Prism, built by Kinetic Systems in the early 1980s, was the
first known synthesizer based on linear interpolation between wavetables. Also,
Chamberlin (1980) employed this method for microcomputer real-time synthesis
during the same period. The method was explored in detail by Serra et al. (1990),
who devised a technique for adding breakpoints until the maximum mean-squared
error was brought below a prescribed threshold.

Horner and Beauchamp (1996; see also Horner, Cheung and Beauchamp 1995),
introduced the use of genetic algorithms (GA) to solve the piecewise-linear ap-
proximation problem for determining the best N breakpoints. They compared the
GA performance to other breakpoint picking methods such as greedy and hill-
climbing algorithms. The GA consistently outperformed the other methods for
both amplitude and frequency envelopes. The results held true for both indepen-
dent and shared breakpoints, as well as linear and quadratic approximations. They
found that for hardware synthesis, where the number of breakpoints is typically
quite limited, the GA approach was clearly the best. With ten or more breakpoints,
the greedy method also performed well. Since the greedy method was much faster,
they concluded that the greedy approach was perhaps best for software synthesis
since faster results might be more important than using a few extra breakpoints.
The GA approach served as an important benchmark in reaching this conclusion.

3.2.2. Wavetable Synthesis

The popular music industry currently uses the term wavetable synthesis synony-
mously with sampling synthesis. However, in this chapter, sampling means record-
ing an entire note and playing it back, while wavetable synthesis means storing
only one period of a waveform in an oscillator table and scaling the table output
by an amplitude envelope. A sum of harmonic sine waves generates the waveform
and the set of harmonic amplitudes defines the basis spectrum of the wavetable.

The main advantage of wavetable synthesis is its efficiency at generating peri-
odic waveforms. The disadvantage of wavetable synthesis is that each wavetable
produces only a static spectrum, while real sounds produce dynamic spectra.
Wavetable synthesis requires several wavetables mixed together to produce dy-
namic spectra (see Fig. 3.2).

Wavetable matching finds the best set of parameters to synthesize a musical in-
strument tone using wavetable synthesis. A number of investigators have explored
methods for optimizing wavetable basis spectra and their amplitude envelopes.
For example, Maher and Beauchamp (1990) used wavetable matching in their in-
vestigation of vocal vibrato synthesis. They selected their basis spectra at the low

56 Horner

Wavetable /

Amplitude ° Amplitude
envelope / envelope 2

T Amplitude e
envelope n
{?4

Output

Wavetable 2

FIGURE 3.2. A multiple wavetable block diagram.

and high points in the vibrato of a tenor tone and cross faded the wavetables as a
function of the vibrato.

Spectral interpolation uses pairs of cross-fading wavetables (Chamberlin 1980;
Serra, Rubine and Dannenberg 1990). Spectral interpolation divides the signal into
a series of interpolated basis spectra. Synthesis proceeds by gradually cross fading
one spectrum with the next. When a basis spectrum has ramped down to zero,
a new basis spectrum immediately replaces it and begins fading up. Serra et al.
(1990) gave two algorithms for determining spectral interpolation basis spectra
and amplitude envelopes. The first uses piecewise linear interpolation of basis
spectra drawn from the original tone. The second uses a linear regression algo-
rithm to statistically compute the basis spectra. Holding the spectral error below
a user-specified threshold determines how many basis spectra to use. These al-
gorithms change the basis spectra between 5 and 20 times per second. As an
alternative approach, a genetic algorithm can select a pre-determined number of
the best wavetables (Horner and Beauchamp 1996) rather than the user specifying
a threshold. Genetic algorithms have also optimized wavetable interpolation with
more than two wavetables (Horner 1996a), but where at most one wavetable cross
fades at a given time. Mohr (2002; Mohr and Li 2005a, b) solved the problem for
two or more wavetables by using the single-source acyclic weighted shortest path
algorithm.

Group additive synthesis (Kleczkowski 1989) is another wavetable variant at
the opposite extreme of spectral interpolation. Group additive synthesis uses non-
intersecting sets of harmonics for the various wavetables. As an example, one
wavetable might contain only the even harmonics while the second only the odd.
Subsequent to Kleczkowski’s initial study, researchers have optimized group ad-
ditive synthesis parameters using an automated clustering scheme (Oates and Ea-
glestone 1997) and GA (Cheung and Horner 1996; Horner and Ayers 1998; Lee
and Horner 1999). Horner and Ayers (2002) give a complete set of group additive
synthesis designs for the woodwinds and brass.

Researchers have also used GA to match the multiple wavetable model shown
in Fig. 3.2 (Horner, Beauchamp and Haken 1993a; Horner 1995). One approach
to wavetable matching uses a genetic algorithm to select spectral snapshots from

3. Evolution in Digital Audio Technology 57

the original tone as the basis spectra (Horner, Beauchamp and Haken 1993a). This
approach is intuitive and it generates an exact match at the time points of the se-
lected snapshots and usually excellent matches at neighbouring points as well. The
relative spectral error between the original and matched spectra typically serves
as a fitness function to guide the GAs search for the best solution. Most matched
instruments required three to five wavetables for a good match — a considerable
saving compared to additive synthesis.

Wavetable synthesis is an inherently harmonic synthesis method. Handling tones
that are nearly harmonic, such as the stretched octaves of piano tones and plucked
string tones, requires some tricks. By grouping partials with similar frequency
deviations, genetic algorithms have successfully optimized group additive synthe-
sis parameters to simulate piano (Lee and Horner 1999) and string tones (So and
Horner 2002, 2004).

Another refinement is to consider the effect of simultaneous frequency masking
in wavetable parameter optimization (Wun and Horner 2001). Masked partials can
be omitted from the fitness function to give a more accurate reflection of perceptual
spectral differences.

Insights gained from having initially explored a problem with GA have often
led to finding a better or simpler solution. Wavetable matching is such an example.
Instead of using the GA to approximate the best match to all the spectral snapshots
of the original tone, an alternative method is to find the best match for a subset
of the spectral snapshots (Horner 2001; Ng and Horner 2002). It turns out that
this approach is about as effective and efficient as the GA method and much
simpler. Other methods such as local search (Wun, Horner and Ayers 2004; Wun
and Horner 2005a) and iterative methods (Wun, Horner and Ayers 2003; Wun and
Horner 2005b) have also been shown to give effective results.

Each of the various types of wavetable synthesis has its strong points, depending
on the given situation. For simplicity, group additive synthesis has the advantage
of being intuitive, since each harmonic is only in one wavetable. For memory-
constrained systems where instruments have to compete for limited wavetable
space, wavetable matching is a very good choice. Conversely, for real-time systems
where memory is not a problem, wavetable interpolation is a good choice.

3.2.3. Subtractive/Filter Synthesis

Subtractive synthesis is the complement to additive synthesis. Instead of building
up a complex sound from many simple sounds (sine waves), a complex source
sound is fed into a filter which sculpts the sound as desired (see Fig. 3.3). This
source—filter relationship is why subtractive synthesis is also known as filter syn-
thesis.

Subtractive synthesis is probably most commonly used in linear predictive cod-
ing (LPC), especially for speech synthesis (Atal and Hanauer 1971; Flanagan
1972; Markel and Gray 1976). LPC has also been used in music synthesis (Cann
1979-1980; Moorer 1979; Lansky and Steiglitz 1981; Lansky 1989; Dodge 1989).
LPC and related techniques are effective tools for designing linear filters, but they

58 Horner

source sound

.

filter

!

filtered sound

FIGURE 3.3. Subtractive/filter synthesis block diagram.

cannot be applied to nonlinear filters. Only a few researchers have considered
nonlinear filter optimization in music synthesis (Smith 1983; Massie and Stonick
1992).

Chu (1990) was among the first to use genetic algorithms to optimize nonlinear
filters. He used the GA to configure stack filters in a non-music application. His
goal was to configure the filter so that it removed as much corrupting noise from
the signal as possible. The fitness value was based on the filter’s effectiveness in
suppressing impulsive noise.

Horner and colleagues described a timbre breeding method for evolving instru-
ment designs (Horner, Beauchamp and Packard 1993; Beauchamp and Horner
1998). The user initially selects a source sound for breeding. A series of random
filtering and time warping operations modifies the source, where spectral snap-
shots of the second tone are used as filter transfer functions. The filtered tone
is then compared to its parent and the user decides which sound survives to the
next generation. The process continues until the user is satisfied with the evolved
sound. An interesting set of timbres was obtained by breeding a trumpet tone with
a rubbed glass sound. Mating a cello and bass clarinet resulted in a bizarre sound
that resembled a cello being played through a resonant bass clarinet.

Mrozek and Wakefield (1996) used a GA to optimize artificial reverberation.
The GA was used to search for low-order filter parameters so that the generated
impulse response best matched that of a target room transfer function. They used
perceptually-based error criteria to compare the impulse responses. They com-
pared N-segment all-pass reverberators and found a four-stage reverberator gave
results as good as a seven-stage reverberator. Mrozek and Wakefield outlined sev-
eral possible extensions of this method, including characterizing the perceptual
effectiveness of the error criteria, generalizing the method to other types of rooms
and fitting room impulse responses for binaural realization over headphones.

Another application of filtering is sound localization in 3D sound systems. Such
systems simulate auditory cues that humans rely on to determine the position
of a sound. Among these cues, head-related transfer functions (HRTFs) provide
important spatial cues and are widely used in 3D sound systems. HRTFs describe
the spectral filtering that occurs between a source sound and the listener’s eardrum.
Typically, a large set of HRTFs must be used, each representing a different azimuth
and elevation. Some researchers have used statistical techniques to data reduce
HRTFs (Martens 1987; Kistler and Wightman 1992), though the output can be

3. Evolution in Digital Audio Technology 59

difficult to interpret and modify because it is a statistical construct without a
physical basis.

Cheung, and colleagues applied GAs to this data reduction problem by selecting
representative basis functions from the set of original HRTFs (Cheung, Trautmann
and Horner 1998). This makes the output much more intuitive to work with. A least
squares solution was used to compute the optimal combination of linear weights to
represent the individual HRTFs at different azimuths and elevations. An average
relative spectral error was used as the fitness function. They found that only three
basis functions were required to closely match the original HRTFs while achieving
a 50-fold data reduction.

Ng and Horner (2000) investigated the computation and memory tradeoffs in
matching acoustic instruments with a hybrid wavetable-filter model. They tried
to find the best combination of wavetables followed by a time-varying filter for
computation and storage efficiency. They found that the optimal computation and
memory use of the model simplified to a wavetable model without the filter. The fil-
ter only gave marginal improvement in this particular model and was not worth the
extra computation and memory. Adding one wavetable to the match was equivalent
to increasing the filter order by at least five. This somewhat surprising result con-
firmed the effectiveness of wavetable matching at efficiently capturing the overall
spectral shape and evolution. The result does not mean that filters are not useful for
sculpting sound, but that adjusting the wavetable parameters was a more efficient
means of control for this particular model.

Schatter, and colleagues used GA and fuzzy sets to generate subtractive synthesis
parameters for particular target sounds (Schatter, Ziiger and Nitschke 2005). The
set of fuzzy controllers was used to map between the user-interface and sound
generator. GAs were used to optimize the subtractive synthesis parameters in best
approximating the target sound.

3.2.4. Sampling Synthesis

Sampling is the most popular music synthesis technique used in current synthe-
sizers and sound cards. It produces high-quality tones by simply playing back the
originally recorded samples (Roads 1996). For sustained sounds, it continuously
loops over a segment of the samples until the note is released. The looping can
be considered a simple form of wavetable synthesis with a single wavetable. The
quality of the original recording and the effectiveness of its looped sustain are the
main criteria for success in sampling and the method is computationally cheap.
The disadvantages of sampling are its memory requirements and limited flexibility.
For example, a single piano tone of 4.3 s requires about 388 kB of memory at a
CD-quality sample rate. If we use two notes per octave over six octaves, then more
than 4 MB of memory is needed just for the piano alone. Another disadvantage
of sampling is its lack of flexibility, especially at time scaling. We can loop the
sustain, but stretching the attack and decay is very difficult with sampling.

To overcome these difficulties, Serra and colleagues first suggested a hybrid
sampling-wavetable model in their paper on wavetable interpolation (Serra et al.

60 Horner

1990). The idea is to use sampling synthesis for the perceptually critical attack
and wavetable synthesis for the more gradually changing steady-state and decay.
The resulting tone thus has high-quality attacks, with only modest memory re-
quirements. The wavetable match of the steady-state and decay also improves,
since no wavetables need to be devoted to modelling the attack. Thus the hybrid
model attempts to integrate the advantages of sampling and wavetable synthesis.
The model is especially appropriate for instrument tones with short but complex
attacks such as piano, percussion and plucked string tones.

Yuen and colleagues (Yuen and Horner 1997; Yuen, Chan and Horner 1996)
implemented and evaluated the hybrid sampling-wavetable model using GA opti-
mization of the wavetable parameters. The method minimizes phase cancellations
during the crossfade between sampling and wavetable synthesis. The method was
used to effectively and compactly match piano, harp, glockenspiel and temple
block tones. A piano design requiring 4 MB of memory for sampling synthesis
was data reduced to 300 kB of memory for the hybrid model.

A possible future application of GA to sampling would be to find pairs of suitable
loop points in sustained tones. By using different loop points each time through
the loop, perhaps the spectral dynamics can be made more natural. By making the
spectral variations less predictable, at least some of the most annoying looping
artefacts can be avoided.

3.2.5. Frequency Modulation (FM) Synthesis

Like wavetable synthesis, FM synthesis generates interesting sounds efficiently.
There are several types of FM, including those with multiple parallel modula-
tors, nested (serial) modulators and feedback (Fig. 3.4). Like multiple wavetable
synthesis, FM can combine several carrier-modulator pairs in parallel, as in Fig.
3.5. During the height of FMs popularity in the 1980s, synthesizers such as
the Yamaha DX?7 allowed users great flexibility in mixing and matching these
models.

M2
|
M M1 M2 M1
! N l |
C C C C

! ! |

single modulator FM double modulator FM nested modulator FM feed back FM

FIGURE 3.4. Block diagrams of several types of FM.

3. Evolution in Digital Audio Technology 61

M1 M2 - MN
I ! !
C1//C2 - CN

| | |
v

FIGURE 3.5. Block diagram of multiple-carrier single-modulator FM.

Chowning’s original FM equation used for music synthesis consisted of a sin-
gle sine wave modulating a carrier sine wave in a vibrato-like fashion (Chowning
1973). In fact, with sub-audio modulator frequencies, the result is vibrato. How-
ever, with an audio-rate modulator frequency, the result is frequency modulation.
A Bessel function difference determines the amplitude values of FM-produced
harmonics.

A modulation index controls the amount of modulation and the precise shape
of the spectrum. The spectrum bandwidth generally increases as the modulation
index increases, although a great deal of oscillation accompanies this growth.
Time-varying modulation indices produce dynamically changing spectra from a
single FM carrier-modulator pair. Wavetable synthesis with a single table lacks this
control. Unfortunately, spectral components often fade in and out too dramatically
as the modulation index changes. This is not characteristic of the spectral evolution
of musical tones.

A harmonic tone results if the carrier frequency is an integer multiple of the
modulator frequency, a special case named formant FM, since the spectrum spreads
out, like a formant, around the carrier frequency.

Like wavetable synthesis, FM synthesis is very efficient in terms of computation
and storage. A single carrier-modulator FM instrument requires about the same
amount of computation as a pair of wavetables. However, FM can store a single sine
waveform for all the carriers and modulators. FM is thus more storage efficient than
wavetable synthesis. Also, if the modulation index is not time-varying, the carrier’s
output will be a static spectrum. The FM model provides similar control to that
found in wavetable synthesis. However, unlike wavetable synthesis, the spectrum
produced by FM is not arbitrary, but restricted to a subset of possible spectra.

One of the factors leading to FM’s decline in popularity is that matching an
arbitrary musical instrument tone is difficult, much more difficult than wavetable
matching. A closed-form analytical solution for determining the best set of FM
parameters does not exist and some form of optimization is necessary. Most pre-
vious work on FM has used ad hoc and semi-automated techniques for matching
instrument tones. However, hand-tuning of multiple carriers quickly exceeds the
limits of human ability and endurance.

Chowning’s original paper on FM included some hand-tailored instruments
(Chowning 1973). He gave parameters appropriate to various classes of instruments

62 Horner

based on simulating properties of those instruments. For instance, the brightness of
a brass tone is usually proportional to its overall amplitude. Chowning simulated
this behaviour by taking advantage of the fact that the brightness of FM spectra
generally increases as the modulation index increases. He then varied the modu-
lation index in direct proportion to the amplitude of the carrier to approximate a
brass instrument. He produced woodwind-like tones and percussive sounds using
similar methods. Chowning also discussed a double carrier instrument near the
end of his paper.

Morrill’s study of FM trumpet tones (Morrill 1977) followed Chowning’s lead
in trying to determine parameters based on detailed knowledge of the trumpet.
Morrill outlined single and double carrier instrument designs for the trumpet and
clearly identified the limitations of single carrier instruments. His double carrier
instrument set the carrier frequencies to the fundamental and sixth harmonic, the
latter corresponding to a known upper formant region in the trumpet. He also
pointed out the difficulty in predicting the spectral output of the double carrier
instrument.

Beauchamp (1982) developed a frequency-domain method to find FM parame-
ters as part of a larger study on brightness (spectral centroid) matching. He used a
single carrier-modulator pair with a centroid-controlled modulation index to match
the time-varying spectral centroid of the original signal. Though the level of con-
trol was too coarse to provide a good perceptual match, the technique was notable
in its attempt to perform an automated spectral match.

In recent years, researchers have introduced evolutionary matching techniques
for the various FM models, first applying them to formant FM (Horner, Beauchamp
and Haken 1993b). A genetic algorithm procedure was used to optimize the mod-
ulation indices and carrier and modulator frequencies for various numbers of car-
riers. The GA found invariant modulation indices because time-varying modu-
lation indices cause harmonics to fade in and out, a spectral property not at all
characteristic of acoustic instruments. Using invariant indices also avoids index
discontinuities and the considerable extra expense of optimizing time-varying in-
dices. As in wavetable matching, the relative spectral error between the original
and matched spectra served as fitness function in guiding the GAs search for the
best FM parameters. Most matched instruments required three to five carriers for
a good match, similar to the wavetable matching results.

A few years after Chowning’s original work, Schottstaedt (1977) introduced
a double modulator FM model with two parallel modulators. If the carrier and
modulator frequencies are all related by integer multiples of the fundamental, a
harmonic tone results. Double FM-produced harmonics depend on a sum of Bessel
function differences and products. This is a more complicated relationship than the
single modulator FM, where each carrier’s harmonics depend on a single Bessel
function difference. This complexity makes double FM parameter optimization a
more difficult task than the formant FM parameter optimization.

In a later study, Chowning (1980) designed a double carrier FM instrument to
simulate a singing soprano voice. Like Morrill’s FM trumpet, Chowning centred
the first carrier at the fundamental and the second at an upper formant, intuitively

3. Evolution in Digital Audio Technology 63

deriving the parameters of the instrument. He identified vibrato as critically im-
portant in achieving a voice-like sound.

Schottstaedt (1977) changed the basic FM instrument design by using two modu-
lators to simultaneously modulate the frequency of a single carrier. After describing
the spectral behaviour of the double modulator FM model, he gave parameters for
simulating the piano and string instruments. Schottstaedt used instrument char-
acteristics and trial-and-error to find the parameters. He found small modulation
indices to be the most useful.

Tan et al. (1994) introduced an enumerative procedure for optimizing a steady-
state double modulator FM model. Because this model only produced static spectra,
it did not effectively match instruments with dynamic spectra. Since then, genetic
algorithms have successfully optimized the double FM problem (Horner 1996b;
Lim and Tan 1999; Tan and Lim 1996;). The GA optimized invariant modula-
tion indices and found relatively small modulation indices. Double FM matches
were worse than formant FM matches when compared against the same num-
ber of table lookups. However, double FM matches were better than formant FM
matches for the same number of carriers, an advantage when double FM hardware is
available.

Justice (1979) introduced the nested modulator FM model with serial modula-
tors. Like double FM, if the carrier and modulator frequencies are all related by
integer multiples of the fundamental, a harmonic tone results. Writing the nested
modulator FM equation in terms of Bessel functions results in an infinite set of
sums, which is a much more complicated relationship than the Bessel function ex-
pansion of double FM. This complexity makes nested FM parameter optimization
more difficult than double FM parameter optimization.

Justice (1979) also outlined a Hilbert transform procedure to decompose a signal
into parameters for a single carrier FM instrument. The procedure attempted to
produce a matched FM signal close to the original, leaving the user to tweak the
parameters as desired. However, Justice matched FM-generated signals and not
those of acoustic musical instruments.

Payne (1987) extended Justice’s technique to a pair of carriers with nested
modulators. Each carrier contributed to an independent frequency region, giving a
more accurate match than with a single carrier. In addition to matching contrived
FM signals, Payne matched a cello sound. The result was reportedly string-like,
but lacking properties of liveliness. Payne reported that the matching procedure
was computationally very expensive.

Delprat and her collaborators used a wavelet analysis and a Gabor transform to
find spectral trajectories to estimate the modulation parameters (Delprat, Guille-
main and Kronland-Martinet 1990; Delprat 1997). This approach is similar to that
used by Justice and Payne except that it breaks the frequency range into more com-
ponent parts. Thus, it is also computationally expensive. Delprat gave examples
for a saxophone and trumpet using five carrier-modulator pairs, an indication that
precise spectral control requires multiple carriers.

Horner (1998) also applied the GA to nested modulator FM matching, opti-
mizing invariant modulation indices. Like double FM matching, the optimized

64 Horner

parameters for nested modulator FM had relatively small modulation indices. The
results showed that if nested modulator FM hardware is already available, then
double or triple modulator FM gives the best results of all the FM models for the
same number of carriers.

Another FM variant that proved useful in synthesizers in the 1980s was feedback
FM (Mitsuhashi 1982; Tomisawa 1981). The output of the carrier modulates the
following sample, scaled by a modulation index. When the modulation index is
less than about 1.5, a monotonically decreasing spectrum results (Tomisawa 1981).
Because of this, feedback FM is potentially more easily controlled than the other
forms of FM, where the harmonics oscillate in amplitude as the modulation index
changes. Another advantage of feedback FM over other forms of FM is that its
harmonic amplitudes are strictly positive when the modulation index is less than
1.5 (other forms of FM produce both positive and negative amplitudes). This avoids
cancellation when adding multiple carriers together. The monotonically decreasing
spectrum of feedback FM has a disadvantage as well. Many musical instruments
have strong formants at upper harmonics, but feedback FM’s monotonic spectrum
cannot model these formants. Ring modulation of the feedback FM carrier with a
cosine wave overcomes this limitation and allows formant simulation (Dodge and
Jerse 1997, pp. 92-94).

GAs have also been applied to feedback FM matching using time-varying mod-
ulation indices (Horner 1998). Like double FM, the optimized parameters for
feedback FM had relatively small modulation indices. Feedback FM often gave
the best matches of all the FM models when compared against the same number
of table lookups, indicating feedback FM is a good choice for software synthesis
where computation is the main factor.

Overall, FM synthesis provides real-time flexibility over wavetable synthesis
when wavetable memory is limited, though wavetable matching is simpler and
more effective than FM matching in general (Horner 1997). Among the various
types of FM, the best method depends on the given situation. For simplicity and
ease of control, formant FM is best. For software synthesis where computation is
the main factor, feedback FM is best. If FM hardware is available, nested modulator
FM is best.

3.2.6. Waveshaping Synthesis

Risset was the first to experiment with what is now known as waveshaping synthesis
or nonlinear distortion (Risset and Mathews 1969). Arfib (1979) and LeBrun (1979)
independently established the method as an alternative to FM synthesis. Like FM
synthesis, waveshaping allows dynamic control of the spectrum with only a few
parameters and it allows more precise spectral control in some ways.

The basic idea is to pass a sine wave of variable amplitude through a shaping
function, which distorts the signal. The sine wave amplitude envelope has the ef-
fect of scaling the input signal, which indirectly controls the level of distortion.
Typically higher-amplitude values result in more distortion and a richer spectral
output, somewhat the way many acoustic instruments increase in brightness with

3. Evolution in Digital Audio Technology 65

increasing amplitude. LeBrun and Arfib showed that by restricting the shaping
function to Chebyshev polynomials, the output steady-state spectrum can be pre-
dicted. In waveshaping, the amplitude of the input sine wave is thus used to control
timbre, rather than overall loudness. Instead, a second amplitude envelope is ap-
plied to the output of the shaping function to control overall loudness. Roads
(1996, pp. 252-260) gives a more detailed overview of waveshaping synthesis.

To match an acoustic instrument sound there are, therefore, three parameters:
The shaping function, the sine wave amplitude envelope and the loudness amplitude
envelope. Arfib (1979) and Beauchamp (1982) showed how to set these parameters
for a simple waveshaper. These results are similar in nature and quality to that of
optimizing a simple formant FM module with time-varying modulation index.
Beauchamp (1979) added a high pass filter to the waveshaping output to better
simulate brass instruments by matching their brightness evolution.

Beauchamp and Horner (1992) used GA optimization of filter and waveshaping
parameters with multiple waveshapers. Because of the large number of parameters,
an iterative strategy was used. First, parameters were found for a single waveshaper
and high pass filter. They then subtracted the resulting spectrum from the original
spectrum to obtain a residual spectrum. Parameters for a second waveshaper and
filter were then found to best match the residual spectrum. Average errors were
reduced by 25% and 50% for two and three waveshapers, respectively.

3.2.7. Discrete Summation Synthesis

Discrete summation synthesis is a relatively unknown cousin of FM synthesis and
was first described by Moorer (1976, 1977). Like FM, discrete summation synthesis
generates a complete set of harmonic sine waves from only a small number of them
(usually two to five). The price paid for this computational efficiency is that only a
subset of possible spectra can be produced. More spectral control can be obtained
by using multiple ring-modulated discrete summation synthesis modules, each with
its own amplitude envelope (Dodge and Jerse 1997). The spectrum of each module
is controlled by three parameters: The amplitude decay factor, carrier frequency and
modulating frequency. The discrete summation synthesis parameters have a more
straightforward effect than FM parameters. The output spectrum of each module
has double sidebands centred on a peak at the carrier frequency, with partials in
each sideband decaying exponentially according to the decay factor. Like formant
FM, if the carrier and modulating frequencies are suitably constrained, the resulting
sidebands will form a harmonic series.

Most work on discrete summation synthesis has been limited to theoretical dis-
cussion about the discrete summation synthesis formulas, with the parameters left
to the user to pick by hand. An exception is the work by Chan and colleagues
(Chan and Horner 1996; Yuen, Chan and Horner 1996), which used genetic al-
gorithm optimization of discrete summation synthesis parameters. They found
that three to five discrete summations were adequate to give good matches. They
also compared the performance of discrete summation matching with wavetable

66 Horner

matching. Wavetable matching always gave better results, but the difference was
relatively small when more modules were used.

Overall, discrete summation synthesis is an excellent choice when wavetable
memory is limited (e.g. in mobile phones) since it only requires a single sine
wave. Discrete summation synthesis also provides more real-time flexibility than
wavetable synthesis. Compared to FM synthesis, the spectra of discrete summa-
tions have a straightforward roll off, which makes them more intuitive to work
with than FM-generated spectra.

3.2.8. Granular Synthesis

Granular synthesis builds up a complex sound from a cloud of very short grains
of simple sounds (Xenakis 1971; Roads 1978, 1985; Roads 1996). Typically, each
grain is about 10 to 100 ms and composed of simple waveforms, FM waveforms
(Truax 1988; Roads 1985; Waschka and Ferreira 1988) or sound samples (Jones
and Parks 1988; Truax 1989, 1993). Aside from the waveform, other grain pa-
rameters include amplitude, frequency and duration. Precise control of the grains
is cumbersome because there are typically hundreds of them combined at each
instant to build up a sound cloud.

To overcome this difficulty, several high-level approaches have been devised to
regulate the multitude of parameters, including cellular automaton (Bowcott 1989;
Orton, Hunt and Kirk 1991), population modelling (Bowcott 1990), nonlinear
functions (Hamman 1991) and neural networks (Nagashima 1992).

Bowcott (1990) used an evolutionary algorithm to generate granular synthesis
events. The chromosome of each grain includes its synthesis type and a list of
parameters for the synthesis type. The events change in time as the evolution
process unfolds and the grains respond to one another.

Fujinaga and Vantomme (1994) used genetic algorithms to regulate granular
synthesis parameters. They considered each grain an individual in the GA pop-
ulation and mapped the grain’s parameters to the chromosome bitstring. Each
population represents a time frame in the overall evolution of the cloud. Change
can be controlled in the grain population by dynamically varying the GA crossover
rate, mutation rate, population size and the fitness function itself. Since the applica-
tion is free from the usual GA constraints such as the need to converge, composers
can freely modify the GA parameters to explore the granular sound space. The
same idea can be applied with other evolutionary processes that have populations
of individuals.

In another approach, Johnson (2003) implemented a system for exploring sound
spaces with interactive GAs. The system acts as an interface to FOF synthesis
(Roads 1996), which Johnson classifies as a special case of granular synthesis.
The user is presented with an interface consisting of a series of buttons, each
representing a current member of the population. The user rates the sounds with a
slider and when finished, signals the population to advance to the next generation.
Johnson found that it only took a small number of generations to converge the
population to one particular region in the sound space.

3. Evolution in Digital Audio Technology 67

3.2.9. Physical Modelling Synthesis

Physical modelling synthesis uses mathematical models of an instrument’s physi-
cal acoustics. The advantages of physical modelling include scalability (being able
to produce a family of instruments from a single instrument model), more real-
istic note and timbre transitions and the ability to naturally produce performance
accidents such as split notes and squeaks. Physical models can be computation-
ally expensive, but some relatively efficient algorithms such as waveguides have
been devised based on DSP operations such as delay lines, filters and table lookup
(Roads 1996). This efficiency is gained at the expense of accuracy, with results
that are often instrument-like rather than near-perfect matches.

Even these efficient physical models contain a large number of parameters.
There are many effective methods for the estimation of these parameters for linear
models, but estimation of parameters for nonlinear models is very difficult (Smith
1983).

Vuori and Vilimiki (1993) used a simulated evolution algorithm for parameter
estimation of nonlinear physical models. The technique was applied to estimate
the steady-state parameters of their real-time DSP flute model, which consisted
of three delay lines and appropriate digital filters between them. The simulated
evolution algorithm converged smoothly and effectively to the desired level. Vuori
and Vilimiki noted the same approach could be used for the parameter estimation
of other nonlinear models as well.

Cook (1995) used physical models of a flute for both sound synthesis and anima-
tion. For the sound synthesis part, he used a series of cylindrical waveguides with
tonehole junctions and filters, a coupled-noise model to more accurately model
noise components and low-order filters to model the inertial characteristics of the
flute player’s fingers. Controlling this complex instrument through the parameters
was very difficult. Cook set the initial parameters from physical measurements and
first principles. He then randomized the parameters around the initial values and
used a GA to optimize the parameters through evolution. The synthesis model was
then combined with ray-tracing animation to create the sonic and visual experience
of ‘driving around outside and inside the flute’.

3.2.10. Waveform Synthesis

Most of the synthesis techniques mentioned previously are frequency-domain tech-
niques, where the spectrum of the instruments is optimized or manipulated. An
alternative approach is to work with the time-domain waveform directly, which
can be called signal matching rather than spectral matching. Signal matching is
generally much more difficult than spectral matching since both the spectrum and
the phase must be matched in signal matching, whereas most spectral matching
research only matches the spectrum.

Stapleton and Bass (1988) applied a spectrum matching technique for waveform
synthesis of musical instrument tones. Their method, based on the Karhunen-
Loeve (KL) transform, determines time-domain basis functions from the signal

68 Horner

itself. The approach requires phase alignment of the basis waveforms as well as
their amplitude envelopes. The procedure is expensive (due to the computational
cost of finding phase alignments) and has phase cancellation problems when the
amplitude envelopes are changed during resynthesis. These are major obstacles in
the practical application of this technique.

In a completely different approach, Magnus (2004) designed an algorithm to
evolve waveforms. The goal was to produce genetically evolved music that grad-
ually moves toward a user-specified target waveform. Thus, the emphasis is on
the process rather than the result. In this work, chromosomes are time-domain
waveforms. To avoid clicks that would result from mutation or crossover of indi-
vidual samples, each gene represents a waveform segment between zero crossings.
Fitness is based on similarity to a target waveform. During evolution, all the wave-
forms in the population are written to a single sound file with each individual
waveform weighted by its fitness. The weighting causes individuals closest to the
target waveform to be most prominent. Thus, the musical output is greatly var-
ied at the beginning, with some fit individuals emerging within a few generations
and gradually the population takes on properties of the target waveform, perhaps
even converging to it. Magnus experimented with different types of mutation in-
cluding segment amplification, exponentiation, reversal, removal, repetition and
swapping. She found that each mutation type has its own characteristic sound.
For example, repetition allows the target waveform to be most readily identified.
Magnus incorporated her algorithm in a compositional framework where a world
is defined in which the waveforms evolve. The world is characterized by a num-
ber of loudspeaker locations, each with its own target waveform and mutation
probabilities.

A very similar form of waveform synthesis by evolutionary processes was
investigated in papers by Fornari and colleagues (2001a, b, c). Their system
also created an evolutionary sequence of waveforms that gradually converge to
a target population. A genetic algorithm applied waveform transformations using
customized crossover and mutation operators. A Hamming window was used to
smooth waveform segments selected for crossover to avoid clicks. Mutation was
implemented as a modulation of the initial waveform. For each generation, only
the best waveform in the population is sent to the output sound file. The sonic
evolution tends to converge to a static sound when the target population remains
unchanged, but the user is allowed to intervene and replace the target population
at any time, thus pushing evolution in a different direction.

3.2.11. Synthesis System Design

Synthesis system design is a generalization of parameter optimization where the
sound synthesis method itself is optimized as a parameter.

Takala et al. (1993) used timbre trees to represent sound signals, where each
node in the tree represented an arithmetic operation, analytic function or noise
generator. Vectorized operations were also provided for compact representation
of additive synthesis. They used interactive GA to mutate timbre trees, with users

3. Evolution in Digital Audio Technology 69

guiding the evolution. Using these tools, they produced a class of bee-like sounds
ranging from mosquitoes to chain saws, as well as a class of police sirens ranging
from the realistic to the bizarre. They also varied the parameter values to allow
sound morphing over the full range of bee-like and chainsaw-like sounds. This
system can be viewed as the first application of genetic programming to sound
design.

Garcia (2000, 2001) extended and generalized this genetic programming ap-
proach to automating the design of sound synthesis algorithms. The system used
expression trees to represent sound synthesis algorithms. Evolutionary methods
were used in two stages: (1) for suggesting how the trees should be structured and
(2) for optimizing the parameters within the tree. The main idea is to allow the
evolutionary method to suggest which form of synthesis (FM, LPC, filter synthe-
sis, etc.) is most effective at representing the target sound. For a fitness function,
Garcia used phase information as well as spectral information. He also used a
psychoacoustic model of simultaneous frequency masking in some of his exper-
iments. He tested his system on a simple FM woodwind instrument and verified
that it could generate an expression tree with close similarity to that of the target
equation (Garcia 2001). The spectrum agreed with the target in general but had
higher energy at high frequencies. He also tested a piano tone sampled from a
synthesizer with modest success, managing to evolve a tone that sounded like a
‘string hit by a hammer’ (Garcia 2005).

It would be interesting to see if synthesis system design can more successfully
replicate acoustic instruments without phase optimization. GAs are good for prob-
lems that are big, but not too big. If there are too many parameters, the GA may
not find a promising region of the search space. The system might work better if at
least the general synthesis type is specified in advance by the user (FM synthesis,
wavetable synthesis/interpolation, filtering, etc.). As an example, if the user selects
FM synthesis, the system could then determine which form of FM gives the best
representation (e.g. formant FM, multiple modulator FM, nested modulator FM or
feedback FM). In any case, synthesis system design is an area with good potential
for further exploration.

3.3. Other Digital Audio Applications

In addition to music synthesis and processing, evolutionary algorithms have also
been used in a variety of other digital audio applications. Music recognition in
particular includes a wide range of musical applications. Optical recognition of
music notation and musical instrument recognition are two music recognition
applications where genetic algorithms have been used. Another GA application is
the tuning of musical scales.

3.3.1. Optical Music Recognition

Automatic recognition of musical notation is called optical music recognition.
Typically, such a system uses various features such as height, width, area and

70 Horner

central moments of the musical symbols (Fujinaga 1996). The feature vectors of a
given sample are compared to those of previously classified samples, to determine
the class of the closest match. The k-nearest neighbour (k-NN) classifier assigns
the class represented by the majority of the k-nearest neighbours to the given
sample.

Fujinaga (1996) combined the k-NN classifier and a genetic algorithm to form
an exemplar-based learning system. The system can learn to recognize new music
symbols and handwritten music notation. It continuously improves by adjusting
the weighting of each feature. The weights are coded as genes in the GA. Fujinaga’s
experiments with the system showed dramatic improvements in the recognition
rate.

3.3.2. Music Instrument Recognition

Another classification problem is that of timbre recognition, which has become
very popular in recent years (Herrera-Boyer 2003). Similar to their optical musical
recognition work, Fujinaga and his co-authors again used an exemplar-based learn-
ing system with a k-NN classifier enhanced by a genetic algorithm (Fujinaga 1998;
Fraser and Fujinaga 1999; Fujinaga and MacMillan 2000). In his first experiment,
Fujinaga (1998) selected features from the steady-state portion of the sound. The
features included spectral centroid and higher order moments such as skewness.
The recognition rate was 50% for a 39-timbre group and 81% for a 3-timbre group.
In a second experiment (Fraser and Fujinaga 1999), two improvements were made.
First, features were selected from the attack rather than steady-state portions of
the sound. Second, dynamic spectral features were added such as spectral centroid
velocity and its variance. The recognition rate increased to 64% for the 39-timbre
group and to 98% for the 3-timbre group. In a third experiment (Fujinaga and
MacMillan 2000), the system was implemented in real time and spectral irregular-
ity and tristimulus were added as spectral envelope features. The recognition rate
increased further to 68% for the 39-timbre group.

3.3.3. Musical Tuning

Another digital audio application is the search for optimal tuning of musical scales.
The idea is to tune a harmonic progression so that the harmonic intervals are as
beat-free as possible. The assumption is that minimizing beats results in better
tuning.

While it is possible to tune some simple chord sequences without beats using a
fixed just tuning (Doty 1993), for other sequences it is not. Considerable previous
work has focused on fixed tunings such as just, Pythagorean, meantone, Werkmeis-
ter, Vallotti and equal temperament (Lloyd and Boyle 1979; Partch 1974; Lindley
1984; Carlos 1987; Chalmers 1993). For instance, assuming that the worst tun-
ing errors among thirds and fifths must be minimized, the best fixed tuning for a
mostly diatonic piece tends to be close to one-fourth comma meantone tuning and

3. Evolution in Digital Audio Technology 71

the best tuning for an adventurously chromatic piece tends to be close to equal
temperament (Hall 1980).

If a fixed pitch centre is sacrificed, a wider range of chord sequences can be
tuned without beats using an adaptive just tuning of the notes (Sethares 1994).
An adaptive tuning allows the pitch of a particular note to vary according to its
context. For example, a middle C might be tuned to 260 Hz on one note and 258
Hz on another. Creating a composition through software synthesis allows the use
of adaptive tunings.

Sethares (1994) introduced an adaptive just tuning method for harmonic timbres
based on maximizing consonance, an idea mentioned in Polansky (1987). The
technique customizes tunings based on the music and also on the timbre of the
instruments playing it.

Even with an adaptive just tuning, the intervals in many musical examples
cannot be tuned without beats. In such cases, some form of optimization is needed
to minimize beats. Horner and Ayers (1996) used a genetic algorithm to optimize
adaptive tunings for chord sequences. The method makes the thirds and fifths
as beatless as possible. The GA results were significantly better in a number of
musical examples compared to just intonation, with its commas and other standard
tunings, such as meantone and equal temperament.

Of course, making thirds and fifths as beatless as possible may run counter to the
composer’s intention of creating tension in the equal tempered beating of particular
chords. Adaptive tuning is probably best suited for pre-equal tempered music and
contemporary music written specifically for it, though it can give attractive results
in many kinds of music.

3.4. Conclusions

We have reviewed the application of evolutionary algorithms to music synthesis,
music processing and other digital audio applications. GAs in particular have
proved effective in evolving parameters for nearly every form of music synthesis.
They have also been used in a variety of other digital audio applications including
artificial reverberation, sound localization, music recognition and musical tuning.

GA solutions are often much more intuitive to work with than statistically-
generated solutions. For example, in wavetable parameter optimization the ba-
sis spectra are selected from the original spectral snapshots rather than being
statistically-generated. The same holds true in HRTF data reduction in sound
localization. These solutions have a physical basis that users can intuitively under-
stand.

The optimized parameters for the various music synthesis techniques provide
an interesting point of departure for instrument designers in applications such as
timbral interpolation (Grey 1975; Beauchamp and Horner 1998). Timbral inter-
polation crossfades the parameters of one spectral match to that of another. The
smoothness of the transformation depends on the synthesis technique. For exam-
ple, wavetable synthesis gives a smoother interpolation than FM synthesis, since

72 Horner

interpolating distantly spaced FM index values will likely produce wildly changing
spectral results during the interpolation due to oscillation of the Bessel functions.
However, such interpolations may be musically interesting and useful.

Genetic and evolutionary algorithms are a great way to optimize digital audio
problems with many interacting variables, but even GAs can fail to find good
solutions when there are too many variables or their interactions are too complex.
For example, phase optimization in time waveforms must take into account phase
cancellations which are subtle and complex. While finding a good group of phases
is possible for a single waveform period (Horner 2000; Horner and Wun 2005),
tracking time-varying changes in the phase is indeed difficult (Garcia 2000, 2001,
2005). While this threshold will gradually rise as CPU speeds continue to increase
in the future, nevertheless some problems will remain intractable.

Evolutionary algorithms are a great way to solve a problem when no problem-
specific approach is obvious. As we saw with wavetable parameter optimization,
once a GA solution was in place, other methods emerged and could be tested
against this benchmark (Horner 2001; Mohr 2002; Ng and Horner 2002; Wun,
Horner and Ayers 2003; Wun, Horner and Ayers 2004; Mohr and Li 2005a, b; Wun
and Horner 2005a, b). Another example was finding line segment approximations
of amplitude envelopes for additive software synthesis, where a greedy approach
could find solutions about as good as GA and much faster.

Evolutionary algorithms have attractive characteristics that make them well
suited to digital audio problems. As parameter optimizers, they are easy-to-use,
flexible and effective. As natural processes, they are an appealing way to evolve
musical timbres. As learning algorithms, they are a great way to gracefully adapt
to new situations in music recognition applications. Evolutionary algorithms will
surely prove useful in many other digital audio applications in the future.

Acknowledgements

The Hong Kong Research Grant Council’s Projects HKUST6167/03E and
HKUST6135/05E supported this work.

References

Arfib, D. (1979). Digital synthesis of complex spectra by means of multiplication of non-
linear distorted sine waves. Journal of the Audio Engineering Society, 27(10): 757-779.

Atal, B. and Hanauer, S. (1971). Speech analysis and synthesis by linear prediction of the
speech wave. Journal of the Acoustical Society of America, 50(2): 637-655.

Beauchamp, J.W. (1969). A computer system for time-variant harmonic analysis and synthe-
sis of musical tones, In H. von Foerster and J.W. Beauchamp (Eds.), Music By Computers.
John Wiley & Sons, NY.

Beauchamp, J.W. (1979). Brass-tone synthesis by spectrum evolution matching with non-
linear functions, Computer Music Journal, 3(2): 35-43. Revised and updated version In
C. Roads and J. Strawn (Eds.), Foundations of Computer Music, MIT Press, Cambridge,
MA: pp. 95-113.

3. Evolution in Digital Audio Technology 73

Beauchamp, J.W. (1982). Synthesis by amplitude and ‘brightness’ matching of analyzed
musical instrument tones.Journal of the Audio Engineering Society, 30(6): 396—406.
Beauchamp, J.W. and Horner, A. (1992). Extended nonlinear waveshaping analy-
sis/synthesis techniques, In Proceedings of the 1992 International Computer Music Con-

ference, San Jose, CA, pp. 2-5.

Beauchamp, J.W. and Horner, A. (1998). Spectral modeling and timbre hybridization pro-
grams for computer music. Organised Sound, 2(3): 253-258.

Bowcott, P. (1989). Cellular automation as a means of high level compositional control of
granular synthesis. In Proceedings of the 1989 International Computer Music Conference,
Columbus, OH, pp. 55-57.

Bowcott, P. (1990). High level control of granular synthesis using the concepts of inheri-
tance and social interaction.” In Proceedings of the 1990 International Computer Music
Conference, Columbus, OH, pp. 50-52.

Cann, R. (1979-1980). An analysis/synthesis tutorial, Computer Music Journal, 3(3): 6-11;
3(4): 9-13; 4(1): 36-42.

Carlos, W. (1987). Tuning: At the crossroads. Computer Music Journal, 11(1): 29-43.

Chalmers, J. (1993). Divisions of the Tetrachord. Hanover, NH: Frog Peak Music.

Chamberlin, H. (1980). Advanced real-timbre music synthesis techniques. Byte Magazine,
April: 70-94 and 180-196.

Chan, S.K. and Horner, A. (1996). Discrete summation synthesis of musical instrument
tones using genetic algorithms. Journal of the Audio Engineering Society, 44(7): 581—
592.

Cheung, N.M. and Horner, A. (1996). Group synthesis with genetic algorithms. Journal of
the Audio Engineering Society, 44(3): 130-147.

Cheung, N.M., Trautmann, S. and Horner, A. (1998b). Head-related transfer function mod-
eling in 3-d sound systems with genetic algorithms. Journal of the Audio Engineering
Society, 46(6): 531-539.

Chowning, J. (1973). The synthesis of complex audio spectra by means of frequency mod-
ulation. Journal of the Audio Engineering Society, 21(7): 526-534.

Chowning, J. (1980). Computer synthesis of the singing voice, Sound Generation in Wind,
Strings, Computers. Stockholm: The Royal Swedish Academy of Music.

Chu, C.H.H. (1990). A genetic algorithm approach to the configuration of stack filters.
In Proceedings of the 3rd International Conference on Genetic Algorithms and their
Applications. Arlington, VA, pp. 219-224.

Cook, P. (1995). Integration of physical modeling for synthesis and animation. In Proceed-
ings of the 1995 International Computer Music Conference. Banff, Canada, pp. 525-
528.

Delprat, N., Guillemain, P. and Kronland-Martinet, R. (1990). Parameter estimation for non-
linear resynthesis methods with the help of a time-frequency analysis of natural sounds.
In Proceedings of the 1990 International Computer Music Conference. Glasgow, pp.
88-90.

Delprat, N. (1997). Global frequency modulation law extraction from the gabor transform of
a signal: A first study of the interacting components case. I[EEE Transactions on Speech
and Audio Processing, 5(1): pp. 64-71.

Dodge, C. (1989). On speech songs. In M. Mathews and J. Pierce (Eds.), Current Directions
in Computer Music Research., Cambridge, MA, MIT Press, pp. 9-17.

Dodge, C. and Jerse, T. (1997). Computer Music. Schirmer Books, NY.

Doty, D. (1993). The Just Intonation Primer. Other Music, San Francisco, p. 38.

Flanagan, J.L. (1972). Speech Analysis, Synthesis, and Perception. Springer-Verlag, NY.

74 Horner

Fornari, J., Manzolli, J., Maia, A. and Damiani, F. (2001a). The Evolutionary Sound Syn-
thesis Method. ACM Multimedia, Ottawa, Ont, Canada, September 2001.

Fornari, J., Manzolli, J., Maia, A. and Damiani, F. (2001b). Waveform synthesis using
evolutionary computation. In Proceedings of the V Brazilian Symposium on Computer
Music. Fortaleza, Brazil.

Fornari, J., Manzolli, J., Maia, A. and Damiani, F. (2001c). The Evolutionary Sound Syn-
thesis Method. SCI Conference. Orlando, FL.

Fujinaga, I. and Vantomme, J. (1994). Genetic algorithms as a method for granular syn-
thesis regulation. In Proceedings of the 1994 International Computer Music Conference.
Aarhus, Denmark, pp. 138-141.

Fujinaga, 1. (1996). Exemplar-based learning in adaptive optical music recognition system.
In Proceedings of the 1996 International Computer Music Conference, Hong Kong, pp.
55-56.

Fujinaga, 1. (1998). Machine recognition of timbre using steady-state of acoustic musical
instruments. In Proceedings of the 1998 International Computer Music Conference. Ann
Arbor, MI, pp. 207-210.

Fraser, A. and Fujinaga, 1. (1999). Toward real-time recognition of acoustic musical instru-
ments. In Proceedings of the 1999 International Computer Music Conference. Beijing,
pp. 175-177.

Fujinaga, 1. and MacMillan, K. (2000). Realtime recognition of orchestral instruments. In
Proceedings of the 2000 International Computer Music Conference. Berlin, pp. 241-
243.

Garcia, R. (2000). Towards the Automatic Generation of Sound Synthesis Techniques:
Preparatory Steps. 109th Convention. Audio Engineering Society. Los Angeles, CA,
Preprint 5186.

Garcia, R. (2001). Automatic Generation of Sound Synthesis Techniques. M.S. Thesis.
Cambridge, MA: Media Lab, MIT.

Garcia, R. (2005). http://www.ragomusic.com/research/ml/.

Grey, J. (1975). An Exploration of Musical Timbre. Ph.D. Dissertation. Stanford, Depart-
ment of Music, Stanford University.

Grey, J. and Moorer, J. (1977). Perceptual evaluation of synthesized musical instrument
tones. Journal of the Acoustical Society of America, 62: 454—462.

Hall, D. (1980). Musical Acoustics: An Introduction. Wordsworth Publishing, Belmont,
CA.

Hamman, M. (1991). Mapping complex systems using granular synthesis. In Proceedings
of the 1991 International Computer Music Conference. Montréal, Canada, pp. 475-478.

Herrera-Boyer, P., Peeters, G. and Dubnov, S. (2003). Automatic classification of musical
instrument sounds. Journal of New Music Research, 32(1): 3-21.

Horner, A., Beauchamp, J.W. and Haken, L. (1993a). Methods for multiple wavetable
synthesis of musical instrument tones. Journal of the Audio Engineering Society, 41(5):
336-356.

Horner, A., Beauchamp, J.W. and Haken, L. (1993b). Machine tongues XVI: Genetic algo-
rithms and their application to fm matching synthesis. Computer Music Journal, 17(4):
17-29.Horner, A., Beauchamp, J.W. and Packard, N. (1993). Timbre breeding. In Pro-
ceedings of the 1993 International Computer Music Conference. Tokyo, pp. 396-398.

Horner, A. (1995). Wavetable matching synthesis of dynamic instruments with genetic
algorithms. Journal of the Audio Engineering Society, 43(11): 916-931.

Horner, A., Cheung, N.M. and Beauchamp, J.W. (1995). Genetic algorithm optimization of
additive synthesis envelope breakpoints and group synthesis parameters. In Proceedings

3. Evolution in Digital Audio Technology 75

of the 1995 International Computer Music Conference. Banff, Canada, pp. 215—
222.

Horner, A. (1996a). Computation and memory tradeoffs with multiple wavetable interpo-
lation. Journal of the Audio Engineering Society, 44(6): 481-496.

Horner, A. (1996b). Double modulator fm matching of instrument tones. Computer Music
Journal, 20(2): 57-71.

Horner, A. and Ayers, L. (1996). Common tone adaptive tuning using genetic algorithms.
Journal of the Acoustical Society of America, 100(1): 630-640.

Horner, A. and Beauchamp, J.W. (1996). Piecewise linear approximation of additive syn-
thesis envelopes: A comparison of various methods. Computer Music Journal, 20(2):
72-95.

Horner, A. (1997). A comparison of wavetable and fm parameter spaces. Computer Music
Journal, 21(4): pp. 55-85.

Horner, A. (1998). Nested modulator and feedback fm matching of instrument tones. /EEE
Transactions on Speech and Audio Processing, 6(4): 398—409.

Horner, A. and Ayers, L. (1998). Modeling acoustic wind instruments with contiguous
group synthesis. Journal of the Audio Engineering Society, 46(10): 868—879.

Horner, A. (1999). Fake horns: Experiments in taped auditions. The Horn Call: Journal of
the International Horn Society, 30(1): 61-65.

Horner, A. (2000). Low peak amplitudes for wavetable synthesis. IEEE Transactions on
Speech and Audio Processing, 8(4): 467-470.

Horner, A. (2001). A simplified wavetable matching method using combinatorial basis
spectra selection. Journal of the Audio Engineering Society, 49(11): 1060-1066.

Horner, A. and Ayers, L. (2002). Cooking with Csound Part 1: Woodwind and Brass Recipes.
Madison Wisconsin, A-R Editions, Computer Music and Digital Audio Series.

Horner, A. and Wun, C.W. (2005). Low peak amplitudes for group additive synthesis.
Journal of the Audio Engineering Society, 53(6): 475-484.

Johnson, C. (2003). Exploring sound-space with interactive genetic algorithms. Leonardo,
36(1): 51-54.

Jones, D.L. and Parks, T. (1988). Generation and combination of grains for music synthesis.
Computer Music Journal, 12(2): 27-34.

Justice, J. (1979). Analytic signal processing in music computation. [EEE Transactions on
Acoustics, Speech, and Signal Processing, 27(6): 670-684.

Kistler, D. and Wightman, F. (1992). A model of head-related transfer functions based
on principal components analysis and minimum-phase reconstruction. Journal of the
Acoustical Society of America, 91: 1637-1647.

Kleczkowski, P. (1989). Group additive synthesis. Computer Music Journal, 13(1): 12-20.

Lansky, P. and Steiglitz, K. (1981). Synthesis of timbral families by warped linear prediction.
Computer Music Journal, 5(3): 45-49.

Lansky, P. (1989). Compositional applications of linear predictive coding. In M. Mathews
and J. Pierce (Eds.), Current Directions in Computer Music Research. Cambridge, MA,
MIT Press, pp. 5-8.

LeBrun, M. (1979). Digital waveshaping synthesis. Journal of the Audio Engineering So-
ciety, 27(4): 250-266.

Lee, K. and Horner, A. (1999). Modeling piano tones with group synthesis. Journal of the
Audio Engineering Society, 47(3): 101-111.

Lim, S.M. and Tan, B.T.G. (1999). Performance of the genetic annealing algorithm in DFM
synthesis of dynamic musical sound samples. Journal of the Audio Engineering Society,
47(5): 339-354.

76 Horner

Lindley, M. (1984). Temperaments. In S. Sadie (Ed.), The New Grove Dictionary of Musical
Instruments. Macmillan, London.

Lloyd, L. and Boyle, H. (1979). Intervals, Scales and Temperaments. St. Martins Press, NY.

Magnus, C. (2004). Evolving electroacoustic music: The application of genetic algorithms
to time-domain waveforms. In Proceedings of the 2004 International Computer Music
Conference. Miami, pp. 173-176.

Maher, R. and Beauchamp, J.W. (1990). An investigation of vocal vibrato for synthesis.
Applied Acoustics, 30: 219-245.

Markel, J. and Gray, A. (1976). Linear Prediction of Speech. Springer, NY.

Martens, W. (1987). Principal components analysis and re-synthesis of spectral cues to per-
ceived direction. In Proceedings of the 1987 International Computer Music Conference.
Urbana, IL, pp. 274-281.

Massie, D. and Stonick, V. (1992). The musical intrigue of pole-zero pairs. In Proceedings
of the 1992 International Computer Music Conference. San Jose, CA, pp. 22-25.

Mitsuhashi, Y. (1982). Musical sound synthesis by forward differences. Journal of the Audio
Engineering Society, 30(1/2): 2-9.

Mohr, J. (2002). Music Analysis/Synthesis by Optimized Multiple Wavetable Interpolation.
Ph.D. Dissertation. Edmonton, Alberta, Canada, Department of Computer Science, Uni-
versity of Alberta.

Mohr, J. and Li, X. (2005a). Optimized multiple wavetable interpolation. WSEAS Transac-
tions on Information Science and Applications, 2(2): 265-273.

Mohr, J. and Li, X. (2005b). Wavetable interpolation of multiple instrument tones. In Pro-
ceedings of the 2005 International Computer Music Conference. Barcelona, Spain, pp.
741-744.

Moorer, J.A. (1976). The synthesis of complex audio by means of discrete summation
formulas. Journal of the Audio Engineering Society, 24(11): 717-7217.

Moorer, J.A. (1977). Signal processing aspects of computer music—A survey. Computer
Music Journal, 1(1): 4-37.

Moorer, J.A., Grey, J. and Snell, J. (1977). “Lexicon of analyzed tones—Part I: A violin
tone. Computer Music Journal, 1(2): 39-45.

Moorer, J.A., Grey, J. and Strawn, J. (1977). “Lexicon of analyzed tones—Part II: Clarinet
and Oboe tones. Computer Music Journal, 1(3): 12-29.

Moorer, J.A., Grey, J. and Strawn, J. (1978). Lexicon of analyzed tones—Part III: The
trumpet. Computer Music Journal, 2(2): 23-31.

Moorer, J.A. (1979). The use of linear prediction of speech in computer music applications.
Journal of the Audio Engineering Society, 27(3): 134-140.

Morrill, D. (1977). Trumpet algorithms for computer composition. Computer Music Jour-
nal, 1(1): 46-52.

Mrozek, E. and Wakefield, G. (1996). Perceptual matching of low order models to room
transfer functions. In Proceedings of the 1996 International Computer Music Conference.
Hong Kong, pp. 111-113.

Nagashima, Y. (1992). Real-time control system for pseudo granulation. In Proceed-
ings of the 1992 International Computer Music Conference. San Jose, CA, pp. 404—
405.

Ng, A. and Horner, A. (2000). Computation and memory tradeoffs in wavetable-filter match-
ing of musical instrument tones. Journal of the Audio Engineering Society, 48(10): 930—
939.

Ng, A. and Horner, A. (2002). Iterative combinatorial basis spectra in wavetable-matching.
Journal of the Audio Engineering Society, 50(12): 1054-1063.

3. Evolution in Digital Audio Technology 77

Oates, S. and Eaglestone, B. (1997). Analytic methods for group additive synthesis. Com-
puter Music Journal, 21(2): 21-39.

Orton, R., Hunt, A. and Kirk, R. (1991). Graphical control of granular synthesis. In Pro-
ceedings of the 1991 International Computer Music Conference. Montréal, Canada, pp.
416-418.

Partch, H. (1974). Genesis of a Music. Da Capo Press, NY.

Payne, R. (1987). A microcomputer based analysis/resynthesis scheme for processing sam-
pled sounds using FM. In Proceedings of the 1987 International Computer Music Con-
ference. Urbana, IL, pp. 282-289.

Polansky, L. (1987). Paratactical tuning: An agenda for the use of computer in experimental
intonation. Computer Music Journal, 11(1): 61-68.

Risset, J. and Mathews, M. (1969). Analysis of musical instrument tones. Physics Today,
22(2): 23-30.

Roads, C. (1978). Automated granular synthesis of sound. Computer Music Journal, 2(2):
61-62.

Roads, C. (1982). A conversation with James A. Moorer. Computer Music Journal, 6(4):
10-21.

Roads, C. (1985). Granular synthesis of sound. In C. Roads and J. Strawn (Eds.), Foundations
of Computer Music. MIT Press, Cambridge, MA, pp. 145-159.

Roads, C. (1991). Asynchronous granular synthesis. In G DePoli, A. Piccialli and C.
Roads (Eds.), Representations of Musical Signals. MIT Press, Cambridge, MA, pp. 143—
186.

Roads, C. (1996). The Computer Music Tutorial. MIT Press, Cambridge, MA.

Schatter, G., Ziiger, E. and Nitschke, C. (2005). A synaesthetic approach for synthesizer
interface based on genetic algorithms and fuzzy sets. In Proceedings of the 2005 Inter-
national Computer Music Conference. Barcelona, pp. 664—667.

Schottstaedt, B. (1977). The simulation of natural instrument tones using frequency mod-
ulation with a complex modulating wave. Computer Music Journal, 1(4): 46-50.

Serra, M.-H., Rubine, D. and Dannenberg, R. (1990). Analysis and synthesis of tones
by spectral interpolation. Journal of the Audio Engineering Society, 38(3): 111—
128.

Sethares, W. (1994). Adaptive tunings for musical scales. Journal of the Acoustical Society
of America, 96(1): 10-18.

Smith, J.O. (1983). Techniques for Digital Filter Design and System Identification with
Application to the Violin. Report No. STAN-M-14. Ph.D. Dissertation. Stanford, CA:
CCRMA, Dept. of Music, Stanford University.

So, K.F. and Horner, A. (2002). Wavetable matching of inharmonic string tones. Journal of
the Audio Engineering Society, 50(1/2): 46-56.

So, K.F. and A. Horner (2004). Wavetable matching of pitched inharmonic instrument tones.
Journal of the Audio Engineering Society, 52(5): 516-529.

Stapleton, J. and Bass, S. (1988). Synthesis of musical tones based on the Karhunen-Loiive
transform. IEEE Transactions on Acoustics, Speech, and Signal Processing, 36(3): 305—
319.

Strawn, J. 1980. Approximation and syntactic analysis of amplitude and frequency functions
for digital sound synthesis. Computer Music Journal, 4(3): 3-24.

Takala, T., Hahn, J., Gritz, L., Greigel, J. and Lee, J.W. (1993). Using physically-based mod-
els and genetic algorithms for functional composition of sound signals, synchronized to
animated motion. In Proceedings of the 1993 International Computer Music Conference.
Tokyo, pp. 180-183.

78 Horner

Tan, B.T.G., Gan, S.L., Lim, S.M. and Tang, S.H. (1994). Real-time implementation of
double frequency modulation (DFM) synthesis. Journal of the Audio Engineering Society,
42(11): 918-926.

Tan, B.T.G. and Lim, S.M. (1996). Automated parameter optimization for double frequency
modulation synthesis using the genetic annealing algorithm. Journal of the Audio Engi-
neering Society, 44(1/2): 3—-15.

Tomisawa, N. (1981). Tone production method for an electronic music instrument. U.S.
Patent 4,249,447

Truax, B. (1988). Real-time granular synthesis with a digital processing computer. Computer
Music Journal, 12(2): 14-26.

Truax, B. (1989). Composing with real-time granular sound. Perspectives of New Music,
28(2): 121-135.

Truax, B. (1993). Time-shifting and transposition of sampled sound with a real-time gran-
ulation technique. In Proceedings of the 1993 International Computer Music Confer-
ence. Tokyo, pp. 82-85.

Vuori, J. and Vilimiki, V. (1993). Parameter estimation of non-linear physical models by
simulated evolution—application to the flute model. In Proceedings of the 1993 Interna-
tional Computer Music Conference. Tokyo, pp. 402-405.

Waschka, R. and Ferreira, T. (1988). Rapid event deployment in a midi environment. Inter-
face, 17: 211-222.

Wun, C.W. and Horner, A. (2001). Perceptual wavetable matching synthesis of musical
instrument tones. Journal of the Audio Engineering Society, 49(4): 250-262.

Wun, C.W., Horner, A. and Ayers, L. (2003). Perceptual wavetable matching for synthesis
of musical instrument tones. In Proceedings of the 2003 International Computer Music
Conference. Singapore, pp. 251-258.

Wun, C.W., Horner, A. and Ayers, L. (2004). A comparison between local search and genetic
algorithm methods for wavetable matching. In Proceedings of the 2004 International
Computer Music Conference. Miami, pp. 386—389.

Wun, C.W. and Horner, A. (2005a). A comparison between local search and genetic algo-
rithm methods for wavetable matching. Journal of the Audio Engineering Society, 53(4):
314-325.

Wun, C.W. and Horner, A. (2005b). Evaluation of iterative methods for wavetable matching.
Journal of the Audio Engineering Society, 53(9): 826-835.

Xenakis, 1. (1971). Formalized Music. Indiana University Press, Bloomington, IN.

Yuen, J., Chan S.K. and Horner, A. (1996). Discrete summation synthesis and hybrid
sampling-wavetable matching with genetic algorithms. In Proceedings of the 1996 In-
ternational Computer Music Conference. Hong Kong, pp. 49-51.

Yuen, J. and Horner, A. (1997). Hybrid sampling-wavetable synthesis with genetic algo-
rithms. Journal of the Audio Engineering Society, 45(5): 316-330.

4

Evolution in Creative Sound Design

PALLE DAHLSTEDT

4.1. Introduction

... But what if the synthesizer just ‘grew’ programs? If you pressed a ‘randomize’ button
which then set any of the thousand ‘black-box’ parameters to various values and gave you
sixteen variations. You listen to each of those and then press on one or two of them—your
favourite choices. Immediately, the machine generates 16 more variations based on the
‘parents’ you’ve selected. You choose again. And so on. ... The attraction of this idea is
that one could navigate through very large design spaces without necessarily having any
idea at all of how any of these things were being made. . .. (Eno 1996)

Many different synthesis techniques have been developed in the last few decades.
They are widely available today in hardware or software synthesizers. Also, there
are various music programming languages and tools available for the implemen-
tation of sound synthesis algorithms, e.g. Max/MSP, Pure Data (or PD), Csound
and Nyquist.

Sound synthesis often involves a large number of parameters and the effective
operation and implementation of a synthesizer often requires background in acous-
tics, signal processing and computer programming. This makes sound synthesis
less accessible to non-technically oriented musicians. Even if one understands the
effect of each isolated parameter, it is difficult to predict the action of the various
parameters together because they often are mutually dependent. Also, the output
space can sometimes be so large that it is often impossible to search it system-
atically and effectively. Musicians often end up using factory sounds (i.e. sounds
from settings supplied by the manufacturers of the synthesizers), with occasional
few minor modifications.

Clearly, there is a need for high-level interfaces to sound synthesis systems
to help musicians to explore the possibilities of sound synthesis. This chapter
discusses how interactive evolution can be used to implement such high-level
interfaces.

The way in which sounds are represented is very important for interactive evo-
lution of sounds. One good alternative is to represent sounds as arrays of synthesis
parameters because interactive evolution of sounds allows for simultaneous con-
trol of a great number of parameters in a systematic and exploratory fashion. Also,

79

80 Dahlstedt

synthesis parameters generally represent high-level perceptual properties of the
sounds. The operators are applied to populations of such synthesis parameters
to generate variations, which in turn are used to synthesize new sounds. Those
sounds that are closer to the user’s aesthetic preferences or goals are selected and
the operators are applied once more to their respective synthesis parameters. This
process continues until the user finds the target sound or sounds.

Sound synthesis parameters typically control the timbre of a sound, and also
determine the gestural qualities through a variety of generators and processors, such
as low-frequency oscillators (LFOs), envelopes, step sequencers and so on. The
architecture of the synthesizer defines a space of possible output, which is navigated
and explored by the sound designer through the interactive selection process. The
efficiency of interactive evolution is greatly influenced by the representation of
sounds, which may or may not include information about the synthesizer itself
and the operators that produce the variations.

4.2. Interactive Evolution

Evolutionary algorithms have many interesting properties, rendering them suitable
for work in computer-aided creativity. The notion of evolution resembles the notion
of creativity in many respects. The creative process of an artist may involve keeping
anumber of ideas active, which are gradually elaborated and refined into artworks.
Similarly, a group of improvizers may evolve a number of musical ideas together
in jam sessions, constantly creating new variations, from which selected materials
are further evolved and so on. These processes are largely related to the notion
of memes (Dawkins 1976): Ideas or cultural elements that spread and evolve in a
Darwinian-like fashion. Also, creativity may in many cases be regarded as a search
for a solution to a problem, for a piece of material that fits a certain context or for
something surprising but suitable for a developing work or design. Evolutionary
algorithms are good at searching for solutions in a large space of possibilities,
especially when the exact form of the solution is not entirely known at the outset.

The three basic properties of evolutionary algorithms are inheritance, random
variation and selection. In most computer implementations of evolutionary algo-
rithms, the latter is implemented by assigning a fitness score to every member of
the population according to some evaluation criteria, technically referred to as fit-
ness criteria. Those individuals with the highest score are selected to produce the
next generation; those individuals that are not selected are removed from the pop-
ulation. This process is repeated until some halting condition is met (see Chapter 1
for an introduction to evolutionary algorithms).

The specification of fitness criteria is problematic for the evolution of aesthetic
works. For example, how can one formally define what is a good sound for a specific
musical context? Also, there is the problem that fitness criteria may differ from
time to time. On certain occasions, the composer may be looking for an agreeable
sound to fit smoothly within an existing musical setting. On other occasions, the
composer may be looking for a contrasting sound to cause a negative emotional

4. Evolution in Creative Sound Design 81

reaction. Moreover, the fitness criteria may well change during the evolutionary
process. Aninitial musical idea may change when unexpected interesting variations
are produced. To cut it short, the preferences of the creators themselves are the
most effective fitness criteria for the evolution of pieces of arts and music.

By considering human aesthetic judgements as fitness criteria, the evolutionary
process becomes an interactive process, requiring careful evaluation and active
choices from the user in each generation. Hence the term interactive evolution.

The idea of interactive evolution has been advocated by scientists such as Richard
Dawkins, who in the mid of the 1980s demonstrated the power and efficiency of
evolution with his Biomorph software (Dawkins 1986). With Biomorph, simple
recursive line-graphs could be evolved into intricate insect or plant shapes. In the
early 1990s, Karl Sims (1991) proposed one of the first systems using interactive
evolution to evolve art. In both systems, the user was presented with a grid of
images showing the current population with the predecessors displayed at the top
left-hand side corner. After browsing the images, the user selected one to be the
predecessor for the next generation of the population and so on. Sims also included a
reproduction method in his system, which crossed over two predecessors, allowing
for aspects of conceptually different images to be combined to form new images.

As mentioned in Chapter 1, one of the first attempts at the design of a system
using interactive evolution to synthesize sounds was proposed by Johnson (1999).
Sounds pose different challenges than images because sounds are time-based. The
human eye is capable to form an impression of a whole image in a fraction of a
second, allowing for quick browsing of a large number of images. In contrast, it is
difficult to evaluate a sound without hearing it entirely. Hence, the manual selection
of sounds takes time, which jeopardizes the interactive evolutionary process. This
problem is referred to as the fitness bottleneck. Visual representations of sounds,
such as spectrograms, amplitude envelopes or pitch contours, may sometimes help
but they cannot replace listening. Using a smaller population size can reduce the
generation turnover time, but this has negative effects on the efficiency of the
evolutionary process. Another remedy would be to evolve very short or repetitive
sounds, but again, this is far from satisfactory.

When compared to evolutionary systems with formalized fitness criteria, where
populations of thousands of individuals can be evolved automatically for thousands
of generations, the fitness bottleneck of interactive evolution of sound can be very
limiting.

Instead of considering interactive evolution as an optimization process, it might
be better to think of it as a technique for the exploration of a parametric space
defined by a sound synthesizer. The parameters of the synthesizer define a multi-
dimensional space of possible sounds — the number of parameters corresponds
to the dimension of the space. In addition to a space of possible sounds, a sound
synthesizer also defines the topology of the space, that is, distances between sounds
with relation to one another.

We can assume that a specific sound space contains some regions that are more
interesting than others. The question is how to find them. As an example, consider
a typical process of editing a sound in a synthesizer manually. In this case the

82 Dahlstedt

FIGURE 4.1. Different ways to navigate the parameter space of a synthesizer: (a) Traditional
manual parameter editing, where one parameter is changed at a time. (b) Random search,
where completely different random parameter sets are auditioned, until a suitable sound is
found. (c) A random population is auditioned and the most promising candidate is used as
a parent to produce the next generation. (d) With slight variations between the offspring.

starting point is either a predefined neutral sound, with all parameters set to their
default values or a chosen factory sound. The space is explored by adjusting one
parameter at a time while listening to the sound. This corresponds to a sequential
stepwise navigation in the space, as shown in Fig. 4.1(a). In theory, all regions of
the space could be reached by this method, but a prohibitive large number of steps
would be required for doing so. Since the editing is driven by a search for better or
more interesting sounds, each adjustment should lead to an improvement of some
kind. Depending on the nature of the synthesizer, this may prevent certain regions
from being reached, because the route to these regions may require passing through
uninteresting regions. The probability of reaching the region near the departure
point will be higher than the probability of reaching remote areas. An experienced
sound designer, who may understand the role of each parameter, should be able to
take shortcuts in order to target a certain sound directly. However, this would work
satisfactorily only when the target is known, which may not always be the case.

Unknown regions of the space can be reached by sampling random points in the
sound space as shown in Fig. 4.1(b), but this technique does not provide a way to
refine the sounds once they are found.

Is it then possible to search a sound space systematically for interesting sounds?
In general, the answer is no, because of the size of the space, which is often huge. A
comprehensive search, even in large steps, would take an excessive long time. Even
a simple synthesizer with a dozen parameters, with a range of 10 different values
each, would require 10'2 evaluations. Moreover, it is also difficult to form a mental
image of the space because the synthesis parameters are highly interdependent.

Exploration using interactive evolution combines the exploratory ability of ran-
dom search with the control of manual editing. Figs. 4.1(c) and 4.1(d) illustrate

4. Evolution in Creative Sound Design 83

the case whereby one may start with a random population: A number of totally
unrelated points in the space are used to survey the space for the first time. Since
the sound space is very large, this random population will sample only a minute
fraction of the space. Nevertheless, the random sounds will be dispersed in the space
with equal probability, giving a fair preview of the possibilities of the synthesizer.
If none of them sounds interesting, then a new random population is created and
so on, until a promising starting point is found. Then, the region around that point
can be searched for improvement, using mutations. Each mutated offspring corre-
sponds to a randomly generated step in a random direction from the parent sound.
The population is evaluated and if one child is considered better than the parent
and the siblings, then this child is selected to produce new offspring. In order to
allow for fine-tuning, the maximum size of the mutation steps can be gradually
decreased as the outcomes approach a desired result.

With this method, the space is searched in shrinking steps, until an interesting
target sound is found. If a dead end is reached, then fresh material can be introduced
by means of a crossover operation with a different sound. Since the offspring from
a two-parent crossover share parameter values with at least one of the parents, they
have a high probability to appear in an interesting region in the sound space; that
is, provided that at least one of the parents have interesting features to pass on to
their children.

In order to be able to branch off the evolutionary process at various interesting
points that may arise, it is important to have access to a temporary storage for
potentially interesting sounds. It is useful to allow for promising but not so obvious
candidate sounds to be stored for re-evaluation at a later stage. Also, if necessary,
one should be able to feed back stored sounds from previous breeding sessions
into the population. This provides a way to partially circumvent the sometimes too
definitive one-child selection and the lack of genetic variation in a small population
size. At the end of a run, the best sounds from the temporary storage can be finally
selected for permanent storage. Typical workflows are shown in Figs. 4.2 and 4.3.

The aforementioned interactive search method may not be considered truly evo-
lutionary in the classic sense of Darwinian evolutionary systems. It might be more
sensible to consider it as a tool inspired by Darwinian evolution for exploration of
an unknown sound space. Philosophical considerations aside, what is important
here is that it allows for a fast workflow, with results enhanced by the computer-
generated variations, while keeping control over the direction of the process.

A phenomenon that can have a serious impact on the evolutionary abilities of a
synthesizer is the possibility of low-level chaotic behaviour, that is, the production
of unpredictable outcomes at the signal level. This is acommon issue with synthesis
algorithms involving feedback signal connections, such as a network of oscillators
modulating each other (Dahlstedt 2004). A chaotic sound is characterized by a
continuous spectrum in some parts of the frequency range and they often sound
very harsh, which may or may not be a desired quality. Musical taste is obviously a
matter of opinion, but what really complicates the matter here is the effect of chaotic
behaviour on the evolutionary process. In a region of the parameter space where
the output is chaotic, many sounds are very similar. They may be structurally
different at the micro level, but sound identical at the macro level. Hence, it is

84 Dahlstedt

generation 1

L~
generation 2 r'q 1 v A

generation 3 4 'Y v N

il

FIGURE 4.2. Typical workflow of interactive evolution based on one-parent reproduction.
One sound from an initial random population (generation 1) is selected to create the next
generation of sounds. In this case, each child is a mutated variation of the parent. From this
generation, one sound is stored for future use and another one is selected to be a parent for
the third generation, from which one sound is kept. Normally, this process continues over
a large number of generations.

eneration 1
g -
crossover

— V7

generation 2 11 « * ~> stored
sound
crossover/
L~ N

/

generation 3 T « « v N

FIGURE 4.3. Typical workflow of interactive evolution using two-parent reproduction. From
a random initial population (generation 1), two parents are selected. Then one child is
selected from the second generation and mated with a previously stored sound to produce
the third generation.

4. Evolution in Creative Sound Design 85

difficult to evaluate a population of such sounds, since the fitness landscape is
essentially flat. Once the population enters such a region, it is very difficult to exit
from it.

4.3. Genetic Representation

Interactive evolution of sound is based on random variation, selection and in-
heritance processes. This involves keeping a group of sounds, which are repeat-
edly modified, combined, evaluated and selected. The sounds must be represented
by means of a suitable representation scheme for these processes to take place.
Depending on the nature of the system, this representation may involve
rather complex data structures or entire computer programs, such as compo-
sition algorithms (Thywissen 1999; Dahlstedt 2004) or functions that generate
waveforms.

Using terminology inspired by biology, in interactive evolution a sound is re-
ferred to as a phenotype and its representation as its genotype. The phenotypes of a
generation are evaluated and the genotypes that correspond to the most promising
phenotypes are selected and used to produce the next generation. During the repro-
duction process, the genotypes of the parents are subject to random modifications
and combinations by genetic operators (typically mutations and crossover) and
the process is repeated again with the new group of sounds. For the sake of clarity,
we shall refrain from using the term phenotype in this chapter.

The design of the genotype representation scheme and the genetic operators are
crucial for the efficiency and the creative properties of the system: They define the
space of possible results and the nature of the modifications that can be made. The
genetic operators define the possible variations on the genotypes, that is, how to
move from one point in the space to another. This affects how interesting regions
of the search space can be reached and how attained properties and qualities are
presented in the continued evolutionary process. For example, a small variation
caused by a mutation should generally produce a small change in the sound. Oth-
erwise, the offspring would be radically different and it would be hard to navigate
the space because one would not be able to easily rely on attained properties to
be presented or discarded. It would be difficult to ascertain if an interesting sound
would have equally interesting neighbours.

One of the main issues concerning the design of a genetic representation scheme
for evolving aesthetic objects is that it should be as generic as possible in order to al-
low for surprises and diversity beyond the artist’s predictions or expectations. Also,
the genetic operators should be meaningful in order to maximize the proportion
of useful results. These two issues often conflict with each other. Generic repre-
sentations tend to capture very low-level attributes rather than high-level ones. For
example, in the case of a system for musical composition, a generic representation
would represent musical sequences of notes rather than musical phrases or musical
form. The more generic the representation is, the more likely it is for the system
to produce useless results. In order to produce large proportions of useful musical

86 Dahlstedt

materials and sensible variations, the representation should capture information
about high-level musical structures. There are so many conceptually different
ways to represent musical information that is very hard to design a representation
scheme that can cover them all.

We distinguish between three different types of genetic representation: basic,
object-based and generative. For example, when evolving images, the simplest
representation data structure would be a bitmap array containing values corre-
sponding to the colours of each pixel of an image. This is an example of basic
representation. A bitmap array can represent any possible image where each image
can be considered a point in the space of all possible images. But most of these
images will be noise and the small fraction of all meaningful bitmap arrays will
be scattered all over the huge space of possible images. The bitmap representation
does not contain any structural information about the images.

A genetic operator could be defined to change a given pixel to a new colour
according to some criterion, but the probability that the evolutionary process
would converge to any meaningful image would be infinitely small. A bitmap
array representation is computationally efficient, practical and generic, but the
level of the description is excessively low to be any useful for an evolutionary
system.

More complex genetic operators could be designed to process the image more
intelligently. For example, using cellular automata, different types of filters, or
an analysis and re-synthesis algorithm. Such a solution should be able to generate
interesting variations on existing images, but it would be equally difficult to evolve
images from scratch.

At a slightly higher level, images can be represented as vector graphics; that
is, as lists of graphical objects such as lines, rectangles and arcs, each of which
including information about shape, position and size. This is referred to as the
object-based representation. In this case, the genetic operators would operate at
the object level; e.g. mutations could modify, insert or remove objects from an
image and/or two images could be combined by crossing over subsets of objects
from each. But still, the representation would not hold any information about how
the objects relate to each other to form an image. A dominant proportion of random
configurations of objects would still be produced.

Finally, generative representation includes in the representation information
about structural relationships between the objects. Two examples of systems using
this approach are the aforementioned Biomorph software by Dawkins (1986) and
Sims’ system to evolve two-dimensional images (Sims 1991). In the first case,
the objects are simple line drawings and the genotypes contain information about
the number of lines and how they are connected to each other in a simple re-
cursive configuration. The space is limited to a certain kind of line drawings,
but on the other hand, the proportion of interesting points in the space is quite
large. In the case of Sims’ system, the range of diversity is enormous, but mu-
tations produce very sensible variations, thanks to a well designed high-level
representation.

4. Evolution in Creative Sound Design 87

4.4. Genetic Representation for Sound

The most basic genetic representation scheme for sounds is in the form of an array
of numbers (or samples), representing air pressure at regular intervals in time. This
representation contains only low-level information. With simple genetic operators,
such as random changes of individual samples or cut and paste of fragments of
the array, this basic representation is clearly inadequate for evolutionary applica-
tions. As with the case of bitmap arrays for representing images, the sample array
representation scheme could be slightly improved by using more sophisticated
genetic operators, such as time-varying filters, or analysis and re-synthesis-based
operators, which could create interesting variations from carefully prepared initial
material.

A suitable approach to create a genetic representation scheme for sounds is to
represent synthesis parameters that control spectral properties of the sound (e.g.
timbre, pitch, loudness) and gestural qualities (e.g. vibrato speed, filter sweep time,
amplitude envelope), rather than the sounds per se.

The genetic operators for manipulating sound synthesis parameters can be very
simple. For example, mutations could be implemented as random variations of
parameter values and crossover as a merge of two parameter sets.

Depending on the choice of parameters included in the genetic representation,
the random variations of the offspring may occur at a musically meaningful level.
Such approach to representation could apply to a wide range of synthesis systems,
from specifically designed synthesis algorithms to produce a specific class of
sounds (e.g. organ sounds) to systems for producing almost complete electronic
pieces, using various pattern and gesture generators combined with the synthesis
parameters themselves.

A further extension of this idea would be to evolve the actual synthesizers,
rather than to evolve only synthesis parameters. Some experiments at this front have
been developed, using a modular synthesizer programming approach (When 1998;
Garcia 2001) where synthesis algorithms are implemented by connecting various
modules, each of which responsible for performing different signal processing
functions, such as oscillators, filters, control functions and so on. However, it has
proven very difficult to design a representation that prevents the large number of
meaningless connections of modules.

Timbre is largely defined by the spectral content of a sound, but also how
the spectrum of the sounds produced by a musical instrument varies over the
instrument’s range of pitches.

Different synthesis techniques have different ways to control the timbre; for
an overview of various synthesis techniques see (Miranda 2002). For example,
in simple subtractive synthesis, the timbre is defined by the filters and the nature
of the source sound to be filtered. In this case, the selection of a waveform for a
source oscillator and the type of filters to be used are parameters with very few
discrete choices, while continuous variations of filter parameters over a wide range
of values produce smooth changes in the timbre. This very simple example still

88 Dahlstedt

covers a wide range of timbres and can easily be expanded to multiple sources and
more complex filter arrangements.

The relationship between synthesis parameters and the sonic results is not
straightforward in most standard synthesis techniques, such as synthesis by fre-
quency modulation (FM). The timbre in FM depends on the ratios of the carrier to
the modulation frequencies: Integer ratios, such as 4/1 or 3/2, produce harmonic
spectra, while arbitrary non-integer ratios produce non-harmonic spectra. One of
the main problems with FM is that harmonic sounds are not necessarily neighbours
in the parametric space, but entwined with non-harmonic sounds.

The way in which the various properties of a sound change over time, forming
musical textures and gestures, is an important issue in sound design. Amplitude,
timbre and pitch normally change over the course of a sound. Most synthesis
tools provide a range of gestural generators to modulate synthesis parameters,
such as low frequency oscillators (LFOs), envelopes, step sequencers and triggers.
These are often used not only to shape a musical note triggered by a keyboard in
the traditional way, but also to form rhythmic or continuously changing patterns,
textures, grooves and beats. It is therefore desirable to be able to evolve these
gestural and textural qualities in the evolutionary process, which can be done by
including parameters for gestural generators in the genotype.

Sound sequences can be represented in a variety of ways. A simple example
is a short melody. The basic representation of a melody is a list of notes with no
information about the internal relationships between the notes. For instance, if the
melody contains a repeated motive, this information is not accounted for in the
representation. If a genetic operation, such as mutation, changes a note in one of
the repetitions, then it will no longer be a repetition; the character of the melody
may be completely lost. It would have been more appropriate if the operation had
changed all instances of the repetition. In order to make this possible, the melody
would have to be represented in a different way; for example, as a sum of two
synchronized LFOs. The LFOs provide periodic slow gestures, which are scaled
and added together and then sampled at regular intervals and quantized to a diatonic
scale. In this case, if the speed of one LFO is changed slightly, it will change the
contour of the melody in a subtle way.

More complex genetic representations of melodic structure, rhythms and even of
whole musical pieces are possible with grammar-based representations (Thywissen
1999; Dahlstedt 2004), but this is beyond the scope of this chapter.

It is worth noting that event-based structures are by no means the only way to
organize sound. When confronted with the hyper-dimensional continuum of elec-
tronic music, it can be very limiting to think about music solely in terms of notes,
events and rhythms. With all-purpose modular synthesis tools, any signal can be
modulated by any other and the boundaries between timbre, gesture, rhythm and so
on become blurred. All properties of a sound can change continuously in a periodic
or non-periodic way, producing a diversity of musically interesting patterns.

The output from a synthesizer does not only depend on the parameter values.
Many synthesizers have internal states, whose initial conditions may affect the
sound. For example, the initial phases of oscillators and LFOs can lead to different

4. Evolution in Creative Sound Design 89

result each time they run. This may affect the evolutionary process because the
sounds that are being evaluated could have been different if the initial conditions
were different. This can be avoided by including the initial conditions in the geno-

type.

4.5. MutaSynth

MutaSynthis asystem for synthesising sounds with interactive evolution (Dahlstedt
2001b). The rationale behind the design of MutaSynth was to make a general
tool that could be used with a wide variety of synthesizers, both implemented in
software or hardware (Fig. 4.4). The initial motivation was to create an efficient
and useful tool for the compositional work of this author, but then it ended up being
generally available for other users in the form of Patch Mutator — a fully-fledged
system that will be introduced in the next section.

MutaSynth’s genetic representation was in terms of sound synthesis and sound
patterning parameters, but it excluded information about the synthesis algorithms
that it was supposed to control. Moreover, MutaSynth’s breeding mechanism was
generic in the sense that it did not know anything about the sounds it was supposed
to evolve.

At the time of its development, MutaSynth was primarily intended to con-
trol hardware synthesizers, both standard fixed-configuration synthesizers and
freely programmable hardware synthesizer. The Nord Modular served as the main
platform for the development, but other synthesizers, such as the Yamaha TX 81Z
and the Oberheim Matrix 6 were also used extensively to test the system.

Ic) Palle Dahlstedt 2001-01-02

Hane Rank
Mul anpe
UtvbarLoop
Pulsar MIDI Out 1 Ve 5 dusti
Channel 1 Mutalion probabilty
w Cd 4
7 = Hulale — l
+ = Mate All ez OFF

i Crassuver Prabability (Matc]
Hriioly AuoMutate l

Jp2 Atizck Fale
In2 Deray 1 Hale E
InE D enay / Hale E Fen:
Upt Heleas= Hate ¥ L-u X
Opé Decay | Level ¥ bean

v

= = LiveMorph
Random

[PR taicd Ty S new ones
DragDrop = Mate H
DragToList = Stare

ot —

3 Oyl AneMod Enlis
0| Opt Fey Vel Sers
1 Ine Dot avel E 1wl

12 [1Int b Sraing
13 |Up2 Delune Sens

14 Dp3Anack Fate W avefoirs
15 Op3Decay | R
16 Op3Decay 2Rale
17 Op3 Releass Rate
16 Op3Decay | Level

13O Leved Seaing
20 | Ond fats Soaing
21 | OndEG Basers
22 JpdAnoMud Enclie

23 | 003 Key Vel Sens
24 Ina int L avel
2 |l bean
25 | 0p3 Detune

27002 Altark Faie i< ;ll
-

3 (3% |38 [3¢ [3 <o e 32 [0

FIGURE 4.4. The user interface of MutaSynth. The main interface, on the left-hand side,
shows a population of nine sounds represented by boxes with ‘chromosome graphs’, two
parents and a gene bank. The parameter and group enable/disable dialog with a genome con-
figuration for the Yamaha TX81Z hardware FM synthesizer is shown on the right-hand side.

90 Dahlstedt

MutaSynth was designed to meet a number of conditions that were established at
the outset of its development. Firstly, the system was intended to be a general tool,
usable with just about any MIDI-based sound synthesizer, in particular hardware
synthesizers. Second, it was designed to be used in realistic music-making scenar-
ios with fast and often unpredictable workflow. We wished for a tool that would be
able to support creative situations where sudden surprises and unexpected turns are
integral part of the sound design process. In such scenarios, the audition process
and turnaround of generations must be fast.

MutaSynth was able to control any device capable of MIDI communication
using control change or system exclusive messages. The genetic representation
and the communication protocol for a specific synthesizer was defined in a text
file and each parameter could belong to one or more parameter groups, which
could be individually enabled or disabled during the breeding process. This made
it possible to evolve the subsets of parameters for specific components of the
synthesizer. For complex synthesizers (e.g. the Yamaha FS1R) or large modular
synthesizer configurations, which could have hundreds of parameters, this turned
out to be very useful. For example, the parameters for a single operator in a FM
synthesizer could be evolved separately. An example of such parameter groups is
shown on the right-hand side of Fig. 4.4.

The user interface was designed for easy navigation between sounds and pro-
vided keyboard shortcuts that allowed the user to keep one hand on the numerical
keyboard of the computer and the other on the keyboard of the synthesizer to try
out the sounds during the breeding process.

Each sound had a visual representation resembling biological chromosomes, to
give a visual impression of the similarity between sounds. This was intended to aid
the user to navigate the sound space. This visual representation was not a faithful
representation of the actual sound. Rather, it was derived from the parameter values
of the synthesizer, which were used as length and angle values for a multi-segment
line, scaled to fit the window. A small change to a parameter value would cause a
small change to the visual representation.

The generality of MutaSynth turned out to be both its strength and its weakness.
It could be used to control almost any MIDI synthesizer but it required extensive
manual configuration. Another disadvantage was the lack of direct communication
between the synthesizer and MutaSynth.

There are often cases in evolutionary sound design where the user may identify
the weakness of a promising but not yet ideal sound, which could be fixed manually;
i.e. outside the evolutionary process. MutaSynth had a primitive mechanism for
such manual off-line adjustments, where a received parameter change would be
integrated into the genotype and be inherited in the breeding process. However, it
would have been useful to be able to start with a few manually tuned sounds in
order to reduce the initial random search for good starting points and this was not
facilitated by MutaSynth.

MutaSynth was used to compose a number of works, using a variety of different
synthesis algorithm and devices (Dahlstedt 2004). A special version of MutaSynth

4. Evolution in Creative Sound Design 91

was developed in 2001 for an interactive music installation. This version featured
a built-in synthesis algorithm and a simplified user interface (Dahlstedt 2001a).

4.6. Patch Mutator

A co-operation between this author and Clavia, a synthesizer manufacturer based
in Sweden, was initiated in 2004 to integrate MutaSynth’s breeding engine into the
Nord Modular G2 (NMG?2) series of synthesizers. The NMG2 are general-purpose
virtual modular synthesizers and effects processors based on digital signal process-
ing (DSP) hardware with a freely configurable performance interface. The collabo-
ration resulted in Patch Mutator, whose first version was released in January 2006.
As far as this author is aware of, it is the first time that a professional sound synthesis
tool is provided with an interactive evolution mechanism. It is available both as a
tool integrated into the modular synthesis editor environment for Clavia’s hardware
synthesizers and as a free stand alone software synthesizer downloadable from the
Internet: http://www.clavia.se/products/nordmodular/demo.htm (Accessed on 17
April 2006).

4.6.1. Integration into an Existing Architecture

The task of integrating MutaSynth into the NMG2 was not without complications.
There are about 160 types of modules in the NMG2, most of which inspired by
the architecture of vintage analogue modular synthesizers, including oscillators,
filters, envelopes, mixers and effects. The available DSP resources can be allocated
to any combination of modules. A synthesis algorithm or a synthesis patch, consists
of a number of modules connected with virtual cables, created using NMG2’s own
editor software running on a generic computer connected to the synthesizer. When
a synthesis patch is finished, it can be saved onto the hardware synthesizer and the
computer is no longer needed to play the synthesizer.

Each synthesis patch can store eight variations of itself. These are groups of
parameter settings that can be used to create slight variation to a patch, which
can produce completely different results. The environment encourages more ac-
tive patching than tweaking of synthesis parameter values. Users tend to produce
new patches all the time, in spite of the fact that a single patch can be rather
complex, some of which would require months to explore its full potential. The
interactive evolution tool is therefore an ideal aid for musicians in this very flexible
environment.

Patch Mutator lives as a floating window on top of the NMG2 patch editor
(Fig. 4.5). It is always available and active and it can be used at anytime.

4.6.2. The Interface

Patch Mutator’s window is divided into five different sections (Fig. 4.6). At the
upper part of the window are buttons for tuning the different genetic operators

92 Dahlstedt

" Nord Modular G2 Editor - [MutaChaor] .] 55

|a] Ble Edt Patch Performance Synth Setup Tooks Window Help =181 x|

N o)

[Haw] [Ooe R Flfar Tela Hoh 5 UndoRado Fach Load iorph Groups
ol 0 0 B e e 21 5 [=y 5 ij Mﬁh Mdd Al G&z

Do = hodule Color VA
@ = W'| E‘m @ i i el Ii—fl i) F"-- [hest Al [Fayb {26 o] SustPa Gun.Pa | P suek 5.9 2]

[E_eace] noca SRR vorc 18 e (BT] (] m@- s

(une parenl) (hmh paren!s) @

OscPerel emi |Cent Punch
Doy Aok
Fe I s T8 [
@l eilon &
0scD F 5
@ Fitch ko[t IR e N j
[FILevModi iod deg Mod f i Q 7
éﬁa\ ,ﬂ |3 EnvADRY an-u ons
[¥1Overdrivel Type { A] [*ISaturate’
oo Lo D OB o | e A (lete| @G| curve[115T8 o
TIFreqshitt [EFm tor | Leval ¢y [IDIySjAgle.1
Fi u 0 = Rang€ [500m [-] .&
s% “"E"F" o 2 ikl = EE () 7 d 1 Quick Locks during One Parent operations
) i i)] [y irete] st et Bt |]
4 ___ =3 EgEn] Sl
anger

W‘@\

| &5 |
O@@@@@@Q

Syne oniof_oniort
[a0 I 11 1] [Choiive [Foiive]

e
Aftack Decay Sustein Release Mod.Rete Timbre Resonance Effects |

FIGURE 4.5. The Nord Modular editor, with the Patch Mutator on the right-hand side. Patch
Mutator is available at all times as a floating window.

and a few knobs to control their behaviour. Below these buttons are the current
offspring (six children) and on the sides are their parents. Then, there are a number
of slots, which serve as temporary storage for keeping promising sounds. Below
these slots is a row representing the eight variations of the NMG?2 patch. This row
holds the sounds that would actually be stored with the patch.

The lowest part of the window contains buttons to define which synthesis pa-
rameter categories will be included in the breeding process and which ones will
be kept unchanged through the breeding process.

Patch Mutator uses the same visualization technique of MutaSynth in order to
help the user to keep track of the different sounds. A wiggly line derived from
the values of the synthesis parameters serves to visualize the differences between
sounds; that is, between the values of the synthesis parameters that produced them
(Fig. 4.7).

In order to allow for quick and efficient evolution, all operations can be controlled
with either the mouse or through key combination shortcuts on the computer
keyboard. For example, a sound is auditioned with a simple mouse-click and

4. Evolution in Creative Sound Design 93

Patch Mutator x|

Probability — Range N ~— Probabilty

| Mutate | [Randomize| |Interpolate | | Cross |
one parent both parents
Qu@ === == O

Mother y——————— Children———. Father

4]

[]
[v]

HOE :IIE
EEEEEEEN:

Variations

MEREERESL

Quick Locks during One Parent operations

| OscFreq | | OscFine | [Envelope| |SeqValue| [SeqEvent] | Delays | [Effects |
[Solo] [Selo] [Sele] [Sole] [Sele] [Solo] [Selo]

FIGURE 4.6. Patch Mutator’s window.

a double mouse-click produces a new population of mutated children with the
chosen sound as parent.

The fact that Patch Mutator is a floating window allows for quick modification
of the patch; for example, a manual correction of a promising sound or the addition
or deletion of modules. Such changes have immediate effect on the genotype and
will be inherited by the offspring.

4.6.3. Genetic Representation and Parameter Selection

In contrast to MutaSynth, where the breeding engine was generic, the breeding
engine of Patch Mutator is integrated into the synthesis environment of the NMG2
synthesizer. This makes it possible for the breeding engine to make fairly intelligent
choices about which parameters should be included in the genotype. For various
technical reasons, however, it was not possible to allow for complete flexibility
of parameter selection. This was implemented as a per-module selection scheme

94 Dahlstedt

Mother Children
Mother Children

FIGURE 4.7. Patch Mutator uses the same visualisation technique of MutaSynth in order to
help the user to keep track of the different sounds: A wiggly line derived from the parameter
values.

instead of as a per-parameter selection scheme. Each module can be assigned
for inclusion or exclusion in the breeding process and the user can change this
assignment at anytime. The parameters of those modules that are excluded from
the breeding process are not altered by mutations or other random alterations. Some
modules are excluded from mutation by default. However, they can be included
again if the user wishes to do so.

In order to circumvent the partial inflexibility of the per-module assignment
scheme, each module type has a predefined list of parameters to be included in the
breeding process. Those parameters that we felt that were not very useful to be
included in the breeding process were excluded permanently from the system, such
as sequencer loop length, signal polarity and options to bypass sound effects, to cite
but three of them. In many cases, the per-module limitation can be circumvented
by careful patch design. For example, if one wishes to evolve the oscillator’s pitch
but not the waveform, then one can choose to exclude the oscillator module (or
‘quick lock’ the oscillator, see below) from the genotype and include a constant
module that modulates the pitch instead.

Patch Mutator is equipped with a number of quick lock buttons for different
parameter categories. For example, it is possible to evolve everything but the
oscillator tunings, or only the step sequencer levels and gate parameters. In this
way, it is possible to focus on specific aspects of the sound at a time and avoid
affecting parameters that should not be altered.

In Patch Mutator, all parameters are assigned a certain probability distribution,
which controls values given by the randomization process and the results of mu-
tations. For example, the fine-tune parameter of an oscillator (+/— 50 cent) has a
higher probability to fall in the middle range, while the attack time of an envelope
tends towards the low range. Extreme values are still possible, but with a lower
probability.

4.6.4. Selection and Population Size

As discussed in Chapter 1, the selection of individuals to be reproduced can be
done in different ways in artificial evolution. In cases involving a large population

4. Evolution in Creative Sound Design 95

and automated fitness evaluations, it is important to keep genetic variations within
the population, where the norm is to select a larger number of individuals from
each generation. They are often paired randomly to produce offspring, based on a
probability proportional to their fitness scores. However, the size of the populations
in Patch Mutator is rather small. The small population size is compensated by
active use of the temporary storage, which is essential for interactive evolutionary
systems to work. Temporary storage is useful because there may be two or more
good offspring sounds in a population. Only one will be selected to be a parent for
the next generation, while one or more can be saved in the temporary storage. These
are available for re-introduction into the breeding process at any time thereafter.
Moreover, the individuals of the current population are not only compared to each
other or to the current parent or parents, but also to the sounds in the temporary
storage. Previously stored sounds can be brought in from the temporary storage if
the current population does not improve for a number of generations.

In practice, the temporary storage scheme is akin to the elitism technique that is
often used in genetic algorithms, which retains some of the best individuals from
each generation unaltered in order to avoid loosing attained fitness in the next
generation.

4.6.5. Genetic Operators

Patch Mutator provides four operators: Mutation, crossover, randomize and inter-
polate.

Mutation introduces random changes to individual parts of the genotype and
crossover is a way to combine information from the genotype of parents to generate
a child. In most implementations of genetic algorithms, both are normally applied
together to pairs of parents. In Patch Mutator, however, only one operator is applied
atatime: The offspring is produced either by mutation of one parent or by crossover
of two parents.

In a standard genetic algorithm with automated selection and large populations,
there will typically be a large number of similar individuals in the population.
Those with the highest fitness are crossbred to produce the child. Crossover of
very similar individuals produces small variations, since parts of only slightly
different genotypes are combined. Conversely, crossover of radically different
individuals produces large variations, which can help a sub-population to escape
a local optimum. Only a larger jump can help in situations where the mutations
produce worse results. A crossover operation provides such a jump, while keeping
the genetic information in known parts of the space. It is assumed that the result
might improve because part of the genome is inherited from one of the parents
who have survived this far.

However, it is not affordable to apply large genetic variations to a small pop-
ulation. In this case, the user should take the role of the fitness function and be
able to adjust the algorithm in midstream to fit the current situation. For example,
if mutations no longer produce interesting variations, the mutation range could be
temporarily increased or a new population could be produced by crossover with a
previously stored sound in order to introduce some genetic variation in the pool.

96 Dahlstedt

When new offspring are produced by mutation, all parameters are copied from
a single selected parent, with a certain probability of taking place. The mutation
range is manually set in terms of a percentage of the parameter range. A muta-
tion with low probability of taking place but with a high range produces few but
significant changes. Conversely, a mutation with high probability but with a low
range produces more subtle changes. These two extremes give very different sonic
results. The probability and range can be linked in an inversely proportional way
or they can be set individually.

If the mutation range is very narrow, one mutation will seldom be enough to
jump from one value to the next. In order to alleviate this problem, Patch Mutator
allows for small mutations to accumulate and the genotype is stored as a string of
floating-point numbers. When they are sent to the synthesis patch, they are rounded
to the nearest integer. When a synthesis patch is loaded, all parameter values are
dithered to floating point numbers by addition of a random value between zero
and one. This allows for mutations with noticeable changes on parameters whose
ranges are too narrow. Otherwise, a large number of small mutations would be
required before any noticeable change takes place.

Crossover merges two genotypes by copying consecutive chunks of the genotype
from each parent. The information from the genotype of one parent will have
a certain probability of being crossed with information represented at different
position in the genotype of the other parent in a zigzag manner. The crossover
probability can be adjusted from 1% to 100%. With a low probability setting, large
chunks of information are copied unchanged from each parent. In other words,
this means that the offspring will bear close resemblance to the parents. If the
crossover probability is high, the copying will jump back and forth between the
parents. Even though every parameter will come from one of the parents, they will
be combined in new ways, which may result in rather different sounds.

The randomize operator creates a new random set of offspring. Random values
are generated for all parameters that are included in the genotype, excluding those
parameter categories that are affected by the quick lock buttons. All unaffected
parameters are copied from the current sound. In this way it is possible to have a
great deal of control over which synthesis parameters should be randomized. The
randomize operator can be used to search for good starting points for a breeding
session or to get a feeling for the potential of a synthesis patch by sampling the
space randomly.

The interpolate operator generates a series of sounds whose synthesis parameters
are interpolated linearly between the two parent sounds. Interpolation is useful for
creating transitions between sounds or to explore the region between two existing
sounds.

4.7. Concluding Discussion and Further Work

This chapter demonstrated the potential of interactive evolution for sound synthe-
sis. The developments of MutaSynth and Patch Mutator, started with the desire

4. Evolution in Creative Sound Design 97

to make synthesis programming more widely accessible to musicians who may
not necessarily have technical expertise in sound synthesis. We had hoped that by
leaving the detailed level of synthesis parameter values transparent to the users,
they could free themselves from low-level technicalities and concentrate on the
sonic result. The rationale is that musicians should be given the means to concen-
trate on the high-level perceptual characteristics of the sound (such as intensity,
brightness or rhythmic feel) rather than confronting themselves with the technical
idiosyncrasies of the various different synthesis techniques.

Patch Mutator provides a set of exploratory tools, tightly integrated into the
NMG?2 synthesizer, comprising a powerful new way to create and explore the
sonic possibilities of a professional synthesis and sound processing system.

Any tool for aiding creativity will in some way or another affect the result.
Either because the tool favours certain kinds of solutions to posed problems or
because certain kinds of problems are more likely to be solved by the given tool.
Patch Mutator supports the creation of sounds by focusing on the aural relationship
between the sounds rather than focusing on the role of the various synthesis pa-
rameters needed to produce the sounds. Considering this fact alone, Path Mutator
clearly affects the creative process. For example, one user reported that he has been
using the Patch Mutator ‘when the patch I'm working with is too complex for me
to make a direct association with tweaking multiple variables and getting a ‘good’
sound’.

Furthermore, interactive evolution allows for more efficient navigation into dif-
ferent parts of the sound space given by a synthesis patch than manual editing.
Chance and unpredictability are well-known devices for reaching uncharted terri-
tory in art and in the breeding process this can be done while keeping some kind of
control over the output. Another user referred to it as ‘a means to find inspiration
for sounds that I wouldn’t think of naturally’. Yet another user expressed that the
breeding process ‘allows me to discover some sounds from a patch that I normally
wouldn’t have thought of making by customizing all the parameters myself’.

Besides breeding sound synthesis parameters, Patch Mutator also facilitates the
design of new synthesis patches, especially for people who are not so familiar with
modular synthesis. Although a certain level of knowledge about sound synthesis is
required, users can now concentrate on the configuration of the major components
of the synthesis patch and leave the breeding engine to take care of the adjustment
of the parameters. A user reported that: ‘I hardly made any patches of my own
before. It was too tedious to get nice sounds with it. Now I make a patch in a
way that I know will have possibilities to make good sounds and have the mutator
bring these to me. .. It gave me the opportunity to make my own patches where 1
did not have the guts before.” On the same vein, yet another user expressed that
Patch Mutator ‘makes a modular architecture more accessible to people like me
who have a pretty rudimentary knowledge of synthesis.’

The way in which Patch Mutator can influence the creative process of composers
who are not experts in sound synthesis is well illustrated by this comment from
a professional composer: ‘... Patch Mutator allows me to stay more in focus with
creating music for the project rather than designing patches. Once I establish my

98 Dahlstedt

core group of sounds I use the mutator to find gems, often some very unexpected
delightful gems. I think of the process as walking on the beach and finding a special
shell or sharks tooth. You always stay in the creative space—the sounds come to
you.’

There are some aspects of Path Mutator that could certainly be improved. Some
features were never implemented due to time constraints.

It is important to have detailed control over the genetic representation of a
synthesis patch in order to fine-tune it for efficient breeding. One major limitation
with this respect is the module-based exclusion of parameters where either all
parameters of a module are included in the genetic representation or none. As
described above, some shortcuts are available to compensate for this and it is
possible to create workarounds at the cost of more modules. Still, it can be difficult
to achieve some configurations of parameters to evolve. Also, the preset choices
for parameter probability distributions may not fit all synthesis patches. It would
be desirable to have individual control over the probability distribution for each
parameter in order to optimize different synthesis patches for breeding sounds
more efficiently.

A potentially interesting improvement would be to allow for some form of pre-
selection mechanism to alleviate the fitness bottleneck problem. A larger popula-
tion of offspring could be generated internally and some automated fitness criteria
could either select the most promising children or rule out the complete failures,
which are sometimes easier to define formally. A similar approach was applied to
autonomous evolution of piano scores in the music installation Ossia (Dahlstedt
2004), which could probably be applied to sounds. In manual evaluation, many
sounds are ruled out because of disqualifying properties, such as being noisy, un-
ordered, harsh or simply too quiet, and some of these properties could be evaluated
automatically.

Another useful feature would be to have the ability to specify beforehand what
kind of sound one is looking for, either by providing an example sound or some
general characteristic, such as frequency range, spectral centre of gravity or spectral
shape. One problem of using an example sound as target for the evolution is the
measurement of sound similarity, which is not trivial to formalise.

The selection process currently moves in discrete steps. Sometimes a child sound
is in the right direction, but a little too far or not far enough from the parent. In
those cases it would be very useful to be able to interpolate continuously between
the parent and the child or between promising children in order to search for a
suitable sound for further breeding.

Another promising development would be to represent parameter changes over
time in the genotype. Simpler periodic gestures can already be used in synthesis
patches, but a more sophisticated representation scheme is needed to allow for
structurally more complex gestures and greater formal diversity. Some experiments
have been made using the recursive hierarchical score representation developed
for the music installation Ossia to produce parameter changes over time (Dahlstedt
2004). The results were promising, but much work still needs to be done in order to
enable the generation of various different kinds of idiomatic parametric gestures.

4. Evolution in Creative Sound Design 99

To conclude, interactive evolution has proven to be a valuable tool in creative
sound design, regardless of synthesis techniques and musical styles. Its implica-
tions for music-making are twofold. Firstly, it simplifies the sound design process
for the technically uninitiated. Secondly, it provides new ways of working for
the more advanced user, who can design custom sound engines specifically for
evolutionary exploration, concentrating on the desired potential musical elements.
Thanks to the ability to control a large number of parameters simultaneously by
ear, these sound engines can be large and complex, beyond those that would be
feasible for conventional manual sound design. Altogether, this technique provides
a fruitful combination of chance and control, two essential ingredients for musical
creativity.

References

Dahlstedt, P. (2001a). A MutaSynth in parameter space: Interactive composition through
evolution. Organised Sound, 6(2): 121-124.

Dahlstedt, P. (2001b). Creating and exploring huge parameter spaces: Interactive evolution
as a tool for sound generation. In Proceedings of the International Computer Music
Conference 2001. Habana, Cuba, pp. 235-242.

Dahlstedt, P. (2004). Sounds Unheard of — Evolutionary Algorithms as Creative Tools for
the Contemporary Composer. Doctoral Dissertation. Chalmers University of Technology,
Goteborg.

Dawkins, R. (1976). The Selfish Gene. Oxford University Press, Oxford.

Dawkins, R. (1986). The Blind Watchmaker. Longman, Harlow.

Eno, B. (1996). A Year with Swollen Appendices. Faber and Faber, London, Boston.

Garcia, R.A. (2001). Growing sound synthesizers using evolutionary methods. In Proceed-
ings of the Sixth European Conference on Artificial Life. Workshop on Artificial Life
Models for Musical Applications. Editoriale Bios, Prague.

Johnson, C.B. (1999). Exploring the sound-space of synthesis algorithms using interactive
genetic algorithms. In A. Patrizio, G.A. Wiggins and P. Pain (Eds.), Proceedings of
the AISB’99 Symposium on Musical Creativity. Brighton, UK, Society for the Study of
Artificial Intelligence and Simulation of Behaviour, pp. 20-27.

Miranda, E.R. (2002). Computer Sound Design: Synthesis Techniques and Programming.
2nd ed. Elsevier/Focal Press, Oxford, UK.

Sims, K. (1991). Artificial evolution for computer graphics. Computer Graphics, 25:319—
328.

Thywissen, K. (1999). GeNotator: An environment for exploring the application of evolu-
tionary techniques. Organised Sound, 4(2): 127-133.

Wehn, K. (1998). Using ideas from natural selection to evolve synthesized sounds. In
Proceedings of the Digital Audio Effects DAFX98 workshop, Barcelona.

5

Experiments in Generative Musical
Performance with a Genetic Algorithm

QUUN ZHANG AND EDUARDO R. MIRANDA

5.1. Introduction

It is commonly agreed in the context of Western tonal music that expression is
conveyed by delicate deviations of the notated musical score, through shaping
physical parameters of performance, such as timing, loudness, tempo and articula-
tion. Expressive music performance research is aimed at establishing why, where
and how these deviations take place in a piece of music. Interestingly, even though
there are many commonalities in performance practices, these deviations can vary
substantially from performance to performance, even when a performer plays the
same piece of music more than once.

Different approaches and techniques have been employed in research into ex-
pressive performance of music in order to capture common performance principles
or the differences, including analysis-by-measurement, analysis-by-synthesis, ma-
chine learning and so on (see Gabrielsson (2003), Palmer (1997), Poli (2004) and
Widmer and Goebl (2004) for reviews about these works). One of the major caveats
of the great majority of these works is that they do not consider the role of social
factors in musical performance. By social factors we mean the influence of histor-
ical practices and the interactions between performers and audience, which play
an important role in musical performance (Davidson and North 1999).

We propose an evolutionary computing approach to building systems for gen-
erative musical performance; that is, we aim at systems that are able to evolve
their own strategies, or performance profiles, to perform pieces of music. This
evolutionary approach offers the possibility of taking into account social factors
in these systems by simulating interactions between virtual performers and lis-
teners (agent-performers and agent-listeners), through which expressive music
performance profiles may emerge as a result of musical constraints combined with
social pressure.

The focus of the chapter is, however, on the design of the agent-performer.
More specifically, it focuses on the development of the system that will eventually
be embedded into these agents to evolve their performance profiles. We devised
a prototype using genetic algorithms (GA), which evolves performance profiles
with fitness rules informed by musical constraints derived automatically from the

100

5. Experiments in Generative Musical Performance with a Genetic Algorithm 101

structure of the pieces to be performed. More precisely, the system evolves suitable
performance profiles from randomly initiated ones using genetic algorithms (GA)
combined with generative rules of expressive musical performance (Clarke 1988).
Performance profiles are represented as hierarchical pulse sets, which define de-
viations for the duration and amplitude values of the notes of a piece of music
represented in MIDI format. The fitness of a pulse set is calculated according to
rules derived from the research into perception of musical structure (Temperly
2004). Rather than directly constructing a rigid performance profile with these
rules, our GA-based approach gives the agents flexibility as to how they will per-
form the piece. This flexibility is desirable because musical performance varies
substantially from performance to performance, even when a performer plays the
same piece of music more than once. Moreover, this flexibility will allow for taking
into consideration the role of social pressure when it comes to the forthcoming im-
plementation of the agent-based model. This will allow for negotiations between
the agents in order to decide upon best practices when performance rules conflict
with one another or allow for multiple choices.

5.2. Musical Performance with Hierarchical Pulse Set

In this section we introduce the notion of pulse sets and how we use them as
performance profiles to perform musical pieces.

5.2.1. Notion of Pulse Set

Fig. 5.1(a) shows a pulse represented as a curve of measurements of finger pressure
on a pressure sensor pad. The information in a pulse is a wrap of temporal patterns
with amplitude patterns, which can be quantified as real numbers: Width and
height correspond to duration and amplitude, respectively (Fig. 5.1(b)). A pulse
can operate at different levels of temporal organization and can be grouped into
a hierarchical structure. Manfred Clynes (1986) proposed the representation of a
hierarchical pulse set as a matrix of duration and amplitude values (Fig. 5.1(c)),
which defines the deviations of the physical attributes of musical notes. This makes
it possible to generate computer performances for pieces of music by modulating
the physical attributes of musical notes according to these deviations.

5.2.2. Pulse Sets as Performance Profiles

The rationale for adopting the notion of hierarchical pulse sets to represent perfor-
mance profiles is twofold. Firstly, assignment of duration and amplitude values for
notes significantly influence the expressive quality of a musical performance, albeit
not fully. Secondly, the hierarchical nature of pulse sets matches important fea-
tures of most music genres; for example, the notions of grouping and hierarchical
structures are important for almost all genres of Western music.

102 Zhang and Miranda

Pressure
(a) Time
Duration: 29 108 92 102
(b) Amplitude: 1 0.808 1.253 1.622
Bar 1 Bar 2 Bar 3
Level 1
Level 2 J J J J
©) Level 3 'b)) 'b

FIGURE 5.1. Illustration of a pulse and the notion of hierarchical pulse sets (after Clynes
(1995)). (a) A pulse represented as finger pressure measurements in time. (b) A represen-
tation of pulse as a wrap of real numbers (duration versus amplitude). (c) A hierarchical
pulse set derived from grouping pulses.

5. Experiments in Generative Musical Performance with a Genetic Algorithm 103

TABLE 5.1. Representation of pulse set and explanation.

Pulse set example Meaning

8 The length of note at the lowest level

443 Number of elements in three levels (from the lowest level to the highest)
0.3390.762 0.953 0.319 Level 3 amplitude (lowest level)

7393 66 124 Level 3 duration

0.453 0.798 0.498 1.333 Level 2 amplitude

62103 114 118 Level 2 duration

1.398 1.476 1.864 Level 1 amplitude

73121 120 Level 1 duration

Table 5.1 shows an example of a hierarchical pulse set and the meaning of its
components. This example is the quantification of the pulse set drawn in Fig. 5.1(c).
In the first line, the number 8 defines the smallest unit of the piece, which in this
case is the eighth note. In the present version of the system, the other possible
values could be 32, 16 or 4. That is, the shortest note can be a thirty-second note,
a sixteenth note, an eighth note or a quarter note.

In this example, there are four, four and three elements in each level, from
level 3 (lowest) to level 1 (highest). All elements of a given level characterize
each element of the level immediately above. Therefore, as depicted in Fig. 5.1(c),
the length of an element in level 2 is equal to the total length of all elements of
level 3, that is 4 x 8th notes = a half note. Similarly, the length of one element of
level 1 is equal to the total length of all elements in level 2. Assuming that there
are four beats in each bar, then this pulse set defines three groups lasting for two
bars each. In the present version of the system, the number of elements in one level
is valid if it is an integer higher than two and lower than nine (two and nine are
inclusive).

Since a hierarchical pulse set informs the deviation of durations and amplitudes
of notes, this information is given from the third to the last line of the representation
of a pulse set. The duration value can be any integer between 75 and 125 and the
amplitude value can vary from O to 1.5.

5.2.2.1. Calculating a Deviation Pattern from a Pulse Set

As explained earlier, the pulse set example in Table 5.1 defines a performance
profile for a musical segment lasting for six bars. There are 48 (4 x 4 x 3)
hierarchically organized pulse elements that together compose the segment. The
duration and amplitude values for each element are calculated in a top—down
manner, by multiplying the parameters of the corresponding elements of different
hierarchical levels. For instance, the 1st and the 40th pulse element (represented
as el, e40) are defined as follows:

e;: the 1%t in Level 1, the 1% in Level 2, the 1% in Level 3
eq: the 3 in Level 1, the 2" in Level 2, the 4™ in Level 3

104 Zhang and Miranda

TABLE 5.2. Calculation for a pulse element in a pulse set.

Note Duration Amplitude

e (73 x 62 x 73)/100° 1.398 x 0.453 x 0.339
€40 (120 x 103 x 124)/100° 1.864 x 0.798 x 0.319

Considering the parameters of the pulse set given in Table 5.1, the algorithm
calculates the duration and amplitude values for these two pulse elements (see
Table 5.2). With this method, we can draw deviation patterns, for both duration
and amplitude values. Once started, these patterns are repeated until the piece
finishes. For the sake of clarity, Fig. 5.2 shows only the first half of a deviation
pattern based on the example pulse set. The index of the beat in the piece is given by
the abscissa, while the ordinate corresponds to the calculated percentage deviation
of duration or amplitude.

5.2.2.2. Implementation Issues

The musical pieces that were used to test our system were represented as flat MIDI
files; that is, they have no timing deviation (the duration of the notes is exactly as
written on the score) and all notes have equal loudness (MIDI velocity values are
even for all notes).

2-5 T T T
. . .| = — Amplitude
— Duration ,-|

%Deviation

0 5 10 15 20 25
Beat

FIGURE 5.2. Deviation pattern for the pulse set in Table 5.1.

5. Experiments in Generative Musical Performance with a Genetic Algorithm 105

The performance of a piece proceeds as follows: For each note the system
looks up its start time with respect to the aforementioned deviation list in order
to infer its position in the sequence, along with its duration and amplitude values.
Inspired by a method proposed by Clynes (1995), the playing time of a note is
given by adding all the durations of the pulse components, while the amplitude
is defined by the amplitude information of its first pulse component. When the
system modifies the duration of a note it changes the play back tempo of the MIDI
file at the required position. When the system modifies the amplitude, it changes
the ‘note-on velocity” MIDI code of the note. The system produces a new MIDI file
with added expressions, which is subsequently evaluated according to the fitness
criteria introduced below.

5.3. Fitness Function Based on Musical Structure

It is commonly agreed that there is a strong relation between expression in musical
performance and musical structure (Repp 1992; Sundberg 1999; Todd 1985). This
may explain the existence of commonalities in different performances of a piece
and thus a necessary hypothesis for modeling expressive musical performance.
Those using the analysis-by-synthesis approach have built models loaded with
comprehensive rules. However, a critical problem of these rule-based systems is
the way in which they combine these rules (Oostem 1993). They can be combined
in many different ways and most combinations can generate conflicting situations
with no objective solution. Although commonalities in performance do exist, differ-
ences abound. The reality is that there are different ways to perform a piece of mu-
sic, which makes it very difficult to fully formalize musical performance with rules.
In this research we are not interested in the compilation of a comprehensive
collection of fixed performance rules manually. Rather, we are interested in a
system that can evolve these rules dynamically. Nevertheless, we undoubtedly
need guidance from musically meaningful rules in order to evaluate whether an
evolved pulse set constitutes an acceptable performance for a given piece. For
this purpose, our approach is to design descriptive performance principles without
quantified regulations. Then we employ GA, whose fitness function is informed
by these principles, to select and evolve suitable pulse sets, starting from randomly
generated ones. In this sense, the usage of GA is ideal here because otherwise it
would be hard to design a decent performance profile based on such descriptive
principles manually. Furthermore, GA can evolve different and suitable pulse sets
for the same piece. This diversity is a noticeable phenomenon in real performances
and also a pre-requisite for the next stage of our research, which will involve the
role of social pressure, as briefly discussed at the introduction of this chapter.

5.3.1. Structure Analysis

In order to use structural principles for calculating fitness values, we need to
analyse the structure of the piece in question. The system currently uses David

106 Zhang and Miranda

Temperley’s software Melism to perform several structural analysis, such as metri-
cal analysis, group analysis, harmony analysis and key analysis (Temperly 2004).

5.3.2. Selected Performance Principles

The current version of the system takes into account descriptive performance
principles inspired by Eric Clarke’s generative rules for expressive performance
(Clarke 1988). The system associates expressions in performance with the piece’s
structure features of grouping, accentuation and cadence. The fitness value of a
pulse set consists of three parts: FitGrouper, FitAccent and FitCadence.

5.3.2.1. FitGrouper

FitGrouper is obtained by considering the fitness of a pulse set in relation to two
rules, mainly concerning the duration of the notes at group boundaries:

Rule 1—The time deviation of the last note of a group has either larger or smaller
timing deviation than the preceding and succeeding notes.

Rule 2—The last note of a group is always lengthened in order to delay the
following note and indicate the starting of a new group.

The value of FitGrouper takes into account the violation of the above two rules.
A parameter numVio (initialized equal to 0) increases whenever the pulse set breaks
either Rule 1 or Rule 2. Considering that the number of groups in the piece is Ngroup,
then we define

. numVio
FitGrouper =1 — ———
Ngroup

The maximum value of FitGrouper is equal to 1.

5.3.2.2. FitAccent

FitAccent is an assessment of how well the loudness contour of the notes of a
‘performed’ piece (i.e. after the flat MIDI file is modulated by a given pulse set)
fits the metrical analysis. The rule is as follows:

Rule 3—Preference should be given to loudness contours whose shape is close to
the accentuation analysis of the piece.

Given two successive notes Ny and N, FitAccent is produced by calculating

(1) the accentuation information (by, b1) from the structure analysis and
(i1) the velocity information (vg, v;) from the ‘performed” MIDI file.

Because the accent value b; varies from 0 to 4, the system firstly normalizes the
velocity difference (v; — vg) to integers in the range of [—4, 4]. Then it assigns
a reward value between 0 and 1 to parameter x based on the difference between
(v1 — vp) and (b; — by). The closer they are to each other, the larger the value

5. Experiments in Generative Musical Performance with a Genetic Algorithm 107

assigned to x. Considering that the number of notes in the piece is Ny, then
FitAccent is defined as follows:

Zivm)lcfl X;

FitAccent = =/———— O=<x; <.

note — 1

As with Fit Grouper, the maximum value of FitAccent is equal to 1.

5.3.2.3. FitCadence

FitCadence takes into account chord progressions, which also can indicate group
boundaries. While both FitGrouper and FitAccent operate at the lower level of
musical notes, FitCadence operates at the higher level of groups of musical notes.
The rule for calculating FitCadence is as follows:

Rule 4—Both segments corresponding to two chords in a cadence (e.g. V—1,
IV— I or Dominant— Tonic, Subdominant— Tonic, respectively) should be
lengthened. Different weights are set for different categories of cadences because
they have varying importance for the structure of a piece.

As with FitGrouper, the value of FitCadence is also decided by the violation
of arule: in this case Rule 4. The pulse set will receive more penalties if it breaks
the rule when stronger cadences are involved. Considering that the number of
cadences in a piece iS Neagence and that we assign a weight w; to the ith cadence,
then FitCadence is calculated as follows:

levcadence w;

N, cadence

FitCadence = 1 —

As with the previous two fitness measures, the maximum value of FitCadence is
equal to 1.

In the present version of our system, we define the total fitness of a pulse set to
be the sum of FitGrouper, FitAccent and FitCadence, i.e., Fitness = FitGrouper
+ FitAccent + FitCadence, with maximum value equal to three.

5.4. Evolution Procedure

5.4.1. Genome Representation of a Pulse Set

A pulse set is represented by a long string of real numbers in the same order as
shown in Table 5.1. Technically, lines are separated with ;” and elements of the
same line are separated by ‘,’. This makes it convenient to access and operate on
parameters of different hierarchical levels. An additional number, either O or 1,
is added at the end of an individual pulse set. This is used to indicate one of the
possible two ways of applying a crossover operation, which will be clarified later.

As an example, the pulse set in Table 5.1 is represented as follows (for the sake
of clarity, we omitted level 2 and level 1); in this case the additional number at the
end of the string is equal to 0:

8;4,4,3;0.339,0.762, 0.953, 0.319; 73, 93, 66, 124;...; 0

108 Zhang and Miranda

5.4.2. Initialization of the First Generation

The individual pulse sets of the first generation are randomly generated. For the
moment, we have established that all pulse sets have three levels. All pulse set
values are randomly generated, including

(1) the length of the quickest note;

(2) the number of elements in each hierarchical level,

(3) the amplitude and duration values for each element in every level;

(4) the additional number at the end of the string (for selecting the crossover
operation).

5.4.3. Evolution Algorithm

For every generation, each pulse set is used to modulate the flat MIDI file of the
piece in question, as described in Section 5.2, and a fitness value is calculated
according to the definition of the fitness functions introduced in Section 3. The
result is given in the form of an array of values Fit0 = fi, f>, ..., f,, where f;
is the fitness value of the ith individual pulse set. The offspring pulse sets for the
next generation are created on the basis of this fitness array. The procedure is as
follows:

(1) Calculate the fitness values of the current generation PQ.

(2) Select parent candidates to compose the population PO;.

(3) Operate mutation on PO in order to obtain population P0,.

(4) Operate crossover on pairs of pulse sets in P0, in order to obtain population
PO0;3.

(5) Rank the fitness values of Generation PO and P03 and the best half become
generation P1.

(6) Repeat the steps from (1) to (5) until completing a preset number of genera-
tions.

5.4.4. Genetic Operations

In this section we explain the three genetic operations used in the evolution pro-
cedure: Selection, mutation and crossover, respectively.

5.4.4.1. Selection

Based on Blickle’s comparative study (Blickle 1995) of various widely used se-
lection operators in GA (such as, tournament, linear and exponential rankings and
proportional), we opted for using exponential ranking. This is because we wish
to keep a certain degree of diversity in the evolutionary process and exponential
ranking has proved to work well for this purpose. The algorithm of our exponential
ranking selection is as follows:

5. Experiments in Generative Musical Performance with a Genetic Algorithm 109

Exponential-ranking(c, Ji, ... , J,)
J < sort population J according to fitness (first is the worst)
SO <~ 0
ForI <« 1toN do
Si < Si—1 +pi
ForI <« 1to N do
r <« random[O, sy]
Ji < Jy suchthat s; _ 1 < r<s;
Return

Here, the value of ¢ is randomly generated for every generation from 0.75 to 1:

(N =)

i_N4N—j lel,...,N.
ijlc

5.4.4.2. Mutation

Considering the hierarchical property of a pulse set, we defined four different
mutation schemes to be applied selectively on a single pulse set. Given a pulse set,
Fig. 5.3 shows examples of how each of the following mutation schemes work,
referred to as Ma, Mb, Mc and Md, respectively.

Mutation scheme Ma: Randomly modify every duration or amplitude values in
the pulse set. The range of changes for the amplitude is [—0.1, 0.1] and the range
of changes for the duration is [—5, 5].

Mutation scheme Mb: Append new duration and amplitude wraps or delete exist-
ing wraps from the end of the string. The number of added or removed elements
is defined randomly, with the condition that the resulting pulse set is a valid pulse
set. New added elements also are generated randomly. Note that the length of
the shortest note in the pulse set may be changed in this mutation.

16 8
423 432
0379 0672 0903 039 |Mb|0.379 0672 0903 0390
70 g7 65 119 [—=|70 a7 65 119
1 Ma | 0.461 0.702 0461 0702 1.504
422 ‘134339 ':0516 1.804 (154339 110;45 %
gf” 35762 2;5953 10519 69 117 123 69 117
0.453 0.708
62 103 16 16
1.398 1476 1.864 > 4903 342
73121 120 Mc |0.762 0339 0319 0953 1398 1864 1476
93 73 124 66 _— 73 120 121
0.453 0.798 Md |0762 0339 0319 0.953
62 103 93 73 124 66
1398 1864 1476 0.453 0.798
73 120 121 62 103

FIGURE 5.3. Examples of mutation schemes.

110 Zhang and Miranda

TABLE 5.3. Possible crossover schemes.

y=0 y=1
x=0 X1Y2X3x X1X2Y3y
Y1X2Y3y Y1Y2X3x
x=1 X1Y2Y3y X1Y2X3x
Y1X2X3x Y1X2Y3y

Mutation scheme Mc: Swap the order of the elements of the same level of the
pulse set randomly, but do not change the duration and amplitude wraps.

Mutation scheme Md: Swap the order of the hierarchical levels in the pulse set
randomly.

An integer between 1 and 4 is generated randomly in each generation in order to
define which mutation schemes will be used. For example, if the random number
is equal to 2, then only the first two mutation schemes (Ma and Mb) will applied
to the respective generation; in this case, the decision as to whether to perform Ma
or Mb to an individual pulse set is also decided randomly.

5.4.4.3. Crossover

In order to maintain the hierarchical structure of the evolved parameters, the system
performs crossover only within a given level of the hierarchy. For example, let us
consider the crossing over of two pulse sets: X and Y. They can be respectively
represented as X; X, X3x and Y Y,Y3y, where X, or Y, refers to the nth level of
pulse set X or Y, including duration and amplitude parameters. The variables x and
y are the numbers at the end of X and Yrespectively, which can value either 0 or
1. The system uses the value of x — y (which can be 0, 1, or —1) to decide how
the crossover between X and Y will operate. This includes the choice between
a one-point crossover or a two-point crossover, as well as which levels of the
parent pulse sets the crossover will operate on. Possible crossovers are shown in
Table 5.3. If x equals to y, then X and Y exchange their middle level, keeping all
other information unchanged. If x = 0 and y = 1, then X and Y exchange their
lowest level including the last number. Otherwise, if x = 1 and y = 0, then the
highest level of X and Y are crossed over.

5.5. Demonstration

As ademonstration of the system, let us consider the melody of Robert Schumann’s
Trdumerei shown in Fig. 5.4. The figure also shows the structural analysis used
for calculating the fitness value, including grouping structure, metrical analysis
and harmonic progression. Group boundaries are indicated by ‘xx’, vertically po-
sitioned under the staves at segmenting positions. The numbers at the bottom of
the notes correspond to accent information (from metrical analysis). The chord
names above the staves indicate chord progressions.

5. Experiments in Generative Musical Performance with a Genetic Algorithm 111

| s

T
I
(4 ¢ el I - e N
2 4 121 41 2% 21 4121 3121 41 2 x 2
6 v 6
s 5y Vs 12
a. FI) I 1 1
:@ﬁ:.g;it:ﬁx o u_;-}'_F:hR—FP—F—F — ——
_%II | | 7.2 | . - Ig
1) — ¥ 1 [1 111 72
) ~— = T & ~—
4 121 412 %121 41213 14 2 3 1 4 1 21
11 6
1 —
vy - v 1 -
o 1 1 —— 1+ 1
= e == += e
[N - bl % — x
16 41 2 x 21 4121 3121 41 2 % 2 4 121 41 2 121
. .6
Vs' iig v I Vv I v =TT iis
fetrmiopm ., 1 T
N1 T 1T T
AN I | 1 Yy 17) I 77) I N) I - 1
Y ! I - ~—— = e |
41 213 1.4 2 3 1 4 "121412221 412 13
21 Vg | v |
f s PR o e ™ .
;IIIJ | =— - | I — 11
| . 1 —T1 11 1 ¥ 171
v v | I .
4 13 x 1 4 121 41 2 x 21 412 13 1 4 13x2
26 6
vy If_[_ v |
|- 1I 1) 1
1 - 11 1 1 1 T
e e e e}
[R L == . ¥
4 121 412 .21 4121 3121 41 2 3 2 4 12
31 v !
A o5 » g | I —
i s e s s = o I ﬂ
o — . e i | ?F_‘— — 2
e N - -

X X
41 2 g1 21 41 2 1 3412 1 4 12 13

FIGURE 5.4. A melody from Schumann’s Triumerei and its structural analysis.

The system ran 35 times. In each run, 100 individual pulse sets were ran-
domly generated for the first generation and then we let them evolve for
100 generations.

For each generation of every run we recorded

a) the pulse set’s fitness values including FitGrouper, FitAccent, FitCadence and
the total fitness (i.e. the sum of the three) and
b) the best pulse set.

Fig. 5.5 depicts the final best fitness values that were recorded from all runs.
These are the best fitness values of the generation number 100 for each of the
35 runs. As shown in Fig. 5.5, ‘excellent’ pulse sets whose fitness values reached
3.0 have evolved in the 4th, 6th, 15th, 23rd and 28th runs. This does not necessarily
mean that each of these runs produced only one ‘excellent’ pulse set each; in fact
each run has produced more than one ‘excellent’ pulse set. Although most of these
‘excellent’ pulse sets may share identical configurations (which is a pulse set’s
basic structure given by the first two lines of its representation), they always have

112 Zhang and Miranda
3 - , . : . —
295FF |- oa X RS SRR LR FA--f- - T CRREREEEES
28k i AR SRR RSN et e
| | | | | | :
2.85f IR RO (LEERERER B o | R R
®
3 : : : : : :
= 28p AR P et AR | A TN
8 N N N N N \
RN/ ST | R CE TP TR R TPTT PETPRTTIE RPETPET 5f FEPPETRR-SPEE BN
i : : : : :
@ o7kl R P P o S R A
@ : : : : : .
S RIS LA SIS S 1
: : : : ! :
26f R S e R SN
1% IRCITIES SUSPTIRN APPOESINORE I 38
25 i i i i i i
0 5 10 15 20 25 30 35

Index of run
FIGURE 5.5. The best fitness values produced in 35 runs.

different duration and amplitude parameters, resulting in different performance
profiles. A few examples are given in Table 5.4: Two pulse sets evolved in the 4th
run and two evolved in the 15th run.

From Table 5.4, we can infer that both pulse sets evolved in run 4 have a
repeated deviation pattern that consists of: 8th note x 8 x 2 x 2 = 16 beats, which

TABLE 5.4. Example of ‘excellent’ pulse set.

Run4_1 Runl5_1

8 16

822 442

1.464 0.767 0.925 0.15 1.262 0.622 1.025 0.388 1.3820.573 0.676 0.109

97 86 116 107 123 106 60 113
1.046 1.004

125 116 100 80
1.369 0.875 1.107 0.883

95115 116 115 109 80

1.282 1.331 1.133 1.116

118 121 115122

Run4 2 Runl52

8 16

822 443

1.478 0.582 1.036 0.344 1.301 0.305 1.022 0.606 1.418 0.598 0.525 0.232

101 84 121 101 123 113 54 101
1.057 1.05

100 115

1.393 1.348

124 121

122 120 102 90

1.336 0.853 1.087 0.87
116 123 111 88

1.154 1.113 1.096

118 122 110

5. Experiments in Generative Musical Performance with a Genetic Algorithm 113

2
5 — Fkun41 O Flun42 — Bb— F%un151 Run152
k5
S
[0)
©
c
S
=
5
[a]
5 6 7 9 10 11 12 13
C
S
s
>
[0]
©
[0}
©
El
£
£
<C
5 6 7 8 9 10 11 12 13
Beat

FIGURE 5.6. Two examples of deviation patterns by evolved pulse sets. It starts from the
fourth beat because the piece actually begins with an upbeat at the fourth beat.

corresponds to the length of four bars. The other two pulse sets evolved in Run 15
have different configurations: Run 15_1 is for a two bar period (16th note x 4 x
4 x 2 = 8 beats) and Run 15_2 is for a three-bar period (16th note x 4 x 4 x 3 =
12 beats). Fig. 5.6 depicts their deviation pattern in eight beats (two bars).

At present, the system assesses whether or not a pulse set is suitable for the
piece mostly based on how well it fulfills the devised rules for the fitness function.
This is done by checking whether the important deviations of the notes correspond
to those described by the rules. As an example, let us briefly consider the patterns
shown in Fig. 5.6. Firstly, we can list the group boundaries in the piece based on
the score in Fig. 5.4. They are the notes at the 10th, 18th, 26th, 37th beat and so on,
always taking more than one beat. The graph at the top of Fig. 5.6 shows that each
of these durations (adding all the beats occupied by each note) deviates mostly
compared with its two neighbour notes. In this way, it is fair to say that both Rule
1 and Rule 2 have been satisfied because all notes were lengthened accordingly.
As for Rule 3, it is the only rule affecting the amplitude of the notes. The graph at
the bottom of Fig. 5.6 shows that all those ‘excellent’ pulse sets follow identical
amplitude deviation patterns, which match the accentuation information shown in
the score. Finally, in terms of Rule 4, there are several cadences such as V—1,
IV— I in this piece. In most of the cases, both groups of notes composing the
two chords of a cadence were lengthened. Other violations might have occurred
because the concurrent effect inflicted by Rules 1 and 2.

114 Zhang and Miranda

FitGrouper
25} — - — FitAccent 4
"""" FitCadence
— Total Fitness
$ 2]
©
>
]
(0]
=
i 151 E
1 1 1 1 1 1 1 1

40 60 80 100 120 140 160 180 200
Generation

FIGURE 5.7. Fitness trace. This is achieved by averaging the fitness value of the evolved
best pulse set in the same generation across 35 runs.

Fig. 5.7 shows four curves corresponding for the values of FitGoruper,
FitAccent, FitCadence and the total fitness, in order to follow the development
of fitness values through 100 generations for the 35 runs; it plots the geometric
mean of these 35 groups of curves. These fitness curves show how the best pulse sets
changed through the generations. We can observe that FitGrouper and FitCadence,
which are fitness components defined as penalties for breaking the rules, have in-
variably played a dominant role in the beginning of the evolution. It is also possible
to observe that after both of them have reached the maximum value 1, the configu-
ration of the best pulse set in the following generations had hardly changed. During
this steady period, the best pulse set gradually extended over the population. This
indicates convergence, even though modifications of the duration or amplitude
parameters continued to occur. Although this is a dominant development, it is not
an absolute one because there still is the possibility that some exceptionally good
configuration had emerged; a good example of this are the pulse sets in the 15th run.

We also have performed other experiments to observe the effects of mutation
on the best fitness value that pulse sets can have. For example, by adding the step
to randomly generate a new value for the quickest note of every mutation scheme,
we found that it is hard to evolve pulse sets with fitness value as high as 3.

The mutation scheme Ma is always performed in the present version of the
system. Although this has been decided on purpose, it would be interesting to
observe what would happen if one changes the order of the mutation schemes.

5. Experiments in Generative Musical Performance with a Genetic Algorithm 115

5.6. Concluding Discussion

This chapter introduced a GA-based system to evolve performance profiles to play
a piece of music. It evolves suitable pulse sets for musical performance using fit-
ness rules derived from the structure of the piece to be performed. Furthermore,
the ‘excellent’ pulse sets evolved by the GA, no matter whether they were from
the same run or not, have shown diversity and also commonality. This could be ob-
served both objectively (by comparing the figures of deviation patterns by different
pulse sets) and subjectively (by listening to the ‘interpreted” MIDI files).

When listening to pieces performed with the evolved pulse sets, we can perceive
the expressive dynamics of the piece, mainly due to lengthening or shortening of
related notes. However, we acknowledge that such subjective assessment of the
results does not hold much scientific value. We are currently developing method-
ology to validate the evolved pulse sets against human performances (Repp 1992).

At the time of writing, the system is being tested on multiple interactive agents.
A group of agents negotiate best practices amongst themselves when performance
rules conflict with one another or allow for multiple choices. Other ongoing work
includes the implementation of a mechanism to vary the number of hierarchical
levels in order to render the model more robust when it encounters more complex
music structures. We feel that the system would benefit from being able to cope
with more hierarchical levels when evolving pulse sets for pieces of higher com-
plexity than the pieces we have tested so far. Also, we are devising a new way to
compute the fitness function, as a weighted sum of the fitness values for different
performance principles. We are interested in letting these weights to evolve with
the pulse sets.

The natural future progression for this research is to use actual sound recordings
rather than MIDI representation of the pieces of music. Although the system still is
in development, this chapter demonstrated the potential of yet another application
of evolutionary computation in music. Should research in evolutionary generative
music performance continue to make progress, we would witness in a not so distant
future the appearance of musical devices that will be able to actually perform pieces
of music in different ways, rather than simply playback recordings of performed
music.

References

Blickle, T. (1995). A Comparison of Selection Schemes Used in Genetic Algorithms. Tech-
nical report. Computer Engineering and Communication Networks Lab (TIK), Swiss
Federal Institute of Technology (ETH), Zurich.

Clarke, E.F. (1988). Generative principles in music performance. In J. Sloboda (Ed.), Gen-
erative Processes in Music. The Psychology of Performance, Improvisation, and Com-
position. Oxford Science Publications.

Clynes, M. (1986). Generative principles of musical thought integration of microstructure
with structure. CCAI Journal for the Integrated Study of Artificial Intelligence, Cognitive
Science and Applied Epistemology, 3: 185-223.

116 Zhang and Miranda

Clynes, M. (1995). Microstructural musical linguistics: Composers’ pulses are liked most
by the best musicians. COGNITION. International Journal of Cognitive Science, 55:
269-310.

Davidson, J.W. and North, A.C. (1997). The Social Psychology of Music. Oxford University
Press.

Gabrielsson, A. (2003). Music performance research at the millennium. Psychology of
Music, 31(3): 221-272.

Oosten, P. van (1993). Critical study of Sundberg’s rules for expression in the performance
of melodies. Contemporary Music Review, 9: 267-274.

Palmer, C. (1997). Music performance. Annual Review of Psychology. 48: 115-138.

Poli, G.D. (2004). Methodologies for expressiveness modelling of and for music perfor-
mance. Journal Of New Music Research, 33 :189-202.

Repp, B.H. (1992). Diversity and commonality in music performance: An analysis of timing
microstructure in Schumann’s Traumerei. Journal of the Acoustical Society of America,
2546-2568.

Sundberg, J. (1999). Grouping and differentiation two main principles of music. In T. Nakada
(Ed), Integrated Human Brain Science: Theory, Method, Application (Music).

Temperly, D. (2004). The Cognition of Basic Musical Structures. The MIT Press.

Todd, N.P.M. (1985). A model of expressive timing in tonal music. Music Perception, 3(1):
33-58.

Widmer, G. and Goebl, W. (2004). Computational models of expressive music performance:
The state of the art. Journal of New Music Research, 33: 203-216.

6

Composing with Genetic
Algorithms: GenDash

RODNEY WASCHKA 11

6.1. Introduction

This chapter describes the author’s ongoing work with evolutionary computation
in the composing of ‘art’ or ‘concert’ music. Over the course of many years, the
author has written and rewritten a computer program called GenDash that employs
evolutionary computation. GenDash has been used to help compose pieces ranging
from works scored for solo human speaker to string quartets to orchestral works
to pieces for instrumentalist and electronic computer music to operas.

Only the author has used this particular program and over time GenDash has
undergone a number of significant revisions. Since the author never entertained
any idea of distributing the program in any form, changes and additions were
made to the program and those accretions were bent, stretched, and sometimes,
hammered into shapes useful to the author. For some pieces, GenDash provided
the total algorithmic support for the composition of a particular work. For other
pieces, the author might have used GenDash for one aspect of the work, such as
the instrumental part of a composition, while employing a different program and
algorithm for the electronic portion. Some people might characterize the structure,
revisions and uses of GenDash as ‘idiosyncratic,” while others might find ‘eccen-
tric’ a better term. In any event, aside from some initial testing to help the author
figure out what might be possible, the program always had to serve the creation
of the music, with pieces often made on a deadline for a performance already
scheduled. The very name of the program, inspired by Al Biles’ GenJam program,
indicates the author’s frequent need for quick results.

After providing brief background information, this chapter describes in general
terms the GenDash program and the thinking behind its various attributes and
incarnations. Different requirements for each commission meant small or even
large changes in the program. Additionally, changes in the author’s thinking about
how to use evolutionary computation resulted in other changes to the program.
Some of this explanation may seem wayward, but if one wishes to understand the
working method of a particular composer, one is forced to follow the composer’s
particular thought patterns no matter how nonlinear or even silly. Following that
discussion, alist of the author’s pieces made with evolutionary computation appears

117

118 Waschka 11

and finally some specific examples from those pieces are described. Small sections
of this chapter are based on short articles the author published previously (Waschka
1999, 2001).

6.2. Background

In the 1990s, some composers and/or engineers attempted to make use of evolu-
tionary computational models of different types to create various kinds of music
or musical sounds. The range of these musical projects from before, during and
after the creation of GenDash extended from harmonizing chorale melodies in the
style of Johann Sebastian Bach (Horner and Ayers 1995; Maddox and Otten 2000)
to timbre development (Horner et al. 1992; Horner and Goldberg 1993; Horner
et al. 1993; Fujinaga and Vantomme 1994; Horner et al. 1995), to attempts to find
efficient synthesis techniques that produce sounds that mimic acoustic instruments
(Horner et al. 1992; Vuori and Valimaki 1993; Horner et al. 1996), to the creation
of a musically intelligent soloist for jazz standards (Biles 1994; Biles and Eign
1995; Biles 1998), to attempts to utilize these artificial life models for the making
of new music (Waschka 1999; Thywissen 1996). While the list above represents
only a sampling of the work done, it does give an indication of the type and breadth
of those efforts. Some of this work has been summarized in more recent writings,
most notably this volume.

Al Biles with his program GenJam accomplished compositional work within a
well-understood format. GenJam composed solos for jazz standards. Intrigued by
a presentation Biles made about his research in 1994 at the International Computer
Music Conference in Aarhus, Denmark, the author immediately set to work on a
program that would help compose new works for traditional ‘art/concert’ music
ensembles as well as works involving electronic computer music. A solo work,
Solo Song, was completed in 1995 (Waschka 1996a) and a work for orchestra,
Empty Frames, in 1996 (Waschka 1996b).

6.3. First Thoughts

One of the conditions often cited for the ideal use of evolutionary computation
is that of a ‘well-defined problem space.” When an architect or designer or engi-
neer or computer programmer sets out to create a building or a faucet or a fork
or an inventory database, they find the project burdened with various limitations.
Often these limitations help determine whether the project will be considered a
success. The bridge must span a certain length and carry a certain weight. The fork
must be easy to use by adults and children, the arthritic and the handicapped. The
building must contain a certain number of square meters or feet, have a certain
volume, remain standing and require little maintenance. The inventory program
must allow novice and occasional users, who generally drive forklifts and trucks,
to find specific items in a matter of moments. All of these projects come with
budget constraints. These limitations together with the many known aspects of

6. Composing with Genetic Algorithms: GenDash 119

the materials available: The density and carrying capacity of metals, stone, wood,
concrete, etc., combine to define the problem space with a clear minimum level
of success. A building or bridge that falls down is a failure. A fork that an aver-
age, healthy 20-year-old human cannot keep food upon is a failure. An inventory
program that requires the designer to spend 5 min clicking buttons to find out if
widget type ‘D’ is in stock is a failure.

Music remains free from many of the physical constraints common in other art
forms. Because its material can be made indistinguishable from its form, Walter
Pater claimed that ‘All art constantly aspires towards the condition of music’ (Pater
1873). Music may be the most ephemeral, ghostly and useless of the arts. Dance,
like music, is here and gone in an instant, but choreographers must cope with the
abilities and disabilities of human bodies. In the documentary film, The Collabo-
rators: Cage, Cunningham, Rauschenberg (1987), about the collaborative work of
composer John Cage, choreographer Merce Cunningham and visual artist and cos-
tume and set designer Robert Rauschenberg, an interview segment illustrates the
point. Both Cunningham and Rauschenberg complain that because Cage’s work
was the least corporeal, he always had the most freedom. Rauschenberg comments
on the limitations of size, weight, material, etc., that constantly constrained the
visual art of his set and costume design. Cunningham notes that he was not free in
his use of chance techniques in choreography because such techniques could lead
to dancers running into each other, ‘but if John’s sounds ran into each other, no
one got hurt’.

The problem of composing new works of art music is, at least in the author’s
view, far from a well-defined problem. The obvious question is what makes for
good new music? What is meant by ‘new’ here is both currently made and different,
non-formulaic, perhaps experimental and/or avant-garde. Most composers, upon
hearing a piece, even for the first time, feel confident of their ability to judge
its quality and believe they will be able to point out what things about the piece
worked well and what did not. However, such estimations differ significantly from
knowing, a priori, what will make a good, non-formulaic, experimental, or avant-
garde piece. Many composers do not have this a priori knowledge and, if they
did, could easily find that composing no longer interested them. To paraphrase
Morton Feldman paraphrasing someone else: When we get to the point where we
do not know what we are doing, that’s when we have truly started to compose.
This is not true for all composers — those who wish to write in a well-understood
style from a previous time period, may, in fact, have very detailed ideas about the
rules for making a piece, as might, for example, an integral serialist. For those
who do not have a very specific idea of the end result as they begin composing,
developing evolutionary priorities as defined by a fitness function could easily
prove impossible. One could begin by thinking about the limitations of the human
ear as a basis for marking the boundaries of music making, which still leaves an
infinity of possibilities, but then, what to do about ‘conceptual music’ or pieces of
music that cannot be heard by human ears?

In many instances, of course, acommission gives the composer some limitations.
For example, the work must be for string quartet and must last between 15 and

120 Waschka 11

20 min. Other commissions constitute even fewer boundaries. A composer might
be asked to ‘make an electronic piece without performers for our next festival with
a maximum of eight channels of sound’. Regarding cost, another usual limitation,
there are clear expense differences between erecting a building or bridge and
making and presenting a piece of electronic computer music. Even computer music
for traditional performers is much less costly than many other kinds of projects
(artistic or otherwise) to which evolutionary computation models might be applied.
Once a certain relatively low expense standard is reached, a composer can present
a piece that will last at least as long as the typical audience is willing to sit still
to hear it. In the case of electronic music, the composer can easily make pieces
that last much longer than that for only tiny increases in cost. Once a piece is
scheduled to be on a regular concert series, meaning the hall has been rented and
the performers have been paid to play something at that time and place, then the
real budget factor is the amount and cost of rehearsal time. This factor can act as
a limitation for the composer.

6.4. First Attempts

With something akin to these thoughts in mind, in 1995 the author attempted to
create an evolutionary computational program that would help compose a piece
for the simplest and handiest performance situation: The composer as solo human
speaker (Summer Song 1996). The process and the two small pieces made in this
way interested the composer sufficiently to warrant a continued exploration of the
possibilities and to risk attempting to use evolutionary computation as a method for
making a piece for orchestra. This exploration eventually resulted in the chamber
orchestra piece (Empty Frames 1996), but along the way, the author’s use of evolu-
tionary computation in composition crystallized in the development of GenDash.
The making of this orchestral piece, then, traces the development of GenDash.

After working on the orchestra piece for some time, a number of problems
pushed the author to make radical changes in the approach to the algorithm. Work-
ing with what seemed like an elaborate program that would select musical ma-
terial from the initial population, then breed and after many generations assign
offspring to different instruments, the author immediately began struggling with
general philosophical questions and practical procedures, some of which have
been mentioned already. Attempts at ‘composing’ or at least writing a vast, di-
verse and complicated initial population of gestures, themes, motives, harmonies,
etc., provided material that never seemed to organize itself into anything the au-
thor considered musically intelligible and sufficiently sophisticated for this piece.
Repeated changes in the fitness function seemed to produce entirely unexpected
changes in the musical result. In addition, practical problems arose. After the pro-
gram had run the designated number of generations, the resultant musical material
was assigned to the instruments of the orchestra. Sometimes that material could
not be performed on the instrument indicated. A problem of the ‘fitness function
bottleneck’ described by Al Biles (1995) also existed.

6. Composing with Genetic Algorithms: GenDash 121

Obviously, the metaphor for evolutionary computation involves biology and
genetics, with the idea of creating a situation in which one, or a very, very small
number of best solutions for a particular problem or environment are determined
after many iterations. If, however, as might be the case in music, the ‘problem’ is
poorly defined and a correct ‘solution’ may not be obvious even when the composer
literally has it in hand, then another way of looking at evolutionary computation
could be used. Thinking about the writings of John Cage, Felix Salten and Kurt
Vonnegut suggested another way of working.

6.5. Cage, Bambi and Vonnegut

The author remembered Cage saying that he believed nature operated by chance
procedures. The intervention of man into some of nature’s processes seemed not to
remove the chance element. If thinking of evolutionary computation while reading
the book Bambi by Salten (1928), one is struck by a couple of instances. First,
Bambi’s mother is a magnificent specimen. She has been brought to a high level
of ruminant perfection through ages of evolution. Still, little in the evolutionary
process has prepared her for the advent of gunpowder, rifled barrels and sighting
lenses. Nor is she capable of dealing with the sheer dumb bad luck of being in the
wrong place at the wrong time when hunters who do not follow the rule of killing
only males come into the forest. Second, Bambi’s father, another magnificent
result of evolution, nearly dies in a forest fire. Imagine a fire starts, through natural
processes, on one side of a chasm and not the other. A spectacular deer happens
to be grazing on the same side of the chasm that begins burning. With its highly
developed (through evolutionary processes) sense of smell and instincts we may
not yet understand, the buck quickly realizes the danger and flees. Trapped by the
precipitous canyon and the fire, it dies. On the other side of the chasm a not-very-
bright and somewhat scraggly deer watches the death in silence then continues
foraging. It lives long enough to breed and give birth to a fawn. The same kinds
of things apply with humans. An evil, stupid and ugly man buys a lottery ticket.
He wins. As the saying goes, ‘No man who can afford a luxury car, no matter how
ugly, ever had a problem passing on his genes’.

Next the author considered that unlike material objects, including some works
of art, music is based in time. The changes heard in a piece over its duration and
how those changes are handled can be the most important aspect of a work. This
thought was combined with something Vonnegut wrote to the effect that mostly
humans are trained to work hard and succeed; unfortunately, mostly what humans
do is fail. Most humans experience a great deal of failure in their lives. Often,
things do not work out, no matter how much effort the human expends. We usually
do not receive training that helps us deal with failure. The author thought that
reconsidering evolutionary computation in that context might be helpful. Could it
be that many of nature’s evolutionary experiments playing out over millennia fail
also? These ideas resulted in major changes to the program and the creation of the
basic GenDash program.

122 Waschka 11

6.6. GenDash

GenDash has the following attributes: (1) An ‘individual’ consists of a measure of
music; (2) all individuals that are ‘born’ in any generation are performed; (3) the fit-
ness function is random, which leads to random selection; (4) only one crossover
point is used for each breeding, but its placement varies with each generation;
(5) space is set aside for individuals that are unheard in the current generation
but may appear and/or breed in a later generation; (6) space is set aside for an
intact individual that may breed in the current generation and in a succeeding
generation; (7) individuals within a single generation can mate with more than
one other individual and/or mate with the same individual more than once;
(8) mutations can occur and finally, (9) a two parent model is used, but without
regard to sex; (10) the composer chooses the initial population. The most unusual
things about GenDash can be seen in the first three aspects of the program.

The first attribute, that a measure of music constitutes an individual, appeared
to be the simplest way to deal with the problem of defining an individual for
traditionally notated music. Of course, for other types of work, such as working
with recorded sound, the composer would need a different procedure. Since, at
some point, a digital representation of an individual is needed and since these
pieces of music were to include traditional notation, it seemed to make sense
simply to use the measure number in the initial population and in the final piece to
indicate a particular individual. In other words, as individuals are generated, their
birth order determines their position in the final piece, which takes advantage of
GenDash’s second attribute.

The second attribute, that all individuals created as a result of the breeding
segment of the algorithm would be heard, meant that the evolutionary process
itself, not the result of a particular number of iterations, constituted the music.
The pieces made with the program mirror the changes that take place over the
generations. The author gained a number of advantages because the evolutionary
process, rather than the result, creates the piece. The listener, whether cognizant
of the process or not, will hear chunks of clearly related material succeeding one
another whether the listeners consciously note the ‘individuals’ as related or not.
As with other evolutionary computation programs, in GenDash there is a clear
diminution of diversity in the succeeding generations and a tendency towards
replication of one or a few individuals. In a typical problem-solving situation, this
narrowing means a closing in on a possible solution. In this situation, where each
individual in each generation is performed, it means an increasing repetition of
musical material. If the stage of simply replicating one or a few individuals were to
be reached, the music would soon become devoid of interest. In the natural world,
such a group might be headed for trouble or extinction: the problems of incest
or the disaster of a narrowly evolved species unable to cope with a change in the
environment. In music, however, short of simple and potentially endless repetition,
this narrowing of the diversity of the material can provide a sense of form. As the
piece proceeds, the repetition of certain elements or whole individuals allows the
listener to make connections with other parts of the work. Finally, the increased

6. Composing with Genetic Algorithms: GenDash 123

similarity of the musical material and the repetitions of motives or measures can
provide for both the composer and the audience a sense of closure and help to
bring the piece or section to a ‘natural’ and ‘satisfying’ end.

If the composer finds that the succeeding generations converge too quickly to
be successful in the piece she or he is working on, there are a number of simple
solutions. A situation in which this might arise could be the case of a composer
with a commission for a 15-min work, but a convergence that prompts an end
to the piece occurs at around 10 min. Potentially, the easiest solution is to re-
initialize the population and run the generations again; the time required to do this
is literally seconds. Another easy solution might be to increase the size of the initial
population. Depending on the desired final length of the piece, the style of music
and the predilections of the composer, the size of the initial population could be
adjusted before any runs of the program created the needed generations. A certain
amount of experience working with GenDash has enabled the author to estimate
beforehand the necessary size of the initial population. Other composers using
similar programs would probably quickly achieve similar estimating abilities.

When a new generation is called for, the program randomly selects which indi-
viduals will breed, how many times and with which other individuals. This third
attribute, related to the discussion above regarding the role of chance in nature,
meant that problems with the fitness function bottleneck were immediately solved:
there effectively is no fitness. When using a completely random fitness function,
the author thrust the program into its most extreme position, which raised at least
two questions. First, how could the composer exert some kind of control over the
piece if the fitness function is random? Secondly, did it make sense to employ
evolutionary computation under such circumstances? In order to answer those
questions, we continue the story of the making of the orchestra piece.

6.7. Empty Frames and Beethoven

As the author worked on this piece, a very important factor soon became apparent.
A random selection fitness function places considerably more importance on the
initial population. It became clear that if a composer wanted to exert some kind
of control over the shape of the piece, the chief method would be through careful
organization of the initial population. Secondly, even if the composer did not care
about exerting any control, the quality of the resultant piece definitely rested in a
very significant way on the quality or appropriateness of the initial population. In
this case the author struggled, writing initial population after initial population with
unacceptable results. Eventually, the author decided to try utilizing a high-quality
piece of music as the initial population: The second movement from Ludwig van
Beethoven’s Symphony Number Seven. At the same time the author determined
to use the GenDash program in a linear or layered approach. This meant, for
example, that the flute part would be composed in a series of generations with the
initial population consisting of only the flute part from Ludwig van Beethoven’s
Symphony Number Seven. Then the oboe part could be composed using only the

124 Waschka 11

oboe part from the Symphony and continuing on with each part until the whole was
completed with the completion of the string bass part. Of course, this procedure
solved the problem of generating parts for an instrument that were unplayable
on that instrument. With this procedure, almost nothing could come out of an
initial population of violin music by Beethoven that would be unplayable on a
violin.

Empty Frames has a duration of 10 min. As it turned out in a kind of pleasant
surprise, the piece seemed to converge ‘naturally’ to an ending as a result of the
decreasing diversity of material. In addition to the use of the GenDash-produced
material, the composer added a couple of other elements. These were a short
introduction and the inclusion of a couple of simple presentations of two previously
composed melodies. Empty Frames was premiered by the Raleigh Civic Chamber
Orchestra on 23 April 1998.

The results of this work provided answers to the questions posed above. The
first question concerned the ability of the composer to exert some control over the
work despite the random fitness function. Now it could be seen that despite the
random selection, the composer could maintain some capacity to shape a work
by maintaining particularly careful oversight of the initial population. In addition,
this work suggested that a fitness function based on random selection together
with a very minimal rule or preference could also succeed. In other words, faced
with multitude of potentially successful (and potentially fruitless) musical results,
a random or minimally limiting fitness function might be best. Beyond that, other
attributes of the program mentioned above and discussed below also play important
roles in shaping the music. The second question concerned whether or not it made
sense to use evolutionary computation under such circumstances. The answer
here was ‘yes,” because it seemed to work well not only as a way of searching
a well-defined problem space, but when the composer used each generation to
translate the process into music, it appeared to display an otherwise unexpected
effectiveness.

Finally, it should be noted that this also led the composer to explore the use of
minimal fitness functions. These fitness functions would have one and only one
requirement. For example, the individual (measure) that contained the highest pitch
could breed only once and produce only one offspring. In effect, a minimal fitness
function implements a single, very specific constraint but provides little ‘guidance’
for the evolutionary process. Occasionally, that small amount of ‘guidance’ can
have a significant impact over time.

6.8. Other Attributes: Johnny Carson, Late Bloomers
and Elizabeth Taylor

The other seven attributes of the GenDash program were developed after hearing
about aspects of evolutionary strategies in nature and after simple reflection by the
author on aspects of human and non-human behaviour.

6. Composing with Genetic Algorithms: GenDash 125

A television program (now forgotten by the author and possibly part of the
NOVA series) about behaviour and genetics pointed out that some human males
monopolize most, if not all, of the potential child bearing years of a number of
women. The example given, Johnny Carson (a now-deceased American televi-
sion entertainer) stuck in the author’s mind. Carson, like some other men, married
several times, with each succeeding bride appearing very similar to the preced-
ing wife, as well as to his first wife. This action of repeatedly ‘trading in for
a newer model’ or ‘serial polygamy’ meant that whether he intended to or not
and he probably did not, Carson achieved a situation in which, generally, he had
access to these women during a significant portion of the fertile period of their
lives. If the women were faithful in their marriage to him, this reduced the num-
ber of their potential mates and, therefore, the genetic opportunities for other
men.

Attribute six, which set aside space for an intact individual that may breed
in the current generation and in a succeeding generation, resulted from thinking
about this particular human behaviour. In GenDash, therefore, it is possible for an
individual to appear in one generation (and be heard), breed in that generation
and then find itself held over intact into the next generation, where it breeds
and is heard again. In the program there is an ever-decreasing chance that this
could continue indefinitely. The actions of Carson and other wealthy or powerful
men in this regard, exert relatively little impact within the context of a nation of
200 million people — if one is thinking only of the United States in the last 40 years
of the twentieth century, for example. However, within in the context of a small,
relatively or thoroughly isolated tribal group, such actions by a rich or powerful
human male could produce noticeable effects. For most of the pieces composed
with GenDash, the initial population has been small, as few as 10 individuals
for very short pieces and often 26 individuals. In such cases, the selection of an
individual to breed in more than generation can have a notable effect.

The fifth attribute of the program, that space is set aside for an individual or
individuals that are unheard in the current generation, but may appear and/or breed
in a later generation, takes into account the classic late-bloomer. Imagine human
individuals who are not successful in the early part of their lives. As a result,
they have trouble attracting a mate. For example, a human male who drops out of
college and starts his own business in a generally not well-known field of endeav-
our might have trouble finding a mate from among the females of his generation
and producing offspring. If, as the years go by, however, that business makes
him rich, many members of the succeeding generation of females will find this
male attractive. Outside the human species, similar events occur also. An older
dominant male of an African lion pride successfully fights off two rivals. A year
passes and one of the two rivals has weakened and died, but the other, younger
one has grown stronger and manages to chase off the older male and become the
dominant male of the pride. There are many other such scenarios, for instance, a
male bird that fails to mate in one year figures out how to build a nest and attracts
a female in the following year. These kinds of scenarios happen often enough
that it seemed worthwhile to incorporate a technique to mimic this behaviour.

126 Waschka 11

Within GenDash, the likelihood of this kind of event transpiring is relatively
high.

Although the author does not know whether the actress Elizabeth Taylor bore
children by more than one husband, the author seems to recall that she married
quite a number of men and that she married one of those men twice. Whether any
of this is true or not, these thoughts suggested the seventh attribute listed above:
An individual can breed more than once within its generation, including more than
once with the same individual. In other words, it is possible that individual 34
might mate with individual 27, producing two offspring, then mate with individ-
ual 46, producing two offspring, then mate with individual 27 again, producing
two more offspring. It is also possible that individual 34 could simply mate with
individual 27 twice, producing in all four offspring. In GenDash, the chances of
an individual breeding more than once within a generation are relatively high. The
chances of an individual breeding three times: once with one individual, then with
a different individual and finally with the initial individual again are relatively low,
but not zero. An exception to this attribute might come when a ‘minimal fitness
function’ (discussed above) was used. In that case, the fitness function might stipu-
late that individual number 17, which contains the longest note duration in a given
generation, could breed a maximum of one time.

The eighth attribute listed above states that, as is the case with most evolu-
tionary computation programs, random mutations occur in GenDash. The rate of
occurrence, although low, remains, as in some other programs, much higher than
the rates normally seen in earth’s biology. Typically, the program allowed for two
types of mutation. In the first case, when the program determined a mutation took
place with the breeding of a particular individual, GenDash called upon a list of
mutations, intuitively decided upon by the composer. For example, the first muta-
tion on the list could be ‘change the first pitch in this individual to the nearest ‘E’
pitch.” The second mutation on the list might be, ‘halve the duration value of the
second note in this individual and replace the other half with a rest.” The program
would simply move down the list as needed in order to modify the offspring with a
mutation. The second type of mutation was a ‘wild card’ in which anything could
happen because GenDash simply alerted the composer that the program needed a
mutation in a particular individual. The author would supply the variation based
on a sense of how the piece had progressed and whether the piece seemed to need
some kind of major or minor new element at that moment in its development.

GenDash uses a typical two-parent model. A single crossover point is used,
but where the crossover will be varies with each individual instance of breeding
(GenDash’s fourth attribute). Individuals are not ‘sexed’ and can breed with any
other individual (the ninth attribute). In other words, ‘individual 9’, for example,
could mate with any other individual. There is no set of ‘males’ and set of ‘females’.
Of course, many other behaviours could suggest other modifications that could be
instituted.

Finally, when using GenDash, the composer chooses the initial population.
While this attribute may seem trivial in some ways, this appears to be a crucial
aspect in the process, emphasized as it is by the random nature of the fitness

6. Composing with Genetic Algorithms: GenDash 127

function. And there are alternatives too. For example, another programmer might
have made the initial population large and always the same in order more easily
to observe the effects of the fitness function. Another person might believe that a
random initial population is more in keeping with the other ideas embodied in the
program.

6.9. A Brief Example

The resultant determinations by the GenDash program for a particular generation
might be summarized by the information presented in Table 6.1. The table shows
the creation of a first generation of 10 offspring from the initial population of 10
parents. The ‘birth order’ indicates what the measure number of the particular
offspring will be. In this case, the first 10 individuals, created or chosen by the
composer, constitute measures 1 through 10 in the piece. The individual indicated
by birth order 11 will constitute measure 11 and so forth. Assuming a 4—4 metre,
individual 11 will have the first three beats of measure 10 and the last one beat
of measure 9. In this example, individual 10 has mated four times, twice with
individual 7 producing ‘twins’ and once each with individuals 4 and 9. Individuals
1 and 3 have ‘mated for life’ producing two offspring and not mating with other
individuals. Individuals 6 and 8 have mated only with each other and have also
produced two offspring. Individual 6, however, is being held over to the next
generation intact, meaning it has survived its mate and might or might not mate
again. This mirrors the situation of a widow or widower. Note that individual 5 did
not mate. Therefore, its material will not be heard again in the piece, unless the
composer employs a ‘wild card’ mutation to reconstruct individual 5. Likewise,
the first three beats of measure 2 and the last beat of measure 7 have been removed
from the potential genetic material. Fig. 6.1 shows the musical result, given a
sample initial population of measures. Finally, measure 20 has been mutated. In
this case, the second parent, measure 4 has been altered. As expected, beats 3 and

TABLE 6.1. Example of GenDash determinations,
(crossover point at beat 3, one offspring per mating).

“Birth order” Parent 1 Parent 2 Notes
11 10 9
12 1 3
13 7 10
14 6* 8
15 3 1
16 4 9
17 9 2
18 8 6
19 7 10
20 10 4 Mutation

*Holdover: 6.

128 Waschka 11

FIGURE 6.1. Musical result of Table 6.1.

4 of measure 4 are used; however, the accidentals have been removed and the ‘E’
has been lowered to an ‘A’.

6.10. Individual Pieces

The author has created 10 pieces using some form of evolutionary computation
program. These works include two relatively small-scale pieces: Summer Song
(1996) for solo vocal performer and Six Folksongs from an Imaginary Country
(2003) for viola alone. There is a medium-scale piece, Singing in Traffic (1997)
for solo instrumentalist and recorded electronic computer music. However, large-
scale works dominate the list: Empty Frames (1996) for orchestra; String Quartet:
Laredo (1998) with a version for string orchestra (2000); Saint Ambrose (1999—
2001) and Sappho’s Breath (2001-2002), both chamber operas; String Quartet:
Ha! Fortune (2003); Eclogues for Woodwind Quintet (2003); and another opera
begun in 2002 and still in progress at the time of this writing. The appendix provides
complete information on forces required, duration, premieres and recordings of
these pieces.

The making of Empty Frames has already been described above. Comments
on other individual pieces and some detail on how they were put together follow
in this section. The works discussed are Singing in Traffic (1997), Saint Ambrose
(1999-2001), Sappho’s Breath (2001-2002), Six Folksongs from and Imaginary
Country (2003) and String Quartet: Ha! Fortune (2003). In some cases, the author
used GenDash to help in composing every aspect of the piece. For other works, the
program helped generate the overwhelming majority but not all of the music. In
still other instances evolutionary computation output from GenDash provided the
instrumental portion of a piece while the electronic portions were composed with
other algorithms or intuitively. While a purist might decry some of these working

6. Composing with Genetic Algorithms: GenDash 129

methods, the author believes that in the long run the music should matter and that
algorithmic techniques should be interesting, useful and serve the composer — not
the other way around.

6.10.1. Singing in Traffic

Singing in Traffic was composed for Jonathan Kramer, cellist, ethnomusicologist
and haegum player. He had learned to play the haegum while on a fellowship in
Korea and wanted to have something new to play on the instrument. The haegum
is a Korean two-stringed fiddle of Mongolian origin that typically plays single
line melodies. The bow is entwined within the strings and, therefore, cannot fall
away from the instrument. Such an arrangement has its advantages for nomadic
peoples—one less thing to forget. Figuring that relatively few people played the
haegum and that an even smaller subset would take an interest in contemporary
American music, the author decided to make a piece based on haegum music that
could also be played by other instrumentalists.

Kramer kindly loaned the author some haegum music and taught the au-
thor how to read traditional Korean music notation. The author transcribed the
pieces into Western notation and then created an initial population based on this
music. GenDash then produced several generations that became the instrumental
part. The initial population and subsequent generations contained only 8 indivi-
duals. The original structure of the initial population was retained in that it and
each subsequent generation featured 7 three—four-time measures followed by a bar
of four—four. Fig. 6.2 shows the first population that appears in the piece (the first
eight measures) followed by a segment five generations later (measures 40-47).

In order to provide an improvizational aspect, after every generation, there is
a repeat sign with the instruction to embellish the material during the repetition.
Performers who have played the piece have taken this to mean everything from
small changes in pitch and rhythm with a subtle nuance in the phrasing, to a wide
ranging, jazz-like improvization based on the original melody.

The author employed a different algorithm in the making of the electronic part
for Singing in Traffic. Referred to as a ‘mosaic’ technique by the composer, it is

Soloist

Solo.

HIL:
TN
N
HIL.
N

FIGURE 6.2. Beginning of the soloist’s part for Singing in Traffic by Rodney Waschka II
(initial population) and a section of five generations later (measures 40—47). Copyright
Borik Press 1997. All rights reserved. Used by permission.

130 Waschka 11

based on the theory of centonization from medieval chant (Hoppin 1978). The raw
material for the electronic part consists of a single digital recording; the author
recorded the sound of a single car passing his house at approximately three in the
morning while a bird sang. The piece has a duration of 8 min and 21 s.

Kramer gave the premiere performance of Singing in Traffic on his haegum
on 7 October 1997 in Raleigh, North Carolina. The piece has been performed
on haegum, cello and soprano, alto and baritone saxophones. Saxophonists Steve
Duke, Phil Barham and Harry Bulow have played the piece, as well as cellist
Jonathan Kramer and others. Subsequent performances have been in given in
Chicago, Denton, at the Third Practice Festival in Richmond and elsewhere.

6.10.2. Saint Ambrose

Commissioned by saxophonist Steve Duke, Saint Ambrose is a chamber opera for
soprano saxophonist, recorded electronic computer music and visual projections.
Duke gave the premiere performance of the work in Chicago and he has recorded
the piece for Capstone Records (CPS 8708). The opera, in 12 scenes, has a
duration of slightly more than 40 min. Based on the life and writings of Ambrose
Bierce, the title comes from his definition of a saint: ‘n., a dead sinner, revised and
edited’. Bierce fought in the United States Civil War. After the war, as a journalist,
he took on some of the most famous ‘robber-barons’ of his day including Stanford,
Crocker and Huntington. He wrote short stories and essays about his experiences
in the Civil War. He also wrote a book of definitions, The Devil’s Dictionary,
which contains witticisms sufficiently brilliant that they have become part of
the English language. For example, ‘Love, n., a temporary insanity curable by
marriage’. Atthe age of 71, in 1913 or 1914, Bierce disappeared in Mexico during
the Mexican Revolution. Some believe he was killed and his body burned at the
battle of Ojinaga. Some believe he left Mexico for Europe, while others contend
he returned to the Grand Canyon in the United States where he committed suicide.
The opera takes as its conceit that Bierce is still alive and has come to the concert
hall to deliver a lecture. The structure of the opera is as follows:

Scene 1: Overture: Nothing matters
Scene 2: Good evening

Scene 3: Interlude #1

Scene 4: Unlike William

Scene 5: Interlude #2

Scene 6: After the war

Scene 7: Interlude #3

Scene 8: In 1913

Scene 9: The definitions aria

Scene 10: Interlude #4: Clementine variations
Scene 11: Now, as promised

Scene 12: Saintly jam

Scene 1, the overture, consists of electronic music. While it plays, the performer
walks out on stage. During scenes 2, 4, 6, 8 and 11, the performer acts and speaks

6. Composing with Genetic Algorithms: GenDash 131

N
b |
{1

>
Soprano Saxophone {5y A—2

FIGURE 6.3. First five measures of Interlude 3 of Saint Ambrose by Rodney Waschka II.
Copyright Borik Press 2001. All rights reserved. Used by permission.

(but does not sing) while electronic music is heard. During scenes 3, 5, 7 and 12,
the performer plays the saxophone together with electronic music. In scene 9, The
Definitions Aria, the performer must alternate between playing the saxophone and
speaking, while recorded electronic computer music plays. The Definitions Aria
was created in such a way that it would also stand alone as a concert work. In this
it has succeeded; John Sampen has performed The Definitions Aria many times
across the United States over the course of a number of years.

The author created the saxophone parts for the opera using GenDash. In Inter-
lude 3, the author wished to create a saxophone part that invoked the bugle sounds
and motives of the American military piece known as ‘Taps’ without using that
work as the initial population. Fig. 6.3 shows the first part of the resultant piece.

6.10.3. Sappho’s Breath

Sappho’s Breath is a chamber opera for soprano (singing and playing hand-held
percussion instruments) and recorded electronic computer music. The work was
commissioned by soprano Beth Griffith, who gave the premiere performance in
New York City and has recorded the opera for future release. The opera, in 12
scenes and an overture, has a duration of approximately 30 min and is based on
the life and writings of the ancient Greek poetess, Sappho. The opera takes as its
conceit the idea that Sappho, called forth by the composer from Hades, is briefly
allowed to return to the land of the living. She talks and sings about her life touching
on the nature of gossip, lesbianism and art.

In this work, the author attempted to provide an extremely simple yet elegant mu-
sical and textual setting in keeping with the plain speaking of the poetry. To that end,
the arias contain no sung text. The performer chooses syllables to sing with the notes
and speaks the text. In addition, no electronic music plays with the arias; the per-
former accompanies herself with the hand-held percussion instruments. Recorded
electronic computer music is heard in the overture and in those scenes where the
performer speaks but does not sing. Fig. 6.4 shows part of an aria from this opera.

Note: Clap your hands at each eighth-note rest.
lively, forte e ad libitum

FIGURE 6.4. Excert from Aria 1: Tell Everyone from the opera Sappho’s Breath by Rodney
Waschka II. Copyright Borik Press 2002. All rights reserved. Used by permission.

132 Waschka 11

6.10.4. Six Folksongs from an Imaginary Country

Six Folksongs from an Imaginary Country was written for violist Vladimir
Bistritsky. He gave the premiere performance of the work at the Composer’s Center
in St. Petersburg, Russia in 2003 and has recorded the work for future release. The
six movements as follows:

. Night song

. Walking song

. Dance

. Children’s song
. Drinking song
. Horse song

AN B W

No folksong material appears in the work. The six short pieces were created
using an initial population of 10 individuals (10 measures). The pieces vary in
difficulty, but, partly because of the medium, maintain a sense of simplicity. The
imaginary country of these ‘folksongs’ contains many horses, good food and drink,
and children that can sight read complex atonal melodies. These pieces represent
some of the author’s most straightforward use of evolutionary computation. Fig. 6.5
shows a portion of ‘Horse Song.’

6.10.5. String Quartet: Ha! Fortune

String Quartet: Ha! Fortune was written for the Nevsky String Quartet. The quar-
tet gave the premiere performance of the work at the Composer’s Center in St.
Petersburg, Russia in 2003. The piece has been recorded for future commercial
release.

The Quartet is in five movements. The piece uses two older works as initial popu-
lation material, primarily, the isorhythmic motet Qui es promesses-Ha! Fortune-Et
non est qui adjuvat by Guillaume de Machaut (c.1300—1377) and the last movement
of the Frederik Chopin (1810-1849) Piano Sonata in B-flat minor, opus 35. These
initial populations are particularly noticeable in the fourth movement, which em-
ploys the Machaut motet as an initial population and in the fifth movement, which
employs the Chopin Sonata movement. Quotations from the motet also turn up in
the other movements. Other structural notes on the Quartet include an abrupt end
to the first movement, while the third movement takes up where the first movement
ended. Fig. 6.6 shows six measures from the fifth movement.

6.11. Conclusion and Future Work

Using the computer program GenDash, the author has been able to create a sig-
nificant body of new art music based on evolutionary computation. The works
have achieved many of the usual hallmarks of success: Numerous performances
in various countries, financial support, recordings, broadcasts and positive reviews

6. Composing with Genetic Algorithms: GenDash 133

J=7 ' J=132
E £ et .,el ~_el.?
viola. J5-4°8 E=E==S tﬁw"#—&%
E_ = o= = = =
mp —f
5

e efre Pf :Eu.f- ﬁ.':-—m
O S====== e

8 >
R S AN S
o1 o 1
Vla e o i 2 e | I — — — 1

1
= oo 'E £. - £Pe, »,7 -
ve PP e el p ol frrs EEESE ==
= = = = O=
P S

15 *
o 0T T L. o .ﬁ- E #'—'
1 T T 1T T J‘U.LF 1 et N 17 >y]
Via SE=S=== R
= = P g
18 o - > »- o
- . g {2 FIF ##F—'Fl‘}'?u_ |..|F- # 2 2 .-I
via I3 Ere ¢ ==L F+ s e
— = (===

FIGURE 6.5. First 20 measures of Horse Song, the sixth of the Six Folksongs from an
Imaginary Country by Rodney Waschka II. Copyright, Borik Press. All rights reserved.
Used by permission.

(Lambert 2004; Gooud 2002; Sharyshkin 2003; Link 2005). The GenDash program
presupposes that the process of evolutionary change might be more interesting than
any one particular ‘solution’ for a given musical segment. The program does not
rely on fitness functions based on older, well-understood musical styles, nor on
the particular preferences of the author or user (which have always been the same
person). However, the program’s structure does incorporate specific approaches to
the modelling of evolutionary behaviour.

134 Waschka 11

Rapido, legato e sotto voce

Violin I

——— — Y]
—— — —— —— -

Violin II

Viola

Violoncello

p' A
Vin. I |Hes

& - -
D)
Vin. TI mﬂ ==t

via. |8 —— SEE ===

3
i
T

Ne

fel

v f
Ve. |EE=E —

s
¥
Tt

TS
P
Wl

Y
b
gl

i

FIGURE 6.6. Measures 11-16 of Movement 5 from String Quartet: Ha! Fortune by Rodney
Waschka II. Copyright Boric Press 2003. All rights reserved. Used by permission.

A combination of commissions received and the ideas and influences of other
researchers working with evolutionary computation will drive future work with
GenDash. The program will continue to be a practical tool for work on the con-
tinuing and ultimate problem for a composer: To make large-scale musical works
of art that audiences (who, for the most part, are not interested in the technique of
its creation) will find beautiful, enriching, worthwhile and enjoyable.

Appendix: Compositions Created by the Author Using
Evolutionary Computation

1. Summer Song (1996) for solo performer: Speaking voice, hand-held percus-
sion and optional electronic processing. Duration: 4 min. Premiere Longwood
College, 27 February 1997.

2. Empty Frames (1996) for orchestra. Duration: 10 min. Premiere: Raleigh,
Raleigh Civic Chamber Orchestra, 23 April 1998. Randolph Foy, conductor.

3. Singing in Traffic (1997) for solo instrument and recorded computer music.
Duration: 8 min. Premiere: Jonathan Kramer, Stewart Theatre, Raleigh, 7
October 1997.

4. String Quartet: Laredo (1998). Duration: 20 min. Premiere: Nevsky String
Quartet, Sheremetev Palace, St. Petersburg, Russia, 2 June 2002.

6. Composing with Genetic Algorithms: GenDash 135

4a. String Symphony: Laredo (string orchestra version of item 4, 2002) Premiere:
University of Georgia String Orchestra, Southeastern Composers League
Forum, University of Georgia, 6 March 2003.

5. Saint Ambrose (1999-2001) chamber opera for saxophonist/actor, recorded
electronic computer music, visuals. Duration: 40 min. Commissioned and
premiered by Steve Duke, HotHouse, Chicago, 17 November 2002. Recorded
on Capstone Record.

5a. Clementine Variations. Premiere: International Computer Music Conference,
Beijing, China, 27 October 1999.

5b. The Definitions Aria. Premiere: World Saxophone Congress, Montreal, 7 July
2000.

Sc. Overture: Nothing Matters. Premiere: Montego Bay, Jamaica, 21 December
2000.

6. Sappho’s Breath (2001-2002) chamber opera for soprano and recorded elec-
tronic computer music. Duration: 30 min. Premiere: Beth Griffith, Christ and
St. Stephen’s Church, New York City, 2 April 2002.

7. String Quartet: Ha! Fortune (2003). Duration: 20 min. Commissioned and
Premiered by the Nevsky String Quartet, Composer’s Center, St. Petersburg,
Russia, 12 October 2003.

8. Six Folksongs from an Imaginary Country (2003) for viola alone. Duration: 8
min. Commissioned and premiered by Vladimir Bistritsky, Composer’s Center,
St. Petersburg, Russia, 12 October 2003.

9. Eclogues for Woodwind Quintet (2003). Duration: 32 min. Commissioned and
premiered by the Louisville Woodwind Quintet, University of Louisville, 6
November 2003.

10. II (working title) in progress. Chamber opera for clarinetist/actor, recorded
electronic computer music, projected visuals. Duration: 40 min.

References

Biles, J. (1994). GenJam: A genetic algorithm for generating jazz solos. Proceedings of the
1994 ICMC. ICMA, San Francisco, pp. 131-137.

Biles, J. (1998). Interactive GenJam: Integrating real-time performance with a genetic al-
gorithm. Proceedings of the1998 ICMC. ICMA, San Francisco, pp. 232-235.

Biles, J. and Eign, W. (1995). GenJam Populi: Training an IGA via audience-mediated
performance. Proceedings of the 1995 ICMC. ICMA, San Francisco, pp. 347-348.

Fujinaga, I. and Vantomme, J. (1994). Genetic algorithms as a method for granular synthesis
regulation. Proceedings of the 1994 ICMC. ICMA, San Francisco, pp. 138-141.

Gooud, J. (2002). Broadening Horizons-Sappho’s breath. The Daily Dispatch (South
Africa). Arts. 3. On-line version: http://www.dispatch.co.za/2002/07/02/features/ART3.
HTM.

Hoppin, R. (1978). Medieval Music. Norton, NY.

Horner, A. and Ayers, L. (1995). Harmonization of musical progressions with genetic
algorithms. Proceedings of the 1995 ICMC. ICMA, San Francisco, pp. 483-484.

Horner, A., Beauchamp, J. and Cheung, N.M. (1995). Genetic algorithm optimization of
additive synthesis envelope breakpoints and group synthesis parameters. Proceedings of
the 1995 ICMC. ICMA, San Francisco, pp. 215-222.

136 Waschka 11

Horner, A., Beauchamp, J. and Haken, L. (1992). Wavetable and FM matching synthesis
of musical instrument tones. Proceedings of the 1992 ICMC. ICMA, San Francisco,
pp. 18-21.

Horner, A., Beauchamp, J. and Packard, N. (1993). Timbre breeding. Proceedings of the
1993 ICMC. ICMA, San Francisco, pp. 396-398.

Horner, A., Chan, S. and Yuen, J. (1996). Discrete summation synthesis of acoustic instru-
ments with genetic algorithms. Proceedings of the 1996 ICMC. ICMA, San Francisco,
pp- 49-51.

Horner, A. and Goldberg, D. (1991). Genetic algorithms and computer-assisted music com-
position. Proceedings of the 4th International Conference on Genetic Algorithms. San
Mateo, Morgan Kauffman.

Horner, A. and Goldberg, D. (1993). Machine tongues XVI: Genetic algorithms and their
application to FM matching synthesis. Computer Music Journal, 17(4): 17-29.

Lambert, J. (2004). http://www.CVNC.org/reviews/cd_dvd_book/cd/Rodney Waschka.

Link, S. (2005). Saint Ambrose. Journal Seamus, 18(1): 19-21.

Maddox, T. and Otten, J. (2000). Using an evolutionary algorithm to generate four-part
18th-century harmony. Mathematics and Computers in Modern Science: Acoustics and
Music, Biology and Chemistry, Business and Economics. World Science and Engineering
Society, Athens, pp. 83-89.

Pater, W. (1873). The school of Giorgione. The Renaissance: Studies in Art and Poetry.
Oxford University Press, Oxford, 1998.

Salten, F. (1928). Bambi; a Life in the Woods. Simon and Schuster, NY.

Sharyshkin, N. (2003). Saint Ambrose. http://www.paristransatlantic.com/magazine/
monthly2003/07jul_text.htm.

Thywissen, K. (1996). GeNotator: An environment for investigation the application of
genetic algorithms in computer assisted composition. Proceedings of the 1996 ICMC.
ICMA, San Francisco, pp. 274-2717.

Vaughn, D. (1987). Merce Cunningham Dance Foundation. The Collaborators: Cage, Cun-
ningham, Rauschenberg. KETC Public Television, St. Louis, MO.

Vouri, J. and Viliméki, V. (1993). Parameter estimation of non-linear physical models by
simulated evolution—application to the flute model. Proceedings of the 1993 ICMC.
ICMA, San Francisco, pp. 402—404.

Waschka, II R. (1996a). Summer Song. Borik Press, Raleigh.

Waschka, I R. (1996b). Empty Frames. Borik Press, Raleigh.

Waschka, II R. (1997). Singing in Traffic. Borik Press, Raleigh.

Waschka, I R. (1998). String Quartet: Laredo. Borik Press, Raleigh.

Waschka, II R. (1999-2000). Saint Ambrose. Borik Press, Raleigh.

Waschka, I R. (1999). Avoiding the fitness ‘bottleneck’: Using genetic algorithms to com-
pose orchestral music. Proceedings of the 1999 ICMC. ICMA, San Francisco, pp. 201—
203.

Waschka, II R. (2001). Theories of evolutionary algorithms and a ‘new simplicity’ opera:
Making Sappho’s Breath. Artificial Life Models for Musical Applications. Cosenza, Italy:
Editoriale Bios, pp. 79-86.

Waschka, II R. (2003). String Quartet: Ha! Fortune. Borik Press, Raleigh.

Waschka, I R. (2003). Six Folksongs from an Imaginary Country. Borik Press, Raleigh.

Waschka, II R. (2002). Saint Ambrose. Brooklyn: Capstone Records (CPS 8708). Steve
Duke, performer.

Waschka, II R. (2001-2002). Sappho’s Breath. Borik Press, Raleigh.

7

Improvizing with Genetic
Algorithms: GenJam

JOHN A. BILES

7.1. Introduction

Imagine you are walking down the street past a coffeehouse that features live jazz.
From inside the coffeehouse you hear a jazz quartet begin to play a tune. As you
pause outside to listen, it sounds like a tenor sax player backed up by a standard
jazz trio of piano, bass and drums. You recognize the tune as John Coltrane’s Giant
Steps as the tenor player plays the song’s original melody in the first chorus of
the tune. Once this ‘head’ chorus is complete, everyone continues playing in the
second chorus, but the tenor player plays a melody that is decidedly not the original
melody of the song, switching from the half note rhythm of the original melody
to a more active eighth-note-based rhythm. The piano, bass, and drums seem to
be playing things that are similar to what they played on the first chorus, except
that the bass player is playing a note on every beat instead of roughly every other
beat, and the drummer is more active and assertive. This continues for four more
improvized choruses, at which point the tenor player begins playing the original
melody of the tune again. After this reprise of the tune’s head, there is a brief coda
and the tune ends.

This little vignette, which could be experienced with live musicians by anyone
who patronizes jazz clubs, is actually a description of the tune the author uses for
sound checks when he sets up to perform, and the tenor player is actually GenJam,
the author’s EC-based improvization agent. Giant Steps, whose difficult chord
progression is a right of passage for most budding improvizers, is not a problem
for GenJam, and while its improvization is certainly not in Coltrane’s class, it is
definitely competent.

This chapter focuses on applying evolutionary computation (EC) to improviza-
tion, using GenJam as an in-depth case study. After briefly discussing improviza-
tion as a musical task, the focus will shift to GenJam — its design and implementa-
tion, its evolution and development, and its impact, both musically and technically.
This will lead to a broader discussion of how GenJam demonstrates the mutual
influence of technology and application domains on one another.

137

138 Biles

7.2. Improvization

Improvization is in some sense the purist of musical activities because it integrates
aspects of just about every musical task. Improvizers compose melodic material;
they spontaneously arrange and perform their compositions; they develop harmonic
and rhythmic structures, and even entire musical forms; and they listen to and
interact with other players in the performing group. All of these tasks are performed
concurrently, in real time, with little if any rehearsal. In other words, improvization
happens in the present —an improvizer cannot edit the composition after it has been
performed and cannot wait for inspiration to strike; everything has to happen now.
This immediacy is one reason improvization can be very exciting, and, as the
defining aspect of jazz, it is the main reason jazz is a uniquely stimulating art form
(Berliner 1994).

Improvization is interactive and collaborative — improvizers play off of one
another and hopefully inspire one another. The level of interaction can range
from a soloist playing over a fairly standard rhythmic backing that adheres to
a specific rhythmic style and set of chord changes, as was described in our little
vignette above, to free-wheeling, no-holds-barred collective improvizations where
the form of the tune emerges serendipitously as the conversation (or shouting
match) between players unfolds.

To provide a perspective on this broad range of musical experiences, we can
categorize improvization along several dimensions, each of which allows setting
a level of constraint over some musical aspect. Some of these dimensions are
mutually independent, and others overlap, providing different ways of thinking
about improvization.

One set of dimensions pertains to how much a source tune is altered in adapt-
ing it to become a vehicle for improvization. The way the rhythm section and
improvizer handle chord changes suggests a harmonic dimension. Many jazz per-
formances begin with a ‘standard’ tune, often coming from the American popular
songbook. For instance, there have been literally thousands of tunes written to the
chord progression of George Gershwin’s I Got Rhythm. One approach would be to
use Gershwin’s original chords without alteration as the harmonic foundation for
improvization, which would represent the most constrained end of this harmonic
dimension. Much more common would be to substitute specific chords in the pro-
gression to make it more amenable to improvization or in response to the harmonic
direction in which an improvizer seems to be heading. Even less constrained would
be to use the original progression as a jumping off point or inspiration for a new,
but still related progression. The least constrained end of this dimension would be
to ignore the original changes altogether and play whatever seems appropriate at
the time.

Similarly, a source tune’s rhythm might remain unaltered, or it could be
modified to a different style (like playing Rhythm changes as a Bossa Nova
instead of the standard swing style), or played in a different metre (7/4
instead of Gershwin’s 4/4 conception), or played arrhythmically with no de-
fined pulse. At the extreme end of this dimension, the resulting tune may bear

7. Improvizing with Genetic Algorithms: GenJam 139

no discernable resemblance to the source tune, except possibly in the minds of the
performers.

Another dimension rests on timbres, which can range from traditional instru-
ments played in traditional ways, through extended instrumental techniques like
multiphonics, to approaches where the timbre itself is evolved in real time, as in
Tim Blackwell’s Swarm Granulator system (see Chapter 9).

A classic pair of dimensions identified by George Russell (1959) is inside versus
outside and vertical versus horizontal. The vertical versus horizontal dimension
refers to how closely the improvizer follows the chord changes. A vertical player
will ‘hit every change’, which means that the choices of which pitches to play are
governed by each specific chord in the progression. One way of thinking about
this is that a vertical player tends to select or bend melodic ideas to fit specific
chords, which can lead to solos that track the underlying tune very well but may
be less flowing. A horizontal player, on the other hand, will choose a set of pitches
that are suggested by several successive chords, typically the key suggested by a
tune or a section of a tune. This can lead to melodic lines that are more flowing
but which may not match the underlying progression as exactly. One way to think
about this is that a horizontal player will focus on longer melodic lines and will
not ‘sweat the small stuff” harmonically.

Russell’s conception of an inside player is one who chooses pitches that are
closely related to the harmonic progression or the keys it suggests. An outside
player will choose pitches that might be unrelated to the underlying progression.
Harmonically, this dimension runs from diatonic players, who stick to the notes
in a diatonic scale, to chromatic players, who insert more dissonant notes but
still at least respect the underlying progression, to ‘free’ players, who ignore any
progression.

Russell’s dimensions are independent, a point driven home by his characteriza-
tion of four contrasting jazz greats. Coleman Hawkins is an inside-vertical player,
Lester Young is inside-horizontal, John Coltrane is outside-vertical (at least in his
sheets-of-sound period, during which he wrote Giant Steps) and Ornette Colemen
is outside-horizontal (Russell 1959). As we shall see in Section 7.4, GenJam is
definitely an inside-vertical player.

One final dimension is simply how many improvizers will be playing at one
time. This can range from a single soloist, to pairs of soloists trading fours or
eights, to pairs of soloists improvizing collectively (simultaneously) to the entire
group improvizing collectively. Obviously with more players improvizing at the
same time, there is more chance for chaos. In the case of traditional New Orleans
jazz, which tends to be pretty ‘inside’, each collectively improvizing instrument
(trombone, clarinet, trumpet, tuba, etc.) plays a specific role, which results in
almost guaranteeing the integrated counterpoint that is characteristic of that style.
In the case of an avant garde performance group, which usually pegs the meter at
‘outside’, chaos is often the goal.

Clearly, improvization is arich and varied domain that presents lots of interesting
problems for evolutionary computation. Let us now turn our attention on one project
that has used the evolutionary paradigm to improvize jazz in real time: GenJam.

140 Biles

7.3. GenJam Overview

GenJam, which stands for Genetic Jammer, is a real-time, interactive performance
system that uses evolutionary computation to model a jazz improvizer. The GenJam
project dates back to the fall of 1993, and its first public performance occurred
in the spring of 1994. Since that time it has evolved from a proof-of-concept
demonstration to a viable improvization agent that maintains a regular performance
schedule as a soloist in the author’s virtual quintet. The current incarnation of
GenJam can improvize in several time signatures — 4/4, 3/4, 12/8,5/4, 7/4 and
16/8 (double time), and its current repertoire numbers over 250 tunes in a variety
of jazz-influenced styles. GenJam is capable of taking full chorus solos; trading
fours, eights, 12s or 16s with a human improvizer; and improvizing collectively
with a human. It can interactively evolve original musical ideas (licks) under the
guidance of a human mentor, can autonomously evolve new ideas from a database
of style-specific licks and can autonomously interbreed its own licks with those of
a human performer in real time during the performance of a tune.

Fig. 7.1 shows GenJam’s architecture in performance situations. When GenJam
is executed, it performs a single tune and then terminates. When performing a
tune, GenJam first reads several files that provide information about the tune it is
playing, along with the musical ideas it will use for improvizing on that tune. The
Chord Progression file tells GenJam what octave to play in, the tempo of the tune
and the quantization for eight notes (swing, even, or bop) in the first line of the file.

h 1
r 1
s 1 Head and Interactive
4 12 isati
A Choruses Improvisation Response iy

- easure
t 2 RRTIY _--1 Population
4160 S
577 ~~~~~~~~~~~~~~ Phrase
7 - Population
Cc7
F7
F7 Chord
7 Progression 3104567
Em7 A7 0064640 0
Dm7 1 33 67 67 49 25
G7 90 90 100 90 0 0O
C7 A7 Rhythm Head p 48 104 -1 80 64 48 24

Sequence Sequence

Dm7 G7 q q MIDI Parameters

FIGURE 7.1. GenJam architecture in performance.

7. Improvizing with Genetic Algorithms: GenJam 141

The remaining lines give the chord progression of the tune, one line per measure
and up to two chords per measure. In Fig. 7.1 we have a 12-bar blues in C major
played around octave 4 (good for tenor sax), at 160 beats per minute, using swing
eighth notes.

The Choruses file tells GenJam what it should do for each succeeding repetition
(chorus) of the form defined in the chord progression. In Fig. 7.1 GenJam will
mark time through a two-measure introduction, play the tune’s head for the first full
chorus, rest for the next chorus (presumably while the human soloist improvizes),
take a full-chorus solo, trade 4’s for two choruses with GenJam taking the first
four in each chorus, play the head for the final full chorus, and then mark time
for a two-measure tag before ending the tune and terminating execution of the
program.

The Rhythm Sequence is a canned MIDI file that supplies the rhythm section
background for the tune. The author uses Band in a Box (Gannon 1991-2006) to
generate these files for the tunes he performs with GenJam. Consequently, GenJam
expects to see a MIDI sequence file with up to five channels (bass, piano, drums,
strings and guitar). The author’s repertoire features tunes that use as few as one
channel (solo piano or bass accompaniment).

The Head Sequence is a second MIDI file, which supplies harmony parts for
the heads and other specifically scored parts for the tune. This can include riffs
for shout choruses, distinctive bass lines, and strategic drum hits that supplement
what Band in a Box generates.

The MIDI Parameters file configures the tone generator for up to 35 different
parameters for each of seven MIDI channels that GenJam can address. The param-
eters include obvious ones like channel numbers, program patches, loudness and
stereo pan, as well as synthesizer-specific parameters like pitch envelope generator
attack, decay and release times.

The Measure and Phrase Populations are actually data structures that represent
hierarchically interrelated populations of melodic fragments (licks) that GenJam
uses to construct its improvizations. The Measure Population contains 64 indi-
viduals, each of which represents one measure of eighth-note-length events. The
Phrase Population consists of 48 individuals, each of which contains a sequence
of four indices of members of the measure population. An example phrase will
illustrate this representation in the next section.

These data structures can be populated in two different ways, interactively and
autonomously, which reflect two different evolutionary modes. In interactive mode,
GenJam maintains fitness values for each individual in both populations, which
are derived from feedback provided by a human mentor as the populations evolve
during training. A full discussion of this training process will follow in Section
7.5, but a brief explanation is needed here to explain the fitness values used in the
example. When training a soloist, a human mentor listens to GenJam improvize
full-chorus solos and types either ‘g’ or ‘b’ (good or bad) whenever so moved.
When a ‘g’ is typed, the fitness values for the currently playing measure and
phrase are incremented by 1, and when a ‘b’ is typed, those fitness values are

142 Biles

decremented by 1. Fitness values are initialized to 0 when new individuals in both
populations are created.

In autonomous mode, as we shall see in Section 7.8, fitness is unnecessary.
Either way, the resulting populations are treated the same in performance, and full
chorus solos are constructed by randomly selecting enough phrases to fill out the
form of the tune.

During performance GenJam interacts with its human partner using a pitch-to-
MIDI converter, which allows it to interact in three different ways: (1) trading fours
or eights, (2) performing collective improvization and (3) interbreeding human
measures from the head and the human’s solo chorus with measures in the measure
population. These interactive modes will be detailed in Section 7.7.

7.4. Representation — Genotype to Phenotype Mapping
with GINF

Fig. 7.2 shows an example phrase and its constituent measures represented
schematically as part of their respective populations. This particular example was
created by the author to illustrate features of the representation scheme, which
he calls GenJam normal form (GINF), so it was not evolved by GenJam. The
total phrase population numbers 48 individuals, indexed 0 through 47. Our exam-
ple arbitrarily focuses on phrase 11. Phrase 11 has a fitness of —5, which means
that a mentor has judged it as a slightly ‘bad’ phrase overall. Newly generated
phrase and measure individuals receive an initial fitness of 0, which is considered
neutral.

The 64 measures in the measure population are indexed 0-63, which can be
represented with a six-bit string. This means that a phrase chromosome is 24 bits,
and any 24-bit string will map to a ‘legal’ phrase. Phrase 11 in our example is
made up of measure 34, followed by measure 34 again, followed by measure 55,
followed by measure 13.

The measures that are included in phrase 11 are shown schematically in the
measure population in Fig. 7.2. Measure 34 has a fitness of 21, which means that
the mentor has regarded it as a ‘good” measure. It may seem odd that a phrase can

1| -5[34 34 55 13 13[-8]15 5 4 6 15 15 0 0

3421 9 10 98 0 7 15 15

Phrase Population 5510 3] 910 99 8 7 5 4

Measure Population

FIGURE 7.2. Example phrase individual and its constituent measure individuals.

7. Improvizing with Genetic Algorithms: GenJam 143

have a low fitness while one of its measures has a high fitness, but with 48 phrases,
each containing four measures, and only 64 actual measures to assign to those
192 measure slots, each measure will appear an average of three times in the phrase
population. In interactive mode, as both populations evolve, some measures will
earn higher fitness values and tend to end up appearing more frequently in the
phrase population, and others will earn lower fitness values and will tend to appear
less often. This phenomenon will be discussed further in the context of GenJam’s
genetic operators in Section 7.6.

Getting back to our example, measure 34 has eight events, each of which is
coded by a 4-bit string. Each event maps to an eighth note of time, which means
that in 4/4 time, there are 8 eighth-note-length events, leading to a chromosome
of 32 bits. In 3/4 time the chromosome would be 24 bits to accommodate three
beats to a measure with two eighth notes to a beat. Other time signatures lead to
different chromosome lengths.

The four bits that represent an event provide 16 possible event values, two of
which are used to encode note lengths and rhythm. An event value of 0 decodes to a
rest event, which GenJam performs by generating a MIDI note-off event. An event
value of 15 decodes to a hold event, which GenJam performs by doing nothing
or holding the previous event through that eighth-note window in the measure.
Event values of 1-14 are new-note events and decode to pitches in roughly two
octaves of the scale suggested by the chord for the current half measure of the
tune, as given in the chord progression file and as adjusted to fit the range of the
instrument GenJam is playing for the tune. When GenJam performs a new-note
event, it generates a MIDI note-off event, followed immediately by a MIDI note-on
event using the decoded pitch. Like the phrase chromosome, this representation is
highly robust, in that any 32-bit string will decode to a playable measure in 4/4
time. One constraint is that GenJam can play only eighth-note multiples, which is
not a severe limitation at medium and fast tempos. Actually, the 12/8 and double
time versions of GenJam break a 4/4 measure up into 12 eight-note triplets and
16 sixteenth notes, respectively.

Returning to our example, Fig. 7.3 shows phrase 11 as it would be played against
the first four measures of the chord progression shown in Fig. 7.1, which is a 12-bar
blues in C. Since measure 34 was repeated as the first two measures of our phrase,
it generated both of the first two measures of Fig. 7.3. First, notice the 0 in the fifth
position of measure 34. This rest event maps to the eighth-note rest in the first and
second measures of Fig. 7.3. The two 15s that end measure 34 hold the 7 in the
sixth position to produce the C dotted quarter note that ends both measures.

FIGURE 7.3. Phrase from Fig. 7.2 played against first four bars of progression in Fig. 7.1.

144 Biles

TABLE 7.1. Scales used for mapping C7 and F7 chords to actual pitches.

Chord 1 2 3 4 5 6 7 8 9 0 11 12 13 14

C7 cC b E G A Bb C D E G A Bb C D
F7 cC D EBb F G A C€C D Eb F G A C D

The remaining events in measure 34 are all new-note events whose specific
pitches come from the scales suggested by the chords in the chord progression.
Because measure 34 is played against a C7 chord in the first measure and an F7
chord in the second measure, the specific pitches are slightly different. Table 7.1
shows the actual scales used to map new-note events for those two measures,
assuming an instrument range centered an octave above middle C.

Notice that the scale used for a dominant seventh chord is a hexatonic scale that
avoids the fourth. This is because a major fourth (F for a C7) may sound dissonant
in some contexts, and a Lydian fourth (F# for a C7) may sound dissonant in other
contexts. In fact, the jazz theory literature is divided over the major fourth (Coker
1964) versus Lydian fourth (Russell 1959) for dominant seventh chords, so in a
spirit of consensus, GenJam simply avoids playing any fourths at all on dominant
seventh chords (Haerle 1980, 1989). Similarly, hexatonic scales are used for major
sixth and seventh, minor seventh, half-diminished, and a few other chord types
(Sabatella 1992, Levine 1995). Table 7.2 shows the complete list of chord types
GenJamrecognizes, along with the name of the corresponding scale and one octave
of the notes in that scale, assuming a root of C.

This list grew over time as the author worked up tunes that included chord types
that GenJam had not encountered before and so the list in Table 7.2 is essentially
chronological. The author feels he has come full circle by adding a blues scale a
few years ago, which happened to be the only scale in the original proto-version
of GenJam, which could only play the blues in a specified key.

Once more returning to our example, notice that measure 13 begins with a hold
event, which results in the last note of the third measure of Fig. 7.3 being held
into the first note of the fourth measure. If the chord for the new measure would
have suggested a scale that did not include the held note, then there would likely
be a momentary dissonance, but that would tend to ‘resolve’ once the first new-
note event in the new measure is performed. If a measure began with several hold
events, then the possibility for a more pronounced dissonance would result, and
that measure individual would more likely curry disfavour with the mentor and be
less likely to survive.

Also notice the Eb in the third measure of Fig. 7.3. Since measure 55 is played
over a C7 chord to generate that measure, we can use the same C7 scale from
Table 7.1 to map to actual pitches. An examination of measure 55’s chromosome
indicates that instead of the Eb, GenJam should have played another E natural for
the fourth eighth note. Instead, GenJam played a chromatic passing tone, using a
heuristic that tries to replace repeated eighth notes with chromatic passing tones
or chromatic neighbour tones instead of repeating the note in the actual scale.

7. Improvizing with Genetic Algorithms: GenJam 145

TABLE 7.2. Chord-scale mappings used to map new-note events to pitches.

Chord Scale Notes (root = C)
Cmaj7 Major (avoid 4th) CDEGAB

C7 Mixolydian (avoid 4th) CDEGABDb

Cm7 Minor (avoid 6th) CDEbFGBb
Cm7b5 Locrian (avoid 2nd) CEb F Gb Ab Bb
Cdim W/H Diminished CDEbFGbG#AB
C+ Lydian Augmented CDEF#G#AB
C7+ Whole Tone CDE F# G# Bb
C7#11 Lydian Dominant CDEF#GABb
CT7alt Altered Scale C Db D# E Gb G# Bb
C7#9 Mixolydian #2 (avoid 4th) CEbEGABb
C7b9 Harm Minor V (avoid 6th) CDbEFGBb
CmMaj7 Melodic Minor CDEbFGAB
Cm6 Dorian (avoid 7th) CDEbFGA
Cm7b9 Melodic Minor II mode CDbEbFG A Bb
Cmaj7#11 Lydian CDEF#GAB
C7sus Mixolydian CDEFGABb
Cmaj7sus Major CDEFGAB

C7B1 Blues CEbFGb GBb

Except for these special cases, then, GenJam will always play notes in the
‘theoretically correct’ scale, which means that GenJam cannot play a theoretically
wrong note, unlike the author. The author can break the harmonic rules and ‘play
outside’, if so moved, to add harmonic tension, and the author can also get lost in
the chord changes and play notes he did not intend. GenJam can do neither. The
initial design decision was that GenJam should always sound at least competent
and never ‘wrong’, which has resulted in a highly robust system.

7.5. Evolving a Soloist

The measure and phrase populations can be evolved in two different ways, depend-
ing on which evolutionary mode is used. The original version of GenJam used an
interactive genetic algorithm (IGA) to perform generational evolution under the
guidance of a human mentor (Biles 1994). This process is shown in Fig. 7.4.

To prepare for training, the mentor sets up a collection of tunes that GenJam
will perform during the training process. While the mentor could evolve a new
soloist for just a single tune, the author tends to evolve a soloist for a style of tune
and sets up a handful of representative tunes from which to select during training.
Training on a single tune runs the risk of over-specializing the resulting soloist
and also causes fatigue for the mentor, who would have to listen to the same tune

146 Biles

Measure
Population

‘g’ or ‘b’ Phrase

Population

FIGURE 7.4. Interactive GenJam training process.

over and over (Biles 1999). Each training tune will consist of three or so choruses,
with GenJam taking a full-chorus solo for all choruses.

Each tune in training mode evolves a new generation of the soloist. GenJam
first reads the measure and phrase populations from text files. It then runs its
genetic algorithm on each population independently to generate a new generation
of the soloist. After it evolves the next generation, it performs its solo choruses
for the mentor, who listens and types ‘g’ for good or ‘b’ for bad whenever so
moved. The mentor’s interface is as simple as possible to allow the mentor to
focus on the listening task. Every time the mentor types ‘g’, GenJam increments
the fitness values for the currently playing measure and phrase individuals, offset
by empirically derived delays to give the mentor a chance to hear, process and
respond to GenJam’s improvization. The delay for measures is two beats, and the
delay for phrases is one measure (Biles 1998).

Fig. 7.5 shows how GenJam evolves a new generation of a soloist. Half of each
population is replaced with new children in each generation, which is 50% elitism.
The tournament selection scheme tends to select and preserve the better measures
and phrases, and their children tend to replace the worse ones.

The specific implementations of crossover, mutation and the other genetic op-
erators will be presented in Section 7.6, but it should be noted that mutations are
repeatedly applied to the children created by their parents’ crossover until they are
unique with respect to the individuals in their target population. This ensures there
are no individuals that are exact copies of one another in either population, which
is motivated by the need to insure diversity and minimize convergence. This issue
will be discussed more fully in Section 7.6.1.2.

As GenJam improvizes using its new-generation soloist, it first selects the new
child phrases to construct its solo choruses. With 48 phrases in the phrase popu-
lation and 50% elitism, this means that GenJam evolves 24 new child phrases per

Repeat
Select 4 individuals at random to form a family (tournament selectiion)
Select 2 family members with the greatest fitness to be parents
Perform crossover on the 2 parents to generate 2 chidren
Mutate the resulting 2 children until they are unique in the population
Assign 0 as fitness for both children
Replace the two non-parent family members with the new children
Until half the population has been replaced with new children

FIGURE 7.5. Genetic algorithm for evolving a new measure or phrase generation.

7. Improvizing with Genetic Algorithms: GenJam 147

generation, which in turn means that the mentor should hear at least 24 phrases
in GenJam’s solo to insure that the mentor will hear all the new children and
have a chance to provide feedback. 24 four-bar phrases adds up to 96 measures,
which happens to be three choruses of a 32-bar tune, which happens to be the
most common form in jazz. When training on a blues progression, the mentor
should set up a tune with eight 12-bar (3-phrase) choruses to get the required
24 phrases.

Early in GenJam’s development, the author found that three choruses of a stan-
dard tune was about the upper limit on his attention span for the intense level
of listening required to perform the mentoring task effectively. Assuming 50%
elitism, those 24 phrases then, had to be 50% of the phrase population, which
explains the choice of 48 as the size of the phrase population (Biles 1994). This
somewhat convoluted line of reasoning exemplifies how EC has to adapt to the
music domain. This recurring theme becomes more interesting when those adap-
tations challenge the definitions of EC, as we shall see.

7.6. Genetic Operators

GenJam’s genetic operators are an even more pronounced example of how music
as an application domain led the author to bend EC in developing GenJam. In short,
GenJam’s initialization, selection, crossover, mutation, and replacement operators
have become intelligent, which is in sharp contrast to these operators in traditional
EC-based systems.

We’ll start with GenJam’s mutation operators, which are used when train-
ing soloists, trading fours and eights, and improvizing full-chorus solos in per-
formance. GenJam’s crossover operators are used to train soloists interactively,
evolve soloists autonomously, and interbreed human melodic ideas with those of
a soloist in real time during performance. GenJam’s selection and replacement
operators are fairly traditional in the original, interactive version of GenJam, but
they, too, have acquired some intelligence in the autonomous version. Finally,
GenJam’s initialization operators have literally evolved from a uniform random
number generator to style-specific generators that guarantee musically promising
individuals.

7.6.1. Mutations

In most evolutionary computation-based systems, mutation is implemented by
occasionally flipping a random bit. Over the course of hundreds or thousands of
generations of large populations, these tiny alterations provide enough novelty to
explore the search space and keep a population from converging on suboptimal
peaks (Goldberg 1989). However, this approach would be essentially useless with
GenJam for several reasons. First, the mentor is not going to listen to hundreds
of solos in order to train a new soloist. Second, occasional random bit flips will

148 Biles

Original measure 9 10 9 8 0 7 15 15
Transpose down 2 7 8 7 6 0 5 15 15
Reverse 15 15 7 0 8 9 10 9
Rotate left 3 8 0 7 15 15 9 10 9
Sort new notes up 7 8 9 9 0 10 15 15
Sortnew notesdown [10 9 9 8 0 7 15 15
Invert (15 — loci) 6 56 715 8 0 0
Range-correctedinvert | 8 7 8 9 15 10 0 0
Invert reverse 0 0 8 15 7 6 5 6

FIGURE 7.6. Musically meaningful mutations on measures.

make little difference in how a measure sounds, although a bit change in a phrase
individual will replace one of the four measures with a different measure. Third,
while random changes will make measures and phrases different, they are unlikely
to make them sound better. Fourth, when trading a four, which will be described
in Section 7.7.1, GenJam has to evolve a musically stimulating response in a few
milliseconds without the benefit of generational search or even fitness. In other
words, it has to sound good in one try.

The overwhelming requirement, then, is that mutated measures and phrases must
at least sound no worse than their predecessors, and, when evolving a new soloist,
the mutated descendants should tend to sound better. Consequently, GenJam’s
mutation operators cannot be the traditional low-probability, ‘dumb’ bit flip and
are, instead, musically meaningful mutations. We will first look at mutations that
operate only on measures, then those that operate only on phrases, and finally on
some comprehensive mutations that manipulate an entire phrase and its constituent
measures.

7.6.1.1. Measure Mutations

Fig. 7.6 lists several of GenJam’s measure-level mutation operators. These muta-
tions are drawn from the toolbox of simple melodic development devices familiar
to any composer. However, because they operate on a measure’s genotype (its event
chromosome) instead of its phenotype (the actual notes and rests that result when
the chromosome is played over one or two chords), the effect is subtly different
from traditional retrograde, inversion, reversion, etc. (Reti 1951).

For instance, applying the reverse operator to a quarter note, which in GINF
is encoded as a new-note event followed by a hold event, results in holding a
different note. In the case of the Reverse mutation example in Fig. 7.6, the result
is to begin the measure with a tied quarter note, whose pitch is determined by the
pitch established at the end of the previous measure, whatever that may be. In Fig.
7.7, which shows the measures in Fig. 7.6 played consecutively against a sustained
C7 chord, we can see that the result is a 215-beat A-natural that spans the second
and third measures. There was no A-natural in the original measure and so the
reverse did more than simply play the notes in reverse.

7. Improvizing with Genetic Algorithms: GenJam 149

Original Transpose Reverse Rotate left Sort up

4 : 4 =
T e
]
Sort down Invert Invert in range Invert reverse

FIGURE 7.7. Mutations from Fig. 7.4 played over a C7 chord.

Another subtlety stems from the invert mutation, which is neither true inversion
of intervals nor contrary motion (Reti 1951), but instead inverts the rough melodic
contour by subtracting each event locus from 15. In addition to making low notes
high and high notes low, it changes the rhythm by exchanging hold and rest events,
as can be seen in the invert and range-corrected invert in Figs 7.6 and 7.7. The
range-corrected invert transposes the inverted measure to retain the pitch range of
the original measure, which is especially useful when trading fours.

Finally, notice the chromatic passing tones in measures 5 and 6 of Fig. 7.7, which
came about from the repeated 9s in the sorted measures. This again highlights the
fact that the mutated genotype is an abstraction of a melodic fragment whose
mapping to actual notes is context dependent.

7.6.1.2. Phrase Mutations

The phrase-level mutations GenJam can use are summarized in Fig. 7.8, using the
phrase from Fig. 7.2 as an example. The reverse and rotate operators simply alter
the order of the measures in the phrase. The sequence phrase mutation repeats a
randomly selected measure, which results in a ‘sequence’ (Berliner 1994).

The Genetic Repair and Super Phrase mutations attempt to promote measures
with higher fitness and thin out measures with lower fitness. The genetic repair
mutation replaces that measure with the lowest fitness in the phrase with a
randomly selected measure. In Fig. 7.8 the randomly selected measure, 61 in this
example, is underlined to denote that it was not in the original phrase. The super
phrase mutation generates an entirely new phrase consisting of the winners of four

Original Phrase | 34 34 55 13
Reverse 13 55 34 34
Rotate Left (1) 34 55 13 34
Sequence Phrase | 34 34 55 55
Genetic Repair 34 34 55 61
Super Phrase 17 43 8 27
Lick Thinner 47 34 55 13
Orphan Phrase 5 60 23 40

FIGURE 7.8. Musically meaningful mutations on phrases.

150 Biles

fitness tournaments. This provides an opportunity to collect high-fitness measures
in a single phrase and is an extreme mutation in that the original child is totally
discarded.

The last two mutations in Fig. 7.8 try to address the convergence problem, which
has been a conspicuous issue in GenJam’s development from the beginning and
which once again illustrates how improvization bends the EC paradigm. Unlike
traditional EC systems, which treat the population of candidate solutions as com-
petitors for the single ‘best’ solution, the individuals in GenJam’s measure and
phrase populations must work together to provide a rich and varied idea base from
which GenJam can generate its improvizations. The tendency of the EC machinery
to converge on a few highly fit individuals would result in GenJam playing minor
variations of a small set of melodic ideas. The author has characterized this lack
of originality as ‘the lick that ate my solo’. While the author has certainly en-
countered human soloists at jam sessions who played minor variations of the same
small set of licks over and over and over and over, he tried to set the bar higher for
GenJam.

This led to phrase-level mutations and other mechanisms to encourage, and
in some cases guarantee, diversity in the measure and phrase populations. The
Lick Thinner mutation in Fig. 7.8 replaces the measure in the phrase that occurs
most frequently in all the phrases in the phrase population with a measure that
occurs infrequently in the phrase population. This thins out over-represented mea-
sures and promotes under-represented measures in the phrase population. One
specific goal is to eliminate ‘orphan’ measures, which exist in the measure popu-
lation but are not included in any phrase in the phrase population. Such measures
can never be heard by the mentor, and if their fitness is high enough, they will
not likely be replaced and therefore so they effectively use up population space
unproductively.

A more extreme version of this mutation is the orphan phrase mutation, which
generates an entirely new phrase consisting of the losers of four frequency tour-
naments. This tends to bundle rarely heard measures together to give the mentor a
chance to hear and evaluate them.

7.6.1.3. Comprehensive Mutations

Some of GenJam’s mutations operate on phrases but also mutate the mea-
sure individuals referenced by the phrase to perform a more comprehensive
mutation. In essence, these mutations treat the concatenated measures in a phrase
as one long measure. Because these operators mutate measure individuals in the
context of a phrase-level mutation, they are used only when trading fours and eights.

GenJam can perform mutations that approach phrase-level retrograde, inver-
sion, and retrograde inversion. The basic idea for the phrase-level retrograde is to
apply the phrase-level reverse mutation to the phrase chromosome and then apply
measure-level reverse mutations to each of the measure chromosomes. While this
does not lead to a true retrograde because of the way reversals cause hold events

7. Improvizing with Genetic Algorithms: GenJam 151

to extend a different new-note event, as discussed in Section 7.6.1.1, the resulting
phrase will sound good if the original phrase did.

The phrase-level inversion leaves the phrase chromosome unaltered and inverts
the constituent measure chromosomes using the measure-level inversion operator.
To ensure that the resulting phrase ends up in the same range as the original
phrase and that the measure boundaries retain the original horizontal intervals, all
four inverted measures are transposed the same amount as part of a phrase-level,
range-corrected inversion.

The phrase-level retrograde inversion simply does both the phrase-level retro-
grade and the phrase-level, range-corrected inversion on the same phrase. This is
probably the most extreme mutation performed by GenJam and is, in fact, some-
thing no human could perform in a real-time performance setting when trading
fours. This is one reason GenJam is such a formidable opponent when trading
fours. Not only does it hear the human’s four more accurately than a human could
hear it, even taking pitch-tracking mistakes into account, it can develop the human’s
four in ways that no human could in real time.

The final comprehensive mutation is a hemiola operator, which extends the
notion of sequencing across measure boundaries by creating a sequence that is
shorter than the length of a measure. A hemiola is a repeating melodic pattern that
is shorter than the length of a measure and has the effect of temporarily imposing a
new time signature. The traditional example is a three-beat melodic figure repeated
in 4/4 time (Slonimsky 1998).

GenJam’s hemiola operator identifies a likely melodic ‘seed’ that is shorter than
the measure length and occurs early enough in the four-bar phrase to allow it
to be repeated a total of three times. For a melodic fragment to be selected as a
seed, it must start with a new-note event, must contain a minimum number of rest
and/or hold events and must have a minimum number of new-note events. After
a suitable seed has been selected, it is simply repeated twice more, immediately
after its original occurrence, replacing the events that were in the original mea-
sures. When the repetitions run out, the original events take over to complete the
phrase.

The specific timing for a hemiola is not critical, except that the seed must occur
early enough in the phrase to be repeated twice more. Whether the seed begins
on or off the beat and which beat in a measure it starts near simply do not matter,
because as long as there is the perception of repetition, the listener will interpret
it in the context of the improvization.

7.6.2. Crossover

GenJam’s crossover operators have evolved from a traditional, single-point, ran-
dom crossover operating at the bit level, to an intelligent crossover operating at
the note level. GenJam’s original crossover operated at the bit level and was iden-
tical for both the measure and phrase populations. The chromosomes from the

152 Biles

|15 5 4615150 O‘ Parent1|llll 0101 0100 0110 111‘1 1111 0000 OOOO‘
4

|9 10998 7 5 4‘ Parent2|1001 1010 1001 1001 100‘00111 0101 0100‘

|15 5 46157 5 4‘ Childl |1111 0101 0100 0110 111‘00111 0101 0100‘

|9 10 9 98 150 O‘ Child2 |1001 1010 1001 1001 100‘1 1111 0000 OOOO‘

FIGURE 7.9. Random bit-level measure crossover at an unfortunate crossover point.

two parents were treated as flat bit strings, and the crossover point was chosen at
random. Fig. 7.9 illustrates this process with an example using measures 13 and
55 from Fig. 7.2.

This example shows the problem with traditional random crossover. The
crossover point selected, between the 19th and 20th bits in this case, falls between
bits 3 and 4 within a four-bit event substring, which facilitates the generation of
new events in the children. Specifically, the events being split by crossover in our
example are a hold event (1111) in Parent 1 and a new-note event (1000) in Parent
2. The result in Child 2 is a third 1001 new-note event in a row. In the current
version of GenJam, the chromatic neighbour heuristic produces the Eb in Child 2,
which makes for a relatively pleasing note (see Fig. 7.10).

The result in Child 1, however, is a new-note event (1110) that is not only absent
in either of the parents, but also yields horizontal intervals greater than an octave
(the high D in the fifth note position in Child 1). This note is ‘unfortunate’ in that
most mentors, or at least the author, will find it unappealing and will likely sit
on the ‘b’ key upon hearing it. This may be acceptable when training a soloist
over the course of several generations, but it is unacceptable when performing a
crossover between a measure from the measure population and a measure that the
human just played during the head or a full-chorus solo, because in that context
there is no opportunity for a mentor to provide negative fitness and weed out the
measure.

Cc7
e sl S PR
& | : DRI R o Bl b B
Parent 1 Parent 2 Child 1 Child 2

FIGURE 7.10. Parents and children from Fig. 7.9 played against a sustained C7 chord.

7. Improvizing with Genetic Algorithms: GenJam 153

At each of the seven potential crossover points (in 4/4 time)
Compute horizontal intervals that would result in both children
Return the smaller interval as “fitness” for that point

If more than one crossover point has the same fitness
If breeding two of GenJam’s measures
Select crossover point closest to the centre of the measure
If breeding a GenJam measure with a human measure
Select corssover point that maximizes the human’s contribution

Perform crossover at selected point

FIGURE 7.11. Intelligent note-level measure crossover algorithm.

7.6.2.1. Intelligent Measure-Level Crossover

The intelligent measure-level crossover in the current version of GenJam addresses
this problem, first by selecting crossover points only at event boundaries, which
preserves the parents’ events in the children, and then by choosing the specific
crossover point intelligently. Fig. 7.11 gives the intelligent measure crossover
algorithm.

The heuristic being applied is to minimize the horizontal interval at the crossover
point, which tends to generate smooth measures. If more than one crossover point
would yield the same horizontal interval, the tie is broken by heuristics that depend
on the context in which the crossover is occurring. Specifically, the crossover
point is biased towards the middle of the measure when breeding two of GenJam’s
measures, in order to break up GenJam’s stored licks. When breeding a human
measure with a GenJam measure, which will be described in Section 7.7.3, the
crossover point is biased to include as much of the human’s measure as possible,
in order to tilt GenJam’s material towards the immediate performance.

Fig. 7.12 shows the application of the algorithm in Fig. 7.11 to the two measure
chromosomes from Fig. 7.9. In this case the smoothest crossover point occurs
between the fifth and sixth events, which leads to a horizontal interval of one step

‘15 5 46 15‘15 0 O‘Parentl|1111 0101 0100 0110 1111|1111 0000 0000‘
U o L

‘9 10 9 9 8 ‘7 5 4 ‘ Parent2|1001 1010 1001 1001 1000|0111 0101 0100‘

‘15 5 46 15‘7 5 4‘Childl |1111 0101 0100 0110 l]ll|0111 0101 0100‘

‘9 10 9 9 8 ‘15 00 ‘ Child2 |1001 1010 1001 1001 1000|1111 0000 OOOO‘

FIGURE 7.12. Intelligent note-level measure crossover at a smooth crossover point.

Parent | Parent 2 Child 1 Child 2

FIGURE 7.13. Parent and child chromosomes from Fig. 7.12 played against C7 chord.

in child 1 (the 6 in position 4 held through position 5, followed by the 7 in position
6) and a horizontal interval of zero in child 2 (the 8 in position 5 is held in position
6, followed by rest events to finish the measure). Fig. 7.13 shows the parent and
child chromosomes from Fig. 7.12 played against a C7 chord.

7.6.2.2. Intelligent Phrase-Level Crossover

Crossover at the phrase level only occurs when evolving a new soloist and is not
used for trading fours or interbreeding what the human plays with GenJam’s ideas.
However, the issues with performing crossover on phrases are similar to those for
measure crossover, in that introducing brand new measures into the mix via a
bit-level crossover point that happens to fall within a measure index can lead to
unfortunate horizontal intervals at the boundaries between the ‘new’ measure and
those that come immediately before and after it.

Therefore, the intelligent phrase crossover operates at measure-index bound-
aries, which means that there are only three potential crossover points in the four-
measure phrase representation of GJINF. By prohibiting crossover points within
measure indices, the parents’ measures are guaranteed to survive in the children,
which limits the introduction of new measures into the mix but insures that the
horizontal intervals at measure boundaries will be preserved, except for the actual
crossover point(s). Preserving the parents’ horizontal intervals at the crossover
points, in fact, is the primary goal of this operator, as shown in Fig. 7.14.

Notice that the number of crossover points is not fixed. This allows the creation
of phrases that could hop back and forth between the parent measures. By trying to
preserve the parent’s horizontal intervals at the crossover points, the measures in
the new phrases will hopefully fit together well, and since the measures themselves
can be expected to sound good, the resulting phrase should blend the material from
the measures indexed by the parents in the ‘smoothest’ way possible. As is the case
for the musically meaningful mutations, the goal for intelligent crossover operators
is to ‘guarantee’ that the children of good-sounding measures and phrases sound
good themselves.

At each of the three potential crossover points at measure boundaries
Compute horizontal intervals in both parents
Compute horizontal intervals in both children
Compute interval differences for both combinations of parent and child interval
Return the smaller differences as “fitness” for that point
Select crossover point(s) with smallest differences (could be 1, 2, or all 3, if there is a tie)
Perform crossover(s) at selected point(s)

FIGURE 7.14. Intelligent measure-level phrase crossover algorithm.

7. Improvizing with Genetic Algorithms: GenJam 155

7.6.3. Initialization

Initialization in most EC-based systems is random, which typically is important
for conducting an unbiased search for an optimal solution. With GenJam, however,
random musical phrases sound, well, random. Nonetheless, the original version of
GenJam used a uniform random number generator to initialize the chromosomes
in the measure and phrase populations for generation zero. This led to a flat,
uniform distribution of new-notes events in the measure individuals and an average
horizontal interval of about a seventh, which made the initial generation pretty
unappealing to most mentors.

Training a soloist initialized this way was a fairly boring task in the early gen-
erations. Typically, four or five generations would go by with the mentor mostly
tapping absently on the ‘b’ key, with an occasional flurry of ‘g’s when something
remotely musical occurred. Usually, a ‘golden generation” would occur around five
generations in, after which the mentor could begin shifting to a more musically
discriminating mindset.

The musically meaningful mutations were largely responsible for the emergence
of musically meritorious individuals, and it occurred to the author that it was
possible that the mutations might be powerful enough by themselves to improve
a soloist without fitness. To test this, he built several soloists without providing
any feedback at all, which kept the fitness values for all individuals at their initial
value of zero and led to random selection. The result was a series of soloists who
were a bit smoother than an untrained soloist, but not nearly as musical as a trained
soloist, even after four to five times as many generations of training. Fitness, then,
is important, at least when the initial generation is maximally random.

However, what if the initial population is random in a more musical way? In 1998
the author began using a simple fractal generator patterned after Martin Gardner
(1978) to initialize generation zero. This guaranteed that the initial generation
would have a distribution of new-note events very similar to that of a mature,
trained soloist. Specifically, the average horizontal interval came out to about a
third, and the distribution of new-note events was roughly bell-shaped with the
peak near the middle of the instrument’s range. The result was that generation zero
sounded significantly less bad than when the uniform generator had been used,
which led to more rapid training.

Taking it one step further, in 2001, the author began using a Markov chain
initialization procedure that performed even better and generated generation-zero
soloists that allowed the user to be musically discriminating from the outset. The
Markov chain procedure was a byproduct of making GenJam autonomous, which
will be discussed in Section 7.8.

7.77. Interactivity

GenJam’s ability to interact effectively in real time with a human performer in
live performance situations is arguably its greatest strength as an improvizer, and

156 Biles

it certainly is the author’s favourite feature when playing gigs with GenJam. Inter-
action requires that both parties be able to hear what each other is playing and use
what they hear in what they play. The most obvious way this is done is the tradition
of trading fours, where soloists take turns improvizing over successive four-bar
sections of the tune. Trading fours is often regarded as a competition between
soloists, something of a musical dual, where each combatant tries to ‘one-up’ the
other by quoting from their opponent’s four and then extending it. This mutual
pursuit explains the use of the term ‘chase chorus’ to refer to a chorus in which
soloists trade fours.

7.7.1. Trading Fours

By 1997, the author had been performing with GenJam for about three years. A
well-trained soloist could play competent full chorus solos, and GenJam could
trades fours, but when it traded fours, it did so in a vacuum, essentially playing a
phrase individual from its population without regard to what the human soloist did.
The human could play off of what GenJam played, but GenJam couldn’t return
the favour. This made playing gigs a bit tiring for the author because he didn’t get
much creative energy from what GenJam played.

To address this issue, the author purchased a Roland GI-10 pitch-to-MIDI con-
verter, which was designed to plug into Roland’s guitar-MIDI interface. However,
the Roland engineers also included a 1/4-inch microphone input, apparently hoping
folks would plug in acoustic instruments or try to sing into it. When the product
was discontinued at about this time, the author purchased one at a fraction of the
original list price in the spring of 1997 and extended GenJam to really trade fours.

The basic strategy was to use the GI-10 to listen to what the author was playing
on trumpet for four bars, reverse the scale-index-to-pitch mapping to generate
new-note events in four measure chromosomes, quit listening in the last instant of
the human’s four to give GenJam time to mutate those measure chromosomes and
the trivial phrase chromosome that joined them to make a phrase, and then play
the mutated phrase as GenJam’s response in the next four bars.

The measure and phrase chromosomes used for trading fours employed the same
GJNF representation described above for the measure and phrase populations, but
they are not actually in those populations. Because GINF is so robust, as described
above, GenJam’s fours are guaranteed to be playable and theoretically correct,
which is important, because the GI-10 makes a lot of mistakes.

A test of the GI-10 in a performance setting demonstrated that it generated
roughly twice as many note-on/note-off pairs as the author actually played notes
(Biles 2001a). In fact the author tweaked the GI-10 to generate as many note-
on/note-off pairs as possible by turning off pitch-bend and setting the ‘touch’ to
a hair trigger. The algorithm for mapping MIDI events to event loci in a measure
chromosome is summarized in Fig. 7.15.

This algorithm is surprisingly effective, mainly because the target representation
is GJNF, which is highly robust. Multiple note-on events occurring in the same time
window are resolved by simply keeping the last one to occur that was loud enough.

7. Improvizing with Genetic Algorithms: GenJam 157

Initialize all loci in the measure chromosome to hold events
While walking through the event windows in the measure in time with the tempo
As MIDI events occur in a given event window
If a MIDI note-on event occurs
If the event’s velocity (loudless) is too low
Ignore the event
Else
Find the nearest pitch in the scale for the current chord
Assign the scale offset of that pitch as the value for the locus
Else If a MIDI note-off events occurs
If the current locus is still a hold event
Assign a rest event to the locus
Else
Leave the locus alone (stays a new-note event)
Else no event occurs in the window, so the locus stays a hold event
End As
End While

FIGURE 7.15. Algorithm for listening to human measure when trading fours.

The loudness threshold helps filter out ambient noise in the room, including sound
from the speakers playing the rest of the band, so that GenJam only pays attention
to the close-miked trumpet. Mistakes in timing are irrelevant because when the
phrase is played back, it will always sound in time. Mistakes in pitch, made either
by the GI-10 or by the human, are not a problem because the target is an offset
into the scale that the measure will be played against when it is performed. The
measures are likely to be mutated anyway, so precision really doesn’t matter. In
fact, the author views mistakes made by the GI-10 as ‘melodic development’, not
errors. In short, mapping to GJNF as a target makes the system highly fault-tolerant
(Biles 1998).

7.7.2. Collective Improvization

In 2002, the author added an interactive collective improvization feature, where
GenJam and the human improvize simultaneously. In effect, this is implemented
as an intelligent delay line, where GenJam listens to the human and maps what it
hears to measure chromosomes, as it does when trading fours. However, it plays
back the chromosome material from ‘a while ago’ as it is filling up the current
chromosome with what it is hearing.

For instance, if the delay is set to one full measure, then GenJam toggles between
two measure chromosomes, playing back what it heard the human play in the
previous measure while it is listening to the current measure. It does not mutate the
measures in this mode because the human’s task is to play harmony or counterpoint
against what he played ‘a while ago’, which is hard enough to do when GenJam
simply tries to echo what the human played. The delay can be set to four measures,
one measure, or a part of a measure (some number of events less than the length of
a measure). The author seldom uses a delay of four measures because he usually
can’t remember that long ago, but uses delays of a full measure or a half measure

158 Biles

frequently. Half measure delays are interesting in odd time signatures like 5/4
(delay of five events) or 7/4 (delay of seven events).

This intelligent delay is something of a tribute to the late Don Ellis, who pio-
neered using live electronics for jazz trumpet, including loop delays, beginning in
about 1967 (Ellis 1967). Most of Ellis’s loop-delay solos were in static harmonic
settings or were unaccompanied cadenzas, because a simple loop delay echoes
whatever audio the mic picks up after a fixed delay. In Ellis’s case, this precluded
any but the simplest harmonic and rhythmic forms. Since Ellis’s time, of course, the
repeating loop concept has become a compositional paradigm that underlies entire
musical genres and provides the fundamental paradigm for music software like
GarageBand (Apple 2006). GenJam’s collective improvization feature attempts
to apply loops in an improvizationally agile manner to return to and extend Ellis’s
conception. Whether this has much to do with evolutionary computation is an
interesting question, but that discussion will follow.

7.7.3. Interbreeding GenJam'’s Ideas with a Live Human’s

The final mode of real-time interactivity that GenJam supports is a feature where
GenJam listens to human measures both during the human’s solo and during the
head chorus that typically begins a tune and states its original melody. As the human
plays, GenJam listens to each measure and maps it to a measure chromosome as
described in Section 7.7.1. After a measure is complete, GenJam searches the
measure population for that measure whose first and last new-note events are
closest to the first and last new-note events of the human’s measure. The measure
it selects is then bred with the human’s measure, using an intelligent crossover
operator that selects a crossover point that generates the smallest horizontal interval
atthe crossover point, as described in Section 7.6.2.1. Of the two resulting children,
the one whose first and last new-note events are closest to the first and last new-
note events of the parent that came from the measure population then replaces that
parent in the measure population. The result is a subtle evolution of the soloist
toward the tune’s original melody and the human’s solo.

The selection method for this feature has to cope with two issues. First, a given
human measure may not make a good parent. This is particularly true on the heads
of tunes, where the human might be playing a simple background harmony part or
might be resting. To handle this, the selection algorithm only selects measures in
which the human played a minimum number of new-note events and in which there
are no silences longer than a certain threshold; otherwise the human’s measure will
be ignored. In other words, a parent measure needs to be busy enough to insure
interest. While a measure with a long silence and/or only one or two notes can be
effective in a solo, that artful use of space is not easy to pull off. GenJam, then,
does what most intermediate-level improvizers do and prefers to play too many
notes rather than risk not playing enough.

The second selection issue stems from the fact that the heads of most tunes will
include repeated phrases, whose measures could be over sampled. For example, a
typical 32-bar AABA tune repeats the eight measures in the A section three times

7. Improvizing with Genetic Algorithms: GenJam 159

during the head, with possible minor variations in the tune itself and/or the human’s
rendering of it. When interbreeding these measures with the soloist’s measures,
then, the repeated measures will likely spawn three children in the soloist’s mea-
sure population, which has the potential of tiling GenJam’s improvization too far
in the direction of the tune’s head. To correct for this, the selection method for
interbreeding the head marks measures as they are interbred. If a human measure
would have selected a marked measure as its mate, it will be ignored, under the as-
sumption that a similar measure from the head has already bred with this measure’s
parent.

7.8. Making GenJam Autonomous

By 2000, the author’s successful experiences trading fours with GenJam sparked a
sequence of enhancements that improved GenJam’s full-chorus solos, eliminated
the fitness bottleneck for training soloists, and ultimately changed the author’s view
of applying technology in application domains. Along the way, GenJam stretched
the evolutionary paradigm to what many would consider the breaking point. This
section will trace the thinking that led to an autonomous version of GenJam and
discuss whether that version is still an EC system. The next section will expand
on the implications of applying EC in the improvization domain and comment on
the mutual interaction between technology and application domains.

When GenJam trades fours with a human, it applies its mutation operators in
real time without determining fitness, as described in Section 7.7.1. Initially, the
author saw this as an unfortunate necessity, both because of failures to come up
with an automatic fitness function (Biles et al. 1996) and because when trading
fours, GenJam has only several milliseconds to mutate the one phrase and four
measure chromosomes that resulted from listening to the human’s four before it
has to perform that phrase as its immediate response. It turned out that GenJam’s
musically meaningful mutations, which had been developed to facilitate rapid and
productive training of a new soloist, were perfect for developing the human’s
fours in real time because they tended to do nice things to nice phrases. In other
words, given a good phrase to start with, the mutations guaranteed a good phrase
in response. In actual performance the human’s phrases tended to sound good (at
least the author thought so!), so GenJam’s mutated responses sounded good.

At the same time, the author noticed that the full-chorus solos generated by a
well-trained soloist, while competent, were not as compelling as chase choruses
where GenJam and a human traded fours. Part of that is certainly due to the in-
teractivity and spontaneity inherent in trading fours, but it occurred to the author
that the fours he played were better than the phrases GenJam evolved interactively
under the guidance of a mentor. This, he reasoned, was likely due to the fact that
GenJam’s initial generation of phrases was random, and that for good phrases
to develop, they first had to be generated, heard and rewarded by the mentor.
The mutation operators certainly helped, as did the ongoing development of ever
more intelligent initializations of the initial generation, from uniform random, to

160 Biles

Measure
4-Bar _.-"%| Population
Licks Phrases -
Database -
Te-all Phrase
Population

FIGURE 7.16. Autonomous GenJam creating populations from a database of licks.

fractal-based, to Markov-based, as described in Section 7.6.3. Even with the
Markov initialization, however, GenJam’s generation zero phrases are not as com-
pelling as the author’s fours.

But what if GenJam started a training session in generation zero with phrases
that were as good as human phrases to begin with? In that case the mutations that
guaranteed good responses when trading fours might guarantee good soloists with
a minimum of training.

At about this time, the author came across a book called 1001 Jazz Licks
(Schneidman, 2000). Upon obtaining a copy, he was delighted to find that it con-
tained 1001 four-bar phrases, categorized in a variety of styles (e.g. bop, post bop,
swing, waltz). The author then hand coded about half of the phrases into GJINF
to create ten databases of licks in different jazz styles. These lick databases then
became the seed material for the measure and phrase populations.

Fig. 7.16 shows schematically how autonomous GenJam (Biles 2001b) uses a
given licks database to generate the measure and phrase populations for a soloist
to be used on a tune. The algorithm to generate the populations is summarized in
Fig. 7.17.

Each database must have at least 16 licks to avoid duplicating a lick. The actual
databases that the author uses vary in size from 24 to 68 four-bar licks, so even
if the same database is used on two different tunes, the specific licks selected
should be at least a little different, and two thirds of the phrases will be intelligent
crossovers of different pairs of phrases. Finally, many, if not most, of the measures
in the measure population will have been crossed over with human measures before
GenJam takes a full-chorus solo, as described in Section 7.7.3. The result is that
on any given tune, the soloist will be unique for that rendition of that song, and
GenJam will almost never repeat itself verbatim, unlike most humans.

Notice that the mentor from Fig. 7.4 has disappeared in Fig. 7.16. This is because
there is no fitness recorded or manipulated in the measure and phrase individuals.
Notice also that the measure and phrase populations are not read or written as files,

Select 16 four-measure licks at random from the licks database

Build the measure population from the 64 measures in those licks

Build the first 16 phrase individuals to represents the original 16 licks

Build 32 more phrase individuals by applying intelligent crossover to pairs of the first 16

FIGURE 7.17. Algorithm for generating measure and phrase populations from a licks
database.

7. Improvizing with Genetic Algorithms: GenJam 161

as they were in Fig. 7.4 because they will not be evolved over the course of several
generations. In other words, we’ve eliminated the fitness bottleneck by eliminating
fitness itself.

This is a problem if one wants to continue regarding GenJam as an example of
EC because fitness is supposed to be a necessary component for EC (Goldberg
1989; Bentley 1999). The argument against the autonomous version of GenJam
being considered EC runs as follows: Eliminating the mentor clearly means that
GenJamis no longer an interactive genetic algorithm. Since there is no generational
search driven by fitness and, in fact, no fitness at all, what remains is simply a
sophisticated melodic transducer implemented with the mutation and crossover
operators. Therefore, the autonomous version of GenJam is not EC.

On the other hand, the autonomous version of GenJam uses an abstract genotype
(GJNF) and a genotype-to-phenotype mapping (when phrases are performed in real
time). It applies crossover and mutation operators, albeit non-traditional ones, to
the genotypes. While there is no generational search, there is selection in choosing
which measures to crossover with the human measures. That selection is biased
toward measures that will integrate well in phrases that use them, which represents
an implicit form of fitness. The intelligent crossover is really a form of gene
splicing, which while not intentionally done in nature is certainly done in the
laboratory. Clearly the autonomous version of GenJam is at least EC-inspired.

Another perspective is to consider EC as a generate-and-test strategy. In standard
EC the generators (initialization, crossover, mutation) are pretty unintelligent, and
the test (fitness) is usually intelligent. The principle is that the intelligent fitness
function guides the otherwise random search implemented by the dumb crossover
and mutation operators. Schema theory (Goldberg 1989) is built on the assumption
that initialization, crossover and mutation are random, and that selection is driven
by fitness. The result is that meritorious building blocks are sampled exponentially
more often over succeeding generations, which gives EC it’s well known leverage
in converging on optimal solutions, even in messy solution spaces.

But what if the genetic operators are intelligent? In GenJam’s case the mutation
operators essentially guarantee that a good human four will always mutate to a good
response. Similarly, the crossover operators pick crossover points that almost al-
ways guarantee a musically meritorious result. The measure selection/replacement
operator intelligently selects individuals to breed such that the children will alter
but not disrupt the phrases in which they participate. This selection method uses an
implicit fitness in choosing which individuals to crossover with a human measure.
Finally, the initialization procedure in Fig. 7.17 seeds the initial population with
proven licks from a licks database and safe blends of those licks.

From the generate-and-test perspective, then, autonomous GenJam’s generators
are so intelligent that they always generate good individuals, so there is no need
to test. To quote Garrison Keilor, of A Prairie Home Companion fame, ‘all the
children are above average’. So is the autonomous version of GenJam an EC-based
system? The author’s ultimate answer to that question is, ‘I don’t care, as long as it
plays well’. This rather combative opinion leads us finally to the mutual influence
of EC and application domains on one another.

162 Biles

7.9. Technology Versus Domains

Over the last 12 years GenJam has evolved from a proof-of-concept experiment to
a viable improvization agent that performs regularly in public. That evolution has
paralleled the author’s thinking about how EC as a technology impacts the musical
domain in general and improvization in particular, and more fundamentally, how
technology and application domains influence each other.

In Chapter 2, this author tried to drive home the point that many, if not most,
applications of EC to music have essentially been solutions in search of problems.
In fact, GenJam started out very much that way; the author’s original goal was
to see if a genetic algorithm could generate jazz solos as something of an intel-
lectual exercise. The author assumed that he’d get some papers out of the project
and go to some fun conferences, but he didn’t expect that the music it produced
would actually sound good enough to inflict on an actual audience, other than as
a demo of what it produced, much as Lee Spector and Adam Alpern (1994) were
coincidentally generating at about that time.

After getting the first version of GenJam working in the fall of 1993, the author
found that GenJam’s solos were not as bad as he thought they would be and
ventured to perform a ‘low stakes gig’ in a lunchtime concert series in the RIT
student union in April, 1994. The audience reception was very favourable, and he
was asked to return, which led the author to think of GenJam not just as a genetic
algorithm, but also as a viable musician. In other words, the goal began shifting
from finding out whether a genetic algorithm could improvize toward building a
viable improvizer that happened to use a genetic algorithm. This may seem to be
a subtle shift, but it represents a fundamental change in philosophy.

Originally, the author adhered fairly strictly to the standard orthodoxy of ge-
netic algorithms. For example, initialization and crossover were implemented as
uniform-random processes. The selection/replacement regimen was a standard
tournament technique. Mutation was the only ‘cheat’ that the author succumbed
to, in an effort to make the mentor’s task tractable, as described in Section 7.6.1.
The author consoled himself in this violation of EC principles by restricting the
intelligence to the mutation operators. At least the rest of GenJam was still ‘pure’.

After adding the interactive feature of trading fours, which leveraged the intelli-
gent mutation operators to develop a human’s four in real time without fitness, the
author justified this further erosion of EC purity by reasoning that a generational
search was impossible in this situation, so fitness was irrelevant. Maybe it wasn’t
exactly EC, but it sure was fun to play with!

In retrospect, this was something of a tipping point in that the focus clearly had
shifted away from EC and toward playing jazz. From this new perspective, then,
it was easy to justify embedding intelligence in the initialization and crossover
operators and to eliminate fitness entirely to develop the autonomous version of
GenJam; the result was clearly a better soloist.

When the author then began reviewing the EC-in-music literature in preparation
for a tutorial at GECCO on Evolutionary Music (Biles 2004), which formed the

7. Improvizing with Genetic Algorithms: GenJam 163

starting point for his other chapter in this volume, he noticed that most of the EC-
based music systems he encountered definitely came from the EC perspective, not
the musical perspective. In other words they were solutions in search of problems
that sought to demonstrate that EC in its canonical form could generate music.

This brings to mind the neat versus scruffy ‘holy wars’ from artificial intelli-
gence. The neats are concerned with theoretical models that attempt to explain
human behaviour and seek to be intelligent in the same way that humans are in-
telligent. The scruffies, on the other hand, are relatively unconcerned with human
intelligence, other than its role as an existence proof, and are more concerned with
the tangible performance of their systems. Clearly, GenJam falls on the scruffy
end of this dimension.

In the EC-based improvization arena, one project stands out in contrast to Gen-
Jam in this regard. George Papadopoulos and Geraint Wiggins (1999) took a
decidedly neat perspective in their improvization system. In describing their im-
plementation, they write about

the idea of using an objective fitness function, as opposed to the interactive approaches often
used elsewhere in the GA music field. The reason for this is that we have a particular interest
in understanding the searching behaviour of our GA: we are interested in simulating human
behaviour and not just in the quality of our results. In order to understand the search patterns
produced by our system, it is important to have a fitness function which is consistent, and
whose criteria we fully understand. This could not be the case with an interactive GA,
because of the subjectivity of the human listener — it would be impossible to determine
which choices were made because of emergent behaviour of the system and which were
made because of the inconsistencies of the human judge.

This is clearly a ‘neat’ perspective; they ‘are interested in simulating human
behaviour and not just the quality of [their] results’. They view ‘the subjectivity
of the human listener’ in an IGA as a problem because they can’t explain it with
their theoretical model. The problem with this perspective is that it elevates theory
above experience. If the goal is to test the efficacy of a theoretical model, this is
fine. However, if the goal is to create good music, then the theory is useful only to
the extent that it facilitates that goal. The author’s opinion is that theory should try
to explain why something sounds good; it should not be used to decide whether
something sounds good. This is especially true in the improvization domain, where
the spontaneity of human improvizers is very difficult to pin down (Berliner 1994).

To generalize further, this tension between the constraints of a given technol-
ogy and the demands of an application domain is a fundamental issue in applying
technology to specific domains. Technologists typically understand the technolo-
gies they have studied and/or developed, but they often understand considerably
less about problem domains. The author recalls an experience in the mid 1980’s
where he was brought in as a consultant to build an expert system for a bank. The
initial meeting was a series of presentations by department heads who had prob-
lems they thought might be suitable for an expert system. The bank’s goal, clearly,
was to build an expert system, any expert system, rather than to solve a specific

164 Biles

problem — a classic solution in search of a problem. While it was remarkable
that a bank was motivated to test out a new technology (banks are stereotypically
conservative in this regard), it was an odd experience to have a succession of pre-
sentations by customers trying to sell the technologist instead of the other way
around.

Many applications of technology start this way; a system is built because some-
one knows how to build it, not because it solves a particular problem. This is not a
bad thing, particularly when a technology is new. The literature on early applica-
tions of EC is full of notable successes in solving tough problems that defied other
approaches (Goldberg 1989). This is important in establishing whether a technol-
ogy is useful and in what situations it is useful. Sooner or later, however, the focus
shifts from research into whether a technology works at all toward research into
how to make it more effective. At that point the theoretical work begins to become
esoteric, for lack of a less pejorative term, and the emphasis shifts to the needs of
the problem domain. This is a difficult shift for technologists because they can no
longer rely primarily on their theoretical knowledge of the technology itself. The
specific problem being solved takes precedence, and a theoretical solution isn’t
enough — the solution has to actually work.

When that happens, the demands of the problem domain begin to affect the
technology. Technologists are (or should be) used to thinking about how their
technology changes problem domains and the ways people perform tasks in those
domains. However, the impact of problem domains on technology is not as familiar
to many technologists. This is the central goal of the emerging academic discipline
of information technology (IT) — to turn out users’ advocates who bend technology
to fit the needs of people. The emergence of that philosophy is certainly represented
in GenJam’s evolution. The GenJam project began in 1993, one year after the
first undergraduate IT program began accepting students, not coincidentally at
the author’s institution. As IT has become established as an accredited academic
discipline (SIGITE 2006), GenJam has become very much a system that plays
music rather than a system that demonstrates EC. In other words, improvization
as a domain has changed the nature of EC as it is deployed in GenJam. Most
information technologists would agree that ‘It’s about the users, not about the
technology’. The author would apply that to GenJam by saying, ‘It’s about the
music, not the EC’.

7.10. GenJam as a Musician

So if it’s about the music, how good is GenJam as a musician? The author hasn’t
performed a formal study on GenJam’s acceptance by an audience, but he has
performed a few hundred gigs with GenJam and has at least some anecdotal ev-
idence from listeners that GenJam is a convincing improvizer. The rest of this
section, then, will present anecdotes from playing in public with GenJam. To un-
derstand these anecdotes, the author finds it useful to cast the experience of an
audience member as a ‘user interaction’ with the performance. This perspective

7. Improvizing with Genetic Algorithms: GenJam 165

Designer’s User’s
—> —»
Mental System Mental

Model Image | gp—o— Mol

FIGURE 7.18. Norman model for user interaction (after Norman 88).

basically follows the user interaction model of Donald Norman (1988), shown in
Fig. 7.18.

In Norman’s model a system designer has a mental model of the system he or
she develops. That mental model informs the creation of the System Image, which
is the manifestation of the system that is accessed and manipulated by the user.
The user forms a mental model of the system by interacting with the system image
in the context of whatever task the user is trying to perform using the system.

Fig. 7.19 shows Norman’s model applied to a jazz performance, where the
designers are the tune’s composer and the performing improvizer; the users are the
audience; and the system image is the performance itself, including all aspects that
are perceivable by the audience. Viewing a performance this way draws attention
to the audience’s mental model of the performance, which is informed both by
the performance itself and by any expectations listeners in the audience might
have. For example, a jazz aficionado will have a different set of expectations and
will form a different mental model of a jazz performance from that formed by a
country music fan who only listens to the lyrics. The listener’s mental model of
the performance, then, is the basis for his or her impression of the performance.
Whether the listener enjoyed the performance or ‘got’ the performance depends
on his or her mental model of the performance.

The anecdotes described below suggest listener mental models that led to in-
teresting interpretations and impressions of GenJam. In some cases, the listener
under-appreciated what GenJam was doing and didn’t ‘get it’, but in other cases,
the listener overestimated GenJam’s proficiency and gave it too much credit.

7.10.1. Where’s the CD?

A common question the author gets when playing at receptions is, “Where’s the
CD? He usually replies with an overly elaborate description of how GenJam
is listening to the trumpet and mutating what it hears using something called
evolutionary computation, and that everything is being generated by the computer
and played through the tone generator, and... At about this time, the author is
typically interrupted with, ‘That’s nice, but where’s the CD?’

Composer’s, |——pp| Performance, |[——pp Audience’s

Improviser’s Players, Venue, Mental Model,
Mental Models Program Notes [™®™ """~ Expectations

FIGURE 7.19. Donald Norman’s model applied to a jazz performance.

166 Biles

This scenario indicates that the listener’s musical mental model doesn’t accom-
modate a computer improvizing jazz in real time. The fact that the listener can only
explain what he or she hears by looking for a canned CD indicates that GenJam’s
performance passed the it-must-have-been-recorded test. The listener assumes that
the trumpet player is simply doing music minus one. While that conception vastly
underestimates what GenJam is doing, which used to bother the author, it demon-
strates that whatever GenJam is doing, it is meeting the listener’s expectations of
what straight-up jazz is supposed to sound like, which is really the goal after all.

A variation on this theme sometimes comes from listeners who apparently have
at least a nodding acquaintance with MIDI. ‘So where do you get your sequences
with the solos in them?” Again, this implies that GenJam’s solos were good enough
to be considered ‘programmed’ by someone. On a few occasions the author has
been asked, ‘How did you know it was going to play that?” or ‘How do you
remember what to play on the fours?” This implies that the listener was hip enough
to detect that GenJam sounded like it was responding to what the author was
playing, but the listener assumed that was an illusion. In a situation several years
ago, one listener refused to believe that GenJam was actually playing off of what
the human played until he scat sung into the microphone for a couple of fours.
Luckily, GenJam ‘chose’ to mutate his phrases transparently enough to convince
him that it really did respond to what he sang.

7.10.2. It Made an Interesting Choice There

Occasionally the author gets the chance to demonstrate GenJam for a very knowl-
edgeable musician whose mental model of GenJam is fairly accurate, due to the
opportunity for the author to play several tunes and explain in some detail what
GenJam is doing. Often in these situations the listener gives GenJam too much
credit. For example, one listener, who was a high school music teacher and jazz
trumpet player, made very generous attributions of intentionality, for example, ‘It
made a really interesting choice there’. In probing on the word ‘choice’, the author
found that the listener had interpreted a serendipitously generated phrase as an
intentional decision that reflected an improvizational method with which he was
familiar.

In another situation, a jazz playing computer science graduate student was im-
pressed at the sophistication of GenJam’s knowledge base in putting together its
solos because he clearly heard very specific examples of melodic passing tones
chosen for specific chord changes, and other improvizational techniques. When
told that GenJam (and the author, for that matter) knew nothing about the spe-
cific techniques he referenced, he was a bit irritated that a simpler system fooled
him.

7.10.3. I Thought You Were Playing the Flute

GenJam has, at least twice, passed a “Turing test’ of sorts. The author has occa-
sionally played recordings of tunes for listeners and asked them to identify which

7. Improvizing with Genetic Algorithms: GenJam 167

instrument was being played by a human. On at least two occasions, a listener
thought that the human was the flute player instead of the trumpet player. When
asked why they thought so, they indicated that they had keyed in on aspects of the
flute’s attack, which, with the physical modelling synthesis card the author usually
uses for GenJam’s voice, generates fairly realistic imperfections when playing fast
and loud. One interpretation of this is that GenJam’s improvizations were close
enough to the human’s in overall quality that the listener had to use the instrumen-
tal timbre to break the tie. If the listener is musically knowledgeable, this is quite a
complement to GenJam. If the listener is not, it is less flattering, but still notewor-
thy. The author tries not to think too much about his performance being perceived
as more machine-like than a machine and consoles himself that it doesn’t happen
often.

7.10.4. Audience-Mediated Performance

The author has played several concerts and demonstrations where the audience
acted as a collective mentor to train a new soloist as part of the performance. The
author coined the term audience-mediated performance to refer to these situations,
where the audience exerts some level of control over the content of the performance
(Biles 95). As GenJam plays three or four training tunes consisting only of solo
choruses, audience members signal their opinions using feedback paddles with one
red side (for bad) and one green side (for good). The author acts as a collector of this
feedback by typing ‘g’s or ‘b’s based on his perception of the amount of red or green
he sees in the audience. After three or four training tunes, the author then plays a
tune with the audience’s soloist. Typically during the author’s first solo following
the training tunes, he sees the feedback paddles again, accompanied by smiles
from the audience, indicating that they got the idea of what GenJam actually does
and were having fun being involved with the technology. Thankfully, the author
usually sees more green than red in these situations.

7.11. Conclusions

So what, if anything does GenJam mean? At a musical level, the author finds
himself preferring to play with GenJam over playing with people. While this may
have more to say about the people with whom the author plays, he still finds
GenJam an engaging and stimulating sideman who shows up on time and sober,
knows all the obscure tunes the author wants to play, doesn’t rush the tempo or
mess up the heads, plays competent solos, is a formidable opponent when trading
fours, and works for free. What more could you want?

At a technical level, GenJam has clearly demonstrated that EC can be applied
successfully to the improvization domain and that it is, at least in the author’s
view, human competitive. Unfortunately, GenJam doesn’t really fit the criteria for
the annual human-competitive awards in genetic and evolutionary computation

168 Biles

(Koza 2004), which focus on science and engineering applications, but the author
believes that GenJam at least holds its own with competent amateur improvizers.

GenJam’s development over the last 12 years has demonstrated not only how
technology can influence the way humans perform tasks, but also how human tasks
can (and should) fundamentally influence technology. In the case of GenJam’s
influence on the author’s jazz skills, there is no question that the author is now
a much stronger musician in general and improvizer in particular than before he
began taking GenJam seriously as a musical collaborator. This certainly is due in
part to the fact the author simply practices a lot more with GenJam than he did
(or could) without it, but developing and playing with GenJam also has forced the
author to listen better and be more disciplined as an improvizer.

As for GenJam’s influence on EC and the broader issue of how domains influence
technology, the GenJam project has given the author a valuable perspective that
has deeply influenced his view of the emerging academic discipline of information
technology as the user-focused computing profession. The user’s perspective is of-
ten undervalued or ignored when technologists deploy applications, partly because
the user’s perspective is difficult to grasp, but also because it is messy and makes
the application less elegant to build. If GenJam has a broader lesson to teach, it
might be that the pragmatic needs of the user (in this case, a jazz trumpet player
who wants to perform as a single) ultimately take precedence over the theoretical
demands of a technology.

References

Apple Computer (2006) GarageBand software, http://www.apple.com/ilife/garageband/.

Bentley P (1999) An Introduction to Evolutionary Design by Computers, in Bentley, PJ
(ed) Evolutionary Design by Computers. Morgan Kaufmann, San Francisco.

Berliner PF (1994) Thinking in Jazz: The Infinite Art of Improvization. University of Chicago
Press, Chicago London.

Biles JA (1994) GenJam: A Genetic Algorithm for Generating Jazz Solos, in Proceedings
of the 1994 International Computer Music Conference. ICMA, San Francisco.

Biles JA, Eign W (1995) GenJam Populi: Training an IGA via Audience-Mediated Perfor-
mance, in Proceedings of the 1995 International Computer Music Conference. ICMA,
San Francisco.

Biles JA, Anderson PG, Loggi LW (1996) Neural Network Fitness Functions for a Musical
IGA, in Proceedings of the International ICSC Symposium on Intelligent Industrial Au-
tomation (1I1A’96) and Soft Computing (SOCO’96), March 26-28, Reading, UK, ICSC
Academic Press, pp. B39-B44.

Biles JA (1998) Interactive GenJam: Integrating Real-time Performance with a Genetic
Algorithm, in Proceedings of the 1998 International Computer Music Conference, ICMA,
San Francisco.

Biles JA (1999) Life with GenJam: Interacting with a Musical IGA, in Proceedings of the
1999 IEEE International Conference on Systems, Man, and Cybernetics, Tokyo.

Biles JA (2001a) GenJam: Evolution of a Jazz Improvizer, in Bentley PJ, Corne DW (eds)
Creative Evolutionary Systems. Morgan Kaufmann, San Francisco.

7. Improvizing with Genetic Algorithms: GenJam 169

Biles JA (2001b) Autonomous GenJam: Eliminating the Fitness Bottleneck by Eliminating
Fitness, in Proceedings of the 2001 Genetic and Evolutionary Computation Conference
Workshop Program. GECCO, San Francisco.

Biles JA (2004) Evolutionary Music, GECCO-2004 Tutorial Program, Genetic and Evolu-
tionary Computation Conference, Seattle, WA.

Coker J (1964) Improvizing Jazz. Prentice-Hall, Englewood Cliffs, NJ.

Dannenberg RB (1993) The CMU MIDI Toolkit, Version 3. Carnegie Mellon University,
Pittsburgh, PA, 1993, http://www.cs.cmu.edu/~music/music.software.html.

Ellis, D (1967) Electric Bath, CK 65522, Columbia Records, NY.

Gannon, P (1991) Band in a Box. PG Music Inc., Victoria, BC, 1991-2006, http://pgmusic.
com/.

Gardner M (1978) White and brown music, fractal curves and one-over-f fluctuations.
Scientific American, 238(4):16-27.

Haerle D (1989) The Jazz Sound. Hal Leonard, Milwaukee, WI.

Haerle D (1980) The Jazz Language. Studio 224, Miami.

Koza J (2004) 2004 Human-Competitive Awards in Genetic and Evolutionary Computation
(Web site) http://www.genetic-programming.org/gecco2004hc.html.

Levine M (1995) The Jazz Theory Book. Sher Music Company, Petaluma, CA.

Norman DA (1988) The Design of Everyday Things. Doubleday, NY.

Papadopoulos G, Wiggins G (1998) A Genetic Algorithm for the Generation of Jazz
Melodies, in Proceedings of STeP 98, Jyviskyld, Finland, http://www.soi.city.ac.uk/
~geraint/papers/STeP98.pdf.

Reti R (1951) The Thematic Process in Music. Macmillan, NY.

Russell G (1959) The Lydian Chromatic Concept of Tonal Organization for Improvization.
Concept Publishing, NY.

Sabatella M (1992) A Jazz Improvization Primer. Outside Shore Music, 1992-98, http://
www.outsideshore.com/primer/primer/.

Shneidman J (2000) 1001 Jazz Licks. Cherry Lane Music Company, NY.

Slonimsky N (1998) Webster’s New World Dictionary of Music, Wiley Publishing, Hoboken,
NJ.

Spector L, Alpern A (1994) Criticism, Culture, and the Automatic Generation of Artworks,
in Proceedings of the Twelfth National Conference on Artificial Intelligence, AAAI-94,
AAAI Press/The MIT Press, Menlo Park, CA and Cambridge, MA, http://hampshire.
edu/%7ElasCCS/genbebop.html.

8

Cellular Automata Music: From Sound
Synthesis to Musical Forms

EDUARDO R. MIRANDA

8.1. Introduction

Cellular automata (CA) are tools for computational modelling widely used to
model systems that change some feature with time. They are suitable for modelling
dynamic systems in which space and time are discrete, and quantities take on a
finite set of discrete values. CA are highly suitable for modelling music: music
is fundamentally time-based and it can be thought of as a system in which a
finite set of discrete values (e.g. musical notes, rhythms, etc.) evolve in space and
time.

CA were originally introduced in the 1960s by John von Neumann and
Stanislaw Ulam as a model of a self-reproduction machine (Cood 1968). They
wanted to know if it would be possible for an abstract machine to repro-
duce; that is, to automatically construct a copy of itself. Their model con-
sisted of a two-dimensional grid of cells, each cell of which could assume a
number of states, representing the components from which they built the self-
reproducing machine. Completely controlled by a set of rules, the machine was
able to create several copies of itself by reproducing identical patterns of cells
at another location on the grid. Since then, CA have been repeatedly reintro-
duced and applied to a considerable variety of purposes, from biomedical im-
age processing (Preston and Duff 1984) and ecology (Hogeweg 1988) to biol-
ogy (Ermentrout and Edelstein-Keshet 1993) and sociology (Epstein and Axtell
1996). Many interesting CA algorithms have been developed during the past
40 years.

Since CA produce large amounts of patterned data and if we assume that music
composition can be thought of as being based on pattern propagation and the formal
manipulation of its parameters, it comes as no surprise that composers started to
suspect that cellular automata could be related to some sort of music representation
in order to generate compositional material.

One of the first composers to use CA was lannis Xenakis, who used them in
the mid of the 1980s ‘to create complex temporal evolution of orchestral clusters’
for his piece Horos (Hoffman 2002; p. 122). A number of pioneering experiments

170

8. Cellular Automata Music: From Sound Synthesis to Musical Forms 171

on using CA for generating music followed by composers such as Beyls (1989),
Millen (1990) and this author (Miranda 1990).

8.2. The Basics of Cellular Automata

CA are dynamic systems in which space and time are discrete. They may have
many dimensions, but the most common CA are either one-dimensional or two-
dimensional. A cellular automaton consists of an array or matrix of elements,
referred to as cells, to which transition rules are applied. The behaviour of a
cellular automaton is given by these transition rules, which are applied simulta-
neously to all cells of the array or matrix. The rules normally take into account
the states of the neighbourhood of each cell. All cells are updated simultaneously,
so that the state of the automaton as a whole advances in discrete time-steps.
The state of each cell is normally associated with a colour, which facilitates the
visualization of the behaviour of the automaton, according to the tick of an imag-
inary clock, like an animated film. The patterns formed by the cells are the result
of the automaton’s emergent behaviour in the sense that no global trend is ex-
plicitly coded beforehand. CA are powerful modelling tools because a cell can
represent anything from a simple numerical variable to sophisticated processing
units.

This chapter will focus on two-dimensional CA, where each cell may assume
values from a finite set of integers. The class of CA studied here is often referred
to as the p-state cellular automata because their cells can value a number p of
possible integer values 0, 1,2, ..., p — 1.

By way of an introductory example, Fig. 8.1 illustrates a very simple cellular
automaton: it consists of a one-dimensional array of 12 cells where each cell can
value either zero or one, represented by the colours white or black, respectively.

From an initial random setting, at each tick of an imaginary clock, the values
of all 12 cells change simultaneously from one array to another, according to the
transition rules that determine a new value for each cell. These rules normally take
into account the values of a cell’s nearest neighbours, but they could also consider
other distant cells. The cellular automaton shown in Fig. 8.1 is referred to as a
binary, nearest-neighbour, one-dimensional automaton, which is the simplest type
of CA.

There have been a number of attempts at providing systematic ways to control
CA and classify them according to the way in which they behave. Wolfram (1994)
is well known for his studies of the properties of one-dimensional CA. There are
256 such automata, each of which is associated with a unique set of transition
rules. An illustration of the rules for one of such automaton is shown in Fig. 8.2,
together with the pattern produced after 15 steps starting from a single black
cell.

Langton (1990) proposed a kind of ‘virtual potentiometer’, referred to as the
A parameter, to navigate through four types of CA: fixed, cyclic, complex and

172 Miranda

~

v (o] 110l 4] 1[o] 11 1fo] 1]o]1]

|

Glt|0]1]110[1]1[Qf t{O]1
0

N
1
'

(] (o) [e}
f]
Y (=] =]
—
-
[an] [en] [en]
—
>
<
(=] =] [=]
o|S|—

FIGURE 8.1. A simple one-dimensional cellular automaton. One of the transition rules
operating in this example reads as follows: if a cell is equal to zero and if both neighbours
are equal to one, then this cell continues to equal zero in the next stage.

chaotic (Fig. 8.3). Parameters such as this are very important because they facilitate
systematic explorations of the relationship between CA behaviour and the music
they produce; an example will be given in the context of the LASy system below.

A number of CA use multi-dimensional arrays of cells that can assume values
other than zero and one, which are represented by various different colours. In the
case of a two-dimensional array, the evolution rules normally take into account

Thhbabdod

FIGURE 8.2. An example of a one-dimensional cellular automaton. (After Wolfram (1994).)

8. Cellular Automata Music: From Sound Synthesis to Musical Forms 173

FIGURE 8.3. Langton’s A parameter to navigate through four classes of CA (after Burraston
2005).

the four or eight nearest neighbours, but other neighbourhood schemes may also
be devised. Two-dimensional CA normally function in a toroidal space: the right
edge of the two-dimensional grid of cells wraps around to join the left edge and
the top edge wraps around to join the bottom edge (Fig. 8.4).

The following paragraphs introduce three examples of CA that have been used
to synthesize sounds and generate music: Game of Life, Griffeath’s Crystalline
Growths and ChaOs.

A

\ — _

FIGURE 8.4. Two-dimensional CA normally function in a toroidal space.

174 Miranda

e

FIGURE 8.5. Game of life is a two-dimensional cellular automaton where each cell can be
in one of two possible states: alive or dead.

8.2.1. Game of Life

Game of Life (GL) is a two-dimensional automaton invented by John Conway.
‘Conway was fascinated by the way in which a combination of a few simple rules
could produce patterns that would expand, change shape or die out unpredictably.
He wanted to find the simplest possible set of rules that would give such an inter-
esting behaviour’ (Wilson 1988; p. 44).

The automaton consists of a finite [m x n] matrix of cells, each of which can
be in one of two possible states: alive represented by the number one, or dead
represented by the number zero; on the computer screen, living cells are coloured
black and dead cells are coloured white (Fig. 8.5).

The state of a cell as time progresses is determined by the state of its eight
nearest neighbouring cells, as follows:

e Birth: A cell that is dead at time # becomes alive at time ¢ + 1 if exactly three of
its neighbours are alive at time ¢

¢ Death by overcrowding: A cell that is alive at time 7 will die at time ¢ + 1 if four
or more of its neighbours are alive at time ¢

e Death by exposure: A cell that is alive at time 7 will die at time 7 + 1 if it has
one or no live neighbours at time ¢

e Survival: A cell that is alive at time ¢ will remain alive at time ¢ + 1 only if it
has either two or three live neighbours at time ¢

In other words, considering that E represents the number of living neighbours
that surround a particular live cell and F defines the number of living neighbours
that surround a particular dead cell, the life of a currently living cell is preserved
whenever2 < E < 3 and a currently dead cell will be reborn whenever3 < F < 3.
A general form for representing transition rules is (Emin, Emax> Fmin and Fiax)
where Enin < E < Enax and Fiin < F < Fax. The original Game of Life rules
are represented as (2, 3, 3, 3). Clearly, a number of alternative rules other than
(2, 3, 3, 3) can be set.

The original GL is also characterized by a number of interesting initial cell con-
figurations that have given raise to intriguing emergent behaviour. A few examples
of well-known initial configurations are shown in Fig. 8.6.

8. Cellular Automata Music: From Sound Synthesis to Musical Forms 175

Cheshire Cat Cross

|

=3 F

Glider Quarter Cross

FIGURE 8.6. A few examples of initial GL configurations. Note that the ‘glider’ configuration
was used in the example in Fig. 8.5.

8.2.2. Crystalline Growths

In 1989, Alexander Dewdney’s presented in his regular computer recreations col-
umn in the Scientific American magazine an interesting two-dimensional automa-
ton, invented by David Griffeath (Dewdney 1989). This automaton assumes more
than two states. Each of the p possible states is represented by a different colour
and they are numbered from 0 to p— 1. The transition rule is very simple: a cell that
happens to be in a certain state k at one tick of the clock dominates any adjacent
cells that are in state k— 1, meaning that these adjacent cells change from k— 1 to
k. This rule resembles a natural chain in which a cell in state two can dominate a
cell in state one even if the latter is dominating a cell in state zero. In this case, the
chain has no end because the automaton is cyclic: a cell in state zero dominates
its neighbouring cells that are in state p— 1. Initialized with a random distribution
of coloured cells, this automaton invariably ends up with stable, patchwork-type
patterns, reminiscent of crystalline growths (Fig. 8.7).

8.2.3. Chemical Oscillator (ChaOs)

ChaOs is inspired by an automaton introduced by Gerhardt et al. (1990) to model
a chemical reaction known as Belousov—Zhabotinskii. ChaOs is this author’s own
adaptation of this automaton to generate patterns resembling oscillatory neuronal
electrical activity. As the nature of neural communication is essentially electro-
chemical, the functioning of communicating neurons generates patterns of oscil-
latory electrical activity.

Metaphorically, ChaOS can be thought of as a matrix of identical electronic
circuits representing neurons. At a given moment, neurons can be in any one of the
following states: (a) quiescent, (b) in one of n states of depolarization or (c) fired.
A neuron interacts with its neighbours through the flow of electric current between
them. There are minimum (Vy;,) and maximum (Vy,.x) threshold values, which

176 Miranda

FIGURE 8.7. The behaviour of Griffeath’s cellular automaton. Initialization with randomly
generated values is shown on the left-hand side and an emergent pattern reminiscent of
crystalline growths is shown on the right-hand side.

characterize the state of a neuron. If its internal voltage (V;) is under Vy,,, then the
neuron is quiescent (or polarized). If it is between Vi, (inclusive) and Vi, values,
then the neuron is being depolarized. The neuron’s potential divider is aimed at
maintaining V; below Vy,i,. But when it fails (that is, if V; reaches Vi) the neuron
becomes depolarized. There is also an electric capacitor, which regulates the rate of
depolarization. The tendency, however, is to become increasingly depolarized with
time. When V; reaches V,«, the neuron fires. A fired neuron at time ¢ automatically
becomes a quiescent neuron at time ¢ + 1. The functioning of this automaton is
determined by: the number p of possible neural states or colours (p > 3), the
resistors R1 and R2 for the potential divider; the capacitance k of the electric
capacitor.

In practice, the state of a neuron is represented by a number between 0 and
p — 1, where p is the amount of different states. One of the attractive features
of ChaOs is that is allows for a variable number of different neuron states p + 2.
A cell in state m[t] = O corresponds to a quiescent state, whilst a cell in state
m[t] = p — 1 corresponds to a collapsed state. All states in between represent a
degree of depolarization, according to their respective values. The closer a neuron’s
state value gets to p — 1, the more depolarized it becomes. All neurons are updated
by the application of the following rules to all of them simultaneously:

) A) B
int (—) + int <—> <~ myy[t]=0
r r
myy [t +1] = S
wyl] int<z>+k<—0<mx,y[t]<p—1

0<«myy[t]l=p—1

8. Cellular Automata Music: From Sound Synthesis to Musical Forms 177

x-1y-1) [y-D) | (x+ly-1) -ly-1) |(xy-1) | (x+ly-1)

4(1|4| 5
«ly) |y (x+ly) : : 1y |x» (x+1y)
3]1]0(1 = 1

(-Ly+l) [(y+l) |+l y+1) : &-1y+1) [(xy+l) |G+l y+1)

FIGURE 8.8. An example of the application of the transition rules to one neuron. Assume
that P = {0, 1, 2, 3,4}, r; = 8.5, r, = 5.2 and k = 3. Considering the eight neighbours of
the neuron (x, y), then A = 3 (number of fired neurons) and B = 4 (number of depolarized
neurons). Since the neuron (x, y) is quiescent, then the top rule applies and the value of this
neuron at the next tick of the clock will be equal to 1.

where the state of a neuron at a time ¢ is denoted m, ,[¢]; x and y are the horizontal
and vertical coordinates of the a neuron; A and B represent respectively the number
of fired and depolarized neurons amongst the eight neighbours, and S stands for the
sum of the states of the neighbours. An example of the application of the transition
rule to a certain neuron (x, y) is given in Fig. 8.8. In simpler terms, the above rules
state that:

* If a neuron is quiescent (m, ,[x] = 0), then the neuron may or may not become
depolarized at the next tick of the clock (¢ + 1). This depends upon the number
of polarized neurons in its neighbourhood, the number of collapsed neurons in
its neighbourhood and its resistance to fire.

* Ifaneuronisdepolarized (0 < m, ,[x] < p — 1), then the tendency is to become
more depolarized as the clock ¢ evolves.

* A fired neuron (m, ,[t] = p — 1) at time ¢ becomes quiescent at time ¢ + 1.

ChaOs tends to evolve from an initial wide distribution of states in the matrix
towards oscillatory cycles of patterns (Fig. 8.9).

8.3. Cellular Automata Sound Synthesis

Before we examine how CA can be used to generate music, this section focuses
on synthesizing sounds with CA. There have been a few successful attempts at
building CA-based software sound synthesis. For example, the cellular automata
workstation, designed by Richard Ortom and colleagues (1991), employed a bi-
nary one-dimensional cellular automaton to generate control data for a granular

FIGURE 8.9. ChaOs tends to evolve from an initial random distribution of cells in the grid
(as shown at the top corner of left-hand side) towards oscillatory cycles of patterns.

synthesizer. (The granular synthesis technique will be introduced below.) Also,
we cite the work of Tim Kreger who have used a binary one-dimensional cellular
automaton to control the filter coefficients of an analysis and re-synthesis algorithm
to modify the spectra of sounds (Kreger 1999); an introduction to the analysis and
resynthesis technique can be found in the book Computer Sound Design: Synthe-
sis Techniques and Programming (Miranda 2002). Also interesting is the work
of Mara Helmut and colleagues who implemented a CA-based real-time sound
granulator (Vaidhyanathan et al. 1999). In this case, a sound sample is decom-
posed into grains, and then these grains are input to a bank of 32 band-pass filters.
A binary one-dimensional cellular automaton of 32 cells is used to control their
bandwidth and centre frequency values. The behaviour of the automaton there-
fore transforms the harmonic structure of the grains. In the following paragraphs
we examine two examples of CA-based synthesizers in more detail: LASy and
Chaosynth.

8. Cellular Automata Music: From Sound Synthesis to Musical Forms 179

noise generator

feedback algorithm [«

JEEEEEEEC EEEEEEE >

FIGURE 8.10. LASy uses CA to compute the samples of a time-varying look-up table.

8.3.1. LASYy: Cellular Automata Lookup Table

LASy (Linear Automata Synthesis), designed by Jacques Chareyron (1990), uses
CA to drive a Karplus—Strong type of synthesis algorithm. Karplus—Strong syn-
thesis uses a time-varying lookup table to simulate the behaviour of a vibrating
medium. The basic functioning of this method starts with a lookup table (that is,
an array of samples) of a fixed length, filled with random values. In this case, the
table functions as a queue of sample values, rather than as a fixed array, as it would
have been the case of a simple oscillator. As samples are output from the right side
of the array they are processed according to a given algorithm, and the result is fed
back to the left side (Fig. 8.10). The algorithm for processing the samples defines
the nature of the sound or effect. For example, the averaging of the current output
sample with the one preceding it in the array functions as a type of low-pass filter.
The original Karplus—Strong algorithm (Karplus and Strong 1983), averages the
current output sample of a delay line with the preceding one, and feeds the result
back to the end of the delay line. In LASYy the new sample values of the delay line
are computed by means of a binary one-dimensional cellular automaton, rather
than by the averaging method.

Essentially, LASy works by considering the array of cells of the binary one-
dimensional cellular automaton as a lookup table; each cell of the array corresponds
to a sample. At each playback cycle of the lookup table, the transition rules are
applied to the content of the table in order to change the waveform. The intention
here is to let the samples of the lookup table be in perpetual mutation. The states
of every cell are updated at the rate of the cellular automaton clock and these
values are then heard by piping the array into the digital-to-analogue converter
(DAC).

LASYy is able to synthesize a large variety of sounds with diverse spectral evolu-
tions, particularly sounds with fast transients at the very beginning of the sound.
The program is particularly good for producing wind-like and plucked strings-like
sounds. Yet, the ingredient that still makes LASy unique is its ability to synthesize
unusual sounds but with some resemblance to the real acoustic world. Interesting
sounds may be achieved using this technique, but the specification of suitable tran-
sition rules can be difficult. However, an intuitive framework for the specification

180 Miranda

of transition rules should naturally emerge after gaining sufficient familiarity with
the system; for example, one may find that rules sets that activate more and more
cells in time will tend to produce sounds whose spectral complexity increases with
time.

According to Chareyron the output of LASy can be classified into three main
groups, according to the type of transition rules employed:

¢ Sounds with simple evolution leading to a steady-state ending: transition rules
that generate fixed and cyclic behaviour (refer to Fig. 8.3), tend to produce
monotonous evolution of the sound spectrum, where the spectral envelope fol-
lows either an increasing or decreasing curve, leading to a steady-state ending.

¢ Sounds with simple evolution but with no ending: transition rules that generate
complex behaviour (refer to Fig. 8.3) tend to produce endless successions of
similar but not completely identical waveforms.

e Everlasting complex sounds: transition rules that generate chaotic behaviour
tend to generate everlasting complex sounds with unpredictable spectra.

This classification is, of course, very general. Nevertheless, as LASy’s author
himself suggests, they are a good starting point for further experimentation. LASy
was originally implemented in the early 1990s at the University of Milan as part
of the Intelligent Music Workstation, which ran under NeXT and Apple MacOS
platforms. To the best of this author’s knowledge, there has been no further up-
dates. Nevertheless, the technique is well-documented (Chareyron 1990) and a
re-implementation of this system would certainly constitue an interesting project
for further investigation into CA-based sound synthesis.

8.3.2. Chaosynth: Granular Synthesis with ChaOS

Granular synthesis works by generating a rapid succession of very short sound
bursts (e.g. 35 ms long) called grains or granules that together form larger sound
events (Fig. 8.11). Granular synthesis sounds tend to exhibit a great sense of move-
ment and sound flow. This synthesis technique can be metaphorically compared
with the functioning of a motion picture in which an impression of continuous
movement is produced by displaying a sequence of slightly different images at a
rate above the scanning capability of the eye (Miranda 1998).

This synthesis technique is inspired by Dennis Gabor’s idea of representing a
sound using thousands or millions of elementary sound particles (Gabor 1947).
The composer lannis Xenakis is commonly cited as one of the mentors of gran-
ular synthesis. In the 1950s, Xenakis developed important theoretical writings
where he laid down the principles of the technique (Xenakis 1971). The first fully
fledged granular synthesis systems did not appear, however, until Roads (1991),
Truax (1998) and a few others began to investigate the potential of the tech-
nique systematically. Most of these systems had used stochasticity to generate
the parameter values for the production of the individual grains; e.g. one could

8. Cellular Automata Music: From Sound Synthesis to Musical Forms 181

+dB A

="
——
—
——
——
—
[——
———
——
—

y

-dBY
grain n grain n+1 grain n+2

FIGURE 8.11. Granular synthesis works by generating a rapid succession of tiny sounds,
referred to as grain or granules.

set up the synthesizer to produce grains of 30 ms duration with 50% probabil-
ity, 40-ms grains with 20% and 50-ms grains with 30%. Chaosynth, however,
uses a different method: it employs the ChaOS automaton introduced in Section
8.2.3.

Note that the term ‘granular synthesis’ has sometimes been associated with a
musical signal processing technique whereby a recorded sound is chopped into
tiny pieces, shuffled and re-assembled in various ways for playback; an example
is the aforementioned granulator system developed by Helmut and colleagues.
Chaosynth does not use pre-recorded sounds. Rather, it synthesizes all sounds
from scratch.

8.3.2.1. Rendering Sounds from ChaOs

Each sound grain produced by Chaosynth is composed of several spectral compo-
nents. Each component is a waveform produced by a digital oscillator which needs
two parameters to function: frequency (Hz) and amplitude (dB). In Chaosynth, the
oscillators can produce various types of waveforms such as sinusoid, square, saw
tooth and band-limited noise. ChaOs controls the frequency and amplitude values
of each grain. The mechanism works as follows: at each cycle, the automaton
produces one sound grain (Fig. 8.12). The standard procedure to visualize the
behaviour of CA on the computer is to associate each possible cell state with a
colour, but Chaosynth also associates these conditions to various frequency and
amplitude values. For example: yellow = 110 Hz, red = 220 Hz, blue = 440 Hz
and so forth; these are arbitrary associations, which are user-specified. Then the
matrix of the automaton is subdivided into smaller uniform sub-matrices of neu-
rons and a digital oscillator is allocated to each sub-matrix (Fig. 8.13). At each
cycle of the automaton, the digital oscillators associated with the sub-matrices si-
multaneously produce signals, which are added in order to compose the spectrum

182 Miranda

-dB ¥

-+ +
granule n granule n+1 granule n+2

FIGURE 8.12. Each snapshot of the cellular automaton produces a sound grain or granule.
(Note that this is only a schematic representation, as the granules displayed here do not
actually correspond to these particular snapshots.)

u | i i
_\l’,—
0
.- _DT_D -
_x&},—
I 1 I 1

FIGURE 8.13. An example of a grid of 400 cells allocated to 16 digital oscillators.

8. Cellular Automata Music: From Sound Synthesis to Musical Forms 183

x=19 y=7

FIGURE 8.14. CAMUS uses a Cartesian coordinate system in two dimensions to represent
an ordered set of three notes. In this case C3 is 19 semitones above F1, which is the reference
note, and G3 is seven semitones above C3.

o of the respective grain: w = Zilv: 1 Sp, where S, stands for the spectrum of the
signal produced by oscillator n and N is the total amount of oscillators associated
with the matrix. The frequency values F for each oscillator o are determined by the
arithmetic mean over the frequency values associated to the states of the neurons

of their corresponding sub-grid: F, = #, where ¢, represents the frequency
of neuron n and N is the total amount of neurons of the sub-grid. Suppose, for
example, that each oscillator is associated with nine neurons and that at a certain
cycle t, three neurons correspond to 110 Hz, two to 220 Hz and the other 4
correspond to 880 Hz. In this case, the mean frequency value for this oscillator at
time ¢ will be 476.66 Hz. Fig. 8.13 shown as example of a grid of 400 neurons
allocated to 16 oscillators of 25 neurons each.

Chaosynth was originally implemented in the early 1990s on a parallel Meiko
1860 supercomputer at the Edinburgh Parallel Computing Centre (EPCC), which
enabled experiments with very large matrices of neurons (Miranda 1995). Scaled
down versions for desktop personal computers were implemented at a later stage
for Unix, Windows and Apple MacOS platforms, including a couple of commercial
versions manufactured and distributed by Nyr Sound in the UK.

8.3.2.2. Chaosynth and Sound Design

Chaosynth has proved to be a powerful synthesizer, whose abilities to produce
unusual sounds are vast. The random initialization of neuron states in the matrix
produces an initial wide distribution of frequency and amplitude values, which
tend to settle to an oscillatory cycle. This behaviour resembles the way in which
the sounds produced by most acoustic instruments evolve during their production:
their harmonics converge from a wide distribution (as in the noise attack time
of the sound of a bowed string instrument, for example) to oscillatory patterns
(the characteristic of a sustained tone). Variations in tone colour are achieved by
varying the frequency values, the amplitudes of the oscillators and the number
of neurons per oscillator. Different rates of transition, from noise to oscillatory
patterns, are obtained by changing the values of R1, R2 and k.

184 Miranda

The main criticism that we have received from Chaosynth’s users, however,
referred to the fact that it was hard to explore its potential. This is probably
due to its newness and flexibility. Standard software synthesis systems take for
granted a taxonomy for synthesized sounds that is inherited from the acoustic mu-
sical instruments tradition; for example, woodwinds, strings, percussion and so
on. This scheme clearly does not meet the demands of more innovative software
synthesizers. This lack of taxonomy made it difficult for users to establish reference
points for exploration of new settings. In order to alleviate this problem, James
Correa has attempted to define an alternative taxonomy for Chaosynth sounds. His
taxonomy is inspired by Pierre Schaeffer’s (1966) concept of sound maintenance
and to some extent by an article written by Jean-Claude Risset in the book Le
timbre, métaphore pour la composition (1991).

Undoubtedly, the most important characteristic of the sounds produced by
Chaosynth is their spectral evolution in time. Some of the classes defined by
James Correa include: fixed mass, flow, chaotic and explosive. For instance, the
first class, fixed mass, comprises those settings that produce sounds formed by
a large amount of very short grains. The overall outcome from these setting is
perceived as sustained sounds with a high degree of internal redundancy; hence
the label “fixed mass”. The notion of fixed mass does not denote a fixed pitch,
but rather a stable and steady spectrum where the frequencies of the grains are
kept within a fixed band. For more information on this taxonomy, the reader is
invited to refer to the paper ‘Categorising Complex Dynamic Sounds’, published
in Organised Sound (Miranda et al. 2000).

Such taxonomy serves as a point of departure for exploration of the sonic ca-
pabilities of Chaosynth. However, as with LASy, the classes defined by Correa
and colleagues are rather general and their boundaries are vague. Due to the very
nature of ChaOs, and CA in general, it is often impossible to fully predict the exact
nature of the sound that will be synthesized. Nevertheless, this gives Chaosynth
an edge of unpredictability, which may appeal to sound designers and composers.

8.4. Cellular Automata Music: CAMUS

8.4.1. Cartesian Representation of Note Sets

CAMUS uses two simultaneous CA to produce music: the GL and Griffeath’s
Crystalline Growths (GCG). Whilst GL generates musical sequences, GCG des-
ignates their instrumentation, or orchestration (Miranda 1993). The cells of the
GL automaton are mapped onto a Cartesian plane, where each point represents an
ordered set of three notes, which are defined in terms of the intervals between them.
Given a reference note, the abscissa represents the interval between the reference
and the second note of the set. The ordinate represents the interval between the
second note and the third (Figs. 8.14 and 8.15).

Fig. 8.16 illustrates how both CA work together. In this case, the cell in the
GL at position (11, 6) is alive and will thus generate a set of three notes. The

8. Cellular Automata Music: From Sound Synthesis to Musical Forms 185

. = -« _'_'_:'_'_'_f_:","_'_';__?

FIGURE 8.15. As the automaton evolves, ordered sets of three notes are produced. These
sets are defined in terms of the Cartesian coordinate system shown in Fig. 8.14.

state of the corresponding cell in the GCG is equal to four, which means that the
sonic event will be played by the MIDI instrument associated with this state. The
co-ordinates (11, 6) describe the intervals separating the notes: given a reference
note, the next note will be at 16 semitones above the reference note and the last

GL

> V4

v 7
y 7 V4
y 4 7

GCG

'

GCG Cell Stat
e cell {11, 6} = Grand Piano

B = Coleste

B = Xylophone
M = Grand Piano
[= Metalimba

FIGURE 8.16. The cell in the GL at position (11, 6) defines an ordered set of notes played
by the instrument associated with the state of the corresponding cell in the GCG at position
(11, 6).

186 Miranda

note six semitones above the second note (or ten semitones above the reference
note).

To begin the composition process, a [x X y] GL automaton is set up with a given
initial configuration of cell states and the associated GCG automaton, of identical
size, is initialized with random states. Both are set to run and at each time step, the
cells of the GL are analysed column by column, starting with cell (0, 0), continuing
through to (0, x), moving on to cell (1, 0) through to cell (1, y) and continuing in
this manner until cell (x, y) has been checked. When CAMUS arrives at a live cell,
its co-ordinates are used to calculate an ordered set of three notes, as shown in Fig.
8.15; a set of reference notes is specified beforehand by the user. Although the cell
updates occur at each time step in parallel, CAMUS plays the live cells column by
column, from top to bottom. Each of these musical cells has its own timing, but the
notes within a cell can be of different durations and can be triggered at different
times (McAlpine et al. 1999).

8.4.2. Temporal Morphology

The method for staggering the starting and ending times of the notes of a cell (x,
v) uses the states of its neighbouring cells in the GL. CAMUS constructs a set of
values from the states of the neighbouring cells, the value being equal to one if the
cell is alive and zero if it is dead, as follows:

a=cell (x,y—1)
b=cell(x,y+1)
c=cell(x+1,y)
d=cell(x—1,y)
m=cell(x—1,y—1)
n=cell(x+1,y+1)
o=cell(x+1,y—1)
p=cellx—1,y+1)

Then, the system forms four 4-bit words as follows: abcd, dcba, mnop and ponm.
Next, it perform the bit-wise inclusive OR operation, ‘|’, to generate two four-bit
words: Tgg and Dur:

Tgg = abcd|dcba

Dur = mnop|ponm

CAMUS derives trigger information for the notes from 7gg, and duration infor-
mation from Dur. With each relevant four-bit word, CAMUS associates a code to
represent time-forms where B denotes the bottom reference note, M the mid-
dle note, and U the upper one. The square brackets are used to indicate that
the note events contained within that bracket occur simultaneously. The codes

8. Cellular Automata Music: From Sound Synthesis to Musical Forms 187

are as follows:

0000 = B[UM]
0001 = [UMB]
0010 = BUM
0011 = UMB
0101 = BMU
0110 = UBM
0111 = MBU
1001 = U[MB]
1011 = MUB
1111 = M[UB]

A visual representation of the time-forms assigned to the 4-bit words are shown
in Fig. 8.17. Pairs of time-forms define a temporal morphology for the cells. For
example, consider the a temporal morphology starting with MBU and ending
with B[MU] (Fig. 8.18). Fig. 8.19 shows an instantiation of this morphology in
musical notation.

The actual values in milliseconds for the trigger and duration parameters are
calculated using a pseudo-random number generator. Finally, the music is written
to a MIDI file and/or sent directly to a MIDI sampler or synthesizer to be played.
Fig. 8.20 illustrates the main steps of the CAMUS algorithm in the form of a
flowchart.

8.4.3. CAMUS 3D

Kenny McAlpine and Stuart Hoggar contributed to further develop CAMUS by
introducing a number of variations to the original program, notably the use of

BMU BUM MBU MUB UMB
| | | | |
J o | o J

A P

UBM B[MU] M[BU] U[BM] [BMU]

H

|
il e

EH|ES

| I
o & |

FIGURE 8.17. Ten different time-forms combined in pairs define temporal morphologies for
the cells.

188 Miranda

pitch
4 MBU B[MU]

» time

FIGURE 8.18. The temporal morphology starting with MBU and ending with BMU].

three-dimensional CA. Three-dimensional versions of GL and GPG were con-
figured to behave in much the same way as their two-dimensional counter-
parts. In order to achieve this, the three-dimensional space was treated as a
series of stacked two-dimensional spaces. Therefore, a three-dimensional cel-
lular automaton is defined as a series of two-dimensional CA stacked parallel
to the plane x = 0. Then each of the stacked planes has the form x = a, for
some integer value, a. Thus, when it comes to assess the neighbouring cells
of an arbitrary cell (a, b, c¢), the algorithm needs to restrict its attention only
to the cells (a,b+1,c¢), (a,b—1,¢),(a,b,c+1),(a,b,c—1),(a,b+1,c+
1), (a,b+1,c—1),(a,b—1,c+1) and (a,b —1,c — 1), because the focus
is on the plane x = a. This means that each of the stacked two-dimensional
CA evolve independently; that is, none of the neighbouring cells can exert any

N
4 -
PN
€
e
-
4
~— 1
e
N
y 2 -
€

FIGURE 8.19. A musical passage generated by a single cell with the temporal morphology
portrayed in Fig. 8.18.

8. Cellular Automata Music: From Sound Synthesis to Musical Forms 189

Initialisation of parameters

v

Check next cell

A

Is cell alive?

Fetch reference note

v

Generate a set of notes

)

Generate a temporal

morphology and apply
it to the notes in the set

v

Define the timbre

v

Generate and output
MIDI data
(to file and/or to MIDI device)

All cells checked?

Update automaton

FIGURE 8.20. The main steps of the CAMUS algorithm.

influence on the cells in any of the other CA. This configuration is illustrated in
Fig. 8.21.

8.4.4. Composing with CAMUS

CAMUS was designed for a rather abstract way of composing. The results tend
to sound pointillist due to way in which the notes are generated as sequences of
sets of three or fours notes, which are not necessarily played consecutively by the
same instrument due to the GCG orchestration scheme.

190 Miranda

FIGURE 8.21. A three-dimensional automaton defined as a series of stacked two-dimensional
CA. The two-dimensional CA in this case are stacked parallel to the plane y = 0. The dark
grey cell in the middle layer is currently under examination. Since we treat the y co-ordinate
as a constant, only the shaded neighbouring cells in the same plane are also examined. Thus,
each two-dimensional game evolves in isolation.

An inevitable problem with CAMUS is that the system does not possess knowl-
edge about musical instruments. It often generates musical passages that would
be technically impossible to be played on the respective instruments. These pieces
often sound unconvincing when played on a MIDI synthesizer or sampler, because
the music is not performed idiomatically; the clarinets do not sound ‘clarinetis-
tically’, the violins do no sound ‘violinistically’, and so on. Better results can
be achieved by amending the score manually in order to render the piece more
realistic.

An example of a musical passage composed with CAMUS is shown in Fig. 8.22.
The passage has been edited manually in order to alleviate the aforementioned
problem. Dynamics and articulation were also added manually. Nevertheless, it is
still possible to identify the characteristic sequence of patterns of groups of three
notes ‘evolving’ in time.

CAMUS was originally implemented in 1990 on an Atari 1040 computer. In
1997, Kenny McAlpine implemented two new versions for Windows 95, which
run seemly in Windows 98: CAMUS and CAMUS 3D, which are available on the
accompanying CD-ROM of the book Composing Music with Computers (Miranda
2001). There have been no further updates of CAMUS.

8.5. Concluding Discussion

The resulting musical materials produced by the systems discussed in this chapter
are very encouraging, as they are good evidence that both musical sounds and
abstract musical forms might indeed share similar organizational principles with

8. Cellular Automata Music: From Sound Synthesis to Musical Forms 191

cellular automata. LASy and Chaosynth proved to be successful synthesis systems
in the sense that they can produce a wide variety of sounds, which have been used in
a number of compositions. Chaosynth can produce unusual sounds most of which
are not found in the real acoustic world, but nonetheless sound pleasing to the ear,
possibly due to the dynamic nature of ChaOs. As an example of an electroacoustic
piece composed by this author using Chaosynth we cite Olivine Trees, which was
awarded the bronze medal at the International Luigi Russolo Electroacoustic Music
Competition in 1998. The core synthesis engine of Chaosynth was subsequently
adapted to produce vocal-like effects (Miranda 2002).

Despite the arbitrariness of the musical engine of CAMUS, we have come to
conclude that cellular automata are appropriate for generating musical material. A
number of professional pieces were composed using CAMUS-generated material,
including Entre o Absurdo e o Mistério, for chamber orchestra, and the second
movement of the string quartet Wee Batucada Scotica, both published by Edi¢des
Musicais Goldberg, Brazil.

From our experience with these systems, we feel that cellular automata are more
suitable for sound synthesis than for musical composition. We reckon that this
might be due to the very nature of the phenomena in question. The inner structures
of sounds, especially granular synthesis sounds, seem more susceptible to cellular
automata modelling than large musical structures. As music is primarily a cultural
phenomenon, we suspect that systems such as CAMUS would certainly produce
improved results if they were programmed to take into account the dynamics
of social formation and cultural evolution. This is not, however, a trivial task.
Although social scientists have used cellular automata to model social systems
(Epstein and Axtell 1996), more research is needed in order to find ways in which
cultural and social phenomena could be integrated into generative music systems;
refer to Chapter 10 for more discussion on this topic.

>
o)
iolin Z2—0—1 —F T p—— o —— =
Violin T %1 T —7 174 A—— - T " —
#ﬁ = g: 11.1_.{5 u I 3 I —1%
f V. . e .ﬁ.#>
2
4 . — ~ Py
: 4, B e lbre E S
| = T 1 =11 1 1 1% 0
1 1 1 1711 | A— I 3 = 2
I —— - %1 1 17 % T g |
#ﬁ | — [3 L I 3 T | - |
—_— -
mf —— J == p 3 3
s 3 _—
0 - 2
— Jr—
 — I
~— 1
b
— 3
—_—

FIGURE 8.22. An example of a musical passage composed with CAMUS.

192 Miranda

References

Beyls, P. (1989). The musical universe of cellular automata. In Proceedings of the Interna-
tional Computer Music Conference (ICMC 1989). Columbus, OH, USA, pp. 34-41.
Burraston, D. (2005). Composition at the edge of chaos. In Proceedings of the 2005 Aus-

tralasian Computer Music Conference. Brisbrane, Australia.

Chareyron, J. (1990). Digital synthesis of self-modifying waveforms by means of linear
automata. Computer Music Journal 14(4): 25-40.

Cood, E.F. (1968). Cellular Automata. Academic Press, London.

Dewdney, A.K. (1989). Computer recreations: A cellular universe if debris, droplets, defects
and demons. Scientific American August: 88-91.

Epstein, J.M. and Axtell, R.L. (1996). Growing Artificial Societies: Social Science from the
Bottom Up. The MIT Press, Cambridge, MA.

Ermentrout, G.B. and Edelstein-Keshet, L. (1993). Cellular automata approaches to bio-
logical modelling. Journal of Theoretical Biology 160: 97-133.

Gabor, D. (1947). Acoustical quanta and the theory of hearing. Nature 159(4044): 591-594.

Gerhardt, M., Schuster, H. and Tyson, J. (1990). A cellular automaton model of ex-
citable media. III: Fitting the Belousov—Zhabotinskii reaction. Physica D 46(3): 416—
426.

Hoffman, P. (2002). Towards and automated art: Algorithmic processes in Xenakis’ com-
positions. Contemporary Music Review 21(2/3): 121-131.

Hogeweg, P. (1988). Cellular automata as a paradigm for ecological modelling. Applied
Mathematics and Computation 27: 81-100.

Karplus, K. and Strong, A. (1983). Digital synthesis of plucked string and drum timbres.
Computer Music Journal 7(2): 43-55.

Kreger, T. (1999). Real-time cellular automata filters Implemented with Max/MSP. In Pro-
ceedings of the Australasian Computer Music Conference 1999. Victoria University of
Wellington, New Zealand.

Langton, C. (1990). Computation at the edge of chaos: Phase transitions and emergent
computation. Physica D 42: 12-37.

McAlpine, K., Miranda, E. and Hoggar, S. (1999). “Making music with algorithm: A case
study system”, Computer Music Journal 23(2): 19-30.

Millen, D. (1990). Cellular automata music. In Proceedings of the International Computer
Music Conference (ICMC 1990). Glasgow, UK, pp. 314-316.

Miranda, E.R., Correa, J.S. and Wright, J. (2000). Categorising complex dynamic sounds.
Organised Sound 5(2): 95-102.

Miranda, E.R. (1990). Cellular Automata Music Investigation. MSc in Music Technology
final project report. University of York, UK.

Miranda, E.R. (1993). Cellular automata music: An interdisciplinary project. Interface
22(1): 3-21.

Miranda, E.R. (1995). Chaosynth — Computer music meets high-performance computing.
Supercomputer 11(1): 16-23.

Miranda, E.R. (2002). Generating source streams for extralinguistic utterances. Journal of
the Audio Engineering Society (AES) 50(3): 165-172.

Orton, R., Hunt, A. and Kirk, R. (1991). Graphical control of granular synthesis using
a cellular automata and the freehand program. In Proceedings International Computer
Music Conference (ICMC 1991). McGill University, Montreal, Canada, pp. 416-418.

Preston, K. and Duff, M. (1984). Modern Cellular Automata: Theory and Applications.
Plenum, New York, NY.

8. Cellular Automata Music: From Sound Synthesis to Musical Forms 193

Risset, J.-C. (1991). Timbre et synthese des sons. In J.-B. Barriere (Ed.), Le timbre:
métaphore pour la composition. IRCAM/Christian Bourgois Editeur, Paris.

Roads, C. (1991). “synchronous granular synthesis” In G. de Poli et al. (Eds.), Representa-
tions of Music Signals. The MIT Press, Cambridge, MA.

Schaeffer, P. (1966). Traité des objets musicaux. Editions du Seuil, Paris.

Trott, M. (2004). The Mathematica Guidebook: Programming. Springer-Verlag, New York.

Truax, B. (1988). “Real time granular synthesis with a DSP computer” Computer Music
Journal 2(2): 14-26.

Vaidhyanathan, S., Minai, A. and Helmuth, M. (1999). ca: A system for granular processing
of sound using cellular automata. In Proceedings of the 2nd COST G-6 Workshop on
Digital Audio (DAFx 1999). Norwegian University of Science and Technology (NTNU),
Trondheim, Norway.

Wilson, G. (1988). The life and times of cellular automata. News Scientist October: 44—47.

Winkler, T. (2001). Composing Interactive Music: Techniques and Ideas Using Max. The
MIT Press, Cambridge, MA.

Wolfram, S. (1994). Universality and complexity in cellular automata. Physica D 10: 1-35.

Xenakis, 1. (1971). Formalized Music. Indiana University Press, Bloomington, IN.

9

Swarming and Music

TiM BLACKWELL

9.1. Introduction

Music is a pattern of sounds in time. A swarm is a dynamic pattern of individuals
in space. The structure of a musical composition is shaped in advance of the
performance, but the organization of a swarm is emergent, without pre-planning.
What use, therefore, might swarms have in music?

This chapter considers this question with a particular emphasis on swarms as
performers, rather than composers. In Swarm Music, human improvizers interact
with a music system that can listen, respond and generate new musical material.
The novelty arises from the patterning of an artificial swarm. Swarm Music is a
prototype of an autonomous, silicon-based improvizer that could, without human
intervention, participate on equal terms with the musical activity of an improvizing
group.

Real-life swarms organize themselves into remarkable, beautiful spatio-
temporal structures in a process known as self-organization. This organization
is thought to arise from the instantaneous dynamics of the swarming creatures,
and not by any central leadership. Swarming animals communicate with each
other over long time scales through the modification of the environment in a bi-
ological process known as stigmergy. This enables cooperative behaviour such
as the construction of termite mounds, despite the absence of a termite architect.
Digital swarms are the software equivalent of these remarkable biological systems.
A virtual swarm may be visualized, but at a more abstract level, the swarm exists
as a set of local rules, or interactions, between digital entities. These rules follow
the theoretical models of biological swarms.

At the heart of the answer to the question posed above is a connection between
self-organization and structural levels in music, a link that suggests many pos-
sibilities for the design of creative systems. This chapter begins therefore with
an account of self-organization and swarming, and develops the link to structural
levels in music in Section 9.3.

Synthetic swarms, by virtue of the unpredictability of their patterning are ideally
suited to improvization, and the remainder of the chapter concentrates on swarms
as performing systems. The real-time interaction between people and swarms

194

9. Swarming and Music 195

is enabled with an analogue of stigmergy. A three component model outlines
the interactions we might have with a virtual swarm, and by extension with any
evolutionary algorithm. An analysis component maps external musical information
into objects in the environment of the swarm. A stigmergetic interaction between
swarming individuals and these objects takes place. The dynamic interactions
within the swarm are described by the second component, the swarming function.
The interpretation of swarming patterns into sounds is accomplished by the third
component. Section 9.4 outlines the complete framework.

Section 9.5 considers the instantiation of the interactive model in the Swarm Mu-
sic family of improvizers, and discusses the motivation for design. The following
section considers live aspects of Swarm Music. Other performance systems that
use a swarm algorithm are also summarized. Section 9.7 illustrates, by reference to
system development in Swarm Music, a general scheme for increasing autonomy in
music systems. The chapter ends with a look to the future of Swarming and Music.

9.2. Swarm Organization

9.2.1. The Science of Emergence

Self-organization (SO), the science of emergence, can, as yet, only allude to the pre-
conditions for the emergence of large scale forms from local influences. Bonabeau
and colleagues (1999) propose that SO relies on multiple interactions between
component parts of a system, an ability to amplify fluctuations, and positive and
negative feedback between components. Positive feedback forms the basis of mor-
phogenesis, allowing reinforcement of new forms. Negative feedback stabilizes
the system and prevents runaway. Random fluctuations play a crucial role in SO,
enabling the system to find novel situations, which are exploitable through positive
feedback.

The paradigmatic example of SO is the collective behaviour of social insects, for
example the organization of army ants in vast foraging patterns (Burton and Franks
1985). The raid patterns of army ants contains hundreds of thousands of virtually
blind individuals, a remarkable example of decentralized control (Bonabeau et al.
1999, p. 36). Recruitment to a food source through trail laying and trail reinforce-
ment is an example of positive feedback, with stability arising from the limited
numbers of foragers and the exhaustion of the food source. Random fluctuations
arise in foragers through error; the occasional wayward ant who has lost a trail
might find a new food source. Communication between ants, although it can take
place through direct contact, is also mediated indirectly via the environment by
the laying of pheromone trails. Individuals are able to exploit this information
network, for example by following a trail that leads to a newly discovered food
source. Although an individual can interact with its own trail, SO usually requires
a minimum density of individuals who are intent on exploiting the network. The
indirect and temporally adjusted environment mediated interaction is termed stig-
mergy (Grassé 1959). In a sense, stigmergy happens to humans all the time. A note

196 Tim Blackwell

left on the kitchen table is an indirect interaction between people, influencing our
actions several hours later.

Swarms, flocks, herds and shoals are familiar examples of the groupings of
social animals. The organization of Atlantic herring into very huge shoals up to
seventeen miles long, and with many millions of fish is a stunning example (Shaw
1975). This is particularly remarkable because it is unlikely that an individual
herring can, in the murky Atlantic water and tightly packed shoal, see more than a
few of its neighbours. The possibility of a leader herring coordinating this shoal is
absurd, and besides, how would it orchestrate the shoal movements? It seems likely,
therefore, that the shoal is an emergent entity, produced by local, de-centralized
interactions.

9.2.2. Artificial Swarms

Evidence that flocks and swarms are self-organising is provided by the ‘boid’
animations of Reynolds (1987). The centralized approach to animations of particle
systems (bees in a swarm, buffalo in a herd) is to formulate the collective behaviour
as a script which each entity must obey. Swarming behaviour is not emergent
because it is built into the script from the outset. However, Reynold’s discovery
that convincing animations can result from local, de-centralized rules has done
much to support the hypothesis that swarms and flocks are self-organizing. The
collective behaviour of the group is emergent because the rules concerning the parts
of the swarm do not contain any notion of the whole. Additionally, de-centralization
explains the scalability of natural swarms. The variation of swarm sizes over six
orders of magnitude suggests that swarms must have linear complexity. Early
examples of behavioural animations using the boids algorithm include bat swarms
and penguin flocks in the film Batman Returns (Burton 1992) and the wildebeest
stamped in The Lion King (Allers and Minkoff 1994).

Contemporary swarm algorithms follow this basic principle and can be split into
three groups, although there are overlaps. The grouping is in order of faithfulness
to natural swarms:

1. Bio-swarms, the most faithful, are used to develop scientific models of natural
systems (for example the refined bio-swarm of Couzin et al. 2005). These
swarms may be visualized, but the chief purpose is hypothesis development
and testing.

2. Simulation swarms are visualizations for aesthetic and artistic purposes and do
not need to accurately represent nature (Reynolds 1987; Burton 1992; Allers
and Minkoff 1994). We can include musical swarms such as Swarm Music in
this category. These swarms move in real time so that the visualisations have a
sense of realism.

3. Social swarms use an information network rather than a spatial region to define
a neighbourhood for interactions. Social swarms are frequently used to solve
mathematical problems, as in ant colony optimization (Bonabeau et al. 1999)
and particle swarm optimization (PSO) (Kennedy et al. 2001).

9. Swarming and Music 197

’
, A \
/ . \

1 . \
i -attr \
1 Lo k ‘l
I I =
1 repul <. - - A/. !
1 X !
\ 1
\ 1

\ v !

FIGURE 9.1. Swarming rules. Particle i, currently at x and moving with velocity v, is
attracted to particle j and repelled from particle k. The other particles are outside i’s
perception, S(i).

These swarms have the loosest connection to nature: the visualizations take secondary
importance to the algorithmic details and in fact they can look quite unrealistic.

Swarms which use a spatial neighbourhood typically assume that the individuals
have a finite range of perception in which a given individual feels the influence
of neighbours. Typically, individuals repel each other at close range, attract each
other at medium range and are oblivious to each other at long range (Fig. 9.1). The
attractions provide coherence, maintaining a shared neighbourhood (which may be
a sub-swarm or the entire swarm) and the repulsions prevent collisions. Figure 9.1
illustrates the idea. The attractive and repulsive accelerations are the analogues
of positive and negative feedback. At its simplest, a swarm algorithm considers
the individual swarming participants as purely dynamic entities. These entities
are represented as point particles in d-dimensional real space with dynamic state
(x, v). The basic rules governing the interactions between neighbouring particles
in a swarm or flock are:

1. if apart, move closer (cohesion)
2. if too close move apart (separation)
3. attempt to match velocities (alignment)

The final rule only applies collectives where there the entities move in unison,
such as flocks, herds and schools. Swarming entities have more chaotic motions
and drop the rule of alignment.

The dynamical update equations of swarm algorithms are discretizations of
Isaac Newton’s laws. The update of particle i of swarm S is

1
ai = - f(5(0), @) 0.1
vit + 1) =vi(t) +a 9.2)
vi(t + 1) = min(ui(1), Vmax) 9-3)

xit+D)=x;)+vit+1) 9.4

198 Tim Blackwell

where the time increment df = 1 and S(7) is the sub-swarm comprised of i and
its neighbours. The rules 1-3 above are embodied in the particle accelerations
a;. These accelerations are computed by a force law f, which is a function of
dynamic variables, neighbourhood S(i), and parameters «. The mass m of the
particle is usually set to unity, and the physics terms ‘force’ and ‘acceleration’ are
synonymous in this context. The acceleration parameters characterise the strength
of the intra-particle forces and the construction of S(i), for example by specifying
a radius of perception (bio and simulation swarms), or a network topology (social
swarms).

Equation (9.3) is an optional speed clamp that can be used to limit particle
velocity in the case of high accelerations. Some swarm implementations, especially
bio and simulation swarms, use a swarming function, Eq. (9.1), that produces
accelerations of fixed magnitude and clamping is never necessary. These ‘steering’
accelerations cause the velocity vector to rotate, and do not cause changes in speed.
For example, the attraction of a particle at x; towards a neighbouring particle at x
might be a steering acceleration,

Xj— X

a = L7 9.5)

lxj — xil

The calculation of ¢; in Eq. (9.1) consists of a sum of attractive and repulsive
terms. Particles perceive each other and other attractors with a region of perception.
Atlong distances, particles attract, but at shorter distances repulsion will dominate.
Bio-swarms use three concentric zones; the rule of cohesion applies in the outer
zone, alignment applies in amiddle zone and at short distances the rule of separation
dominates (Couzin et al. 2002). Individuals in simulation and bio-swarms may also
have a ‘blind volume’ in which neighbours are undetectable.

Social swarms employ an information network that is topological rather than
spatial. Additionally, the particles possess a memory and so are more than merely
dynamic entities. The accelerations in PSO are not constant magnitude steering
vectors but are spring-like,

ai = C(pi —xi) 9.6)

where C is a spring constant and p; is a good location previously visited by particle
i, or by any other particle in i’s topological neighbourhood. Convergence, and the
stabilization of the swarm within a search space, occur through energy loss and
the particle displacements become progressively smaller and the search intensifies.
This energy loss is invoked by a frictional drag force. The attraction of a particle
to a previous best position can be viewed as a stigmergetic interaction. Particles
leave behind markers p; at promising locations, and the markers are available to
any other particle in the social network, irrespective of distance.

The music swarms that will be discussed in this chapter, employ elements of sim-
ulation and social swarms. Swarm Music and Swarm Granulator use spatial neigh-
bourhoods and spring or steering accelerations. The particles in Swarm Techtiles
communicate stigmergetically by depositing markers at a highly textured region of

9. Swarming and Music 199

an image. The neighbourhood is again spatial although the rule for interpretation
of each particle in terms of musical parameters is social in origin.

In summary, simulation swarms and visualisations of social and bio-swarms re-
veal self-organizational properties: the swarm as a whole has a spatial identity with
globally connected neighbourhoods, the swarm can act as a single entity (sponta-
neous movement of every particle in an arbitrary direction defined, for example,
by a breakaway particle) and the formation of spatially separate subswarms that
may later merge. The swarm rules are simple to implement—considerably simpler
than trying to write top—down rules—and the behaviour does not depend on fine
tuning of the acceleration parameters. The emergent organisation at the swarm
level fits with the premises of SO since the algorithm incorporates positive feed-
back (coherence), negative feedback (separation) and complexity (many particles,
stigmergetic effects, blind volumes, etc.).

9.3. Swarming and Descriptions of Music

This section establishes the link between swarming, SO and descriptions of music.
We distinguish here the formal, music—theoretic description of music as notes, me-
tre, dynamics, harmony, etc. and the performance itself, which is an inter-musician
exchange of sonic events. The following section considers the relationship between
swarming, stigmergy and the performance of music.

9.3.1. Levels of Description

From a music—theoretic perspective, music is commonly analysed hierarchically.
For example, a work of (classical) Western art music is usually thought of as the
organization of melodies, which themselves are built from phrases. The phrases
are comprised of individual notes, and the whole structure is bound together by
rhythm and metre. A classification loosely based on perceptual time-scales can be
summarized, with suggested time-scales, (Xenakis 1989; Roads 2001);

1. Micro. This scale extends from the limit of timbre perception (tenths of a
millisecond, Gabor 1947) up to the duration of notes or other sound objects.

2. Mini (note). This level includes notes and any other sound from a known or
even unidentifiable source (sound objects, Schaeffer 1959) of duration tenths
of a second to several seconds.

3. Meso (phrase). This level corresponds to phrases or groups of mini-events and
occupies several to dozens of seconds. Melodic, contrapuntal and rhythmic
relationships between objects are noticeable at this level.

4. Macro. This longer lasting duration of time encompasses form and lasts several
minutes or more. Corresponding to the architecture of a composition or im-
provization, this level is perceived either through recollection or by knowledge
of a particular macro-structure (for example, knowledge that a piece is written
in sonata form).

200 Tim Blackwell

Digital music also includes an imperceivable sample level of sound, ranging from
a single digital sample at hundredths of a millisecond, up to the shortest timbred-
sound. Clearly such schemes are not unambiguous, and arguably over-confine
music to a rigid structure that is subservient to notation (Wishart 1966). However
the analysis by levels is useful for our purpose here, which is to establish how
swarming might relate to music.

9.3.2. Swarming

Imagine, rather whimsically, an abstract note-to-be as some kind of autonomous
individual, able to wander at will in a ‘music parameter space’. This space might
be a score, or some other abstract space of musical dimensions. As it moves
through this space, its characteristics—pitch, loudness, duration and onset time—
will change. The note-to-be does not wander aimlessly, however; it is attracted to
other note individuals, and soon groupings of notes form. Notes avoid collisions
and sometimes dart away from the group. Other groupings are formed in distant
regions of music space; sometimes groups collide and unite.

These swarms of melody are composed of notes that do not know they are part of
a tune. The notes have not been placed by a higher level imperative; rather, melody
is an emergent property of the note-swarm, related to the self-organized pattern
of the swarming individuals (Blackwell 2001). Collision avoidance between notes
mitigates against too much repetition, which is balanced by an inter-note attraction
which prevents too much variation. Observation of composed melodies shows that
they occupy constrained regions of music parameter space, frequently moving
step wise, suggesting a strong tensile force between notes, and with leaps for
excitement, as produced, in our analogy, by random fluctuations. Examples of
melodic movement are to be found in many books on composition, for example
Sturman (1983).

Swarming can be also be inferred from the harmonic principles of consonance
and dissonance (Piston 1978), endemic in the common practise of Western art
music, and in contemporary popular music. Harmony can be simplistically viewed
as an attraction towards the consonant musical intervals. Dissonance can occur,
but the result of such a collision is a relaxation back to consonance.

Rhythmically too, we can discover the same forces; an attraction of note onsets
to the subdivisions of the beat, and a repulsion away from non-metricity (unless
the music is deliberately rubato, in which case the opposite rule applies).

An analogy has been suggested between musical organization at the note level,
but similar principles can be construed at the meso level where a phrase may be
considered as a ‘unit of musical thought, like a sentence or a clause’ (Piston 1978,
p. 93), or at the macro level where groups of phrases produce sectional structuring,
as in the exposition, development, recapitulation and coda sections of the classical
sonata form, or the AABA structure of popular songs. These principles might also
be applied at the micro or sample levels (Blackwell and Young 2004a, b; Blackwell
and Jefferies 2005).

9. Swarming and Music 201

At each level we notice a tension between repetition and variation, a force for
similarity (positive feedback) that is balanced by a repulsion (negative feedback)
away from sameness. Too much similarity is boring for the listener, and too much
variation can imbue the music with a feeling of disorganization (Coker 1986, p.
15). The idea from emergence is that structure at level n can arise from local inter-
actions atlevel n — 1 and need not be enforced by top—down pressure. SO provides
an appealing picture for the creation of novelty through random exploration and
reinforcement, and the relationship between positive and negative feedback is com-
patible with our psychological expectations of music. These arguments suggest a
different view of musical organization, complimenting the traditional syntactical,
top-down description.

As we have seen, swarming particles move in a d-dimensional real space with a
swarming algorithm f that moves the particles forward in time. Swarming patterns
can be interpreted musically as a succession of musical/sonic events. In this picture,
music is regarded as a temporal structure of meaningless level-dependent entities,
since the rules governing the interactions do not derive from musical concerns.
Meaning itself can only emerge, and is only apparent at, the next highest level.

9.4. Performing Swarms

9.4.1. Interactive Model

This section considers the performative, rather than the descriptive, aspects of mu-
sic and self-organization. Music performance, in contradistinction to the structural
analysis of music, is highly interactive and uncertain. Whether rehearsed or extem-
porized, unknowable features of performance enter through the unpredictability
of individual interpretation, audience involvement, acoustics and other external
factors. This section describes a model of performance that encompasses current
computer music practise and is well suited for the development of new evolutionary
and swarm-based music systems.

Improvised music is highly interactive and is the best exemplar of the paral-
lels between performance and SO. A performance of freely improvized music is
distinguished from jazz (which includes improvization within a pre-defined struc-
ture) and other compositional genres by the lack of advance planning. There is no
leader, no rehearsal, no score and no written instructions. Musicians simply as-
semble on stage and begin playing their instruments. All musical directions, cues,
initiatives and roles are therefore communicated by musical utterances, and by
body language. Surprisingly, this de-centralized, potentially lawless, style of mu-
sic making can produce remarkably well formed improvizations. In other words,
spontaneous improvizations are capable of structuring at the macro level; the
emergence of form is a consequence of the temporally local interactions between
performers.

An examination of group dynamics in the light of the ingredients of self-
organization—positive and negative feedback, amplification of fluctuations and

202 Tim Blackwell

complex interactions—is revealing. There is a human tendency to conform. If the
direction of an improvization is towards increasing excitement (for example by
playing louder, faster and with more dissonance), there is a strong compulsion
to join in and reinforce this flow. In dynamical terms, this can be regarded as an
attraction towards a gestural, emotional target. This positive feedback is counter-
balanced by a personal desire to innovate. In the language of dynamic systems,
the musical target or attractor has a repulsive force that deflects away from exact
repetition. Improvisations can include sudden changes in mood and musical di-
rection, as if orchestrated. Dynamically, a small fluctuation caused by a random
exploration can precipitate a movement by the whole group and the proto-idea is
amplified. The unique constitution of the performing group and the non-linearity
of the abstract performance space provides uncertain, complex, non-linear inter-
actions. It seems therefore that a group performance has the potential to be self-
organizing.

Swarms are, as we have seen, self-organizing, and might therefore implement
these ideas. However, for the analogy between SO and improvization to be practi-
cally useful, the relationship between the performing group, and a computer music
system running a virtual swarm, must be fleshed out. One approach is to model
each individual as a particle. However particles in a swarm move in a shared
space, and it is very hard to see how to define this space without giving the mu-
sicians (and the computer) precise instructions about how to interact and move.
Although there is some precedent for this approach in dance (Turner 2006), this
scheme is in conflict with a musicians’ own perspective on what it is to improvize.
Rule specification, after all, is a compositional rather than an improvizational
device.

Instead, each individual carries with her/him a unique representation of music
and of sound events. This representation is a product of aesthetics, experience,
training, temperament and many other factors. He/she might ‘hear’ a sound event
in a different way: as a C#, as a squeal, as the fourth note in a sequence, as
angry, etc., or indeed in many of these at the same time. Ideas, as expressed in
this space, evolve until an intention is formed, and new sound output produced.
The representations are personal, hidden even; fellow musicians can only access
external sound events, and possibly infer intention from visual cues.

The solution adopted in Swarm Music (Blackwell 2001) mirrors this informal
account. Each individual is regarded as a sub-swarm rather than a particle. The sub-
swarms move in secret, hidden spaces; external sound events are parameterized as
objects in the environment of each sub-swarm. Interaction between sub-swarms is
now possible through a stigmergetic mechanism. Events at micro, mini and meso
levels are parameterized according to the internal representations available to any
individual. These parameterizations constitute ‘sound objects’ which populate the
internal spaces of each individual, whether human or machine. To the participant,
these objects act rather like messages, influencing stigmergetically the flow of one’s
own internal states. Collaboration and self-organization between the sub-swarms
can still happen, but unlike natural systems, each subswarm/individual moves in
a distinct space, Figure 9.2.

9. Swarming and Music 203

H(1)
S(1)..0. H o..o
.
re 5
H2)

® 502 5@ o A\ A'QH(S)
o o o @ o o ®
L oo @

FIGURE 9.2. In this diagram, particles are blobs and attractors are triangles. The left diagram
shows three sub-swarms S(1 — 3) swarming in a space H around an attractor p. The right
hand diagram depicts the interactive model. Here the sub-swarms move in separate spaces
H (1 — 3). Each space is replete with an image of the sound object, E.

9.4.2. Live Algorithms

The model of performance as a self-organizing system suggests ways that machines
might interact autonomously, rather merely automatically or manually, with peo-
ple. Autonomy implies that an interacting system can support group activity, as
well as introduce novel elements, and all without the presence of an operator. The
model sketched in the preceding section suggests that internal state flow, as gen-
erated by a swarm simulation, can act as an ‘ideas generator’. Interaction with the
real world is effected by forming an image, as an attractor for example, of external
events in the state space of the system. This image informs, but does not govern,
state flow. State flow, and hence output, is not contingent on input: the system is
capable of making contributions in periods when the group is silent and is capable
of silence when the group is active. Self-organization around attractors is a sup-
portive activity and the amplification of spontaneous fluctuations away from an
attractor gives rise to novelty.

The idea that interaction involves state change rather than parameter selection is
an important aspect in the design of ‘live algorithms’ (Blackwell and Young 2005).
A live algorithm is an autonomous music system capable of human-compatible
performance. Several live algorithms have been developed; the Voyager system
of Lewis (2000), Al Biles’ GenJam (2006) and Francois Pachet’s Continuator
(Pachet 2004) are notable examples. Many issues surrounding machine interaction
are covered in Rowe (2004). The proposed architecture for live algorithms builds
on the interactive model of Section 9.4.1. A major advantage of the interactive
model is that knowledge of collaborators’ internal states are not necessary. This
circumvents the difficulty of modelling, in a live algorithm, human intentionality
and lessons the problems humans might have in interacting with an algorithm
whose logical process depart greatly from human experience.

204 Tim Blackwell

FIGURE 9.3. Modular structure of a live algorithm showing analysis (P), synthesis (Q) and
patterning () modules. In this figure, a swarm provides spatio-temporal patterns as it self-
organizes around an attractor (triangle). Q converts swarming configurations into musical
patterns E.

A modular structure for live algorithms has been proposed by this author and
Young (2004b, 2005). This architecture is shown is shown in Figure 9.3. Exter-
nal sound objects E are parameterized as internal images p by an interpretative,
analytical module P. P corresponds to our ability to interpret incoming sound in
terms of internal representations. A patterning, ideas engine f transforms internal
states x in an internal space H. This module represents the restless flow of ideas
that an improvizer might have, ideas that are guided, but not determined by, in-
puts p. Many possible choices of patterners f exist, including neural networks,
evolutionary algorithms and swarm simulations. A third module, Q, re-interprets
internal x as external sound. This involves a mapping onto synthesizer controls q.
Q is a synthesis module, for example a MIDI sythnesizer or a granular synthesizer,
and represents the conversion of volition into action. This architecture is general
enough to subsume contemporary computer music practices such as (manual) live
electronics and live coding and the automated process of algorithmic/generative
music (Blackwell and Young 2005).

Since interaction with internal states can only occur if the state space contains an
image of the environment, and participation with the environment can only happen
if system state is mapped to sound, the live algorithm architecture is minimal.
Systems of arbitrary complexity can be built by layering and cross-wiring between
modules. However, all interactive systems (where interaction is defined as state
change) must reduce to this P Q f architecture. Since analysis (P), synthesis (Q)
and generative () algorithms are individually the subject of much current research,

9. Swarming and Music 205

itis hoped that much progress in live algorithm research can be made by connecting
pre-existing units.

9.4.3. Autonomy

The swarming function f can be written as

x(t+1) = fx@), v@), p), @) 0.7

where {x, v} are dynamic variables, p = P(E) is the image of the environment
and « is a list of undetermined parameters, for example maximum velocity, spring
constants and radius of perception. The «’s can be thought of as controls, pre-
sets or algorithmic constants. They can be adjusted in real time by an operator
as in the practices of live electronics and live coding. Potentially the «’s, along
with the choice of representation, will have a huge affect on the musicality of
the system, governing many features of the output. It is important to distinguish
system characteristics from autonomy. Live algorithms, just like humans, may be
quite idiosyncratic, and this would be an advantage in an improvized context, but
this need not affect their ability to interact. The «’s might be interdependent, o} =
o(oy, a3, ...)and/orcontextual o = a(x, v, p)andoftenthe o’s are descriptions
at the next higher musical level. The challenge for the designer of an autonomous
system is to find a self-regulating, contextual condition for each undetermined
parameter o; so that the system is flexible, adaptable to the musical context and
does not require any tuning by hand. One solution for determining an « and
increasing system autonomy in Swarm Music is presented in Section 9.7.

9.4.4. Visualizing the Algorithm

Figure 9.3 does not depict a feed-through system. The arrows show direction of
parameter flow, not ordering, and each module is intended to operate concurrently.
The state flow x(¢) — x(¢ + 1) canbe run as a simulation, i.e. a visualization shows
entities moving at realistic speeds. A visualization serves as an embodiment of the
algorithm, and gives clues on system behaviour to participating musicians (and
to the audience). This visualization will only be useful to us if it proceeds at a
comprehensible pace, and does not include too much information. In a sense, the
visualization aids overall transparency of the system; visual cues are important for
person—person interaction, and their value cannot be underestimated in machine—
human interaction too.

The requirement that the algorithm is running a simulation of a real, or an
imagined, natural system means that the update loop must contain a sleep function
that links the iterative time ¢ to real time t. For example, the desired velocity of
the particle across the screen is a function of the clamping velocity, vy,.x, and the
nominal update time interval At. A sleep function can halt the update loop at
each iteration in order to preserve At and ensure that states move at a fixed speed.
Without such a consideration, the algorithm will run as fast as a CPU will allow,
tying the algorithm to a particular machine, and making behaviour inconsistent.

206 Tim Blackwell

9.5. Swarm Music

9.5.1. Overview of Live Algorithms Based on Swarming

The interactive model of Section 9.4.1 and the live algorithms architecture of
Section 9.4.2 has been implemented in three systems, Swarm Music (Blackwell
and Bentley 2002), Swarm Granulator (Blackwell and Young 2004a) and Swarm
Techtiles (Blackwell and Jefferies 2005). In each case, the internal states x are
particle positions in a swarm and f is the swarming function, Eq. (9.7). The systems
differ, however, in representational levels and on the interpretation of the internal
space H.

The space in Swarm Music is spanned by parameters salient at mini (note)
and meso (phrase) levels. Swarm Granulator has an internal representation at the
micro (granular) and Swarm Techtiles operates at the sample and micro level. In
both Swarm Music and Swarm Granulator, attractors p are parameterizations of
the input stream and are placed directly in an otherwise featureless H. Swarm
particles are drawn towards any attractors in their zone of perception, and particle
positions are interpreted one by one as synthesizer parameters. The flow of the
swarm through H therefore corresponds to a melody (Swarm Music), or a stream
of texture (Swarm Granulator).

Swarm Techtiles uses elements from social and simulation swarms and operates
between sample and micro-levels. Particles fly over a landscape of ‘woven sound’
(a warp-weft mapping of incoming samples onto pixels), searching for optimum
regions of local texture. Particles communicate stigmergetically by leaving markers
at regions of high image texture, and produce sonic improvizations by unweaving
small image tiles into sound. Swarm Granulator and Swarm Techtiles are described
in detail in a review of swarm granulation (Blackwell, forthcoming).

9.5.2. Interpretation

Swarm Music has developed from a four to a seven dimensional system. Four
dimensions are occupied by mini (note) level parameters and the other three di-
mensions correspond to phrase level parameterizations. A screen shot from Swarm
Music, Fig. 9.4, shows the first three dimensions of an N-particle swarm.

The listening module, P can receive either audio or MIDI. Digital audio is
converted into MIDI messages by an inbuilt event and pitch detector which relates
average event energy in decibels to MIDI ‘velocity’, and the dominant frequency
of a fast Fourier spectrum to MIDI note number (middle C = 60, C# = 61 etc.).
Otherwise, a MIDI source is plugged directly into P.

P extracts note loudness a and pitch f from the MIDI message. Additionally,
P keeps track of five other features. All seven axes are specified in Table 9.1. Axis
seven has only recently been incorporated in Swarm Music and is reported here
for the first time. These features become the seven components of the attractor
p. There are as many attractors as there are particles, and attractors are replaced
in turn, so the system only as a memory of the last N events (this constitutes a

9. Swarming and Music 207

FIGURE 9.4. A five particle swarm. Particles are depicted as spheres and attractors as cones.
The mappings into the three dimensions of this visualization are: loudness — out-of-page;

onset time interval — left-right and pitch— up—down

single phrase in Swarm Music) that it has heard. The attractors, which act like

pheromones to the swarm, rapidly evaporate.

Apart from the four note-level axes, 1-4, Swarm Music incorporates three
phrase-level dimensions, allowing for swarming in a subspace of phrase param-

TABLE 9.1. The seven dimensions of Swarm Music

Axis Description Symbol
1 Event energy/note loudness a
2 Time interval between events At
3 Event pitch f
4 Time duration of events Alevent
5 Number of simultaneous events in a phrase Achord
6 Number of ascending or descending pitches in a phrase Mseq
7 Similarity between successive phrases K

208 Tim Blackwell

eterizations. The fifth axis is chord number. Each incoming phrase is examined
for the number of coincident, or near coincident, events and this number becomes
the fifth component, ps of the new attractor. The sixth dimension is the number
of consecutive ascending note-numbers (ranging from —N to +N, with negative
values indicating descending sequences) over the phrase. The seventh dimension
represents the similarity of two adjacent phrases with a similarity measure. The
similarity s is a value in the unit interval with s = 1 for a perfect N note match
(by note number only) between the last two phrases. A similarity of zero means
that there were no matches.

The swarm has N particles and these are interpreted, by the synthesis mod-
ule Q, as a set Sy of N notes. Each note is described by four parameter 1-4,
{a, At, f, Atevent}. The loudness a of each note in Sy is determined by the first
component, x; of each particle’s position. Onset time interval (in the absence of
chords) between notes, pitch and note duration correspond to components x;_4.

Phrase descriptions are the properties of a group of notes and not of an individual.
Similarly, the phrase descriptions for Sy must be a property of the swarm as a
whole. The swarm centre of mass,

DR (9.8)

all particles

is a convenient measure of swarm configuration. Q uses components Xs_; of the
centre of mass to modify the phrase Sy. If the chord number, n¢hoq = 5 is larger
than 1, then the At’s of the first n.pq notes of Sy are set to zero. This will ensure
that they will sound simultaneously. The first nyq = X¢ notes of Sy are sorted
by pitch. (The system also allows sorting by any of the other three note level
parameters {a, Atf, Afeyen}.) The final phrase parameter, X7, is unusual because it
does not affect Sy; rather it adjusts a parameter in the swarming module f. This
is discussed in detail below.

9.5.3. Design

The design of a swarming system for music requires two major decisions, namely
representation and dynamics. Representational issues govern the interpretations
of particle state and the design of P and Q. The choice of dynamics (the swarming
function f) is seemingly independent of representation, but ultimately they must
be related because different particle dynamics might be more or less appropriate
for a given representation. The appropriateness of a dynamics to a representation
is the personal choice of the algorithm designer; there is no prima facie guide to
representation and dynamics, since the design of a creative system is not logically
determined.

Interpretation of the swarming patterns must be accomplished by a mapping of
the state of each particle onto a musical/sonic parameter, which in turn is rendered
by a synthesizer. This general scheme allows for mappings of any complexity (or
simplicity). Since the mappings are essentially arbitrary, some guiding principle

9. Swarming and Music 209

is needed, at least to get started. The principle of transparency has been suggested
(Blackwell and Young 2004b): the interpretative mapping should be comprehensi-
ble to the audience, and to collaborating musicians, so that the relationship between
the particle movements and the output is clear. The swarm itself may be visualized
in order to negotiate the digital divide between the workings of the algorithm and
the output.

The principle of transparency urges the design to be as simple as possible,
even to the extent of a literal interpretation of music descriptions. Swarm Mu-
sic was originally intended as a note-level improvizer, and notes have loudness,
pitch and timing corresponding to dimensions 1 to 4. The interpretation of these
dimensions is very transparent. If a particle were to find itself at an attractor
at p, it would output the same MIDI-parameterized notes that the system cap-
tured. In fact, due to the finite kinetic energy and the erratic particle movements,
the swarm arranges itself around the attracting group, and outputs a melody
that has a resemblance in rhythm, pitch sequence and loudness to the captured
phrase.

In terms of the visualisation, a literal interpretation might be a map of pitch
to height (x3-axis, towards the top of the screen) and loudness to closeness to
the viewer (xj-axis, ‘out’ of screen). The mapping in each case is linear. The
temporal parameters of note onset time and note duration are harder to map. One
idea is to use the velocity of the particles as an indicator of rhythm, but this is
problematic for two reasons. Firstly, particles in swarm simulations usually fly at
a set speed, as determined by a velocity clamping which occurs immediately after
velocity update, Eq. (9.3). Swarm Music, and optimisation swarms, use spring like
forces,

a"=C Y (p-x) 9.9)

all perceived attractors

but Swarm Music uses a stiff spring constant C so that clamping is nearly always
employed, and only steering occurs. The second problem with possible inter-
pretations of velocity is that self-organization would have to take place in the
2Nd-dimensional phase space of position and velocity. However, there is little,
if any organization in velocity for a swarm, rather the organization is revealed
in the sequence of spatial patterns. Whilst velocity organization does occur in
flocks, it arises by virtue of the velocity aligning term in the dynamics and is not
emergent.

Swarm Music, Granulator and Techtiles therefore derive their temporal interpre-
tations from the spatial configuration of the particles. In Swarm Music, the x,-axis
is calibrated in beats per minute (~ ﬁ); each particle’s position along this axis
is interpreted as the time interval between the onset of this particle’s note and the
immediately proceeding one. Spatially coherent swarms, where each particle has a
similar x;, will yield regular rhythms, and widely scattered particles or sub-swarms
will produce a high diversity of onset times. A similar scheme is used for the x4
component, note durations.

210 Tim Blackwell

9.6. Experience

9.6.1. Performance

An important aspect of Swarm Music is the use of performance variables as part of
the generative framework. Human performers will invariably ‘interpret’ a score,
since a complete set of performance characteristics cannot be specified. For exam-
ple, a musician can, in performance, vary tempo and rhythm, as well as dynamics
(changes in loudness). Variations can happen at any structural level. Swarm Music
could be used as a score generator by saving output MIDI events to file. However,
Swarm Music is better exploited as an improvizer in partnership with a human(s).
The system is able to quickly respond to incoming musical gestures with swarm-
ing melodies and rhythms. There is no notion of fixed tempo; rather, rhythms and
dynamics are constantly changing due to the swarming motion of the particles,
yet there is always a connection to the external sonic environment because of the
mapping from incoming sounds to attractors. The system moves freely with the
improvization, appearing to interact responsively with a partner (Fig. 9.5).

Another reason for the perceived musicality of Swarm Music is the use of
spring forces to determine particle accelerations. Typically, spring forces produce
oscillatory motion, with the period of oscillation governed by the strength of the
spring. The update rule, Eq. (9.1), is a sum of attracting spring forces, Eq. (9.9),
and Coulomb repulsions between neighbouring particles,

(x; —xj)

al,‘eplﬂ - K -
(x; —xj)

1

(9.10)

all perceived particles

where K is a constant. Although particle motion is subject to irregular fluctuations
due to the disturbances caused by the positioning of new attractors, the finite step
size of the update, and the Coulomb repulsions, a remnant of oscillatory motion
remains. This motion produces swings to loudness, pitch, note duration and rhythm
and are a characteristic of the system. It is expected that live algorithms, just like
human improvizers, should be idiosyncratic (Blackwell and Young 2005).

9.6.2. Other Examples of Swarming in Music

This summary reviews three other examples of music systems employing swarms
and flocks. These systems represent alternative approaches to swarm simulations:
visualizations, sonifications and non-sonic interaction. Each system is viewed from
the perspective of the P Q f architecture.

Visualizations of music in terms of swarms and flocks has been explored by
various workers. An early example is Rowe and Singer (1997); the behaviour of
a boid animation is controlled by acoustical information supplied by musicians.
The flocks do not themselves produce sounds however; in the language of PQf,
the system consists of analysis module P and swarming function f.

Sonifications of swarms have also been attempted. Spector and Klein (2002)
were inspired by Swarm Music to add musical events to their swarm and flock

9. Swarming and Music 211

FIGURE 9.5. Improvisation with a 2-swarm. The left swarm (swarm A) has spontaneously
began to move along the x; and x3 axis (towards the bottom right-hand corner of H). The
image of this movement in the right swarm (swarm B) can be seen in the distribution of
attractors which mirror the positions of particles of swarm A. It is impossible to say if the
swarm B will follow swarm A’s initiative; attractors may be placed in the top right-hand
corner of H,, reflecting the positions of swarm B, and this may draw swarm A back

simulations, implemented in the BREVE simulation system. Notes are associated
with certain events within the system, for example, feeding. Different instrument
timbres are associated with each of the three species, and gradual musical tran-
sitions occur as each species enjoys a period of feeding. This is an example of
sonification of a flock of agents, although the interpretation module Q depends on
agent behaviour and not directly on flock spatial patterning. The authors report that
in an extension of their system, spectrum and dynamics information from recorded
music was used to alter constants in the swarm update formula although few details
are given. The shift to live music would presumably be easy to make so that this
system would comprise a full P Qf architecture, although it is not apparent how
transparent it would be.

Non-sonic interactions with swarms may proceed through physical gestures,
rather than by music. Unemi and Bisig (2005) have developed an interactive boid
simulation that acts as a virtual instrument. The boids move in a 3D space, with
boid coordinates interpreted as pan, pitch and loudness. Users interact with the
flocks by making physical movements which are captured by a camera. The user
can change the instrumentation, melodic and rhythmic patterns of the flock in
a process not dissimilar to conduction. The synthesis Q and f modules of this
system bear much in common with Swarm Music, but since their P only accepts
visual information, the system would not serve as a live algorithm.

212 Tim Blackwell

9.7. Autonomy

Swarm Music has a user interface enabling direct access to many system param-
eters. The parameters o of the swarming function, Eq. (9.1), for example spring
constants and maximum speeds along each dimension, can be controlled in real
time. Interpretative parameters in Q such as the size of each axis can also be ma-
nipulated; pitch interpretation of particle position might be placed in the range
MIDI 60 to 95, note onset times between 0 113 i and o Bl e loudness between
MIDI 64 and 127 etc. These real-time adjustments enable swarm ‘conduction’,
a term that refers to Morris’s conducted improvizations of groups and orchestras
through a vocabulary of signs and gestures (Morris 2006). In a sense, conduction
regards an entire orchestra as an instrument. This centralized control, of course,
departs markedly from emergence through local interactions. A user may directly
influence the swarm and its interpretation manually, and this has a considerable
affect on the output, but the system is not operating as a live algorithm.

Swarm Music began as a four dimensional system operating solely at the note
(mini) level. Live experience with the system showed that hand-tuning of f and
Q often occurred during improvizations. Intervention at the interpretative stage is
equivalent to adjusting phrase-level characteristics of the system. However, in the
interests of autonomy, meso and macro level characteristics should be emergent
rather than controlled. Luckily, a mechanism to transform (controllable) parame-
ters into variables is suggested by the P Q f architecture.

Any interpretative action can become autonomous by extending the dimension-
ality of the system. A P,y must be written that listens for the required characteristic
in E (Figure 9.2). Py, parametrises this feature of £ and maps to an attractor in H.
Swarm interpretation must also be extended so that particle position components
in the new dimension are correctly interpreted by Qew, ideally for transparency
with Onew = Pooy- The first conduction controls to be automated in this way were
chord number and pitch sort number, 71¢horg and ngeq. The conceptual mapping
between the environment and the internal spaces is shown in Figure 9.6

Further live experience with the six dimensional system revealed that the particle
speed control had a big impact on system performance and was frequently adjusted
by the operator. The speed control is v, in Eq. (9.3). Small vy« means small
particle displacements leading to small changes in the output phrase. This sounds
like a variation of a theme or an idea. At vy, = 0, the swarm is stationary and

FIGURE 9.6. Interpretative functions P and Q map from the external environment, E to the
internal space H of the live algorithm

9. Swarming and Music 213

the output riffs; large vy, increases the energy of the particles so they fly further
from the attractors and the musical output is more diverse.

In a big advance towards autonomy, the speed control has recently become auto-
mated. P listens for similarity between incoming phrases, and sets the vy, attractor
component along axis 7 according to a similarity measure. A simple matching algo-
rithm is currently used. P hears a sequence of notes{. .., ¢;, ..., ¢;}, ending on the
current (most recently received) note e;. Denote an N note phrase{e;, ..., ¢;}, j =
i+ N —1by {i — j}. The similarity s({i — j}, {k — [}) between a sequence
{i — j} and an earlier N note sequence{k — [}, can be defined as

1 V=l

sli >) k> 1) = ;c<ei+n, eken) .11
where the correlation between notes, c(e;, ¢;), can be defined to lie in the interval
[0, 1]. A simple measure of note similarity is the absolute value of the number of
steps between ¢; and e;, normalized to unity. Another measure might set c(e;, ¢;)
to one if e; = e}, and to zero otherwise. In order to look for the re-occurrence of an
n note sequence, n < N, in the last two N note phrases (the repeated pattern may
have intervening notes), it is necessary to compute s({i — j}, {k — [}) for k =
i—1,i—2,...,i — N. The maximum of the N comparisons will then certainly
reveal a match if there is one. This defines the overall similarity

s = max s({i — j}, (k= 1})
k

(Note that identical computations arising from earlier phrase comparisons in
Eq. (9.11) do not need to be performed so the computation of s has linear com-
plexity.)

Suppose for the sake of argument that P has heard a high similarity over the
last few phrases; perhaps the human partner is playing riffs. P sets the seventh
component of p to p; = (1 — s) X where X is the linear box size, H = [0, X].
The swarm will be consequently be attracted to a region of H where particle
positions x7 are high. Q calculates a speed limit from the swarm centre of mass
according to

Vv
Umax = X7 } (912)

where V is a maximum speed limit, and modifies Eq. (9.3) accordingly. This will
ensure that particle motion is small or zero even, and the output is also riffing, or
slowly evolving. The problem with this scenario is that, should ¥ = 0, the swarm
becomes frozen and incapable of movement, even if later attractors have small s
values! If X is finite but small, it may take the swarm a very long time to move
across H towards the new attractor. The solution implemented in Swarm Music
is to ensure that Q clamps all vy,x components except the seventh (similarity)
component. v 7 itself remains fixed and finite, allowing movement in this di-
mension. Particles can now move towards p7, shifting the swarm centre of mass,
and increasing particle speed and diversity.

214 Tim Blackwell

9.8. Outlook

What use do swarms have in music? This chapter has answered this question by
arguing that

1. Theoretic descriptions of music use a hierarchy of levels n, where each level
corresponds to a perceptual time-scale

2. Composing music is a centralized, top-down process:n —-n —1—n —2

3. Self-organization (SO) is an emergent process, observed in natural systems,
producing high level structure from low level interactions:n — n+1 — n + 2

4. By analogy with SO, the interaction of musical objects at any level might
produce, without implicit composition, new structure at higher levels

5. Improvised music is a de-centralized activity exhibiting an emergence of form
through the low-level interactions of performers

6. Swarms are an exemplary, paradigmatic model of SO

7. Swarms might be used in music to self-organize musical objects at any level
(sound granules, notes, phrases) into structures at a higher level

8. A model of interaction based on stigmergy has led to the design and implemen-
tation of swarm music systems that can interact with people in an improvized
setting as if they were musicians

At the heart of the Swarm Music family of systems is a swarming module f. The
function of f is to provide an almost limitless stream of spatial patterns. Analysis
modules map the external sonic environment into the internal space of the system
where interaction between system state and the external image can take place. A
synthesis module interprets system state as sound.

This three component architecture can be readily adapted to include other pat-
terning algorithms by substitution for f. Natural computation provides many ex-
amples of possible patterners, for example, evolutionary algorithms and neural
networks. Other examples of possible f’s include chaotic and non-linear systems
from the field of dynamical system, multi-agent systems from artificial intelligence
and many models from artificial life.

One aim of this research effort is to develop autonomous music systems (live
algorithms). A swarm inspired interactive model based on stigmergy is proposed
here, although of course other approaches may also be profitable. The goal of
live algorithms research is not to replace human music making with an automatic
machine; rather it is to augment human experience through the development of
new, algorithmic ways of playing music. The desire is to find artificial music that is
different from human expression, yet comprehensible. This overarching principle
of transparency should be foremost in the design of algorithmic systems. The virtue
of swarm systems is that a visualisation of internal process is already in a form
that is understandable to us.

It is impossible to predict how live algorithms research might proceed, but a
few observations are pertinent. To start, the description of music into separate
levels is an activity of classification much loved by computer scientists and music

9. Swarming and Music 215

theoreticians. Human performers, whilst acknowledging this system, perhaps see
granularities' rather than levels. Granularities do not exist in a hierarchy, but co-
exist in a network of relationships. Features at any granularity may inform choices
at any other granularity; no granularity is uppermost. Furthermore, performers
always have the option of merging, deleting, re-configuring and even spontaneously
inventing new granularities during the course of a performance. Granularity can
be incorporated within the P Q f architecture by remarking that state variables x
in the state machine f(x, «) at one granularity can be mapped to parameters o of
another granularity. In this way, emergence can propagate through the network.
Section 9.7 outlines the general scheme.

Artificial Intelligence might also have much to offer. Al provides reasoning, a
top-down activity, and learning, an activity based on memory. Advances may be
made by combing a swarm-like system with a deductive mechanism that develops
a degree of top-down structuring; the self organizer becomes an organizing self.
The individuals in swarm systems do not possess any memory and so cannot
learn. However, some type of memory is present in the system as a whole (swarm
plus environment). Future swarm music systems might exploit this by including
long-lived pheromone trails.

Machine consciousness is another fertile are for exploration (Holland 2003).
The defining feature of a ‘conscious algorithm’ is the ability to self-model. An
artificial improvizer, if endowed with such a facility, would be able to compare its
own contributions with those of other participants. Such comparisons mightinvolve
an aesthetic function, as well as reference to past experience. The research issue
is not plagued by questions of whether or not artificial improvizers are actually
conscious; the idea is to see what other algorithms can be useful to the overall
aim.

Potentially, a biologically inspired system might be able to negotiate the crit-
icism that computer music cannot produce ‘interesting” music without human
intervention. This is due to its perceived inability to break rules (Miranda 2001,
p- 206). Rules are a feature of top-down organization. A self-organizing system
might produce appealing music, not so much by breaking rules, but by allowing
new rules to spontaneously emerge. Swarm simulations are simple to implement
and provide a complete model of self-organization. They are therefore a natural
choice for exploring the potential of performing machines.

References

Allers, R. and Minkoff, R (Dirs.) (1994). The Lion King (USA).

Biles, A. (2006). In A. Biles and E. Miranda (Eds.), Evolutionary Improvisation. Evolu-
tionary Computer Music., Springer-Verlag, Berlin.

Blackwell, T.M. (2001). Making Music with Swarms. MSc thesis, University College
London.

!'T am grateful to Professor Mark d’Inverno for suggesting this term.

216 Tim Blackwell

Blackwell, T.M. (2003). Swarm music: Improvised music with multi-swarms. In Proc. the
2003 AISB Symposium on Artificial Intelligence and Creativity in Arts and Science. pp.
41-49.

Blackwell, T. (Forthcoming). Swarm Granulation. In Machado, P. and Romero, J. (Eds.),
The Art of Artificial Evolution: A Handbook. Springer-Verlag, Berlin.

Blackwell, T.M. and Bentley P.J. (2002). Improvised music with swarms. In the 2002 World
Congress on Evolutionary Computation. pp. 1462-1467.

Blackwell, T.M. and Jefferies, J. (2005). Swarm techtiles. R. Rothlauf et al. (Eds.), Evo
Workshops 2005, LNCS 3449. Springer-Verlag, Berlin. pp. 468—477.

Blackwell, T.M. and Young M.W. (2004a). Swarm Granulator. Raidl, G. R. et al. (Eds.),
EvoWorkshops 2004, LNCS 3005. Springer-Verlag, Berlin. pp. 399—408.

Blackwell, T.M. and Young M.W. (2004b). Self-organised music. Organised Sound 9(2):
123-136

Blackwell, T.M. and Young M. (2005). Live algorithms. Society for the Study of Artificial
Intelligence and Simulation of Behaviour Quarterly 122: 7.

Bonabeau, E., Dorigo, M. and Therualaz, T. (1999). From Natural to Artificial Swarm
Intelligence. Oxford University Press: New York.

Burton, T. (1992). (Dir.) Batman Returns USA/UK 1992.

Burton, J.L. and Franks, N.R. (1985). The foraging ecology of the army ant. Ecol. entomol
10: 131-141

Coker, J. 1986. Improvising jazz. New York: Simon and Schuster

Couzin, 1., Krause K., Ruxton G. and Franks N. (2002). Collective memory and spatial
sorting in animal groups. J. theor. Biol. 218: 1-11

Gabor, D. (1947). Acoustical quanta and the theory of hearing. Nature 159 (4,044): 591-4.

Grassé, P. (1959). La reconstruction du nid et les coordinations inter-individuelles
chez Bellicosi-termes natalensis et Cubitermes sp. La theorie de la stigmergie: essai
d’interpretation des termites constructeurs. Insect Societies 6:41-83

Holland, O. (2003). Journal of Consciousness Studies 10: 4-5.

Kennedy, J., Eberhart, R.C. and Shi, Y. (2001). Swarm Intelligence. Morgan Kaufmann,
San Francisco.

Lewis, G. (2000). Too many notes: Computers, complexity and culture in voyager. Leonardo
Music Journal 10:33-39.

Miranda, E. (2001). Composing Music with Computers. Focal Press, Oxford.

Morris, L. (2006). Available online at http://www.conduction.us (accessed 18 March 2006).

Pachet, F. (2004). Beyond the cybernetic jam fantasy: The continuator. IEEE Computers
Graphics and Applications, January/February 2004.

Piston, W. (1978). Harmony, 5th ed. Norton, New York.

Reynolds, C. (1987). Flocks herds and schools: A distributed behaviour model. SIGGRAPH’
87 21(4):25-34.

Roads, C. (2001). Microsound. MIT Press, Cambridge, MA.

Rowe, R. (2004). Machine Musicianship. MIT Press, Cambridge, MA.

Rowe, R. and Singer, E. (1997). Two highly-related real-time music and graphics perfor-
mance systems. Proc. Int’l Computer Music Conference, pp. 133-140.

Schaeffer, P. (1959). The interplay between music and acoustics. Gravensaner Blatter 14:
61-69.

Spector, L. and Klein, J. (2002). Complex adaptive music systems in the BREVE simulation
environment. In Bilotta et al. (Eds.), Workshop Proceedings of the 8th Int’l Conf. on the
Simulation and Synthesis of Living Systems. University of New South Wales, Sydney, pp.
167-23.

9. Swarming and Music 217

Shaw, E. (1975). Fish in schools. Natural History 84(8): 4046.

Sturman, P. (1983). Harmony, melody and composition. Longman, Singapore.

Turner, J. (2006). http://www.janeturner.net/current.php (accessed March 14th 2006).

Unemi, T. and Bisig, D. (2005). Playing by interaction among two flocking species and a
human. In Proceedings of the Third Int’l Conf. on Generative Systems in Electronic Arts,
Melbourne, Australia, pp. 171-179.

Wishart, T. (1996). On Sonic Art (revised ed.). Harwood, Amsterdam. Academic.

Xenakis, 1. (1989). Concerning time. Perspectives of New Music 27(1): 84-92.

10

Computational Evolutionary
Musicology

EDUARDO R. MIRANDA AND PETER M. TODD

10.1. Introduction

The beginning of Chapter 2 offered a sensible definition of music as temporally
organized sound. In the broader sense of this definition, one could arguably state
that music is not uniquely human. A number of other animals also seem to have
music of some sort. Complex vocalizations can be found in many birds (Marler
and Slabbekoorn 2004), as well as in mammals such as whales (Payne and McVay
1971) and bats (Behr and von Helversen 2004). In a chapter suggestively entitled
‘Zoomusicologie’ in the book Musique, Mythe, Nature ou Les Dauphins d’Arion,
Miche (1991) presents an interesting discussion on the formal sophistication of
various birdcalls. Recently Holy and Guo (2005) demonstrated that the ultrasonic
vocalizations that male mice produce when they encounter female mice or their
pheromones have the characteristics of song. What is intriguing is that primates
who are close related to humans are not as ‘musical’ as those mammals that are
far more distantly related to us. This intriguing fact suggests that music might
have evolved independently among various types of animals, at various degrees of
sophistication. In this context, it would be perfectly plausible to suggest the notion
that robots might also be able to evolve music.

In order to build systems for the emergence of music one needs to establish the
factors that may shape the course of musical evolution, such as physiological and
cognitive factors, including models of interaction.

The physiological factors comprise the sensors and actuators of interacting
individuals. These involve models of the hearing system, body, limbs and so on.
It may also involve models of the sensory-motor cortex and associated neural
mechanisms involved in sensory-motor tasks. A discussion on the expertise for
building these models is beyond the scope of this chapter; it includes fields such
as Biomechanics (Zinkovsky, Sholuha and Ivanov 1996) and Biophysics (Glaser
2001). Readers are invited to consult the literature in these fields.

As for the cognitive factors, the brain certainly uses different mental modules
to process music and these modules have varying degrees of independence from
each other. Parsons (2003) has conducted a number of brain-imaging experiments,
which indicate that the neural system for processing music is widely distributed

218

10. Computational Evolutionary Musicology 219

throughout our brain. This finding is confirmed by studies of patients with brain
lesions (Peretz et al. 1994). Peretz and Coltheart (2003) proposed a functional
architecture of the brain for music processing that captures the typical proper-
ties of such distributed modular organization. Basically, they have identified two
main processing modules: One concerned with processing pitch and the other with
rhythm. Both modules process incoming musical signals backed by a musical lex-
icon; a kind of memory bank of musical segments. Surely, this basic architecture
can be refined into smaller and perhaps more specialized components, depend-
ing on the level of detail at which one wishes to study its functionality. This is
likely to become increasingly complex as research in the emerging field of Cog-
nitive Neuroscience of Music progresses. What is important, however, is that this
modularity of the brain for music processing suggests a plausible methodology
for building computational models of music processing. By focusing on relatively
simpler cognitive tasks, one can adopt a bottom up approach to tackle the problem
of modelling cognitive factors. In most cases it may be more effective to address
the individual pieces of the jigsaw first, rather than the whole picture at once.

Following the development of fields such as Artificial Life (Levy 1993) and
Memetics (Brodie 1996), we propose a computational modelling approach to
Evolutionary Musicology: Computational Evolutionary Musicology. Evolution-
ary Musicology is the branch of Biomusicology (Wallin 1991) that studies the
origins and evolution of music (Wallin, Merker and Brown 2000). For example, it
studies the question of animal song and selection pressures underlying the evolu-
tion of music in humans and possibly in other species.

In gross terms, whereas Artificial Life attempts to understand evolutionary pro-
cesses via the computer simulation of life forms Memetics studies the replication,
spread and evolution of information patterns called memes. A fundamental no-
tion of Memetics is that cultural evolution can be modelled through the same basic
principles of variation and selection that underly biological evolution. This implies
a shift from genes as units of biological information to a new type of units of cul-
tural information, which are the memes. Computational Evolutionary Musicology
therefore involves the use of computer modelling and simulations to study the cir-
cumstances and mechanisms whereby music systems might originate and evolve
in artificially created worlds inhabited by communities of interacting autonomous
agents (e.g. software agents or robots).

Scholars throughout the ages have attempted to trace the origins of music. The
book Music and the Origins of Language, by Thomas (1995) presents a review of
the theories purported by philosophers of the French Enlightenment. For example,
in his Essai sur [’origine des langues (Essay on the origins of language) the
philosopher Rousseau (1990) described the earliest spoken languages as being
composed of vocal inflexions such as warnings, cries for help and hunting-related
shouts. In the beginning, he proposed, gestures were preferred to communicate
rational ideas, whereas vocal utterances were primarily used to express feelings
and passions. As human society grew in complexity, these vocal utterances needed
to become more precise and less passionate. And as language followed the path of
logical argumentation, the intonation of these primordial utterances evolved into

220 Miranda and Todd

music. Music, according to Rousseau, thus evolved from the sounds of passionate
speech.

More recently, The Singing Neanderthals: The Origins of Music, Language,
Mind and Body, by Mithen (2005), discusses this subject from an evolutionary
perspective supported by archaeological evidence. Also, The Origins of Music,
edited by Wallin and colleagues (Wallin, Merker and Brown 2000), collates a
series of chapters expressing a diversity of theories and viewpoints.

Computational Evolutionary Musicology is in many ways akin to the compu-
tational modelling approach of Evolutionary Linguistics to study of the origins
and evolution of language (Cangelosi and Parisi 2001; Christiansen and Kirby
2003), but its goals are more pragmatic, in the sense that they can readily inform
the development of new technologies for music making. For instance, a better
understanding of basic mechanisms of musical origins and evolution is of great
importance for musicians looking for hitherto unexplored ways to create new mu-
sic works with computers. Broadly speaking, current techniques for implement-
ing generative music systems can be classified as abstract algorithmic or music
knowledge-based. Abstract algorithmic techniques are suitable for generating mu-
sic from the behaviour of algorithms that were not necessarily designed for music
in the first instance, but embody pattern generation features that are suitable for
producing musical materials. Such algorithms include fractals (Milicevic 1996)
and chaotic systems (Bidlack 1992) to cite but two examples. Music knowledge-
based techniques generate music using algorithms derived from or inspired by
well-established music theory. Most of these systems can learn compositional
procedures from given examples, adopting either a symbolic approach (Steedman
1984; Cope 1996; Papadopoulos and Wiggins 1998) or a connectionist (neural net-
works) approach (Todd and Loy 1991; Mozer 1994), depending on the way they
store information about music. Hybrid systems also exist (Burton and Vladimirova
1997).

Both classes of techniques have their merits and pitfalls. Abstract algorith-
mic techniques tend to produce rather complex music, most of which may sound
too remote from what the majority of people, including expert listeners, would
consider musical. This is possibly so because abstract algorithmic music tends
to lack the cultural references that people normally rely upon when listening to
music. Conversely, knowledge-based techniques tend to produce pastiches of ex-
isting musical pieces, which often are of little interest for composers aiming to
create new music; that is, music that is not based on mimicking existing pieces
or well-known musical styles. Computational Evolutionary Musicology brings
the merits of both approaches closer to each other by offering the possibility of
evolving new musical systems informed by the same principles that might have
helped to shape existing musical styles. Inspired by Casti’s (1997) use of the term
‘would-be worlds’, Artificial Life’s goal of looking at ‘life as it could be,” we
refer to these emerging new musical systems as ‘would-be music’ or ‘music as it
could be’.

In this chapter, we explore some examples of Computational Evolution-
ary Musicology that employ a range of Artificial Life-inspired computational

10. Computational Evolutionary Musicology 221

approaches. We begin by describing a model for studying the role of mating-
selective pressure in the evolution of musical taste. Next, we introduce a mimetic
model for studying the evolution of musical lexicons in a community of au-
tonomous robots furnished with a vocal synthesizer, a hearing apparatus and a
memory device. Finally, we present the application of neural networks to evolv-
ing simple generative sequencing rules in a community of rhythm players and
imitators.

10.2. Mating Selective Pressure and Surprise

Todd and Werner (1999) proposed a model for studying the role of sexual selection,
specifically the selective pressure that comes from the processes of choosing mates,
in the evolution of music. The model employs mating selective pressure to foster
the evolution of fit composers of courting tunes. The model co-evolves ‘male’
composers who play simple musical tunes along with ‘female’ critics who judge
these tunes and decide with whom to mate in order to produce the next generation
of composers and critics.

Todd and Werner’s model is largely inspired by Charles Darwin’s theory of
sexual selection as outlined in the book The Descent of Man and Selection in
Relation to Sex, where he argued that male birdsong had evolved via a mechanism
of female choice (Darwin 1992). Miller (2000) attempted to take this notion even
further by arguing that the evolution of human music was shaped by sexual selection
to function as a courtship display.

Each male composer holds a tune of 32 musical pitches from a set of 24 different
pitches spanning two octaves. The female critics encode a transition-table that rates
the transitions from one note to another in a heard tune. The table is a 24-by-24
matrix, where each entry represents the female’s expectation of the probability
of one pitch following another in a song. Given these expectations, a critic can
decide how well she likes a particular tune. When she listens to a composer, she
considers the transition from the previous pitch to the current pitch for each note
of the tune, gives each transition a score based on her transition table and adds
those scores to come up with her final evaluation of the tune. Each critic listens
to the tunes of a certain number of composers who are randomly selected; all
critics hear the same number of composers. After listening to all the composers
in her courting-choir, the critic selects as her mate the composer who produces
the tune to which she gives the highest score. In this selective process, all critics
will have exactly one mate, but a composer may have a range of mates from
none to many, depending on whether his tune is unpopular with everyone or if
he has a song that is universally liked by the critics. Each critic has one child per
generation created via crossover and mutation with her chosen mate. This child
will have a mix of the musical traits and preferences encoded in its mother and
father. The sex of the child is randomly determined and a third of the population
is removed at random after a mating session in order not to reach a population
overflow.

222 Miranda and Todd

From the many different scoring methods proposed to judge the tunes, the
one that seems to produce the most interesting results is the method whereby
critics enjoy being surprised. Here the critic listens to each transition in the tune
individually, computes how much she expected the transition and subtracts this
value from the probability that she attached to the transition she most expected to
hear. For example, if a critic has a value 0.8 stored in her transition table for the
A-E transition, whenever she hears a note A in a tune, she would expect a note E
to follow it 80% of the time. If she hears an A—C transition, then this transition will
be taken as a surprise because it violates the A—E expectation. A score is calculated
for all the transitions in the tune (e.g. the expected probability of the heard A—C
transition, which might be 0.1, is subtracted from the expected A-E transition
probability of 0.8 to yield a surprise rating of 0.7) and the final sum registers how
much surprise the critic experienced; that is, how much she likes the tune. What
is interesting here is that this does not result in the composers generating random
tunes all over the place. It turns out that in order to get a high surprise score, a tune
must first build up expectations, by making transitions to notes that have highly
anticipated notes following them and then violate these expectations, by not using
the highly anticipated note. Thus there is constant tension between doing what is
expected and what is unexpected in each tune, but only highly surprising tunes are
rewarded.

Overall, this model has shown that the selection of co-evolving male composers
who generate surprising tunes and female critics who assess these tunes accord-
ing to their preferences, can lead to the evolution of structured melodies and the
maintenance and continual turnover of tune diversity over time.

In addition to mating selective pressure, this model embodies an important
cognitive trait for survival: The ability to identify an unexpected element in a se-
quence of sound events. The preference for surprising tunes reflects this ability,
which is very sophisticated in humans, even to the extent that our brain does not
require our attention to perform this task. Neuroscientists have reported a com-
ponent of the auditory event-relation potential (ERP), called mismatch negativity
(MMN), which is elicited by a deviant stimulus in a repetitive auditory event, even
in the absence of attention. ERP is a stereotyped electrophysiological response
to a stimulus detected with the electroencephalogram (EEG). MMN is normally
detected between 100 and 200 ms after the odd stimulus is heard. N#itdnen and
colleagues (2001) suggested that different sounds develop their representation in
the neurophysiological substrate of the auditory memory and the MMN indicates
an attention-independent change detection mechanism.

In Todd and Werner’s model, the composers are initiated with random tunes and
the critics with transition tables set with probabilities calculated from given folk-
tune melodies. There is, however, a puzzling fundamental question that has not
been addressed in this model: Where could the expectations of the female critics
come from if they are not to be built in by hand? Would it be possible to evolve
such expectations from scratch? A model that may provide support for addressing
this question is introduced next.

10. Computational Evolutionary Musicology 223

10.3. Social Bonding and Imitation: Evolution of Intonation

Miranda (2002b) proposed a mimetic model where a small community of interac-
tive robots programmed with appropriate motor, auditory and cognitive skills can
evolve a shared lexicon of sonic intonation patterns from scratch, after a period of
spontaneous creation, adjustment and memory reinforcement. In this case, expec-
tation is defined as a sensory-motor mechanism whereby the robots evolve vectors
of motor control parameters to produce imitations of heard intonation patterns.
The robots thus expect to hear pitch sequences that correspond to their evolved
motor vectors.

Intonation is generally defined as the melody of speech; it is characterized by the
variations in the pitch of a speaker’s voice. The rationale for attempting to model the
evolution of intonation patterns comes from the fact that intonation is fundamental
for the development of vocal communication. There have been anumber of research
reports giving evidence that babies are born with an acute sensitivity to intonation
(Locke 1993; Nazzi et al. 1998). This ability probably evolved due to the need for
enhanced mother-infant interactions. Baby talk or infant-directed-speech, sounds
like music due its exaggerated intonation, which helps babies and very young
children to develop their linguistic ability. Mothers use baby talk to influence the
behaviour and elicit emotions in pre-linguistic infants. Ultimately, those mothers
whose intonation abilities made them more able to provide infant care and those
infants who were receptive to such care, have gained a reproductive advantage.

Following this idea, Miranda’s robots are programmed with two fundamental
instincts:

a) To imitate what they hear
b) To foster social bonding

Imitation is defined here as the task of hearing an intonation pattern and ac-
tivating the motor system to reproduce it. Sociability is assessed in terms of the
similarity of the robots’ repertoires. In other words, in order to be sociable a robot
must form a repertoire that is similar to the repertoire of its peers. The intonations
thus create a social identity for the robots.

The importance of imitation for evolution has gained much attention after the
discovery of mirror neurons in the frontal lobes of macaque monkeys. Mirror
neurons are neurons which fire both when an animal performs an action and when
the animal observes the same action performed by another animal, especially of
the same species. Thus, the neurons mirror the behaviour of another animal, as
though the observers were themselves performing the action. These neurons have
subsequently been observed in some birds and in other primates including humans
(Rizzolatti and Craighero 2004). The mirror system is sometimes considered to
represent a primitive version of a simulation heuristic that might underlie a theory
of mind (Gallese and Goldman 1998); the notion of theory of mind will re-appear
in our discussion later. Interestingly, while mirror neurons are present in macaque

224 Miranda and Todd

monkeys, these monkeys have not been observed to imitate each other’s behaviour.
Itis questionable whether mirror neurons evolved for learning by imitation. Instead,
their function might rather be to allow an individual to understand what another
individual is doing or to recognize the other individual’s action.

The rationale for programming the robots with a drive for social bonding is
supported by research by neurobiologists such as Freeman (1995), who brings his
knowledge of brain chemistry to support the notion that music plays an important
role in social bonding. According to Freeman, the brain releases oxytocin in the
basal forebrain during group music making and dancing. The theory goes that by
loosening synaptic links associated with prior knowledge, this hormone clears the
path for the acquisition of new knowledge by sharing and imitating behaviour in
a group.

Mithen (2005) also supports the notion that joint music making forges a group
identity with high emotional content. ‘Hominids would have frequently and metic-
ulously examined the likely intentions, beliefs, desires and feelings of other mem-
bers of a group before deciding whether to cooperate with them. But on other
occasions simply trusting them would have been more effective, especially if
quick decisions were necessary.” Those individuals who suppressed their own
self-identity and instead forged a group identity by joint music making had better
chances to thrive than those individuals who tended to act selfishly.

10.3.1. The Robots

The robots are equipped with a voice synthesizer, ahearing apparatus and a memory
device. The model was initially implemented with software agents and the original
interaction algorithms were largely inspired by the work of Luc Steels (1997)
on evolutionary language games. Drouet subsequently helped to implement the
robotic version described below, with refinements to the interaction algorithms
(Fig. 10.1) (Miranda and Drouet 2006).

The voice synthesizer is essentially implemented as a physical model of the
human vocal mechanism (Boersma 1993; Miranda 2002a). The robots need to
compute three vectors of parameters in order to produce intonations: Lung pressure,
the width of the glottis and the length and tension of the vocal chords, represented
here as lung_pressure(n), interarytenoid(n) and cricothyroid(n), respectively. As
for the hearing apparatus, it employs short-term autocorrelation-based analysis to
extract the pitch contour of a vocal sound (Miranda 2001). The algorithm features
a parameter that defines the sensitivity of the auditory perception of the robots.
In essence, this parameter regulates the resolution of the hearing apparatus by
controlling the precision of the short-term autocorrelation analysis.

Essentially, arobot’s memory stores its repertoire of intonations, but it also stores
other information such as probabilities, thresholds and reinforcement parameters.
They have two distinct modules to store intonations in their memories: A motor
map and a perceptual map. The motor map stores information in terms of three
vectors of motor (vocal) parameters and the perceptual map stores information in
terms of pitch contour.

10. Computational Evolutionary Musicology 225

FIGURE 10.1. The robotic implementation uses DRK8000 robots, manufactured by
Dr. Robot®.

An intonation is represented as a graph whose vertices stand for initial (or
relative) pitch points and pitch movements and the edges represent a directional
path. Whilst the first vertex must have one outbound edge, the last one must have
only one incoming edge. All vertices in between must have one incoming and one
outbound edge each. Vertices can be of two types, initial pitch points (referred to
as p-ini) and pitch movements (referred to as p-mov) as follows (Fig. 10.2):

p-ini = {SM, SL, SH}
p-mov = {VLSU, LSU, MSU, SSU, RSB, SSD, MSD, LSD, VLSD}
where:

SM = start the intonation in the middle register
SL = start the intonation in the lower register
SH = start the intonation in the higher register

p-ini p-may

SH /.\ /‘.
SM / i '

Nt
SL oo

1 1

: , VLSU
; LSU

, MSU

: 58U
1

I

1

I

RSB
SSD
MSD
LSD
VLSD

¥

1
T i
1 1
' '
' '
1 i
i i
1 1
1 1
1 3

(o) #1) 12y #3) 14y 13y

FIGURE 10.2. The representation of an intonation, where #(n) indicates an ordered sequence
of n pitches.

226 Miranda and Todd

and

VLSU = very large step up
LSU = large step up

MSU = medium step up

SSU = small step up

RSB = remain at the same band
SSD = small step down

MSD = medium step down
LSD = large step down

VLSD = very large step down

An intonation will invariably start with a p-ini, followed by one or more p-movs.
It is assumed that an intonation can start at three different voice registers: Low
(SL), middle (SM) and high (SH). Then, from this initial point {¢(n), n = 0} the
next pitch at #(n 4+ 1) might jump or step up or down and so forth.

It is important to note that labels or absolute pitch values are not relevant here
because this scheme is intended to represent abstract melodic contours rather than a
sequence of musical notes drawn from a specific tuning system. The tuning should
emerge during the interactions.

10.3.2. The Algorithms

The main algorithms for the robotic interactions are given as follows:

Algorithm 1: Robot-player produces an intonation
1. Motor_control[«] < pick-any-motor-control in Motor-Repertoire(robot-player)
2. synthesize-sound(motor_control[«])

Algorithm 2: Robot-imitator produces an imitation

3. Pitch_vector[B] < perceive-intonation

4. Intonation[] < perceptual-representation(pitch_vector[3])

5. Intonation[A] < search-similar(intonation[3]) in Perceptual-Repertoire
(robot-imitator)

6. Motor_control[A] < retrieve_motor_control(motor-control[intonation[A])

7. synthesize-sound(motor_control[A])

Algorithm 3: Robot-player hears the imitation and gives a feedback
8. Pitch_vector[\] < perceive-imitation
9. Imitation[\}] < perceptual-representation(picth_vector[{])
10. Intonation[¢] < search-similar(imitation[1]) in Perceptual-Repertoire
(robot-imitator)
11. Intonation[o] = perceptual-representation(motor_control[«])
12. IF intonation[«] = intonation[¢]
13. THEN { feeback <« positive
14. reinforce(motor_control[«]) in Motor-Repertoire(robot-player)
15. reinforce(intonation[«c]) in Perceptual-Repertoire(robot-player) }
16. ELSE { feeback < negative }
17. output-signal(feedback)

10. Computational Evolutionary Musicology 227

Algorithm 4: Robot-imitator reacts to robot-player’s feedback
18. IF feedback = positive
19. THEN { approximate(intonation[A] — intonation[{3])
in Perceptual-Repertoire(robot-imitator)

20. reconfigure_motor_control(intonation[A])
in Motor-Repertoire(robot-imitator)

21. reinforce intonation[A] in Perceptual-Repertoire(robot-imitator)
22. reinforce motor_control(A)in Motor-Repertoire(robot-imitator) }
23. ELSE IF feedback = negative
24, THEN IF success-history(intonation[A]) > success-threshold
25. THEN { motor_control[1]<=produce-new-motor-control
26. Intonation[A]< perceptual-representation

(motor_control[A])
27. save-new(intonation[A])

to Motor-Repertoire(robot-imitator)
28. save-new(motor_control[A])

to Perceptual-Repertoire(robot-imitator) }
29. ELSE { distantiate(intonation[A] <> intonation[])

in Perceptual-Repertoire(robot-imitator)
30. reconfigure_motor_control(intonation[A])

in Motor-Repertoire(robot-imitator) }

Algorithm 5: End of interaction updates
31. interaction-updates(robot-player)
32. interaction-updates(robot-imitator)

Figs. 10.3, 10.4 and 10.5 give a glimpse at the functioning of these algorithms.
For didactic purposes, these are reduced two-dimensional representations of the
motor and perceptual repertoires; the co-ordinates do not fully correspond to the
actual motor and perceptual representations. The numbers in the figures indicate
actions corresponding to the line numbers of the algorithms.

All robots have identical synthesis and listening apparatuses. At each round,
each of the robots in a pair plays one of two different roles: The robot-player and
the robot-imitator. The robot-player starts the interaction by producing an into-
nation «, randomly chosen from its repertoire. The robot-imitator then analyses
the intonation «, searches for a similar intonation A in its repertoire and produces
it. The robot-player in turn hears and analyses the intonation A and checks if its
perceptual repertoire holds no other intonation ¢ that is more perceptibly close to
A than « is. If it finds another intonation ¢ that is closer to A than « is, then the
imitation is unsatisfactory, otherwise it is satisfactory. Fig. 10.3 shows an example
where the robot-player and the robot-imitator hold in their memories two intona-
tions each. The robot-player picks the intonation « from its motor-repertoire and
produces it (1). The robot-imitator hears the intonation o« and builds a perceptual
representation (3 of it (4). Then it picks from its own perceptual repertoire the
intonation A that is most perceptually similar to the heard intonation 3 (5) and
produces it as an imitation (6). Next, the robot-player hears the imitation A and
builds a perceptual representation 1 of it (9). Then it picks from its own perceptual

228 Miranda and Todd

Robot-player

Motor-Repertoire(robot-player) Perceptual-Repertoire(robot-player)
Y ¥
A
motor_control| o) intonation[c]
o ®
_______________________ [H——
o 9
10 = J2.
s imitation|tp] “+ intonation|d]
™, ® (->
=710
\\ ,’4 "
4 -9,
N .
X .
N .
= X 7 »X
v G
S i negative
\\ ’ 1
LA |
¥ N i 17,
o | 1
Robot-imitator % '
i N
x Y
y - "y
W \ “~
4 ~
P
. N
. N
s, N
L e ,
’,’ " 1_ritonat10n[|.'}]
pa r_)
7 | 5.
motor_control |A] 6 ‘I, inlonation|A]
T T T R
inlonation|A,
motor_control [A] . il .
____________ e
) 26.
> X =X
Motor-Repertoire(robot-imitator) Perceptual-Repertoire(robot-imitator)

FIGURE 10.3. Example of an unsuccessful imitation.

repertoire the intonation ¢ that is most perceptually similar to the imitation 1 (10).
The robot-player babbles the original intonation « to itself (11) and it concludes
that « and ¢ are different (12). In this case the robot-player sends a negative
feedback to the robot-imitator (17), indicating that the imitation is unsatisfactory.

When an imitation is unsatisfactory the robot-imitator has to choose between two
potential courses of action. If it finds out that A is a weak intonation in its memory
(because it has not received enough reinforcement in the past) then it will move it
away from « slightly, as a measure to avoid repeating this mistake again. But if A
is a strong intonation (due to a good past success rate), then the robot will leave
A untouched (because it has been successfully used in previous imitations and a

10. Computational Evolutionary Musicology 229

Robot-imitator

¥ ¥
.
intonation[f3]
0
30. i ,(",‘:
o,
T e LT EEEE TR EE -F--- 29.
e ® ot ®
motor_control [A] intonation[A]
=X > X
Motor-Reperteire(rcbot-imitator) Perceptual-Repertoire(rcbol-imilator)

FIGURE 10.4. An example where the unsuccessful imitation involved an intonation that has
a poor past success rate.

few other robots in the community also probably consider this intonation as being
strong) and will create a new intonation A similar to A to include it in its repertoire;
that is, the robot produces a number of random imitations and then it picks the
one that is perceptually most similar to A. Let us assume that the intonation A
in Fig. 10.3 has a good past success rate. In this case, the robot-imitator leaves it
untouched and creates a new intonation X to include in its repertoire (25, 26).
Fig. 10.4 shows what would have happened if the intonation A did not have a
good past success rate: In this case the robot-imitator would have moved A away
from {3 slightly (29 and 30). Finally, Fig. 10.5 shows what would have happened

Robot-imitator

itonation|[3]
(-~

J
motor_control [A] ™ intonation|A]

Motor-Repertoire(robot-imitator) Perceptual-Repertoire(robol-imilator)

FIGURE 10.5. An example of a successful imitation.

230 Miranda and Todd

if the robot-player had concluded that « and ¢ were the same, meaning that the
imitation was successful. In this case, the robot-imitator would have reinforced
the existence of the intonation A in its memory and would have moved it slightly
towards the representation of the heard intonation f3.

Before terminating the round, both robots perform final updates. Firstly they
scan their repertoire and merge those intonations that are considered to be percep-
tibly close to each other; the merge function removes two intonations and creates
a new one by averaging their values. Also, at the end of each round, both robots
have a certain probability P, of undertaking a spring-cleaning to get rid of weak
intonations; those intonations that have not been sufficiently reinforced are forgot-
ten. Finally, at the end of each round, the robot-imitator has a certain probability
P, of adding a new randomly created intonation to its repertoire; we refer to this
coefficient as the ‘creativity coefficient’.

10.3.3. A Typical Simulation Example

The graph in Fig. 10.6 shows a typical example of the evolution of the average
repertoire of a group of five interacting robots, with snapshots taken after every
100 interactions over a total of 5000 interactions. The robots evolved repertoires
averaging 12 intonations each. (Note that some may have developed more or
less than 12 intonations.) After a drastic increase of the repertoire at about 800
interactions, the robots settled to an average of seven intonations each until about
2200 interactions, when another slight increase took place. Then they settled to an

e m e

Size of Repertoire

0 5 10 15 20 25 30 35 40 45 50
Time

FIGURE 10.6. The evolution of the average size of the repertoire of intonations of the whole
group of robots. In this case the group developed an average repertoire of 12 intonations.

10. Computational Evolutionary Musicology 231

Imitation Success Rate

86

B4

B mm

80

Time

FIGURE 10.7. The imitation success rate over time.

average of nine intonations until about 3800 interactions. From 3800 interactions
onwards the robots steadily increased their repertoires. The pressure to increase the
repertoire is mostly due to the probability P, of creating a new random intonation,
combined with the rate of new inclusions due to unsatisfactory imitations. The
size of the repertoire tends to stabilize with time because the more the robots
use strongly settled intonations, the more these intonations are reinforced in their
repertoires and therefore the more difficult for new intonations to settle in.

The graph in Fig. 10.7 plots the imitation success rate of the community, mea-
sured at every 100 interactions. Note the decrease of imitation success rate during
those phases when the robots were increasing the size of their repertoires. Al-
though the repertoire size tends to increase with time, the success rate tends to stay
consistently high. However, this is highly dependent upon the number of robots in
the group. The higher the number of robots, the deeper the fall of the success rate
and the longer it takes to re-gain the 100% success rate stability.

Fig. 10.8(a) portrays the perceptual memory of a robot randomly selected from
the group after 5000 interactions. In this case the length of the intonations varied
from three to six pitches. (The minimum and maximum length of the intonation to
be evolved is fixed beforehand.) This particular robot evolved 11 intonations; one
below the average. Fig. 10.8(b) shows only those intonations that are three pitches
long.

An interesting feature of this model is that the lexicon of intonations emerged
from the interactions of the robots. The actions of each robot are based solely upon
their own evolving expectations. Also, the robots do not necessarily have to evolve
the same motor representations for what is considered to be perceptibly identical.

232 Miranda and Todd

\\//AA\/ A\

(b)

FIGURE 10.8. (a) The perceptual memory of one robot. (b) Only those intonations that are
three pitches long. For the sake of clarity, the background metrics and labels of the graphs
are not shown.

10. Computational Evolutionary Musicology 233

(@

Lung Pressure

0.3

0.25

02:;;:%\

0.1

/
Y

Inhalation
o
-
w

0.05

Time
—&®—Robot 1 —l—Robot 2 —&—Robot 3
(b)

FIGURE 10.9. (a) One of the perceptual patterns from Fig. 10.8(b) and its corresponding
motor control vectors developed by three different robots, (b) the lung_pressure vector, (c)
the cricothyroid vector and (d) the interarytenoid vector.

234 Miranda and Todd

0.8

Cricothyroid

0.7

0.6

0.5

0.4

Tension

0.3

0.2

0.1

©)

Time
—@—Robot 1 —l—Robot 2 —#—Robot 3

Interarytenoid

0.45

0.4

0.35

0.3

0.25

Tension

0.2

0.15

0.1

0.05 -

(d)

Time
—&—Robot 1 —l—Robot 2 —#—Robot 3

FIGURE 10.9. (Continued)

Fig. 10.9 shows the motor functions evolved by three different robots to represent
what is essentially the same intonation.

The imitation of an intonation pattern requires the activation of the right mo-
tor parameters in order to reproduce it. The robot-imitators assume that they

10. Computational Evolutionary Musicology 235

always can recognize everything they hear because in order to produce an im-
itation a robot will use the motor vectors that best match its perception of the
sound in question. It is the robot-player who will assess the imitation based on
its own expectations. Expectation here is a social convention but it is grounded
on the nature of their sensory-motor apparatus. This mechanism provides a robot
with the rudiments of the ability to appreciate the knowledge of another robot
from its own perspective. Intuitively, this ability might relate to what is re-
ferred to as theory of mind. The notion of theory of mind is central to social
life: The ability to understand that others have beliefs, desires and intentions
that are different from one’s own. The theory of mind probably emerged from
the challenge of surviving in a complex social environment, in which decisions
about cooperation were of vital importance. It is possible that possessing a the-
ory of mind gave early hominids an evolutionary advantage over its ancestors,
which was the ability to predict the behaviour of others and hence attain greater
cooperation.

Both models discussed in this chapter so far deal with short intonations. But
how about dealing with longer pitch sequences or proper musical compositions?
Although the symbolic sensory-motor-like memory mechanism proposed for stor-
ing intonations served well the objectives of the model presented above, we must
admit that it is not efficient for storing longer pitch sequences, let alone fully
fledged pieces of music. In order to increase the complexity of the model, it is
necessary to improve the memory mechanism, which would probably be more
efficient by storing information about generating the sequences rather than the
sequences themselves. Martins and Miranda (2006) are currently developing a
connectionist approach to address this problem. Connectionism is an approach to
modelling systems resembling biological neural networks whereby neurons are
represented by nodes and connections between neurons are represented by links.
The definition of the nature of the nodes and links determines the ability of the
neural network to execute certain operations in a way that reproduces observed
behaviours of the simulated biological system (Salu 2001).

10.4. Toward a Connectionist Memory for Evolving
Sequencing Rules

Jodo Martins developed a tentative connectionist memory for the aforementioned
interacting robots consisting of two neural-network modules: A perceptual module
and a categorization module. The former implements a Sardnet (for self-organizing
activation, retention and decay network) neural network and the latter uses a feed-
forward neural network.

The input for the perceptual module is a sequence of sounds, which produces
a pattern of activations on the Sardnet, representing the types of sounds and
their position in the sequence. The pattern of activations then becomes the in-
put for the categorization module, which, as its name suggests, categorizes this
information.

236 Miranda and Todd

Each sound in the sequence presented to the Sardnet is represented as a vector
of three variables. The first variable indicates its timbre, the second its loudness
and the third the inter-onset interval (IOI) in milliseconds; pitch is not taken into
account here. An inter-onset interval is the time between the beginnings or attack-
points of successive sounds, not including their durations. For example, two 16%
notes separated by a dotted eighth rest would have the same inter-onset interval as
between a quarter note and a 16" note. As we are not so concerned with a detailed
representation of timbre at this stage of the research, the value of the first variable
is merely a label identifying the percussion instrument that played the sound; e.g.
1 = snare drum, 2 = bass drum, 3 = tom-tom, etc.

10.4.1. The Perceptual Module

The Sardnet is a self-organizing neural network for the classification of sequences
(James and Miikkulainen 1995). The Sardnet is an extension of the self-organizing
map (Som), which is a neural network used for unsupervised learning developed
by Kohonen (1997). Fig. 10.10 shows a Som with 16 output nodes and one input
vector V;, where ¢ is the index of the sound event in the sequence. The dimension
of V; determines the dimension of the weights vector W ;; for each node. The
Euclidean distance measure d, determines the distance from the input vector V,
to the weight vector W j;:

dry(V,, W) = Z i — wii|’

i=l1

where V, is the input vector, with index ¢ in the sequence, W j; is the weight vector
of the corresponding node jk and n is the dimension of both V; and W j;.

The Som (Fig. 10.10) is also referred to as a competitive network or ‘winner-
takes-all net’, because only the node whose weight vector is the closest to the input
vector wins the activation. The weight vector of the winning node is subsequently
updated in order to render its values even closer to the values of the input vector.
The neighbouring nodes of the winning node are also similarly updated to a lesser
degree according to a neighbourhood function that organizes representations of
similar stimuli on the network topographically.

The Sardnet carries forward most of the essential features of the Som, but adds
two important features, which enables it to deal with sequences of events:

a) The neuron that wins the competition for being closest to the input at one point
in time is removed from subsequent competitions
b) All previous neuron activations decay at each time step

The dynamics of the Sardnet is illustrated in Fig. 10.11. Here a stream of events
t at the input activated three nodes sequentially: Wy 2, W5 3 and W ,, respectively.
The training algorithm for the Sardnet is as follows:

10. Computational Evolutionary Musicology 237

1,1 W12

»

OO,

W, ,=(1.5, 1)

O
Y
®

W4,2

obo||jo o
—0 dlo o

dy(V, W, 5)=0.5 Wy

FIGURE 10.10. Kohonen’s self-organizing map (Som). V;, is the input vector and the W ;
are the weight vectors, which define the distance d, between the input vector and the various
nodes of the network. In this example, the winner is node Wy, with d, = 0.5.

INITIALIZATION:
Reset the network
MAIN LOOP:
While not end of sequence do:

. Find inactive neuron that best matches the input

. Assign activation = 1.0 to the found unit

. Adjust weight vectors of the neurons in the neighbourhood
. Exclude the winning neuron from subsequent competitions
. Decrement the activation values for all other active neurons

RESULT:
Activated nodes ordered by activation values.

O R N R

As with the Som network, the Sardnet uses the same distance d>(V,,W) to
estimate which node’s weight vector best matches the input vector. In step 3 of
the main loop of the training algorithm shown above, the weights of the winning
neuron and of the neighbourhood neurons are changed according to the following
adaptation rule:

Awjp = a(wjg,i — v;)

where jand k are the spatial coordinates of the network, i is the index of the

238 Miranda and Todd

AR OR® O

FIGURE 10.11. The Sardnet, with variable activation of three nodes sequentially, indicated
by different colours: from black (node W ,, the last in the sequence) to light grey (node
W, ,, the first in the sequence).

individual components of the vectors and « denotes the learning rate of the
Sardnet.

All active neurons are decayed proportionally to the decay parameter d as follows
(step 5 of the main loop):

njk(l+])=d77jk(l), 0<d<1

where 7 is the value for the activation of the network in the element (j, k).

10.4.2. Categorization Module

The categorization module is a feedforward neural network (also called Multi-layer
Perceptron) for learning patterns of activity with layers of nodes interconnected in a
feed-forward way. Each input node is fully connected to the middle layer (referred
to as the hidden layer) of nodes and each node of the hidden layer is subsequently
connected to every output node (Fig. 10.12). The outputs of the network are explicit
functions of activations in the hidden layer, which are themselves functions of the
input nodes.

10. Computational Evolutionary Musicology 239

FIGURE 10.12. A generic feedforward neural network. /, are the input nodes, V,, are the
hidden nodes and O, the output nodes. W, corresponds to the strengths (or weights) of the
connections between the nodes j and k.

The network uses the backpropagation algorithm to adjust its weights in order
to best match the values of the input nodes to a desired set of values at the output
nodes.

The number of inputs to the categorization network must be the same as the num-
ber of units in the Sardnet, because each Sardnet unit becomes an input to the feed-
forward network. The number of output neurons is arbitrarily set to three because
it facilitates the visualization of the resulting categorization in a tri-dimensional
plotting.

10.4.3. Assessing the Behaviour of the Networks

As an example, let us consider an agent with a Sardnet of 50 nodes (10 x 5) with
a learning rate o« = 0.1. The network is initialized with random values for weight
vectors in the range of —1 to 1. Assume that five rhythmic sequences played on
one or two percussion instruments each (Fig. 10.13) are fed into the network a
number of times.

After a few iterations, an organization pattern begins to emerge. The graphs in
Fig. 10.14 show the evolution of the input weights corresponding to the inter-onset
intervals (IOI) (the third component of the input vectors). Fig. 10.14(a) shows the
initial value of the weights, as explained above and Fig. 10.14(b) shows the pattern
of IOl weight values that emerged after 20 iterations. Then graph 14(c) shows
the values of IOl weights that emerged after 80 iterations and 14(d) shows the
difference between the sums of the weights on consecutive iterations.

Now, let us consider that the agent has a categorization network with 50 input
units, whose values are given by the activations patterns of the Sardnet. These
input nodes are fully connected to three nodes forming the hidden layer, which
in turn are fully connected to three output nodes. This allows for straightforward
visualization of the categorization of the rhythms in a tri-dimensional space. The
first three activation layers of 50 Sardnet nodes corresponding to three rhythms
were used to train the feedforward network to match them with three different

240

Inter-ontset interval

(a)

Miranda and Todd
> >
. | > > >
Percussion | e L5 I i T
N e — — i — — > —
Percussion 2 .i.i ,i; I J r |. % J r

Percussion3 | T—F—F—® —+HF—F ppop

Percussion4 |HFCff @@ @@ @ @ F FFFF e e

= > > = = = =
Percussion 5 Wm =
— F— I ! i =

FIGURE 10.14. The evolution of the weights corresponding to IOI without change of neigh-
bourhood: (a) Random initialization of weight values; (b) After 20 iterations; (c) After 80
iterations; (d) Difference between the sum of the weights for consecutive iterations.

10. Computational Evolutionary Musicology 241

700
600
500
400
300
200

Inter—ontset interval

100

10

(b

700 -
600 -
500 -
4004~
300 -
200 -

Interontset interval

100 -

0>k
10

©

FIGURE 10.14. (Continued)

output targets: [0, 0, 1], [1, 0, O] and [0, 1, 0]. The three learned rhythms are
marked with an ‘0’ in the categorization space (Fig. 10.15). Next, the Sarnet
nodes corresponding to the remaining two rhythms were fed into the feedforward
network. These are marked with an ‘x’ in the categorization space. Clearly, the

242 Miranda and Todd

1500

-
o
o
o

Consecutive change

500

(d)

1270

1 1 1 . . . Je,

10 20 30 40 50 60 70 80
iterations

FIGURE 10.14. (Continued)

084"

N 0.6 4

FIGURE 10.15. The tri-dimensional categorization space.

90

100

10. Computational Evolutionary Musicology 243

agent is able to distinguish the latter two rhythms from the previous three. This
example shows the meaning of the categorization space: For this case the extreme
points are the ones acknowledged by the agent as being part of its own repertoire.

As an initial step to test if this architecture would be suitable to be used as a
memory mechanism to evolve and store information about sound sequences, two
robots were programmed with a Sardnet with 400 (20 x 20) nodes coupled with
a feedforward network with 400 input nodes, three nodes in the hidden layer and
three output nodes. The choice for number of input nodes is a trade-off between
scale and computational weight. The size of the network determines the number
of different events that can be encoded, but the larger the network, the slower the
computation. The Sardnet was programmed with an initial value for the learning
rate « = 0.08 and o = 10; the latter denotes the scope of the neighbourhood,
which is a Gaussian function centered on the winning neuron that multiplies all
the elements in the network.

The Sardnet of one of the robots (the robot-player) was trained with eight
rhythms (the five ones shown in Fig. 10.13 plus additional three) for 100 iterations.
Then its feedforward network was trained with the backpropagation algorithm to
respond to these rhythms in the extreme positions of the categorization space. Fig.
10.16(a) depicts the robot-player’s pattern of IOI weights, which emerged after
the 100 iterations. Fig. 10.17(a) shows the categorization of the rhythms in the
tridimensional categorization space.

The other robot (the robot-imitator) was not trained. Its task was to evolve its own
rhythmic categorization by imitating the rhythms produced by the robot-player.

FIGURE 10.16. (a) Robot-player’s map of the IOIs; (b) Robot-imitator’s map of the IOIs.

244 Miranda and Todd

600~

FIGURE 10.16. (Continued)

The interaction is as follows: The robot-player plays rhythms randomly picked
from its memory and the robot-imitator tries to imitate them. The robot-imitator’s
learning takes place during this process of imitation. The robot-imitator’s neural
networks are programmed with the same parameters as the robot-player. Each
time the robot-imitator hears a rhythm, it calculates its respective position in its
categorization space. Then it ‘babbles’ a few rhythms (i.e. it generates random
rhythms and categorises them) until it finds one that is close enough to the one
it that it is trying to imitate. This rhythm is then played as an imitation to the
robot-player, who evaluates the imitation in its categorization space. Depending
on the distance between the imitation and the original rhythm, the robot-player
sends a feedback to the robot-imitator, which indicates two possible outcomes:

a) Satisfactory: The imitation is closer to the original rhythm than to any other
rhythm in its categorization space.

b) Unsatisfactory: The imitation is closer to a rhythm other than the original rhythm
in its categorization space.

If the imitation is satisfactory, then the feedforward network of the robot-imitator
is trained with one iteration of the backpropagation algorithm to respond to the
desired category. Conversely, if the imitation is unsatisfactory, then the robot-
imitator will benefit only from the adaptation of the Sardnet weights according to
its self-organizing behaviour.

10. Computational Evolutionary Musicology 245

0.65
0.6
0.55
0.5
0.45
0.4
0.35

0.3
0.3

0.4

0.7 065 06 055 05 045 04 035 03

(b)

FIGURE 10.17. (a) The robot-player’s trained categories; (b) The categorization map of the
robot-imitator at very early stages of the learning process; (c) The categorization map of
the robot-imitator at a very late stage of the learning process.

246 Miranda and Todd

1.2 1 0.8
©

FIGURE 10.17. (Continued)

Fig. 10.16(b) portrays the Sardnet of the robot-imitator after 80 interactions,
which is slightly different from the Sardnet of the robot-player, although they
seem to be representing the same rhythms.

Fig. 10.17 shows the categorization maps for both robots. Notice that initial
categories of the robot-imitator in Fig. 10.17(b) do not match the categories of the
robot-player in Fig. 10.17(a), but as the learning process progressed, the categories
converged to the extreme points of the tri-dimensional space in Fig. 10.17(c).

A preliminary test of the connectionist memory demonstrated that it is possible
to combine the learning capabilities of neural networks with the dynamics of the
mimetic model introduced in Section 3. At the time of writing, the connectionist
memory is being further improved (e.g. to include information about pitch and
timbre) and embedded in the mimetic robotic model.

10.5. Concluding Remarks

This chapter provided a glimpse of the exciting new field of Computational Evo-
Iutionary Musicology by demonstrating how music can be studied as an adaptive
complex dynamic system. In this context, the origins and evolution of music can
be studied using computer models and robotic simulations.

One interesting hypothesis that is emerging from the research of a number
of scholars is that there might have been a single precursor for both music and

10. Computational Evolutionary Musicology 247

language: A communication system that had the characteristics that are now shared
by music and language, but split into two systems at some date in our evolution-
ary history. For instance, Steven Brown (2000) refers to this single precursor as
musilanguage, whereas Alison Wray (1998) proposed the notion holistic proto-
language, which essentially is the same thing.

In the introduction we suggested that it would be perfectly plausible to suggest
that robots might be able to evolve music. Then we demonstrated how this can
be done. However, we acknowledge that the examples introduced here cannot
evolve proper music yet, but rather the rudiments of what one might refer to as
proto-music.

Much work is still needed in order to embed the robots with the minimum
necessary physiological and cognitive abilities to evolve music. Nevertheless, the
models discussed in this chapter are encouraging in the sense that they provide
strong indications that music might indeed emerge in a society of interacting
autonomous robots.

References

Behr, O. and von Helversen, O. (2004). Bat serenades—Complex courtship songs of the
sac-winged bat Saccopteryx bilineatta”. Behavioral Ecology and Sociobiology, 56: 106—
115.

Bidlack, R. (1992). Chaotic systems as simple (but complex) compositional algorithms.
Computer Music Journal, 16(3): 33-47.

Boersma, P. (1993). Articulatory Synthesizers for the Simulations of Consonants. Proceed-
ings of Eurospeech’93, Berlin, Germany, pp. 1907-1910.

Brodie, R. (1996). Virus of the Mind: The New Science of the Meme. Integral Press, Walnut
Creek, CA.

Brown, S. (2000). The “Musilanguage” model of music evolution. In N.B. Merker and S.
Brown (Eds.), The Origins of Music. The MIT Press, Cambridge, USA.

Burton, A.R. and Vladimirova, T. (1997). A Genetic Algorithm Utilising Neural Network
Fitness Evaluation for Musical Composition, In G.D. Smith, N.C. Steele and R.F. Albrecht
(Eds.), Proceedings of the 1997 International Conference on Artificial Neural Networks
and Genetic Algorithms, Springer-Verlag, Vienna, pp. 220-224.

Cangelosi, A. and Parisi, D. (Eds.) (2001). Simulating the Evolution of Language. Springer
Verlag, London, UK.

Casti, J.L. (1997). Would-be Worlds: How Simulation of Changing the Frontiers of Science.
John Wiley & Sons, NY.

Christiansen, M.H. and Kirby, S. (Eds.) (2003). Language Evolution: The States of the Art.
Oxford University Press, Oxford, UK.

Cope, D. (1996). Experiments in Musical Intelligence. Madison, A-R Editions Inc., WL

Darwin, C. (1992) (1st published in 1871). The Descent of Man and Selection in Relation
to Sex. Princeton University Press, Princeton, NJ.

Freeman, W. (1995). Societies of Brains: A Study in the Neuroscience of Love and Hate.
Lawrence Erlbaum Associates, Mahwah, NJ.

Gallese, V. and Goldman, A. (1998). Mirror-neurons and the simulation theory of mind-
reading. Trends in Cognitive Sciences, 12: 493-501.

Glaser, R. (2001). Biophysics. Springer, Heidelberg.

248 Miranda and Todd

Holy, T.E. and Guo, Z. (2005). Ultrasonic Songs of Male Mice. PLoS Biology, 3(12): e386.

James, D.L. and Miikkulainen, R. (1995). SARDNET: a self-organizing feature map for se-
quences. In G. Tesauro, D. Touretzky and T. Leen (Eds), Advances in Neural Information
Processing Systems 7. MIT Press, Cambridge, MA.

Kohonen, T. (1997). Self-Organizing Maps. Springer Series in Information Sciences.
Springer-Verlag, Heidelberg.

Levy, S. (1993). Artificial Life: A Report from the Frontier where Computers meets Biology.
Vintage, London, UK.

Locke, J.L. (1993). The Child’s Path to Spoken Language. Harvard University Press, Cam-
bridge, MA.

Mache, F.-B. (1991). Musique, Mythe, Nature ou les Dauphins d’Arion. Méridiens Klinck-
sieck, Paris.

Marler, P. and Slabbekoorn, H. (Eds.) (2004). Nature’s music: The science of birdsong.
Elsevier, Boston, MA.

Martins, J. and Miranda, E. R. (2006). A Connectionist architecture for the evolution of
rhythms. Proceedings of EvoWorkshops 2006, LNCS 3970. Springer, New York, pp. 696—
706.

Milicevic, M. (1996). The Impact of Fractals, Chaos and Complexity on Computer Music
Composition. Proceedings of International Computer Music Conference (ICMC 96).
Hong Kong, International Computer Music Association, San Francisco, pp. 473-476.

Miller, G. (2000). Evolution of human music through sexual selection. In N. Wallin, B.
Merker and S. Brown (Eds.), The Origins of Music. The MIT Press, Cambridge, MA,
pp- 329-360.

Miranda, E. R. and Drouet, E. (2006). Evolution of musical lexicons by babbling
robots. Proceedings of Towards Autonomous and Robotic Systems 2006, University of
Surrey, Gilford, UK. On-line proceedings: http://taros.mech.surrey.ac.uk/schedule.php
(Accessed 17 Nov 2006).

Miranda, E.R. (2002b). Mimetic model of intonation. In C. Anagnostopoulou, M. Ferrand
and A. Smaill (Eds.), Music and Artificial Intelligence—Second International Conference
ICMAI 2002. Lecture Notes on Artificial Intelligence 2445, Springer-Verlag, Berlin,
Germany, pp. 107-118.

Miranda, E.R. (2002a). Computer Sound Design: Synthesis Techniques and Programming.
Focal Press, Oxford, UK.

Miranda, E.R. (2001). Synthesising prosody with variable resolution. AE'S Convention Paper
5332. Audio Engineering Society, Inc., NY, USA.

Mithen, S. (2005). The Singing Neanderthal: The Origins of Music, Language, Mind and
Body. Weidenfeld & Nicolson, London.

Mozer, M. (1994). Neural network music composition by prediction: Exploring the benefits
of psychophysical constraints and multiscale processing. Connection Science, 6: 247—
280.

Néétédnen, R., Tervaniemi, M., Sussman, E., Paavilainen, P. and Winkler, I. (2001). Primitive
intelligence in the auditory cortex, Trends in Neurosciences, 24: 283-288.

Nazzi, T., Floccia, C. and Bertoncini, J., (1998). Discrimination of pitch contours by
neonates. Infant Behaviour, 12: 543-554.

Papadopoulos, G. and Wiggins, G. (1998). A Genetic Algorithm for the Generation of Jazz
Melodies. Proceedings of 8" Finnish Conference on Artificial Intelligence, Jyviskyli,
Finland.

Payne, R.S. and McVay, S. (1971). Songs of humpback whales, Science, 173: 585-597.

10. Computational Evolutionary Musicology 249

Parsons, L.M. (2003). Exploring the Functional Neuroanatomy of Music Performance,
Perception and Comprehension, In I. Peretz and R. Zatorre (Eds.), The Cognitive Neu-
roscience of Music. Oxford University Press, Oxford, UK, pp. 247-268.

Peretz, I. and Coltheart, M. (2003). Modularity of music processing. Nature Neuroscience,
6: 688—-691.

Peretz, 1., Kolinsky, R., Tramo, M., Labrecque, L., Hublet, C. and Demeurisse, G. (1994).
Functional dissociations following bilateral lesions of auditory cortex. Brain, 117: 1283—
1301.

Rousseau, J.-J. (1990) (1* published in 1765). Essay sur [’origine des langues. Gallimard,
Paris.

Rizzolatti, G. and Craighero, L. (2004). The mirror-neuron system. Annual Review of Neu-
roscience, 27: 169-192.

Salu, Y. (2001). Understanding Brain and Mind: A Connectionist Perspective. World Sci-
entific, Singapore.

Steedman, M. (1984). A generative grammar for jazz chord sequences. Music Perception,
2: 52-717.

Steels, L. (1997). The Origins of Syntax in Visually Grounded Robotic Agents. Proceedings
of International Joint Conference on Artificial Intelligence (IJCAI’97). Nagoya, Aichi,
Japan.

Thomas, D.A. (1995). Music and the Origins of Language. Cambridge University Press,
Cambridge, UK.

Todd, PM. and Loy, D.G. (Eds.) (1991). Music and Connectionism. The MIT Press, Cam-
bridge, MA.

Todd, PM. and Werner, G.M. (1999). Frankensteinian Methods for Evolutionary Music
Composition. In N. Griffith and P.M. Todd (Eds.), Musical Networks: Parallel Distributed
Perception and Performance. The MIT Press/Bradford Books, Cambridge, USA, pp. 313—
339.

Wallin, N.J., Merker, B. and Brown, S. (Eds.) (2000). The Origins of Music. The MIT Press,
Cambridge, USA.

Wray, A. (1998). Protolanguage as a holistic system for social interaction. Language and
Communication, 18: 46-667.

Zinkovsky, A.V., Sholuha, V.A. and Ivanov, A.A. (1996). Mathematical Modelling and
Computing Simulation of Biomechanical Systems. World Scientific, Singapore.

Appendix: The Accompanying
Music CD

Most of the authors in this book are accomplished composers and performers, using
evolutionary computer music in their professional activities in one way or another.
The accompanying music CD features a selection of pieces by these authors in
a variety of styles, ranging from electroacoustic and contemporary music to jazz
improvisation, which all serve to illustrate that theory can be put into practice
rather successfully.

Track: 1

Title: Olivine Trees

Year: 1994

Duration: 09:02 minutes
Composer: Eduardo Reck Miranda

Olivine Trees is perhaps the first piece of electroacoustic music composed using
a parallel computer. The piece was composed using sounds synthesised almost
entirely by Chaosynth (refer to Chapter 8), a granular synthesis system that the
composer created at the Edinburgh Parallel Computing Centre in the early 1990s.
It works by generating a rapid succession of very short sound bursts called sound
grains that together form larger sound events. Chaosynth uses cellular automata to
control the production of the sound grains. Olivine Trees is inspired by Vincent van
Gogh'’s painting ‘Olive Trees.” As with impressionist painting, where small touches
of unmixed colour mingle in the spectator’s eyes, Olivine Trees is composed of
short sounds segments that mingle in the spectator’s ears. In addition to Chaosynth,
a number of audio processing tools were used to mould the synthesised sounds.

Tracks: 2, 3,4

Title: Swarmpieces I-111

Year: 2006

Durations: 04:22, 03:01, 05:51 minutes
Composers: Tim Blackwell and Michael Young
Piano: Michael Young

Swarmpieces I-11I were performed on a single MIDI-enabled grand piano by the
Swarm Music system (refer to Chapter 9). Swarm Music is heard here as two

250

Appendix: The Accompanying Music CD 251

S-particle swarms, one for each ‘hand’ of the live algorithm. The system was
extended by two dimensions for this piece: phrase duration and phrase interval
were added to the seven dimensions described in the chapter. The effect is to allow
the swarms to rest between bursts of flight. The improvisations are tonally free and
texturally dense and feature Young’s highly responsive and energetic playing.

Track: 5

Title: Lovey

Year: 2006

Duration: 05:32 minutes
Composer: Al Biles
Trumpet: Al Biles

Lovey is a 5/4 Bossa Nova written by Al Biles to commemorate the passing of
a family cat. This arrangement of the tune was set up to demonstrate GenJam’s
interactivity (refer to Chapter 7) and features a chorus of fours between Al and
GenJam followed by a chorus of collective improvisation in which GenJam tries to
intelligently echo what Al played a measure earlier. The IGA version of GenJam
was used for this tune, with a soloist trained for seven generations in about 2 hours
on various 5/4 tunes. This recording was essentially a first take and was the first
time Al had attempted an echo chorus on this particular tune. Many thanks to Jay
Alan Jackson, who engineered and produced this recording.

Tracks: 6,7, 8

Title: Three Pieces

Year: 2006

Durations: 03:18, 01:57, 02:30 minutes
Subtitle of movements:

I. It didn’t happen at Lan Franchis
II. The ant’s ear view
1. The larvae’s ear view

Composer: Alice Eldridge
Cello and voice: Alice Eldridge

These pieces are recordings of live improvisations on stage between cello and
voice and a simulated Ashbian homeostat. The original homeostat was an electro-
mechanical device built by Cybernetician Ross Ashby to demonstrate his theory
of ultra-stability. The behaviour of the system illustrates the use of ‘life-time’
adaptive mechanisms as opposed to generational evolutionary search and are used
here to parameterise a granular synthesis engine operating on samples taken live
during the performance. All material is created in real time by the system splicing
and re-composing the performer’s improvisations.

Track: 9

Title: Singing in Traffic
Year: 1997

252 Appendix: The Accompanying Music CD

Duration: 08:21 minutes
Composer: Rodney Waschka II
Saxophone: Steve Duke

Singing in Traffic uses a single short recording of one car driving on a suburban
road in North Carolina, USA, together with synthesised bell-like sounds to create
the recorded part. A computer program, written by the composer, uses a Markov
process and a kind of ‘mosaic’ technique to manipulate the sampled sound and
control the synthesised sound. The instrumental part was composed with the help
of an evolutionary computation computer program created by the composer (refer
to Chapter 6). The piece was composed for and premiered by Jonathan Kramer.

Track: 10

Title: Change Tranes
Year: 2006

Duration: 02:05 minutes
Composer: Al Biles

Change Tranes features the autonomous version of GenJam improvising over four
choruses of ‘Coltrane Changes’, as described in the coffeehouse vignette at the
beginning of Chapter 7. GenJam always acquits itself much better on this tune
than its creator, Al Biles, who mercifully lays out on this performance. Recorded
and produced by Jay Alan Jackson.

Tracks: 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24

Title: Ossia Suite

Year: 2002

Durations: 00:45, 01:04, 00:38, 01:09, 00:45, 01:06, 01:06, 00:40, 01:08, 01:30,
01:11, 00:43, 01:26, 01:43 minutes

Composer: Palle Dahlstedt

These 14 short pieces are excerpts from a larger suite derived from the interactive
installation Ossia, premiered at the Gaudeamus Music Week in Amsterdam, 2002.
The pieces were composed and performed on a MIDI-enabled grand piano by a
computer, with no human intervention, except when people visiting the installation
interacted with the system by playing something on the piano. The computer
continuously composed and performed new pieces, either from scratch or based
on what the visitors have played on the piano. The pieces are generated with
autonomous evolutionary algorithms, that is, the software breeds a population
of pieces through a number of generations and selects which candidates ‘sound
good’, based on programmed ‘quasi-aesthetic’ criteria (refer to Chapter 4). The
expressive performance quality is a direct result of how the music is generated and
mirrors the underlying structure of the piece.

Index

Aahus, 118
accompaniment, 140
adaptive
behaviour, 9
tuning, 71
ADJUST procedure, 54
agent-performer, 100
agents, 218, 248
agent-imitator, 243
agent-player, 243
algorithm(s)
backpropagation, 239
evolutionary, 53
genetic, 53, 56
learning, 72
live, 211
steady state, 8
Alpern, A., 162

American popular songbook, 138
analysis-by-measurement, 100

analysis-by-synthesis, 100
Apple MacOS, 180
Arfib, D., 64
artificial
genes, 1
insemination, 18
intelligence, 11, 215
life, 9, 39, 219
media, 9
Atari 1040 computer, 190
audience, 33
Ayers, L., 56

baby talk, 223

Bach,J. S., 118

Bambi, 121

Band in a Box (system), 141
Barham, P., 130

Batman Returns (film), 196
Beauchamp, J., 54, 62
behaviour

cooperative, 194

human, 124

non-human, 124

self-organising, 244

Beethovn, L. van, 12, 13, 15, 123

Belousov-Zhabotinskii, 175
Berlioz, H., 14

Bessel function, 61

Beyls, P, 171

Bierce, A., 130

Biles, A., 117, 120, 203
biology, 170
biomechanics, 218
biomedical, 170

Biomorph (software), 81, 86

biophysics, 218
birdsong, 32
Bistritsky, V., 132
Blackwell, T., 21, 22, 139
body language, 201
Boid animation, 210
Boids (system), 21
Bontempi, G., 11
Bossa Nova, 138
brain, 218

Brazil, 191

BREVE (system), 211
Brown, S., 247
Burlow, H., 130

Cage,J., 119, 121
CAMUS (system), 184
CAMUS 3D (system), 190
Capstone Records, 130
Carson, J., 124

253

254 Index

Cartesian plane, 184
categorization, 235
network, 239
Cellular Automata, 36, 170
ChaOs, 173, 175
crystalline growths, 173, 184
game of life, 173, 184
Chaosynth (system), 21, 179
chaotic behaviour, 83
Chareyron, J., 179
Chebyshev polynomials, 65
Chicago, 130
Chopin, F,, 132
choreographers, 119
Chowning, J., 61
chromosome
melodic, 44
structures, 40
order-based, 40
positon-based, 40
tree-based, 40
Chu, H., 58
Civil war (USA), 130
Clarke, E., 106
Clavia, 91
Clynes, M., 101
coevolutionary (systems), 9
Colemen, O., 139
collision avoidance, 200
Coltrane, J., 137
composer, 33
composition, 9, 34
computational evolutionary musicology, 246
computational modelling, 170
computer-aided creativity, 80
computer music, 20, 120
Continuator (system), 203
convergence, 198
Conway, J., 174
Cook, P, 67
Cope, D., 11, 12
Correa, J., 184
counterpoint, 12
cross-over, 7, 96, 110, 151
intelligent measure-level, 153
intelligent phrase-level, 154
crossover point, 46
Csound (software), 79
Cunningham, M., 119
cybernetics, 2
Czemny, K., 13

Darwin, C,, 1, 3,221
Dataglove, 18

Dawkins, R., 42, 81
Denmark, 118
Denton, 130
Dewdney, A., 175
Diabelli, A., 15
Diatonic scale, 40
digital oscillators, 181
disc jockey, 37
Dittersdorf, K. D. von, 15
Drouet, E., 224

DSP operations, 67
Duke, S., 130
duration, 31

Eclogues for Woodwind Quintet (music), 128
ecology, 170
Eden (system), 9
Edi¢des Musicais Goldberg, 191
Edinburgh Parallel Computing Centre, 183
Eno, B., 79
envelopes, 54
Electroencephalogram (EEG), 222
Elitism technique, 95
Empty Frames (music), 123, 128
Entre o Absurdo e o Mistério (music), 191
evaluation function, 5
Event-related potential (ERP), 222
evolution

interactive, 5, 79, 81, 89

natural, 1

strategies, 2
evolutionary

computation, 1, 137

programming, 2

search, 18

strategies, 124
expectation

contradiction of, 15

Fairlight CMI, 54
Feldman, M., 119
filters, 57
FitAccent, 106, 114
FitCadence, 106, 114
FitGrouper, 106, 114
fitness
automatic, 11, 41
bottleneck, 15, 43, 81, 98, 120, 123, 159
criteria, 80
function, 5
interactive, 42
learned, 42
measure, 5
rules, 100

Index 255

flocks, 196 HPDJ (system), 37
form, 30, 31 human
Fornari, J., 68 evaluation, 11
Fourier transform, 53 judgement, 5
fractal, 45 mentor, 42
Freeman, W., 224 society, 219
frequency modulation, 17, 60 hybrid wavetable-filter model, 59
Fujinaga, I., 66
Fux, J., 11, 12 ideas generator, 203
IGA (Interactive Genetic Algorithm), 145
Gabor, D., 180 1 Got Rhythm (music), 138
Gabor transform, 63 imaginary clock, 171
Garcia, R., 69 imitation, 223
Gardner, M., 155 improvisation, 130, 137, 157
Gartland-Jones, D., 16, 23 system, 163
GECCO, 162 IndagoSonus (system), 16
GenDash (system), 46, 47, 122 infant-directed speech. 223
GenJan (system), 37, 40, 47, 117, 137, information technology, 164
203 initializations, 159

Genophone (system), 18, 19 inside-vertical (improvisation style), 139
Genetic instrument

operators, 44, 85, 95 design, 52

programming, 69 MIDI, 185

recombination, 18 Intelligent Music Workstation, 180

representation, 85, 86 interaction
genotype, 3, 5, 39, 85 human-computer, 28
Gershwin, G., 138 interface
gestural generators, 88 guitar-MIDI, 156
Giant Steps (music), 137 human-computer, 31
GINF (GenJan Normal Form), 142 International Computer Music Conference,
GPmuse (system), 41 118
Gradus ad Parnassum, 11, 12 interpolate operator, 96
Grand Canyon, 130 intonation, 223
Griffeath, D., 175
Griffith, B., 131 Jacob, B. 38
grouping structure, 110 Jazz, 34, 201

influenced styles, 140

Haegum, 129 licks, 160
Hamming window, 68 New Orleans, 139
harmonization, 36, 46 performance, 165

SATB, 36 Quartet, 137
Hawkins, C., 139 Johnson, C., 66
Haydn, J., 12, 13
Helmut, M., 178 k-NN classifier, 70
herring, 196 Karhunen-Loeve (KL) transform, 67
heuristic features, 41 kinetic systems, 55
Hewlett-Packard, 37 Korea, 129
hierarchical Korean fiddle, 129

pulse-sets, 101 Kramer, J., 129

structure(s), 20, 101 Kreger, T., 178
Hoggar, S., 187
Horner, A., 55, 56 Langton C., 171
Horos (music), 170 LASy (system), 172, 179

Holland, J., 2 Lewis, G., 203

256 Index

Linear Predictive Coding (LPC), 57
LINSEG method, 54

Lischka, C. 18

listening, 38

Liszt, F., 14

Lyre Fourier Digital Synthesiser, 54

Machaut, G., 132
Mache, F.-B., 218
machine(s)
adaptive, 1
consciousness, 215
Madsen, S., 37
Markov chain, 45, 155, 160
Martins, J., 235
Marx, A., 13
Max/MSP (system), 20, 79
McAlpine, K., 187
McCormack, J., 9
Meiko 1860 supercomputer, 183
melody
development, 35
generation, 35
memes, 80, 219
memetics, 219
mental
models, 32
modules, 218
metrical analysis, 110
Mexico, 130
microtonal, 40
MIDI
flat files, 104
Millen, D., 171
Miranda, E. R., 20, 21, 235
Mismatch negativity (MMN), 222
mirror neurons, 223
Mithen, S., 220
mixing, 38
monkeys, 224
Moorer, J., 52, 65
Morrill, D., 62
Morris, R. O., 12
Motet (isorhythmic), 11
Mozart, W. A., 12, 13, 15
Multi-layer perceptron, 238
music(al)
analysis, 110
applications, 9
art (as in art music), 117
composition, 10
concert (as in concert music), 117
constraints, 100

creativity, 11

dice games, 11

digital, 200

form, 12

instruments, 29

Korean notation, 129

new, 118

performance, 28

structure, 105

utterances, 201

‘Western Notation, 129
Musilanguage, 247
MutaSynth (system), 89, 90, 96
mutation, 7, 95, 109, 147

comprehensive, 151

creep, 8

genetic repair, 150

intelligent, 47

measure-level, 148

musically meaningful, 148

phrase-level, 149

super phrase, 150

Name That Tune (music), 44
natural selection, 1
Nelson, G. L., 47
neo-Darwinian (framework), 1, 2
networks

homeostatic, 22

neural, 20, 22, 42, 235
Neumann, J. von, 170
neural activity, 176
neuroscience of music, 219
New York City, 131
Newton, I., 197
NeXT. 180
NMG2, 91
nomadic people, 129
Nord Modular, 89, 91
Norman, D., 31, 32, 165
Nyquist (software), 79
Nyr sound, 183

Oberheim matrix 6, 89
Ojinaga (battle of), 130
Olivine Trees (music), 191
operators

deletion, 8

duplication, 8

genetic, 7, 147

inversion, 8

musical transformations, 8

translocation, 8

organization
emergent, 32
random, 32
Organised Sound, journal, 184
Orton, R., 178
oscilloscope, 29
Ossia (music), 98

Outside-horizontal (improvisation style),

139

Pachet, F., 203
Palestrina, G. P., 12
Papadopoulos, G., 163
parameter optimisers, 72
Parsons, L., 218
patch mutator, 89, 96
Pater, W., 119
Payne, G., 63
perceptual module, 235
performance
audience-mediated, 37, 167
computer, 101
expressive, 36, 100
principles, 106
profiles, 100
performer, 33
phenotype, 3, 39, 85
phrase generation, 146
physical modelling, 17, 224
Piano Sonata, 132
pitch, 29
relative, 39
Pitch-to-MIDI converter, 156
popular
music, 200
songs, 200
population
spatially distributed, 6
structure, 5
positive feedback, 202
PQf architecture, 204
pre-selection mechanism, 98
prism synthesiser, 55
process
creative, 10
processing, 38
audio, 38
image, 170
programming
genetic, 4
proto-language, 247
proto-music, 247
Pure Data (software), 79

Index

Quick lock buttons, 94

Raleigh, 130

Civic Chamber Orchestra, 124
random fluctuations, 195
randomize operator, 96
Rauschenberg, R., 119
Rechenberg, 1., 2
replacement, 47

intelligent, 48

scheme, 8
representation

absolute, 39

basic, 86

beat-oriented, 40

duration, 39

event sequence, 40

generative, 86

genetic, 4

genome, 107

genotype to phenotype mapping, 142

grammar-based, 88

object-based, 86

pitch, 39

scale-offset approach, 39

schemes, 39
reverberation, 58
revolution (Mexican) 130
Reynolds, C., 21, 196
rhythm, 29

sequences, 35
Richmond, 130
Risset, J.-C., 64, 184
Roads, C., 180
Robot-imitator, 227
Robot-player, 227
robots, 223

interacting, 235
Roland, 156
Rousseau, J.-J., 219
Rule-based systems, 20
Russell, G., 139
Russolo, L. 191

Saint Ambrose (music), 128
Salten, F., 121

sampled initialization, 45

Sappho (Greek poetess), 131
Sappho’s Breath (music), 128, 131
Sardnet, 235

Schaeffer, P., 184

Schema theory, 161

Schoenberg, A., 13

257

258 Index

Schosttstaedt, B., 62
Schubert, F., 15
Schumann, R., 110
Schwefel, P., 2
Scientific American magazine, 175
selection, 5, 45

local rules, 6

method, 6

rank-based, 6

roulette, 6
self-organization, 194
self-organizing map, 236
sensory-motor tasks, 218
Serra, X., 55, 59
shoal, 196
Sims (software), 81, 86
Singing in Traffic (music), 128
Six Folksongs from an Imaginary Country

(music), 128, 132

social

animals, 196

factors, 100
sociology, 170
sonata form, 10, 12, 14, 199
sonification, 210
sonomorph (system), 47
sound

3D systems, 58

chaotic, 83

design, 9, 17

effects, 16

localization, 58

space, 82

woven. 206
Spector, L., 162
spectral interpolation, 56
Steels, L., 224
stochasticity, 181
Strawn, J., 54

String Quartet: Ha! Fortune (music), 128, 132

String Quartet: Laredo (music), 128
structure analysis, 105
subpopulations, 6
SuperCollider (software), 20
Summer Song (music), 120, 128
stigmergetic interaction, 198
stigmergy, 195
Suzuki interpretations, 43
Swarm Granulator (system), 139, 198, 206
Swarm Music (system), 194, 198, 206
Swarm Techtiles (system), 198, 206
Swarm(s), 36

algorithm, 21

bio, 196
music, 21, 198
simulation, 196
social, 196
synthetic, 194
swarming
animals, 194
rules, 197

Symphony Number Seven (music),

123
synthesis, 16
additive, 53, 68
discrete summation, 65
frequency modulation, 71, 88
granular, 21, 66, 180
group additive, 56
high-level interfaces for, 79
Karplus-Strong, 179
physical modelling, 67
sampling, 55
speech, 57
subtractive, 57, 87
system design, 68
technology, 38
waveform, 67
waveshaping, 64
wavetable, 52, 55,71
system image, 31
system(s)
collaborative, 47
complex dynamic, 21
dynamic, 202
hybrid, 44
real-time, 57

Taylor, E., 124
Temperley, D., 106
temporal morphology, 186
The Lion King (film), 196
Third Practice Festival, 130
timbre, 30, 46

breeding, 58

interpolation, 71

trees, 68
time-scales, 199
Todd, P., 15, 38, 221
Trading Fours, 156
Tréumerei (music), 110
Truax, B., 180
Turing, A., 1

Ulan, S., 170
University of Milan, 180

User interaction, 164
User intervention, 47
utterances, 219

Vanhal, J. B., 15
vocal vibrato, 55
vocalizations, 218
Vonnegut, K., 121
Voyager (system), 203

Wallin, N., 220
Wagner, R., 14
Waschka, R., 46
waveguides, 67
wavetable
interpolation, 59
matching, 57

Index

Wee Batucada Scotica (music), 191
Werner, G., 15, 38, 221
western
art music, 199
tonal music, 100
Widmer, G., 37
Wiggins, G., 163
Windows (system), 190
Wolfram, S., 171
Wray, A., 247

Xenakis, 1., 170, 180

Yamaha
DX7, 52, 60
FS1, 90
TX 81Z, 89
Young, M., 204

259

	cover-image-large.jpg
	front-matter.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	fulltext_008.pdf
	fulltext_009.pdf
	back-matter.pdf

