

Structured
Computer
Organization

Fourth Edition

Andrew S. Tanenbaum
With contributions from James R.
Goodman

Structured Computer Organization is the fourth edition of this best-selling
introduction to computer hardware and architecture. It has been heavily
revised to reflect the latest changes in the rapidly changing computer industry.
Professor Tanenbaum has maintained his popular method of presenting the
computer as a hierarchy of levels, each with a well-defined function. The book
is written in a style and level of detail that covers all the major areas, but is still
accessible to a broad range of readers.

After an introductory chapter and a chapter about system organization
(processors, memories, and I/O devices), we come to the core of the book:
chapters on the digital logic level, the microarchitecture level, the instruction
set architecture level, the operating system level, and the assembly language
level. Finally, there is a chapter on the increasingly important topic of parallel
computer architectures.

New to this edition:

• The running examples throughout the book are now the Pentium II,
Sun UltraSPARC II, and Java Virtual Machine, inlcuding Sun's
hardware Java chip that implements JVM

• The input/output devices discussed in the computer systems
organization chapter have been updated to emphasize modern
technology such as RAID disks, CD-recordables, DVD, and color
printers

• Modern computer buses, such as the PCI bus and USB bus have been
added to the digital logic level.

• The microarchitecture level has been completely rewritten and updated
as follows:

Book Resources
Overview

o The detailed microprogrammed machine example illustrating
data path control is now based on a subset of the Java Virtual
Machine

o Design cost and performance tradeoffs are illustrated with a
series of detailed examples culminating with the Mic-4 example
that uses a seven-stage pipeline to introduce how modern
computers such as the Pentium II work

o A new section on improving performance focuses on the most
recent techniques such as caching, branch prediction, out-of-
order execution, and speculative execution

• The instruction architecture level covers machine language using
the new running examples.

• The operating system level includes examples for the Pentium II
(Windows NT) and the UltraSPARC II (UNIX).

• New material on dynamic linking has been added to the assembly
language level .

• The parallel computer architecture chapter has been completely
rewritten and expanded to include a detailed treatment of
multiprocessors (UMA, NUMA, and COMA), and multicomputers (MPP
and COW).

• All code examples have been rewritten in Java.

With nearly 300 end-of-chapter exercises. an up-to-date annotated
bibliography, figure files available for downloading, a Mic-1 simulator for
student use, and a new instructor's manual, this book is ideal for courses in
computer architecture or assembly language programming.

The first three editions of this book were based on the idea that a computer
can be regarded as a hierarchy of levels, each one performing some well-
defined function. This fundamental concept is as valid today as it was when
the first edition came out, so it has been retained as the basis for the fourth
edition. As in the first three editions, the digital logic level, the
microarchitecture level, the instruction set architecture level, the operating
system machine level, and the assembly language level are all discussed in
detail (although we have changed some of the names to reflect modern
practice).

Although the basic structure has been maintained, this fourth edition contains
many changes, both small and large, that bring it up to date in the rapidly
changing computer industry. For example, all the code examples, which were
in Pascal, have been rewritten in Java, reflecting the popularity of Java in the
computer world. Also, the example machines used have been brought up to
date. The current examples are the Intel Pentium II, the Sun UltraSPARC II,
and the Sun picoJava II, an embedded low-cost hardware Java chip.

Multiprocessors and parallel computers have also come in widespread use
since the third edition, so the material on parallel architectures has been
completely redone and greatly expanded, now covering a wide range of
topics, from multiprocessors to COWs.

The book has become longer over the years (although still not as long as
some other popular books on the subject). Such an expansion is inevitable as
a subject develops and there is more known about it. As a result, when the
book is used for a course, it may not always be possible to finish the book in a
single course (e.g., in a trimester system). A possible approach would be to
do all of Chaps. 1, 2, and 3, the first part of Chap. 4 (up through and including
Sec. 4.4), and Chap. 5 as a bare minimum. The remaining time could be filled
with the rest of Chap. 4, and parts of Chaps. 6, 7, and 8, depending on the
interest of the instructor.

A chapter-by-chapter rundown of the major changes since the third edition
follows. Chapter 1 still contains an historical overview of computer
architecture, pointing out how we got where we are now and what the
milestones were along the way. The enlarged spectrum of computers that
exist is now discussed, and our three major examples (Pentium II,
UltraSPARC II, and picoJava II) are introduced.

In Chapter 2, the material on input/output devices has been updated,
emphasizing the technology of modern devices, including RAID disks, CD-
Recordables, DVD, and color printers, among many others.

Chapter 3 (digital logic level) has undergone some revision and now treats
computer buses and modern I/O chips. The major change here is additional

Book Resources
Preface

material on buses, especially the PCI bus and the USB bus. The three new
examples are described here at the chip level.

Chapter 4 (now called the microarchitecture level) has been completely
rewritten. The idea of using a detailed example of a microprogrammed
machine to illustrate the ideas of data path control has been retained, but the
example machine is now a subset of the Java Virtual Machine. The underlying
microarchitecture has been correspondingly changed. Several iterations of the
design are given, showing what trade-offs are possible in terms of cost and
performance. The last example, the Mic-4, uses a seven-stage pipeline and
provides an easy introduction to how important modern computers, such as
the Pentium II, work. A new section on improving performance has been
added, focusing on the most recent techniques such as caching, branch
prediction, (superscalar) out-of-order execution, speculative execution, and
predication. The new example machines are discussed at the
microarchitecture level.

Chapter 5 (now called the instruction set architecture level) deals with what
many people refer to as *(OQmachine language.*(CQ The Pentium II,
UltraSPARC II and Java Virtual Machine are used as the primary examples
here.

Chapter 6 (operating system machine level) has examples for the Pentium II
(Windows NT) and UltraSPARC II (UNIX). The former is new and has many
features that are worth looking at, but UNIX is still a reliable workhorse at
many universities and companies and is well worth examining in detail as well
due to its simple and elegant design.

Chapter 7 (assembly language level) has been brought up to date by using
examples from the machines we have been studying. New material on
dynamic linking has been added as well.

Chapter 8 (parallel computer architectures) has been completely rewritten
from the third edition. It now covers both multiprocessors (UMA, NUMA, and
COMA) in detail, as well as multicomputers (MPP and COW).

The bibliography has been extensively revised and brought up to date. Well
over two-thirds the references refer to works published after the third edition
was published. Binary numbers and floating-point numbers have not
undergone much change recently, so the appendices are largely the same as
in the previous edition.

Finally, some problems have been revised and many new problems have
been added since the third edition. Accordingly, a new problem solutions
manual is available from Prentice Hall. It is available .I only to faculty
members, who can request a free copy from their Prentice Hall
representative.

A Web site for this book is available. PostScript files for all the illustrations
used in the book are available electronically. They can be fetched and printed,
for example, for making overhead sheets. In addition, a simulator and other
and software tools are there too. The URL for this site is .HS .ti 0.25i
\fIhttp://www.cs.vu.nl/\(tiast/sco4/\fP .HS The simulator and software tools

were produced by Ray Ontko. The author wishes to express his gratitude to
Ray for producing these extremely useful programs.

A number of people have read (parts of) the manuscript and provided useful
suggestions or have been helpful in other ways. In particular, I would like to
thank Henri Bal, Alan Charlesworth, Stan Eisenstat, Kourosh Gharachorloo,
Marcus Goncalves, Karen Panetta Lentz, Timothy Mattson, Harlan McGhan,
Miles Murdocca, Kevin Normoyle, Mike O'Connor, Mitsunori Ogihara, Ray
Ontko, Aske Plaat, William Potvin II, Nagarajan Prabhakaran. James H.
Pugsley, Ronald N. Schroeder, Ryan Shoemaker, Charles Silio, Jr., and Dale
Skrien for their help, for which I am most grateful. My students, especially
Adriaan Bon, Laura de Vries, Dolf Loth, Guido van 't Noordende, have also
helped debug the text. Thank you.

I would especially like to thank Jim Goodman for his many contributions to this
book, especially to Chaps. 4 and 5. The idea of using the Java Virtual
Machine was his, as were the microarchitectures for implementing it. Many of
the advanced ideas were due to him. The book is far better for his having put
in so much effort.

Finally, I would like to thank Suzanne for her patience for my long hours in
front of my Pentium. From my point of view the Pentium is a big improvement
over my older 386 but from hers, it does not make much difference. I also
want to thank Barbara and Marvin for being great kids and Bram for always
being quiet when I was trying to write.

Andrew S. Tanenbaum

© 2000-2001 by Prentice-Hall, Inc.
A Pearson Company
Distance Learning at Prentice Hall
Legal Notice

Chapter 1 INTRODUCTION 1

1.1 Structured Computer Organization 2
 1.1.1 Languages, Levels, and Virtual Machines 2
 1.1.2 Contemporary Multilevel Machines 4
 1.1.3 Evolution of Multilevel Machines 8

1.2 Milestones In Computer Architecture 13
 1.2.1 The Zeroth Generation-Mechanical Computers (1642-1945) 13
 1.2.2 The First Generation-Vacuum Tubes (1945-1955) 16
 1.2.3 The Second Generation-Transistors (1955-1965) 19
 1.2.4 The Third Generation-Integrated Circuits (1965-1980) 21
 1.2.5 The Fourth Generation-Very Large Scale Integration (1980-?) 23

1.3 The Computer Zoo 24
 1.3.1 Technological and Economic Forces 25
 1.3.2 The Computer Spectrum 26

1.4 Example Computer Families 29
 1.4.1 Introduction to the Pentium II 29
 1.4.2 Introduction to the UltraSPARC II 31
 1.4.3 Introduction to the picoJava II 34

1.5 Outline Of This Book 36

Chapter 2 COMPUTER SYSTEMS ORGANIZATION 39

2.1 Processors 39
 2.1.1 CPU Organization 40
 2.1.2 Instruction Execution 42
 2.1.3 RISC versus CISC 46
 2.1.4 Design Principles for Modern Computers 47
 2.1.5 Instruction-Level Parallelism 49
 2.1.6 Processor-Level Parallelism 53

2.2 Primary Memory 56

Book Resources
Table of Contents

 2.2.1 Bits 56
 2.2.2 Memory Addresses 57
 2.2.3 Byte Ordering 58
 2.2.4 Error-Correcting Codes 61
 2.2.5 Cache Memory 65
 2.2.6 Memory Packaging and Types 67

2.3 Secondary Memory 68
 2.3.1 Memory Hierarchies 69
 2.3.2 Magnetic Disks 70
 2.3.3 Floppy Disks 73
 2.3.4 IDE Disks 73
 2.3.5 SCSI Disks 75
 2.3.6 RAID 76
 2.3.7 CD-ROMs 80
 2.3.8 CD-Recordables 84
 2.3.9 CD-Rewritables 86
 2.3.10 DVD 86

2.4 Input/Output 89
 2.4.1 Buses 89
 2.4.2 Terminals 91
 2.4.3 Mice 99
 2.4.4 Printers 101
 2.4.5 Modems 106
 2.4.6 Character Codes 109

2.5 Summary 113

Chapter 3 THE DIGITAL LOGIC LEVEL 117

3.1 Gates And Boolean Algebra 117
 3.1.1 Gates 118
 3.1.2 Boolean Algebra 120
 3.1.3 Implementation of Boolean Functions 122
 3.1.4 Circuit Equivalence 123

3.2 Basic Digital Logic Circuits 128
 3.2.1 Integrated Circuits 128
 3.2.2 Combinational Circuits 129
 3.2.3 Arithmetic Circuits 134
 3.2.4 Clocks 139

3.3 Memory 141

 3.3.1 Latches 141
 3.3.2 Flip-Flops 143
 3.3.3 Registers 145
 3.3.4 Memory Organization 146
 3.3.5 Memory Chips 150
 3.3.6 RAMs and ROMs 152

3.4 Cpu Chips And Buses 154
 3.4.1 CPU Chips 154
 3.4.2 Computer Buses 156
 3.4.3 Bus Width 159
 3.4.4 Bus Clocking 160
 3.4.5 Bus Arbitration 165
 3.4.6 Bus Operations 167

3.5 Example Cpu Chips 170
 3.5.1 The Pentium II 170
 3.5.2 The UltraSPARC II 176
 3.5.3 The picoJava II 179

3.6 Example Buses 181
 3.6.1 The ISA Bus 181
 3.6.2 The PCI Bus 183
 3.6.3 The Universal Serial Bus 189

3.7 Interfacing 193
 3.7.1 I/O Chips 193
 3.7.2 Address Decoding 195

3.8 Summary 198

Chapter 4 THE MICROARCHITECTURE LEVEL 203

4.1 An Example Microarchitecture 203
 4.1.1 The Data Path 204
 4.1.2 Microinstructions 211
 4.1.3 Microinstruction Control: The Mic-1 213

4.2 An Example Isa: Ijvm 218
 4.2.1 Stacks 218
 4.2.2 The IJVM Memory Model 220
 4.2.3 The IJVM Instruction Set 222
 4.2.4 Compiling Java to IJVM 226

4.3 An Example Implementation 227
 4.3.1 Microinstructions and Notation 227
 4.3.2 Implementation of IJVM Using the Mic-1 232

4.4 Design Of The Microarchitecture Level 243
 4.4.1 Speed versus Cost 243
 4.4.2 Reducing the Execution Path Length 245
 4.4.3 A Design with Prefetching: The Mic-2 253
 4.4.4 A Pipelined Design: The Mic-3 253
 4.4.5 A Seven-Stage Pipeline: The Mic-4 260

4.5 Improving Performance 264
 4.5.1 Cache Memory 265
 4.5.2 Branch Prediction 270
 4.5.3 Out-of-Order Execution and Register Renaming 276
 4.5.4 Speculative Execution 281

4.6 Examples Of The Microarchitecture Level 283
 4.6.1 The Microarchitecture of the Pentium II CPU 283
 4.6.2 The Microarchitecture of the UltraSPARC-II CPU 288
 4.6.3 The Microarchitecture of the picoJava II CPU 291
 4.6.4 A Comparison of the Pentium, UltraSPARC, and picoJava 296

4.7 Summary 298

Chapter 5 THE INSTRUCTION SET ARCHITECTURE LEVEL 303

5.1 Overview Of The Isa Level 305
 5.1.1 Properties of the ISA Level 305
 5.1.2 Memory Models 307
 5.1.3 Registers 309
 5.1.4 Instructions 311
 5.1.5 Overview of the The Pentium II ISA Level 311
 5.1.6 Overview of the The UltraSPARC II ISA Level 313
 5.1.7 Overview of the Java Virtual Machine 317

5.2 Data Types 318
 5.2.1 Numeric Data Types 319
 5.2.2 Nonnumeric Data Types 319
 5.2.3 Data Types on the Pentium II 320
 5.2.4 Data Types on the UltraSPARC II 321
 5.2.5 Data Types on the Java Virtual Machine 321

5.3 Instruction Formats 322
 5.3.1 Design Criteria for Instruction Formats 322
 5.3.2 Expanding Opcodes 325
 5.3.3 The Pentium II Instruction Formats 327
 5.3.4 The UltraSPARC II Instruction Formats 328
 5.3.5 The JVM Instruction Formats 330

5.4 Addressing 332
 5.4.1 Addressing Modes 333
 5.4.2 Immediate Addressing 334
 5.4.3 Direct Addressing 334
 5.4.4 Register Addressing 334
 5.4.5 Register Indirect Addressing 335
 5.4.6 Indexed Addressing 336
 5.4.7 Based-Indexed Addressing 338
 5.4.8 Stack Addressing 338
 5.4.9 Addressing Modes for Branch Instructions 341
 5.4.10 Orthogonality of Opcodes and Addressing Modes 342
 5.4.11 The Pentium II Addressing Modes 344
 5.4.12 The UltraSPARC II Addressing Modes 346
 5.4.13 The JVM Addressing Modes 346
 5.4.14 Discussion of Addressing Modes 347

5.5 Instruction Types 348
 5.5.1 Data Movement Instructions 348
 5.5.2 Dyadic Operations 349
 5.5.3 Monadic Operations 350
 5.5.4 Comparisons and Conditional Branches 352
 5.5.5 Procedure Call Instructions 353
 5.5.6 Loop Control 354
 5.5.7 Input/Output 356
 5.5.8 The Pentium II Instructions 359
 5.5.9 The UltraSPARC II Instructions 362
 5.5.10 The picoJava II Instructions 364
 5.5.11 Comparison of Instruction Sets 369

5.6 Flow Of Control 370
 5.6.1 Sequential Flow of Control and Branches 371
 5.6.2 Procedures 372
 5.6.3 Coroutines 376
 5.6.4 Traps 379
 5.6.5 Interrupts 379

5.7 A Detailed Example: The Towers Of Hanoi 383
 5.7.1 The Towers of Hanoi in Pentium II Assembly Language 384
 5.7.2 The Towers of Hanoi in UltraSPARC II Assembly Language 384
 5.7.3 The Towers of Hanoi in JVM Assembly Language 386

5.8 The Intel IA-64 388
 5.8.1 The Problem with the Pentium II 390
 5.8.2 The IA-64 Model: Explicitly Parallel Instruction Computing 391
 5.8.3 Predication 393
 5.8.4 Speculative Loads 395
 5.8.5 Reality Check 396

5.9 Summary 397

Chapter 6 THE OPERATING SYSTEM MACHINE LEVEL 403

6.1 Virtual Memory 404
 6.1.1 Paging 405
 6.1.2 Implementation of Paging 407
 6.1.3 Demand Paging and the Working Set Model 409
 6.1.4 Page Replacement Policy 412
 6.1.5 Page Size and Fragmentation 414
 6.1.6 Segmentation 415
 6.1.7 Implementation of Segmentation 418
 6.1.8 Virtual Memory on the Pentium II 421
 6.1.9 Virtual Memory on the UltraSPARC 426
 6.1.10 Virtual Memory and Caching 428

6.2 Virtual I/O Instructions 429
 6.2.1 Files 430
 6.2.2 Implementation of Virtual I/O Instructions 431
 6.2.3 Directory Management Instructions 435

6.3 Virtual Instructions For Parallel Processing 436
 6.3.1 Process Creation 437
 6.3.2 Race Conditions 438
 6.3.3 Process Synchronization Using Semaphores 442

6.4 Example Operating Systems 446
 6.4.1 Introduction 446
 6.4.2 Examples of Virtual Memory 455
 6.4.3 Examples of Virtual I/O 459
 6.4.4 Examples of Process Management 470

6.5 Summary 476

Chapter 7 THE ASSEMBLY LANGUAGE LEVEL 483

7.1 Introduction To Assembly Language 484
 7.1.1 What Is an Assembly Language? 484
 7.1.2 Why Use Assembly Language? 485
 7.1.3 Format of an Assembly Language Statement 488
 7.1.4 Pseudoinstructions 491

7.2 Macros 494
 7.2.1 Macro Definition, Call, and Expansion 494
 7.2.2 Macros with Parameters 496
 7.2.3 Advanced Features 497
 7.2.4 Implementation of a Macro Facility in an Assembler 498

7.3 The Assembly Process 498
 7.3.1 Two-Pass Assemblers 498
 7.3.2 Pass One 499
 7.3.3 Pass Two 502
 7.3.4 The Symbol Table 505

7.4 Linking And Loading 506
 7.4.1 Tasks Performed by the Linker 508
 7.4.2 Structure of an Object Module 511
 7.4.3 Binding Time and Dynamic Relocation 512
 7.4.4 Dynamic Linking 515

7.5 Summary 519

Chapter 8 PARALLEL COMPUTER ARCHITECTURES 523

8.1 Design Issues For Parallel Computers 524
 8.1.1 Communication Models 526
 8.1.2 Interconnection Networks 530
 8.1.3 Performance 539
 8.1.4 Software 545
 8.1.5 Taxonomy of Parallel Computers 551

8.2 SIMD Computers 554
 8.2.1 Array Processors 554
 8.2.2 Vector Processors 555

8.3 Shared-Memory Multiprocessors 559
 8.3.1 Memory Semantics 559
 8.3.2 UMA Bus-Based SMP Architectures 564
 8.3.3 UMA Multiprocessors Using Crossbar Switches 569

 8.3.4 UMA Multiprocessors Using Multistage Switching Networks 571
 8.3.5 NUMA Multiprocessors 573
 8.3.6 Cache Coherent NUMA Multiprocessors 575
 8.3.7 COMA Multiprocessors 585

8.4 Message-Passing Multicomputers 586
 8.4.1 MPPs-Massively Parallel Processors 587
 8.4.2 COWs-Clusters of Workstations 592
 8.4.3 Scheduling 593
 8.4.4 Communication Software for Multicomputers 598
 8.4.5 Application-Level Shared Memory 601

8.5 Summary 609

Chapter 9 READING LIST AND BIBLIOGRAPHY 613

9.1 Suggestions For Further Reading 613
 9.1.1 Introduction and General Works 613
 9.1.2 Computer Systems Organization 614
 9.1.3 The Digital Logic Level 615
 9.1.4 The Microarchitecture Level 616
 9.1.5 The Instruction Set Architecture Level 617
 9.1.6 The Operating System Machine Level 617
 9.1.7 The Assembly Language Level 618
 9.1.8 Parallel Computer Architectures 618
 9.1.9 Binary and Floating-Point Numbers 620

9.2 Alphabetical Bibliography 620

Appendix A BINARY NUMBERS 631

A.1 Finite-Precision Numbers 631
A.2 Radix Number Systems 633
A.3 Conversion From One Radix To Another 635
A.4 Negative Binary Numbers 637
A.5 Binary Arithmetic 640

Appendix B FLOATING-POINT NUMBERS 643

B.1 Principles Of Floating Point 644
B.2 Ieee Floating-Point Standard 754 646

INDEX 653

1
INTRODUCTION

1

Level 0

Level 1

Level 2

Level 3

Level n

Programs in L0 can be
directly executed by
the electronic circuits

Programs in L2 are
either interpreted by
interpreters running
on M1 or M0, or are
translated to L1 or L0

Programs in Ln are
either interpreted by
interpreter running
on a lower machine, or
are translated to the
machine language of a
lower machine

Programs in L1 are
either interpreted by
an interpreter running on
M0, or are translated to L0

Virtual machine Mn, with
machine language Ln

Virtual machine M3, with
machine language L3

Virtual machine M2, with
machine language L2

Virtual machine M1, with
machine language L1

Actual computer M0, with
machine language L0

…

Figure 1-1. A multilevel machine.

Level 1

Level 2

Level 3

Level 4

Level 5

Level 0

Problem-oriented language level

Translation (compiler)

Assembly language level

Translation (assembler)

Operating system machine level

Microarchitecture level

Partial interpretation (operating system)

Instruction set architecture level

Hardware

Digital logic level

Interpretation (microprogram) or direct execution

Figure 1-2. A six-level computer. The support method for
each level is supported is indicated below it (along with the
name of the supporting program).

*JOB, 5494, BARBARA
*XEQ
*FORTRAN

*DATA

*END

FORTRAN
program

Data
cards

Figure 1-3. A sample job for the FMS operating system.

222
Year Name Made by Comments222
1834 Analytical Engine Babbage First attempt to build a digital computer222
1936 Z1 Zuse First working relay calculating machine222
1943 COLOSSUS British gov’t First electronic computer222
1944 Mark I Aiken First American general-purpose computer222
1946 ENIAC I Eckert/Mauchley Modern computer history starts here222
1949 EDSAC Wilkes First stored-program computer222
1951 Whirlwind I M.I.T. First real-time computer222
1952 IAS Von Neumann Most current machines use this design222
1960 PDP-1 DEC First minicomputer (50 sold)222
1961 1401 IBM Enormously popular small business machine222
1962 7094 IBM Dominated scientific computing in the early 1960s222
1963 B5000 Burroughs First machine designed for a high-level language222
1964 360 IBM First product line designed as a family222
1964 6600 CDC First scientific supercomputer222
1965 PDP-8 DEC First mass-market minicomputer (50,000 sold)222
1970 PDP-11 DEC Dominated minicomputers in the 1970s222
1974 8080 Intel First general-purpose 8-bit computer on a chip222
1974 CRAY-1 Cray First vector supercomputer222
1978 VAX DEC First 32-bit superminicomputer222
1981 IBM PC IBM Started the modern personal computer era222
1985 MIPS MIPS First commercial RISC machine222
1987 SPARC Sun First SPARC-based RISC workstation222
1990 RS6000 IBM First superscalar machine2221
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 1-4. Some milestones in the development of the modern digital computer.

Memory

Control
unit

Arithmetic
 logic unit

Accumulator

Output

Input

Figure 1-5. The original von Neumann machine.

CPU

Omnibus

Memory Console
terminal

Paper
tape I/O

Other
I/O

Figure 1-6. The PDP-8 omnibus.

222
Property Model 30 Model 40 Model 50 Model 65222

Relative performance 1 3.5 10 21222
Cycle time (nsec) 1000 625 500 250222
Maximum memory (KB) 64 256 256 5122
Bytes fetched per cycle 1 2 4 16222
Maximum number of data channels 3 3 4 62221
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

Figure 1-7. The initial offering of the IBM 360 product line.

100000000

10000000

1000000

100000

10000

1000

100

10

1

Tr
an

si
st

or
s

1965 1970 1975 1980 1985

64M
16M

4M
1M

256K
64K

16K
1K

4K

1990 1995

Figure 1-8. Moore’s law predicts a 60 percent annual increase
in the number of transistors that can be put on a chip. The data
points given in this figure are memory sizes, in bits.

222
Type Price ($) Example application222

Disposable computer 1 Greeting cards222
Embedded computer 10 Watches, cars, appliances222
Game computer 100 Home video games222
Personal computer 1K Desktop or portable computer222
Server 10K Network server222
Collection of Workstations 100K Departmental minisupercomputer222
Mainframe 1M Batch data processing in a bank222
Supercomputer 10M Long range weather prediction22211
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1

Figure 1-9. The current spectrum of computers available. The
prices should be taken with a grain (or better yet, a metric ton)
of salt.

222
Chip Date MHz Transistors Memory Notes222

4004 4/1971 0.108 2,300 640 First microprocessor on a chip222
8008 4/1972 0.108 3,500 16 KB First 8-bit microprocessor222
8080 4/1974 2 6,000 64 KB First general-purpose CPU on a chip222
8086 6/1978 5-10 29,000 1 MB First 16-bit CPU on a chip222
8088 6/1979 5-8 29,000 1 MB Used in IBM PC222
80286 2/1982 8-12 134,000 16 MB Memory protection present222
80386 10/1985 16-33 275,000 4 GB First 32-bit CPU222
80486 4/1989 25-100 1.2M 4 GB Built-in 8K cache memory222
Pentium 3/1993 60-233 3.1M 4 GB Two pipelines; later models had MMX222
Pentium Pro 3/1995 150-200 5.5M 4 GB Two levels of cache built in222
Pentium II 5/1997 233-400 7.5M 4 GB Pentium Pro plus MMX2221
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 1-10. The Intel CPU family. Clock speeds are meas-
ured in MHz (megahertz) where 1 MHz is 1 million cycles/sec.

10M

1M

100K

10K

1K

100

10

1
1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998

Pentium

Moore's law

4004

8008

8080

8086

8088

80286

80386
80486

Pentium
Pro

Pentium
II

Tr
an

si
st

or
s

Year of introduction

Figure 1-11. Moore’s law for CPU chips.

SEC. 1.3 29

1.4 EXAMPLE COMPUTER FAMILIES

In this section we will give a brief introduction to the three computers that
will be used as examples in the rest of the book: the Pentium II, the UltraSPARC
II, and the picoJava II [sic].

1.4.1 Introduction to the Pentium II

In 1968, Robert Noyce, inventor of the silicon integrated circuit, Gordon
Moore, of Moore’s law fame, and Arthur Rock, a San Francisco venture capitalist,
formed the Intel Corporation to make memory chips. In its first year of operation,
Intel sold only $3000 worth of chips, but business has picked up since then.

In the late 1960s, calculators were large electromechanical machines the size
of a modern laser printer and weighing 20 kg. In Sept. 1969, a Japanese com-
pany, Busicom, approached Intel with a request for it to manufacture 12 custom
chips for a proposed electronic calculator. The Intel engineer assigned to this pro-
ject, Ted Hoff, looked at the plan and realized that he could put a 4-bit general-
purpose CPU on a single chip that would do the same thing and be simpler and
cheaper as well. Thus in 1970, the first single-chip CPU, the 2300-transistor 4004
was born (Faggin et al., 1996).

It is worth noting that neither Intel nor Busicom had any idea what they had
just done. When Intel decided that it might be worth a try to use the 4004 in other
projects, it offered to buy back all the rights to the new chip from Busicom by
returning the $60,000 Busicom had paid Intel to develop it. Intel’s offer was
quickly accepted, at which point it began working on an 8-bit version of the chip,
the 8008, introduced in 1972.

Intel did not expect much demand for the 8008, so it set up a low-volume pro-
duction line. Much to everyone’s amazement, there was an enormous amount of
interest, so Intel set about designing a new CPU chip that got around the 8008’s
16K memory limit (imposed by the number of pins on the chip). This design
resulted in the 8080, a small, general-purpose CPU, introduced in 1974. Much
like the PDP-8, this product took the industry by storm and instantly became a
mass market item. Only instead of selling thousands, as DEC had, Intel sold mil-
lions.

In 1978 came the 8086, a true 16-bit CPU on a single chip. The 8086 was
designed to be somewhat similar to the 8080, but it was not completely compati-
ble with the 8080. The 8086 was followed by the 8088, which had the same
architecture as the 8086, and ran the same programs but had an 8-bit bus instead
of a 16-bit bus, making it both slower and cheaper than the 8086. When IBM
chose the 8088 as the CPU for the original IBM PC, this chip quickly became the
personal computer industry standard.

Neither the 8088 nor the 8086 could address more than 1 megabyte of
memory. By the early 1980s this became more and more of a serious problem, so

30 INTRODUCTION CHAP. 1

Intel designed the 80286, an upward compatible version of the 8086. The basic
instruction set was essentially the same as that of the 8086 and 8088, but the
memory organization was quite different, and rather awkward, due to the require-
ment of compatibility with the older chips. The 80286 was used in the IBM
PC/AT and in the midrange PS/2 models. Like the 8088, it was a huge success,
mostly because people viewed it as a faster 8088.

The next logical step was a true 32-bit CPU on a chip, the 80386, brought out
in 1985. Like the 80286, this one was more-or-less compatible with everything
back to the 8080. Being backward compatible was a boon to people for whom
running old software was important, but a nuisance to people who would have
preferred a simple, clean, modern architecture unencumbered by the mistakes and
technology of the past.

Four years later the 80486 came out. It was essentially a faster version of the
80386 that also had a floating-point unit and 8K of cache memory on chip. Cache
memory is used to hold the most commonly used memory words inside or close
to the CPU, to avoid (slow) accesses to main memory. The 80386 also had built-
in multiprocessor support, to allow manufacturers to build systems containing
multiple CPUs.

At this point, Intel found out the hard way (by losing a trademark infringe-
ment lawsuit) that numbers (like 80486) cannot be trademarked, so the next gen-
eration got a name: Pentium (from the Greek word for five, πεντε). Unlike the
80486, which had one internal pipeline, the Pentium had two of them, which
helped make it twice as fast (we will discuss pipelines in detail in Chap. 2).

When the next generation appeared, people who were hoping for the Sexium
(sex is Latin for six) were disappointed. The name Pentium was now so well
known that the marketing people wanted to keep it, and the new chip was called
the Pentium Pro. Despite the small name change from its predecessor, this pro-
cessor represented a major break with the past. Instead of having two or more
pipelines, the Pentium Pro had a very different internal organization and could
execute up to five instructions at a time.

Another innovation found in the Pentium Pro was a two-level cache memory.
The processor chip itself had 8 KB of memory to hold commonly-used instruc-
tions and 8 KB of memory to hold commonly-used data. In the same cavity with-
in the Pentium Pro package (but not on the chip itself) was a second cache
memory of 256 KB.

The next new Intel processor was the Pentium II, essentially a Pentium Pro
with special multimedia extensions (called MMX) added. These instructions
were intended to speed up computations required to process audio and video,
making the addition of special multimedia coprocessors unnecessary. These
instructions were also available in later Pentiums, but not in the Pentium Pro, so
the Pentium II combined the strengths of the Pentium Pro with multimedia.

In early 1998, Intel introduced a new product line called the Celeron, which
was basically a low-price, low-performance version of the Pentium II intended for

SEC. 1.4 EXAMPLE COMPUTER FAMILIES 31

low-end PCs. Since the Celeron has the same architecture as the Pentium II, we
will not discuss it further in this book. In June 1998, Intel introduced a special
version of the Pentium II for the upper end of the market. This processor, called
the Xeon, had a larger cache, a faster bus, and better multiprocessor support, but
was otherwise a normal Pentium II, so we will not discuss it separately either.
The Intel family is shown in Fig. 1-1.
222

Chip Date MHz Transistors Memory Notes222
4004 4/1971 0.108 2,300 640 First microprocessor on a chip222
8008 4/1972 0.108 3,500 16 KB First 8-bit microprocessor222
8080 4/1974 2 6,000 64 KB First general-purpose CPU on a chip222
8086 6/1978 5-10 29,000 1 MB First 16-bit CPU on a chip222
8088 6/1979 5-8 29,000 1 MB Used in IBM PC222
80286 2/1982 8-12 134,000 16 MB Memory protection present222
80386 10/1985 16-33 275,000 4 GB First 32-bit CPU222
80486 4/1989 25-100 1.2M 4 GB Built-in 8K cache memory222
Pentium 3/1993 60-233 3.1M 4 GB Two pipelines; later models had MMX222
Pentium Pro 3/1995 150-200 5.5M 4 GB Two levels of cache built in222
Pentium II 5/1997 233-400 7.5M 4 GB Pentium Pro plus MMX2221

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 1-1. The Intel CPU family. Clock speeds are measured in MHz
(megahertz) where 1 MHz is 1 million cycles/sec.

All the Intel chips are backward compatible with their predecessors back as
far as the 8086. In other words, a Pentium II can run 8086 programs without
modification. This compatibility has always been a design requirement for Intel,
to allow users to maintain their existing investment in software. Of course, the
Pentium II is 250 times more complex than the 8086, so it can do quite a few
things that the 8086 could not do. These piecemeal extensions have resulted in an
architecture that is not as elegant as it might have been had someone given the
Pentium II architects 7.5 million transistors and instructions to start all over again.

It is interesting to note that although Moore’s law was long associated with
the number of bits in a memory, it applies equally well to CPU chips. By plotting
the transistor counts given in Fig. 1-1 against the date of introduction of each chip
on a semilog scale, we see that Moore’s law holds here too. This graph is given in
Fig. 1-2.

1.4.2 Introduction to the UltraSPARC II

In the 1970s, UNIX was popular at universities, but no personal computers ran
UNIX, so UNIX-lovers had to use (often overloaded) timeshared minicomputers
such as the PDP-11 and VAX. In 1981, a German Stanford graduate student,

32 INTRODUCTION CHAP. 1

10M

1M

100K

10K

1K

100

10

1
1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998

Pentium

Moore's law

4004

8008

8080

8086

8088

80286

80386
80486

Pentium
Pro

Pentium
II

Tr
an

si
st

or
s

Year of introduction

Figure 1-2. Moore’s law for CPU chips.

Andy Bechtolsheim, who was frustrated at having to go to the computer center to
use UNIX, decided to solve this problem by building himself a personal UNIX

workstation out of off-the-shelf parts. He called it the SUN-1 (Stanford Univer-
sity Network).

Bechtolsheim soon attracted the attention of Vinod Khosla, a 27-year-old
Indian who had a burning desire to retire as a millionaire by age 30. Khosla con-
vinced Bechtolsheim to form a company to build and sell Sun workstations.
Khosla then hired Scott McNealy, another Stanford graduate student, to head
manufacturing. To write the software, they hired Bill Joy, the principle architect
of Berkeley UNIX. The four of them founded Sun Microsystems in 1982.

Sun’s first product, the Sun-1, which was powered by a Motorola 68020 CPU,
was an instant success, as were the follow-up Sun-2 and Sun-3 machines, which
also used Motorola CPUs. Unlike other personal computers of the day, these
machines were far more powerful (hence the designation ‘‘workstation’’) and
were designed from the start to be run on a network. Each Sun workstation came
equipped with an Ethernet connection and with TCP/IP software for connecting to
the ARPANET, the forerunner of the Internet.

By 1987, Sun, now selling half a billion dollars a year worth of systems,
decided to design its own CPU, basing it upon a revolutionary new design from
the University of California at Berkeley (the RISC II). This CPU, called the
SPARC (Scalable Processor ARChitecture), formed the basis of the Sun-4
workstation. Within a short time, all of Sun’s products used the SPARC CPU.

Unlike many other computer companies, Sun decided not to manufacture the
SPARC CPU chip itself. Instead, it licensed several different semiconductor
manufacturers to produce them, hoping that competition among them would drive

SEC. 1.4 EXAMPLE COMPUTER FAMILIES 33

performance up and prices down. These vendors produced a number of different
chips, based on different technologies, running at different clock speeds, and with
various prices. These chips included the MicroSPARC, HyperSPARC, Super-
SPARC, and TurboSPARC. Although these CPUs differed in minor ways, all
were binary compatible and ran the same user programs without modification.

Sun always wanted SPARC to be an open architecture, with many suppliers of
parts and systems, in order to build an industry that could compete in a personal
computer world already dominated by Intel-based CPUs. To gain the trust of
companies that were interested in the SPARC but did not want to invest in a pro-
duct controlled by a competitor, Sun created an industry consortium, SPARC
International, to manage the development of future versions of the SPARC archi-
tecture. Thus it is important to distinguish between the SPARC architecture,
which is a specification of the instruction set and other programmer-visible
features, and a particular implementation of it. In this book we will study both the
generic SPARC architecture, and, when discussing CPU chips in Chaps. 3 and 4,
a specific SPARC chip used in Sun workstations.

The initial SPARC was a full 32-bit machine, running at 36 MHz. The CPU,
called the IU (Integer Unit) was lean and mean, with only three major instruction
formats and only 55 instructions in all. In addition, a floating-point unit added
another 14 instructions. This history can be contrasted to the Intel line, which
started out with 8- and 16-bit chips (8088, 8086, 80286) and finally became a 32-
bit chip with the 80386.

The SPARC’s first break with the past occurred in 1995, with the develop-
ment of Version 9 of the SPARC architecture, a full 64-bit architecture, with 64-
bit addresses and 64-bit registers. The first Sun workstation to implement the V9
(Version 9) architecture was the UltraSPARC I, introduced in 1995 (Tremblay
and O’Connor, 1996). Despite its being a 64-bit machine, it was also fully binary
compatible with the existing 32-bit SPARCs.

The UltraSPARC was intended to break new ground. Whereas previous ma-
chines were designed for handling alphanumeric data and running programs like
word processors and spreadsheets, the UltraSPARC was designed from the begin-
ning to handle images, audio, video, and multimedia in general. Among other
innovations besides the 64-bit architecture were 23 new instructions, including
some for packing and unpacking pixels from 64-bit words, scaling and rotating
images, block moves, and performing real-time video compression and decom-
pression. These instructions, called VIS (Visual Instruction Set) were aimed at
providing general multimedia capability, analogous to Intel’s MMX instructions.

The UltraSPARC was aimed at high-end applications, such as large multipro-
cessor Web servers with dozens of CPUs and physical memories of up to 2 TB [1
TB (terabyte) = 1012 bytes]. However, smaller versions can be used in notebook
computers as well.

The successors to the UltraSPARC I were the UltraSPARC II and Ultra-
SPARC III. These models differ primarily in clock speed, but some new features

34 INTRODUCTION CHAP. 1

were added in each iteration as well. In this book, when we discuss the SPARC
architecture, we will use the 64-bit V9 UltraSPARC II as our example.

1.4.3 Introduction to the picoJava II

The C programming language was invented by Dennis Ritchie of Bell Labs
for use in the UNIX operating system. Due to its economical design and the popu-
larity of UNIX, C soon became the dominant programming language in the world
for systems programming. Some years later, Bjarne Stroustrup, also of Bell Labs,
added ideas from the world of object-oriented programming to C to produce C++,
which also became very popular.

In the mid 1990s, researchers at Sun Microsystems were investigating ways of
allowing users to fetch binary programs over the Internet and run them as part of
World Wide Web pages. They liked C++, except that it was not secure. In other
words, a newly fetched C++ binary program could easily spy on and otherwise
interfere with the machine that had just acquired it. Their solution to this was to
invent a new programming language, Java, inspired by C++, but without the
latter’s security problems. Java is a type-safe object-oriented language which is
increasingly used for many applications. As it is a popular and elegant language,
we will use it in this book for programming examples.

Since Java is just a programming language, it is possible to write compilers
for it that compile to the Pentium, SPARC, or any other architecture. Such com-
pilers exist. However, Sun’s major goals in introducing Java was to make it pos-
sible to exchange Java executable programs between computers on the Internet
and have the receiver run them without modification. If a Java program compiled
on a SPARC were shipped over the Internet to a Pentium, it would not run, defeat-
ing the goal of being able to send a binary program anywhere and run it there.

To make binary programs portable across different machines, Sun defined a
virtual machine architecture called JVM (Java Virtual Machine). This machine
has a memory consisting of 32-bit words and 226 instructions that the machine
can execute. Most of these instructions are simple, but a few are quite complex,
requiring multiple memory cycles.

To make Java programs portable, Sun wrote a compiler that compiles Java to
JVM. It also wrote a JVM interpreter to execute Java binary programs. This
interpreter was written in C and thus can be compiled and executed on any
machine with a C compiler, which, in practice, means almost every machine in
the world. Consequently, to enable a machine to execute Java binary programs,
all the machine’s owner needs to do is get the executable binary program for the
JVM interpreter for that platform (e.g., Pentium II and Windows 98, SPARC and
UNIX etc.) along with certain associated support programs and libraries. In addi-
tion, most Internet browsers contain a JVM interpreter inside them, to make it
very easy to run applets, which are little Java binary programs associated with
World Wide Web pages. Many of these applets provide animation and sound.

SEC. 1.4 EXAMPLE COMPUTER FAMILIES 35

Interpreting JVM programs (or any other programs, for that matter) is slow.
An alternative approach to running an applet or other newly-received JVM pro-
gram is to first compile it for the machine at hand, and then run the compiled pro-
gram. This strategy requires having a JVM-to-machine-language compiler inside
the browser and being able to activate it on-the-fly as needed. Such compilers,
called JIT (Just In Time) compilers, exist and are commonplace. However, they
are large and introduce a delay between arrival of the JVM program and its execu-
tion while the JVM program is compiled to machine language.

In addition to software implementations of the JVM machine (JVM inter-
preters and JIT compilers), Sun and other companies have designed hardware
JVM chips. These are CPU designs that directly execute JVM binary programs,
without the need for a layer of software interpretation or JIT compilation. The
initial architectures, the picoJava-I (O’Connor and Tremblay, 1997) and the
picoJava-II (McGhan and O’Connor, 1998), were targeted at the embedded sys-
tems market. This market requires powerful, flexible, and especially low-cost
chips (under $50, often way under) that are embedded inside smart cards, TV sets,
telephones, and other appliances, especially those that need to communicate with
the outside world. Sun licensees can manufacture their own chips using the pico-
Java design, customizing them to some extent by including or removing the
floating-point unit, adjusting the size of the caches, etc.

The value of a Java chip for the embedded systems market is that a device can
change its functionality while in operation. As an example, consider a business
executive with a Java-based cellular telephone who never anticipated the need to
read faxes on the telephone’s tiny screen and who suddenly needs to do so. By
calling the cellular provider, the executive can download a fax viewing applet into
the telephone and add this functionality to the device. Performance requirements
dictate against having Java applets be interpreted, and the lack of memory in the
telephone make JIT compilation impossible. This is a situation where a JVM chip
is useful.

Although the picoJava II is not a concrete chip (you cannot go to the store and
buy one), it is the basis for a number of chips, such as the Sun microJava 701
CPU and various chips from other Sun licensees. We will use the picoJava II
design as one of our running examples throughout the book since it is very dif-
ferent from the Pentium II and UltraSPARC CPUs and is targeted at a very dif-
ferent application area. This CPU is particularly interesting for our purposes
because in Chap. 4, we will present a design for implementing a subset of JVM
using microprogramming. We will then be able to contrast our microprogrammed
design with a true hardware design.

The picoJava II has two optional units: a cache and a floating-point unit,
which each chip manufacturer can include or remove, as it wishes. For the sake
of simplicity, we will refer to the picoJava II as if it were a chip rather than a chip
design. When it matters (only rarely), we will be specific and talk about the Sun
microJava 701 chip that implements the picoJava II design. When we do not

36 INTRODUCTION CHAP. 1

mention the microJava 701 specifically, the material still applies to it, and also to
all the other Java chips from other vendors based on this design.

By using the Pentium II, UltraSPARC II, and picoJava II as our examples, we
can study three different kinds of CPUs. These are, respectively, a traditional
CISC architecture implemented with modern superscalar technology, a true RISC
architecture implemented with superscalar technology, and a dedicated Java chip
for use in embedded systems. These three processors are very different from one
another, which gives us the opportunity to explore the design space better and see
what kinds of trade-offs can be made for processors aimed at different audiences.

2
COMPUTER SYSTEMS

ORGANIZATION

1

Central processing unit (CPU)

Control
unit

Arithmetic
logical unit

(ALU)

Registers

Main
memory Disk Printer

Bus

I/O devices

… …
Figure 2-1. The organization of a simple computer with one
CPU and two I/O devices.

A + B

A + B

A

A

B

B

Registers

ALU input register

ALU output register

ALU

ALU input bus

Figure 2-2. The data path of a typical von Neumann machine.

public class Interp {
static int PC; // program counter holds address of next instr
static int AC; // the accumulator, a register for doing arithmetic
static int instr; // a holding register for the current instruction
static int instr3type; // the instruction type (opcode)
static int data3loc; // the address of the data, or −1 if none
static int data; // holds the current operand
static boolean run3bit = true; // a bit that can be turned off to halt the machine

public static void interpret(int memory[], int starting3address) {
// This procedure interprets programs for a simple machine with instructions having
// one memory operand. The machine has a register AC (accumulator), used for
// arithmetic. The ADD instruction adds am integer in memory to the AC, for example
// The interpreter keeps running until the run bit is turned off by the HALT instruction.
// The state of a process running on this machine consists of the memory, the
// program counter, the run bit, and the AC. The input parameters consist of
// of the memory image and the starting address.

PC = starting3address;
while (run3bit) {

instr = memory[PC]; // fetch next instruction into instr
PC = PC + 1; // increment program counter
instr3type = get3instr3type(instr); // determine instruction type
data3loc = find3data(instr, instr3type); // locate data (−1 if none)
if (data3loc >= 0) // if data3loc is −1, there is no operand

data = memory[data3loc]; // fetch the data
execute(instr3type, data); //execute instruction

}

}

private static int get3instr3type(int addr) { ... }
private static int find3data(int instr, int type) { ... }
private static void execute(int type, int data){ ... }

}

Figure 2-3. An interpreter for a simple computer (written in Java).

(a)

(b)

S1:

S2:

S3:

S4:

S5:

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7

1 2 3 4 5 6

1 2 3 4 5

1 2 3 4 5 6 7 8 9
Time

…

S1 S2 S3 S4 S5

Instruction
fetch
unit

Instruction
decode

unit

Operand
fetch
unit

Instruction
execution

unit

Write
back
unit

Figure 2-4. (a) A five-stage pipeline. (b) The state of each
stage as a function of time. Nine clock cycles are illustrated.

S1 S2 S3 S4 S5

Instruction
fetch
unit

Instruction
decode

unit

Operand
fetch
unit

Instruction
execution

unit

Write
back
unit

Instruction
decode

unit

Operand
fetch
unit

Instruction
execution

unit

Write
back
unit

Figure 2-5. (a) Dual five-stage pipelines with a common in-
struction fetch unit.

S2 S3 S5

Instruction
decode

unit

Operand
fetch
unit

LOAD
Write
back
unit

S1

Instruction
fetch
unit

S4

Floating
point

STORE

ALU

ALU

Figure 2-6. A superscalar processor with five functional units.

Control unit

Broadcasts instructions

Processor

Memory

8 × 8 Processor/memory grid

Figure 2-7. An array processor of the ILLIAC IV type.

(a) (b)

CPU

Shared
memory

Bus

CPU CPU CPU

Local memories

CPU

Shared
memory

Bus

CPU CPU CPU

Figure 2-8. (a) A single-bus multiprocessor. (b) A multicom-
puter with local memories.

Address 1 Cell

0

(c)

1

2

3

4

5

6

7

8

9

10

11

Address

0

Address

1

2

3

4

5

6

7

0

1

2

3

4

5
16 bits

(b)

12 bits

(a)

8 bits

Figure 2-9. Three ways of organizing a 96-bit memory.

2222222222222222222222222222222222
Computer Bits/cell2222222222222222222222222222222222

Burroughs B1700 12222222222222222222222222222222222
IBM PC 82222222222222222222222222222222222
DEC PDP-8 122222222222222222222222222222222222
IBM 1130 162222222222222222222222222222222222
DEC PDP-15 182222222222222222222222222222222222
XDS 940 242222222222222222222222222222222222
Electrologica X8 272222222222222222222222222222222222
XDS Sigma 9 322222222222222222222222222222222222
Honeywell 6180 362222222222222222222222222222222222
CDC 3600 482222222222222222222222222222222222
CDC Cyber 60222222222222222222222222222222222211
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 2-10. Number of bits per cell for some historically in-
teresting commercial computers.

Address AddressBig endian

Byte

00

(a)

44

88

1212

0

4

8

12

1

5

9

13

2

6

10

14

3

7

11

15

32-bit word

Little endian

Byte

3

(b)

7

11

15

2

6

10

14

1

5

9

13

0

4

8

12

32-bit word

Figure 2-11. (a) Big endian memory. (b) Little endian memory.

Big endian

(a)

J0 I M

S4 M I T

H8 0 0 0

012 0 0 21

016 0 1 4

Little endian

(b)

J 0M I

T 4I M S

0 80 0 H

0 120 0 21

0 160 1 4

Transfer from
big endian to
little endian

(c)

JM I

T I M S

0 0 0 H

21 0 0 0

4 1 0 0

Transfer and
swap

(d)

J 0I M

S 4M I T

H 80 0 0

0 120 0 21

0 160 1 4

Figure 2-12. (a) A personnel record for a big endian machine.
(b) The same record for a little endian machine. (c) The result
of transferring the record from a big endian to a little endian.
(d) The result of byte-swapping (c).

222
Word size Check bits Total size Percent overhead222

8 4 12 50222
16 5 21 31222
32 6 38 19222
64 7 71 11222

128 8 136 6222
256 9 265 4222
512 10 522 2211

1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1

Figure 2-13. Number of check bits for a code that can correct
a single error.

B

A

C
11

0

0

(a)

B

(b)

Parity
bits

A

C
11

0

0

0

0

1

(c)

Error

A

B

C
1 11

1

0

0

0

Figure 2-14. (a) Encoding of 1100. (b) Even parity added. (c) Error in AC.

Memory word 1111000010101110

0
1

0
2

1
3

0
4

1
5

1
6

1
7

0
8

0
9

0
10

0
11

0
12

1
13

0
14

1
15

1
16

0
17

1
18

1
19

1
20

0
21

Parity bits

Figure 2-15. Construction of the Hamming code for the
memory word 1111000010101110 by adding 5 check bits to the
16 data bits.

Cache

Bus

Main
memory

CPU

Figure 2-16. The cache is logically between the CPU and
main memory. Physically, there are several possible places it
could be located.

4-MB
memory

chip

Connector

Figure 2-17. A single inline memory module (SIMM) holding
32 MB. Two of the chips control the SIMM.

Registers

Main memory

Cache

Tape

Magnetic disk

Optical disk

Figure 2-18. A five-level memory hierarchy.

Track
width is
5–10 microns

Width of
1 bit is
0.1 to 0.2 microns

Direction
of arm
motion

Disk
arm

Read/write
head

Intersector gap

Direction of disk rotation
4096 data bits

Preamble

E
C

C

4096 data bits

Preamble

E
C
C1 sector

Figure 2-19. A portion of a disk track. Two sectors are illustrated.

Surface 2
Surface 1

Surface 0

Read/write head (1 per surface)

Direction of arm motion
Surface 3

Surface 5

Surface 4

Surface 7

Surface 6

Figure 2-20. A disk with four platters.

22
Parameters LD 5.25′′ HD 5.25′′ LD 3.5′′ HD 3.5′′22

Size (inches) 5.25 5.25 3.5 3.522
Capacity (bytes) 360K 1.2M 720K 1.44M22
Tracks 40 80 80 8022
Sectors/track 9 15 9 1822
Heads 2 2 2 222
Rotations/min 300 360 300 30022
Data rate (kbps) 250 500 250 50022
Type Flexible Flexible Rigid Rigid221
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 2-21. Characteristics of the four kinds of floppy disks.

22
Name Data bits Bus MHz MB/sec22

SCSI-1 8 5 522
SCSI-2 8 5 522
Fast SCSI-2 8 10 1022
Fast & wide SCSI-2 16 10 2022
Ultra SCSI 16 20 402211

1
1
1
1
1
1
1

11
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1

Figure 2-22. Some of the possible SCSI parameters.

P16-19 Strip 12 Strip 17 Strip 18

Strip 12 P16-12 Strip 13 Strip 14

(a)

(b)

(c)

(d)

(e)

(f)

RAID level 0

Strip 8

Strip 4

Strip 0

Strip 9

Strip 5

Strip 1

Strip 10

Strip 6

Strip 2

RAID level 2

Strip 11

Strip 7

Strip 3

Strip 8

Strip 4

Strip 0

Strip 9

Strip 5

Strip 1

Strip 10

Strip 6

Strip 2

Strip 11

Strip 7

Strip 3

Strip 8

Strip 4

Strip 0

Strip 9

Strip 5

Strip 1

Strip 10

Strip 6

Strip 2

Strip 11

Strip 7

Strip 3

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6

RAID
level 1

Bit 7

Bit 1 Bit 2 Bit 3 Bit 4

Strip 8

Strip 4

Strip 0

Strip 9

Strip 5

Strip 1

Strip 10

Strip 6

Strip 2

Strip 11

Strip 7

Strip 3

Strip 8

Strip 4

Strip 0

Strip 9

Strip 5

Strip 1

P8-11

Strip 6

Strip 2

Strip 10

P4-7

Strip 3

Strip 19

Strip 15

RAID level 3

RAID level 4

RAID level 5

Parity

P8-11

P4-7

P0-3

Strip 11

Strip 7

P0-3

Figure 2-23. RAID levels 0 through 5. Backup and parity
drives are shown shaded.

Spiral groove

Pit

Land

2K block of
user data

Figure 2-24. Recording structure of a Compact Disc or CD-ROM.

Preamble

Bytes 16

Data

2048 288

ECC
Mode 1
sector

(2352 bytes)

Frames of 588 bits,
each containing
24 data bytes

Symbols of
14 bits each

42 Symbols make 1 frame

98 Frames make 1 sector

…

…

Figure 2-25. Logical data layout on a CD-ROM.

Printed label

Protective lacquer
Reflective gold layer

 layer

Substrate

Direction
of motion Lens

Photodetector Prism

Infrared
laser
diode

Dark spot in the
dye layer burned
by laser when
writing1.2 mm

Dye

Polycarbonate

Figure 2-26. Cross section of a CD-R disk and laser (not to
scale). A silver CD-ROM has a similar structure, except
without the dye layer and with a pitted aluminum layer instead
of a gold layer.

Polycarbonate substrate 1

Polycarbonate substrate 2

Semireflective
layer

Semireflective
layer

Aluminum
reflector

Aluminum
reflector

0.6 mm
Single-sided

disk

0.6 mm
Single-sided

disk

� � � �� � �� � �
� � �
� � �� � �
� � �� � �
� � �

Adhesive layer

Figure 2-27. A double-sided, dual layer DVD disk.

SCSI controller

Sound card

Modem

Edge connector
Card cage

Figure 2-28. Physical structure of a personal computer.

Monitor

Keyboard Floppy
disk drive

Hard
disk drive

Hard
disk

controller

Floppy
disk

controller

Keyboard
controller

Video
controllerMemoryCPU

Bus

Figure 2-29. Logical structure of a simple personal computer.

��� �� �� �
�

Memory bus

CPU PCI
bridge

SCSI
controller

SCSI
disk

Network
controller

Video
controller

Printer
controller

Sound
card ModemISA

bridge

SCSI
scanner

Main
memorySCSI

bus

PCI bus

ISA bus

cache

Figure 2-30. A typical modern PC with a PCI bus and an ISA
bus. The modem and sound card are ISA devices; the SCSI
controller is a PCI device.

(a) (b)

Electron gun

Grid
Screen

Spot on
screen

Vacuum

Vertical
deflection

plate

Horizontal scan

Vertical retrace Horizontal retrace

Figure 2-31. (a) Cross section of a CRT. (b) CRT scanning pattern.

(a)
(b)

y

z

Rear glass plate

Liquid crystal

Rear
electrode

Rear
polaroid

Front glass plate

Front electrode

Front polaroid

Bright

Dark

Light
source

Notebook computer

�
�
�
�
A
A
C
C
�
�
�
�
Á
Á
Ã
Ã
�
�
�
�
A
A
C
C
�
�
�
�
Á
Á
Ã
Ã
�
�
�
�
A
A
C
C
�
�
�
�
Á
Á
Ã
Ã
�
�
�
�
A
A
C
C
�
�
�
�
Á
Á
Ã
Ã
�
�
�
�
A
A
C
C
�
�
�
�
Á
Á
Ã
Ã
�
�
�
�
A
A
C
C
�
�
�
�
Á
Á
Ã
Ã
�
�
�
�
A
A
C
C
�
�
�
�
Á
Á
Ã
Ã
�
�
�
�
A
A
C
C
�
�
�
�
Á
Á
Ã
Ã
�
�
�
�

Figure 2-32. (a) The construction of an LCD screen. (b) The
grooves on the rear and front plates are perpendicular to one
another.

CPU

Character
Attribute

Analog video signal

Monitor

ABC

Bus

Video
RAM

Main
memory

Video
board

A2B2C2

Figure 2-33. Terminal output on a personal computer.

CPU Memory
Serial I/O card

UART RS-232-C connector

Telephone line (analog)

Modem ModemABC

Keyboard

Some signals:

Protective ground (1)
Transmit (2)
Receive (3)
Request to send (4)
Clear to send (5)
Data set ready (6)
Common return (7)
Carrier detect (8)
Data terminal ready (20)

Terminal

ABC

Figure 2-34. Connection of an RS-232-C terminal to a com-
puter. The numbers in parentheses in the list of signals are the
pin numbers.

Pointer controlled by mouse

Window Menu

Mouse buttons

Mouse

Rubber ball

Cut
Paste
Copy

Figure 2-35. A mouse being used to point to menu items.

(a) (b)

Figure 2-36. (a) The letter ‘‘A’’ on a 5 × 7 matrix. (b) The
letter ‘‘A’’ printed with 24 overlapping needles.

Laser Rotating octagonal
mirror

Drum sprayed and charged

Light beam
strikes drum

Toner
Scraper
Discharger

Drum

Blank
paper

Heated
rollers

Stacked
output

Figure 2-37. Operation of a laser printer.

(a) (b) (c) (d) (e) (f)

Figure 2-38. Halftone dots for various gray scale ranges. (a)
0–6. (b) 14–20. (c) 28–34. (d) 56–62. (e) 105–111. (f) 161–167.

(a)

(b)

(c)

(d)

V
ol

ta
ge

Time

V1

V2
0 1 0 0 1 0 1 1 0 0 0 1 0 0

High
amplitude

Low
amplitude

High
frequency

Low
frequency

Phase change

Figure 2-39. Transmission of the binary number
01001011000100 over a telephone line bit by bit. (a) Two-
level signal. (b) Amplitude modulation. (c) Frequency modu-
lation. (d) Phase modulation.

ISDN terminal

Customer's equipment Carrier's equipment

ISDN
telephone

ISDN
terminal

ISDN
alarm

Digital
bit pipe

T U To
carrier's
internal
network

NT1 ISDN
exchange

Figure 2-40. ISDN for home use.

SEC. 2.3 89

2.4 INPUT/OUTPUT

As we mentioned at the start of this chapter, a computer system has three
major components: the CPU, the memories (primary and secondary), and the I/O
(Input/Output) equipment such as printers, scanners, and modems. So far we
have looked at the CPU and the memories. Now it is time to examine the I/O
equipment and how it is connected to the rest of the system.

2.4.1 Buses

Physically, most personal computers and workstations have a structure similar
to the one shown in Fig. 2-1. The usual arrangement is a metal box with a large
printed circuit board at the bottom, called the motherboard (parentboard, for the
politically correct). The motherboard contains the CPU chip, some slots into
which DIMM modules can be clicked, and various support chips. It also contains
a bus etched along its length, and sockets into which the edge connectors of I/O
boards can be inserted. Sometimes there are two buses, a high-speed one (for
modern I/O boards) and a low-speed one (for older I/O boards).

SCSI controller

Sound card

Modem

Edge connector
Card cage

Figure 2-1. Physical structure of a personal computer.

The logical structure of a simple low-end personal computer is shown in
Fig. 2-2. This one has a single bus used to connect the CPU, memory, and I/O
devices; most systems have two or more buses. Each I/O device consists of two
parts: one containing most of the electronics, called the controller, and one con-
taining the I/O device itself, such as a disk drive. The controller is usually con-
tained on a board plugged into a free slot, except for those controllers that are not
optional (such as the keyboard), which are sometimes located on the motherboard.
Even though the display (monitor) is not an option, the video controller is some-
times located on a plug-in board to allow the user to choose between boards with
or without graphics accelerators, extra memory, and so on. The controller con-
nects to its device by a cable attached to a connector on the back of the box.

90 COMPUTER SYSTEMS ORGANIZATION CHAP. 2

Monitor

Keyboard Floppy
disk drive

Hard
disk drive

Hard
disk

controller

Floppy
disk

controller

Keyboard
controller

Video
controllerMemoryCPU

Bus

Figure 2-2. Logical structure of a simple personal computer.

The job of a controller is to control its I/O device and handle bus access for it.
When a program wants data from the disk for example, it gives a command to the
disk controller, which then issues seeks and other commands to the drive. When
the proper track and sector have been located, the drive begins outputting the data
as a serial bit stream to the controller. It is the job of the controller to break the
bit stream up into units, and write each unit into memory, as it is assembled. A
unit is typically one or more words. A controller that reads or writes data to or
from memory without CPU intervention is said to be performing Direct Memory
Access, better known by its acronym DMA. When the transfer is completed, the
controller normally causes an interrupt, forcing the CPU to suspend running its
current program and start running a special procedure, called an interrupt
handler, to check for errors, take any special action needed, and inform the
operating system that the I/O is now finished. When the interrupt handler is fin-
ished, the CPU continues with the program that was suspended when the interrupt
occurred.

The bus is not only used by the I/O controllers, but also by the CPU for fetch-
ing instructions and data. What happens if the CPU and an I/O controller want to
use the bus at the same time? The answer is that a chip called a bus arbiter
decides who goes next. In general, I/O devices are given preference over the
CPU, because disks and other moving devices cannot be stopped, and forcing
them to wait would result in lost data. When no I/O is in progress, the CPU can
have all the bus cycles for itself to reference memory. However, when some I/O
device is also running, that device will request and be granted the bus when it
needs it. This process is called cycle stealing and it slows down the computer.

This design worked fine for the first personal computers, since all the com-
ponents were roughly in balance. However, as the CPUs, memories, and I/O dev-
ices got faster, a problem arose: the bus could no longer handle the load
presented. On a closed system, such as an engineering workstation, the solution

SEC. 2.4 INPUT/OUTPUT 91

was to design a new and faster bus for the next model. Because nobody ever
moved I/O devices from an old model to a new one, this approached worked fine.

However, in the PC world, people often upgraded their CPU but wanted to
move their printer, scanner, and modem to the new system. Also, a huge industry
had grown up around providing a vast range of I/O devices for the IBM PC bus,
and this industry had exceedingly little interest in throwing out its entire invest-
ment and starting over. IBM learned this the hard way when it brought out the
successor to the IBM PC, the PS/2 range. The PS/2 had a new, and faster bus, but
most clone makers continued to use the old PC bus, now called the ISA (Industry
Standard Architecture) bus. Most disk and I/O device makers also continued to
make controllers for it, so IBM found itself in the peculiar situation of being the
only PC maker that was no longer IBM compatible. Eventually, it was forced
back to supporting the ISA bus. As an aside, please note that ISA stands for
Instruction Set Architecture in the context of machine levels whereas it stands for
Industry Standard Architecture in the context of buses.

Nevertheless, despite the market pressure not to change anything, the old bus
really was too slow, so something had to be done. This situation led to other com-
panies developing machines with multiple buses, one of which was the old ISA
bus, or its backward-compatible successor, the EISA (Extended ISA) bus. The
most popular of these now is the PCI (Peripheral Component Interconnect)
bus. It was designed by Intel, but Intel decided to put all the patents in the public
domain, to encourage the entire industry (including its competitors) to adopt it.

The PCI bus can be used in many configurations, but a typical one is illus-
trated in Fig. 2-3. Here the CPU talks to a memory controller over a dedicated
high-speed connection. The controller talks to the memory and to the PCI bus
directly, so CPU-memory traffic does not go over the PCI bus. However, high-
bandwidth (i.e., high data rate) peripherals, such as SCSI disks, can connect to the
PCI bus directly. In addition, the PCI bus has a bridge to the ISA bus, so that ISA
controllers and their devices can still be used. A machine of this design would
typically contain three or four empty PCI slots and another three or four empty
ISA slots, to allow customers to plug in both old ISA I/O cards (usually for slow
devices) and new PCI I/O cards (usually for fast devices).

Many kinds of I/O devices are available today. A few of the more common
ones are discussed below.

2.4.2 Terminals

Computer terminals consist of two parts: a keyboard and a monitor. In the
mainframe world, these parts are often integrated into a single device and attached
to the main computer by a serial line or over a telephone line. In the airline reser-
vation, banking, and other mainframe-oriented industries, these devices are still in
widespread use. In the personal computer world, the keyboard and monitor are
independent devices. Either way, the technology of the two parts is the same.

92 COMPUTER SYSTEMS ORGANIZATION CHAP. 2

�� �� ��
�

Memory bus

CPU PCI
bridge

SCSI
controller

SCSI
disk

Network
controller

Video
controller

Printer
controller

Sound
card ModemISA

bridge

SCSI
scanner

Main
memorySCSI

bus

PCI bus

ISA bus

cache

Figure 2-3. A typical modern PC with a PCI bus and an ISA bus. The modem
and sound card are ISA devices; the SCSI controller is a PCI device.

Keyboards

Keyboards come in several varieties. The original IBM PC came with a key-
board that had a snap-action switch under each key that gave tactile feedback and
made a click with the key was depressed far enough. Nowadays, the cheaper key-
boards have keys that just make mechanical contact when depressed. Better ones
have a sheet of elastometric material (a kind of rubber) between the keys and the
underlying printed circuit board. Under each key is a small dome that buckles
when depressed far enough. A small spot of conductive material inside the dome
closes the circuit. Some keyboards have a magnet under each key that passes
through a coil when struck, thus inducing a current that can be detected. Various
other methods, both mechanical and electromagnetic, are also in use.

On personal computers, when a key is depressed, an interrupt is generated and
the keyboard interrupt handler (a piece of software that is part of the operating
system) is started. The interrupt handler reads a hardware register inside the key-
board controller to get the number of the key (1 through 102) that was just
depressed. When a key is released, a second interrupt is caused. Thus if a user
depresses the SHIFT key, then depresses and releases the M key, then releases the
SHIFT key, the operating system can see that the user wants an upper case ‘‘M’’
rather than a lower case ‘‘m.’’ Handling of multikey sequences involving SHIFT,
CTRL, and ALT is done entirely in software (including the infamous CTRL-
ALT-DEL key sequence that is used to reboot all IBM PCs and clones).

SEC. 2.4 INPUT/OUTPUT 93

CRT Monitors

A monitor is a box containing a CRT (Cathode Ray Tube) and its power
supplies. The CRT contains a gun that can shoot an electron beam against a phos-
phorescent screen near the front of the tube, as shown in Fig. 2-4(a). (Color moni-
tors have three electron guns, one each for red, green and blue.) During the hor-
izontal scan, the beam sweeps across the screen in about 50 µsec, tracing out an
almost horizontal line on the screen. Then it executes a horizontal retrace to get
back to the left-hand edge in order to begin the next sweep. A device like this that
produces an image line by line is called a raster scan device.

(a) (b)

Electron gun

Grid
Screen

Spot on
screen

Vacuum

Vertical
deflection

plate

Horizontal scan

Vertical retrace Horizontal retrace

Figure 2-4. (a) Cross section of a CRT. (b) CRT scanning pattern.

Horizontal sweeping is controlled by a linearly increasing voltage applied to
the horizontal deflection plates placed to the left and right of the electron gun.
Vertical motion is controlled by a much more slowly linearly increasing voltage
applied to the vertical deflection plates placed above and below the gun. After
somewhere between 400 and 1000 sweeps, the voltages on the vertical and hor-
izontal deflection plates are rapidly reversed together to put the beam back in the
upper left-hand corner. A full-screen image is normally repainted between 30 and
60 times a second. The beam motions are shown in Fig. 2-4(b). Although we
have described CRTs as using electric fields for sweeping the beam across the
screen, many models use magnetic fields instead of electric ones, especially in
high-end monitors.

To produce a pattern of dots on the screen, a grid is present inside the CRT.
When a positive voltage is applied to the grid, the electrons are accelerated, caus-
ing the beam to hit the screen and make it glow briefly. When a negative voltage
is used, the electrons are repelled, so they do not pass through the grid and the
screen does not glow. Thus the voltage applied to the grid causes the correspond-
ing bit pattern to appear on the screen. This mechanism allows a binary electrical
signal to be converted into a visual display consisting of bright and dark spots.

94 COMPUTER SYSTEMS ORGANIZATION CHAP. 2

Flat Panel Displays

CRTs are far too bulky and heavy to be used in notebook computers, so a
completely different technology is needed for their screens. The most common
one is LCD (Liquid Crystal Display) technology. It is highly complex, has
many variations, and is changing rapidly, so this description will, of necessity, be
brief and greatly simplified.

Liquid crystals are viscous organic molecules that flow like a liquid but also
have spatial structure, like a crystal. They were discovered by an Austrian botan-
ist (Rheinitzer) in 1888, and first applied to displays (e.g., calculators, watches) in
the 1960s. When all the molecules are lined up in the same direction, the optical
properties of the crystal depend on the direction and polarization of the incoming
light. Using an applied electric field, the molecular alignment, hence the optical
properties, can be changed. In particular, by shining a light through a liquid crys-
tal, the intensity of the light exiting from it can be controlled electrically. This
property can be exploited to construct flat panel displays.

An LCD display screen consists of two parallel glass plates between which is
a sealed volume containing a liquid crystal. Transparent electrodes are attached
to both plates. A light behind the rear plate (either natural or artificial) illumi-
nates the screen from behind. The transparent electrodes attached to each plate
used to create electric fields in the liquid crystal. Different parts of the screen get
different voltages, to control the image displayed. Glued to the front and rear of
the screen are polaroids because the display technology requires the use of polar-
ized light. The general setup is shown in Fig. 2-5(a).

Although many kinds of LCD displays are in use, we will now consider one
particular kind of display, the TN (Twisted Nematic) display as an example. In
this display, the rear plate contains tiny horizontal grooves and the front plate con-
tains tiny vertical grooves, as illustrated in Fig. 2-5(b). In the absence of an elec-
tric field, the LCD molecules tend to align with the grooves. Since the front and
rear alignments differ by 90 degrees, the molecules (and thus the crystal structure)
twist from rear to front.

At the rear of the display is a horizontal polaroid. It only allows in horizon-
tally polarized light. At the front of the display is a vertical polaroid. It only
allows vertically polarized light to pass through. If there were no liquid present
between the plates, horizontally polarized light let in by the rear polaroid would
be blocked by the front polaroid, making the screen uniformly black.

However the twisted crystal structure of the LCD molecules guides the light
as it passes and rotates its polarization, making it come out horizontally. Thus in
the absence of an electric field, the LCD screen is uniformly bright. By applying
a voltage to selected parts of the plate, the twisted structure can be destroyed,
blocking the light in those parts.

Two schemes are commonly used for applying the voltage. In a (low-cost)
passive matrix display, both electrodes contain parallel wires. In a 640 × 480

SEC. 2.4 INPUT/OUTPUT 95

(a)
(b)

y

z

Rear glass plate

Liquid crystal

Rear
electrode

Rear
polaroid

Front glass plate

Front electrode

Front polaroid

Bright

Dark

Light
source

Notebook computer

�
�
@
@
�
�
À
À
�
�
@
@
�
�
À
À
�
�
@
@
�
�
À
À
�
�
@
@
�
�
À
À
�
�
@
@
�
�
À
À
�
�
@
@
�
�
À
À
�
�
@
@
�
�
À
À
�
�
@
@
�
�
À
À
�
�

Figure 2-5. (a) The construction of an LCD screen. (b) The grooves on the rear
and front plates are perpendicular to one another.

display, for example, the rear electrode might have 640 vertical wires and the
front one might have 480 horizontal ones. By putting a voltage on one of the vert-
ical wires and then pulsing one of the horizontal ones, the voltage at one selected
pixel position can be changed, making it go dark briefly. By repeating this pulse
with the next pixel and then the next one, a dark scan line can be painted, analo-
gous to how a CRT works. Normally, the entire screen is painted 60 times a
second to fool the eye into thinking there is a constant image there, again, the
same way as a CRT.

The other scheme in widespread use is the active matrix display. It is con-
siderably more expensive but it gives a better image so it is winning ground.
Instead of just having two sets of perpendicular wires, it has a tiny switching ele-
ment at each pixel position on one of the electrodes. By turning these on and off,
an arbitrary voltage pattern can be created across the screen, allowing for an arbi-
trary bit pattern.

So far we have described how a monochrome display works. Suffice it to say
that color displays uses the same general principles as monochrome displays, but
that the details are a great deal more complicated. Optical filters are used to
separate the white light into red, green, and blue components at each pixel posi-
tion so these can be displayed independently. Every color can be built up from a
linear superposition of these three primary colors.

96 COMPUTER SYSTEMS ORGANIZATION CHAP. 2

Character-Map Terminals

Three kinds of terminals are in common use: character-map terminals, bit-
map terminals, and RS-232-C terminals. They all can use any keyboard type, but
they differ in the way the computer communicates with them and how the output
is handled. We will now briefly describe each kind.

On a personal computer, there are two ways to organize the output to the
screen: a character map and a bit map. Figure 2-6 shows how a character map is
used to display output on the monitor. (The keyboard is treated as a completely
separate device.) On the serial communication board is a chunk of memory,
called the video memory, as well as some electronics for accessing the bus and
generating video signals.

CPU

Character
Attribute

Analog video signal

Monitor

ABC

Bus

Video
RAM

Main
memory

Video
board

A2B2C2

Figure 2-6. Terminal output on a personal computer.

To display characters, the CPU copies them to the video memory in alternate
bytes. Associated with each character is an attribute byte that describes how that
character is to be displayed. Attributes can include its color, intensity, whether it
is blinking, and so on. Thus a screen image of 25 × 80 characters requires 4000
bytes of video memory, 2000 for the characters and 2000 for the attributes. Most
boards have more memory to hold multiple screen images.

The job of the video board is to repeatedly fetch characters from the video
RAM and generate the necessary signal to drive the monitor. An entire line of
characters is fetched at once so the individual scan lines can be computed. This
signal is a high-frequency analog signal that controls the scanning of the electron
beam that paints the characters on the screen. Because the board outputs a video
signal, the monitor must be within a few meters of the computer to prevent distor-
tion.

Bit-map Terminals

A variation on this idea is to have the screen not be regarded as a 25 × 80 ar-
ray of characters, but as an array of picture elements, called pixels. Each pixel is
either on or off. It represents one bit of information. On personal computers the

SEC. 2.4 INPUT/OUTPUT 97

screen may contain as few as 640 × 480 pixels, but more commonly 800 × 600 or
more. On engineering workstations, the screen is typically 1280 × 960 pixels or
more. Terminals using a bit map rather than a character map are called bit-map
terminals. All modern video boards can operate either as character-map termi-
nals or bit-map terminals, under software control.

The same general idea is used as in Fig. 2-6, except that the video RAM is
just seen as a big bit array. The software can set any pattern it wants there, and
that is displayed instantly. To draw characters, the software might decide to allo-
cate, for example, a 9 by 14 rectangle for each character and fill in the necessary
bits to make the character appear. This approach allows the software to create
multiple fonts and intermix them at will. All the hardware does is display the bit
array. For color displays, each pixel is 8, 16, or 24 bits.

Bit-map terminals are commonly used to support displays containing several
windows. A window is an area of the screen used by one program. With multiple
windows, it is possible to have several programs running at the same time, each
one displaying its results independent of the other ones.

Although bit-map terminals are highly flexible, they have two major disad-
vantages. First, they require a considerable amount of video RAM. The most
common sizes these days are 640 × 480 (VGA), 800 × 600 (SVGA), 1024 × 768
(XVGA), and 1280 × 960). Notice that all of these have an aspect ratio
(width:height) of 4:3, to conform to the current ratio for television sets. To get
true color, 8 bits are needed for each of the three primary colors, or 3 bytes/pixel.
Thus a 1024 × 768 display, requires 2.3 MB of video RAM.

As a result of this large requirement, some computers compromise by using
an 8-bit number to indicate the color desired. This number is then used as an
index into a hardware table, called the color palette that contains 256 entries,
each holding a 24-bit RGB value. Such a design, called indexed color, reduces
the memory video RAM memory requirements by 2/3, but allows only 256 colors
on the screen at once. Usually, each window on the screen has its own mapping,
but with only one hardware color palette, often when multiple windows are
present on the screen, only the current one has its colors rendered correctly.

The second disadvantage of a bit-map display is performance. Once applica-
tion programmers realize that they can control every pixel in both space and time,
they want to do it. Although data can be copied from the video RAM to the moni-
tor without going over the main system bus, getting data into the video RAM does
use the system bus. To display full-screen, full-color multimedia on a 1024 × 768
display requires copying 2.3 MB of data to the video RAM for every frame. For
full-motion video, a rate of at least 25 frame/sec is needed, for a total data rate of
57.6 MB/sec. This load is far more than what the (E)ISA bus can handle, so
high-performance video cards on IBM PCs need to be PCI cards, and even then,
major compromises are required.

A related performance problem is how to scroll the screen. One way is copy-
ing all the bits in software, but doing this puts a gigantic load on the CPU. Not

98 COMPUTER SYSTEMS ORGANIZATION CHAP. 2

surprisingly, many video cards are equipped with special hardware for moving
parts of the screen by changing base registers rather than copying.

RS-232-C Terminals

Dozens of companies make computers and many others make terminals (espe-
cially for mainframes). To allow (almost) any terminal to be used with (almost)
any computer, a standard computer-terminal interface, called RS-232-C, has been
developed by the Electronics Industries Association (EIA). Any terminal that
supports the RS-232-C interface can be connected to any computer that also sup-
ports this interface.

RS-232-C terminals have a standardized 25-pin connector on them. The RS-
232-C standard defines the mechanical size and shape of the connector, the vol-
tage levels, and the meaning of each of the signals on the pins.

When the computer and the terminal are far apart, it is frequently the case that
the only practical way to connect them is over the telephone system. Unfor-
tunately, the telephone system is not capable of transmitting the signals required
by the RS-232-C standard, so a device called a modem (modulator-demodulator)
has to be inserted between the computer and the telephone and also between the
terminal and the telephone to perform signal conversion. We will study modems
shortly.

Figure 2-7 shows the placement of the computer, modems, and terminal when
a telephone line is used. When the terminal is close enough to the computer that it
can be wired-up directly, modems are not used, but the same RS-232-C connec-
tors and cables are still used, although those pins related to modem control are not
needed.

To communicate, the computer and terminal each contain a chip called a
UART (Universal Asynchronous Receiver Transmitter), as well as logic to
access the bus. To display a character, the computer fetches a character from its
main memory and presents it to the UART, which then shifts it out onto the RS-
232-C cable bit-for-bit. In effect, the UART is really a parallel-to-serial con-
verter, since an entire character (1 byte) is given to it at once, and it outputs the
bits one at a time at a specific rate. It also adds a start bit and a stop bit to each
character to delimit the beginning and the end of the character (at 110 bps, 2 stop
bits are used).

In the terminal, another UART receives the bits and rebuilds the entire char-
acter, which is then displayed on the screen. Input from the terminal’s keyboard
goes through a parallel-to-serial conversion in the terminal and is then reassem-
bled by the UART in the computer.

The RS-232-C standard defines almost 25 signals, but in practice, only a few
are used (and most of those can be omitted when the terminal is wired directly to
the computer without modems). Pins 2 and 3 are for transmitting and receiving
data, respectively. Each pin handles a one-way bit stream, in opposite directions.

SEC. 2.4 INPUT/OUTPUT 99

CPU Memory
Serial I/O card

UART RS-232-C connector

Telephone line (analog)

Modem ModemABC

Keyboard

Some signals:

Protective ground (1)
Transmit (2)
Receive (3)
Request to send (4)
Clear to send (5)
Data set ready (6)
Common return (7)
Carrier detect (8)
Data terminal ready (20)

Terminal

ABC

Figure 2-7. Connection of an RS-232-C terminal to a computer. The numbers
in parentheses in the list of signals are the pin numbers.

When the terminal or computer is powered up, it asserts (i.e., sets to 1) the Data
Terminal Ready signal to inform the modem that it is on. Similarly, the modem
asserts Data Set Ready to signal its presence. When the terminal or computer
wants to send data, it asserts Request to Send to ask permission. If the modem is
willing to grant that permission, it asserts Clear to Send as a response. Other pins
are used for various status, testing, and timing functions.

2.4.3 Mice

As time goes on, computers are being used by people with less expertise in
how computers work. Computers of the ENIAC generation were used only by the
people who built them. In the 1950s, computers were only used by highly-skilled
professional programmers. Now, computers are widely used by people who need
to get some job done and do not know (or even want to know) much about how
computers work or how they are programmed.

In the old days, most computers had command line interfaces, to which users
typed commands. Since people who are not computer specialists often perceived
command line interfaces as user-unfriendly, if not downright hostile, many com-
puter vendors developed point-and-click interfaces, such as the Macintosh and
Windows. Using this model requires having a way to point at the screen. The
most common way of allowing users to point at the screen is with a mouse.

A mouse is a small plastic box that sits on the table next to the keyboard.
When it is moved around on the table, a little pointer on the screen moves too,

100 COMPUTER SYSTEMS ORGANIZATION CHAP. 2

allowing users to point at screen items. The mouse has one, two, or three buttons
on top, to allow users to select items from menus. Much blood has been spilled as
a result of arguments about how many buttons a mouse ought to have. Naive
users prefer one (it is hard to push the wrong button if there is only one), but
sophisticated ones like the power of multiple buttons to do fancy things.

Three kinds of mice have been produced: mechanical mice, optical mice, and
optomechanical mice. The first mice had two rubber wheels protruding through
the bottom, with their axles perpendicular to one another. When the mouse was
moved parallel to its main axis, one wheel turned. When it is moved perpendicu-
lar to its main axis, the other one turned. Each wheel drove a variable resistor
(potentiometer). By measuring changes in the resistance, it was possible to see
how much each wheel had rotated and thus calculate how far the mouse had
moved in each direction. In recent years, this design has largely been replaced by
one in which a ball that protrudes slightly from the bottom is used instead of
wheels. It is shown in Fig. 2-8.

Pointer controlled by mouse

Window Menu

Mouse buttons

Mouse

Rubber ball

Cut
Paste
Copy

Figure 2-8. A mouse being used to point to menu items.

The second kind of mouse is the optical mouse. This kind has no wheels or
ball. Instead, it has an LED (Light Emitting Diode) and a photodetector on the
bottom. The optical mouse is used on top of a special plastic pad containing a
rectangular grid of closely spaced lines. As the mouse moves over the grid, the
photodetector senses line crossings by seeing the changes in the amount of light
being reflected back from the LED. Electronics inside the mouse count the
number of grid lines crossed in each direction.

The third kind of mouse is optomechanical. Like the newer mechanical
mouse, it has a rolling ball that turns two shafts aligned at 90 degrees to each

SEC. 2.4 INPUT/OUTPUT 101

other. The shafts are connected to encoders that have slits through which light
can pass. As the mouse moves, the shafts rotate, and light pulses strike the detec-
tors whenever a slit comes between an LED and its detector. The number of
pulses detected is proportional to the amount of motion.

Although mice can be set up in various ways, a common arrangement is to
have the mouse send a sequence of 3 bytes to the computer every time the mouse
moves a certain minimum distance (e.g., 0.01 inch), sometimes called a mickey.
Usually, these characters come in on a serial line, one bit at time. The first byte
contains a signed integer telling how many units the mouse has moved in the x-
direction in the last 100 msec. The second byte gives the same information for y
motion. The third byte contains the current state of the mouse buttons. Some-
times 2 bytes are used for each coordinate.

Low-level software in the computer accepts this information as it comes in
and converts the relative movements sent by the mouse to an absolute position. It
then displays an arrow on the screen at the position corresponding to where the
mouse is. When the arrow points at the proper item, the user clicks a mouse but-
ton, and the computer can then figure out which item has been selected from its
knowledge of where the arrow is on the screen.

2.4.4 Printers

Having prepared a document or fetched a page from the World Wide Web,
users often want to print it, so all computers can be equipped with a printer. In
this section we will describe some of the more common kinds of monochrome
(i.e., black and white) and color printers.

Monochrome Printers

The cheapest kind of printer is the matrix printer, in which a print head con-
taining between 7 and 24 electromagnetically activatable needles is scanned
across each print line. Low-end printers have seven needles, for printing, say, 80
characters in a 5 × 7 matrix across the line. In effect, the print line then consists
of 7 horizontal lines, each consisting of 5 × 80 = 400 dots. Each dot can be
printed or not printed, depending on the characters to be printed. Figure 2-9(a)
illustrates the letter ‘‘A’’ printed on a 5 × 7 matrix.

The print quality can be increased by two techniques: using more needles and
having the circles overlap. Figure 2-9(b) shows an ‘‘A’’ printed using 24 needles
that produce overlapping dots. Usually, multiple passes over each scan line are
required to produce overlapping dots, so increased quality goes hand in hand with
slower printing rates. Most matrix printers can operate in several modes, offering
different trade-offs between print quality and speed.

Matrix printers are cheap (especially in terms of consumables) and highly reli-
able, but slow, noisy, and poor at graphics. They have three main uses in current

102 COMPUTER SYSTEMS ORGANIZATION CHAP. 2

(a) (b)

Figure 2-9. (a) The letter ‘‘A’’ on a 5 × 7 matrix. (b) The letter ‘‘A’’ printed
with 24 overlapping needles.

systems. First, they are popular for printing on large (> 30 cm) preprinted forms.
Second, they are good at printing on small pieces of paper, such as cash register
receipts, ATM machine or credit card transaction slips, or airline boarding passes.
Third, for printing on multipart continuous forms with carbon paper embedded
between the copies, they are usually the cheapest technology.

For low-cost home printing, inkjet printers are a favorite. The movable print
head, which holds an ink cartridge, is swept horizontally across the paper while
ink is sprayed from its tiny nozzles. Inside each nozzle, an ink droplet is electri-
cally heated to the boiling point until it explodes. The only place the ink can go is
out the front of the nozzle onto the paper. The nozzle is then cooled and the
resulting vacuum sucks in another ink droplet. The speed of the printer is limited
by how fast the boil/cool cycle can be repeated. Inkjet printers typically have
resolutions of 300 dpi (dots per inch) to 720 dpi, although 1440 dpi inkjet
printers are also available. They are cheap, quiet, and have good quality, although
they are also slow, use expensive ink cartridges, and produce ink-soaked output.

Probably the most exciting development in printing since Johann Gutenberg
invented movable type in the fifteenth century is the laser printer. This device
combines a high quality image, excellent flexibility, good speed, and moderate
cost into a single peripheral. Laser printers use almost the same technology as
photocopy machines. In fact, many companies make devices that combine copy-
ing and printing (and sometimes fax as well).

The basic technology is illustrated in Fig. 2-10. The heart of the printer is a
rotating precision drum (or in some high-end systems, a belt). At the start of each
page cycle, it is charged up to about 1000 volts and coated with a photosensitive
material. Then light from a laser is scanned along the length of the drum much
like the electron beam in a CRT, only instead of achieving the horizontal deflec-
tion using a voltage, a rotating octagonal mirror is used to scan the length of the

SEC. 2.4 INPUT/OUTPUT 103

drum. The light beam is modulated to produce a pattern of light and dark spots.
The spots where the beam hits lose their electrical charge.

Laser Rotating octagonal
mirror

Drum sprayed and charged

Light beam
strikes drum

Toner
Scraper
Discharger

Drum

Blank
paper

Heated
rollers

Stacked
output

Figure 2-10. Operation of a laser printer.

After a line of dots has been painted, the drum rotates a fraction of a degree to
allow the next line to be painted. Eventually, the first line of dots reaches the
toner, a reservoir of an electrostatically sensitive black powder. The toner is
attracted to those dots that are still charged, thus forming a visual image of that
line. A little later in the transport path, the toner-coated drum is pressed against
the paper, transferring the black powder to the paper. The paper is then passed
through heated rollers to fuse the toner to the paper permanently, fixing the image.
Later in its rotation, the drum is discharged and scraped clean of any residual
toner, preparing it for being charged and coated again for the next page.

That this process is an exceedingly complex combination of physics, chemis-
try, mechanical engineering, and optical engineering hardly needs to be said.
Nevertheless, complete assemblies, called print engines, are available from
several vendors. Laser printer manufacturers combine the print engines with their
own electronics and software to make a complete printer. The electronics consists
of a fast CPU along with megabytes of memory to hold a full-page bit map and
numerous fonts, some of them built in and some of them downloadable. Most
printers accept commands that describe the pages to be printed (as opposed to
simply accepting bit maps prepared by the main CPU). These commands are
given in languages such as HP’s PCL and Adobe’s PostScript.

Laser printers at 600 dpi and up can do a reasonable job of printing black and
white photographs but the technology is trickier than it might at first appear. Con-
sider a photograph scanned in at 600 dpi that is to be printed on a 600 dpi printer.

104 COMPUTER SYSTEMS ORGANIZATION CHAP. 2

The scanned image contains 600 × 600 pixels/inch, each one consisting of a gray
value from 0 (white) to 255 (black). The printer can also print 600 dpi, but each
printed pixel is either black (toner present) or white (no toner present). Gray
values cannot be printed.

The usual solution to printing images with gray values is to use halftoning,
the same as commercially printed posters. The image is broken up into halftone
cells, each typically 6 × 6 pixels. Each cell can contain between 0 and 36 black
pixels. The eye perceives a cell with many pixels as darker than one with fewer
pixels. Gray values in the range 0 to 255 are represented by dividing this range
into 37 zones. Values from 0 to 6 are in zone 0, values from 7 to 13 are in zone 1,
and so on (zone 36 is slightly smaller than the others because 37 does not divide
256 exactly). Whenever a gray value in zone 0 is encountered, its halftone cell on
the paper is left blank, as illustrated in Fig. 2-11(a). A zone 1 value is printed as 1
black pixel. A zone 2 value is printed as 2 black pixels, as shown in Fig. 2-11(b).
Other zone values are shown in Fig. 2-11(c)-(f). Of course, taking a photograph
scanned at 600 dpi and halftoning this way reduces the effective resolution to 100
cells/inch, called the halftone screen frequency , conventionally measured in lpi
(lines per inch).

(a) (b) (c) (d) (e) (f)

Figure 2-11. Halftone dots for various gray scale ranges. (a) 0–6. (b) 14–20. (c)
28–34. (d) 56–62. (e) 105–111. (f) 161–167.

Color Printers

Color images can be viewed in one of two ways: transmitted light and
reflected light. Transmitted light images, such as those produced on CRT moni-
tors, are built up from the linear superposition of the three additive primary colors,
red, green, and blue. Reflected light images, such as color photographs and pic-
tures in glossy magazines, absorb certain wavelengths of light and reflect the rest.
These are built up from a linear superposition of the three subtractative primary
colors, cyan (all red absorbed), yellow (all blue absorbed), and magenta (all green
absorbed). In theory, every color can be produced by mixing cyan, yellow, and
magenta ink. In practice it is difficult to get the inks pure enough to absorb all
light and produce a true black. For this reason, nearly all color printing systems
use four inks: cyan, yellow, magenta, and black. These systems are called
CYMK printers (K is for blacK, to avoid confusion with Blue). Monitors, in
contrast, use transmitted light and the RGB system for producing colors.

SEC. 2.4 INPUT/OUTPUT 105

The complete set of colors that a display or printer can produce is called its
gamut. No device has a gamut that matches the real world, since at best each
color comes in 256 intensities, giving only 16,777,216 discrete colors. Imperfec-
tions in the technology reduce the total more, and the remaining ones are not
always uniformly spaced over the color spectrum. Furthermore, color perception
has a lot to do with how the rods and cones in the human retina work, and not just
the physics of light.

As a consequence of the above observations, converting a color image that
looks fine on the screen to an identical printed one is far from trivial. Among the
problems are

1. Color monitors use transmitted light; color printers use reflected light.

2. CRTs produce 256 intensities per color; color printers must halftone.

3. Monitors have a dark background; paper has a light background.

4. The RGB and CMYK gamuts are different.

Getting printed color images to match real life (or even to match screen images)
requires device calibration, sophisticated software, and considerable expertise on
the part of the user.

Five technologies are in common use for color printing, all of them based on
the CMYK system. At the low end are color ink jet printers. They work the same
way as monochrome ink jet printers, but with four cartridges (for C, M, Y, and K)
instead of one. They give good results for color graphics and passable results for
photographs at modest cost (the printers are cheap but the ink cartridges are not).

For best results, special ink and paper should be used. Two kinds of ink exist.
Dye-based inks consist of colored dyes dissolved in a fluid carrier. They give
bright colors and flow easily. Their main disadvantage is that they fade when
exposed to ultraviolet light, such as that contained in sunlight. Pigment-based
ink contains solid particles of pigment suspended in a fluid carrier that evaporates
from the paper, leaving the pigment behind. They do not fade in time but are not
as bright as dye-based inks and the pigment particles have a tendency to clog the
nozzles, requiring periodic cleaning. Coated or glossy paper is required for print-
ing photographs. These kinds of paper have been specially designed to hold the
ink droplets and not let them spread out.

A step up from ink jet printers leads to the solid ink printers. These accept
four solid blocks of a special waxy ink which are then melted into hot ink reser-
voirs. Startup times of these printers can be as much as 10 minutes, while the ink
blocks are melting. The hot ink is sprayed onto the paper, where it solidifies and
is fused with the paper by forcing it between two hard rollers

The third kind of color printer is the color laser printer. It works like its
monochrome cousin, except that separate C, Y, M, and K images are laid down
and transferred to a roller using four different toners. Since the full bit map is

106 COMPUTER SYSTEMS ORGANIZATION CHAP. 2

generally produced in advance, a 1200 × 1200 dpi image for a page containing 80
square inches needs 115 million pixels. With 4 bits/pixels, the printer needs 55
MB just for the bit map, exclusive of memory for the internal processors, fonts,
etc. This requirement makes color laser printers expensive, but printing is fast,
the quality is high, and the images are stable over time.

The fourth kind of color printer is the wax printer. It has a wide ribbon of
four-color wax that is segmented into page-size bands. Thousands of heating ele-
ments melt the wax as the paper moves under it. The wax is fused to the paper in
the form of pixels using the CMYK system. Wax printers used to be the main
color printing technology, but they are being replaced by the other kinds, which
have cheaper consumables.

The fifth kind of color printer is the dye sublimation printer. Although it
has Freudian undertones, sublimation is the scientific name for a solid changing
into a gas without passing through the liquid state. Dry ice (frozen carbon diox-
ide) is a well-known material that subliminates. In a dye sublimation printer, a
carrier containing the CMYK dyes passes over a thermal print head containing
thousands of programmable heating elements. The dyes are vaporized instantly
and absorbed by a special paper close by. Each heating element can produce 256
different temperatures. The higher the temperature, the more dye that is deposited
and the more intense the color. Unlike all the other color printers, nearly continu-
ous colors are possible for each pixel, so no halftoning is needed. Small snapshot
printers often use the dye sublimation process to produce highly realistic photo-
graphic images on special (and expensive) paper.

2.4.5 Modems

With the growth of computer usage in the past years, it is common for one
computer to need to communicate with another one. For example, many people
have personal computers at home that they use for communicating with their com-
puter at work, with an Internet Service Provider, or with a home banking system.
All these applications use the telephone to provide the underlying communication.

However, a raw telephone line is not suitable for transmitting computer sig-
nals, which generally represent a 0 as 0 volts and a 1 as 3 to 5 5 volts as shown in
Fig. 2-12(a). Two-level signals suffer considerable distortion when transmitted
over a voice-grade telephone line, thereby leading to transmission errors. A pure
sine wave signal at a frequency of 1000 to 2000 Hz, called a carrier, can be
transmitted with relatively little distortion, however, and this fact is exploited as
the basis of most telecommunication systems.

Because the pulsations of a sine wave are completely predictable, a pure sine
wave transmits no information at all. However, by varying the amplitude, fre-
quency, or phase, a sequence of 1s and 0s can be transmitted, as shown in Fig. 2-
12. This process is called modulation. In amplitude modulation [see Fig. 2-
12(b)], two different voltage levels are used, for 0 and 1, respectively. A person

SEC. 2.4 INPUT/OUTPUT 107

(a)

(b)

(c)

(d)

V
ol

ta
ge

Time

V1

V2
0 1 0 0 1 0 1 1 0 0 0 1 0 0

High
amplitude

Low
amplitude

High
frequency

Low
frequency

Phase change

Figure 2-12. Transmission of the binary number 01001011000100 over a tele-
phone line bit by bit. (a) Two-level signal. (b) Amplitude modulation.
(c) Frequency modulation. (d) Phase modulation.

listening to digital data transmitted at a very low data rate would hear a loud noise
for a 1 and no noise for a 0.

In frequency modulation [see Fig. 2-12(c)], the voltage level is constant but
the carrier frequency is different for 1 and 0. A person listening to frequency
modulated digital data would hear two tones, corresponding to 0 and 1. Fre-
quency modulation is often referred to as frequency shift keying.

In simple phase modulation [see Fig. 2-12(d)], the amplitude and frequency
do not change, but the phase of the carrier is reversed 180 degrees when the data
switch from 0 to 1 or 1 to 0. In more sophisticated phase-modulated systems, at
the start of each indivisible time interval, the phase of the carrier is abruptly
shifted by 45, 135, 225, or 315 degrees, to allow 2 bits per time interval, called
dibit phase encoding. For example, a phase shift of 45 degrees could represent
00, a phase shift of 135 degrees could represent 01, and so on. Other schemes, for
transmitting 3 or more bits per time interval also exist. The number of time inter-
vals (i.e., the number of potential signal changes per second) is baud rate. With 2
or more bits per interval, the bit rate will exceed the baud rate. Many people con-
fuse these two terms.

If the data to be transmitted consist of a series of 8-bit characters, it would be
desirable to have a connection capable of transmitting 8 bits simultaneously—that
is, eight pairs of wires. Because voice-grade telephone lines provide only one

108 COMPUTER SYSTEMS ORGANIZATION CHAP. 2

channel, the bits must be sent serially, one after another (or in groups of two if
dibit encoding is being used). The device that accepts characters from a computer
in the form of two-level signals, one bit at a time, and transmits the bits in groups
of one or two, in amplitude-, frequency-, or phase-modulated form, is the modem.
To mark the start and end of each character, an 8-bit character is normally sent
preceded by a start bit and followed by a stop bit, making 10 bits in all.

The transmitting modem sends the individual bits within one character at
regularly-spaced time intervals. For example, 9600 baud implies one signal
change every 104 µsec. A second modem at the receiving end is used to convert a
modulated carrier to a binary number. Because the bits arrive at the receiver at
regularly-spaced intervals, once the receiving modem has determined the start of
the character, its clock tells it when to sample the line to read the incoming bits.

Modern modems operate at data rates ranging from 28,800 bits/sec to 57,600
bits/sec, usually at much lower baud rates. They use a combination of techniques
to send multiple bits per baud, modulating the amplitude, frequency, and phase.
Nearly all of them are full-duplex, meaning they can transmit in both directions at
the same time (using different frequencies). Modems or transmission lines that
can only transmit in one direction at a time (like a single-track railroad that can
handle north-bound trains or south-bound trains but not at the same time) are
called half-duplex. Lines that can only transmit in one direction are simplex.

ISDN

In the early 1980s, the European PTTs (Post, Telephone, and Telegraph
Administrations) developed a standard for digital telephony called ISDN
(Integrated Services Digital Network). It was intended to allow senior citizens
to have alarms in their houses connected to central monitoring offices, and a lot of
other strange applications that never happened. They pushed the idea hard, but
without much success. Then all of sudden, the World Wide Web happened and
people were clamoring for high-bandwidth digital access to the Internet. Bingo.
ISDN suddenly discovered its killer application (through no fault of its designers,
however). It also became popular in the United States and elsewhere.

When a telco (industry jargon for telephone company) customer subscribes to
ISDN, the telco replaces the old analog line with a digital one. (Actually, the line
itself is not replaced, just the equipment on both ends.) The new line holds two
independent digital channels at 64,000 bits/sec each, plus a signaling channel at
16,000 bits/sec. Equipment exists to combine all three channels into a single
144,000 bps digital channel. For businesses, a 30-channel ISDN line is available.

Not only is ISDN faster than an analog channel, but it also allows connections
to be established in typically no more than 1 sec, no longer requires an analog
modem, and is much more reliable (fewer errors) than an analog line. It also has a
variety of extra features and options not always available with analog lines.

SEC. 2.4 INPUT/OUTPUT 109

The structure of an ISDN connection is shown in Fig. 2-13. What the carrier
provides is a digital bit pipe that just moves bits. What the bits mean is up to the
sender and receiver. The interface between the customer’s equipment and the
carrier’s equipment is the NT1 device, with the T interface on one side and the U
interface on the other. In the U.S. customers must buy their own NT1 device. In
many European countries, they must rent it from the carrier.

ISDN terminal

Customer's equipment Carrier's equipment

ISDN
telephone

ISDN
terminal

ISDN
alarm

Digital
bit pipe

T U To
carrier's
internal
network

NT1 ISDN
exchange

Figure 2-13. ISDN for home use.

2.4.6 Character Codes

Each computer has a set of characters that it uses. As a bare minimum, this
set includes the 26 upper case letters, the 26 lower case letters, the digits 0
through 9, and a set of special symbols. such as space, period, minus sign,
comma, and carriage return.

In order to transfer these characters into the computer, each one is assigned a
number: for example, a = 1, b = 2, ..., z = 26, + = 27, − = 28. The mapping of
characters onto integers is called a character code. It is essential that communi-
cating computers use the same code or they will not be able to understand one
another. For this reason, standards have been developed. Below we will examine
two of the most important ones.

ASCII

One widely used code is called ASCII (American Standard Code for Infor-
mation Interchange). Each ASCII character has 7 bits, allowing for 128 charac-
ters in all. Figure 2-14 shows the ASCII code. Codes 0 to 1F (hexadecimal) are
control characters and do not print.

Many of the ASCII control characters are intended for data transmission. For
example, a message might consist of an SOH (Start of Header) character, a
header, an STX (Start of Text) character, the text itself, an ETX (End of Text)

110 COMPUTER SYSTEMS ORGANIZATION CHAP. 2

222
Hex Name Meaning Hex Name Meaning222
0 NUL Null 10 DLE Data Link Escape
1 SOH Start Of Heading 11 DC1 Device Control 1
2 STX Start Of Text 12 DC2 Device Control 2
3 ETX End Of Text 13 DC3 Device Control 3
4 EOT End Of Transmission 14 DC4 Device Control 4
5 ENQ Enquiry 15 NAK Negative AcKnowledgement
6 ACK ACKnowledgement 16 SYN SYNchronous idle
7 BEL BELl 17 ETB End of Transmission Block
8 BS BackSpace 18 CAN CANcel
9 HT Horizontal Tab 19 EM End of Medium
A LF Line Feed 1A SUB SUBstitute
B VT Vertical Tab 1B ESC ESCape
C FF Form Feed 1C FS File Separator
D CR Carriage Return 1D GS Group Separator
E SO Shift Out 1E RS Record Separator
F SI Shift In 1F US Unit Separator22211
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

222
Hex Char Hex Char Hex Char Hex Char Hex Char Hex Char222
20 (Space) 30 0 40 @ 50 P 60 ‘ 70 p
21 ! 31 1 41 A 51 Q 61 a 71 q
22 " 32 2 42 B 52 R 62 b 72 r
23 # 33 3 43 C 53 S 63 c 73 s
24 $ 34 4 44 D 54 T 64 d 74 t
25 % 35 5 45 E 55 U 65 e 75 u
26 & 36 6 46 F 56 V 66 f 76 v
27 ’ 37 7 47 G 57 W 67 g 77 w
28 (38 8 48 H 58 X 68 h 78 x
29) 39 9 49 I 59 Y 69 i 79 y
2A * 3A : 4A J 5A Z 6A j 7A z
2B + 3B ; 4B K 5B [6B k 7B {
2C , 3C < 4C L 5C \ 6C l 7C |
2D - 3D = 4D M 5D] 6D m 7D }
2E . 3E > 4E N 5E ˆ 6E n 7E ~
2F / 3F ? 4F O 5F 2 6F o 7F DEL22211

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 2-14. The ASCII character set.

character and then an EOT (End of Transmission) character. In practice, how-
ever, the messages sent over telephone lines and networks are formatted quite dif-
ferently, so the ASCII transmission control characters are not used much any
more.

The ASCII printing characters are straightforward. They include the upper
and lower case letters, digits, punctuation marks and a few math symbols.

SEC. 2.4 INPUT/OUTPUT 111

UNICODE

The computer industry grew up mostly in the U.S., which led to the ASCII
character set. ASCII is fine for English but less fine for other languages. French
needs accents (e.g., système); German needs diacritical marks (e.g., für), and so
on. Some European languages have a few letters not found in ASCII, such as the
German β and the Danish o/ . Some languages have entirely different alphabets
(e.g., Russian and Arabic), and a few languages have no alphabet at all (e.g.,
Chinese). As computers spread to the four corners of the globe, and software ven-
dors want to sell products in countries where most users do not speak English, a
different character set is needed.

The first attempt at extending ASCII was IS 646, which added another 128
characters to ASCII, making it an 8-bit code called Latin-1. The additional char-
acters were mostly Latin letters with accents and diacritical marks. The next
attempt was IS 8859, which introduced the concept of a code page, a set of 256
characters for a particular language or group of languages. IS 8859-1 is Latin-1.
IS 8859-2 handles the Latin-based Slavic languages (e.g., Czech, Polish, and Hun-
garian). IS 8859-3 contains the characters needed for Turkish, Maltese,
Esperanto, and Galician, and so on. The trouble with the code page approach is
that the software has to keep track of which page it is on, it is impossible to mix
languages over pages, and the scheme does not cover Japanese and Chinese at all.

A group of computer companies decided to solve this problem by forming a
consortium to create a new system, called UNICODE, and getting it proclaimed
an International Standard (IS 10646). UNICODE is now supported by some pro-
gramming languages (e.g., Java), some operating systems (e.g., Windows NT),
and many applications. It is likely to become increasingly accepted as the com-
puter industry goes global.

The basic idea behind UNICODE is to assign every character and symbol a
unique, permanent 16-bit value, called a code point. No multibyte characters and
no escape sequences are used. Having every symbol be 16 bits makes writing
software much simpler.

With 16-bit symbols, UNICODE has 65,536 code points. Since the world’s
languages collectively use about 200,000 symbols, code points are a scarce
resource that must be allocated with great care. About half the code points have
already been allocated, and the UNICODE consortium is continually reviewing
proposals to eat up the rest. To speed the acceptance of UNICODE, the consor-
tium cleverly used Latin-1 as code points 0 to 255, making conversion between
ASCII and UNICODE easy.

To avoid wasting code points, each diacritical mark has its own code point. It
is up to software to combine diacritical marks with their neighbors to form new
characters.

The code point space is divided up into blocks, each one a multiple of 16 code
points. Each major alphabet in UNICODE has a sequence of consecutive zones.

112 COMPUTER SYSTEMS ORGANIZATION CHAP. 2

Some examples (and the number of code points allocated) are Latin (336), Greek
(144), Cyrillic (256), Armenian (96), Hebrew (112), Devanagari (128), Gurmukhi
(128), Oriya (128), Telugu (128), and Kannada (128). Note that each of these
languages has been allocated more code points than it has letters. This choice was
made in part because many languages have multiple forms for each letter. For
example, each letter in English has two forms—lower case and UPPER CASE.
Some languages have three or more forms, possibly depending on whether the
letter is at the start, middle, or end of a word.

In addition to these alphabets, code points have been allocated for diacritical
marks (112), punctuation marks (112), subscripts and superscripts (48), currency
symbols (48), mathematical symbols (256), geometric shapes (96), and dingbats
(192).

After these come the symbols needed for Chinese, Japanese, and Korean.
First are 1024 phonetic symbols (e.g., katakana and bopomofo) and then the uni-
fied Han ideographs (20,992) used in Chinese and Japanese, and the Korean
Hangul syllables (11,156).

To allow users to invent special characters for special purposes, 6400 code
points have been allocated for local use.

While UNICODE solves many problems associated with internationalization,
it does not (attempt to) solve all the world’s problems. For example, while the
Latin alphabet is in order, the Han ideographs are not in dictionary order. As a
consequence, an English program can examine ‘‘cat’’ and ‘‘dog’’ and sort them
alphabetically by simply comparing the UNICODE value of their first character.
A Japanese program needs external tables to figure out which of two symbols
comes before the other in the dictionary.

Another issue is that new words are popping up all the time. Fifty years ago
nobody talked about applets, cyberspace, gigabytes, lasers, modems, smileys, or
videotapes. Adding new words in English does not require new code points.
Adding them in Japanese does. In addition to new technical words, there is a
demand for adding at least 20,000 new (mostly Chinese) personal and place
names. Blind people think Braille should be in there, and special interest groups
of all kinds want what they perceive as their rightful code points. The UNICODE
consortium reviews and decides on all new proposals.

UNICODE uses the same code point for characters that look almost identical
but have different meanings or are written slightly differently in Japanese and
Chinese (as though English word processors always spelled ‘‘blue’’ as ’’blew’’
because they sound the same). Some people view this as an optimization to save
scarce code points; others see it as Anglo-Saxon cultural imperialism (and you
thought assigning 16-bit values to characters was not highly political?). To make
matters worse, a full Japanese dictionary has 50,000 kanji (excluding names), so
with only 20,992 code points available for the Han ideographs, choices had to be
made. Not all Japanese people think that a consortium of computer companies,
even if a few of them are Japanese, is the ideal forum to make these choices.

3
THE DIGITAL LOGIC LEVEL

1

Collector

Base

+VCC

Vout

Vin

Emitter

(a)

Vout

+VCC

+VCC

Vout

V2

(b)

V1

V1

(c)

V2

Figure 3-1. (a) A transistor inverter. (b) A NAND gate. (c) A NOR gate.

(b)

NAND
A

B

X

A B X

0 0 1

0 1 1

1 0 1

1 1 0

(c)

NOR
A

B

X

A B X

0 0 1

0 1 0

1 0 0

1 1 0

AND
A

B

X

(d)

A B X

0 0 0

0 1 0

1 0 0

1 1 1

OR
A

B

X

(e)

A B X

0 0 0

0 1 1

1 0 1

1 1 1

(a)

NOT

A

A X

X

0 1

1 0

Figure 3-2. The symbols and functional behavior for the five basic gates.

A B C

0 0 0

0 0 1

0 1 0

0 1 1

M

0

0

0

1

1 0 0

1 0 1

1 1 0

1 1 1

0

1

1

1

(a) (b)

ABC

A

A

B

C

B C A

A

B C

ABC

ABC

ABC

M

1

4

8

5

6

7

B
2

C
3

Figure 3-3. (a) The truth table for the majority function of
three variables. (b) A circuit for (a).

A + B

A + B

A

A

B

B

AB

AB

A

A

A

A

(a)

(b) (c)

A

B

A

B

Figure 3-4. Construction of (a) NOT, (b) AND, and (c) OR
gates using only NAND gates or only NOR gates.

C

B

A A(B + C)

B + C

A

B

C

AB + AC

AB

AC

(a) (b)

A B C AB AC AB + AC

0 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 1 1 0 0 0

1 0 0 0 0 0

1 0 1 0 1 1

1 1 0 1 0 1

1 1 1 1 1 1

A B C A B + C A(B + C)

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 1 0

0 1 1 0 1 0

1 0 0 1 0 0

1 0 1 1 1 1

1 1 0 1 1 1

1 1 1 1 1 1

Figure 3-5. Two equivalent functions. (a) AB + AC. (b) A(B + C).

Identity law

Null law

Idempotent law

Inverse law

Commutative law

Associative law

Distributive law

Absorption law

De Morgan's law

1A = A

0A = 0

AA = A

AB = BA

(AB)C = A(BC)

A + BC = (A + B)(A + C)

A(A + B) = A A + AB = A

0 + A = A

1 + A = 1

A + A = A

A + B = B + A

(A + B) + C = A + (B + C)

A(B + C) = AB + AC

Name AND form OR form

AA = 0

AB = A + B

A + A = 1

A + B = AB

Figure 3-6. Some identities of Boolean algebra.

(a)

AB = A + B

(c)

A + BAB =

(b)

A + B = AB

AB=

(d)

A + B

Figure 3-7. Alternative symbols for some gates: (a) NAND. (b) NOR.
(c) AND. (d) OR.

(a) (b)

A B XOR

0 0 0

0 1 1

1 0 1

1 1 0

A

B

B

A

(d)(c)

A

B

B

A

A

B

B

A

Figure 3-8. (a) The truth table for the XOR function. (b)-(d)
Three circuits for computing it.

(a)

A B

0V 0V

0V 5V

5V 0V

5V 5V

F

0V

0V

0V

5V

(b)

A B

0 0

0 1

1 0

1 1

F

0

0

0

1

(c)

A B

1 1

1 0

0 1

0 0

F

1

1

1

0

Figure 3-9. (a) Electrical characteristics of a device.
(b) Positive logic. (c) Negative logic.

Notch

11

VCC

Pin 8

GND

10 9 8121314

4 5 6 7321

Figure 3-10. An SSI chip containing four gates.

F

D0

D1

D2

D3

D4

D5

D6

D7

A B C

A A B CB C

Figure 3-11. An eight-input multiplexer circuit.

(a)

A B C

F

D0

D1

D2

D3

D4

D5

D6

D7

(b)

VCC

A B C

F

D0

D1

D2

D3

D4

D5

D6

D7

Figure 3-12. (a) An MSI multiplexer.. (b) The same multi-
plexer wired to compute the majority function.

D0

D1

D2

D3

D4

D5

D6

D7

A

C

B

A

B

C

B

C

A

Figure 3-13. A 3-to-8 decoder circuit.

A = B

A0

B0

A1

B1

A2

B2

A3

B3

EXCLUSIVE OR gate

Figure 3-14. A simple 4-bit comparator.

A If this fuse is
blown, B is not
an input to AND
gate 1.

12 3 2 = 24
input signals

24 input lines

6 outputs
50 input

lines
If this fuse is
blown, AND gate
1 is not an input
to OR gate 5.

B

L

1 49

0

1

5

0

Figure 3-15. A 12-input, 6-output programmable logic array.
The little squares represent fuses that can be burned out to
determine the function to be computed. The fuses are arranged
in two matrices: the upper one for the AND gates and the lower
one for the OR gates.

C

D0 D1 D2 D3 D4 D5 D6 D7

S0 S1 S2 S3 S4 S5 S6 S7

Figure 3-16. A 1-bit left/right shifter.

A
A

B

B Sum

Sum

Carry

Carry

Exclusive OR gate

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Figure 3-17. (a) Truth table for 1-bit addition. (b) A circuit for a half adder.

B
A

B

Carry
in Sum

Sum
Carry
out

0 0 0 0

0 1 1 0

1 0 1 0

1

A

0

0

0

0 1 0 1

0 0 1 0

0 1 0 1

1 0 0 1

1

1

1

1

1 1 1 1

Carry in

Carry out

(a) (b)

Figure 3-18. (a) Truth table for full adder. (b) Circuit for a full adder.

A
INVA

ENA
B

Logical unit Carry in

AB

B

Enable
lines

F0

F1

Decoder

Output

Sum

Carry out

Full
adder

A + B

ENB

Figure 3-19. A 1-bit ALU.

Carry
in

Carry
out

1-bit
ALU

F0F1

A7 B7

O7

1-bit
ALU

A6 B6

O6

1-bit
ALU

A5 B5

O5

1-bit
ALU

A4 B4

O4

1-bit
ALU

A3 B3

O3

1-bit
ALU

A2 B2

O2

1-bit
ALU

A1 B1

O1

1-bit
ALU INC

A0 B0

O0

Figure 3-20. Eight 1-bit ALU slices connected to make an 8-
bit ALU. The enables and invert signals are not shown for sim-
plicity.

Delay

C1

C2

(a) (b)

A

B

C

(c)

Figure 3-21. (a) A clock. (b) The timing diagram for the
clock. (c) Generation of an asymmetric clock.

A B NOR

0 0 1

0 1 0

1 0 0

1 1 0

R
Q

S
0

0

1

0
0

1
Q

R
Q

S
0

1

0

0
1

0
Q

(a) (b) (c)

Figure 3-22. (a) NOR latch in state 0. (b) NOR latch in state 1.
(c) Truth table for NOR.

S

Q

Q

R

Clock

Figure 3-23. A clocked SR latch.

D

Q

Q

Figure 3-24. A clocked D latch.

a b

c

d

d

b AND c

Time

c

b

a

(a)

(b)

∆

Figure 3-25. (a) A pulse generator. (b) Timing at four points in the circuit.

Q

D

Q

Figure 3-26. A D flip-flop.

D Q

CK

(a)

D Q

CK

(b)

D Q

CK

(c)

D Q

(d)

CK

Figure 3-27. D latches and flip-flops.

D

14

Q

CK

CLR

PR

VCC

Q

D Q

CK

CLR

PR
Q

13 12 11 10 9 8

1 2 3 4

(a)

5 6 7

GND

20

VCC

19 18 17 16 15 14 13 12 11

1 2 3 4 5 6 7 8 9 10

GND

(b)

Q D

CK
CLR

D Q

CK
CLR

Q D

CK
CLR

D Q

CK
CLR

Q D

CK
CLR

Q D

CK
CLR

Q D

CK
CLR

Q D

CK
CLR

Figure 3-28. (a) Dual D flip-flop. (b) Octal flip-flop.

Data in

Write
gate

I0

I1

I2

QD

CK
Word 0

Word 1

Word 2

Word 3

O1

O2

O3

CS

RD

OE

Word 0
select
line

Word 1
select
line

Word 2
select
line

CS • RD

A0

A1

Output enable = CS • RD • OE

QD

CK

QD

CK

QD

CK

QD

CK

QD

CK

QD

CK

QD

CK

QD

CK

QD

CK

QD

CK

QD

CK

Figure 3-29. Logic diagram for a 4 × 3 memory. Each row is
one of the four 3-bit words. A read or write operation always
reads or writes a complete word.

(b)(a)

Data
in

Data
out

Control

(d)(c)

Figure 3-30. (a) A noninverting buffer. (b) Effect of (a) when
control is high. (c) Effect of (a) when control is low. (d) An
inverting buffer.

D0

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13
A14
A15
A16
A17
A18

D1
D2
D3
D4
D5
D6
D7

WE

(a)

512K 3 8
Memory

chip

(4 Mbit)

CS OE

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9

A10

RAS

CAS

D

WE

(b)

4096K 3 1
Memory

chip

(4 Mbit)

CS OE

Figure 3-31. Two ways of organizing a 4-Mbit memory chip.

222

Type Category Erasure
Byte
alterable Volatile Typical use222

SRAM Read/write Electrical Yes Yes Level 2 cache222
DRAM Read/write Electrical Yes Yes Main memory222
ROM Read-only Not possible No No Large volume appliances222
PROM Read-only Not possible No No Small volume equipment222
EPROM Read-mostly UV light No No Device prototyping222
EEPROM Read-mostly Electrical Yes No Device prototyping222
Flash Read/write Electrical No No Film for digital camera22211
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1

Figure 3-32. A comparison of various memory types.

Typical
Micro-

Processor

Symbol for
electrical ground

Symbol
for clock

signal

Bus arbitrationAddressing

Coprocessor

Status

MiscellaneousInterrupts

Bus control

Power is 5volts

+5v

Data

Φ

Figure 3-33. The logical pinout of a generic CPU. The arrows
indicate input signals and output signals. The short diagonal
lines indicate that multiple pins are used. For a specific CPU, a
number will be given to tell how many.

Bus
controller

Memory bus

I/O bus

Disk
On-chip bus

CPU chip

Registers
Buses

ALU

Memory

Modem Printer

Figure 3-34. A computer system with multiple buses.

22
Master Slave Example22

CPU Memory Fetching instructions and data22
CPU I/O device Initiating data transfer22
CPU Coprocessor CPU handing instruction off to coprocessor22
I/O Memory DMA (Direct Memory Access)22
Coprocessor CPU Coprocessor fetching operands from CPU221
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

Figure 3-35. Examples of bus masters and slaves.

8088

(a)

20-Bit address

Control

80286

(b)

20-Bit address

4-Bit address

Control

4-Bit address

Control

Control

20-Bit address

Control

80386

(c)

8-Bit address

Control

Figure 3-36. Growth of an address bus over time.

TAD

TML

TM

TRL

TDS

TMH

TRH

TDH

Address output delay

Address stable prior to MREQ

MREQ delay from falling edge of Φ in T1

RD delay from falling edge of Φ in T1

Data setup time prior to falling edge of Φ

MREQ delay from falling edge of Φ in T3

RD delay from falling edge of Φ in T3

Data hold time from negation of RD

6

5

0

(b)

11

8

8

8

8

nsec

nsec

nsec

nsec

nsec

nsec

nsec

nsec

ADDRESS

Time
(a)

TAD

TM

TDS

TMH

TRH

TDHTRL

Φ

DATA

T1 T2 T3

MREQ

RD

WAIT

Read cycle with 1 wait state

Memory address to be read

Data

TML

Parameter Min Max UnitSymbol

Figure 3-37. (a) Read timing on a synchronous bus. (b)
Specification of some critical times.

ADDRESS

MREQ

RD

MSYN

DATA

SSYN

Memory address to be read

Data

Figure 3-38. Operation of an asynchronous bus.

Bus grant

Bus request

I/O devices

(a)

(b)

Bus grant
may or may not
be propagated along
the chain

Bus request level 1

Bus grant level 1

Bus request level 2
Bus grant level 2

1 2 3 4 5

Arbiter

Arbiter

1 2 3 4 5

Figure 3-39. (a) A centralized one-level bus arbiter using
daisy chaining. (b) The same arbiter, but with two levels.

Arbitration
line

+5v

In Out

Bus request
Busy

1 2 3 4 5

In Out In Out In Out In Out

Figure 3-40. Decentralized bus arbitration.

Memory address to be read

Count

ADDRESS

Φ

DATA Data Data Data Data

T1 T2 T3 T4 T5 T6 T7

MREQ

RD

WAIT

BLOCK

Figure 3-41. A block transfer.

8259A
Interrupt
controller

CPU

D0-D7

CS
A0
WR

INTA

RD

INT IR0
IR1
IR2
IR3
IR4
IR5
IR6
IR7

+5 v

Keyboard

Clock

Disk

Printer

Figure 3-42. Use of the 8259A interrupt controller.

512 KB
unified

L2 cache

Pentium II
processor

Contact

1.6 cm

16 KB level 1
data cache

To
local
bus

16 KB level 1
instruction cache

Pentium II SEC cartridge

14.0 cm

6.3 cm

Figure 3-43. The Pentium II SEC package.

8

Parity#

7

35

2

3

11

4

RESET#

Interrupts

Compatibity

Diagnostics

Initialization

Power management

Miscellaneous

64

3

27

Power

5
VID

TRDY#Response

RS#

3
Misc#

5
Misc#

Parity#

3

3

Parity#

5
REQ#
ADS#

33
A#

Misc#

BPRI#

DBSY#
DRDY#

LOCK#

D#

Pentium II
CPU

Bus
arbitration

Request

Data

Snoop

Error

Φ

Figure 3-44. Logical pinout of the Pentium II. Names in
upper case are the official Intel names for individual signals.
Names in mixed case are groups of related signals or signal
descriptions.

Trans-
action

Φ

T1 T2 T3 T4 T5 T6

Req

T7

Bus cycle

1

2

3

4

5

6

7

T8 T9 T10 T11 T12

Error Snoop Resp Data

Req Error Snoop Resp Data

Req Error Snoop Resp Data

Resp

Req Error Snoop Resp Data

Req Error Snoop Data

Req Error Snoop Resp Data

Req Error Snoop Resp Data

Figure 3-45. Pipelining requests on the Pentium II’s memory bus.

Pin 1 Index

Figure 3-46. The UltraSPARC II CPU chip.

Bus arbitration

Memory address

Address parity

Address valid

Wait

Reply

Level 1 caches

to
main

memory

UPA
interface

UltraSPARC II
CPU

Tag address

Tag valid

Tag data

Tag parity

Level 2
cache
tags

Data address

Data address valid

Level 2
cache
data

18 5

35

Memory data

Memory ECC

128

16

4

25

20

4

Data

Parity

128

16 5 Control

UDB II
memory

buffer

Figure 3-47. The main features of the core of an UltraSPARC II system.

MicroJava 701
CPU

Level 1
 caches

PCI bus

Programmable
I/O lines

Flash
PROM

Main
memory

Memory bus

16

I

D

Figure 3-48. A microJava 701 system.

Motherboard PC bus
PC bus

connector Contact
Plug-in
board

Chips

CPU and
other
chips

New connector for PC/AT Edge connector

Figure 3-49. The PC/AT bus has two components, the original
PC part and the new part.

ISA
bridge

Modem

Mouse

PCI
bridgeCPU

Main
memory

SCSI USB

Local bus

Sound
card Printer Available

ISA slot

ISA bus

IDE
disk

Available
PCI slot

Key-
board

Mon-
itor

Graphics
adaptor

Level 2
cache

Cache bus Memory bus

PCI bus

Figure 3-50. Architecture of a typical Pentium II system. The
thicker buses have more bandwidth than the thinner ones.

PCI
arbiter

PCI
device

R
E

Q
#

G
N

T
#

PCI
device

R
E

Q
#

G
N

T
#

PCI
device

R
E

Q
#

G
N

T
#

PCI
device

R
E

Q
#

G
N

T
#

Figure 3-51. The PCI bus uses a centralized bus arbiter.

22
Signal Lines Master Slave Description22

CLK 1 Clock (33 MHz or 66 MHz)22
AD 32 × × Multiplexed address and data lines22
PAR 1 × Address or data parity bit22
C/BE 4 × Bus command/bit map for bytes enabled22
FRAME# 1 × Indicates that AD and C/BE are asserted22
IRDY# 1 × Read: master will accept; write: data present22
IDSEL 1 × Select configuration space instead of memory22
DEVSEL# 1 × Slave has decoded its address and is listening22
TRDY# 1 × Read: data present; write: slave will accept22
STOP# 1 × Slave wants to stop transaction immediately22
PERR# 1 Data parity error detected by receiver22
SERR# 1 Address parity error or system error detected22
REQ# 1 Bus arbitration: request for bus ownership22
GNT# 1 Bus arbitration: grant of bus ownership22
RST# 1 Reset the system and all devices2211
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

(a)
22

Sign Lines Master Slave Description22
REQ64# 1 × Request to run a 64-bit transaction22
ACK64# 1 × Permission is granted for a 64-bit transaction22
AD 32 × Additional 32 bits of address or data22
PAR64 1 × Parity for the extra 32 address/data bits22
C/BE# 4 × Additional 4 bits for byte enables22
LOCK 1 × Lock the bus to allow multiple transactions22
SBO# 1 Hit on a remote cache (for a multiprocessor)22
SDONE 1 Snooping done (for a multiprocessor)22
INTx 4 Request an interrupt22
JTAG 5 IEEE 1149.1 JTAG test signals22
M66EN 1 Wired to power or ground (66 MHz or 33 MHz)221
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

(b)

Figure 3-52. (a) Mandatory PCI bus signals. (b) Optional PCI bus signals.

Φ

T1 T2 T3 T4 T5 T6 T7

Turnaround

Address AddressData Data

Read Idle

Bus cycle

White

AD

C/BE#

FRAME#

IRDY#

DEVSEL#

TRDY#

Read cmd Write cmdEnable Enable

Figure 3-53. Examples of 32-bit PCI bus transactions. The
first three cycles are used for a read operation, then an idle cy-
cle, and then three cycles for a write operation.

Time (msec)

0

Idle

Frame 0

Data packet
from device

Packets
from root

From
device

SOF

2

Frame 2

SOF

1

Frame 1

SOF IN DATA ACK

SYN PID PAYLOAD CRC

Packets
from root

3

Frame 3

SOF OUT DATA ACK

SYN PID PAYLOAD CRC

Figure 3-54. The USB root hub sends out frames every 1.00 msec.

CS

WR

RD

A0-A1

RESET

D0-D7

2
8

8

88

Port A

Port B

Port C

8255A
Parallel

I/O
chip

Figure 3-55. An 8255A PIO chip.

EPROM at address 0 RAM at address 8000H PIO at FFFCH

0 4K 8K 12K 16K 20K 24K 28K 32K 36K 40K 44K 48K 52K 56K 60K 64K

��
��� ���

�
��
�
�

���

�
�
�

Figure 3-56. Location of the EPROM, RAM, and PIO in our 64K address space.

A0

A15

Address bus

A0

A15

Address bus

CS CS CS

2K 3 8
EPROM

2K 3 8
RAM PI0

(a)

(b)

CS CS CS

2K 3 8
EPROM

2K 3 8
RAM PI0

Figure 3-57. (a) Full address decoding. (b) Partial address decoding.

SEC. 3.5 181

3.6 EXAMPLE BUSES

Buses are the glue that hold computer systems together. In this section we
will take a close look at some popular buses: the ISA bus, the PCI bus, and the
Universal Serial Bus. The ISA bus is a slight expansion of the original IBM PC
bus. For reasons of backward compatibility, it is still present in all Intel-based
PCs. However, these machines invariably have a second, faster bus as well: the
PCI bus. The PCI bus is wider than the ISA bus and runs at a higher clock rate.
The Universal serial bus is an increasingly popular I/O bus for low-speed peri-
pherals such as mice and keyboards. In the following sections, we will look at
each of these buses in turn.

3.6.1 The ISA Bus

The IBM PC bus was the de facto standard on 8088-based systems because
nearly all PC clone vendors copied it in order to allow the many existing third-
party I/O boards to be used with their systems. It had 62 signal lines, including 20
for a memory address, 8 for data, and one each for asserting memory read,
memory write, I/O read, and I/O write. There were also signals for requesting and
granting interrupts and using DMA, and that was about it. It was a very simple
bus.

Physically, the bus was etched onto the PC’s motherboard, with about half a
dozen connectors spaced 2 cm apart into which cards could be inserted. Each
card had a tab on it that fit in the connector. The tab had 31 gold-plated strips on
each side that made electrical contact with the connector.

When IBM introduced the 80286-based PC/AT, it had a major problem on its
hands. If it had started from scratch and designed an entirely new 16-bit bus,
many potential customers would have hesitated to buy it because none of the vast
number of PC plug-in boards available from third-party vendors would have
worked using the new machine. On the other hand, sticking with the PC bus and
its 20 address lines and 8 data lines would not have taken advantage of the
80286’s ability to address 16M of memory and transfer 16-bit words.

The solution chosen was to extend the PC bus. PC plug-in cards have an edge
connector with 62 contacts, but this edge connector does not run the full length of
the board. The PC/AT solution was to put a second edge connector on the bottom
of the board, adjacent to the main one, and design the AT circuitry to work with
both types of boards. The general idea is illustrated in Fig. 3-1.

The second connector on the PC/AT bus contains 36 lines. Of these, 31 are
provided for more address lines, more data lines, more interrupt lines, and more
DMA channels, as well as power and ground. The rest deal with differences
between 8-bit and 16-bit transfers.

When IBM brought out the PS/2 series as the successor to the PC and PC/AT,
it decided that it was time to start again. Part of this decision may have been

182 THE DIGITAL LOGIC LEVEL CHAP. 3

Motherboard PC bus
PC bus

connector Contact
Plug-in
board

Chips

CPU and
other
chips

New connector for PC/AT Edge connector

Figure 3-1. The PC/AT bus has two components, the original PC part and the new part.

technical (the PC bus was by this time really obsolete), but part was no doubt
caused by a desire to put an obstacle in the way of companies making PC clones,
which had taken over an uncomfortably large part of the market. Thus the mid-
and upper-range PS/2 machines were equipped with a bus, the Microchannel, that
was completely new, and which was protected by a wall of patents backed by an
army of lawyers.

The rest of the personal computer industry reacted to this development by
adopting its own standard, the ISA (Industry Standard Architecture) bus,
which is basically the PC/AT bus running at 8.33 MHz. The advantage of this
approach is that it retains compatibility with existing machines and cards. It also
is based on a bus that IBM had liberally licensed to many companies in order to
ensure that as many third parties as possible produced cards for the original PC,
something that has come back to haunt IBM. Every Intel-based PC still has this
bus present, although usually with one or more other buses as well. A thorough
description of it can be found in (Shanley and Anderson, 1995a).

Later, the ISA bus was extended to 32 bits with a few new features thrown in
(e.g., for multiprocessing). This new bus was called the EISA (Extended ISA)
bus. Few boards have been produced for it, however.

SEC. 3.6 EXAMPLE BUSES 183

3.6.2 The PCI Bus

On the original IBM PC, most applications were text based. Gradually, with
the introduction of Windows, graphical user interfaces came into use. None of
these applications put much of a strain on the ISA bus. However, as time went on
and many applications, especially multimedia games, began to use computers to
display full-screen, full-motion video, the situation changed radically.

Let us make a simple calculation. Consider a 1024 × 768 screen used for true
color (3 bytes/pixel) moving images. One screen contains 2.25 MB of data. For
smooth motion, at least 30 screens/sec are needed, for a data rate of 67.5 MB/sec.
In fact, it is worse than this, since to display a video from a hard disk, CD-ROM,
or DVD, the data must pass from the disk drive over the bus to the memory. Then
for the display, the data must travel over the bus again to the graphics adapter.
Thus we need a bus bandwidth of 135 MB/sec for the video alone, not counting
the bandwidth the CPU and other devices need.

The ISA bus runs at a maximum rate of 8.33 MHz, and can transfer 2 bytes
per cycle, for a maximum bandwidth of 16.7 MB/sec. The EISA bus can move 4
bytes per cycle, to achieve 33.3 MB/sec. Clearly, neither of these is even close to
what is needed for full-screen video.

In 1990, Intel saw this coming and designed a new bus with a much higher
bandwidth than even the EISA bus. It was called the PCI bus (Peripheral Com-
ponent Interconnect bus). To encourage its use, Intel patented the PCI bus and
then put all the patents into the public domain, so any company could build peri-
pherals for it without having to pay royalties. Intel also formed an industry con-
sortium, the PCI Special Interest Group, to manage the future of the PCI bus. As
a result of these actions, the PCI bus has become extremely popular. Virtually
every Intel-based computer since the Pentium has a PCI bus, and many other
computers do, too. Sun even has a version of the UltraSPARC that uses the PCI
bus, the UltraSPARC IIi. The PCI bus is covered in gory detail in (Shanley and
Anderson, 1995b; and Solari and Willse, 1998).

The original PCI bus transferred 32 bits per cycle and ran at 33 MHz (30 nsec
cycle time) for a total bandwidth of 133 MB/sec. In 1993, PCI 2.0 was intro-
duced, and in 1995, PCI 2.1 came out. PCI 2.2 has features for mobile computers
(mostly for saving battery power). The PCI bus runs at up to 66 MHz and can
handle 64-bit transfers, for a total bandwidth of 528 MB/sec. With this kind of
capacity, full-screen, full-motion video is doable (assuming the disk and the rest
of the system are up to the job). In any event, the PCI bus will not be the
bottleneck.

Even though 528 MB/sec sounds pretty fast, it still has two problems. First, it
is not good enough for a memory bus. Second, it is not compatible with all those
old ISA cards out there. The solution Intel thought of was to design computers
with three or more buses, as shown in Fig. 3-2. Here we see that the CPU can talk
to the main memory on a special memory bus, and that an ISA bus can be

184 THE DIGITAL LOGIC LEVEL CHAP. 3

connected to the PCI bus. This arrangement meets all requirements, and as a
consequence, virtually all Pentium II computers use this architecture.

ISA
bridge

Modem

Mouse

PCI
bridgeCPU

Main
memory

SCSI USB

Local bus

Sound
card Printer Available

ISA slot

ISA bus

IDE
disk

Available
PCI slot

Key-
board

Mon-
itor

Graphics
adaptor

Level 2
cache

Cache bus Memory bus

PCI bus

Figure 3-2. Architecture of a typical Pentium II system. The thicker buses have
more bandwidth than the thinner ones.

Two key components in this architecture are the two bridge chips (which Intel
manufactures—hence its interest in this whole project). The PCI bridge connects
the CPU, memory and PCI bus. The ISA bridge connects the PCI bus to the ISA
bus and also supports one or two IDE disks. Nearly all Pentium II systems come
with one or more free PCI slots for adding new high-speed peripherals, and one or
more ISA slots, for adding low-speed peripherals.

The big advantage of Fig. 3-2 is that the CPU has an extremely high
bandwidth to memory, using a proprietary memory bus the PCI bus has a very
high bandwidth for fast peripherals such as SCSI disks, graphics adaptors, etc.,
and old ISA cards can still be used. The USB box in the figure refers to the
Universal Serial Bus, which will be discussed later in this chapter.

Although we have illustrated a system with one PCI bus and one ISA bus, it is
possible to have multiple instances of each. There are PCI-to-PCI bridge chips
available, which connect two PCI buses together, so larger systems can have two
or more independent PCI buses. It is also possible to have two or more PCI-to-
ISA bridge chips in a system, allowing multiple ISA buses.

SEC. 3.6 EXAMPLE BUSES 185

It would have been nice had there been one kind of PCI card. Unfortunately,
such is not the case. Options are provided for voltage, width, and timing. Older
computers often use 5 volts and newer ones tend to use 3.3 volts, so the PCI bus
supports both. The connectors are the same except for two bits of plastic that are
there to prevent people from inserting a 5-volt card in a 3.3-volt PCI bus or vice
versa. Fortunately, universal cards, which support both voltages and can plug into
either kind of slot, exist. In addition to the voltage option, cards come in 32-bit
and 64-bit versions. The 32-bit cards have 120 pins; the 64-bit cards have the
same 120 pins plus an additional 64 pins, analogous to the way the IBM PC bus
was extended to 16 bits (see Fig. 3-1). A PCI bus system that supports 64-bit
cards can also take 32-bit cards, but the reverse is not true. Finally, PCI buses and
cards can run at either 33 MHz or 66 MHz. The choice is made by having one pin
wired either to the power supply or wired to ground. The connectors are identical
for both speeds.

The PCI bus is synchronous, like all PC buses going back to the original IBM
PC. All transactions on the PCI bus are between a master, officially called the
initiator, and a slave, officially called the target. To keep the PCI pin count
down, the address and data lines are multiplexed. In this way, only 64 pins are
needed on PCI cards for address plus data signals, even though PCI supports 64-
bit addresses and 64-bit data.

The multiplexed address and data pins work as follows. On a read operation,
during cycle 1, the master puts the address onto the bus. On cycle 2 the master
removes the address and the bus is turned around so the slave can use it. On cycle
3, the slave outputs the data requested. On write operations, the bus does not have
to be turned around because the master puts on both the address and the data.
Nevertheless, the minimum transaction is still three cycles. If the slave is not able
to respond in three cycles, it can insert wait states. Block transfers of unlimited
size are also allowed, as well as several other kinds of bus cycles.

PCI Bus Arbitration

To use the PCI bus, a device must first acquire it. PCI bus arbitration uses a
centralized bus arbiter, as shown in Fig. 3-3. In most designs, the bus arbiter is
built into one of the bridge chips. Every PCI device has two dedicated lines run-
ning from it to the arbiter. One line, REQ#, is used to request the bus. The other
line, GNT#, is used to receive bus grants.

To request the bus, a PCI device (including the CPU), asserts REQ# and waits
until it sees its GNT# line asserted by the arbiter. When that event happens, the
device can use the bus on the next cycle. The algorithm used by the arbiter is not
defined by the PCI specification. Round robin arbitration, priority arbitration, and
other schemes are all allowed. Clearly, a good arbiter will be fair, so as not to let
some devices wait forever.

186 THE DIGITAL LOGIC LEVEL CHAP. 3

PCI
arbiter

PCI
device

R
E

Q
#

G
N

T
#

PCI
device

R
E

Q
#

G
N

T
#

PCI
device

R
E

Q
#

G
N

T
#

PCI
device

R
E

Q
#

G
N

T
#

Figure 3-3. The PCI bus uses a centralized bus arbiter.

A bus grant is for one transaction, although the length of this transaction is
theoretically unbounded. If a device wants to run a second transaction and no
other device is requesting the bus, it can go again, although normally one idle
cycle between transactions has to be inserted. However, under special cir-
cumstances, in the absence of competition for the bus, a device can make back-
to-back transactions without having to insert an idle cycle. If a bus master is mak-
ing a very long transfer and some other device has requested the bus, the arbiter
can negate the GNT# line. The current bus master is expected to monitor the GNT#

line, so when it sees the negation, it must release the bus on the next cycle. This
scheme allows very long transfers (which are efficient) when there is only one
candidate bus master but still gives fast response to competing devices.

PCI Bus Signals

The PCI bus has a number of mandatory signals, shown in Fig. 3-4(a), and a
number of optional signals, shown in Fig. 3-4(b). The remainder of the 120 or
184 pins are used for power, ground, and related miscellaneous functions and are
not listed here. The Master (initiator) and Slave (target) columns tell who asserts
the signal on a normal transaction. If the signal is asserted by a different device
(e.g., CLK), both columns are left blank.

Let us now look at each of the PCI bus signals briefly. We will start with the
mandatory (32-bit) signals; then we will move on to the optional (64-bit) signals.
The CLK signal drives the bus. Most of the other signals are synchronous with it.
In contrast to the ISA bus, a PCI bus transaction begins at the falling edge of CLK,
which is in the middle of the cycle, rather than at the start.

The 32 AD signals are for the address and data (for 32-bit transactions). Gen-
erally, during cycle 1 the address is asserted and during cycle 3 the data are
asserted. The PAR signal is a parity bit for AD. The C/BE# signal is used for two
different things. On cycle 1, it contains the bus command (read 1 word, block

SEC. 3.6 EXAMPLE BUSES 187

22
Signal Lines Master Slave Description22

CLK 1 Clock (33 MHz or 66 MHz)22
AD 32 × × Multiplexed address and data lines22
PAR 1 × Address or data parity bit22
C/BE 4 × Bus command/bit map for bytes enabled22
FRAME# 1 × Indicates that AD and C/BE are asserted22
IRDY# 1 × Read: master will accept; write: data present22
IDSEL 1 × Select configuration space instead of memory22
DEVSEL# 1 × Slave has decoded its address and is listening22
TRDY# 1 × Read: data present; write: slave will accept22
STOP# 1 × Slave wants to stop transaction immediately22
PERR# 1 Data parity error detected by receiver22
SERR# 1 Address parity error or system error detected22
REQ# 1 Bus arbitration: request for bus ownership22
GNT# 1 Bus arbitration: grant of bus ownership22
RST# 1 Reset the system and all devices2211
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

(a)

22
Sign Lines Master Slave Description22

REQ64# 1 × Request to run a 64-bit transaction22
ACK64# 1 × Permission is granted for a 64-bit transaction22
AD 32 × Additional 32 bits of address or data22
PAR64 1 × Parity for the extra 32 address/data bits22
C/BE# 4 × Additional 4 bits for byte enables22
LOCK 1 × Lock the bus to allow multiple transactions22
SBO# 1 Hit on a remote cache (for a multiprocessor)22
SDONE 1 Snooping done (for a multiprocessor)22
INTx 4 Request an interrupt22
JTAG 5 IEEE 1149.1 JTAG test signals22
M66EN 1 Wired to power or ground (66 MHz or 33 MHz)221
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

(b)

Figure 3-4. (a) Mandatory PCI bus signals. (b) Optional PCI bus signals.

read, etc.). On cycle 2 it contains a bit map of 4 bits, telling which bytes of the
32-bit word are valid. Using C/BE# it is possible to read or write any 1, 2, or 3
bytes, as well as an entire word.

The FRAME# signal is asserted by the bus master to start a bus transaction. It
tells the slave that the address and bus commands are now valid. On a read,

188 THE DIGITAL LOGIC LEVEL CHAP. 3

usually IRDY# is asserted at the same time as FRAME#. It says the master is ready
to accept the incoming data. On a write, IRDY# is asserted later, when the data are
on the bus.

The IDSEL signal relates to the fact that every PCI device must have a 256-
byte configuration space that other devices can read (by asserting IDSEL). This
configuration space contains properties of the device. The Plug ’n Play feature of
some operating systems uses the configuration space to find out what devices are
on the bus.

Now we come to signals asserted by the slave. The first of these, DEVSEL#,
announces that the slave has detected its address on the AD lines and is prepared to
engage in the transaction. If DEVSEL# is not asserted within a certain time limit,
the master times out and assumes the device addressed is either absent or broken.

The second slave signal is TRDY#, which the slave asserts on reads to
announce that the data are on the AD lines and on writes to announce that it is
prepared to accept data.

The next three signals are for error reporting. The first of these is STOP#,
which the slave asserts if something disastrous happens and it wants to abort the
current transaction. The next one, PERR#, is used to report a data parity error on
the previous cycle. For a read, it is asserted by the master; for a write it is
asserted by the slave. It is up the the receiver to take the appropriate action.
Finally, SERR# is for reporting address errors and system errors.

The REQ# and GNT# signals are for doing bus arbitration. These are not
asserted by the current bus master, but rather by a device that wants to become
bus master. The last mandatory signal is RST#, used for resetting the system,
either due to the user pushing the RESET button or some system device noticing a
fatal error. Asserting this signal resets all devices and reboots the computer.

Now we come to the optional signals, most of which relate to the expansion
from 32 bits to 64 bits. The REQ64# and ACK64# signals allow the master to ask
permission to conduct a 64-bit transaction and allow the slave to accept, respec-
tively. The AD, PAR64, and C/BE# signals are just extensions of the corresponding
32-bit signals.

The next three signals are not related to 32 bits versus 64 bits, but to multipro-
cessor systems, something that PCI boards are not required to support. The LOCK

signal allows the bus to be locked for multiple transactions. The next two relate
to bus snooping to maintain cache coherence.

The INTx signals are for requesting interrupts. A PCI card can have up to four
separate logical devices on it, and each one can have its own interrupt request
line. The JTAG signals are for the IEEE 1149.1 JTAG testing procedure. Finally,
the M66EN signal is either wired high or wired low, to set the clock speed. It must
not change during system operation.

SEC. 3.6 EXAMPLE BUSES 189

PCI Bus Transactions

The PCI bus is really very simple (as buses go). To get a better feel for it,
consider the timing diagram of Fig. 3-5. Here we see a read transaction, followed
by an idle cycle, followed by a write transaction by the same bus master.

Φ

T1 T2 T3 T4 T5 T6 T7

Turnaround

Address AddressData Data

Read Idle

Bus cycle

White

AD

C/BE#

FRAME#

IRDY#

DEVSEL#

TRDY#

Read cmd Write cmdEnable Enable

Figure 3-5. Examples of 32-bit PCI bus transactions. The first three cycles are
used for a read operation, then an idle cycle, and then three cycles for a write
operation.

When the falling edge of the clock happens during T1, the master puts the
memory address on AD and the bus command on C/BE#. It then asserts FRAME# to
start the bus transaction.

During T2, the master floats the address bus to let it turn around in preparation
for the slave to drive it during T3. The master also changes C/BE# to indicate
which bytes in the word addressed it wants to enable (i.e., read in).

In T3, the slave asserts DEVSEL# so the master knows it got the address and is
planning to respond. It also puts the data on the AD lines and asserts TRDY# to tell
the master that it has done so. If the slave was not able to respond so quickly, it
would still assert DEVSEL# to announce its presence but keep TRDY# negated until
it could get the data out there. This procedure would introduce one or more wait

190 THE DIGITAL LOGIC LEVEL CHAP. 3

states.
In this example (and often in reality), the next cycle is idle. Starting in T5 we

see the same master initiating a write. It starts out by putting the address and
command onto the bus, as usual. Only now, in the second cycle it asserts the data.
Since the same device is driving the AD lines, there is no need for a turnaround
cycle. In T7, the memory accepts the data.

3.6.3 The Universal Serial Bus

The PCI bus is fine for attaching high-speed peripherals to a computer, but it
is far too expensive to have a PCI interface for each low-speed I/O device such as
a keyboard or mouse. Historically, each standard I/O device was connected to the
computer in a special way, with some free ISA and PCI slots for adding new dev-
ices. Unfortunately, this scheme has been fraught with problems from the begin-
ning. For example, each new I/O device often comes with its own ISA or PCI
card. The user is often responsible for setting switches and jumpers on the card
and making sure the settings do not conflict with other cards. Then the user must
open up the case, carefully insert the card, close the case, and reboot the com-
puter. For many users, this process is difficult and error prone. In addition, the
number of ISA and PCI slots is very limited (two or three typically). Plug ’n Play
cards eliminate the jumper settings, but the user still has to open the computer to
insert the card and bus slots are still limited.

To deal with this problem, in the mid 1990s, representatives from seven com-
panies (Compaq, DEC, IBM, Intel, Microsoft, NEC, and Northern Telecom) got
together to design a better way to attach low-speed I/O devices to a computer.
Since then, hundreds of other companies have joined them. The resulting stan-
dard is called USB (Universal Serial Bus) and it is being widely implemented in
personal computers. It is described further in (Anderson, 1997; and Tan, 1997).

Some of the goals of the companies that originally conceived of the USB and
started the project were as follows:

1. Users must not have to set switches or jumpers on boards or devices.

2. Users must not have to open the case to install new I/O devices.

3. There should be only one kind of cable, good for connecting all devices.

4. I/O devices should get their power from the cable.

5. Up to 127 devices should be attachable to a single computer.

6. The system should support real-time devices (e.g., sound, telephone).

7. Devices should be installable while the computer is running.

8. No reboot should be needed after installing a new device.

9. The new bus and its I/O devices should be inexpensive to manufacture.

SEC. 3.6 EXAMPLE BUSES 191

USB meets all these goals. It is designed for low-speed devices such as key-
boards, mice, still cameras, snapshot scanners, digital telephones, and so on. The
total USB bandwidth is 1.5 MB/sec, which is enough for a substantial number of
these devices. This low limit was chosen to keep the cost down.

A USB system consists of a root hub that plugs into the main bus (see
Fig. 3-2). This hub has sockets for cables that can connect to I/O devices or to
expansion hubs, to provide more sockets, so the topology of a USB system is a
tree with its root at the root hub, inside the computer. The cables have different
connectors on the hub end and on the device end, to prevent people from acciden-
tally connecting two hub sockets together.

The cable consists of four wires: two for data, one for power (+5 volts), and
one for ground. The signaling system transmits a 0 as a voltage transition and a 1
as the absence of a voltage transition, so long runs of 0s generate a regular pulse
stream.

When a new I/O device is plugged in, the root hub detects this event and
interrupts the operating system. The operating system then queries the device to
find out what it is and how much USB bandwidth it needs. If the operating sys-
tem decides that there is enough bandwidth for the device, it assigns the new dev-
ice a unique address (1 – 127) and downloads this address and other information
to configuration registers inside the device. In this way, new devices can be
added on-the-fly, without any user configuration required and without having to
install new ISA or PCI cards. Uninitialized cards start out with address 0, so they
can be addressed. To make the cabling simpler, many USB devices contain
built-in hubs to accept additional USB devices. For example, a monitor might
have two hub sockets to accommodate the left and right speakers.

Logically, the USB system can be viewed as a set of bit pipes from the root
hub to the I/O devices. Each device can split its bit pipe up into at most 16 sub-
pipes for different types of data (e.g., audio and video). Within each pipe or sub-
pipe, data flows from the root hub to the device or the other way. There is no
traffic between two I/O devices.

Precisely every 1.00 ± 0.05 msec, the root hub broadcasts a new frame to keep
all the devices synchronized in time. A frame is associated with a bit pipe, and
consists of packets, the first of which is from the root hub to the device. Subse-
quent packets in the frame may also be in this direction, or they may be back from
the device to the root hub. A sequence of four frames is shown in Fig. 3-6. In
Fig. 3-6 there is no work to be done in frames 0 and 2, so all that is needed is one
SOF (Start of Frame) packet. This packet is always broadcast to all devices.
Frame 1 is a poll, for example, a request to a scanner to return the bits it has found
on the image it is scanning. Frame 3 consists of delivering data to some device,
for example to a printer.

USB supports four kinds of frames: control, isochronous, bulk, and interrupt.
Control frames are used to configure devices, give them commands, and inquire
about their status. Isochronous frames are for real-time devices such as

192 THE DIGITAL LOGIC LEVEL CHAP. 3

Time (msec)

0

Idle

Frame 0

Data packet
from device

Packets
from root

From
device

SOF

2

Frame 2

SOF

1

Frame 1

SOF IN DATA ACK

SYN PID PAYLOAD CRC

Packets
from root

3

Frame 3

SOF OUT DATA ACK

SYN PID PAYLOAD CRC

Figure 3-6. The USB root hub sounds out frames every 1.00 msec.

microphones, loudspeakers, and telephones that need to send or accept data at pre-
cise time intervals. They have a highly-predictable delay but provide no
retransmissions in the event of errors. Bulk frames are for large transfers to or
from devices with no real-time requirements such as printers. Finally, interrupt
frames are needed because USB does not support interrupts. For example, instead
of having the keyboard cause an interrupt whenever a key is struck, the operating
system can poll it every 50 msec to collect any pending keystrokes.

A frame consists of one or more packets, possibly some in each direction.
Four kinds of packets exist: token, data, handshake, and special. Token packets
are from the root to a device and are for system control. The SOF, IN, and OUT

packets in Fig. 3-6 are token packets. The SOF (Start of Frame) packet is the first
one in each frame and marks the beginning of the frame. If there is no work to do,
the SOF packet is the only one in the frame. The IN token packet is a poll, asking
the device to return certain data. Fields in the IN packet tell which bit pipe is
being polled so the device knows which data to return (if it has multiple streams).
The OUT token packet announces that data for the device will follow. A fourth
type of token packet, SETUP (not shown in the figure), is used for configuration.

Besides the token packet, three other kinds exist. These are DATA (used to
transmit up to 64 bytes of information either way), handshake, and special pack-
ets. The format of a data packet is shown in Fig. 3-6. It consists of an 8-bit syn-
chronization field, an 8-bit packet type (PID), the payload, and a 16-bit CRC
(Cyclic Redundancy Code) to detect errors. Three kinds of handshake packets
are defined: ACK (the previous data packet was correctly received), NAK (a CRC
error was detected), and STALL (please wait—I am busy right now).

Now let us look at Fig. 3-6 again. Every 1.00 msec a frame must be sent from
the root hub, even if there is no work. Frames 0 and 2 consist of just an SOF

SEC. 3.6 EXAMPLE BUSES 193

packet, indicating that there was no work. Frame 1 is a poll, so it starts out with
SOF and IN packets from the computer to the I/O device, followed by a DATA

packet from the device to the computer. The ACK packet tells the device that the
data were received correctly. In case of an error, a NAK would be sent back to the
device and the packet would be retransmitted for bulk data (but not for isochro-
nous data). Frame 3 is similar in structure to frame 1, except that now the flow of
data are from the computer to the device.

4
THE MICROARCHITECTURE LEVEL

1

H

Shifter controlShifter

ALU

2

N

A B

B busC bus

6
ALU control

Control signals

Memory
control
registers

Enable onto B bus

Write C bus to register

To
and
from
main
memory

Z

SP

LV

CPP

TOS

OPC

PC

MDR

MAR

MBR

Figure 4-1. The data path of the example microarchitecture used in this chapter.

222
F0 F1 ENA ENB INVA INC Function222
0 1 1 0 0 0 A222
0 1 0 1 0 0 B222
0 1 1 0 1 0 A

33
222

1 0 1 1 0 0 B
33

222
1 1 1 1 0 0 A + B222
1 1 1 1 0 1 A + B + 1222
1 1 1 0 0 1 A + 1222
1 1 0 1 0 1 B + 1222
1 1 1 1 1 1 B − A222
1 1 0 1 1 1 B − 1222
1 1 1 0 1 1 −A222
0 0 1 1 0 0 A AND B222
0 1 1 1 0 0 A OR B222
0 1 0 0 0 0 0222
0 1 0 0 0 1 1222
0 1 0 0 1 0 −122211

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 4-2. Useful combinations of ALU signals and the function performed.

Cycle 1
starts
here

Shifter
output
stable

Registers loaded
instantaneously from
C bus and memory on
rising edge of clock

Set up
signals
to drive
data path

ALU
and
shifter

Drive H
and
B bus

Propagation
from shifter
to registers

∆w ∆x ∆y ∆z

Clock cycle 1 Clock cycle 2

MPC
available
here

New MPC used to
load MIR with next
microinstruction here

Figure 4-3. Timing diagram of one data path cycle.

Discarded
32-Bit MAR (counts in words)

32-Bit address bus (counts in bytes)

0 0

Figure 4-4. Mapping of the bits in MAR to the address bus.

Bits 9 3 8 9 3 4

NEXT_ADDRESS

Addr JAM ALU C Mem B

R
E
A
D

F
E
T
C
H

J
A
M
N

J
M
P
C

J
A
M
Z

S
L
L
8

S
R
A
1

F0 F1 E
N
A

E
N
B

I
N
V
A

I
N
C

H O
P
C

T
O
S

C
P
P

L
V

S
P

P
C

M
D
R

M
A
R

W
R
I
T
E

B
bus

B bus registers

0 = MDR
1 = PC
2 = MBR
3 = MBRU
4 = SP

5 = LV
6 = CPP
7 = TOS
8 = OPC
9 -15 none

Figure 4-5. The microinstruction format for the Mic-1.

H

Shifter

ALU

2

N

B bus

6

ALU
control

Control
signals

Memory control signals (rd, wr, fetch)

Enable
onto
B bus

Write
C bus
to register

Z

C bus

SP

LV

CPP

TOS

OPC

PC

MDR

MAR

MBR

9

O

512 × 36-Bit
control store
for holding

the microprogram

3

8

4-to-16
Decoder

2

8

4

MPC

MIR
Addr J ALU C M B

1-bit flip–flop

High
bit

JMPC

JAMN/JAMZ

Figure 4-6. The complete block diagram of our example mi-
croarchitecture, the Mic-1.

…
…

Address Addr Data path control bits

One of
these
will follow
0x75
depending
on Z

JAM

JAMZ bit set0x75 0x92

0x92

0x192

001

Figure 4-7. A microinstruction with JAMZ set to 1 has two po-
tential successors.

SP

LV

a3

a1

(a)

108

100
a2 104

SP

LV
a3

a1

(b)

a2

b3
b4

b1
b2

a3

a1

(c)

a2

b3
b4

LV c1
SP c2

b1
b2

LV
a3

a1

(d)

a2

d3
d4

SP d5

d1
d2

Figure 4-8. Use of a stack for storing local variables. (a)
While A is active. (b) After A calls B. (c) After B calls C. (d)
After C and B return and A calls D.

LV

a3

�
������
�

SP a2

a1

(a)

a2
LV

a3

�
������
�

a2�
����

SP a3

a1

(b)

a2
LV

a3

�
������
�

SP a2 + a3

a1

(c)

a2
LV

SP a3

a2 + a3

(d)

a2

Figure 4-9. Use of an operand stack for doing an arithmetic computation.

SP

LV

PC

CPP

Constant
Pool

Current
Operand
Stack 3

Current
Local

Variable
Frame 3

Local
Variable
Frame 2

Local
Variable
Frame 1

Method
Area

Figure 4-10. The various parts of the IJVM memory.

222
Hex Mnemonic Meaning222
0x10 BIPUSH byte Push byte onto stack222
0x59 DUP Copy top word on stack and push onto stack222
0xA7 GOTO offset Unconditional branch222
0x60 IADD Pop two words from stack; push their sum222
0x7E IAND Pop two words from stack; push Boolean AND222
0x99 IFEQ offset Pop word from stack and branch if it is zero222
0x9B IFLT offset Pop word from stack and branch if it is less than zero222
0x9F IF3ICMPEQ offset Pop two words from stack; branch if equal222
0x84 IINC varnum const Add a constant to a local variable222
0x15 ILOAD varnum Push local variable onto stack222
0xB6 INVOKEVIRTUAL disp Invoke a method222
0x80 IOR Pop two words from stack; push Boolean OR222
0xAC IRETURN Return from method with integer value222
0x36 ISTORE varnum Pop word from stack and store in local variable222
0x64 ISUB Pop two words from stack; push their difference222
0x13 LDC3W index Push constant from constant pool onto stack222
0x00 NOP Do nothing222
0x57 POP Delete word on top of stack222
0x5F SWAP Swap the two top words on the stack222
0xC4 WIDE Prefix instruction; next instruction has a 16-bit index22211
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 4-11. The IJVM instruction set. The operands byte,
const, and varnum are 1 byte. The operands disp, index, and
offset are 2 bytes.

Pushed
parameters

Caller's
local
variable
frame

Stack before
INVOKEVIRTUAL

Stack after
INVOKEVIRTUAL

SP

SP

LV

LV

(a) (b)

Stack base
after

INVOKEVIRTUAL

Stack base
before

INVOKEVIRTUAL

Parameter 3
Parameter 2
Parameter 1

OBJREF
Previous LV
Previous PC Previous PC

Caller's
local

variables

Parameter 2
Parameter 1

Link ptr

Caller's
local

variables

Space for
caller's local

variables

Parameter 2
Parameter 1

Link ptr

Caller's LV
Caller's PC

Previous LV

Parameter 3
Parameter 2
Parameter 1

Link ptr

Figure 4-12. (a) Memory before executing INVOKEVIRTUAL.
(b) After executing it.

Caller's
local
variable
frame

Stack before
IRETURN

Stack after
IRETURN

SP

SPLV

LV

(a) (b)

Stack base
before

 IRETURN

Stack base
after

 IRETURN

Parameter 3
Parameter 2
Parameter 1

Link ptr
Previous LV
Previous PC Previous PC

Caller's
local

variables

Caller's
local

variables

Parameter 2
Parameter 1

Previous LV
Return value

Previous PC

Link ptr

Caller's
local

variables

Parameter 2
Parameter 1

Link ptr

Previous LV
Return value

Figure 4-13. (a) Memory before executing IRETURN. (b) After executing it.

i = j + k; 1 ILOAD j // i = j + k 0x15 0x02
if (i == 3) 2 ILOAD k 0x15 0x03

k = 0; 3 IADD 0x60
else 4 ISTORE i 0x36 0x01

j = j − 1; 5 ILOAD i // if (i < 3) 0x15 0x01
6 BIPUSH 3 0x10 0x03
7 IF3ICMPEQ L1 0x9F 0x00 0x0D
8 ILOAD j // j = j − 1 0x15 0x02
9 BIPUSH 1 0x10 0x01

10 ISUB 0x64
11 ISTORE j 0x36 0x02
12 GOTO L2 0xA7 0x00 0x07
13 L1: BIPUSH 0 // k = 0 0x10 0x00
14 ISTORE k 0x36 0x03
15 L2:

(a) (b) (c)

Figure 4-14. (a) A Java fragment. (b) The corresponding Java
assembly language. (c) The IJVM program in hexadecimal.

j
2

j + k
3

j
10

k
j
6 7

3

4
j
5

j – 1
10 11

j
1

j
98 14 1512

0
13

Figure 4-15. The stack after each instruction of Fig. 4-14(b).

222222222222222222222222222
DEST = H222222222222222222222222222
DEST = SOURCE222222222222222222222222222
DEST = H

33
222222222222222222222222222
DEST = SOURCE

333333333
222222222222222222222222222
DEST = H + SOURCE222222222222222222222222222
DEST = H + SOURCE + 1222222222222222222222222222
DEST = H + 1222222222222222222222222222
DEST = SOURCE + 1222222222222222222222222222
DEST = SOURCE − H222222222222222222222222222
DEST = SOURCE − 1222222222222222222222222222
DEST = −H222222222222222222222222222
DEST = H AND SOURCE222222222222222222222222222
DEST = H OR SOURCE222222222222222222222222222
DEST = 0222222222222222222222222222
DEST = 1222222222222222222222222222
DEST = −12222222222222222222222222221
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 4-16. All permitted operations. Any of the above
operations may be extended by adding ‘‘<< 8’’ to them to shift
the result left by 1 byte. For example, a common operation is
H = MBR < < 8

Label Operations Comments22
Main1 PC = PC + 1; fetch; goto (MBR) MBR holds opcode; get next byte; dispatch22
nop1 goto Main1 Do nothing22
iadd1 MAR = SP = SP − 1; rd Read in next-to-top word on stack
iadd2 H = TOS H = top of stack
iadd3 MDR = TOS = MDR + H; wr; goto Main1 Add top two words; write to top of stack22
isub1 MAR = SP = SP − 1; rd Read in next-to-top word on stack
isub2 H = TOS H = top of stack
isub3 MDR = TOS = MDR − H; wr; goto Main1 Do subtraction; write to top of stack22
iand1 MAR = SP = SP − 1; rd Read in next-to-top word on stack
iand2 H = TOS H = top of stack
iand3 MDR = TOS = MDR AND H; wr; goto Main1 Do AND; write to new top of stack22
ior1 MAR = SP = SP − 1; rd Read in next-to-top word on stack
ior2 H = TOS H = top of stack
ior3 MDR = TOS = MDR OR H; wr; goto Main1 Do OR; write to new top of stack22
dup1 MAR = SP = SP + 1 Increment SP and copy to MAR
dup2 MDR = TOS; wr; goto Main1 Write new stack word22
pop1 MAR = SP = SP − 1; rd Read in next-to-top word on stack
pop2 Wait for new TOS to be read from memory
pop3 TOS = MDR; goto Main1 Copy new word to TOS22
swap1 MAR = SP − 1; rd Set MAR to SP − 1; read 2nd word from stack
swap2 MAR = SP Set MAR to top word
swap3 H = MDR; wr Save TOS in H; write 2nd word to top of stack
swap4 MDR = TOS Copy old TOS to MDR
swap5 MAR = SP − 1; wr Set MAR to SP − 1; write as 2nd word on stack
swap6 TOS = H; goto Main1 Update TOS22
bipush1 SP = MAR = SP + 1 MBR = the byte to push onto stack
bipush2 PC = PC + 1; fetch Increment PC, fetch next opcode
bipush3 MDR = TOS = MBR; wr; goto Main1 Sign-extend constant and push on stack22
iload1 H = LV MBR contains index; copy LV to H
iload2 MAR = MBRU + H; rd MAR = address of local variable to push
iload3 MAR = SP = SP + 1 SP points to new top of stack; prepare write
iload4 PC = PC + 1; fetch; wr Inc PC; get next opcode; write top of stack
iload5 TOS = MDR; goto Main1 Update TOS22
istore1 H = LV MBR contains index; Copy LV to H
istore2 MAR = MBRU + H MAR = address of local variable to store into
istore3 MDR = TOS; wr Copy TOS to MDR; write word
istore4 SP = MAR = SP − 1; rd Read in next-to-top word on stack
istore5 PC = PC + 1; fetch Increment PC; fetch next opcode
istore6 TOS = MDR; goto Main1 Update TOS

22
wide1 PC = PC + 1; fetch; goto (MBR OR 0x100) Multiway branch with high bit set22
wide3iload1 PC = PC + 1; fetch MBR contains 1st index byte; fetch 2nd
wide3iload2 H = MBRU << 8 H = 1st index byte shifted left 8 bits
wide3iload3 H = MBRU OR H H = 16-bit index of local variable
wide3iload4 MAR = LV + H; rd; goto iload3 MAR = address of local variable to push22
wide3istore1 PC = PC + 1; fetch MBR contains 1st index byte; fetch 2nd
wide3istore2 H = MBRU << 8 H = 1st index byte shifted left 8 bits
wide3istore3 H = MBRU OR H H = 16-bit index of local variable
wide3istore4 MAR = LV + H; goto istore3 MAR = address of local variable to store into22
ldc3w1 PC = PC + 1; fetch MBR contains 1st index byte; fetch 2nd
ldc3w2 H = MBRU << 8 H = 1st index byte << 8
ldc3w3 H = MBRU OR H H = 16-bit index into constant pool
ldc3w4 MAR = H + CPP; rd; goto iload3 MAR = address of constant in pool

Figure 4-17. The microprogram for the Mic-1 (part 1 of 3).

Label Operations Comments222
iinc1 H = LV MBR contains index; Copy LV to H
iinc2 MAR = MBRU + H; rd Copy LV + index to MAR; Read variable
iinc3 PC = PC + 1; fetch Fetch constant
iinc4 H = MDR Copy variable to H
iinc5 PC = PC + 1; fetch Fetch next opcode
iinc6 MDR = MBR + H; wr; goto Main1 Put sum in MDR; update variable222
goto1 OPC = PC − 1 Save address of opcode.
goto2 PC = PC + 1; fetch MBR = 1st byte of offset; fetch 2nd byte
goto3 H = MBR << 8 Shift and save signed first byte in H
goto4 H = MBRU OR H H = 16-bit branch offset
goto5 PC = OPC + H; fetch Add offset to OPC
goto6 goto Main1 Wait for fetch of next opcode222
iflt1 MAR = SP = SP − 1; rd Read in next-to-top word on stack
iflt2 OPC = TOS Save TOS in OPC temporarily
iflt3 TOS = MDR Put new top of stack in TOS
iflt4 N = OPC; if (N) goto T; else goto F Branch on N bit222
ifeq1 MAR = SP = SP − 1; rd Read in next-to-top word of stack
ifeq2 OPC = TOS Save TOS in OPC temporarily
ifeq3 TOS = MDR Put new top of stack in TOS
ifeq4 Z = OPC; if (Z) goto T; else goto F Branch on Z bit222
if3icmpeq1 MAR = SP = SP − 1; rd Read in next-to-top word of stack
if3icmpeq2 MAR = SP = SP − 1 Set MAR to read in new top-of-stack
if3icmpeq3 H = MDR; rd Copy second stack word to H
if3icmpeq4 OPC = TOS Save TOS in OPC temporarily
if3icmpeq5 TOS = MDR Put new top of stack in TOS
if3icmpeq6 Z = OPC − H; if (Z) goto T; else goto F If top 2 words are equal, goto T, else goto F222
T OPC = PC − 1; fetch; goto goto2 Same as goto1; needed for target address222
F PC = PC + 1 Skip first offset byte
F2 PC = PC + 1; fetch PC now points to next opcode
F3 goto Main1 Wait for fetch of opcode

222
invokevirtual1 PC = PC + 1; fetch MBR = index byte 1; inc. PC, get 2nd byte
invokevirtual2 H = MBRU << 8 Shift and save first byte in H
invokevirtual3 H = MBRU OR H H = offset of method pointer from CPP
invokevirtual4 MAR = CPP + H; rd Get pointer to method from CPP area
invokevirtual5 OPC = PC + 1 Save Return PC in OPC temporarily
invokevirtual6 PC = MDR; fetch PC points to new method; get param count
invokevirtual7 PC = PC + 1; fetch Fetch 2nd byte of parameter count
invokevirtual8 H = MBRU << 8 Shift and save first byte in H
invokevirtual9 H = MBRU OR H H = number of parameters
invokevirtual10 PC = PC + 1; fetch Fetch first byte of # locals
invokevirtual11 TOS = SP − H TOS = address of OBJREF − 1
invokevirtual12 TOS = MAR = TOS + 1 TOS = address of OBJREF (new LV)
invokevirtual13 PC = PC + 1; fetch Fetch second byte of # locals
invokevirtual14 H = MBRU << 8 Shift and save first byte in H
invokevirtual15 H = MBRU OR H H = # locals
invokevirtual16 MDR = SP + H + 1; wr Overwrite OBJREF with link pointer
invokevirtual17 MAR = SP = MDR; Set SP, MAR to location to hold old PC
invokevirtual18 MDR = OPC; wr Save old PC above the local variables
invokevirtual19 MAR = SP = SP + 1 SP points to location to hold old LV
invokevirtual20 MDR = LV; wr Save old LV above saved PC
invokevirtual21 PC = PC + 1; fetch Fetch first opcode of new method.
invokevirtual22 LV = TOS; goto Main1 Set LV to point to LV Frame

Figure 4-17. The microprogram for the Mic-1 (part 2 of 3).

Label Operations Comments22
ireturn1 MAR = SP = LV; rd Reset SP, MAR to get link pointer
ireturn2 Wait for read
ireturn3 LV = MAR = MDR; rd Set LV to link ptr; get old PC
ireturn4 MAR = LV + 1 Set MAR to read old LV
ireturn5 PC = MDR; rd; fetch Restore PC; fetch next opcode
ireturn6 MAR = SP Set MAR to write TOS
ireturn7 LV = MDR Restore LV
ireturn8 MDR = TOS; wr; goto Main1 Save return value on original top of stack

Figure 4-17. The microprogram for the Mic-1 (part 3 of 3).

BYTEBIPUSH
(0×10)

Figure 4-18. The BIPUSH instruction format.

INDEX
BYTE 1

INDEX
BYTE 2

WIDE
(0xC4)

ILOAD
(0x15)

ILOAD
(0x15)

INDEX

(a) (b)

Figure 4-19. (a) ILOAD with a 1-byte index. (b) WIDE ILOAD
with a 2-byte index.

Address Control store

Microinstruction
execution order

ILOAD
WIDE
ILOAD

wide_iload1

Main1 1

wide1

iload1

3

1

2

2

0×1FF

0×115

0×100

0×C4

0×15

0×00

Figure 4-20. The initial microinstruction sequence for ILOAD
and WIDE ILOAD. The addresses are examples.

INDEX CONST
IINC
(0x84)

Figure 4-21. The IINC instruction has two different operand fields.

Memory 1 Byte

n + 3

n + 2

n + 1

n

OFFSET BYTE 2

OFFSET BYTE 1

GOTO (0xA7)

OFFSET BYTE 2

OFFSET BYTE 1

GOTO (0xA7)

OFFSET BYTE 2

OFFSET BYTE 1

GOTO (0xA7)

OFFSET BYTE 2

OFFSET BYTE 1

GOTO (0xA7)

OFFSET BYTE 2

OFFSET BYTE 1

GOTO (0xA7)

Registers

PC

OPC

MBR

H

n

n n n

n + 1 n + 1 n + 2 n + 2

OFFSET BYTE 1 OFFSET BYTE 2OFFSET BYTE 1 OFFSET BYTE 10xA7

OFFSET 1 << 8

(a) (b) (c) (d) (e)

Figure 4-22. The situation at the start of various microinstruc-
tions. (a) Main1. (b) goto1. (c) goto2. (d) goto3. (e) goto4.

22
Label Operations Comments22
pop1 MAR = SP = SP − 1; rd Read in next-to-top word on stack
pop2 Wait for new TOS to be read from memory
pop3 TOS = MDR; goto Main1 Copy new word to TOS
Main1 PC = PC + 1; fetch; goto (MBR) MBR holds opcode; get next byte; dispatch2211
1
1
1
1
1

11
1
1
1
1
1

Figure 4-23. New microprogram sequence for executing POP.

22
Label Operations Comments22
pop1 MAR = SP = SP − 1; rd Read in next-to-top word on stack
Main1.pop PC = PC + 1; fetch MBR holds opcode; fetch next byte
pop3 TOS = MDR; goto (MBR) Copy new word to TOS; dispatch on opcode2211
1
1
1
1

11
1
1
1
1

Figure 4-24. Enhanced microprogram sequence for executing
POP.

22
Label Operations Comments22
iload1 H = LV MBR contains index; Copy LV to H
iload2 MAR = MBRU + H; rd MAR = address of local variable to push
iload3 MAR = SP = SP + 1 SP points to new top of stack; prepare write
iload4 PC = PC + 1; fetch; wr Inc PC; get next opcode; write top of stack
iload5 TOS = MDR; goto Main1 Update TOS
Main1 PC = PC + 1; fetch; goto (MBR) MBR holds opcode; get next byte; dispatch2211
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1

Figure 4-25. Mic-1 code for executing ILOAD.

22
Label Operations Comments22
iload1 MAR = MBRU + LV; rd MAR = address of local variable to push
iload2 MAR = SP = SP + 1 SP points to new top of stack; prepare write
iload3 PC = PC + 1; fetch; wr Inc PC; get next opcode; write top of stack
iload4 TOS = MDR Update TOS
iload5 PC = PC + 1; fetch; goto (MBR) MBR already holds opcode; fetch index byte221
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

Figure 4-26. Three-bus code for executing ILOAD.

MBR2

Shift register
From memory

MBR1

+1

Write PC

2 low-order bits
B busC bus

IMAR

PC

+1, 2

Figure 4-27. A fetch unit for the Mic-1.

Word fetched

Word fetched

Word fetched

0
MBR1

MBR2

MBR2

MBR2 MBR2

MBR2

Transitions
MBR1: Occurs when MBR1 is read
MBR2: Occurs when MBR2 is read
Word fetched: Occurs when a memory word is read and 4 bytes are put into the shift register

1
MBR1

2
MBR1

3
MBR1

4
MBR1

5
MBR1

6

Figure 4-28. A finite state machine for implementing the IFU.

H

Shifter

ALU
N

B bus

C bus

6ALU
control

Control signals

Memory
control
registers

Enable onto B bus

Write C bus to register

To
and
from
main
memory

Z

MBR2

SP

LV

CPP

TOS

PC

MDR

MAR

MBR

OPC

Instruction
fetch unit
(IFU)

A bus

Figure 4-29. The datapath for Mic-2.

Label Operations Comments22
nop1 goto (MBR) Branch to next instruction22
iadd1 MAR = SP = SP − 1; rd Read in next-to-top word on stack
iadd2 H = TOS H = top of stack
iadd3 MDR = TOS = MDR+H; wr; goto (MBR1) Add top two words; write to new top of stack22
isub1 MAR = SP = SP − 1; rd Read in next-to-top word on stack
isub2 H = TOS H = top of stack
isub3 MDR = TOS = MDR−H; wr; goto (MBR1) Subtract TOS from Fetched TOS-122
iand1 MAR = SP = SP − 1; rd Read in next-to-top word on stack
iand2 H = TOS H = top of stack
iand3 MDR = TOS = MDR AND H; wr; goto (MBR1) AND Fetched TOS-1 with TOS22
ior1 MAR = SP = SP − 1; rd Read in next-to-top word on stack
ior2 H = TOS H = top of stack
ior3 MDR = TOS = MDR OR H; wr; goto (MBR1) OR Fetched TOS-1 with TOS22
dup1 MAR = SP = SP + 1 Increment SP; copy to MAR
dup2 MDR = TOS; wr; goto (MBR1) Write new stack word22
pop1 MAR = SP = SP − 1; rd Read in next-to-top word on stack
pop2 Wait for read
pop3 TOS = MDR; goto (MBR1) Copy new word to TOS22
swap1 MAR = SP − 1; rd Read 2nd word from stack; set MAR to SP
swap2 MAR = SP Prepare to write new 2nd word
swap3 H = MDR; wr Save new TOS; write 2nd word to stack
swap4 MDR = TOS Copy old TOS to MDR
swap5 MAR = SP − 1; wr Write old TOS to 2nd place on stack
swap6 TOS = H; goto (MBR1) Update TOS22
bipush1 SP = MAR = SP + 1 Set up MAR for writing to new top of stack
bipush2 MDR = TOS = MBR1; wr; goto (MBR1) Update stack in TOS and memory22
iload1 MAR = LV + MBR1U; rd Move LV + index to MAR; read operand
iload2 MAR = SP = SP + 1 Increment SP; Move new SP to MAR
iload3 TOS = MDR; wr; goto (MBR1) Update stack in TOS and memory22
istore1 MAR = LV + MBR1U Set MAR to LV + index
istore2 MDR = TOS; wr Copy TOS for storing
istore3 MAR = SP = SP − 1; rd Decrement SP; read new TOS
istore4 Wait for read
istore5 TOS = MDR; goto (MBR1) Update TOS22
wide1 goto (MBR1 OR 0x100) Next address is 0x100 Ored with opcode22
wide3iload1 MAR = LV + MBR2U; rd; goto iload2 Identical to iload1 but using 2-byte index22
wide3istore1 MAR = LV + MBR2U; goto istore2 Identical to istore1 but using 2-byte index22
ldc3w1 MAR = CPP + MBR2U; rd; goto iload2 Same as wide3iload1 but indexing off CPP22

iinc1 MAR = LV + MBR1U; rd Set MAR to LV + index for read
iinc2 H = MBR1 Set H to constant
iinc3 MDR = MDR + H; wr; goto (MBR1) Increment by constant and update22
goto1 H = PC − 1 Copy PC to H
goto2 PC = H + MBR2 Add offset and update PC
goto3 Have to wait for IFU to fetch new opcode
goto4 goto (MBR1) Dispatch to next instruction22
iflt1 MAR = SP = SP − 1; rd Read in next-to-top word on stack
iflt2 OPC = TOS Save TOS in OPC temporarily
iflt3 TOS = MDR Put new top of stack in TOS
iflt4 N = OPC; if (N) goto T; else goto F Branch on N bit

Figure 4-30. The microprogram for the Mic-2 (part 1 of 2).

Label Operations Comments222
ifeq1 MAR = SP = SP − 1; rd Read in next-to-top word of stack
ifeq2 OPC = TOS Save TOS in OPC temporarily
ifeq3 TOS = MDR Put new top of stack in TOS
ifeq4 Z = OPC; if (Z) goto T; else goto F Branch on Z bit222
if3icmpeq1 MAR = SP = SP − 1; rd Read in next-to-top word of stack
if3icmpeq2 MAR = SP = SP − 1 Set MAR to read in new top-of-stack
if3icmpeq3 H = MDR; rd Copy second stack word to H
if3icmpeq4 OPC = TOS Save TOS in OPC temporarily
if3icmpeq5 TOS = MDR Put new top of stack in TOS
if3icmpeq6 Z = H − OPC; if (Z) goto T; else goto F If top 2 words are equal, goto T, else goto F222
T H = PC − 1; goto goto2 Same as goto1222
F H = MBR2 Touch bytes in MBR2 to discard
F2 goto (MBR1)222
invokevirtual1 MAR = CPP + MBR2U; rd Put address of method pointer in MAR
invokevirtual2 OPC = PC Save Return PC in OPC
invokevirtual3 PC = MDR Set PC to 1st byte of method code.
invokevirtual4 TOS = SP − MBR2U TOS = address of OBJREF − 1
invokevirtual5 TOS = MAR = H = TOS + 1 TOS = address of OBJREF
invokevirtual6 MDR = SP + MBR2U + 1; wr Overwrite OBJREF with link pointer
invokevirtual7 MAR = SP = MDR Set SP, MAR to location to hold old PC
invokevirtual8 MDR = OPC; wr Prepare to save old PC
invokevirtual9 MAR = SP = SP + 1 Inc. SP to point to location to hold old LV
invokevirtual10 MDR = LV; wr Save old LV
invokevirtual11 LV = TOS; goto (MBR1) Set LV to point to zeroth parameter.222
ireturn1 MAR = SP = LV; rd Reset SP, MAR to read Link ptr
ireturn2 Wait for link ptr
ireturn3 LV = MAR = MDR; rd Set LV, MAR to link ptr; read old PC
ireturn4 MAR = LV + 1 Set MAR to point to old LV; read old LV
ireturn5 PC = MDR; rd Restore PC
ireturn6 MAR = SP
ireturn7 LV = MDR Restore LV
ireturn8 MDR = TOS; wr; goto (MBR1) Save return value on original top of stack

Figure 4-30. The microprogram for the Mic-2 (part 2 of 2).

H

A latchC latch B latch

Shifter

ALU
N

B bus

C bus

6ALU
control

Control signals

Memory
control
registers

Enable onto B bus

Write C bus to register

To
and
from
main
memory

Z

MBR2

SP

LV

CPP

TOS

PC

MDR

MAR

MBR1

OPC

Instruction
fetch unit
(IFU)

A bus

Figure 4-31. The three-bus data path used in the Mic-3.

22
Label Operations Comments22
swap1 MAR = SP − 1; rd Read 2nd word from stack; set MAR to SP
swap2 MAR = SP Prepare to write new 2nd word
swap3 H = MDR; wr Save new TOS; write 2nd word to stack
swap4 MDR = TOS Copy old TOS to MDR
swap5 MAR = SP − 1; wr Write old TOS to 2nd place on stack
swap6 TOS = H; goto (MBR1) Update TOS2211
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1

Figure 4-32. The Mic-2 code for SWAP.

222
Swap1 Swap2 Swap3 Swap4 Swap5 Swap6222

Cy MAR=SP−1;rd MAR=SP H=MDR;wr MDR=TOS MAR=SP−1;wr TOS=H;goto (MBR1)222
1 B=SP222
2 C=B−1 B=SP222
3 MAR=C; rd C=B222
4 MDR=mem MAR=C222
5 B=MDR222
6 C=B B=TOS222
7 H=C; wr C=B B=SP222
8 Mem=MDR MDR=C C=B−1 B=H222
9 MAR=C; wr C=B222

10 Mem=MDR TOS=C222
11 goto (MBR1)22211

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 4-33. The implementation of SWAP on the Mic-3.

1

In
st

ru
ct

io
n

Cycle 1 Cycle 2

Ti me

Cycle 3 Cycle 4

IFU

ALU

Reg

Shifter

AC B

IFU

ALU

Reg

Shifter

AC B

IFU

ALU

Reg

Shifter

AC B

IFU

ALU

Reg

Shifter

AC B

IFU

ALU

Reg

Shifter

AC B

IFU

ALU

Reg

Shifter

AC B

IFU

ALU

Reg

Shifter

AC B

IFU

ALU

Reg

Shifter

AC B

IFU

ALU

Reg

Shifter

AC B

IFU

ALU

Reg

Shifter

AC B

2

IFU

ALU

Reg

Shifter

AC B

IFU

ALU

Reg

Shifter

AC B

IFU

ALU

Reg

Shifter

AC B

3

IFU

ALU

Reg

Shifter

AC B

IFU

ALU

Reg

Shifter

AC B
4

IFU

ALU

Reg

Shifter

AC B

Figure 4-34. Graphical illustration of how a pipeline works.

ALU

BC

Shifter

A

Registers

Queueing unit

IADD
ISUB
ILOAD
IFLT

Micro-operation ROM

Instruction
fetch unit

From
 memory

IJVM
length

Micro-op
ROM
index

Decoding unit

Queue
of pending
micro-ops

Final

Goto

1 2
3

4

5

6

7

To/from
memory

ALU C M A B

ALU C M A B

ALU C M A B

ALU C M A B

Drives stage 4

Drives stage 5

Drives stage 6

Drives stage 7

MIR1

MIR2

MIR4

MIR3

Figure 4-35. The main components of the Mic-4.

1

IFU

2

Decoder

3

Queue

4

Operands

5

Exec

6

Write
back

7

Memory

Figure 4-36. The Mic-4 pipeline.

Processor
board

CPU
package CPU chip

Keyboard
controller

Graphics
controller

Disk
controller

Main
memory
(DRAM)

L1-I L1-D

Unified
L2
cache

Unified
L3 cache

Split L1 instruction and data caches Board-level cache (SRAM)

Figure 4-37. A system with three levels of cache.

Valid

Entry

2047

Tag Data
Addresses that use this entry

(a)

(b)

Bits 16 11 3 2

TAG LINE WORD BYTE

65504-65535, 131040-131072, …

96-127, 65632-65663, 131068-131099
64-95, 65600-65631, 131036-131067, …
32-63, 65568-65599, 131004-131035, …
 0-31, 65536-65567, 131072-131003, …

7
6
5
4
3
2
1
0

Figure 4-38. (a) A direct-mapped cache. (b) A 32-bit virtual address.

Valid

Tag Data
2047

7
6
5
4
3
2
1
0

Entry A

Valid

Tag Data

Entry B

Valid

Tag Data

Entry C

Valid

Tag Data

Entry D

Figure 4-39. A four-way associative cache.

if (i == 0) CMP i,0; compare i to 0
k = 1; BNE Else; branch to Else if not equal

else Then: MOV k,1; move 1 to k
k = 2; BR Next; unconditional branch to Next

Else: MOV k,2; move 2 to k
Next:

(a) (b)

Figure 4-40. (a) A program fragment. (b) Its translation to a
generic assembly language.

Valid

6
5
4
3
2
1
0

Branch/
no branch

Slot
Branch
address/tag

Target
address

(a)

Valid

6
5
4
3
2
1
0

Prediction
bits

Slot
Branch
address/tag

(c)

Valid

6
5
4
3
2
1
0

Prediction
bitsSlot

Branch
address/tag

(b)

Figure 4-41. (a) A 1-bit branch history. (b) A 2-bit branch his-
tory. (c) A mapping between branch instruction address and
target address.

No branch

Branch

Branch

00

No
branch

Predict
no branch

01

Predict
no branch
one more

time

10

Predict
branch

one more
time

Branch

No
branch

 Branch

No branch

11

Predict
branch

Figure 4-42. A 2-bit finite-state machine for branch prediction.

222
Registers being read Registers being written222

Cy # Decoded Iss Ret 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7222
1 1 R3=R0*R1 1 1 1 1

2 R4=R0+R2 2 2 1 1 1 1222
2 3 R5=R0+R1 3 3 2 1 1 1 1

4 R6=R1+R4 – 3 2 1 1 1 1222
3 3 2 1 1 1 1222
4 1 2 1 1 1 1

2 1 1 1
3222

5 4 1 1 1
5 R7=R1*R2 5 2 1 1 1 1222

6 6 R1=R0−R2 – 2 1 1 1 1222
7 4 1 1 1222
8 5222
9 6 1 1 1

7 R3=R3*R1 7 1 1 1 1 1 1222
10 1 1 1 1 1 1222
11 6 1 1 1222
12 7222
13 8 R1=R4+R4 8 2 1222
14 2 1222
15 82221
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 4-43. Operation of a superscalar CPU with in-order is-
sue and in-order completion.

222
Registers being read Registers being written222

Cy # Decoded Iss Ret 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7222
1 1 R3=R0*R1 1 1 1 1

2 R4=R0+R2 2 2 1 1 1 1222
2 3 R5=R0+R1 3 3 2 1 1 1 1

4 R6=R1+R4 – 3 2 1 1 1 1222
3 5 R7=R1*R2 5 3 3 2 1 1 1 1

6 S1=R0−R2 6 4 3 3 1 1 1 1
2 3 3 2 1 1 1222

4 4 3 4 2 1 1 1 1 1
7 R3=R3*S1 – 3 4 2 1 1 1 1 1
8 S2=R4+R4 8 3 4 2 3 1 1 1 1

1 2 3 2 3 1 1 1
3 1 2 2 3 1 1222

5 6 2 1 3 1 1 1222
6 7 2 1 1 3 1 1 1 1

4 1 1 1 2 1 1 1
5 1 2 1 1
8 1 1222

7 1 1222
8 1 1222
9 722211

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 4-44. Operation of a superscalar CPU with out-of-
order issue and out-of-order completion.

evensum = 0;

oddsum = 0;

i = 0;

while (i < limit) {

k = i * i * i;
k = i * i * i;

if ((i/2) * 2) == 0)

evensum = evensum + k;

else

oddsum = oddsum + k;

}
(a) (b)

evensum = 0;

oddsum = 0;

i = 0;

while (i < limit)

if ((i/2) * 2) = = 0)

T F

evensum = evensum + k; oddsum = oddsum + k;

i = i + 1;
i = i + 1;

i >= limit

Figure 4-45. (a) A program fragment. (b) The corresponding
basic block graph.

Local bus
to PCI
bridge

To level 2
cache

Bus interface unit

Level 1 I-cache Level 1 D-cache

Fetch/Decode unit Dispatch/Execute unit Retire unit

Micro-operation pool
(ROB)

Figure 4-46. The Pentium II microarchitecture.

RAT

Level 1 I-cache

Pipeline stage

IFU0

IFU1

IFU2

ID0

ID1

ROB

Cache line fetcher

Instruction length decoder

Instruction aligner

0 1 2

Micro-operation queuer

Register allocator

Micro-operations go in the ROB

Static
branch predictor

Micro-operation
sequencer

Dynamic
branch predictor

Next IP

Figure 4-47. Internal structure of the Fetch/Decode unit (simplified).

MMXExecution
unit

Floating-Point
execution unit

From/to
ROB

Reservation
station

Port 0

Port 1

Port 2

Port 3

Port 4

MMXExecution
unit

Floating-Point
execution unit

Integer
execution unit

Integer
execution unit

Load
Unit

Store
Unit

Store
Unit

Loads

Stores

Stores

Figure 4-48. The Dispatch/Execute unit.

To main
memory

Memory interface unit

External cache unitLevel 2 cache

Level 1 cache

Prefetch/Dispatch unit

Grouping logic

Integer execution unit

Integer registers

ALU ALU FP ALU FP ALU

Floating-point unit

FP registers

Graphics unit

Load/store unit

Load
store

Store
queue

Level 1 D-cache

Figure 4-49. The UltraSPARC II microarchitecture.

Integer pipeline

Fetch Decode Group

Execute Cache

Register

Write

Floating-point/graphics pipeline

N1 N2

N3

X1 X2 X3

Figure 4-50. The UltraSPARC II’s pipeline.

Execution
control

unit

Integer and
floating-point

unit

64 32-Bit registers for holding
the top 64 words of the stack

3 x 32

Prefetch,
decode, and
 folding unit

0-16 KB
Data

cache

0-16 KB
Instruction

cache

32 32

Memory and I/O bus interface unit

32 32

2 x 32

Figure 4-51. The block diagram of the picoJava II with both
level 1 caches and the floating-point unit. This is configuration
of the microJava 701.

Fetch
from

I-cache

Decode
and
fold

Fetch
operands

from
stack

Execute
instruction

Access
data

cache

Write
results
to stack

Figure 4-52. The picoJava II has a six-stage pipeline.

Without folding With folding

SP

8
7
6
5
4
3
2
1
0

Start After
ILOAD k

After
ILOAD m

After
IADD

After
ISTORE n

Start After
folded
instruction

(a) (b)

SP

SP

m m m m m m m

n n n n k + m n k + m

k k

k k
m

k + m

k k k k k

Figure 4-53. (a) Execution of a four-instruction sequence to
compute n = k + m. (b) The same sequence folded to one in-
struction.

22
Group Description Example22
NF Nonfoldable instructions GOTO22
LV Pushing a word onto the stack ILOAD22
MEM Popping a word and storing it in memory ISTORE22
BG1 Operations using one stack operand IFEQ22
BG2 Operations using two stack operands IF3CMPEQ22
OP Computations on two operands with one result IADD2211
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1

Figure 4-54. JVM instruction groups for folding purposes.

222
Instruction sequence Example222

LV LV OP MEM ILOAD, ILOAD, IADD, ISTORE222
LV LV OP ILOAD, ILOAD, IADD222
LV LV BG2 ILOAD, ILOAD, IF3CMPEQ222
LV BG1 ILOAD, IFEQ222
LV BG2 ILOAD, IF3CMPEQ222
LV MEM ILOAD, ISTORE222
OP MEM IADD, ISTORE22211
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1

Figure 4-55. Some of the JVM instruction sequences that can be folded.

264 THE MICROARCHITECTURE LEVEL CHAP. 4

4.5 IMPROVING PERFORMANCE

All computer manufacturers want their systems to run as fast as possible. In
this section, we will look at a number of advanced techniques currently being
investigated to improve system (primarily CPU and memory) performance. Due
to the highly competitive nature of the computer industry, the lag between new
research ideas that can make a computer faster and their incorporation into pro-
ducts is surprisingly short. Consequently, most of the ideas we will discuss are
already in use in a wide variety of existing products.

The ideas to be discussed fall into two rough categories: implementation
improvements and architectural improvements. Implementation improvements
are ways of building a new CPU or memory to make the system run faster without
changing the architecture. Modifying the implementation without changing the
architecture means that old programs will run on the new machine, a major selling
point. One way to improve the implementation is to use a faster clock, but this is
not the only way. The performance gains from the 80386 through the 80486, Pen-
tium, and Pentium Pro, to the Pentium II are due to better implementations, as the
architecture has remained essentially the same through all of them.

Some kinds of improvements can be made only by changing the architecture.
Sometimes these changes are incremental, such as adding new instructions or
registers, so that old programs will continue to run on the new models. In this
case, to get the full performance, the software must be changed, or at least recom-
piled with a new compiler that takes advantage of the new features.

However, once in a few decades, designers realize that the old architecture
has outlived its usefulness and that the only way to make progress is start all over
again. The RISC revolution in the 1980s was one such breakthrough; another one
is in the air now. We will look at one example (the Intel IA-64) in Chap. 5.

In the rest of this section we will look at four different techniques for improv-
ing CPU performance. We will start with three well-established implementation
improvements and then move on to one that needs a little architectural support to
work best. These techniques are cache memory, branch prediction, out-of-order
execution with register renaming, and speculative execution.

4.5.1 Cache Memory

One of the most challenging aspects of computer design throughout history
has been to provide a memory system able to provide operands to the processor at
the speed it can process them. The recent high rate of growth in processor speed
has not been accompanied by a corresponding speedup in memories. Relative to
CPUs, memories have been getting slower for decades. Given the enormous
importance of primary memory, this situation has greatly limited the development
of high-performance systems, and has stimulated research on ways to get around
the problem of memory speeds that are much slower than CPU speeds, an

SEC. 4.5 IMPROVING PERFORMANCE 265

relatively speaking, getting worse every year.
Modern processors place overwhelming demands on a memory system, both

in terms of latency (the delay in supplying an operand) and bandwidth (the
amount of data supplied per unit of time). Unfortunately, these two aspects of a
memory system are largely at odds. Many techniques for increasing bandwidth do
so only by increasing latency. For example, the pipelining techniques used in the
Mic-3 can be applied to a memory system, with multiple, overlapping memory
requests handled efficiently. Unfortunately, as with the Mic-3, this results in
greater latency for individual memory operations. As processor clock speeds get
faster, it becomes more and more difficult to provide a memory system capable of
supplying operands in one or two clock cycles.

One way to attack this problem is by providing caches. As we saw in Sec.
2.2.5, a cache holds the most recently used memory words in a small, fast
memory, speeding up access to them. If a large enough percentage of the memory
words needed are in the cache, the effective memory latency can be reduced enor-
mously.

One of the most effective techniques for improving both bandwidth and
latency comes from the use of multiple caches. A basic technique that works very
effectively is to introduce a separate cache for instructions and data. There are
several benefits from having separate caches for instructions and data, often called
a split cache. First, memory operations can be initiated independently in each
cache, effectively doubling the bandwidth of the memory system. This is the rea-
son that it makes sense to provide two separate memory ports, as we did in the
Mic-1: each port has its own cache. Note that each cache has independent access
to the main memory.

Today, many memory systems are more complicated than this, and an addi-
tional cache, called a level 2 cache, may reside between the instruction and data
caches and main memory. In fact, there may be three or more levels of cache as
more sophisticated memory systems are required. In Fig. 4-1 we see a system
with three levels of cache. The CPU chip itself contains a small instruction cache
and a small data cache, typically 16 KB to 64 KB. Then there is the level 2 cache,
which is not on the CPU chip, but may be included in the CPU package, next to
the CPU chip and connected to it by a high-speed path. This cache is generally
unified, containing a mixture of data and instructions. A typical size for the L2
cache is 512 KB to 1 MB. The third-level cache is on the processor board and
consists of a few megabytes of SRAM, which is much faster than the main
DRAM memory. Caches are generally inclusive, with the full contents of the
level 1 cache being in the level 2 cache and the full contents of the level 2 cache
being in the level 3 cache.

Caches depend on two kinds of address locality to achieve their goal. Spatial
locality is the observation that memory locations with addresses numerically simi-
lar to a recently accessed memory location are likely to be accessed in the near
future. Caches exploit this property by bringing in more data than have been

266 THE MICROARCHITECTURE LEVEL CHAP. 4

Processor
board

CPU
package CPU chip

Keyboard
controller

Graphics
controller

Disk
controller

Main
memory
(DRAM)

L1-I L1-D

Unified
L2
cache

Unified
L3 cache

Split L1 instruction and data caches Board-level cache (SRAM)

Figure 4-1. A system with three levels of cache.

requested, with the expectation that future requests can be anticipated. Temporal
locality occurs when recently accessed memory locations are accessed again.
This may occur, for example, to memory locations near the top of the stack, or
instructions inside a loop. Temporal locality is exploited in cache designs pri-
marily by the choice of what to discard on a cache miss. Many cache replacement
algorithms exploit temporal locality by discarding those entries that have not been
recently accessed.

All caches use the following model. Main memory is divided up into fixed-
size blocks called cache lines. A cache line typically consists of 4 to 64 consecu-
tive bytes. Lines are numbered consecutively starting at 0, so with a 32-byte line
size, line 0 is bytes 0 to 31, line 1 is bytes 32 to 63, and so on. At any instant,
some lines are in the cache. When memory is referenced, the cache controller cir-
cuit checks to see if the word referenced is currently in the cache. If so, the value
there can be used, saving a trip to main memory. If the word is not there, some
line entry is removed from the cache and the line needed is fetched from memory
or lower level cache to replace it. Many variations on this scheme exist, but in all
of them the idea is to keep the most heavily-used lines in the cache as much as
possible, to maximize the number of memory references satisfied out of the cache.

Direct-Mapped Caches

The simplest cache is known as a direct-mapped cache. An example
single-level direct-mapped cache is shown in Fig. 4-2(a). This example cache
contains 2048 entries. Each entry (row) in the cache can hold exactly one cache
line from main memory. With a 32-byte cache line size (for this example), the

SEC. 4.5 IMPROVING PERFORMANCE 267

cache can hold 64 KB. Each cache entry consists of three parts:

1. The Valid bit indicates whether there is any valid data in this entry or
not. When the system is booted (started), all entries are marked as
invalid.

2. The Tag field consists of a unique, 16-bit value identifying the
corresponding line of memory from which the data came.

3. The Data field contains a copy of the data in memory. This field
holds one cache line of 32 bytes.

Valid

Entry

2047

Tag Data
Addresses that use this entry

(a)

(b)

Bits 16 11 3 2

TAG LINE WORD BYTE

65504-65535, 131040-131072, …

96-127, 65632-65663, 131068-131099
64-95, 65600-65631, 131036-131067, …
32-63, 65568-65599, 131004-131035, …
 0-31, 65536-65567, 131072-131003, …

7
6
5
4
3
2
1
0

Figure 4-2. (a) A direct-mapped cache. (b) A 32-bit virtual address.

In a direct-mapped cache, a given memory word can be stored in exactly one
place within the cache. Given a memory address, there is only one place to look
for it in the cache. If it is not there, then it is not in the cache. For storing and
retrieving data from the cache, the address is broken into four components, as
shown in Fig. 4-2(b):

1. The TAG field corresponds to the Tag bits stored in a cache entry.

2. The LINE field indicates which cache entry holds the corresponding
data, if they are present.

3. The WORD field tells which word within a line is referenced.

4. The BYTE field is usually not used, but if only a single byte is

268 THE MICROARCHITECTURE LEVEL CHAP. 4

requested, it tells which byte within the word is needed. For a cache
supplying only 32-bit words, this field will always be 0.

When the CPU produces a memory address, the hardware extracts the 11 LINE
bits from the address and uses these to index into the cache to find one of the 2048
entries. If that entry is valid, the TAG field of the memory address and the Tag
field in cache entry are compared. If they agree, the cache entry holds the word
being requested, a situation called a cache hit. On a hit, a word being read can be
taken from the cache, eliminating the need to go to memory. Only the word actu-
ally needed is extracted from the cache entry. The rest of the entry is not used. If
the cache entry is invalid or the tags do not match, the needed entry is not present
in the cache, a situation called a cache miss. In this case, the 32-byte cache line
is fetched from memory and stored in the cache entry, replacing what was there.
However, if the existing cache entry has been modified since being loaded, it must
be written back to main memory before being discarded.

Despite the complexity of the decision, access to a needed word can be re-
markably fast. As soon as the address is known, the exact location of the word is
known if it is present in the cache. This means that it is possible to read the word
out of the cache and deliver it to the processor at the same time that it is being
determined if this is the correct word (by comparing tags). So the processor actu-
ally receives a word from the cache simultaneously, or possibly even before it
knows whether the word is the requested one.

This mapping scheme puts consecutive memory lines in consecutive cache
entries, In fact, up to 64K bytes of contiguous data can be stored in the cache.
However, two lines that differ in their address by precisely 64K (65,536 bytes) or
any integral multiple of that number cannot be stored in the cache at the same
time (because they have the same LINE value). For example, if a program
accesses data at location X and next executes an instruction that needs data at
location X + 65,536 (or any of the other location within the same line), the second
instruction will force the cache entry to be reloaded, overwriting what was there.
If this happens often enough, it can result in poor behavior. In fact, the worst-case
behavior of a cache is worse than if there were no cache at all, since each memory
operation involves reading in an entire cache line instead of just one word.

Direct-mapped caches are the most common kind of cache, and they perform
quite effectively, because collisions such as the one described above can be made
to occur only rarely, or not at all. For example, a very clever compiler can take
cache collisions into account when placing instructions and data in memory.
Notice that the particular case described would not occur in a system with
separate instruction and data caches, because the colliding requests would be ser-
viced by different caches. Thus we see a second benefit of two caches rather than
one: more flexibility in dealing with conflicting memory patterns.

SEC. 4.5 IMPROVING PERFORMANCE 269

Set-Associative Caches

As mentioned above, many different lines in memory compete for the same
cache slots. If a program using the cache of Fig. 4-2(a) heavily uses words at
addresses 0 and at 65,536, there will be constant conflicts, with each reference
potentially evicting the other one from the cache. A solution to this problem is to
allow two or more lines in each cache entry. A cache with n possible entries for
each address is called an n-way set-associative cache. A four-way associative
cache is illustrated in Fig. 4-3.

Valid

Tag Data
2047

7
6
5
4
3
2
1
0

Entry A

Valid

Tag Data

Entry B

Valid

Tag Data

Entry C

Valid

Tag Data

Entry D

Figure 4-3. A four-way associative cache.

A set-associative cache is inherently more complicated than a direct-mapped
cache because although the correct cache entry to examine can be computed from
the memory address being referenced, a set of n cache entries must be checked to
see if the needed line is present. Nevertheless, experience shows that two-way
and four-way caches perform well enough to make this extra circuitry worthwhile.

The use of a set-associative cache presents the designer with a choice. When
a new entry is to be brought into the cache, which of the present items should be
discarded? The optimal decision, of course, requires a peek into the future, but a
pretty good algorithm for most purposes is LRU (Least Recently Used). This
algorithm keeps an ordering of each set of locations that could be accessed from a
given memory location. Whenever any of the present lines are accessed, it
updates the list, marking that entry the most recently accessed. When it comes
time to replace an entry, the one at the end of the list—the least recently
accessed—is the one discarded.

Carried to the extreme, a 2048-way cache containing a single set of 2048 line
entries is also possible. Here all memory addresses map onto the single set, so the
lookup requires comparing the address against all 2048 tags in the cache. Note
that each entry must now have tag-matching logic. Since the LINE field is of 0

270 THE MICROARCHITECTURE LEVEL CHAP. 4

length, the TAG field is the entire address except for the WORD and BYTE fields.
Furthermore, when a cache line is replaced, all 2048 locations are possible candi-
dates for replacement. Maintaining an ordered list of 2048 entries requires a great
deal of bookkeeping, making LRU replacement infeasible. (Remember that this
list has to be updated on every memory operation, not just on a miss). Surpris-
ingly, high-associativity caches do not improve performance much over low-
associativity caches under most circumstances, and in some cases actually per-
form worse. For these reasons, associativity beyond four-way is quite unusual.

Finally, writes pose a special problem for caches. When a processor writes a
word, and the word is in the cache, it obviously must either update the word or
discard the cache entry. Nearly all designs update the cache. But what about
updating the copy in main memory? This operation can be deferred until later,
when the cache line is ready to be replaced by the LRU algorithm. This choice is
difficult, and neither option is clearly preferable. Immediately updating the entry
in main memory is referred to as write through. This approach is generally
simpler to implement and more reliable, since the memory is always up to date—
helpful, for example, if an error occurs and it is necessary to recover the state of
the memory. Unfortunately, it also usually requires more write traffic to memory,
so more sophisticated implementations tend to employ the alternative, known as
write deferred, or write back.

A related problem must be addressed for writes: what if a write occurs to a
location that is not currently cached? Should the data be brought into the cache,
or just written out to memory? Again, neither answer is always best. Most
designs that defer writes to memory tend to bring data into the cache on a write
miss, a technique known as write allocation. Most designs employing write
through, on the other hand, tend not to allocate an entry on a write because this
option complicates an otherwise simple design. Write allocation wins only if
there are repeated writes to the same or different words within a cache line.

4.5.2 Branch Prediction

Modern computers are highly pipelined. The pipeline of Fig. 4-0 has seven
stages; high-end computers sometimes have 10-stage pipelines or even more.
Pipelining works best on linear code, so the fetch unit can just read in consecutive
words from memory and send them off to the decode unit in advance of their
being needed.

The only minor problem with this wonderful model is that it is not the slight-
est bit realistic. Programs are not linear code sequences. They are full of branch
instructions. Consider the simple statements of Fig. 4-4(a). A variable, i, is com-
pared to 0 (probably the most common test in practice). Depending on the result,
another variable, k, gets assigned one of two possible values.

A possible translation to assembly language is shown in Fig. 4-4(b). We will
study assembly language later in this book, and the details are not important now,

SEC. 4.5 IMPROVING PERFORMANCE 271

if (i == 0) CMP i,0 ; compare i to 0
k = 1; BNE Else ; branch to Else if not equal

else Then: MOV k,1 ; move 1 to k
k = 2; BR Next ; unconditional branch to Next

Else: MOV k,2 ; move 2 to k
Next:

(a) (b)

Figure 4-4. (a) A program fragment. (b) Its translation to a generic assembly
language.

but depending on the machine and the compiler, code more-or-less like that of
Fig. 4-4(b) is likely. The first instruction compares i to 0. The second one
branches to the label Else (the start of the else clause) if i is not 0. The third
instruction assigns 1 to k. The fourth instruction branches to the code for the next
statement. The compiler has conveniently planted a label, Next, there, so there is
a place to branch to. The fifth instruction assigns 2 to k.

The thing to observe here is that two of the five instructions are branches.
Furthermore, one of these, BNE, is a conditional branch (a branch that is taken if
and only if some condition is met, in this case, that the two operands in the previ-
ous CMP are equal). The longest linear code sequence here is two instructions.
As a consequence, fetching instructions at a high rate to feed the pipeline is very
difficult.

At first glance, it might appear that unconditional branches, such as the
instruction BR Next in Fig. 4-4(b), are not a problem. After all, there is no ambi-
guity about where to go. Why can’t the fetch unit just continue to read instruc-
tions from the target address (the place that will be branched to)?

The trouble lies in the nature of pipelining. In Fig. 4-0, for example, we see
that instruction decoding occurs in the second stage. Thus the fetch unit has to
decide where to fetch from next before it knows what kind of instruction it just
got. Only one cycle later can it learn that it just picked up an unconditional
branch, and by then it has already started to fetch the instruction following the
unconditional branch. As a consequence, a substantial number of pipelined
machines (such as the UltraSPARC II) have the property that the instruction fol-
lowing an unconditional branch is executed, even though logically it should not
be. The position after a branch is called a delay slot. The Pentium II [and the
machine used in Fig. 4-4(b)] do not have this property, but the internal complexity
to get around this problem is often enormous. An optimizing compiler will try to
find some useful instruction to put in the delay slot, but frequently there is nothing
available, so it is forced to insert a NOP instruction there. Doing so keeps the pro-
gram correct, but makes it bigger and slower.

Annoying as unconditional branches are, conditional branches are worse. Not
only do they also have delay slots, but now the fetch unit does not where to read

272 THE MICROARCHITECTURE LEVEL CHAP. 4

from until much later in the pipeline. Early pipelined machines just stalled until it
was known whether the branch would be taken or not. Stalling for three or four
cycles on every conditional branch, especially if 20% of the instructions are con-
ditional branches, wreaks havoc with the performance.

Consequently, what most machines do when they hit a conditional branch is
predict whether it is going to be taken or not. It would be nice if we could just
plug a crystal ball into a free PCI slot to help out with the prediction, but so far
this approach has not borne fruit.

Lacking such a peripheral, various ways have been devised to do the predic-
tion. One very simple way is as follows: assume that all backward conditional
branches will be taken and that all forward ones will not be taken. The reasoning
behind the first part is that backward branches are frequently located at the end of
a loop. Most loops are executed multiple times, so guessing that a branch back to
the top of the loop will be taken is generally a good bet.

The second part is shakier. Some forward branches occur when error condi-
tions are detected in software (e.g., a file cannot be opened). Errors are rare, so
most of the branches associated with them are not taken. Of course, there are
plenty of forward branches not related to error handling, so the success rate is not
nearly as good as with backward branches. While not fantastic, this rule is at least
better than nothing.

If a branch is correctly predicted, there is nothing special to do. Execution
just continues at the target address. The trouble comes when a branch is predicted
wrongly. Figuring out where to go and going there is not difficult. The hard part
is undoing instructions that have already been executed and should not have been.

There are two ways of going about this. The first way is to allow instructions
fetched after a predicted conditional branch to execute until they try to change the
machine’s state (e.g., storing into a register). Instead of overwriting the register,
the value computed is put into a (secret) scratch register and only copied to the
real register after it is known that the prediction was correct. The second way is
to record the value of any register about to be overwritten (e.g., in a secret scratch
register), so the machine can be rolled back to the state it had at the time of the
mispredicted branch. Both solutions are complex and require industrial-strength
bookkeeping to get them right. And if a second conditional branch is hit before it
is known whether the first one was predicted right, things can get really messy.

Dynamic Branch Prediction

Clearly, having the predictions be accurate is of great value, since it allows
the CPU to proceed at full speed. As a consequence, a great deal of current
research aims at improving branch prediction algorithms (e.g., Driesen and Hol-
zle, 1998; Juan et al., 1998; Pan et al., 1992; Sechrest et al., 1996; Sprangle et al.,
1997; and Yeh and Patt, 1991). One approach is for the CPU to maintain a history
table (in special hardware), in which it logs conditional branches as they occur, so

SEC. 4.5 IMPROVING PERFORMANCE 273

they can be looked up when they occur again. The simplest version of this
scheme is shown in Fig. 4-5(a). Here the history table contains one entry for each
conditional branch instruction. The entry contains the address of the branch
instruction along with a bit telling whether it was taken the last time it was exe-
cuted. Using this scheme, the prediction is simply that the branch will go the
same way it went last time. If the prediction is wrong, the bit in the history table
is changed.

Valid

6
5
4
3
2
1
0

Branch/
no branch

Slot
Branch
address/tag

Target
address

(a)

Valid

6
5
4
3
2
1
0

Prediction
bits

Slot
Branch
address/tag

(c)

Valid

6
5
4
3
2
1
0

Prediction
bitsSlot

Branch
address/tag

(b)

Figure 4-5. (a) A 1-bit branch history. (b) A 2-bit branch history. (c) A map-
ping between branch instruction address and target address.

There are several ways to organize the history table. In fact, these are pre-
cisely the same ways used to organize a cache. Consider a machine with 32-bit
instructions that are word aligned so that the low-order 2 bits of each memory
address are 00. With a direct-mapped history table containing 2n entries, the
low-order n + 2 bits of a branch instruction can be extracted and shifted right 2
bits. This n-bit number can be used as an index into the history table where a
check is made to see if the address stored there matches the address of the branch.
As with a cache, there is no need to store the low-order n + 2 bits, so they can be
omitted (i.e., just the upper address bits—the tag—are stored). If there is a hit, the
prediction bit is used to predict the branch. If the wrong tag is present or the entry
is invalid, a miss occurs, just as with a cache. In this case, the forward/backward
branch rule can be used.

If the branch history table has, say, 4096 entries, then branches at addresses 0,
16384, 32768, ... will conflict, analogous to the same problem with a cache. The
same solution is possible: a two-way, four-way, or n-way associative entry. As
with a cache, the limiting case is a single n-way associative entry, which requires
full associativity of lookup.

Given a large enough table size and enough associativity, this scheme works
well in most situations. However, one systematic problem always occurs. When
a loop is finally exited, the branch at the end will be mispredicted, and worse yet,
the misprediction will change the bit in the history table to indicate a future pred-
iction of ‘‘no branch.’’ The next time the loop is entered, the branch at the end of

274 THE MICROARCHITECTURE LEVEL CHAP. 4

the first iteration will be predicted wrong. If the loop is inside an outer loop, or in
a frequently-called procedure, this error can occur often.

To eliminate this misprediction, we can give the table entry a second chance.
With this method, the prediction is only changed after two consecutive incorrect
predictions. This approach requires having two prediction bits in the history table,
one for what the branch is ‘‘supposed’’ to do, and one for what it did last time, as
shown in Fig. 4-5(b).

A slightly different way of looking at this algorithm is to see it as a finite-state
machine with four states, as depicted in Fig. 4-6. After a series of consecutive
successful ‘‘no branch’’ predictions, the FSM will be in state 00 and will predict
‘‘no branch’’ next time. If that prediction is wrong, it will move to state 10, but
predict ‘‘no branch’’ next time as well. Only if this prediction is wrong will it
now move to state 11 and predict branches all the time. In effect, the leftmost bit
of the state is the prediction and the rightmost bit is what the branch did last time.
While this design uses only 2 bits of history, a design that keeps track of 4 or 8
bits of history is also possible.

No branch

Branch

Branch

00

No
branch

Predict
no branch

01

Predict
no branch
one more

time

10

Predict
branch

one more
time

Branch

No
branch

 Branch

No branch

11

Predict
branch

Figure 4-6. A 2-bit finite-state machine for branch prediction.

This is not our first FSM. Fig. 4-0 was also an FSM. In fact, all of our
microprograms can be regarded as FSMs, since each line represents a specific
state the machine can be in, with well-defined transitions to a finite set of other
states. FSMs are very widely used in all aspects of hardware design.

So far, we have assumed that the target of each conditional branch was
known, typically either as an explicit address to branch to (contained within the
instruction itself), or as a relative offset from the current instruction (i.e., a signed
number to add to the program counter). Often this assumption is valid, but some
conditional branch instructions compute the target address by doing arithmetic on
registers, and then going there. Even if the FSM of Fig. 4-6 accurately predicts
the branch will be taken, such a prediction is of no use if the target address is
unknown. One way of dealing with this situation is to store the actual address

SEC. 4.5 IMPROVING PERFORMANCE 275

branched to last time in the history table, as shown in Fig. 4-5(c). In this way, if
the table says that the last time the branch at address 516 was taken it went to
address 4000, if the prediction is now for ‘‘branch,’’ the working assumption will
be a branch to 4000 again.

A different approach to branch prediction is to keep track of whether the last k
conditional branches encountered were taken, irrespective of which instructions
they were (Pan et al., 1992). This k-bit number, kept in the branch history shift
register, is then compared in parallel to all the entries of a history table with a k-
bit key and if a hit occurs, the prediction found there used. Somewhat surpris-
ingly, this technique works quite well.

Static Branch Prediction

All of the branch prediction techniques discussed so far are dynamic, that is,
carried out at run time while the program is running. They also adapt to the
program’s current behavior, which is good. The down side is that they require
specialized and expensive hardware and a great deal of chip complexity.

A different way to go is to have the compiler help out. When the compiler
sees a statement like

for (i = 0; i < 1000000; i++) { ... }

it knows very well that the branch at the end of the loop will be taken nearly all
the time. If only there were a way for it to tell the hardware, a lot of effort could
be saved.

Although this is an architectural change (and not just an implementation
issue), some machines, such as the UltraSPARC II, have a second set of condi-
tional branch instructions, in addition to the regular ones (which are needed for
backward compatibility). The new ones contain a bit in which the compiler can
specify that it thinks the branch will be taken (or not taken). When one of these is
encountered, the fetch unit just does what it has been told. Furthermore, there is
no need to waste precious space in the branch history table for these instructions,
thus reducing conflicts there.

Finally, our last branch prediction technique is based on profiling (Fisher and
Freudenberger, 1992). This, too, is a static technique, but instead of having the
compiler try to figure out which branches will be taken and which will not, the
program is actually run (typically on a simulator), and the branch behavior cap-
tured. This information is fed into the compiler, which then uses the special con-
ditional branch instructions to tell the hardware what to do.

276 THE MICROARCHITECTURE LEVEL CHAP. 4

4.5.3 Out-of-Order Execution and Register Renaming

Most modern CPUs are both pipelined and superscalar, as shown in Fig. 2-6.
What this generally means is that there is a fetch unit that pulls instruction words
out of memory before they are needed in order to feed a decode unit. The decode
unit issues the decoded instructions to the proper functional units for execution.
In some cases it may break individual instructions into micro-ops before issuing
them to the functional units, depending on what the functional units are capable of
doing.

Clearly, the machine design is simplest if all instructions are executed in the
order they are fetched (assuming for the moment that the branch prediction algo-
rithm never guesses wrong). However, in-order execution does not always give
optimal performance due to dependences between instructions. If an instruction
needs a value computed by the previous instruction, the second one cannot begin
executing until the first one has produced the needed value. In this situation (a
RAW dependence), the second instruction has to wait. Other kinds of depen-
dences also exist, as we will soon see.

In an attempt to get around these problems and produce better performance,
some CPUs allow dependent instructions to be skipped over, to get to future
instructions that are not dependent. Needless to say, the internal instruction
scheduling algorithm used must deliver the same effect as if the program were
executed in the order written. We will now demonstrate how instruction reorder-
ing works using a detailed example.

To illustrate the nature of the problem, we will start with a machine that
always issues instructions in program order and also requires them to complete
execution in program order. The significance of the latter point will become clear
later.

Our example machine has eight registers visible to the programmer, R0
through R7. All arithmetic instructions use three registers: two for the operands
and one for the result, the same as the Mic-4. We will assume that if an instruc-
tion is decoded in cycle n, execution starts in cycle n + 1. For a simple instruc-
tion, such as an addition or subtraction, the writeback to the destination register
occurs at the end of cycle n + 2. For a more complicated instruction, such as a
multiplication, the writeback occurs at the end of cycle n + 3. To make the exam-
ple realistic, we will allow the decode unit to issue up to two instructions per
clock cycle. Commercial superscalar CPUs often can issue four or even six
instructions per clock cycle.

Our example execution sequence is shown in Fig. 4-7. Here the first column
gives the number of the cycle and the second one gives the instruction number.
The third column lists the instruction decoded. The fourth one tells which instruc-
tion is being issued (with a maximum of two per clock cycle). The fifth one tells
which instruction has been retired (completed). Remember that in this example
we are requiring both in-order issue and in-order completion, so instruction k + 1

SEC. 4.5 IMPROVING PERFORMANCE 277

cannot be issued until instruction k has been issued, and instruction k + 1 cannot
be retired (meaning the writeback to the destination register is performed) until
instruction k has been retired. The other 16 columns are discussed below.
222

Registers being read Registers being written222
Cy # Decoded Iss Ret 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7222

1 1 R3=R0*R1 1 1 1 1
2 R4=R0+R2 2 2 1 1 1 1222

2 3 R5=R0+R1 3 3 2 1 1 1 1
4 R6=R1+R4 – 3 2 1 1 1 1222

3 3 2 1 1 1 1222
4 1 2 1 1 1 1

2 1 1 1
3222

5 4 1 1 1
5 R7=R1*R2 5 2 1 1 1 1222

6 6 R1=R0−R2 – 2 1 1 1 1222
7 4 1 1 1222
8 5222
9 6 1 1 1

7 R3=R3*R1 7 1 1 1 1 1 1222
10 1 1 1 1 1 1222
11 6 1 1 1222
12 7222
13 8 R1=R4+R4 8 2 1222
14 2 1222
15 822211
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 4-7. Operation of a superscalar CPU with in-order issue and in-order
completion.

After decoding an instruction, the decode unit has to decide whether or not it
can be issued immediately. To make this decision, the decode unit needs to know
the status of all the registers. If, for example, the current instruction needs a regis-
ter whose value has not yet been computed, the current instruction cannot be
issued and the CPU must stall.

We will keep track of register use with a device called a scoreboard, which
was first present in the CDC 6600. The scoreboard has a small counter for each
register telling how many times that register is in use as a source by currently-
executing instructions. If a maximum of, say, 15 instructions may be executing at
once, then a 4-bit counter will do. When an instruction is issued, the scoreboard
entries for its operand registers are incremented. When an instruction is retired,

278 THE MICROARCHITECTURE LEVEL CHAP. 4

the entries are decremented.
The scoreboard also has a counter for each register to keep track of registers

being used as destinations. Since only one write at a time is allowed, these
counters can be 1-bit wide. The rightmost 16 columns in Fig. 4-7 show the score-
board.

In real machines, the scoreboard also keeps track of functional unit usage, to
avoid issuing an instruction for which no functional unit is available. For simpli-
city, we will assume there is always a suitable functional unit available, so we
will not show the functional units on the scoreboard.

The first line of Fig. 4-7 shows I1 (instruction 1), which multiplies R0 by R1
and puts the result in R3. Since none of these registers are in use yet, the instruc-
tion is issued and the scoreboard is updated to reflect that R0 and R1 are being
read and R3 is being written. No subsequent instruction can write into any of
these or can read R3 until I1 has been retired. Since this instruction is a multipli-
cation, it will be finished at the end of cycle 4. The scoreboard values shown on
each line reflect their state after the instruction on that line has been issued.
Blank entries are 0s.

Since our example is a superscalar machine that can issue two instructions per
cycle, a second instruction (I2) is issued during cycle 1. It adds R0 and R2, storing
the result in R4. To see if this instruction can be issued, the following rules are
applied:

1. If any operand is being written, do not issue (RAW dependence).

2. If the result register is being read, do not issue (WAR dependence).

3. If the result register is being written, do not issue (WAW dependence).

We have already seen RAW dependences, which occur when an instruction needs
to use as a source a result that a previous instruction has not yet produced. The
other two dependences are less serious. They are essentially resource conflicts.
In a WAR dependence (Write After Read), one instruction is trying to overwrite
a register that a previous instruction may not yet have finished reading. A WAW
dependence (Write After Write) is similar. These can often be avoided by having
the second instruction put its results somewhere else (perhaps temporarily). If
none of the above three dependences exist, and the functional unit it needs is
available, the instruction is issued. In this case, I2 uses a register (R0) that is
being read by a pending instruction, but this overlap is permitted so I2 is issued.
Similarly, I3 is issued during cycle 2.

Now we come to I4, which needs to use R4. Unfortunately, we see from line
3 that R4 is being written. Here we have a RAW dependence, so the decode unit
stalls until R4 becomes available. While stalled, it stops pulling instructions from
the fetch unit. When the fetch unit’s internal buffers fill up, it will stop prefetch-
ing.

It is worth noting that the next instruction in program order, I5, does not have

SEC. 4.5 IMPROVING PERFORMANCE 279

conflicts with any of the pending instructions. It could have been decoded and
issued were it not for the fact that this design requires issuing instructions in
order.

Now let us look at what happens during cycle 3. I2, being an addition (two
cycles), finishes at the end of cycle 3. Unfortunately, it cannot be retired (thus
freeing up R4 for I4). Why not? The reason is that this design also requires in-
order retirement. Why? What harm could possibly come from doing the store
into R4 now and marking it as available?

The answer is subtle, but important. Suppose that instructions could complete
out of order. Then if an interrupt occurred, it would be very difficult to save the
state of the machine so it could be restored later. In particular, it would not be
possible to say that all instructions up to some address had been executed and all
instructions beyond it had not. This is called a precise interrupt and is a desir-
able characteristic in a CPU (Moudgill and Vassiliadis, 1996). Out-of-order
retirement makes interrupts imprecise, which is why some machines require in-
order instruction completion.

Getting back to our example, at the end of cycle 4, all three pending instruc-
tions can be retired, so in cycle 5 I4 can finally be issued, along with the newly
decoded I5. Whenever an instruction is retired, the decode unit has to check to
see if there is a stalled instruction that can now be issued.

In cycle 6, I6 stalls because it needs to write into R1 and R1 is busy. It is
finally started in cycle 9. The entire sequence of eight instructions takes 15 cycles
to complete due to many dependences, even though the hardware is capable of
issuing two instructions on every cycle. Notice, however, that when reading
down the Iss column of Fig. 4-7, all the instructions have been issued in order.
Likewise, the Ret column shows that they have been retired in order as well.

Now let us consider an alternative design: out-of-order execution. In this
design, instructions may be issued out of order and may be retired out of order as
well. The same sequence of eight instructions is shown in Fig. 4-8, only now with
out-of-order issue and out-of-order retirement permitted.

The first difference occurs in cycle 3. Even though I4 has stalled, we can
decode and issue I5 since it does not conflict with any pending instruction. How-
ever, skipping over instructions causes a new problem. Suppose that I5 had used
an operand computed by the skipped instruction, I4. With the current scoreboard,
we would not have noticed this. As a consequence, we have to extend the score-
board to keep track of stores done by skipped-over instructions. This can be done
by adding a second bit map, 1 bit per register, to keep track of stores done by
stalled instructions. (These counters are not shown in the figure.) The rule for
issuing instructions now has to be extended to prevent the issue of any instruction
with an operand scheduled to be stored into by an instruction that came before it
but was skipped over.

Now let us look back at I6, I7, and I8 in Fig. 4-7. Here we see that I6 com-
putes a value in R1 that is used by I7. However, we also see that the value is

280 THE MICROARCHITECTURE LEVEL CHAP. 4

222
Registers being read Registers being written222

Cy # Decoded Iss Ret 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7222
1 1 R3=R0*R1 1 1 1 1

2 R4=R0+R2 2 2 1 1 1 1222
2 3 R5=R0+R1 3 3 2 1 1 1 1

4 R6=R1+R4 – 3 2 1 1 1 1222
3 5 R7=R1*R2 5 3 3 2 1 1 1 1

6 S1=R0−R2 6 4 3 3 1 1 1 1
2 3 3 2 1 1 1222

4 4 3 4 2 1 1 1 1 1
7 R3=R3*S1 – 3 4 2 1 1 1 1 1
8 S2=R4+R4 8 3 4 2 3 1 1 1 1

1 2 3 2 3 1 1 1
3 1 2 2 3 1 1222

5 6 2 1 3 1 1 1222
6 7 2 1 1 3 1 1 1 1

4 1 1 1 2 1 1 1
5 1 2 1 1
8 1 1222

7 1 1222
8 1 1222
9 722211

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 4-8. Operation of a superscalar CPU with out-of-order issue and out-of-
order completion.

never used again because I8 overwrites R1. There is no real reason to use R1 as
the place to hold the result of I6. Worse yet, R1 is a terrible choice of intermedi-
ate register, although a perfectly reasonable one for a compiler or programmer
used to the idea of sequential execution with no instruction overlap.

In Fig. 4-8 we introduce a new technique for solving this problem: register
renaming. The wise decode unit changes the use of R1 in I6 (cycle 3) and I7
(cycle 4) to a secret register, S1, not visible to the programmer. Now I6 can be
issued concurrently with I5. Modern CPU often have dozens of secret registers
for use with register renaming. This technique can often eliminate WAR and
WAW dependences.

At I8, we use register renaming again. This time R1 is renamed into S2 so the
addition can be started before R1 is free, at the end of cycle 6. If it turns out that
the result really has to be in R1 this time, the contents of S2 can always be copied
back there just in time. Even better, all future instructions needing it can have
their sources renamed to the register where it really is stored. In any case, the I8
addition got to start earlier this way.

SEC. 4.5 IMPROVING PERFORMANCE 281

On many real machines, renaming is deeply embedded in the way the regis-
ters are organized. There are many secret registers and a table that maps the
registers visible to the programmer onto the secret registers. Thus the real register
being used for, say, R0 is located by looking at entry 0 of this mapping table. In
this way, there is no real register R0, just a binding between the name R0 and one
of the secret registers. This binding changes frequently during execution to avoid
dependences.

Notice that in Fig. 4-8 when reading down the fourth column, the instructions
have not been issued in order. Nor they have been retired in order. The conclu-
sion of this example is simple: using out-of-order execution and register renaming
we were able to speed up the computation by close to a factor of two.

4.5.4 Speculative Execution

In the previous section we introduced the concept of reordering instructions in
order to improve performance. Although we did not mention it explicitly, the
focus there was on reordering instructions within a single basic block. It is now
time to look at this point more closely.

Computer programs can be broken up into basic blocks, with each basic
block consisting of a linear sequence of code with one entry point on top and one
exit on the bottom. A basic block does not contain any control structures (e.g., if
statements or while statements) so that its translation into machine language does
not contain any branches. The basic blocks are connected by control statements.

A program in this form can be represented as a directed graph, as shown in
Fig. 4-9. Here we compute the sum of the cubes of the even and odd integers up
to some limit and accumulate them in evensum and oddsum, respectively. Within
each basic block, the reordering techniques of the previous section work fine.

The trouble is that most basic blocks are short and there is insufficient paral-
lelism in them to exploit effectively. Consequently, the next step is to allow the
reordering to cross basic block boundaries in an attempt to fill all the issue slots.
The biggest gains come when a potentially slow operation can be moved upward
in the graph to start it going early. This might be a LOAD instruction, a floating-
point operation, or even the start of a long dependence chain. Moving code
upward over a branch is called hoisting.

Imagine that in Fig. 4-9 all the variables were kept in registers except even-
sum and oddsum (for lack of registers). It might make sense then to move their
LOAD instructions to the top of the loop, before computing k, to get them started
early on, so the values will available when they are needed. Of course, only one
of them will be needed on each iteration, so the other LOAD will be wasted, but if
the cache and memory are pipelined and there are issue slots available, it might
still be worth doing this. Executing code before it is known if it is even going to
be needed is called speculative execution. Using this technique requires support
from the compiler and the hardware as well as some architectural extensions. In

282 THE MICROARCHITECTURE LEVEL CHAP. 4

evensum = 0;

oddsum = 0;

i = 0;

while (i < limit) {

k = i * i * i;
k = i * i * i;

if ((i/2) * 2) == 0)

evensum = evensum + k;

else

oddsum = oddsum + k;

}
(a) (b)

evensum = 0;

oddsum = 0;

i = 0;

while (i < limit)

if ((i/2) * 2) = = 0)

T F

evensum = evensum + k; oddsum = oddsum + k;

i = i + 1;
i = i + 1;

i >= limit

Figure 4-9. (a) A program fragment. (b) The corresponding basic block graph.

most cases, reordering instructions over basic block boundaries is beyond the
capability of the hardware, so the compiler must move the instructions explicitly.

Speculative execution introduces some interesting problems. For one, it is
essential that none of the speculative instructions have irrevocable results because
it may turn out later that they should not have been executed. In Fig. 4-9, it is fine
to fetch evensum and oddsum, and it is also fine to do the addition as soon as k is
available (even before the if statement), but it is not fine to store the results back
in memory. In more complicated code sequences, one common way of preventing
speculative code from overwriting registers before it is known if this is desired is
to rename all the destination registers used by the speculative code. In this way,
only scratch registers are modified, so there is no problem if the code ultimately is
not needed. If the code is needed, the scratch registers are copied to the true des-
tination registers. As you can imagine, the scoreboarding to keep track of all this
is not simple, but given enough hardware, it can be done.

However, there is another problem introduced by speculative code that cannot
be solved by register renaming. What happens if a speculatively executed instruc-
tion causes an exception? A painful, but not fatal, example is a LOAD instruction
that causes a cache miss on a machine with a large cache line size (say, 256 bytes)
and a memory far slower than the CPU and cache. If a LOAD that is actually
needed stops the machine dead in its tracks for many cycles while the cache line
is being loaded, well, that’s life, since the word is needed. However, stalling the
machine to fetch a word that turns out not to be needed is counterproductive. Too
many of these ‘‘optimizations,’’ may make the CPU slower than if it did not have
them at all. (If the machine has virtual memory, which is discussed in Chap. 6, a

SEC. 4.5 IMPROVING PERFORMANCE 283

speculative LOAD might even cause a page fault, which requires a disk operation
to bring in the needed page. False page faults can have a terrible effect on perfor-
mance, so it is important to avoid them.)

One solution present in a number of modern machines is to have a special
SPECULATIVE-LOAD instruction that tries to fetch the word from the cache, but if
it is not there, just gives up. If the value is there when it is actually needed, it can
be used, but if it is not, the hardware must go out and get it on the spot. If the
value turns out not to be needed, no penalty has been paid for the cache miss.

A far worse situation can be illustrated with the following statement:

if (x > 0) z = y/x;

where x, y, and z are floating-point variables. Suppose that the variables are all
fetched into registers in advance and that the (slow) floating-point division is
hoisted above the if test. Unfortunately, x is 0 and the resulting divide-by-zero
trap terminates the program. The net result is that speculation has caused a
correct program to fail. Worse yet, the programmer put in explicit code to prevent
this situation and it happened anyway. This situation is not likely to lead to a
happy programmer.

One possible solution is to have special versions of instructions that might
cause exceptions. In addition, a bit, called a poison bit, is added to each register.
When a special speculative instruction fails, instead of causing a trap, it sets the
poison bit on the result register. If that register is later touched by a regular
instruction, the trap occurs then (as it should). However, if the result is never
used, the poison bit is eventually cleared and no harm is done.

5
THE INSTRUCTION SET

ARCHITECTURE LEVEL

1

Software

Hardware

Hardware

C program

ISA level

ISA program executed
by microprogram or hardware

FORTRAN 90
program

FORTRAN 90
program compiled
to ISA program

C program
compiled
to ISA program

Figure 5-1. The ISA level is the interface between the com-
pilers and the hardware.

24

Address

Aligned 8-byte
word at address 8

16
815 14 13 12 11

(a)

10 9 8

0

8 Bytes

24

Address

Nonaligned 8-byte
word at address 12

16
815 14 13 12

19

(b)

18 17 16

0

8 Bytes

Figure 5-2. An 8-byte word in a little-endian memory. (a)
Aligned. (b) Not aligned. Some machines require that words in
memory be aligned.

EAXALAH
A X

EBXBLBH
B X

ECXCLCH
C X

EDX

ESI

EDI

EBP

ESP

DL

CS

EIP

EFLAGS

SS

DS

ES

FS

GS

DH
D X

8816Bits

Figure 5-3. The Pentium II’s primary registers.

222
Register Alt. name Function222

R0 G0 Hardwired to 0. Stores into it are just ignored.222
R1 – R7 G1 – G7 Holds global variables222
R8 – R13 O0 – O5 Holds parameters to the procedure being called222
R14 SP Stack pointer222
R15 O7 Scratch register222
R16 – R23 L0 – L7 Holds local variables for the current procedure222
R24 – R29 I0 – I5 Holds incoming parameters222
R30 FP Pointer to the base of the current stack frame222
R31 I7 Holds return address for the current procedure22211
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 5-4. The UltraSPARC II’s general registers.

R0
R1

G0
G1

0
Global 1

R13
R14
R15

OS
SP
O7

Outgoing parmeter 5
Stack pointer
Temporary

R8 O0 Outgoing parmeter 0

R29
R30
R31

I5
FP
I7

Incoming parmeter 5
Frame pointer
Return address

R24 10 Incoming parameter 0

R29
R30
R31

I5
FP
I7

Incoming parmeter 5
Frame pointer
Return address

R24 I0 Incoming parameter 0

R16 L0 Local 0

R7 G7 Global 7

(a)

R23 L7 Local 7

R16 L0 Local 0

R23 L7 Local 7

R13
R14
R15

O5
SP
O7

Stack pointer
Temporary

R8 O0

Alternative name

R0
R1

G0
G1

0
Global 1

CWP
decremented

on call in
this direction

Overlap

CWP = 7

CWP = 6

Part of
previous window

Part of
previous window

R7 G7 Global 7

(b)

… … … … …
… …

… … …

… … …

… …… … …

… …

…

Figure 5-5. Operation of the UltraSPARC II register windows.

222
Type 8 Bits 16 Bits 32 Bits 64 Bits 128 Bits222

Signed integer × × ×222
Unsigned integer × × ×222
Binary coded decimal integer ×222
Floating point × ×22211
1
1
1
1
1
1

11
1
1
1
1
1
1

11
1
1
1
1
1
1

11
1
1
1
1
1
1

11
1
1
1
1
1
1

11
1
1
1
1
1
1

11
1
1
1
1
1
1

Figure 5-6. The Pentium II numeric data types. Supported
types are marked with ×.

222
Type 8 Bits 16 Bits 32 Bits 64 Bits 128 Bits222

Signed integer × × × ×222
Unsigned integer × × × ×222
Binary coded decimal integer222
Floating point × × ×22211
1
1
1
1
1
1

11
1
1
1
1
1
1

11
1
1
1
1
1
1

11
1
1
1
1
1
1

11
1
1
1
1
1
1

11
1
1
1
1
1
1

11
1
1
1
1
1
1

Figure 5-7. The UltraSPARC II numeric data types.

222
Type 8 Bits 16 Bits 32 Bits 64 Bits 128 Bits222

Signed integer × × × ×222
Unsigned integer222
Binary coded decimal integer222
Floating point × ×22211
1
1
1
1
1
1

11
1
1
1
1
1
1

11
1
1
1
1
1
1

11
1
1
1
1
1
1

11
1
1
1
1
1
1

11
1
1
1
1
1
1

11
1
1
1
1
1
1

Figure 5-8. The JVM numeric data types.

OPCODE

(a) (b)

(c) (d)

OPCODE

OPCODE ADDR1 ADDR2 ADDR3OPCODE ADDRESS1 ADDRESS2

ADDRESS

Figure 5-9. Four common instruction formats: (a) Zero-
address instruction. (b) One-address instruction (c) Two-
address instruction. (d) Three-address instruction.

Instruction

Instruction

Instruction

Instruction

(a)

1 Word

Instruction

Instruction Instruction Instr. Instr.

Instruction

Instruction

Instruction

Instruction

Instruction

Instruction

(b)

1 Word

Instruction

Instruction

(c)

1 Word

Figure 5-10. Some possible relationships between instruction
and word length.

15 13 11 9 7 5 3 114 12 10

Opcode

8 6 4 2

Address 1 Address 2 Address 3

Figure 5-11. An instruction with a 4-bit opcode and three 4-bit
address fields.

00004-bit
opcode 15 3-address

instructions

xxxx

16 bits

Bit number

yyyy zzzz
0001 xxxx yyyy zzzz
0010 xxxx yyyy zzzz

1100 xxxx yyyy zzzz
1101 xxxx yyyy zzzz
1110 xxxx yyyy zzzz

11118-bit
opcode 14 2-address

instructions

0000 yyyy zzzz
1111 0001 yyyy zzzz
1111 0010 yyyy zzzz

1111 1011 yyyy zzzz
1111 1100 yyyy zzzz
1111 1101 yyyy zzzz

1111 1110 1110 zzzz
1111 1110 1111 zzzz
1111 1111 0000 zzzz
1111 1111 0001 zzzz

111112-bit
opcode 31 1-address

instructions

1110 0000 zzzz
1111 1110 0001 zzzz

1111 1111 1101 zzzz
1111 1111 1110 zzzz

111116-bit
opcode 16 0-address

instructions

1111 1111 0000
1111 1111 1111 0001
1111 1111 1111 0010

1111 1111 1111 1101
1111 1111 1111 1110
1111 1111 1111 1111

15 12 11 8 7 4 3 0

…
…

…
…

…

Figure 5-12. An expanding opcode allowing 15 three-address
instructions, 14 two-address instructions, 31 one-address in-
structions, and 16 zero-address instructions. The fields marked
xxxx, yyyy, and zzzz are 4-bit address fields.

PREFIX

INSTRUCTION

Which operand is source?

Byte/word

SCALE INDEX BASE

MOD REC R/M

OPCODE MODE SIB DISPLACMENT IMMEDIATE

0 - 5

6 3321Bits Bits

332Bits

Bytes

1

1 - 2 0 - 1 0 - 1 0 - 4 0 - 4

Figure 5-13. The Pentium II instruction formats.

PC-RELATIVE DISPLACEMENT CALL4

302

PC-RELATIVE DISPLACEMENT BRANCH3

222

A

1

OP

3

COND

4

IMMEDIATE CONSTANT SETHI2

222

DEST

5

2 5 6 5 1 8 5

OP

3

Immediate1b DEST OPCODE SRC1 1 IMMEDIATE CONSTANT

3 Register1a DEST OPCODE SRC1 0 FP-OP SRC2
Format

Figure 5-14. The original SPARC instruction formats.

CONSTINDEX

OPCODE VARIABLE LENGTH…9

OPCODE 32-BIT BRANCH OFFSET8

OPCODE INDEX CONST7

OPCODE INDEX 0#PARAMETERS6

OPCODE INDEX DIMENSIONS5

OPCODE4

OPCODE SHORT SHORT = index, constant or offset3

OPCODE BYTE BYTE = index, constant or type2

OPCODE1
Format

Bits 8 8 8 88

Figure 5-15. The JVM instruction formats.

22222222222222222222222222222
MOV R1 42222222222222222222222222222211 11 11 11

Figure 5-16. An immediate instruction for loading 4 into re-
gister 1.

MOV R1,#0 ; accumulate the sum in R1, initially 0
MOV R2,#A ; R2 = address of the array A
MOV R3,#A+1024; R3 = address if the first word beyond A

LOOP: ADD R1,(R2); register indirect through R2 to get operand
ADD R2,#4 ; increment R2 by one word (4 bytes)
CMP R2,R3 ; are we done yet?
BLT LOOP ; if R2 < R3, we are not done, so continue

Figure 5-17. A generic assembly program for computing the
sum of the elements of an array.

MOV R1,#0 ; accumulate the OR in R1, initially 0
MOV R2,#0 ; R2 = index, i, of current product: A[i] AND B[i]
MOV R3,#4096; R3 = first index value not to use

LOOP: MOV R4,A(R2); R4 = A[i]
AND R4,B(R2) ; R4 = A[i] AND B[i]
OR R1,R4 ; OR all the Boolean products into R1
ADD R2,#4 ; i = i + 4 (step in units of 1 word = 4 bytes)
CMP R2,R3 ; are we done yet?
BLT LOOP ; if R2 < R3, we are not done, so continue

Figure 5-18. A generic assembly program for computing the
OR of Ai AND Bi for two 1024-element arrays.

22
MOV R4 R2 1243002211 11 11 11 11

Figure 5-19. A possible representation of MOV R4,A(R2).

⊥)C+B(xA

⊥

Switch

California

New York

Texas

Figure 5-20. Each railroad car represents one symbol in the
formula to be converted from infix to reverse Polish notation.

4 1 1 1 1 1 5

2 2 2 1 1 1 2

2 2 2 1 1 1 2

2 2 2 2 2 1 2

2 2 2 2 2 1 2

5

⊥

+

–

x

/

(1 1 1 1 1 3

⊥ + – x / ()
Car at the switch

M
os

t r
ec

en
tly

 a
rr

iv
ed

 c
ar

on
 th

e
Te

xa
s

lin
e

Figure 5-21. Decision table used by the infix-to-reverse Polish
notation algorithm

22
Infix Reverse Polish notation22

A + B × C A B C × +22
A × B + C A B × C +22
A × B + C × D A B × C D × +22
(A + B) / (C − D) A B + C D − /22
A × B / C A B × C /22
((A + B) × C + D)/(E + F + G) A B + C × D + E F + G + /221

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1

Figure 5-22. Some examples of infix expressions and their re-
verse Polish notation equivalents.

22
Step Remaining string Instruction Stack22

1 8 2 5 × + 1 3 2 × + 4 − / BIPUSH 8 822
2 2 5 × + 1 3 2 × + 4 − / BIPUSH 2 8, 222
3 5 × + 1 3 2 × + 4 − / BIPUSH 5 8, 2, 522
4 × + 1 3 2 × + 4 − / IMUL 8, 1022
5 + 1 3 2 × + 4 − / IADD 1822
6 1 3 2 × + 4 − / BIPUSH 1 18, 122
7 3 2 × + 4 − / BIPUSH 3 18, 1, 322
8 2 × + 4 − / BIPUSH 2 18, 1, 3, 222
9 × + 4 − / IMUL 18, 1, 622

10 + 4 − / IADD 18, 722
11 4 − / BIPUSH 4 18, 7, 422
12 − / ISUB 18, 322
13 / IDIV 6221

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 5-23. Use of a stack to evaluate a reverse Polish notation formula.

OPCODE OFFSET3

OPCODE DEST SRC1 OFFSET2 1

OPCODE DEST SRC1 SRC21 0

8Bits 5 5 5 81

Figure 5-24. A simple design for the instruction formats of a
three-address machine.

OPCODE MODE

8Bits 3

MODE

3

REG

5

OFFSET

4

REG

5

OFFSET

4

(Optional 32-bit direct address or offset)

(Optional 32-bit direct address or offset)

Figure 5-25. A simple design for the instruction formats of a
two-address machine.

22
MOD22

R/M 00 01 10 1122
000 M[EAX] M[EAX + OFFSET8] M[EAX + OFFSET32] EAX or AL22
001 M[ECX] M[ECX + OFFSET8] M[ECX + OFFSET32] ECX or CL22
010 M[EDX] M[EDX + OFFSET8] M[EDX + OFFSET32] EDX or DL22
011 M[EBX] M[EBX + OFFSET8] M[EBX + OFFSET32] EBX or BL22
100 SIB SIB with OFFSET8 SIB with OFFSET32 ESP or AH22
101 Direct M[EBP + OFFSET8] M[EBP + OFFSET32] EBP or CH22
110 M[ESI] M[ESI + OFFSET8] M[ESI + OFFSET32] ESI or DH22
111 M[EDI] M[EDI + OFFSET8] M[EDI + OFFSET32] EDI or BH2211

1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 5-26. The Pentium II 32-bit addressing modes. M[x] is
the memory word at x.

Other
local
variables

Stack
frame

a [0]

a [1]

a [2]

EBP + 8

EBP + 12

EBP + 16

SIB Mode refrences
M[4 * EAX + EBP + 8]

i in EAX

EBP

Figure 5-27. Access to a[i].

222
Addressing mode Pentium II UltraSPARC II JVM222
Immediate × × ×222
Direct ×222
Register × ×222
Register indirect ×222
Indexed × × ×222
Based-indexed ×222
Stack ×22211
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1

Figure 5-28. A comparison of addressing modes.

i = 1; i = 1;
L1: if (i > n) goto L2;

L1: first-statement; first-statement;
. .
. .
. .
last-statement; last-statement
i = i + 1; i = i + 1;
if (i < n) goto L1; goto L1;

L2:

(a) (b)

Figure 5-29. (a) Test-at-the-end loop. (b) Test-at-the-beginning loop.

Character available

Character received Character to display

Keyboard status

Interrupt enabled

Ready for next character

Display status

Interrupt enabled

Keyboard buffer Display buffer

Figure 5-30. Device registers for a simple terminal.

public static void output3buffer(int buf[], int count) {

// Output a block of data to the device
int status, i, ready;

for (i = 0; i < count; i++) {
do {

status = in(display3status3reg);// get status
ready = (status << 7) & 0x01;// isolate ready bit

} while (ready == 1);
out(display3buffer3reg, buf[i]);

}
}

Figure 5-31. An example of programmed I/O.

Terminal

CPU DMA

Address

Count 100
32
4
1

Device Direction

Bus

Memory

100 RS232C
Controller

…
…

Figure 5-32. A system with a DMA controller.

 Moves
MOV DST,SRC Move SRC to DST

PUSH SRC Push SRC onto the stack

POP DST Pop a word from the stack to DST

XCHG DS1,DS2 Exchange DS1 and DS2

LEA DST,SRC Load effective addr of SRC into DST

CMOV DST,SRC Conditional move

 Arithmetic
ADD DST,SRC Add SRC to DST

SUB DST,SRC Subtract DST from SRC

MUL SRC Multiply EAX by SRC (unsigned)

IMUL SRC Multiply EAX by SRC (signed)

DIV SRC Divide EDX:EAX by SRC (unsigned)

IDIV SRC Divide EDX:EAX by SRC (signed)

ADC DST,SRC Add SRC to DST, then add carry bit

SBB DST,SRC Subtract DST & carry from SRC

INC DST Add 1 to DST

DEC DST Subtract 1 from DST

NEG DST Negate DST (subtract it from 0)

 Binary coded decimal
DAA Decimal adjust

DAS Decimal adjust for subtraction

AAA ASCII adjust for addition

AAS ASCII adjust for subtraction

AAM ASCII adjust for multiplication

AAD ASCII adjust for division

 Boolean
AND DST,SRC Boolean AND SRC into DST

OR DST,SRC Boolean OR SRC into DST

XOR DST,SRC Boolean Exclusive OR SRC to DST

NOT DST Replace DST with 1’s complement

 Shift/rotate
SAL/SAR DST,# Shift DST left/right # bits

SHL/SHR DST,# Logical shift DST left/right # bits

ROL/ROR DST,# Rotate DST left/right # bits

RCL/RCR DST,# Rotate DST through carry # bits

 Test/compare
TST SRC1,SRC2 Boolean AND operands, set flags

CMP SRC1,SRC2 Set flags based on SRC1 - SRC2

 Transfer of control
JMP ADDR Jump to ADDR

Jxx ADDR Conditional jumps based on flags

CALL ADDR Call procedure at ADDR

RET Return from procedure

IRET Return from interrupt

LOOPxx Loop until condition met

INT ADDR Initiate a software interrupt

INTO Interrupt if overflow bit is set

 Strings
LODS Load string

STOS Store string

MOVS Move string

CMPS Compare two strings

SCAS Scan Strings

 Condition codes
STC Set carry bit in EFLAGS register

CLC Clear carry bit in EFLAGS register

CMC Complement carry bit in EFLAGS

STD Set direction bit in EFLAGS register

CLD Clear direction bit in EFLAGS reg

STI Set interrupt bit in EFLAGS register

CLI Clear interrupt bit in EFLAGS reg

PUSHFD Push EFLAGS register onto stack

POPFD Pop EFLAGS register from stack

LAHF Load AH from EFLAGS register

SAHF Store AH in EFLAGS register

 Miscellaneous
SWAP DST Change endianness of DST

CWQ Extend EAX to EDX:EAX for division

CWDE Extend 16-bit number in AX to EAX

ENTER SIZE,LV Create stack frame with SIZE bytes

LEAVE Undo stack frame built by ENTER

NOP No operation

HLT Halt

IN AL,PORT Input a byte from PORT to AL

OUT PORT,AL Output a byte from AL to PORT

WAIT Wait for an interrupt

SRC = source # = shift/rotate count
DST = destination LV = # locals

Figure 5-33. A selection of the Pentium II integer instructions.

Loads
LDSB ADDR,DST Load signed byte (8 bits)

LDUB ADDR,DST Load unsigned byte (8 bits)
LDSH ADDR,DST Load signed halfword (16 bits)

LDUH ADDR,DST Load unsigned halfword (16)

LDSW ADDR,DST Load signed word (32 bits)

LDUW ADDR,DST Load unsigned word (32 bits)

LDX ADDR,DST Load extended (64-bits)

Stores
STB SRC,ADDR Store byte (8 bits)
STH SRC,ADDR Store halfword (16 bits)

STW SRC,ADDR Store word (32 bits)

STX SRC,ADDR Store extended (64 btis)

Arithmetic
ADD R1,S2,DST Add

ADDCC “ Add and set icc

ADDC “ Add with carry

ADDCCC “ Add with carry and set icc

SUB R1,S2,DST Subtract

SUBCC “ Subtract and set icc

SUBC “ Subtract with carry

SUBCCC “ Subtract with carry and set icc

MULX R1,S2,DST Multiply

SDIVX R1,S2,DST Signed divide
UDIVX R1,S2,DST Unsigned divide

TADCC R1,S2,DST Tagged add

Shifts/rotates
SLL R1,S2,DST Shift left logical (64 bits)

SLLX R1,S2,DST Shift left logical extended (64)

SRL R1,S2,DST Shift right logical (32 bits)

SRLX R1,S2,DST Shift right logical extended (64)

SRA R1,S2,DST Shift right arithmetic (32 bits)

SRAX R1,S2,DST Shift right arithmetic ext. (64)

Boolean
AND R1,S2,DST Boolean AND

ANDCC “ Boolean AND and set icc
ANDN “ Boolean NAND

ANDNCC “ Boolean NAND and set icc

OR R1,S2,DST Boolean OR

ORCC “ Boolean OR and set icc

ORN “ Boolean NOR

ORNCC “ Boolean NOR and set icc
XOR R1,S2,DST Boolean XOR

XORCC “ Boolean XOR and set icc

XNOR “ Boolean EXCLUSIVE NOR

XNORCC “ Boolean EXCL. NOR and set icc

Transfer of control
BPcc ADDR Branch with prediction

BPr SRC,ADDR Branch on register
CALL ADDR Call procedure

RETURN ADDR Return from procedure

JMPL ADDR,DST Jump and Link

SAVE R1,S2,DST Advance register windows

RESTORE “ Restore register windows

Tcc CC,TRAP# Trap on condition
PREFETCH FCN Prefetch data from memory

LDSTUB ADDR,R Atomic load/store

MEMBAR MASK Memory barrier

Miscellaneous
SETHI CON,DST Set bits 10 to 31

MOVcc CC,S2,DST Move on condition

MOVr R1,S2,DST Move on register

NOP No operation
POPC S1,DST Population count

RDCCR V,DST Read condition code register

WRCCR R1,S2,V Write condition code register

RDPC V,DST Read program counter

SRC = source register
DST = destination register
R1 = source register
S2 = source: register or immediate
ADDR = memory address

TRAP# = trap number
FCN = function code
MASK = operation type
CON = constant
V = register designator

CC = condition code set
R =destination register

cc = condition
r = LZ,LEZ,Z,NZ,GZ,GEZ

Figure 5-34. The primary UltraSPARC II integer instructions.

222
Instruction How to do it222

MOV SRC,DST OR SRC with G0 and store the result DST222
CMP SRC1,SRC2 SUBCC SRC2 from SRC1 and store the result in G0222
TST SRC ORCC SRC1 with G0 and store the result in G0222
NOT DST XNOR DST with G0222
NEG DST SUB DST from G0 and store in DST222
INC DST ADD 1 to DST (immediate operand)222
DEC DST SUB 1 from DST (immediate operand)222
CLR DST OR G0 with G0 and store in DST222
NOP SETHI G0 to 0222
RET JMPL %I7+8,%G022211
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 5-35. Some simulated UltraSPARC II instructions.

Loads
typeLOAD IND8 Push local variable onto stack

typeALOAD Push array element on stack

BALOAD Push byte from an array on stack

SALOAD Push short from an array on stack

CALOAD Push char from an array on stack

AALOAD Push pointer from an array on ”

Stores
typeSTORE IND8 Pop value and store in local var

typeASTORE Pop value and store in array

BASTORE Pop byte and store in array

SASTORE Pop short and store in array

CASTORE Pop char and store in array
AASTORE Pop pointer and store in array

Pushes
BIPUSH CON8 Push a small constant on stack

SIPUSH CON16 Push 16-bit constant on stack

LDC IND8 Push constant from const pool

typeCONST_# Push immediate constant

ACONST_NULL Push a null pointer on stack

Arithmetic
typeADD Add

typeSUB Subtract

typeMUL Multiple

typeDIV Divide

typeREM Remainder

typeNEG Negate

Boolean/shift
ilAND Boolean AND

ilOR Boolean OR

ilXOR Boolean EXCLUSIVE OR

ilSHL Shift left

ilSHR Shift right

ilUSHR Unsigned shift right

Conversion
x2y Convert x to y

i2c Convert integer to char

i2b Convert integer to byte

Stack management
DUPxx Six instructions for duping

POP Pop an int from stk and discard

POP2 Pop two ints from stk and discard

SWAP Swap top two ints on stack

Comparison
IF_ICMPrel OFFSET16 Conditional branch

IF_ACMPEQ OFFSET16 Branch if two ptrs equal

IF_ACMPNE OFFSET16 Branch if ptrs unequal

IFrel OFFSET16 Test 1 value and branch

IFNULL OFFSET16 Branch if ptr is null

IFNONNULL OFFSET16 Branch if ptr is nonnull
LCMP Compare two longs

FCMPL Compare 2 floats for <

FCMPG Compare 2 floats for >

DCMPL Compare doubles for <

DCMPG Compare doubles for >

Transfer of control
INVOKEVIRTUAL IND16 Method invocation

INVOKESTATIC IND16 Method invocation

INVOKEINTERFACE ... Method invocation

INVOKESPECIAL IND16 Method invocation

JSR OFFSET16 Invoke finally clause

typeRETURN Return value

ARETURN Return pointer

RETURN Return void

RET IND8 Return from finally
GOTO OFFSET16 Unconditional branch

Arrays
ANEWARRAY IND16 Create array of ptrs

NEWARRAY ATYPE Create array of atype

MULTINEWARRAY IN16,D Create multidim array

ARRAYLENGTH Get array length

Miscellaneous
IINC IND8,CON8 Increment local variable

WIDE Wide prefix

NOP No operation

GETFIELD IND16 Read field from object

PUTFIELD IND16 Write field to object
GETSTATIC IND16 Get static field from class

NEW IND16 Create a new object

INSTANCEOF OFFSET16 Determine type of obj

CHECKCAST IND16 Check object type

ATHROW Throw exception

LOOKUPSWITCH ... Sparse multiway branch
TABLESWITCH ... Dense multiway branch

MONITORENTER Enter a monitor

MONITOREXIT Leave a monitor

IND8/16 = index of local variable
CON8/16, D, ATYPE = constant

type, x, y = I, L, F, D
OFFSET16 for branch

Figure 5-36. The JVM instruction set.

P
ro

gr
am

 c
ou

nt
er

Time

(a)

Time

(b)

P
ro

gr
am

 c
ou

nt
er

Jumps

Figure 5-37. Program counter as a function of time
(smoothed). (a) Without branches. (b) With branches.

Peg 2Peg 1 Peg 3

Figure 5-38. Initial configuration for the Towers of Hanoi
problem for five disks.

Initial state

First move 2 disks
from peg 1 to peg 2

Then move 1 disk
from peg 1 to peg 3

Finally move 2 disks
from peg 2 to peg 3

Figure 5-39. The steps required to solve the Towers of Hanoi
for three disks.

public void towers(int n, int i, int j) {
int k;

if (n == 1)
System.out.println("Move a disk from " + i + " to " + j);

else {
k = 6 − i − j;
towers(n − 1, i, k);
towers(1, i, j);
towers(n − 1, k, j);

}
}

Figure 5-40. A procedure for solving the Towers of Hanoi.

n = 3
i = 1
j = 3

Return addr
Old FP

k

n = 3
i = 1
j = 3

Return addr
Old FP
k = 2

n = 3
i = 1
j = 3

Return addr
Old FP
k = 2

n = 3
i = 1
j = 3

Return addr
Old FP
k = 2

n = 3

(a) (b) (c) (d) (e)

i = 1
j = 3

Return addr
Old FP
k = 2

n = 2
i = 1
j = 2

Return addr
Old FP = 1000

k

n = 2
i = 1
j = 2

Return addr
Old FP = 1000

k = 3

n = 2
i = 1
j = 2

Return addr
Old FP = 1000

k = 3

n = 2
i = 1
j = 2

Return addr
Old FP = 1000

k = 3
n = 1
i = 1
j = 3

Return addr
Old FP = 1024

k

n = 1
i = 1
j = 2

Return addr
Old FP = 1024

k = 3

1000
1004
1008
1012
1016
1020
1024
1028
1032
1036
1040
1044
1048
1052
1056
1060
1064
1068

Address

FP

SP

SP

FP

FP

SP

FP

SP

Figure 5-41. The stack at several points during the execution
of Fig. 5-40.

(a)

Calling
procedure

(b)

Called
procedure

A called
from main
program

A returns
to main
program

CALL

CALL

CAL
L

RETURN

RETURN

RETURN

Figure 5-42. When a procedure is called, execution of the pro-
cedure always begins at the first statement of the procedure.

(a)

A called
from main
program

A returns
to main
program

(b)

RESUME B

RESUME A

RESUME B

RESUME B

RESUME A

RESUME A

Figure 5-43. When a coroutine is resumed, execution begins at
the statement where it left off the previous time, not at the be-
ginning.

0 10 15 20 25 35 40

Disk interrupt
priority 4 held pending

RS232 ISR finishes
disk interrupt occurs

Disk ISR finishes

Printer ISR finishes

RS232 interrupt
priority 5

Printer interrupt
priority 2

User
program

Printer
ISR

RS232
ISR

Disk
ISR

Printer
ISR

User
program

Time

StackUser
Printer

User User
Printer

User

Figure 5-44. Time sequence of multiple interrupt example.

.586 ; compile for Pentium (as opposed to 8088 etc.)
.MODEL FLAT
PUBLIC 3towers ; export ’towers’
EXTERN 3printf:NEAR ; import printf
.CODE
3towers: PUSH EBP; save EBP (frame pointer)

MOV EBP, ESP ; set new frame pointer above ESP
CMP [EBP+8], 1 ; if (n == 1)
JNE L1 ; branch if n is not 1
MOV EAX, [EBP+16] ; printf(" ...", i, j);
PUSH EAX ; note that parameters i, j and the format
MOV EAX, [EBP+12] ; string are pushed onto the stack
PUSH EAX ; in reverse order. This is the C calling convention
PUSH OFFSET FLAT:format; offset flat means the address of format
CALL 3printf ; call printf
ADD ESP, 12 ; remove params from the stack
JMP Done ; we are finished

L1: MOV EAX, 6 ; start k = 6 − i − j
SUB EAX, [EBP+12] ; EAX = 6 − i
SUB EAX, [EBP+16] ; EAX = 6 − i − j
MOV [EBP+20], EAX ; k = EAX
PUSH EAX ; start towers(n − 1, i, k)
MOV EAX, [EBP+12] ; EAX = i
PUSH EAX ; push i
MOV EAX, [EBP+8] ; EAX = n
DEC EAX ; EAX = n − 1
PUSH EAX ; push n − 1
CALL 3towers ; call towers(n − 1, i, 6 − i − j)
ADD ESP, 12 ; remove params from the stack
MOV EAX, [EBP+16] ; start towers(1, i, j)
PUSH EAX ; push j
MOV EAX, [EBP+12] ; EAX = i
PUSH EAX ; push i
PUSH 1 ; push 1
CALL 3towers ; call towers(1, i, j)
ADD ESP, 12 ; remove params from the stack
MOV EAX, [EBP+12] ; start towers(n − 1, 6 − i − j, i)
PUSH EAX ; push i
MOV EAX, [EBP+20] ; push 20
PUSH EAX ; push k
MOV EAX, [EBP+8] ; EAX = n
DEC EAX ; EAX = n−1
PUSH EAX ; push n − 1
CALL 3towers ; call towers(n − 1, 6 − i − j, i)
ADD ESP, 12 ; adjust stack pointer

Done: LEAVE ; prepare to exit
RET 0 ; return to the caller

.DATA
format DB "Move disk from %d to %d\n"; format string
END Figure 5-45. The Towers of Hanoi for the Pentium II.

#define N %i0 /* N is input parameter 0 */
#define I %i1 /* I is input parameter 1 */
#define J %i2 /* J is input parameter 2 */
#define K %l0 /* K is local variable 0 */
#define Param0 %o0 /* Param0 is output parameter 0 */
#define Param1 %o1 /* Param1 is output parameter 1 */
#define Param2 %o2 /* Param2 is output parameter 2 */
#define Scratch %l1 /* as an aside, cpp uses the C comment convention */

.proc 04

.global towers

towers: save %sp, −112, %sp
cmp N, 1 ! if (n == 1)
bne Else ! if (n != 1) goto Else

sethi %hi(format), Param0 ! printf("Move a disk from %d to %d\n", i, j)
or Param0, %lo(format), Param0! Param0 = address of format string
mov I, Param1 ! Param1 = i
call printf ! call printf BEFORE parameter 2 (j) is set up
mov J, Param2 ! use the delay slot after call to set up parameter 2
b Done ! we are done now
nop ! fill delay slot

Else: mov 6, K ! start k = 6 −i − j
sub K, J, K ! k = 6 − j
sub K, I, K ! k = 6 − i − j

add N, −1, Scratch ! start towers(n − 1, i, k)
mov Scratch, Param0 ! Scratch = N − 1
mov I, Param1 ! parameter 1 = i
call towers ! call towers BEFORE parameter 2 (k) is set up
mov K, Param2 ! use the delay slot after call to set up parameter 2

mov 1, Param0 ! start towers(1, i, j)
mov I, Param1 ! parameter 1 = i
call towers ! call towers BEFORE parameter 2 (j) is set up
mov J, Param2 ! parameter 2 = j

mov Scratch, Param0 ! start towers(n − 1, k, j)
mov K, Param1 ! parameter 1 = k
call towers ! call towers BEFORE parameter 2 (j) is set up
mov J, Param2 ! parameter 2 = j

Done: ret ! return
restore ! use the delay slot after ret to restore windows

format: .asciz "Move a disk from %d to %d\n"

Figure 5-46. The Towers of Hanoi for the UltraSPARC II.

ILOAD30 // local 0 = n; push n
ICONST31 // push 1
IF3ICMPNE L1 // if (n != 1) goto L1

GETSTATIC #13 // n == 1; this code handles the println statement
NEW #7 // allocate buffer for the string to be built
DUP // duplicate the pointer to the buffer
LDC #2 // push pointer to string "move a disk from "
INVOKESPECIAL #10 // copy the string to the buffer
ILOAD31 // push i
INVOKEVIRTUAL #11 // convert i to string and append to the new buffer
LDC #1 // push pointer to string " to "
INVOKEVIRTUAL #12 // append this string to the buffer
ILOAD32 // push j
INVOKEVIRTUAL #11 // convert j to string and append to buffer
INVOKEVIRTUAL #15 // string conversion
INVOKEVIRTUAL #14 // call println
RETURN // return from towers

L1: BIPUSH 6 // Else part: compute k = 6 − i − j
ILOAD31 // local 1 = i; push i
ISUB // top-of-stack = 6 − i
ILOAD32 // local 2 = j; push j
ISUB // top-of-stack = 6 − i − j
ISTORE33 // local 3 = k = 6 − i − j; stack is now empty

ILOAD30 // start working on towers(n − 1, i, k); push n
ICONST31 // push 1
ISUB // top-of-stack = n − 1
ILOAD31 // push i
ILOAD33 // push k
INVOKESTATIC #16 // call towers(n − 1, 1, k)

ICONST31 // start working on towers(1, i, j); push 1
ILOAD31 // push i
ILOAD32 // push j
INVOKESTATIC #16 // call towers(1, i, j)

ILOAD30 // start working on towers(n − 1, k, j); push n
ICONST31 // push 1
ISUB // top-of-stack = n − 1
ILOAD33 // push k
ILOAD32 // push j
INVOKESTATIC #16 // call towers(n − 1, k, j)
RETURN // return from towers

Figure 5-47. The Towers of Hanoi for JVM.

Instructions
can be
chained
together

INSTRUCTION 1 INSTRUCTION 2 INSTRUCTION 3 TEMPLATE

INSTRUCTION 1 INSTRUCTION 2 INSTRUCTION 3 TEMPLATE

INSTRUCTION 1 INSTRUCTION 2 INSTRUCTION 3 TEMPLATE

R2R1

PREDICATE
REGISTER

R3

Figure 5-48. IA-64 is based on bundles of three instructions.

if (R1 == 0) CMP R1,0 CMOVZ R2,R3,R1
R2 = R3; BNE L1

MOV R2,R3
L1:

(a) (b) (c)

Figure 5-49. (a) An if statement. (b) Generic assembly code
for (a). (c) A conditional instruction.

if (R1 == 0) { CMP R1,0 CMOVZ R2,R3,R1
R2 = R3; BNE L1 CMOVZ R4,R5,R1
R4 = R5; MOV R2,R3 CMOVN R6,R7,R1

} else { MOV R4.R5 CMOVN R8,R9,R1
R6 = R7; BR L2
R8 = R9; L1: MOV R6,R7

} MOV R8,R9
L2:

(a) (b) (c)

Figure 5-50. (a) An if statement. (b) Generic assembly code
for (a). (c) Conditional execution.

if (R1 == R2) CMP R1,R2 CMPEQ R1,R2,P4
R3 = R4 + R5; BNE L1 <P4> ADD R3,R4,R5

else MOV R3,R4 <P5> SUB R6,R4,R5
R6 = R4 − R5 ADD R3,R5

BR L2
L1: MOV R6,R4

SUB R6,R5
L2:

(a) (b) (c)

Figure 5-51. (a) An if statement. (b) Generic assembly code
for (a). (c) Predicated execution.

388 THE INSTRUCTION SET ARCHITECTURE LEVEL CHAP. 5

5.8 THE INTEL IA-64

Intel is rapidly getting to the point where it has just about squeezed every last
drop of juice out of the IA-32 ISA and the Pentium II line of processors. New
models can still benefit from advances in manufacturing technology, which means
smaller transistors (hence faster clock speeds). However, finding new tricks to
speed up the implementation even more is getting harder and harder as the con-
straints imposed by the IA-32 ISA are looming larger all the time.

The only real solution is to abandon the IA-32 as the main line of develop-
ment and go to a completely new ISA. This is, in fact, what Intel intends to do.
The new architecture, developed jointly by Intel and Hewlett Packard, is called
the IA-64. It is a full 64-bit machine from beginning to end. A whole series of
CPUs implementing this architecture is expected in the coming years. The first
implementation, code named the Merced (after somebody’s favorite California
river), is a high-end CPU, but eventually there will be a whole spectrum of CPUs,
from high-end servers to entry-level desktop models.

Given the importance to the computer industry of anything Intel does, it is
worth taking a look at the IA-64 architecture (and by implication, the Merced).
However, that aside, the key ideas beyond the IA-64 are already well known
among researchers in the field and may well surface in other designs as well. In
fact, some of them are already present in various forms in (experimental) systems.
In the following sections we will look at the nature of the problem Intel is facing,
the model that IA-64 adopts to deal with it, how some of the key ideas work, and
what might happen.

5.8.1 The Problem with the Pentium II

The main fact of life that causes all the trouble is that IA-32 is an ancient ISA
with all the wrong properties for current technology. It is a CISC ISA with
variable-length instructions and a myriad of different formats that are hard to
decode quickly on the fly. Current technology works best with RISC ISAs that
have one instruction length and a fixed length opcode that is easy to decode. The
IA-32 instructions can be broken up into RISC-like micro-operations at execution
time, but doing so requires hardware (chip area), takes time, and adds complexity
to the design. That is strike one.

The IA-32 is also a two-address memory-oriented ISA. Most instructions ref-
erence memory, and most programmers and compilers think nothing of referenc-
ing memory all the time. Current technology favors load/store ISAs that only
reference memory to get the operands into registers but otherwise perform all
their calculations using three-address memory register instructions. And with
CPU clock speeds going up much faster than memory speeds, the problem will get
worse with time. That is strike two.

SEC. 5.8 THE INTEL IA-64 389

The IA-32 also has a small and irregular register set. Not only does this tie
compilers in knots, but the small number of general-purpose registers (four or six,
depending on how you count ESI and EDI) requires intermediate results to be
spilled into memory all the time, generating extra memory references even when
they are not logically needed. That is strike three. The IA-32 is out.

Now let us start the second inning. The small number of registers causes
many dependences, especially unnecessary WAR dependences, because results
have to go somewhere and there are no extra registers available. Getting around
the lack of registers requires the implementation to do renaming internally—a ter-
rible hack if ever there was one—to secret registers inside the reorder buffer. To
avoid blocking on cache misses too often, instructions have to be executed out of
order. However, the IA-32’s semantics specify precise interrupts, so the out-of-
order instructions have to be retired in order. All of these things require a lot of
very complex hardware. Strike four.

Doing all this work quickly requires a very deep (12-stage) pipeline. In turn,
the deep pipeline means that instructions are entered into it 11 cycles before they
will be finished. Consequently, very accurate branch prediction is essential to
make sure the right instructions are being entered into the pipeline. Because a
misprediction requires the pipeline to be flushed, at great cost, even a fairly low
misprediction rate can cause a substantial performance degradation. Strike five.

To alleviate the problems with mispredictions, the processor has to do specu-
lative execution, with all the problems that entails, especially when memory refer-
ences on the wrong path cause an exception. Strike six.

We are not going to play the whole baseball game here, but it should be clear
by now that there is a real problem. And we have not even mentioned the fact
that IA-32’s 32-bit addresses limit individual programs to 4 GB of memory, which
is a growing problem on high-end servers.

All in all, the situation with IA-32 can be favorably compared to the state of
celestial mechanics just prior to Copernicus. The then-current theory dominating
astronomy was that the earth was fixed and motionless in space and that the
planets moved in circles with epicycles around it. However, as observations got
better and more deviations from this model could be clearly observed, epicycles
were added to the epicycles until the whole model just collapsed from its internal
complexity

Intel is in the same pickle now. A huge fraction of all the transistors on the
Pentium II are devoted to decomposing CISC instructions, figuring out what can
be done in parallel, resolving conflicts, making predictions, repairing the conse-
quences of incorrect predictions and other bookkeeping, leaving surprisingly few
over for doing the real work the user asked for. The conclusion that Intel is being
inexorably driven to is the only sane conclusion: junk the whole thing (IA-32) and
start all over with a clean slate (IA-64).

390 THE INSTRUCTION SET ARCHITECTURE LEVEL CHAP. 5

5.8.2 The IA-64 Model: Explicitly Parallel Instruction Computing

The starting point for IA-64 was a high-end 64-bit RISC processor (of which
the UltraSPARC II is one of many current examples). Since the IA-64 was
designed jointly with Hewlett Packard, no doubt HP’s PA-RISC architecture was
the real basis, but all state-of-the-art RISC machines are similar enough that our
discussion of the UltraSPARC II is still highly germane. The Merced is a dual-
mode processor, with the capability of running both IA-32 and IA-64 programs,
but we will focus only on the IA-64 part in the discussion below.

The IA-64 architecture is a load/store architecture with 64-bit addresses and
64-bit wide registers. There are 64 general registers available to IA-64 programs
(and additional registers available to IA-32 programs). All instructions have the
same fixed format: an opcode, two 6-bit source register fields, a 6-bit destination
register field, and another 6-bit field to be discussed later on. Most instructions
take two register operands, perform some computation on them, and put the result
back in the destination register. Many functional units are available for doing dif-
ferent operations in parallel. So far, nothing unusual. Most RISC machines have
an architecture pretty much like this.

What is unusual is the idea of a bundle of related instructions. Instructions
come in groups of three, called a bundle, as shown in Fig. 5-1. Each 128-bit bit
bundle contains three 40-bit fixed-format instructions and an 8-bit template. Bun-
dles can be chained together using an end-of-bundle bit, so more than three
instructions can be present in one bundle. The template contains information
about which instructions can be executed in parallel. This scheme, plus the
existence of so many registers, allows the compiler to isolate blocks of instruc-
tions and tell the CPU that they can be executed in parallel. Thus the compiler
must reorder instructions, check for dependences, make sure there are functional
units available, etc., instead of the hardware. The idea is that by exposing the
internal workings of the machine and telling compiler writers to make sure that
each bundle consists of compatible instructions, the job of scheduling the RISC
instructions is moved from the hardware (at run time) to the compiler (at compile
time). For this reason, the model is called EPIC (Explicitly Parallel Instruction
Computing).

There are several advantages to doing instruction scheduling at compile time.
First, since the compiler is now doing all the work, the hardware can be much
simpler, saving millions of transistors for other useful functions, such as larger
level 1 caches. Second, for any given program, the scheduling has to be done
only once, at compile time. Third, since the compiler is now doing all the work, it
will be possible for a software vendor to use a compiler that spends hours optimiz-
ing its program and have all the users have the benefit every time the program is
run.

The idea of bundles of instructions can be used to create a whole family of
processors. On the low-end CPUs, one bundle may be issued per clock cycle.

SEC. 5.8 THE INTEL IA-64 391

Instructions
can be
chained
together

INSTRUCTION 1 INSTRUCTION 2 INSTRUCTION 3 TEMPLATE

INSTRUCTION 1 INSTRUCTION 2 INSTRUCTION 3 TEMPLATE

INSTRUCTION 1 INSTRUCTION 2 INSTRUCTION 3 TEMPLATE

R2R1

PREDICATE
REGISTER

R3

Figure 5-1. IA-64 is based on bundles of three instructions.

The CPU may wait until all the instructions have completed before issuing the
next bundle. On high-end CPUs, it may be possible to issue multiple bundles dur-
ing the same clock cycle, analogous to current superscalar designs. Also, on
high-end CPUs, the processor may begin issuing instructions from a new bundle
before all instructions from the previous bundle have completed. Of course, it
needs to check to see if the registers and functional unit needed are available, but
it does not have to check to see if other instructions from its own bundle are in
conflict with it as the compiler has guaranteed that this is not the case.

5.8.3 Predication

Another important feature of IA-64 is the new way it deals with conditional
branches. If there were a way to get rid of most of them, CPUs could be made
much simpler and faster. At first thought it might seem that getting rid of condi-
tional branches would be impossible because programs are full of if statements.
However, IA-64 uses a technique called predication that can greatly reduce their
number (August et al., 1998; and Hwu, 1998). We will now briefly describe it.

In current machines, all instructions are unconditional in the sense that when
the CPU hits an instruction, it just carries the instruction out. There is no internal
debate of the form: ‘‘To do or not to do, that is the question?’’ In contrast, in a
predicated architecture, instructions contain conditions (predicates) telling when
they should be executed and when not. This paradigm shift from unconditional
instructions to predicated instructions is what makes it possible to get rid of
(many) conditional branches. Instead of having to make a choice between one
sequence of unconditional instructions or another sequence of unconditional
instructions, all the instructions are merged into a single sequence of predicated

392 THE INSTRUCTION SET ARCHITECTURE LEVEL CHAP. 5

instructions, using different predicates for different instructions.
To see how predication works, let us start with the simple example of Fig. 5-

2, which shows conditional execution, a precursor to predication. In Fig. 5-2(a)
we see an if statement. In Fig. 5-2(b) we see its translation into three instructions:
a comparison, a conditional branch, and a move instruction.

if (R1 == 0) CMP R1,0 CMOVZ R2,R3,R1
R2 = R3; BNE L1

MOV R2,R3
L1:

(a) (b) (c)

Figure 5-2. (a) An if statement. (b) Generic assembly code for (a). (c) A con-
ditional instruction.

In Fig. 5-2(c) we get rid of the conditional branch by using a new instruction,
CMOVZ, which is a conditional move. What it does is check to see if the third
register, R1, is 0. If so, it copies R3 to R2. If not, it does nothing.

Once we have an instruction that can copy data when some register is 0, it is a
small step to an instruction that can copy data when some register is not 0, say
CMOVN. With both of these instructions available, we are on our way to full con-
ditional execution. Imagine an if statement with several assignments in the then
part and several assignments in the else part. The whole statement can be
translated into code to set some register to 0 if the condition is false and another
value if it is true. Following the register setup, the then part assignments can be
compiled into a sequence of CMOVN instructions and the else part assignments
could be compiled into a sequence of CMOVZ instructions.

All of these instructions, the register setup, the CMOVNs and the CMOVZs form
a single basic block with no conditional branch. The instructions can even be
reordered, either by the compiler (including hoisting the assignments before the
test), or during execution. The only catch is that the condition has to be known by
the time the conditional instructions have to be retired (near the end of the pipe-
line). A simple example showing a then part and an else part is given in Fig. 5-3.

Although we have shown only very simple conditional instructions here
(taken from the Pentium II, actually), on the IA-64 all instructions are predicated.
What this means is that the execution of every instruction can be made condi-
tional. The extra 6-bit field referred to earlier selects one of 64 1-bit predicate
registers. Thus an if statement will be compiled into code that sets one of the
predicate registers to 1 if the condition is true and to 0 if it is false. Simultane-
ously and automatically, it sets another predicate register to the inverse value.
Using predication, the machine instructions forming the then and else clauses will
be merged into a single stream of instructions, the former ones using the predicate
and the latter ones using its inverse.

SEC. 5.8 THE INTEL IA-64 393

if (R1 == 0) { CMP R1,0 CMOVZ R2,R3,R1
R2 = R3; BNE L1 CMOVZ R4,R5,R1
R4 = R5; MOV R2,R3 CMOVN R6,R7,R1

} else { MOV R4.R5 CMOVN R8,R9,R1
R6 = R7; BR L2
R8 = R9; L1: MOV R6,R7

} MOV R8,R9
L2:

(a) (b) (c)

Figure 5-3. (a) An if statement. (b) Generic assembly code for (a). (c) Condi-
tional execution.

Although simple, the example of Fig. 5-4 shows the basic idea of how predi-
cation can be used to eliminate branches. The CMPEQ instruction compares two
registers and sets the predicate register P4 to 1 if they are equal and to 0 if they are
different. If also sets a paired register, say, P5, to the inverse condition. Now the
instructions for the if and then parts can be put after one another, each one condi-
tioned on some predicate register (shown in angle brackets). Arbitrary code can
be put here provided that each instruction is properly predicated.

if (R1 == R2) CMP R1,R2 CMPEQ R1,R2,P4
R3 = R4 + R5; BNE L1 <P4> ADD R3,R4,R5

else MOV R3,R4 <P5> SUB R6,R4,R5
R6 = R4 − R5 ADD R3,R5

BR L2
L1: MOV R6,R4

SUB R6,R5
L2:

(a) (b) (c)

Figure 5-4. (a) An if statement. (b) Generic assembly code for (a). (c) Predi-
cated execution.

In the IA-64, this idea is taken to the extreme, with comparison instructions
for setting the predicate registers as well as arithmetic and other instructions
whose execution is dependent on some predicate register. Predicated instructions
can be stuffed into the pipeline in sequence, with no stalls and no problems. That
is why they are so useful.

The way predication really works on the IA-64 is that every instruction is
actually executed. At the very end of the pipeline, when it is time to retire an
instruction, a check is made to see if the predicate is true. If so, the instruction is
retired normally and its results are written back to the destination register. If the
predicate is false, no writeback is done so the instruction has no effect.

394 THE INSTRUCTION SET ARCHITECTURE LEVEL CHAP. 5

Predication is discussed further in (Dulong, 1998).

5.8.4 Speculative Loads

Another feature of the IA-64 that speeds up execution is the presence of
speculative LOADs. If a LOAD is speculative and it fails, instead of causing an
exception, it just stops and a bit associated with the register to be loaded is set
marking the register as invalid. This is just the poison bit introduced in Chap. 4.
If it turns out that the poisoned register is later used, the exception occurs at that
time; otherwise, it never happens.

The way speculation is normally used is for the compiler to hoist LOADs to
positions before they are needed. By starting early, they may be finished before
the results are needed. At the place where the compiler needs to use the register
just loaded, it inserts a CHECK instruction. If the value is there, CHECK acts like a
NOP and execution continues immediately. If the value is not there yet, the next
instruction must stall. If an exception occurred and the poison bit is on, the pend-
ing exception occurs at that point.

In summary, a machine implementing the the IA-64 architecture gets its speed
from several sources. At the core is a state-of-the-art pipelined, load/store, three-
address RISC engine. In addition, IA-64 has a model of explicit parallelism that
requires the compiler to figure out which instructions can be executed at the same
time without conflicts and group them together in bundles. In this way the CPU
can just blindly schedule a bundle without having to do any heavy thinking. Next,
predication allows the statements in both branches of an if statement to be merged
together in a single stream, eliminating the conditional branch and thus the predic-
tion of which way it will go. Finally, speculative LOADs make it possible to fetch
operands in advance, without penalty if it turns out later that they are not needed
after all.

5.8.5 Reality Check

If all of these things work as expected, the Merced will indeed be a powerful
machine. However, some caveats are in order. First, such an advanced machine
has never been built before, certainly not for a mass market audience. History
shows that the best laid plans of rodents and persons sometimes go awry for vari-
ous reasons.

Second, compilers for IA-64 will have to be written. Writing a good compiler
for the IA-64 architecture will not be easy. In addition, for the past 30 years, the
holy grail of research in parallel programming has been the automatic extraction
of parallelism from sequential programs. This work has not been very successful.
If a program has little inherent parallelism or the compiler cannot extract it, the
IA-64 bundles will all be short, with little gain.

SEC. 5.8 THE INTEL IA-64 395

Third, all of the above assumes the operating system is fully 64 bit. Windows
95 and Windows 98 certainly are not and probably never will be. This means that
everyone will have to switch to Windows NT or some flavor of UNIX. This transi-
tion may not be painless. After all, 10 years after the 32-bit 386 was introduced,
Windows 95 still contained a large amount of 16-bit code, and it never used the
segmentation hardware that has been in all Intel CPUs for over a decade (segmen-
tation will be discussed in Chap. 6). How long it will take for the operating sys-
tems to become fully 64 bit is not known.

Fourth, many people will judge the IA-64 by how well it runs old 16-bit MS-

DOS games. When the Pentium Pro came out, it got a lot of bad press because it
ran old 16-bit programs no faster than the regular Pentium. Since old 16-bit (or
even 32-bit) programs will not even use the new features of IA-64 CPUs, all the
predicate registers in the world will not help them. To see any improvement, peo-
ple will have to buy upgrades of all their software compiled with new IA-64-mode
compilers. Many of them will balk at the expense.

Last, there may be alternatives from other vendors (including Intel) that also
provide high performance using more conventional RISC architectures, possibly
with more conditional instructions, essentially a weaker form of predication. Fas-
ter versions of the Pentium II line itself will also be a serious competitor to the
IA-64. It is likely that many years will pass before the IA-64 has the kind of
market dominance (if ever) that the IA-32 has now.

6
THE OPERATING SYSTEM

MACHINE LEVEL

1

Level 1

Level 2

Level 3 Operating system machine level

Microarchitecture level

Operating system

Instruction set architecture level

Microprogram or hardware

Figure 6-1. Positioning of the operating system machine level.

Mapping

Address space

Address

8191

4096

0

4095

0

4K Main
memory

Figure 6-2. A mapping in which virtual addresses 4096 to
8191 are mapped onto main memory addresses 0 to 4095.

(a) (b)

Page Virtual addresses

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

61440 – 65535

57344 – 61439

53248 – 57343

49152 – 53247

45056 – 49151

40960 – 45055

36864 – 40959

32768 – 36863

28672 – 32767

24576 – 28671

20480 – 24575

16384 – 20479

12288 – 16383

 8192 – 12287

4096 – 8191

 0 – 4095

7

6

5

4

3

2

1

0

Page
frame

Bottom 32K of
main memory

Physical addresses

28672 – 32767

24576 – 28671

20480 – 24575

16384 – 20479

12288 – 16383

 8192 – 12287

4096 – 8191

 0 – 4095

Figure 6-3. (a) The first 64K of virtual address space divided
into 16 pages, with each page being 4K. (b) A 32K main
memory divided up into eight page frames of 4K each.

Present/absent
bit

Virtual
page

Page
table

15-bit

1

Memory address

Output
register

1 110

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

1 0 0 0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 0 Input
register

20-bit virtual page 12-bit offset

32-bit virtual address

Figure 6-4. Formation of a main memory address from a virtual address.

Page table

Page
frame

0

1

0

0

1

0

0

1

0

1

1

0

1

0

1

1

0

4

0

0

5

0

0

3

0

7

6

0

2

0

0

1

Main memory
Page
frame

1 = Present in main memory
0 = Absent from main memory

7

6

5

4

3

2

1

0

Virtual page 6

Virtual page 5

Virtual page 11

Virtual page 14

Virtual page 8

Virtual page 3

Virtual page 0

Virtual page 1

Virtual
page

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Figure 6-5. A possible mapping of the first 16 virtual pages
onto a main memory with eight page frames.

(a)

Virtual page 7

Virtual page 6

Virtual page 5

Virtual page 4

Virtual page 3

Virtual page 2

Virtual page 1

Virtual page 0

(b)

Virtual page 7

Virtual page 6

Virtual page 5

Virtual page 4

Virtual page 3

Virtual page 2

Virtual page 1

Virtual page 8

(c)

Virtual page 7

Virtual page 6

Virtual page 5

Virtual page 4

Virtual page 3

Virtual page 2

Virtual page 0

Virtual page 8

Figure 6-6. Failure of the LRU algorithm.

Virtual address space

Currently used
Call

stack

Constant
table

Symbol
table

Address space
allocated to the
call stack

Parse
tree

Source
text

Free

Figure 6-7. In a one-dimensional address space with growing
tables, one table may bump into another.

Segment
0

Symbol
table

Constant
table

Call
stackParse

tree

20K

16K

12K

8K

4K

0
Segment

1

Source
text

Segment
2

Segment
3

Segment
4

Figure 6-8. A segmented memory allows each table to grow or
shrink independently of the other tables.

22
Consideration Paging Segmentation22

Need the programmer be aware of it? No Yes22
How many linear addresses spaces are there? 1 Many22
Can virtual address space exceed memory size? Yes Yes22
Can variable-sized tables be handled easily? No Yes22
Why was the technique invented? To simulate large

memories
To provide multiple
address spaces2211

1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

Figure 6-9. Comparison of paging and segmentation.

�
������
�
�
�
������

����
���
�
�
�
� �
�
� ��
�

�� �
�
�
��

�����
�
�
�
�
���
�
�
�
�
�

�
�
�
�

Segment 1
(8K)

(a)

Segment 3
(8K)

Segment 3
(8K)

Segment 4
(7K)

Segment 4
(7K)

Segment 3
(8K)

Segment 2
(5K)

Segment 0
(4K)

(b)

Segment 7
(5K)

Segment 0
(4K)

(c) (d) (e)

Segment 2
(5K)

Segment 7
(5K)

Segment 0
(4K)

Segment 2
(5K)

Segment 5
(4K)

Segment 7
(5K)

Segment 0
(4K)

Segment 2
(5K)

Segment 6
(4K)

Segment 5
(4K)

Segment 7
(5K)

Segment 0
(4K)

Segment 6
(4K)

Segment 5
(4K)

Segment 2
(5K)

10K

(4K)

(3K)(3K)

(3K) (3K)(3K)

Figure 6-10. (a)-(d) Development of external fragmentation
(e) Removal of the external fragmentation by compaction.

18-Bit Segment
number

Segment
number

Descriptor

Descriptor
segment

Page
number

Page frame

Page
table Offset

Word

Page

6-Bit page
number

10-Bit offset
within the page

Two-part MULTICS address

Figure 6-11. Conversion of a two-part MULTICS address into
a main memory address.

Bits 13 1 2

INDEX

0 = GDT
1 = LDT Privilege level (0-3)

Figure 6-12. A Pentium II selector.

Relative
address
0

4

BASE 0-15 LIMIT

BASE 24-31 G D 0 LIMIT 16-19 P DPL TYPE BASE 16-23

0 : LIMIT is in bytes
1 : LIMIT is in pages

0 : 16-bit segment
1 : 32-bit segment

Segment type and protection

Privilege level (0-3)

0 : Segment is absent from memory
1 : Segment is present from memory

32 Bits

Figure 6-13. A Pentium II code segment descriptor. Data seg-
ments differ slightly.

Selector

Descriptor

Base address

Limit

Other fields

32-bit linear address

Offset

+

Figure 6-14. Conversion of a (selector, offset) pair to a linear address.

Bits 10 10 12
Linear address

DIR PAGE OFF

Page directory Page table Page frame

Word selected

(b)

(a)

DIR PAGE
OFF

Figure 6-15. Mapping of a linear address onto a physical address.

Kernel

0

1

2

3

Level

Possible uses of
the levels

System calls

Shared libraries

User programs

Figure 6-16. Protection on the Pentium II.

45 19

512K Virtual
page number Offset

22 19

512K Page
frame Offset

48 16

64K Virtual
page number Offset

25

64K Page
frame

16

Offset

Bits

Virtual
address

51 13

8K Virtual
page number Offset

Bits

Physical
address

28

8K Page
frame

13

Offset

42 22

4M Virtual
page number Offset

22

Offset

19

4M Page
frame

Figure 6-17. Virtual to physical mappings on the UltraSPARC.

Valid
Physical

page

Virtual
page

Flags

(a)

TLB (MMU hardware)

Context

Valid
Physical

page

Virtual
page
tag

Flags

(b)

(c)

Format is
entirely

defined by
the operating

system

Translation table
(Operating system)

TSB (MMU + sofware)

Context

Entry 0 is shared
by all virtual pages
ending in 0…0000 Entry 1 is shared

by all virtual pages
ending in 0…0001

Figure 6-18. Data structures used in translating virtual ad-
dresses on the UltraSPARC. (a) TLB. (b) TSB. (c) Translation
table.

(a)

Logical
record
number

Next logical
record to be
read

Main memory

BufferLogical
record 18

15

14

16

17

18

19

20

21

22

23

24

25

(b)

1 logical
record

Next logical
record to be
read

Main memory

BufferLogical
record 19

16

15

17

18

19

20

21

22

23

24

25

26

Figure 6-19. Reading a file consisting of logical records. (a)
Before reading record 19. (b) After reading record 19.

Sector 11

Sector
1

(a)

Sector 0

Read/
write
head

Direction
of disk
rotation

12
0 13

14

1

2

3

4
56

7

8

9
10

11

Sector 11

Sector
1

(b)

Sector 0

Read/
write
head

Direction
of disk
rotation

4

7

10

2

Track 4

Track 0
3

5

6
0

1
2

11

14 13

9

1

8

Figure 6-20. Disk allocation strategies. (a) A file in consecu-
tive sectors. (b) A file not in consecutive sectors.

(a)

(b)

Sector

0
0
1
0
1

0
0
0
0
1

0
0
1
0
1

0
0
0
1
0

0
0
0
1
0

0
0
1
1
0

1
0
0
1
0

0
0
0
1
0

0
0
0
1
0

0
0
0
0
0

0
1
0
0
0

0
0
0
0
1

0

0
1
2
3
4

Track 1 2 3 4 65 7 8 9 10 11

Track Sector Number of
sectors
in hole

0
0
1
1
2
2
2
3
3
4

0
6
0
11
1
3
7
0
9
3

5
6
10
1
1
3
5
3
3
8

Figure 6-21. Two ways of keeping track of available sectors.
(a) A free list. (b) A bit map.

File 0

File 1

File 2

File 3

File 4

File 5

File 6

File 7

File 8

File 9

File 10

File name: Rubber-ducky

Length:

Type:

Creation date:

Last access:

Last change:

Total accesses:

Block 0:

Block 1:

Block 2:

Block 3:

1840

Anatidae dataram

March 16, 1066

September 1, 1492

July 4, 1776

144

Track 4

Track 19

Track 11

Track 77

Sector 6

Sector 9

Sector 2

Sector 0

Figure 6-22. (a) A user file directory. (b) The contents of a
typical entry in a file directory.

(b)

Time

Process 3

Process 2

Process 1

Process 3

Process 2

Process 1

Process 3 waiting for CPU

Process 1 running

(a)

Time

Figure 6-23. (a) True parallel processing with multiple CPUs.
(b) Parallel processing simulated by switching one CPU among
three processes.

(a)

In,
out

(b)
Out

In

(c)

Out

In

(d)

Out

In

(e)

Out

In

(f)

In

Out

Figure 6-24. Use of a circular buffer.

public class m {
final public static int BUF3SIZE = 100; // buffer runs from 0 to 99
final public static long MAX3PRIME = 100000000000L; // stop here
public static int in = 0, out = 0; // pointers to the data
public static long buffer[] = new long[BUF3SIZE];// primes stored here
public static producer p; // name of the producer
public static consumer c; // name of the consumer

public static void main(String args[]) { // main class
p = new producer(); // create the producer
c = new consumer(); // create the consumer
p.start(); // start the producer
c.start(); // start the consumer

}

// This is a utility function for circularly incrementing in and out
public static int next(int k) {if (k < BUF3SIZE − 1) return(k+1); else return(0);}

}

class producer extends Thread { // producer class
public void run() { // producer code

long prime = 2; // scratch variable

while (prime < m.MAX3PRIME) {
prime = next3prime(prime); // statement P1
if (m.next(m.in) == m.out) suspend(); // statement P2
m.buffer[m.in] = prime; // statement P3
m.in = m.next(m.in); // statement P4
if (m.next(m.out) == m.in) m.c.resume(); // statement P5

}
}

private long next3prime(long prime){ ... } // function that computes next prime
}

class consumer extends Thread { // consumer class
public void run() { // consumer code

long emirp = 2; // scratch variable

while (emirp < m.MAX3PRIME) {
if (m.in == m.out) suspend(); // statement C1
emirp = m.buffer[m.out]; // statement C2
m.out = m.next(m.out); // statement C3
if (m.out == m.next(m.next(m.in))) m.p.resume();// statement C4
System.out.println(emirp); // statement C5

}
}

} Figure 6-25. Parallel processing with a fatal race condition.

(a)

100

In = 22

Out = 21 Prime

1 number
in buffer

Producer at P1
consumer at C5

1 number
in buffer

1

Buffer
empty

(b)

100

Producer at P1
consumer at C1

In = Out = 22

1
(c)

100

1

In = 23

Out = 22 Prime

Producer at P5
sends wake up
consumer at C1

Figure 6-26. Failure of the producer-consumer communication mechanism.

222
Instr Semaphore = 0 Semaphore > 0222
Up Semaphore=semaphore+1;

if the other process was halted attempting to
complete a down instruction on this sema-
phore, it may now complete the down and
continue running

Semaphore=semaphore+1

222
Down Process halts until the other process ups this

semaphore
Semaphore=semaphore−1

22211
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

Figure 6-27. The effect of a semaphore operation.

public class m {
final public static int BUF3SIZE = 100; // buffer runs from 0 to 99
final public static long MAX3PRIME = 100000000000L; // stop here
public static int in = 0, out = 0; // pointers to the data
public static long buffer[] = new long[BUF3SIZE];// primes stored here
public static producer p; // name of the producer
public static consumer c; // name of the consumer
public static int filled = 0, available = 100; // semaphores

public static void main(String args[]) { // main class
p = new producer(); // create the producer
c = new consumer(); // create the consumer
p.start(); // start the producer
c.start(); // start the consumer

}

// This is a utility function for circularly incrementing in and out
public static int next(int k) {if (k < BUF3SIZE − 1) return(k+1); else return(0);}

}

class producer extends Thread { // producer class
native void up(int s); native void down(int s); // methods on semaphores
public void run() { // producer code

long prime = 2; // scratch variable

while (prime < m.MAX3PRIME) {
prime = next3prime(prime); // statement P1
down(m.available); // statement P2
m.buffer[m.in] = prime; // statement P3
m.in = m.next(m.in); // statement P4
up(m.filled); // statement P5

}
}

private long next3prime(long prime){ ... } // function that computes next prime
}

class consumer extends Thread { // consumer class
native void up(int s); native void down(int s); // methods on semaphores
public void run() { // consumer code

long emirp = 2; // scratch variable

while (emirp < m.MAX3PRIME) {
down(m.filled); // statement C1
emirp = m.buffer[m.out]; // statement C2
m.out = m.next(m.out); // statement C3
up(m.available); // statement C4
System.out.println(emirp); // statement C5

}
}

} Figure 6-28. Parallel processing using semaphores.

222
Category Some examples222

File management Open, read, write, close, and lock files222
Directory management Create and delete directories; move files around222
Process management Spawn, terminate, trace, and signal processes222
Memory management Share memory among processes; protect pages222
Getting/setting parameters Get user, group, process ID; set priority222
Dates and times Set file access times; use interval timer; profile execution222
Networking Establish/accept connection; send/receive message222
Miscellaneous Enable accounting; manipulate disk quotas; reboot the system22211
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1

Figure 6-29. A rough breakdown of the UNIX system calls.

Shell User program

System call interface

File system Process management

Block cache IPC Scheduling

Hardware

Device drivers

User
mode

Kernel
mode

Memory mgmt.Signals

Figure 6-30. The structure of a typical UNIX system.

System services

Hardware

User
mode

Kernel
mode

Executive I/O

File
systems

Security Win32

and

Graphics
device
interface

Object management

Hardware abstraction layer

POSIX program

POSIX subsystem

Win32 program

Win32 subsystem

OS/2 program

OS/2 subsystem

System interface

Virtual
memory

Device drivers Microkernel

File
cache

Processes
and

threads

Figure 6-31. The structure of Windows NT.

222
Item Windows 95/98 NT 5.0222
Win32 API? Yes Yes222
Full 32-bit system? No Yes222
Security? No Yes222
Protected file mappings? No Yes222
Sep. addr space for each MS-DOS program? No Yes222
Plug and play? Yes Yes222
Unicode? No Yes222
Runs on Intel 80x86 80x86, Alpha222
Multiprocessor support? No Yes222
Re-entrant code inside OS? No Yes222
Some critical OS data writable by user? Yes No22211
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 6-32. Some differences between versions of Windows.

Address

0xFFFFFFFF

0
Code

Data

Stack

Figure 6-33. The address space of a single UNIX process.

222
API function Meaning222

VirtualAlloc Reserve or commit a region222
VirtualFree Release or decommit a region222
VirtualProtect Change the read/write/execute protection on a region222
VirtualQuery Inquire about the status of a region222
VirtualLock Make a region memory resident (i.e., disable paging for it)222
VirtualUnlock Make a region pageable in the usual way222
CreateFileMapping Create a file mapping object and (optionally) assign it a name222
MapViewOfFile Map (part of) a file into the address space222
UnmapViewOfFile Remove a mapped file from the address space222
OpenFileMapping Open a previously created file mapping object22211
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 6-34. The principal API functions for managing virtual
memory in Windows NT.

22
System call Meaning22

creat(name, mode) Create a file; mode specifies the protection mode22
unlink(name) Delete a file (assuming that there is only 1 link to it)22
open(name, mode) Open or create a file and return a file descriptor22
close(fd) Close a file22
read(fd, buffer, count) Read count bytes into buffer22
write(fd, buffer, count) Write count bytes from buffer22
lseek(fd, offset, w) Move the file pointer as required by offset and w22
stat(name, buffer) Return information about a file22
chmod(name, mode) Change the protection mode of a file22
fcntl(fd, cmd, ...) Do various control operations such as locking (part of) a file2211
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 6-35. The principal UNIX file system calls.

// Open the file descriptors
infd = open(′′data′′, 0);
outfd = creat(′′newf′′, ProtectionBits);

// Copy loop
do {

count = read(infd, buffer, bytes);
if (count > 0) write(outfd, buffer, count);

} while (count > 0);

// Close the files
close(infd);
close(outfd);

Figure 6-36. A program fragment for copying a file using the
UNIX system calls. This fragment is in C because Java hides
the low-level system calls and we are trying to expose them.

/usr/ast/bin

Data files

game 1

game 2

game 3

game 4

…

/usr/ast

bin

data

foo.c

…

/usr/jim

jotto

…

Root directory

bin

dev

lib

usr

…

/lib

…

/usr

ast

jim

…

/dev

…

/bin

…

Figure 6-37. Part of a typical UNIX directory system.

22
System call Meaning22

mkdir(name, mode) Create a new directory22
rmdir(name) Delete an empty directory22
opendir(name) Open a directory for reading22
readdir(dirpointer) Read the next entry in a directory22
closedir(dirpointer) Close a directory22
chdir(dirname) Change working directory to dirname22
link(name1, name2) Create a directory entry name2 pointing to name122
unlink(name) Remove name from its directory221
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 6-38. The principal UNIX directory management calls.

222
API function UNIX Meaning222

CreateFile open Create a file or open an existing file; return a handle222
DeleteFile unlink Destroy an existing file222
CloseHandle close Close a file222
ReadFile read Read data from a file222
WriteFile write Write data to a file222
SetFilePointer lseek Set the file pointer to a specific place in the file222
GetFileAttributes stat Return the file properties222
LockFile fcntl Lock a region of the file to provide mutual exclusion222
UnlockFile fcntl Unlock a previously locked region of the file22211
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 6-39. The principal Win32 API functions for file I/O.
The second column gives the nearest UNIX equivalent.

// Open files for input and output.
inhandle = CreateFile(′′data′′, GENERIC3READ, 0, NULL, OPEN3EXISTING, 0, NULL);
outhandle = CreateFile(′′newf′′, GENERIC3WRITE, 0, NULL, CREATE3ALWAYS,

FILE3ATTRIBUTE3NORMAL, NULL);

// Copy the file.
do {

s = ReadFile(inhandle, buffer, BUF3SIZE, &count, NULL);
if (s > 0 && count > 0) WriteFile(outhandle, buffer, count, &ocnt, NULL);

while (s > 0 && count > 0);

// Close the files.
CloseHandle(inhandle);
CloseHandle(outhandle);

Figure 6-40. A program fragment for copying a file using the
Windows NT API functions. This fragment is in C because
Java hides the low-level system calls and we are trying to ex-
pose them.

222
API function UNIX Meaning222

CreateDirectory mkdir Create a new directory222
RemoveDirectory rmdir Remove an empty directory222
FindFirstFile opendir Initialize to start reading the entries in a directory222
FindNextFile readdir Read the next directory entry222
MoveFile Move a file from one directory to another222
SetCurrentDirectory chdir Change the current working directory22211
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

Figure 6-41. The principal Win32 API functions for directory
management. The second column gives the nearest UNIX
equivalent, when one exists.

MFT
header

MFT entry for one file

Standard
information

MS-DOS
nameFile name Security Data

Master
file

table

Figure 6-42. The Windows NT master file table.

Original process

Children of A

Grandchildren of AA A A

A

A A

Figure 6-43. A process tree in UNIX.

222
Thread call Meaning222

pthread3create Create a new thread in the caller’s address space222
pthread3exit Terminate the calling thread222
pthread3join Wait for a thread to terminate222
pthread3mutex3init Create a new mutex222
pthread3mutex3destroy Destroy a mutex222
pthread3mutex3lock Lock a mutex222
pthread3mutex3unlock Unlock a mutex222
pthread3cond3init Create a condition variable222
pthread3cond3destroy Destroy a condition variable222
pthread3cond3wait Wait on a condition variable222
pthread3cond3signal Release one thread waiting on a condition variable22211
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 6-44. The principal POSIX thread calls.

446 THE OPERATING SYSTEM MACHINE LEVEL CHAP. 6

6.4 EXAMPLE OPERATING SYSTEMS

In this section we will continue discussing our example systems, the Pentium
II and the UltraSPARC. For each one we will look at an operating system used on
that processor. For the Pentium II we will use Windows NT (called NT for short
below); for the UltraSPARC II we will use UNIX. Since UNIX is simpler and in
many ways more elegant, we will begin with it. Also, UNIX was designed and
implemented first and had a major influence on NT, so this order makes more
sense than the reverse.

6.4.1 Introduction

In this section we will give a brief introduction to our two example operating
systems, UNIX and NT, focusing on the history, structure, and system calls.

UNIX

UNIX was developed at Bell Labs in the early 1970s. The first version was
written by Ken Thompson in assembler for the PDP-7 minicomputer. This was
soon followed by a version for the PDP-11, written in a new language called C
that was devised and implemented by Dennis Ritchie. In 1974, Ritchie and
Thompson published a landmark paper about UNIX (Ritchie and Thompson, 1974).
For the work described in this paper they were later given the prestigious ACM
Turing Award (Ritchie, 1984; Thompson, 1984). The publication of this paper
stimulated many universities to ask Bell Labs for a copy of UNIX. Since Bell
Labs’ parent company, AT&T, was a regulated monopoly at the time and was not
permitted to be in the computer business, it had no objection to licensing UNIX to
universities for a modest fee.

In one of those coincidences that often shape history, the PDP-11 was the
computer of choice at nearly all university computer science departments, and the
operating systems that came with the PDP-11 were widely regarded as being
dreadful by professors and students alike. UNIX quickly filled the void, not in the
least because it was supplied with the complete source code, so people could, and
did, tinker with it endlessly.

One of the many universities that acquired UNIX early on was the University
of California at Berkeley. Because the complete source code was available,
Berkeley was able to modify the system substantially. Foremost among the
changes was a port to the VAX minicomputer and the addition of paged virtual
memory, the extension of file names from 14 characters to 255 characters, and the
inclusion of the TCP/IP networking protocol, which is now used on the Internet
(largely due to the fact that it was in Berkeley UNIX).

While Berkeley was making all these changes, AT&T itself continued to
develop UNIX, leading to System III in 1982 and then System V in 1984. By the

SEC. 6.4 EXAMPLE OPERATING SYSTEMS 447

late 1980s, two different, and quite incompatible, versions of UNIX were in
widespread use: Berkeley UNIX and System V. This split in the UNIX world,
together with the fact that there were no standards for binary program formats,
greatly inhibited the commercial success of UNIX because it was impossible for
software vendors to write and package UNIX programs with the expectation that
they would run on any UNIX system (as was routinely done with MS-DOS). After
much bickering, a standard called POSIX (Portable Operating System-IX) was
created by the IEEE Standards Board. POSIX is also known by its IEEE Standards
number, P1003. It later became an International Standard.

The POSIX standard is divided into many parts, each covering a different area
of UNIX. The first part, P1003.1, defines the system calls; the second part,
P1003.2, defines the basic utility programs, and so on. The P1003.1 standard
defines about 60 system calls that all conformant systems must support. These are
the basic calls for reading and writing files, creating new processes, and so on.
Nearly all UNIX systems now support the P1003.1 system calls. However many
UNIX systems also support extra system calls, especially those defined by System
V and/or those in Berkeley UNIX. Typically these add up to perhaps 100 system
calls to the POSIX set. The operating system for the UltraSPARC II is based on
System V and is called Solaris. It also supports many of the Berkeley system
calls.

A rough breakdown of the Solaris system calls by category is given in Fig. 6-
1. The file and directory management system calls are largest and the most
important categories. Most of these come from P1003.1. A relatively large frac-
tion of the others are derived from System V.
222

Category Some examples222
File management Open, read, write, close, and lock files222
Directory management Create and delete directories; move files around222
Process management Spawn, terminate, trace, and signal processes222
Memory management Share memory among processes; protect pages222
Getting/setting parameters Get user, group, process ID; set priority222
Dates and times Set file access times; use interval timer; profile execution222
Networking Establish/accept connection; send/receive message222
Miscellaneous Enable accounting; manipulate disk quotas; reboot the system22211

1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 6-1. A rough breakdown of the UNIX system calls.

One area that is largely due to Berkeley UNIX rather than System V is net-
working. Berkeley invented the concept of a socket, which is the endpoint of a
network connection. The four-pin wall plugs to which telephones can be con-
nected served as the model for this concept. It is possible for a UNIX process to
create a socket, attach to it, and establish a connection to a socket on a distant

448 THE OPERATING SYSTEM MACHINE LEVEL CHAP. 6

machine. Over this connection it can then exchange data in both directions, typi-
cally using the TCP/IP protocol. Since networking technology has been in UNIX

for decades and is very stable and mature, a substantial fraction of the servers on
the Internet run UNIX.

Since there are many implementations of UNIX, it is difficult to say much
about the structure of the operating system since every one is somewhat different
from all the others. However, in general, Fig. 6-2 applies to most of them. At the
bottom, there is a layer of device drivers that shield the file system from the bare
hardware. Originally, each device driver was written as an independent entity,
separate from all the others. This arrangement led to a lot of duplicated effort,
since many drivers must deal with flow control, error handling, priorities, separat-
ing data from control, and so on. This observation led Dennis Ritchie to develop
a framework called streams for writing drivers in a modular way. With a stream,
it is possible to establish a two-way connection from a user process to a hardware
device and to insert one or more modules along the path. The user process pushes
data into the stream, which then is processed or transformed by each module until
it gets to the hardware. The inverse processing occurs for incoming data.

Shell User program

System call interface

File system Process management

Block cache IPC Scheduling

Hardware

Device drivers

User
mode

Kernel
mode

Memory mgmt.Signals

Figure 6-2. The structure of a typical UNIX system.

On top of the device drivers comes the file system. It manages file names,
directories, disk block allocation, protection, and much more. Part of the file sys-
tem is a block cache, for holding the blocks most recently read in from disk, in
case they are needed again soon. A variety of file systems have been used over
the years, including the Berkeley fast file system (McKusick et al., 1984), and
log-structured file systems (Rosenblum and Ousterhout, 1991; and Seltzer et al.,
1993).

The other part of the UNIX kernel is the process management portion. Among
its various other functions, it handles IPC (InterProcess Communication), which
allows processes to communicate with one another and synchronize to avoid race
conditions. A variety of mechanisms are provided. The process management

SEC. 6.4 EXAMPLE OPERATING SYSTEMS 449

code also handles process scheduling, which is based on priorities. Signals, which
are a form of (asynchronous) software interrupt, are also managed here. Finally,
memory management is done here as well. Most UNIX systems support demand-
paged virtual memory, sometimes with a few extra features, such as the ability of
multiple processes to share common regions of address space.

From its inception, UNIX has tried to be a small system, in order to enhance
reliability and performance. The first versions of UNIX were entirely text-based,
using terminals that could display 24 or 25 lines of 80 ASCII characters. The user
interface was handled by a user-level program called the shell, which offered a
command line interface. Since the shell was not part of the kernel, adding new
shells to UNIX was easy, and over time a number of increasingly sophisticated
ones were invented.

Later on, when graphics terminals came into existence, a windowing system
for UNIX, called X Windows, was developed at M.I.T. Still later, a full-fledged
GUI (Graphical User Interface), called Motif, was put on top of X Windows.
In keeping with the UNIX philosophy of having a small kernel, nearly all the code
of X Windows and Motif runs in user mode, outside the kernel.

Windows NT

When the original IBM PC was launched in 1981, it came equipped with a
16-bit real-mode, single-user, command-line oriented operating system called
MS-DOS 1.0. This operating system consisted of 8 KB of memory resident code.
Two years later, a much more powerful 24-KB system, MS-DOS 2.0, appeared. It
contained a command line processor (shell), with a number of features borrowed
from UNIX. When IBM released the 286-based PC/AT in 1984, it came equipped
with MS-DOS 3.0, by now 36 KB. Over the years, MS-DOS continued to acquire
new features, but it was still a command-line oriented system.

Inspired by the success of the Apple Macintosh, Microsoft decided to give
MS-DOS a graphical user interface that it called Windows. The first three versions
of Windows, culminating in Windows 3.x, were not true operating systems, but
graphical user interfaces on top of MS-DOS, which was still in control of the
machine. All programs ran in the same address space and a bug in any one of
them could bring the whole system to a grinding halt.

The release of Windows 95 in 1995 still did not eliminate MS-DOS, although it
introduced a new version, 7.0. Together, Windows 95 and MS-DOS 7.0 contained
most of the features of a full-blown operating system, including virtual memory,
process management, and multiprogramming. However, Windows 95 was not a
full 32-bit program. It contained large chunks of old 16-bit code (as well as some
32-bit code) and still used the MS-DOS file system, with nearly all its limitations.
The only major change to the file system was the addition of long file names in
place of the 8 + 3 character file names allowed in MS-DOS.

Even with the release of Windows 98 in 1998, MS-DOS was still there (now

450 THE OPERATING SYSTEM MACHINE LEVEL CHAP. 6

called version 7.1) and running 16-bit code. Although a bit more functionality
migrated from the MS-DOS part to the Windows part, and a disk layout suitable for
larger disks was now standard, under the hood, Windows 98 was not very dif-
ferent from Windows 95. The main difference was the user interface, which
integrated the desktop, the Internet, and television more closely. It was precisely
this integration that attracted the attention of the U.S. Dept. of Justice, which then
sued Microsoft claiming that it was an illegal monopoly.

While all these developments were going on, Microsoft was also busy with a
completely new 32-bit operating system being written from the ground up. This
new system was called Windows New Technology, or Windows NT. It was ini-
tially hyped as the replacement for all other operating systems for Intel-based
PCs, but it was somewhat slow to catch on and was later redirected to the upper
end of the market, where it found a niche. It is gradually becoming more popular
at the low end as well.

NT is sold in two versions: server and workstation. These two versions are
nearly identical and are generated from the same source code. The server version
is intended for machines that run as LAN-based file and print servers and has
more elaborate management features than the workstation version, which is
intended for desktop computing for a single user. The server version has a variant
(enterprise) intended for large sites. The various versions are tuned differently,
each one optimized for its expected environment. Other than these minor differ-
ences, all the versions are essentially the same. In fact, nearly all the executable
files are identical for all versions. NT itself discovers which version it is by look-
ing at a variable in an internal data structure (the registry). Users are forbidden by
the license from changing this variable and thus converting the (inexpensive)
workstation version into the (much more expensive) server or enterprise versions.
We will not make any further distinction between these versions.

MS-DOS and all previous versions of Windows were single-user systems. NT,
however, supports multiprogramming, so several users can work on the same
machine at the same time. For example, a network server may have multiple
users logged in simultaneously over a network, each accessing its own files in a
protected way.

NT is a true 32-bit multiprogramming operating system. It supports multiple
user processes, each of which has a full 32-bit demand-paged virtual address
space. In addition, the system itself is written as 32-bit code everywhere.

One of NT’s original improvements over Windows 95 was its modular struc-
ture. It consisted of a moderately small kernel that ran in kernel mode, plus a
number of server processes that ran in user mode. User processes interacted with
the server processes using the client-server model: a client sent a request message
to a server, and the server did the work and returned the result to the client via a
second message. This modular structure made it easier to port it to several com-
puters besides the Intel line, including the DEC Alpha, IBM PowerPC, and SGI
MIPS. However, for performance reasons, starting with NT 4.0, pretty much all of

SEC. 6.4 EXAMPLE OPERATING SYSTEMS 451

the system was put back into the kernel.
One could go on for a long time both about how NT is structured internally

and what its system call interface is like. Since our primary interest here is the
virtual machine presented by various operating systems (i.e., the system calls), we
will give a brief summary of the system structure and then move on to the system
call interface.

The structure of NT is illustrated in Fig. 6-3. It consists of a number of
modules that are structured in layers and work together to implement the operat-
ing system. Each module has some particular function and a well-defined inter-
face to the other modules. Nearly all the modules are written in C, although part
of the graphics device interface is written in C++ and a tiny bit of the lowest
layers are written in assembly language.

At the bottom is a thin layer called the hardware abstraction layer. Its job
is to present the rest of the operating system with abstract hardware devices,
devoid of the warts and idiosyncracies with which real hardware is so richly
endowed. Among the devices modeled are off-chip caches, timers, I/O buses,
interrupt controllers, and DMA controllers. By exposing these to the rest of the
operating system in idealized form, it becomes easier to port NT to other hardware
platforms, since most of the modifications required are concentrated in one place.

System services

Hardware

User
mode

Kernel
mode

Executive I/O

File
systems

Security Win32

and

Graphics
device
interface

Object management

Hardware abstraction layer

POSIX program

POSIX subsystem

Win32 program

Win32 subsystem

OS/2 program

OS/2 subsystem

System interface

Virtual
memory

Device drivers Microkernel

File
cache

Processes
and

threads

Figure 6-3. The structure of Windows NT.

Above the hardware abstraction layer is a layer containing the microkernel.
and the device drivers. The microkernel and all the device drivers have direct
access to the hardware when needed, as they contain hardware-dependent code.

The microkernel supports the primitive kernel objects, interrupt, trap, and

452 THE OPERATING SYSTEM MACHINE LEVEL CHAP. 6

exception handling, process scheduling and synchronization, multiprocessor syn-
chronization, and time management. The purpose of this layer is to make the rest
of the operating system completely independent of the hardware, and thus highly
portable. The microkernel is permanently resident in main memory and is not
preemptable, although it can temporarily give up control to service I/O interrupts.

Each device driver can control one or more I/O devices, but a device driver
can also do things not related to a specific device, such as encrypting a data
stream or even just providing access to kernel data structures. Since users can
install new device drivers, they have the power to affect the kernel and corrupt the
system. For this reason, drivers must be written with great care.

Above the microkernel and device drivers is the upper portion of the operating
system, called the executive. The executive is architecture independent and can
be ported to new machines with relatively little effort. It consists of three layers.

The lowest layer contains the file systems and the object manager. The file
systems support the use of files and directories The object manager handles
objects known to the kernel. These include processes, threads (lightweight
processes within an address space), files, directories, semaphores, I/O devices,
timers, and many others. It also manages a namespace in which newly created
objects can be placed so they can be referred to later.

The next layer consists of six major parts, as shown in Fig. 6-3. The I/O
manager provides a framework for managing I/O devices and provides generic
I/O services. It uses the services of the file system, which in turn uses the device
drivers, as well as the services of the object manager.

The cache manager keeps the most recently used disk blocks in memory to
speed up access to them in the (likely) event that they are needed again. Its job is
to figure out which blocks are probably going to be needed again and which ones
are not. It is possible to configure NT with multiple file systems, in which case the
cache manager works for all of them, so each one does not have to do its own
cache management. When a block is needed, the cache manager is asked to sup-
ply it. If it does not have the block, the cache manager calls upon the appropriate
file system to get it. Since files can be mapped into processes’ address spaces, the
cache manager must interact with the virtual memory manager to provide the
necessary consistency.

The virtual memory manager implements NT’s demand-paged virtual
memory architecture. It manages the mapping of virtual pages onto physical page
frames. It thereby enforces the protection rules that restrict each process to only
access those pages belonging to its address space and not to other processes,
address spaces (except under special circumstances). It also handles certain sys-
tem calls that relate to virtual memory.

The process and thread manager handles processes and threads, including
their creation and destruction. It is concerned about the mechanisms used to
manage them, rather than policies about how they are used.

The security manager enforces NT’s elaborate security mechanism, which

SEC. 6.4 EXAMPLE OPERATING SYSTEMS 453

meets the U.S. Dept. of Defense’s Orange Book C2 requirements. The Orange
Book specifies a large number of rules that a conforming system must meet, start-
ing with authenticated login through how access control is handled to the fact that
virtual pages must be zeroed out before being reused.

The graphics device interface handles image management for the monitor
and printers. It provides system calls to allow user programs to write on the moni-
tor or printers in a device-independent way. It also contains the window manager
and hardware device drivers. In versions of NT prior to NT 4.0, it was in user space
but the performance was disappointing, so Microsoft moved it into the kernel to
speed it up. The Win32 module also handles most of the system calls. It, too,
was originally in user space but were also moved to the kernel to improve perfor-
mance.

On the top of the executive is a thin layer called system services. Its function
is to provide an interface to the executive. It accepts the true NT system calls and
calls other parts of the executive to have them executed.

Outside the kernel are the user programs and the environmental subsystems.
The environmental subsystems are provided because user programs are not
encouraged to make system calls directly (although they are technically capable
of it). Instead, each environmental subsystem exports a (different) set of function
calls that user programs can use. Three environmental subsystems are shown in
Fig. 6-3: Win32 (for NT or Windows 95/98 programs), POSIX (for UNIX programs
that have been ported), and OS/2 (for OS/2 programs that have been ported).

Windows applications use the Win32 functions and communicate with the
Win32 subsystem to make system calls. The Win32 subsystem accepts the
Win32 function calls and uses the system interface library module (actually, a
DLL file—see Chap. 7) to make the necessary true NT system calls to carry them
out.

There is also a POSIX subsystem, which provides minimal support for UNIX

applications. It supports only the P1003.1 functionality and little else. It is a
closed subsystem, meaning that its applications cannot use the facilities of the
Win32 subsystem, which greatly restricts what they can do. In practice, porting
any real UNIX program to NT using this subsystem is nearly impossible. It was
included only because parts of the U.S. government require operating systems for
government computers to be P1003.1 compliant. This subsystem is not self-
contained so it uses the Win32 subsystem for some of its work, but without
exporting the full Win32 interface to its user programs.

The OS/2 subsystem is similarly limited in functionality and may be dropped in
some future release. It also uses the Win32 subsystem. There is also an MS-DOS

environmental subsystem (not shown in the figure).
Having looked briefly at the structure of NT, let us now turn to our main sub-

ject, the services offered by NT. This interface is the programmer’s main connec-
tion to the system. Unfortunately, Microsoft has never made the complete list of
NT system calls public, and it also changes them from release to release. Under

454 THE OPERATING SYSTEM MACHINE LEVEL CHAP. 6

such conditions, writing programs that make system calls directly is nearly impos-
sible.

What Microsoft has done is define a set of calls called the Win32 API
(Application Programming Interface) that are publicly known. These are
library procedures that either make system calls to get the work done, or, in some
case, do the work right in the user-space library procedure or in the Win32 sub-
system. The Win32 API calls do not change with new releases, to promote stabil-
ity. However, there are also NT API calls that may change between releases of
NT. Although the Win32 API calls are not all NT system calls, it is better to focus
on these here rather than the true NT system calls because the Win32 API calls are
well documented are more stable over time.

The Win32 API philosophy is completely different from the UNIX philosophy.
In the latter, the system calls are all publicly known and form a minimal interface:
removing even one of them would reduce the functionality of the operating sys-
tem. The Win32 philosophy is to provide a very comprehensive interface, often
with three or four ways of doing the same thing, and including many functions
that clearly should not be (and are not) system calls, such as an API call to copy
an entire file.

Many Win32 API calls create kernel objects of one kind or another, including
files, processes, threads, pipes, etc. Every call creating a kernel object returns a
result called a handle to the caller. This handle can be subsequently used to per-
form operations on the object. Handles are specific to the process that created the
object referred to by the handle. They cannot be passed directly to another pro-
cess and used there (just as UNIX file descriptors cannot be passed to other
processes and used there). However, under certain circumstances, it is possible to
duplicate a handle and pass it to other processes in a protected way, allowing them
controlled access to objects belonging to other processes. Every object also has a
security descriptor associated with it, telling in detail who may and may not per-
form what kinds of operations on the object.

NT is sometimes said to be object-oriented because the only way to manipu-
late kernel objects is by invoking methods (API functions) on their handles. On
the other hand, it lacks some of the most basic properties of object-oriented sys-
tems such as inheritance and polymorphism.

The Win32 API is also available on Windows 95/98 (as well as on the consu-
mer electronics operating system, Windows CE), with a small number of excep-
tions. For example, Windows 95/98 do not have any security, so those API calls
that relate to security just return error codes on Windows 95/98. Also, NT file
names use the Unicode character set, which is not available on Windows 95/98.
There are also differences in parameters to some API function calls. On NT, for
example, all the screen coordinates given in the graphics functions are true 32-bit
numbers; on Windows 95/98, only the low-order 16 bits are used (for backward
compatibility with Windows 3.1). The existence of the Win32 API on several dif-
ferent operating systems makes it easier to port programs between them but also

SEC. 6.4 EXAMPLE OPERATING SYSTEMS 455

points out more clearly that it is somewhat decoupled from the actual system
calls. Some of the differences between Windows 95/98 and NT are summarized in
Fig. 6-4.
22
Item Windows 95/98 NT 5.022
Win32 API? Yes Yes22
Full 32-bit system? No Yes22
Security? No Yes22
Protected file mappings? No Yes22
Private address space for each MS-DOS program? No Yes22
Plug and play? Yes Yes22
Unicode? No Yes22
Runs on Intel 80x86 80x86, Alpha22
Multiprocessor support? No Yes22
Re-entrant code inside OS? No Yes22
Some critical OS data writable by user? Yes No221
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 6-4. Some differences between versions of Windows.

6.4.2 Examples of Virtual Memory

In this section we will look at virtual memory in both UNIX and NT. For the
most part, they are fairly similar from the programmer’s point of view.

UNIX Virtual Memory

The UNIX memory model is simple. Each process has three segments: code,
data, and stack, as illustrated in Fig. 6-5. In a machine with a single, linear
address space, the code is generally placed near the bottom of memory, followed
by the data. The stack is placed at the top of memory. The code size is fixed, but
the data and stack may each grow, in opposite directions. This model is easy to
implement on almost any machine and is the model used by Solaris.

Furthermore, if the machine has paging, the entire address space can be
paged, without user programs even being aware of it. The only thing they notice
is that it is permitted to have programs larger than the machine’s physical
memory. UNIX systems that do not have paging generally swap entire processes
between memory and disk to allow an arbitrarily large number of processes to be
timeshared.

For Berkeley UNIX, the above description (demand-paged virtual memory) is
basically the entire story. However, System V (and Solaris) include several
features that allow users to manage their virtual memory in more sophisticated

456 THE OPERATING SYSTEM MACHINE LEVEL CHAP. 6

Address

0xFFFFFFFF

0
Code

Data

Stack

Figure 6-5. The address space of a single UNIX process.

ways. Most important of these is the ability of a process to map a (portion of) a
file onto part of its address space. For example, if a 12-KB file is mapped at vir-
tual address 144K, a read to the word at address 144K reads the first word of the
file. In this way file I/O can be done without making system calls. Since some
files may exceed the size of the virtual address space, it is also possible to map in
only a portion of a file instead of the whole file. The mapping is done first open-
ing the file and getting back a file descriptor, fd, which is used to identify the file
to be mapped. Then the process makes a call

paddr = mmap(virtual3address, length, protection, flags, fd, file3offset)

which maps length bytes starting at file3offset in the file onto the virtual address
space starting at virtual3address. Alternatively, the flags parameter can be set to
ask the system to choose a virtual address, which it then returns as paddr. The
mapped region must be an integral number of pages and aligned at a page boun-
dary. The protection parameter can specify any combination of read, write, or
execute permission. The mapping can be removed later with unmap.

Multiple processes can map onto the same file at the same time. Two options
are provided for sharing. In the first one, all the pages are shared, so writes done
by one process are visible to all the others. This option provides a high-bandwidth
communication path between processes. The other option shares the pages as
long as no process modifies them. However, as soon as any process attempts to
write on a page, it gets a protection fault, which causes the operating system to
give it a private copy of the page to write on. This scheme, known as copy on
write, is used when each of multiple processes needs the illusion it is the only one
mapped onto a file.

Windows NT Virtual Memory

In NT, every user process has its own virtual address space. Virtual addresses
are 32 bits long, so each process has 4 GB of virtual address space. The lower 2
GB are available for the process’ code and data; the upper 2 GB allow (limited)
access to kernel memory, except in Enterprise versions of NT in which the split

SEC. 6.4 EXAMPLE OPERATING SYSTEMS 457

can be 3 GB for the user and 1 GB for the kernel. The virtual address space is
demand paged, with a fixed page size (4 KB on the Pentium II).

Each virtual page can be in one of three states: free, reserved, or committed.
A free page is not currently [Hin use and a reference to it causes a page fault.
When a process is started, all of its pages are in free state until the program and
initial data are mapped into its address space. Once code or data is mapped onto a
page, the page is said to be committed. A reference to a committed page is
mapped using the virtual memory hardware and succeeds if the page is in main
memory. If the page is not in main memory, a page fault occurs and the operating
system finds and brings in the page from disk. A virtual page can also be in
reserved state, meaning it is not available for being mapped until the reservation
is explicitly removed. In addition to the free, reserved, and committed attributes,
pages also have other attributes, such as being readable, writable, and executable.
The top 64 KB and bottom 64 KB of memory are always free, to catch pointer
errors (uninitialized pointers are often 0 or −1).

Each committed page has a shadow page on the disk where it is kept when it
is not in main memory. Free and reserved pages do not have shadow pages, so
references to them cause page faults (the system cannot bring in a page from disk
if there is no page on disk). The shadow pages on the disk are arranged into one
or more paging files. The operating system keeps track of which virtual page
maps onto which part of which paging file. For (execute only) program text, the
executable binary file contains the shadow pages; for data pages, special paging
files are used.

NT, like System V, allows files to be mapped directly onto regions of the vir-
tual address spaces (i.e., runs of consecutive pages). Once a file has been mapped
onto the address space, it can be read or written using ordinary memory refer-
ences.

Memory-mapped files are implemented in the same way as other committed
pages, only the shadow pages can be in the disk file instead of in the paging file.
As a result, when a file is mapped in, the version in memory may not be identical
to the disk version (due to recent writes to the virtual address space). However,
when the file is unmapped or is explicitly flushed, the disk version is brought up
to date.

NT explicitly allows two or more processes to map in the same file at the same
time, possibly at different virtual addresses. By reading and writing memory
words, the processes can now communicate with each other and pass data back
and forth at very high bandwidth, since no copying is required. Different
processes may have different access permissions. Since all the processes using a
mapped file share the same pages, changes made by one of them are immediately
visible to all the others, even if the disk file has not yet been updated.

The Win32 API contains a number of functions that allow a process to
manage its virtual memory explicitly. The most important of these functions are
listed in Fig. 6-6. All of them operate on a region consisting either of a single

458 THE OPERATING SYSTEM MACHINE LEVEL CHAP. 6

page or a sequence of two or more pages that are consecutive in the virtual
address space.

222
API function Meaning222

VirtualAlloc Reserve or commit a region222
VirtualFree Release or decommit a region222
VirtualProtect Change the read/write/execute protection on a region222
VirtualQuery Inquire about the status of a region222
VirtualLock Make a region memory resident (i.e., disable paging for it)222
VirtualUnlock Make a region pageable in the usual way222
CreateFileMapping Create a file mapping object and (optionally) assign it a name222
MapViewOfFile Map (part of) a file into the address space222
UnmapViewOfFile Remove a mapped file from the address space222
OpenFileMapping Open a previously created file mapping object22211

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 6-6. The principal API functions for managing virtual memory in Win-
dows NT.

The first four API functions are self-explanatory. The next two give a process
the ability to hardwire up to 30 pages in memory so they will not be paged out and
to undo this property. A real-time program might need this ability, for example.
A limit is enforced by the operating system to prevent processes from getting too
greedy. Although not shown in Fig. 6-6, NT also has API functions to allow a pro-
cess to access the virtual memory of a different process over which it has been
given control (i.e., for which it has a handle).

The last four API functions listed are for managing memory-mapped files. To
map a file, a file mapping object must first be created, with CreateFileMapping.
This function returns a handle to the file mapping object and optionally enters a
name for it into the file system so another process can use it. The next two func-
tions map and unmap files, respectively. The last one can be used by a process to
map in a file currently also mapped in by a different process. In this way, two or
more processes can share regions of their address spaces.

These API functions are the basic ones upon which the rest of the memory
management system is built. For example, there are API functions for allocating
and freeing data structures on one or more heaps. Heaps are used for storing data
structures that are dynamically created and destroyed. The heaps are not garbage
collected, so it is up to user software to free blocks of virtual memory that are no
longer in use. (Garbage collection is the automatic removal of unused data struc-
tures by the system.) Heap usage in NT is similar to the use of the malloc function
in UNIX systems, except that there can be multiple independently managed heaps.

SEC. 6.4 EXAMPLE OPERATING SYSTEMS 459

6.4.3 Examples of Virtual I/O

The heart of any operating system is providing services to user programs,
mostly I/O services such as reading and writing files. Both UNIX and NT offer a
wide variety of I/O services to user programs. For most UNIX system calls, NT has
an equivalent call, but the reverse is not true as NT has far more calls and each of
them is far more complicated than its UNIX counterpart.

UNIX Virtual I/O

Much of the popularity of the UNIX system can be traced directly to its simpli-
city, which, in turn, is a direct result of the organization of the file system. An
ordinary file is a linear sequence of 8-bit bytes starting at 0 and going up to a
maximum of 232 − 1 bytes. The operating system itself imposes no record struc-
ture on files, although many user programs regard ASCII text files as sequences of
lines, each line terminated by a line feed.

Associated with every open file is a pointer to the next byte to be read or writ-
ten. The read and write system calls read and write data starting at the file posi-
tion indicated by the pointer. Both calls advance the pointer after the operation by
an amount equal to the number of bytes transferred. However, random access to
files is possible by explicitly setting the file pointer to a specific value.

In addition to ordinary files, the UNIX system also supports special files,
which are used to access I/O devices. Each I/O device typically has one or more
special files assigned to it. By reading and writing from the associated special
file, a program can read or write from the I/O device. Disks, printers, terminals,
and many other devices are handled this way.

The major UNIX file system calls are listed in Fig. 6-7. The creat call (without
the e) can be used to create a new file. It is not strictly necessary any more,
because open can also create a new file now. Unlink removes a file, assuming that
the file is in only one directory.

Open is used to open existing files (and create new ones). The mode flag tells
how to open it (for reading, for writing, etc.). The call returns a small integer
called a file descriptor that identifies the file in subsequent calls. The actual file
I/O is done with read and write, each of which has a file descriptor indicating
which file to use, a buffer for the data to go to or come from, and a byte count tel-
ling how much data to transmit. Lseek is used to position the file pointer, making
random access to files possible.

Stat returns information about a file, including its size, time of last access,
owner, and more. Chmod changes the protection mode of a file, for example,
allowing or forbidding users other than the owner from reading it. Finally, fcntl
does various miscellaneous operations on a file, such as locking or unlocking it.

Figure 6-8 illustrates how the major file I/O calls work. This code is minimal
and does not include the necessary error checking. Before entering the loop, the

460 THE OPERATING SYSTEM MACHINE LEVEL CHAP. 6

22
System call Meaning22

creat(name, mode) Create a file; mode specifies the protection mode22
unlink(name) Delete a file (assuming that there is only 1 link to it)22
open(name, mode) Open or create a file and return a file descriptor22
close(fd) Close a file22
read(fd, buffer, count) Read count bytes into buffer22
write(fd, buffer, count) Write count bytes from buffer22
lseek(fd, offset, w) Move the file pointer as required by offset and w22
stat(name, buffer) Return information about a file22
chmod(name, mode) Change the protection mode of a file22
fcntl(fd, cmd, ...) Do various control operations such as locking (part of) a file2211
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 6-7. The principal UNIX file system calls.

program opens an existing file, data, and creates a new file, newf. Each call
returns a file descriptor, infd, and outfd, respectively. The second parameters to
the two calls are protection bits that specify that the files are to be read and writ-
ten, respectively. Both calls return a file descriptor. If either open or creat fails, a
negative file descriptor is returned, telling that the call failed.

// Open the file descriptors
infd = open(′′data′′, 0);
outfd = creat(′′newf′′, ProtectionBits);

// Copy loop
do {

count = read(infd, buffer, bytes);
if (count > 0) write(outfd, buffer, count);

} while (count > 0);

// Close the files
close(infd);
close(outfd);

Figure 6-8. A program fragment for copying a file using the UNIX system calls.
This fragment is in C because Java hides the low-level system calls and we are
trying to expose them.

The call to read has three parameters: a file descriptor, a buffer, and a byte
count. The call tries to read the desired number of bytes from the indicated file
into the buffer. The number of bytes actually read is returned in count, which will
be smaller than bytes if the file was too short. The write call deposits the newly
read bytes on the output file. The loop continues until the input file has been
completely read, at which time the loop terminates and both files are closed.

SEC. 6.4 EXAMPLE OPERATING SYSTEMS 461

File descriptors in UNIX are small integers (usually below 20). File descrip-
tors 0, 1, and 2 are special and correspond to standard input, standard output,
and standard error, respectively. Normally, these refer to the keyboard, the
display, and the display, respectively, but they can be redirected to files by the
user. Many UNIX programs get their input from standard input and write the pro-
cessed output on standard output. Such programs are often called filters.

Closely related to the file system is the directory system. Each user may have
multiple directories, with each directory containing both files and subdirectories.
UNIX systems normally are configured with a main directory, called the root
directory, containing subdirectories bin (for frequently executed programs), dev
(for the special I/O device files), lib (for libraries), and usr (for user directories),
as shown in Fig. 6-9. In this example, the usr directory contains subdirectories for
ast and jim. The ast directory contains two files, data and foo.p, and a subdirec-
tory, bin, containing four games.

Files can be named by giving their path from the root directory. A path con-
tains a list of all the directories traversed from the root to the file, with directory
names separated by slashes. For example, the absolute path name of game2 is
/usr/ast/bin/game2. A path starting at the root is called an absolute path.

At every instant, each running program has a working directory. Path names
may also be relative to the working directory, in which case they do not begin
with a slash, to distinguish them from absolute path names. Such paths are called
relative paths. When /usr/ast is the working directory, game3 can be accessed
using the path bin/game3. A user may create a link to someone else’s file using
the link system call. In the above example, /usr/ast/bin/game3 and /usr/jim/jotto
both access the same file. To prevent cycles in the directory system, links are not
permitted to directories. The calls and creat take either absolute or relative path
names as arguments.

The major directory management system calls in UNIX are listed in Fig. 6-10.
Mkdir creates a new directory and rmdir deletes an existing (empty) directory. The
next three calls are used to read directory entries. The first one opens the direc-
tory, the next one reads entries from it, and the last one closes the directory. Chdir
changes the working directory.

Link makes a new directory entry with the new entry pointing to an existing
file. For example, the entry /usr/jim/jotto might have been created by the call

link(′′/usr/ast/bin/game3′′, ′′/usr/jim/jotto′′)

or an equivalent call using relative path names, depending on the working direc-
tory of the program making the call. Unlink removes a directory entry. If the file
has only one link, the file is deleted. If it has two or more links, it is kept. It does
not matter whether a removed link is the original or a copy made later. Once a
link is made, it is a first-class citizen, indistinguishable from the original. The call

unlink(′′/usr/ast/bin/game3′′)

462 THE OPERATING SYSTEM MACHINE LEVEL CHAP. 6

/usr/ast/bin

Data files

game 1

game 2

game 3

game 4

…

/usr/ast

bin

data

foo.c
…

/usr/jim

jotto

…

Root directory

bin

dev

lib

usr

…

/lib

…

/usr

ast

jim

…

/dev

…

/bin
…

Figure 6-9. Part of a typical UNIX directory system.

makes game3 only accessible via the path /usr/jim/jotto henceforth. Link and
unlink can be used in this way to ‘‘move’’ files from one directory to another.

Associated with every file (including directories, because they are also files)
is a bit map telling who may access the file. The map contains three RWX fields,

SEC. 6.4 EXAMPLE OPERATING SYSTEMS 463

222
System call Meaning222

mkdir(name, mode) Create a new directory222
rmdir(name) Delete an empty directory222
opendir(name) Open a directory for reading222
readdir(dirpointer) Read the next entry in a directory222
closedir(dirpointer) Close a directory222
chdir(dirname) Change working directory to dirname222
link(name1, name2) Create a directory entry name2 pointing to name1222
unlink(name) Remove name from its directory22211
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 6-10. The principal UNIX directory management calls.

the first controlling the Read, Write, eXecute permissions for the owner, the
second for others in the owner’s group, and the third for everybody else. Thus
RWX R-X --X means that the owner can read the file, write the file, and execute
the file (obviously, it is an executable program, or execute would be off), whereas
others in his group can read or execute it and strangers can only execute it. With
these permissions, strangers can use the program but not steal (copy) it because
they do not have read permission. The assignment of users to groups is done by
the system administrator, usually called the superuser. The superuser also has
the power to override the protection mechanism and read, write, or execute any
file.

Let us now briefly examine how files and directories are implemented in
UNIX. For a more complete treatment, see (Vahalia, 1996). Associated with each
file (and each directory, because a directory is also a file) is a 64-byte block of
information called an i-node. The i-node tells who owns the file, what the per-
missions are, where to find the data, and similar things. The i-nodes for the files
on each disk are located either in numerical sequence at the beginning of the disk,
or if the disk is split up into groups of cylinders, at the start of a cylinder group.
Thus given an i-node number, the UNIX system can locate the i-node by simply
calculating its disk address.

A directory entry consists of two parts: a file name and an i-node number.
When a program executes

open(′′foo.c′′, 0)

the system searches the working directory for the file name, ‘‘foo.c,’’ in order to
locate the i-node number for that file. Having found the i-node number, it can
then read in the i-node, which tells it all about the file.

When a longer path name is specified, the basic steps outlined above are re-
peated several times until the full path has been parsed. For example, to locate
the i-node number for /usr/ast/data, the system first searches the root directory for

464 THE OPERATING SYSTEM MACHINE LEVEL CHAP. 6

an entry usr. Having found the i-node for usr, it can read that file (a directory is a
file in UNIX). In this file it looks for an entry ast, thus locating the i-node number
for the file /usr/ast. By reading /usr/ast, the system can then find the entry for
data, and thus the i-node number for /usr/ast/data. Given the i-node number for
the file, it can then find out everything about the file from the i-node.

The format, contents, and layout of an i-node vary somewhat from system to
system (especially when networking is in use), but the following items are typi-
cally found in each i-node.

1. The file type, the 9 RWX protection bits, and a few other bits.

2. The number of links to the file (number of directory entries for it).

3. The owner’s identity.

4. The owner’s group.

5. The file length in bytes.

6. Thirteen disk addresses.

7. The time the file was last read.

8. The time the file was last written.

9. The time the i-node was last changed.

The file type distinguishes ordinary files, directories, and two kinds of special
files, for block-structured and unstructured I/O devices, respectively. The number
of links and the owner identification have already been discussed. The file length
is a 32-bit integer giving the highest byte that has a value. It is perfectly legal to
create a file, do an lseek to position 1,000,000, and write 1 byte, which yields a
file of length 1,000,001. The file would not, however, require storage for all the
‘‘missing’’ bytes.

The first 10 disk addresses point to data blocks. With a block size of 1024
bytes, files up to 10,240 bytes can be handled this way. Address 11 points to a
disk block, called an indirect block, which contains 256 disk addresses. Files up
to 10,240 + 256 × 1024 = 272,384 bytes are handled this way. For still larger
files, address 12 points to a block containing the addresses of 256 indirect blocks,
which takes care of files up to 272,384 + 256 × 256 × 1024 = 67,381,248 bytes. If
this double indirect block scheme is still too small, disk address 13 is used to
point to a triple indirect block containing the addresses of 256 double indirect
blocks. Using the direct, single, double, and triple indirect addresses, up to
16,843,018 blocks can be addressed giving a theoretical maximum file size of
17,247,250,432 bytes. Since file pointers are limited to 32 bits, the practical
upper limit is actually 4,294,967,295 bytes. Free disk blocks are kept on a linked
list. When a new block is needed, the next block is plucked from the list. As a
result, the blocks of each file are scattered randomly around the disk.

SEC. 6.4 EXAMPLE OPERATING SYSTEMS 465

To make disk I/O more efficient, when a file is opened, its i-node is copied to
a table in main memory and is kept there for handy reference as long as the file
remains open. In addition, a pool of recently referenced disk blocks is maintained
in memory. Because most files are read sequentially, it often happens that a file
reference requires the same disk block as the previous reference. To strengthen
this effect, the system also tries to read the next block in a file, before it is refer-
enced, in order to speed up processing. All this optimization is hidden from the
user; when a user issues a read call, the program is suspended until the requested
data are available in the buffer.

With this background information, we can now see how file I/O works. Open
causes the system to search the directories for the specified path. If the search is
successful, the i-node is read into an internal table. Reads and writes require the
system to compute the block number from the current file position. The disk
addresses of the first 10 blocks are always in main memory (in the i-node);
higher-numbered blocks require one or more indirect blocks to be read first.
Lseek just changes the current position pointer without doing any I/O.

Link and unlink are also simple to understand now. Link looks up its first argu-
ment to find the i-node number. Then it creates a directory entry for the second
argument, putting the i-node number of the first file in that entry. Finally, it
increases the link count in the i-node by one. Unlink removes a directory entry
and decrements the link count in the i-node. If it is zero, the file is removed and
all the blocks are put back on the free list.

Windows NT Virtual I/O

NT supports several file systems, the most important of which are NTFS (NT
File System) and the FAT (File Allocation Table) file system. The former is a
new file system developed specifically for NT; the latter is the old MS-DOS file sys-
tem, which is also used on Windows 95/98 (albeit with support for longer file
names). Since the FAT file system is basically obsolete (although several hun-
dred million people are still using it), we will study NTFS below. Starting with
NT 5.0, the FAT32 file system used in later versions of Windows 95 and in Win-
dows 98 was also supported.

File names in NTFS can be up to 255 characters long. File names are in
Unicode, allowing people in countries not using the Latin alphabet (e.g., Japan,
India, and Israel) to write file names in their native language. (In fact, NT uses
Unicode throughout internally; versions starting with NT 5.0 have a single binary
that can be used in any country and still use the local language because all the
menus, error messages, etc., are kept in country-dependent configuration files.)
NTFS fully supports case-sensitive names (so foo is different from FOO). Unfor-
tunately, the Win32 API does not fully support case-sensitivity for file names and
not at all for directory names, so this advantage is lost to programs using Win32.

466 THE OPERATING SYSTEM MACHINE LEVEL CHAP. 6

As with UNIX, a file is just a linear sequence of bytes, although up to a max-
imum of 264 − 1. File pointers also exist, as in UNIX, but are 64 bits wide rather
than 32 bits, to handle the maximum length file. The Win32 API function calls
for file and directory manipulation are roughly similar to their UNIX counterparts,
except most have more parameters and the security model is different. Opening a
file returns a handle, which is then used for reading and writing the file. How-
ever, unlike in UNIX, handles are not small integers, and standard input, standard
output, and standard error have to be acquired explicitly rather than being prede-
fined as 0, 1, and 2 (except in console mode, where they are preopened). The
principal Win32 API functions for file management are listed in Fig. 6-11.

222
API function UNIX Meaning222

CreateFile open Create a file or open an existing file; return a handle222
DeleteFile unlink Destroy an existing file222
CloseHandle close Close a file222
ReadFile read Read data from a file222
WriteFile write Write data to a file222
SetFilePointer lseek Set the file pointer to a specific place in the file222
GetFileAttributes stat Return the file properties222
LockFile fcntl Lock a region of the file to provide mutual exclusion222
UnlockFile fcntl Unlock a previously locked region of the file2221

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 6-11. The principal Win32 API functions for file I/O. The second
column gives the nearest UNIX equivalent.

Let us now examine these calls briefly. CreateFile can be used to create a
new file and return a handle to it. This API function is also used to open existing
files as there is no open API function. We have not listed the parameters for the
NT API functions because they are so voluminous. As an example, CreateFile has
seven parameters, as follows:

1. A pointer to the name of the file to create or open.

2. Flags telling whether the file can be read, written, or both.

3. Flags telling whether multiple processes can open the file at once.

4. A pointer to the security descriptor, telling who can access the file.

5. Flags telling what to do if the file exists/does not exist.

6. Flags dealing with attributes such as archiving, compression, etc.

7. The handle of a file whose attributes should be cloned for the new file.

SEC. 6.4 EXAMPLE OPERATING SYSTEMS 467

The next six API functions in Fig. 6-11 are fairly similar to the corresponding
UNIX system calls. The last two allow a region of a file to be locked and unlocked
to permit a process to get guaranteed mutual exclusion to it.

Using these API functions, it is possible to write a procedure to copy a file,
analogous to the UNIX version of Figure 6-1. Such a procedure (without any error
checking) is shown in Fig. 6-12. It has been designed to mimic the structure of
Figure 6-8. In practice, one would not have to program a copy file program since
CopyFile is an API function (which executes something close to this program as a
library procedure).

// Open files for input and output.
inhandle = CreateFile(′′data′′, GENERIC3READ, 0, NULL, OPEN3EXISTING, 0, NULL);
outhandle = CreateFile(′′newf′′, GENERIC3WRITE, 0, NULL, CREATE3ALWAYS,

FILE3ATTRIBUTE3NORMAL, NULL);

// Copy the file.
do {

s = ReadFile(inhandle, buffer, BUF3SIZE, &count, NULL);
if (s > 0 && count > 0) WriteFile(outhandle, buffer, count, &ocnt, NULL);

while (s > 0 && count > 0);

// Close the files.
CloseHandle(inhandle);
CloseHandle(outhandle);

Figure 6-12. A program fragment for copying a file using the Windows NT
API functions. This fragment is in C because Java hides the low-level system
calls and we are trying to expose them.

NT supports a hierarchical file system, similar to the UNIX file system. The
separator between component names is \ however, instead of /, a fossil inherited
from MS-DOS. There is a concept of a current working directory and path names
can be relative or absolute. One significant difference with UNIX, however, is
UNIX allows the file systems on different disks and machines to be mounted
together in a single naming tree, thus hiding the disk structure from all software.
NT 4.0 does not have this property, so absolute file names must begin with a drive
letter indicating which logical disk is meant, as in C:\windows\system\foo.dll.
Starting with NT 5.0, UNIX-style 5.0 mounting of file systems was added.

The major directory management API functions are given in Fig. 6-13, again
along with their nearest UNIX equivalents. The functions are hopefully self-
explanatory.

Note that NT 4.0 did not support file links. At the level of the graphical desk-
top, shortcuts were supported, but these constructions were internal to the desktop
and had no counterpart in the file system itself. An application program could not
enter a file in a second directory without copying the entire file. Starting with NT

5.0 file linking was added to the file system proper.

468 THE OPERATING SYSTEM MACHINE LEVEL CHAP. 6

222
API function UNIX Meaning222

CreateDirectory mkdir Create a new directory222
RemoveDirectory rmdir Remove an empty directory222
FindFirstFile opendir Initialize to start reading the entries in a directory222
FindNextFile readdir Read the next directory entry222
MoveFile Move a file from one directory to another222
SetCurrentDirectory chdir Change the current working directory22211

1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1

Figure 6-13. The principal Win32 API functions for directory management.
The second column gives the nearest UNIX equivalent, when one exists.

NT has a much more elaborate security mechanism than UNIX. Although there
are hundreds of API functions relating to security, the following brief description
gives the general idea. When a user logs in, his or her initial process is given an
access token by the operating system. The access token contains the user’s SID
(Security ID), a list of the security groups to which the user belongs, any special
privileges available, and a few other items. The point of the access token is to
concentrate all the security information in one easy-to-find place. All processes
created by this process inherit the same access token.

One of the parameters that can be supplied when any object is created is its
security descriptor. The security descriptor contains a list of entries called an
ACL (Access Control List). Each entry permits or prohibits some set of the
operations on the object by some SID or group. For example, a file could have a
security descriptor specifying that Elinor has no access to the file at all, Ken can
read the file, Linda can read or write the file, and that all members of the XYZ
group can read the file’s length but nothing else.

When a process tries to perform some operation on an object using the handle
it got when it opened the object, the security manager gets the process’ access
token and goes down the list of entries in the ACL in order. As soon as it finds an
entry that matches the caller’s SID or one of the caller’s groups, the access found
there is taken as definitive. For this reason, it is usual to put entries denying
access ahead of entries granting access in the ACL, so that a user who is specifi-
cally denied access cannot get in via a back door by being a member of a group
that has legitimate access. The security descriptor also contains information used
for auditing accesses to the object.

Let us now take a quick look at how file and directories are implemented in
NT. Each disk is statically divided up into self-contained volumes, which are the
same as disk partitions in UNIX. Each volume contains files, directories bit maps,
and other data structures for managing its information. Each volume is organized
as a linear sequence of clusters, with the cluster size being fixed for each volume
and ranging from 512 bytes to 64 KB, depending on the volume size. Clusters are
referred to by their offset from the start of the volume using 64-bit numbers.

SEC. 6.4 EXAMPLE OPERATING SYSTEMS 469

The main data structure in each volume is the MFT (Master File Table),
which has an entry for each file and directory in the volume. These entries are
analogous to the i-nodes in UNIX. The MFT is itself a file, and as such can be
placed anywhere within the volume, thus eliminating the problem that UNIX has
with bad disk blocks in the middle of the i-nodes.

The MFT is shown in Fig. 6-14. It begins with a header containing informa-
tion about the volume, such as (pointers to) the root directory, the boot file, the
bad-block file, the free-list administration, etc. After that comes an entry per file
or directory, 1 KB except when the cluster size is 2 KB or more. Each entry con-
tains all the metadata (administrative information) about the file or directory.
Several formats are allowed, one of which is shown in Fig. 6-14.

MFT
header

MFT entry for one file

Standard
information

MS-DOS
nameFile name Security Data

Master
file

table

Figure 6-14. The Windows NT master file table.

The standard information field contains information such as the time stamps
needed by POSIX, the hard link count, the read-only and archive bits, etc. It is a
fixed-length field and always present. The file name is variable length, up to 255
Unicode characters. In order to make such files accessible to old 16-bit programs,
files can also have a MS-DOS name, which consists of 8 alphanumeric characters
optionally followed by a dot and an extension of up to 3 alphanumeric characters.
If the actual file name conforms to the MS-DOS 8+3 naming rule, a secondary MS-

DOS name is not used.
Next comes the security information. In versions up to and including NT 4.0,

the security field contained the actual security descriptor. Starting with NT 5.0, all
the security information was centralized in a single file, with the security field
simply pointing to the relevant part of this file.

For small files, the file data itself is actually contained in the MFT entry, sav-
ing a disk access to fetch it. This idea is called an immediate file (Mullender and
Tanenbaum, 1987). For somewhat larger files, this field contains pointers to the
clusters containing the data, or more commonly, runs of consecutive clusters so a

470 THE OPERATING SYSTEM MACHINE LEVEL CHAP. 6

single cluster number and a length can represent an arbitrary amount of file data.
If a single MFT entry is insufficiently large to hold whatever information it is sup-
posed to hold, one or more additional entries can be chained to it.

The maximum file size is 264 bytes. To get an idea of how big a 264-byte file
is, imagine that the file were written out in binary, with each 0 or 1 occupying 1
mm of space. The 267-mm listing would be 15 light-years long, reaching far
beyond the solar system, to Alpha Centauri and back.

The NTFS file system has many other interesting properties including data
compression and fault tolerance using atomic transactions. Additional informa-
tion about it can be found in (Solomon, 1998).

6.4.4 Examples of Process Management

Both UNIX and NT allow a job to be split up into multiple processes that can
run in (pseudo)parallel and communicate with each other, in the style of the
producer-consumer example discussed earlier. In this section we will discuss how
processes are managed in both systems. Both systems also support parallelism
within a single process using threads, so that will also be discussed.

UNIX Process Management

At any time, a UNIX process can create a subprocess that is an exact replica of
itself by executing the fork system call. The original process is called the parent
and the new one is called the child. Right after the fork, the two processes are
identical and even share the same file descriptors. Thereafter, each one goes its
own way and does whatever it wants to, independent of the other one.

In many cases, the child process juggles the file descriptors in certain ways
and then executes the exec system call, which replaces its program and data with
the program and data found in an executable file specified as parameter to the
exec call. For example, when a user types a command xyz at a terminal, the com-
mand interpreter (shell) executes fork to create a child process. This child process
then executes exec to run the xyz program.

The two processes run in parallel (with or without exec), unless the parent
wishes to wait for the child to terminate before continuing. If the parent wishes to
wait, it executes either the wait or waitpid system call, which causes it to be
suspended until the child finishes by executing exit. After the child finishes, the
parent continues.

Processes can execute fork as often as they want, giving rise to a tree of
processes. In Fig. 6-15, for example, process A has executed fork twice, creating
two children, B and C. Then B also executed fork twice, and C executed it once,
giving the final tree of six processes.

Processes in UNIX can communicate with each other via a structure called a
pipe. A pipe is a kind of buffer into which one process can write a stream of data

SEC. 6.4 EXAMPLE OPERATING SYSTEMS 471

Original process

Children of A

Grandchildren of AA A A

A

A A

Figure 6-15. A process tree in UNIX.

and another can take it out. Bytes are always retrieved from a pipe in the order
they were written. Random access is not possible. Pipes do not preserve message
boundaries, so if one process does four 128-byte writes and the other does a 512-
byte read, the reader will get all the data at once, with no indication that they were
written in multiple operations.

In System V and Solaris, another way for processes to communicate is by
using message queues. A process can create a new message queue or open an
existing one using msgget. Using a message queue, a process can send messages
using msgsnd and receive them using msgrecv. Messages sent this way differ
from data stuffed into a pipe in several ways. First, message boundaries are
preserved, whereas a pipe is just a byte stream. Second, messages have priorities,
so urgent ones can skip ahead of less important ones. Third, messages are typed,
and a msgrecv can specify a particular type, if desired.

Another communication mechanism is the ability of two or more processes to
share a region of their respective address spaces. UNIX handles this shared
memory by mapping the same pages into the virtual address space of all the shar-
ing processes. As a result, a write by one process into the shared region is
immediately visible to the other processes. This mechanism provides a very high
bandwidth communication path between processes. The system calls involved in
shared memory go by names like shmat and shmop.

Another feature of System V and Solaris is the availability of semaphores.
These work essentially as described in the producer-consumer example given in
the text.

Another facility provided by all POSIX-conformant UNIX systems is the ability
to have multiple threads of control within a single process. These threads of con-
trol, usually just called threads, are like lightweight processes that share a com-
mon address space and everything associated with that address space, such as file
descriptors, environment variables, and outstanding timers. However, each thread
has its own program counter, own registers, and own stack. When a thread blocks
(i.e., has to stop temporarily until I/O completes or some other event happens),
other threads in the same process are still able to run. Two threads in the same
process operating as a producer and consumer are similar, but not identical, to two
single-thread processes that are sharing a memory segment containing a buffer.

472 THE OPERATING SYSTEM MACHINE LEVEL CHAP. 6

The differences have to do with the fact that in the latter case, each process has its
own file descriptors, etc., whereas in the former case all of these items are shared.
We saw the use of Java threads in our producer-consumer example earlier. Often
the Java runtime system uses a operating system thread for each of its threads, but
it does not have to do this.

As an example of where threads might be useful, consider a World Wide Web
server. Such a server might keep a cache of commonly-used Web pages in main
memory. If a request is for a page in the cache, the Web page is returned immedi-
ately. Otherwise, it is fetched from disk. Unfortunately, waiting for the disk
takes a long time (typically 20 msec), during which the process is blocked and
cannot serve new incoming requests, even those for Web pages in the cache.

The solution is to have multiple threads within the server process, all of which
share the common Web page cache. When one thread blocks, other threads can
handle new requests. To prevent blocking without threads, one could have multi-
ple server processes, but this would probably entail replicating the cache, thus
wasting valuable memory.

The UNIX standard for threads is called pthreads, and is defined by POSIX

(P1003.1C) It contains calls for managing and synchronizing threads. It is not
defined whether threads are managed by the kernel or entirely in user space. The
most commonly-used thread calls are listed in Fig. 6-16.
222

Thread call Meaning222
pthread3create Create a new thread in the caller’s address space222
pthread3exit Terminate the calling thread222
pthread3join Wait for a thread to terminate222
pthread3mutex3init Create a new mutex222
pthread3mutex3destroy Destroy a mutex222
pthread3mutex3lock Lock a mutex222
pthread3mutex3unlock Unlock a mutex222
pthread3cond3init Create a condition variable222
pthread3cond3destroy Destroy a condition variable222
pthread3cond3wait Wait on a condition variable222
pthread3cond3signal Release one thread waiting on a condition variable2221

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 6-16. The principal POSIX thread calls.

Let us briefly examine the thread calls shown in Fig. 6-16. The first call,
pthread3create, creates a new thread. After successful completion, one more
thread is running in the caller’s address space than was before the call. A thread
that has done its job and wants to terminate calls pthread3exit. A thread can wait
for another thread to exit by calling pthread3join. If the thread waited for has
already exited, the pthread3join finishes immediately. Otherwise it blocks.

SEC. 6.4 EXAMPLE OPERATING SYSTEMS 473

Threads can synchronize using locks called mutexes. Typically a mutex
guards some resource, such as a buffer shared by two threads. To make sure that
only one thread at a time accesses the shared resource, threads are expected to
lock the mutex before touching the resource and unlock it when they are done. As
long as all threads obey this protocol, race conditions can be avoided. Mutexes
are like binary semaphores, that is, semaphores that can take on only the values of
0 and 1. The name ‘‘mutex’’ comes from the fact that mutexes are used to ensure
mutual exclusion on some resource.

Mutexes can be created and destroyed by the calls pthread3mutex3init and
pthread3mutex3destroy, respectively. A mutex can be in one of two states: locked
or unlocked. When a thread tries to lock an unlocked mutex (using pthread3lock),
the lock is set and the thread continues. However, when a thread tries to lock a
mutex that is already locked, it blocks. When the locking thread is finished with
the shared resource, it is expected to unlock the corresponding mutex by calling
pthread3mutex3unlock.

Mutexes are intended for short-term locking, such as protecting a shared vari-
able. They are not intended for long-term synchronization, such as waiting for a
tape drive to become free. For long-term synchronization, condition variables
are provided. These are created and destroyed by calls to pthread3cond3init and
pthread3cond3destroy, respectively.

A condition variable is used by having one thread wait on it, and another sig-
nal it. For example, having discovered that the tape drive it needs is busy, a
thread would do pthread3cond3wait on a condition variable that all the threads
have agreed to associate with the tape drive. When the thread using the tape drive
is finally done with it (possibly hours later), it uses pthread3cond3signal to release
exactly one thread waiting on that condition variable (if any). If no thread is wait-
ing, the signal is lost. Condition variables do not count like semaphores. A few
other operations are also defined on threads, mutexes, and condition variables.

Windows NT Process Management

NT supports multiple processes, which can communicate and synchronize.
Each process contains at least one thread, which in turn contains at least one fiber
(lightweight thread). Together, processes, threads, and fibers provide a very gen-
eral set of tools for managing parallelism, both on uniprocessors (single-CPU
machines) and on multiprocessors (multi-CPU machines).

New processes are created using the API function CreateProcess. This func-
tion has 10 parameters, each of which has many options. This design is clearly a
lot more complicated that the UNIX scheme, in which fork has no parameters, and
exec has just three: pointers to the name of the file to execute, the (parsed) com-
mand line parameter array, and the environment strings. Roughly speaking, the
10 parameters to CreateProcess are as follows:

474 THE OPERATING SYSTEM MACHINE LEVEL CHAP. 6

1. A pointer to the name of the executable file.

2. The command line itself (unparsed).

3. A pointer to a security descriptor for the process.

4. A pointer to a security descriptor for the initial thread.

5. A bit telling whether the new process inherits the creator’s handles.

6. Miscellaneous flags (e.g., error mode, priority, debugging, consoles).

7. A pointer to the environment strings.

8. A pointer to the name of the new process’ current working directory.

9. A pointer to a structure describing the initial window on the screen.

10. A pointer to a structure that returns 18 values to the caller.

NT does not enforce any kind of parent-child or other hierarchy. All processes
are created equal. However, since 1 of the 18 parameters returned to the creating
process is a handle to the new process (allowing considerable control over the
new process), there is an implicit hierarchy in terms of who has a handle to whom.
Although these handles cannot just be passed directly to other processes, there is a
way for a process to make a handle suitable for another process and then give it
the handle, so the implicit process hierarchy may not last long.

Each process in NT is created with a single thread, but a process can create
more threads later on. Thread creation is simpler than process creation:
CreateThread has only six parameters instead of 10: the security descriptor, the
stack size, the starting address, a user-defined parameter, the initial state of the
thread (ready or blocked), and the thread’s ID. The kernel does the thread crea-
tion, so it is clearly aware of threads (i.e, they are not implemented purely in user
space as is the case in some other systems).

When the kernel does scheduling, it not only picks the process to run next but
also which thread in that process. This means that the kernel is always aware of
which threads are ready and which ones are blocked. Because threads are kernel
objects, they have security descriptors and handles. Since a handle for a thread
can be passed to another process, it is possible to have one process control the
threads in a different process. This feature is useful for debuggers, for example.

Threads in NT are relatively expensive because doing a thread switch requires
entering and later leaving the kernel. To provide very lightweight pseudoparallel-
ism, NT provides fibers, which are like threads, but are scheduled in user space by
the program that created them (or its runtime system). Each thread can have mul-
tiple fibers, the same way a process can have multiple threads, except that when a
fiber logically blocks, it puts itself on the queue of blocked fibers and selects
another fiber to run in the context of its thread. The kernel is not aware of this

SEC. 6.4 EXAMPLE OPERATING SYSTEMS 475

transition because the thread keeps running, even though it may be first running
one fiber, then another. The kernel just manages processes and threads, not fibers.
Fibers are useful, for example, when programs that manage their own threads are
ported to NT.

Processes can communicate in a wide variety of ways, including pipes, named
pipes, mailslots, sockets, remote procedure calls, and shared files. Pipes have two
modes: byte and message, selected at creation time. Byte-mode pipes work the
same way as in UNIX. Message-mode pipes are somewhat similar but preserve
message boundaries, so that four writes of 128 bytes will be read as four 128-byte
messages, and not as one 512-byte message, as would happen with byte-mode
pipes. Named pipes also exist and have the same two modes as regular pipes.
Named pipes can also be used over a network; regular pipes cannot.

Mailslots are a feature of NT not present in UNIX. They are similar to pipes in
some ways, but not all. For one thing, they are one-way, whereas pipes are two-
way. They can also be used over a network but do not provide guaranteed
delivery. Finally, they allow the sending process to broadcast a message to many
receivers, instead of to just one.

Sockets are like pipes, except that they normally connect processes on dif-
ferent machines. However, they can also be used to connect processes on the
same machine. In general, there is usually little advantage to using a socket con-
nection over a pipe or named pipe for intramachine communication.

Remote procedure calls are a way for process A to have process B call a pro-
cedure in B’s address space on A’s behalf and return the result to A. Various res-
trictions on the parameters exist. For example, it makes no sense to pass a pointer
to a different process.

Finally, processes can share memory by mapping onto the same file at the
same time. All writes done by one process then appear in the address spaces of
the other processes. Using this mechanism, the shared buffer used in our
producer-consumer example can be easily implemented.

Just as NT provides numerous interprocess communication mechanisms, it
also provides numerous synchronization mechanisms, including semaphores,
mutexes, critical sections, and events. All of these mechanisms work on threads,
not processes, so that when a thread blocks on a semaphore, other threads in that
process (if any) are not affected and can continue to run.

A semaphore is created using the CreateSemaphore API function, which can
initialize it to a given value and define a maximum value as well. Semaphores are
kernel objects and thus have security descriptors and handles. The handle for a
semaphore can be duplicated using DuplicateHandle and passed to another process
so that multiple processes can synchronize on the same semaphore. Calls for up
and down are present, although they have the somewhat peculiar names of
ReleaseSemaphore (up) and WaitForSingleObject (down). It is also possible to
give WaitForSingleObject a timeout, so the calling thread can be released eventu-
ally, even if the semaphore remains at 0 (although timers reintroduce races).

476 THE OPERATING SYSTEM MACHINE LEVEL CHAP. 6

Mutexes are also kernel objects used for synchronization, but simpler than
semaphores because they do not have counters. They are essentially locks, with
API functions for locking (WaitForSingleObject) and unlocking ReleaseMutex.
Like semaphore handles, mutex handles can be duplicated and passed between
processes so that threads in different processes can access the same mutex.

The third synchronization mechanism is based on critical sections, which are
similar to mutexes, except local to the address space of the creating thread.
Because critical sections are not kernel objects, they do not have handles or secu-
rity descriptors and cannot be passed between processes. Locking and unlocking
is done with EnterCriticalSection and LeaveCriticalSection, respectively. Because
these API functions are performed entirely in user space, they are much faster
than mutexes.

The last synchronization mechanism uses kernel objects called events. A
thread can wait for an event to occur with WaitForSingleObject . A thread can
release a single thread waiting on an event with SetEvent or it can release all
threads waiting on an event with PulseEvent. Events come in several flavors and
have a variety of options, too.

Events, mutexes, and semaphores can all be named and stored in the file sys-
tem, like named pipes. Two or more processes can synchronize by opening the
same event, mutex, or semaphore, rather than having one of them create the object
and then make duplicate handles for the others, although the latter approach is
certainly an option as well.

7
THE ASSEMBLY LANGUAGE LEVEL

1

222
Programmer-years to

produce the program

Program execution

time in seconds222
Assembly language 50 33
High-level language 10 100

Mixed approach before tuning
Critical 10% 1 90
Other 90% 9 10

33 33
Total 10 100

Mixed approach after tuning
Critical 10% 6 30
Other 90% 9 10

33 33
Total 15 402221

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 7-1. Comparison of assembly language and high-level
language programming, with and without tuning.

Label Opcode Operands Comments22
FORMULA: MOV EAX,I ; register EAX = I

ADD EAX,J ; register EAX = I + J
MOV N,EAX ; N = I + J

I DW 3 ; reserve 4 bytes initialized to 3
J DW 4 ; reserve 4 bytes initialized to 4
N DW 0 ; reserve 4 bytes initialized to 0

(a)

Label Opcode Operands Comments22
FORMULA MOVE.L I, D0 ; register D0 = I

ADD.L J, D0 ; register D0 = I + J
MOVE.L D0, N ; N = I + J

I DC.L 3 ; reserve 4 bytes initialized to 3
J DC.L 4 ; reserve 4 bytes initialized to 4
N DC.L 0 ; reserve 4 bytes initialized to 0

(b)

Label Opcode Operands Comments22
FORMULA: SETHI %HI(I),%R1 ! R1 = high-order bits of the address of I

LD [%R1+%LO(I)],%R1 ! R1 = I
SETHI %HI(J),%R2 ! R2 = high-order bits of the address of J
LD [%R2+%LO(J)],%R2 ! R2 = J
NOP ! wait for J to arrive from memory
ADD %R1,%R2,%R2 ! R2 = R1 + R2
SETHI %HI(N),%R1 ! R1 = high-order bits of the address of N
ST %R2,[%R1+%LO(N)]

I: .WORD 3 ! reserve 4 bytes initialized to 3
J: .WORD 4 ! reserve 4 bytes initialized to 4
N: .WORD 0 ! reserve 4 bytes initialized to 0

(c)

Figure 7-2. Computation of N = I + J. (a) Pentium II. (b)
Motorola 680x0. (c) SPARC.

222
Pseudoinstr Meaning222
SEGMENT Start a new segment (text, data, etc.) with certain attributes222
ENDS End the current segment222
ALIGN Control the alignment of the next instruction or data222
EQU Define a new symbol equal to a given expression222
DB Allocate storage for one or more (initialized) bytes222
DD Allocate storage for one or more (initialized) 16-bit halfwords222
DW Allocate storage for one or more (initialized) 32-bit words222
DQ Allocate storage for one or more (initialized) 64-bit double words222
PROC Start a procedure222
ENDP End a procedure222
MACRO Start a macro definition222
ENDM End a macro definition222
PUBLIC Export a name defined in this module222
EXTERN Import a name from another module222
INCLUDE Fetch and include another file222
IF Start conditional assembly based on a given expression222
ELSE Start conditional assembly if the IF condition above was false222
ENDIF End conditional assembly222
COMMENT Define a new start-of-comment character222
PAGE Generate a page break in the listing222
END Terminate the assembly program22211
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 7-3. Some of the pseudoinstructions available in the
Pentium II assembler (MASM).

MOV EAX,P SWAP MACRO
MOV EBX,Q MOV EAX,P
MOV Q,EAX MOV EBX,Q
MOV P,EBX MOV Q,EAX

MOV P,EBX
MOV EAX,P ENDM
MOV EBX,Q
MOV Q,EAX SWAP
MOV P,EBX

SWAP

(a) (b)

Figure 7-4. Assembly language code for interchanging P and
Q twice. (a) Without a macro. (b) With a macro.

22
Item Macro call Procedure call22

When is the call made? During assembly During execution22
Yes NoIs the body inserted into the object

program every place the call is
made?22

No YesIs a procedure call instruction
inserted into the object program
and later executed?22

No YesMust a return instruction be used
after the call is done?22

One per macro call 1How many copies of the body ap-
pear in the object program?2211
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 7-5. Comparison of macro calls with procedure calls.

MOV EAX,P CHANGE MACRO P1, P2
MOV EBX,Q MOV EAX,P1
MOV Q,EAX MOV EBX,P2
MOV P,EBX MOV P2,EAX

MOV P1,EBX
MOV EAX,R ENDM
MOV EBX,S
MOV S,EAX CHANGE P, Q
MOV R,EBX

CHANGE R, S

(a) (b)

Figure 7-6. Nearly identical sequences of statements. (a)
Without a macro. (b) With a macro.

Label Opcode Operands Comments Length ILC222
MARIA: MOV EAX,I EAX = I 5 100

MOV EBX, J EBX = J 6 105
ROBERTA: MOV ECX, K ECX = K 6 111

IMUL EAX, EAX EAX = I * I 2 117
IMUL EBX, EBX EBX = J * J 3 119
IMUL ECX, ECX ECX = K * K 3 122

MARILYN: ADD EAX, EBX EAX = I * I + J * J 2 125
ADD EAX, ECX EAX = I * I + J * J + K * K 2 127

STEPHANY: JMP DONE branch to DONE 5 129

Figure 7-7. The instruction location counter (ILC) keeps track
of the address where the instructions will be loaded in memory.
In this example, the statements prior to MARIA occupy 100
bytes.

22
Symbol Value Other information22

MARIA 10022
ROBERTA 11122
MARILYN 12522
STEPHANY 1292211
1
1
1
1
1
1

11
1
1
1
1
1
1

11
1
1
1
1
1
1

11
1
1
1
1
1
1

Figure 7-8. A symbol table for the program of Fig. 7-7.

22

Opcode
First
operand

Second
operand

Hexadecimal
opcode

Instruc-
tion

length

Instruc-
tion

class22
AAA — — 37 1 622
ADD EAX immed32 05 5 422
ADD reg reg 01 2 1922
AND EAX immed32 25 5 422
AND reg reg 21 2 19221

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

Figure 7-9. A few excerpts from the opcode table for a Penti-
um II assembler.

public static void pass3one() {
// This procedure is an outline of pass one of a simple assembler.
boolean more3input = true; // flag that stops pass one
String line, symbol, literal, opcode; // fields of the instruction
int location3counter, length, value, type; // misc. variables
final int END3STATEMENT = −2; // signals end of input

location3counter = 0; // assemble first instruction at 0
initialize3tables(); // general initialization

while (more3input) { // more3input set to false by END
line = read3next3line(); // get a line of input
length = 0; // # bytes in the instruction
type = 0; // which type (format) is the instruction

if (line3is3not3comment(line)) {
symbol = check3for3symbol(line); // is this line labeled?
if (symbol != null) // if it is, record symbol and value

enter3new3symbol(symbol, location3counter);
literal = check3for3literal(line); // does line contain a literal?
if (literal != null) // if it does, enter it in table

enter3new3literal(literal);

// Now determine the opcode type. −1 means illegal opcode.
opcode = extract3opcode(line); // locate opcode mnemonic
type = search3opcode3table(opcode); // find format, e.g. OP REG1,REG2
if (type < 0) // if not an opcode, is it a pseudoinstruction?

type = search3pseudo3table(opcode);
switch(type) { // determine the length of this instruction

case 1: length = get3length3of3type1(line); break;
case 2: length = get3length3of3type2(line); break;
// other cases here

}
}

write3temp3file(type, opcode, length, line);// useful info for pass two
location3counter = location3counter + length;// update loc3ctr
if (type == END3STATEMENT) { // are we done with input?

more3input = false; // if so, perform housekeeping tasks
rewind3temp3for3pass3two(); // like rewinding the temp file
sort3literal3table(); // and sorting the literal table
remove3redundant3literals(); // and removing duplicates from it

}
}

} Figure 7-10. Pass one of a simple assembler.

public static void pass3two() {
// This procedure is an outline of pass two of a simple assembler.
boolean more3input = true; // flag that stops pass one
String line, opcode; // fields of the instruction
int location3counter, length, type; // misc. variables
final int END3STATEMENT = −2; // signals end of input
final int MAX3CODE = 16; // max bytes of code per instruction
byte code[] = new byte[MAX3CODE]; // holds generated code per instruction

location3counter = 0; // assemble first instruction at 0

while (more3input) { // more3input set to false by END
type = read3type(); // get type field of next line
opcode = read3opcode(); // get opcode field of next line
length = read3length(); // get length field of next line
line = read3line(); // get the actual line of input

if (type != 0) { // type 0 is for comment lines
switch(type) { // generate the output code

case 1: eval3type1(opcode, length, line, code); break;
case 2: eval3type2(opcode, length, line, code); break;
// other cases here

}
}

write3output(code); // write the binary code
write3listing(code, line); // print one line on the listing
location3counter = location3counter + length;// update loc3ctr
if (type == END3STATEMENT) {// are we done with input?

more3input = false; // if so, perform housekeeping tasks
finish3up(); // odds and ends

}
}

}

Figure 7-11. Pass two of a simple assembler.

(a)

(b)

Andy
Anton
Cathy
Dick
Erik
Frances
Frank
Gerrit
Hans
Henri
Jan
Jaco
Maarten
Reind
Roel
Willem
Wiebren

0
4
5
0
6
3
3
4
4
2
5
6
0
1
7
6
1

14025
31253
65254
54185
47357
56445
14332
32334
44546
75544
17097
64533
23267
63453
76764
34544
34344

Hash
table Linked table

0 Andy 14025 Maarten 23267 Dick 54185

1 Reind 63453 Wiebren 34344

2 Henri 75544

3 Frances 56445 Frank 14332

4 Hans 44546 Gerrit 32334 Anton 31253

5 Jan 17097 Cathy 65254

6 Jaco 64533 Willem 34544 Erik 47357

7 Roel 76764

Figure 7-12. Hash coding. (a) Symbols, values, and the hash
codes derived from the symbols. (b) Eight-entry hash table
with linked lists of symbols and values.

Translator Linker
Executable

binary
program

Source
procedure 1

Source
procedure 2

Source
procedure 3

Object
module 1

Object
module 2

Object
module 3

Figure 7-13. Generation of an executable binary program
from a collection of independently translated source procedures
requires using a linker.

Object module A

0

100

200

300

400

BRANCH TO 200

MOVE P TO X

CALL B

0

100

200

300

400

500

600

BRANCH TO 300

MOVE Q TO X

CALL C

Object module B

0

100

200

300

400

500
Object module C

BRANCH TO 200

MOVE R TO X

CALL D

0

100

200

300

MOVE S TO X

BRANCH TO 200

Object module D

Figure 7-14. Each module has its own address space, starting at 0.

BRANCH TO 200

MOVE P TO X

CALL B

BRANCH TO 300

MOVE Q TO X

CALL C

BRANCH TO 200

MOVE R TO X

CALL D

MOVE S TO X

BRANCH TO 200

1900

1800

1700

1600

1500

1400

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

Object
module
A

Object
module
B

Object
module
C

Object
module
D

0

BRANCH TO 300

MOVE P TO X

CALL 500

BRANCH TO 800

MOVE Q TO X

CALL 1100

BRANCH TO 1300

MOVE R TO X

CALL 1600

MOVE S TO X

BRANCH TO 1800

1900

1800

1700

1600

1500

1400

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

Object
module
A

Object
module
B

Object
module
C

Object
module
D

0

Figure 7-15. (a) The object modules of Fig. 7-14 after being
positioned in the binary image but before being relocated and
linked. (b) The same object modules after linking and after re-
location has been performed. Together they form an execut-
able binary program, ready to run.

Identification

Entry point table

External reference table

End of module

Machine instructions
and constants

Relocation
dictionary

Figure 7-16. The internal structure of an object module pro-
duced by a translator.

BRANCH TO 300

MOVE P TO X

CALL 500

BRANCH TO 800

MOVE Q TO X

CALL 1100

BRANCH TO 1300

MOVE R TO X

CALL 1600

MOVE S TO X

BRANCH TO 1800

Object
module
A

Object
module
B

Object
module
C

Object
module
D

1900

1800

1700

1600

1500

1400

1300

1200

1100

1000

900

800

700

600

500

400

 0

2000

2100

2200

Figure 7-17. The relocated binary program of Fig. 7-15(b)
moved up 300 addresses. Many instructions now refer to an in-
correct memory address.

A procedure segment The linkage segment

CALL EARTH

CALL EARTH

CALL FIRE

CALL AIR

CALL WATER

CALL WATER

Indirect

addressing
Invalid address

E A R T H

A I R

F I R E

w A T E R

Indirect word

Name of the
procedure is
stored as a
character
string

(a)

(b)

To earth

Linkage information
for the procedure
of AIR

Indirect

addressing

�
�

Invalid address

�
������
�
�

Invalid address

�����Invalid address

�
A procedure segment The linkage segment

CALL EARTH

CALL EARTH

CALL FIRE

CALL AIR

CALL WATER

CALL WATER

Address of earth

E A R T H

A I R

F I R E

W A T E R

�
�

Invalid address

Invalid address�
�
�
�Invalid address

�
�
�

Figure 7-18. Dynamic linking. (a) Before EARTH is called.
(b) After EARTH has been called and linked.

User process 1 User process 2

DLL

Header

A

B

C

D

Figure 7-19. Use of a DLL file by two processes.

506 THE ASSEMBLY LANGUAGE LEVEL CHAP. 7

7.4 LINKING AND LOADING

Most programs consist of more than one procedure. Compilers and assem-
blers generally translate one procedure at a time and put the translated output on
disk. Before the program can be run, all the translated procedures must be found
and linked together properly. If virtual memory is not available, the linked pro-
gram must be explicitly loaded into main memory as well. Programs that perform
these functions are called by various names, including linker, linking loader, and
linkage editor. The complete translation of a source program requires two steps,
as shown in Fig. 7-1:

1. Compilation or assembly of the source procedures.

2. Linking of the object modules.

The first step is performed by the compiler or assembler and the second one is
performed by the linker.

Translator Linker
Executable

binary
program

Source
procedure 1

Source
procedure 2

Source
procedure 3

Object
module 1

Object
module 2

Object
module 3

Figure 7-1. Generation of an executable binary program from a collection of in-
dependently translated source procedures requires using a linker.

The translation from source procedure to object module represents a change
of level because the source language and target language have different instruc-
tions and notation. The linking process, however, does not represent a change of
level, since both the linker’s input and the linker’s output are programs for the
same virtual machine. The linker’s function is to collect procedures translated
separately and link them together to be run as a unit called an executable binary
program. On MS-DOS, Windows 95/98, and NT the object modules have exten-
sion .obj and the executable binary programs have extension .exe. On UNIX, the
object modules have extension .o; executable binary programs have no extension.

Compilers and assemblers translate each source procedure as a separate entity
for a good reason. If a compiler or assembler were to read a series of source pro-
cedures and directly produce a ready-to-run machine language program, changing
one statement in one source procedure would require that all the source pro-
cedures be retranslated.

SEC. 7.4 LINKING AND LOADING 507

If the separate-object-module technique of Fig. 7-1 is used, it is only neces-
sary to retranslate the modified procedure and not the unchanged ones, although it
is necessary to relink all the object modules again. Linking is usually much faster
than translating, however; thus the two-step process of translating and linking can
save a great deal of time during the development of a program. This gain is espe-
cially important for programs with hundreds or thousands of modules.

7.4.1 Tasks Performed by the Linker

At the start of pass one of the assembly process, the instruction location
counter is set to 0. This step is equivalent to assuming that the object module will
be located at (virtual) address 0 during execution. Figure 7-2 shows four object
modules for a generic machine. In this example, each module begins with a
BRANCH instruction to a MOVE instruction within the module.

Object module A

0

100

200

300

400

BRANCH TO 200

MOVE P TO X

CALL B

0

100

200

300

400

500

600

BRANCH TO 300

MOVE Q TO X

CALL C

Object module B

0

100

200

300

400

500
Object module C

BRANCH TO 200

MOVE R TO X

CALL D

0

100

200

300

MOVE S TO X

BRANCH TO 200

Object module D

Figure 7-2. Each module has its own address space, starting at 0.

508 THE ASSEMBLY LANGUAGE LEVEL CHAP. 7

In order to run the program, the linker brings the object modules into main
memory to form the image of the executable binary program, as shown in Fig. 7-
3(a). The idea is to make an exact image of the executable program’s virtual
address space inside the linker and position all the object modules at their correct
locations. If there is not enough (virtual) memory to form the image, a disk file
can be used. Typically, a small section of memory starting at address zero is used
for interrupt vectors, communication with the operating system, catching unini-
tialized pointers, or other purposes, so programs often start above 0. In this figure
we have (arbitrarily) started programs at address 100.

The program of Fig. 7-3(a), although loaded into the image of the executable
binary file, is not yet ready for execution. Consider what would happen if execu-
tion began with the instruction at the beginning of module A. The program would
not branch to the MOVE instruction as it should, because that instruction is now at
300. In fact, all memory reference instructions will fail for the same reason.

This problem, called the relocation problem, occurs because each object
module in Fig. 7-2 represents a separate address space. On a machine with a seg-
mented address space, such as the Pentium II, theoretically each object module
could have its own address space by being placed in its own segment. However,
OS/2 is the only operating system for the Pentium II that supports this concept. All
versions of Windows and UNIX support only one linear address space, so all the
object modules must be merged together into a single address space.

Furthermore, the procedure call instructions in Fig. 7-3(a) will not work
either. At address 400, the programmer had intended to call object module B, but
because each procedure is translated by itself, the assembler has no way of know-
ing what address to insert into the CALL B instruction. The address of object
module B is not known until linking time. This problem is called the external
reference problem. Both of these problems can be solved by the linker.

The linker merges the separate address spaces of the object modules into a
single linear address space in the following steps:

1. It constructs a table of all the object modules and their lengths.

2. Based on this table, it assigns a starting address to each object module.

3. It finds all the instructions that reference memory adds to each a
relocation constant equal to the starting address of its module.

4. It finds all the instructions that reference other procedures and inserts
the address of these procedures in place.

The object module table constructed in step 1 is shown for the modules of
Fig. 7-3 below. It gives the name, length, and starting address of each module.

Module Length Starting address
A 400 100
B 600 500

SEC. 7.4 LINKING AND LOADING 509

C 500 1100
D 300 1600

Figure 7-3(b) shows how the address space of Fig. 7-3(a) looks after the linker has
performed these steps.

7.4.2 Structure of an Object Module

Object modules often contain six parts, as shown in Fig. 7-4. The first part
contains the name of the module, certain information needed by the linker, such as
the lengths of the various parts of the module, and sometimes the assembly date.

Identification

Entry point table

External reference table

End of module

Machine instructions
and constants

Relocation
dictionary

Figure 7-4. The internal structure of an object module produced by a translator.

The second part of the object module is a list of the symbols defined in the
module that other modules may reference, together with their values. For exam-
ple, if the module consists of a procedure named bigbug, the entry point table will
contain the character string ‘‘bigbug’’ followed by the address to which it
corresponds. The assembly language programmer indicates which symbols are to
be declared as entry points by using a pseudoinstruction such as PUBLIC in
Fig. 7-0.

The third part of the object module consists of a list of the symbols that are
used in the module but which defined in other modules, along with a list of which
machine instructions use which symbols. The linker needs the latter list in order
to be able to insert the correct addresses into the instructions that use external
symbols. A procedure can call other independently translated procedures by
declaring the names of the called procedures to be external. The assembly
language programmer indicates which symbols are to be declared as external
symbols by using a pseudoinstruction such as EXTERN in Fig. 7-0. On some com-
puters entry points and external references are combined into one table.

510 THE ASSEMBLY LANGUAGE LEVEL CHAP. 7

BRANCH TO 200

MOVE P TO X

CALL B

BRANCH TO 300

MOVE Q TO X

CALL C

BRANCH TO 200

MOVE R TO X

CALL D

MOVE S TO X

BRANCH TO 200

1900

1800

1700

1600

1500

1400

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

Object
module
A

Object
module
B

Object
module
C

Object
module
D

0

BRANCH TO 300

MOVE P TO X

CALL 500

BRANCH TO 800

MOVE Q TO X

CALL 1100

BRANCH TO 1300

MOVE R TO X

CALL 1600

MOVE S TO X

BRANCH TO 1800

1900

1800

1700

1600

1500

1400

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

Object
module
A

Object
module
B

Object
module
C

Object
module
D

0

Figure 7-3. (a) The object modules of Fig. 7-2 after being positioned in the
binary image but before being relocated and linked. (b) The same object
modules after linking and after relocation has been performed. Together they
form an executable binary program, ready to run.

SEC. 7.4 LINKING AND LOADING 511

The fourth part of the object module is the assembled code and constants.
This part of the object module is the only one that will be loaded into memory to
be executed. The other five parts will be used by the linker and then discarded
before execution begins.

The fifth part of the object module is the relocation dictionary. As shown in
Fig. 7-3, instructions that contain memory addresses must have a relocation con-
stant added. Since the linker has no way of telling by inspection which of the data
words in part 4 contain machine instructions and which contain constants, infor-
mation about which addresses are to be relocated is provided in this table. The
information may take the form of a bit table, with 1 bit per potentially relocatable
address, or an explicit list of addresses to be relocated.

The sixth part is an end-of-module indication, sometimes a checksum to catch
errors made while reading the module, and the address at which to begin execu-
tion.

Most linkers require two passes. On pass one the linker reads all the object
modules and builds up a table of module names and lengths, and a global symbol
table consisting of all entry points and external references. On pass two the object
modules are read, relocated, and linked one module at a time.

7.4.3 Binding Time and Dynamic Relocation

In a multiprogramming system, a program can be read into main memory, run
for a little while, written to disk, and then read back into main memory to be run
again. In a large system, with many programs, it is difficult to ensure that a pro-
gram is read back into the same locations every time.

Figure 7-5 shows what would happen if the already relocated program of
Fig. 7-3(b) were reloaded at address 400 instead of address 100 where the linker
put it originally. All the memory addresses are incorrect; moreover, the relocation
information has long since been discarded. Even if the relocation information
were still available, the cost of having to relocate all the addresses every time the
program was swapped would be too high.

The problem of moving programs that have already been linked and relocated
is intimately related to the time at which the final binding of symbolic names onto
absolute physical memory addresses is completed. When a program is written it
contains symbolic names for memory addresses, for example, BR L. The time at
which the actual main memory address corresponding to L is determined is called
the binding time. At least six possibilities for the binding time exist:

1. When the program is written.

2. When the program is translated.

3. When the program is linked but before it is loaded.

512 THE ASSEMBLY LANGUAGE LEVEL CHAP. 7

BRANCH TO 300

MOVE P TO X

CALL 500

BRANCH TO 800

MOVE Q TO X

CALL 1100

BRANCH TO 1300

MOVE R TO X

CALL 1600

MOVE S TO X

BRANCH TO 1800

Object
module
A

Object
module
B

Object
module
C

Object
module
D

1900

1800

1700

1600

1500

1400

1300

1200

1100

1000

900

800

700

600

500

400

 0

2000

2100

2200

Figure 7-5. The relocated binary program of Fig. 7-3(b) moved up 300 ad-
dresses. Many instructions now refer to an incorrect memory address.

SEC. 7.4 LINKING AND LOADING 513

4. When the program is loaded.

5. When a base register used for addressing is loaded.

6. When the instruction containing the address is executed.

If an instruction containing a memory address is moved after binding, it will
be incorrect (assuming that the object referred to has also been moved). If the
translator produces an executable binary as output, the binding has occurred at
translation time, and the program must be run at the address the translator
expected it to be run at. The linking method described in the preceding section
binds symbolic names to absolute addresses during linking, which is why moving
programs after linking fails, as shown in Fig. 7-5.

Two related issues are involved here. First, there is the question of when
symbolic names are bound to virtual addresses. Second, there is a question of
when virtual addresses are bound to physical addresses. Only when both opera-
tions have taken place is binding complete. When the linker merges the separate
address spaces of the object modules into a single linear address space, it is, in
fact, creating a virtual address space. The relocation and linking serve to bind
symbolic names onto specific virtual addresses. This observation is true whether
or not virtual memory is being used.

Assume for the moment that the address space of Fig. 7-3(b) were paged. It is
clear that the virtual addresses corresponding to the symbolic names A, B, C, and
D have already been determined, even though their physical main memory
addresses will depend on the contents of the page table at the time they are used.
An executable binary program is really a binding of symbolic names onto virtual
addresses.

Any mechanism that allows the mapping of virtual addresses onto physical
main memory addresses to be changed easily will facilitate moving programs
around in main memory, even after they have been bound to a virtual address
space. One such mechanism is paging. After a program has been moved in main
memory, only its page table need be changed, not the program itself.

A second mechanism is the use of a runtime relocation register. The CDC
6600 and its successors had such a register. On machines using this relocation
technique, the register always points to the physical memory address of the start
of the current program. All memory addresses have the relocation register added
to them by the hardware before being sent to the memory. The entire relocation
process is transparent to the user programs. They do not even know that it is
occurring. When a program is moved, the operating system must update the relo-
cation register. This mechanism is less general than paging because the entire
program must be moved as a unit (unless there are separate code and data reloca-
tion registers, as on the Intel 8088, in which case it has to be moved as two units).

A third mechanism is possible on machines that can refer to memory relative
to the program counter. Whenever a program is moved in main memory only the

514 THE ASSEMBLY LANGUAGE LEVEL CHAP. 7

program counter need be updated. A program, all of whose memory references
are either relative to the program counter or absolute (e.g., to I/O device registers
at absolute addresses) is said to be position independent . A position-
independent procedure can be placed anywhere within the virtual address space
without the need for relocation.

7.4.4 Dynamic Linking

The linking strategy discussed in Sec. 7.4.1 has the property that all pro-
cedures that a program might call are linked before the program can begin execu-
tion. On a computer with virtual memory, completing all linking before begin-
ning execution does not take advantage of the full capabilities of the virtual
memory. Many programs have procedures that are only called under unusual cir-
cumstances. For example, compilers have procedures for compiling rarely used
statements, plus procedures for handling error conditions that seldom occur.

A more flexible way to link separately compiled procedures is to link each
procedure at the time it is first called. This process is known as dynamic linking.
It was pioneered by MULTICS whose implementation is in some ways still unsur-
passed. In the next sections we will look at dynamic linking in several systems.

Dynamic Linking in MULTICS

In the MULTICS form of dynamic linking, associated with each program is a
segment, called the linkage segment, which contains one block of information for
each procedure that might be called. This block of information starts with a word
reserved for the virtual address of the procedure and it is followed by the pro-
cedure name, which is stored as a character string.

When dynamic linking is being used, procedure calls in the source language
are translated into instructions that indirectly address the first word of the
corresponding linkage block, as shown in Fig. 7-6(a). The compiler fills this word
with either an invalid address or a special bit pattern that forces a trap.

When a procedure in a different segment is called, the attempt to address the
invalid word indirectly causes a trap to the dynamic linker. The linker then finds
the character string in the word following the invalid address and searches the
user’s file directory for a compiled procedure with this name. That procedure is
then assigned a virtual address, usually in its own private segment, and this virtual
address overwrites the invalid address in the linkage segment, as indicated in
Fig. 7-6(b). Next, the instruction causing the linkage fault is reexecuted, allowing
the program to continue from the place it was before the trap.

All subsequent references to that procedure will be executed without causing
a linkage fault, for the indirect word now contains a valid virtual address. Conse-
quently, the dynamic linker is invoked only the first time a procedure is called and
not thereafter.

SEC. 7.4 LINKING AND LOADING 515

A procedure segment The linkage segment

CALL EARTH

CALL EARTH

CALL FIRE

CALL AIR

CALL WATER

CALL WATER

Indirect

addressing
Invalid address

E A R T H

A I R

F I R E

w A T E R

Indirect word

Name of the
procedure is
stored as a
character
string

(a)

(b)

To earth

Linkage information
for the procedure
of AIR

Indirect

addressing

�
�

Invalid address

�
������
�
�

Invalid address

�����Invalid address

�
A procedure segment The linkage segment

CALL EARTH

CALL EARTH

CALL FIRE

CALL AIR

CALL WATER

CALL WATER

Address of earth

E A R T H

A I R

F I R E

W A T E R

�
�

Invalid address

Invalid address�
�
�
�Invalid address

�
�
�

Figure 7-6. Dynamic linking. (a) Before EARTH is called. (b) After EARTH
has been called and linked.

516 THE ASSEMBLY LANGUAGE LEVEL CHAP. 7

Dynamic Linking in Windows

All versions of the Windows operating system, including NT, support dynamic
linking and rely heavily on it. Dynamic linking uses a special file format called a
DLL (Dynamic Link Library). DLLs can contain procedures, data, or both.
They are commonly used to allow two or more processes to share library pro-
cedures or data. Many DLLs have extension .dll, but other extensions are also in
use, including .drv (for driver libraries) and .fon (for font libraries).

The most common form of a DLL is a library consisting of a collection of
procedures that can be loaded into memory and accessed by multiple processes at
the same time. Figure 7-7 illustrates two programs sharing a DLL file that con-
tains four procedures, A, B, C, and D. Program 1 uses procedure A; program 2
uses procedure C, although they could equally well have used the same procedure.

User process 1 User process 2

DLL

Header

A

B

C

D

Figure 7-7. Use of a DLL file by two processes.

A DLL is constructed by the linker from a collection of input files. In fact,
building a DLL file is very much like building an executable binary program,
except that a special flag is given to the linker to tell it to make a DLL. DLLs are
commonly constructed from collections of library procedures that are likely to be
needed by multiple processes. The interface procedures to the Windows system
call library and large graphics libraries are common examples of DLLs. The
advantage of using DLLs is saving space in memory and on disk. If some com-
mon library were statically bound to each program using it, it would appear in
many executable binaries on the disk and in memory, wasting space. With DLLs,
each library only appears once on disk and once in memory.

In addition to saving space, this approach makes it easy to update library pro-
cedures, even after the programs using them have been compiled and linked. For

SEC. 7.4 LINKING AND LOADING 517

commercial software packages, where the users rarely have the source code, using
DLLs means that the software vendor can fix bugs in the libraries by just distri-
buting new DLL files over the Internet, without requiring any changes to the main
program binaries.

The main difference between a DLL and an executable binary is that a DLL
cannot be started and run on its own (because it has no main program). It also has
different information in its header. In addition, the DLL as a whole has several
extra procedures not related to the procedures in the library. For example, there is
one procedure that is automatically called whenever a new process is bound to the
DLL and another one that is automatically called whenever a process is unbound
from it. These procedures can allocate and deallocate memory or manage other
resources needed by the DLL.

There are two ways for a program to bind to a DLL. In the first way, called
implicit linking, the user’s program is statically linked with a special file called
an import library that is generated by a utility program that extracts certain
information from the DLL. The import library provides the glue that allows the
user program to access the DLL. A user program can be linked with multiple
import libraries. When a program using implicit linking is loaded into memory
for execution, Windows examines it to see which DLLs it uses and checks to see
if all of them are already in memory. Those that are not in memory are loaded
immediately (but not necessarily in their entirety, since they are paged). Some
changes are then made to the data structures in the import libraries so the called
procedures can be located, somewhat analogous to the changes shown in Fig. 7-6.
They also have to be mapped into the program’s virtual address space. At this
point, the user program is ready to run and can call the procedures in the DLLs as
though they had been statically bound with it.

The alternative to implicit linking is (not surprisingly) explicit linking. This
approach does not require import libraries and does not cause the DLLs to be
loaded at the same time the user program is. Instead, the user program makes an
explicit call at run time to bind to a DLL, then makes additional calls to get the
addresses of procedures it needs. Once these have been found, it can call the pro-
cedures. When it is all done, it makes a final call to unbind from the DLL. When
the last process unbinds from a DLL, the DLL can be removed from memory.

It is important to realize that a procedure in a DLL does not have any identity
of its own (as a thread or process does). It runs in the caller’s thread and uses the
caller’s stack for its local variables. It can have process-specific static data (as
well as shared data) and otherwise behaves the same as a statically-linked pro-
cedure. The only essential difference is how the binding to it is performed.

518 THE ASSEMBLY LANGUAGE LEVEL CHAP. 7

Dynamic Linking in UNIX

The UNIX system has a mechanism essentially identical in essence to DLLs in
Windows. It is called a shared library. Like a DLL file, a shared library is an
archive file containing multiple procedures or data modules that are present in
memory at run time and can be bound to multiple processes at the same time. The
standard C library and much of the networking code are shared libraries.

UNIX supports only implicit linking, so a shared library consist of two parts: a
host library, which is statically linked with the executable file, and a target
library, which is called at run time. While the details differ, the concepts are
essentially the same as with DLLs.

8
PARALLEL COMPUTER

ARCHITECTURES

1

CPU

(a)

P P P P

P P P P

P

P

P

P

P

P

P

P

(b)

P P P P

P P P P

P

P

P

P

P

P

P

P

Shared
memory

Figure 8-1. (a) A multiprocessor with 16 CPUs sharing a com-
mon memory. (b) An image partitioned into 16 sections, each
being analyzed by a different CPU.

CPU

(a)

P P P P

M M M M

P P P P

M M M M

P

P

P

P

M

M

M

M

P

P

P

P

M

M

M

M

Message-
passing

interconnection
network

CPU

(b)

P P P P

P P P P

P

P

P

P

P

P

P

P

Message-
passing

interconnection
network

Private memory

Figure 8-2. (a) A multicomputer with 16 CPUs, each with
each own private memory. (b) The bit-map image of Fig. 8-1
split up among the 16 memories.

(a)

Machine 1 Machine 2

Language
run-time
system

Operating
system

Shared memory

Application

Hardware

Language
run-time
system

Operating
system

Application

Hardware

(b)

Machine 1 Machine 2

Language
run-time
system

Operating
system

Shared memory

Application

Hardware

Language
run-time
system

Operating
system

Application

Hardware

(c)

Machine 1 Machine 2

Language
run-time
system

Operating
system

Shared memory

Application

Hardware

Language
run-time
system

Operating
system

Application

Hardware

Figure 8-3. Various layers where shared memory can be im-
plemented. (a) The hardware. (b) The operating system. (c)
The language runtime system.

(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

Figure 8-4. Various topologies. The heavy dots represent
switches. The CPUs and memories are not shown. (a) A star.
(b) A complete interconnect. (c) A tree. (d) A ring. (e) A grid.
(f) A double torus. (g) A cube. (h) A 4D hypercube.

CPU 1

End
of

packet

Middle
of

packet

A

Input port

Output port

Front of packet

Four-port switch

B

C D

CPU 2

Figure 8-5. An interconnection network in the form of a four-
switch square grid. Only two of the CPUs are shown.

CPU 1 Input port

(a)

Output port

Entire
packet

Entire
packet

Four-port
switch

C

A

CPU 2

Entire
packet

D

B

(b)

C

A

D

B

(c)

C

A

D

B

Figure 8-6. Store-and-forward packet switching.

CPU 1

CPU 2

CPU 3

A

C

B

D

Input port

Output buffer

Four-port switch

CPU 4

�
��	
���
����

��
���

Figure 8-7. Deadlock in a circuit-switched interconnection network.

6050403020100

60

50

40

30

20

10

0

S
pe

ed
up

Linear speedup

N-body problem

Awari

Skyline matrix inversion

Number of CPUs

Figure 8-8. Real programs achieve less than the perfect speed-
up indicated by the dotted line.

(a)

n CPUs active

1 CPU
active

1 – ff

T

Inherently
sequential

part

(b)

1 – ff

Potentially
parallelizable

part

…

fT (1 – f)T/n

Figure 8-9. (a) A program has a sequential part and a parallel-
izable part. (b) Effect of running part of the program in paral-
lel.

CPU

Bus

(a) (b) (c) (d)

Figure 8-10. (a) A 4-CPU bus-based system. (b) A 16-CPU
bus-based system. (c) A 4-CPU grid-based system. (d) A 16-
CPU grid-based system.

Process

P1

(d)

P2

P5 P6

P3

P2P1 P3

P8P7

P1

P9

P1

P2

P3

P2 P3

Synchronization point

P1 P2 P3

Synchronization point

P4

Work queue

(c)(b)(a)

Figure 8-11. Computational paradigms. (a) Pipeline. (b)
Phased computation. (c) Divide and conquer. (d) Replicated
worker.

22
Physical

(hardware)
Logical

(software) Examples22
Multiprocessor Shared variables Image processing as in Fig. 8-122
Multiprocessor Message passing Message passing simulated with buffers in memory22
Multicomputer Shared variables DSM, Linda, Orca, etc. on an SP/2 or a PC network22
Multicomputer Message passing PVM or MPI on an SP/2 or a network of PCs2211
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1

Figure 8-12. Combinations of physical and logical sharing.

222
Instruction
streams

Data
streams Name Examples222

1 1 SISD Classical Von Neumann machine222
1 Multiple SIMD Vector supercomputer, array processor222
Multiple 1 MISD Arguably none222
Multiple Multiple MIMD Multiprocessor, multicomputer22211
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1

Figure 8-13. Flynn’s taxonomy of parallel computers.

SISD

(Von Neumann)

SIMD

Parallel computer architectures

MISD

?

MIMD

Vector
processor

Array
processor

Multi-
processors

Multi-
computers

UMA COMA NUMA MPP COW

Bus Switched CC-NUMA NC-NUMA Grid
Hyper-
cube

Shared memory Message passing

Figure 8-14. A taxonomy of parallel computers.

Input vectors

Vector ALU

Figure 8-15. A vector ALU.

22
Operation Examples22

Ai = f1(Bi) f1 = cosine, square root22
Scalar = f2(A) f2 = sum, minimum22
Ai = f3(Bi, Ci) f3 = add, subtract22
Ai = f4(scalar,Bi) f4 = multiply Bi by a constant2211

1
1
1
1
1
1

11
1
1
1
1
1
1

11
1
1
1
1
1
1

Figure 8-16. Various combinations of vector and scalar operations.

222
Step Name Values222

1 Fetch operands 1.082 × 1012 − 9.212 × 1011222
2 Adjust exponent 1.082 × 1012 − 0.9212 × 10122
3 Execute subtraction 0.1608 × 10122
4 Normalize result 1.608 × 101122211

1
1
1
1
1
1

11
1
1
1
1
1
1

11
1
1
1
1
1
1

11
1
1
1
1
1
1

Figure 8-17. Steps in a floating-point subtraction.

22
Cycle22

Step 1 2 3 4 5 6 722
Fetch operands B1, C1 B2, C2 B3, C3 B4, C4 B5, C5 B6, C6 B7, C722
Adjust exponent B1, C1 B2, C2 B3, C3 B4, C4 B5, C5 B6, C622
Execute operation B1 + C1 B2 + C2 B3 + C3 B4 + C4 B5 + C522
Normalize result B1 + C1 B2 + C2 B3 + C3 B4 + C4221
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1

11
1
1
1
1
1
1

11
1
1
1
1
1
1

11
1
1
1
1
1
1

11
1
1
1
1
1
1

11
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

Figure 8-18. A pipelined floating-point adder.

A B S T

ADD

Address units

8
24-Bit
address
registers

64
24-Bit
holding
registers
for
addresses

8
64-Bit
scalar
registers

64
64-Bit holding
registers for
scalars

64 Elements
per register

8 64-Bit
vector registers

Scalar
integer units

Scalar/vector
floatng-point
units

Vector
integer
units

ADD

BOOLEAN

SHIFT

ADD

MUL

RECIP.

ADD

BOOLEAN

SHIFT

POP. COUNT

MUL

Figure 8-19. Registers and functional units of the Cray-1

CPU

Write
100

Write 200

Read 2x

Read 2x

(a) (b)

W100

W200

R3 = 200

R3 = 200

R4 = 200

R4 = 200

(c)

W100

R3 = 100

W200

R4 = 200

R3 = 200

R4 = 200

(d)

W200

R4 = 200

W100

R3 = 100

R4 = 100

R3 = 100

1

2

3

4

x

Figure 8-20. (a) Two CPUs writing and two CPUs reading a
common memory word. (b) - (d) Three possible ways the two
writes and four reads might be interleaved in time.

CPU A

CPU B

CPU C

Write

1A 1B

2A

1C

2B

3A 3B

1D 1E

2C

3C

1F

2D

Time

Synchronization point

Figure 8-21. Weakly consistent memory uses synchronization
operations to divide time into sequential epochs.

Shared memory

CPU M

Bus

(a) (b) (c)

Cache

Private memory Shared
memory

CPU CPU MCPU CPU MCPU

Figure 8-22. Three bus-based multiprocessors. (a) Without
caching. (b) With caching. (c) With caching and private
memories.

22
Action Local request Remote request22

Read miss Fetch data from memory22
Read hit Use data from local cache22
Write miss Update data in memory22
Write hit Update cache and memory Invalidate cache entry2211

1
1
1
1
1
1

11
1
1
1
1
1
1

11
1
1
1
1
1
1

11
1
1
1
1
1
1

Figure 8-23. The write through cache coherence protocol.
The empty boxes indicate that no action is taken.

(a)

(b)

(c)

(d)

(e)

(f)

Exclusive

Cache Bus

Bus

Bus

Bus

Bus

Bus

Shared Shared

Shared Shared

Modified

Modified

Modified

CPU 1 reads block A

CPU 2 reads block A

CPU 2 writes block A

CPU 3 reads block A

CPU 2 writes block A

CPU 1 writes block A

CPU 1 CPU 2 CPU 3
Memory

CPU 1 CPU 2 CPU 3
Memory

CPU 1 CPU 2 CPU 3
Memory

CPU 1 CPU 2 CPU 3
Memory

CPU 1 CPU 2 CPU 3
Memory

CPU 1 CPU 2 CPU 3
Memory

A

A

A

A

A

A

A

Figure 8-24. The MESI cache coherence protocol.

Memories

C
P

U
s

Closed
crosspoint
switch

Open
crosspoint
switch

(a)

(b)

(c)

Crosspoint
switch is closed

Crosspoint
switch is open

000

001

010

011

100

101

110

111

10
0

10
1

11
0

11
1

00
0

00
1

01
0

01
1

Figure 8-25. (a) An 8 × 8 crossbar switch. (b) An open
crosspoint. (c) A closed crosspoint.

Transfer unit is
64-byte
cache block

Board
had 4 GB +
4 CPUs

Four
address
buses for
snooping

UltraSPARC CPU

1-GB memory
module

0 1 2 14 15

16 × 16 Crossbar switch (Gigaplane-XB)

…

Figure 8-26. The Sun Enterprise 10000 symmetric multiprocessor.

A

B

X

Y

(a) (b)

Module Address Opcode Value

Figure 8-27. (a) A 2 × 2 switch. (b) A message format.

CPUs

b

b

b
b

a

a a

a

3 Stages

Memories

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

1A

1B

1C

1D

2A

2B

2C

2D

3A

3B

3C

3D

Figure 8-28. An omega switching network.

System bus

CPU

MMU

Memory

Local bus

CPU Memory

Local bus

CPU Memory

Local bus

CPU Memory

Local bus

Figure 8-29. A NUMA machine based on two levels of buses.
The Cm* was the first multiprocessor to use this design.

Directory

Node 0 Node 1 Node 255

(a)

(b)

Bits 8 18 6

(c)

Interconnection network

CPU Memory

Local bus

CPU Memory

Local bus

CPU Memory

Local bus

Node Block Offset

0
1
2
3
4

0
0
1
0
0

218-1

82

…

Figure 8-30. (a) A 256-node directory-based multiprocessor.
(b) Division of a 32-bit memory address into fields. (c) The
directory at node 36.

CPU
with cache

Memory

Intercluster interface

Intercluster bus (nonsnooping)

0

4

8

12

Local bus (snooping)

13

9

5

1 2 3

7

11

15

6

10

14

(a)

(b)

Cluster Directory

Cluster

Block

State

… 15

Uncached, shared, modified

This is the directory
for cluster 13. This bit
tells whether cluster 0
has block 1 of the memory
homed here in any of
its caches.

0
1
2
3

D D D D

D D D D

D D D D

D D D D

0 1 2 3 4 5 6 7 8 9

Figure 8-31. (a) The DASH architecture. (b) A DASH directory.

Snooping bus interface
Directory controller

IQ board

Data pump

RAM CPU

SCI ring

Directory
32-MB cache RAM

Quad board with
4 Pentium Pros and
up to 4 GB of RAM

Figure 8-32. The NUMA-Q multiprocessor.

Local memory table
at home node

Bits 6 7 13 6

0

219-1
Back State Tag Fwd

Node 4 cache directory Node 9 cache directory Node 22 cache directory

Back State Tag Fwd Back State Tag Fwd

Figure 8-33. SCI chains all the holders of a given cache line
together in a doubly-linked list. In this example, a line is
shown cached at three nodes.

…
…

CPU Memory
Node

Communication
processor

Local interconnect
Disk
and
I/O

…
Local interconnect

Disk
and
I/O

High-performance interconnection network

Figure 8-34. A generic multicomputer.

GigaRing

Shell

Node

…

Alpha

Control +
E registers

Commun.
processor

Mem

Full-duplex 3D torus

Alpha

Control +
E registers

Commun.
processor

Mem

Network Disk Tape

Alpha

Control +
E registers

Commun.
processor

Mem

Figure 8-35. The Cray Research T3E.

(a) (b)

64-Bit local bus

64-Bit local bus

PPro 64
MB

Kestrel
board

2

I/O NICPPro

PPro 64
MB I/O NICPPro

32

38

Figure 8-36. The Intel/Sandia Option Red system. (a) The
kestrel board. (b) The interconnection network.

CPU group

0 1 2 3 4 5 6 7

T
im

e

(a) (b) (c)

CPU group

0 1 2 3 4 5 6 7

CPU group

0 1 2 3 4 5 6 7

1

2

3

4 5

6

7

8 9

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

Figure 8-37. Scheduling a COW. (a) FIFO. (b) Without head-
of-line blocking. (c) Tiling. The shaded areas indicate idle
CPUs.

CPU CPU CPU

Packet
going east

Packet
going west

(a) (b)

Line card
Ethernet

Switch

Back-
plane

Figure 8-38. (a) Three computers on an Ethernet. (b) An Eth-
ernet switch.

CPU

ATM
switch

Port

Cell

Packet

Virtual circuit

1 2 3 4

5

6

7

8

9

10

11

12

13 14 15 16

Figure 8-39. Sixteen CPUs connected by four ATM switches.
Two virtual circuits are shown.

Globally shared virtual memory consisting of 16 pages

Memory

Network
(a)

(b)

(c)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CPU 0

0 2 5

9

CPU 1

1 3 6

8 10

CPU 2

4 7 11

12 14

CPU 3

13 15

CPU 0

0 2 5

9

CPU 1

1 3 6

810

10

CPU 2

4 7 11

12 14

CPU 3

13 15

CPU 0

0 2 5

9

CPU 1

1 3 6

8 10

CPU 2

4 7 11

12 14

CPU 3

13 15

Figure 8-40. A virtual address space consisting of 16 pages
spread over four nodes of a multicomputer. (a) The initial situa-
tion. (b) After CPU 0 references page 10. (c) After CPU 1
references page 10, here assumed to be a read-only page.

(′′abc′′, 2, 5)
(′′matrix-1′′, 1, 6, 3.14)
(′′family′′, ′′is sister′′, Carolyn, Elinor)

Figure 8-41. Three Linda tuples.

Object implementation stack;
top:integer; # storage for the stack
stack: array [integer 0..N-1] of integer;

operation push(item: integer); function returning nothing
begin

stack[top] := item; push item onto the stack
top := top + 1; # increment the stack pointer

end;

operation pop(): integer; # function returning an integer
begin

guard top > 0 do # suspend if the stack is empty
top := top - 1; # decrement the stack pointer
return stack[top]; # return the top item

od;
end;

begin
top := 0; # initialization

end;

Figure 8-42. A simplified ORCA stack object, with internal data
and two operations.

524 PARALLEL COMPUTER ARCHITECTURES CHAP. 8

8.1 DESIGN ISSUES FOR PARALLEL COMPUTERS

When approaching a new parallel computer system, three fundamental ques-
tions to ask are

1. What are the nature, size, and number of the processing elements?

2. What are the nature, size, and number of the memory modules?

3. How are the processing and memory elements interconnected?

Let us examine each of these points briefly in turn. The processing elements can
range from minimal ALUs through complete CPUs, with sizes ranging from a
small portion of a chip to a cubic meter of electronics per element. As one might
expect, when the processing element is a fraction of a chip, it is possible to equip
a computer with vast numbers, perhaps even a million of such elements. When
the processing element is a complete computer, with its own memory and I/O
equipment, the sizes are smaller, naturally, although systems with almost 10,000
CPUs have been installed. More and more, parallel computers are being con-
structed from commercially available parts, especially CPUs. The capabilities
and limitations of these parts often heavily influence the design.

Memory systems are often split up into modules that operate independently of
one another, in parallel to allow access by many CPUs at the same time. These
modules can be small (kilobytes) or large (megabytes) and closely integrated with
the CPUs or located on a different circuit board. Since large dynamic memories
(DRAMs) are usually much slower than CPUs, elaborate caching schemes are fre-
quently used to speed up memory access. Often two, three, and even four levels
of caching are used.

Although there is some variation among CPU and memory designs, the area
in which parallel systems differ most is how the pieces are put together. The
interconnection schemes can be divided into two rough categories: static and
dynamic. The static ones simply wire up all the components in a fixed way, such
as a star, ring, or grid. In dynamic interconnection schemes, all the pieces are
hooked up to a switching network that can dynamically route messages between
components. Each has its own strengths and weaknesses, as we shall soon see.

Viewing parallel computers as a collection of chips that are wired up in one
manner or another is essentially a bottom-up view of the world. In a top-down
approach, one would ask: ‘‘What is it that is to be run in parallel?’’ Here again, we
have a spectrum of possibilities. Some parallel computers are designed to run
multiple independent jobs simultaneously. These jobs have nothing to do with
one another and do not communicate. A typical example is a computer with 8 to
64 CPUs intended as a big UNIX timesharing system for handling thousands of
remote users. Transaction processing systems used by banks (e.g., automated
teller machines), airlines (e.g., reservation systems) and large Web servers also
fall into this category, as do independent simulation runs using different sets of

SEC. 8.1 DESIGN ISSUES FOR PARALLEL COMPUTERS 525

parameters.
A different point on this spectrum is the parallel computer used for running a

single job consisting of many parallel processes. As an example, consider a chess
program that analyzes a given board by generating a list of legal moves that can
be made from it, and then forking off parallel processes to (recursively) analyze
each new board in parallel. The point of the parallelism here is not to accommo-
date more users, but to gain speedup on a single problem.

Continuing along this spectrum, we come to machines in which the parallel-
ism comes from a high degree of pipelining or many ALUs operating on the same
instruction stream at the same time. Numeric supercomputers with special
hardware for vector processing fall in this category. Here we not only have one
main problem being solved, but all parts of the computer are working very closely
on almost the same aspect of the problem together (e.g., different elements of the
same two vectors are being added in parallel).

Although it is hard to pin down exactly, these three examples differ in what is
sometimes called grain size. In the multi-CPU timesharing systems, the unit of
parallelism is large: a complete user program. Running large pieces of software
in parallel with little or no communication between the pieces is called coarse-
grained parallelism. The opposite extreme, such as found in vector processing,
is called fine-grained parallelism.

Grain size refers to the algorithms and software, but it has a direct analog in
the hardware. Systems with a small number of large, independent CPUs that have
low-speed connections between the CPUs are called loosely coupled. Their
opposite number are the tightly-coupled systems, in which the components are
generally smaller, closer together and interact with each other frequently over
high-bandwidth communication networks. In most cases, problems with coarse-
grained parallelism work best on loosely-coupled systems; Similarly, problems
with fine-grained parallelism work best on tightly-coupled systems. However, so
much variety exists in algorithms, software, and hardware, that this is a general
guide at best. The wide range in problem grain size and possibilities for system
coupling have led to the wide variety of architectures that we will study in this
chapter.

In the following sections we will examine some of the design issues for paral-
lel computers, starting with communication models and interconnection networks.
Then we will look at performance and software issues. Finally, we will conclude
with a taxonomy of parallel computer architectures that will guide the organiza-
tion of the rest of this chapter.

8.1.1 Communication Models

In any parallel computer system, CPUs working on different parts of the same
job must communicate with one another to exchange information. Precisely how
they should do this is the subject of much debate in the architectural community.

526 PARALLEL COMPUTER ARCHITECTURES CHAP. 8

Two distinct designs, multiprocessors and multicomputers, have been proposed
and implemented. In this section we will examine each of them.

Multiprocessors

In the first design, all CPUs share a common physical memory, as illustrated
in Fig. 8-1(a). A system based on shared memory, like this one, is called a mul-
tiprocessor or sometimes just a shared memory system.

CPU

(a)

P P P P

P P P P

P

P

P

P

P

P

P

P

(b)

P P P P

P P P P

P

P

P

P

P

P

P

P

Shared
memory

Figure 8-1. (a) A multiprocessor with 16 CPUs sharing a common memory. (b)
An image partitioned into 16 sections, each being analyzed by a different CPU.

The multiprocessor model extends into software. All processes working
together on a multiprocessor can share a single virtual address space mapped onto
the common memory. Any process can read or write a word of memory by just
executing a LOAD or STORE instruction. Nothing else is needed. Two processes
can communicate by simply having one of them write data to memory and having
the other one read them back.

The ability for two (or more) processes to communicate by just reading and
writing memory is the reason multiprocessors are popular. It is an easy model for
programmers to understand and is applicable to a wide range of problems. Con-
sider, for example, a program that inspects a bit-map image and lists all the
objects in it. One copy of the image is kept in memory, as shown in Fig. 8-1(b).
Each of the 16 CPUs runs a single process, which has been assigned one of the 16
sections to analyze. Nevertheless, each process has access to the entire image,
which is essential, since some objects occupy multiple sections. If a process dis-
covers that one of its objects extends over a section boundary, it just follows the
object into the next section by reading the words of that section. In this example,
some objects will be discovered by multiple processes, so some coordination is
needed at the end to determine how many houses, trees, and airplanes there are.

Many computer vendors sell multiprocessors. Some examples are the Sun

SEC. 8.1 DESIGN ISSUES FOR PARALLEL COMPUTERS 527

Enterprise 10000, Sequent NUMA-Q, SGI Origin 2000, and HP/Convex Exem-
plar.

Multicomputers

The second design for a parallel architecture is one in which each CPU has its
own private memory, accessible only to itself and not to any other CPU. Such a
design is called a multicomputer, or sometimes a distributed memory system,
and is illustrated in Fig. 8-2(a). Multicomputers are frequently (but not always)
loosely coupled. The key aspect of a multicomputer that distinguishes it from a
multiprocessor is that each CPU in a multicomputer has its own private, local
memory that it can access by just executing LOAD and STORE instructions, but
which no other CPU can access using LOAD and STORE instructions. Thus mul-
tiprocessors have a single physical address space shared by all the CPUs whereas
multicomputers have one physical address space per CPU.

Since the CPUs on a multicomputer cannot communicate by just reading and
writing the common memory, they need a different communication mechanism.
What they do is pass messages back and forth using the interconnection network.
Examples of multicomputers include the IBM SP/2, Intel/Sandia Option Red, and
the Wisconsin COW.

CPU

(a)

P P P P

M M M M

P P P P

M M M M

P

P

P

P

M

M

M

M

P

P

P

P

M

M

M

M

Message-
passing

interconnection
network

CPU

(b)

P P P P

P P P P

P

P

P

P

P

P

P

P

Message-
passing

interconnection
network

Private memory

Figure 8-2. (a) A multicomputer with 16 CPUs, each with each own private
memory. (b) The bit-map image of Fig. 8-1 split up among the 16 memories.

The absence of hardware shared memory on a multicomputer has important
implications for the software structure. Having a single virtual address space with
all processes being able to read and write all of memory by just executing LOAD

528 PARALLEL COMPUTER ARCHITECTURES CHAP. 8

and STORE instructions is impossible on a multicomputer. For example, if CPU 0
(the one in the upper left-hand corner) of Fig. 8-1(b) discovers that part of its
object extends into the section assigned to CPU 1, it can nevertheless just con-
tinue reading memory to access the nose of the airplane. On the other hand, if
CPU 0 in Fig. 8-2(b) makes the same discovery, it cannot just read CPU 1’s
memory. It has to do something quite different to get the data it needs.

In particular, it has to discover (somehow) which CPU has the data it needs
and send that CPU a message requesting a copy of the data. Typically it will then
block (i.e., wait) until the request is answered. When the message arrives at CPU
1, software there has to analyze it and send back the needed data. When the reply
message gets back to CPU 0, the software is unblocked and can continue execut-
ing.

On a multicomputer, communication between processes often uses software
primitives such as send and receive. This gives the software a different, and far
more complicated structure, than on a multiprocessor. It also means that correctly
dividing up the data and placing them in the optimal locations is a major issue on
a multicomputer. It is less of an issue on a multiprocessor since placement does
not affect correctness or programmability although it may affect performance. In
short, programming a multicomputer is much more difficult than programming a
multiprocessor.

Under these conditions, why would anyone build multicomputers, when mul-
tiprocessors are easier to program? The answer is simple: large multicomputers
are much simpler and cheaper to build than multiprocessors with the same number
of CPUs. Implementing a memory shared by even a few hundred CPUs is a sub-
stantial undertaking, whereas building a multicomputer with 10,000 CPUs or
more is straightforward.

Thus we have a dilemma: multiprocessors are hard to build but easy to pro-
gram whereas multicomputers are easy to build but hard to program. This obser-
vation has led to a great deal of effort to construct hybrid systems that are rela-
tively easy to build and relatively easy to program. This work has led to the reali-
zation that shared memory can be implemented in various ways, each with its own
set of advantages and disadvantages. In fact, much of the research in parallel
architectures these days relates to the convergence of multiprocessor and multi-
computer architectures into hybrid forms that combine the strengths of each. The
holy grail here is to find designs that are scalable, that is, continue to perform
well as more and more CPUs are added.

One approach to building hybrid systems is based on the fact that modern
computer systems are not monolithic but are constructed as a series of layers—the
theme of this book. This insight opens the possibility of implementing the shared
memory at any one of several layers, as shown in Fig. 8-3. In Fig. 8-3(a) we see
the shared memory being implemented by the hardware as a true multiprocessor.
In this design, there is a single copy of the operating system with a single set of
tables, in particular, the memory allocation table. When a process needs more

SEC. 8.1 DESIGN ISSUES FOR PARALLEL COMPUTERS 529

memory, it traps to the operating system, which then looks in its table for a free
page and maps the page into the caller’s address space. As far as the operating
system is concerned, there is a single memory and it keeps track of which process
owns which page in software. There are many ways to implement hardware
shared memory, as we will see later.

(a)

Machine 1 Machine 2

Language
run-time
system

Operating
system

Shared memory

Application

Hardware

Language
run-time
system

Operating
system

Application

Hardware

(b)

Machine 1 Machine 2

Language
run-time
system

Operating
system

Shared memory

Application

Hardware

Language
run-time
system

Operating
system

Application

Hardware

(c)

Machine 1 Machine 2

Language
run-time
system

Operating
system

Shared memory

Application

Hardware

Language
run-time
system

Operating
system

Application

Hardware

Figure 8-3. Various layers where shared memory can be implemented. (a) The
hardware. (b) The operating system. (c) The language runtime system.

A second possibility is to use multicomputer hardware and have the operating
system simulate shared memory by providing a single system-wide paged shared
virtual address space. In this approach, called DSM (Distributed Shared
Memory) (Li, 1988; and Li and Hudak, 1986, 1989), each page is located in one
of the memories of Fig. 8-2(a). Each machine has its own virtual memory and its
own page tables. When a CPU does a LOAD or STORE on a page it does not have,
a trap to the operating system occurs. The operating system then locates the page
and asks the CPU currently holding it to unmap the page and send it over the
interconnection network. When it arrives, the page is mapped in and the faulting
instruction is restarted. In effect, the operating system is just satisfying page
faults from remote memory instead of from disk. To the user, the machine looks
as if it has shared memory. We will examine DSM later in this chapter.

530 PARALLEL COMPUTER ARCHITECTURES CHAP. 8

A third possibility is to have a user-level runtime system implement a (possi-
bly language-specific) form of shared memory. In this approach, the program-
ming language provides some kind of shared memory abstraction, which is then
implemented by the compiler and runtime system. For example, the Linda model
is based on the abstraction of a shared space of tuples (data records containing a
collection of fields). Processes on any machine can input a tuple from the shared
tuple space or output a tuple to the shared tuple space. Because access to the
tuple space is controlled entirely in software (by the Linda runtime system), no
special hardware or operating system support is needed.

Another example of a language-specific shared memory implemented by the
runtime system is the Orca model of shared data objects. In Orca, processes share
generic objects rather than just tuples and can execute object-specific methods on
them. When a method changes the internal state of an object, it is up to the run-
time system to make sure all copies of the object on all machines are simultane-
ously updated. Again, because objects are a strictly software concept, the imple-
mentation can be done by the runtime system help from the operating system or
hardware. We will look at both Linda and Orca later in this chapter.

8.1.2 Interconnection Networks

In Fig. 8-2 we saw that multicomputers are held together by interconnection
networks. Now it is time to look more closely at these interconnection networks.
Interestingly enough, multiprocessors and multicomputers are surprisingly similar
in this respect because multiprocessors often have multiple memory modules that
must also be interconnected with one another and with the CPUs. Thus the
material in this section frequently applies to both kinds of systems.

The fundamental reason why multiprocessor and multicomputer interconnec-
tion networks are similar is that at the very bottom both of them use message
passing. Even on a single-CPU machine, when the processor wants to read or
write a word, what it typically does is assert certain lines on the bus and wait for a
reply. This action is fundamentally like message passing: the initiator sends a
request and waits for a response. In large multiprocessors, communication
between CPUs and remote memory almost always consists of the CPU sending an
explicit message, called a packet, to memory requesting some data, and the
memory sending back a reply packet.

Interconnection networks can consist of up to five components:

1. CPUs

2. Memory modules.

3. Interfaces.

4. Links.

SEC. 8.1 DESIGN ISSUES FOR PARALLEL COMPUTERS 531

5. Switches.

We have already looked at CPUs and memories in some detail in this book and
will not do that further here. Basically, they are the endpoints of all communica-
tion. Interfaces are the devices that get the messages into and out of the CPUs
and memories. In many designs, an interface is a chip or board that is attached to
each CPU’s local bus and can talk to it and to local memory, if any. Often it has a
programmable processor inside of it as well as some RAM private to it alone.
Usually, the interface has the ability to read and write various memories, in order
to move blocks of data around.

The links are the physical channels over which the bits move. They can be
electrical or optical fiber and serial (1-bit wide) or parallel (more than 1-bit wide).
Each link has a maximum bandwidth, which is the number of bits per second it is
capable of transferring. Links can be simplex (unidirectional), half duplex (one
way at a time), or full duplex (both ways at once).

The switches are devices with multiple input ports and multiple output ports.
When a packet arrives at a switch on an input port, some bits in the packet are
used to select the output port to which the packet is sent. A packet might be as
short as 2 or 4 bytes, but it might also be much longer (e.g., 8 KB).

A certain analogy exists between an interconnection network and the streets
in a city. The streets are like links. Each has a directionality (one way or two
way), a maximum data rate (speed limit), and width (number of lanes). The inter-
sections are like switches. At each intersection, an arriving packet (pedestrian or
vehicle) has a choice of which outgoing port (street) it will use, depending on
where its final destination is.

When designing or analyzing an interconnection network, several areas stand
out as being important. First, there is the matter of topology, that is, how the com-
ponents are arranged. Second is how the switching works and how to handle con-
tention for resources. Third is what routing algorithm is used to get messages to
their destination efficiently. We will examine each of these topics briefly below.

Topology

The topology of an interconnection network describes how the links and
switches are arranged, for example, as a ring or as a grid. Topological designs
can be modeled as graphs, with the links as arcs and the switches as nodes, as
shown in Fig. 8-4. Each node in an interconnection network (or its graph) has
some number of links connected to it. Mathematicians call the number of links
the degree of the node; engineers call it the fanout. In general, the greater the
fanout, the more routing choices there are and the greater the fault tolerance, that
is, the ability to continue functioning even if a link fails by routing around it. If
every node has k arcs and the wiring is done right, it is possible to design the net-
work so that it remains fully connected even if k − 1 links fail.

532 PARALLEL COMPUTER ARCHITECTURES CHAP. 8

(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

Figure 8-4. Various topologies. The heavy dots represent switches. The CPUs
and memories are not shown. (a) A star. (b) A complete interconnect. (c) A tree.
(d) A ring. (e) A grid. (f) A double torus. (g) A cube. (h) A 4D hypercube.

Another property of an interconnection network (or its graph) is its diameter.
If we measure the distance between two nodes by the number of arcs that have to
be traversed to get from one to the other, then the diameter of a graph is the dis-
tance between the two nodes that are the farthest apart (i.e., have the greatest dis-
tance between them). The diameter of an interconnection network is related to the

SEC. 8.1 DESIGN ISSUES FOR PARALLEL COMPUTERS 533

worst-case delay when sending packets from CPU to CPU or from CPU to mem-
ory because each hop across a link takes a finite amount of time. The smaller the
diameter is, the better the worst-case performance is. Also important is the aver-
age distance between two nodes, since this relates to the average packet transit
time.

Yet another important property of an interconnection network is its transmis-
sion capacity, that is, how much data it can move per second. One useful measure
of this capacity is the bisection bandwidth. To compute this quantity, we first
have to (conceptually) partition the network into two equal (in terms of number of
nodes) but unconnected parts by removing a set of arcs from its graph. Then we
compute the total bandwidth of the arcs that have been removed. There may be
many different ways to partition the network into two equal parts. The bisection
bandwidth is the minimum of all the possible partitions. The significance of this
number is that if the bisection bandwidth is, say, 800 bits/sec, then if there is a lot
of communication between the two halves, the total throughput may be limited to
only 800 bits/sec, in the worst case. Many designers believe bisection bandwidth
is the most important metric of in interconnection network. Many interconnection
networks are designed with the goal of maximizing the bisection bandwidth.

Interconnection networks can be characterized by their dimensionality. For
our purposes, the dimensionality is determined by the number of choices there are
to get from the source to the destination. If there is never any choice (i.e., there is
only one path from each source to each destination), the network is zero dimen-
sional. If there is one dimension in which a choice can be made, for example, go
east or go west, the network is one dimensional. If there are two axes, so a packet
can go east or west or alternatively, go north or south, the network is two dimen-
sional, and so on.

Several topologies are shown in Fig. 8-4. Only the links (lines) and switches
(dots) are shown here. The memories and CPUs (not shown) would typically be
attached to the switches by interfaces. In Fig. 8-4(a), we have a zero-dimensional
star configuration, in which the CPUs and memories would be attached to the
outer nodes, with the central one just doing switching. Although a simple design,
for a large system, the central switch is likely to be a major bottleneck. Also,
from a fault-tolerance perspective, this is a poor design since a single failure at the
central switch completely destroys the system.

In Fig. 8-4(b), we have another zero-dimensional design that is at the other
end of the spectrum, a full interconnect. Here every node has a direct connection
to every other node. This design maximizes the bisection bandwidth, minimizes
the diameter, and is exceedingly fault tolerant (it can lose any six links and still be
fully connected). Unfortunately, the number of links required for k nodes is
k(k − 1)/2, which quickly gets out of hand for large k.

Yet a third zero-dimensional topology is the tree, illustrated in Fig. 8-4(c). A
problem with this design is that the bisection bandwidth is equal to the link capa-
city. Since there will normally be a lot of traffic near the top of the tree, the top

534 PARALLEL COMPUTER ARCHITECTURES CHAP. 8

few nodes will become bottlenecks. One way around this problem is to increase
the bisection bandwidth by giving the upper links more bandwidth. For example,
the lowest level links might have a capacity b, the next level might have a capa-
city 2b and the top-level links might each have 4b. Such a design is called a fat
tree and has been used in commercial multicomputers, such as the (now-defunct)
Thinking Machines’ CM-5.

The ring of Fig. 8-4(d) is a one-dimensional topology by our definition
because every packet sent has a choice of going left or going right. The grid or
mesh of Fig. 8-4(e) is a two-dimensional design that has been used in many com-
mercial systems. It is highly regular, easy to scale up to large sizes, and has a
diameter that only increases as the square root of the number of nodes. A variant
on the grid is the double torus of Fig. 8-4(f), which is a grid with the edges con-
nected. Not only is it more fault tolerant than the grid, but the diameter is also
less because the opposite corners can now communicate in only two hops.

The cube of Fig. 8-4(g) is a regular three-dimensional topology. We have
illustrated a 2 × 2 × 2 cube, but in the general case it could be a k × k × k cube. In
Fig. 8-4(h) we have a four-dimensional cube constructed from two three-
dimensional cubes with the corresponding edges connected. We could make a
five-dimensional cube by cloning the structure of Fig. 8-4(h) and connecting the
corresponding nodes to form a block of four cubes. To go to six dimensions, we
could replicate the block of four cubes and interconnect the corresponding nodes,
and so on. An n-dimensional cube formed this way is called a hypercube. Many
parallel computers use this topology because the diameter grows linearly with the
dimensionality. Put in other words, the diameter is the base 2 logarithm of the
number of nodes, so, for example, a 10-dimensional hypercube has 1024 nodes
but a diameter of only 10, giving excellent delay properties. Note that in contrast,
1024 nodes arranged as a 32 × 32 grid has a diameter of 62, more than six times
worse than the hypercube. The price paid for the smaller diameter is that the
fanout and thus the number of links (and the cost) is much larger for the hyper-
cube. Nevertheless, the hypercube is a common choice for high-performance sys-
tems.

Switching

An interconnection network consists of switches and wires connecting them.
In Fig. 8-5, we see a small network with four switches. Each switch in this exam-
ple has four input ports and four output ports. In addition, each switch has some
CPUs and interconnect circuitry (not shown in full). The job of the switch is to
accept packets arriving on any input port and send each one out on the correct out-
put port.

Each output port is connected to an input port belonging to another switch by
a serial or parallel link, shown as dotted lines in Fig. 8-5. Serial links transfer one
bit at a time. Parallel links transfer multiple bits at once and also have signals for

SEC. 8.1 DESIGN ISSUES FOR PARALLEL COMPUTERS 535

CPU 1

End
of

packet

Middle
of

packet

A

Input port

Output port

Front of packet

Four-port switch

B

C D

CPU 2

Figure 8-5. An interconnection network in the form of a four-switch square
grid. Only two of the CPUs are shown.

controlling the link. Parallel links have a higher performance than serial links of
the same clock rate but have the problem of skew (making sure all the bits arrive
at same time) and are much more expensive.

Several switching strategies are possible. In one strategy, called circuit
switching, before a packet is sent, the entire path from the source to the destina-
tion is reserved in advance. All ports and buffers are claimed, so that when
transmission starts, all the necessary resources are guaranteed to be available and
the bits can move at full speed from the source, through all the switches, to the
destination. Figure 8-5 illustrates circuit switching, with a circuit reserved from
CPU 1 to CPU 2, indicated by the heavy curved black arrow. Here three input
ports and three output ports have been reserved.

Circuit switching can be compared to reserving a parade route through a city
and having the police block off all side streets with barricades. It requires
advance planning, but once it has been done, the marchers can proceed at full
speed without interference from competing traffic. The disadvantage is that
advance planning is required and competing traffic is prohibited, even when no
marchers (packets) are in sight.

A second switching strategy is store-and-forward packet switching. Here
no advance reservation is needed. Instead, the source sends a complete packet to
the first switch where it is stored in its entirety. In Fig. 8-6(a) CPU 1 is the
source, and the entire packet, destined for CPU 2, is first buffered inside switch A.

536 PARALLEL COMPUTER ARCHITECTURES CHAP. 8

Once the packet has been fully accumulated in switch A, it is moved to switch C,
as shown in Fig. 8-6(b). After the entire packet has fully arrived in switch C, it is
moved to switch D, as shown in Fig. 8-6(c). Finally, it is sent to the destination,
CPU 2. Note that no setup is required and no resources are reserved in advance.

CPU 1 Input port

(a)

Output port

Entire
packet

Entire
packet

Four-port
switch

C

A

CPU 2

Entire
packet

D

B

(b)

C

A

D

B

(c)

C

A

D

B

Figure 8-6. Store-and-forward packet switching.

Store-and-forward switches must buffer packets because when a source (e.g.,
a CPU, memory, or switch) presents a packet, the required output port may be
currently busy transmitting another packet. If no buffering were present, incom-
ing packets needing an occupied output port would have to be dropped, leading to
an unreliable interconnection network. Three buffering strategies are used. In the
first one, input buffering, one or more buffers are associated with each input port
in the form of a first-in first-out queue. If the packet at the head of the queue can-
not be transmitted because the output port it needs is busy, it just waits.

The trouble with this design is that if a packet is waiting for some output port,
the packet behind it is stuck, even if it is destined for an idle port. This situation
is called head-of-line blocking. It can be compared to a sequence of cars on a
two-lane road that is stuck because the first car wants to turn left but cannot do so
due to oncoming traffic in the other lane. Even though the second and subsequent
cars want to go straight, the head car is blocking them.

Head-of-line blocking can be eliminated by output buffering. In this design,
the buffers are associated with the output ports, not the input ports. As the bits of
an incoming packet arrive, they are stored in a buffer associated with the correct
output port. In this way, packets destined for port m cannot block packets des-
tined for port n.

Both input buffering and output buffering have a fixed number of buffers
associated with each port. If more packets must be stored than there is room
there, packets will have to be dropped. One way to improve this situation is to use

SEC. 8.1 DESIGN ISSUES FOR PARALLEL COMPUTERS 537

common buffering, in which a single pool of buffers is dynamically allocated to
ports as needed. However, this scheme requires a more complex administration to
keep track of the buffers, and also allows one busy connection to hog all the
buffers, effectively starving other connections. Also, each switch needs to be able
to hold the largest packet, and probably several maximum packets, which tends to
increase memory requirements and drive down the maximum packet size.

While store-and-forward packet switching is flexible and efficient, it does
have the problem of increasing latency (delay) through the interconnection net-
work. Suppose that the time to move a packet one hop in Fig. 8-6 is T nsec.
Since the packet must be copied four times to get it from CPU 1 to CPU 2 (to A,
to C to D, and to the destination CPU), and no copy can begin until the previous
one is finished, the latency through the interconnection network is 4T. One way
out is to design a hybrid network, with some of the properties of circuit switching
and some of the properties of packet switching. For example, each packet can be
logically divided into smaller units. As soon as the first unit arrives at a switch, it
can be moved to the next switch, even before the tail of the packet has arrived.

This approach differs from circuit switching in that no resources are reserved
end-to-end in advance. Consequently contention for resources (ports and buffers)
is possible. In virtual cut through routing, when the first unit of a packet cannot
move, the rest of the packet continues to pour in. In the worst case, this scheme
degrades to store-and-forward packet switching. In an alternative approach,
wormhole routing, when the first unit cannot go forward, the source is told to
stop transmitting, so the packet may end up being strung out over two or possibly
even more switches like a worm. When the necessary resources become avail-
able, the packet can go forward.

It is worth noting that both of these approaches to switching use something
analogous to pipelining instructions on a CPU. At any instant, each switch is only
doing a small fraction of the work, but together they achieve a higher performance
than any one could do alone.

Routing Algorithms

In any network with a dimensionality of one or more, choices have to be made
about how to route packets from the source to the destination. Often multiple
routes exist. The rule that determines which sequence of nodes a packet must fol-
low from the source to the destination is called the routing algorithm.

Good routing algorithms are needed because often multiple paths are avail-
able. A good routing algorithm can spread the load over multiple links in order to
fully utilize the available bandwidth. Furthermore, the routing algorithm must
avoid deadlock within the interconnection network. A deadlock occurs when
multiple packets in transit at the same time have claimed resources in such a way
that none of them can make any forward progress and all will remained blocked
forever.

538 PARALLEL COMPUTER ARCHITECTURES CHAP. 8

An example of a deadlock in a circuit-switched interconnection network is
given in Fig. 8-7. (Deadlock can also occur in packet-switched networks, but it is
more graphic in circuit-switched ones.) Here each CPU is trying to send a packet
to the CPU diagonally opposite it. Each one has managed to reserve the input and
output ports on its local switch, as well as one input port on the next switch, but it
is unable to get the necessary output port on the second switch, so it just waits
until that port is available. Unfortunately, if all four CPUs start this process
simultaneously, all of them will block and the network will hang forever.

CPU 1

CPU 2

CPU 3

A

C

B

D

Input port

Output buffer

Four-port switch

CPU 4�
�
��
��
��
��

Figure 8-7. Deadlock in a circuit-switched interconnection network.

Routing algorithms can be categorized as source routing or distributed rout-
ing. In source routing, the source determines the full route through the intercon-
nection network in advance, expressed as a list of port numbers to be used at each
switch along the way. Typically if the path passes through k switches, the first k
bytes of each packet will contains the k output port numbers required, 1 byte per
port. When the packet reaches a switch, the first byte is stripped off and used to
determine the output port to use. The remaining portion of the packet is then
routed to the correct port. At each hop along the path, the packet gets 1 byte
shorter, exposing a new port number to be selected next.

In distributed routing, each switch makes a decision about which port to send
each arriving packet to. If it makes the same decision for each packet headed to a
given destination, the routing is said to be static. If it takes the current traffic into
account, the routing is said to be adaptive.

SEC. 8.1 DESIGN ISSUES FOR PARALLEL COMPUTERS 539

One popular routing algorithm for rectangular grids in any number of dimen-
sions that is known to be deadlock free is dimensional routing. In this algorithm,
the packet is first moved along the x-axis to the correct coordinate, then along the
y-axis to the correct coordinate, and so on for higher dimensions. For example, to
go from (3, 7, 5) to (6, 9, 8), the packet would first go from x = 3 to x = 6 through
(4, 7, 5), (5, 7, 5), and (6, 7, 5). Then it would work on the y-axis by going to
(6, 8, 5) and (6, 9, 5). Finally, it would go along the z-axis to (6, 9, 6), (6, 9, 7)
and (6, 9, 8). This algorithm prevents the cycles that cause a deadlock.

8.1.3 Performance

The point of building a parallel computer is to make it go faster than a unipro-
cessor machine. If it does not achieve that simple goal, it is not worth having.
Furthermore, it should achieve the goal in a cost-effective manner. A machine
that is twice as fast as a uniprocessor at 50 times the cost is not likely to be a big
seller. In this section we will examine some of the performance issues associated
with parallel computer architectures.

Hardware Metrics

From a hardware perspective, the performance metrics of interest are the CPU
and I/O speeds and the performance of the interconnection network. The CPU
and I/O speeds are the same as in the uniprocessor case, so the key parameters of
interest in a parallel system are those associated with the interconnect. There are
two key items: latency and bandwidth, which we will now look at in turn.

The roundtrip latency is the time it takes for a CPU to send a packet and get a
reply. If the packet is sent to a memory, then the latency measures the time to
read or write a word or block of words. If it is sent to another CPU, it measures
the interprocessor communication time for packets of that size. Usually, the
latency of interest is for minimal packets, often one word or a small cache line.

The latency is built up from several factors, and is different for circuit-
switched, store-and-forward, virtual cut through, and wormhole-routed intercon-
nects. For circuit switching, the latency is the sum of the setup time and the
transmission time. To set up a circuit, a probe packet has to be sent out to reserve
the resources and then report back. Once that has happened, the data packet has
to be assembled. When it is ready, bits can flow at full speed, so if the total setup
time is Ts , the packet size is p bits, and the bandwidth b bits/sec, the one-way
latency is Ts + p/b. If the circuit is full duplex, then there is no setup time for the
reply, so the minimum latency for sending a p bit packet and getting a p bit reply
is Ts + 2p /b sec.

For packet switching, it is not necessary to send a probe packet to the destina-
tion in advance, but there is still some internal setup time to assemble the packet,
Ta . Here the one-way transmission time is Ta + p/b, but this is only the time to

540 PARALLEL COMPUTER ARCHITECTURES CHAP. 8

get the packet into the first switch. There is a finite delay within the switch, say
Td and then the process is repeated to the next switch and so on. The Td delay is
composed of both processing time and queueing delay, waiting for the output port
to become free. If there are n switches, then the total one-way latency is
Ta + n(p /b + Td) + p/b, where the final term is due to the copy from the last
switch to the destination.

The one-way latencies for virtual cut through and wormhole routing in the
best case are close to Ta + p/b because there is no probe packet to set up a circuit,
and no store-and-forward delay either. Basically, it is the initial setup time to
assemble the packet, plus the time to push the bits out the door. In all cases, pro-
pagation delay has to be added, but that is usually small.

The other hardware metric is bandwidth. Many parallel programs, especially
in the natural sciences, move a lot of data around, so the number of bytes/sec that
the system can move is critical to performance. Several metrics for bandwidth
exist. We have seen one of them—bisection bandwidth—already. Another one is
the aggregate bandwidth, which is computed by simply adding up the capacities
of all the links. This number gives the maximum number of bits that can be in
transit at once. Yet another important metric is the average bandwidth out of each
CPU. If each CPU is capable of outputting 1 MB/sec, it does little good that the
interconnect has a bisection bandwidth of 100 GB/sec. Communication will be
limited by how much data each CPU can output.

In practice, actually achieving anything even close to the theoretical band-
width is very difficult. Many sources of overhead work to reduce the capacity.
For example, there is always some per-packet overhead associated with each
packet: assembling it, building its header, and getting it going. Sending 1024 4-
byte packets will never achieve the same bandwidth as sending 1 4096-byte
packet. Unfortunately, for achieving low latencies, using small packets is better,
since large ones block the lines and switches too long. Thus there is an inherent
conflict between achieving low average latencies and high-bandwidth utilization.
For some applications, one is more important than the other and for other applica-
tions it is the other way around. It is worth noting, however, that you can always
buy more bandwidth (by putting in more or wider wires), but you cannot buy
lower latencies. Thus it is generally better to err on the side of making latencies
as short as possible, and worry about bandwidth later.

Software Metrics

Hardware metrics like latency and bandwidth look at what the hardware is
capable of doing. However, users have a different perspective. They want to
know how much faster their programs are going to run on a parallel computer than
on a uniprocessor. For them, the key metric is speedup: how much faster a pro-
gram runs on an n-processor system than on a 1-processor system. Typically
these results are shown in graphs like those of Fig. 8-8. Here we see several

SEC. 8.1 DESIGN ISSUES FOR PARALLEL COMPUTERS 541

different parallel programs run on a multicomputer consisting of 64 Pentium Pro
CPUs. Each curve shows the speedup of one program with k CPUs as a function
of k. Perfect speedup is indicated by the dotted line, in which using k CPUs
makes the program go k times faster, for any k. Few programs achieve perfect
speedup, but some come close. The N-body problem parallelizes extremely well;
awari (an African board game) does reasonably well; but inverting a certain sky-
line matrix does not go more than five times faster no matter how many CPUs are
available. The programs and results are discussed in (Bal et al., 1998).

6050403020100

60

50

40

30

20

10

0

S
pe

ed
up

Linear speedup

N-body problem

Awari

Skyline matrix inversion

Number of CPUs

Figure 8-8. Real programs achieve less than the perfect speedup indicated by
the dotted line.

Part of the reason that perfect speedup is nearly impossible to achieve is that
almost all programs have some sequential component, often the initialization
phase, reading in the data, or collecting the results. Having many CPUs does not
help here. Suppose that a program runs for T sec on a uniprocessor, with a frac-
tion f of this time being sequential code and a fraction (1 − f) being potentially
parallelizable, as shown in Fig. 8-9(a). If the latter code can be run on n CPUs
with no overhead, its execution time can be reduced from (1 − f)T to (1 − f)T/n
at best, as shown in Fig. 8-9(b). This gives a total execution time for the sequen-
tial and parallel parts of fT + (1 − f)T/n. The speedup is just the execution time
of the original program, T, divided by this new execution time:

Speedup =
1 + (n − 1)f

n33333333333

542 PARALLEL COMPUTER ARCHITECTURES CHAP. 8

For f = 0 we can get linear speedup, but for f > 0, perfect speedup is not possible
due to the sequential component. This result is known as Amdahl’s law.

(a)

n CPUs active

1 CPU
active

1 – ff

T

Inherently
sequential

part

(b)

1 – ff

Potentially
parallelizable

part
…

fT (1 – f)T/n

Figure 8-9. (a) A program has a sequential part and a parallelizable part. (b)
Effect of running part of the program in parallel.

Amdahl’s law is not the only reason perfect speedup is nearly impossible to a-
chieve. Nonzero communication latencies, finite communication bandwidths, and
algorithmic inefficiencies can also play a role. Also, even if 1000 CPUs were
available, not all programs can be written to make use of so many CPUs, and the
overhead in getting them all started may be significant. Furthermore, often the
best-known algorithm does not parallelize well, so a suboptimal algorithm must
be used in the parallel case. This all said, for many applications, having the pro-
gram run n times faster is highly desirable, even if it takes 2n CPUs to do it.
CPUs are not that expensive, after all, and many companies live with considerably
less than 100% efficiency in other parts of their businesses.

Achieving High Performance

The most straightforward way to improve performance is to add more CPUs
to the system. However, this addition must be done in such a way as to avoid
creating any bottlenecks. A system in which one can add more CPUs and get
correspondingly more computing power is said to be scalable.

To see some of the implications of scalability, consider four CPUs connected
by a bus, as illustrated in Fig. 8-10(a). Now imagine scaling the system to 16
CPUs by adding 12 more, as shown in Fig. 8-10(b). If the bandwidth of the bus is
b MB/sec, then by quadrupling the number of CPUs, we have also reduced the
available bandwidth per CPU from b/4 MB/sec to b/16 MB/sec. Such a system is
not scalable.

Now we do the same thing with a grid-based system, as shown in Fig. 8-10(c)
and Fig. 8-10(d). With this topology, adding new CPUs also adds new links, so

SEC. 8.1 DESIGN ISSUES FOR PARALLEL COMPUTERS 543

CPU

Bus

(a) (b) (c) (d)

Figure 8-10. (a) A 4-CPU bus-based system. (b) A 16-CPU bus-based system.
(c) A 4-CPU grid-based system. (d) A 16-CPU grid-based system.

scaling the system up does not cause the aggregate bandwidth per CPU to drop, as
it does with a bus. In fact, the ratio of links to CPUs increases from 1.0 with 4
CPUs (4 CPUs, 4 links) to 1.5 with 16 CPUs (16 CPUs, 24 links), so adding CPUs
improves the aggregate bandwidth per CPU.

Of course, bandwidth is not the only issue. Adding CPUs to the bus does not
increase the diameter of the interconnection network or latency in the absence of
traffic, whereas adding them to the grid does. For an n × n grid, the diameter is
2(n − 1), so the worst (and average) case latency increases roughly as the square
root of the number of CPUs. For 400 CPUs, the diameter is 38, whereas for 1600
CPUs it is 78, so quadrupling the number of CPUs approximately doubles the
diameter and thus the average latency.

Ideally, a scalable system should maintain the same average bandwidth per
CPU and a constant average latency as CPUs are added. In practice, keeping
enough bandwidth per CPU is doable, but in all practical designs, latency grows
with size. Having it grow logarithmically, as in a hypercube, is about the best that
can be done.

The problem with having latency grow as the system scales up is that latency
is often fatal to performance in fine- and medium-grained applications. If a pro-
gram needs data that are not in its local memory, there is often a substantial delay
in getting them, and the bigger the system, the longer the delay, as we have just
seen. This problem is equally true of multiprocessors as multicomputers, since in
both cases the physical memory is invariably divided up into far-flung modules.

As a consequence of this observation, system designers often go to great
lengths to reduce, or at least hide, the latency, using several techniques we will
now mention. The first latency-hiding technique is data replication. If copies of a
block of data can be kept at multiple locations, accesses from those locations can
be speeded up. One such replication technique is caching, in which one or more
copies of data blocks are kept close to where they are being used, as well as where
they ‘‘belong.’’ However, another strategy is to maintain multiple peer copies—
copies that have equal status—as opposed to the asymmetric primary/secondary

544 PARALLEL COMPUTER ARCHITECTURES CHAP. 8

relationship used in caching. When multiple copies are maintained, in whatever
form, key issues are where the data blocks are placed, when, and by whom.
Answers range from dynamic placement on demand by the hardware, to inten-
tional placement at load time following compiler directives. In all cases, manag-
ing consistency is an issue.

A second technique for hiding latency is prefetching . If a data item can be
fetched before it is needed, the fetching process can be overlapped with normal
execution, so that when the item is needed, it will be there. Prefetching can be
automatic or under program control. When a cache loads not only the word being
referenced, but an entire cache line containing the word, it is gambling that the
succeeding words are also likely to be needed soon.

Prefetching can also be controlled explicitly. When the compiler realizes that
it will need some data, it can put in an explicit instruction to go get them, and put
that instruction sufficiently far in advance that the data will be there in time. This
strategy requires that the compiler have a complete knowledge of the underlying
machine and its timing, as well as control over where all data are placed. Such
speculative LOAD instructions work best when it is known for sure that the data
will be needed. Getting a page fault on a LOAD for a path that is ultimately not
taken is very costly.

A third technique that can hide latency is multithreading. Most modern sys-
tems support the concept of multiprogramming, in which multiple processes can
run simultaneously (or in pseudoparallel on a timesharing basis). If switching
between processes can be made fast enough, for example, by giving each one its
own memory map and hardware registers, then when one process blocks waiting
for remote data to arrive, the hardware can quickly switch to another one that is
able to continue. In the limiting case, the CPU runs the first instruction from
thread one, the second instruction from thread two, and so on. In this way, the
CPU can be kept busy, even in the face of long memory latencies for the indivi-
dual threads.

In fact, some machines automatically cycle among the processes, switching
after every instruction, to hide long latencies. One of the first supercomputers, the
CDC 6600, carried this idea to such an extreme that it was advertised as having 10
peripheral processing units that could run in parallel. In reality there was only one
peripheral processor, which simulated 10 of them by running instructions from
each one in round robin order, first one instruction from peripheral processor 1,
then one instruction from peripheral processor 2, and so on.

A fourth technique for hiding latency is using nonblocking writes. Normally,
when a STORE instruction is executed, the CPU waits until the STORE has com-
pleted before continuing. With nonblocking writes, the memory operation is
started, but the program just continues anyway. Continuing past a LOAD is harder,
but with out-of-order execution, even that is possible.

SEC. 8.1 DESIGN ISSUES FOR PARALLEL COMPUTERS 545

8.1.4 Software

Although this chapter is primarily about parallel computer architectures, a few
words about software are appropriate too. After all, without parallel software,
parallel hardware is of little use, so good hardware designers take the needs of the
software into account when designing the hardware. For a discussion about
software for parallel computers, see (Wilkinson and Allen, 1999).

There are four general approaches to producing software for parallel comput-
ers. At one extreme is the addition of special numerical libraries to otherwise nor-
mal sequential languages. For example, a library procedure to invert a large
matrix or solve a set of partial differential equations could be called from a
sequential program and do its work on a parallel processor without the program-
mer even being aware of the existence of parallelism. The trouble with this
approach is that parallelism can only be used in a few procedures and the bulk of
the code will remain sequential.

A second approach is the addition of special libraries containing communica-
tion and control primitives. Here the programmer is responsible for creating and
managing the parallelism within a conventional programming language using
these additional primitives.

The next step up is to add a few special constructs to existing programming
languages, such as the ability to fork off new parallel processes easily, execute the
iterations of a loop in parallel, or do arithmetic on all the elements of a vector at
the same time. This approach is widely used and numerous programming lang-
uages have been modified to include some parallelism.

The most extreme approach is to invent an entirely new language especially
for parallel processing. The obvious advantage of inventing a new language is
that such a language is well suited for parallel programming, but the equally obvi-
ous disadvantage is that programmers must learn a new language. Quite a few of
them have something else to do with their time. Most new parallel languages are
imperative (with instructions to modify state variables), but a few are functional,
logic based, or object oriented.

There have been so many libraries, extensions, and new languages invented
for parallel programming, and they span such a broad spectrum of possibilities,
that it is impossible to classify all of them in any reasonable way. Instead of even
trying, we will focus on five key issues that form the heart of all software for
parallel computers:

1. Control models.

2. Granularity of parallelism.

3. Computational paradigms.

4. Communication methods.

5. Synchronization primitives.

546 PARALLEL COMPUTER ARCHITECTURES CHAP. 8

Each of these will now be discussed in turn.

Control Models

Probably the most fundamental choice the software must make is whether
there will be one thread of control or multiple threads of control. In the former
model, there is one program and one program counter, but multiple sets of data.
As each instruction is issued, it is carried out on all data sets simultaneously, by
different processing elements.

As an example, imagine a weather program with hourly temperature measure-
ments from thousands of remote sensors that have to be averaged for each sensor.
When the program issues the instruction

LOAD THE TEMPERATURE FOR 1 A.M. INTO REGISTER R1

each processor carries it out, using its own data and its own R1. Later, when the
program issues the instruction

ADD THE TEMPERATURE FOR 2 A.M. TO REGISTER R1

again, each processor does it using its own data. At the end of the calculation,
each processor will have computed the mean temperature for a different sensor.

The implications for this programming model for the hardware are enormous.
It effectively says that each processing element is basically an ALU and a
memory, with no instruction decoding logic of its own. Instead a single central-
ized unit fetches instructions and tells the ALUs what to do next.

In the alternative model, multiple threads of control exist, each one with its
own program counter, registers, and local variables. Each thread of control exe-
cutes its own program on its own data, possibly communicating or synchronizing
with other threads of control from time to time. Many variations on this basic
idea exist, and together they form the dominant model for parallel processing. For
this reason, we will now focus primarily on parallel computing involving multiple
threads of control.

Granularity of Parallelism

Control parallelism can be introduced at various levels. At the lowest level,
individual machine instructions can contain parallelism (e.g., the IA-64). At this
level, programmers are usually not aware of the parallelism; it is managed by the
compiler or hardware.

One level up we come to block-level parallelism, which allows programmers
explicit control over which statements are to be executed sequentially and which
in parallel. One of the most elegant ways of expressing this kind of parallelism is
due to Algol 68, in which

SEC. 8.1 DESIGN ISSUES FOR PARALLEL COMPUTERS 547

begin Statement-1; Statement-2; Statement-3 end

was used to create a block with (for example) three arbitrary statements to be exe-
cuted sequentially. In contrast,

begin Statement-1, Statement-2, Statement-3 end

was used to execute the same three statements in parallel. By careful placement
of semicolons, commas, parentheses, and begin/end delimiters, arbitrary combi-
nations of sequential and parallel execution could be expressed.

A somewhat coarser grain of parallelism is present when it is possible to call a
procedure and not have the caller wait for it before continuing. Not waiting
means that the caller and callee will run in parallel. If the caller is in a loop that
calls a procedure on every iteration and waits for none of them, then a large
number of parallel procedures can be started at once.

Another form of parallelism is to have a method for a process to create or fork
off multiple threads or lightweight processes, all of which run within the process
address space. Each thread has its own program counter, registers, and stack but
otherwise shares all the rest of the address space (and all the global variables)
with all the other threads. (In contrast to threads, different processes do not share
a common address space.) Threads run independently of one another, possibly on
different CPUs. In some systems, the operating system is aware of all the threads
and does the thread scheduling. In other systems, each user process does its own
thread scheduling and management, without the operating system even knowing
about the threads.

Finally, the coarsest form of parallelism is having multiple independent
processes work together to solve a problem. Unlike threads, which share a com-
mon address space, independent processes do not, so they must cooperate at arms’
length, which means that the problem must be divided into relatively large
chunks, one for each process. However, independent processes also offer the
most opportunity for exploiting large-scale parallelism especially on multicomput-
ers.

Computational Paradigms

Most parallel programs, especially those involving large numbers of threads
or independent processes, use some underlying paradigm to structure their work.
Many such paradigms exist. In this section we will just mention a few of the
more popular ones.

A generalization of the idea of having a parallel program consist of one thread
of control and multiple execution units is the SPMD (Single Program Multiple
Data) paradigm. The idea here is that although the system consists of multiple
independent processes, they all run the same program, but on different data sets.
Only now, unlike in the temperature example, they are not in lockstep, synchron-
ized down to the last instruction. Instead, each one performs the same

548 PARALLEL COMPUTER ARCHITECTURES CHAP. 8

computation, but at its own pace.
A second paradigm is the pipeline, illustrated in Fig. 8-11(a) with three

processes. Data are fed into the first process, which transforms them and outputs
them for the second process to read, and so on. If the data stream is long (e.g., a
video presentation), all the processors may be busy at the same time. UNIX pipe-
lines work like this and can be run as separate processes in parallel on a multi-
computer or multiprocessor.

Process

P1

(d)

P2

P5 P6

P3

P2P1 P3

P8P7

P1

P9

P1

P2

P3

P2 P3

Synchronization point

P1 P2 P3

Synchronization point

P4

Work queue

(c)(b)(a)

Figure 8-11. Computational paradigms. (a) Pipeline. (b) Phased computation.
(c) Divide and conquer. (d) Replicated worker.

Another paradigm is the computation of Fig. 8-11(b), in which the work is
divided up into phases, for example, iterations of a loop. During each phase, mul-
tiple processes work in parallel, but when each one has finished, it waits until all
the others are done too before starting the next phase. A fourth paradigm is
divide and conquer, depicted in Fig. 8-11(c), in which one process starts off and
then forks off other processes to which it can pass some of the work. An analogy
in the construction world is a general contractor who gets an order, then subcon-
tracts out much of the work to masonry, electrical, plumbing, painting, and other
subcontractors. These, in turn, may contract out some of their work to yet more
specialized subcontractors.

Our last model is the replicated worker paradigm, sometimes called a task
farm, and illustrated in Fig. 8-11(d). Here, a centralized work queue exists and
workers take tasks out of the queue and complete them. If a task generates new
tasks, these are added to the central queue. Whenever a worker finishes its
current task, it goes to the task queue to get a new one. This paradigm can also be
implemented with an active manager at the top handing out work, rather than

SEC. 8.1 DESIGN ISSUES FOR PARALLEL COMPUTERS 549

having the workers forage for it on their own.

Communication Methods

When a program is split up into pieces, say, processes, which run in parallel,
the pieces (processes) often need to communicate with one another. This com-
munication can be done in one of two ways: shared variables or explicit message
passing. In the former method, all the processes have access to the common logi-
cal memory and can communicate by reading and writing it. For example, one
process can set a variable and another one, in a different process, can read it.

On a multiprocessor, variables can be shared among multiple processes by
mapping the same page into each process’ address space. Then shared variables
can be read and written using ordinary LOAD and STORE machine instructions.
However, even on a multicomputer, with no shared physical memory, logical
sharing of variables is still possible, albeit slightly more complicated. As we saw
above, Linda supports the notation of a shared tuple space, even on a multicom-
puter, and Orca supports the concept of shared objects across machine boundaries.
Sharing a single address space on a multicomputer and paging over the intercon-
nection network is also a possibility. In short, allowing processes to communicate
through shared variables is possible on both multiprocessors and multicomputers.

The alternative to communication via shared memory is communication via
explicit message passing. In this model, processes use primitives such as send and
receive to communicate. One process does a send, naming another process as the
destination. As soon as the latter does a receive, the message is copied into the
receiver’s address space.

Message passing has many variations, but all of them come down to having
two primitives send and receive which are used to transmit messages. These are
generally implemented as system calls. We will go into some of the details later
in this chapter.

Another issue in message passing is how many receivers there are. The sim-
plest case is one sender and one receiver, known as point-to-point message pass-
ing. However, sometimes it is useful for a message to be delivered to all
processes, called broadcasting, or to a specific subset of the processes, known as
multicasting.

It should be noted that message passing is easy to implement on a multipro-
cessor by simply copying from the sender to the receiver. Thus the issues of phy-
sical shared memory (multiprocessor versus multicomputer) and logical shared
memory (communication via shared variables versus explicit message passing)
are separate. All four combinations make sense and can be implemented. They
are listed in Fig. 8-12.

550 PARALLEL COMPUTER ARCHITECTURES CHAP. 8

22
Physical

(hardware)
Logical

(software) Examples22
Multiprocessor Shared variables Image processing as in Fig. 8-122
Multiprocessor Message passing Message passing simulated with buffers in memory22
Multicomputer Shared variables DSM, Linda, Orca, etc. on an SP/2 or a network of PCs22
Multicomputer Message passing PVM or MPI on an SP/2 or a network of PCs2211

1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1

Figure 8-12. Combinations of physical and logical sharing.

Synchronization Primitives

Parallel processes not only need to communicate, they also often need to syn-
chronize their actions. An example of synchronization occurs when processes
logically share variables and have to make sure that while one process is writing
to a shared data structure, no other process is attempting to read from it. In other
words, some form of mutual exclusion is needed to prevent multiple processes
from using the same data at the same time.

Various software primitives that can be used to ensure mutual exclusion exist.
These include semaphores, locks, mutexes, and critical sections. What they all
have in common is that they allow a process to request exclusive use of some
resource (shared variable, I/O device, etc.). If permission is granted, the process
can use the resource. If a second process asks for permission while the first one is
still using the resource, it will be denied permission or blocked until the first pro-
cess has released the resource.

A second kind of synchronization primitive needed in many parallel programs
is some way to allow all the processes to block until a certain phase of the work is
done, as shown in Fig. 8-11(b). A common primitive here is the barrier. When a
process hits a barrier, it is blocked until all the processes have hit the barrier.
When the last one arrives, all the processes are simultaneously released and
allowed to continue.

8.1.5 Taxonomy of Parallel Computers

Although much more could be said about software for parallel computers,
space limitations require us to get back to our main topic for this chapter, the
architecture of parallel computers. Many kinds of parallel computers have been
proposed and built over the years, so it is natural to ask if there is some way of
categorizing them into a taxonomy. Many researchers have tried, with mixed
results (Flynn, 1972; Gajski and Pier, 1985; and Treleaven, 1985). Unfortunately,
the Carolus Linnaeus† of parallel computing is yet to emerge. The only scheme
3333333333333333

† Carolus Linnaeus (1707-1778) was the Swedish biologist who devised the system now used for

SEC. 8.1 DESIGN ISSUES FOR PARALLEL COMPUTERS 551

that is used much is Flynn’s, and even his is, at best, a very crude approximation.
It is given in Fig. 8-13.

222
Instruction
streams

Data
streams Name Examples222

1 1 SISD Classical Von Neumann machine222
1 Multiple SIMD Vector supercomputer, array processor222
Multiple 1 MISD Arguably none222
Multiple Multiple MIMD Multiprocessor, multicomputer22211
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1

Figure 8-13. Flynn’s taxonomy of parallel computers.

Flynn’s classification is based on two concepts—instruction streams and data
streams. An instruction stream corresponds to a program counter. A system with
n CPUs has n program counters, hence n instruction streams.

A data stream consists of a set of operands. The temperature computation
example given earlier has multiple data streams, one for each sensor.

The instruction and data streams are, to some extent, independent, so four
combinations exist, as listed in Fig. 8-13. SISD is just the classical, sequential
von Neumann computer. It has one instruction stream, one data stream, and does
one thing at a time. SIMD machines have a single control unit that issues one
instruction at a time, but they have multiple ALUs to carry it out on multiple data
sets simultaneously. The ILLIAC IV (Fig. 2-8) is the prototype of SIMD
machines. Modern SIMD machines exist and are used for scientific computing.

MISD machines are a somewhat strange category, with multiple instructions
operating on the same piece of data. It is not clear if any such machines exist,
although some people regard pipelined machines as MISD.

Finally, we have MIMD, which are just multiple independent CPUs operating
as part of a larger system. Most parallel processors fall into this category. Both
multiprocessors and multicomputers are MIMD machines.

Flynn’s taxonomy stops here, but we have extended it in Fig. 8-14. SIMD has
been split into two subgroups. The first one is for numeric supercomputers and
other machines that operate on vectors, performing the same operation on each
vector element. The second one is for parallel-type machines, such as the
ILLIAC IV, in which a master control unit broadcasts instructions to many
independent ALUs.

In our taxonomy, the MIMD category has been split into multiprocessors
(shared-memory machines), and multicomputers (message-passing machines).
Three kinds of multiprocessors exist, distinguished by the way the shared memory
is implemented on them. They are called UMA (Uniform Memory Access),
NUMA (NonUniform Memory Access), and COMA (Cache Only Memory
3333333333333333
classifying all plants and animals into kingdom, phylum, class, order, family, genus, and species.

552 PARALLEL COMPUTER ARCHITECTURES CHAP. 8

SISD

(Von Neumann)

SIMD

Parallel computer architectures

MISD

?

MIMD

Vector
processor

Array
processor

Multi-
processors

Multi-
computers

UMA COMA NUMA MPP COW

Bus Switched CC-NUMA NC-NUMA Grid
Hyper-
cube

Shared memory Message passing

Figure 8-14. A taxonomy of parallel computers.

Access). These categories exist because in large multiprocessors, the memory is
usually split up into multiple modules. UMA machines have the property that
each CPU has the same access time to every memory module. In other words,
every memory word can be read as fast as every other memory word. If this is
technically impossible, the fastest references are slowed down to match the
slowest ones, so programmers do not see the difference. This is what ‘‘uniform’’
means here. This uniformity makes the performance predictable, an important
factor for writing efficient code.

In contrast, in a NUMA multiprocessor, this property does not hold. Often
there is a memory module close to each CPU and accessing that memory module
is much faster than accessing distant ones. The result is that for performance rea-
sons, it matters where code and data are placed. COMA machines are also nonun-
iform, but in a different way. We will study each of these types and their sub-
categories in detail later.

The other main category of MIMD machines consists of the multicomputers,
which, unlike the multiprocessors, do not have shared primary memory at the
architectural level. In other words, the operating system on a multicomputer CPU
cannot access memory attached to a different CPU by just executing a LOAD
instruction. It has to send an explicit message and wait for an answer. The ability
of the operating system to read a distant word by just doing a LOAD is what

SEC. 8.1 DESIGN ISSUES FOR PARALLEL COMPUTERS 553

distinguishes multiprocessors from multicomputers. As we mentioned before,
even on a multicomputer, user programs may have the ability to access remote
memory by using LOAD and STORE instructions, but this illusion is supported by
the operating system, not the hardware. This difference is subtle, but very impor-
tant. Because multicomputers do not have direct access to remote memory, they
are sometimes called NORMA (NO Remote Memory Access) machines.

Multicomputers can be roughly divided into two categories. The first
category contains the MPPs (Massively Parallel Processors), which are expen-
sive supercomputers consisting of many CPUs tightly coupled by a high-speed
proprietary interconnection network. The Cray T3E and IBM SP/2 are well-
known examples.

The other category consists of regular PCs or workstations, possibly rack-
mounted, and connected by commercial off-the-shelf interconnection technology.
Logically, there is not much difference, but huge supercomputers costing many
millions of dollars are used differently than networks of PCs assembled by the
users for a fraction of the price of an MPP. These home-brew machines go by
various names, including NOW (Network of Workstations) and COW (Cluster
of Workstations).

In the following sections, we will look at the main categories, SIMD,
MIMD/multiprocessors, and MIMD/multicomputers in some detail. The goal is
to give a good overview of what each type is like, what the subcategories are, and
what the key design principles are. Several examples will be used for illustration.

A
BINARY NUMBERS

1

100's
place

10's
place

1's
place

.1's
place

.01's
place

.001's
place

dn d2 d1 d0 d–1 d–2 d–3 d–k

Number =
n

i = –k
di 10i

… ….

 × Σ

Figure A-1. The general form of a decimal number.

.

Binary

Octal

Decimal

Hexadecimal

1 1 1 1 1 1 10 0 00

7 1D

1 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 1 × 20

3 7 2 1

3 × 83 + 7 × 82 + 2 × 81 + 1 × 80

2 0 0 1

2 × 103 + 0 × 102 + 0 × 101 + 1 × 100

++ +

7 × 162 + 13 × 161 + 1 × 160

1792 1208+ +

10 0 016 0

116

64128256 512+ + + +

+++

 + + + + + +1024

4481536

2000 100

Figure A-2. The number 2001 in binary, octal, and hexadecimal.

22
Decimal Binary Octal Hex22

0 0 0 022
1 1 1 122
2 10 2 222
3 11 3 322
4 100 3 322
5 101 5 522
6 110 6 622
7 111 7 722
8 1000 10 822
9 1001 11 922

10 1010 12 A22
11 1011 13 B22
12 1100 14 C22
13 1101 15 D22
14 1110 16 E22
15 1111 17 F22
16 10000 20 1022
20 10100 24 1422
30 11110 36 1E22
40 101000 50 2822
50 110010 62 3222
60 111100 74 3C22
70 1000110 106 4622
80 1010000 120 5022
90 1011010 132 5A22

100 11001000 144 6422
1000 1111101000 1750 3E822
2989 101110101101 5655 BA2211

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure A-3. Decimal numbers and their binary, octal, and hex-
adecimal equivalents.

Example 1

Hexadecimal

Binary

Octal

Hexadecimal

Binary

Octal

Example 2

1

1

9 4

4

4

8 B

B

6

1

4

4

5

5

0

0

7

7 7

AB C

5 5

56

4

3

3

0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 0

0 1 1 1 1 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 0

.

.

.

.

.

.

Figure A-4. Examples of octal-to-binary and hexadecimal-to-
binary conversion.

Quotients Remainders

1 4 9 2

7 4 6

3 7 3

1 8 6

9 3

4 6

2 3

1 1

5

2

1

0

1

0

0

0

1

1

1

1

1

0

0

1 0 1 1 1 0 1 0 1 0 0 = 149210

Figure A-5. Conversion of the decimal number 1492 to binary
by successive halving, starting at the top and working down-
ward. For example, 93 divided by 2 yields a quotient of 46 and
a remainder of 1, written on the line below it.

1 + 2 × 1499 = 2999

01 1 1 1 0 1 1 0 1 1 1

Result

1 + 2 × 749 = 1499

1 + 2 × 374 = 749

0 + 2 × 187 = 374

1 + 2 × 93 = 187

1 + 2 × 46 = 93

0 + 2 × 23 = 46

1 + 2 × 11 = 23

1 + 2 × 5 = 11

1 + 2 × 2 = 5

0 + 2 × 1 = 2

1 + 2 × 0 = 1 Start here

Figure A-6. Conversion of the binary number 101110110111
to decimal by successive doubling, starting at the bottom. Each
line is formed by doubling the one below it and adding the
corresponding bit. For example, 749 is twice 374 plus the 1 bit
on the same line as 749.

22
N

decimal
N

binary
−N

signed mag.
−N

1’s compl.
−N

2’s compl.
−N

excess 12822
1 00000001 10000001 11111110 11111111 0111111122
2 00000010 10000010 11111101 11111110 0111111022
3 00000011 10000011 11111100 11111101 0111110122
4 00000100 10000100 11111011 11111100 0111110022
5 00000101 10000101 11111010 11111011 0111101122
6 00000110 10000110 11111001 11111010 0111101022
7 00000111 10000111 11111000 11111001 0111100122
8 00001000 10001000 11110111 11111000 0111100022
9 00001001 10001001 11110110 11110111 0111011122

10 00001010 10001010 11110101 11110110 0111011022
20 00010100 10010100 11101011 11101100 0110110022
30 00011110 10011110 11100001 11100010 0110001022
40 00101000 10101000 11010111 11011000 0101100022
50 00110010 10110010 11001101 11001110 0100111022
60 00111100 10111100 11000011 11000100 0100010022
70 01000110 11000110 10111001 10111010 0011101022
80 01010000 11010000 10101111 10110000 0011000022
90 01011010 11011010 10100101 10100110 0010011022

100 01100100 11011010 10011011 10011100 0001110022
127 01111111 11111111 10000000 10000001 0000000122
128 Nonexistent Nonexistent Nonexistent 10000000 000000002211

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure A-7. Negative 8-bit numbers in four systems.

Addend 0 0 1 1
Augend +033 +133 +033 +133
Sum 0 1 1 0
Carry 0 0 0 1

Figure A-8. The addition table in binary.

Decimal 1's complement 2's complement

10
+ (−3)

+7

00001010
11111100

1 00000110

carry 1

00000111

00001010
11111101

1 00000111

discarded

Figure A-9. Addition in one’s complement and two’s complement.

B
FLOATING-POINT NUMBERS

1

1
Negative
overflow

2
Expressible

negative numbers

3
Negative
underflow

4
Zero

5
Positive

underflow
6

Expressible
positive numbers

7
Positive
overflow

—10100 —10—100 0 1010010—100

Figure B-1. The real number line can be divided into seven regions.

22
Digits in fraction Digits in exponent Lower bound Upper bound22

3 1 10−12 109
22

3 2 10−102 1099
22

3 3 10−1002 10999
22

3 4 10−10002 109999
22

4 1 10−13 109
22

4 2 10−103 1099
22

4 3 10−1003 10999
22

4 4 10−10003 109999
22

5 1 10−14 109
22

5 2 10−104 1099
22

5 3 10−1004 10999
22

5 4 10−10004 109999
22

10 3 10−1009 10999
22

20 3 10−1019 10999
2211
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure B-2. The approximate lower and upper bounds of ex-
pressible (unnormalized) floating-point decimal numbers.

2–1

2–2

Unnormalized:

Sign
+

Excess 64
exponent is
84 – 64 = 20

Fraction is 1 × 2–12+ 1 × 2–13

+1 × 2–15+ 1 × 2–16

Normalized:

Example 1: Exponentiation to the base 2

= 220 (1 × 2–12+ 1 × 2–13+ 1 × 2–15

+ 1 × 2–16) = 432

= 29 (1 × 2–1+ 1 × 2–2+ 1 × 2–4

+ 1 × 2–5) = 432

= 165 (1 × 16–3+ B × 16–4) = 432

To normalize, shift the fraction left 11 bits and subtract 11 from the exponent.

Sign
+

Excess 64
exponent is
73 – 64 = 9

Fraction is 1 × 2–1 + 1 × 2–2

+1 × 2–4 + 1 × 2–5

Sign
+

Excess 64
exponent is
69 – 64 = 5

Fraction is 1 × 16–3 + B × 16–4

2–3

2–4

2–5

2–6

2–7

2–8

2–9

2–10

2–11

2–12

2–13

2–14

2–15

2–16

00 0 0 0 0 0 0 0 0 0 0 1 1 01 1 10 0 0 0 1 1

10 1 0 1 1 0 0 0 0 0 0 0 0 01 0 00 1 0 1 0 0

Normalized: = 163 (1 × 16–1+ B × 16–2) = 432

To normalize, shift the fraction left 2 hexadecimal digits, and subtract 2 from the exponent.

Sign
+

Excess 64
exponent is
67 – 64 = 3

Fraction is 1 × 16–1 + B × 16–2

00 0 0 1 1 0 1 1 0 0 0 0 0 0 0 01 0 00 0 1 1

Example 2: Exponentiation to the base 16

Unnormalized: 0 1 0 10 0 0 1 0 0 00

16–1

0 0 00

16–2

0 0 10

16–3

1 0 11

16–4

.

.

.

.

Figure B-3. Examples of normalized floating-point numbers.

Bits 1

Bits 1

Sign

Sign

8 23

Fraction

Fraction

Exponent

(a)

(b)

11 52

Exponent

Figure B-4. IEEE floating-point formats. (a) Single precision. (b) Double precision.

222
Item Single precision Double precision222

Bits in sign 1 1222
Bits in exponent 8 11222
Bits in fraction 23 522
Bits, total 32 64222
Exponent system Excess 127 Excess 1023222
Exponent range −126 to +127 −1022 to +1023222
Smallest normalized number 2−126 2−1022
222
Largest normalized number approx. 2128 approx. 21024
222
Decimal range approx. 10−38 to 1038 approx. 10−308 to 10308
222
Smallest denormalized number approx. 10−45 approx. 10−324
2221
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure B-5. Characteristics of IEEE floating-point numbers.

Normalized

Denormalized

Zero

Sign bit

Infinity

Not a number

Any bit pattern

Any nonzero bit pattern

Any nonzero bit pattern

0

0

0

0 < Exp < Max

1 1 1…1 0

1 1 1…1

±

±

±

±

±

Figure B-6. IEEE numerical types.

	Overview
	Preface
	Table of Contents
	Chapter 1 INTRODUCTION 1
	Chapter 2 COMPUTER SYSTEMS ORGANIZATION 39
	Chapter 3 THE DIGITAL LOGIC LEVEL 117
	Chapter 4 THE MICROARCHITECTURE LEVEL 203
	Chapter 5 THE INSTRUCTION SET ARCHITECTURE LEVEL 303
	Chapter 6 THE OPERATING SYSTEM MACHINE LEVEL 403
	Chapter 7 THE ASSEMBLY LANGUAGE LEVEL 483
	Chapter 8 PARALLEL COMPUTER ARCHITECTURES 523
	Appendix A BINARY NUMBERS 631
	Appendix B FLOATING-POINT NUMBERS 643

