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SIMPLICIAL SPACES, NUCLEI AND m-GROUPS

By J. H. C. WHITEHEAD.

[Received and read 1!) May, 1938.]

1. Introductory.

This paper centres round a generalization of the notion of a group
which may be briefly described as follows. We start with the definition
of a symbolic complex K, as a set of sets, called simplexes, which contains
each sub-set of any simplex in iff. Restricting ourselves to complexes
in which the dimensionality of each simplex is finite, though the dimension-
alities of the simplexes need not have an upper bound, we separate
complexes into mutually exclusive equivalence classes by means of certain
elementary transformations of "order m " and associate an abstract
"m-group " with each class, where m = —1,0, 1, .... The interest begins
with m = 2, and it appears that two connected complexes, finite or infinite,
have the same 2-group if, and only if, they have the same fundamental
group. Moreover, any group is isomorphic to the fundamental group of
some complex. If an abstract group is taken to be an object associated
with a class of mutually isomorphic groups %, we may therefore identify
2-groups with abstract groups. That is to say, a geometric, or set-theoretic,
representation of an abstract group by a complex may be regarded as
equivalent to an algebraic representation by a set of elements with a
multiplication table. From this point of view an m-group is seen to be an
automatic generalization of an abstract group.

Two complexes have the same m-group for each value of m if they have
the same homotopy type. In particular the m-group of a geometrical
complex is a topological invariant. The converse applies to complexes of
bounded dimensionality. In fact, two complexes of at most n dimensions
are of the same homotopy type if they have the same (n+l)-group.

f Cf. P. Alexandroff und H. Hopf, Topologie, 1 (Berlin, 1935), p. 155.
% This is how one normally uses the word in referring, for example, to the 6-group.

B2
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The simplicial spaces and nuclei, referred to in the title, are also defined
in terms of elementary transformations. There is nothing new about the
former. Two symbolic complexes determine the same simplicial space if,
and only if, they are combinatorially equivalent in the sense of J. W.
Alexander f and M. H. A. Newman J. Nuclei are defined in terms of what
we call formal deformations. An elementary sub-division is a formal
deformation, and the nucleus of a complex is therefore a combinatorial
invariant, meaning that two complexes which are combinatorially
equivalent have the same nucleus. Whether or no the nucleus is a
topological invariant remains an open question, except in the case of a
finite complex whose fundamental group satisfies a certain condition,
described in §11. Two finite complexes whose fundamental groups
satisfy this condition have the same nucleus if they are of the same

homotopy type.
In a section on manifolds it is proved that any complex K, imbedded

in a manifold M, has a "regular neighbourhood" in M and that any two
regular neighbourhoods of the same complex in the same manifold are
combinatorially equivalent. Moreover, if p is large enough, regular
neighbourhoods of two finite complexes in Euclidean p-space Rp are
combinatorially equivalent if the complexes have the same nucleus. In
particular, a regular neighbourhood of a finite w-dimensional complex Kn,
in Rp (p^2n-{-5)} is a ^-element if the (multiplicative) fundamental
group of Kn is unity and all its (additive) homology groups are zero. If
the fundamental group and homology groups of Kn are the same as those
of an w-sphere its regular neighbourhood in Rp is the topological product
of an ^-sphere and a (p—n)-element.

The presentation may be summarized as follows. With one or two
exceptions everything in §§3-9 is needed for the proof of Theorem 17,
which states that two (finite) complexes are of the same homotopy type if,
and only if, they have the same m-group for each value of m. The main
exception is Theorem 12, stating that two connected complexes have the
same fundamental group if, and only if, they have the same 2-group.
Sections 10 and 11 lead up to Theorem 21, that, subject to the condition on
the fundamental group stated in §11, two finite complexes of the same
homotopy type have the same nucleus. Section 12 is concerned with
regular neighbourhoods of complexes in manifolds, and § 13 is an appendix
to the sections on finite complexes. Section 14 is concerned with the
combinatorial, and § 15 with the topological theory of infinite complexes.

f Annals of Math., 31 (1930), 292-320.
»Akad. Wet. Amsterdam, 29 (1926), 611-626; 627-641.
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In the final § 16 it is shown how many of the earlier results may be extended
from finite to infinite complexes.

Nuclei and m-groups are closely related to the homotopy groups
discovered by W. Hurewiczf, and §§8 and 10 below may overlap with the
more complete account which was announced in the first of his notes on
homotopy groups. In particular, I learn from S. Eilenberg that
Theorem 15, and from Shaun Wylie that the group of automorphisms
ifjlh(g) in §11 are known to Hurewicz and others. But, since these are
auxiliary to the main theorems, I have given full details without further
reference except to what has already been published.

2. Nuclei and m-groups.

We start with an infinite aggregate of undefined vertices (Eckpunkt-
bereich) a,b,c, .... Any set of n-\-1 vertices (n ̂  — 1) will be called an open
(symbolic) n-simplex%. A closed (symbolic) n-simplex will be the closure of an
open n-simplex, consisting of a set of n-\-1 vertices together with all its sub-
sets, including the empty set or (— l)-simplex. The closure Cl(L), of a set of
simplexes S, will consist of the closures of the simplexes in S, and S will be
described as closed if 2 = Cl(L). By a symbolic complex we shall mean
any closed set of simplexes. As usual a complex will be described as
finite or infinite according as it contains a finite or an infinite
number of simplexes. Until the end of § 13 it is to be understood that.,
except where the contrary is stated, all the complexes referred to are finite.
Our formalism is similar to that of J. W. Alexander except that, instead
of his "mod 2" or nilpotent algebra, we use the idempotent algebra of
logic. Thus S i+I^ , Sx—S2.and Ex. 22 will denote respectively the set of
simplexes in either of two given sets Ex and 22, the set in H1 but not in
X2, and the set common to both. We shall continue to use multiplication
without the dot £X22 to stand for the join of the two sets; that is to say,
for the totality of simplexes (a0, ..., an, b0, ..., bm), where§ (a0, ..., an) eX^
and (60, ..., 6TO)eS2. This operation is also to be idempotent, so that

t Akad. Wet. Amsterdam, 38 (1935), 112-119; 521-528; 39 (1936), 117-125; 215-223.
I The word " symbolic " will be omitted except when a contrast with geometrical

simplexes and complexes is necessary. Also when it is obvious which is meant, or irrelevant,
we shall refer to either an open or a closed simplex simply as a simplex, and shall use the
same kind of letter, namely, A, B or C, to stand for both.

§ If A is an open simplex belonging to a set 2 we write A e 2, but for a closed simplex
we write 4 c l We use e to stand for " not e,"
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The empty, or (—1)-dimensional, simplex plays a part analogous to
zero with respect to the multiplication Sx. 22 and to unity with respect to
SjSo. Following Alexander we shall denote it by 1. Thusf

2 .1 = 1, 21 = 2.

Though the simplex 1 belongs to every complex, we shall say that two sets
of simplexes meet each other if, and only if, they have a ifc-simplex in
common, where k ^ 0.

The boundaries which appear in this paper are calculated with residue
classes mod 2 as coefficients, and we follow Alexandroff and Hopf in using J
K to stand for the boundary of a complex K. We adopt Alexander's
convention that the boundary of a 0-simplex is 1 and the boundary of 1
is 0, the empty set of simplexes. The latter satisfies the conditions

£ ± 0 = 2, 2 .0 = 20 = 0,

where 2 is any set of simplexes, and is therefore analogous to zero in its
relation to all four operations.

We now associate three kinds of abstract object, a simplicial space, a
nucleus, and an m-group (m=—l, 0, 1, ...) with every complex. By
analogy with polyhedra we shall describe a complex as a tnangulation of
the corresponding simplicial space, but we shall refer to the nucleus and
the m-group, like the fundamental group and other classical invariants, as
properties of the complex. Thus, under appropriate conditions, we shall
say that two complexes have the same nucleus or m-group.

1. Simplicial spaces. Two complexes will be described as triangulations
of the same simplicial space if, and only if, they are combinatorially
equivalent. Here we adopt Alexander's definition of combinatorial
equivalence in terms of elementary sub-divisions. We recall that an
elementary sub-division§ (Ak, a), of order k, is a transformation of the form

K = AkP+Q->aAkP+Q,

where Ak is a closed ^-simplex in K, a is not in K, and P = KAk, the

f In general, 2 + 1 ^ 2 , but K+l = K if K is a complex.
J We shall also use A to stand for the boundary of an open simplex A (i.e. for the

boundary of its closure).
§ Superscripts will invariably denote dimensionality.
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complementf of Ak in K. Two (finite) complexes are said to be
combinatorially equivalent if, and only if, one is transformable into the
other by a finite sequence of elementary sub-divisions and their inverses.
A property which is unaltered by an elementary sub-division or its inverse
is called a combinatorial invariant.

2. Nuclei. If

where A is a closed simplex such that aA C Ko, A <£ Ko, the transformation
Ko^-K1 will be called an elementary expansion, and KX->KQ will be called
an elementary contraction^. As a matter of convention we admit the
identical transformation Ko -> Ko both as an elementary expansion and as
an elementary contraction §. An elementary expansion or contraction
will be called an elementary deformation, and the resultant of a finite
sequence of elementary deformations a formal deformation. We shall
denote a formal deformation by the letter D. Two (finite) complexes will
be said to have the same nucleus if, and only if, one is transformable into
the other by a formal deformation.

If the simplex aA is m-dimensional, we shall describe

or K1-^-Ko, as an elementary expansion, or contraction, of order m.

3. m-groups. If

where Ak is a it-simplex such that Ak C Ko, Ak(£K0,we shall describe the
transformation KQ^-K1 as & filling of order k and K1->K0 as a perforation

f Cf. Alexander, loc. cit. We shall always use KA to stand for the complement of a
(closed or open) simplex A in K, and, when we write K in the form AP+Q, it is to be under-
stood that A is closed and P = KA. As in Alexander's paper, vertices will always be denoted
by small Roman letters.

% Transformations of this kind have been previously studied by I. Johansson, Avhand.
Norske Vidensk.-Akad. (1932), No. 1.

§ The cases K0 = Kx = 0 or 1 are possible. The identity Ko -> Ko is the only elementary
transformation of any kind which is applicable to the empty complex. The only elementary
transformation which is applicable to 1 is a filling of order —1, denned below, which trans-
forms 1 into a closed 0-simplex. It is to be assumed throughout that no " given complex "
is the complex 0, which will appear only, in special cases, as a term in a calculation,
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of order h. Two complexes will be said to have the same m-group if, and
only if, one is transformable into the other by a finite sequence of elementary
deformations and, possibly, fillings and perforations whose orders exceed
m. Thus two complexes with the same nucleus have-the same m-group
for each value of m, and if n > m two complexes with the same n-group
have the same ?w-group.

3. Formal deformations.

If a complex L can be transformed into K by a sequence of elemen-
tary expansions we shall say that L expands into K and that K contracts
into L. If L is a single vertex, we shall describe K as collapsible. The
open simplexes a A and A can be removed by an elementary con-
traction of K if, and only if, aA e K and a A is the only simplex in K
having A on its boundary. If, in a contraction of Ko, an element-
ary contraction Ki^*Ki+1 = Ki—aAp—Ap is immediately followed by
Ki+1->Ki+1—bBa—Bq, where q>p, it follows that these two elementary
contractions are interchangeable. For bBq€Ki+1C.Ki, and Bqi (aAv)'
since q>p. Therefore bBq is the only simplex in K{ with Bq on its
boundary, and bBq and Bq may be removed first and then A& and aA®.
When we repeat this argument, it follows that the elementary contractions
in a given contraction of Ko may be so arranged that all those of order q
precede those of order p if p < a. In particular, if Ko is collapsible it
follows that Ko contracts first into a linear graph containing all the vertices f
of iv0 and then into a vertex. The graph, being collapsible, is obviously
a tree and therefore contracts into a given one of its vertices. Thus any
collapsible complex contracts into a given one of its vertices.

LEMMA 1. / / K. Lo C Lq and if Lo contracts into LQ, then K-\-LQ contracts
into K-\-Lq.

Let the transformation LQ->Lg be the resultant of elementary
contractions L(->Li+1= Li—aiA{—A,• (i = 0, ..., q—l), where A{ and
a-^Ai are open simplexes. Since K.L0C.LQcLi+1, the simplex A{ is not
on the boundary of any simplex in K and it follows that the transformation
KJ

rLi^-K-\-Li+1 is an elementary contraction of K-\-L{. Therefore the
transformation K-\-LQ->K-\-Lq is a contraction and the lemma is
established.

f Strictly speaking, we should refer to the O-simplexes, rather than to the vertices
of a complex. But we shall usually refer to a 0-simplex as a vertex, and a vertex may
mean either an open or a closed 0-simplex according to the context [if o is an open 0-simplex
Cl(a) = o + l ] . The distinction is not a trivial one, since the join aK does or does not
contain K according as the 0-simplex a is closed or open.
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LEMMA 2. If LcK and A is any closed simplex which does not meet
K [A zfz l, possibly L = 1), the complex AK contracts into AL.

First let A be a single vertex a. If K — L there is nothing to prove.
Otherwise let B be a principal | open simplex of K—L. Then the closure
of aB meets a(K—B) in aB. Therefore aK contracts into a(K—B) and
the special case of the lemma follows from induction on the number of
simplexes in K—L. In general, let A = aAv Then it follows from what
we have already proved that AK( — aA.xK) contracts into aA1L( — AL)
and the lemma is established.

COROLLARY. AK is collapsible {A =£ 1).

For if A = aAx (possibly A1=l) it follows from the lemma, with
L = 1 and K replaced by AXK, that aAxK contracts into a.

LEMMA 3. If K = AL0-\-Q (L0^l) and Lo contracts into L. then K
contracts into AL-\-ALQ-\-Q.

If Lo = L, there is nothing to prove. Otherwise let

L0=Lx+bB

where bB is a closed simplex and L^LX is the first step in some process of
contracting Lo into L. Then the simplex AbB meets AL^ALQ-TQ in

AbB-\-AbB =

and AL0+Q = AL0+ALQ+Q

= A(L1+bB)+AL0+Q

= AL1+AL0+Q+AbB.

Therefore the transformation

is an elementary contraction and the lemma follows from induction on
the number of simplexes in Lo—L.

COROLLARY. If Lo is collapsible ALQ-\-Q contracts into AL0-{-Q.

For AL0-\-Q contracts into Ab-\-AL0-\-Q, where b is any vertex in Lo,
and so into ALQ-{-Q by Lemma 2 and Lemma 1.

t I-e. B is not on the boundary of any other simplex in K, though it need not be a
simplex of maximum dimensionality.
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Notice two special cases of the corollary: first, if Lo is collapsible,
aL0-\-Q contracts into Lo-\-Q, where a is any vertex not in Lo-\-Q;
secondly, if Lo is a single closed simplex B, then AB-\-Q contracts into
AB+Q.

THEOEEM 1. The nucleus of a complex is a combinatorial invariant.

It is enough to show that Ko and K1 have the same nucleus, where
K1 is derived from Ko by an elementary sub-division (A, a). Let

K0 = AP+Q, Kx = aAP+Q (AQQ, atfZ0).

By Lemma 2 the star aAP, with a as centre, contracts into aAP. Since
A (£ Q we have AP.Qc.AP, and it follows from Lemma 1 that the complex
aAP-\-Q contracts into Kv But AP is collapsible, by the corollary to
Lemma 2. Therefore aAP-\-Q also contracts into Ko, by the corollary
to Lemma 3, and the theorem follows.

By a contractible neighbourhood of a complex L we mean a complex N
which contains L a s a sub-complex and satisfies the conditions:

1. N is a normal simplicial neighbourhood of L, meaning that every
principal closed simplex in N meets L, but no open simplex in N—L has all
its vertices in L,

2. L. NA is collapsible, where A is any closed simplex in N which does
not meet L.

THEOKEM 2. Any contractible neighbourhood of L contracts into L.

Let JVbea contractible neighbourhood of L, and let R be the complex
consisting of the closed simplexes in N which do not meet L. If R = 1
every vertex lies in L and, since N is a normal neighbourhood, it follows
that N = L and there is nothing to prove. Otherwise let A be a principal
closed simplex of R and let N = AP-\-Q. If some simplex in P was not
in L it would contain at least one vertex a, in R. We should then have
a A C R, contrary to the fact that A is a principal simplex of R. Therefore
PcL and, since N is a contractible neighbourhood, P is collapsible.
Therefore N contracts into N* = AP-\-Q, by the corollary to Lemma 3.
Let BcL.Nc, where CcR and C^A. Then AQLBC, since A(£C,
and it follows that BC C N*, whence L. Nc* = L. Nc. Therefore the
second condition for a contractible neighbourhood, and obviously the
first, is satisfied by N*, and the theorem follows from induction on the
number of simplexes in R.
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Let L be any sub-complex of a given complex K, let Kx be the complex
consisting of all the closed simplexes in K which do not meet L and let
R = K1.N(L, K), where N(L, K) stands for the set of all closed simplexes
in K which meet L. The transformation K~>K* = aR-{-K1, where a is
any vertex not in K1} will be described as the operation of shrinking L into
a point, namely the vertex a. It is the result of formally identifying the
vertices in L with the vertex a, which may or may not belong to L.

THEOREM 3. If L is collapsible and N(K, L) is a contractible neigh-
bourhood of L the operation of shrinking L into a point is a formal deformation.

Let K* = aR-\-Kx, where R and Kx mean the same as before and a c£ Kx.
Since an elementary subdivision of order zero is a formal deformation we
may assume a(£K, and the proof is similar to the proof of Theorem 1. For
the complex N(L, K) is collapsible, since it contracts into the collapsible
complex L, and the complex aN(L, K)-^K1 contracts both into K* and
into K. Therefore K* = D{K) and the theorem is established.

If K and L are any complexes we shall use sLK to stand for the
sub-division of K which consists of starring every simplex in

K-L (=K-K.L)

in order of decreasing dimensionality, and sL
2K will mean sL(sLK). We

conclude this section with an existence lemma.

LEMMA 4. / / N(L, K) is a normal neighbourhood of L (LcK), then
N = N(L, sLK) is a contractible neighbourhood of L. Moreover, L.NA is
a single closed simplex, where A is any open simplex in N—L.

Let Av ..., Ap be the open simplexes in K—L, arranged so thatf
dim (Ax) < dim (AJ if A</n, and let aK be the internal vertex of sLAK.
By an easy extension of a known theorem J, sLK contains the open simplex
A = Ba^0... aXr, where B e L and Ao < ... < Ar, if, and only if,

and any simplex in sLK is of this form (possibly with B—\ or r = — 1,
i.e. aXo...aKr= 1). Therefore N is a normal neighbourhood of L. Any
open simplex in N whose closure does not meet L is of the form

•f dim (P) stands for the dimensionality of P.
t H. Seifert und W. Threlfall, Lehrbuch der Topologie (Berlin, 1934), 230, Theorem II.
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and it follows that

Since any simplex in K is contained in L if all its vertices are in L it follows
that the closure, and hence the boundary, of any simplex in K—L meets L,
if at all, in a single closed simplex. Therefore, L.NA* is a single closed
simplex and N is a contractible neighbourhood of L.

Let A = A* B be any open simplex in N—L whose closure meets L,
where A * = aX(j... aXr and BeL ( j ? ^ l ) . To say that BxeNA, where
Bx is any open simplex having no vertex in common with A, is to say that
ABX = A * BBX e N, or that BBX e NA*. If Bx e L it follows that BBX e L,
since all its vertices are in L, and hence that Bxe(L. NA*)B. Conversely,
if B1e(L.NA.)£it follows that BxeL.NA. Therefore L.NA=(L.NA.)]h

and since L. NA, is a single closed simplex, so is L. NA.
If L is any sub-complex of a given complex K, it follows from the first

argument in the proof of Lemma 4 that N(L, sLK) is a normal neighbour-
hood of L, and we have the corollary:

COROLLARY. N = N(L, SL
2K) is a contractible neighbourhood of L.

Moreover L. NA is a single closed simplex, ivhere A is any open simplex in
N-L.

4. Sub-division.

We shall need some theorems concerning sub-division and its relation
to formal deformation. By a stellar sub-division we shall mean the
resultant of a sequence of elementary sub-divisions (̂ 4, a), and a stellar
sub-division will always be represented by the letter a. In dealing
simultaneously with two or more complexes K1: K2, ••-, it is always to be
understood that no vertex introduced by a sub-division oKx belongs to any
of the others. Thus a may be regarded as operating simultaneously on
all the complexes, with the convention that (A, a) leaves K unaltered if
A does not belong to K. We admit the identical transformation as an
elementary sub-division, which we denote by 1, and by CT= 1 in K we
shall mean that CT is a product of elementary sub-divisions which leave K
unaltered.

THEOREM 4. If K contracts into L, then oK contracts into aL, where
a is any stellar sub-division of K.

Using a double induction, first on the number of elementary sub-divisions
in CT, and then on the number of elementary contractions in the transfor-
mation K->L, we see that it is sufficient to consider the case where CT is a
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single elementary sub-division (A, a), and K->L a single elementary
contraction. Let

K=L+bB,

where bB is a closed simplex meeting L in bB. The theorem is then
obvious unless AcbB and, by Lemma 1, it is enough to prove that obB
contracts into obB.

First let A<zB. Then

obB = b(oB), obB = b(oB)

and obB contracts into obB, by Lemma 2. If Ac£B, let A — bBx and
B = BXB2. Then

= a(bB\+B1)B2

= abB1B2+aB,

= ab(B1B2+B1B2)

= a(6j51+^1) B2-\-bBx B2.

Removing the open simplexes B and aB from afr-B, we are left with

abBx B2+aB = abB\ B2+a(Bx B2-\-Bx B2)

= abB1B2-\-aB1B2:

since aB1B2CabB1B2. Clearly abB1B2 and aBxB2 meet in aBxB2,
which is contained in {aB1B2)\ It follows from Lemmas 2 and 1, with
b taking the place of the simplex A in Lemma 2, that abB1B2-\-aB1Bz

contracts into

x B2 = bB1(aB2+B2)-^aB1 B2

= a(bB1i-B1)B2+bB1B2

and the theorem is established.
Let Pl9 ..., Pn be sub-complexes of a complex K and let Qt be a sub-

complex of Pt- (i=l, ...,n) with the following property: If ox is any
stellar sub-division of P,-, some stellar sub-division o2o1Pi contracts into
<*2 °i Qi- Then we have the corollary to Theorem 4:

COROLLARY. There is a sub-division oK such that oPt contracts into
oQi for each value of i.

The corollary is trivial if n — 1, and we shall prove it by induction on
n. Assume that oxPK contracts into o1QK (A= 1, ..., n— 1), where ox is
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some stellar sub-division of K. By hypothesis, there is a sub-division
a2a1Pn which contracts into o2oxQn. By Theorem 4, a2axPx contracts
into (T2a1QK (A= 1, ..., n— 1), whence aP( contracts into aQi{i= 1, ..., n),
where a = a2 <rv

THEOREM 5. If Kq = D(K0), there is a complex which contracts both into
Ko and into a stellar sub-division of Kq.

Let K,= C,E,...C1E1(K0) (A= 1, .... g),

where Ev ..., Eq are expansions and Cv ..., Cq contractionsf. If a is
any stellar sub-division it follows from Theorem 4 that oKK expands into
oEK+1(Kx) (\<q) and that the latter contracts into oKK+1, and from
induction on q—A that

where E'k+l, ..., Eq' are expansions and C'h+1) ..., Cq' contractions.
Therefore the theorem will follow from induction on q if we can show that,
when q > 1, Ko expands into some complex which contracts into a stellar
sub-division of K2 [if q = 1 the complex E^KQ) satisfies the required
conditions].

Let K^E^K,), K12 = E2(K1) = E2C1E1(KQ),

let K{2 = sKl K12, the new vertices introduced by sKl being, as usual,
different from any of those in Kol, and let el5 ..., er be the elementary
expansions of which E2 is the resultant (eK applied before ex+1). If ex is the
transformation K*->K*+aA, let eK' stand for the transformation

which is an expansion by Theorem 4, and let E2 = er' ... e{. If C2 = cs... cv

where cv ..., cs are elementary contractions, let c/ be similarly denned and
let C2' = ca' . . . c / . Then

I say that the expansion E2 is interchangeable with the contraction Cx*
For, in general, let c be any elementary contraction K->L = K—aA—A
and let e be an expansion L->L-{-bB-\-B (bBcL, BlL). Then e and c
are interchangeable if neither of the open simplexes aA and A coincides

f Either Et or C'q, or both, may be the identity.
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with either f bB or B. For, if B is neither a A nor A, the transformation
K^-K-\-bB-\-B is an elementary expansion, since bBcLcK and B~kK.
The only simplex in (bBy which is not in K is B and, if B ̂  A, it follows
that aA is the only simplex in K-\-bB-{-B with J. on its boundary.
Therefore the transformation

K+bB+B-+{K+bB+B)—aA—A

= (K-aA-A)+bB+B

= L+bB+B

is an elementary contraction. That is to say ce = ec. If C is any contrac-
tion of a given complex K, and E is an expansion of C(K), it follows from
an inductive argument that EC = CE provided that none of the simplexes
removed by C is restored by E. This condition is satisfied by Cx and
E2'. Tor any open simplex A which is added by E2 belongs to K'12—K1

and so contains at least one vertex introduced by sKi. According to our
rule this vertex, and therefore A, does not belong to Kol. Therefore
A is not one of the simplexes removed by Cv Therefore E2' Cx = CXE2,
and

SKx Ki — ('2 $2 @1 -^l(-^o)

== C2' C1E2' EX{KQ).

Therefore the complex

K02 — E2 EX{KQ)

contracts both into Ko and into sKiK2, and the theorem is established.
We now give two definitions.

1. By the order of a deformation D will be meant the maximum order
of the elementary deformations in D.

2. If LcK0.Kq and if no simplex of L is removed by any of the
elementary contractions in a deformation Kq = D(K0), we shall describe D
as relative to L, and shall write

q (rel. L).

Two addenda follow from the proof of Theorem 5:

ADDENDUM 1. If Ko and Kq are at most n-dimensional and if the order
of D does not exceed m, where m^n, there is a complex of at most m dimensions
which contracts both into KQ and into oKq.

f Actually ec = ce if A =£• B.
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ADDENDUM 2. If Kq = D(K0) (rel. L) there is a complex which
contracts both into Ko and into oKq, where a = 1 in L.

For each simplex added by Ex' is contained in a sub-division of some
simplex added by EK (A = 2, ..., q) and its dimensionality does not exceed
m. Therefore neither the order of Ex' (A= 2, ..., q) nor the dimension-
ality of K02 exceeds m and the first addendum follows from induction on q.
The second addendum follows from induction on q and the fact that
L C Kv since no simplex of L is removed during the contraction Gv

Notice that the complex which contracts both into KQ and into oKq is
uniquely determined by the construction used in proving Theorem 5,
except for the actual vertices introduced by the sub-division a.

THEOREM 6. If K is any complex, there is a sub-division oli such that
oEm contracts into oEm~x (m > 0), where Em is any m-element'\ in K and
E"1'1 any (m— \)-element in Em, the sub-division a being independent of m, of
E>u C K and of Em~x c Em.

If K is 0-dimensional there is nothing to prove and, assuming the
theorem for a complex of at most n dimensions (n ^ 0), we shall prove it
by induction on n. First notice that each element oEm is collapsible,
where EmcK and oK is any sub-division which satisfies the conditions
of the theorem. For, if m > 0, aEm contracts into aAm~x, where A™*1 is
any (m— l)-simplex in Em. From the corollary to Lemma 2 and Theorem 4
it follows that a A™-1 and hence aEm are collapsible.

There are in K, which we now take to be (%+l)-dimensional, only a
finite number of elements. Therefore the theorem will follow from the
corollary to Theorem 4 if we can prove that some sub-division oEm

contracts into oE111'1 (0 < m ^ ? i + l ) , where Em is a given m-element and
E"1'1 a given (w—1)-element in Em. This follows from the hypothesis
of the induction unless m = n-\-l, which we assume to be the case.

Let G'm (in — n-\-\) be a rectilinear, geometrical representation of the
m-element abA"} where An is an ^-simplex. Some partition 7r0C

fw is the
image of a stellar sub-division a0E

m in an isomorphic transformation/0,
such thatj /0(a0£'m-1) = 7ToaAu. The sub-divisions 7T0C

m and a0E
m and

the transformation /0 can be extended to sub-divisions rr1 C
m and a1 E

m

and an isomorphism f1(a1 Em) = -nx C
m, with CTX = CT0 and Ttx = TT0 on Em and

•j' Following Alexander and Nowman, wo use the terms w-eleinent and {m— 1)-sphere
lu mean complexes which are couibinatorially equivalent to an m-simplex and to its boundary.

X J. H. C. Whitehead, Proc. Cambridge Phil. Soc, 31 (1935), 09-75.
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Cm, andf fl=f0 on a0E
m. Therefore we lose no generality in assuming

that Em was initially isomorphic to •n1C
m with E™-1 corresponding to

7T1aAn and, assuming this to have been the case, we take Em and Em~x to
be the geometrical complexes TT-LC™ and n-^aA'1.

Let p0 = a, pv ..., pr = b be the points on the rectilinear segment ab,
arranged in this order, such that all the vertices of Em lie in the (geometrical)
w-elements p{A

n (* = 0, . . . , r) . By a construction used elsewhere J, we
can find a stellar sub-division oEm which is a partition of the rectilinear
m-element (PoPi+^i392+---+:?V-:ii:vMn a n d is s u c n that an* its vertices
are in the n-elements PiAn (i = 0, ..., r). To economize our sj^mbols, let
us assume that Em satisfied this condition initially, let E^1 be the complex
covering p(A

n, and let Et
m be the complex covering the m-elnment

If r>\, assume that some stellar sub-division ar_1(£?1
m+.

contracts into ar_x E
m~x. If we can show that some stellar sub-division

a'Aiar_xEr
m contracts into a:l:ar_1E^1, the theorem will be established

directly, if r = 1 (taking c r ^ j ^ 1); and it will follow from Lemma 1,
Theorem 4 and induction on r, if ?*> 1. The element a^E™ has no
internal vertices and, again simplifying our notation, it remains to prove
the following : if Em is a partition of pQpx An with no internal vertices, some
stellar sub-division oEm contracts into oE0

n, where E-n is the sub-complex
of Em covering p(A

n (» = 0, 1).
Since Em is a partition oipQp1A

n and since it has no internal vertices,
the vertices of any simplex in Em lie in (Po-\-Pi)An-x, where An~x is some
closed simplex in An. Since p^A11-1 and p1A

n~1 are flat, every internal
simplex in Em is of the form BOBV where BiCE?1 (i = 0, 1; possibly
BQ.BJ^^I, being in A'"1). Therefore Em is a normal simplicial neigh-
bourhood both of Eo

11 and Ex
n.

Now let q be an inner point of the segment pQpx and apply the sub-
division sLEm, where L — Em =JEr

o
n+-^in> placing each new vertex on

the locus qAn. Since each simplex of Em is contained in one of the closed
simplexes^Q^i^71"1 (An-1cAn), and since the locus qAn~x is flat, it follows
that qAn is covered by a sub-complex Fn of sLEm. Let

Fm = N{EQ
n,sLEm)

be the sub-complex of s^ Em covering the closure of the region between

f Alexander, loc. cit., Theorem 13.2, and Whitehead, loc. cit., Theorem 2.
X Whitehead, loc. cit., Theorem 1.

8EB. 2. VOL. 46. NO. 2245. S
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Eo
n and F'1. Clearly Fm is the same as it would be were L = Eo

11,
instead of Eo

n-\-E1
u, and, by Lemma 4 and Theorem 2, Fm contracts

into Eo
tl. I t . follows from an argument used by Newman | that

Fn . {sLE'")n is an element, where B is any internal simplex of Ex
n. By

the hypothesis of the original induction, and our preliminary observation,
there is a stellar sub-division oxF

n such that each of the elements
a1{Fn.{sLEm)B}, with B inside Ex'\ is collapsible. Therefore oEm, with
a — CTX sL, is a contractible neighbourhood of a1 F

m and contracts into
aj F"\ by Theorem 2. By what we have just proved and Theorem 4 it
then contracts into a1E0'

1 = GEQ"- and the proof is complete.

5. Geometrical deformation.

If A'o is any complex and

(5.1) K^

where E" is an ^-element which meets KQ in an (n—l)-element on E", we
shall describe the transformation KQ-^K^^ as a geometrical expansion and
K1-^K0 as a geometrical contraction. We shall also say that a complex
expands and contracts geometrically into any general sub-division % of
itself. Finally, any sequence of geometrical expansions (contractions)
will also be called a geometrical expansion (contraction). When a contrast
is unnecessary, or when it is obvious from the context which kind is meant,
we shall refer to either a formal or a geometrical expansion (contraction)
simply as an expansion (contraction).

THEOREM 7. If K contracts geometrically into L some stellar sub-division
oK contracts formally into oL.

As explained in § 14 below, a general sub-division of any sub-complex
of K may be extended to the whole of K. It follows from a straightforward
inductive argument that some general sub-division yK contracts
geometrically into yL without further sub-division. That is to say
yK->yL is the resultant of transformations of the foj.m KX^-KQ, where
A'o and Kx are related by (5.1). Clearly the same is true of y*yK and
y:liyL, where y:i: is any general sub-division of yK, and there is a sub-

f Journal London Math. Soc, 2 (1926), 56-64, Lemma 2. The double sub-division
is not needed for Newman's argument provided that the (n— l)-element in question has a
normal neighbourhood initially (c/. Lemma 10 below).

J See Newman, Journal London Math. Soc. (loc. dt.), also §14 below. We denote
a general sub-division by the symbol y.
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division y* such that y:i: yK is a stellar sub-division f a1 K. It follows from
Theorem 6 that there is a further stellar sub-division a2, such that oK
contracts formally into aL, where a = a2av and the theorem is established.

COROLLARY. If K contracts geometrically into L any sub-division
yK contracts geometrically into yL.

For some stellar sub-division oK contracts formally into aL. Clearly
any sub-division y1 oK contracts geometrically into yx aL, and the corollary
follows from the fact that y and a have a common sub-division y2y = yxa.

A complex which contracts geometrically into a single vertex may be
described as geometrically collapsible and it follows from the corollary to
Theorem 7 that the property of being geometrically collapsible is a
combinatorial invariant. It also follows from Theorem 7 that geometrical
expansions and contractions are formal deformations.

6. Maps and homotopy.

Let/ be a simplicial map of a complex K in a complex L, where K. L= 1,
meaning a transformation of vertices such that, if A = a0 ... a)t is any
simplex in K, then f(a0), ...,f(an), which need not be distinct, are the
vertices of a simplex f(A) in L. As usual, we shall refer to / as a map of K
on, as distinguished from in, L only if each simplex in L is the image of one
or more simplexes in K. We shall describe / as (1-1) if no two simplexes
in K have the same image, even if / is not a map on L, and a (1-1)
simplicial map of K on L will be called an isomorphism.

We now define what we call the mapping cylinder Cf{K), of a map / .
For convenience we represent K and L as rectilinear, geometrical
complexes, and we take/to be the semi-linear map determined by the given
transformation of vertices. Let K01 be the simplicial complex derived
from the topological product KX\0, 1>, by starring all the cells
A X <0, 1> {A C K), leaving K X 0 and Z x l untouched. Then we define
Cf{K) as the simplicial complex obtained from KQ1 by identifying
each simplex ^4x0, of if X 0, with the corresponding simplex A, in K, and
each simplex A1 = A X 1 in Kx 1 with the simplex f(A) in L. If c is the
centre of the star in K01 covering AX\0, 1/ the simplex cAl is thus
transformed into cf(A), which may be of lower dimensionality than cA,
and Cf(K) is the image of K01 in a simplicial map >̂, which is an isomorphism
if, and only if, K is (1-1). If K* is any sub-complex of K, and if K$\ is the
sub-complex of KQ1 covering iL*X\0, l)>, then (f>(K$i) is obviously the

f See the addendum to Lemma 16 in §14.
S2
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mapping cylinder Cf(K*) of the ma,ipf(K*) C.L. If A is any closed simplex
in K and c the centre of the star covering A X \0, 1/ an easy inductive
argument shows thatf

Cf(A) = c[A+f(A)+Cf(A)].

We now prove two theorems which are analogous to Lemmas 2 and 3.

THEOREM 8. If f{K) cLis a simplicial map of K in L, and if K* is any
sub-complex of K {possibly K* = 1), then L-\-Cf{K) contracts formally into
L+Cf{K*).

If K* = K there is nothing to prove. Otherwise let A be the closure
of any principal open simplex in K—K*. Assuming that Cf(A) contracts
intof(A)-\-Cf(A), we deduce the theorem from Lemma 1 and induction on
the number of simplexes in K—K*. If dim(-4) = 0 it is obvious that Cf(A)
contracts into f(A)-\-Cf{A) [=f{A) with the convention Cf{\)= 1], and
if dim (A) > 0 we assume this to be true of any A;-simplex for k < dim (A).
Then, taking K = A, L=f(A), and K*=l, we deduce by our first
argument that f(A) -\- Cf(A) contracts into f(A), and is therefore collapsible,
f(A) being a single closed simplex. If c is the centre of the star Cf(A) we
first remove the open simplexes A and cA from Gf{A), leaving

which contracts into f(A)-\-Cf(A) by what we have already proved and
the corollary to Lemma 3. Therefore, the fact that Cf(A) contracts into
f(A)-\-Cf(A), and hence the theorem, follow from a second induction on
dim (A).

Let Eo
n be an w-element which is completely inside an w-element En,

meaning that Eo
n C En — En. As a corollary to Theorem 8 we have :

COBOLLARY. Cl(En—Eo
n) contracts geometrically both into E"- and

•into EQ'\

For some sub-division oEn may be represented as a partition of a
geometrical simplex A" in such a way that oE0

n covers a "concentric"
simplex A0

71, contained inj An. The closure of the region between An and
Ao" is the geometrical mapping cylinder Ct(Ao

n), where t is the projection
of Ao" on A'1 from their common centre, and contracts geometrically into

j This property may be taken as the basis of an inductive definition of C/(K). As a
matter of convention we take /(I) = 6/(1) = 1.

J Newman, Journal London Math. Soc, 2 (1927), 64, Theorem 3.
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A71, by Theorem 8, and similarly into Ao
n. Therefore, Cl{En-Eo

n)
contracts geometrically both into En and into E0

n.

THEOREM 9. If K contracts formally into K* and if f(K) c L is a
simplicial map of K in L, then L-\-Cj(K) contracts formally into

K+L+Cf{K*).

If K* — K there is nothing to prove. Otherwise let K = Kl-{-aA
(aA C.KX, A QK-L), where K ->K1 is the first step in a contraction K->K*.
The theorem will follow from Lemma 1 and induction on the number of
simplexes in K—K* if we can show that Cf(aA) contracts into

P = aA +f{aA)+Cf{aA).

By Lemma 2, Cf(aA) contracts into cP, where c is the centre of Cf(aA).
Clearly P contracts into f(aA)-\-Cf(aA), which contracts into f (aA), by
Theorem 8, and is therefore collapsible. Therefore P is collapsible, cP
contracts into P, by the corollary to Lemma 3, and the theorem is
established.

The purpose of our next theorem is to establish a certain relation
between homotopic maps/0(if0) c L and/1(Z1) C L, the complexes JL0 and
Kx being combinatorially equivalent. We shall say that two simplicial
maps/0(iC0) C L and/1(iT1) C L are equivalent if, and only if, Kx is the image
of KQ in an isomorphism t, such that fo=f1t [i.e. fQ(A0) =/i(^4i), where
Ao is any simplex in KQ and Ax = £(.4O)]. If we represent Ko, K1 and L as
geometrical complexes, the maps/0 and/x will be described as homotopicf
in L if, and only if, first, supposing that KO.KX= 1, there is an isomor-
phism t(7T0K0) = T^-KU where TT,- is a partition of K{ (i = 0,1), and a map J
of Ct(7T0K0) in L which, regarded as a transformation of points, coincides
with/,- in TTfKf; secondly, if Kx meets Ko the maps/0 and/x will be described
as homotopic if/0(if0) is homotopic to/2(iT2), where the latter is equivalent
to fxiK-y) and K0.K2=l. This definition obviously includes the ordinary
definition of homotopy in case KQ — Kx.

Let K, Ko and K± be combinatorially equivalent complexes and let
KQ •K1= 1. By a simple cylinder joining Ko to Kx we shall mean a
(simplicial) complex containing the complexes Ko and Kx {i.e. Ko and Kx

themselves, not merely sub-divisions of Ko and Kx), some sub-division of
which is isomorphic to a simplicial sub-division of Kx<\0, l)> in a
transformation which maps a sub-division of Kxi (i = 0, I) on a> sub-
division of K{.

f Cf. Hurewicz, loc. cit. (2nd paper), 524.
£ By a map of a geometrical complex we shall always mean a continuous transformation.
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THEOREM 10. If two simplicial maps fQ(KQ)cL and f^K-JcL are
homotopic in L there is a simple cylinder P, joining Ko to Kv which contracts
formally both into KQ and into Kx, and a simplicial map f{P) C L which
coincides withf{in K{ (i = 0, 1), the map f being simplicial ivith respect to the
complex P, not merely with respect to a sub-division of P.

Let KQ, K1 and L be represented as geometrical complexes. Since
/0 and f1 are homotopic there is a map cf)(C)(zL, which coincides, as a
transformation of points, with f( in 7r,-iQ {i = 0, 1), where C = C\(TTQKQ) and
t is an isomorphism of a partition TTQKQ on a partition TT-^K-^. The map <j>
may be approximated, in the usual way, by a simplicial map <j>'{aC)cL,
where a is a stellar sub-division of C. Since </> = / , in TT,/IL,-and/,is simplicial
we may assume that <f>'(a) is a vertex of f((A), where a is any vertex of
TTtA and AcK{. By Theorem 6 there is a further sub-division
oxaC = a C such that each of the elements TT/A is collapsible, where
A C Kt and TT/ — ax cm,.. By Theorem 8 the complex C contracts formally
into each of TT0K0 and TT-^K^ and by Theorem 4 the complex a C contracts
formally into each of 7r0' Ko and T^' KV The map $ may be replaced by
a simplicial map <f)"(o' C)cL, which transforms each vertex in
-nIA (AcK;) into a vertex of/,(^4).

We now form the topological product K(X\0, l>, taking pxO=p,
where p is any point in K(. Let Tt be the polyhedral complex covering
KfX^O, 1/, which consists of the open simplexes A X 1 {A eK{), the open
cells AX\0, V>, and the simplexes in TT/K{. Let 21,-* be the simplicial
complex derived from T; by starring all the cells A X <(0, 1/, leaving the
complexes K.;x 1 and TX[ Ki untouched, and let

Then Px is obviously a simple cylinder joining Ko x 1 to Kx X 1. It follows
from Theorem 8, with trivial modifications, that T,-* contracts formally
into K{ x 1, and also into TT/ KU since each of the elements TT/ A is collapsible
(AfCK). Therefore Px contracts, first into T0*+o'C, then into To

:!\
since a' C contracts formally into TT0' KO, and finally into Ko X 1. Similarly
it contracts formally into ^ x l .

We now extend the map cf>" {o'C) to a map f ' l P J c L by taking
<f)"{A x 1) =fi{A) and </>"(c) to be any vertex of/,(^4), where AcKj and c is
the vertex of T^- which is inside A x \0, 1>. The map so defined is
simplicial since each vertex in TT/ A is transformed by 0" into a vertex of
fi(A). Finally we replace Px by an isomorphic complex P = *JJ(PX)> where

x 1) = A {AcK/). Then P is a simple cylinder joining KQ to Kv it
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contracts formally both into Ko and into Kv and <f>" «/'~1(P) C L is a simplicial
map which coincides with/,- in K{. Thus the theorem is established.

A map/(#n) C L, where Sn is an n-sphere, will be called an ?i-spherical
map in L) or simply a spherical map if the dimensionality is irrelevant or
obvious from the context. If f{En) is a simplicial, spherical map in L,
where En (n > 0) is an w-element which does not meet L-\- Cf(E

n) except in
Ea, we shall describe

as a simple membrane^ bounded by the spherical map/(J5'1). Notice that
&n is an %-sphere if f{En) is a single point, and that any ?i-sphere which
meets L in a single point may be regarded as a simple membrane bounded
by such a map. In dealing simultaneously with a set of simple membranes,
of the same or different dimensionalities, and with any number of
complexes, it is always to be understood that none of the membranes has
an inner point in common with any of the others or with any of the
complexes.

If t is an isomorphic map of En on an (n— 1)-sphere which does not meet
En, it can be proved without difficulty that En-\-Ct{En) is an ^-element.
From this and from the definition of a mapping cylinder it follows that
£,«• = En-\-Cf(E

n) is an w-cellj bounded by a map which is equivalent§
to / . For, if t is an isomorphism of En on an (n— l)-sphere Sn~x, we
have &n = <f>{Eo

n), where EQ
n= En+Ct{En) and <f>{A) = A if AdE'\

^(Ai) =firx (AJ and ^(cj) = c, where Ax C &n~x and cx and c are the vertices
inside the cells Ct(A) and Cf(A) respectively. Since the vertices inside
different cells Cf(A) and Cf(B) are distinct the map «/> has no folds, which
means that no two w-simplexes in Eo

n have the same image in &". We
shall denote the boundary of a simple membrane, or of any cell P, by
-F(F), remembering that F(T) is a spherical map rather than a complex.

Let Ti
n=fi(Ei

n)cL (i=l,2) be w-cells bounded by equivalent
spherical maps fi(Ein), and, replacing f2(E2

n) by an equivalent map if
necessary, let E2

n = E1
n and / 2 = A in Ex

n. Let aE2
n be an internal

sub-division of E2
n {i.e. a = 1 in E2

n) which has no internal simplexes in

t Cf. N. Aronszajn, Akad. Wet. Amsterdam, 40 (1937), 69-69.
X By a cell we shall always mean a map of an element, which (i.e. the map) may be

singular or non-singular. It will be obvious from the context when a simple membrane
is to be regarded as no more than a complex (which will usually be the case) and when it is
to be regarded as a cell.

§ In speaking of the boundary of a cell we shall often refer to a map / when, strictly
speaking, we mean a map which is equivalent to / .
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common with Ef. Then Ef+Ef = (f>(Sn), where Sn = Ef+oEf and
^ is a simplicial map such that <f> {A) = A if A C Ex

n. We shall write

where /=ff in Ef1. Thus I\n-f-r2
n is a spherical map which is determined

up to the choice of the sub-division cr, and what we shall later call a homotopic
deformation rel. Ex

n (see §8).

THEOEEM 11. If &0 and ^ are simple membranes bounded by homotopic
maps in a complex L, then

(rel. L).

Let £,= J0H-Cy4) (t = 0, 1),

where F(&{) =f.{Ei), Eo and Ex being n-elements. We first dispose of two
trivial cases. If Eo = Ex and /0 = / l 5 we may transform Eo into Ev and
hence L-\-&0 into L-\-&v by internal combinatorial transformations.
The result is a formal deformation of £-f-&0, by Theorem 1, and it is
obviously relative to L. Secondly, by elementary sub-divisions of order
zero applied to the internal vertices of &0, which again are formal defor-
mations relative to L, we may replace £0 by a simple membrane having no
internal simplex in common with &>v Thus we may suppose, first that
Ei = aiEi (i = 0, 1), and secondly that our universal condition relative to
&0. fi-j is satisfied.

By Theorem 10 there is a complex P, which contracts formally both
into Eo and into Ely and a simplicial map f(P) C L, which coincides with
ft in Et. We may take P.L=l and Cf.{E{) = Cf(E{), and it follows from
Theorem 9 that L-\-Cf(P) contracts into L-\-P-\-Cf(Ei), and hence into
L+CfiEi). Let

K=L+Cf(P)+b(EQ+P+E1),

where b is a new vertex. By Lemma 2 the complex b{EQ-[-P-\-E1)
contracts into b(EQ-\-P). Since P contracts into Eo and E = a0E0, it
follows that ^ 0 + ^ ^s collapsible, and by the corollary to Lemma 3 that
b(E0-\-P) contracts into Eo+P. Therefore K contracts into

L+Cf(P)+E0

and hence into L+&>0, since Cf(P) contracts into Cf(E0). Similarly K
contracts into L-\-8,x, and it follows that



1938.] SlMPLlClAL SPACES, NUCLEI AND W-OROUPS. 265

Avhere D is the resultant of the expansion L-\-?-Q->K, followed by the
contraction K->L-{-l\. Clearly D is relative to L, and the theorem is
established.

The cylinder P is ^-dimensional, E" being (n— l)-dimensional.
Therefore K—L is (n+l)-dimensional and we have the addendum:

ADDENDUM. The order of the deformation D in Theorem 10 need not
exceed dim (&-,•) + 1 .

LEMMA 5. If £n is a simple, membrane bounded by a spherical map in K.
the complexes K and K-\-&n have the same {7i—\)-group. If F{&") is
homotopic to a point in K they have the same n-group.

Let £-n = En+Cf{En), where F(£")=f{En), and let A11 be an open
n-simplex in E", none of whose vertices lie in En. Then 7v + ^n has the
same (n—1)-group as K-\-&n—An. By the corollary to Theorem 8,
K+&n—An contracts into K+Cf(E

n) and by Theorem 8 itself the latter
contracts into K. Therefore K-\-tn and K have the same (n—1)-group.

Iif(En) is homotopic to a point in K it follows from Theorem 11 that

where Sn is a simple membrane bounded by a single point. That is to say,
Sn is an w-sphere, which we may take to be An+1, where An+1 is a closed
(n-\- l)-simplex meeting K in a single vertex. Then K-\-All+1, and therefore
KJ

rt
n

] has the same n-group as K-\-A'll+1, which contracts into A'.
Therefore K and K-\-t" have the same n-group, and the lemma is
established.

Let &l = En-\-Cf(E
n) be a simple membrane bounded by a spherical

map f(En) in a complex K, and let K contain a principal open (n— 1)-
simplex B11*1, which is covered in the map / by one, and only one, open
simplex An~x, in En.

LEMMA 6. K-\-&n contracts into K—Bn~r.

We first take away from K-\-&n the open simplex Bn~x and the interior
of the cell Cf(A'n-x). The resulting complex, namely

K—£«-!+En+ Cf(E
n—A71-1),

contracts into K—Bn-x+Cf(E
n—An~x),

since En meets the latter in the (n—1)-element En—An~x. The lemma
now follows from Theorem 8.
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7. m-Groups.

THEOREM 12. Two connected complexes have the same 2-group if, and
only if, they have the same fundamental group.

Two connected complexes with the same 2-group obviously have the
same fundamental group. For neither a formal deformation nor the
addition or removal of an open m-simplex (m > 2) alters the fundamental
group.

Conversely, let K and L be two connected complexes with the same
fundamental group G. After removing the simplexes of higher dimen-
sionality, if any, we may assume that K and L are at most 2-dimensional.
After a familiar process of shrinking segments into a point we may further
assume that K consists of oriented circuits av ..., ap, with a common point
(no two meeting anywhere else), together with certain simple membranes
Ej2, ..., &k

2, bounded by circuits which are represented in the usual way
as products

(7.1) R = aVh...af\

Then K determines a S3rstem of generators and relations

(7.2) ax,...,a,fl\ Rx == 1, ..., Rk = I,

lor the group G, where Rh is the product of the form (7.1) corresponding to
F(£\2). The complex L may be treated similarly so as to determine a
system of generators and relations

(7.3) ft, bq\ ^ = 1 , . . . , £ , = 1.

If the two systems (7.2) and (7.3) are identical it is obvious from
Theorem 11 that L = D{K).

In general, the system (7.2) can be transformed into the system (7.3)
by a finite sequence of transformations of the two following typesf, and
their inverses:

(1) adding a new generator a0, together with a relation of the form

oo1 W(a) = 1,

where W is a product of the existing generators and their inverses;

(2) adding a new relation Ro= 1, which is a consequence of the existing
relations.

| See K. Reidemeister, Einfuhrung in die kombinatorische Topologie (Brunswick, 1932),
46-48.
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Let £0
2 be a simple membrane corresponding to the relation

ao1 W{a)=l

(aQ being a new circuit) in the first case, and to the relation Ro — 1 in the
second case. In either case

is a complex which determines the new system of generators and relations.
In the first case £0

2 may obviously be chosen so as to satisfy the conditions
of Lemma 6, with n—2 and B1 in the circuit «.o. Clearly K expands
into K-\-a0—B1 and hence, by Lemma G, into Kv In the second case
the boundary of &0

2 is homotopic to a point in K since the relation i?0 == 1
is redundant. Therefore K and Kx have the same 2-group, by Lemma 5.
Equally, if a generator a0 and a relation a~xW --\, or a redundant
relation Ro= 1, are removed, K and 7vx have the same 2-group. where

Therefore there is a sequence of complexes K0 = K, Kx, ..., Kr=L; all
of which have the same 2-group, and the theorem is established.

We now introduce a new kind of elementary transformation which we
shall call a special filling of order m, and its inverse which we call a special
perforation of order m. A special filling is a transformation of the form

K-+K+A™,

where Am, but not Am, belongs to K, and Am is homotopic to a point in A'.
If L is derived from K by a special filling or perforation of order'/// it follows
from Lemma 5 that K and L have the same m-group.

Let pm be a perforation given by

1= (K-Am)+A™,

where Am is a principal closed simplex in K, and let a be a stellar sub-
division of K.

LEMMA 7. The transformation aK^-aK1 is the resultant of a perforation
Po"1 followed by a formal contraction. Ifpm is special so is po

m.

As in Theorem 4 we may take cr to be a single elementary sub-division
{A, a), where AcAm. Let A = bB1 and Am = bB, where B=BXB2.
Then

oAm = a{bB1+B1)B2

= abB1B2+aB,
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and we remove the interior of the simplex aB by a perforation pQ
m. If

(bB)' is homotopic to a point in Kx so obviously is (aB)' in (oK—aB)-\- (aB)\
Therefore pQ

m is special if pm is special. It follows from the second part of
the proof of Theorem 4 that (oK—aB)-\-(aB)- contracts into crKv and
the lemma is established.

LEMMA 8. / / K and L are two complexes with the same n-group, each of
ivhich is at most n-dimensional, then K is transformable into L by special
fillings and perforations of order n and elementary deformations whose orders
do not exceed n.

We first replace any elementary expansion

K-t-K+bB™-1 (m>n, bB^cK),

whose order exceeds n, by the filling

followed by the filling

Since Bm~1= {bB711'1)' it is homotopic to a point in K. Therefore the
first of these is a special filling and is permissible even if m = n-\-\.
Similarly we replace any elementary contraction of order m (m>n) by
a perforation of order m followed by a special perforation of order m— 1.
Therefore we may suppose that K is transformed into L by elementary
deformations whose orders do not exceed n and fillings and perforations
whose orders exceed n—l, those of order n, if any, being special. Let k be
the maximum order of the fillings. If k — n there is nothing more to be
said. For K is at most vi-dimensional and if no simplexes of higher

dimensionality are introduced none can be taken away. If k > n, let Ak be
one of the open simplexes introduced by a filling fk, of order k. Since k > n,
Ak is subsequently removed. Let pk be the first | perforation after /* which
removes Ak. Then pk commutes with each of the elementary transforma-
tions between fk and pk. For none of the latter add or remove a simplex
belonging to the closure of Ak, since Ak is present throughout, and, since
k is the maximum order, no simplex is introduced having Ak on its
boundary. Therefore pk, which is the inverse of /*, may be applied
immedia+ely after fk and both may be omitted from the sequence. The
lemma now follows from induction on the number of elementary transfor-
mations in the passage from K to L.

•f It may happen that Ak is inserted and removed more than once,
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By a cluster of simplexes (spheres) attached to a complex K will be
meant a set of simplexes (spheres) with a vertex of A" in common, which
do not meet K or each other anywhere else.

THEOREM 13. If K and L are connected complexes of at most n
dimensions with the same n-group, then

where A*+1, ..., A}}+1 and -B"+1, ..., B*+1 are clusters of (n-\-'i)-sim2)lexes
attached to K and L respectively^.

We may suppose that K ->L by a transformation of the kind described
in Lemma 8. It follows from Lemma 7 and an argument similar to the proof
of Theorem 5 that, after a suitable sub-division, the elementary transfor-
mations in K->L may be arranged so that every filling and expansion
precedes every perforation and contraction. Further, if ek is an elementary
expansion of order k ̂ .n which follows immediately after a filling fn, it is
obvious that

ekfn=f>ek.

Similarly pnck — ckpn,

where ck is an elementary contraction of order k ̂ .n and j»?l is a perforation
of order n. Therefore we may exhibit the transformation K^-L in the
form

L=Cp» ...px»f« ...fx« E(K),

where E is an expansion, fK
n and^x71 are special fillings and perforations of

order n, and C is a contraction. That is to say

where Ko= E(K), L0=C-1(L).
Let AK

n be the open simplex added by/A", let Bjl be the open simplex
removed by pjl, and let

Since A%+1 is homotopic to a point in ifx it is obvious that any spherical
map in Kx which is homotopic to a point in Kx-\-Ax+1 is homotopic to a point
in KK. I t follows from induction on A that any spherical map in Ko which

•f If JB" (P) stands for the n-th connectivity of P, it is obvious that

s-r = R»(L)-R»{K).
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is homotopic to a point in Kr is homotopic to a point in Ko. Therefore each
of Ax

n, ..., A™ is homotopic to a point in Ko and it follows from Theorem
11, as in the proof of Lemma 5, that

(7.5) K^

where A"n, ..., Afn is a cluster of (7i-fl)-simplexes attached to Ko.
Similarly

(7.6) Kr = l

where B'l]1, ..., B'^1 is a cluster of (w+l)-simplexes attached to Lo.
Since Ar

0 and Lo contract into K and L respectively we may assume that
the vertices A^+1. K^ and B»+1. Lo belong to K and L. Then

Ko+ S A"+1 and Lo-\

contract into
r

and L-\-

and the theorem follows from (7.5) and (7.6).
From the addendum to Theorem 11 we have the addendum :

ADDENDUM. The order of the deformation D in Theorem 13 need not
exceed n-\-l.

From the first addendum to Theorem 5 we have the corollary:

COROLLAKY. If K and L are two complexes of at most n dimensions
with the same n-growp there is a complex of at most n-\-l dimensions which
contracts into

and also into some sub-division of

L+ i B'l+1.

8. Retracts by deformation.

hetfo(p) ( j u P ) b e a map of a topological space P in a space Q and let
P:i: be any sub-space of P. We shall describe a deformation of/0 into a
•map/!, given by ft(p) =f(p, t) (0 <£ ^ l),asreto^etoP:::if/z(p:i:) =fo(p*)
for every point p* in P * and every t in <0, 1>.
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We recall that a sub-space of a topological space, and in particular a
sub-complex L of a geometrical complex K, is called a retract by defor-
mation "j" of K if there is a deformation

such that Po = p, Pi^L and PI = PQ if p^eL. If the deformation ^ is
relative to L we shall describe L as a retract by deformation relative to
itself. If K contracts into L it is obvious that L is a retract by deformation
relative to itself. If

P=f(q) (q*Q)

is a map of a topological space Q, in K, the map

Pi = <l>if(q)

is uniquely determined up to homotopy in L. For if

Pi = MP) ( 0 < « < l ; Po=p)

is any deformation of K into L the map i/^/is homotopic to / and hence to
<j>xf in K. Therefore the two maps are homotopic in L since the latter is
a retract of K. If Kx and K% are complexes such that K% = DiK^), there
is a complex K* which contracts into K1 and into a stellar sub-division
crK2, and, except for the choice of the new vertices, i£:i: is uniquely deter-
mined by the deformation D. If fx{Q) is a map of Q in Kx it follows that
D determines a unique homotopy class of maps [/2] = -^[/i] in K2,
given by

where iff is the final result of a deformation of iC* into oK2, and a~1(i/»/1) is
a map obtained from ifjfl by a canonical displacement $ of the vertices of
oK2into the vertices of K2. Let J'iv ..., &ip be simple membranes bounded
by (simplicial) spherical maps fn(8i), •••,fiP(Sp) in Kt {i= 1, 2), where

. Further let D be relative to L, where LcKx. K2.

f Cf. K. Borsuk, Fundamenla Math., 21 (1933), 91-98.
I The purpose of the sub-division <r in Theorem 5 is to eliminate unwanted intersections.

Therefore we cannot, in general, take K2 and aK2 to be complexes covering the same (poly-
hedral) point-set. However, each vertex of <rK2 is internal to just one element aA, where
A c K2, and a canonical displacement is a simplicial map in which every vertex inside a A
corresponds to a vertex of A, for each Ac K2. If follows from a well-known argument that
any two such maps of <rK2 on K% are homotopic in K2.
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THEOREM 14. Under these conditions

(rel. L).

First assume that D is the resultant of an expansion Kx-*-K'*, followed
by a contraction K* ->K.z. Then F( 1u) is homotopic in K* to JP1( 02A) and
it follows from Theorem 11 that

v

where the deformation 7^ is relative to 7C* and hence to L. Since
F(l ik)cKi: we have

/ / V _]_ 5J 8 •» : : h)• I A I- X f'-, I (1, = 1 2^
X = l \ X = l /

where Et is an expansion, and the special case of the theorem follows.
In general the complex K* contracts both into Kx and into some stellar

sub-division K^ = oKz, where a = 1 in L, by the second addendum to
Theorem 5. So, if we begin again with K^u, the proof will be complete if we
can prove the theorem in case D = a"1, where a = 1 in L. Using induction
on the number of elementary sub-divisions in a, we may take a to be a
single elementary sub-division K2 = AP-\-Q->aAP-{-Q = K1*. There
is then a complex which contracts both into K^: and into K2, namely
aAP-\-Q. Moreover, if a0 is a vertex of A, the canonical displacement
a->a0 may be realized in aAP-\-Q, by shrinking the edge aaQ into the
vertex a0. Therefore a homotopic deformation of aAP-\-Q into K2

determines the given transformation of classes of maps in K^ into
classes of maps in 7v2. Since a = 1 in L, it follows that A c£ L, whence
L C ivj* . K2, and the theorem follows from what we have already proved.

Under the conditions of Theorem 14 we shall write

From the addendum to Theorem 11 we have the addendum to
Theorem 14:

ADDENDUM. / / D is of order m and if the membranes .&1X are at most
n-dimensional, the order of D* need not exceed max (m, n-\-l).

We now quote for reference a lemma which is essentially a restatement
of a familiar result. Let pt

=fi(P) (0 ^ * ^ 1; pQ = p) he & defor-
mation of a connected complex K into itself.
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LEMMA 9. IfpQ is any point in K the circuits fx(C) constitute a geometrical
basis for rr^K, px), the fundamental group of K withp1 as a base point, where
{C} is the set of circuits beginning and ending at ^0.

If s is the segment p = pt described by p0 in the deformation, the
singular circuits of the form s-\-C-\-s (orientations ignored) constitute
a geometrical basis for rrx{K, px). Such a circuit is homotopic, rel. p1} to
fi(C).

Let L be a sub-complex of K. We specify four sets of conditions and
shall show that each of them implies all the others. The first is

R. L is a retract by deformation of K.

RL. L is a retract by deformation of K relative to itself.

A. Any r-cell in K(r = 0, 1, ...) ivith its boundary in L is homotopic,
relative to its boundary, to an r-cell in L.

Our final set, which we shall denote by B, contains three conditions
Blt B2, and j?3, namely

-^I- UP *5 anV point in L the circuits in L beginning and ending at p
constitute a geometrical basis for TT1(K, p).

B2. Any spherical map in K is homotopic to a spherical map in L.

Bz. Any spherical map in L which bounds a cell in K bounds a cell in L.

THEOREM 15. Each of the conditions R, RL, A and B implies all the
others.

It is obvious that RL implies each of the others. It follows from an
argument used by Hurewiczf, in establishing this result when L is a single
point, that A implies RL, and therefore R and B. In the presence of
Lemma 9 it is obvious that R implies J5. Therefore the theorem will
follow if we can show that B implies A.

Let pq be a segment in K whose end points, p and q, lie in L. According
to J53> there is a segment s joining p to q in L. According to Bx the circuit
pq-\-s is homotopic, rel. p, to a circuit C, in L. Then the singular segment
s + C is homotopic to pq, rel. (p-\-q), and the condition A is established in
case r = 1.

Let So
u (n > 0) be any n-spherical map in K containing a point p0, in

L. According to J52, So
n is homotopic to a map 2 ^ in L. Let pQpx be the

t Hurewicz, Proc. Akad. Amsterdam (loc. cil.), 2nd paper, §tt.

SBB. 2. VOL. 45. NO. 2246. T
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segment described by p0 during a deformation of S0
TO into S^ . Then

So
n is homotopic, rel. p0) to a spherical map of the formf p0Pi-\-J^in. By

what we have just proved, pop± is homotopic, rel. (̂ 0~hPi)> *° a segment
5 in L. Therefore Eo'

1 is homotopic, rel. pOi to a spherical map in L,
namely 5+Sx

n.
Finally, let F1'

1 be any w-cell in K whose boundary lies in L. According
to B3, ^(r^1) bounds a cell T2

n in L. By what we have just proved the
spherical map IY' + r y is homotopic, rel. p0, to a spherical map 5> in L,
where p0 is any point in r2

/l. As in the case n = 1 it follows that IY1 is
homotopic, rel. -F(IYl), to the cell I \ w +S w , which lies in L, and the proof
is complete.

THEOREM 16. If L is a retract by deformation of K, then K and L have
the same m-group for all values of m.

Let Kp (p > 0) be the complex consisting of L together with all the
simplexes in K—L whose dimensionalities do not exceed p. Thus
Kp = K if K is ?i-dimensional and p^n. For a given value of p let us
assume that

(8.1) Lp = Dp(KP) (rel. L),

where

(8.2) Lp = L+h fif"1* £ V ,
1 = 1 X = l

Pf'1, ..., LP-1 being simple membranes whose boundaries are in L, and
^1

P, ..., £-s
p being simple membranes whose boundaries are in

(8.3) L+i&f1.
t=i

By Theorem 14 there is a deformation of K11+1, which we also denote by
Dp, such that

(8 • 4) VP{K»^) = Lp+ i £P+1 (rel. L)
P=I

wherej &f+L = Dp(A*+i) and F(df+1)<ZLp, A**1, ..., Af+l being the
(p-l-l)-simplexes in K.

t CJ. §10 below.
I If p > n we have t — 0, the corresponding sets of cells being empty, and Lp* — Lp.
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Since L is a retract by deformation of K, any simplicial (p— l)-cell in
Kp+1, say P3"1, whose boundary lies in L, is homotopic in K, rel. i^P3"1),
to a (p—l)-cel\ T13-1, in L. The p-dimensional deformation cell may be
deformed into Kp+1, holding F53"1 and f1*-1 fixed, and it follows that
P3"1 is homotopic to F*1-1, rel. F(Tp-1), in Kp+1. This property is obviously
invariant under a formal deformation, rel. L, of Kp+1. Therefore &?"1 is
homotopic, rel. Fi&f'1), in Lp* to a (p — l)-cell F?"1, in L. Let ,£*> be
a simple membrane bounded by the spherical map F£~"1 + &?~1. Then

is homotopic to a point in Lp* and it follows from Theorem 11 that

(rel. Lp*),

where (Bp+1, ..., Bp+1) is a cluster of (̂ 3 + l)-simplexes attached to Lp
l:.

By Theorem 14 there is a deformation of

(8.5) V ^
1=1

which we also denote by Z>*5 such that

(8. 6) D*

where &f+* = D*(Bf+1) and J(£f++>)CLp*+ £

v ( f + v i r
1 = 1

Clearly fif"1 is a sub-complex of ,£*>. Therefore &?-1+i&33 = f&* and

(8. 7) LJ* = £+ S f ^ + S V +
i = l A = l p = l

From (8.4), from the fact that Lp* expands into (8.5) and from (8. 6) we
have

(rel. L).

We now show that L$* is deformable, rel. L, into a complex Lp+1, given
by an equation of the form (8.2) with p replaced by p-\-1. As explained
in § 6, the cell .Sf"1 is defined by a map without folds. Therefore no two
(p— l)-simplexes in the original (p—1)-sphere of the map

T 2
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correspond to the same (p—l)-simplex in Sf"1, and it follows from
Lemma 6 that

L+ £ f8"

contracts into L+ 2 (&?"1—B1''1),

where Bf~l is an open (2;—1)-simplex in Sf"1, and so contracts into
It follows from Theorem 14 that there is a deformation of

r s

i=. l X = l

which we denote by D^, such that

DAL+ £ ,£»+ £ V) = £+ £ V
\ 1=1 A=l / X=l

where S/rz^f^) and F{l^)CL.

Therefore it follows from (8.7) and yet another appeal to Theorem 14
that there is a deformation of L'£*, which we also denote by D^\ such that

„ t+r „

V+ S
p = l

where ej'+1 = D1*(G»+1) and i ^ ( % + 1 ) C L + £ V -
A = l

Therefore

(8.8) LJJ+1 = i)3J+1(^+i) (rel. L),

where DiJ+1 = D^: D0
:i: and

(8.9) ^ + 1 = i + 2 V + s &y+i.
x=i P=i

The equations (8.8) and (8.9) are similar to (8.1) and (8.2) with
p replaced by p-\-1. Equations of the form (8.1) and (8.2) are obviously
.satisfied whenp = 1, taking the set G^0, ..., fi-r° to be empty, and it follows
by induction tha t they are satisfied for all values of p%. By Lemma 5,

t Cf. the proof of Lemma 5.
\ Notice that the step from p = 1 to p = 2 is achieved by (8 . 4), since L1* is of the

form i/2.
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Lm+2 and (8.3), with p = m-\-2, have the same (??i-|-l)-group and (8.3)
and L have the same ra-group. Therefore Km+2 and L have the same
ra-group. But K and Km+2 obviously have the same m-group and the
theorem is established.

From the addendum to Theorem 14 and induction on p we have the
addendum to Theorem 16:

ADDENDUM. The order of the deformation Dvin (8.1) need not exceed
p+1.

9. Homotopy types. Two topological spaces, P and Q, are said to
belong to the same homotopy type if there is a map/(P) in Q and a map
g(Q) in P such that the maps gf&ndfg, of P and Q into themselves, are each
homotopic to the identity.

THEOREM 17. Two complexes are of the same homotopy type if.
and only if, they have the same m-group for each value of m.

We first show that two given complexes K1 and K2, of at most n dimen-
sions, belong to the same homotopy type if they have the same (n+1)-
group. Let Kx and K2 have the same {n+l)-group. By Theorem 13

where 2,-is a cluster of {n-\-1)-spheres attached to K{ at a vertex a{ (i = 1, 2).
Two complexes with the same nucleus are obviously of the same homotopy
type, and it follows that there are maps /,•(./£,•+2,-) in Kj-\-1tj{i= 1, 2;
j = i-\-1 mod 2) such that each oif2fx and/j/g is homotopic to the identity.
We may take/,to be semi-linear, in which case, since If,-is at most w-dimen-
sional, /,• {K{) does not cover the whole of 2,-. If part of /,(i£,) lies in 23, it
may therefore be deformed into a^ holding the rest of the map fixed. There-
fore /,- and fi may be deformed into maps/,* and //* such that/,*(if,) C Ki

and/;,*/,*(iCf) is homotopic to the identity in iC,-f2,-. But K{ is obviously
a retract (not by deformation) of ^,-+-2,- and it follows that /,•*/,* {Kt) is
homotopic to the identity in iC,-. Therefore Kx and K2 are of the same
homotopy type.

Conversely, let K and L be two complexes of the same homotopy type,
which we may assume to be connected, and let/(if) and g(L) be maps of
the kind described above. We may suppose that K. L = 1 and, after a
suitable sub-division of K, that the map / is simplicial. By Theorem 8
the mapping cylinder Cf{K) contracts into L. Therefore the theorem will
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follow from Theorem 16 if we can show that K is a retract by deformation
of Cf(K), and hence from Theorem 15 if we can show that K satisfies the
conditions B.

Let P be any complex and let <f>(P) C K be a map of P in K. When we
compare Cf{K) with if x<0, 1>, it follows from the definition of Cf(K), in
§6, that (f){P) is homotopic in Cf(K) to the map f<j>(P)C.L. Conversely,
any map of the form f<f){P)CL, where <j>{P)CK, is homotopic in Cf(K)
to <f>(P). If P i s a circuit and p is any point in P, the singular circuit
s-\-f(f)(P)-\-s is obviously homotopic, rel. p, to <f>{P), where s is the seg-
ment Cf{(f>(p)}.

Let q0 be any point in L, let p0 = g(q0) and let qx =f{p0) =fg{q0). By
Lemma 9 the set of circuits /^(S) constitutes a geometrical basis for
TTX{L, qx), where £ is any circuit in L beginning and ending at qQ. Since
Cf{K) contracts into L, the circuits fg(%) also constitute a geometrical basis
for TT^C^K), q±}. Therefore the circuits of the form s-\-fg(L)-\-s constitute
a geometrical basis for TT^C^K), p0^, where s = Cf(p0). But such a circuit
is homotopic, rel. pQ, to the circuit <?(£). Therefore the circuits in K which
contain p0 constitute a geometrical basis for TT^C^K), ^ O } , and Bx is
satisfied.

Since L is a retract by deformation of Cf(K), any spherical map in Cf(K)
is homotopic to a spherical map 2, in L, and hence to/^(S), since fg is
homotopic to the identity. But/^(S) is homotopic in Cf(K) to g(Z)C.K
and it follows that B2 is satisfied.

Finally, let 2 be any spherical map in K which bounds a cell F, in Cf(K).
Comparing Cf(K) with KX\0, I), we see that L is a retract of Cf(K) by
a deformation ft (0 < i ^ 1) such that fx=f in K. Therefore / ( S ) C L
bounds the cell/1(F) C L and #/(2) bounds a cell in K, namely gf^T). But
gf is homotopic to the identity. Therefore £ bounds a cell in K and B3 is
satisfied. Therefore K is a retract by deformation of Cf(K) and the
theorem is established.

10. Certain questions: a ring. In this section we ask certain questions
and introduce a ring which is in many ways analogous to Reidemeister's
homotopy ringf. The first question is:

Q. 1. If two complexes of at most n dimensions have the same n-group
and the same connectivities, have they the same nucleus ?

f K. Reidemeister, Abhand. Math. Sem. Hamburg, 10 (1934), 211-215; Journal fur
Math., 173 (1935), 164-173, and other papers.
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If K and L, being at most n dimensional, have the same n-group it
follows from Theorem 13 that

L+ i

where A?+l, ..., Af+1 and B1{+1, ..., Bf+l are clusters of (w+lj-simplexes
attached to K and L. Then r = s if Rn{K) — Rn (L), where Rn{P) stands
for the w-th connectivity of P, and Q. 1 raises the question :

Q. 2. / / K^DiKJ, Ki+L^DtiKi+LJ and if Kt.Lt is geo-
metrically collapsible (i = 1, 2), have Lx and L2 the same nucleus ?

An affirmative answer to Q. 2 carries with it an affirmative answer to
Q.I. We shall see, in §12, that Q. 2 is equivalent to the apparently
narrower question:

Q. 3. / / Mn, Mx
n, and Mz

n are bounded n-dimensional manifolds^, with
connected boundaries, such that Mn meets Mt

n in an {n—\)-element on the
boundary of both (i = 1, 2), and if the manifolds Mn+Mx

n and Mn+Mi11

are combinatorially equivalent, have Mj71 and M2
n the same nucleus ?

We now leave these questions for the moment and turn to the ring.
Let an w-spherical map in a connected J (geometrical) complex K be taken
as a map/((71

n) of a hyper-cube C^, such that/(C'1
?1) is a constant§pl5 and

let C*!71 be given by —tx < ^ , < ^ (i= 1, ..., n) in Cartesian space. Let
p0 be any point in K and let s be any oriented segment in K, beginning at
p0 and joining it to px, which is given by||

With the map/fCV1) w e associate the map sf{Co
n), such that s / = / i n Cx

n

and 8f(Gt
n) = Pi (tx <£ ^tQ), where Ct

n is given by

We shall denote the map sf(Co
n) by

if n= 1, and by

t Here, as in § 12, a manifold is a complex Mn such that Ma" is an (n —1) -sphere or
(n—1) element according as a is inside or on the boundary of Mn.

% In any discussion involving the homotopy groups of a complex it is always to be
understood that the latter is connected.

§ Cf. Hurewicz, 2nd paper (loc. cit.), § 2.
|j Notige that the parameter t decreases as pt describes $ in the positive direction.
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if n > 1. It is easy to verify that the transformation / - ^ s / determines an
isomorphism of 7Tn(K, px)

 o n «•«(•£"> Po)> where irn(P, p) (peP) stands for
the geometrical representation of the n-th. homotopy group of a space P
having p as its base point. If sx is a segment joining p0 to px which is
homotopic, rel. (PQ+PJ, to s, it is obvious that sJ(Co

n) is homotopic,
re].(Co

n-\-C1
r>), to J(CQ

n). Therefore the transformations f->J and
f-*Slf determine the same isomorphism 7Tn(K, p-^-^tt^K, p0).

If p$ = Pi> the isomorphisms just described are automorphisms of the
group 7Tn(K, px). To each element g of the fundamental group TT^K, px)
corresponds an automorphism ijjv{g), given by

if T I = 1, and by

if n > 1, where c is an oriented circuit representing the element g. The
transformation g->*ftn(g) is obviously a homomorphism of -n1 (K, p±) in
the group of automorphisms of 7rn(iLJ^1), which, in case n= 1, is the
familiar homomorphism of TTX{K, px) on its group of inner automorphisms.
This homomorphism is invariant, relative to a change of base point, in the
same sense that a tensor (not to be confused with its components in any
one coordinate system) is invariant under a transformation of coordinates.
For if g' ->(/»'n(g') is the homomorphism defined as above with jp0 as a base
point, and if Tk is the isomorphism of Trk{K, px) on TTk{K, p0) (k=l,2, ...)
determined by a segment joiningpQ topv it may be verified either formally
or geometrically that the transformation law of ifjn(g) is

where g' = Tx{g). In particular, if p0 =px and Tk = ^k{gQ), we have

With the group of automorphisms of the form tpn(g) is associated a
ringf 5Kn = %\n{K, p), consisting of homomorphisms of Ttn = 7rn(K, p) into
itself (n > 1). If we rewrite ifjn(g)a as ga, the elements of the ring are

f C'f. B. L. van der Waerden, Moderne Algebra, 1 (Berlin, 1930), 133.
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transformations of the formf

'a —S,a,<7,-a,

where a e TTH , grf- <= TTV and ax, a2,... are rational integers, all but a finite number
of which are zero. The addition and multiplication (r-\-r')a and rr' a are
defined in the usual way. If a,. .... ak are fixed elements in -nir the set of
all elements of the form

rla1-\r... + rkak faeftj,

is a sub-group of TTIV which we shall denote by r(a]5 ..., ak).
Let Z * = Z + ^ + 1 + . . . + £'i!

+1 {n> 1), where ££+1 is an oriented
simple membrane bounded by a (simplicial) map representing the element
a,- in 7Tn, and let 7Tn* = 7rn(K*, p). If a is any element in TT}1, represented bjr

an oriented m a p / ^ " ) in if, and if a* is the element in TTJ* which is repre-
sented by the same map /($"), the transformation a->a:]: — (f>(a) is
obviously a homomorphism of rrv in TT*. It is also obvious that any map
f*(Sn) in K* is homotopic, rel. q, to a map in K, where q e S" andf*(q) = p.
Therefore <j) is a homomorphism of TT,, on 77;)

:h.

THEOREM 18. T/ie kernel of the homomorphism </> is% r(a1} ..., ak).

If aer(a1, ..., ak), it is obvious that <f>(a) = 0. Conversely, let <f)(a) = 0,
where a is a given element in TTIV let f(E"+i) be an oriented map in K
representing a and <f>(a), and let f(E"+1) be an oriented (?i-|-l)-cell in 7v:!:

bounded by f(En+1).
Let .^+ 1 = ^ + 1 + C / . ( ^ + 1 ) and let At

n be any closed ^-simplex in
E^+1 whose image /,-(̂ 4,-7!) contains p̂, which we take to be a vertex of K.
Let Bf+1 be any principal open simplex in 0,-= Cf.(At

n) of which p is a

vertex. I say that C{— B^1 contracts into Cff = -4f
fl4-//W) + Cf/iW')-

For, if fiiA^1) is w-dimensional and J5^fl = crf^A?), where c,is the centre
of C{, this follows from an argument used in proving Theorem 8. Otherwise
B?+1 = CiBp, where B(

n is a principal open simplex of C^A^1) (A^CA/1).
In this case the assertion follows from induction on n, Lemma 3, and an
argument used in proving Theorem 9. Therefore C{—B?+1 contracts into
Cj and, by an argument used in proving Lemma 6, -fi-"+1—B?+1 contracts

f The (commutative) homotopy groups irn (n>l) will always be written additively
and the fundamental group with multiplication.

X That is to say, ^>-1(0) = r(o1, ..., a,.).
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into Jf(&?+1). Let the map /(J£"+1) be simplicial, /(#"+1) being the
spherical map defining a, and let Aff1, ..., Af*1 be the open simplexes in
En+l which fall on B>{+\ Let B^1 be oriented so that B>{+1 is homotopic
in S,"-!-1 — J3?+1, with regard to sense, to the oriented map JP(&"+1), repre-
senting a,-, and let -<4"x

+1 be oriented so as to cover -B"+1 positively.
If the set of simplexes Av^ is empty, /(#' l+1) is deformable into a cell

in K bounded by /(/?"+1), and it follows that a = 0. We suppose, there-
fore, that the set of simplexes -4™x

+1 is not empty. After a suitable sub-
divisionf of En+l we may suppose that no two of the simplexes A^1 meet
En+1 or have a vertex in common. This being so, let q and qik be points in
En+1 and A?*1 such that f{q) = f(q!x)=p. Let tiK be an oriented segment
in En+1, beginning with q and joining it to qiX, such that tik does not meet
Cl{A^x) except in qiK and does not meet tiy_

JrCl{A'^1) except in q (£3> ^tiK).
Then

i, X

may be regarded as a singular cell bounded by the oriented singular
w-sphere

Therefore f(En+1) is homotopic, rel. g, in

i

to S(«iX+e
i, A

where siK=f(tik), and hence to

since £«+i—5?+1 contracts into i^(&f+1). Since &JH*—2?»+i contracts
into JF(&"+1), the complex Ko* contracts into K. Therefore each of the
circuits siK is homotopic in KQ*, rel. q, to a circuit ciK in K, a,nd f(En+1) is
homotopic in K, rel. g, to

| We can modify JE?1»+1 and the map/ by applying a sub-division (A, o) to En+^, making
the new vertex o correspond to /(&), where 6 is a vertex of A. Repeating this process we
can isolate the simplexes -4"x

+1 from En+l and from each other,
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Therefore a = E <rlA &x a,-,
•>•,*•

where giK is the element in TTX(K, p) corresponding to the circuit cM, whence
aerfa,, ..., â .) and the theorem is established.

COROLLARY, irH* is isomorphic to the residue group IT,,—r(a, ak).

Let £"+1, ..., ^ + 1 be simple membranes bounded by oriented spherical
maps in K, which do not necessarily contain p, and let

K* = K+ S
1=1

Let s,- be an oriented segment beginning with p and joining it to some point
in F(&{+1), and let a,- be the element in irn(K, p) corresponding to the map
s{-{-F(&?+1). Then the group r(al5 ..., ak) is independent of the particular
segments s(. For, if s,- is replaced by st, the map st-\- F(&7{+1) is homotopic to

and the corresponding element ĉ -is given by a^ = ĝ -a,-, where gr,is the element
in ^(iT, )̂) corresponding to the circuit s,—5,-. I t follows that

r(al5 ..., afc) = r(a1} ..., ak) = r(fl} . . . , / f t ) , say.

We can deform .&?+1 into a simple membrane bounded by the map
si~\-fi> without altering any of the groups concerned, and Theorem 18, with
its corollary, may be restated in terms of the group r(fv ...,fk).

Now let fi^ftiS11) and fi=fi(S
n) ( i= 1, ..., k) be oriented maps in K

and let a{ and a,- be the elements in irn corresponding to the maps s,-+/,- and
'si

Jrfi, where s{ and s,- are segments joining £> to points of/,- and^. Also let
and &"+1 be simple membranes bounded by/,- and/-, and let

(10.1) K* =
J=I «=i

Then it follows from Theorem 18 that each map/^ is homotopic to a point in
K*, and /,• is homotopic to a point in K*, if, and only if, a,- e r(a1: ..., ak) and
a,€r(al5 ...,ak). That is to say, if, and only if, there are elements r(j and
fu in 3&n such that

(10.2)
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Tf these conditions are satisfied, K* and K* have the same (?? +1)-group.
For, by Lemma 5, they both have the same (??.-|-1)-group as

_ k _

On the other hand, if tAAro complexes of at most (?i-f-1)-dimensions have the
same (w-f 1)-group and if their (?i-|-l)-st connectivities are the same, it
folloAvs from arguments used in proving Theorem 13 that one is trans-
formable into the other by formal deformations and a transformation of the
formf 7£:!:->X:!\ where 7£:!: and K* are given by (10.1), subject to the
conditions (10.2). Therefore, if n > 1, the question Q. 1 is equivalent
to the following:

Q. 4. Have. K* and K:]: the same nucleus if the conditions (10.2) are

satisfied. K being at most (n-\-1)-dimensional 1

We conclude this section Avith an example of complexes K* and K*
satisfying the conditions (10.2), though there seems to be no easy method
for finding out whether or no they have the same nucleus. Let P be a
2-dimensional complex such that ^ ( P ) is a cyclic group of order five. Let
An+1 (n > 1) be an oriented (?i+l)-simplex meeting P in the single point
p, and let K = P-\-An+1. Let a be the element in nn (K, p) which is repre-
sented by A11+1 and let g be a generator of TT^K, p). Let £n + 1 be a simple
membrane bounded by a representative of the element

a=(l-g-g*)a.

I t may be verified that (1— g2—g3) (1—g—g*) — 1 as a consequence^ of
<75 — l , whence

If 7v* = iC-M"+1 and ^ * = X+£W+1,

it follows that K* and K* satisfy the conditions of Q. 4. Since

K* (=K+An+1=P+An+1)

contracts into P, the question is: " Have K* and P the same nucleus? "

f Replace n by n + 1 in Theorem 13, take the complex Ko— 2 B*+l of Theorem 13

for K in (10.1), the simplexes 2?J+1 and A^+l for the membranes jg,V+1 and ^j»+1 and the
complexes Ko and Lo of Theorem 13 for K* and K* in (10 . 1).

\ I am indebted to Prof. L. J. Mordell for this example.
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11. A special class of groups. In this section we show that two
complexes have the same nucleus if they are of the same homotopy type,
provided that their fundamental groups satisfy a certain condition. This
condition will be stated in terms of the integral ring &(#) of a group G,
whose elements are linear forms

where y^G and ax, a.z, ... are rational integers, almost all of which are
zero. If G = TT1 (K, p) and if ifia{r) stands for the transformation a->ra
in $\,t(iC3 p) (n > 1), the transformation r->ifja(r) is obviously a honio-
morphism of fo^) on &,,,= $v,t (K, p). If a4e77,t(/v, p), an clement

in the group r(av ..., ak) may be regarded as a linear form inf a1? ..., a,.
with coefficients in 1&(ITX), and the elements ax, ..., ak will be described as
linearly independent if

implies r1= ... = rk = 0. Notice that al5 .... ak are linearly independent
with coefficients in ^(TTJ) if, and only if, the elements gai (g e nx) are linearly
independent with integral coefficients ; that is to say if r (als ...: a,.) is freely
generated, with commutative addition, by the elements ga{. If there is a
linearly independent set of elements in TTU the homomorphism r -> ifjn (r) is
an isomorphism. For, if ax, ..., â , is a linearly independent set, rxa1 T^O
unless rx = 0.

Let K* = K+1, £." (n>l),
t=i

where ^.1"1 ..., &k
n are simple membranes such that #(&{") = ^(Fj"),

where T^ is an w-cell in K. Join Yx
u, ..., Tk" to a base pointy in A' ami

let at- be the element in TT,,:!: = 7Tlt(K
:l:, p), corresponding to the spherical

map 8<t
/l+iyi, oriented either way. As a complement to Theorem IS we

have

THEOREM^ 19. TT,* = irn+r{aX: ..., ak),

and the elements av ..., ak are linearly independent.

f Cf. Reidemeister, Abhand. Math. Son. Hamburg (loo. cil.).

% If P is a retract of P* (not necessarily by deformation) IT,, = ir,,(Pt p) is isomorphiu
to a sub-group of %„* = TT,,(P*, p), corresponding elements being represented by tho same
map in P. For simplicity of statement we shall identify each element in *•„ with the
corresponding element in vn*. Here K is a retract of K*. For, since i*'(£i") = &(??)>
the polyhedron g,;" may be mapped on r," so that each point in i*'(r,") corresponds to itself.
Actually, as will appear in the proof, no generality is lost in taking ry to be a single point.



286 J. H. C. WHITEHEAD [May 19,

We have to show, first that any element a* in vn* can be expressed as
a sum of the form r1a1-\-...-\-rkak-\-a, where ae7ru, secondly that

r1a1+...+rkak+a = 0

implies r1 ax-\-...-\-rkak = a = 0, and thirdly that rxax+...-\-rkak = 0
implies r1 = ... = rk = 0.

A formal deformation of K*, rel. K, obviously does not alter

OTtt» ff«*» r(av •••> ak)

or the relations between them. Therefore we may suppose &,-71 to be an
n-sphere which meets K in the single vertex p. Then K is obviously a
retract of K'Ai, and the projection ip(K*) = K, such that tjj(pi]:) = p* if
'p'veK and ifj(p*)=p ifp* e &,-?l5 determines a homomorphism <f>, of 7r7l* on
7T,() such that </>(a*) = a* if a:i:e7rtt and <£(a:i:) = 0 if a*er(als ..., afc).
Therefore <^(rxax+...-\-rka^+a) = a, and rxax+ • • • -\-rkafc+a = 0 implies
a = 0, and hence 1\ax-\-...-\-rkak = 0.

To prove that any element a* in 7rn
:i: is a sum of the form

r1a1-\-...+rkak+a,

let £(
n = if+i, where E>{+1 does not meet K or ^ l + 1 except in p {j ^ i ) ,

and let

Then the projection if/(K*) = K may be realized in iC** by shrinking each
of E%+1, ..., E"+1 into the point p. It follows first that TT** = 7rn, where
77** = 7rtl{K**, p), and secondly that the homomorphism ^(rrw*) = TT** of
Theorem 18, with the complexes K and K* of Theorem 18 replaced by K*
and K-'1'*, is the same as the homomorphism <f>(7rn*) = TTU of the last para-
graph. Since <j>z = <f> we have

<f>{a«-<f>(a*)} = <£(a*)-0(a*) = 0,

whence a*—cf>{a*) er(av ..., ak), by Theorem 18. Since <£(a*)e7rn, it
follows that a* = rjaj^+.-.+r^a^+a, where a* is any element in TTW* and
a€7rn. Therefore 7rn

:i: = wtt+r(a1> ..., ak).
If 7T1(iC)=l, the independence of av ..., ak follows from one of

Hurewicz's theorems f, or directly from the corresponding theorem con-

f Loo. cit. (3rd paper), p. 120, Theorem 1.
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cerning homology groups. For a spherical map representing the element
7nla1-\-...-\-mkal., where mv ..., mk are integers, is homologous to

and, if m1 ax + . . . -\-mk ak = 0, it follows that m1 = ... = mk = 0. For this
argument it is unnecessary that K and k should be finite, or that £<{l, t 2" > ...,
should all meet K in the same point p. Therefore, when 7TX (K) is arbitrary,
the linear independence of a!, ..., afc with coefficients in ^(TTJ) follows by
a standard type of argument from the isomorphism between TT,,:!: and
7Tn(K

:l:), where K* is the genera] covering complex of K'l:. Thus the proof
is complete.

We now state a certain condition on a group G. A square matrix
||r,-j-|| (i,j=l, ..., k), whose elements belong to &(#), WU<1 be said to
have a left inverse, namely ||»**||, if

Our condition on G is that any square matrix with a left inverse can be
transformed into the empty matrix, having no rows and columns, by a
finite sequence of operations which consist either of:

(1) multiplying each element in a row or column by ±g, where geG;

(2) interchanging two rows or columns;

(3) adding a "left multiple " of one row to another, the multiplier being
any element in &((•?) (i.e. p,-->/>,-+A/o3-, where j=£i, Ae$x(6r) and p
stands for the £-th row);

(4) adding a row (r00, ..., rok) and a column (/-00) ..., rk0) such that
roo = 1' ?'io — • • • = ^o = ^ >

or of

(5) removing such a row and columnf.

The group consisting of the unit element alone satisfies this condition.
For then %x(G) is isomorphic to the ring of rational integers and a matrix

f Notice that these operations allow us to add a right multiple of one column to another.
For we can add an extra row and column such that

r00 = 1, r,i> = — 1, rVi = K and rM — 0 [t ^ 0, I, or j ; A«it(Cr)J,

and then add rsjp0 to ps for each s = 1, ..., k. We can then remove the row p0 and the
column containing r,i, and move the column r'M = rtj back to the j-th place. The final
result is to replace rei by rti-\-raj\ (s — 1, .... k), leaving the other columns unaltered.
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with an inverse is unimodular. It is proved elsewhere f that the condition
is satisfied by at least two other groups, namely the cyclic groups of order
two and three.

THEOREM 20. / / TTX{K) satisfies the above condition and if L is a retract
by deformation of K, then

L = D(K) (rel. L).

Let A' be /i-dimensional and, after an expansion if necessary, let n > 2.
With the notation used in proving Theorem 10,

Ln = L+& e-f-H- S V = Dn(K) (rel. L),

and L is a retract by deformation of LIL. Since L is a retract by defor-
mation of Ln, the connectivities of Ln, calculated modL in the sense of
Lefschetz J, are all zero. If I # k, some cycle (mod L), composed either of
the cycles (mod L) E-1"1 or of the chains &K

n, would fail to bound modL.
Therefore I = k. Since L is a retract of Lni the map F^-1) bounds a cell
T^ 1 in L. Let US'1'1) be the spherical map e.^-i+r^-1, and let st be a
segment in L joining some pointy to a point f((q) in fiiS'1'1), where q e S'1'1.
Let

and let a,- be the element in 7T;|LI = 7r/l_1(L
:1:, p) corresponding to the map

5 J+ / J (£"~ 1 ) . oriented either way. Join p to a point in F{&?1) by a
segment ftin L and let a,-* be the element in TT^X corresponding to the map
ti-\-F(i. i"). By Theorem 19, 7r̂ Li = 7ru_1+r(alJ ..., ak), whence

k
a,-* = S rV) aJ+/3t-

:!: [ft* e 7rn_x = TT^L, p)],
j

which we write as
k

(11.1) at
::: = S ru a,- (mod TT^).

•f See a forthcoming paper by G. Higman.
If G is Abelian, the determinant |/;,| can be calculated in the ordinary way, and the

elementary transformations can only alter |/-y| by a factor ±_y (geG). Therefore the
abovo condition is not satisfied if 2ti(C?) has a unit e, other than ±0, as one sees by taking
k — 1 and r u = e (e.g. >n — \ — g—<f, where gb = 1).

% Topology (New York, 1930), p. 17.
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Since L is a retract by deformation of Ln each map/t- (S'1'1) is homotopic in
Ln, rel. q, to a map/((S'1-1) in L. If ^ is the element in TTU_1 corresponding
to the map si-+./i(#'l~1), it follows from Theorem 18 that

k

i.e. that

(11-2) at-= L r j a , * (mod T T ^ ) .

From (11.1) and (11.2) we have

(11.3) S ^ S ^ - f ^ - S ^ a ^ O (mod T T ^ ) .

Since w L̂i = 7rn_1+r(a1, ..., afc), the left-hand side of (11.3) is zero
absolutely, and since a}, ..., ak are linearly independent, we have

Therefore the matrix ||r,-,-|| has a left inverse and by our condition on TTX it
can be reduced to nothing by the operations described above.

If the matrix ||rw|| has no rows or columns, the sets of membranes
&J-1, ..., S-fc-1 and &!71, ..., &k

n being empty, we have L)h — L. Therefore
it is enough to show that each of the five kinds of elementary transformation
Ilri;l|-Hlrijli can be copied by a formal deformation of Ln, rel. L, which
transforms it into a complex Ln' with the matrix ||r^||. We take them in
order.

(1) The i-th. row (column) is multiplied by —1 if we change the
orientation of &,•"• (&""1) and by g if we replace tt (st) by c-\-t( (c+5,-), where
c is a circuit corresponding to g.

(2) To interchange two rows (columns) we merely re-order £i
1t(£-"~1)-

(3) For the transformation p,-->/3,-+Api (j =£i), let K{— Ln

where I(&in) is the interior of .&•,•'"•, and let S-t'
1 be a simple membrane whose

boundary is a map representing the element a,:i:+Aa3
:':. Then F(B(

)l) is
homotopic to F(&?1) in K{, since ^•'lCKi, and it follows from Theorem 11
that

£ (rel. L).

Then Ln' = Z,+&,T1 is a complex with the required matrix
8ER. 2. VOL. 45. NO. 2247.
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(4, 5) Since (4) is the inverse of (5), it is sufficient to consider a transfor-
mation of type 5. If ra = Ba (i = 1, ..., k), it follows from Theorem 19
that the map -F(8/1) is homotopic to one which covers an open simplex
B'1'1, in C'j1-1, just once if i— 1 and not at all if i = 2, ..., k. Therefore
we may assume that the maps F^"-) have this property, in which case Ln

contracts into La—/(&!'")—J5'1"1, by Lemma 6, and then into

as in the proof of Lemma 5. Then Ln' has the required matrix

I K J I ( A , / * = 2 , . . . , & ) .
Thus each type of algebraic transformation can be copied geometric-
ally and the theorem is established.

From the addenda to Theorems 16 and 11 we have the addendum:

ADDENDUM. The order of the deformation D in Theorem 20 need not
exceed n-\-\ (n> 2).

From Theorem 20, with its addendum, and the proof of Theorem 17,
we have

THEOREM 21. / / two complexes K and K* are of the same homotopy
type and if 7TX(K) satisfies the above condition, then

K* = D{K).

If K and K* are at most n-dimensional\, the order of'thedeformationDneed
not exceed n-\-2.

12. Regular neighbourhoods in manifolds. Let M be an w-dimensional
manifold in the sense of Alexander and Newman. That is to say, the
complement of any vertex in M is an (n— l)-sphere or an (n—1)-element
according as the vertex in question is inside M or in M. We recall
that this implies the more general condition: the complement of any
^-simplex in M is an (n—k—1)-sphere or an (n—k—1)-element according
ciw the .simplex in question is inside M or in M. We also recall
the relation J (MA)' = MA, both sides being zero unless AeM.

t Here we need not require n > 2. For the relevant dimensionality in Theorem 17
is dim {(Jj(K)} = &[m{K)-\-\, and, if n = 0 or 1, Theorem 21 may be verified directly.

I For let B t MA. Then (MA)« = MAU and B t (MA)• if, and only if, {MA)B is an element,
and B e MA if, and only if, AB * M, i.e. if M.m is an element.
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If M is bounded, a transformation of the form

M->M+En,

where En is an n-element which meets M in an (n—l)-element on the
boundary of both, or the resultant of a finite sequence of such transfor-
mations, will be called a regular expansion of M. The inverse of a regular
expansion will be called a regular contraction. As a matter of convention
it is to be understood that M expands and contracts regularly into itself.
If M -+M'i: is a regular expansion or contraction, M:!: is combinatorially
equivalent f to M.

Let 2 be any set of simplexes, not necessarily closed, in a complex K.
By 0(2, K) and JV(S, K) [= C7 0(2, K)] we shall mean respectively the
set of all open simplexes in K whose closures contain one or more simplexes
in 2, other than 1 in case 1 e2, and the set of all closed simplexes which
contain one or more simplexes in 2, other than 1. Clearly 0(2, K) is open
in the sense that K— 0(2, K) is a complex. Notice also that A eKB if
O(A, K). KB =£0, A being any open simplex in K. For KB is a complex,
and, if A is not in KB, it is not on the boundary of any simplex in KB.
The distinction between closed and open simplexes is important when the
symbols O(A, K) and N(A, K) are used. For, if A is an open simplex,
O(A, K) is its open star, while, if A is closed, O(A, K) is the sum of the
open stars of all the vertices of A.

Let M be a bounded w-dimensional manifold and let S be a set of open
simplexes in M such that:

(1) if A eS, all the internal simplexes of MA are inside M (expressed
formally : if A e S and B e M. MA, then ABeM),

(2) if B is inside M and A1-\-A2Oll.MB, then AxA2eMB.

LEMMA 10. Under these conditions, the transformation

is a regular contraction.

If 2 = 0 or 1, there is nothing to prove. Otherwise let A ^ 1 be any
open simplex in 2. Then it follows easily enough from the first condition
that the boundary of N(A, M) does not meet M except in the (n— 1)-
element N(A, M), and hence that the transformation

f Newman, Proc. Akad. Amsterdam, 29 (1926), 635, Theorem 8a, or Alexander (Joe.
cit.), 317, Theorem 14.3.

u2
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is a regular contraction. Clearly M—0(2, M) = M*—0(2*, M*), where
2* = 2—A, and, if we can show that the above conditions are also satisfied
by M* and 2*, the lemma will follow by induction on the number of
simplexes in 2.

Consider the second condition first. If B is inside M*, the complement
MB* is a sphere and so cannot be a proper sub-set of MB. Therefore

MB = MB*,

and, if A1-\-A2 C 2*. i / £ * C 2 . ifg, it follows from the second condition on
M and 2 that ^ ^ e i l f s . Since MB = MB*t the second condition is
satisfied by if* and £*. To verify the first condition let J5 eif*. M%
where 4 * e 2*, and first let 5 e M. Then 5 e M. MA., since M* C if, and
it follows from the first condition on M and 2 that 4̂ * J5 e if, whence
.4* B eM*. If B eif *—if, then ifg is a sphere and MB

:]: is an element.
Therefore MB* is a proper sub-set of MB, and it follows that

i.e. that A eMB. But ^^'eJIfjj, since BeM%CMA., and it follows that
A +A:5: C S . i /^. Since J5 e M—M, it follows from the second condition
on M and S that ^4.4* eif^ or that ^4^4*BeM. Therefore A eMA*B and
M%B is a proper sub-set of MA,B. It is therefore an element, rather than
a sphere, and A*B eif:!:. Therefore both conditions are invariant under
the transformation M-^-M* and the lemma is established.

Let Mx be an n-dimensional manifold such that M .Mx consists of
one or more unbounded (n—1)-dimensional manifolds in M+M-L (in
particular M .M1 = M = M1 if M and Mx are connected). Then the
following corollary follows immediately from the proof of the lemma:

COROLLARY 1. IfZeM. Mx and M and 2 satisfy the above conditions,
the transformation i / 1-^i /1+i\ r (H, M) is a regular expansion.

It follows from Lemma 4 that s^ M and M satisfy the conditions of
Lemma 10 provided that no simplex inside M has all its vertices in M.
Thereforef s^-M' and M' satisfy them. If K is any complex and LCK,
the sub-division K-+K' is the resultant of sL K followed by a regular sub-
division of L. Also it is obvious that if Mx -> Mz is a regular contraction
(expansion), so is aM1->aM2, where a is any sub-division of Mx (of M2).

I Throughout this section K' and K" will stand for the first and second derived complexes
of a given complex K. In this section it is to be understood that the vertices of K are
unaltered by a sub-division of the form sj.K.
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Finally, if M and 2 satisfy the conditions of Lemma 10, so do M and any
sub-set of 2. Therefore we have a second corollary to Lemma 10:

COROLLARY 2. The transformation M" ->M"—0(2", M") is a regular
contraction, where 2 is any set of simplexes in M. If M and Mx satisfy the
conditions of Corollary 1 and 2 e M. Mv the transformation

is a regular expansion.

We now come to the main purpose of this section. Let K be a sub-
complex of an w-dimensional manifold M. By a regular neighbourhood
oiKmM we shall mean a sub-complex U{K, M)s of M, such that:

(1) U(K, M) is an n-dimensional manifold,

(2) U(K, M) contracts geometrically into K.

I t follows from a well-known theorem on sub-division that the first of these
conditions, and from the corollary to Theorem 7 that the second, are
invariant under a general sub-division of M. The two main theorems are:

THEOREM 22?r / / KC-M, where M is an n-dimensional manifold,
N(K, 8g*-M) is a regular neighbourhood of K (K ^=1).

THEOREM 23n. Any two regular neighbourhoods of K in M are
combinatorially equivalent, M being any n-dimensional manifold.

These theorems are trivial if n = 0 and we prove them together by
induction on n, assuming Theorems 22n_t and 23?i_1. First notice the
corollary to Theorem 23n.

COROLLARY ln. If K is geometrically collapsible U(K, M) is an
n-element.

For if K contracts geometrically into L then U(K, M) is also a regular
neighbourhood of L. Taking L to be a single vertex, N(L, M) is an
w-element and, being a star, contracts into L. I t is, therefore, a regular
neighbourhood of L. By Theorem 23n, U(K, M) is combinatorially
equivalent to N(L, M) and is therefore an w-element.

Let K C M be any complex other than 1 such that:

(12.1) (a) no simplex inM—K has all its vertices in K,

(b) if Ae M—K, then K. MA is a single closed simplex (possibly 1).
If B is any open simplex in M, the complexes K. MB and MB also satisfy
these conditions. For (12. la) is obviously satisfied, and if A tMB—K,



294 J. H. C. WHITEHEAD [May 19,

then ABeM—K and K.MAB is a single closed simplex. Therefore
(12.16) is satisfied, since MAB = {MB)A and [K. MB). {MB)A = K. {MB)A.
I say that, under the conditions (12.1), N = N(K, M) is a regular
neighbourhood of K. This will be proved by induction on n, being
trivial if n = 0. By Theorem 2, N contracts into K, and it remains
to prove that Nb is an {n—l)-sphere or an (n—l)-element, where b is any
vertex in N. This is certainly the case if bCK. For then Nb = Mb.
If b <t K a closed simplex Ab meets K if, and only if, A meets K. There-
fore Nb = N(B, Mb), where JB is the closed simplex K.Mb. By the
hypothesis of the induction, N(B, Mb) is a regular neighbourhood of B,
and is therefore an (n—l)-element by Theorem 23?,_l5 Corollary ln_v

Therefore N is a manifold, and hence a regular neighbourhood of K.

By the corollary to Lemma 4 the conditions (12.1) are satisfied by K
and sK

2M, where K is any sub-complex of M, and Theorem 22n follows
from Theorem 23%-1.

We shall need two observations for the proof of Theorem 23n. First,
if M is an unbounded w-dimensional manifold and K is any sub-complex of
M, then N(K', M') is the aggregate of closed cells in the dual cell-structure
(Zellteilung) which are dual to the simplexes in K. Therefore N(K', M')
consists of the closed n-cells which are dual to the vertices ax, ..., am of K.
Therefore N(K', M') = N{ax-\-...+am, M'). If we regard N{K', M') as
the cell-complex consisting of these dual cells, its (n— l)-cells are the duals
of the edges in M which have an extremity in K. Such an (n— l)-cell is
inside N(K', M') if both extremities of the dual edge are in K and on the
boundary (mod 2) if only one extremity is in K. If L is any sub-complex
of M which does not meet K, it follows that N(K', M') meets N{Lr, M'), if
at all, in the aggregate of closed (n— l)-cells which are dual to the edges of
M with one end in K and the other in L.

Secondly, no simplex in M'—K' has all its vertices in K'. Therefore
K' and sK> M' satisfy the conditions (12.1), by Lemma 4, and N(K', sK> M')
is a regular neighbourhood of K'. As we have already remarked, the
sub -division M -»M" is the resultant of sK>M', followed by a regular sub-
division of K'. Therefore N(K", M") is a regular neighbourhood of K"
in M".

Theorem 23n will now follow without difficulty from the following
lemma. Let M be an %-dimensional, unbounded manifold and Kp a sub-
complex of M which contracts formally into Ko.

LEMMA 11. The manifold N(Kn", M") expands regularly into

N{Kp". M"),
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Let Ko, ..., Kpbea, sequence of complexes such that the transformation
K{~^Ki+1 is an elementary expansion (i = 0, ..., p—l). Let

Kx = KQ-\-A,

where A = aB, aBCK, B<2K, and let x and y be the vertices of M' which
are internal to A' and B' respectively. Then the vertices of / { / are the
vertices of KQ' together with x and y. Therefore, according to the first
observation,

= N(KQ", M")+N(x, M")+N(y, M").

We shall prove that N(K0", M") expands regularly into

N{K0", M")+N(x, M")

and that the latter expands regularly into N(K±', M"). The lemma will
then follow by induction on p.

Since M' and Ko' satisfy (12. la), any edge xb, in M', lies in K^, if
beK^. Since A is a principal simplex of K1 it follows, if beK^, that
be A' and xbeA'. If bcK^, it also follows that be(aB)'. Therefore
N(KQ", M"). N{x, M") = En-X, say, is the aggregate of closed cells in the
dual of M' which are dual to xbx, ..., xbk, where 6l5 ..., bk are the vertices in
(aB)'. By a familiar property of regular sub-division, En~x is isomorphic to

(12.2) N[{(aByy,(Mxy].

The complexes M' and (aB)', and a fortiori Mx' and (aB)', satisfy (12 . la).
It follows from Lemma 4 and the proof of Theorem 22n-1 that

N{(aB)', s{aiYMx'}

is a regular neighbourhood of (aB)'. Therefore (12. 2) is a regular neigh-
bourhood of (aB)" and, by the corollary to Theorem 23n_l5 (12.2) and
En~x are (n — 1) -elements. By our first observation E^1 is in the boundary
of N(K0", M") and of N(x, M"), and, since the latter is an ^-element,
N(K0", M") expands regularly into

N(K0", M")+N(x, M") = N(K0"-\-x, M").

By our first observation

N(KQ"+x, M") = N[{K0'+x(aB)'y, M"],
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and it follows from the same argument as before, with a replaced by x and
x by y, that N(K0"+x, M") expands regularly into

N(K0"+x, M")+N(y, M") = N(K1", M"),

and the lemma is established.
Now let U1— UX{K, M) and U2 = U2(K, M) be two regular neigh-

bourhoods of K in M. Since the conditions for a regular neighbourhood
are intrinsic to U(K, M) we may replace M, in case it is bounded, by an
unbounded manifold M+M*, where M * .M = M = M*. So, without loss
of generality, we assume that M — 0. Since U1 contracts geometrically
into K there is, by Theorem 7, a stellar sub-division oxM such that a1 U1

contracts formally into axK. By the corollary to Theorem 7, a1U2

contracts geometrically into oxK, and by Theorem 7 itself there is a further
stellar sub-division o2oLM such that a2alU2 contracts formally into
o2olK. By Theorem 4, a2a1U1 contracts formally into o2o1K and it
follows that oUj (i=l, 2) contracts formally into oK, where a = a2av

So we may assume, after an initial sub-division, that each of the
neighbourhoods C7X and U2 contracts formally into K, the manifold
M being unbounded.

By the second corollary to Lemma 10, U{" expands regularly into
N^/', M"). Since K expands formally into Uiy it follows from Lemma 11
that N(K", M") expands regularly into N(U", M"). therefore, with
the sign of congruence denoting combinatorial equivalence,

Uj= U/'^NiU/', M")==N(K", M").

Therefore Ux ~ U2 and the theorem is established.
Let K be a given sub-complex of a manifold M, let

r,y/iU) (*=1, 2)

be a regular neighbourhood of y,ii in a general sub-division y,-M, and let
y1*y1 — y2'

:y2 = y be a common sub-division of yx and y2. Since the
property of being a regular neighbourhood is invariant under sub-division,
y,.* £/•,- (i= 1, 2) is a regular neighbourhood of yK in yM. Therefore,
yx* C/j^yg* U2 and hence U1=U2. Therefore the simplicial space
associated with a regular neighbourhood of y0K.in y0M, where y0 is a suit-
able sub-division of M {e.g. yQM = M"), is uniquely determined by the
given complexes M and K. We shall denote it by T,(K, M).

Let P be a (finite) polyhedron imbedded in an ?i-dimensional, poly-
hedral manifold f M. A regular neighbourhood of P in M may be defined

| I.e. any rectilinear triangulation of M satisfies the combinatorial condition for a
manifold.
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geometrically as an n-dimensional, polyhedral manifold U(P, M), con-
tained in M and containing P, which contracts geometrically into the latter.
This is obviously equivalent to the combinatorial definition stated in terms
of a rectilinear triangulation of M with sub-complexes covering P and
U(P, M). Therefore Theorems 22 and 23 may be restated geometrically
in the form of the corollary:

COROLLARY 3. Any polyhedron P, in a polyhedral manifold M, has a
regular polyhedral neighbour/mod in M, and any tiro such neighbourhoods are
semi-linearly howeomorphic.

Let K be a symbolic complex, let 2 be the simplicial space determined
by K and let P be a polyhedron covered by a rectilinear, simplicial complex
which is isomorphic to K. In addition to the symbolic complexes which
are combinatorially equivalent to K, we shall admit as a representative of
2 any polyhedron which is semi-linearly homeomorphic to P. If P is
imbedded in a polyhedral manifold M we shall use 2(P, M) to stand for the
simplicial space determined by a regular neighbourhood of P in M. So
long as P and the regular neighbourhoods are finite. M may obviousty be
infinite. In particular M may be Euclidean space.

THEOREM 24. / / P" and Q" are semi-linearly homeomorphic, n-dimen-
sional polyhedra in Euclidean p-space Rp, then £(P", RIJ) = H,(Q", Rp)
provided p~^-2n-\-3.

Let/(P") = Qn be a semi-linear, topological map of P" on Qn and let
F"+] be the locus swept out by the linear segment pf(p) as p describes P".
Then Fn + 1 is an image, which may be singular, of the mapping cylinder
Cf(P"), where we first assume that Pn does not meet Qn. Then, since
p^2?i-(-3, the singularities in T"'n may be removed by simplicial sub-
division and slight displacement of the vertices which do not lie on Pn

or Qn. The resulting complex C"+1 is a semi-linear topological image of
Cf(P

v) and, since / is (1-1), Cn+1 contracts both into Pn and into Qn.
Therefore a regular neighbourhood of C71+1 in Rp is a regular neighbour-
hood both of Pn and of Qn. Therefore E(P' \ RP) = S(Q", R») in case P"
and Qn do not meet each other. If they do meet, we have

= T,(Px
n, Rp) = X(Qn, Rp),

where P^1 is any semi-linear topological image of Pn in RP which does not
meet Pn or Qn, and the theorem is established.

Any w-dimensional (simplicial) complex Kn may be imbedded in Rp if
p > 2n+l , and if p ^ 2w+3 it follows from Theorem 24 that I,(Kn, Rp) is
independent of the way in which Kn is imbedded mi?*3. It is also the same
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for combinatorially equivalent complexes. Therefore we have the
corollary:

COROLLARY. / / p^2n-\-3, the simplicial space T,(Kn, Rp) is a
combinatorial invariant of Kn.

Notice that £(£", Rp) is the topological product 8" xEp-1\ where
8n is an %-sphere, Ep~n a (p—n)-element and p ^ 2 ? J + 3 . For it is obvious
that 2(ASI?)

5 RP) = I.(S», Sp), where 8* is a ^-sphere, and we can take

Sp — (i?"+1 x Ev~ny

r-- En+1 x Ep~n+En+l x EP-71,

where #"+i — 8n, and En+1xEP~r' is clearly a regular neighbourhood of
En+1.

THEOREM 25. / / Lm — D(Kn), where Kn and Lm are complexes ofn and
m dimensions and D is a formal deformation of order k, then

provided that p ^ 2l-\-1, where I = max (m-j-1, n-\-l, k).

By Theorem 5, Addendum 1, there is an Z-dimensional complex K*t

which contracts formally into both Kn and a sub-division of Lm.
Imbedding /v* in Rp, where p ^ 2l-\-1, it follows, as in Theorem 24, that

S(J?:w, B?) = S ( ^ L * , JRP) = Z{Lm, RP),

and the theorem is established.
From Theorem 21 we have the corollary to Theorem 25:

COROLLARY 1. If TTX(Kn) satisfies the condition imposed in §11 and if
Kv and Lm are of the same homotopy type, then 2(Zn, RP) = 2l(L

m, RP)
provided that p ^ 2 max (m, n)-\-5.

As a special case of Corollary 1 we have:

COROLLARY 2. If TT^K71) satisfies the condition imposed in §11, the
simplicial space H(Kn, RP) is a topological invariant of Kn provided that

Combining Corollary 1 with Hurewicz's results we have:

COROLLARY 3. / / ^(K71) = 1 and all the homology groups p{{Kn)
vanish (i = 2, ..., n), then U(Kn, Rp) is ap-element (p^2n-\-5).
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From, a previous remark we have also:

COROLLARY 4. If ir1{Kn) = 1, p{(K
n) = p((S

n) (i = 2, ..., n), Sn being
an n-sphere, then U(Kn, Rv) - SnxEv~n (p > 2w+5).

We now return to the questions in § 10. If K and L are sub-complexes
of a manifold 77", which is either an ?i-sphere or an ?i-element, we shall say
that K can he freed isotopically from L if there is an ??,-element in some sub-
division oH", which contains oK and does not meet oL.

LEMMA 12. IfK, LCHn,K.L=1 andn>r+s + l,wlierer — dim (K)
and s — dim (L), then K can be freed isotopically from L.

If Hn is an ?i-sphere, it contains an ?i-element containing K and L.
Therefore we may suppose that Hn — En and, after a suitable sub-division,
En may be represented as a simplicial covering of a rectilinear simplex A71.
Let p0 be a point in An whose position is general with respect to K and L.
Since K does not meet L and r + s + 1 < n, the cone C, swept out by the
segment pop as p varies over K, does not meet L. After a further sub-
division we may suppose that C is covered by a sub-complex of En, which
we also denote by C. Then N = N(C", E"n) does not meet L". But N
is a regular neighbourhood of C", and C", being a sub-division of the star
p0K, contracts into p0. Therefore N is an n-element, by Theorem 23,
Corollary 1, and the lemma is established.

If two bounded, connected, ^-dimensional manifolds Mx and M2 meet
in an (n— l)-element on the boundary of both, we shall describe the
simplicial space associated with Mi-\-M2 as a topological sum of the
simplicial spaces associated with Ml and M2. Let Kx and K2 be two sub-
complexes of an ?i-dimensional manifold M, which meet in a single vertex b.

THEOREM 26. / / Kxb, the complement of b in K1} can be freed isotopically
from K2b in Mb) the simplicial space 'L(K1-\-K2, M) is a topological sum of
the simplicial spaces 2(7^, M) and T,(K2, M).

Adding an ^-element of the form bEn~1 to M, if necessary, we may
suppose that b is inside M. After a suitable sub-division we also assume
that Mb does not meet M, also that Klb C E7^1 C Mb, where E^-1 does not
meet K2b. Let E$-x= Cl{Mb—E^~1) and let

M{ = CliM-bE?'1) (i=l, 2; j = i+l mod 2).

Then iT,Ci/,- and M{ is a manifold since Mb does not meet M. Let

N^NiKi", M/').
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Then N{ is a regular neighbourhood of K" in M" and therefore in M",
since the conditions for a regular neighbourhood are intrinsic. Therefore
Nt is a triangulation of the simplicial space £(/£,•, M). Moreover, N1-\-N2

consists of all the closed simplexes in M^'-\-M2" = M" which meet
A7'+Z2". That is to say N1^rN2 = N{K^'+K2", M"), and Nx+N2

is a triangulation of 2t(K1-\-K2, M). The intersection Nl.N2 consists of
the closed simplexes in M y . M2" which meet AY'. K2" — b. But

M,.M« = E+{M-O(b, M)},

where E = bE»-1 = bE«rl. Therefore Nt.N2 is an (w—1)-element,
namely N(b, E"). Finally E CMx. Mn_, whence N1 .N2CNx .N2, and the
theorem is established.

In Theorem 26 the manifold M may be infinite, Kl and K2 being finite.
In particular M may be a triangulation of Rn.

THEOREM 27. The questions Q. 2 and Q. 3 of §10 are equivalent.

It is clear that an affirmative answer to Q. 2 carries with it an affirmative
to Q. 3. I t remains to show that an affirmative to Q. 3 implies an
affirmative to Q. 2. Let K2 = D(KX), Kz+L2 = D0{K1+L1) and let
Pi = Ki.Li be geometrically collapsible. After a suitable sub-division
we may assume that P{ is formally collapsible and that N(P{, Kj),
N(P;, L{) and therefore N(Pi} Ki+L;) are contractible neighbourhoods of
Pj. By Theorem 3 the operation of shrinking Pi into a point is a formal
deformation of A',-, Lt and of A'j-J-L,-. Therefore we may take K{.L{ to be
a single vertex bt. This being so, let I be the maximum of m,.+1, nt-\-1 and
the orders of the deformations D and Do, where n{ = dim (K{) and
??i,= dim (L(). After a suitable sub-division, .&,•+.£,• may be imbedded in
Rp, as a sub-complex of some triangulation Mp, of Rp, where p ^ 2Z+1.
Since p—l> (m,— l)-J-(?i,—1)-(-1 it follows from Lemma 12 that Kib. may
be separated isotopically from Lib. in Mfi} and from Theorem 26 that

R») is a topological sum of S(Xf, R*>) and Z(£f, BP), Since
it follows from Theorem 25 that S(Als i2») = S(^a , i?p) and

that S ^ + L p i2*) = S(jfiL2+L2, ^ ) . Moreover the boundaries of
regular neighbourhoods U(K(, Rp) and U(Li} Rp) are connected. For
these neighbourhoods contain no non-bounding (p—1)-cycles since
m,-, n{<p—l. If the answer to Q. 3 is "yes" it follows that any two
regular neighbourhoods U(LV Rp) and U(LV Rp) have the same nucleus
and, since U(L(, Rp) contracts into Lu that Lx and L2 have the same
nucleus. Therefore an affirmative answer to Q. 3 implies an affirmative
answer to Q. 2, and the theorem is established.
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13. Newman's moves. The object of this section is to prove two
theorems which are similar to Theorems 4 and 6 with elementary expan-
sions and reductions replaced by Newman's moves of Type 1 and 2. We
recall that a move of type 1, applied to an ^-dimensional manifold M0, is
a regular expansion of the form

where AB is ^-dimensional, ABC. Mo, A <t M0. A move of Type 2 is the
inverse of a move of type 1. For M -> Cl{M— C) to be a move of type 2
it is necessary and sufficient that G = ABcM, where

2. B is internal to M.

An n-element En will be described as regularly collapsible if E"-+A"f, where
A'1 is a closed w-simplex and the symbol 31->M ( a = 1 or 2) means that
the transformation indicated is a product of moves of type a. As a matter
of convention M->M, so that a closed simplex is regularly collapsible.

LEMMA 13. / / M = AE+M* and if E-+Eq, then M->AE(J+M*,
provided that every internal simplex in E is inside M.

If Eq—E there is nothing to prove. Otherwise let E = CB+EV

where E^-Ex is the first move in the transformation E-+Eu and B = Ec,
B being inside E. Then B = MAC and B is inside M. Therefore

is a move of type 2, and the lemma follows by induction on the number
of moves in E->Ea.

COROLLARY. If E is regularly collapsible, M->Mxl\

For if E = B, a single closed simplex which is inside M, the transfor-
mation AB-{-M -+M:l: is a move of type 2.

LEMMA 14. / / E->Eq, where E is an element, then AE->AEq, where
A is a closed simplex which does not meet E.

For, with the notation used in proving Lemma 13, the simplex AB is
inside AE and is the complement of C. Therefore AE->AEX is a move
of type 2 and the lemma follows from induction on the number of moves in
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COROLLARY. / / E is regularly collapsible so is AE.

LEMMA| 15. If A and B are (closed) simplexes which do not meet each
other (A ^£1, B =£1), ABis regularly collapsible.

If B is O-dimensional, A B = A. Otherwise letB — bB1(B1^l). Then

= A(bB1+B1).

The simplex A is inside A B and is the complement of Bx in A B. Therefore
the transformation AB->AbBx is a move of type 2. Writing Ab — Av

and assuming that Ax Bx is regularly collapsible, we deduce the lemma by
induction on dim (B).

THEOREM 28. If H~+Mlt then

oM -> aMx,

•where a is any stellar sub-division of M.

This will follow by an inductive argument similar to the one used in
proving Theorem 4 if we can prove it in case M^-Mx is a single move and
a is an elementary sub-division (A, a).

Let M=CB+Mlt

where B = Mc and B is inside M. As in Theorem 4 the result is obvious
unless ACBG. So let A = B1CV where B = B1B2t and C=C1CZ

(possibly B1=l or C1=l). Then

( 1 3 . 1 ) <jM = a(C1

and aBx B2 = (oM)c, since C <t Mx and hence C <2 oMx. The simplex
BCX is inside M, being incident with B, and

— aAB2.

Therefore aB2 is inside a (BCX) and hence inside oM. The internal simplexes
of aBx B2 are those incident with aB2 and are therefore inside aM. By

f Cf. Newman, Proc. Akad. Amsterdam (second paper, loc. til.), 619, Theorem 20.
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Lemma 15, aBxB2 is regularly collapsible and, by the corollary to
Lemma f 13,

(13.2) oM->aC2 BC1+oM1 = M*,

say.
If Cx — 1, we have M* = aMx and the proof is complete. So we assume

that Cx^\. Then B C oM and B is inside oM, since it is inside M. Also

MB* = (crM)B, since B <t CaBx B2. I t follows that B, and therefore the
internal simplexes of BCV are inside M*. Also BxC<t-Mv since C<ZMx,
and

Therefore aC2 is inside a(B1C) and it follows that aC2 $• oMx. Therefore
M*C2 = JBC?! and is regularly collapsible by Lemma 15. Since the internal
simplexes of BCX are inside M* it follows from the corollary to Lemma 13
that M*->oMv Therefore aM->aMx and the theorem is established.

In order to state the next theorem we shall extend our notation by
writing

if E"-1 C En and M-\-En-*M1

where M is any ^-dimensional manifold such that M. En — M . E" — En~L.

THEOREM 29. / / K is any complex, there is a stellar sub-division oK such
that oEm->oEm~1 (m > 0), where Em is an arbitrary m-element in K, and

it %

Em~1is an arbitrary (m—l)-elemenl in Em, the sub-division a being indepen-
dent of any particular choice of m or of Em and E"1'1.

There are in K only a finite number of elements and the theorem will
follow from Theorem J 28 if we can show that there is a sub-division oEm,
such that aEm->aE"1-1, where Em is a given m-element and E"1-1 a given
(ra—l)-element in Em. Assuming that this is true when Q<m--^.n we
shall prove the following corollary for 0 ^

f Notice that the first term on the right-hand side of (13 . 1) is absent if Bl — 1.
In this case M — M*.

t Cj. the corollary to Theorem 4.
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COROLLARY. Some stellar sub-division of any m-element is regularly
collapsable.

The corollary is trivial if m — 0 and we therefore take m > 0. After
a preliminary sub-division, if necessary, we may assume that the internal
simplexes of Eb

m are inside Em, where Em is a given m -element and 6 is a
vertex in Em. Then

EQ
m = Em-O{b, Em)

is an m-element and it follows from the above hypothesis that there is a
stellar sub-division ax such that ax E0

m->ox Eb
m. Let us assume that some

sub-division a2axEb
m = oEb

m is regularly collapsible. Then

is regularly collapsible, by the corollary to Lemma 1-1, and by Theorem 28
aEm->a(bEb

m)i where a = a2ax. Therefore oEm is regularly collapsible
and the corollary follows by induction on m for m ^.n.

Now let m = n-\-1 and let Em be a partition of the geometrical simplex
PoPiA'1 (Q^.n = m— 1) having no internal vertices, and let E(

a be the
sub-complex of E'n covering p^'1 (i = 0, 1). I say that oEm->oE0",
where a is some stellar sub-division of Em. For let L=Em = Eo

n+Ex
11

and let F" and F"1 mean the same as in the proof of Theorem 6. If we
assume Theorem 29 for ?i-dimensional complexes, it follows from the co-
rollary that there is a stellar sub-division a1F'i such that ax E is regularly
collapsible, where E is any element in Fn. As in the proof of Theorem 6,
F'1. (sL Em)B is an element, where B is any internal open simplex of E-^1.
Therefore a{F'i. {sLEm)h] = a1F

11. {oE'n)B is regularly collapsible, where
a — aisfj. if we take the open simplexes inside a1 E1

n(= oE^1) in order of
decreasing dimensionality, it follows from the corollary to Lemma 13 that
the open stars 0{B,oE'n) (B eaE^—aE-^") may be removed successively
by moves of type 2. Therefore aEm->axF

m. Let M and Mx be any
m-diniensional manifolds such that M. Mx — M. Mx and let En(n = m—l)
be an (m~ l)-element in M. Mv If M -> Cl(M-AB) is a move of type 2,
where A is inside E" and B is inside M, the transformation Mx-^Mx-\-AB
is a move of type 1. If we take M = oEm and E'1 = oEx

n, it follows that
Mx -j- Mx+ox Fx

m, where F{n = Cl{sL Em- Fm). Therefore

i.e.

But the construction of F"1 and ox is symmetrical between Eo
n and Ex

n.
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Therefore o1F
m-±oE0

n, and since aEm-^a1F
m we have oEm-±oE0

n, as
2 2 2

stated. The rest of the proof is the same as the proof of Theorem 6.

COROLLARY. If M contracts regularly into M* there is a stellar sub-
division a such that oM->crM*.

2

14. Infinite complexes. Starting with a given aggregate of vertices, we
now define a complex as in § 2, with the single condition that the dimension-
ality of each simplex is to be finite. For example, if we take the vertices
to be real numbers, the totality of finite sets of real numbers is a permissible
complex. In order that sub-divisions and expansions shall be applicable
to such a complex, we allow ourselves to create new vertices if and when
they are needed. More precisely, we assume that a given aggregate of
vertices can be duplicated at any stage in an argument, and the duplicate
set combined with the original into a single set. We rely on the axiom of
choice but, except at one stage in the proof of Theorem 37, only so far as
sub-sets of the given vertices are concerned. For, if the original aggregate
of vertices is well-ordered, choice can be eliminated from the combinatorial
constructions by lexicographical and other standard devices.

We proceed to extend the definitions of equivalence to infinite
complexes f. For combinatorial equivalence we shall use the idea of
general sub-division rather than elementary transformations. We recall
that a complex yK is a general sub-division of K if the simplexes of yK are
grouped into ^-elements yAk (k = — 1, 0, 1, ...; y\ = 1), which are in a
(1-1), incidence-preserving correspondence yAk^-Ak with the closed
simplexes in K. We shall write y = 1 if y is the identical sub-division,
given by yA = A for each closed simplex in K. It is always to be under-
stood that no vertex in yK belongs to K, or to any complex which is being
considered simultaneously with K, unless it is a 0-simplex .4°, in K, and
yA° — A0. If L is any sub-complex of K, the cells in yK which correspond
to the simplexes in L constitute a sub-division of L, which we denote by
yL. Thus y may be regarded as a transformation which operates on each
sub-complex of K. Conversely, let yL be given, where L is a sub-complex
of K. We define yK as follows. Let K11 be the complex consisting of

f A little care is needed here, as the following example shows. Let K{ be a triangula-
tion of the topological product An x <(i, «T> (i = 0, 1 ,...)> together with the rest of the
cylinder C = An x < 0̂, cô >. Let c< be the geometrical contraction K{ -»• Ki+X. Then the
infinite sequence of contractions c0, cv ... transforms KQ into C, and therefore alters the
homotopy group 7r,,_i(.K0).

SBR. 2. VOL. 45. vo. 2248. X
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L together with all the simplexes of K whose dimensionalities do not
exceed n. Assuming that y,hK

n has been defined and that ya = y in L
(i.e. ynA — yA if ACL) and ynA = A if y=l in A.L, we define
yn+iKn+1 by the conditions y)t+1 = yn in Kn, and

yn+1A
n+x = A1^1 if y n = l in

= ayn A
n+1 otherwise,

where A"+l is the closure of any open simplex in Kn+1—L and a is a new
vertex. If we begin with y_i — y in K*1 — L, the sub-division ynli

n is
thus defined inductively for all values of n. Clearly ym — yn in K>1 if
m > n, and yK is defined by the condition

yA~yltA if ACK'\

this definition being unique except for the choice of the new vertices. A
given set of complexes L, L*, ..., may be combined to form a single com-
plex K. If yL is given, it follows from what we have said that y may be
treated as an operator which is applicable to K, and therefore to any
complex in the set. If y is initially defined as a sub-division of L and if
y = 1 in LL*, notice that y = 1 in £*.

A sub-division yK will be described as a partition! TTK, or a stellar sub-
division, if it is a partition, or a stellar sub-division, of each finite sub-
complex of K. With the notation explained in the last paragraph, if a
given sub-division yK (or yL) is a partition, or a stellar sub-division, it
is obvious that yL (or yK) is also a partition, or a stellar sub-division,
where L is any sub-complex of % K. If K is infinite, the sub-division
sLK cannot be defined as a sequence of elementary sub-divisions since
there are, in general, no simplexes of highest dimensionality with which to
start. We define sLK inductively by the construction used in extending
yL to yK, starting with K° and a sub-division yK° = sLK° (sL = 1 in L).
\f A°d K°—L, it is to be a matter of choice whether or no sLA° = AQ.

LEMMA 16. Two sub-divisions yx K and y2K have a common sub-division

Let K'b be the n-dimensional skeleton (Gerust) of K, that is the set of
all simplexes whose dimensionalities do not exceed n. Assume that there

f Cj. Whitehead, loc. cit.
\ if oL was given as a sequence of elementary sub-divisions this would differ from the

natural definition of crK. But we shall adhere to the single definition of yK, whether y is
a stellar sub-division or not.
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are sub-divisions yjl and y2
n s l l c n that

f y i y i y 2 y 2
(14.1)

I Yil = 7tP i n ViKn~P (* = 1. 2 ; p >0) .

Since yx
n yx 4

n + 1 = y2
n y2 ̂

?l+1,

where An+1 is any (w+1)-simplex in K, there are sub-divisions y"+1 and
yg+1 such thatf

where y"+1 = y,-"1 in ye-4
n+1 and therefore in y^ ' 1 . Extending y,-'1 in this

way throughout all the (w+l)-simplexes in K we arrive at sub-divisions
which satisfy (14.1) with n replaced by n-\-1. If we begin with yr1 = yf = l
in K-1, it follows by induction on n that there are sub-divisions satisfying
(14.1) for all values of n. The required sub-divisions y±* and y2* are
given by

y*YiA = yi"-yiA if

and the lemma is established.
From the sharper results proved in my paper on sub-divisions we have

the addendum:

ADDENDUM. The sub-divisions yx* and y2* of Lemma 16 may be chosen
so that a given one of them is a stellar sub-division and the other is apartition%.
If yx = y2 = y in some sub-complex L, 'they may be chosen so that also
Yl* = y2* = y in L.

We now define two complexes Kx and K2 as combinatorially equivalent
if, and only if, they have a common sub-division yxKx = y2K2. I t follows
from Lemma 16 that two complexes are combinatorially equivalent to each
other if each is combinatorially equivalent to a third. Therefore the
equivalence classes are mutually exclusive.

We now come to formal deformations and fillings and perforations.
Our method, which we have already used in proving Lemma 16, is to
replace "long" sequences of individual elementary transformations (i.e.
sequences with high ordinal numbers) by countable sequences of

f Alexander, loc. cit., Theorem 13.2, and Whitehead, loc. dt., Theorem 2.
X Taking >a = 1 and y{* = a, -)a* = ir, we have ay1 = v, and taking yx* = IT, yf = a,

we have nyl = a.
x2
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"composite" transformations. Though each composite set may have
any cardinal number, the individual transformations contained in it can
all be applied at once, and there is no need to consider questions of order
within the set.

We shall denote the elementary expansion K-^K-\-aA-^-A, where
A and aA are open simplexes, by aA and it is to be understood that the
transformation aA is defined in the abstract though it is not applicable to
every complex. It is applicable to a complex K if, and only if, K contains
a A but not A. When a A denotes an elementary expansion we shall allow
A to be 0, the empty set of simplexes, in which case aA will be the identical
transformation, operating on every complex and transforming it into
itself. Two elementary expansions aA and bB will be described as
independent if, and only iff,

(14.2) AiCl(bB), BlCl(aA).

In particular the identity is independent of every elementary expansion.
The conditions (14. 2) are obviously equivalent to the conditions

(1) aA and bB are both applicable to some one complex K [e.g.
Cl(aA+bB)],

(2) bB is applicable to K-\-aA-\-A;

and, if these are satisfied, the transformation

K->K+aA+bB+A+B

will be described as the composite expansion due to the simultaneous
application of aA and bB. More generally, let {aA} be any set of ele-
mentary expansions, finite or infinite, each of which is applicable to a given
complex K and any two of which are independent. The transformation

where E is the totality of open simplexes aA and A, will be called the
composite expansion due to the simultaneous application of the elementary
expansions aA. A composite expansion {aA} will be described as
applicable to K if, and only if, each of the elementary expansions aA is
applicable to K, and {aA} and {bB} will be described as independent if, and

•f Notice that, in dealing with elementary expansions, the question is not so much
"are two given transformations interchangeable?" as "can one be applied both before
and after the other? "
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only if, each elementary expansion a A is independent of each bB. From
this definition it follows that a necessary and sufficient condition for the
independence of two composite expansions is that one of them shall be
applicable to some complex both before and after the other. Any set of
mutually independent composite expansions can obviously be combined
into a single composite expansion, and any sub-set of the elementary
expansions in a composite expansion may be applied simultaneously to
form a composite expansion. Though we shall be working entirely with
expansions, notice that composite contractions may be similarly defined;
also composite deformations, consisting of expansions and contractions.

Now let ex be a composite expansion f of a given complex Ko and let
Kn+1 — en+1Kn, where ev e2, ... is an enumerable sequence of composite
expansions. Let S(0o be the aggregate of simplexes added by all the
elementary expansions in ev e2, ..., and let

Proceeding by transfinite induction, let Kp = iJL0+£j,, where p is any
ordinal number and Xp is the aggregate of simplexes added by a given
transfinite sequence of composite expansions {e,} {j -<p-\-l), such that

THEOREM 30. The transformation K0->Kp is the resultant of a
countable sequence of composite expansions.

If an elementary expansion in e3- is applicable to Ki} where i-\-l -^j,
it may be transferred from e3- to ei+1. We do this whenever possible, so
that each elementary transformation is applied at the first opportunity.
Then the elementary expansions in KQ->Kp form a countable set of
composite expansions. For if not, there is an elementary expansion aA
in the (wo+l)-th set. But the complex Cl(aA), being finite, is in Kn for
some finite value of n, and AlKn since AlK^ and KnC.Kao. There-
fore aA is applicable to Kn, contrary to the fact that it is applied as
soon as possible.

It follows from this theorem that we need only consider countable
sequences of composite expansions. The resultant of such a sequence will
be called an expansion.

Geometrical expansions, defined as in § 5, may be treated in the same
way as elementary expansions. A geometrical expansion S is the addition
of a set of open simplexes £ = En—En~1, where En is an w-element and

| When T?e write sKt it is to be understood that I is applicable to K.
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En~x is an (n— l)-element in En. We shall say that 2 is applicable to a
complex K if, and only if,

(14.3) Clffl-XCK, X.K = 0,

and two geometrical expansions Ex and S2 will be described as independent
if, and only if,

(14.4) Sx. CZ(S2) = S2. (7/(2!) =0 .

All that we have said about elementary expansions, including Theorem 30,
obviously applies with minor alterations to geometrical expansions. A
product of composite geometrical expansions will also be called a geometrical
expansion and, when a contrast is necessary, a product of composite formal
expansions will be called a formal expansion.

THEOREMf 31. If Ko expands geometrically into K, it expands formally
into some stellar sub-division oK, where o— I in Ko.

Our proof depends on the lemma:

LEMMA 17. There is an internal stellar sub-division aEn (n > 0) which
contracts formally into En~l, where En is any n-element and E1*-1 is an
(n-l)-element in En.

The lemma is trivial if n = 1 and will be proved by induction on n.
First notice that, when we assume the lemma for ^-elements if k < n, some
internal stellar sub-division of a ^-element is collapsible. For some internal
stellar sub-division contracts into a closed (k— l)-simplex on the boundary.
Now let Il = En-En-1, let ao = 4 - and let

E1
n = a0E

n-O(Li o0E
n).

As proved by Newman J, aQEn is transformed into Ex
n by a sequence of

regular contractions of the form

An-k-\ flic + fin _>]£n

where Ek is a ^-element (k < n) whose internal simplexes are inside
An~k~xEkJ\-En. By the corollary to the inductive hypothesis and
Theorem 4, there is an internal stellar sub-division ax aQ En such that each
of the elements o1E

k is collapsible. Then axaQ= 1 in En, and a^E11

f Notice that this theorem is sharper than the analogous Theorem 7. Because of Lemma
17, proved below, it is unnecessary to sub-divide KQ.

| Journal London Math. Soc. (loc, cit.), 509, Lemma 2,
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contracts into ax E^v by Lemma 3. Let L — En~x and let

where O-2 = SX
2CT1. Then a2 = 1 in En and E2

n does not meet En. Since
each internal simplex of sLo1E1

n is starred by sL, it follows that En~l

and o2E1
n satisfy the first condition imposed on 2 and M in Lemma 10.

By the corollary to Lemma 4 they also satisfy the second condition,
and it follows from Lemma 10 that E2

n is an ?i-element. Let us assume
for the moment that

N = N(En~1, o2E1
n)

meets E2
n in an (n—l)-element on E2

n. Then it follows from Theorem 6
that some stellar sub-division o3E2

n contracts into o3(N. E2
V), and CT3 = 1

in En since E2
n does not meet En. By Theorem 2, N contracts into E"-1,

and, by Theorem 4, a3N also contracts into En~x. Therefore a3a2El
1i

contracts first into a3 N and then into En~l, and it follows that oEn contracts
into En~x, where a = (r3a2a0 and a— 1 in En.

It remains to prove that N . E2
n C E2

n and is an {n—l)-element. An
open simplex A (A^ 1) in a2 Ex

w belongs to N. E2
n if, and only if, (o-2 E1

n)A

meets En~x, since A eN, but Cl{A) does not, since A e E2
n. If A eN. E2'\

it follows that some simplex in (o2E1
n)A is absent from E^A. Therefore

E\A is a proper sub-set of (o2E1
n)A and so cannot be a sphere. Therefore

A e E2
n, whence N. E2

n C E2«. Moreover, N is an ?i-element, by
Theorem 22 and Theorem 23, Corollary 1. If A e N. E2

n, then Cl(A) does
not meet E1"'1 and it follows from an argument in the proof of Theorem 22
that NA is an element. Therefore N E2

nCN—0{En-\ N). But
Cl{A).En~1=l if AeN—OiE"-1^), whence N—0(En-1,N)CEz

n.
Therefore N. E2

n = N-0(En~x, N). If Cl(A) meets E"'1 {A€o2E~"),
we have NA — (o2E1

n)A, whence A is in both N and a2Ex
n if it is in

either. Therefore O(^~1, N) = 0(En-\ o2Ex
n) and is the interior of

N(En-x, cr2E\n), which is an (n—l)-element by Lemma 10, Corollary 2.
Therefore N.E2

n is an (n—l)-element and the lemma is established.
The theorem now follows by an inductive argument similar to the

one used in proving Lemma 16. Let ev e2, ... be a countable sequence of
geometrical expansions which transform Ko into K, and let Kr — erKr_x.
Assume that Ko expands formally into some stellar sub-division

VjK (i = Q, ..., m).
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where a,- = a( in K( ifi<j. If Km->Km
J\-En is any one of the individual

expansions in em+v where En. Km — En. Km — E1"-1, it follows from
Lemma 17 that amEn~1 expands formally into o*omEn, where a* is some
internal stellar sub-division of am En. Therefore omKm expands formally
into crm+1Km+1, where cr?n+1 is the resultant of am followed by all the sub-
divisions a* corresponding to the various elements added by em+1. Since
cr* is internal to omE" it leaves amEn~1, and hence omKm, unaltered.
Therefore am+1 = am in Km and it follows that am+1 = a{ in Kj if i < m.
If we begin with a0 = 1, it follows inductively that there is a sub-division
crm satisfying the above conditions for each value of m. Moreover,
am = <70 = 1 in Ko. The required sub-division aK is defined by the
condition

oA = am A if ACKm,

and the theorem is established.
If Ko expands formally into K, it is obvious that yK0 expands

geometrically into yK, where y is any sub-division. Therefore we have
the corollary:

/ / KQ expands formally into K and y is any sub-division,
then yK0 expands formally into some stellar sub-division oyK, where a=\
in yK0.

We now define a formal deformation of an infinite complex as a
transformation of the form

where yx and y2 are general sub-divisions and Ex and E2 are formal
expansions. That is to say

if, and only if, there are sub-divisions yx and y2 and formal expansions Ex

and E2) such that

If yx = y2 = 1 in L, where LdKQ.K^we shall write

K^DiKJ (rel. L).

THEOEEM 32. / / Kx = D^KQ) {rel. L) and K2 = D^{KX) {rel. L), then
K2 = D{K0) {rel. L), where LCKq.KvK%.
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Let Ex(yxKQ) = ^2:!!(y2^i) = K01 (yx = y2 = 1 in L),

and E2(y2*Ki) = E,(y:iK2) = KX2 (y2* = y 3 = 1 in L).

By Lemma 16 and its addendum, we have ay2Kl = yy2*Kx = Kx'
[\ say,

where a is some stellar sub-division and y a general sub-division and
a = y = l in L. By Theorem 4, which is obviously true of infinite
complexes, ayxKQ and Kx* expand formalty into oKov By the corollary
to Theorem 31, Kx

:l: expands formally into some stellar sub-division
o1yK12, where ax — 1 in Kx'

1', and hence in L. By Theorem 4, a1ay1K0

and K-j* expand formally into axoK01. Finally, axyy3K2 expands formally
into some stellar sub-division o2oxyKX2 (CT2 = 1 in oxyy3K2 and hence in L),
cr2alay1KQ expands formally into a2a1aKQ1 and o2K1^ expands formally
both into a2a1aK01 and into o2oxyK12. Therefore we may assume that
y2* = y2, after preliminary sub-divisions if necessary.

Assuming that y2* = y2, let K[2 = sPK12, where P = y2K1} the new
vertices being, as usual, different from any of those in K01. Then
(KQ1—y2Kx). {K[2—y2Kx) = 0, whence A1KO1 if AGK^—y2Kx and
A~kK[2 if A eKQ1—y2Kv Let ys' = sPy3 and let E2 and E3' be the
expansions y2Kx->K[2 and y3'K2^-K12, defined as in the proof of
Theorem 5. Since A1KQX if A e K1\—y2 Kx and A i K[2 if A e K0x—y2 Kv

it follows from (14.2) that each elementary expansion in E2 is inde-
pendent of every elementary expansion in E2*. Therefore E2 is
applicable to E2

:i:(y2Kx) — KQl and E2* is applicable to E2'(y2Kx) = /v{2.
But

E2'(KQX) = E2*(K[2) = KQl+K{2.

Therefore

E2' ^i(yi^o) = ^2
::: Es(v* K2) (7 l = y3' = 1 in L),

and the theorem follows from Theorem 30.
As a special case of Theorem 32 we have the corollary:

COROLLARY. / / two sub-divisions of Kt expand into KQX and into Kx2

respectively, then

The relation of equivalence under formal deformations is reflexive and
symmetric by definition, and it follows from Theorem 32 that it is also
transitive. Therefore the equivalence classes are mutually exclusive and
with each of these classes we associate an abstract infinite nucleus, or simply
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a nucleus. It is an immediate consequence of the definition that the
nucleus of a complex is a combinatorial invariant.

Fillings, perforations, and ra-groups may be treated in the same way
as expansions, contractions, and nuclei. Let us describe either an
elementary expansion or a filling whose order exceeds some given m as an
elementary addition. Then an addition S consists of adding a set of open
simplexes S to a complex, the set containing one simplex in the case of
a filling and two in the case of an expansion. The conditions (14. 3) are
necessary and sufficient for an elementary addition 2 to be applicable to
a complex K, and two elementary additions Sx and 22 will be described as
independent if, and only if, the conditions (14.4) are satisfied. As in the
case of expansions, any set of mutually independent elementary additions
may be combined into a composite addition. All that was said about
expansions, up to and including Theorem 30, obviously applies, with
minor alterations, to additions. As the analogue of the corollary to
Theorem 31 we have:

THEOREM 33. If Ko is transformed into K by a countable sequence of
composite additions, and if y is a given sub-division, then yK0 is transformed
into some stellar sub-division oyK by a countable sequence of composite
additions (cr= 1 in yK0)-

The proof is similar to the proof of Theorem 31, with Lemma 17
supported by the auxiliary lemma:

/ / En is a given n-element, there is an internal sub-division oEn, such that
the. transformation E'l->oEn is the resultant of a formal expansion followed
by a filling of order n.

Let A11*1 be an open (n— 1) -simplex in En, let aAn~x be the open simplex
in En with A'"-1 on its boundary and, after a suitable internal sub-division,
let a be inside E». Let Eli'1 = En—A*-1 and Ex

n= En—aAn~x. By
Lemma 17, E"'1 expands formally into some stellar sub-division oE^1,
where a = 1 in Ex

v and therefore in Ev. Since a = 1 in aA"-1, the required
transformation is the resultant of the expansion

En = An-'L+E^-^An-i+oES,

followed by the filling An-1+oE1
n->An-1+(rE1

n+aAn-1 = <7En, and the
lemma is established.

The theorem now follows from the proof of Theorem 31 with trivial
modifications.
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Two complexes Ko and Kx will be said to have the same m-group if, and
only if, there are sub-divisions yx and y2 and additions Tx and T2 (con-
taining no fillings whose orders do not exceed m) such that

THEOREM 34. If Ko has the same m-group as Arj, and Kl the same
m-group as K2, then Ko has the same m-group as K2.

This follows from the proof of Theorem 32, with Theorem 31 replaced
by Theorem 33, Theorem 4 supported by Lemma 7, and the appropriate
changes in wording.

As with nuclei, it follows that complexes fall into mutually exclusive
classes, two complexes having the same m-group if, and only if, they
belong to the same class.

In the next section we shall discuss the relation between the formal
and the topological theory of infinite complexes. It will appear that any
two complexes have the same m-group, for each value of m, if they have the
same homotopy type, in a sense to be defined. The converse holds for
complexes of finite dimensionality. In particular, two finite complexes
KQ and Kx have the same homotopy type if they have the same m-group for
m ^ dim (K{) + 1 , with infinite additions allowed. It follows from Theorem
17 that they have the same m-group in the strictly finite sense of §§2-13.
The analogous question for nuclei remains open, namely:

/ / two finite complexes have the same infinite nucleus, can they be inter-
changed by finite sequences of elementary deformations ?

15. The topology of infinite polyhedra. By a closed convex n-cell]'
Cn(n^— 1) we shall mean a set of undefined points in a (1-1) corre-
spondence / with the interior and boundary of a convex, polyhedral
n-ce\\ f{Cn), in Cartesian ?i-space X'1, the set Cn being empty if n — — 1.
Two transformations, f{Cn) and/:i:(C/l), will be said to determine the same
convex n-ce\l if, and only if,/* = Tf, where T is an affine transformation of
Xn into itself. Thus Cn has the affine structure of its image/(C") and the
usual terms (interior, boundary, simplex, etc.) will mean the same when
applied to Cn as to f(Cn). In particular the boundary Cn of Cn consists of
certain closed convex (n— l)-cells. The "cells on" Cn (Seiten), defined
inductively, consist of Cn by itself if n = — 1, and of Cn together with the
cells on the (n— l)-cells in Cn if n ^ 0. Thus C~x is on every cell. By a
polyhedral complex K we shall mean a set of closed convex cells satisfying

•f Cf. O. Veblen, Analysis Situs (New York, 1931), 76.
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the first two conditions given by Alexandroff and Hopf for a cell-complexf,
namely:

(1) each cell on any cell in K is also in K,

(2) the intersection of two closed cells in K is a closed cell on both of them.

We do not require the dimensionality of the cells in K to have a finite upper
bound, and the set of cells which are incident with a given one may have
any cardinal number. A partition of K {i.e. a rectilinear sub-division), and
in particular a simplicial sub-division, is defined as when K is finite.

A simplicial polyhedral complex is obviously isomorphic to some sym-
bolic complex and conversely. Moreover, it follows from Lemma 16 and
its addendum that two geometrical complexes which are isomorphic to
equivalent symbolic complexes are geometrically equivalent, meaning
that they have isomorphic partitions. Also it follows from an inductive
argument similar to the proof of Lemma 16, and Theorem 1 in my paper on
sub-divisions, that two partitions of the same geometrical complex have a
common partition. Thus the elementary theorems on which combina-
torial analysis situs is based apply equally well to polyhedral complexes
in general as to finite, or locally finite, complexes. Except when a contrast
with symbolic complexes is necessary we shall refer to K simply as a
complex and, unless the contrary is implied, it is to be understood that any
complex to which we refer is simplicial.

By a topological polyhedron P{K) we shall mean the set of points in a
polyhedral complex K, with the topology defined by the conditions:

(1) each closed cell in K has the topology natural to its affine geometry,

(2) a set of points in K is closed if, and only if, its intersection with each
closed cell is closed.

We enumerate some of the more obvious consequences of this definition.
A set of points in K is closed (open) if, and only if, its intersection with
each sub-complex LCK is closed (open) relative to the topology of P(L).
The sum of a finite number, and the intersection of any number, of closed
sets is closed. Any sub-complex of K is closed. If 0{X, K) is the set of
open cells in K {i.e. the interiors of closed cells) whose closures meet a given
set of points X, then K—O{X, K) is a complex and 0{X, K), regarded as
a set of points, is open. The definition of closed sets is invariant under
partition. The following is not so obvious, namely a topological polyhedron

| Topologie, 126.
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is a metric space if, and only if, it is locally finite. For let A be a. given
complex, which we may suppose to be connected and simplicial.. Since it
is connected, any two vertices in K are joined by a finite polygonal segment,
consisting of edges of A. If A is locally finite, it follows without difficulty
that it contains at most an enumerable infinity of vertices, and hence that
P{K) is a metric spacef. Conversely, let some vertex a be incident with
infinitely many simplexes in A, and let A1} A,2,... be an enumerable sequence
of simplexes with a on their boundaries. Assuming that P(K) is
metricized, let pr be a point inside Ar, whose distance from a is less than
1/r. According to the metric the sequence of points pv p2, ... converges
to a. But the dimensionality of each simplex in A' is finite and no open
simplex contains more than one of the points pr. Therefore the number of
these points in any closed simplex is finite and { r̂] is a closed set according
to the topology of P{K). Therefore P{K) is not a metric space. A
similar argument shows that any compact set of points in P{K) is contained
in a finite sub-complex of A. Therefore a map in P(K) of any compact
space is contained in a finite sub-complex of A, as when A' is locally finite.

It is now to be understood that all our polyhedral complexes have this
topological structure, in addition to the rectilinear geometry of each cell
and the combinatorial structure of the incidence relations.

LEMMA 18. A transformation f(K), of a complex K into any topological
space P, is continuous if, and only if, it is continuous throughout each closed
cell in K.

This follows at once from the definition of closed sets and a standard
definition of continuous transformations, namely: /(A) C P is continuous
if, and only if, f~x{X) is a closed set in A, where X is any closed set in P.

Certain fundamental theorems may now be extended from finite and
locally finite complexes to infinite complexes in general.

THEOREM 35. If K is covered by a given set of open sets, there is a stellar
sub-division oK such that N(a, oK) C U(a), where a is any vertex in oK and
U(p) denotes any one of the given open sets containing a point p.

We first prove a sharper theorem for finite complexes. Let A be any
finite complex which is covered by a given set of open sets and let

N(bK,L)<ZU, (A=l , ...,m),

See, for example, Lefschetz, Topology (loc. dt.), 292.
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where L is a sub-complex of K (L^l),bv ..., bm are the vertices of L, and
UK is a particular one of the sets U{bx). The auxiliary theorem is :

Under these conditions there is a sub-division a, leaving L unaltered, such
thai N(a, oK)C U(a), ivhere a is any vextex in aK, and

N(bK,aK)CUK (A=l , ...,ro).

First assume that N(bx, K) C UK for each value of A — 1, ..., m. Since
every open simplex A in O(L, K) is incident with at least one of the vertices
6], ..., 6m, it follows that N(A, K) is contained in one or more of the
neighbourhoods Uv ..., Um. Therefore, if a is any vertex of a sub-divison
aK, which lies in the open region O(L), covered by O(L, K), the closed star
N(a, aK) is contained in one or more of the sets Uv ..., Um. In particular
N(bh,oK)CUx. Let N = N(L,sLK) and let K0 = sLK-O{L, sLK).
Then N C O(L) and Ko does not meet L. lip eK0, the set U(p). Ko is an
open neighbourhood of p in KQ and, by a standard theorem, there is a stellar
sub-division axK0 such that N(a, a^^K^ C U(a), where a is any vertex in
a1K0. Also ax = 1 in L, since L does not meet i£0. Then N(a, aK), with
a — a-^Si, is contained in some UK if a e a±N, and N(bk, aK) C Ux. On the
other hand, if aeaK—axN we have N(a, aK) = N(a, a1K0)C.JJ(a).
Therefore N(a, aK) C U{a) if a is any vertex in aK, N(bk, aK) C Uk and
a — 1 in L.

It remains to show that there is a sub-division a0, leaving L un-
altered, such that N(bK, aQK)C JJK (A= 1, ..., m). We shall assume, for
convenience, that none of the sets Ux coincides with K. This involves
no loss of generality. For, if K = L the theorem is trivial, and, if K ^ L,
Ux = K. we remove a point of K—L from Ux. After a preliminary sub-
division, if necessary, let N(L, K) be a normal simplicial neighbourhood of
L. Then each closed simplex in K is of the form A B, where A . L = 1 and
BCL (possibly 4 = 1 or 5 = 1). This being so, let K be imbedded in
Euclidean metric space Rn. If B = bK Bo is any closed simplex in L
(other than 1), the Euclidean distance b(B, K—Uk), from B to the closed
set K—Ux, is positive. Let p be the least of these distances, calculated
for all the vertices of B and all the simplexes in L. Then

if B contains 6A. Now apply the sub-division sL to K, placing the centre
of each star sL(AB), in which B ^ 1, at a distance less than p from B.
Let A' B = A' bKBo be any principal closed simplex in N(bK, sLK), where
A'. L = 1 and B0CZL. If A' = 1 we have A' B = BC Ux. Otherwise
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A' = a,Q...ak, where a(is the centre of a star s^A^). Since 8((/,-, B) < p ,
all the vertices of A' B are contained in the sub-set of Ra given
by S(p, B)<p. But the latter is a convex region j and therefore
contains A'B. That is to say, 8{p,B)<p if peA'B, and since
p < S(£, K- TJX) we have A'BCZ Ux. Therefore N(b,, sLK) C Ux and the
auxiliary theorem is established.

In proving the main theorem we assume that we can select a particular
one from those of the given neighbourhoods containing each closed set
which is in at least one of them j . This being so, let A'" be the ?i-dimen-
sional skeleton of K and assume that, if n ^in {m > — 1), there is a stellar
sub-division oltK'b such that:

(1) op — an in Kp if p < n,

(2) N(a, <jtnK
m)CUa, where a is any vertex in o,nK

m and Uu is a
particular one of the given sets U(a).

If Am+1 is any closed (m+ l)-simplex in A'"1"11, the sets U{p). Am+1 are open
relative to Am+1. It follows from the auxiliary theorem, with ain A'"+1 and
omAm+1 taking the place of K and L, that there is a sub-division o*omAm+l,
leaving omAm+1, and hence amKm, unaltered, such that

N(a, o*amA>n+1)(ZU(a)

if «eff:|i<Tm(iw+1-i"'+1)) and N(b, o*omAm+x)<ZXJb if 6eaMli"
t+1. Let

am f-i be the resultant of ain, followed by all the sub-divisions a* correspond-
ing to the various (ra+ l)-simplexes in Km+1. Then an)JrX — a)n in Km, whence
am+1 = ali in K'b if n<m. If beom+1K

m, any closed simplex bA, in
N(b, o,n+1K

m+1), is contained in trm+1(K
m+Am+1), where A"l+1 is some

closed simplex in Km+1 (possibly bA C on,+1K
m, in which case J4»t+1 may be

arbitrary). Therefore bA C Ub, and it follows that N(b, <r,,l+1K
m+1) c Ub

if beam+xK
m. Finally, with each vertex a, in om+1K

m+1 — alll+1K
m, we

associate a particular neighbourhood Ua, selected from the neighbourhoods
U(a) which contain N(a, (rm+1K

m+1).
The conditions are now as before, with m replaced by m-\-1. If we begin

with cr_i= 1, it follows inductively that they are satisfied by some sub-

f Alexandroff and Hopf, Topologie, 598.
X This assumption is justified, without an appeal to the axiom of choice, if no point

is in an infinite number of the given sets. For in this case the intersection of each sub-set
of the given sets, s open. Let all these intersections be included among the given sets.
From those containing any closed set which is in at least one of them we then select that
one of the given sets which is contained in all the others. This condition is satisfied in
the corollary to Theorem 35 and in Theorem 36 below.
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division a,,, for all values of m. Taking a to be the sub-division given by
a A — aa A if AC. K". let a be any vertex in aK. Any closed simplex aA, in
N(a, aK), is contained in anK

n for n = dim (aA). Therefore aACUa.
It follows that N(a, aK) C Uu, which is one of the given open sets, and the
theorem is established.

Let Xt and X2 be closed sets in a complex K and let U(= K—Xt. If X1

and X2 have no common point, each point in K is either in Ux or U2 or both.
By Theorem 35 there is a sub-division aK such that N(a, aK) C U( (i = 1 or 2)
and hence does not meet both X1 and X2, where a is any vertex in aK.
That is to say N(XV aK) does not meet N(X2, aK), Avhere N (X{, aK) stands
for the totality of closed simplexes in aK which meet Ar

(-. Clearly
X{Xi, aK) is the closure of the open neighbourhood 0{Xt, aK), and we
have the corollary to Theorem 35:

COROLLARY. 4̂ topological 'polyhedron is a normal topological space~\.

THEOREM 36. Any map of a complex K in a simplicial complex L is
homotopic to a simplicial map of aK in L , where a is a suitable sub-division
of K.

If/(if) C L is a given map, f~x{O{B, L)} is an open set in K, where B is
any open simplex in L. Each point in K is contained in at least one of these
sets and, by Theorem 35, there is a sub-division aK such that N(a, aK)C U(a),
where a is any vertex in aK and U(a) is one of the sets/"1 {O(B, L)}. I t
follows from the argument used in the finite case that / is deformable into
a simplicial map of aK in L, and from Lemma 18 that the deformation is
continuous.

As in the finite case, the deformation ft (0 ̂ .t ^.1) of a given map
fo(K)C.L into a simplicial map fxiaK) may be chosen so that the
"trajectory" Pi=ft{Po)> °f a n y point p0, is a rectilinear segment in the
closure of the open simplex which contains fQ{p0).

THEOREM 37. Let fo(K) be a map of a complex K in any topological
space P, let L be a sub-complex of K and let g( be a deformation of the map
fo{L) into gx(L) (0 <Z < 1; g0 = / 0 in L). Then there is a deformation of
the complete map fo(K) which coincides with gt in L.

Let Kn be the complex consisting of L together with all the simplexes in
K—L whose dimensionalities do not exceed n. It follows from the same

t Alexandroff and Hopf, Topologie, 68.
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argument as when K is finitef that gt{L) [=/r1(^"1)3 can be extended to
a deformation ft

n(Kn) (n=-1, 0, 1, ...), such that ft
m=ft

n in Kn if
m>n. The function f(p, t), defined by

f(pJ)=fin(p) XpeK\

may be regarded as a transformation of the product complex

into P. This transformation is continuous in Kn x \0, 1> for each value
of n, and is therefore continuous throughout each closed cell in /v01.
Therefore it is continuous throughout K01, by Lemma 18, a,nd ft(K), given
by ft(p) =f(p, t) (peK), may be taken as the required, deformation of
fo(K).

As a corollary to Theorem 37 we have:

COROLLARY. Theorem 15 (§8 above) applies equally well to infinite as
to finite complexes.

For, in the presence of Theorem 37, Hurewicz's argument, referred to
in the proof of Theorem 15, shows that the condition A implies RL. That
is to say, if every cell in K whose boundary lies in L is homotopic, with its
boundary fixed, to a cell in L (condition A), then L is a retract by defor-
mation relative to itself (condition RL). The remaining implications:
RL implies all the other conditions, R implies B and B implies A, are valid
if K and LcK are any topological spaces, the first two obviously and the
last one by the argument given in § 8, which does not depend on the special
nature of K and L.

LEMMA 19. If a complex Ko expands into Kit is a retract by deformation
of K.

Let the transformation K0->K be the resultant of a sequence of
composite expansions ev e2, ..., and let KH = e^i?,^ (n — 1, 2, ...). It is
obvious that Ko is a retract by deformation of Kx and hence, by induction
on n, of Kn. Therefore any cell in Kn whose boundary lies in Ko is homo-
topic, with its boundary fixed, to a cell in Ko. Any cell in-if, being a map
of a compact space, is contained in a finite sub-complex of K, and hence in
Kn for some value of n. Therefore any cell in K whose boundary lies in
Ko is homotopic, with its boundary fixed, to a cell in Ko, and the lemma
follows from the corollary to Theorem 37.

t Alexandroff and Hopf, Topologie, 501.

BBB. 2. VOL. 45. NO. 2249. Y
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16. Extension of previous results. It will now be clear, with a few
indications, that many of the main results in §§3-12 can be extended to
infinite complexes. Everything in § 3 can be taken over provided that the
theorems and proofs are restated in terms of expansion rather than contrac-
tion. In particular, a collapsible complex is a complex of the form E(a),
where a is a single vertex and E is an expansion. Theorem 4 is true of
infinite complexes, as we have already observed. We drop Theorem 6,
and the rest of §§4 and 5 is replaced by § 14. Everything in §6 can be
extended with trivial modifications, and we come to Theorem 12 in §7.
First notice that, unless Km+1 = Km, the transformation Km~>Km+1 is
a composite filling of order ra-f-1, where Kn is the w-dimensional skeleton
of a given complex K. Therefore Km and Km+1 have the same ra-group,
and in extending Theorem 12 we may assume that our complexes are at
most 2-dimensional. Secondly, in any connected graph g there is a tree
which contains all the vertices of g. For, since g is connected, any two vertices
in g are contained in at least one finite, connected sub-graph. Let us define
the distance between them as the minimum number of edges in such a
graph, this minimum being attained by a simple segment. Let Tn be a
tree in g containing those, and only those, vertices of g whose distances
from a given vertex do not exceed n. Let each vertex whose distance
from some vertex in Tn is unity be joined to Ttl by a single edge, and let
Tn+1 be the graph consisting of Tn together with these edges. Then T.n+i

is obviously a tree satisfying the same conditions as TIV with n replaced by
n-\-l, and a tree T = Tx-\- T2-\-... containing all the vertices in g is defined
by induction on n. Moreover, this argument shows that any tree is
collapsible.

The first part of the extended Theorem 12, namely that all complexes
in the same 2-group have the same fundamental group, follows from an
argument similar to the proof of Lemma 19. To prove the converse, let
T be a tree containing all the vertices in K (TCK). By the corollary to
Lemma 4 and Theorem 2 we may shrink T into a point in sT

2 K, obtaining
a system of generators and relations for rt-^K). Tietze's method of trans-
forming two systems of generators and relations of the same abstract group
into the same system can obviously be extended from finite to infinite
systems, and in all remaining details the proof is the same as in the finite
case.

As a complementary theorem to Theorem 12 we have

THEOREM 38. Any group is isomorphic to the fundamental group of
some complex.
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Any group G can be represented by a system of generators and relations.
For we can take every element in Gasa generator and as a set of relations
we can take the " multiplication table ". Then a complex having G as its
fundamental group can be constructed by the method used when the set
of relations is finite f.

We proceed to Lemma 8 and Theorem 13. Let 7v0 and Kx be two
complexes of at most n dimensions which have the same n-group. Then

^o(yo^o) = T^KJ = Kov say,

where To and 2\ consist of expansions and of fillings whose orders exceed
n. As in Lemma 8, we replace each elementary expansion of the form

where aAm~x C K, A™-1 <t K and m > n, by the special filling K
of order ra— 1, followed by the filling K+Am-1-*>K+aAm-1. If in = n+1,
the w-element aAm~x is contained in Ku, the ^-dimensional skeleton of K.
Therefore the transformation Kn-^-Kn-\-Am~1 is a special filling of K".
Similarly Kn->Kn-\-aAk-1 (k <w) is an expansion of K" if K->K-\-aAk~x

is an expansion of K. After modifying the transformations To and Tx in
the way just described, we find that, omitting all the fillings whose orders
exceed n,

(16 • 1) TQ"(yQK0) = TffaKJ = K&,

where K"x is the w-dimensional skeleton of/i01 and T(" consists of expansions
whose orders do not exceed n and of special fillings of order n. This is the
generalization of Lemma 8.

If an elementary expansion of order k ^n is applicable after a filling
fn, of order n, it is applicable before/". Therefore (16.1) may be exhibited
in the form

F0'
lE0(y0KQ) = Ff E^yJiJ = K&,

where Et is an expansion whose order does not exceed n and Ft
n consists of

special fillings of order n. Replacing each filling K->K-\-An in Ft by the
expansion K->K-\-aA'\ where aA"C-K, we have an expansion of
EifaKi) = K*, say, into a complex i£"+1. By Lemma 19, K-* is a retract
of K^1 and, since ^ C ^ C ^ + i , the complex Ar,-* is a retract of K$lt

in general not by deformation. If K->K-\-An is any special filling in Ft
v it

follows that A'1, being (n—1)-dimensional and hence in Kt
:l:, bounds a cell

in Kt*, since it bounds a cell in K^v Therefore

f 0. Veblen, Analysis Situs (loc. cu.), chap. V. §24.
Y 2
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as in Theorem 13, where 2,* is a cluster of ?i-spheres, in general infinite,
attached to K*. Clearly

where 2,- is a cluster of w-spheres attached to Ki} and we have

as in Theorem 13. Moreover, the order of the deformation D need not
exceed n-\-\.

Everything in §8 applies, with minor alterations, to infinite complexes.
In particular, if L is a retract by deformation of K it has the same ra-group
as K for every value of m. Half of Theorem 17, in § 9, applies to infinite
complexes in general, namely the theorem that two complexes have the
same m-group if they are of the same homotopy type. The converse applies
to infinite complexes of finite dimensionality.

In the definition of the ring &n{K, p) and in Theorems 18 and 19 (§§ 10
and 11) K may be not only an infinite complex, but any connected, locally
O-connectedf topological space. On the other hand, the proof of Theorem
20 seems to break down completely if K is infinite, even if it is locally finite.
For, if the matrix \\ru\\ has infinitely many rows and columns, the process
of reduction involves an infinite sequence of formal deformations, which,
so far as I can see, might require an infinite sequence of contractions,
each of which could be applied only after its predecessors.

Theorem 21 is a consequence of Theorem 20 and conversely. Therefore
the two further questions left open are:

(1) Are two complexes of infinite dimensionality of the same homotopy
type if their m-groups are the same for all values of m%

(2) Have two infinite complexes the same nucleus if they are of the
same homotopy type and if their fundamental group satisfies the condition
imposed in §11?

Theorems 22 and 23 in §12 can be extended, in a modified form, to
locally finite sub-complexes of infinite manifolds. An w-dimensional
manifold, finite or infinite, is defined as before and may be bounded or
unbounded. An infinite unbounded manifold will be described as open
(by contrast with a closed, or finite unbounded manifold). If if is a sub-
complex of a manifold M (K may be infinite if M is infinite), a sub-complex

| Lefschetz (loc. cit.), 91.
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U(K, M) of i f will be called a regular neighbourhood of K if it is a manifold
and if yK expands into yU(K, M), where y is a suitable sub-division of
U(K, M). In general U(K, M) is a bounded manifold and Theorem 23,
as it stands, is false if the complexes are infinite. For example, if K is
a point in Euclidean space Rn, a regular neighbourhood U(K, Rn) might
be an w-element, or some infinite bounded manifold, or the whole of Rn.
However, if we take if to be a geometrical complex of the kind described
in § 15, the following modification of Theorem 23 is true:

THEOREM 39. The interiors^ of two regular neighbourhoods of the same
sub-complex of the same manifold are in a (1-1) semi-linear correspondence.

In the first corollary to Theorem 23, and elsewhere, ?i-elements must
be replaced by open (semi-linear) w-cells. Then Theorem 39 and the
generalization of Theorem 22 follow from the arguments in § 12, supported
by the following lemma:

LEMMA 20. Let Mo, Mv ... be an infinite sequence of n-dimensional
polyhedral manifolds such that Mt-^Mi+1 = M,•+E/1 is a regular expansion.
Then I(M0) is in a (1-1) semi-linear correspondence with

M= S/(if,.),
i=0

where I{M{) stands for the interior of M{.

It will be sufficient to outline a proof, the details of which do not
involve anything new. Let /,• be a (1-1) semi-linear map of if,- on Mo.
Then if,+1 can be mapped on Mo in a (1-1) semi-linear transformation
fi+1, which coincides with /,• except in E^-\~ U{, where £/,- is an arbitrarily
chosen regular neighbourhood in M{ of E?-1 = Mt. Ef1 — if,.. E-n. There-
fore we may assume that/ ,+ 1 =/,- in L,n, where L{

n is an open manifold in
if,-, such that, treating M and I(M0) as polyhedra, we have

(1) VCZfo,

(2) M=l L(
n and I(M0)= S /,(An).

j=0 1=0

If we begin with /0 as the identical map of M0 on itself and

f The interior /(U) of a bounded polyhedral manifold U is obviously an open manifold
in the sense that any rectilinear, simplical covering of I(U) satisfies the combinatorial
condition for an open manifold,



326 J. H. C. WHITEHEAD [May 19,

the map/,-, subject to the condition fi=fj in L(
n if* <j, is defined induc-

tively for each*, and the required map,/( if) = I{M0), is given by/( JO) =/,•(#>)
if peLf.

If 2(/f, M) is taken to mean the simplicial space determined by some
complex covering the interior of U(K, M), the generalization of Theorem 24
presents no difficulty. Theorem 25 is true of Euclidean complexes! K
and L, provided that they have the same "Euclidean nucleus", meaning
that sub-divisions of K and L expand into the same Euclidean complex (it
follows from the proof of Theorem 32 that this relation between K and L
is transitive). The corollaries to Theorem 25 depend on Theorem 21,
concerning which we are ignorant. Lemma 12 and Theorem 26 generalize
automatically. If the questions Q. 2 and Q. 3 of §10 are restated in
terms of Euclidean complexes and nuclei, and of the interiors of bounded
manifolds M, M{ and M+31i} such that M.M{ = M.M{ = ^f"1, Theorem
27 follows from the arguments in § 12 and from

THEOREM 40. A bounded manifold and its interior have the same
Euclidean nucleus.

If M is any bounded ?i-dimensional manifold the theorem will follow if
we can show that some Euclidean complex expands both into a sub-division
of M and into a rectilinear complex covering I(M). After an initial sub-
division, if necessary (e.g. s^), let N(M, M) be a normal simplicial
neighbourhood of M. Then, if we write M' for the first derived complex
of M, N(M', M') is geometrically equivalent to the topological product
M'Q1 = M' X <0, 1>. For let Ax

k, A2
k, ... be the &-simplexes in M

(k — 0, ..., n— 1) and let E^ and F^-1 be the closed cells dual to Af
in the complexes J/* and M*, dual to M and M (as usual the cells of M*
are composed of simplexes in 31'). Let/0 be the map of M' on M' x 1
given by /„(#) = 3>Xl (p*M'), and let fr+l (0<r<w—1) be a (1-1)
semi-linear map of

1 + ... on (M* x 1) + (M" x <0, lx),

where M'r = F{-\-F{-\-..., which coincides with/0 in M' and is such that
fr+1(Ej

s) = F^x<01l'> ( l < « < r + l ; j = l , 2, ...). If r<n-l, it
follows from theorems on sub-division to which we have previously referred %
that fr+1 can be extended throughout each cell El+2 to give a map fr+2,

•f I.e. locally finite complexes whose dimensionalities are finite.
J Cf. the proof of Theorem 6, § 4,
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satisfying the same conditions as before with r replaced by r + 1 . It
follows from induction on r that such a map exists for r = n— 1, and fn

is the required map of N(M', M) on MQV

Let Mo = M' — O(M', M'). Then it follows from the last paragraph
that we may replace M' by Jfo+Jfoi, where each point p in Mo is
identified with ^?xO in MQX. Then Mo expands geometrically into
M0-\-MQ1} by Theorem 8. Let

By Theorem 8 each of the transformations M(->Mi+1 is a geometrical
expansion. Their resultant is an expansion of Mo into a polyhedral
complex covering the interior of Mo+.Moi> and the theorem is established.

Balliol College,
Oxford.


