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1. Introductory.

This paper centres round a generalization of the notion of a group
which may be briefly described as follows. We start with the definition
of a symbolic complex K, as a set of sets, called simplexes, which contains
each sub-set of any simplex in Kt. Restricting ourselves to complexes
in which the dimensionality of each simplex is finite, though the dimension-
alities of the simplexes need not have an upper bound, we separate
complexes into mutually exclusive equivalence classes by means of certain
elementary transformations of ‘“‘order m’ and associate an abstract
“m-group ”’ with each class, where m = —1, 0, 1, .... The interest begins
with m = 2, and it appears that two connected complexes, finite or infinite,
have the same 2-group if, and only if, they have the same fundamental
group. Moreover, any group is isomorphic to the fundamental group of
some complex. If an abstract group is taken to be an object associated
with a class of mutually isomorphic groups}, we may therefore identify
2-groups with abstract groups. Thatis to say, a geometric, or set-theoretic,
representation of an abstract group by a complex may be regarded as
equivalent to an algebraic representation by a set of elements with a
multiplication table. From this point of view an m-group is seen to be an
automatic generalization of an abstract group.

Two complexes have the same m-group for each value of m if they have
the same homotopy type. In particular the m-group of a geometrical
complex is a topological invariant. The converse applies to complexes of
bounded dimensionality. In fact, two complexes of at most n dimensions
are of the same homotopy type if they have the same (n-1)-group.

+ Cf. P. Alexandroff und H. Hopf, T'opologie, 1 (Berlin, 1935), p. 155.
1 This is how one normally uses the word in referring, for example, to the 6-group.

R2
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The simplicial spaces and nuclei, referred to in the title, are also defined
in terms of elementary transformations. There is nothing new about the
former. Two symbolic complexes determine the same simplicial space if,
and only if, they are combinatorially equivalent in the sense of J. W.
Alexandert and M. H. A. Newmanj. Nuclei are defined in terms of what
we call formal deformations. An elementary sub-division is a formal
deformation, and the nucleus of a complex is therefore a combinatorial
invariant, meaning that two complexes which are combinatorially
equivalent have the same nucleus. Whether or no the nucleus is a
topological invariant remains an open question, except in the case of a
finite complex whose fundamental group satisfies a certain condition,
described in §11. Two finite complexes whose fundamental groups
satisfy this condition have the same nucleus if they are of the same
homotopy type.

In a section on manifolds it is proved that any complex K, imbedded
in a manifold M, has a ¢ regular neighbourhood ” in M and that any two
regular neighbourhoods of the same complex in the same manifold are
combinatorially equivalent. Moreover, if p is large enough, regular
neighbourhoods of two finite complexes in Euclidean p-space RP are
combinatorially equivalent if the complexes have the same nucleus. In
particular, a regular neighbourhood of a finite #-dimensional complex K,
in R? (p>2n-+5), is a p-element if the (multiplicative) fundamental
group of K™ is unity and all its (additive) homology groups are zero. If
the fundamental group and homology groups of K™ are the same as those
of an n-sphere its regular neighbourhood in R? is the topological product
of an n-sphere and a (p—n)-element.

The presentation may be summarized as follows. With one or two
exceptions everything in §§3-9 is needed for the proof of Theorem 17,
which states that two (finite) complexes are of the same homotopy type if,
and only if, they have the same m-group for each value of m. The main
exception is Theorem 12, stating that two connected complexes have the
same fundamental group if, and only if, they have the same 2-group.
Sections 10 and 11 lead up to Theorem 21, that, subject to the condition on
the fundamental group stated in §11, two finite complexes of the same
homotopy type have the same nucleus. Section 12 is concerned with
regular neighbourhoods of complexes in manifolds, and § 13 is an appendix
to the sections on finite complexes. Section 14 is concerned with the
combinatorial, and § 15 with the topological theory of infinite complexes.

t dnnals of Math., 31 (1930), 292-320.
»Akad. Wet. Amsterdam, 29 (1926), 611-626; 627-641.
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In the final § 16 it is shown how many of the earlier results may be extended
from finite to infinite complexes.

Nuclei and m-groups are closely related to the homotopy groups
discovered by W. Hurewicz, and §§8 and 10 below may overlap with the
more complete account which was announced in the first of his notes on
homotopy groups. In particular, I learn from §S. Eilenberg that
Theorem 15, and from Shaun Wylie that the group of automorphisms
J,(g) in §11 are known to Hurewicz and others. But, since these are
auxiliary to the main theorems, I have given full details without further
reference except to what has already been published.

2. Nuclet and m-groups.

We start with an infinite aggregate of undefined vertices (Eckpunki-
bereich) a, b, ¢, .... Anyset of n+-1 vertices (n = —1) will be called an open
(symbolic) n-stmplex . A closed (symbolic) n-simplex will be the closure of an
open n-simplex, consisting of a set of n+41 vertices together with all its sub-
sets, including the empty set or (—1)-simplex. The closure CI(XZ), of a set of
simplexes Z, will consist of the closures of the simplexes in X, and X will be
described as closed if £ = Cl(Z). By a symbolic complex we shall mean
any closed set of simplexes. As usual a complex will be described as
finite or infinite according as it contains a finite or an infinite
number of simplexes. Until the end of §13 it is to be understood that,
except where the contrary is stated, all the complexes referred to are finite.
Our formalism is similar to that of J. W. Alexander except that, instead
of his “mod 2”’ or nilpotent algebra, we use the idempotent algebra of
logic. Thus %,+%,, £,—Z, and X, . %, will denote respectively the set of
simplexes in either of two given sets X, and Z,, the set in X, but not in
Z,, and the set common to both. We shall continue to use multiplication
without the dot X; %, to stand for the join of the two sets; that is to say,
for the totality of simplexes (a, ..., a,, by, ..., b,), where§ (a,, ..., @,) ¢ Z,;
and (b, ..., b,) €Z,. This operation is also to be idempotent, so that

S4+E=3.5=3L=%.

t Akad. Wet. Amsterdam, 38 (1935), 112-119; 521-528; 39 (1936), 117-125; 215-223.

} The word * symbolic ” will be omitted except when a contrast with geometrical
simplexes and complexes is necessary. Also when it is obvious which is meant, or irrelevant,
we shall refer to either an open or a closed simplex simply as a simplex, and shall use the
same kind of letter, namely, 4, B or C, to stand for both.

§ If A is an open simplex belonging to a set £ we write 4 ¢, but for a closed simplex
we write 4C 3. We use ¢ to stand for “ not ¢’
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The empty, or (—1)-dimensional, simplex plays a part analogous to
zero with respect to the multiplication X, . 2, and to unity with respect to
%, %, TFollowing Alexander we shall denote it by 1. Thust

2.1=1, Z1=2.

Though the simplex 1 belongs to every complex, we shall say that two sets
of simplexes meet each other if, and only if, they have a k-simplex in
common, where k> 0.

The boundaries which appear in this paper are calculated with residue
classes mod 2 as coefficients, and we follow Alexandroff and Hopf in using{
K to stand for the boundary of a complex K. We adopt Alexander’s
convention that the boundary of a 0-simplex is 1 and the boundary of 1
is 0, the empty set of simplexes. The latter satisfies the conditions

240=2%2, X.0=20=0,

where Z is any set of simplexes, and is therefore analogous to zero in its
relation to all four operations.

We now associate three kinds of abstract object, a simplicial space, a
nucleus, and an m-group (m=—1,0, 1, ...) with every complex. By
analogy with polyhedra we shall describe a complex as a triangulation of
the corresponding simplicial space, but we shall refer to the nucleus and
the m-group, like the fundamental group and other classical invariants, as
properties of the complex. Thus, under appropriate conditions, we shall
say that two complexes have the same nucleus or m-group.

1. Simplicial spaces. Two complexes will be described as triangulations
of the same simplicial space if, and only if, they are combinatorially
equivalent. Here we adopt Alexander’s definition of combinatorial
equivalence in terms of elementary sub-divisions. We recall that an
elementary sub-division§ (4%, a), of order £, is a transformation of the form

K = A*P+Q->ad* P+Q,

where A* is a closed k-simplex in K, a is not in K, and P = K ,, the

t In general, 3413, but K+1 = K if K is & complex.

{ We shall also use 4 to stand for the boundary of an open simplex 4 (i.e. for the
boundary of its closure).

§ Superscripts will invariably denote dimensionality.
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complementt of A* in K. Two (finite) complexes are said to be
combinatorially equivalent if, and only if, one is transformable into the
other by a finite sequence of elementary sub-divisions and their inverses.
A property which is unaltered by an elementary sub-division or its inverse
is called a combinatorial invariant.

2. Nucle:. If
K1=K0 +a.A,

where A is a closed simplex such that a4 C K, A ¢ K, the transformation
K,— K, will be called an elementary expansion, and K,— K, will be called
an elementary contraction}. As a matter of convention we admit the
identical transformation K,— K, both as an elementary expansion and as
an elementary contraction§. An elementary expansion or contraction
will be called an elementary deformation, and the resultant of a finite
sequence of elementary deformations a formal deformation. We shall
denote a formal deformation by the letter D. Two (finite) complexes will
be said to have the same nucleus if, and only if, one is transformable into
the other by a formal deformation.
If the simplex a4 is m-dimensional, we shall describe

Ko—>K, = EKy+ad,

or K, - K, as an elementary expansion, or contraction, of order m.

3. m-groups. If
Kl = K0+Ak (k > 0):

where A¥ is a k-simplex such that 4* C K, A* ¢ K, we shall describe the
transformation K,— K, as a filling of order k and K,— K as a perforation

t Cf. Alexander, loc. cit. We shall always use K4 to stand for the complement of a
(closed or open) simplex 4 in K, and, when we write K in the form AP+-@, it is to be under-
stood that 4 is closed and P = K. Asin Alexander’s paper, vertices will always be denoted
by small Roman letters.

1 Transformations of this kind have been previously studied by I. Johansson, Avhand.
Norske Vidensk.-Akad. (1932), No. 1.

§ The cases K, = K, = O or 1 are possible. -The identity K, — K is the only elementary
transformation of any kind which is applicable to the empty complex. The only elementary
transformation which is applicable to 1 is & filling of order — 1, defined below, which trans-
forms 1 into & closed 0-simplex. It is to be assumed throughout that no * given complex
is the complex 0, which will appear only, in special cases, as a term in a calculation,



248 J. H. C. WHITEHEAD [May 19,

of order k. Two complexes will be said to have the same m-group if, and
only if, one is transformable into the other by a finite sequence of elementary
deformations and, possibly, fillings and perforations whose orders exceed
m. Thus two complexes with the same nucleus have.the same m-group
for each value of m, and if » > m two complexes with the same n-group
have the same m-group.

3. Formal deformations.

If a complex L can be transformed into K by a sequence of elemen-
tary expansions we shall say that L expands into K and that K contracts
into L. If L is a single vertex, we shall describe K as collapsible. The
open simplexes a4 and A4 can be removed by an elementary con-
traction of K if, and only if, a4 ¢ K and a4 is the only simplex in K
having 4 on its boundary. If, in a contraction of K, an element-
ary contraction K,—K; ;= K;—ad?—A? is immediately followed by
K;,,~> K, ,—bB?— B?, where ¢ > p, it follows that these two elementary
contractions are interchangeable. For bBle¢ K, ,C K, and B¢ (ad?)
since ¢ > p. Therefore 6B? is the only simplex in K; with B? on its
boundary, and 5B? and B2 may be removed first and then 47 and aA4?.
When we repeat this argument, it follows that the elementary contractions
in a given contraction of K, may be so arranged that all those of order ¢
precede those of order p if p <g¢. In particular, if K, is collapsible it
follows that K, contracts first into a linear graph containing all the verticest
of K, and then into a vertex. The graph, being collapsible, is obviously
a tree and therefore contracts into a given one of its vertices. Thus any
collapsible complex contracts into a given one of its vertices.

Lemmal. IfK.L,C L,andif L, contracts into L,, then K+ L, contracts
into K+1L,.

Let the transformation L,—L, be the resultant of elementary
contractions L;—» L, = L—a;,4,—4; (¢=0, ...,g—1), where A4; and
a;A; are open simplexes. Since K.L,C L,C L;,,, the simplex 4; is not
on the boundary of any simplex in K and it follows that the transformation
K+L;—-K+ L, is an elementary contraction of K+ L;. Therefore the
transformation K+ Ly—>K-L, is a contraction and the lemma is
established.

t Strictly speaking, we should refer to the 0-simplexes, rather than to the vertices
of a complex. But we shall usually refer to a 0-simplex as a vertex, and a vertex may
mean either an open or a closed 0-simplex according to the context [if @ is an open 0-simplex
Cl(a) = a+1]. The distinction is not a trivial one, since the join aK does or does not
contain K according as the 0-simplex a is closed or open.
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Lemma 2. If LCK and A vs any closed ssmplex which does not meet
K (A #1, possibly L = 1), the complex AK contracts inlo AL.

First let A be a single vertex ¢. If K = L there is nothing to prove.
Otherwise let B be a principal{ open simplex of K— L. Then the closure
of aB meets a(K—B) in aB. Therefore aK contracts into «(K— B) and
the special case of the lemma follows from induction on the number of
simplexes in K—L. In general, let A =ad,. Then it follows from what
we have already proved that AK(=ad,K) contracts into «d, L(=AL)
and the lemma is established.

CoroLLARY. AK s collupsible (A #1).

For if A =ad, (possibly 4,=1) it follows from the lemma, with
L =1 and K replaced by 4; K, that a4, K contracts into «.

Lemma 3. If K=ALy+Q (Ly7#1) and L, contracts into L, then K
contracts tnto AL+ALy+Q.

If Ly= L, there is nothing to prove. Otherwise let
Ly=L,+bB (bBCL,),

where 0B is a closed simplex and Ly— L, is the first step in some process of
contracting L, into L. Then the simplex 468 meets AL,+ALy+Q in

AbB+AbB=b(AB),
and ALy+Q= AL+ AL+ Q
= A(L,+bB)+ALy+Q
= AL, +ALy+Q+AbB.

Therefore the transformation

ALy+Q->AL+ALy+Q

is an elementary contraction and the lemma follows from induction on
the number of simplexes in L,— L.

CoroLLarY. If Ly s collapsible A Ly+Q contracts into A Ly+Q.

For ALo—f—Q contracts into Ab—{—fiLo—{— @, where b is any vertex in L,
and so into 4 Ly+ @ by Lemma 2 and Lemma 1.

t I.e. B is not on the boundary of any other simplex in K, though it need not be a
simplex of maximum dimensionality.
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Notice two special cases of the corollary: first, if L, is collapsible,
aLy+@ contracts into L,+@, where a is any vertex not in L,+Q;
secondly, if L, is a single closed simplex B, then 4 B+ @ contracts into
AB+Q.

THEOREM 1. T'he nucleus of a complex s a combinatorial invariant.

It is enough to show that K, and K, have the same nucleus, where
K, is derived from K, by an elementary sub-division (4, ). Let

Ky=AP+Q, K,=adP+Q (42Q,aqK,).

By Lemma 2 the star a4 P, with @ as centre, contracts into aAP. Since
A¢ Qwehave AP.QC AP, and it follows from Lemma 1 that the complex
aA P+ @ contracts into K;. But AP is collapsible, by the corollary to
Lemma 2. Therefore aAP+Q also contracts into K,, by the corollary
to Lemma 3, and the theorem follows.

By a contractible neighbourhood of a complex L we mean a complex N
which contains L as a sub-complex and satisfies the conditions:

1. N s a normal simplictal neighbourhood of L, meaning that every
principal closed simplex in N meets L, but no open simplex in N— L has all
its vertices in L,

2. L.N, is collapsible, where A is any closed stmplex in N which does
not meet L.

THEOREM 2. Amny conitractible neighbourhood of L contracts into L.

Let N be a contractible neighbourhood of L, and let R be the complex
consisting of the closed simplexes in N which do not meet L. If R=1
every vertex lies in L and, since N is a normal neighbourhood, it follows
that N = L and there is nothing to prove. Otherwise let 4 be a principal
closed simplex of R and let N=AP-+¢@. If some simplex in P was not
in L it would contain at least one vertex @, in R. We should then have
aA C R, contrary to the fact that 4 is a principal simplex of B. Therefore
PcC L and, since N is a contractible neighbourhood, P is collapsible.
Therefore N contracts into N* = AP-}— @, by the corollary to Lemma 3.
Let BCL.Ngy, where CCR and C#A4. Then 4@ BC, since A¢C,
and it follows that BCCN¥*, whence L.Ny*= L.N,; Therefore the
second condition for a contractible neighbourhood, and obviously the
first, is satisfied by N*, and the theorem follows from induction on the
number of simplexes in R.
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Let L be any sub-complex of a given complex K, let K; be the complex
consisting of all the closed simplexes in K which do not meet L and let
R=K,.N(L, K), where N (L, K) stands for the set of all closed simplexes
in K which meet L. The transformation K - K* = aR-+} K,, where a is
any vertex not in K, will be described as the operation of shrinking L into
a point, namely the vertex a. It is the result of formally identifying the
vertices in L with the vertex @, which may or may not belong to L.

THEOREM 3. If L is collapsible and N(K, L) is a contractible neigh-
bourhood of L the operation of shrinking L into a pointis a formal deformation.

Let K* = a R+ K,, where R and K, mean the same as before and a ¢ K.
Since an elementary subdivision of order zero is a formal deformation we
may assume a ¢ K, and the proof is similar to the proof of Theorem 1. For
the complex N(L, K) is collapsible, since it contracts into the collapsible
complex L, and the complex aN (L, K)+ K, contracts both into K* and
into K. Therefore K* = D(K) and the theorem is established.

If K and L are any complexes we shall use sy K to stand for the
sub-division of K which consists of starring every simplex in

K—~L (=K—K.L)

in order of decreasing dimensionality, and s;% K will mean s;(s; K). We
conclude this section with an existence lemma.

Lemma 4. If N(L, K) is a normal neighbourhood of L (LC K), then
N=N(L, s;,K) is a contractible neighbourhood of L. Moreover, L .N 4 is
a single closed stmplex, where A is any open simplex in N— L.

Let 4,, ..., A, be the open simplexes in K—L, arranged so thatf
dim (4,) <dim (4,) if A <p, and let a, be the internal vertex of s;4,.
By an easy extension of a known theorem, s; K contains the open simplex
A = Ba,,...a,,, where Be L and Ay < ... <A,, if, and only if,

Bed,, Ayed,,, @E=0,..,r—1),

i+1

and any simplex in s; K is of this form (possibly with B=1 or r= —1,
i.6. @y,...ay = 1). Therefore N is a normal neighbourhood of L. Any
open simplex in N whose closure does not meet L is of the form

A*=a;\o...a,\, (A0<"'<AI')

t dim (P) stands for the dimensionality of P.
1 H. Seifert und W. Threlfall, Lehrbuch der Topologie (Berlin, 1934), 230, Theorem II.
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and it follows that
LoATAt—_—‘ L.A;\o.

Since any simplex in K is contained in L if all its vertices are in L it follows
that the closure, and hence the boundary, of any simplex in K — L meets L,
if at all, in a single closed simplex. Therefore, L.N 4 is a single closed
simplex and N is a contractible neighbourhood of L.

Let A= A* B be any open simplex in N— L whose closure meets L,
where A% =a,,...a, and BeL (Bs1). To say that B,eN,, where
B, is any open simplex having no vertex in common with 4, is to say that
AB, =A%BB;eN, or that BB, eN 4. If B;elL it follows that BB, ¢ L,
since all its vertices are in L, and hence that By e (L.N 4)p. Conversely,
if By e(L.N 4)pit follows that B,e L. N,. Therefore L. N = (L.N 4),
and since L. N 4. is a single closed simplex, sois L. N 4.

If L is any sub-complex of a given complex K, it follows from the first
argument in the proof of Lemma 4 that N (L, s; K) is a normal neighbour-
hood of L, and we have the corollary:

CoroLLARY. N = N(L, s;2K) s a contractible neighbourhood of L.
Moreover L. N 4 ts a single closed simplex, where A is any open simplex in
N—L.

4. Sub-division.

We shall need some theorems concerning sub-division and its relation
to formal deformation. By a stellar sub-division we shall mean the
resultant of a sequence of elementary sub-divisions (4, ), and a stellar
sub-division will always be represented by the letter . In dealing
simultaneously with two or more complexes K,, K,, ..., it is always to be
understood that no vertex introduced by a sub-division ¢K,; belongs to any
of the others. Thus o may be regarded as operating simultaneously on
all the complexes, with the convention that (4, a) leaves K unaltered if
A does not belong to K. We admit the identical transformation as an
elementary sub-division, which we denote by 1, and by o=1 in K we
shall mean that ¢ is a product of elementary sub-divisions which leave K
unaltered.

THEOREM 4. If K contracts into L, then oK contracts tnto oL, where
o 18 any stellar sub-division of K.

Using a double induction, first on the number of elementary sub-divisions
in o, and then on the number of elementary contractions in the transfor-
mation K — L, we see that it is sufficient to consider the case where o is a
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single elementary sub-division (4, @), and KL a single elementary
contraction. Let

K = L+bB,

where bB is a closed simplex meeting L in 5. The theorem is then
obvious unless A Cb6B and, by Lemma 1, it is enough to prove that ¢bB
contracts into obB.

First let Ac B. Then

obB=0b(cB), obB=0b(cB)

and obB contracts into obB, by Lemma 2. If A B, let 4 =058, and
B =B, B,. Then

obB = a(bB,+ B,) B,
=ab Bl B,+aB,
ob B = ob(83, B,+ B, B,)
— a(bB,+ B,) B,+bB, B,.
Removing the open simplexes B and aB from obB, we are left with
abB, B,+aB = abB, B,+a(B, B,+ B, B,)
—abB, By+aB, B,,
since a,Bl B,CabB, B,. Clearly abB, B, and aB, B, meet in aBl B,,
which is contained in (aB; B,). It follows from Lemmas 2 and 1, with
b taking the place of the simplex 4 in Lemma 2, that «bB, B,+aB, B,
contracts into
b(aB, B,)'+aB; B,=bB,(aB,+ B,)+aB, B,
= a(bB,+B,) B,+bB, B,
= abB,

and the theorem is established.

Let Py, ..., P, be sub-complexes of a complex K and let §; be a sub-
complex of P; (i=1, ..., n) with the following property: If o, is any
stellar sub-division of P;, some stellar sub-division o,0, P; contracts into
0,0, @;. Then we have the corollary to Theorem 4:

CoroLLARY. There is a sub-division oK such that oP; conlracts into
oQ; for each value of 1.

The corollary is trivial if n» = 1, and we shall prove it by induction on
n. Assume that o, P, contracts into o, Q) (A=1, ..., n—1), where o, is
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some stellar sub-division of K. By hypothesis, there is a sub-division
0,0, P, which contracts into 0,0, Q,. By Theorem 4, ¢,0, P, contracts
into 0,0y @\ (A= 1, ..., n—1), whence o P, contracts into 0@Q;(t =1, ..., n),
where o = 0,0,.

TueoreM 5. If K,= D(K,), there is a complex which contracts bothinto
K,y and into a stellar sub-division of K,.

Let Ky=C\E\...C,E(K) (=1, ...,q),

where E,, ..., E, are expansions and C|, ..., C, contractionst. If ¢ is
any stellar sub-division it follows from Theorem 4 that oK, expands into
ok, (K\) (A<q) and that the latter contracts into ¢K,,,, and from
induction on g—A that

oK,=C, B, ... Ci,1 Br,1(0K)y),

where Ej,, ..., B, are expansions and Cjy, ..., C,/ contractions.
Therefore the theorem will follow from induction on ¢ if we can show that,
when ¢ > 1, K, expands into some complex which contracts into a stellar
sub-division of K, [if ¢=1 the complex E,(K,) satisfies the required

conditions].
Let Ky =E\(Ky), K= E,(K,)=FE,C,E (K,),

let Kij;=sg, K,,, the new vertices introduced by sg, being, as usual,
different from any of those in K, and let e,, ..., ¢, be the elementary
expansions of which E, is the resultant (e, applied before e, ;). If e, is the
transformation K#-> K#-+ad, let ¢, stand for the transformation

sg, K#*—>sg (K¥*4-ad),

which is an expansion by Theorem 4, andlet £,' =¢, ... ¢,". IfCy=c;...cy,
where ¢,, ..., ¢, are elementary contractions, let ¢,” be similarly defined and
let Cy'=¢, ...c,". Then

sg, Ky = Cy By C1 By (K).

I say that the expansion E,’ is interchangeable with the contraction C,.
For, in general, let ¢ be any elementary contraction K >~ L =K—ad—A
and let ¢ be an expansion L->L+bB+B (bBC L, BeL). Theneandc
are interchangeable if neither of the open simplexes a4 and A coincides

t Either £, or C,, or both, may be the identity.
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with either{ 0B or B. For, if B is neither a4 nor 4, the transformation
K —K+bB+B is an elementary expansion, since bBC Lc K and BeK.
The only simplex in (bB)* which is not in K is B and, if B # 4, it follows
that a4 is the only simplex in K+bB-+B with 4 on its boundary.
Therefore the transformation

K+bB+B—>(K+bB-+B)—ad—A
= (K—aA—A)+bB+B
= L+bB+B

is an elementary contraction. That is to say ce =ec. If C is any contrac-
tion of a given complex K, and ¥ is an expansion of C(K), it follows from
an inductive argument that EC' = CE provided that none of the simplexes
removed by C is restored by E. This condition is satisfied by C, and
E,'. For any open simplex 4 which is added by E,’ belongs to K{,— K,
and so contains at least one vertex introduced by sx,. According to our
rule this vertex, and therefore 4, does not belong to K,,. Therefore
A is not one of the simplexes removed by C,. Therefore £, C,=C, E,’,
and
51, Ky = Cy By €y By(K,)

= Cy C, By By (K,).
Therefore the complex
Koo = Ly E,(Ky)

contracts both into K, and into sx K,, and the theorem is established.
We now give two definitions.

1. By the order of a deformation D will be meant the maximum order
of the elementary deformations in D.

2. If LCK,.K, and if no simplex of L is removed by any of the
elementary contractions in a deformation K, = D(K,), we shall describe D
as relative to L, and shall write

K,=D(Ky) (rel. L).
Two addenda follow from the proof of Theorem 5:

AppenpuMm 1. If K, and K, are at most n-dimensional and if the order
of D does not exceed m, where m = n, thereis a complex of at most m dimensions
which contracts both into K, and into oK,

t Actually ec = ce if 4 # B.
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Avpexoum 2. If K ,=D(K,) (vel. L) there is a complex which
contracts both into K, and into oK ,, where o = 1in L.

For each simplex added by £,’ is contained in a sub-division of some
simplex added by E, A=2, ..., ¢) and its dimensionality does not exceed
m. Therefore neither the order of E,” A=2, ..., ¢) nor the dimension-
ality of K, exceeds m and the first addendum follows from induction on q.
The second addendum follows from induction on g and the fact that
L c K, since no simplex of L is removed during the contraction C,.

Notice that the complex which contracts both into K and into ¢K, is
uniquely determined by the construction used in proving Theorem 3,
except for the actual vertices introduced by the sub-division o.

TueoreM 6. If K us any complex, there is « sub-division oK such that
o™ contracts into o E™=1 (m > 0), where E™ is any m-elementt in K and
£ any (m—1)-element in E™, the sub-division o being independent of m, of
Emc K and of Em1C E™,

If K is 0-dimensional there is nothing to prove and, assuming the
theorem for a complex of at most » dimensions (n 2> 0), we shall prove it
by induction on n. First notice that each element ¢E™ is collapsible,
where £ C K and oK is any sub-division which satisfies the conditions
of the theorem. For, if m > 0, ¢ E™ contracts into 4™1, where 4™ ig
any (m—1)-simplexin Em.  From the corollary to Lemma 2 and Theorem 4
it follows that cA™ and hence ¢E™ are collapsible.

There are in A, which we now take to be (n--1)-dimensional, only a
finite number of clements. Therefore the theorem will follow from the
corollary to Theorem 4 if we can prove that some sub-division oK™
contracts into &1 (0 <m <<n+1), where E™ is a given m-element and
Em-1 a given (m—1)-element in K. This follows from the hypothesis
of the induction unless m = n+1, which we assume to be the case.

Let ¢ (m ==n+-1) be a rectilinear, geometrical representation of the
m-element «bA", where A" is an n-simplex. Some partition C™ is the
image of a stellar sub-division ¢, ™ in an isomorphic transformation f,,
such that fo(s, B™1) = myad®. The sub-divisions my C™ and o, E™ and
the transformation f, can be extended to sub-divisions =, C™ and o, E™
and an isomorphism f, (¢, ™) = 7, O™, with o, = o and 7, = m, on E™ and

1 Tollowing Alexander and Newman, we use the terms m-element and (m—1)-sphere
tu mean complexes which ave combinatorially equivalent to an m-simplex and to its boundary.
1 J. H. C. Whitehead, Proc. Cambridge Phil. Soc., 31 (1935), 69-75.
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Cm, andt f,=f, on g, Em. Therefore we lose no generality in assuming
that E™ was initially isomorphic to =, C™ with E™-! corresponding to
m aA" and, assuming this to have been the case, we take E™ and E™! to
be the geometrical complexes m, C™ and m ad™.

Let py=a, p,, ..., p,=0b be the points on the rectilinear segment ab,
arranged in this order, such that all the vertices of £™lie in the (geometrical)
n-elements p; A" (=0, ..., 7). By a construction used elsewheref, we
can find a stellar sub-division cE™ which is a partition of the rectilinear
m-element (pop,~+p,Pe+-.-+0,_10,) A™ and is such that all its vertices
are in the n-elements pi/i" (¢=0, ..., 7). To economize our symbols, let
us assume that E™ satisfied this condition initially, let E;* be the complex
covering p; A", and let E/™ be the complex covering the m-eloment

PapAr =1, .., 7).

If »>1, assume that some stellar sub-division o,_;(E,"+...4+E™ )
contracts into o, ; 1. If we can show that some stellar sub-division
o*o,_y E," contracts into o%o,_; EF,, the theorem will be established
directly, if r=1 (taking o,_;=1); and it will follow from Lemma 1,
Theorem 4 and induction on 7, if #>1. The element o,_, E,™ has no
internal vertices and, again simplifying our notation, it remains to prove
the following : if E™is a partition of pyp; A™ with no internal vertices, some
stellar sub-division o E™ contracts into o £*, where ;" is the sub-complex
of E™ covering p; A™ (i =0, 1).

Since E™ is a partition of p,p, A® and since it has no internal vertices,
the vertices of any simplex in E™ lie in (py=+p,) A", where 4"~ is some
closed simplex in A». Since p,4"! and p, A™! are flat, every internal
simplex in E™ is of the form ByB,, where B;CE® (=0, 1; possibly
B,.B, #1, being in Am). Therefore E™ is a normal simplicial neigh-
bourhood both of E» and E,™.

Now let ¢ be an inner point of the segment pop, and apply the sub-
division s; Em™, where L= Em =E "+ E,", placing each new vertex on
the locus gA”. Since each simplex of E™ is contained in one of the closed
simplexes p,p, A™! (A»1 C A"), and since the locus g4~ is flat, it follows

that gA™ is covered by a sub-complex F* of s, E™. Let
Fm = N(E,", s; E™)

be the sub-complex of s; E™ covering the closure of the region between

t Alexander, loc. cit., Theorem 13.2, and Whitehead, loc. cit., Theorem 2.
{ Whitehead, loc. cit., Theorem 1.

8ER. 2. VoL. 46. No. 22456. S
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Ey and F*. Clearly F™ is the same as it would be were L= E",
instead of E "+ E,*, and, by Lemma 4 and Theorem 2, F™ contracts
into Liyv. It follows from an argument used by Newmant that
Ire (s), i)y is an element, where B is any internal simplex of E,». By
the hypothesis of the original induction, and our preliminary observation,
there is a stellar sub-division o, F such that each of the elements
o {F™. (s, E™)p}, with B inside E,", is collapsible. Therefore ¢ £™, with
0=20,8;, is a contractible neighbourhood of o, F™ and contracts into
o, F™, by Theorem 2. By what we have just proved and Theorem 4 it
then contracts into o, iy = o l/y* and the proof is complete.

5. Geometrical deformation.
If Ky Is any complex and
(5.1) K,=K,+E",

where A" is an n-element which meets K, in an (n—1)-element on E, we
shall describe the transformation K-> K, as a geometrical expansion and
K,— K, as a geomelrical contraction. We shall also say that a complex
expands and contracts geometrically into any general sub-division} of
itself. Finally, any sequence of geometrical expansions (contractions)
will also be called a geometrical expansion (contraction). When a contrast
is unnecessary, or when it is obvious from the context which kind is meant,
we shall refer to either a formal or a geometrical expansion (contraction)
simply as an expansion (contraction).

THEOREM 7. If K contracts geomelrically into L some stellar sub-division
o contracts formally into oL.

As explained in §14 below, a general sub-division of any sub-complex
of K may be extended to the whole of K. It follows from a straightforward
inductive argument that some general sub-division yK contracts
geometrically into yL without further sub-division. That is to say
yK —yL is the resultant of transformations of the form K, K,, where
K, and K, are related by (5.1). Clearly the same is true of y*yK and
y#y L, where y* is any general sub-division of yK, and there is a sub-

t Journal London Math. Soc., 2 (1826), 56~64, Lemma 2. The double sub-division
is not needed for Newman'’s argument provided that the (n—1)-element in question has a
normal neighbourhood initially (c¢f. Lemma 10 below).

1 See Newman, Journal London Math. Soc. (loc. cit.), also §14 below. We denote
a general sub-division by the symbol 7.
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division y* such that y*yK is a stellar sub-division{ ¢, K. It follows from
Theorem 6 that there is a further stellar sub-division ¢,, such that oK
contracts formally into o, where o = 0,0y, and the theorem is established.

CoroLLARrY. If K contracts geomelrically into L any sub-division
yK contracts geometrically into yL.

For some stellar sub-division oK contracts formally into L. Clearly
any sub-division y, oK contracts geometrically into y, oL, and the corollary
follows from the fact that v and o have a common sub-division y,y = y, 0.

A complex which contracts geometrically into a single vertex may be
described as geometrically collapsible and it follows from the corollary to
Theorem 7 that the property of being geometrically collapsible is a
combinatorial invariant. It also follows from Theorem 7 that geometrical
expansions and contractions are formal deformations.

6. Maps and homotopy.

Let f be a simplicial map of a complex K in a complex L, where K . L =1,
meaning a transformation of vertices such that, if 4 =¢, ... a, is any
simplex in K, then f(ay), ..., f(a,), which need not be distinct, are the
vertices of a simplex f(4)in L. Asusual, we shall refer to fas a map of K
on, as distinguished from in, L only if each simplex in L is the image of one
or more simplexes in K. We shall describe f as (1-1) if no two simplexes
in K have the same image, even if .f is not a map on L, and a (1-1)
simplicial map of K on L will be called an tsomorphism.

We now define what we call the mapping cylinder C';(K), of a map f.
For convenience we represent K and L as rectilinear, geometrical
complexes, and we take f to be the semi-linear map determined by the given
transformation of vertices. Let K, be the simplicial complex derived
from the topological product K x<0, 1>, by starring all the cells
Ax<0,1> (ACK), leaving K x0 and K X 1 untouched. Then we define
C/(K) as the simplicial complex obtained from K, by identifying
each simplex 4 X 0, of K X 0, with the corresponding simplex 4, in K, and
each simplex 4, = A x 1 in K x 1 with the simplex f(4)in L. Ifc is the
centre of the star in K, covering 4 x<0, 1> the simplex ¢4, is thus
transformed into ¢f(4), which may be of lower dimensionality than cA4,
and C;(K)is the image of K, in a simplicial map ¢, which is an isomorphism
if, and only if, K is (I-1). If K*is any sub-complex of K, and if K is the
- sub-complex of K, covering K#*x<0, 1>, then ¢(K{) is obviously the

t See the addendum to Lemma 16 in §14.
s2
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mapping cylinder C;(K*) of the map f(K*)C L. If Aisany closed simplex
in K and ¢ the centre of the star covering 4 X<0, 1, an easy inductive
argument shows thatf

C(4) = c[A+f(4)+C,(4)].
We now prove two theorems which are analogous to Lemmas 2 and 3.

THeorREM 8. If f(K)C Lisa simplicial map of K in L, and if K* s any
sub-complex of K (possibly K* = 1), then L+ C((K) contracts formally into
L’*‘ Cf(K'i)

1f K* = K there is nothing to prove. Otherwise let A be the closure
of any principal open simplex in K—K*. Assuming that C',(4) contracts
into f(4)+C ,(A ), we deduce the theorem from Lemma 1 and induction on
the number of simplexes in K—K*. If dim(A4)= 0 it is obvious that C/(4)
contracts into f(4)4C f(A) [=/f(4) with the convention C/(1)=1], and
if dim (4) > 0 we assume this to be true of any k-simplex for k£ < dim (4).
Then, taking K =A4, L=f(4), and K*=1, we deduce by our first
argument that f(4)4-C,(4 {) contracts into f(4), and is therefore collapsible,
f(4) being a single closed simplex. If ¢cis the centre of the star C,(4) we
first remove the open simplexes 4 and c4 from Cf(4), leaving

o[f(4)+Cy(4)],

which contracts into f(4)4Cx(4 1) by what we have already proved and
the corollary to Lemma 3. Therefore, the fact that C((4) contracts into
JA)+C I(A), and hence the theorem, follow from a second induction on
dim (4).

Let E* be an n-element which is completely inside an n-element E»,
meaning that Ey" C E"—E". As a corollary to Theorem 8 we have:

CoroLLARY. CU(E"—Ey") contracts geometrically both into E" and
wnto Byt

For some sub-division cE™ may be represented as a partition of a
geometrical simplex A” in such a way that cE," covers a ‘‘concentric”
simplex Ay, contained inj A*. The closure of the region between A™ and
A" is the geometrical mapping cylinder Cy(As"), where ¢ is the projection
of A" on A" from their common centre, and contracts geometrically into

t This property may be taken as the basis of an inductive definition of Cy(K). As a
matter of convention we take f(1) = C,(1) = 1.
1 Newman, Journal London Math. Soc., 2 (1927), 64, Theorem 3.
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A", by Theorem 8, and similarly into AO”. ‘Therefore, Cl(E"—E")
contracts geometrically both into E™ and into E,".

TrEoREM 9. If K contracts formally into K* and if f(K)CL is a
simplicial map of K in L, then L+ Cy(K) contracts formally into

K+L+C (K%).

If K* =K there is nothing to prove. Otherwise let K = K,+4aA
(ad cK,, A@ K,), where K — K is the first step in a contraction K — K*.
The theorem will follow from Lemma 1 and induction on the number of
simplexes in K— K* if we can show that C;(a4) contracts into

P =ad+f(ad)+C(ad).

By Lemma 2, Cy(ad) contracts into ¢P, where ¢ is the centre of C((ad).
Clearly P contracts into f(a4)-+C(ad), which contracts into f(ad), by
Theorem 8, and is therefore collapsible. Therefore P is collapsible, cP
contracts into P, by the corollary to Lemma 3, and the theorem is
established.

‘The purpose of our next theorem is to establish a certain relation
between homotopic maps f,(K,) C L and f,(K,) C L, the complexes K, and
K, being combinatorially equivalent. We shall say that two simplicial
maps fo(K,) € L and f, (K,) C L are equivalent if, and only if, K, is the image
of Ky in an isomorphism ¢, such that f,=f,t [i.e. fy(4y) = f1(4,), where
A, is any simplex in K, and 4, =t(4,)]. If we represent K, K, and L as
geometrical complexes, the maps f, and f, will be described as homotopict
in L if, and only if, first, supposing that K,.K, =1, there is an isomor-
phism ¢(my K,) = 7, K, where =; is a partition of K; ( =0, 1), and amap]
of Cy(my K,) in L which, regarded as a transformation of points, coincides
with f;in =, K;; secondly, if K, meets K, the maps f, and f, will be described
as homotopic if f,(K,) is homotopic to f,(K,), where the latter is equivalent
to fi(X,) and Ky. K, =1. This definition obviously includes the ordinary
definition of homotopy in case K,= K.

Let K, K, and K, be combinatorially equivalent complexes and let
K,.K,=1. By a simple cylinder joining K, to K, we shall mean a
(simplicial) complex containing the complexes K, and K, (z.e. K, and K,
themselves, not merely sub-divisions of K, and K,), some sub-division of
which is isomorphic to a simplicial sub-division of K x<0, 1> in a
transformation which maps a sub-division of K X¢ (=0, 1) on a sub-
division of K;.

t Cf. Hurewicz, loc. cit. (2nd paper), 524.
1 By amap of a geometrical complex we shall always mean a continuous transformation.
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THEOREM 10. If two simplicial maps fo(K,)C L and f,(K,)C L are
homotopic in L there is a simple cylinder P, joining K to K,, which contracts
Sformally both into K, and into K,, and a simplicial map f(P)C L which
coincides with fiin K; (i =0, 1), the map [ being simplicial with respect to the
complex P, not merely with respect to a sub-division of P.

Let Ky, K, and L be represented as geometrical complexes. Since
fo and f; are homotopic there is a map ¢(C)C L, which coincides, as a
transformation of points, with f;in 7, K, (s = 0, 1), where C' = C,(my K,) and
t is an isomorphism of a partition my K, on a partition =, K;. The map ¢
may be approximated, in the usual way, by a simplicial map ¢'(cC)C L,
where o is a stellar sub-division of C. Since ¢ = f;in m, K, and f;is simplicial
we may assume that ¢'(a) is a vertex of f;(4), where a is any vertex of
mA and ACK,; By Theorem 6 there is a further sub-division
0,00 =0’ C such that each of the elements = A is collapsible, where
ACK;and n{ = o om. By Theorem 8 the complex C contracts formally
into each of m, K, and =, K,, and by Theorem 4 the complex o’ C' contracts
formally into each of 7y’ K, and =" K;. The map ¢’ may be replaced by
a simplicial map ¢ (¢'C)C L, which transforms each vertex in
nfA (A CK,) into a vertex of f;(4).

We now form the topological product K, x<0, 1>, taking px0=yp,
where p is any point in K;. Let 7, be the polyhedral complex covering
K;x<0, 1>, which consists of the open simplexes 4 x 1 (4 € K,), the open
cells 4 x<0, 1, and the simplexes in 7/ K;. Let 7% be the simplicial
complex derived from 7'; by starring all the cells 4 x<0, 1>, leaving the
complexes K;x 1 and #;/ K; untouched, and let

P, = Tyt 4o’ C+ Ty

Then P, is obviously a simple cylinder joining Ko x 1 to K;x 1. It follows
from Theorem 8, with trivial modifications, that 7* contracts formally
into K, X 1, and also into =" K, since each of the elements =, 4 is collapsible
(4;c K). Therefore P, contracts, first into Ty*+4o¢' C, then into T'y¥,
since o’ C contracts formally into 7y’ K, and finally into Kyx 1. Similarly
it contracts formally into K, Xx1.

We now extend the map ¢'' (¢’ C) to a map ¢”(P;)C L by taking
$"(Ax1)=f,(4) and ¢" (c) to be any vertex of f;(4), where 4 C K;and ¢ is
the vertex of 7T,* which is inside 4 x<0, 1>. The map so defined is
simplicial since each vertex in m; 4 is transformed by ¢' into a vertex of
fi(4). Finally we replace P, by an isomorphic complex P = :(P;), where
Y(Ax1)=A(ACK,;). Then P is a simple cylinder joining K, to Ky, it



1938.] SIMPLICIAL SPACES, NUCLEI AND 7m-GROUPS. 263

contracts formally both into K and into K, and ¢’ ~1(P) C Lis asimplicial
map which coincides with f;in K;. Thus the theorem is established.

A map f(8") C L, where 8™ is an n-sphere, will be called an n-spherical
map in L, or simply a spherical map if the dimensionality is irrelevant or
obvious from the context. If f(E")is a simplicial, spherical map in L,
where £ (n > 0) is an n-element which does not meet L OI(E’") except in

7r, we shall describe
&n— B+ Cy(Em)

as a simple membranet bounded by the spherical map f(£»). Notice that
£n is an n-sphere if f(E) is a single point, and that any n-sphere which
meets L in a single point may be regarded as a simple membrane bounded
by such amap. In dealing simultaneously with a set of simple membranes,
of the same or different dimensionalities, and with any number of
complexes, it is always to be understood that none of the membranes has
an inner point in common with any of the others or with any of the
complexes.

If t is an isomorphic map of £ on an (n— 1)-sphere which does not meet
En, it can be proved without difficulty that E7-- Cl(E“) is an n-element.
From this and from the definition of a mapping cylinder it follows that
&n = gr4 C’f(E'”) is an n-cellf bounded by a map which is equivalent§
to f. For, if ¢ is an isomorphism of E™ on an (n—1)-sphere S*-1, we
have &»= ¢(E"), where E,» = E"+C,(E") and ¢(4)=A if AcE»,
$#(4,) =ft1(4,) and ¢(c,) = ¢, where 4, C 8"~ and ¢, and ¢ are the vertices
inside the cells C,(4) and C/(4) respectively. Since the vertices inside
different cells Cy(4) and C((B) are distinct the map ¢ has no folds, which
means that no two n-simplexes in K® have the same image in €", We
shall denote the boundary of a simple membrane, or of any cell I', by
F(T'), remembering that F(I') is a spherical map rather than a complex.

Let Tp=f(EMCL (t=1,2) be n-cells bounded by equivalent
spherical maps f{(E), and, replacing f,(E,") by an equivalent map if
necessary, let Ep=E™ and fy=f, in E;». Let ¢E,» be an internal
sub-division of E,* (i.e. o =1 in E,") which has no internal simplexes in

1 Cf. N. Aronszajn, Akad. Wet. Amsterdam, 40 (1937), 69-69.

1 By a cell we shall always mean a map of an element, which (i.e. the map) may be
singular or non-singular. It will be obvious from the context when a simple membrane
is to be regarded as no more than a complex (which will usually be the case) and when it is
to be regarded as a cell.

§ In speaking of the boundary of & cell we shall often refer to a map f when, strictly
speaking, we mean a map which is equivalent to f.
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common with E,». Then E,"+4 E," = ¢(8"), where 8" = E,"+oE," and
¢ is a simplicial map such that ¢(4) = A if A C E;». We shall write

p1n+P2n = (E1n+E2n) =f¢(Sn):

where f=f;in E*. Thus I',»+T'," is a spherical map which is determined
up to the choice of the sub-division o, and what we shall later call a homotopic
deformation rel. E,» (see §8).

THEOREM 11. If £ and £, are simple membranes bounded by homotopic
maps i a complex L, then

L+8, =D(L+8,) (rel. L).
Let &= E+C,(B) (=0,1),

where F(&,) = f,-(E',-), E,and E, being n-elements. We first dispose of two
trivial cases. If E,= K, and f,=f;, we may transform E, into E,, and
hence L+&; into L+£&,, by internal combinatorial transformations.
The result is a formal deformation of L+ &, by Theorem 1, and it is
obviously relative to L. Secondly, by elementary sub-divisions of order
zero applied to the internal vertices of &, which again are formal defor-
mations relative to L, we may replace &, by a simple membrane having no
internal simplex in common with &;. Thus we may suppose, first that
E;=a,B; (1=0, 1), and secondly that our universal condition relative to
&,. 8, is satisfied.

By Theorem 10 there is a complex P, which contracts formally both
into E'o and into E,, and a simplicial map f(P)C L, which coincides with
f:in B, We may take P.L=1and C f,-(Ei) =C f(E',.), and it follows from
Theorem 9 that L+ C/(P) contracts into L+ P+ C’,(E’,-), and hence into
L+Cy(E;). Let

K = L+C/(P)+b(Ey+ P+ Ey),

where b is a new vertex. By Lemma 2 the complex b(&,+ P4 E,)
contracts into b(E,+P). Since P contracts into E, and E = a, B, it
follows that Ey+ P is collapsible, and by the corollary to Lemma 3 that
b(E,+ P) contracts into E;+P. Therefore K contracts into

L+C,(P)+E,

and hence into L4-2,, since Cy(P) contracts into O,(E'o). Similarly K
contracts into L+#£,, and it follows that

L+8, = D(L+8,),
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where D is the resultant of the expansion L+~ K, followed by the
contraction K - L+ ¢,. Clearly D is relative to L, and the theorem is
established.

The cylinder P is n-dimensional, E* being (n—1)-dimensional.
Therefore K— L is (n-+1)-dimensional and we have the addendum :

AppENDUM. The order of the deformation D in Theorem 10 need not
exceed dim (&,)41.

Lemma 5. If €245 a simple memnbrane bounded by a spherical map in K.
the complexes K and K-+&" have the same (n—1)-group. If F(&") is
homotopic to a point in K they have the same n-group.

Let &%= Er+ O’,(E“), where F(&") =f(E"1)_, and let A" be an open
n-simplex in B’ none of whose vertices lie in E». Then K+ & has the
same (n—1)-group as K+2&»—A4™ By the corollary to Theorem 8,
K- &7— 4" contracts into X--C Jf(E”) and by Theorem 8 itself the latter
contracts into K. Therefore K+ £" and K have the same (n—1)-group.

If f(E™) is homotopic to a point in K it follows from Theorem 11 that

K460 =D(K+8m),

where S" is a simple membrane bounded by a single point. That is to say.
8™ is an n-sphere, which we may take to be An+1, where A"+! is a closed
(n+1)-simplex meeting K in a single vertex. Then K + A"+ and therefore
K+4-&*, has the same n-group as K+ A"+, which contracts into K.
Therefore K and K+&" have the same =m-group, and the lemma is
established.

Let &n= En4 C’I(E") be a simple membrane bounded by a spherical
map f(E") in a complex K, and let K contain a principal open (n—1)-
simplex B"-1, which is covered in the map f by one, and only one, open
simplex 4"1, in E».

LEmma 6. K-+£&7 contracts into K—B"-1,

We first take away from K+ &” the open simplex B*~1 and the interior
of the cell C¢(4"~!). The resulting complex, namely

K_Bn—l_l_ E’n+ Of(En_An—l)’
contracts into K—Br14.(C J.(E"n—Aﬂ'l),

since ™ meets the latter in the (n—1)-element E*—A"-1. The lemma
now follows from Theorem 8.
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7. m-Groups.

TaroREM 12. Two connected complexes have the same 2-group if, and
only if, they have the same fundamental group.

Two connected complexes with the same 2-group obviously have the
same fundamental group. For neither a formal deformation nor the
addition or removal of an open m-simplex (m > 2) alters the fundamental
group.

Conversely, let K and L be two connected complexes with the same
fundamental group G'. After removing the simplexes of higher dimen-
sionality, if any, we may assume that K and L are at most 2-dimensional.
After a familiar process of shrinking segments into a point we may further
assume that K consists of oriented circuits a,, ..., a,, with a common point
(no two meeting anywhere else), together with certain simple membranes
&2 ..., &2 bounded by circuits which are represented in the usual way
as products

(7.1) R=apm...am
Then K determines a system of generators and relations
(7.2) ooy @y Ry=1, ..., Ry=1,

for the group ¢, where R, is the product of the form (7. 1) corresponding to
F(€,?). The complex L may be treated similarly so as to determine a
system of generators and relations

(7.3) hiv s bys Sy=1,...,8=1L

If the two systems (7.2) and (7.3) are identical it is obvious from
Theorem 11 that L = D(K).

In general, the system (7.2) can be transformed into the system (7. 3)
by a finite sequence of transformations of the two following typest, and
their inverses:

(1) adding a new generator «,, together with a relation of the form
ag' W(a) =1,
where W is a product of the existing generators and their inverses ;

(2) adding a new relation By = 1, which is a consequence of the existing
relations.

t See K. Reidemeister, Einfiihrung in die kombinatorische Topologie (Brunswick, 1932),
46-48,
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Let €% be a simple membrane corresponding to the velation
ai*W(a)=1

(@ being a new circuit) in the first case, and to the relation B, —1 in the
second case. In either case

v [ )
K, = K62

is a complex which determines the new system of generators and relations.
In the first case £,2 may obviously be chosen so as to satisfy the conditions
of Lemma 6, with =2 and B! in the circuit ¢,. Clearly K expands
into K+4a,—B' and hence, by Lemma 6, into K,. 1In the second case
the boundary of €42 is homotopic to a point in K since the relation By=1
is redundant. Therefore K and K, have the same 2-group, by Lemma 5.
Equally, if a generator a, and a relation aj' W ==1, or a redundant
relation By = 1, are removed, K and K, have the same 2-group. where

K=K, +82

Therefore there is a sequence of complexes K,= K, K, ..., K,=1L, all
of which have the same 2-group, and the theorem is established.

We now introduce a new kind of elementary transformation which we
shall call a special filling of order m, and its inverse which we call a special
perforation of order m. A special filling is a transformation of the form

K—>K+Am,

where Am, but not 4™, belongs to K, and Amis homotopic to a point in KA.
If L is derived from K by a special filling or perforation of order 2 it follows
from Lemma 5 that K and L have the same m-group.

Let p™ be a perforation given by

K_>K1 — (K_A171)+A1ll,

where A™ is a principal closed simplex in K, and let o be a stellar sub-
division of K.

Lemma 7. The transformation oK — oK, is the resultant of a perforation
po™ followed by a formal contraction. If p™ is special so is py™.

As in Theorem 4 we may take o to be a single elementary sub-division
(4, @), where ACA™. Let A=0B, and A" =0bB, where B= B, B,.
Then

oA™=a(bB,+B,) B,

= abB, B,+aB,
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and we remove the interior of the simplex aB by a perforation p™. If
(bB)'is homotopic to a pointin K, so obviouslyis (#B) in (¢K—aB)+ (aB)".
Therefore p,™ is special if p™ is special. It follows from the second part of
the proof of Theorem 4 that (¢K—aB)+ (aB) contracts into ¢K,, and
the lemma is established.

Lemma 8. If K and L are two complexes with the same n-group, each of
which is al most n-dimensional, then K is transformable into L by special
fillings and perforations of order n and elementary deformations whose orders
do mnot exceed n.

We first replace any elementary expansion
K—>K+bB"1 (m>n, bB™1CK),
whose order exceeds =, by the filling
K—K+Bm1
followed by the filling
K+Bm™1—-K-4bB™1,

Since B™ = (bB™1)' it is homotopic to a point in K. Therefore the
first of these is a special filling and is permissible even if m =n-41.
Similarly we replace any elementary contraction of order m (m > n) by
a perforation of order m followed by a special perforation of order m—1.
Therefore we may suppose that K is transformed into L by elementary
deformations whose orders do not exceed n and fillings and perforations
whose orders exceed n—1, those of order =, if any, being special. Let k be
the maximum order of the fillings. If k= n there is nothing more to be
said. For K is at most n-dimensional and if no simplexes of higher
dimensionality are introduced none can be taken away. If k> =, let A% be
one of the open simplexes introduced by a filling f*, of order k. Since k> =,
A*is subsequently removed. Let p* be the firstt perforation after f* which
removes A*. Then p* commutes with each of the elementary transforma-
tions between f* and p¥. For none of the latter add or remove a simplex
belonging to the closure of 4%, since A* is present throughout, and, since
k is the maximum order, no simplex is introduced having A% on its
boundary. Therefore p*, which is the inverse of f¥, may be applied
immediately after f* and both may be omitted from the sequence. The
lemma now follows from induction on the number of elementary transfor-
mations in the passage from K to L.

t It may happen that A4* is inserted and removed more than once,
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By a cluster of simplexes (spheres) attached to a complex K will be
meant a set of simplexes (spheres) with a vertex of A in common, which
do not meet K or each other anywhere else.

TueorEM 13. If K and L are connected complexes of wt most n
dimensions with the same n-group, then
§ . T . \
L+ X B;:+1=D(K+ z Ar),
p=1 A=1
where A%, ..., AMY and By, ..., B"1 are clusters of (n-}-1)-stmplexes
attached to K and L respectivelyt.

We may suppose that K — L by a transformation of the kind described
in Lemma 8. Itfollows from Lemma 7 and an argument similar to the proof
of Theorem 5 that, after a suitable sub-division, the elementary transfor-
mations in K —L may be arranged so that every filling and expansion
precedes every perforation and contraction. Further, if ¥ is an elementary
expansion of order £ <{n which follows immediately after a filling f?, it is
obvious that

ek fn — fn ek,
Similarly Pk = ckp™,
where ¢* is an elementary contraction of order £ < n and p" is a perforation

of order n. Therefore we may exhibit the transformation K — L in the
form

L=Cp...pofo ... fyr B(K),
where E is an expansion, f," and p," are special fillings and perforations of
order n, and C is a contraction. That is to say
Ly=p...p"f;" ... [i" (Ky),

- where Ky= E(K), Ly= C(L).
Let A," be the open simplex added by f,", let B," be the open simplex
removed by p,* and let

K,=f" ... fi"(K,).
Since Ai&, 1 is homotopic to a point in K, it is obvious that any spherical
map in K, which is homotopic to a point in K+ A}, , is homotopic to a point
in K,. It follows from induction on A that any spherical map in K, which

t If R(P) stands for the n-th connectivity of P, it is obvious that
s§—r = Rn(L)—R"(K).
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is homotopic to a point in K, is homotopic to a point in K. Therefore each
of 4\, ..., 4," is homotopic to a point in K and it follows from Theorem
11, as in the proof of Lemma 5, that

(7.5) K,=Dy(Ky+ X Apn),

A=1
where A}1Y, ..., A% is a cluster of (n41)-simplexes attached to K.
Similarly
(7.6) K,.:])Z(Lo-l— B,

me=1
where Byl ... B¥l s a cluster of (n--1)-simplexes attached to L.
Since K, and L, contract into K and L respectively we may assume that
the vertices A+ K and B**1. L, belong to K and L. Then

r . 8 -
K+ % A% and L+ X Bett
A=1 w=1

contract into

T . s .
K4+ X A1 and L4 T B,

A=1 pn=1

and the theorem follows from (7.5) and (7.6).
From the addendum to Theorem 11 we have the addendum :

ADDENDUM. The order of the deformation D in Theorem 13 need not
exceed n—+1.

From the first addendum to Theorem 5 we have the corollary:

CororrArYy. If K and L are two complexes of at most n dimensions
with the same n-group there is a complex of at most n+1 dimensions which
contracts into

7 .
K+ % Aprt?
A=1
and also into some sub-dwnsion of

L+ 3 But,
p=1

8. Retracts by deformation.
Let fo(») (2 € P) be a map of a topological space P in a space @ and let
P* be any sub-space of P. We shall describe a deformation of f, into a

map f, given by f,(p) = f(p, t) (0 <t < 1), asrelative to P*if f,( p*) = fo( p*)
for every point p* in P%* and every ¢ in <0, 1).
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We recall that a sub-space of a topological space, and in particular a
sub-complex L of a geometrical complex K, is called a retract by defor-
mationt of K if there is a deformation

m=¢(p) (pek, VI,

such that py=p, p,eLl and p,=p, if pye L. If the deformation ¢, is
relative to L we shall describe L as a retract by deformation relative to
uself. If K contracts into L it is obvious that L is a retract by deformation
relative to itself. If

p=Jfq@) (qe@)

is a map of a topological space €, in K, the map

P1=¢.f(q)

is uniquely determined up to homotopy in L. For if

=y (p) O<ELL; po=yp)

is any deformation of K into L the map ¢, f is homotopic to f and hence to
¢,fin K. Therefore the two maps are homotopic in L since the latter is
a retract of K. If K, and K, are complexes such that K, = D(K,), there
is a complex K* which contracts into X, and into a stellar sub-division
oK,, and, except for the choice of the new vertices, K is uniquely deter-
mined by the deformation D. If f;(Q) is a map of ¢ in K it follows that
D determines a unique homotopy class of maps [f,] = D[f,] in K,,
given by

D[fil= [o7* ()],

where ¢ is the final result of a deformation of K* into oK,, and o=1(Jif,) is
a map obtained from Jif, by a canonical displacementi of the vertices of
oK, into the vertices of K,. Let ¢, ..., &, be simple membranes bounded
by (simplicial) spherical maps f;,(S,), ..., f;,(S,) in K; (¢=1, 2), where

faeD[ fu]. Further let D be relative to L, where LC K, . K,.

t Cf. K. Borsuk, Fundamenta Math., 21 (1933), 91-98.

+ The purpose of the sub-division ¢ in Theorem 5 is to eliminate unwanted intersections.
Therefore we cannot, in general, take K, and ¢K, to be complexes covering the same (poly-
hedral) point-set. However, each vertex of ¢K, is internal to just one element ¢4, where
Ac K,, and a canonical displacement is a simplicial map in which every vertex inside ¢4
corresponds to a vertex of 4, for each AC K,. If follows from a well-known argument that
any two such maps of 0K, on K, are homotopic in K,.
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TeEOREM 14. Under these conditions

First assume that D is the resultant of an expansion K, - K*#, followed
by a contraction K*-K,. Then F(&,,)is homotopicin K* to F(&,,) and
it follows from Theorem 11 that

» P
K#4 S a'zkn_-.z)1<_1;=%=-+- ) eu),
A=1 . A=1
where the deformation 1), is relative to K* and hence to L. Since

() C K, we have

P
Kot 3 8y B(Ket £ 6,) (=1, 2),
A=1 A=1

where £, is an expansion, and the special case of the theorem follows.

In general the complex K * contracts both into K; and into some stellar
‘sub-division K,* = ¢K,, where c =1 in L, by the second addendum to
Theorem 5. So, if we begin again with A, ¥, the proof will be complete if we
can prove the theorem in case D = ¢!, where 0 = 1in L. Using induction
on the number of elementary sub-divisions in o, we may take o to be a
single elementary sub-division K,=AP4@ +aAP+Q=K,*. There
is then a complex which contracts both into K;* and into K,, namely
aAP+@Q. Moreover, if a, is a vertex of 4, the canonical displacement
a—a, may be realized in a4 P+ @, by shrinking the edge aa, into the
vertex a, Therefore a homotopic deformation of a4dP+Q into K,
determines the given transformation of classes of maps in K;* into
classes of maps in K, Since =1 in L, it follows that 4 @ L, whence
L cCK;*. K, and the theorem follows from what we have already proved.

Under the conditions of Theorem 14 we shall write

£g,= D¥(8y,).

From the addendum to Theorem 11 we have the addendum to
Theorem 14 :

AppENDUM. If Dis of order m and if the membranes &,, are at most
n-dimensional, the order of D* need not exceed max (m, n+1).

We now quote for reference a lemma which is essentially a restatement
of a familiar result. Let p,=f(p) (0<t<1; p,=p) be a defor-
mation of a connected complex K into itself.
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LemMMa 9. If pyis any point in K the circuits f,(C) constitute a geometrical
basis for m (K, p,), the fundamental group of K with p, as a base point, where
{C} is the set of circuits beginning and ending at pg.

If s is the segment p = p, described by p, in the deformation, the
singular circuits of the form s+4C+s (orientations ignored) constitute
a geometrical basis for =, (K, p,). Such a circuit is homotopic, rel. p,, to
f(0).

Let L be a sub-complex of K. We specify four sets of conditions and
shall show that each of t}&em implies all the others. The first is

R. L vs a retract by )zleformation of K.
R;. Lis aretract by deformation of K relative to itself.

A, Any r-cell in K(r=0, 1, ...) with its boundary in L is homotopic,
relative to its boundary, to an r-cell in L.

Our final set, which we shall denote by B, contains three conditions
B,, B,, and B,, namely

B,. If pis any point in L the circuits in L beginning and ending at p
constitute a geometrical basis for m (K, p).

B,.  Any spherical map in K is homotopic to a spherical map in L.
B,.  Any spherical map in L which bounds a cell in K bounds a cell in L.

THEOREM 15. Each of the conditions R, Ry, A and B implies all the
others.

It is obvious that Rj implies each of the others. It follows from an
argument used by Hurewiczt, in establishing this result when L is a single
point, that A implies R;, and therefore R and B. In the presence of
Lemma 9 it is obvious that R implies B. Therefore the theorem will
follow if we can show that B implies 4.

Let pq be a segment in K whose end points, p and g, liein L. According
to B,, there is a segment s joining p to ¢in L. According to B, the circuit
pg-s is homotopic, rel. p, to a circuit C,in L. Then the singular segment
s+ C is homotopic to pg, rel. (p+¢), and the condition 4 is established in
case r=1.

Let 2y (n > 0) be any n-spherical map in K containing a point p,, in
L. According to B,, 2" is homotopic to a map X,*in L. Let p,p, be the

1 Hurewicz, Proc. dkad. Amsterdam (loc. cit.), 2nd paper, §6.
SER. 2. VOL. 45. No. 2246. T
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segment described by p, during a deformation of Z,* into £,» Then
2y is homotopic, rel. py, to a spherical map of the formt p,p,+Z,% By
what we have just proved, p,p, is homotopic, rel. (py+p,), to a segment
s in L. Therefore %y* is homotopic, rel. p,, to a spherical map in L,
namely s+,

Finally, let ", be any n-cell in K whose boundary liesin L. According
to By, F(I',") bounds a cell I',;* in L. By what we have just proved the
spherical map I'y"4T'," is homotopic, rel. py, to a spherical map X" in L,
where p, is any point in I';*. As in the case n =1 it follows that I';" is
homotopic, rel. F(I'\), to the cell I';*4 %", which lies in L, and the proof
1s complete.

THEOREM 16. If L is a retract by deformation of K, then K and L have
the same m-group for all values of m.

Let K7 (p > 0) be the complex consisting of L together with all the
simplexes in K—IL whose dimensionalities do not exceed p. Thus
K? =K if K is n-dimensional and p >n. For a given value of p let us
assume that

(8.1) L,=D,(K?) (rel. L),
where
T 8
(8.2) L,=L+ 3 8714 3 &,»,
i=1 A=1
ep=1..., {P-1 being simple membranes whose boundaries are in L, and
&0, .., €27 being simple membranes whose boundaries are in
(8.3) L+ S e,
i=1
By Theorem 14 there is a deformation of K?+1, which we also denote by
D,, such that
t
(8.4) D,(K»+) = L,+ = 82+ (rel. L)
p=1

= L,*,

wheref &2%1= D, (42*!) and F(€P*1)CL,, A%, ..., AP*' being the
(p+1)-simplexes in K.

1t Cf. §10 below.
t 1If p > n we have ¢ == 0, the curresponding sets of cells being empty, and L * == L,
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Since L is a retract by deformation of K, any simplicial (p—1)-cell in
KP+l say I‘~1’—1, whose boundary lies in L, is homotopic in K, rel. F (f‘P‘l),
to a (p—1)-cell I'’71,in L. The p-dimensional deformation cell may be
deformed into K?+1, holding I'>-1 and [r-1 fixed, and it follows that
Tr-1is homotopic to I'?—1, rel. F'( fp—l), in KP+1, This property is obviously
invariant under a formal deformation, rel. L, of K»+!. Therefore &7~ is
homotopic, rel. F(€2-1), in L,* to a (p—1)-cell ['?~!, in L. Let ;? be
a simple membrane bounded by the spherical map I'*~14&7-1 Then
F(;€?) is homotopic to a point in L,* and it follows from Theorem 11 that

L+ 3 @r=D*(L,%+ % Bpa) (el L)
i=1 i=1

where (B?*!, ..., BP*1) is a cluster of (p+1)-simplexes attached to L,*.
By Theorem 14 there is a deformation of

(8.5) L,*+E B+,

i=1

which we also denote by D#*, such that

(8.6) D# (Lp*+ ) Bg;+1) — L+ 3 (gmuﬁ.g,p) (rel. L,#),
i=1 i=1
where 87+l = D*(BP*1) and F(BPFY)CL, %4 ) 8r,
t=1
Let Lp*+i>;‘.l(&ml+iep)= L,

Clearly 22-1is a sub-complex of ;7. Therefore £2-14- £ = ;£» and

r 3 t+r
(8.7) Li*=L4 3 ;8v4+ 3 824 X 8271
=1 A=1 p=1
From (8.4), from the fact that L,* expands into (8.5) and from (8.6) we
have

L% = Dy¥(Kv+1) (rel. L).

We now show that Lj* is deformable, rel. L, into a complex L, ,,, given
by an equation of the form (8.2) with p replaced by p-+1. As explained
in §6, the cell £€P-1is defined by a map without folds. Therefore no two
(p—1)-simplexes in the original (p—1)-sphere of the map

e+l 29-1 = F(,27)
T2
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correspond to the same (p—1)-simplex in &7-1, and it follows from
Lemma 6 that

7
L+ X &v
i=1
r
contracts into L+ % (82-1—Br-1),
i=1

where B?~1is an open (p—1)-simplex in €?-1, and so contracts into L.
1t follows from Theorem 14 that there is a deformation of

L+ 3 804+ 5 82,
A=1

i=1
which we denote by D,*, such that
Dy (L+ 3 oot s &) = L+ S &p (rel. L),
i=1 A=1 A=1
where & =D,#(&») and FiE»cCL.

Therefore it follows from (8.7) and yet another appeal to Theorem 14
that there is a deformation of L, which we also denote by D, *, such that

Dy (L) = L+élég+:§ B+ (rel. L),
wherc (:lf,”“ = D, *(€2+1) and F(Eg’“) c L—}-éls&{’.
Therefore
(8.8) L,,=D,, (K1) (rel. L),

- where D,,, = D% Dy* and
§ 7 o
(8.9) L,,= L—I—)‘E.1 .&g}-{-pi}l £241,

'The equations (8.8) and (8.9) are similar to (8.1) and (8.2) with
p replaced by p+1. Equations of the form (8.1) and (8. 2) are obviously
satisfied when p = 1, taking the set &,°, ..., £,% to be empty, and it follows
by induction that they are satisfied for all values of p}. By Lemma 5,

1 Cf. the proof of Lemma 3.
} Notice that the step fromm p = 1 to p = 2 is achieved by (8. 4), since L* is of the
form L,.
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L., and (8.3), with p =m+-2, have the same (m--1)-group and (8.3)
and L have the same m-group. Therefore K"*2 and L have the same
m-group. But K and Km42 ohviously have the same m-group and the
theorem is established.

From the addendum to Theorem 14 and induction on p we have the
addendum to Theorem 16:

ADDENDUM. The order of the deformation D, in (8.1) need not exceed
p+1L

9. Homotopy types. Two topological spaces, P and @, are said to
belong to the same homotopy type if there is a map f(P) in @ and a map
g(Q) in P such that the maps gf and fg, of P and @ into themselves, are each
homotopic to the identity.

THEOREM 17. Two complexes are of the same homotopy type if,
and only if, they have the same m-group for each value of m.

We first show that two given complexes K, and K, of at most » dimen-
sions, belong to the same homotopy type if they have the same (n41)-
group. Let K, and K, have the same (n4-1)-group. By Theorem 13

Kz‘l‘zz = D(Kl‘{_zl);

where X, is a cluster of (n--1)-spheres attached to K;at a vertex a; (t =1, 2).
Two complexes with the same nucleus are obviously of the same homotopy
type, and it follows that there are maps f;(K;+%;) in K;,+2;(@=1, 2;
j =141 mod 2) such that each of f, f; and f; f, is homotopic to the identity.
We may take f; to be semi-linear, in which case, since K;is at most n-dimen-
sional, f; (K;) does not cover the whole of X,. If part of fi(K;) liesin T, it
may therefore be deformed into a;, holding the rest of the map fixed. There-
fore f; and f; may be deformed into maps f;* and f;* such that f*(K;) C K,
and f,* f#(K,) is homotopic to the identity in K;+ZXZ,. But K;is obviously
a retract (not by deformation) of K;+Z; and it follows that f;* f* (K,) is
homotopic to the identity in K; Therefore K, and K, are of the same
homotopy type.

Conversely, let K and L be two complexes of the same homotopy type,
which we may assume to be connected, and let f(K) and g(L) be maps of
the kind described above. We may suppose that KX .L =1 and, after a
suitable sub-division of K, that the map f is simplicial. By Theorem §
the mapping cylinder Cy(K) contracts into L. Therefore the theorem will
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follow from Theorem 16 if we can show that K is a retract by deformation
of C((K), and hence from Theorem 15 if we can show that K satisfies the
conditions B.

Let Pbe any complex and let ¢(P)C K be a map of Pin K. When we
compare Cy(K) with K x<0, 12, it follows from the definition of C;(K), in
§6, that ¢(P) is homotopic in C;(K) to the map f¢(P)C L. Conversely,
any map of the form f¢(P)C L, where ¢(P)C K, is homotopic in C((K)
to ¢(P). If Pis a circuit and p is any point in P, the singular circuit
§+f¢(P)-+s is obviously homotopic, rel. p, to ¢(P), where s is the seg-
ment Cy{¢(p)}.

Let g, be any point in L, let p, = g(g,) and let ¢, = f(p,) = fg(g,). By
Lemma 9 the set of circuits fy(X) constitutes a geometrical basis for
m (L, ¢,), where ¥ is any circuit in L beginning and ending at ¢,. Since
C(K) contractsinto L, the circuits fg(Z) also constitute a geometrical basis
for m {C;(K), ¢,}. Therefore the circuits of the form s-fg(Z)+s constitute
a geometrical basis for 7, {C/(K), po}, where s = C/(p,). But such a circuit
is homotopic, rel. p,, to the circuit g(X). Therefore the circuits in X which
contain p, constitute a geometrical basis for = {C/(K), po}, and B, is
satisfied.

Since L is a retract by deformation of C';(K), any spherical mapin C((K)
is homotopic to a spherical map %, in L, and hence to fg(X), since fg is
homotopic to the identity. But fg(X) is homotopic in C((K) to g(Z)C K
and it follows that B, is satisfied.

Finally, let X be any spherical map in K which bounds acell I, in C4(K).
Comparing C;(K) with K x<0, 1>, we see that L is a retract of C;(K) by
a deformation f, (0 <¢<1) such that fy=f in K. Therefore f(X)C L
bounds the cell f,(I') C L and gf(Z) bounds a cell in K, namely gf;(I'). But
gf is homotopic to the identity. Therefore £ bounds a cell in K and B, is
satisfied. Therefore K is a retract by deformation of C,(K) and the
theorem is established.

10. Certain questions: a ring. In this section we ask certain questions
and introduce a ring which is in many ways analogous to Reidemeister’s
homotopy ringt. The first question is:

Q. 1. If two complexes of at most n dimensions have the same n-group
and the same connectivities, have they the same nucleus?

1 K. Reidemeister, Abhand. Math. Sem. Hamburg, 10 (1934), 211-215; Journal fur
Math., 173 (1935), 164-173, and other papers,
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If K and L, being at most » dimensional, have the same n-group it
follows from Theorem 13 that

8 . T .
Lt 3 Bpa=D(K+ X dp),
p=1 A=1
where A3+l ..., A7+ and Bp+!, ..., B! are clusters of (n+-1)-simplexes

attached to K and L. Then r= g if R*(K)= R"(L), where R"(P) stands
for the n-th connectivity of P, and Q. 1 raises the question :

Q.2. If K,=D(K,), K,+L,=Dy(K,+L,) and if K;.L; is geo-
melrically collapsible (1 =1, 2), have L, and L, the same nucleus ?

An affirmative answer to Q. 2 carries with it an affirmative answer to
Q.1. We shall see, in §12, that Q.2 is equivalent to the apparently
narrower question:

Q. 3. If M™, M*, and M," are bounded n-dimensional manifoldst, with
connected boundaries, such that M™ meets M in an (n—1)-element on the
boundary of both (=1, 2), and if the manifolds M™+ M, and M"*+ M,"
are combinatorially equivalent, have M,™ and M, the same nucleus ?

We now leave these questions for the moment and turn to the ring.
Let an n-spherical mapin a connected} (geometrical) complex K be taken
as a map f(C,") of a hyper-cube C,?, such that f(('}'l") is a constant§ p;, and
let C,® be given by —t, <z;<t, (¢=1, ..., n) in Cartesian space. Let
Po be any point in K and let s be any oriented segment in K, beginning at
P and joining it to p;, which is given by||

Dy=¢() (0 SE<tos Py, = Pos Py = Pa)-
With the map f(C,") we associate the map ,f(Cy"), such that ,f=fin C\"
and ,f(C) = p, (t; <t <iy), where C is given by

—t<x, <t (Ch=0Cp", Ch=0C).
We shall denote the map ,f(Cy") by
sHf(C)—s

if =1, and by
s+f(C1™)

t Here, as in § 12, a manifold is a complex M= such that M, is an (n—1)-sphere or
(n—1) element according as a is inside or on the boundary of M».

1 In any discussion involving the homotopy groups of a complex it is always to be
understood that the latter is connected.

§ Cf. Hurewicz, 2nd paper (loc. cit.), §2.

|| Notice that the parameter ¢ decreases as p: describes ¢ in the positive direction,
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ifn>1. Itis easy to verify that the transformation f—f determines an
isomorphism of «,(K, p,) on =, (K, p,), where =, (P, p)(p e P) stands for
the geometrical representation of the n-th homotopy group of a space P
having 9 as its base point. If s; is a segment joining p, to p, which is
homo'topic,_ rel. (pg+p,), to s, it is obvious that , f(Cy") is homotopic,
rel. (Co"+Cy"), to f(Cy?). Therefore the transformations f— f and
J -, f determine the same isomorphism =,(K, p,)—>m,(K, py).

If py=p,, the isomorphisms just described are automorphisms of the
group =, (K, p;). To each element g of the fundamental group =, (X, p,)
corresponds an automorphism ¢, (g), given by

F(C") = e+f(C1")—c
if n=1, and by

(O™ >c+f(C")

if m > 1, where ¢ is an oriented circuit representing the element g. The
transformation g-4,(g) is obviously a homomorphism of =, (K, p,) in
the group of automorphisms of =,(K, p,), which, in case n=1, is the
familiar homomorphism of =, (K, p,) on its group of inner automorphisms.
This homomorphism is invariant, relative to a change of base point, in the
same sense that a tensor (not to be confused with its components in any
nne coordinate system) is invariant under a transformation of coordinates.
For if ¢’ ~y',,(¢') is the homomorphism defined as above with p, as a base
point, and if 7', is the isomorphism of 7, (K, p;) on m, (K, py) (k=1,2,...)
determined by a segment joining p, to p,, it may be verified either formally
or geometrically that the transformation law of i, (g) is

U ()= Toipn () T
wheve ¢’ = T',(g). In particular, if p, = p, and T} = Y (g,), we have
P (9") = a(90) ¥ (9) 1 (90)
= (90995 ")
= {u(g’):

With the group of automorphisms of the form ,(g) is associated a
ringt B, =8, (K, p), consisting of homomorphisms of =, = =, (K, p) into
itself (n>1). If we rewrite {,(9)a as ga, the elements of the ring are

t Cf. B. L. van der Waerden, Moderne Algebra, 1 (Berlin, 1930), 133.
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transformations of the form
a—>ra = X;4,9;a,

where a e 7, g; e 7, and &, @,, ... are rational integers, all but a finite number
of which are zero. The addition and multiplication (+-|-#')a and 7"« ave
defined in the usual way. If a,. .... «; arve fixed elements in =,. the set. of
all elements of the form

o0+, (e,

is a sub-group of =,, which we shall denote by »(a,, ..., a;).

Let K#*=K+£314 4£2+ (n>1), where £2¥1 is an oriented
simple membrane bounded by a (simplicial) map representing the element
a;in 7, and let 7, % =7, (K*, p). If « is any element in =, represented by
an oriented map f{( S") in K, and if a* is the element in #,* which is repre-
sented by the same map f(S7), the transformation «->a®=¢(a) is
obviously a homomorphism of =, in ##. It is also obvious that any map
f#(8") in K* is homotopic, rel. ¢, to a map in K, where ¢ ¢ S and f#(g) =
Therefore ¢ is a homomorphism of =, on =,*.

THEOREM 18. The kernel of the homomorphism ¢ s r(ay, ..., a;).

If aer(ay, ..., ay), it is obvious that ¢(a) = 0. Conversely, let ¢(a) =
where a is a given element in =,, let f(E"“) be an oriented map in K
representing a and ¢(a), and let f(E"*') be an oriented (n-}-1)-cell in K*
bounded by f(E™+1).

Let &7+l = Er+14(C, (E""‘l) and let 4% be any closed n-simplex in
Em+1 whose image f;(4;") contains p, which we take to be a vertex of K.
Let B?+1 be any prmmpal open simplex in ;= C,(4;") of which p is a
vertex. I say that C;— B?*! contracts into 0 A”—l—f, AM 40y ( ).
For, if f,(4;™) is n- -dimensional and Bril =g, fi(A"), where c;is the centle
of C;, this follows from an argument used in provmg Theo1em 8. Otherwise
B+l = ¢, B, where B/ is a principal open simplex of C (A1) (A71CA4/).
In this case the assertion follows from induction on », Lemma 3, and an
argument used in proving Theorem 9. Therefore C;— B?*! contracts into
C; and, by an argument used in proving Lemma 6, £2+1— B*1 contracts

t The (commutative) homotopy groups =, (n>1) will always be written additively
and the fundamental group with multiplication.
1 That is to say, ¢71(0) = r(a;, ..., az).
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into F(€m1). Let the map f(E™') be simplicial, f(E"+1) being the
spherical map defining a, and let A%, ..., A2+ be the open simplexes in
E"+Y which fall on B, Let B*+! be oriented so that B,’;“ is homotopic
in €241 B+l with regard to sense, to the oriented map F(&7+1), vepre-
senting «;, and let A%+! be oriented so as to cover B*+! positively.

If the set of simplexes A%¥! is empty, f(E"+") is deformable into a cell
in K bounded by f(E"+), and it follows that a = 0. We suppose, there-
fore, that the set of simplexes A%*! is not empty. After a suitable sub-
divisiont of £E™*1 we may suppose that no two of the simplexes A%*! meet
J+1 or have a vertex in common. This being so, let g and g; be points in
Ertland Aj.'j” such that f(g) = f(g,,) =p. Lett;, be an oriented segment
in E™1, beginning with ¢ and joining it to g;), such that ¢;, does not meet
Cl(Azr) except in g and does not meet t;, + CL(A7F) except in g (t;, #tp)-
Then

Erl— % (tat+endit) (en= 1)
i\
may be regarded as a singular cell bounded by the oriented singular
n-sphere _ )
E"“——iE)\(t,-,‘—i— ean A7),

Therefore f(E™+!) is homotopic, rel. ¢, in
k
Ky% = K#— % BMH1,
i=1

to E (Si,\—{" € B?+1),

%A

where s, = f(;), and hence to
)X {Sia‘{‘ € F(-&?H)}:
i\

since E€7+1— BI+1 contracts into F(&2+!). Since &r+l1— B+l contracts
into F(&m+1), the complex K,* contracts into K. Therefore each of the
circuits s;, is homotopic in K ¥, rel. g, to a circuit ¢, in K, and f(E™+1) is
homotopic in K, rel. g, to

.2,\{%4‘ en F (851}

t We can modify E*+! and the map f by applying a sub-division (4, a) to E*+!, making
the new vertex a correspond to f(b), where b is & vertex of A. Repeating this process we
can isolate the simplexes A%+ from Er+! and from each other,
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Therefore a= 2 e)0na;

i
where g, is the element in =, (K, p) corresponding to the circuit ¢;,, whence
aer(ay, ..., ¢;) and the theorem is established.

COROLLARY. m,* 48 isomorphic 1o the residue group =, —r(a;. ..., a,).

Let 22+1 ... €141 he simple membranes bounded by oriented spherical
maps in K, which do not necessarily contain p, and let

K*=K+ 3 g,
i=1
Let s; be an oriented segment beginning with p and joining it to some point
in F(€7+1), and let a; be the element in =, (K, p) corresponding to the map
8+ F(&r+1). Then the group 7(a,, ..., a;) is independent of the particular
segments s;. For, if s;is replaced by 5;, the map §;+ F (£7+1) is homotopic to

Si—8i+8;)+ F (&) = (8,—s)+ {si+ F (&)},

and the corresponding element a;is given by @; = ¢;a;, where g;is the element
in 7, (K, p) corresponding to the circuit §;—s;. It follows that

7(ay, «ovs ag) =7(ay, ..oy ap) = 7(f1, v i), say.

We can deform &7+1 into a simple membrane bounded by the map
8;+f;, without altering any of the groups concerned, and Theorem 18, with
its corollary, may be restated in terms of the group r(f;, ..., f3).

Now let f;=f,(8*) and f;=f/(8") 4 =1, ..., k) be oriented maps in K
and let a; and a; be the elements in 7, corresponding to the maps s;-+f; and
5,+f;, where s; and §; are segments joining p to points of f;and f;. Also let
&n+1 and 89+1 he simple membranes bounded by f; and f;, and let

k _ ko
(10.1) K¥=K+ X &1, K#%=K4 X 81,
i=1 i=1

t
Then it follows from Theorem 18 that each map f;is homotopic to a point in
K#,and f; is homotopic to a point in K#, if, and only if, g;e7(ay, ..., a;) and
a;er(ay, ..., az). That is to say, if, and only if, there are elements 7;; and
7;; in 8, such that

k

E" - Z 7'“ a,,
j=1

(10.2) ]

a; = Z ;[j E_,,.
j=1



284 J. H. ¢. WHITEHEAD [May 19,

If these conditions are satisfied, K* and K* have the same (n+1)-group.
For, by Lemma 5, they both have the same (n--1)-group as

— k —
RpRe= K4 3 (8241480,
i=1

On the other hand, if two complexes of at most (n+1)-dimensions have the
same (n-+1)-group and if their (n--1)-st connectivities are the same, it
follows from arguments used in proving Theorem 13 that one is trans-
formable into the other by formal deformations and a transformation of the
formt K#—K*, where K* and K* are given by (10.1), subject to the
conditions (10.2). Therefore, if # > 1, the question Q. 1 is equivalent
to the following:

Q. 4. Have K* and K¥* the sume nucleus if the conditions (10.2) are
satisfied. K being al most (n+1)-dimensional?

We conclude this section with an example of complexes K* and K*
satisfying the conditions (10.2), though there seems to be no easy method
for finding out whether or no they have the same nucleus. Let P be a
2-dimensional complex such that = ( P) is a cyclic group of order five. Let
A"+l (n > 1) be an oriented (n-1)-simplex meeting P in the single point
p,andlet K = P+ A"+, Let a be the element in 7, (K, p) which is repre-
sented by A7+ and let ¢ be a generator of 7, (K, p). Let &+l be a simple
membrane bounded by a representative of the element,

a=(1—g—g¢*a.

It may be verified that (1—g?—g®%) (1—g—g*)=1 as a consequence} of
g% =1, whence
a= (1—¢?—¢%a.

If RKi=K4+A4™ and K#*= K481
it follows that K# and K% satisfy the conditions of Q. 4. Since
K# (= K+Av = P4 Anh)

contracts into P, the questionis: “Have K* and P the same nucleus?”’

t Replace n by n+1 in Theorem 13, take the complex K,— s Bx+1 of Theorem 13
A=l

for K in (10.1), the simplexes By+! and A7+ for the membranes 82+ and Z»+! and the
complexes K, and L, of Theorem 13 for K* and K* in (10. 1).
{ I am indebted to Prof. L. J. Mordell for this example,
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11. A special class of groups. In this section we show that two
complexes have the same nucleus if they are of the same homotopy type.
provided that their fundamental groups satisfy a certain condition. This
condition will be stated in terms of the integral ring 8 () of a group ¢,
whose elements are linear forms

T = 2,

where ¢, ¢ G and ay, @,, ... are rational integers, almost all of which are
zero. If G ==, (K, p) and if ¢, (+) stands for the transformation a - ra
in R, (K, p) (n>1), the transformation r—¢,(») is obviously a homo-
morphism of #B(m) on R, =R, (K, p). If a;en, (&, p), an clement

7‘1 a1+...+7'/|: a;.
in the group r(ay, ..., a;) may be regarded as a linear form inf a,. ..., a;,

with coefficients in $3.(m,), and the elements a4, ..., a; will be described as
linearly independent if

Ty al"_s.-“*")',‘:ak =0

implies 7, = ... =1, =10. Notice that a,, ..., a; are linearly independent,
with coefficients in 1 () if, and only if, the elements ga, (¢ e m;) are linearly
independent with integral coefficients ; thatistosayifr(a,, ..., a;)isfreely
generated, with commutative addition, by the elements ga;. If there is a
linearly independent set of elements in =, the homomorphism »— i, (») is

an isomorphism. For, if a,, ..., a; is a linearly independent set, »ya; %0
unless 7, = 0.
3
Let K¥=K+4+ %X &r (n>1),
i=1

where &4, ..., & are simple membranes such that F(&;)= F(I'\"),
where I';* is an n-cell in K. Join I'y®, ..., ', to a base point p in K aud
let a; be the element in = ,* ==, (K*¥, p), corresponding to the spherical
map £/2+TI'", oriented either way. As a complement to Theorem 18 we
have

TuegoreM] 19. m,F=m,+r(ay, ..., az),

and the elements a,, ..., a; are hinearly independent.

t Cf. Reidemeister, Abhand. Math. Sem. Hamburg (loc. cit.).

1 If P is a retract of * (not nocessarily by deforination) v, = =, (£, p) is isomorphic
to a sub-group of =.* = =, (P*, p), corresponding elements being represented by thc same
map in P. For simplicity of statement we shall identify each element in =, with the
corresponding element in n»,*. Here K is a retract of K*. For, since F(&;*) = F(I'™),
the polyhedron @;* may be mapped on I';" so that each point in /(") corresponds to itself.
Actually, as will appear in the proof, no generality is lost in taking I'* to be a single point.
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We have to show, first that any element o* in 7, * can be expressed as
a sum of the form » a,+... 47, a;+a, where a e, secondly that

>

n
00+ Frpata=0

implies 7 a;4...+7.a,=0a=0, and thirdly that r,a,+...+7,0,=0
implies 7, = ...=71,=0.
A formal deformation of K*, rel. K, obviously does not alter

T m,F, r(ay, ..., o)

or the relations between them. Therefore we may suppose & to be an
n-sphere which meets K in the single vertex p. Then K is obviously a
retract of K*#, and the projection (K*)= K, such that y(p*)=p* if
p¥eK and P (p*) = p if p* e &7, determines a homomorphism ¢, of 7, on
m,, such that ¢(a¥)=a* if a¥em, and $(a*)=0 if a*er(ay, ..., az).
Therefore ¢(rya;+...+ryap+a)=a, and 7, a,4...+7r,a;+0 =0 implies
a =10, and hence 7, a;+...+7,a, = 0.
To prove that any element o* in =, * is a sum of the form

ro . Frata,

let £ = E}‘“, where E?*+1 does not meet K or E}+! except in p (j #1),
and let

K#% = K%+ ﬁ Er+,
i=1

Then the projection (K *) = K may be realized in K*¥ by shrinking each
of E1, ..., E®tl into the point p. It follows first that =* = #,, where
¥ =g (K*% p), and secondly that the homomorphism ¢ (7, *) = 7¥* of
Theorem 18, with the complexes K and K* of Theorem 18 replaced by K*
and K#% is the same as the homomorphism ¢(x,*) = m, of the last para-
graph. Since ¢?= ¢ we have

p{a*—¢(a*)} = p(a¥)—¢(a¥) =0,

whence a#—d¢(a®)er(ay, ..., a;), by Theorem 18. Since ¢(a*)em,, it
follows that a® =7, a;+...4+7,a;+a, where a* is any element in =, * and
aem,. Therefore m,* =mu, +7r(ay, ..., o).

If = (K)=1, the independence of a,, ..., a; follows from one of
Hurewicz’s theoremst, or directly from the corresponding theorem con-

1 Loc. cit. (3rd paper), p. 120, Theorem 1.



1938.] SIMPLICIAL SPACES, NUCLEI AND Mm-GROUPS. 287

cerning homology groups. For a spherical map representing the element

mya,+...4+mya;, where m,, ..., m, are integers, is homologous to
ml .&ln-{- ves -}—mk &kn )
and, if mya, +...4+mya; = 0, it follows that m; = ... =m, = 0. For this

argument it is unnecessary that K and k should be finite, or that &, £, ...,
should all meet K in the same point p. Therefore, when =, (K) is arbitrary,
the linear independence of aj, ..., a; with coefficients in R (m;) follows by
a standard type of argument from the isomorphism between =,* and
., (K*), where K+ is the general covering complex of K*#. Thus the proof
is complete.

We now state a certain condition on a group G. A square matrix
l7]] @, j=1, ..., k), whose elements belong to (), will be said to
have a left inverse, namely ||#%|l, if

Z rfir; =3
=1

Our condition on @ is that any square matrix with a left inverse can be
transformed into the empty matrix, having no rows and columns, by a
finite sequence of operations which consist either of:

(1) multiplying each element in a row or column by 4g¢, where ge G ;
(2) interchanging two rows or columns;

(3) adding a ‘“left multiple "’ of one row to another, the multiplier being
any element in 8 (G) (i.e. p;—>p;+Ap;, Where j#i, AeR(GF) and p
stands for the ¢-th row);

(4) adding a row (rgg, ..., 7o) and a column (ry, ..., 1) such that
Too= 1, 7y9= ... =T =0;

or of
(5) removing such a row and columnft.

The group consisting of the unit element alone satisfies this condition.
For then $(() is isomorphic to the ring of rational integers and a matrix

T Notice that these operations allow us to add a right multiple of one column to another.
For we can add an extra row and column such that
=1, rj=—1, ra=A and »ryu=0 [t#0,¢ orj; AeR(G)],

and then add 7,p, to p, for each s = 1, ..., k. We can then remove the row p, and the
column containing 7,; and move the column 7, = r,; back to the j-th place. The final
result is to replace 7,; by r,;+74A (s == 1, ..., k), leaving the other columns unaltered.
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with an inverse is unimodular. It is proved elsewheret that the condition
is satisfied by at least two other groups, namely the cyclic groups of order
two and three.

THEOREM 20. If m (K) satisfies the ubove condition and of L is a relract
by deformation of K, then

L=D(K) (rel. L).

Let K be n-cdimensional and, after an expansion if necessary, let n > 2.
With the notation used in proving Theorem 16,

L,= L+.§1@.§°—1—]~ Aélw —~D,(K) (rel. L),
and L is a retract by deformation of L,. Since L is a retract by defor-
mation of L,, the connectivities of L,, calculated mod L in the sense of
Lefschetz ], are all zero. Ifl #£k, some cycle (mod L), composed either of
the cycles (mod L) £2-1 or of the chains &,”, would fail to bound mod L.
Therefore I = k. Since L is a retract of L,, the map F(€%-1) bounds a cell
I'Yin L. Let f,(S"!) be the spherical map €7-14I""1, and let s; be a
segment in L joining some point p to a point f;(¢) in f;(8"~1), where g e S*-1.
Let

k
L% = L+ > _8?—1’
i=1

and let a; be the element in 7 ; = =,_, (L%, p) corresponding to the map
8;-+f;(S"1), oriented either way. Join p to a point in F(€") by a
segment {;in L and let «;* be the element in 7% ; corresponding to the map
ti+F(¢"). By Theorem 19, ¥ =m,_;+7(ay, ..., a;), Whence

I ..
@ = .2‘17‘5‘5 a‘j+Bi'L [Bi# e -1 = 7,1(L, P)],
j=
which we write as

k
(11.1) o= 2 r5a
~1

Z 1 (mod m,_,).
J

T See a forthcoming paper by G. Higman.

If @ is Abelian, the determinant |r;| can be calculated in the ordinary way, and the
elementary transformations can only alter |r;| by a factor 4y (9e@). Therefore the
above condition is not satisfied if R (@) has a unit ¢, other than 4-g¢, as one sees by taking
k=1 and r; = € (e.g. r;; = 1—g—y*, where g5 = 1).

1 Topology (New York, 1930), p. 17.
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Since L is a retract by deformation of L, each map f; (5"-1) is homotopic in

L, rel. ¢, to a map f,(8™ ) in L. IfB;is the element in w,_, corresponding
to the map s;4-f;(S»-1), it follows from Theorem 18 that

k
ai—-ﬁi = Zl7ij a; *‘,

t.e. that
(11.2) a;= § r¥a* (mod m,_ ;).
=
From (11.1) and (11.2) we have
(11.3) 2 (ZrEr;~8;)a;=0 (mod =,_,).
Since #¥ ,=m,_1+7(ay, ..., @), the left-hand side of (11.3) is zero
absolutely, and since a,, ..., a; are linearly independent, we have

k
ES o
2 rir,; =0
=1

Therefore the matrix ||7;|| has a left inverse and by our condition on =, it
can be reduced to nothing by the operations described above.

If the matrix ||r;;|| has no rows or columns, the sets of membranes
&r-1 ..., 871land &, ..., & being empty, we have L, = L. Therefore
it is enough to show that each of the five kinds of elementary transformation
l7i;]|=]l75|| can be copied by a formal deformation of L,, rel. L, which
transforms it into a complex L, with the matrix ||75;||. We take them in

order.

(1) The i-th row (column) is multiplied by —1 if we change the
orientation of 2* (2-1) and by ¢ if we replace ¢, (s;) by ¢4¢; (c+s;), where
¢ is a circuit corresponding to g.

(2) To interchange two rows (columns) we merely re-order & (£1-1).

(3) For the transformation p;—>p;4Ap;(j 5#%¢), let K;= L,—I(&),
where I(£,*) is the interior of &;%, and let £,* be a simple membrane whose
boundary is a map representing the element a;*+Aa;*. Then F(€) is
homotopic to F(£;*) in K;, since &;*C K,, and it follows from Theorem 11
that

K+4-8»=D(L,) (rel. L).

Then L, = K;+2;* is a complex with the required matrix ||7}|-

SER. 2. VOL. 45. NO. 2247, 19)
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(4, 5) Since (4) is the inverse of (5), it is sufficient to consider a transfor-
mation of type 5. If r,=38; (¢=1, ..., k), it follows from Theorem 19
that the map F (&) is homotopic to one which covers an open simplex
B"-1, in €31, just once if : =1 and not at all if ¢=2, ..., k. Therefore
we may assume that the maps F(&,) have this property, in which case L,
contracts into L,—I(€,*)— B"-1, by Lemma 6, and then into

Ln’ = LIL_I('%I’L)_I('&%_I)’
as in the proof of Lemma 5. Then L, has the required matrix
””‘Au” (’\’:""=2: :]")

Thus each type of algebraic transformation can be copied geometric-
ally and the theorem is established.
From the addenda to Theorems 16 and 11 we have the addendum:

ApDENDUM. The order of the deformation D in Theorem 20 need not
exceed n+1 (n>2).

From Theorem 20, with its addendum, and the proof of Theorem 17,
we have

THEOREM 21. If two complexes K and K* are of the same homotopy
type and if m (K) salisfies the above condition, then

K# = D(K).

If K and K* ure al most n-dimensionalt, the order of the deformation D need
not exceed n-+2.

12. BRegular nesghbourhoods tn manifolds. Let M be an n-dimensional
manifold in the sense of Alexander and Newman. That is to say, the
complement of any vertex in M is an (n—1)-sphere or an (n—1)-element
according as the vertex in question isinside M or in M. We recall
that this implies the more general condition: the complement of any
k-simplex in M is an (n—k—1)-sphere or an (n—k—1)-element according
as the simplex in question is inside M or in M. We also recall
the relation (M 4) = M, both sides being zero unless 4 e M.

T Here we need not require n > 2. For the relevant dimensionality in Theorem 17
is dim {Cy(K)} = dim(K)+1, and, if n = 0 or 1, Theorem 21 may be verified directly.

{ Yorlet BeM . ‘Then (M, )y =M, pand Be(M,) if, and only if, (M ) is an element,
and BeM  if, and only if, ABeM, i.e. if M.,y is an element.
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If M is bounded, a transformation of the form
M-—->MI+En,

where E™ is an n-element which meets M in an (n—1)-element on the
boundary of both, or the resultant of a finite sequence of such transfor-
mations, will be called a regular expansion of M. The inverse of a regular
expansion will be called a regular contraction. As a matter of convention
it is to be understood that M expands and contracts regularly into itself.
If M -~ M# is a regular expansion or contraction, M* is combinatorially
equivalent} to M.

Let T be any set of simplexes, not necessarily closed, in a complex K.
By O(Z, K) and N(Z, K) [= ClO(Z, K)] we shall mean respectively the
set of all open simplexes in K whose closures contain one or more simplexes
in Z, other than 1 in case 1¢Z, and the set of all closed simplexes which
contain one or more simplexes in £, other than 1. Clearly O(Z, K) is open
in the sense that K—O(Z, K) is a complex. Notice also that 4 ¢ Ky if
O(4,K).Kg #0, 4 being any open simplex in K. For Ky is a complex,
and, if 4 is not in K, it is not on the boundary of any simplex in K .
The distinction between closed and open simplexes is important when the
symbols O(4, K) and N(4, K) are used. For, if 4 is an open simplex,
O(4, K) is its open star, while, if 4 is closed, O(4, K) is the sum of the
open stars of all the vertices of A4.

Let M be a bounded n-dimensional manifold and let £ be a set of open
simplexes in M such that:

(1) if A €Z, all the internal simplexes of M 4 are inside M (expressed
formally: if 4¢X and BeM .M,, then ABe M),

(2) if B is‘inside M and 4,+A4,C%. Mp, then 4,4, Mp.
LemMMA 10. Under these conditions, the transformation
M->M—0Z, M)
18 a regular contraction.

If X =0 or 1, there is nothing to prove. Otherwise let 4 # 1 be any
open simplex in . Then it follows easily enough from the first condition
that the boundary of N(4, M) does not meet M except in the (n—1)-
element N (4, M ), and hence that the transformation

M->M*=M—0(4, M)

t Newman, Proc. Akad. Amsterdam, 29 (1926), 635, Theorem 8a, or Alexander (loc.
cit.), 317, Theorem 14.3.
U2
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is a regular contraction. Clearly M—O(Z, M)= M*—O0(Z#, M*), where
Y#=3%—A,and,if we can show that the above conditions are also satisfied
by M# and Z%, the lemma will follow by induction on the number of
simplexes in Z.

Consider the second condition first. If B isinside M *, the complement
M i is a sphere and so cannot be a proper sub-set of M. Therefore

MB=MB$,

and,if A,+4,CE# Mp*CE.Mp, it follows from the second condition on
M and ¥ that 4, 4,e Mg Since My= My*, the second condition is
satisfied by M* and T*. To verify the first condition let B e M*. M5,
where A% ¢ £*, and first let Be M. Then BeM .M 4., since M*C M, and
it follows from the first condition on M and X that A% BeM , whence
A% BeM#. If BeM#*—M, then Myis a sphere and My* is an element.
Therefore M ,* is a proper sub-set of My, and it follows that

O(4, M). M, #0,

t.e. that A e My But 4% e My, since BeM% C M 4., and it follows that
Ad4+A*¥CE. My, Since BeM — M, it follows from the second condition
on M and X that AA* e My, or that AA* Be M. Therefore A e M 4. and
M. is a proper sub-set of M 4.5. It is therefore an element, rather than
a sphere, and A% Be M*. Therefore both conditions are invariant under
the transformation M — M * and the lemma is established.

Let M, be an n-dimensional manifold such that M .M, consists of
one or more unbounded (n—1)-dimensional manifolds in M-+M, (in
particular M .M, = M = M, if M and M, are connected). Then the
following corollary follows immediately from the proof of the lemma:

COROLLARY 1. If e M .M, and M and T satisfy the above conditions,
the transformation M, —M,+N(E, M) is a regular expansion.

1t follows from Lemma 4 that s;; M and M satisfy the conditions of
Lemma 10 provided that no simplex inside M has all its vertices in M.
Thereforet sj. M’ and M’ satisfy them. If K is any complex and LC K,
the sub-division K — K’ is the resultant of s; K followed by a regular sub-
division of L. Also it is obvious that if M, — M, is a regular contraction
(expansion), so is oM, —oM,, where ¢ is any sub-division of M, (of M,).

t Throughout this section K’ and K" will stand for the first and second derived complexes
of a given complex K. In this section it is to be understood that the vertices of K are
unaltered by a sub-division of the form sz K.
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Finally, if M and X satisfy the conditions of Lemma 10, so do M and any
sub-set of . Therefore we have a second corollary to Lemma 10:

CorOLLARY 2. The transformation M —M"—O(Z", M"')is a regular
contraction, where = is any set of simplexes in M. If M and M, satisfy the
conditions of Corollary 1 and ZeM . M,, the transformation

Ml',éMl”“l—N(Z”, Mll)
18 a regular expansioﬁ.

We now come to the main purpose of this section. Let K be a sub-
complex of an n-dimensional manifold M. By a regular neighbourhood
of K in M we shall mean a sub-complex U (K, M), of M, such that:

(1) U(K, M) is an n-dimensional manifold,
(2) UK, M) contracts geometrically into K.

It follows from a well-known theorem on sub-division that the first of these
conditions, and from the corollary to Theorem 7 that the second, are
invariant under a general sub-division of ¥. The two main theorems are :

THEOREM 22,. If KCM, where M is an n-dimensional manifold,
N(K, sg* M) is a reqular neighbourhood of K (K #1).

THEOREM 23,. Any two regular neighbourhoods of K in M are
combinatorially equivalent, M being any n-dimensional manifold.

These theorems are trivial if » =0 and we prove them together by
induction on n, assuming Theorems 22, , and 23, ;. First notice the
corollary to Theorem 23,.

CorOLLARY 1,. If K 1is geometrically collapsible U(K, M) is an
n-element.

For if K contracts geometrically into L then U (K, M) is also a regular
neighbourhood of L. Taking L to be a single vertex, N(L, M) is an
n-element and, heing a star, contracts into L. It is, therefore, a regular
neighbourhood of L. By Theorem 23,, U(K, M) is combinatorially
equivalent to N(L, M) and is therefore an n-element.

Let K € M be any complex other than 1 such that:

(12.1) (a) no simplexin M — K has all its verticesin K,
(b) if Ae M—K, then K . M , is a single closed simplex (possibly 1).

If Bis any open simplex in M, the complexes K . M z and M 5 also satisfy
these conditions. For (12.1a) is obviously satisfied, and if 4 e Mp—K,
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then ABe M—K and K.M,p is a single closed simplex. Therefore
(12.10) is satisfied, since M 4p= (Mp), and (K .Mp).(Mp), =K .(Mp),.
I say that, under the conditions (12.1), N=N(K, M) is a regular
neighbourhood of K. This will be proved by induction on =, being
trivial if » =0. By Theorem 2, N contracts into K, and it remains
to prove that N, is an (n—1)-sphere or an (n— 1)-element, where b is any
vertex in N. This is certainly the case if bC K. For then N,= M,.
IfbZ K a closed simplex 4b meets K if, and only if, A meets K. There-
fore N,=N(B, M,), where B is the closed simplex K.M,. By the
hypothesis of the induction, N(B, M,) is a regular neighbourhood of B,
and is therefore an (n—1)-element by Theorem 23, ,, Corollary 1,_;.
Therefore N is a manifold, and hence a regular neighbourhood of K.

By the corollary to Lemma 4 the conditions (12.1) are satisfied by K
and sg® M, where K is any sub-complex of M, and Theorem 22, follows
from Theorem 23, _;.

We shall need two observations for the proof of Theorem 23,. First,
if M is an unbounded z-dimensional manifold and K is any sub-complex of
M, then N(K’, M')is the aggregate of closed cells in the dual cell-structure
(Zellteilung) which are dual to the simplexes in K. Therefore N(K', M')
consists of the closed n-cells which are dual to the vertices a,, ..., a,, of K.
Therefore N(K', M')= N(a,+...+a,, M'). If we regard N(K', M') as
the cell-complex consisting of these dual cells, its (n—1)-cells are the duals
of the edges in M which have an extremity in K. Such an (n—1)-cell is
inside N(K’, M') if both extremities of the dual edge are in K and on the
houndary (mod 2) if only one extremity is in K. If L is any sub-complex
of M which does not meet K, it follows that N(K', M') meets N(L', M'), if
at all, in the aggregate of closed (n— 1)-cells which are dual to the edges of
M with one end in K and the other in L.

Secondly, no simplex in M'— K’ has all its vertices in K’. Therefore
K’ and sg. M’ satisfy the conditions (12.1), by Lemma 4, and N (KXK', sg- M’)
is a regular neighbourhood of K’. As we have already remarked, the
sub-division M/ —M" is the resultant of sg- M’, followed by a regular sub-
division of K'. Therefore N(K'', M") is a regular neighbourhood of K’
in M".

Theorem 23, will now follow without difficulty from the following
lemma. Let M be an n-dimensional, unbounded manifold and K, a sub-
complex of M which contracts formally into K,.

LemMa 11, The manifold N(K,", M'') expands regularly into
AT(Kpn‘ M”).
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Let K,, ..., K, be a sequence of complexes such that the transformation
K;—K,,, is an elementary expansion (¢ =0, ..., p—1). Let

](1 = KO—I_A)

where A —aB,aBC K, B¢ K, and let z and y be the vertices of M’ which
are internal to 4’ and B’ respectively. Then the vertices of K,’ are the
vertices of K’ together with & and y. Therefore, according to the first

observation,
N(K,", M) = N(K,"+a+y, M)
=N(K,', M")+N(z, M")+N(y, M").
We shall prove that N(K,’, M") expands regularly into
N(K,’, M'")+N(xz, M")

and that the latter expands regularly into N(X,"”’, M"'). The lemma will
then follow by induction on p.

Since M’ and K, satisfy (12.1a), any edge b, in M’, lies in K,', if
beK,. Since A4 is a principal simplex of K, it follows, if be K,’, that
beA’ and zb ed’. If beK,, it also follows that be(aB). Therefore
N(K,",M").N(x, M"") = E"1, say, is the aggregate of closed cells in the

dual of M’ which are dual to xb,, ..., b, where b, ..., b, are the vertices in
(@B)’. By afamiliar property of regular sub-division, E"-1is isomorphic to
(12.2) N[{(@ByY, (M,')].

The complexes M’ and (B, and a fortiori M, and (aB)', satisfy (12. 1a).
It follows from Lemma 4 and the proof of Theorem 22,_; that
N{(aBY, s@sy M,"}

is a regular neighbourhood of (aB)'. Therefore (12.2) is a regular neigh-
bourhood of (aB)”’ and, by the corollary to Theorem 23,_;, (12.2) and
Er-1are (n—1)-elements. By our first observation E"~1is in the boundary
of N(K,”, M") and of N(x, M"), and, since the latter is an n-element,
N(K,', M'") expands regularly into

N(K,', M'")+N(x, M"")= N(Ky'+=, M").
By our first observation

N(Ey'+u, M")= N[{K, +a(@B)}, M"),
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and it follows from the same argument as before, with a replaced by z and
z by y, that N(K,"’+=x, M"’') expands regularly into

N(Koll+x’ MII)+N(y, MII) =N(I(1ll, MI/),

and the lemma is established.

Now let U, = U,(K, M) and U,=U,(K, M) be two regular neigh-
bourhoods of K in M. Since the conditions for a regular neighbourhood
are intrinsic to U(X, M) we may replace J, in case it is bounded, by an
unbounded manifold M+ M*, where M*. M =M= M*. So, without loss
of generality, we assume that M = 0. Since U, contracts geometrically
into K there is, by Theorem 7, a stellar sub-division ¢, M such that ¢, U,
contracts formally into o, K. By the corollary to Theorem 7, o, U,
contracts geometrically into o, K, and by Theorem 7 itself there is a further
stellar sub-division o,0, M such that o,0, U, contracts formally into
o,0,K. By Theorem 4, o,0, U, contracts formally into ¢,0, K and it
follows that oU; (¢ =1, 2) contracts formally into ¢K, where o= 0,0,.
So we may assume, after an initial sub-division, that each of the
neighbourhoods U, and U, contracts formally into K, the manifold
M being unbounded.

By the second corollary to Lemma 10, U;’ expands regularly into
N(U{", M'"). Since K expands formally into U;, it follows from Lemma 11
that N(K", M") expands regularly into N(U;’, M""). Therefore, with
the sign of congruence denoting combinatorial equivalence,

Uf: U]-I’ _:_'_N(Uill, ﬂlll) EN(K’I’ Mll).

Therefore U, =U, and the theorem is established.
Let K be a given sub-complex of a manifold M, let

Ui=UyK, M) (=1,2)

be a regular neighbourhood of y; K in a general sub-division y; M, and let
1591 =7,Fy, =1y be a common sub-division of y; and y,. Since the
property of being a regular neighbourhood is invariant under sub-division,
y#U; (¢=1, 2) is a regular neighbourhood of yK in yM. Therefore,
y,#U,=v,%U, and hence U,=U, Therefore the simplicial space
associated with a regular neighbourhood of y, K .in y, M, where v, is a suit-
able sub-division of M (e.g. yo M = M"'), is uniquely determined by the
given complexes M and K. We shall denote it by X(K, M).

Let P be a (finite) polyhedron imbedded in an n-dimensional, poly-
hedral manifoldt M. A regular neighbourhood of P in M may be defined

t I.e. any rectilinear triangulation of }M satisfies the combinatorial condition for &
manifold.
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geometrically as an m-dimensional, polyhedral manifold U(P, M), con-
tained in M and containing P, which contracts geometrically into the latter.
This is obviously equivalent to the combinatorial definition stated in terms
of a rectilinear triangulation of M with sub-complexes covering P and
U(P, M). Therefore Theorems 22 and 23 may he restated geometrically
in the form of the corollary:

CorOLLARY 3. Any polyhedron P, in « polyhedral marnifold M, has a
regqular polyhedral neighbourhood in M, and any two such neighhourhoods are
semi-linearly homeomorphic.

Let K be a symbolic complex, let X be the simplicial space determinecd
by K and let P be a polyhedron covered by a rectilinear, simplicial complex
which is isomorphic to A. In addition to the symbolic complexes which
are combinatorially equivalent to A, we shall admit as a vepresentative of
% any polyhedron which is semi-linearly homeomorphic to P. If P is
imbedded in a polyhedral manifold M we shall use (P, M) to stand for the
simplicial space determined by a regular neighbourhood of P in M. So
long as P and the regular neighbourhoods are finite, M/ may obviously be
infinite. In particular M may be Euclidean space.

THEOREM 24. If P" and Q" are semi-linearly homeomorphic, n-dimen-
stonal polyhedra tn Fuclidean p-space R?P, then (P", RP)=X(Q", R»)
provided p = 2n-3.

Let f(P") = @ be a semi-linear, topological map of P" on Q" and let
741 be the locus swept out by the linear segment pf(p) as p describes P*.
Then I'*+1 is an image, which may be singular, of the mapping cylinder
C';(P"), where we first assume that " does not meet Q™. Then, since
p = 2n-+3, the singularities in I'"*! may be removed by simplicial sub-
division and slight displacement of the vertices which do not lie on P?
or @". The resulting complex C"+!is a semi-linear topological image of
C;(P") and, since f is (1-1), C"+! contracts both into P" and into @".
Therefore a regular neighbourhood of C7+! in R? is a regular neighbour-
hood both of P and of Q. Therefore £(P*, R?) = Z(Q", RP) in case P"
and @" donot meet each other. If they do meet, we have

Z(P", R?)=X(P,", R?)=X(Q", E?),

where P," is any semi-linear topological image of P* in R? which does not
meet P* or @", and the theorem is established.

Any n-dimensional (simplicial) complex K* may be imbedded in R? if
p=2n+1, and if p > 2n+ 3 it follows from Theorem 24 that Z(K”, RP) is
independent of the way in which K™ is imbedded inR?. It is also the same
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for combinatorially equivalent complexes. Therefore we have the
corollary :

CoroLLarY. If p>2n+3, the simplicial space Z(K™, E?) is a
combinatorial invariant of K™.

Notice that Z(S8”, RP) is the topological product S™ x EP~", where
S7is an n-sphere, EP~" a (p—n)-element and p >2n+3. TForit is obvious
that (8", R?)=Z(8”, S?), where SP is a p-sphere, and we can take

Sp — (E?H—l X E'p—n)-
— fntl X Ep-n4 Bl y E’p-’n,

where Ent1— 8n and Entlx Ep-7 is clearly a regular neighbourhood of
En+1,

THEOREM 25. If L™= D(K"), where K* and L™ are complexes of n and
m dimensions and D is a formal deformation of order k, then
(K™, RP)=ZXZ(L™, RP)
provided that p = 21+1, where | = max (m-+1, n41, k).

By Theorem 5, Addendum 1, there is an I-dimensional complex K#*,
which contracts formally into both K» and a sub-division of Lm,
Imbedding K*in R?, where p = 21+ 1, it follows, as in Theorem 24, that

S(K”, Rv)=%(K*, R?)=S(L", R?),

and the theorem is established.
From Theorem 21 we have the corollary to Theorem 25:

CorOLLARY 1. JIf = (K™) satisfies the condition imposed in §11 and if
K" and L™ are of the same homotopy type, then (K™, RP)= Z (L™, RP)
provided that p =2 max (m, n)-+5.

As a special case of Corollary 1 we have:

CoroOLLARY 2. If m (K™) satisfies the condition imposed in §11, the
simplicial space Z(K", R?) is a topological invariant of K™ provided that

p = 2n45.
Combining Corollary 1 with Hurewicz’s results we have:
CoroLLARY 3. If m(K")=1 and all the homology groups B;(K™)
vanish (i =2, ..., n), then U (K™, R?)1is a p-element (p = 2n+5).
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From a previous remark we have also:

CoroLLARY 4. If 7 (K®) =1, B(K")=B(8") (=2, ..., n), 8" being
an n-sphere, then U (K™, RP)= 8"x EP~"* (p = 2n+5).

We now return to the questions in §10. If K and L are sub-complexes
of a manifold H”, which is either an n-sphere or an n-element, we shall say
that K can be freed isotopically from L if there is an n-element in some sub-
division ¢H", which contains oK and does not meet o/.

Lemmal2, IfK,LCH" K.L=1andn >r4s+1,wherer = dim (K)
and s == dim (L), then K can be freed vsotopically from L.

If H" is an n-sphere, it contains an n-element containing K and L.
Therefore we may suppose that H*» — E" and, after a suitable sub-division,
E™ may be represented as a simplicial covering of a rectilinear simplex A”.
Let p, be a point in A™ whose position is general with respect to K and L.
Since K does not meet L and r+s+1 < n, the cone C, swept out by the
segment p,p as p varies over K, does not meet L. After a further sub-
division we may suppose that C is covered by a sub-complex of E®, which
we also denote by C. Then N = N(C”, E''™) does not meet L'’. But N
is a regular neighbourhood of C”’, and C", being a sub-division of the star
Po K, contracts into p,. Therefore N is an n-element, by Theorem 23,
Corollary 1, and the lemma is established.

If two bounded, connected, n-dimensional manifolds M, and M, meet
in an (n—1)-element on the boundary of both, we shall describe the
simplicial space associated with M,+M, as a topological sum of the
simplicial spaces associated with M, and M,. Let K, and K, be two sub-
complexes of an n-dimensional manifold M, which meet in a single vertex b.

THEOREM 26. If K,,, the complement of b in K, can be freed isotopically
from K, in M, the simplicial space T(K,+K,, M) is a topological sum of
the stmplicial spaces Z(K,, M) and E(K,, M).

Adding an n-element of the form bE"-! to M, if necessary, we may
suppose that b is inside M. After a suitable sub-division we also assume
that M, does not meet M, also that K, C E}1C M, where E? does not
meet K, Let E}'= Cl(M,—E?") and let

M;=Cl(M—bE}') (=1, 2; j=1t+1 mod 2).
Then K;C M; and M, is a manifold since M, does not meet M. Let
N;=N(K;", M;").
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Then N, is a regular neighbourhood of K, in M’ and therefore in M"’,
since the conditions for a regular neighbourhood are intrinsic. Therefore
N, is a triangulation of the simplicial space X(K;, M). Moreover, N,+N,
consists of all the closed simplexes in M,""+M,” = M" which meet
K,"+K,”. That is to say N,+N,=N(K,"+K,”, M"), and N,+N,
is a triangulation of X(K,+K,, M). The intersection N,.N, consists of
the closed simplexes in M,"". M,"” which meet K, . K, =b. But

M, My=E+{M—0(b, M)},

where E= bE”l‘*l = bE'gz—l_ Therefore N;.N, is an (n—1)-element,
namely N (b, E"'). Finally EC M, .M, whence N, .N,CN,.N,, and the
theorem is established.

In Theorem 26 the manifold M may be infinite, K, and K, being finite.
In particular M may be a triangulation of R™.

THEOREM 27. The questions Q. 2 and Q. 3 of §10 are equivalent.

It is clear that an affirmative answer to Q. 2 carries with it an affirmative
to Q. 3. It remains to show that an affirmative to Q.3 implies an
affirmative to Q. 2. Let K,=D(K,), K,+L,=Dy(K,+L,) and let
P,=K;. L; be geometrically collapsible. After a suitable sub-division
we may assume that P, is formally collapsible and that N(P;, K,),
N(P;, I;) and therefore N(P;, K;+ L;) are contractible neighbourhoods of
P,. By Theorem 3 the operation of shrinking P, into a point is a formal
deformation of K, L; and of K;+ L, Therefore we may take K,.L; to be
a single vertex b;. This being so, let [ be the maximum of m;+1, n,+1 and
the orders of the deformations D and D, where n;=dim (K;) and
m;=dim (L;). After a suitable sub-division, K;4 L; may be imbedded in
R, as a sub-complex of some triangulation M7, of RP, where p > 21+1.
Since p—1 > (m;—1)+(n,— 1)+ 1 it follows from Lemma 12 that K, may
be separated isotopically from L, in M}, and from Theorem 26 that
S(K;+L;, RP) is a topological sum of X (K;, R?) and X(L; R?), Since
p >=2l+1, it follows from Theorem 25 that X(K,, R?)= Z(K,, R?) and
that Z(K,+L,, RP)=2X%(K,+ L, R?). Moreover the boundaries of
regular neighbourhoods U(K;, R?) and U(L;, RP) are connected. For
these neighbourhoods contain no non-bounding (p—1)-cycles since
my;, n; <p—1. If the answer to Q. 3 is “yes” it follows that any two
regular neighbourhoods U(L;, E?) and U(L,, R?) have the same nucleus
and, since U(L;, R?) contracts into L,, that L, and L, have the same
nucleus. Therefore an affirmative answer to Q. 3 implies an affirmative
answer to Q. 2, and the theorem is established.
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13. Newman's moves. The object of this section is to prove two
theorems which are similar to Theorems 4 and 6 with elementary expan-
sions and reductions replaced by Newman’s moves of Type 1 and 2. We
recall that a move of type 1, applied to an n-dimensional manifold M, is
a regular expansion of the form

My—~M,= AB+M,,

where 4 B is n-dimensional, ABC M,, A¢ M,. A move of Type 2 is the
inverse of a move of type 1. For M — Cl(M —C) to be a move of type 2
it is necessary and sufficient that ¢ = ABC M, where

1. B = MA’
2. B is internal to M.

An n-element E" will be described as reqularly collapsible if E" —2>A”', where
A" is a closed n-simplex and the symbol M M (a=1 or 2) means that
the transformation indicated is a product of moves of type a. As a matter
of convention M — M, so that a closed simplex is regularly collapsible.

Lemma 13. If M =AE+M* and if E?Eq, then Jl[—2>AEq+JII*,
provided that cvery internal simplex tn E is inside M.

If E,= E there is nothing to prove. Otherwise let E = CB+ k|,
where E — E, is the first move in the transformation E— E, and B= E,
B being inside . Then B = M,y and B is inside M. Therefore

M—~>ClM—ABC)=AE,+M*

is a move of type 2, and the lemma follows by induction on the number
of moves in K> E,.

CoroLLARY. If K s regularly collapsible, M <M

For if E = B, a single closed simplex which is inside 3/, the transfor-
mation 4B+M - M*# is a move of type 2.

Lemma 14, If E e E,, where E is an element, then AE?AE,Z, where
A 18 a closed simplex which does not meet E.

For, with the notation used in proving Lemma 13, the simplex 4 B is
inside A and is the complement of C. Therefore 4E - AE, is a move
of type 2 and the lemma follows from induction on the number of moves in
E—-E,

2 4
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CoroLLARY. If E is regularly collapsible so is AE.

Lemmat 15, If A and B are (closed) simplexes which do not meet each
other (A #1, B #1), AB s reqularly collapsible.

If Bis 0-dimensional, AB = A. Otherwise let B= bB, (B, #1). Then
AB=A(bB,+B,).

The simplex 4 is inside 4 B and is the complement of B, in AB. Therefore
the transformation AB'—>AbB'1 is a move of type 2. Writing 4b=4,,
and assuming that 4, B, is regularly collapsible, we deduce the lemma by
induction on dim (B).

THEOREM 28. If M —2>M 1> then
oM > oM,,
where o 18 any stellar sub-division of M.

This will follow by an inductive argument similar to the one used in
proving Theorem 4 if we can prove it in case M ry M, is a single move and
o is an elementary sub-division (4, a).

Let M = CB+M,,

where B = My and B is inside M. Asin Theorem 4 the result is obvious
unless ACBC. So let A= B,C,, where B=B; B, and C=C,C,
(possibly B;=1 or C;=1). Then

(13. 1) Olu“—‘a'(olBl‘*’ClBl) BZ CZ+UM1
= CaB, By+aC, BC,+oM,,

and aB, B, = (¢M)g, since C¢ M, and hence CQ@oM,. The simplex
B(C, is inside M, being incident with B, and

o(BC,) = a(B, B, Cy)
— a(4By)
= ad B,.

Therefore a B, isinside o(BC,) and henceinside oM. Theinternalsimplexes
of aB, B, are those incident with @B, and are therefore inside oM. By

t Cf. Newman, Proc. Akad. Amsterdam (second paper, loc. cit.), 619, Theorem 20.
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Lemma 15, aB1B2 is regularly collapsible and, by the corollary to
Lemmat 13,

(13.2) oM ~aCy BC,+oM, = M*,

say.
If ¢, =1, we have M* = oM, and the proof is complete. So we assume
that C; 1. Then BC oM and B is inside oM, since it is inside M. Also
Mp# = (6M)p, since B& CaB, B,. It follows that B, and therefore the
internal simplexes of BC,, are inside M*. Also B,C& M,, since CE M,
and
o(B,C) =0 (B, 0, ()

=g(AC,)
=aAC2.

Therefore aC, is inside o(B, C) and it follows that aC,EoM,. Therefore
MY, = BC, and is regularly collapsible by Lemma 15. Since the internal
simplexes of BC, are inside M it follows from the corollary to Lemma 13
that M*—>oM,. Therefore oM 3 oM, and the theorem is established.

In order to state the next theorem we shall extend our notation by
writing

En? -1 (n > O)
if B»-1C En and M+E"—> M,
where M is any n-dimensional manifold such that M . £ = M . E" == £n-1,

TurorkM 29. If K is any complex, there is a stellar sub-division oK such
that aE"‘—_;aE'”‘l (m > 0), where E™ 1s an arbitrary m-element in K, and
Em=1is an arbitrary (m—1)-element in E™, the sub-division o being indepen-
dent of any particular choice of m or of E™ and E™1,

There are in K only a finite number of elements and the theorem will
follow from Theoremy 28 if we can show that there is a sub-division ¢ £™,
such that o™ —>o k™1, where £™ is a given m-element and £™-1 a given
(m~—1)-element in Em.  Assuming that this is true when 0 <m <n we
shall prove the following corollary for 0 <<m <n.

t Notice that the first term on the right-hand side of (13.1) is absent if B, == 1.
ln this case M = M*.
t Cf. the corollary to Theorem 4.
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CoroLLARY. Some stellar sub-division of any m-element is regularly
collapsable.

The corollary is trivial if m = 0 and we therefore take m > 0. After
a preliminary sub-division, if necessary, we may assume that the internal
simplexes of Ey™ are inside E™, where E™ is a given m-element and b is a
vertex in E™. Then

Eom = fm__ O(b’ _Em)

is an m-element and it follows from the above hypothesis that there is a
stellar sub-division ¢, such that o; K" >0, I,”. Let us assume that some
sub-division o,0, E,” = o¢k,™ is regularly collapsible. Then

b(a Ebm) —_ U(bEbm)

is regularly collapsible, by the corollary to Lemma 14, and by Theorem 28
ck™—>o(bE,"), where o =o0,0,. Therefore ock™ is regularly collapsible
and the corollary follows by induction on m for m <.

Now let m =n+1 and let E™ be a partition of the geometrical simplex
Popr A" (0 <m=m—1) having no internal vertices, and let B be the
sub-complex of E™ covering p,4" (=0, 1). I say that ckm—>aky",
where o is some stellar sub-division of E™. For let L = Em = E*+ E,"
and let F'" and F™ mean the same as in the proof of Theorem 6. If we
assume Theorem 29 for n-dimensional complexes, it follows from the co-
rollary that there is a stellar sub-division ¢, #'* such that o, £ is regularly
collapsible, where £ is any element in F*. As in the proof of Theorem 6,
Fr (s, E™)p is an element, where B is any internal open simplex of E,".
Therefore o{F*.(s; E™)y} = o, F*.(cE™)p is regularly collapsible, where
o=0,5;. 1fwe take the open simplexes inside o, £,"(= o¥,") in order of
decreasing dimensionality, it follows from the corollary to Lemma 13 that
the open stars O(B, c£™) (B ecE,"—ck,") may be removed successively
by moves of type 2. Therefore ok —>ay Fr, Let M and M, be any
m-dimensional manifolds such that M . M, = M.M ; and let E*(n=m—1)
be an (m~1)-element in M . Ml. If M — Cl(M — AB) is a move of type 2,
where 4 is inside E* and B is inside M, the transformation 3, -~ M,+AB
is a move of type 1. If we take M = oE™ and E*= oE", it follows that
M,y e M,+o, F\, where F," = Cl(s; Em—F™). Therefore

Myto Fi" 3 My de o FI’"?UEl'”.

But the construction of F* and o, is symmetrical between Ey* and E,".
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Therefore o, F”*->oE", and since oB™ >0y F™ we have oEm >k, as

stated. The rest of the proof is the same as the proof of Theorem 6.

CoroLLARY. If M contracts regularly into M* there is a stellar sub-
dwwnision o such that oM —2>ch *,

14. Infinite complexes. Starting with a given aggregate of vertices, we
now define a complex as in § 2, with the single condition that the dimension-
ality of each simplex is to be finite. For example, if we take the vertices
to be real numbers, the totality of finite sets of real numbers is a permissible
complex. In order that sub-divisions and expansions shall be applicable
to such a complex, we allow ourselves to create new vertices if and when
they are needed. More precisely, we assume that a given aggregate of
vertices can be duplicated at any stage in an argument, and the duplicate
set combined with the original into a single set. We rely on the axiom of
choice but, except at one stage in the proof of Theorem 37, only so far as
sub-sets of the given vertices are concerned. For, if the original aggregate
of vertices is well-ordered, choice can be eliminated from the combinatorial
constructions by lexicographical and other standard devices.

We proceed to extend the definitions of equivalence to infinite
complexest. For combinatorial equivalence we shall use the idea of
general sub-division rather than elementary transformations. We recall
that a complex yK is a general sub-division of K if the simplexes of yK are
grouped into k-elements yd* (k= —1,0, 1, ...; yl=1), which are in a
(1-1), incidence-preserving correspondence yA¥—>A* with the closed
simplexes in K. We shall write y =1 if y is the identical sub-division,
given by y4 = A for each closed simplex in K. It is always to be under-
stood that no vertex in yX belongs to K, or to any complex which is being
considered simultaneously with K, unless it is a 0-simplex 4°, in K, and
yA% =A% 1If Lis any sub-complex of K, the cells in yK which correspond
to the simplexes in L constitute a sub-division of L, which we denote by
yL. Thus y may be regarded as a transformation which operates on each
sub-complex of K. Conversely, let yL be given, where L is a sub-complex
of K. We define yK as follows. Let K" be the complex consisting of

t A little care is needed here, as the following example shows. Let K; be a triangula-
tion of the topological product A X (3, @> (i =0, 1, ...), together with the rest of the
cylinder C = Ar % <0, oo). Let ¢; be the geometrical contraction K; — K;,,. Then the
infinite sequence of contractions c,, ¢, ... transforms K, into C, and therefore alters the
homotopy group m,_1(K,).

SER. 2. VOL. 45. No. 2248. X
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L together with all the simplexes of K whose dimensionalities do not
exceed n. Assuming that y, K* has been defined and that y, =y in L
(e y,d=y4 if ACL) and y,A=A4 if y=1 in 4.L, we define
Y1 K+ by the conditions vy, ., =y, in K*, and

,yn+1An+1=An+l 1if '}’nzl in Antl
= ay, A™*1 otherwise,

where 4"+! is the closure of any open simplex in A***— L and a is a new
vertex. If we begin with y_, =y in K-!= L, the sub-division y, K" is
thus defined inductively for all values of n. Clearly y,, ==y, in K" if
m > n, and yA is defined by the condition

yd=y,A if ACK®",

this detfinition being unique except for the choice of the new vertices. A
given set of complexes L, L¥#, ..., may be combined to form a single com-
plex K. If yL is given, it follows from what we have said that y may be
treated as an operator which is applicable to K, and therefore to any
complex in the set. If y is initially defined as a sub-division of L and if
y =1in LL%*, notice that y =1 in L*.

A sub-division yK will be described as a partitiont #K, or a stellar sub-
division, if it is a partition, or a stellar sub-division, of each finite sub-
complex of K. With the notation explained in the last paragraph, if a
given sub-division yK (or yL) is a partition, or a stellar sub-division, it
is obvious that yL (or yK) is also a partition, or a stellar sub-division,
where L is any sub-complex off K. If K is infinite, the sub-division
8, K cannot be defined as a sequence of elementary sub-divisions since
there are, in general, no simplexes of highest dimensionality with which to
start. We define s; K inductively by the construction used in extending
yL to yK, starting with K° and a sub-division yK®=s;K° (s;=1in L).
If A°c K°— L, it is to be a matter of choice whether or no s; 49 = A°.

Lemma 16, T'wo sub-dwisions y, K and y, K have a common sub-division
B - = By
Y11=V Ve

Let K" be the n-dimensional skelelon (Geriist) of K, that is the set of
all simplexes whose dimensionalities do not exceed n. Assume that there

1 Cf. Whitehead, loc. cit.

1 1f oL was given as a sequence of elementary sub-divisions this would differ from the
natural definition of vK. But we shall adhere to the single definition of yK, whether y is
a stellar sub-division or not.
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are sub-divisions y," and y,” such that

(14.1) ' ri=v"y, in K"
. wn=y?—-1’ in ')/iK"_p (i= 1’ 2; pZO).
Since """ A= y2" Ve A"'+1,

where A"+ is any (n+-1)-simplex in K, there are sub-divisions y**! and
yy+l such thatt

n+1 n+l — L+l n+1
Yitiy A= yptly, A",

where y*+1 =y in y; A"+ and therefore in y,K*. Extending y;* in this
way throughout all the (n+-1)-simplexes in K we arrive at sub-divisions
which satisfy (14.1) with » replaced by n+1. If we begin with y;*=y;=1
in K1, it follows by induction on n that there are sub-divisions satisfying
(14.1) for all values of n. The required sub-divisions y,* and y,* are
given by

vitvid=vy"yAd if ACK",

and the lemma is established.
From the sharper results proved in my paper on sub-divisions we have
the addendum:

ADDENDUM. The sub-divisions y,* and y,* of Lemma 16 may be chosen
so that a given one of them is a stellar sub-division and the other is a partitiont.
If y,=y,=1y in some sub-complex L, they may be chosen so that also
n*=r=yin L

We now define two complexes K, and K, as combinatorially equivalent
if, and only if, they have a common sub-division y, K, =y, K,. It follows
from Lemma 16 that two complexes are combinatorially equivalent to each
other if each is combinatorially equivalent to a third. Therefore the
equivalence classes are mutually exclusive.

We now come to formal deformations and fillings and perforations.
Our method, which we have already used in proving Lemma 16, is to
replace ‘“‘long’’ sequences of individual elementary transformations (z.e.
sequences with high ordinal numbers) by countable sequences of

t Alexander, loc. cit., Theorem 13.2, and Whitehead, loc. cit., Theorem 2.
t Taking v, =1 and %* = ¢, 13* = =, we have oy, = =, and taking v,* = m, y,* =0,
we have my, = a.

x2
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‘“composite ” transformations. Though each composite set may have
any cardinal number, the individual transformations contained in it can
all be applied at once, and there is no need to consider questions of order
within the set.

We shall denote the elementary expansion K —»>K--ad-+A, where
4 and a4 are open simplexes, by a4 and it is to be understood that the
transformation «4 is defined in the abstract though it is not applicable to
every complex. It isapplicable to a complex K if, and only if, K contains
ad but not A. When a4 denotes an elementary expansion we shall allow
4 to be 0, the empty set of simplexes, in which case a4 will be the identical
transformation, operating on every complex and transforming it into
itelf. Two elementary expansions ¢4 and bB will be described as
independent if, and only ift,

(14.2) ASCL(B), BeCl(ad).

In particular the identity is independent of every elementary expansion.
The conditions (14.2) are obviously equivalent to the conditions

(1) a4 and bB are both applicable to some ome complex K [e.g.
Cl(a4 +bB)],

(2) bB is applicable to K+ad+A4;
and, if these are satisfied, the transformation
K->K+aA+bB+A+B

will be described as the composite expansion due to the simultaneous
application of a4 and bB. More generally, let {a4} be any set of ele-
mentary expansions, finite or infinite, each of which is applicable to a given
complex K and any two of which are independent. The transformation

K—-K+%,

where ¥ is the totality of open simplexes a4 and 4, will be called the
composite expansion due to the simultaneous application of the elementary
expansions a4. A composite expansion {#d} will be described as
applicable to K if, and only if, each of the elementary expansions a4 is
applicable to K, and {aA4} and {bB} will be described as independent if, and

t Notice that, in dealing with elementary expansions, the question is not so much
‘“are two given transformations interchangeable?” as ‘ can one be applied both before
and after the other?”
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only if, each elementary expansion a4 is independent of each bB. From
this definition it follows that a necessary and sufficient condition for the
independence of two composite expansions is that one of them shall be
applicable to some complex both before and after the other. Any set of
mutually independent composite expansions can obviously be combined
into a single composite expansion, and any sub-set of the elementary
expansions in a composite expansion may be applied simultaneously to
form a composite expansion. Though we shall be working entirely with
expansions, notice that composite contractions may be similarly defined ;
also composite deformations, consisting of expansions and contractions.

Now let €, be a composite expansiont of a given complex K, and let
K, .,=¢t,.,K,, where ¢, ¢, ... is an enumerable sequence of composite
expansions. Let X, be the aggregate of simplexes added by all the
elementary expansions in &, &, ..., and let

K, =Ko+,

Proceeding by transfinite induction, let K,= K,+ZX,, where p is any
ordinal number and X, is the aggregate of simplexes added by a given
transfinite sequence of composite expansions {¢;} (j <p+1), such that
K=t Ki=2,,(Ki+Z) (<p).

TurorEM 30. The transformation Ky—>K, s the resultant of a
countable sequence of composite expansions.

If an elementary expansion in g; is applicable to K, where ¢4+1 < g,
it may be transferred from g; to &,,. We do this whenever possible, so
that each elementary transformation is applied at the first opportunity.
Then the elementary expansions in K,—K, form a countable set of
composite expansions. For if not, there is an elementary expansion a4
in the (wy+1)-th set. But the complex Cl(a4), being finite, is in K, for
some finite value of n, and A<€K, since 4K, and K,CK,. There-
fore ad is applicable to K,, contrary to the fact that it is applied as
soon as possible.

It follows from this theorem that we need only consider countable
sequences of composite expansions. The resultant of such a sequence will
be called an expansion.

Geometrical expansions, defined as in §5, may be treated in the same
way as elementary expansions. A geometrical expansion X is the addition
of a set of open simplexes = = E"— E"1, where £, is an n-element and

+ When we write 2K, it is to be understood that & is applicable to K.
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E™1is an (n—1)-element in E*. We shall say that 2 is applicable to a
complex K if, and only if,

(14.3) Cl(T)—ZCK, =.K=0,

and two geometrical expansions Z, and X, will be described as independent
if, and only if,

(14.4) 3. CU(Z,) = Z,. Cl(Z,) =O0.

All that we have said about elementary expansions, including Theorem 30,
obviously applies with minor alterations to geometrical expansions. A
product of composite geometrical expansions will also be called a geometrical
expansion and, when a contrast is necessary, a product of composite formal
expansions will be called a formal expansion.

TaeoreMt 31. If K, expands geometrically into K , it expands formally
wnto some stellar sub-division oK, where o = 1in K.

Our proof depends on the lemma:

LemMa 17. There is an internal stellar sub-division o E* (n > 0) which
contracts formally into E"-1, where E™ 1s any n-element and E™1! is an
(n—1)-element in E",

The lemma is trivial if » =1 and will be proved by induction on x.
First notice that, when we assume the lemma for k-elements if £ < n, some
internal stellar sub-division of a k-element is collapsible. For some internal
stellar sub-division contracts into a closed (k— 1)-simplex on the boundary.
Now let &= En—E»1 let oy = si;,.. and let

BEr=0y E"—0(Z, g, E™).
As proved by Newmanti, o, £ is transformed into £, by a sequence of
regular contractions of the form
An—k-1 gk + E’n > E’n (Ek (- E‘n),
where E* is a k-element (k< n) whose internal simplexes are inside
An-k-1gk4+ E™ By the corollary to the inductive hypothesis and

Theorem 4, there is an internal stellar sub-division o, oy £* such that each
of the elements o, E* is collapsible. Then o,6y=1 in E", and o,0,E"

1 Notice that this theorem is sharper than the analogous Theorem 7. Because of Lemma
17, proved below, it is unnecessary to sub-divide K,.
1 Journal London Math. Soc. (loc. cit.), 509, Lemma 2,
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contracts into o, B, by Lemma 3. Let L= E™1andlet
By =120y B\"—O(E™, 8120, By")
=0y E"—O(E", 0y Ey"),

where 0, = s;20,. Then o,=11in En and F,7 does not meet En. Since

each internal simplex of s;o, B\ is starred by s;, it follows that E»-!

and o, B, satisfy the first condition imposed on Z and M in Lemma 10.

By the corollary to Lemma 4 they also satisfy the second condition,

and it follows from Lemma 10 that F,* is an n-element. Let us assume

for the moment that ‘
N=N(E", o, E}")

meets E,” in an (n—1)-element on E,”. Then it follows from Theorem 6
that some stellar sub-division o3 £," contracts into o3(N . £,"), and g5 = 1
in E” since E," does not meet £*. By Theorem 2, N contracts into E»-1,
and, by Theorem 4, o3 N also contracts into E”-1. Therefore o530, E,"
contracts first into o3 N and then into E™~1, and it follows that ¢ E™ contracts
into E"1, where o =o030,0, and c=1 in En.

It remains to prove that N.E,”"C E,» and is an (n—1)-element. An
open simplex A (45 1) in o, E," belongs to N . E," if, and only if, (o, ;")
meets E"1, since 4 ¢ N, but C1(4) does not, since 4 e E,*. If A¢N. E,",
it follows that some simplex in (o, E;"), is absent from E%,. Therefore
E3, is a proper sub-set of (o, E,"), and so cannot be a sphere. Therefore
AcE,, whence N.E,"CE,. Moreover, N is an n-element, by
Theorem 22 and Theorem 23, Corollary 1. If 4 ¢N.E,*, then Cl(4) does
not meet, £"-1 and it follows from an argument in the proof of Theorem 22
that N, is an element. Therefore N E,"CN—O(E"1 N). But
Cl(4). E1=1 if AeN—O(E"1, N), whence N—O(E"1, N)C E,".
Therefore N.E,»= N—O(E"1, N). If Cl(4A) meets E*1 (4 eoy B,
we have N, = (o, E,")4, whence 4 is in both N and o, B;» if it is in
either. Therefore O(E™1, N)= O(E", oy El") and is the interior of
N(E™, ¢, E,"), which is an (n—1)-element by Lemma 10, Corollary 2.
Therefore N.E," is an (n—1)-element and the lemma is established.

The theorem now follows by an inductive argument similar to the
one used in proving Lemma 16. Let g, €,, ... be a countable sequence of
geometrical expansions which transform K, into K, and let K, =¢,K,_,.
Assume that K; expands formally into some stellar sub-division

oK (=0, .., m),
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where 0, =o0;in K, if 1 <j. If K,,~K,, 4 E™is any one of the individual
expansions in &,,,, where E,.K, =E". K, =E, it follows from
Lemma 17 that o,, £*! expands formally into ¢*¢,, E®, where o* is some
internal stellar sub-division of ,, E*. Therefore o,, K,, expands formally
into ¢,,,, K,,,;, where o,,, is the resultant of ¢,, followed by all the sub-
divisions ¢* corresponding to the various elements added by ¢,,.,. Since
o* is internal to o, E™ it leaves o, E™, and hence ¢,, K,,, unaltered.
Therefore o,,,, =0, in K, and it follows that o,,,,=¢; in K; if 1 <m.
If we begin with o, = 1, it follows inductively that there is a sub-division
o,, satisfying the above conditions for each value of m. Moreover,
on=0,=1 in K, The required sub-division ¢K is defined by the
condition

od=0,4 if ACK,,

and the theorem is established.

If K, expands formally into K, it is obvious that yK, expands
geometrically into yK, where y is any sub-division. Therefore we have
the corollary:

Cororrary. If K, expands formally into K and y is any sub-division,
then yK, expands formally into some stellar sub-division oyK, where o =1
mn yK,.

We now define a formal deformation of an infinite complex as a
transformation of the form

D=y E;1 Eyy,,

where y, and y, are general sub-divisions and E, and E, are formal
expansions. That is to say

K,=D(K,)

if, and only if, there are sub-divisions ¥, and y, and formal expansions £,
and E,, such that

E\ (v, Ko) = By, K,).
If y,=v,=1in L, where LC K. K,, we shall write
K,=D(K,) (rel. L).

THEOREM 32. If K, =D (K,) (rel. L) and K, = D,(K,) (rel. L), then
K, = D(K,) (rel. L), where LCK,. K. K,.
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Let E\(y1Ko) = E,*(yo K1) =Ky, (yy=7y,=1in L),
and Ey(y, " Ky) = By(y3 Ky) = Ky (yo*=1v3=11in L).

By Lemma 16 and its addendum, we have oy, K, = yy,* K, = K,*, say,
where o is some stellar sub-division and y a general sub-division and
o=y=1 in L. By Theorem 4, which is obviously true of infinite
complexes, oy, K, and K,* expand formally into ¢K,,. By the corollary
to Theorem 31, K,* expands formally into some stellar sub-division
o,yK,,, where o, =1 in K *, and hence in L. By Theorem 4, ¢,0y, K,
and K,* expand formally into o, 0K,. Finally, o, yy; K, expands formally
into some stellar sub-division o, 0, K, (6, = lin o, yy; K, and hence in L),
0,0, 0y, K expands formally into o,0,0K,, and o, K,* expands formally
both into o,0,0K,; and into o,0,yK,,. Therefore we may assume that
yo™® == y,, after preliminary sub-divisions if necessary.

Assuming that y,*=1y,, let K{;=spK;,, where P=1y,K,, the new
vertices being, as usual, different from any of those in K. Then
(Koy—v2 Kq). (K{s—y, K,)=0, whence AeK, if AeKj,—y,K, and
A€Ky, if AeKy—y,K,. Let y;'=3spy; and let E,’ and E, be the
expansions y,K,—>Kj, and yy K,—Kj,, defined as in the proof of
Theorem 5. Since A€ K, if A e Kijs—y, K, and Ae K if A eKy—y, K,
it follows from (14.2) that each elementary expansion in E,’ is inde-
pendent of every elementary expansion in E,*. Therefore £, is
applicable to E,*(y, K,) = K, and E,* is applicable to K, (y, K,) = K{,.
But

By (Ky) = B,* (K{2) = Koy + K1

Therefore
E2' El(')’l Ko) = E2=!= Es'(‘)’a' Kz) (?’1 == ')’3’ =1in L),

and the theorem follows from Theorem 30.
As a special case of Theorem 32 we have the corollary :

CoroLLARY. If two sub-divisions of K, expand into Ky, and into K,y
respectively, then
Ky, = D(Ky).

The relation of equivalence under formal deformations is reflexive and
symmetric by definition, and it follows from Theorem 32 that it is also
transitive. Therefore the equivalence classes are mutually exclusive and
with each of these classes we associate an abstract infinite nucleus, or simply



314 J. H. C. WHITEHEAD [May 19,

a nucleus. It is an immediate consequence of the definition that the
nucleus of a complex is a combinatorial invariant.

Fillings, perforations, and m-groups may be treated in the same way
as expansions, contractions, and nuclei. Let us describe either an
elementary expansion or a filling whose order exceeds some given m as an
elementary addition. Then an addition X consists of adding a set of open
simplexes X to a complex, the set containing one simplex in the case of
a filling and two in the case of an expansion. The conditions (14.3) are
necessary and sufficient for an elementary addition Z to be applicable to
a complex K, and two elementary additions X, and X, will be described as
independent if, and only if, the conditions (14.4) are satisfied. As in the
case of expansions, any set of mutually independent elementary additions
may be combined into a composite addition. All that was said about
expansions, up to and including Theorem 30, obviously applies, with
minor alterations, to additions. As the analogue of the corollary to
Theorem 31 we have:

TuroreM 33. If K, is transformed into K by a countable sequence of
composite additions, and if yis a given sub-division, then yK 1s transformed
into some stellar sub-division oyK by a countable sequence of composite
additions (e =1 in yK,).

The proof is similar to the proof of Theorem 31, with Lemma 17
supported by the auxiliary lemma:

If Enis a given n-element, there s an internal sub-division o E™, such that
the transformation K" ->cE" is the resultant of a formal expansion followed
by a filling of order n.

Let A"-1 be an open (n— 1)-simplex in E», let a4"~ be the open simplex
in E" with A”~1 on its boundary and, after a suitable internal sub-division,
let @ be inside B". Let E"-'= Er—An-1 and E»= E"—aA"'. By
Lemma 17, E"-! expands formally into some stellar sub-division ¢£,",
where o = 1 in E," and therefore in . Since ¢=11in aA™1, the required
transformation is the resultant of the expansion

E" — A71—1+En—1 __>A'n—1+aE’1n,

followed by the filling A*-1+4oE,"—>A"14-cE"+aA™ 1= ¢E"™, and the
lemma is established.
The theorem now follows from the proof of Theorem 31 with trivial

modifications.
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Two complexes K, and K, will be said to have the same m-group if, and
only if, there are sub-divisions », and y, and additions 7', and 7', (con-
taining no fillings whose orders do not exceed m) such that

T1(71 Ko) = Tz(?’z K1)~

THEOREM 34. If K, has the same m-group as K,, and K the same
m-group as K,, then K has the same m-group as K,.

This follows from the proof of Theorem 32, with Theorem 31 replaced
by Theorem 33, Theorem 4 supported by Lemma 7, and the appropriate
changes in wording.

As with nuclei, it follows that complexes fall into mutually exclusive
classes, two complexes having the same m-group if, and only if, they
belong to the same class.

In the next section we shall discuss the relation between the formal
and the topological theory of infinite complexes. It will appear that any
two complexes have the same m-group, for each value of m, if they have the
same homotopy type, in a sense to be defined. The converse holds for
complexes of finite dimensionality. In particular, two finite complexes
K, and K, have the same homotopy type if they have the same m-group for
m > dim (K;)+1, with infinite additions allowed. It follows from Theorem
17 that they have the same m-group in the strictly finite sense of §§2-13.
The analogous question for nuclei remains open, namely :

If two finite complexes have the same infinite nucleus, can they be inter-
changed by finite sequences of elementary deformations?

15. The topology of infinite polyhedra. By a closed convex mn-cellt
C"(n > —1) we shall mean a set of undefined points in a (1-1) corre-
spondence f with the interior and boundary of a convex, polyhedral
n-cell f(C"), in Cartesian n-space X*, the set C" being empty if n = —1.
Two transformations, f(C™) and f*(C*), will be said to determine the same
convex n-cell if, and only if, f* = 7'f, where 7 is an affine transformation of
X7 into itself. Thus C™ has the affine structure of its image f(C") and the
usual terms (interior, boundary, simplex, etc.) will mean the same when
applied to C™ as to f(C™). In particular the boundary Cn of C" consists of
certain closed convex (n—1)-cells. The “cells on”’ C™ (Seiten), defined
inductively, consist of O™ by itself if n = —1, and of C" together with the
cells on the (n—1)-cells in C» if n > 0. Thus C~1is on every cell. By a
polyhedral complex K we shall mean a set of closed convex cells satisfying

t Cf. O. Veblen, Analysis Situs (New York, 1931), 76.
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the first two conditions given by Alexandroff and Hopf for a cell-complext,
namely :

(1) each cell on any cell in K s also in K,
(2) the intersection of two closed cells in K is a closed cell on both of them.

We do not require the dimensionality of the cells in K to have a finite upper
bound, and the set of cells which are incident with a given one may have
any cardinal number. A partition of K (i.e. a rectilinear sub-division), and
in particular a simplicial sub-division, is defined as when K is finite.

A simplicial polyhedral complex is obviously isomorphic to some sym-
bolic complex and conversely. Moreover, it follows from Lemma 16 and
its addendum that two geometrical complexes which are isomorphic to
equivalent symbolic complexes are geometrically equivalent, meaning
that they have isomorphic partitions. Also it follows from an inductive
argument similar to the proof of Lemma 16, and Theorem 1 in my paper on
sub-divisions, that two partitions of the same geometrical complex have a
common partition. Thus the elementary theorems on which combina-
torial analysis situs is based apply equally well to polyhedral complexes
in general as to finite, or locally finite, complexes. Except when a contrast
with symbolic complexes is necessary we shall refer to K simply as a
complex and, unless the contrary is implied, it is to be understood that any
complex to which we refer is simplicial.

By a topological polyhedron P(K) we shall mean the set of points in a
polyhedral complex K, with the topology defined by the conditions:

(1) each closed cell in K has the topology natural to its affine geometry,

(2) a set of points in K is closed if, and only if, its intersection with each
closed cell is closed.

We enumerate some of the more obvious consequences of this definition.
A set of points in K is closed (open) if, and only if, its intersection with
each sub-complex L C K is closed (open) relative to the topology of P(L).
The sum of a finite number, and the intersection of any number, of closed
sets is closed. Any sub-complex of K is closed. If O(X, K) is the set of
open cells in K (i.e. the interiors of closed cells) whose closures meet a given
set of points X, then K —O(X, K) is a complex and O(X, K), regarded as
a set of points, is open. The definition of closed sets is invariant under
partition. The following is not so obvious, namely a topological polyhedron

t Topologie, 126,
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is a metric space if, and only if, it is locally finite. For let K be a given
complex, which we may suppose to be connected and simplicial.. Since it
is connected, any two vertices in K are joined by a finite polygonal segment,
consisting of edges of K. If K is locally finite, it follows without difficulty
that it contains at most an enumerable infinity of vertices, and hence that
P(K) is a metric spacet. Conversely, let some vertex ¢ be incident with
infinitely many simplexesin K, and let 4,, 4,, ... be an enumerable sequence
of simplexes with @ on their boundaries. Assuming that P(K) is
metricized, let p, be a point inside 4,, whose distance from « is less than
1/r.  According to the metric the sequence of points p;, ps, ... converges
to ¢. But the dimensionality of each simplex in A is finite and no open
simplex contains more than one of the points p,. Therefore the number of
these points in any closed simplex is finite and {,] is a closed set according
to the topology of P(K). Therefore P(K) is not a metric space. A
similar argument shows that any compact set of points in P(A) is containec
in a finite sub-complex of K. Therefore a map in P(X)) of any compact
space is contained in a finite sub-complex of K, as when K is locally finite.

It is now to be understood that all our polyhedral complexes have this
topological structure, in addition to the rectilinear geometry of each cell
and the combinatorial structure of the incidence relations.

Lemma 18. A transformation f(K), of a complex K into any topological
space P, is continuous if, and only if, it is continuous throughout each closed
cell in K.

This follows at once from the definition of closed sets and a standard
definition of continuous transformations, namely: f(K)C P is continuous
if, and only if, f~1(X) is a closed set in K, where X is any closed set in P.

Certain fundamental theorems may now be extended from finite and
locally finite complexes to infinite complexes in general.

THEOREM 35. If K 18 covered by a given set of open sels, there is @ stellar
sub-division oK such that N(a, oK) C U(a), where a is any vertex in oK and
U(p) denotes any one of the given open sets containing a point p.

We first prove a sharper theorem for finite complexes. Let K be any
finite complex which is covered by a given set of open sets and let

N(b)\, L)CU)\ (A=1, ey 7n),

t See, for example, Lefschetz, Topology (loc. cit.), 292.
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where L is a sub-complex of K (L#1), b, ..., b,, are the vertices of L, and
U, is a particular one of the sets U(b,). The auxiliary theorem is:

Under these conditions there is a sub-division o, leaving L unaltered, such
that N(a, o K)C U(a), where a is any vextex in oK, and

N, sK)CU, (A=1,...,m).

First assume that N(b,, K)C U, for each value of A== 1, ..., m. Since
every open simplex 4 in O(L, K)is incident with at least one of the vertices
by. ..., b,, it follows that N (4, K) is contained in one or more of the
neighbourhoods U,, ..., U,,. Therefore, if a is any vertex of a sub-divison
oK, which lies in the open region O(L), covered by O(L, K), the closed star
N(a, oK) is contained in one or more of the sets Uy, ..., U,,. In particular
Ny, oK)CU,. Let N=N(L,s;K) and let K,=s, K—O(L, s, K).
Then N CO(L) and K, does not meet L. If p e K,, the set U(p). K, is an
open neighbourhood of p in K and, by a standard theorem, there is a stellar
sub-division o, K such that N(a, o, K;) C U(a), where @ is any vertex in
0, Ky Also o, =1in L, since L does not meet K;,. Then N(a, ¢K), with
o = 0, 8y, is contained in some U, if a eo; N, and N(b,, cK)C U,. On the
other hand, if aecK—o;, N we have N(a, oK)= N(a, 0, K,) CU(a).
Therefore N(a, 6K)C U(a) if a is any vertex in oK, N(b), oK) C U, and
o=11in L.

It remains to show that there is a sub-division o, leaving L un-
altered, such that N(b,, 0, K)C U, (A=1, ..., m). We shall assume, for
convenience, that none of the sets U, coincides with K. This involves
no loss of generality. For, if K = L the theorem is trivial, and, if K # L,
U, = K, we remove a point of K— L from U,. After a preliminary sub-
division, if necessary, let N (L, K) be a normal simplicial neighbourhood of
L. Then each closed simplex in K is of the form A B, where 4. L =1 and
BC L (possibly 4 =1 or B=1). This being so, let K be imbedded in
Euclidean metric space R". If B=1¥, B, is any closed simplex in L
(other than 1), the Euclidean distance 3(B, K—U,), from B to the closed
set K—U,, is positive. Let p be the least of these distances, calculated
for all the vertices of B and all the simplexes in L. Then

0<p<8(B, K—U,)

if B contains b,. Now apply the sub-division s; to K, placing the centre
of each star s;(4B), in which B #1, at a distance less than p from B,
Let A’ B= A'b, B, be any principal closed simplex in N(b,, s; K), where
A . L=1 and B,CL. If A'=1 we have A’ B= BCU,. Otherwise



1938.] SIMPLICIAL SPACES, NUCLEL AND M-GKOUPS. 319

A'=aqy...a,, where a; is the centre of a star s;(A4;B). Since 8(«;. B) <p,
all the vertices of A’ B are contained in the sub-set of R* given
by 8(p, B)<p. But the latter is a convex regiont and therefore
contains A’ B. That is to say, 8(p, B)<p if ped’B, and since
p <8(B, K—U,) we have A’ BCU,. Therefore N(b,, s, K)C U, and the
auxiliary theorem is established.

In proving the main theorem we assume that we can select a particular
one from those of the given neighbourhoods containing each closed set
which is in at least one of themi. This being so, let K" be the n-dimen-
sional skeleton of K and assume that, if n <{m (m = —1), there is a stellar
sub-division o, K" such that:

(1) op,=0, in K? if p <m,

(2) N(a, o, K™)CU,, where « is any vertex in o, A" and U, is o
particular one of the given sets U(a).

1f Am+1lis any closed (m-+1)-simplex in At the sets U(p). A"+ are open
relative to A™+1. It follows from the auxiliary theorem, with o,, 4"+! and
o, A™*! taking the place of K and L, that there is a sub-division %0, A™+1,

leaving o,, A"*!, and hence o,, K™, unaltered, such that

N(a, 0%q, A") C U (a)

if aeota, (A™1—Am+1), and N(b, 6% 0o, A" CU, if beo, A"+, Let
0,1 be the resultant of o,,, followed by all the sub-divisions o* correspond-
ing to the various (m-1)-simplexes in K™*+!. Theng,,,, =0, in K™, whence
o1 =0, in K* if n<m. If beo, K" any closed simplex b4, in
N(b, o, K™H1), is contained in o, (K™} A™+1), where 4™+ is some
closed simplex in K™+! (possibly b4 Co,,,, K™, in which case 471 may be
arbitrary). Therefore b4 CU,, and it follows that N(b, o,,,, A"t)C U,
if beo, ., K™ Finally, with each vertex a, in o, K**1—g, , K™, we
associate a particular neighbourhood U, selected from the neighbourhoods
U (a) which contain N(a, g, K™?).

The conditions are now as before, with m replaced by m-+1. 1f we begin
with o_, =1, it follows inductively that they are satisfied by some sub-

t Alexandroff and Hopf, T'opologie, 598.

1 This assumption is justified, without an appeal to the axiom of choice, if no point
is in an infinite number of the given sets. For in this case the intersection of each sub-set
of the given sets. s open. Let all these intersections be included among the given sets.
From those containing any closed set which is in at least one of them we then select that
one of the given sets which is contained in all the others. This condition is satistied in
the corollary to Theorem 35 and in Theorem 36 below.
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division o,, for all values of m. Taking o to be the sub-division given by
0d =0,4if 4 TK" let « be any vertex in oK. Any closed simplex ¢4, in
N(a, ak), is contained in o, K" for n=dim(ed). Therefore a4 CU,,.
It follows that N (e, oK) C U,, which is one of the given open sets, and the
theorem is established.

Let X, and X, be closed sets in a complex K and let U;= K—X;. IfX,
and X, have no common point, each point in K is either in U, or U, or both.
By Theorem 35 there is a sub-division o K such that N (¢, ¢ K)C U; (¢ = 1or 2)
and hence does not meet both X, and X,, where « is any vertex in oK.
That is to say N(X,, oK) does not meet N(X,, oK), where N (X;, oK) stands
for the totality of closed simplexes in oK which meet X, Clearly
N (X, o) is the closure of the open neighbourhood O(X;, oK), and we
have the corollary to Theorem 35:

W

CoroLLArY. A lopoloyical polyhedron is a normal topological spacet.

'THEOREM 36. Any map of a complex K in a simplicial complex L s
Lomotopic to a simplicial map of oK in L, where o 18 o sustable sub-division
of K.

If f(K)C L is a given map, f~1{O(B, L)} is an open set in K, where B is
any opensimplexin L. Each pointin K is contained in at least one of these
sets and, by Theorem 35, there is a sub-division o X such that N(a,cK)C U(a),
where a is any vertex in oK and U(a) is one of the sets f~1{O(B, L)}. It
follows from the argument used in the finite case that f is deformable into
a simplicial map of oK in L, and from Lemma 18 that the deformation is
continuous.

As in the finite case, the deformation f, (0 <t < 1) of a given map
fo(K)C L into a simplicial map f,(cK) may be chosen so that the
“trajectory ”’ p,= f,(p,), of any point p,, is a rectilinear segment in the
closure of the open simplex which contains f(p,).

THEOREM 37. Let fo(K) be a map of a complex K in any topological
space P, let L be a sub-complex of K and let g, be a deformation of the map
Jo(L) into g,(L) (0 <t << ; go=fy in L). Then there is a deformation of
the complete map fo(K) which coincides with g,in L.

Let K be the complex consisting of L together with all the simplexes in
K—L whose dimensionalities do not exceed n. It follows from the same

1 Alexandroff and Hopf, Topologie, 68.
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argument as when K is finitet that g,(L) [=f;1(K~)] can be extended to
a deformation fr(K") (n=—1,0, 1, ...), such that fr=f" in K" if
m>mn. The function f(p, t), defined by

f(p, t)=f(p) if peK”,

may be regarded as a transformation of the product complex
K()l = K X <0, 1>

into P. This transformation is continuous in K»x<0, 1) for each value
of n, and is therefore continuous throughout each closed cell in K.
Therefore it is continuous throughout K,;, by Lemma 18, and f,(K), given
by f.(p) =f(p, t) (peK), may be taken as the required. deformation of
Jo(K).

As a corollary to Theorem 37 we have:

CoroLLARY. Theorem 15 (§8 above) applies equally well to infinite as
to finite complexes.

For, in the presence of Theorem 37, Hurewicz’s argument, referred to
in the proof of Theorem 15, shows that the condition 4 implies B;. That
is to say, if every cell in K whose boundary lies in L is homotopic, with its
boundary fixed, to a cell in L (condition 4), then L is a retract by defor-
mation relative to itself (condition Rj;). The remaining implications:
R implies all the other conditions, R implies B and B implies 4, are valid
if K and L C K are any topological spaces, the first two obviously and the
last one by the argument given in § 8, which does not depend on the special
nature of K and L.

Lemma 19. If a complex K, expands into Kt is a retract by deformation
of K.

Let the transformation K,— K be the resultant of a sequence of
composite expansions €, é,, ..., and let K, =¢, K, ; (n=1,2,...). Itis
obvious that K is a retract by deformation of K, and hence, by induction
onn, of K,,. Therefore any cell in K, whose boundary lies in K, is homo-
topic, with its boundary fixed, to a cellin K,. Any cell in' K, being a map
of a compact space, is contained in a finite sub-complex of K, and hence in
K, for some value of n. Therefore any cell in K whose boundary lies in
K, is homotopic, with its boundary fixed, to a cell in K, and the lemma
follows from the corollary to Theorem 37.

1 Alexandroff and Hopf, Topologie, 501.
SER. 2. VOL. 46. No. 2249. Y
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16. Extension of previous results. It will now be clear, with a few
indications, that many of the main results in §§3-12 can be extended to
infinite complexes. Everything in §3 can be taken over provided that the
theorems and proofs are restated in terms of expansion rather than contrac-
tion. In particular, a collapsible complex is a complex of the form E(a),
where « is a single vertex and F is an expansion. Theorem 4 is true of
infinite complexes, as we have already observed. We drop Theorem 6,
and the rest of §§4 and 5 is replaced by §14. Everything in §6 can be
extended with trivial modifications, and we come to Theorem 12 in §7.
First notice that, unless Km+l= K™ the transformation K™ ->Km+l is
a composite filling of order m—+1, where K" is the n-dimensional skeleton
of a given complex K. Therefore K™ and K™+! have the same m-group,
and in extending Theorem 12 we may assume that our complexes are at
most 2-dimensional. Secondly, in any connected graph g there is a tree
which contains all the vertices of g. For, since gis connected, any two vertices
in g are contained in at least one finite, connected sub-graph. Let us define
the distance between them as the minimum number of edges in such a
graph, this minimum being attained by a simple segment. Let 7', be a
tree in g containing those, and only those, vertices of g whose distances
from a given vertex do not exceed n. Let each vertex whose distance
from some vertex in 7', is unity be joined to T', by a single edge, and let
T, ., be the graph consisting of T, together with these edges. Then T, .,
is obviously a tree satisfying the same conditions as T, with n replaced by
n+1, and a tree 7= T,+T',+... containing all the vertices in g is defined
by induction on n. Moreover, this argument shows that any tree is
collapsible.

The first part of the extended Theorem 12, namely that all complexes
in the same 2-group have the same fundamental group, follows from an
argument similar to the proof of Lemma 19. To prove the converse, let
T be a tree containing all the vertices in K (T'C K). By the corollary to
Lemma ¢4 and Theorem 2 we may shrink 7 into a point in sy K, obtaining
a system of generators and relations for =, (K). Tietze’s method of trans-
forming two systems of generators and relations of the same abstract group
into the same system can obviously be extended from finite to infinite
systems, and in all remaining details the proof is the same as in the finite
case.

As a complementary theorem to Theorem 12 we have

THEOREM 38. Any group is isomorphic to the fundamental group of
some complex.
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Any group G can be represented by a system of generators and relations.
For we can take every element in G as a generator and as a set of relations
we can take the “multiplication table”. Then a complex having & as its
fundamental group can be constructed by the method used when the set
of relations is finitef.

We proceed to Lemma 8 and Theorem 13. Let K, and K, be two
complexes of at most # dimensions which have the same n-group. Then

To(yo Ko) = T1(y, K,) = Ky, say,

where T, and 7'; consist of expansions and of fillings whose orders exceed
n. Asin Lemma 8, we replace each elementary expansion of the form

K—>K+aAm1,

where aAm1C K, Am-1¢ K and m > n, by the special filling K - K 4 4Am-1
of order m—1, followed by the filling K+ A1 K-+4adm™1 Ifm=mn-+1,
the n-element aA™1 is contained in K, the n-dimensional skeleton of K.
Therefore the transformation K»*—>K"+A4m-1 is a special filling of K.
Similarly K" — K*+aA*1 (k <n) is an expansion of K" if K - K+{ad*-1
is an expansion of K. After modifying the transformations 7 and T'; in
the way just described, we find that, omitting all the fillings whose orders
exceed 7,

(16.1) Ty (yo Ko) = T'1" (1 K,)= K¢,

where K7}, is the n-dimensional skeleton of K, and 7" consists of expansions
whose orders do not exceed n and of special fillings of order n. This is the
generalization of Lemma 8.

If an elementary expansion of order £ <n is applicable after a filling
fm, of order =, it is applicable before f”. Therefore (16.1) may be exhibited
in the form :

Fo* Eo(yo Ko) = Fy" By (v, K,) = Ky,

where E,is an expansion whose order does not exceed n and F;" consists of
special fillings of order ». Replacing each filling K- K+ A" in F; by the
expansion K—>K-+aAd", where a4A"CK, we have an expansion of
Ei(y;K;) = K;¥, say, into a complex K?*1. By Lemma 19, A;* is a retract
of K**! and, since K;* C K C K?*1, the complex A ;* is a retract of A,
in general not by deformation. If K— K- A" is any special filling in F;" it
follows that 4", being (n— 1)-dimensional and hence in K;*, bounds a cell
in K;*, since it bounds a cell in K§,. Therefore

Kl’Jll — DO:E: (Ko:k+ Eo:i:) — Dl:l: (I{l:i:+21:}:)’

1 O. Veblen, Analysis Situs (loc. civ.), chap. V. §24.
Y 2
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as in Theorem 18, where Z* is a cluster of n-spheres, in general infinite,
attached to K;*. Clearly

K#+2% = Dy(Ki+%)),
where Z; is a cluster of n-spheres attached to K;, and we have
K, +Z, = D(Ky+Zy),

as in Theorem 13. Moreover, the order of the deformation D need not
exceed n+1.

Everything in §8 applies, with minor alterations, to infinite complexes.
In particular, if L is a retract by deformation of K it has the same m-group
as K for every value of m. Half of Theorem 17, in §9, applies to infinite
complexes in general, namely the theorem that two complexes have the
same m-group if they are of the same homotopy type. The converse applies
to infinite complexes of finite dimensionality.

In the definition of the ring &, (K, p) and in Theorems 18 and 19 (§§10
and 11) K may be not only an infinite complex, but any connected, locally
0-connected | topological space. On the other hand, the proof of Theorem
20 seems to break down completely if K is infinite, even if it is locally finite.
For, if the matrix ||7;|| has infinitely many rows and columns, the process
of reduction involves an infinite sequence of formal deformations, which,
so far as I can see, might require an infinite sequence of contractions,
each of which could be applied only after its predecessors.

Theorem 21 is a consequence of Theorem 20 and conversely. Therefore
the two further questions left open are:

(1) Are two complexes of infinite dimensionality of the same homotopy
type if their m-groups are the same for all values of m?

(2) Have two infinite complexes the same nucleus if they are of the
same homotopy type and if their fundamental group satisfies the condition
tmposed in §11°%

Theorems 22 and 23 in §12 can be extended, in a modified form, to
locally finite sub-complexes of infinite manifolds. An =n-dimensional
manifold, finite or infinite, is defined as before and may be bounded or
unbounded. An infinite unbounded manifold will be described as open
{by contrast with a closed, or finite unbounded manifold). If K is a sub-
complex of a manifold M (K may be infinite if M is infinite), a sub-complex

t Lefschetz (loc. cit.), 91.
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U(K, M)of M will be called a regular neighbourhood of K if it is a manifold
and if yK expands into yU (K, M), where y is a suitable sub-division of
U(K, M). In general U(K, M) is a bounded manifold and Theorem 23,
as it stands, is false if the complexes are infinite. For example, if K is
a point in Euclidean space R", a regular neighbourhood U (K, R") might
be an n-element, or some infinite bounded manifold, or the whole of R».
However, if we take M to be a geometrical complex of the kind described
in §15, the following modification of Theorem 23 is true:

THEOREM 39. The interiorst of two regular neighbourhoods of the same
sub-complex of the same manifold are in a (1-1) semi-linear correspondence.

In the first corollary to Theorem 23, and elsewhere, n-elements must
be replaced by open (semi-linear) n-cells. Then Theorem 39 and the
generalization of Theorem 22 follow from the arguments in § 12, supported
by the following lemma:

LemMma 20. Let My, M,, ... be an infinite sequence of n-dimensional
polyhedral manifolds such that M;— M, , = M;+ E™ is a regular expansion.
Then I(M,)isin a (1-1) semi-linear correspondence with

M=% I(M),

i=0
where I(M;) stands for the interior of M,.

It will be sufficient to outlinea proof, the details of which do not
involve anything new. Let f; be a (1-1) semi-linear map of M; on M,
Then 'M;,, can be mapped on M, in a (1-1) semi-linear transformation
fi+1» Which coincides with f; except in E;*+U,, where U, is an arbitrarily
chosen regular neighbourhood in M; of E?~'= M, . E* = M;.Er. There-
fore we may assume that f; , = f; in L;”, where L is an open manifold in
M,, such that, treating M and I(M,) as polyhedra, we have

( 1) L'_'n c ?+1:
(9 M=3 Ly and I(My)= 3 f(LM).
i=0 i=0

If we begin with f, as the identical map of M on itself and
L()" — MOH'—"O(MOH: MOH):

+ The interior I(U) of a bounded polyhedral manifold U is obviously an open manifold
in the sense that any rectilinear, simplical covering of I(U) satisfies the combinatorial
condition for an open manifold,
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the map f;, subject to the condition f;=f; in L if i <j, is defined induc-
tively foreacht, and the required map, f(M) = I(M,),isgiven by f(p) = fi(p)
if peL.

If (K, M) is taken to mean the simplicial space determined by some
complex covering the interior of U (K, M), the generalization of Theorem 24
presents no difficulty. Theorem 25 is true of Euclidean complexes} K
and L, provided that they have the same ““ Euclidean nucleus”’, meaning
that sub-divisions of A and L expand into the same Euclidean complex (it
follows from the proof of Theorem 32 that this relation between K and L
is transitive). The corollaries to Theorem 25 depend on Theorem 21,
concerning which we are ignorant. Lemma 12 and Theorem 26 generalize
automatically. If the questions Q.2 and Q.3 of §10 are restated in
terms of Euclidean complexes and nuclei, and of the interiors of bounded
manifolds M, M; and M+ M;, such that M. M;= M. M= E?-1, Theorem
27 follows from the arguments in §12 and from

THEOREM 40. A bounded manifold and its interior have the same
Euclidean nucleus.

If M is any bounded n-dimensional manifold the theorem will follow if
we can show that some Euclidean complex expands both into a sub-division
of M and into a rectilinear complex covering I (). After an initial sub-
division, if necessary (e.g. sy), let N(M, M) be a normal simplicial
neighbourhood of 3/. Then, if we write M’ for the first derived complex
of M, N(M’, M') is geometrically equivalent to the topological product
My =M %x<0,1>. For let A%, A,*, ... be the k-simplexes in M
(k=0, ...,n—1) and let E}~* and F7?-*-1 be the closed cells dual to 4+
in the complexes 3 # and M#, dual to M and M (as usual the cells of M#
are composed of simplexes in M’). Let f, be the map of M’ on M’'x 1
given by fo(p)=pX1 (p eM’), and let f,,, (0<r<n—1) be a (1-1)
semi-linear map of

Noy=M+EMLEF 4 on (M x1)+(M" x<0, 1),

where M'" = F'+ Fy+..., which coincides with f, in M’ and is such that
Frn(BH)=F11x<0,1> (1<s<r+1; j=1,2,...). If r<n—1, it
follows from theorems on sub-division to which we have previously referred {
that f,., can he extended throughout each cell E7*2 to give a map f,.,,

+ I.e. locally finite complexes whose dimensionalities are finite.
} Cf. the proof of Theorem 6, §4,
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satisfying the same conditions as before with » replaced by r+41. It
follows from induction on r that such a map exists for r=n—1, and f,
is the required map of N(M’', M) on M,

Let My= M'—O(M’, M’). Then it follows from the last paragraph
that we may replace M’ by M,+Mj;,, where each point p in M, is
identified with px0 in M{,. Then M, expands geometrically into
Mo+ M, by Theorem 8. Let

M= Mo+ {M, x<0,i/G+1)} (=12, ..).

By Theorem 8 each of the transformations M;— M, , is a geometrical
expansion. Their resultant is an expansion of M, into a polyhedral
complex covering the interior of M+ Mg, and the theorem is established.

Balliol College,
Oxford.



