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NY0-3071 

ON ANGULAR l4014ENTUK 

1. Introduc!!.2e 

One of the methods of treating a general 8Jl8Ular mo­

mentum in quantum mechanics is to regard it as the super­

poEtition of a number of elementary "spins", or angular 

mo~enta with j = 1/2. Such a spin assembly, considered as 

a Piose-E1ns~ein system, can ~e usefully discussed by the 

method of second quantization. We shall see that this pro­

cedure unites the compact symbolism of the group tneoretical 

approach with the explicit operator techniques of quantum 

mechanics. 

We introduce spin creation and annihilation operators 

associated with a given spatiai reference system, 

a;= Ca!,a~) and a1 = (a+,a_), which satisfy 

[ax, al~ = o, r;,a;1=0 
~X' a;J = 019, (1.1) 

The number of spins and the resultant angular momentum are 

then given by 

n = 4= a; ax= n+ + n_ • 

l = L ai <ti~ -2 jX'> a% • (1,2) 

x~r' 
With the conventional matrix representation for a, the com--
ponents of l appear as 

J+ = Ji + iJ2 = a!a_, J_ = J1 - iJ2 = a~a~ 
J3 = ~ ( a++ a+ - a+ a ) = 1 ( n - n ) 

~ - - 2 + -

' 
(1.3) 

p. l 
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Of course, this realization of the angular momentum commu­

tation properties in terms of those of harmonic oscillators 

can be introduced without explicit reference to the compos­

ition of spinso 

To evaluate the square of the total angular momentum 

(1.4) 

we employ the matrix elements of the spin permutation ope:i·­

ator 

(1.5) 

Thus 

( V l-~1'f')•('fl/,_~j'1"') -- 2A A A A 
,, v ? ~ v " ""JX"'""f'f" - "'.r.r.., tt"' (1.0) 

and 

(1.7) 

According to the commutation relations (1.1), 

(l.8) 

Whence 

(l.G) 

a given number of spins, n = O, l, 2, ••• , possesses a 

definite angular momentum quantum number, 

p. 2 
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l 1 
j = 2 n = O, 2, 1, ••• (1.10) 

We further note that, according to (1.3), a state with 

a fixed number of positive and negative spins also has a 

definite magnetic quantum number. 

' j =~(n .. + n_). (1.11} 

Therefore, fxom the eigenvector of a state with prescribed 

occupation numbers, 

* we obtain the angular momentum eigenvector 

(a +)j .. m (a +)j~m Y°( jm) - + - "'\T.r 
- ((j+m) ! (j-m)~l/2 Io • 

(1.12) 

(l.13) 

Familiar as a symbolic expression of the transformation pro-

** parties of angular momentU!l'l eigenvectors , this form is 

here a precise operator construction of the eigenvector. 

On multiplying (1.13) with an analogous monomial con­

structed from the components of the arbitrary spinor 

x"J = (x+, x_) 

xj-tm xj-m 4 

cp (x) - -:-+--------
jm - [(j+m) l(j-m) 1]l/2 

* 
** 

A direct proor is given in Appendix A 

See, for example, H. lleyl, The Theory of µroups and 
Quantum Mechanics (E. P. Dutton and Company, Inc.~ 
New York, 1Q31) ,· p. 18Q. 

(l.14} 
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we obtain, after summation with respect to m, and then With 

respect to j, 

, (1.15) 

and 

' ( 1.16) 

ill 'Which we have written 

+ ~ + 
(xe. ) = L_ x 1 al 

) 
(1.17) 

To illustrate the utility of (l.16), concieved of as an eigen­

vector generating function, we shall verify the orthogonalit~ 

and normalization of the eigenvectors (1.13). Consic1er, then, 

) 
• (1.18) 

According to the commutation relations (1.1), and a~ -\f'o = O, 

we have 

, (l.19) 
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whence 

We have thus proved that 

( 'f'(jm),t'(j'm')) = Ojj' omm' • (l.21) 

As a second elementary example, we shall obtain the 

matrix elements of powers of J+ by considering the effect 
A.J -of the operators e ~on (1.16). We have 

+ 
e ( xa +) Yo = e }.x ,_.a+ 

) + + 
(x+ + A.x_ a+ + x_ a_ ~ Tro = e ~c (l.22) 

= L Cf jm(x+ + A.x_, x_) -f" ( jm) 

and there!'ore 

which, on e~pans~on, yields the non-vanishing matrix element 

( J·m I Jm-m' I jm') = [~ .1+m) 1 
+ j +m') 1 

~ -m m-m' > 0 t. 1) iJ 1/2 
J-m) 1 ' 

Similarly 

(l.24) 

(1.25) 
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and 

( j m I Jm' -rn I jm') - [ f j +m') 1 
- - j+iD) 1 

(j -m) l J 1/2 
[j-m.•)l , m1 -m. > o. 

A particular consequence of (l.24) and (l.26) is 

f(jm.> = [ c2!ll ~J i/e • Jtm +(j. -j> 

(lo26) 

= [ c2!ll ~f12 • J!."""'Y<jj) ' 
(1.27) 

which details the construction of an arbitrary eigenvector 

~rom those possessing t~e maximum values of tml compatible 

with a given j. 

It is .al.so possible to exhibit an operator which permits 

the construction of an arbitrary eigenvector from that pos­

sess!~ the minimum value of j compatible with a given m. 

Indeed, (l.l3J, written in the form 

states that 

where x., and two associated operators are defined by 



, K =a a 
- + 

Xz = f ( n + + n • l) • 

It is easily seen that 

and that 
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' (l.30) 

(l.31) 

= K • , [Ka• K_ J = - K_ , 

= -2Xa (l.32) 

~he latter are analogous to the commutation properties o:r J, 

save :for the algebraic sign o:r the commutator [ K+' K_ J • In 

keeping w.1 th this qualified analogy we a·lao have 

(l.33) 

as compared W1 th 

(l.34) 

Noting that the eigenvalue o:r K3 is j + ~, we see that the 

roles o:r j and m are essentially interchanged in K. The 

hyperbolic nature of the space in which the latter operates 

ia thus related to the restriction lml < j. 

If (l.2Q) is multiplied by a similar numerical quantity, 

and then summed with respect to j, one obtains 

00 

[_ 
J=1m1 

[ 
(2lml )I ] l/2 

( j '+I ml) I( j - I ml) 1 f.. j-I mtf ( jm) = F ~(t..K+ff Oml~mJ, 

(1.35) 
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where 

Pr(z) = rl z-~ Ir(2zl/2) =~ 
Yl=O 

rl 
nl(r+n) l 

n z ' 

P• 8 

(l.36) 

and Ir is the cylinder function of imaginary argument. A 

simpler generating function is given by 

[ [-c 2-.,-;_,_, , ..... ,..­

J 
2. Rotations 

e'AK.t. '(Uml ,m). (1.37) 

A significant interpretation is obtained for (1.15) 

by introducing the operators 

'+ + a+ = (xa ) , 

al_+ [ i~ +1 = x a , 

where 

-Il­a' = (x a) + 

a~ = [ xa] 

[xyJ = x+ y _ - x_ Y+ • 

With the restriction 

* (x x) = 1, 

(2.1) 

' 

(2.2) 

( 2.3) 

these operators also obey ·the co:rrnnutation relations (1.1), 

and must therefore constitute spin creation and annihila­

tion operators associated with an altered spatial reference 

system. Accordingly, (l.15) can be viewed as the expression 

of the state m = j, in a rotated·coordinate system, as a lin­

ea:r combination of the eigenvectors in a fixed coordinate 



system, 
I 

t(jj) 
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• 
( I + )2j J 

= a+ ~:=((2j)l)l/2 \ 
(( 2j) 1)1/2 0 fu 

The unitary nature of this transformation is here easily 

verified, 

(2.5) 

In general 

(2.e) 

where the coefficients are to be inferred from 

It is useful to introduce the unitary operator that , 
generates 'f'< jm' ) from 'f < jm~, 

, 
~ (jm') = uf (jm') , (2.8) 

Which pennits an alternative construction of the coefficients 

in (2.6}, 

• (2.9) 

In te1111s of the successive rotations characterized by Eulerian 

angles c/ 'l ,f), y) U is given explicitly by 
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-i.9 J' 
e 2 

-i~ J 
e 3 

' (2.10) 

where 

J' = -i 'f J 3 i 'f J 3 
e J e I 

J'' = 
-i...9 J~ i~ J2 

e J'e (2.11) 

are the operators appropriate to the coordinate systems 

produced by the previous rotations. The resulting expres­

sion for U('f:Jl/f) is 

(2.12} 

The angular momentum operators associated with the 

new coordinate system, 

(2.13) 

can be constructed from the transformed creation and annih11-

ation operators, 

(2.14) 

• 

In evaluating (2.14), we have made use of the relations 

-i 'f' J i 
+ ii/JJ3 +2 r + e 3 a+ e = e a+ ' 

-i.8J + 1"'J2 :J + + sin j a~ e 2 a+ e = cos 2 a+ -- + ' 
(2.15) 

of which the former follows immediately from the significance 
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+ of a+ as a positive (negative) spin creation operators while 

the latter may be verified by differentiation with respect to 

-3, in conjunction with the commutation relations 

p. 11 

(2.16) 

The form of (2.14) is in agreement with (2'.l) and (2.3), where 

(2.17) 

To construct the matrix of U, we consider 

(2.18) 

in whicn the a'+ are the operators (2.14). On writing 

(ya'+) = (a•uy) (2.1g) 

where u is the matrix 

-~ ( f + j) ' ~ 
e cos ~ , 

-~<f-t> :3 
-e sin ~ 

-! <f -"/!) ,J 
e sin 2 , 

~ (fJ+f> :J 
e cos 2 

( 2. 20) u = 

we immediately obtain 

(2.21) 
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Since (2,12) implies that 

(2.22) 

Wbere 

(2.23) 

we may simplify ( 2. 21) by placing tf = '/' = O, thereby obtain­

ing 

( ) cos f (x*y) 
10 (x*) U j {..9) ,D (y) = e 
"1' jm mm• :.rjm' 

-8 [ i~ J - sin 'a' x y 
(2.24) 

ro 
The matrix u is unitary and uni.modular, that is possesses 

a unit determinant. Its representation in.terms of spin mat­

rices has, as it must, the form of (.2.12), 

• 

Azq such unitary matrix can be presented as 

u = .-1>1 

where).{ is a Hermitian matrix. Since 

det u = e -i tr }{ , 

ua.2s) 

(2.26) 

(2.27) 

;.( must be a traceless Hermitian matrix and, accordingly, 

is a iinear combination of the spin matrices, with rea1 
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coefficients. Hence u can be written as 
i 

p. 13 

-- 'r!l•Sl 
u = e 2 (2.28) 

wheres. is a unit vector, specified by two· angles, a and~. 

The fact that (2.28) is the matrix describing a rotation through 

the angle 'r about the axis n affirms the well-known equival­

ence between an arbitrary rot~tion and a simple rotation about 

a suitably chosen axis. The rotation angle y is easily obtain­

ed by comparing the trace of u, in its two versions, 

~ tr u = cos ~ "( = cos ~ '8 cos ~ ( .P+i/J) , ( 2. 29) 

More generally, the trace of U for a given j. depends only 

upon the rotation angle y. We define~~ 

X(j) = ~~-J u~> = tr Pj u , (2.30) 

in which Pj is the projection operator for the states with 

quantum number j • II' we remark that U must also have the 

form of ( 2. 28), 

(2.31) 

we immediately obtain , 
J l 

~( j) ::: } e-illl"( = sin ( j ;92)y -
b sin 2 y-

• ( 2. 32) 

However, we can al so derive thi::1 directly from the generat-

ing function (2.21). 

* This trace is the character of' group theory. 
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For s1mplicit7 we an.all assume the reference system to 

be so chosen that u is a diagonal matrix, with eigenvalues 

e tiY • We replace x'; W1 th ta/ "17 and evaluate the deriv­

atives at 7~ ·= Oo According to 

3.<a/ar>Cf,, •• <.,>] = 0 = om,m• ' (2.33) .,, 
we then,bave 

L: t2j 'X(j) 

~ 

(2.34) 

in which the notation reflects the necessity of placing the 

derivatives to the left of tbe powers of "! • Now 

00 00 

a )>P a n ~ n 1 
exp(>. ~;7) = L iiT ('ai) -/1 = f__ A. = r-t , (2.35) 

n-o ~-o 

and theretore 

L 
j 

t2j'l( j ) = l i l 1 ) 
1-t. exp(-fr') 1:-t· exp(~y 

l = --...,;;;---1----2 
l•2t 0 cos '§Y+t 

, (2.36) 

which is a generating function for the'A.(j). On writing 

l J - ! , 
l-t·exp(-2 y) 

{2.37) 
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and expanding in powers of t, one obtains 

l 
( j ) sin( j + '§) y x {y) = 1 

sin 2Y 
• (2.38) 

Symmetry properties of U~~ (~8+) are eas111' interred 

from (2o2l)o According to the invariance of ~x*uy) under 
. * the substitutions<.f ~1'+11. x H ..,, and <I __.<I -'ff,'8 ~ w-17, • 

+~ -i/t, Y+-+ iy_, we have 
- + 

u~~(tf"91') = u~~~('l'+1f,i9,f-n) = 123u~~~1 (Cf-u,u-.0,-1') • (2o39) 

A~ong the additional equivalent forms produced by successive 

application of these transformations are 

123u~ -cf,u-8,,,,_.,.) = u!i._~, (tt-f,~',-w-t) 

= u< j > , _,., .e - cp) 
""JD. I "1ll TI I 

We also note that 

On removing the angles lf and cf with the aid of (2.22), we 

find that the content of (2.3g) and (2.40) is 

(S.40) 

(2.41) 
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In view of these relations. it is sufficient to exhibit 

u!Ji~ ('8) for non-negative values of m c:..1.Ld m' o 

On expanding the generating function (2o24) in terms 

of c.p jm(.x.,l-L, or of tj' jmv (y) 9 we obtain the equivalent ex­

pressions 

(2 .. 43) 

of which the latter is the counterpart or l2.7)o As a con­

venient means or constructing U~~ (.-8)~ we place 

x: = sin f cos f, x~ = t - cos 2 'f, so that (2.43 b) reads 

2 2 L (sin~ cos ~)j+m 

m -[ (_j_+m ...... )-1(-j--m-) -, l.-17---2 

. :::; 

Thus 

r ( Sin ~) j +m { COS ~) j ~mi 

[<J+m')l(j-m'l1]
21

/
2 

(j) j-m' [ JJ..-tm) l ll/2 
umtn, (.8) = (-l) {j-m) l (j+m') l{j-m 1 ) &j • 

·[(sin ~)-m+mi (cos ~)-m-m') 

.[(~)j-m tj+m" (l-t)j-m•] t "'cos2 f • 
The structure of the right side will be recognized as that 

of the Jae.obi polynomial, 

{2.44) 

0 

(2o45) 
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?-' ( b t) F( b t) - f b•l) I tl-b(l. t)b-s. V n a.:> ; = -n, a+n, ; - b+n-1) I - • 

(2.46) 

whenct.I 

( ) 
f 

) j-mV [W-;H l 1/2 ummJ' ( ,3) - -l +m llimv ~ l ( i !l )m-m• g )m+:m• 
- m+m v ) I j -m Tf-·m' a n 2 ( cos 2 • 

(2.47) 

Other forms can be obtained from (2a43), correspondins to 

the variety. of transformations permissihJe to hypergeometric 

functionsa Thus the known relation 

F{a!' b.11 c; x) ~ ( 1-x)-a F( a, c -b, c; -
1

X ) " -x (2a48) 

applied to (2e47), gives 

.. F(m-j 9 m' -j, m+m'+l; ~ cot2 ~ L 

Another aspec~ of reference system tran~formation is 

best discussed in termd of 

I 
This is equivalent to the result obtained by Po Guttinger, 

Zeito f o Physe 73p 169(1931). 
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This quantity is the transformation function 

I ( Y ( j mu) , t' ( j m)) = ( W , j mv I j m) ~ 

in which we have us od W to designate collectively the 

angles cp~"/' , relating the new reference system to the 

fixed onee We shall be interested in the differential 

characterization of this transformation function, in its 

dependence upon the Eulerian angles. Now 

1 a u-1 _ u·l T 

y w - "3 

1 a u-1 _ J u-1 = u-1 J' Ia:f' - 3 3 

Where 

J3 = J
3 

cos"9 + ~ sin-9 (J+ e-icp + J_ e1t1 ), 

~ = h (J+ e·itl' - J_ ei<I ), 

and 11 therefore 

1 a <wl > = <wlJ3I ) r a ti 

ei<f [L + 1 lo 8'91a >] (wl <1 ~ - co I acp sin.,S-a~ 

e-i<P[-t + 
1 l a .el a >J Cw I sin:S Cy dii" - cos y af 

(2.52) 

(2.53) 

) (W I J+ I --
) = Cto\J.I 

) (2.54) 

). 
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This is a differential operator representat1on ot an 

arbitrary angular momentum ve:ctor. The tam~liar ditter­

ential operators associated With an orbital angular mo• 

mentum emerge it the transformation function is independ.• 

ent ott • ~inoe this corresponds to m.' = 0 9 the quantum 

* number j must then be an integer ~ 

The differential operators '(2.54) are well•known 1n 

connection With angular momentum ot a rigid body, and, 

accordingly, the eigenvalue eqtiat1on tor I! in tbia i-epre­

sentation will be identical with the. SJ111Dletr1cal tol) woe 

equation. To construct this equation directly, we remark 

that 

;rb2 - 2 J~ J 3 oos8 

= s1n2'8 • 

since 

• (a.le) 

On ~eferring to (2o52), we immediately obtain 

- ~ + cot -v "a":J" + 2 r 
a2 a a 1 
a.9 sin ',fJ 

tL • 2 cos8 !,.., L. + L) J U-1 
at~ r ~., ~ 

(2.5'1) 

* The fact that the general ditrerential operators (2.64) admit 
half-integral values of j has been noticed by F. Bopp and 
Ro Haag, Zeit fo Naturforch. Sa, 644(1950). 
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and the analogous differential equation for (CA.> I ), 
including the eigenvalue equation 

[ L + cot'9 .L + j(j+l) - m2-2mmn cos.e +m'2](w,jmn I jm) :. 0 
a-9 2 oH sin2;; 

(2.58) 

An integral theorem concerning the angular depend­

ence, of U9 or u-1
9 is stated by 

Ju d<.J = p 0 ~ (2o59) 

where P
0 

is the projection operator !or the state j = o, 
and 

dw = ~ sinS · d8 · ~tr dtp · k d"f {2o60) 

Jdw = 1 0 

The integration domain is here understood to be 

0 :: cp < 411' !! 0 ~ "" < 411', {2o61) 

To prove this theorem we subject (2e57) to the angular 

integrations contained in dUJ o In virtue of the period­

icity possessed by u-l over 411' intervals of c..p and 1J t 

we obtain 

This result asserts the vanishing of J u-l dw " and the 

::: 0 0 ( 2 .. 62) 
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Hermi tia.n conjuga.te JU d w , except for the state with 

j =- 0 0 The fact ttat the rotation operator U reduces to 
" I 

unity for this spherically symmetrical state completes 

the proof of (2.59). We shall defer application of this 

theorem to the next section. 

3~ Addition of Two Angular Momenta 

Two kinematically independent angular momenta, J 1 
and J 2 , can be expressed by 

J ) a} ( ~ I ~ .!d ~I ) a 1' ' 

p .. 21 

-1=w 
(3.1) 

J =) b; < 't I ~ g_ J 'f' > b}' , 
-2 h 
where the a and b operators ind:ividually obey (1 .. 1), but 

are mutually commutative.. In studying the eigenvectors 

of the total angular momentum, 

the following scalar operators play an important i•ole: 

J+ = (a ""b) 
' J_ = '(b+ a) , 

J3 1 [ + - (b+,b)J 
1 

n2), = 2 (a 9 a) = ,5( nl -
'~ 

and 

X + = [ a+b+ J , -x .. = [ab] , 

A 3 = ~ [ {a.,' a) + (b+,b)J l 1 + 1 = 2 n + • 

(3.2) 

( 3.3) 

(3.4) 
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As one can easily verify by direct calculation, the operatt>rs 

·0andJ< comraute with each other (as well as with J), and 

obey 

[ J 3' J !] = ! J + 

[ -x 3' J( ! J = ! 1\ :! - ' 

It will be noted that the commutation properties of the 'J 

(3.5) 

operators ar~ thoso of a conventional angular momentum, while 

the 1( operators are analogous to the hyperbolic angular mo­

mentum K, which was discussed in the first section. We shall 

denote the eigenvalues of J 3 and 1\. 3 by ~ and )) , respec­

tively o These quantities have the following significance, 

( ~.e) 

In evaluating the square of the resultant angular momen-

tum, we encounter 

( 3 .. 7) 

=L + + 1 
a a,b,b - 2 n:i_ I1z 
~ ~ ~ 1 

• 

This can be expressed either in terms of the J operators, or 

of the 1\ operators; since 

' 
( 3 .. 8) 

and 
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Indeed, 

{3.10) 

and 

{3.11) 

From the first, conventional, representation of ~2 in terms 

of the angular momentum "j , we in1'er that 

3 ~ I ~I ' 
{3.12) 

or 

j ?: I j.l - j 2 I I 
(3.13) 

while the hyperbolic representation implies that 

)1-lz:j ( 3., 14) 

or 

\3.15) 

We have thus arrived at 

{3.16) 

• 
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the familiar restriction on the composition of two angular 

momentao 
2 

An eigenvector of l is conveniently labelled by the 

eigenvalues of J 3 , ~3, and1( 3 • In virtue of (3.8), 

the resulting eigenvector 'f < jmflY) is equivalently desig­

nated as~(j1 j 2 jm). In particular, the state with 

),) = j + l corresponds to jl + j 2 = j, and 2j 1 = j + ~, 

2j 2 = j - ~· The special state of this type with m = j 
can be realized in only on& way, since m = jl + j 2 requires 

that m1 = j 1 , m2 = j 2 • Thus 

= ((j+µ.)1)172 • (3.17) 

With an arbitrary reference system, -this result becomes 

J / k "'T/ +>j+µ. + j-µ "Tr 
((2j)l)l 2 <J'jm(x) !'(jlll!'j+l) =ta xb 2 Io, 

m = - . ( j+~) i ( j -~) i 

according to (2.4). We multiply this 7J analogue of (1.13) 

with cj/j~(~ ), and sum with respect to ~' 

(3.18) 

((2j)l)l/2 L<J>jm(x) tf 31'(~ lf(jlll!'j+l) 

mµ, 

= ( ~ +(xa+) + ~-(xb+)) 2j j, 
( 2 j) 1 

(3.19) 

Further summation with respect to j then yields 
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l:;.. ( ( 2j ) I) 1/2 ':f jm (x) if j II-( ~ ) -fr( j 1111>j+ 1) 

= e ~ + (x a+) + ~ _ (x b +) ~ • 

To complete the determination of the eigenvector 

~( jm"~ ) , we need the analogue of ( 1. 2Q), speoifylng 

the eigenvector with arbitrary.V in terms of that with 

the minimum value,, j+ lo For this purpose, we examine 

* the operator 

v = t21( 3 -1 

which has the following significant properties, 

t k v = (2 -K 3 -1) v , a )2 -'l/ 2 (tat v = (2 J\3 -1) v, 

and 

v-1 -_1\ _ v = t 2 1(_ 
' 

1( _ v = t 2 v 1( -

In conjunction with 

2 -it' '2 
4 J + 1 = (2 .I\ 3 - 1) - 41(+ 1(_, 

we obtain 

( a2 + l ~aa - 4 J2+ 1 ) v - 4 -1<\ + v 1\ .. = o ' 
at2 t a~ t~ 

an ordered operator form of Bessel's equation. The 

solution is 

* Our procedure here is based upon the general method 
of Appendix A. 
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(3.20) 

(3.21) 

( 3.22) 

( 3. 23) 

(3.24) 

(3.25) 

(3.26) 
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where P is an integration constant, and the notation 

is intended to indicate that P is inserted between the 

powers of' 1( + and 1( _ in the ordered operator expansion 

of' the !'unction F defined in {l.36). The second solution 

of the Bessel equation has been rejected in order to con­

form. with the fact that t 2?< 3 .. 1 must vanish as t-0 , 

in view of the non-negative character of' '"1< 3 

operator {3o26) can also be written as 

V =) t2j+l F { t2 N . p -1./ ) 
~ - 2j+l ''•' j,j+l; J\ -

J 

t2Y-l P 
j~ ' 

- 1. The 

where Pjv is the projection operator for the state with 

the indicated eigenvalues. According to the well-known 

Bessel function power series we then have 

• 

where 

• 

This yields the desired eigenvector relation, 

It will be noted that) with respect to j and)) , 

Eq. (3.30) is converted into fl.2g) by the substitutions 

{3.28) 

{ 3.29) 

{3.30) 
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j -+ I ml 1 
- 2 ' (3.31) 

which are in accord with the significancA or K. Cor­

responding, then,to the generating·runctions (1.35) and 

(l.37), we have 
00 L W j V (A.ff (jm~V) = F 2 j+l (">.1( +>-f (jm~ j+l), (3.32) 

JJ:J+l 

and 
00 

( ( 2j+l) 1i-1
/

2 (J.?' hJ ( >S'f ( jn 11.u) = ell.1( + 't- (jmjl. j+ l.), (3,M) 

in which 

• 

The application or the operator eA~1'\+ to (3.20) thus 

produces 

tllV ( 2j+l) -1/2 4> jll(x) <.f jjl. (} ) x .1 lJ (JI.) y {j lllll \)) 

= 
8

A[a+b+) + ~+(xa+) + ~-(xb+)to • (3.35) 

The eigenvectors are exhibited somewhat more 

explicitly* in the result obtained by applying lJ j)) <X+> 
to (3.18), 

* The normalization constant does not automatically appear in 
the corresponding group theory formula. B. L. van der Waerden, 
Die Gruppentheoretische Methode in der Quantenmechanik (Berlin,1Q32l 
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in which we have employed j 1 and j 2 , rathF.:r than IJ. and }I • 

For the purpose of converting (3.36) into a convenient 

expression for the transf'ormation function 

we make the replacement x+ ---? z ~, x _ ---? -z:, and take 

the scalar product with the generating functi9n of the 

The ensuing formula can be written 

in virtue of the definition* 

1/2 j1-J2+m 
(jlj2jm/jlmlj2m2) = (2j+l) (-1) X(jlj2j;mlm2-m). 

Multiplication with 

,-- This X coefficient is related to the V coefficient of 
Gp Racah, Phys. aev. 62, ~68(1942), by X = (-l)j2+J-J1v 
We have introduced the X coeffici~nt by virtue of its 
greater symmetry: compare Eqs. (3.44),(3.45) with Eq. (19a) 
of Racah's paper (henceforth referred to as R). 

p. 28 

(3.37) 

(3.38) 

( 3. 39) 

(3.40) 
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and summation With respect to j 1 , j 2, E.n.d j 3, then yields 

the generating function 

• 

Symmetry properties of the X coefficients can be 

eas1ly inf'erred from the invariance of the generating 

p. 29 

(3.41) 

(3.42) 

function to particular substi tutionf.:,,. Thus, the null _!_yr 
effect of multiplying x+,y+,z+ by·eZ , and x_,y_,z_ bye 2 , 

indicates that X vanishes unless 

The invariance of the generating :f\l.nction for simultan­

eous cyclic permutations of x, y, z and a,f3,y implies the 

corresponding property for X: 

The interchange of x and y, combined with the substitu­

tions a H -f3, y -t -r, disclose,s the behavior of the X 

(3.43) 

(3.44) 
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coefficients with respect to non-cyclic permutations, 

X(j2jlj3; m2~m3) = X(jlj3j2; ~m3m2) = X(j3j2jl; m3mzni) 

(3.45) 

' 

while the exchange of x+,y+,z+ with x~,y_,z_, in con­

junction with sign reversals for a,~,y, leads to 

.Among the implied properties of the transformation 

function (3a37) are 

(j2jljm I j2m2jlml) = (jlj2j-mf jl-~ j2-m2) 

jl+j2 ... j . . 
= {-l) ·<J1j2jm I jlm1Ji11z) • 

The expression for X(j 1 j 2j 3;~mzn3 >, obtained 

by exp anding (3o 39), is 

X(j;m): [<J+l)l]-l/2 ~ 
n 

in which 

l 3.46) 

( 3. 4?) 

(,3.48) 

(3.49} 

and the summation is to be extended over all n1 subjec.t to 

~ - 2ji ~ n. > 0 , 
I l. -

(3.50) 
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and 

The latter conditions can also be written as 

It follows from the non-negative character of these 

quantities that the n1 are uniquely determined if one 

of the nine integers J - 2j 1 , ji + m19 ji - m1 is equal 

p .. 31 

(3 .. 52) 

to zero. In general, the number of terms in the sum (3.48) 

exceeds by unity the smallest of these nine integers. It 

is a matter of convenience which of the n. is chosen as 
l. 

the summation parameter. 

The X coefficient cen also be exhibited in closed 

f'orm whenever the I m1 I b,.ave the minimum values compatible 

with the given j 1 o The simplest· illustration of this is 

provided by X(j 1J2 j 3;0QO) corresponding to integral values 

of· j 1 , J2 and j 3 o Note that this quantity yanishes, accord~· 

ing to (3o46) if ~ J is not an integere Our procedure here 

is to place x =a/ax+' with analogous substitutions for y_ 

and z=' and to evaluate the derivatives at x+ = Y+ = z+ = O. 

Since 

= 5m 0 , (3.53) 
l' 
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this effectively isolatee them= 0 terms in (3.42)o 

The reduction of t~e gen~rating functlon can be per~ 

fonned with the aid of the following theorem con::err.:.-

p .. 32 

ing ordered operators, which will be proved in Appendix Bo 

If a and a+ are two operators satisfying [a, a4 = 1, and 

+ f(a ) is an arbitrary function, we have 

+ ~ 
za; a f ( +) = .L f (__!_) e a l':z 1-z e 

z + 
a ; a 1-z 

The differential operator realization of this. with 

a= a/aa+, is the form actually amployedo 

The result of the calculatior- is 
I 

L p jlj2j3 (a!'>ct X(j1j2j3.:000) ,. ll + a.2 

j 

which is a generating function for X(j;O). 

J-2jl J-2j2 J-2j3 

On writing 

a. e x 
( 1 T • ) I ( lJ • ) n71 ~ ' ) • -"-J • - -J •\ - ,J .~J~ I'> 2 1 2 2 2 3 

" 
we obtain the explicit formula"'~ J 

lJ (~JH 7\ 
X(j;O) = (-1) 2 

°[(J~1>~]!/2 
i :. 1 

(J.S6) 

----------·--------
This result is contained in R, Eq.(22 1 )n 



NY0-3071 p. 33 

We extend this argument by making the substitutions 

x_ ~ a/ax+, y_ ~ a/ay+, z+ ~ a/az_, and evaluating 

the derivatives for arbitrary x+ 9Y~~ and z • In view of 

r(jl+ml)g] 1/2 x+2m1 cf jlml (x)--7 l"{j1-B11 )2 r2m1 )! ' ml > 0 

0 

and 

0 

we shall thereby obtain the X coefficient for m1 ~ O, 

m2 ~ O. -m3 = m1 + m2 • The.values of X when two of the 

m. are negative can then be inferred from ( 3. 46) e The 
.l 

generating function now becomes 

9
a.[yzJ -r(3(zx1'+yfxy) ~ 

on expanding in powers of x ,y ~ and z ~ we find 
... + -

that 

(3.58) 

( 3 .. 60) 

(3.61) 
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The result attained by further expansion of (3.61) 

is 

[ (J+l)I IT 
' i 

{j1+lm1l )J 

( j 1"" lm1I ) I 
1 1112 

(J-2J1>rJ X(j;m) 

Po 34 

\, ~J2-2 fm3I =Ll) (2m1)l (2m2)1 

( 2m.i -~) l n1 ' ( 2m2 -n2 ) 'n2 l 
n, 11i 

where 

The double summation is to be extended over such non-

negative integers that satisfy 

J - 2jl - n2 ~ 2m1 -~ > 0 -
J - 2j - ~ > 2m -2 - 2 n2 ~o 

J - 2j3 ~ 2lm3( - hl - n 2 :::, 0, (3o64) 

and for which J+Di+n2 is an even integero The sum con­

sists of a single term if one of the J-2ji vanishes, or 

if ~ = m2 = 0. This simplification may also result from 

the evenness requirement on J 3• Thus 

' 
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• -;-r . 1) 1 ) 1 !77) (-J-J -- l(-J-j 1(-J-j -·"' 1 2 12 2 2 2 3t::: 

(~;) 1 
, J even 

8 J odd 

which are the X coefficients with the minimum 1m11 cor­

responding to half-integral values for two of the j 1 • 

The orthogonality and normalization of the eigen­

vectors "fr ( jm~ v ) can be verifiedj with the aid of 

(3o35), by an extension of the procedure leading to 

(1.21). According to Eq. (7) of Appendix C, we have 

p. 35 

, ( 3.65) 

( e}.[a +b +3 + ~+(xa "") + f _ (xb +) 'f'o , et<[ a +b •1 + i( ya+)+ 1_(yb+ >fo) 

1 =---
(1-1K)2 

and the expansion 

establishes that 

e 

(~ -1~1) 'x-:t-y) 
1-A.'k)( , 

The unitary nature of the transformation f <j 1~j~2 ) ~ 
"'1'Cj1 j 2 jm), and of its inve~se, imposes the following 

{3.66) 

{ 3.67) 

( 3.68) 
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oonditions upon the X coefficients. 

~X{jlj2j3,mlm2m3)X(jlj2j3;m1m2m3l = 
1'Yl1"Yrla 

and 

~ ( 2j3+l)X(jlj2j3;mlm2m3)X(jlj2j3;mJ..~1%)= 
jam3 

As a particular consequence of (3o69), we have 

L_ [x(j;m~ 2 = 1. 
1'Tl 

The Rotation Matrices 
-

The results of this section can be applied in 

p. 36 

(3.71) 

developing further the pro]erties of the matrices U(j~ (tp'9"/J), 
mm 

which were introduced in Section 2. If U is che operator 

generating a reference system rotation for the composite 

system with angular momentum J = J 1+J2, while u1 and u2 
are the corresponding opera~ors for the individual angular 

mome,1.ta, we have 

according to the exponential form (2.31)~ In particular, 

theorem (2e59) states that 

fu1 U2d<.J = Po' 

where P
0 

isthe projection operator for the j = O state 

of the resultant angular momentume On taking matrix 

elements of the latter equation~ we find . 

('3 .. 73) 
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f ( jl) ( j ) 
um m 1 (W) u 2 , (w ) dw = 

1 1 m~2 

1 m -m' 
= 2· 1 oj j 0-m m o_mJm1<-1) 1 2 

J1+ 1 2 l 2 -i~ 

(3.74) 

since 

I j .-m 
(2jl~l)-l 2 (-1) 1 1 bj . 0 • (3.?5) 

1J2 -mlm2 

In view of (2.41), it is also possible to write (3.74) as 

(3.76) 

which expresses tho orth~gonality properties of the rota-

ti on matrices, in their dependence upon the rot at ::.~'n para-

meters. 

The orthogonality relation of the trace% ( j), 

derived from (3.76), is 

5~ ( jl) ·U·'l, ( j 2) dc.cJ = 0 
jlj2 

This integral can be simplified, since the "X, ( j) depend 

only upon tbe rotation angle y. We write 

(~ 1 ] 1 ~.,. ...µ ' 
d W = ~ 2dy sin 2y 5( cos 2Y - cos 2-8 •cos ~- ) dW, 

(3.77) 

(3.78) 
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and, after first performing the di.> integration, obtain 

' 

which can. be verified directly. 

We return to { 3. 72) and observe that its matrix 

element is 

= c {2j+l)X{jlj2j;mlm2-m){-l)m-m•u!u;~ {~))X{jlj2j;mim2-m'), 
jmm' 

(3.80) 

or 

With the use of the orthogonality relation (3.76), this can 

be presented in the symmetrical form 

{3.82) 

Specializations of this integral are provided by 

( 3.83) 

and 
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U (' ) = P ( cos {) ) 
00 ' ' 

where Yim is the spherical harmonic associated with 

integral I• and P1 (cos '8 ) is the Legendre polynomial. 

Thus 

and 

p. 3g 

(3.84) 

(3.85) 

l:ir P1 ( cos..9) P
1 

( coa..9) P
1 

( cos..9) ~ sin.9 d.U = [xc 1;0)] 2 
- 1 2 3 

0 
( 3.86) 

The multiplication property of the trace, as derived from 

( 3. 80) is 

(3.87) 

' J 4!"2j 1 ?.. 0 
, otherwise. ( 3 •99 ) 

One can regard this as a realization of the projection 

operator statement of the angular momentum comoosition 

law, 
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L
•j i 

Pj Pj = Pj (~.sg) 
1 2 . . I J• fJ,-Jl 

since (3.87) is the trace of the equation obtained by multi-

plying (3.B9J with u1u2 = u. 
We shall conclude this discussion by derivtng the com­

pleteness relations for the functions 'X. ( j) (w) and U~~ (w). 

Referring to ( 2. 36), the generating function of the 'X, ( j), 
iy• 

we replace t therein w:t th t J: and obtain 

~ 2j '\I ( j ) ( i ( j+~)y 1 1 L_t IJ' w) e = -~~--""P"-" __________ _,,__ 
J (1+t2) cos i' ... 2tcos ~ - isin f-' (l-t2)' 

the imaginary part of which can be written 

We now consider the limit t ~ 1, and infer from the known 

result 

1 f - ) Lim i 2 2 - o(x , 
E-+ o x +f 

that 

(3.90) 
• 

(3.91) 
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However 

J ] r o( cos i - cos f > d w = 
sin i 

2rr I ll(ooe i - cos f>•lni jd-r • 1, 
0 

so that ( 3.o g3) can be written 

~ l( j) (W) 'XS j) (c.f) = ll("'•J), 

which is the completeness relation ot the~ j}. As a 

specialization of (3.g5), we place y• = 0 and find 

An operator expression tor the composition ot suc­

cessive rotations is given by 

We take the trace ot this equation for the states with 

quantum number j, and, in virtue of the unitarr property 

of U, obtain 

which is in the nature of an addition theorem. The com­

pleteness relation for the U~~ (cu) is reached on multi­

plying (3o98) with 2j+l and summing with respect to j. 

( 3.94) 

( 3. g7) 
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In view of (3.ge), we have 

}(2j+l) tr~~ (w) u~~ <cJ>* = o(<.tJ~). 
Trn-m> 

On integration of (3.96) and (3.gg) with respect to the 

Eulerian angle"/J~ there emerges the addition theorem and 

the completeness relation of the spherical harmonics. 

4P Th.l'ee and Four Angular Momenta 

Bigenvectors far the resultant of three angular mo­

menta can be built up in several ways, as symbolized by 

Thus, according to the first procedure, we construct 

-f'c jl Ini j2j 33 2~3) and then :P ( 31[ j 2j 31 323jm)' while 

the last method o:f' addition yields ~(j3(j1 j 2lj12jm). 
The notation,. (j233J, for exar.iple, is intended to indicate 

that these angular momenta are not involved explicitly in 

the composition of jl and j 23 to form j. Similarly, four 

angular momenta can be combined in various pairs~ 

p. 42 

(3.,gg) 

(4.l) 

in which the first method, say yields ~([~1j 2]j12 {j 3j4lj 34 jm) 
through the intermediary of-f(j1j 2j1i21J.2j 3J4j 34m34>: Our 

problem. in this section is the evaiuation of the transform­

ation function connecting two such schemes o:f' adding four 
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angular momenta. The analogous question for three angular 

momenta can be regarded·as a specialization of this more 

symmetrical problem. 

To facilitate the addition of angular momenta in pairs, 

we observe that the generating function (3.35), w~itten as 

can be obtained from 

by the application of the difterential operator 

with the understanding that the derivatives are to be 

evaluated at t 1 = t 2= O. Accordingly, if we apply (4.5) 

and 

exp({33[* af:-] +132(y *)+~1C7 k», 
3 4 3 l 

to the generating function of the °Y'Cj1m1jzn2j~3j 4m4 ), 
namely, 

(4.3) 

(4.5) 

(4.6) 
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we ab.all obtain a function generating~(j13 2J 1 ti12 333 4J34m34 ). 
The further application of the operator 

then produces 

(4.e) 

L. ~2j12+1)(2j34+l) (2j+l;) •l/2 '-f jm(z) p jlj2jl2 ( u) • 

• p 3334334 ( ~) ~ j12j34J (y >"f'< [313:J 312 [33j.J j 343m) = eQ , (4.Q) 

in <Which 

Q = a.3 [ a'''b +] + '33 [ c + d+] + y 3 °l. '3]. [ b • d + J +y 3 °l. (32 [ b + c + J +y 3"2131 [a+ d + J 

+ y3~(32 [a+c+]+y2a2 (za+)+r2°'J..(zb+)+y1 (32 (zc•)+y1 '3].(zd+). 

J.a an important s~ecialization of (4.Q), yielding the 

eigenvectors with j::O, we place y1 = y 2= O, and y 3= X., with 

the result 

where j' = 312 = 334. An analogous equation for a different 

(4.10) 

(4.11) 



mode of addition is 

R'I = e , 

NY0-3071 

The transformation function connecting the two schemes is 

determined by 

in which we have written*' 

We now employ the theorem (Eq.{C 28)) 

II 
For simplicity we have assumed that the parameters 

a,~ are real. The generating function (4.18) is valid 
without this restriction. 

H 
The W coefficient thereby defined is the same as that 

discussed in R • 

P• 45 

(4.12) 

(4.13) 
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in Which the Al~ are :four sets of two component operators, 

obeying 

and l~I, IKf are the determinants of the anti-symmetrical 
-

matrices A~v and ~~v • For the application in question, 

-1 L A. .. JI )( .. ., = 0.34.~ !l2· '33a.f ~ • a.~ °2 '32 • 133 a:i. '3i 

- °"l '32 °{ 132 + a2 ":I. a.2 '31 • 

On changing the signs of °'). and (3~, we obtain :for the gen-, 

erating function of the W coefficients, 

= [ l-ci3~l3~-l33a.! '3:1_-0.30.2132-133"-J. 13i-°"J. l32a.f 132-0.2 ":I. a.2t'! +0.3'330.513~} -z 

The symmetry properties expressed by 1 

W(jlj2j~j4i3wj") = W(j2jlj4j3;j'j") = W(j3j4jlj2;j'j") 

= W(jlj3j2j4;j"j') 

(4ol5) 

(4.16) 

(4.17) 

( 4.18) 

(4o19) 
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follow from the invariance of (4.18) under t~e respective 

substitutions: 

while the more complicated transformation ( CXi a.2a.3) ~ (-a.3a.2exi), 

Twenty-four equivalent forms for W are obtained by repeated 

use of (4.19) and (4.20). 

Further characteristics of W follow from the composi­

tion properties of the transformation function (4.14), •hioh 

we shall temporarily indicate by (12,~4j' I 13,24j"). Thus 

.z;:={l2,34J' I l3,24j•)(13,24J" I 12,34j'") = 6;113• 

and 

(4.20) 

(4 .. 21) 

C.<12,34j' l 13,24j")(l3,24j" j 14,23j"') = 
j" 

(12,34j 1 j 14,23jV11) 0 

(4.22) 

All of these quantities can be expressed in terms ot w. The 

interohang~ of 2 and 4, and of 3 and 4 in (4.14) yields, with 

the aid of (3.47)» 
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j +j +j -j ] 1/2 
(13,2.4j" j 14,23jtU) = (-1) 2 3 4 - 1 [(2j"+1)(2j ... 1) .. 

and 

J '" +. j - J J 1I2 
(12,34jU I 14.923j01-1) = (-1) ' 4 l [(2j 1+1){2jm+l) o 

I 

Therefore 

and 

1 
2jV+l Q,ni"U J ... 

These formulae can be combined by placing j 2 = j
4

.9 

j ~ = J 111 in (4.,26) and, after multiplication with 2j i+1, 

perf'orr1.ing the summation with respect to j v by means of 

(4.,25), We obtain 

ln which the values assumed by j" are those compatible 

with the existence of' W(j 1 j 2 j 3 j 2;j'j"), namely~ 

(4.23) 

(4.25) 

(4 .. 26) 
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when k is the smaller of the two integers j 1+j 3-\J1-J 3\, 

2j 2-\31 -J 3\. -One ot the consequences of (4.28), 

j l .:: 2 j 2 , 

is a particular example ot 

which follows from (4.14) on remarking that, with j 4 = 0 

the interchange of j~ and j
3 

simply multiplies the eigen­

vector with (-l)j2+j3-S1 • 

The relation between the W and X coefficients can 

be inferred from (4.14) by writing 

--¥ ( [jl.j J j I tj 3jJj tQ) = c ( 2j t+J.)-l./2(-l.) j' -"'J.2 

lni1=> 

·t<J1J2J'~2j3J4J'-I11J.2) 
= (2j'+l)l/2(-l}J1+J3-J2-J4 • 

~ j•-~ 
• L_ X( J1 J2J'' ;ll1.m2-ll1.2)(-1) 2 • 

Dli2 

p. 49 

(4.28) 

(4.~) 

0 X(J3j4J •.;m3m4m12)t (j1~Ji'12Jtn3J4m4)' 
(4.31) 
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which, with the similar representation of'°'f'( [j 1 j 3Jjn(j 2 j 4Jj"O), 

yields 

The general expression obtained for W by expanding 

the generating function (4.18) can be cast into the form 

W( jl j 2j 3j 4; j 'j •) = J;\ ~ n+p+l-nr)l) -1/2 lj ~ "r +psll)l/2 • 

where 

n-~n 
-}_ r 

'1"=• 

.·\(-l)P3 {n-ttp+l) 1 L TI~ tpst , 
TiS 

, 

and-the summation is to be extended over the non-negative 

integers» nr» p .11 for. which ' s 

j2 + j i -jl -pl = j4•j'-j3-P2 = j 2 .. j 4 -j ft -p 3 = lli , 

j 3•j 1 -j4-P1 = j 1 + j I - j 2-P 2 = J1+j3-j~-P3 = n2 , 

j 3 + j"-j1 -pl = j 4+j "-j 2-P2 = j -trj -j'-p = n 3 4 3 3 • 

j 2 + j .. - j 4 -pl = j~+j"-j3-.P2 = jl+j2-j'-P3 = n4 , 

(4o32) 

(4o33) 

( 4. 34) 

(4.35) 
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The number of terms in the sum exceeds by unity the smallest 

of the twelve quantum nwp.be~ combinations, j 2+j 1 -j1 , etc., 

the sum r~duces to a single term if one such combination van-

ieheso The choice of summation parameter is a matter of con-

venience. 

We now return to the general problem, that of evalµating 

the transformation function 

- )j12+j24-J1-j4 
( (j1j213i2(33j-il j34j;m \ (j1j3_l-§13(j2jJJ:l J24jm) = (-l 0 

0 [( 2 j12+l)( 2j34+l)( 2 j13+l){ 2 j24+lill/
2 

S(jlj2j3j4;jl2j34jl3j24;j) 

A generating function for the S coefficient is given by# 

- "( "C '{ (3 a.! +a '3 t '3 CL. 1 ) +y "(I{ a. '3 1+a.1 p a. '3 '>] -2 
1 2 2·i 3 3 l 2 2 1 1 2 3 3 2 1 • 

The connection with the X coefficients is contained in 

I 
This is obtained with the aid of Eq.(C 30). 

{4.36) 

(4.37) 
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0 l.( j 1j3j 13;mlm3-ml3)X( j 2j 4j 24;m2m4-m24)X( j 13j 24j ;r.il3m24 -m) 

j34+j13+j1+j4+2 j . . . . . . . . . 0. 

= (-l) S(J1J2J3J4,J12J34J13J24'J)- {4.,38) 

and the W coefficient appears as a special example, 

In view of the complexity of the S coefficient we s~all 

be content to record here only those cases that can be ex­

pressed in terms of Wo This occurs whenever one of the nir-e 

quantum numbers involved in the S coefficient equals zero, 

which is a consequence of (4o39) and the fact that the sym-

metry of S is such that any of the other quantum numbers can 

appear in the position of' j. Thus, it follo\"ls . .t'rom either 

whic~ are representative of the eight permutations of this 

type. We obtain from (4.39) that 

( 4,. 40) 
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a.nd 

The latter result contains the solution to the problem 

of three angular momenta. Expressed in terms of a transform­

ation function, without explicit reference to the angular mo­

mentum with zero quantum number, \4.42) states that 

A slightly simpler forml is obtained on permuting the indices 

1 and 2, together with a change in sense of addition for j 1 
and j 23 .11 

( ~1J2] J12J3jml jl ~2J3] J23Jm) = ~ 2J12+l) ( 2 j23111 fl l/2 
0 

• W(J1J2JJ3;j12j23) 0 

As a particular consequence of this result, note that, 

II 
Go Racah, Phys. Rev. 83, 367(1943) 

(4.41) 

(4.42) 

(4.43) 

(4.,44) 
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according to (4.30), 

th$.t is, the eigenvector for the null resultant of, three 

angular mcmenta is .indepenaent of the mode of addition, 

provided that the order of the angular momenta ig preserved .. 

.la _one repres~ntation of this eigenvector we have 

and tb.eref'ore 

+n virtue of {3&40)o Thus, the X coefficient, originally 

defined in terms of the addition of two angular momenta, 

now appears as characterizing three angular momenta with a 

null resultant .. 

This possibility, of replacing Jl+J2 =~with J,•J2+J3 
= O, depends upon the circumstance that the negative of an 

angular momentum operator is, in a certain sense, also an 

angular momentum operator.. The commutation relations 

(4.45) 

{ 4 .. 46) 

{4 .. 47) 

J x J = iJ {4 .. 48) 

imply that 

NOTE: The operators J and J' are vectors. 
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(~J) x (-J) = -i(-J), 

which reassu.me the form (4~48) on changing the sign ot 

i (complex, not Hermitian conJugation)o Therefore 

p. 55 

( 4. 49) 

* J ' :;: -J. ( 4. 50) 

is an angular momentum operator., To find the eigenvectors 

of J1, we notice that a rotation operator U is ~:function 

of iJ and real angles. Therefore 

u• = u* ( 4.51) 

1.s the same :function of J' that U is o:f J. On taking ~he 

oo~plex con-jugate of the equation 

u-f'(jm') = L_ i'(jm)U~~ 

we obtain 

U• -TJt(jm') = \ -..Tjto(jm)(-l)m-m•u(j) 
'! L- I -m-m' ' 

with the a:td o:f (2.41). Hence 

8.l'e the eigenvectors associated With J•. 
Now observe that the following dyadic. to~med :from 

the eigenvectors o:f a single angular momentum, 

NOTE: The operators J and J' are vectors. 

(4.52) 

( 4. 53) 

(4~54) 

(4.55) 
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is unchanged by a rot-ation of the reference system, since 

L Ye jmn) ( jm' I U I jm) ( jm lu-11 jm") it ( jm") 

= L_ 'fcjm) Yi~(jm) .. 

Therefor~, on employing (4A54) we infer that the vector · 

describes the spherically symmetrical state of two angular 

momenta, which is in agreement with (3o75)e This is the 

basic example or the relationship involved in (4.47)e 

5o Tensor Operators 

An irreducible tensor operator of rank j(= o, 1/2, 1 ooo) 

is a set of 2j~l operators, T(jm), which transforms in the 

following manner under a change in coordinate system, 

UT(jmt)u-
1 

= ~~-J T(jm)~l 0 

On taking the Hermitian' conjugate of this equation and em­

ploying (2.41), we find that i2ln.r(j-m{ transforms in the 

same manner as T ( jm) o We therefore de.:t ine the Hermitian 

conjugate tensor T1 according tc 

t 2 :t T (jm) = i mT(j-m) " 

t The tensor that is conjugate to T is then described by 

(4 .. 56) 

(4.57) 

(5 .. 1) 

(5.2) 
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or 

t 
This shows that Hermitian tensors, T = T, exist only for 

integral j#, and satisfy 

• 

The product of two tensor opera,tora transforms under 

coordinate system rotations uccoroins to 

It follows f'ron (3o80) that 

LT1 ( jlmJ )T2( j2m.2) q1mrj:?r.1~d jlj2jr:.) ; T( jlj2jm) 
ln1'm2 

obeys 

and is therefore an irreducible tensor of rank jo 

For a tensor operator applied to an angular momentu.~ 

eigenvector we have, analogously, 

I, It is similarly impossible to identify the-r{jm) of 
( 4. 54) with :f' ( jm), for all m, if j is half-integral. 

p •. 5'7 

(5.~) 

(5.4) 

(5 .. 5) 

(5 .. 7) 

( 5,,8) 
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so that 

obeys 

and is therefore an angular momentum eigenvector with 

quantum numbers j and m. 

~he magnetic quantum number dependence of tensor 

operator matrix el~ments is contained in the last state-

ment.. On introducing explicitly the additional quantum 
.. 

numbers necessary to form a complete set, we are led to 

write 

L. T ( kq >-f° ( "(' j 'm' )( kqj t mt I kj ' jm) 

q, m' 

= Ci'(yjm){2j+l) •l/2 [yj jT(k)l·y' j t J , 
y 

where we have employed different letters for the tenso:r-

operator indices 1n order to simpli!"y the notation.. It 

p .. 58 

(5 .. 9) 

(5 .. 10) 

(5.11) 

(5.12) 
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NY0-3071 

As an alternative derivative o.f the latter resultfl, we 

remark that 

p. 59 

An_ integration with respect to W then yields~ acc'ording to' 

( 3 .. 82) J 

I W m-m" (yjmlT(kq) y~j•m') = -1) X(jkj';-mqmt)X(jkj';-m11 q•m•fl )• 
-m 'I,' m"' 

e { y jm" IT ( kq ') I y' j ! m •II ) 

which is (5.13}~ with 

(5.13) 

{5.14) 

{5.15) 

[ yjlT(k)J y' j ~ = ~(-1) j' -k-mx_( jkj' ;-mqm') (yjmlT{kq)l y' j 'm'). (5.16) 
Tri'{ '111 

The relation between the rectangular bracket symbol and 
the analogous quantity de.fined in R is 

(yjfT(k)f y'j'] = (-l)k+j-j'{yjllT(k)lly'j') .. 

## 
This is the metho~ employed by Eo Wigner, Gruppentheorie 

und ,ihre Anwendung au.f die Quantenmechanik der Atomspektrem 
(Braunschweig, 1931), Pe 263Q 
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According to the definition of the Hermitian con­

jugate tensor, we have 

(yjmlTt(kq)f yij'm') = i 2q(y'j'm•jT(k-q)f yjm)* 

p .. 60 

= i 2q( -1) k- j +mt ( y' j ' IT ( k) f y 3] i~ X( j kj i ; -mqm i ) ' 

(5.1'7) 

or 

in which use has been made of the X coefficient properties 

contained in {3.45) and (3.46). For a Hermitian tensor 9 this 

result reads 

If the tensor operators T1 and T2 of (5.,7) refer to the 

same dynamical variables, we may write 

( y j m f T ( k
1 

k
2 
kq) I y' j ' m v ) = ( -1 ) k-j ' +m & j j T ( k) ( k

1 
k

2 
) f y ' j ~ . 

o X(jkj';-mqm'), 

where in view of (5.,16), 

(5.18) 

(5.,19) 

(5.,20) 
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The resulting magnetic quantum number summation, involving 

four X coefficients, can be identified with a W coefficient, 

& j I T ( k) (kl k2) I y I j ~ 

(5.22) 

When T1 and T2 are tensor operators associated with different 

dynamical variables, so that 

we have 

• X(jkj';-mqm•} • 

Here 

• (k1q1k2q2lk1k2kq)(j1j2jmlj1m1jzn2)(jij2j'm'ljfmij~2) 

0 
( ·fj l ml IT1 ( 1{1 ql) I y" j i mi)( y" j tn2I ~ 2<k2q2) I Y 1 j ~2) • 

This magnetic quantum number summation.t involving six X 

coefficients, can .be identified with an S coefficient, 

(5.23) 

(5.24) 

0 

(5.25) 
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f"yj j jlT(k)(k k )ly'j'j'j~ ~12 12 i2:.I 

Special examples which require only the W coefficient 

are 

[yj1j2jlTlk)l"f'Jij2j] = G2j+l)(2j'+l~ l/2(-l)j2+k--b_-j' " 

w ( j 1 j JI .1 J ; j 2k) G-j 1 I Ti k) 1-r' j i] ' 

and 

[r jl j2j IT~k) I y' jlj ~j ·J = E 2j+l)( 2j •+1u l/2c-1> j1-tk-j2-j 

• W(j2jj~j';j1k)[yj2IT~k)f y'j2] 

e 

Further rel·ations connecting the S and W coefficients 

can be deduced from these resultso We shall illustrate this 

for the simpler situation in wni6h only W is involved.. We 

multiply the two scalar operators# 

(5.26) 

(5 .. 27) 

(5 .. 28) 

(5 .. 29) 

Here 'lJ_ and T2 are functions of different dynamical variables .. 
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(5.&>) 

and 

(5.31) 

to obtiain 

T(o)(k1k1)T(o)(k2k2) = L IT2k1-t-1)(2k2+1il •l/2T1(klql)T1(k2?2) • 

kl+k2-q1-~ 
• (-1) . T 2 (k1 ~1 )T2(k2-q2 ). (5.32) 

01~ writing 

(5-.33) 

and 

~ k1•k2-k 
T2(kl-ql)T2(k2-q2) = ~T2(klk2k-q)(-l) (k1k2Jtqlk1q1k2q2}, 

(5.34) 

this becomes 

T(o)(k
1

k
1

)T(o)(k
2

k
2

) = L[2k
1

+1)(2k
2
+1D-1 / 2111 (k1 k 2kq)(-l)k-q .. 

• T 
2 

( k 2k 2k-q) 

\r 2k+l 1112 (o) 
; u2k1+1)(2k2+l[.l T ( [k1k~k[k1~2J k). 

(5o35} 

A matrix element or this equation, when evaluated with the 
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aid of (5.22) and (5.27), yields the information that 

W(J0 J0 J
0

"J0 ""J0 k )W(J0

"J
0 "J"'J"'"J0 k) 1 2 1 2' 1 1 2 1 2' 2 

• 

Tensor oporators can be constructed from the spin 

creation and annihilation operatorso Thus, consider the 

operator 

)+(za+)+)_(zi:il \ 
e =I q>kq(z)Cfka.())t(kqa), 

kq, C( 

formed from the commuting quantities (za~) and [zaJ. On 

subjecting this to a unitary transformation, we find 

where the transformed creation and annihilation ope~ators 

are described by (2ol4). Now, according to (2.19), we haYe 

[zat] =(z•a] , z I : UZ. 

itL which the second statement stems from the fact that a 

+ + and a+ transform in the same way as a+ and -a_. Therefore, 

p. 64 

(5.36) 

(5.37) 

(5.38) 

(5.39} 
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on employing (2.21). We have thereby shown that 

Ut(kq' a)u-1 = 2= t(kqa) u~~~ 

On taking the Hermitian conjugate of (5.37) and 
~~ ;~ ~~ 

making the substitution Z+ -.+ z_, Z_ ~ -zit, ) _ - r+' 
)~ -t -)_ , which restores this generating operator to 

its original form, we find that 

• 

Accordingly, the adjoint tensor is given by 

The significance of a. can be appreciated from 

( +)k+a [ aJk-a. L 
za z = cf, (z) t(kqa) 

((k+a) i(k-a) 1] 172 kq • ' 

namely, 2a. is the excess of creation with respect to an-

nihilation operators. Therefore, if t(kqa) is applied to 

an angular momentum. eigenvect~r with quantum number j 1 , 

it will produce an eigenvector with quantum number j ,, such 

that 

a= j - j' • 

p. 65 

(5.40) 

(5.41) 

(5 .. 42) 

(5.43) 

(5 .. 44) 

(5.45) 
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To evaluateithe matrix elements of t(kqa.), we examine 

(e(xa+)"fo' e ~+(za+)+L[z~. e(ya+)fo) 

= L <Pjm<x*){jm I t{kqciJJ j •m• J Cf j 'm' (y lef kq ( z ><P ha) 

(x-i~y)+ }+(x*z)+ )_[zyJ 
= e 

The substitution x: ~ x_, x: ~ -x+ places this in the 

form 

p. 66 

L(-1) j-mcpj-m (x) ( jm It (kqa)I j 'm') <fj 'm' ( y) Cf kq (z) Cf ka.(l) 

l_[zy] +[yx] -~+(xzJ 
= e , 

and comparison with (3.42) shows that 

(5.46) 

(5~47) 

( ... 1 ) k+ j - j 1 le t + j 1•k+1 ) ll 1/2 X( j k j • ; -mqm • ) 
L" j+j 1 .. k) 1J 

0 ( 5. 48) 

Therefore 

k-. '+ [ ( j+. '+k+l) ~1/2 
(jmlt(kqa.)lj'm) = oa.,j-j'(•l) J m {jij'·kJlJ X(jkj';-mqm), 

(5.49) 

or 

[J.,t(k)(a.)ljJ = [<i+j'+k-tl)1Jl/2 J 0 a.' j - j ' j ... j ' -k) 1 • (5.50) 



NY0-3071 

Of particular interest are the operators with 

a= 0 (k integral), 

• 

Indeed 

' 
where ~ is a null vector, 

«. .g_ = 0 ' 

with the components 

a = -z2 .. z2 
l ... - ' 

It is well known that if r is a position vector, (a.r)k is - --
a spherical harmonic or order k, 

where Ykq(£.), which usually designates a surface spherical 

harmonic, here includes the factor rk. Accordingly, we 

write 

in which Ykq(l) differs' from the analogous Ykq(!:.) only in 

p. 67 

(5.51) 

(5.52) 

( 5. 53) 

(5.54) 

(5.55) 

(5.56) 
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that the order of factors is significant. With this nota-

tion,, we have 

[ 411' Jl/2 k 
t:( kqo) = 2k+l ( -2) ykq ( J)' 

and 

Notice also that the tensor t(kqo) is Hermitian, according 

to (5$43), so that the operator harmonics satisfy· 

yk (J}t = (-l)qY.. q(J) • 
Q - -k· -

The matrix elements of the tensor operator 

are described by 

in view of (5.22). With respect to their effect on an 

eigenvector with quantum number j, one can assert that 

which becomes a generally valid operator equation on re­

pla0ing j(j+l) with J 2
e Hence 

P• 68 

(5.57) 

(5.58) 

(5.59) 

(5.60) 

(5 .. 62) 
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(5.63) 

The example of this ~esult for k = 0 can be written 

~y (J)Y: (J)1 = .1 [J·ly(k)I J·J 
2 

_ 2k+1 1 c2,j+k+1) i ( 5 64 ) 
'------' kq - kq - 2Jfl -~ 4k (2j+l){2j-k)!' e 

in which we have employed 

W(kkjj;oj) = (-l)k((2j+l)(2k+l)]-l/2 . 

One can easily exhibit the right side of (5.64) as a function 

of j(j+l), and thus obtain the operator equation 

~ y (J)Y (Jt = ~ ( J2 l k 
L_ kq - H:q - 4tr - ) 

{ J2J k :: ti [J2- ~(~+l~ 
l'}:O 

The structure of the operator { J 2) k can also be inferred 

from the two requirements that it annihilate any eigenvector 

with j < ~kJ and that it simplify to the ktb power of J 2 as 

j becomes very large. 

We return to (5.63), displayed in the form 

• 

(5.65) 

(5.66) 

(5 .. 6?) 
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- -

where 

1/2 

The analogous equation for Yk q (l)Yk (l) differs from 
2 2 lql k +k -k 

(5.67) only by the inclusion of the factor (-1) 1 2 , as 

follows 'from (3o47)o The addition and subtraction of these 

two equations then yields 

[ ~ = [(2kl +14)TI(2k2+ljl/2 
' yk q (J), Yk q (J) 

l 1 2 2 

where the parity referred to is that of k1+k~-k. In the 

latter equation we have the commutation properties of these 

operator functions of lg 
As an elementary application of (5.70), we take its 

trace for the states with quantum number j. In view of 

the null trace possessed by a commutator~ we infer that 

the trace of' Yk (.T) vanishes for every k that can occur q -

in (5~70)a Since these k values are lk1-k2 1 +l, lk1-k2 1+ 3, 

(5.70) 
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tr ( j >y, ( J) = O 
kq - ' 

k > o, (5.71) 

or 

(5.72) 

With the aid of this result, the trace of (5.67) is evaluated 

as 

l (j) t l { ~kl ~ tr Yk q (J) Yk q (J) =ii J (J+l) ok k oq q ' 
~JT~ 1 1 - 2 2 - l 2 1 2 

wb.ich expresses the orthogonality of the operator harmonics. 

• 

A comparison with (3.85) ahows that, in the limit of large j, 

I This theorem is easily proved for an arbitrary tensor 
operator by taking the trace of (5.1) tor states with a 
given j, and integrating.with respect to~ 

c:_] (yjmlT(kq)\y•jm) = O. k > 0 • 

Ot course, k must be integral if the individual matrix 
elements are not to vanish. 

(5.73) 

• 

(5.74) 
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Turning to tensor operators formed from two angular 

momenta, we remark that, for matrix elements diagonal in 

j' 

No such restriction is required for the special example 

p. 72 

(5 .. 75) 

{5.76) 

r- t j +j -j ) ) 
L_!kq(Jl) ykqC~.2> = (-l) 

1 2 
W(jlj2jlj2;jk)01ly(k 1jJ~2ly(k lj~ 

(5.77) 

in terms of the Legendre polynomial operator defined by 

(5.78) 

The latter equation can be written 

If J2\k( I 21 kl-1/2 p ·,J J ) 
~-1) 1:-2 J k -l'-2 

( 5. 79) 
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which indicates the limiting form of the right side for 

1a.rge j 1 , j 2 and j. The simple result obtained for j = O 

can ~e expressed as 

A multiplication theorem for the Legendre operator is 

obtained from the observation that 

On pla~ing k 2 = 1,1 we obtain a simple recurrence relation 

f':rom which the Legendre operators can be c·onstructed succes­

sively 9 starting with 

p ( J., :i J2) = l . 
0 -.L -

T~e coefficients in the recurrence relation can be computed 

f'rom 

1 This is a particular example of the theorem on the product 
of two W coefficients, Eq.(5.36). 

(5.80) 

(5.81) 

(5.82) 

(5.83) 
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. • . - [4: ( j+l )-k2-2k k+l 11 / 2 
W(kljj;k+lj) = -W(k+l lJj,kJ) - 4J(j+1){2j+IT (2k+l}(2k+3)j , (5.84) 

and 

D2k+l)( 2j+l) I!'(k1 .... J j; kjD 2 = 1 . 
K 

(5.85) 

Thus 

2 '- k+l 1 i/2 

rklk+l'~ > =u2k+l)(2k+3)J · 

( f (J2))2=1 k~k+l) 
klk ~ 4 k~l , {5.86) 

and therefore, 

k 2 k 2 l 2 k 2 l 
+ 2K+I (l1 - 4- }(~ ... +)Pk-l~Jl,J2) • 

As the first few Legendre operators, obtained in 

success-ion from (5.87) with k = 0, l, 2, we have 

P1(l1 1~2) = l1°J2 ' 

3 l l 2 2 
P2(Jl,J2) = 2Jl 0 l2<~1·J2+ 2) - 2.!li J2 ' 

2 2 3) 2 3) - -J eJ (J - - {J - -3-1 -2 -1 4 -2 4 • 

(5.87) 

(5 .. 88) 
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A useful cheek upon these results is afforded by (5.80). 

A statement analog~us to (5.62) can be made for an 

arbitPary tensor operator; as tar as matrix elements diag­

onal in j are concerned. 

• 

fhe coefficient in this relation can be expressed in other 

ways. Thus, we have 

1t'h1~h leads to the proJeetion rule 

T(kq) ~ at1 ykq<~:> {ri}k 4 Ykq,c.d T(kq• ), 

q, 

for 1s9lat,:1.ng the part of a tensor operator that contrib­

utes to matrix elements diagonal in j. Alternatively, we 

con.sider the particular matrix element 

( j 'IT{ko) I jj) = ( j jjYko (.i[) I jj) r~: ~~=;: B . 
now 

p. 75 

(5.89) 

(5.91) 

(5.92) 

k f: (k) ;J = l2k+ll 1/2 l ( 2j) I 
(j jfYko(J)f j j) = c.;1) ~ JY I~ X(fkj;-joj) [ 4tr J 2K (2j-k) ! ' 

(5.9~) 

so that, for matrix elements diagonal in j, 

( 5 .. 94) 
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Appendix A 

We shall describe a method which produces simultaneous-

ly the eigenvalues and eigenvectors of the angular momentum 

operatorso Consider for this purpose the unitary operator 

which has the eigenvalues exp(ij1,+im~ • The operator V 

can be interpreted as 

V = L._{exp(ijrf.+im<ljP(jm) , (A2) 

,J m 
where P(jm), the projection operator for the state with the 

indicated eigenvalues, is represented in terms of the cor-

respondir..g eigenvector by the dyadic 

P( jm) =ire jmrfc jm)~~ • 

Accorctingly, if V can be constructed and displayed in the 

form (A2), we shall have achieved our goal. 

We write 

V = exp ( ~ i (<y .. n + + y _ n _) ) 

Y+ :-::.-:X, +t_p, Y_ =1 - lf ' 
' 

and deduce the differential equations 

....£....v::: 1 1it av 
oyJ 2 r ] 

: ~ i[exp(~ i 11 ~a~ Va} , 

(A3) 

(A4) 

(A5) 
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with the aid 0£ 

The latter can be verified by differentiation, 

a -1 _ 1. -1[' J i~...-1 
~.v V a 2 V - '2 J.. V a , n V = 2 v a V, 
"'I} f t } } 

or from the general theorem 

In virtue of the operator ordering in (A5). the solution of 

these equations which reduces to unity for y, = 0 is given 

by 

l 1 

{ 
2iY+ + 2 iy_ + ) 

V = exp ( e ""' 1) a ; a++ ( e - 1) a ; a 
+ - -.... 

where 
~ 

+ -L ,n_ 
( ' ) ~ (a+)n {a)n exi;> "-a ; a - Ill 

is a correspondingly ordered form of the exponential~ 

write this solution as 

1 
~ -iy; 

V = exp ( l e 2 1 a+ · P • a ) 
..._ 'J:.' o' l ' • l T 

which is intended to indicate that 

We 

is to be inserted between the powers of a+
1 

and at in the 

(Ao) 

(A?) 

(AB) 

(A9) 

(A10) 

(All) 

(A.12) 
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We have thus obtained the form (A2), with 

and 

m =!en -n ) 
2 + - ' n+, n"'" = O,l., 2, ••• ·' 

in which we have employed the notation 

In terms of the eigenvector~o, defined by 

' 

the angular momentum eigenvectors are exhibited as 

The fundamental p,roperty of Yo =Y(oo) is deduced from 

or 

namely 

p. ?8 

(Al3) 

(Al4J 

(Al5) 

(Al6) 

(Al7) 

(Al8) 

(A19) 

(A20) 
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a~ -f"o = 0 

The simple generating f'unction ~o:I:' tl;le eigenvectors, 

(1.,16), can also he obtained by noting that 

'Indeed, 

e{xa+)i'o = L 'f'(jm){~ (jm), e{xa+)-fo) 

J 111 

= L (fjm{x)Y {jm) 
jm, 

• 

p. 79 

{A21) 

{A22) 

(A23) 
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The ordered operator 

(Bl) 

satisfies 

(B2) 

or 

( 1-z ) uA = A a + + a A = (1-z )Aa , (B3) 

The ref ore 

a A A + - 1 Aaa+ - l A l 11 ~ + az = a a = 1-z - r:z + l-z.nc:1. a 

, (B4) 

the solution of which implies the ordered operator identity, 

(B5) 

A particular consequence of this relation 

a -f"o = o, (B6) 

is ierived directly in ~he text (Eq.(2~35)). The properties 

of A contained in(B3) are also displayed in the generalizations 
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f' ( a.) exp ( z a: a -t:) = exp ( 2-a+ · a) · _L f ( ~-) " 1-z ' 1-z lm•z • 

The particular e~amples of these identities provided 

by 

ana. 

r +) a exp{za;a ( z + ) ar = exp 1 _;a ;a·-----=-
(1-z)r+l 

are operator .forms o.f the Laguerre polynomial generating 

.func~ionse Thus, i.f we place a+ = x, a = a/ax, and let 

both sides o.f (BS) operate upon e-x. we obtain 

(.2-..) n xn+r
6
-x = xr z a ) -x 

a -----1- exp(---l.-zx;~ ·e 
x ( 1-z ) r+ I.IA. 

r 
::: x exp ( - _z_x)·e -x 

(l-z)r+l 1-z 

or 

where 

0 

p. 81 

(B7) 

(BS) 

( B9) 

(BlO) 

{Bll) 

(Bl2) 
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A similar procedure applied to ( B9) yields 

a n+r n -x = ( z .d ) (~)r 
( ) :x. e e.x.p r:zx, ax · r+l ax (1-z) 

-x e 

( -l)r = exp (- l:zx)·e-x , 
(1-z)r+l 

which proves the equivalence between (Bl2) and 

Ano·!.;her example o:f a.n ordered operator identity in­

volves the cylinder function (Eq.(lo36)) 

I f exp(t+tz) 
F (z) ::.:: rlz~r/2 T (2z1 2 ) = r1

1 
dt ---r · -r 2n tr+l -- .. 

We have 

r ( + _ rl £.dt et r z + 
a Fr z a; a ) - 211 i ~ tr+! a exp (ta; a ) 

- r i z f dt et-z exp(-Lat-. a)~ 
- 2tr i e r+ 1 t-, z ' (t-z) 

zF ' + ) r = e ·r"za ;a a 

and similarly 

' 

+ + ~ z +)r ( + ) Fr ( z a; a ) ( a ) .... = e {a Fr z a ; a 

From these identities we obtain the Laguerre polynomial 

generating £unction 

p. 82 

(Bl:.?) 

( B1.4) 

(B15) 

{Bl6) 

{Bl?) 

(Bl8) 
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App.endix C 

It is our purpose in this section to evaluate a class 

o:f scalar products, the simplest illustrati'ori of which is 

T ( 2 ) = (exp (A (a +b +J + f + (xa +) + ~ _ (xb +) )· j'"
0 

, 

exp ( U [a +b +] it l + (ya+) + ~ _ ( y b +) )0 Yo) 
" 

Di:f'.ferentiation with respect to ~ +..,~ yields 

(a/a }+*)TC 2 ) =- {e" .. • '[
0 

~ (x~~a) e· ··"Po) 

= 1+<x*y)T( 2 ) + )( ( (xb)e" • • -"o/.0 , e· ·' -f'o ) , 

or 

The solution o:f' this, and analogous equations~ is 

where 

""\ r, ( ':!~ ( + ) ) ..,.T, ) __ 1 __ 
= ( ~o, exp A ){ a ; a • ~o = ( l-A.~~>< )'?! 

in 'View of the simpl.e generalization of (B6) 

p .. 83 

(Cl) 

( 02). 

{ 03) 

(04) 

(C6) 
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Ther•efore 

(07) 

One ca...~ prove, in a similar manner, that 

(C8) 

The gene1•al member of the class exemplified by (Cl) is 

T( n) = (exp(*- D.,
1
.J A; A;]+ L ~~ (.d.;))·io. exp(~ L)(,.Jt!~.:J + L?/-(yA~))·-\j?0 ) 

{09) 

where the A~ are n sets of two-component ope~ators, obeying 

while A.µ 11 and X tJV form anti ·~symmetrical mat rices" Follow­

ing the same prccedurt::1, we evaluate 

{a/a~: )·r(n) = {e" ... rf'
0

:: (x.i~A~)eH•i(0 ) 

(ClO) 

- 1'/{x~~y)T(rd+/ J<f"ll([xAJJ]e·"' 'Pol' eH•~0 ), (Cll) 
~ )) 

whence 

(Cl?.) 

The solution of this equation can be expressea. in a matrix 
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notation as 

where 

and 

To evaluate T~n) ~ we emp1.oy the fol::o~wing pt'ope't'l.iies 

of Q~ 

and 

(xA•.]'Q ~ Q[xA,,] :..: -Q L KIAV (xA;; 

Q{xA;) =(xA;)Q ::: L_ i.;.Y [xA-"J Q 

ln which x is an arbitrary .:::onstant spin::i:r. One can ccm-

bi~e (Cl7 a,b) into 

(Cl3) 

(Cl4) 

(Cl5) 

{Cl6) 

(Cl7) 

(Cl8.) 

(Cl9) 
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Therefore 

from which we obtain (Aµl'o = O) 

~-Thus, with respect to changes in the matrix A , we have 

I 

On comparing this wi~h the theorem on differntiation of a 

determinant, 

o logj A I = tr(A .. 1 OA) , 

we obtain the desired general evaluation, 

T { n) = ...,..__l __ 

o li+x"-~~ I • 

A recurrence relation for T~n) can also be established 

with the aid of (013). Thus, we have 

(020) 

(C21) 

(023) 

(C24) 
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• 

in Which}(' and A.' designate the matrices of dimensionality 

The actual construction of the T~n) can be performed 

without detailed calculations. It follows from (C24) and 

(C25) th~t T(n) has the form of the inverse square of a 
0 

* power series in the components of A. and){ , Wh'3re the last 
lnl -l ... ,1/2

1 1
1/2 

term of the series, (-1) 2 A.' )( , vanishes for n 

odd. Thus, oeginning with 

we infer that T~3 ) has the same structure, suitably ~x­
tended for the additional dimension. 

and therefore 

(025) 

(026) 

(027) 



NY0-3071 p. 88 

, 

whe~e 

, 

andf, is the completely antisymmetric symbol. For the last 

indication of this gene1•al procedure we remark that, as the 

extension of (028), we have 

To(5) --[l 1 ~ '\* \~ ~('\~(-) (V)~.,;.2 - 2 l_ , ... tLl>"'fUJ +L_ ,... a n o. 
IL ))s / JOI= I 

in which 

( ;>.)" = ~~£' a1<»a1?·,._,>-a'< 
µ. }10-'C::I 

' 

(028) 

(029) 

(C30) 

(031) 
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