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ON ANGULAR MOMENTUM

l. Introduction

One of the methods of treating a general angular mo-
mentum in quantum mechanics is to regard 1t as the super-
position of a number of elementary "spins", or angular
momenta with J = 1/2. Such a spin assembly, considered as
a Bose~Einsvein system, can he usefully discussed by the
method of second quantization. We shall see that this pro-
cedure unites the compact symbolism of the group theoretical
approach with the explicit operator techniques of quantum
mechanics.

We introduce spin creation and annihilation operators
assoclated with a glven spatial reference system,

a; = (a:,a:) and ay = (a+,a_), which satisfy

I:a.z, aI,J =0, [a;,a;;]= (o]
[az, a}] = Opys (1.1)

The number of spins and the resultant angular momentum are

then given by

= + 1 ’

1=) o t|3alrra, . (1.2)
£r4’

With the conventional matrix representation for g, the com-

ponents of J appear as

J, =31 + g =4aja., J_=J) - 1Jp = ala, ,

Iy = % (a:a* - af&_) ='% (n} -n_) . (1.3)
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Of course, thls realization of the angular momentum commu-
tation properties in terms of those of harmonic oscillators
can be introduced without explicit reference to the compos-
ition of splns.

To evaluate the square of the total angular momentum

'.1’.2 = Za;ara;alm(ZF'z- g Zl)' (Z”I% EJZI”), (1.4)

we employ the matrlix elements of the spin permutation oper-

ator

P(lz) - %‘(1 + 2(1)02(2))’ (1.5)
Thus

(Z Iglzl).(zlliglzm) = 2611,,,64,70- 6”,6103”1, (106)
and

2 1 + 1l 2

I“ =3 Z a;ararag - z0° . (1.7)
According to the commutation relations (1l.1),

E a;'agva‘;'o ay = } a;(n+2)a1 = n(n+l), (1.8)
0y 5

Whence

_.1"2=-]2-'n(%n +1); (1.9)

a given number of spins, n =0, 1, 2,..., posSsesses &

definite angular momentum quantum number,
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j = % n=o0, %, 1, ee. (1.10)

We further note that, according to (1.3), & state with
a fixed number of positive and negative spins also has a

definite magnetic quantum number,
-n) 1 =3(n, +n). (1.11)

Therefore, from the eigenvector of a state with prescribed

occupation numbers,

@H* @h-
_ o -

a:@o =0,

we obtalin the angular momentum eigenyector%
(a))I*® (aF)dm

'i/(jm) ) [(j+m)! (.i-m)lzrj7§.1/o ) (1.13)

Familiar as a symbolic expression of the transformation pro-
perties of angular momentum eigenvectors**, this form is
here a preclise operator construction of the eigenvector.
On multiplying (1.13) with an analogous monomial con=
structed from the components of the arbitrary spinor
x} = (x+, x_)
xdMm yJ-m s

— + i
Pialx) = [(3+m) 1(3-m) 1772

(1.14)

¥ A direct proof 1s given in Appendix A

w See, for example, H. Weyl, The Theory of Groups and
Quantum Mechanics (E. P, Dutton and Company, Inc.,
New York,193l), p. 189.



we obtain, after summatlion with respect to m, and then with

respect to J,

J
_ (xah)? (1.15)
':Aa_.:, (ij(“x)‘P(Jm) (311 \Po ’
and
+
Z (P Jm(x)\I/(Jm) = olxe )\Ifo ’ (1.16)
m
in which we have written
(xa*) =Z: % ay (1.17)

¥

To illustrate the utility of (1.16), concieved of as an eigen-
vector generating function, we shall verify the orthogonality

and normalization of the eigenvectors (1.13). Consider, then,

(=W | o(7a" )

it

25 (P (m), F (31w ) @ ty)
(\Po ’ e(x*a)e(ya"')\l'/o )e

(1.18)

According to the commutation relations (1.1), and a;‘\Po =0,

we have

+ _[ af(a* 1.1
ay £(a )\Po ._( ;;;g__%_).)}l/o , (1.19)



NYO-30T71 Pe 5

whence

3 *
(\F, olx 8) e(ya+)\fo ) = e(x*y)(e(y*a)\l;o ) = olx'7)

= ) PP ) (1.20)
Jym

We have thus proved that
(\I/(jm),‘Y(;]'m')) = 5”, Y . (1.21)

As & sscond elementary example, we shall obtain the
matrix elements of powers of J+ by considering the effect

of the operators eKJI on (1.16). We have
+ +
Aa, 8 + X oa +
- - a
}_—_ ‘-ij(X) e)‘J*\I/(jm) e olx8 )% = e ol* )\I/o

+ +
+
(x, + Mx_Jay +x_a_ -% (1.22)

Z(,ij(x* + Ax_, x_)'?' (jm) ,

"

=0

and therefore

AT
Z (Jml e I j'm?) LP j‘m'(x) = kpjm(xi- + Ax_, x_) » (1e23)
I'm’

which, on expansion, ylelds the non-vanishing matrix element

: o 1/2
(jm) 3™ jm) = [ﬂ{%,i)‘—i {-31-'_%1-%] / , mem' > O (1.24)

Similarly

> Gml oMl g Y x) = Py, x_ ), (1.25)
im
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and

: 1/2
(Jm| 3™ | jmr) = [ﬂ:—ﬁ)—} -H-%!—,‘TJ / , m'=m >0, (1.26)

A particular consequence of (1l.24) and (1.26) is

VK ['(?})‘T ﬁ;‘ﬁ}%} e s, -
[ ] s Fu 0

which detalls the construction of an arbitrary eigenvector

from those possessing the maximum values of |m| compatible
with a given J.

It is dlso possible to exhibit an operator which permits
the construction of an arbitrary eigenvector from that pos-
sessing the minimum value of J compatible with a gliven m.
Indeed, (l.13), written in the form

(a: a-t-)j-lml #(ml+m _+ml-m
= = (a,) (a_) (1.28)
\I/(Jm) [t 15 -tm1) 122 “ "= Yo ,

states that
1/2 -

where K, and two associated operators are defined by
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k. =etat , kK =a a , (1430)

s
+ +

Ky = %(n* +n_+1) ,

t 1s easily seen that

[Js, X ] =[J3,K3] =0, (1.31)

and that
[Ks, x*] = K, , [13, x]=

[x*, K_]

The latter are analogous to the commutation properties of J,

(1.32)

5

save for the saslgebrailc sign of the commutator [ K*, K_] e In
keeping with this qualified analogy we also have

Jg - % = E,(Ky =1) - K, K_ = K (K, + 1) - K_K, (1.33)

as compared with
2 p—vg -
I7 = Jg(Jg = 1) + T JT_=J,(3,+1)+3_J, o (1e34)

Noting that the eigenvalue of K;5 is J »+ %—, we see that the
roles of jJ and m are essentlally interchanged in K. The
hyperbolic nature of the space in which the latter operates
is thus related to the restriction Iml{ < j.

If (1.20) is multiplied by a similar numerical quantity,

and then summed with respect to j, one obtains

oo
Z 2lml )1 /2 -
[(J +$ml?!(%"lml)l] s Im'?(jm)z Fam\(XK"')‘Il('m"m)’

J=imi (1.35)
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where
r o0
_ "2 1/2, _ ri n
F(z) =rtiz ° I(22 /2) -2 TTE+T 2 (1.38)
n=0

and Ir is the cylinder function of imaginary argument. A

simpler generating function 1s given by

1/2
Z [lzlz]&:') T :m ‘] / 7~j-'m'§/(3m)= em\l’(lml,m).(l.:sv)

J
2, Rotatjons

A significant interpretation is obtalned for (1.15)

by introducing the operators

al* = (xa¥) , aL = (x'a) (2.1)
ot =[], al=[xe]
where
Cxyd=x, y_-x_3, - (2.2)
With the restriction
(x'x) = 1, (203)

these operators also obey -the commutation relations (l.l),
and must therefore constitute spin creation and annihila-
tion operators assoclated with an altered spatial reference
system. Accordingly, (1.15) can be viewed as the expression
of the state m = J, in a rotated-coordinate system, as & lin-

ear combination of the eigenvectors in a fixed coordinate
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system, .
J

o +)23
.\P (33 _——T_)_:U— —-((21)!)1/22 CPJm(X)?(JmJ o (244)

The unitary nature of this transformation is here easily

verified,

(21)3; Pralx) P ) = 0B =1 (2.5)

In general

‘I//(Jm')= %m,( )\If ZY(Jm) g

where the coefficients are to be inferred from

(248)

Z (ij(a+)un(11'112 = ‘)ojm' (x, a: tx a* s "xi& a: + xf a.:). (2.7)
m

It 1s useful to introduce the unitary operator that
’
generates \I/(jm') from ?(Jm’),

qfl(jmt) =U?(jm') , (2.8)

which permits an alternative construction of the coefficients
in (2.6),

,ﬁfn? (Ju]U | Jjm) . (2.9)
In terms of the successive rotations characterized by Eulerian

angles ¢, 49,’\}') U is given explicitly by
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N\ \
-lydy 133, -lpJ,

U=oe e e s (2.10)
where

~ e-w Jq 5 ei ‘4".1:5 ’

= e,-i'&Jé J‘eiﬁJé (2.11)

are the operators appropriate to the coordinate systems
produced by the previous rotations. The resulting expres-
sion for U(FOY) is

-1¥ 7, 6-1332 e-iw3 1yI, 197, 1fg

U=oe , U " =oe e e ©. (2.12)

The angular momentum operators assoclated with the
new coordinate system,
g =vsvut, (2.13)

can be constructed from the transformed crestion and annihil-

atlon operators,

i + -1 - P

d: =0 a:'U"l = e sty+#) cos“ga: + e 2 )sin ”-2'-9&: (2.14)
L i ,

d: =T a: U'lz -e 2(\" 1L sin ‘ga: + eg(w* )a)cos "-2-39.: .

In evaluating (2.14), we have made use of the relations

1
“iYIs , YT, A
) a, = e a s
X A
-1.97 197
2 _+ 2 _ 9+ 9 o+
) ay ® =cos Fa, * sin % a.: , (2.15)

of which the former follows immediately from the significance
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of a: as a positive (negative) spin creation operator, while
the latter may be verified by differentiatlon with respect to

J, in conjunction with the commutation relations

[9.2,.72] =¥ -% a; . (2.16)
The form of (2.14) is in agreement with (2.1) and (2.3), where

1 i

—=(\+ <) - -
x4=92\\, cfcos'g,x_=e§mb f)sing . (2.17)

To construct the matrix of U, we consider

+ +
(ol%® )-lro’ v o728 )‘I‘o) = E y’Jm(x") U’gz Sojm'(Y)

= (-il'[o’e(x*a)e(ya")lfo), (2.18)

in whicn the a'” are the operators (2.14). On writing
(yar?) = (a"uy) (2.19)

where u is the matrix

e—% (f+ ¥

9
Lo 1 (¥ 2
ez(f wsing’g(qﬁ) %9

© cos

we immediately obtain

™
Z ij(x* U&iz ?jm'(y) = ofxuy) | (2.21)
m
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Since (2,12) implies that

ame 3 -
ull) (99y) =2y, (@) o 'y, (2.22)
wvhere
u&! (9) = (jm|e~2F T2} gur), (2.28)

we may simplify (2.21) by placing LY = \//-_- 0, thereby obtain-

ing

cos ’-‘59 (x'y) - sin “2-9 [x*yJ

};;q)jm(x*) T3l (D) ) = (2.24)
0

The matrix u 1s unitary and unimodular, that is possesses
a unit determinant. Its representation in terms of spin mat-

rices has, as 1t must, the form of (2.12),
1 i
.} Fo, -=Vo
e RN AL A (2.25)

Any such unitary matrix can be presented as
un= g-i)’ (2026)
ihere')-{ is a Hermitian matrix. Since

dot u = o=t TH (2.27)

H must be a traceless Hermitilan matrix and, accordingly,

is 8 iinear comblnation of the spin matrices, with res?
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coefficients. Hence u can be written as

1
-5 yo.g
u = e (2.28)

where n 1s a unit vector, specified by two angles, a and Bs

The fact that (2.28) 1s the matrix describing a rotation through
the angle vy about the axis pn affirms the well-known equivale-
ence between an arbitrary rotetion and a simple rotation about

a sultably chosen axis. The rotation angle y 1s easily obtain-

ed by comparing the trace of u, in its two versions,
1 - 1. = 1 1
5 tr uw = cos 5 1 = cos 2'\9003 = (P+Y) . (2.20)

More generally, the trace of U for a given j depends only
upon the rotation angle y. We define®

") - Z’- Un(u%) =tr e, U, (2.30)

in which P 1s the projection operator for the states with
quantum number J « If we remark that U must also have the

form of (2.28),

U= e_iYn‘I (2031)

we immediately obtain

[4

J 1
%(j) - e-imY - sin (j’g)? .
;mg_ sin % v (2.32)

However, we can also derive this directly from the generat-

Ing function (2.21).

* This trace is the character of group theory.



NYO-3071 p. 14

For simpliclity we shall assume the reference system to

be 80 chosen that u is a diagonal matrix, with eigenvalues

Y * a/
e . We replace x} with ¢ ay7 and evaluate the deriv-
atives at y; ‘= 0, Aecording to
cﬁm(a/ay)%ml (7)]y =0 = 6m,m,' ’ (2033)

4
we then have
> (1) ¢ 3t
2 - et 3 ., 2' a3 .,
£23 y\3) = exp(te —ai,y+).exp(te Fo5Y-) (2.34)

J

° y; =0
in which the notation reflects the necessity of placing the
derivatives to the left of the powers of y} . Now

00 oo
n n
exp(A %;y) =§ %[ (%) 7 = E AR = T}'-'K ’ (2.35)
N=o M=0

and therefore

Z tle(J) = 1 1
3 1-t-exp(—%v) ],-t-exp(%'r)

1 T _§ ’ (2056)
l-2t-.cos BY t

which is a generating function for the 'X(J). On writing

1 1 _ 1 1 1
1"t’exb(-%'r) 1-t°exp(%r) 21t-s1n-§( 1-t°exp(§~}) l-t-exp(:iéf:J,

(2.37)
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and expanding in powers of t, one obtains

) (y) = = . (2.33)

Symmetry properties of Uii? (@94) are easily inferred
from (2.21). According to the invariance of \x*uy) under
the substitutions P V. x e3>y, and @ —@ m, 9 = u-9, o
VY= -v, Ty = 1y_;, we have

U,S,g%(«ww = Uﬂ}l(«m,e,y-«) = 1230(32,“. (f -w,u-9,-¥) . (2.39)

m,

Anong the additional equivalent forms produced by successive

application of these transformations are

121U£g.(-%u-a,1ﬁ+ﬂ) = U_(,i_)_m, (=G &y =w-¥)

= vld)_(-y,8,-9) (2.40)
We also note that
w*sy) = 0l (-g,0,-9) = 3] (P, 8,9m) . (2.41)

On removing the angles Y and ¥ with the ald of (2.22), we
find that the content of (2.39) and (2.40) 1is

1)) = (-1)I ) (n-9) = (-1)I ') (n-)

m=m?

= () 2'gld) @) = (el = i) @ . (2.2
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In view of these releations. it is sufficlent to exhibit
Uége ('9) for non~negative values of m «id mt,

On expanding the generating function (2.24) in terms
of LP‘_]m(x'")s, or of Lyjm?(y)9 we obtain the equivalent ex-

pressions

Y ) (9) P ) = Fiotoon Ty, - s1n B a1n s, seosd )

m’

3% 3 3t 3% 3
Z (_ij(x ) 33 (9) = ijmﬂ(cos “%x_._ + sin ”-gx_, -sin 122,X++cos 1-221:_),
m

(2.43)

of which the latter 1is the counterpart or (2.7). As a con-

venient means of constructing Uénie (19), we place

3 ¢
x = sin’-\g cos '12?’ xi_ =t - cos® %9, so that (2.43 b) reads

+

1 S 2\ j+m
-S' (S n 5 cos 2) (t _ 0082 %)J"m Uég% (9)

1/2

I(j~=m) ¢

= [(3+m) 1(3-m) 1] (2.44)

9 -m !
- (_l)J_m' [(Sin g)j*m (COS%):} n tj*mv (l-t)j-m' .
|_[(j+m9)!(j-m')!] /2
Thus
) _ em ! {jm) 1 1/2 R

Uz(nit (9) = (-1)I™ [ (3j-m) ! (J*m'“(")‘mg”]

-[(sin ._g)-m+m‘l (cos «_g)-m-mv] (2.45)

°[(g-5)j_m eI (l-t)J-mﬂ] t = coszg

The structure of the right side will be recognized as that

of the Jacobl polynomial,



ﬁ(apb;th F(=n, a+n,b3t) = % t17P(1-t)P"8,

'(%E)n tb+n-l (l_t)a-b-bn

) (2046)
whencc#
_1)J-m? 1/2 .
Uén'?iz (D) = {-—miml-" )RS [éjfﬁ"* 8{—-}'{:: l] (sin g " m'(cos g )m+m'.
. :)(\;_m(zma-l, mm®41; cos® ‘g) . (2.,47)

Other forms can be obtained from (2.43), corresponding to
the variety of transformations permissible to hypergeometric

functions., Thus the known relation
Fla, b, ¢; x) = (1-x)"% F(a, c=b, c; - 1) (2,48)

applied to (2.47), gives

1y J-me 1/2 23
i) 090 - BT [t et oo ) o B e

« F(m=j, m'=j, memi+l; - cotzfg ). (R.49)

Another aspect, of reference system transformation is

best discussed in terms of

vl ¥ g9y ) = 1mPuld) (9)e™ V= (gm] v gm) , (2.50)

#
This is equivalent to the result obtained by P. Guttinger,
Zeit. f. Phys, 73, 169(1931).
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This guantity is the transformation function

/
(¥ Ga), Vm) = (w,imt] jm),

in which we have uscd W to designate collectively the
angles (P-QAP s relating the new reference system to the
f‘ixed one., We shall Le interested in the differential
characterization of this transformation function, in its

dependence upon the Eulerlan angles. Now

$p =g

13 =1 _ -l _ ;=1

Isy Vv =950 =UT I (2.52)

12 uvl=vut ot WP Tty

where

I = J, cos9 + -é- sin+9 (J+ 14 , J_ 314’ )s (2.53)
_1 g _ o LW

Jg = 3T (J+ e J_ e )»s

and, therefore

8y Wl )= (i) )
ei" [ga*si}la (%%;—cosa%g—‘r)] (wl )=(W|J+I
3'1‘9['%;; v 5155 @ & - cos9% -gﬂ (@] )= (w]J_]

) (2.54)

).
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This is a dlifferential operator representation of an
arbitrary angular momentum vector, The familiar differ-
ential operators assoclated with an orbital angular mo=~
mentum emerge if the transformation function 1s independ=-
ent offs#l . Since this corresponds to m! = 0, the gquantum
number j must then be an 1nteger*.

The differentisl operators (2.54) are welleknown in
connection with angular momentum of a rigid body, and,
accordingly, the eigenvalue equation for 2 in this repre~
sentetion will be identical with the symmetrical top wave
equation. To construct this equatlion directly, we remark

that

P LRt RSl AN LR ST E AT TR Ay

2
! = J_ cosd
= Jg +F3 2 ] + 35 (2.565)
sin A9
2 i 2
Ji® -2 3.3, cos8 P +J
=23 2 2 + 3§+ 0ot P }5‘, .
sin“9
since
1
[J:ﬂs’ JS] = 8ing 7 Jp . (2.60)

On referring to (2.52), we immediately obtain

2 3 1 3% 3 ] 1
-[§§§+cot9w+m(? 20088‘5‘;‘%705") U‘

=7 32 (2457)

*

The fact that the general differential operai:kors (2.54) admit
bhalf-integral values of j has been noticed by ¥F. Bopp and
R, Haag, Zeit f, Naturforch. 5a, 644(1950).



NYO-3071 Pe 20

and the analogous differential equation for (w| ),

including the eigenvelue equation

2 2 2
d d m°=-2mm! cosfP +m'
S & COL D S ( +1) - ]( , 7 =0
[39 2 o5 * JU 31029 wedntl Jm)

(2.58)

An integral theorem concerning the angular depend=-

-1

ence of U, or U ™, 1s stated by

IU dw = PO 9 (2059)
where P, 1s the projection operator for the state j = O,

end

= L : CLoag A
dw = 5 sin9: a9 = ad - Zz dy (2,60)

de =1 .,
The integratlon domain is here understood to be
O<¢ <4m, O < <47, O0<9 <w . (2.61)

To prove this theorem we subject (2.57) to the angular
integrations contalned in dw . In virtue of the period-~
lcity possessed by U™ over 4rm intervals of ) and ¥

we obtain
11

fu“'l dw J° - - % [sine %—;5 j gl 44 Qﬂ’—] = 0. (2.62)
9

4 4n
=0

This result asserts the vanishing of fu“’l dew , and the



NYO-3071 p. 21

Hermitian conjugate jU d w , except for the state with
j = 0. The fact that the rotation operator U reduces to
unity for this spherically symmetrical state completes
the proof of (2.59). We shall defer application of this
theorem to the next section.

3, Addition of Two Angular Momenta

Two kinematically independent angular momenta, A

and _J_z, can be expressed by
- 1
ol ‘z sy | 2]y ey,
7)* (301)
-q’ '}/ )b}' ’

where the a and b operators individually obey (1l.1l), but

4
|
o
+
-~
ol

are mutually commutative. In studyling the eigenvectors

of the total angular momentum,
_J‘ = J + J 9 (302)

the following scalar operators play an important role:

:7_._ = (a¥v) J_ =(b*a) ,
] (3.3)
Is _—_%[(a*,a) - (b*,b)] = 4(n; - n,),
and
Koo [0] » Kow (o]
7(:5:% [(a*,a) + (b+,b)] +1=%n+1 . (3e4)
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As one can easily verify by direct calculation, the opsratcrs
"J and X commute with each other (as well as with J), and

obey

[US’vi] :Ui ’ [7#:7-] =2:73’
[ﬂS’X:I K+ [K+'K -] 2K 5 -

It will be noted that the commutation properties of the :7

i}

(3.5)

operators ars those of a conventional angular momentum, whille

the K operators are analogous to the hyperbolic angular mo-
mentum K, which was discussed in the first section. We shall
denote the elgenvalues of ’Us and K 3 by ¢ and Y , respec-
tively. These quantities have the following significance,

B=dp -3 s ES MR L (3.6)

In evaluating the square of the resultant angular momen-

tum, we encounter

2Jdy « dg %Z a*a,b:b,,(}'l g | \f’ )'(}"' g ”w)
PYE Y (3.7)

+ + 1
Z e.7 a},b},b} -3 00y

This can be expressed either in terms of the’\j operators, or

of the 7( operators, since
= btaa*'b:n-e— a+a'o+b ’ 3.8
U‘7+Z}Y?> 2Zn’z’; (3.8)

and
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K*’k _= E a.; b;(a}b_f, - a},b} ) = nn, - § a.; a},b;, bf_.(s g)

Indeed,

#= Ty s+ DoPo= K Ds-v+ LI
(3.10)

and

3% = :%(;fj<'5 -1l) & 'j<*.7< - '1('3(J< 3+ 1) - ‘}(-1%( +

(3.11)

From the first, conventional, representation of _.12 in terms
of the angular momentum 'U s We 1nfer that

Jz el (3.12)
or

3z Jip -3 s (8.13)
while the hyperbolic representation implies that

y-12131 , (3.14)
or

jl - J2 3 J° (‘13015)

We have thus arrived at

jl*’JgZJlel"JzI ’ (3.16)



NYO-30T71 Pe. 24

the familiar restriction on the composition of two angular
momenta,

An eigenvector of _{2 is conveniently labelled by the
eigenvalues of J,, 73, andx z+ In virtue of (3.8),
the resulting eigenvector \I’(jmpv) is equivalently desig-
nated as \P(jl Ig jm). In particular, the state with
V = §J + 1 corresponds to'jl +Jg =13, and 2§, = J + p,
2J,=J - p. The special state of this type with m = §
can be realized in only one way, since m = Jl + 32 requires

that m, = jl, m, = jz. Thus

(a*)J"‘H- (b"‘)J"P'
(ipi+1) = —= a = . (3.17)
k4 () 072 (g 172 ¥

With an arbitrary reference system, this result becomes

J
AR AL TR AN A
((23)1)1/2 (x) Y 1) = 4x@ )7 7(xb’) , (3.18)
J - (;ij X '{/ij* ) f(.‘]ﬂ&)l (1-1) 1F/2 ()

according to (2.4). We multiply this U analogue of (1.13)
with <Pj“(§ ), and sum with respect to W,

(& (xa*) + & (xb*))%]
((25)1)1/2 > cpjm<x><_yw(§)Y(Jmu3+1> = 7 4lx = ‘Ié
mp

(2J)1

(3.19)

Further summation with respect to J then ylelds
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?_ (e nt? P P )WV (gmuge1)

mu
oo Falxeh) ¢ Fo(d)] .

To complete the determination of the eigenvector
'\]/( jmsy ), we need the analogue of (1.20), specifying
the eilgenvector with arbitrary » in terms of that with
the minimum value, j+1, For this purpose, we examilne

the operator*

which has the following significant properties,
tEv=(2K, -1V , (¢ e vs= (24(5 -1)% v,

and

viIK_v=e2K_ , K v=e2vK_

In conjunction with

4J2+1=(2‘1(3-152-4X+‘}(_,

we obtaln

2 2
3 1 8 _4J%+1 - ‘9< -1( =
(8t2 *3T at tﬁ )V 4 + v -=-0,

an ordered operator form of Bessel's equation. The

solution 1is

1/2
v=g(45°42) Flege + ni/e K K ),

Pe.

25

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

Our procedure here is based upon the general method
of Appendix A,
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where P 1s an lntegration constant, and the notation
is intended to indicate that P 1s inserted between the

powers of ?<* and‘7<__1n the ordered operator expansion

of the function F defined in (1.36). The second solution

of the Bessel equation has been rejected in order to con=-

form with the fact that t27v3 =1 must vanish as t—o0,
in view of the non-~negative character of f}(s - 1. The

operator (3.,26) can also be written as

E 2341 X . .
3 P P K Py K D)

J [

2V —1
> > & Piy ’

.j Y= vj"l

v

wherse PJV 1s the projection operator for the state with

the indicated eigenvalues. According to the well~known

Bessel functlon power series we then have
= W
Py KD Py @y, KO

where

- (21+1) 1 1/2 gl
Wy, () = [(v SHEEY x] W :

-

This ylelds the desired eigenvector relation,

'\I/(jmpv) = wjv(j(+)'\1/(dmud+1) .

It will be noted that, with respect to J and p ,
Eq. (3.30) is converted into (1.29) by the substitutions

26

(3.27)

(3.28)

(3.29)

(3.30)
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1

j—-)'ml - ’ v—):j"'ﬁ’ (3051)

o) [

which are in accord with the significance of K, Cor-
responding, then,to the generating functions (1.35) and

(1.37), we have

[0 ~]
V=Jd+1
and
o0
((23+1) 1)~ /2 Z :va (X)\]_/(:lmu-v) = e)‘K*’\]_/(Jmu i*1), (3,38)
=J+
in which

1/2 -
Yoy = [t ] 72w (3:50

The epplication of the operator e’ K+ to (3.20) thus

produces
-1/2
2;_; (1) ™2 Q ) P53 Uy, O (gmey)
Ma*l + Baxa®) + S Y, . (3.35)

The eigenvectors are exhibited somewhat more
explicitly” in the result obtained by applying wd)) (1(*)

to (3.18),

11/2
: “ij(x)\y(jﬂzjm) = [ﬁ%m} ’ (3.36)

[ ].11"’32 J 31 32‘( 12 J- 11
72 ’\Po ’
[(jl"'jz"j) 3(3"'31’32) l(jg"’-j Jl)l]
* The normalizatlion constant does not automatically appear in

the corresponding group theory formula. B. L, van der Waerden,
Die Gruppentheoretische Methode in der Quantenmechanik (Berlin,1932)}
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in which we have employed jl and j2, rather than y andy .
For the purpose of converting (3.36) into a convenlent

expression for the transformation function

(jljgjm’ jlmljgmg) = (@ (jljzjm) ,\_P (jlm1j2m2))’ (3.37)

o5
‘D

we make the replacement X, —a»zf, x_ —9»—z+, and take

the scalar product with the generating function of the
Y iymy 3 m)
> *
. _ oixa’) + (yb )g?
E yDjlml(x)ijgmz(y)'§7(31m132m2) =e 5 - (3.38)

The ensuing formula can be written

E j?lml(X)jfgzmz(y{ijsms(Z)X(jljgjs;mlmgmz)
Tt

E Jo¥rda=] Jz+iq -] J1*ig=d
=[(51"'32*53*1)‘]-1/2' ] 770 (e T2 R Lyt E B s
[(3grigin) b (G5031-p)8 (ytigmig) 42
(3.39)
in virtue ol the definitiOn#
el _ oranl/2, oy d1Tderm
(31dgdm[ Jymydomy) = (25+41)7/%(-1) X(Jq3gd5mymy-m). (3.40)

Multiplication with

# This X coefficient is related to the V coefficlent of

G, Racah, Phys. Hev. 62, 438(1942), by X = (-1)Y2%J 1y

We have introduced the X coefficlent by virtue of its
greater symmetry: compare Egs. (3.44),(3.45) with Eq. (19a)
of Racah's paper (henceforth referred to as R).
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J-2j, J-2j, T-2i,
X

( >=(J1);_\1/2“ B
.gzjljzjs abr [ * (3-23,)1 (T-28,) 1(3-25 ) )

173

(3.41)

I = 3 4t s

and summatlon with respect to 31’ j2, end js, then yields

the generating function
2 X ;
Sm W jlml(x)jﬂjzmz(wﬂsms(z@jljgjs(aw (3153 g3mymgms)

- ea[yz] + plzx] + +xy . (5.42)

Symmetry properties of the X coefficients can be
easily inferred from the invariance of the generating
function to particular substitutioni, Thus, the null

vid

i
effect of multiplying x,,y,,2, by e 2

» and x_,y_,z_ by e s
indlicates that X vanishes unless

m + my + m, =0 (3.43)

The invariance of the generating functlion for simultan-

eous cyclic permutations of x, y, 2 and a, B,y implles the

corresponding property for X:
X(JyJpdgsmmpns) = X(Jpd5dysmomymy ) = X(J50q Jpsmpmmp) - (3.44)

The lnterchange of x and y, comblined with the substitu-
tions a ¢ =B, ¥ — =y, discloses the behavior of the X
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coefficients with respect to non=-cyclic permutations,

X(Jgdydgs mommy) = X(J135305 mymamy) = X(J5dpd15 mamam, )

(3.45)
= (-1)7 X(3;3,955 mymom,)
1d2d3% ™Tg"s o
while the excnange of x,,y, ,z,  With x_,y_,z_, in con-
junction with sign reversals for a,p,y, leads to
. _ - (19 T 03 4 .
X(Jj1igdgsmy-mymms) = (-1)° X(J1igdgimmoms). (3.46)

Among the implied properties of the transformation

function (3.37) are

(3gdydm | Jgmpdymy) = (Jyipdm| Jy-my Jp-mp)

(-1) REFAt

Gpdgim| dgmyigmy) « (3.47)

The expression for X(jljzjs;mlmzms), obtained
by expanding (3.39), 1is

(Jq+ms) 3( 5 -m, ) 8(T-23 01 1/2
X(jsm) = [(J+l)l] i/% E (-1)P ] i 13y #my )33y -my ) U(T-2], ]
(7 - 231 - nl) 11’11‘

(3.48)

in which

n = nytngtng (3.49)

and the summation is to be extended over all n; subject to

J - 2jy >2n, >0 (3.50)
1 i= ’
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and
No=ng = M) =Jotigzs Bgmny = mo=gtiy, my-ny = mg-jidiy o (5.51)
The latter conditions can also be written as

J =2j) -0y =Jptmy =ng = g =my; =0y

J=-2j,=n,=Jzg+m; =0y =j; -m -n, (3.52)

J = 2j3 = g = J] +* ml - n,

It

o
Av)

!

B
AV}
§

-

It follows from the non-negative character of these

quantitlies that the n, are uniquely determined if one

of the nine integers J - 231, ji + m ji - my is equal

to zero. In general, the number of terms in the sum (3.48)

exceeds by unity the smallest of these nine integers. It
is a matter of convenience which of the ng is chosen as

the summation parameter.

The X coefficient cen also be exhibited in closed
form whenever the lmil have the minimum values compatible
with the given jio The simplest illustration of this is
provided by X(jljng;OOO) corresponding to integral values
of'jl,jz and j;. Note that this quantity vanishes, accord-

ol

ing to (3.46) if J is not an integer. Our procedure here

is to place x_ = 3/8x,, With analogous substitutions for y_

and z_, and to evaluate the derivatives at x = v, =2, = 0.
Since
. : -1/2 Jimmy  Jptm
PJI*ml)‘(Jl'ml)!] SRR x, o, =% ,0 (3.52)
x+—0 1



this effectively isolates the m = O terms in (3.42).

The reduction of the generating function can be per-
formed with the ald of the following theorem contern=-

ing ordered operators, which will be proved in Appendix B.
If 2 and a+ are two operators satisfying [é, dﬂ = 1, and

f(a+) 1s an arbitrary function, we have
Z +,

= figoy) e . (3.54)

+
eza,a f(a+) =

The differential operator realizaticn of this. with
a = 3/3a", 1s the form actually employed.

The result of the calculation is
E 4)313233 (afy) X(j;J35:000) = (L+a® + Be + 12)“1, (3.55)
J

which 13 a generating function for X(j;0)., On writing

Y 37
(1 + Y2 + ‘32 + TZ)’l = (_1)2 (a2_* BZ* YZ)

J=0,a,°"
1 J-2%, J-2j, JT-2j
J 1 2 S
=) (1T o B8 v — (3.56)

J
we obtain the explicit formu]a% 3

(0] = )-—12-J CRF [(Jiji).';] 1/2 (
X(330) = (-1 , , / \ -« (3.57)
: [(3+0)3]*% | (511,01

(=1

This result is contained in R, Eq.(22').
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We extend this argument by making the substitutions
x, —> 3/dx,, y_— 3/dy,, 2z, —» 23/3z_, and evaluating
the derivatives for arbitrary X, 5T s and z_. In view of

(jo4m, )3 | 1/2 x 2w,
<)0 (x)—> 1 1 L m, >0
Jymy 7| (Jq-my )i (2my73 > 71 =

0 s my <0, (3.58)

and

(J5+ ms| )3 [1/2 , 2[m3|

C?jsms(” = (5= mg] 7! e T * "5 = ©

0 o Mg >0, (3.59)
we shall thereby obtain the X coefficlent for m, = o,
my, 2z 0., -mg; = my+mg. The .values of X when two of the

m, are negative can then be inferred from (3.46). The

generating function now becomes
z

= [(av-p)xs +( Br-a)y+]

. 2, 2
eOEYZ]?@[ZX]+ery]‘_9 (l+a2+ﬁz+Y2)-l e1+a + 3%y
(3.60)
and, on expanding in powers of X, oY ys and z_, we find
that
E ] ‘ (354|my| )] 1/2
i i .
. s s : X(Jjs
¢31J233(GQY) ' [(Jj_-rmjjﬁ (J’m)
J 1
2ml 2m2
= (2[mgl)s (ay-p) (Br-a) (3.61)

(l*a2+g32+Y2\)2 [m3]+1
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The result attained by further expansion of (3.61)
is

(Jq+|my) )8 1 1/2 .
(J+l)l. i ﬁi—lmﬂ)l m X(Js5m)

- (-1 %Jé’zlmsl _ (%Js)l (2m )3 (2m,)1
ﬂ %Ji-.iiﬂmi] )4 (2my-n;)ingd (2my-n,)ingl
1, mn, 1
(3.62)
where

J; =3+ n =n,, J2 =J - ny + N, J3 =J + n, + 10, . (3.63)

The double summation is to be extended over such none-

negative integers that satisfy

J = 2j1 - ﬁg > 2m1 - n >0

J-2j],-n22m, -n, 20

J - 2]z > 2|mg| - n; =n, 20, (3.64)
and for which J+n1+n2 is an even lnteger., The sum con-

slsts of a single term if one of the J—2ji vanishes, or

ir m = m, = 0. This simplification may also result from

the evenness requirement on JS‘ Thus

(3343) (Jg+3)(I+1)1
T 7 o X(J1dgdzs 20 -21) =
H(J-231)1 192°3% 3 2
1




e 3
(F3-3, 201 3-3,) 17159 8

s J even

(%-{H%-) i
(53-31) 8GT-3y-3) 8(5T-35) &

F+] J Odd ’ (3065)

which are the X coefficients with the minimum |m,] cor-
responding to half-integral values for two of the Ji‘
The orthogonality and normalization of the elgen-
vectors \P(jmuv ) can be verified, with the aid of
(3.35), by an extension of the procedure leading to
(1,21). According to Eq. (7) of Appendix C, we have

(e_)\[a+b+3+ §.(xa™)+ & (xb+)‘Po , ex[a+b+1+?&-(ya‘.’)-&?_(yb")’%)
E* xﬂ‘i‘
1 1-=-A%
= —_— ) 3.66)
1-7m2 ° (

and the expansion

E—‘)(‘q X*
A" . 3*
e = z 771 9 3t Qi@ Py 87>

(1-2%N) %
%
. cyj“(?) % Jy(x ) 'Z-JV(K)‘ (3.67)
establishes that
(’q/(jmp,V),'EP(j!m:p,lvi)) = 6“, Gm, GP'P" S - (3.68)

The unitary nature of the transformation 'f(jlmljzmz) o 4
’\I’(jljzjm), and of its inverse, imposes the following
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conditions upon the X coefficients,

. - o . » L 1
X(Jjipdommm, )X(J i dksmmomt) = 5= 0, ., ® , (3.89)
; 1dd 32T oMM, 1dgd 33T Mot 23,1 iglL ‘memd
m|ma
and
} (2554 1)X(J 5 odzsmymamg ) X(§q §odz5mi mhm,) = Gmlm]'_ m_m}

Jams \
As a particular consequence of (3.69), we have

§ [x(j:m)] © = 1. (3.71)

™m
The Rotation Matrices

The results of this section can be applied in
developing further the pronerties of the matrices U&iz (QUS“P),
which were introduced in Section 2. If U is che operator
generating a reference system rotation for the composite
system with angular momentum J = J1+J2, while Ul and U2

are the corresponding operators for the individual sangular

momenta, we have

v =, U, (3.72)

according to the exponential form (2.31). In particular,

theorem (2.59) states that
fUled“): Pos (3.73)
where P_ 1sthe projection operator for the j = O state

of the resultant angular momentum. On taking matrix

elements of the latter equation, we find .
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(31) (3p) o L
Umlmi @) Umzmé (W)dw = (Jlml']zmz ‘ PolJlmZ'L ‘]2mé)
= (Jymydgmy | 31500)(353500]3ymd dpmt)
__1 m) ~mp
= 25,77 %58, Compmy B omgmy (1)
(3.74)
since
_ -1/2 17y
(jljzooljlmljzmz) = (2§1+1) (-1) bj1j,\ “mym, ® (3.75)

In view of (2.41), it is also possible to write (3.74) as

(jl) 3% (jg) 1 h
J'U m! (W) Uy me (W)dw = §3I;I 6j1j2 - Omtm} (3.76)

™™ 22
which expresses the orthogonality properties of the rota-
tion matrices, in thelr dependence upon the rotati.on para-
meters.,

The orthogonality relation of the trace ‘37,

derived from (3.76), 1s

j%‘jl)*'x,(jz) dw = 6 : (3.77)
J1dg

This integral can be simplified, since the %(j) depend

only upon the rotation angle y. We write

™
dw = %d‘r sin -]2;7 6(cos 32‘-»{ - COS -%3'005 L'ng ) dw, (3.78)
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and, after first performing the d»n integration, obtain

2n )

)
34 (32 (v) l sin® % dy = b (3.79)

) 1de

which can be verified directly.
We return to (3.72) and observe that its matrix

element 1is

(37) (j )
Uy ©) Ty my () -g (3ymydgmal 31,0m083) @) (1,3, 9m) 31md 3 oms)
mm

(23%1)X(34 3 g smqmym) (~1)™ ' 083) @0)x(313505mmy ~m),

- (3.80)
or
) Gy) (5
Unymy @) Uy gy ) = z (20+1)%(Jy dpdsmmam)Up s (3)X(J1 33 smimpnt).
(3.81)

With the use of the orthogonality relation (3.76), this can

be presented in the symmetrical form

y) () (1)
S Imyny Vngmy Tmgmy 00 = XUadpdgimmng) Iy dpiginimimy) . (3.02)

Specializetlions of thls integral are provided by
¢ /2 3
gt )_(3* gmeu (3.83)

and
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Uég) = P‘(cos'l9 ), (3.84)

where Y&m is the spherical harmonic assoclated with
integral ¢, and P, (cos<F ) 1s the Legendre polynomial.
Thus

1 1
Y Y Y ssind 49 5= 4
j &lml ‘zmz &sms 2 en ‘P

A 28,41\ |1/2
=[ﬂ(—-£,—-—:, X(¢30) X(g3m) , (3.85)

1

and

-
j P, (cos9) P, (cos?) P, (cos9) -12-'- sind a¥d = [X(:,‘O)]2
-1 2 3

(o)
(3.86)

The multiplication property of the trace, as derived from
(3.80) is
J'—'J.l*ja

%(jl)(,r)%(:]‘&‘)(,() = (X (J)(‘Y) , (3.87)
=T

which can also be expressed in the form

2T
jo%(h)%(:le)"k,(js) % sin® %'r dy = {1 » J=2J1 20 (3.88)

0 s Otherwise.

One can regard this as a realization of the projection

operator statement of the angular momentum comvosition

law,
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.=J. f‘j
P P = P ®
jl ‘12 . i j ) (5 89)
J"\h-\'gl
since (3.87) 1is the trace of the equation obtained by multi-
plying (3.89) with U;U, = T,

We shall conclude this discussion by deriving the com-
pleteness relations for the functions ) (J)(w) and Ur(niz ().
Referring to (2.36), the gen:elrating function of the X (j),

1

"
Wwe replace t therein with te€ and obtain

1( J+)y
E 1210 Dy T - 7 e - TTToE
3 (1+t“°) cos %—- - 2tcos % - isin g-:- (1-t°)
(3.90)
the imaginary part of which can be written
E -3 ’l(j)(w) 'x_(J)~(u,')
v
= e &t a9 (3.01)
- - 4t ' 2 1,2 ¢
(1-t°)<(1 Tot)2 cos % cos f—) + 4t%(cos 32; - cos %—)

We now consider the l1imit t —>» 1, and infer from the known

result
EL_iﬁ o "1-';56;9 = o=x), (3.92)
that

Zj—_wmw) Wh = § L oteen § - 00 B 5.03)
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However

amw

j% 1 _ 5(cos % - cos %-'-)dw = jb(cos %’ - cos %—'—)sing %dY =1
C)

sin §

(3.94)

so that (3,.93) can be written

Zr__x‘“w)’)c‘“(u!) = S(wed), (3.95)

which 1s the completeness relation of the 'Z_('“. As a
specialization of (3.95), we place y!' = O and find

2 (2j+1) ’X.‘“(w) = §(w), (3.98)
J

An operator expression for the composition of suc-

cessive rotations is given by
1.,/ /
Tw)T (W) = T(W -Ww), (3.97)

We take the trace of this equation for the states with
quantum number J, and, in virtue of the unitary property

of U, obtain

> o) et = -, (3.98)

mm
which 1s in the nature of an addition theorem. The com-
pleteness relatlion for the Uggz(a» 1s reached on multi-
plying (3.98) with 2j+1 and summing with respect to j.
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In view of (3.96), we have

E (23+1) 1)) T (W)* = sw-ud). (3.99)
Jm

On integration of (3.98) and (3.99) with respect to the
Eulerian angle ’W, there emerges the addition theorem and
the completeness relation of the spherical harmonics.

4y Three and Four Angulaer Momenta

Bigenvectors for the resultant of three angular mo-

menta can be buillt up in several weys, as symbolized by
d=d ¢ (EQ*E.;;) = do + (Ig*dy) =I5 + (4{1*&2)‘ (4.1)

Thus, according to the first procedure, we construct

\I/(Jl“‘ljzj:sjzs"‘zs) and th"“"f(h[ 1)l Jpzim), while
the last method of addition yilelds '{(35[3132‘13123m).
The notation, [1235], for example, 1s intended to indicate
that these angular momenta are not involved explicitly in
the composition of 31 and 123 to form j. Similarly, four

angular momenta can be combined in various pairs,

3 = (134 (Igrd,) = (IrI )4 (I0,) = (L4d)+(I4d,),  (4.2)

in which the first method, say yilelds ?([1132]312[1534]:]343111)
through the intermediary of‘{’(iljejlzmléjsj‘ljumm); Our
problem in this section is the evaluation of the transform=-

atlion function connecting two such schemes of adding four
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angular momenta. The analogous question for three angular
momenta can be regarded as a specialization of this more

symmetrical problem.
To facilitate the addition of angular momenta in palrs,
We observe that the generating function (3.35), written as

§ (2j+1)'1/2%m(x) @ Jljzj(alazas)\I/(jljgjm)

= exp(aS[a+b*J+a.2(xa+)+a.1(xb+))’&o 3 (4.3)

can be obtained from

Z(‘?J:Lml“l’ Dy t2) W apm3gmg) = o0 ((31aM)0(858" 1 ¥o (4. )

by the application of the differential operator

oxp (a5 58 58]+ ap(x o (x 50 (4.5)

with the understanding that the derivatives are to be
evaluated at t,=t,= 0. Accordingly, if we apply (4.5)

and

exza((s:s[g-:?,—25 5—2—4] +B,(y -5%;)-* B, (¥ 5%;)) s (4.8)

to the generating function of the Y(jlmljemzjamsj4m4),

namely,

exp((tla“')+(1:2b“’)+(t3c+)+(1:4d"‘))’\I/o, (4.77)
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we shall obtain a function generating Y(3132312m123334334m34)‘
The further application of the operator

exp (r,,[%; %] +rgl zgi)ﬂl(zg;)) (448)

then produces

-1/2
E [(23; 400 (23500 (2901 ] T Y y(2) @1132312“) .

= o9
@ 3354334(6)@ 3123343(*)\Y( [1232) 312 [3534) dgim) = e , (4.9)

in which
Q= as[o."'b*]-b Bs [o+d+] +yz0y pl[b*d+]+13a1 62[b+c+] +(505 6, [a+d+_]
+ 'fsazﬁz[a"c"]wzaz(za*)ﬂg“l(zb"’)wlpz(zc"’)wlpl(zd*), (4.10)

As an important specialization of (4.9), ylelding the
elgenvectors with j=0, we place 1= Y= 0, and ¥3= ¥, with

the result
§ ' -1/2 1 '
(2:] +1) l/ @ Jljgj'(a) @ JSJ4J'(B).\¥( [Jljzjj [jsjdj oQ)
=& Yy , (4.11)

R = az [a*v*)+ Bs [c"d*]-!ul By [v*a* ]+ 0152[b+c+_'| +a5pq [a*dv +a,B, [a*cY] ,

where J' = Ji5 = Jz4. An analogous equation for a different
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mode of addition is

E aaqy~1/2

= R’ (4.12)

R = a:“s[a+c+.]*(3:g[b+d+]+aiﬁifc+d+]*a.]_[3§[c+b+1 *Géﬁi[a‘*dt]*ﬂ»éﬁé[a*bt] .

The transformation function connecting the two schemes 1is

determined by

Jagnag-d,
E (1) @51121"“@ 33143'”@ ELALE

) @32341"(‘3')“(31323554’3'3") = (*do, ' Vo), (4.13)
in which we have written#

([3335)3'[3530 310] [3135] 37 [I3,]370)= () T

[egr+1) (232 )] Y2m( 3, 59,9511 (4.14)

We now employ the theorem (Eq.(C 28))

For simplicity we have assumed that the parameters
a, 3 are real., The generating function (4.18) is valid
without thils restriction.

The W coefficlient thereby defined is the same as that
discussed in R,
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( oxp { %}:;v[u A;]] Yo - exp{ 1 Zx,,v[n: A:]H/o )

=1
¢ _2
:E::j 1/2| 4|1 2]
in which the ‘}F are four sets of two component operators,
obeying
[ po Ay y] =8y Oy » (4.18)

and |A], |X| are the determinants of the anti-symmetrical

matrices XFV and Khy . For the application in question,

(Al J‘/2|)(|J‘/2 = -agB,aLBL

3 > Ay Xy = GgaLALrBae{ Bl + alaBy + BYo B
- G Boa{Bh *+ APy apf . (4.17)

On changing the slgns of o and Bé, we obtaln for the gen-.
erating function of the W coefficlents,

Z@Jﬂzﬁ"“’ D 1101 PD 11550 D gy gt 115 50787

= | 1-0504p4-P50] Bl -0}, P5-R40, By -0y Bpo] BY-agf 038 +05 Pyaley ]
(4.18)
The symmetry properties expressed by:
LEIEPSESRARADI R (E PRI PEPSE AR DL ICFS VR IR PRR AR A

= w(jljsjgj4;jnjl) (4.19)
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follow from the invariance of (4.18) under the respective

substitutions:
G € Gy B > By o' & B3 o] © aby, B & B
o €« f; a € af, p & p',

while the more complicated transformation (alaaqa) — ('°3°2°1)’
(afajal) <> (BgByBp)s (BIBLBY) — (BB~ By ylelds

13-4y -3,
W(I do0z0,3308™) = (-1) LIGLFPS IS LFE 2% AR (4.20)
Twenty-four equivalent forms for W are obtained by repeated
use of (4.19) and (4.20).
Further characteristics of W follow from the compoéi-
tion properties of the transformation function (4.1l4), which
we shall temporarily indicate by (12;543" 13,243"). Thus

2 " (12,343 | 13,243")(13,243)" | 12,343m) = 5JQJ" {4.21)
and

(12,343 | 14,233M) .
(4.22)

) (12,3431| 13,243")(13,243" | 14,233™M)
jll

All of these quantities can be expressed in terms of W. The
interchange of 2 and 4, and of 3 and 4 in (4.14) yilelds, with
the aid of (3.47),
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Jotizti =] 1/2
(13,243" | 14,23§™) = (-1)°% "2 "4 ”1[(2j"*l)(2jﬂd 1)] .
e W(Jqdgdagdosd™ ™), (4.23)
and

jl".., - 1/2
(12,345 ) 14,235%) = (-1) la7h [(ﬁj'+1)(2jw'+1)] / °

* W(Jq3gddgsitdi™), (4.24)
Therefore

2 (23" L)W(31 30050433 3" 0005333™3%) = 53T Ogugone (4025)
and

JI4"H I i)
E (-1) eI CF LS SL{G PRI I SFFAEROUTE M JE IS JRT RUS LD
J”

= W(jlj2j4j3;j“~j v, (4.26)

These formulae can be combined by placing Jo = Juo
3t = 3" in (4.26) and, after multiplication with 2j'+1,
perforuing the summation with respect to j' by means of

(4.25). We obtain

z | 3-3 43
(231+1)W(J 3555331 3") =§ (-1)° BT (4.27)
J

J'II
in which the values assumed by j" are those compatible

with the existence of W(jljzjsjz;j'j")9 namely,
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3" 2 135735}, 3" < 3,435, 21, Accordingly,
1, keven

141 )W $313Y) = (4.28)
Z_: (23 +1)W(3135353538100) {O e oa

when k 1s the smaller of the two integers j1+j5-‘J1-Js‘,
2j2-‘j1-j3\. -One of the consequences of (4.28),

. 1
W(JlszQO;jzjz) = '23"2"21' ’ Jl < 2.’2 s (4.29)
is a particular example of
W(J13p3a05 I5lg) = [(212+1)(235+1)]‘1/2,\Jg-asls_ §y =.3g%35,(4.30)

which follows from (4.14) on remarking that, with Jg i O
the Ilnterchange of Jz and JS simply multliplies the eigen-
vector with (—1)'12”3"jl .

The relation between the W and X coefficients can

be inferred from (4.14) by writing

‘@([1132]5'[33.‘];].‘]'0) = E (2Jl+1)'1/2(_1)3'-m12
e

“1’(51323'm1233343"m12)

_ (21,+1)1/2(_1)51*33"32'J4 .

Jl-
g E X330t smymyomy o) (-1) e
Me

* X(Jzlqd "‘m3m4m12)%(31"‘152”‘233‘“534”‘4”
(4.31)

49
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which, with the similar representation of“ﬂ?([jljéjj"[j2j4]j"ob,

yields

j!_
E X(Jljgj';mlmg—mlg)(—l) 12 X(Jzdadsmemymy5).

m

. x( jljsj“!mlmg-mls) ( -1)

= g-]_)

Jte3mely

jm _ml 3

X(Jgl4d"smom my 5)

+]
W 05005000

The general expression obtained for W by expanding

the generating function (4.18) can be cast into the form

T smn) V4] [ P -

W(3 3,3,0,51

where
n= E n,
=\

T8

o ’ Pg +p+1l) L
) TR

3

T.5

s P'—'E Ps ’

b=1

and the summation i1s to be extended over

integers, n,
32 "'jq":]l"Pl
js *j"'j4"Pl

c"n -
.13"’3 jl Pl

32"' j"-j4"P1

» Pgs for which

= J ¥t =igpp =

= J1+j'-j2'p2 =
= j4+j""j2"p2 =

= jl+jl"j 5'92 =

jg*j4‘j"-p3 =

i =fn_
Ji¥dz=3"-Py
j3fj4"j ! _p3

Jp¥ig=it-ps

the non-negative

|
-

i
rP?
-

(4.32)

(4.33)

(4.34)

(4.35)
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The number of terms in the sum exceeds by unity the smallest
of the twelve quantum number combinations, j2+j'-jl, etc.,
the sum reduces to a single term if one such combination van-
ishes. The choice of summation parameter 1s a matter of con-
venience.

We now return to the general problem, that of evaluating

the transformation function
i : . _ J1g¥ipy=dy-iy
(U1dg)he[lizls] Jaadm |f313:§]313[3234]3243m) = (-1) °

° [(25’12*1)(2334"1)(2313*1)(2324*1)]1/2 8(J1303534331035431330453)
(4.36)

A generating function for the S coefficlent is given by#

(g) (v ., ) .
Z @3152312”) @ Saladzg q) J12334] T)@ JIijls(a )

) q) 3234524( o) @ 3133245(Y')S(jljzjsjé;512154*1332435)

= [1+a3§3aéﬁé-ys(aéﬂzﬁg*ﬁéﬂlﬁl)'Yé(a5“é©é+§3aisi)

TaY5(6g8; a5 B)+a) Boaf BY) -vors(agal+ByBLa; af ) v v] (B Bl +a;alfrBY)

= 1175 (Bafva Blp, aé)+721i(alﬁé+aépsagﬂi)] 2. (4.37)

The connection with the X coefficients is contained in

This is obtained with the aid of Eq.{C 30).
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2 X(J1iguypsmmo=iy o)X (J 5] 4 53maM, =g JX(J1 5T 54351y S5 =m) @

© 2Jydgdy gimmyng 50X (o0 g dpgsmamymmp )X 3y 5J 035m0 4 m0)

Jag¥iaa*dy¥ig*2d . .. .
= (-1) S(313035343 3103549153243 8) (4.38)

and the W coefficient appears as a special example,
8(Jydg35da531313%3730). =Ijzj'+1)(2j"+1)]'1/‘w(j1j2j5j4;j‘j") (4.30)

In view of the complexity of the S5 coefficient we shall
be coritent to record here only those cases that can be ex~
pressed in terms of W. This occurs whenever one of the nins
quantum numbers Involved in the S coefficient equals gzero,
which is a consequence of (4.39) and the fact that the sym-
metry of S is such that any of the other gquantum numbers can
appear in the position of j. Thus, it follows from either

(4,37) or (4.38) that
S(313255j4;j12334j15324;j)

J1z¥igy=dgtig-da-dy
= (-1) S(31037024355 403433155 34)

Jogtizgi1g=ip=iyd
= (-1)"%* 803370315315 Isad sdogisiis) s (4.40)
which are representative of the eight permutations of this

type. We obtain from (4.39) that
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SU313p35325 J12354315% 315

Jqz=3q=3 -
= (-1 13 (2 1) (23, 541)] AW, 30 0050 543 Ipd18) s
and
8333350881535 5350 9)

3g=d10-3 ]
= (-1)73 12 [(23,91) (2301)) VW33, 08, 5315350 ,) -

The latter result contains the solution to the problem
of three angular momenta. Expressed in terms of a transform-
ation function, without explicit reference to the angular mo-

mentum with zero quantum number, (4.42) states that

([3232)319 50m | (13531 5929m)

Jiot)yz=dq-J
= (-1)°12 "183 1 [(2j12+1)(2j15+1§] 1/2W(j1j2.1333512313)-

A slightly simpler form# is obtained on permuting the lndices

1 and 2, together with a change 1n sense of addition for 31

and 323,

(Pade] Sa2dstm| 3 [1ods]dasim) = [(20190) (20501 ] 1z,

¢ W(Jljgj-js;jlzjzs)o

As a particular consequence of this result, note that,

G. Racah, Phys. Rev. 83, 367(1943)

(4.41)

(4.42)

(4.43)

(4.44)



according to (4.30),

([13d 3535031 [iais]i10) = 1, (4.45)

that 1s, the elgenvector for the null resultant of. three
angular momenta is indepenaent of the mode of addition,
provided that the order of the angular momenta is preserved.

As one representation of this eigenvector we have

. Jm
V1135150 = E [(2301]/2(0)"3 3 [, 1,105 mg),  (4.46)

and therefore

- jetm
(331 3gmpd gy |37 35350) =[(215*1ﬂ 1/2()7® % (3ymy 3 my 3292355

J1¥iz=d
= (1) 78 TEx(y 10 mmen), (4.47)

in virtue of (3.40). Thus, the X coefficlent, originally
defined in terms of the addition of two angular momenta,
now sppears as characterlzing three angular momenta with a
null resultant.
This possibility, of replacing J1+J2 = J with J1+J2*J3
= 0, depends upon the circumstance that the negative of an
angular momentum operator 1ls, in a certain sense, also an
angular momentum operator. The commutation relations
JxJ =1id (4.48)
imply that

NOTE: The operators J and J' are vectors.
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(1) x (=3) = -1(-7),

which reassume the form (4,48) on changing the sign of

1 (complex, not Hermitian conjugation). Therefore
Jr = -J?

is an angular momentum operator. To find the eigenvectors
of J', we notice that a rotation operator U 1s g function

of 1J and real angles. Therefore
o = o*

1s the same function of J! that U 1s of J. On teking the

complex conjugate of the equation

U'\?(;]m')_ = Z:’\}(jm)qu
we obtain
v ) = ) Puwommiedd)

with the e1d of (2.41). Hence

Fr(gm) = (-1 *(jom)

are the sigenvectors assoclated with J°%.

Now observe that the following dyadic, formed from

the eigenvectors of a single angular momentum,

(234172 Y (3 *(m),

NOTE: The operators J and J' are vectors.

55

(4.49)

(4.50)

(4.81)

(4.52)

(4.53)

(4.54)

(4.55)
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is unchanged by a rotation of the reference system, since

Z‘l/( Jmt) (mt | U1 gm) (G |07 ) P (gm)
=) Vgm) W (m). (4.56)

Théreforp, on employing (4.54) we infer that the vector -

(23+1)°2 > W(gm) (<13 W(jem) (4.57)

describes the spherically symmetrical state of two angular
momenta, which is in agreement with (3.75). This is the
basic example of the relationship involved in (4.47).

5. Tensor Opserators

An irreducible tensor operator of rank j(= 0, 1/2, 1 ...)
is a set of 2j+1 operators, T(jm), which transforms in the
following manner under a change in coordinate system,
UT(jmt)U"l = T(jm)ngiz o {(5.1)
M=-
On taking the Hermitian conjugate of this equation and em-
ploying (2.41), we find that izmT(quf' transforms in the
same manner as T(jm). We therefore detine the Hermitian

conjugate tensor Tt according tc
)
TV (5m) = 12B(jom) . (5.2)

The tensor that is conjugate to TT is then described by
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) i
T”(jm) = 1%t a2 1288y = (1) (gm),

or
o' 1o ()2,
This shows that Hermitien tensors, T =T, exist only for

integral j#, and satlsfy
. _ m T
T(jm) = (~1)"T(j-m) .

The product of two tensor operators transforms under

coordinate system rotations according to

. -1 ; N §
(UT; (jym])U )(UTZ(ngé)U )

z (37) (3,)
. . 1 2
Tl(Jlml)TZ(szz)qmlmithgmé

mma

. AP 1
UTl(Jlmi)Qg(szé)U~

i

It Follows fror: (3.80) that

z T3 (3pmy ) Tpldgmy) (Jyapdamg |31 3p05) = TUI Joim)
™ Ma

obeys

UT(jljzjm!)U"1=§ T(jljgjm)nggl? ,
m

and is therefore an irreducible tensor of rank j.
For a tensor operator applied to an angular momentum

eigenvector we have, analogously,

L Tt is similarly impossible to identify the“¥#(jm) of
{4.54) with  (jm), for all m, if j is half-Integral.

Pe. 57

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)



NYO-3071

U(r(3,m)) Y (mp)) = (UT(5ym]) U (0 (fmp))
E (37)_(ig)
= T(J U U
X (Jlml)?(jzmz) m,mi ‘m g
8o that

> Ty )Y (3gmg) (3ymy dgmy | 3y3p9m) = @ (33,98)
T’fi.'fna

obays

v yapm =) Pl sgmd)

and 1s therefore an angular momentum eigenvector with
quantum numbers j and m.

The magnetic quantum number dependence of tensor
operator matrix elements is contained in the last state-
ment, On introducing explicitly the additional quantum

numbers necessary to form a complete seﬁ, we are led to

write

T(kq) W (v'tm') (kqjtm?| kit jm)
qQm’

=Y Vi 22 fpgjp By 7,

T

where we have employed different letters for the tensor

operator 1lndices ln order to slimplity the notation, It

P

58

(5.9)

(5.10)

(5.11)

(5.12)
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n
follows from (5.12) that
(rsml (k)] vt 5tmr) = (2340) ™2y g 7)) 157 (5 smf a1

(-1)k-j!+mtyj|T(k),Y'j{]x(jkj';-mqm'). (5.13)

As an alternative derivative of the latter result##, we

remark that

(ygml (k) vt jrmt) = (U (pim), UT(kq) U~ 20 W (ytjtme))
=) Cemnlngen) g -1 oldd et (5.14)

An_integration with respect to W then yields, according to

(3.82),

J— 1
(ijIT(kq)|T?j‘m') = E (=1)"™X( kit ; -mam® )X(jK3 ' ~mq mt ) e

m %Imlll
o (yim"|T(kqt) [yt tmW) (5:15)
which is (5.13), with

[Yﬁ,T(k" v 51 ==§ (-1)3 " E (51305 mam? ) (v3mlT (kka)l v J1mt ) . (5.16)
'mq'm

The relation between the rectangular bracket symbol and
the analogous quantity defined in R is

Ceal 2 3T = B3 (e e g ).

This is the method, employed by E. Wigner, Gruppentheorie
und ihre Anwendung auf die Quantenmechanik der Atomspektrem
(Braunschweig, 1931), p. 263.
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According to the definition of the Hermitian con-

jugate tensor, we have
. t 2q L
(vjm|T (k)| y?3'mt) = 1°Fyr5mt | T(k-q)| yjm)

= 1280 km30m [ g 2 00| ] ¥R 5 omamt ),

(5.17)
or
t 231 ’ *®
in which use has been made of the X coefficient properties
contained in (3.45) and (3.46). For a Hermitian tensor, this
result reads
L 1 ‘l‘-
etz g = (-033 [yrgre )] * (5.18)
If the tensor operators T, and T, of (5.7) refer to the
same dynamical variables, we may write
-3 .
(ij'T(k1k2KQ),Y'j'm") = (-l)k J ﬂm[}jlm(k)(klk2)|Y'J€] .
o X(jkj';-mqm'), (5.20)

where in view of (5.16),
. k . E T=k= .
¢’

E (ijlTl(qul)lY"j"m")(r"i"m"sz(kzqz)|1ﬂj“m8). (5.21)
Yﬁo.jb.mu
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The resulting magnetic quantum number summaetion, involving

four X coefficients, can be identified with a W coefficient,

]2 eyl v 1a1] = (2k+l)1/zz;w(klkzjj'ikj")-
Y "

P ENC Ty | Y P Y 1. (5.22)

When ‘1‘1 and T2 are tensor operators associated with different

dynamical variables, so that

Erl’%] = EEZ,J;J =0, (5.23)

we have

(v 3gim|T(kykoka) |yt §{igitme) = (-l)k-j'*mE{jljzj‘T(k)(k1k2‘y*jijé;]3.
o X(Jjkj';-maqm')} . (5.24)

Here

fraa32312%) el v agagsr] = ) (03 (g5 mame)

° (kyqykga,|kyloka) (J1pdmlJqmy Jomo) (51363 mt 1 j{mi Jmp)

+ (vdgmy |79 Ogag)| v 34mg) (" J gma| T o(kpap) [ ¥! S fmp) (5.25)

This magnetic quantum number summation, involving six X

coefficients, can be identified with an S coefficient,
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[-rjljzjl 0 (i 1eg) [ 1 3 jéj]

P L R R o
S (90331385 53 kg5 K) 0

T s | R T Y NI
) TJllTl | v 3;][% 1g| T2 Jerag | - (5.26)
IY\II
Special examples which require only the W coefficient

= E2.1+1)(2j'+1)(2k+1ﬂ 1/2(.)

are

1/2,_ %137
[;jljzle(o)(klkl)IY'jijéi] ) %F;EJ ) B 303135530

-Z[*jlmkl)l"”i [T"J'le.i.kl) leﬂ, (5.27)
¥

N e
[rjljzleﬁk’leijgj*_ |:(2j+1)(2j'+17_]1/2<-1) I

w(3y 3339830 v, 29wt ] . (seze)

and

BRI

+k=ji-
[(zj*l)(zj'*l):ll/z(—l):jl j2 j .

cwiapaagisao v et v 0 )

Purther relations connecting the S and W coefficients
can be deduced from these results. We shall illustrate this
for the simpler situation ih whiéh only W 1s involved. We

#

multiply the two scalar operators

Here ?land T2 are functions of different dynamical variables.
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X, -q
T(o)(klkz) ==E% (2k1+1)‘1/2wl(k1q1)(-1) 1 Lrg(kl-ql), (5.30)
]
and
- k,-q
T(°)(k2k2) = i{ (2ky1) l/aTl(kzqz)(-l) 2 2T2(k2—q2), (5.31)
a
to obtain

T(°)(klkl)T(°)(k2k2) = E [Z2k1+1)(2k2+1i]‘1/2Tl(qul)wl(k292) .

(o)t

Oi. writing

Tl(qul)Tl(kzqz) = E Tl(klkqu)(klkqulqulkzqg) (5+33)
kq
and

ky+k -k
Tk, ~qy )T 5(kg=a,) = E To(k ko k-q)(-1) (i, k Xq )k, q; k00,),

Tz(klaql)Tg(kg-qz). (5.32)

(5.34)

this becomes

T(o)(klkl)T(o)(kzkz) = E E2k1+1)(2k2+1Z]'1/2T1(klk2kq)(-l)k-q .

. Tz(kzkzk-q)

1/2
2k+l
‘=‘§ oSy ) Bl g -

A matrix element of this equation, when evaluated with the

(5.35)
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aid of (5.22) and (5.27), yields the information that

W(Jpdpdta%s e IW(ILIRILIL5 k)
JE+iR-3 k. 4k =k
= (-1)°1 E (2ke1) (1) * B W(Ip 31345 0K) -
K

¢ W(k ko dq I sRIYT( ki i 8skIN).

Tensor oporators can be constructed from the spin
creation and annihilation operators. Thus, consider the

ope rator

3 (za+)+ za :—_

o 3L J= Cqu(z)CPka(})t(kqa) )
kqa

formed from the commuting quantities (z&") and [za]. On

subjecting this to a unitary transformation, we find

=E P 2) Ppg (¥ )8 (ka@) T,

where the transformed creation and annihilation operators

‘{+(za'+)+ 3_[za]
e

are described by (2.14). Now, according to (2.19), we have

(zat¥) = (z'ah) s [za'l =([z'a] , 2!

E

iu which the second statement stems from the fact that a_

. . + +
and a_ transform in the same way as a,_ and -a_. Therefore,

64

(5.36)

(5.37)

(5.38)

(5.39)
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(za'*)+}_[za
e7+ 28 Flz = E q’kq(uz)(}’ka(?)t(kqa)

=E 0P (2) Py (3)lkaa) (5.40)

on employing (2.21). We have thereby shown that
Ut(kqta)U ™" = E t(kqa)Uégz . (5.41)

On teking the Hermitian conjugate of (5.37) and

SN
'

making the substitution z, —> z_, z. — =z, 3 — %,
7? - -}_ » Which restores this generating operator to

its orliginal form, we find that
t(kaa) = (-1)q*°t(k-q-a)r . (5.42)
Accordingly, the adjoint tensor is given by
t‘r(kqa) = 1%%(xq-a) . (5.43)

The significance of a can be appreciated from

(za*) Xt [zegk—c _}:
[(k+a)z(k-a3x]1/2— (qu(z)t(f‘qa) ) (5.44)

namely, 2a is the excess of creation with respect to an-
nihilation operators. Therefore, if t(kqa) is applied to
an angular momentum eigenvector with quantum number j!',

it will produce an eigenvector with quantum number j, such
that

(5.45)



NYO-3071 Pe 66

To evaluate the matrix elements of t(kqa), we examine

+
RETUR A Lz 7ty

= E Prnlx) Cmlt(kaa)] 3'm ) P gy (9P ()P (F)

(xy)+},(x"z)+} [23]
e

= (5446)
The substitution x:f —> X_, xf - -X, places this in the
form
§ (-1)37 s o (x) (Gm|wikaa)] 3w Py () P ()P (B
_ ez_EZYJ +[yx] -¥,(x2] ’ (5.47)
and comparison with (3,42) shows that
t_[z5] +[yx] -3, [x2] Z .
e + = (yjﬂm(X)(ykq(Z)(yj'm'(y)(yk,j-j'(;)
(o1)Erd=30 [ (griteken) ! 1/2 X(jkj';-mqm')
- (jejr=k) !
o (5.48)
Therefore

(~1)k-—j '+m[(1+iv+k+1) {,l/zx(jkj ' omam),

(jmlt(kqa)} j'm) = & (34]7~K) }

Ct.,j"j'
(5.49)

or
Ly 1/2
[jlt(k)‘“’“ﬂ = 04, 3-31 (%gijflfi})xl] : (5.50)
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Of particular interest are the operators with

a = 0 (k integral),

+ k
L(Z&l):lza ) = E jakq(z)t(kqo) . (5_51)
q
Indeed
-(z8*) [za] =a-3 , (5.52)

where @ 1s a null vector,
a-a=9o0, (5.53)

with the components

41 = -zf + z? ’ 6?,2 = -1(zf + zf), 415 = 222 . (5.54)

It is well known that if r is a position vector, @E;g)k is

e spherical harmonic of order k,

(&'E)k —" An ]1/2
25kl 2kl

f gtz (2) » (5.55)

whers qu(g), which usually designates a surface spherical

harmonlc, here includes the factor rk. Accordingly, we

write

(@-0)¥ [ an /2

21 ) Lkﬂ] Z: fkq(z)qu(i) ’ (5.58)
q

in which qu(g) differs from the analogous qu(g) only in
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that the order of factors is significant. With this nota-

tion, we have

ot [ [

Notice also that the tensor t(kqo) is Hermitian, according

to (5.43), so that the operator harmonics satisfy

LI
qu(g,) = (=107, _4(J)

The matrix elements of the tensor operator

Y(klszQ) = E Yqul(_{)zkzqz(i) (qulkng 'kJ’kaQ)
T

are described by
. (k) (
[3]25 eyt 3] = (o) Bweepyygsen [3fx | 3] ol

in view of (5.22). With respect to their effect on an

eigenvector with quantum number j, one can assert that

[312%) (el 4]
¥k koka) = Tieq () [jIY(k)I i] ’

which becomes a generally valid operator equation on re-

plazing j(j+1) with gz, Hence

(5457)

(5.58)

(5.59)

(5.60)

k,)
2 l:j],(s.é‘)l)

(5.62)



NYO-3071

E YqulkJ) I, q((J)(qulkgqgllt ko kq)

(k) (k,)
=qu(_{)(21c+1)1/2‘.'1(k1k2j3,k3) [-IY ] ][ [y 2 ’J—_I

[ ]

The example of this result for k = 0 can be written

Do

09

(5.63)

z :: (k) Skl 1 (2i4k+1)!
kq(J) (J) 23+ [JIY IJ] = TZx k (23+i)(2j k)l’(5°64)

in which we have employed

W(kkjj;oj) = (-1)k[(2j+1)(2k+1)] -1/2 .

One can easily exhibit the right side of (5.64) as a function

of j(j+1l), and thus obtain the operator equation

Z kq(J)qu(J) 2k+1 ( )
()" T ] [ 3]

N=0
2 k
The structure of the operator {g;}

from the two requirements that it annihilate any eigenvector

with § < %k, and that it simplify to the k°0

j becomes very large.

We return to (5.63), displayed in the form

Y (DY
k1qy =" Tkoq,

- [(2k1+1)(2k +1)7/%

(kykokq|kya,kpa,) 5

can also be inferred

power of gz as

2 Z 2
P Tig e piel L)

(5.65)

(5.66)

(5.67)
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)
{12} 1{i2} 2

The analogous equation for ¥, (I)¥ Y, (J) differs from
kadp 19~ i+, -k
(5.67) only by the inclusion of the factor (-1) , as

1/2

2, _ . 1 eyt
fklkzk(£ ) = (2j+1) /2W(klk233;k3)

follows 'from (3.47). The addition and subtraction of these

two equations then yields

‘ (7), ) (2k1+1)(2k2+1) 1/2
{ lql Yl{pqz an -
0; qu(g')fklkzk(-{g) (klkqul qulkzqz) (5069 )

and

(2% +1) (2k.+1)] L2
Ezk (3),%, (g)] =l: X 2] :
191~ 2%2 4 ]

2 T (D),

odd

1k, W35 (ke keq |y aqk00,),  (5.70)
where the parity referred to is that of k1+ko"k- In the
latter equation we have the commutation properties of these
operator functions of J.

As an elementary application of (5.70), we take its
trace for the states with quantum number j, In view of
the null trace possessed by a commutator, we infer that
the trace of qu(i) vanishes for every k that can occur

in (5.70)., Since these k values are Ikl-k2| +1, Ikl-k2|+ 3,
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ces k1+k2-1, we obtain#

trU)qu(_J_) =0 , k>0, (5.71)
or

shr v n (D) =6, (5.72)

With the aid of this result, the trace of (5.67) 1s evaluated

as

1 (1) + _
T T Yqul(,p Ykzqe( = {J(j+1)} °k1k aa, ’ (5.73)

which expresses the orthogonality of the operator harmonics.

The multiplication of (5.67) with Y (J) then yields

5
2k +1
TI tr(J)Yk ql( )Y Koo (3)Y, ‘15 -[ {J(Ju).} J
k. =k
¢ X(ksa)(-1) T 2(2341) M 2m(k K 305k,0) (5.74)

A comparison with (3.85) shows that, in the limit of large j,

# This theorem is easily proved for an arbitrary tensor
operator by taking the trace of (5.1) for states with a
given Jj, and integrating with respect tow

(vImlT(kg)ly1im) = 0. k>0.
m ==

0f course, k must be integral if the individual matrix
elements are not to vanish.
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-k

K
(-1) 1 B(2341)L/2

W(kikoiisksy) —> X(k k, 3,000) (5.75)

Turning to tensor operators formed from two angular

meomenta, we remark that, for matrix elements diagonal in

I,

E Ty q, (31)% g (3p) (50 ky0 |ty pka)

: 1/2,_ yd1tdgmi-ktk
= v, (D) (25+1) (201) Y/ 3(1) S(313gd1 35 13k kgsk)

) )
[31'Y(kl ,Jl-J [52|Y(k2 'J;_ (5.76)

No such restriction is required for the special example

t j1+3o=d
;zigkq<£1>‘qu(£2) - () W(jljzjljz;jk)[§1|Y(k)‘jiugély(k)lj;]

(5.77)

in terms of the Legendre polynomial operator defined by

E kq(Jl)f Yq(de) = 2l P, (Z,,95) (5.78)

The latter equation can be written

B :l’l/z P (J ,3,)

J1tig-d
= (1)1 7277 (23 +1) Y/ 2 (23 410V 2031 5531855 3K (5.79)
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which indicates the limiting form of the right side for

large jl’ j2 and j. The simple result obtained for j =0

can e expressed as
Pid, =2) = (-1)K{ g%} . (5.80)

A multiplication theorem for the Legendre operator is

obhtained from the observation that

2k1+l 21{24-1

4 4w
Z )T
- (Ykzqz(g_l).yl{lql(g_l ) Yqul(iz)&2q2(£2) 3 (5981)
K,q
name‘].y#3
P (‘ sJ )P (J gJ )
kl ~17=2 1{2 —1%=2
k.+k_ -k ,
= E (2k+1)Py (T),3,)(-1) 1 2 fklkzk(gf)fklkgk(g_g) : (5.82)

On placing k2 = 1l, we obtain a simple recurrence relation

from which the Legendre operators can be constructed succes-

8ively, starting with

P(J,,J.) =1 (5.83)

ot=17=2

The coefficlents in the recurrence relation can be computed

from

7 This is a particular example of the theorem on the product
of two W coefficients, Eq.(5.36).
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_[21(i+1) xP-2x k+1 1/2
W(kljjsk+lj) = -W(k+l 1j3;kj) [;§(3+1)(zj+17 (2k+1;(2k+5} ,(5.84)
and
E (2k+1)(2j+1)Eﬁ(kl*Jj;kji]2 =1 . (5.85)
K
Thus
1/2
2 k+l
Fre1ian (L) =[§§EII7T§E$3i] '
N /e o k2-1
fyac-1(L7) "l£2k~1)(2k+;;] (g"- =)
(£, (2507 = F 6l (5.86)

and therefore,

I3 Ip) =TT Prea(dy0Lp)

B
+ oy (5 "Z“)(J2 SRR, (3,0,)

(5.87)
As the first few Legendre operators, obtained in
succession from (5.87) with k¥ = 0,1,2, we have
P(dyedp) = 330y
Poldyodp) = 300503 0p% B - 30T
Polly dp) = 33,0 3,(3 00, + 55,0, + ) - §l3y°T, + D3fa)
- 25312 - 232 -9 . (5.88)



NYO-3071 P. 75

A useful check upon these results is afforded by (5.80).
A statement analogous to (5.62) can be made for an
arbitrary tensor operator; as far as matrix elements diag-

onal in j are concerned.

(k)
T(kq) = ¥y (d) DhTf | (5.80)

The coefficient in this relation can be expressed in other

ways. Thus, we have

Z:qu(g)TT(kq) =Zrkq(.r) Yeq(L) %J_T_m—i]]l (5.90)

1

which leads to the projection rule

T(ka) —> T Vg (D) E'JTJE'}'EZqu,(_J_')TT(kq'), (5.91)
- /

for isolating the part of am tensor operator that contrib-
utes to matrix elements diagonael in j. Alternatively, we

consider the particular matrix element
(3312 (k0)118) = (31T, (2] 53) L[_i'—T—( )—l-ﬂ% . (5.92)

now

1/2
(13[To (D] 330 = CGDE[ 1) ] x(5x35-50) = [gk*l:] é?-” :
(5.93)

so that, for matrix elements diagonal in j,

T(kq) —[ J q(_{)zk L‘?—%‘-l,‘-),l (j3lT(x0)t33) - (5.94)
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Appendix A

We shall describe a method which produces simultaneous-
1ly the eigenvalues and eigenvectors of the angular momentum

operators, Consider for this purpose the unitary operator
VvV = exp(i%]‘én-l-i(f.]'s), (A1)

which has the eigenvalues exp(ij’l-l»imty) . The operator V

can be interpreted as

V=Z [exp(ij’iﬁm(?]l’(jm) s (A2)
Jm

where P(jm), the projection operator for the state with the
indicated eigenvalues, is represented in terms of the cor-

responding eigenvector by the dyadic

P(3m) = V(im)Viim® . (A3)

Accordingly, i1f V can be constructed and displayed in the
form (A2), we shall have achieved our goal.

We write

V= exp(%i(‘y‘*n++ y_nl)) ,
v, =X +d . x_=A -9, (A4)

and deducs the differential equations

id a_ Vv

[

<
§
ol

: % i[exp(% ir} Z-la; Vay , (A5)
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with the aid of

V-"la.}V = (exp(}é iy‘} ) )a}.

The latter can be verified by differentiation,

Vlav_..

a‘Y} 3 51V l[a n] VvV = -V_la}V

or from the general theorem

a; f(n;) = f(n7+l)a} .

In virtue of the operator ordering in (A5). the solution of

these equations which reduces to unity for Y} =0 1is given

by
1

V= exp{(e2 T. l)a:;a++(62 - 1)3:;a,}

where

n
sxp(rats a) =z %\1—! (ahH)? (o)™

is a correspondingly ordered form of the exponential., We

write this solution as

L1y
vV = exp(g____e:2 7a+; P, sa )
- ¥ ¥

which is intended to indicate that

+
P, = exp(—a:;a+ - at;an) = exp(-(a ;a))

is tc be inserted between the powers of af% and a} in the

7

(A6)

(A7)

(49)

(A10)

(Al1l)

(A12)



ordered operator expansion of V:

n
(a)(a) (a)(a)

<0
vV = E exp( i(n % n P Al3
m,,,,w{ #Ts * B } (nd 0 172 "0 (n o /% (h13)

We have thus obtained the form (A2), with

j = %(n++n_), m = }é(n+-n_) » mn,n_=0,1,2 ..., (A14)
and
P(Jm) =9 (a) 2Py (2), (A15)
in which we have employed the notation
% (a*) = (a:)j*m(a:)j-m (a16)
Ju [(3+m) 3(3-m) ) 172
In terms of the eigenvector go, defined by
= Yo ¥ . (417)
the angular momentum eigenvectors are exhlblted as
Y(im) =Py (a1 - (a18)
The fundamental property of Yo =¥(o00) is deduced from
[az’PO:l = (a/aa;)Po = -Poa; ’ (A19)
or
a}Po =0, (A20)

namely
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oy Yo=0 . (A21)

The simple generating function for the eigenvectors,

(1:16), can also be obtained by noting that

e
(’EPo ! (;ij(a)e(xa )?o)

= (=) . (a22)

+
(" (3m); ot%2 ) )

‘Indeed,

o(xa )Y, - E F 3w F (5w), o*8 Fo )
. ™

=§ Ppnlx) W (3m) (423)
Jm’
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Appendix B

The ordered operator
A = exp(za;a+) , [a,a{l =1,
satisfies
[a,A] = (3/3a")A = zaA,

[é+g4] = ~-{3/da)A = ~Aza* ,

cr

(lL-z)aA = Aa a A= (1-z)Aé* .

Therefore

o) _ + 1 + _ 1 1 +

EEAA = ala = T:;Aaa = T:ZA + I:EAa a
= 1A+ 1 atAa s

1‘=’Z (l_z)z

D.

the solution of which implies the ordered operator identity,

+ +
exp(zaza ) = T%E exp(I%E a jza)

A particular consequence of this relation

+ i -
exp(zaza’ P Y= T;;“Ifo ) aWo =0,

[

is derived directly in the text (Eq.(2.35)).

The properties

80

of A contained in (B3) are also displayed in the generalizations

(B1)

(B2)

(B3)

(B4)

(B5)

(B6)
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+
exp(za;a*)'f(a+) = T%Z f(%:z)exp(i%gaf;a) s

f(a)exp(zaza') = exp(T%Eaf;a)-T%Euf(T%E) . (B7)

The particular examples of these identities provided

by

exp(zaza' }{at)T = (1_:;ril eXP(T%ZG?;a) (B8)

and

a"exp(zaza’) = exp(rora a) __a’ (B9)
(1~z)r+l

are operator forms of the Laguerre polynomial generating
functions. Thus, if we place a' = x, a = 3/3x, and let

both sides of (B8) operate upon e ~. we obtain

o0
93 r
2 n+r =-x _ X 2z =X
§ =7 ( ) x e —m eXP("—‘—l_ZX; ax)e
Mn=0
Xr Z =X
= m exp(- T_—ZX)"G s (BlO)
or
oo
exp(w —-—'le n (r)
( FTT = A Ln (x) , (B11)
L=z n=0
where

(r) _ 1 ~-r x,d yn, nr_=x 1o
Ln (X) -—E-g'-x e (dX) (.K 8 ) (B )
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A simiier procedure applied to (B9) yields

<0 (B )r
n n+r_n_=x _ -X
E z. (%) x e = exp (l-z ’ax) )r-i»l e

e— n! (1~
) exp (- =2—x)o = 13)
- (l_z)r+l P 1=z © ’ (B S

which proves the equivalence between (Bl2) and

r
L;r)(x) = (=2) ™) . (B14)

<.d n+r
ng'e (-d'i') (x""e

Another example of an ordered operator identity in-

volves the cylindsr function (Eq.(1.36))

N o =r/2 o 1/2y _ Tl ﬁ oxp(t+¥)
Frgz) =rly Ir(za )-m dt FT —-— (B15)

r eni

t
a''F (za;a+) = &dt -—%_-I arexp(%a; at)
t

v L
e

g Z § et-z ( )
—— e dt ~—————= exp -a sa)a
7 (t_z)r-rl t=z

B

o“F (za”;a)a” (BL6)
and similarly
Folzaat)(a")7 = e®(a")F (zd"50) . (B17)

From these identities we obtain the Laguerre polynomial

generating functicn

h
> "(m—r)' nLér"(X)=eZFI.(-zx) . (B18)

=0
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Appendix C

It is our purpose in this section to evaluate a class

of scalar products, the simplest illustratior of which is

p(2) - (exp(}\[a+b+_]+ §+(xa+)+ ;_(Xb+))'?o ’

exp(M[a b ]+ ’7+(ya+)+”(‘_,(yb+))°fo> .
Differentiation with respect to gj yields

(a/ag**)T(z) = {e°"°" ,\Fo’(x*a) PO YO)

= ‘),+(x*y)T(2)+ U ([xb]e” " P, ,e" " Yo ),

or
(127 x)(a/a )T(Z) = ( )T(g)
I =%, (x'y

The solution of this, and analogous equations, 1is

2(2) < oup( BN g (2)

1-2"XK

exXp 3

wherse
Téz) = (exp(r[a'0"]) T, exp(k(a 677 ) Vo)

= (Wo omp(x (a"52)To) = ey

in view of the simple generalization of (B6)

exp(z(a;a™) ) Fo = —ts Y, .
( ﬂz)

P

83

(C1)

(ce)

(c3)

(C4e)
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Therefore

(1-A"W) 1-A"K

(¢7)

One can prove, in a similar manner, that

<§xp(k[a+bf]+(xla?)+(x2b+))’fb93XP(Kfa+be+(Yla§)+(Y2b*)}qyé>

i

1 i .
m exp(l 7 {(lel)**(xnyg) K[x 2+7\ [ylyz]l) (c8)

The general member cof the class exemplified by (Cl) is
olnd - (exp(} E» [A+A+] ZEN (x43)) Vo, exp(3 X J;A:A:.ﬂ +Z”Iu(yA§))”I'o)
{C9)

where the AN are n sets of two-component operators, obeying

[“‘, }:I By 50 (¢10)

while Ay, and)(py form anti-symmetrical matrices. Follow-

ing the same prccedure, we evaluate

% ( / 50 ¢ %% s e
(3/38; )T = (2o P, (e o)

¥

”;& t( ‘ - > @ 4 v e e /
O?M(X Y)T\n)‘f’z_xyp([xAp]e 'S[jo.-» = "Ifo) s \Cl].)
v
whence

(a/55)n( ™ B% EemaET) =g Fpele (o12)

The sclution of this equation can be expressed in a mabtrix
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notation as

( ) _ 3% (n)
nj) _ exp{(x v) Z;R (l K?\, )"qu) T , (C13)
where
v82) = (exp(G) v 4780 1 ¥o. e I Ky [58T]F,)
= (Yo, Y, ) . ' (614)

and

Tk F
Q= explE)  np, [8,8] rexn(3) Kolaas]) (c15)

To evaluate Tén), we employ the followving propeviies

of Q,
(3/0%y, )Q = [a,4]0 (Cle)
and

[8,JR - Qfxad = <) K, (xA))
Q(xA")wﬁxA,.)Q = § 7»,.3, [xA,]Q 5 - (C17)

in which x is an arbitrary constant spinor. One can ¢cm-

bire (C17 a,b) into

Z\wm Wy [28,]Q = Q[_XA":] Z (xA Q (c18)

or

Z (1.})”\' Q[xAB] Z(;lna-)(”h”x) (zAp)Q, (C19)

g
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Therefore

[AFAUJQ Z(l x_}\%) A QAB]-Z 1+)( ) A )Q

X) (C20)

1+Xx PP

from which we obtain (AP)IJ,D = 0)

3 (n) _ 1 (n)
3/d\ T = =2 X T . C21
(3/3M\y ) (1+XK J&F (C21)

Thus, with respect to changes in the matrix l*, we have

% E (a/axw)log T(n) = ~tn(

T§Y) 1+Xx

5 log Tgn) K s2¥). (ce2)

On cqmpa}ing this with the theorem on differntiation of a

determinant,

6 log|A| = tr(a™en) , (c23)

we obtain the desired general evaluation,

1+
A recurrence relation for Tén) can also be established

with the aid of (C13). Thus, we have



NYO-3071 p. 87

(m03 3 0 I 3y, ] e
YR DI S X

= (Fo rexeaa) 3 mipEe) W ) B

) —J-—;;)“vxn;,'g p{n-1) (c25)

in which W' and A% designate the matrices of dimensionality

(n)
Ton

1
l;.n'
L]
=
(4
[
+
x
-

n=l,

The actual construction of the Tén) can be performed
without detailed calculations. It follows from (C24) and
(C25) that Tén) has the form of the inverse square of a
power serlies in the components of x* and){ , whare the last

a1l/2, 1/2
|7 ]

—=n .
term of the series, (-1)% |x* » Vanishes for n

odd. Thus, oeginning with

' ., 1/ 1l/277=-2
Té»?) :[1-7\*1'2)(12]"2 .—.E-lx“'l / IX| /J , (C26)

we infer that Tgs) has the same structure, suitably sx-

tended for the additional dimension,

3) _ -2
T() [1-(7‘12"12 NoMogt el 51:,

»w-

and therefore
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0 -[1 37 gty e

my=1

where

MorzatrasM 4t hz1rog

=1 E
-8 Eyyct Map Moo ’ (C29)

nLyot=|

It

'K‘l/z

and E 1s the completely antisymmetric¢ symbol. For the last
indication of this general procedure we remark that, as the

extension of (C28), we have

S
Tg5>=[ S1) W) (x*)am;]'"z , (050)

1872 Hy=]

iga ny oq:"puxc'c (C31)
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