International School for Advanced Studies
Lecture Series No. 3

ELEMENTS OF QUANTUM MEGHANIGS
OF INFINITE SYSTEMS

Lecture notes by F Strocchi

v e — e it
MR

w
World Scientific

Singapore @ Philadelphia




il

Published by

World Scientific Publishing Co. Pte. Ltd.
P. O. Box 128, Farrer Road, Singapore 9128

ELEMENTS OF QUANTUM MECHANICS OF INFINITE SYSTEMS
Copyright © 1985 by World Scientific Publishing Co Pte Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced
in any form or by any means electronic or mechanical, including photo-
copying, recording or any information storage and retrieval system now
known or to be invented, without written permission from fl{ze Publisher.

ISBN 9971-978-91-1
9971-978-92-X pbk

Printed in Singapore by Kyodo-Shing Loong Printing Industries Pte Ltd.



PREFACE

These notes arose from lectures at the Scuola Normale Superiore (Pisa)
and at the International School for Advanced Studies. (Trieste) in 1977-78,
1981-82, 1982-83. The lectures were addressed to students of the last year of
undergraduate studies or of the first year of graduate studies. The course

was planned to discuss some of those basic features of quantum mechanics of

systems with infinite degreesof‘freedom(QM@)like collective phenomena, spontaneous
! symmetry breaking, etc. that in the author's opinion should be part of the

{ common education of every theoretical physics student. No pretention of
completeness is made about the subject covered in these lectures. The present
notes are only meant to serve as an introduction to the problems and results

of QM°° . The mathematical precision has been reduced to the minimum in order

to communicate the main ideas to a larger audience, including people not
mathematically minded. The hope is that once the basic structures are known
each student may eventually implement the arguments by mathematical rigour
without much difficulty, according to his taste, following for example the
references as a guide.

} The main motivation for writing down the lecture notes was to help the

students who apparently found some difficulty in finding an accessible and

compact exposition of the material in standard textbooks.
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INTRODUCTION

In its original formulation, Quantum Mechanics (QM) was essentially
dealing with systems with a finite number of degrees of freedom. Invented
to explain the atomic levels, QM has been able to explain very different
phenomena and its level of completeness and consistency, even from a rigorous
point of view, is very satisfactory. There are, however, physical systems
whose theoretical description requires infinite degrees of freedom and the
treatment of quantum phenomena associated to them requires an extension of
the original structure of QM. Such a formulation goes under the various
names of QM of systems with infinite degrees of freedom, second quantization,
field theory, many-body theory etc. according to the branches of physics to
which it has been applied. Contrary to the case of ordinary QM, the QM of
systems with infinite degrees of freedom (QMG’)still presents unsolved
questions of principle and its foundations are still the object of investi-
gations and research. ﬁost of what is known about that theory is based on
the perturbative expansion and the recently proven triviality of the ¢
theory (in four space-time dimensions) shows how misleading the perturbation
expansion may be. Nevertheless, in many of the fields in which the ideas
and methods of QMa’have been used, the success has beeen so remarkable
(often beyond the theoretical expectations) that it is not unreasonable
to regard it as a trustable theory, whose physical relevance cannot be
denied.

The historical motivations for extending ordinary QM to systems
with infinite degrees of freedom mainly came from the problem of combining

QM and (special) Relativity. The need of describing interactions (or forces)
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for relativistic systems no longer as "actions at a distance!, but as contact
actions, mediated by 'fields", necessarily leads to considering systems

with infinite degrees of freedom. The well-known classical example is the
expansion of the electromagnetic field into infinite normal modes. High energy
physics (in particular elementary particle physics) is therefore the physics
of systems with infinite degrees of freedom and the theoretical quantum

description of them goes under the name of quantum field theory. Its success-

ful applications go beyond the realm of high energy physics, like hyperfine
structure of atomic levels (Lamb shift), nuclear physics, etc.

The theoretical description of macroscopic systems in terms of forces
between their "elementary" constituents (like atoms, electrons, molecules
etc.) also involves systems with infinite degrees of freedom. The essential
features of macroscopic bodies is that of consisting of a very large number
N of particles and that their physical description in general involves
"intensive" or "thermodynamical" properties of such systems (1like particle
density, mean energy per particle, etc.), i.e. properties for which effects
of order 1/N and/or 1/V can be neglected, provided the density n = N/V is
kept finite. The above physical properties are therefore essentially the
same as for the limiting situation of infinite degrees of freedom (N + )
in an infinite volume (V +«). This limiting case (also called thermodynamical
1imit) is at the basis of theories like Statistical Mechanics and Thermodynamics
it not only leads to great technical simplifications, like the exploitation
of Euclidean invariance, the neglection of surface or finite volume effects

etc., but it also allows a simple treatment of concepts like temperature,
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ccllective excitations, quasi particles, condensation etc., all of which

involve the N + » limit and would hardly be treatable otherwise.The quantum

treatment of such branch of physics goes under the name of Many Body Theory.

The fields in which many body theory has been successfully applied run from
nuclear physics to superconductivity, superfluidity, plasma physics, electron

structure of metals, ferromagnatism, etc.

The above remarks should make it clear that QMQ should be regarded
as a very useful theory especially for its interdisciplinary aspects, as
relevant for physics as ordinary QM. As mentioned before, many questions
of principle for QMG.are still unsolved, especially from a non-perturbative
point of view, but the main features and structure of the theory are becoming
more and more establiéhed. In particular important phenomena like collective
phenomena, spontaneous symmetry breaking, which appear to play such a crucial
role in modern theoretical physics, have no counterpart in ordinary QM.

So that what was historically viewed as the origin of the many difficulties
of QM«.’ in comparison with ordinary QM, is now emerging as the basis for
(partly) unexpected and welcome structures, which appear as common features
of very different physical phenomena.

The aim of these lectures is to emphasize those general features
of QM@ which have an interdisciplinary interest and which are strictly

related to the foundations of the theory itself. As much as possible the

discussion will not rely on perturbative expansions and non-perturbative

effects will actually be emphasized.



PART A — MANY PARTICLE SYSTEMS AND ELEMENTARY EXCITATIONS

I MANY PARTICLE SYSTEMS

1.1. Canonical variables and their representation

Historically QM was introduced in connection with the problems of
o«

*
relativistic wave equations( ) but the trick of replacing wave functions
with field operators somewhat obscures the simple unavoidable features of
any QM of systems with infinite degrees of freedom.

The first step in the description of an infinite system is essentially

a kinematical problem, namely the identification of a suitable set of ca-

nonical variables {qi » P}, i =1,... just as in the case of a classical
i

system. The canonicity condition amounts to the fulfillment of the canonical

commutation relations (CCR)

[q. »p.] = is_, (1.1)
i J ij

(In the classical case we would have had Poisson brackets instead of com-

mutators). As in the classical case, the canonicity conditions are inde-

pendent from the dynamics, i.e. from the specification of the Hamiltonian,
and have essentially a kinematical or algebraic content. One is naturally
led to consider the algebra_;#[ of the canonical variables as the algebra

generated by the q's and p's through multiplications and sums, with eq.(1.1)

(*) See e.g. N.N. Bogoliubov and D.V. Shirkov, Introduction to the Theory

. of Quantized Fields, Interscience, New York, 1957, Chapt. I, II.
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as algebraic relations within‘;‘l- In principle, the canonical variables

must provide a complete description of the system (at a given time) and
therefore any physical quantity A should be expressible as a function

A = A (q,p) of the canonical variables.

Remark At this point two technical remarks are necessary. First egs. (1.1)
imply that when represented as linear operators in a Hilbert space, the

p's and q's cannot be both bounded operators, therefore to avoid domain
questions it is better to use "bounded" functions of the p's and q's to ge-

nerate the algebra ;#1 . This is done by using the so-called Weyl operators

iqg:a ip;B
U(a) = e , v.(8) = e Pi® &, BeR (1.2)
i
in terms of which the CCR read
i 8:s aB 1.1¢
UV = VU e 1] (1.1)
ij ji

The reality (or hermiticity) of the p's and q's naturally defines a * ope-

* *
ration in ;%1: Ui(a) = Ui(— a), V. (B) = Vj( - B). Technically ;%l is thus

J
a * algebra. The second point is that with the above prescription;}{ is a
polynomial algebra generated by the U's and V's and to construct non-poly-
nomial functions one needs a concept of convergence. This is done by assigning
2

a norm to each element A of;f{ such that ||A*A[] = ||A]|° and to complete 4
with respect to this norm. The so completed algebra, which we still denote

by A , is technically a C*-algebra.
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Example 1. As an example of & choice of canonical variables for a continuum
infinite system described by the real field ¢(x) one can fix a complete set of

real orthonormal functions fi(x) cLa(Ra) and define

3
q, (£) =fd'x £ (x) o(x,t)
3 .o
p.(t) =sa™x £ (x) o(x,t)
i i
Clearly the states of the system at a time t is completely specified by the
q's and p's since ¢(x,t), ;(x,t) can be recovered from them.
Once the canonical variables (i.e. the algebra) have been specified,

in order to determine the time evolution of the states of the system, one

has to fix the represnetation of the canonical variables as operators in

a Hilbert space H. In fact only after the representation of the q's and p's
has been chosen, the Hamiltonian (or better the time translation operator

U(t) = exp i Ht) can be written as a well defined operator in H, and the dyna-
mical problem is reduced to an eigenvalues problem in H.

The important point is that for systems with a finite number of degrees
of freedom (N <=), the choice of the representation has a purely kinematical
character since, as proved by Von Neumann(*z for N <« all the irreducible repre-
sentations of the algebra;rQ are unitary equivalent. This means that one can
go from one representation to another by a unitary transformation (i.e. by the

quantum analog of canonical transformations); clearly the physical' description

of the system will not depend on the choice of the representation, which is

therefore reduced to a pure matter of convenience.

(*) J. Von Neumann, Math.Ann. 104, 570 (1931)
For a detailed exposition of these results see e.g. C. Putnam, Commutation

Properties of Hilbert Space Operators, Springer 1967, Ch. IV.
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For the N = « case, the situation changes drastically, since any
two irreducible representations of;fq are in general unitarily inequivalent.
Different inequivalent representations will in general give rise to different
physical pictures with different physical implications. As we will see in
the following sections, the Hamiltonian H(q,p) will in general turn out to
be an acceptable Hamiltonian (e.g. bounded below, positive, etc.) only for
a particular representation (and for those unitarily equivalent to it).
Otherwise the Hamiltonian will have a pathological spectrum, for example
H= o« . As a result for N ==, the choice of the representation is no
longer a kinematical fact, but it is strongly linked to the dynamics. An
incorrect choice of the representation is in fact at the origin of the
divergence problem which afflicts the perturbative expansions of quantum
field theory and of many body theory. This explains why QM°° is much more
difficult than ordinary QM , (N <=), and also why QM_ exhibits such
interesting phenomena like collective effects, spontaneous symmetry breaking
etc. which have no counterpart in the N < = case.

As we will see, to solve the arbitrariness involved in the choice
of the representation one must in general specify additional requirements,
related to the physical properties of the system; typically information
about the structure of the ground state are needed ( a higly dynamical
problem!). From a mathematical point of view a basic problem of QM, is

the representation problem.

U




v 1.2 Ground state and elementary excitations. Fock representation

We will discuss a natural choice of canonical varaibles, which are
very convenient for the description of infinite systems. Such canonical
variables have a very simple and physical justification if the states of
the system are described in terms of occupation numbers (see below), but
they have a much more general right of existence.

The basic idea underlying the occupation number (or Fock) represen-—

tation is that the states of the system (at a given time) are analyzed by
making reference to the ground state and by specifying the number and the

type of elementary excitations which characterize a given state, with

respect to the ground state. Here and in the following by elementary excita-

tion or particle we mean the generic excitation of the system like e.g.

a sound wave in a crystal, a collective excitation in a plasma or in a
nucleus, an elementary particle in field theory etc.The elementary excita-
tion is completely identified once a complete set of observables {a} is
specified characterizing the physical properties of it. For example, for

an elementary particle a complete set of one-particle observables may be

the momentum 'Y , the spin 5, the charge and possibly other internal gquantum

numbers. The one-particle states are then labelled by the set of eigenvalues a':
ala'>=a" |la' >

and the many particle states will be analized in term of single particle

quantum numbers, for example

la" ,G; .'.6;1 > 2 a;) | Q;)o.o Iq;l >
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is an n-particle state specified by the particle 1 being in the state | al>,
the particle 2 in | a, > etc. The rational at the basis of this representation
is the following: i) the representation is the quantum analog of that used
in classical statistical mechanics when the microscopic states of the system
are described in terms of occupation numbers of cells in phase space, ii) the
representation is very suitable for scattering states since the description
in terms of wave functions of the single particles is very close to the ex-
perimental situation, iii) above all,this representation is useful for the
description of physical processes, in which the number of particles or of
elementary excitations of the system is not a constant of motion (éreation
and annihilation can take place), since a transition from an n-particle state
to an n + 1 particle state does not require a redefinition of the observables
relative to the n particles, as it would be the case if global observables
like the total energy or the total angular momentum are used to describe
the n-particle state. Here, to describe a process in which a new particle
is created, it is enough to specify the quantum number of the additional
particle, without changing the description of the other n.

The next step for obtaining the Fock representation is to take
particle identities into account, by specifying only the number ni of
identical particles which are ina given state |°i> . For identical par-

ticles the base states are then specified in the following way. One chooses

*
once and for all the one-particle states and orders (*) them in some way:

(*) For simplicity we consider observables with discrete spectrum. The dif-
ficulties involved in the case of observables with continuum spectrum
(like position, momentum, energy) are essentially technical and mathe-
matical. With an abuse of language, we will sometimes introduce a position
end momentum eigenstates ( [X>,|k> ), leaving to the reader the task of
making the arguments rigorous, by the introduction of normalizedwave packets.
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| a; >, | az' >, «+++ The n-particle state is then identified by the sequence

, where ni specifies the number of particles in the state

{n ,nz'.--}

3

lag > . Clearly Zni = n and only a finite number of ni 's are different
from zero. Furthermore, if the particles or elementary excitations are bosons

there is no restriction on the numbers n_, whereas for fermions, the Pauli
i -_

=0Oorn,_ =1. The n, are called occupation numbers
i

(n)

n,, n...

principle requires n,
i

and the basic vectors are denoted by ¥ or by |n; n ,N, «oc >

with normalization

]

< n; n s I, a0 o ln;n s N vee > = 8§ é s
1 2 1 2 J )
nlnl n2 n2

The Hilbert space of the states of the system is the space generated by the

above vectors, when n =0, 1, 2, ..., and for any two vectors ¢ , ¥ e H the

scalar product is

< 0"' > _ Z < ‘b(n)’\y(n) >
n=2=o

n)

n
with °(n) , W( ) the projections on the n~particle subspace H .
In the Fock representation, it is very natural to introduce the so-

called annihilation and creation operators defined as follows. For each single

particle state ai the annihilation operator ai is defined by:

a |n \/ni' |n1,...,ni—1, cee >, (1.3)

i 1 goo ey ni ] sesa P

for bosons and by

0.
(_1) 1 n, l nly LR n.—l, s > (1.4)
1 1

alll’ll ,...l’li y e > =
i-1
with © = Z: rxk , for fermions. The choice of the phases and of the
i
k=1

normalizations will be justified below.



In a similar way one introduces the creation operators

b, | N ,eee, B, seee> ==Vn, +1fn,.c0,n  +1, c00> (1.5)
i 1 i i i
ei
bi | nyyeees n,osees = (-1) (1-ni)| N ,eesy ni-+1, ceed> (1.6) ]
for bosons and fermions respectively. The factors (1-ni)and ni for the E

fermion case are there to authomatically take care of Pauli principle: one
cannot create (or destroy) a particle in the i-th state if such state is already
occupied (n =1) (or unoccupied, ni==0). It is very simple to see that for

i

bosons
- [a, ,a,]=0 [b,,b,] =0 (1.7)
i i J
whereas for fermions

{a,,a ,}=a, a,+a,a =0, {b, , b, }=0 (1.8)
i° g i ] J 1 1 J

Furthermore with the above choice of phases, bi turns out to be the adjoint

of a

and the following equations hold

(a, ,a%] =5_, ' (1.7")
1 J 1)
for bosons and
{a, ,a% } =, (1.8")
i J ij

for fermions. The relations (1.7) (1.7') are called the canonical commutation

relations (CCR) for the bosonic creation and annihilation operators, and the

(1.8)(1.8') are called the canonical anticommutation relations (CAR). *



The number of particles in the i-th state can be easily expressed

*
in terms of the ai , a,
i

since

The total number of particles is N = 2, N_.
1
i=1

It follows from the CAR that (for fermions)

2
a, =0 = afz
i i

and

2,
]
1]
]
[
']
[}
"
2

* * *
a, (1 - a, a.)a_ =a, a
1 1 1 1 1

i.e. the eigenvalues of Ni are O or 1, in agreement with Pauli principle.
Similarly one can easily express the total free Hamiltonian in terms

of a, a*. If the one-particle states have definite energy mi, then

H=2m,aZa =Zw, N, , (1.9)

with obvious physical meaning. From the CCR (or CAR) one gets

* * : - -
[H, ai] =w,a [ H, ai] = w, 8,

and therefore the time evolution of ai is

-iHt iHt -iwjt
a.(t) = e aie = €
1

The operators a, , a* have been introduced by making reference to the
i i

occupation number representation, but clearly they can be regarded as canonical

variables introduced at a purely kinematical level, without reference to a
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given representation. For example, they may be introduced in terms of the qQ's

and p's by the formula

1
a, = —
J v2

(q, + ip))

J J
or by the properties of diagonalizing the Hamiltonian (in the sense of eq.
(1.9), see sect. 1.3). As before, one can introduce the algebra;4 generated
by a, a* (or better by the bounded functions of a,a*) and one can investigate

. . , . (*)

the possible irreducible representations of;%l
(+)

The occupation number (or Fock) representation can be characterized

by the existence of a state Wo, called the ground state, such that
a, ¥y =0 Vi (110

In fact, if this condition is satisfied one can easily construct the n-particle

*
state In ,n2 ..+ > by successive applications of a to ¥
o}

1 * * * *
a ... a a .o a3 oo | ¥ >,
o

\ 1. 4
n1! nz!... \-—v-J \2——V-\2/

nl n2

lnl,n2 cee> =

since, by eq. (2.9),Ni ¥ = 0 and

N a*.. a* ces =[N a*.. a* e = *.. * eese .
i 3 3 Y [N, »aj-cay -c]¥  =n a..a, Yo

: . =% 2
(The normalization factor (nl! n2! «..) * is related to the choice of normali-

zations in egs. (1.3) - (1.5)).

The Fock representation is also characterized by the property that

(*) The unitary equivalence of all irreducible representations for N<= ,
is given by Von Neumann theorem for the bosonic case and by Jordan and
Wigner (Zeit. F. Phys. 97, 650 (1928)) for the fermionic case. ‘

(+) In the following, the Fock representationwill be understoodtx)beirreducibleﬁ

b

'
3

;

o
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the number of particles N is a well defined operator with a discrete (positive)

spectrum. In fact, if N is well defined and ,A is an eigenstate with eigen-

value A , then

Na ¥ =xa¥Y +[N,aly = -1 L 2 1.11)
i [Na ]y, (A -ayy, ¢

If A > O then
<A : _ < - Z 2
0 Il ¥, s NY > = . llai‘l’,L |
1

and therefore there must be at least an index i for which aiw #0 and

eq. (1.11) holds. Thus if ) >O is an eigenvalue of N also ) - 1 is an aigen-
value of N. Since the spectrum of N is positive, A must be an integer
and A =0 is a point in the spectrum of N. Clearly, the corresponding

eigenvector Wo satisfies the Fock condition (1.10)

0= <¥ ,NY >= X lla.¥||? => a ¥ =0 W.
(o] (o} 1 1 O 1

The above argument may be used to show that for a finite number of
degrees of freedom, in any representation of the CCR (or CAR) one can al-
ways construct a ground state satisfying the Fock condition. In fact, by
definition of representation, there is a common dense domain D such that
ai DcD, a; DeD, and since N is a finite sum of positive operators a*a , N
is well defined on D. By applying essentially the above argument,eq.(1.11),

to the spectrum of N one shows that if A 1is a positive point of the spectrum,
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then also A - 1 is a point of the spectrum. The positivity of N then requires
A to be a positive integer and O to be an isolated point of the spectrum of
N.

Now all the irreducible representations with a Fock state Yo are unita-

rily equivalent, since for any polynomial P(a,a*) of a,a* the correspondence

P(a,a*) V¥ - P(a', a'*) ¥'
o] o
preserves the scalar product‘and it is therefore described by a unitary operator.
In this way, one gets a proof of Von Neumann theorem for N < =

*
Problem.( ) Show that if the Hamiltonian has the form

H = Iw_a* a
p k k k
ith > w >0 s than any representation, in which H is a well
wi 0, L (mass gap) a y rep ’
(densely) defined operator, is unitarily equivalent to the Fock representation.
. . 1 .
(Hint: since w k/ w > 1, one has N < — H and therefore whenever H is well
o w
o

defined also N is well defined). This shows that in the presence of interactions

the splitting H = Ho + H, & has a meaning, i.e. Ho is well defined ( a necessary

in 3

condition for perturbation theory) only if the representation for H is unitarily
equivalent to the Fock representation.

The physical meaning of the Fock property (1.10) is that in QM:»’ as long
as one can count the number of elementary excitations associated to certain degree
of freedom, the representation of the canonical variables relative to such

degrees of freedom is (unitarily equivalent to ) a Fock representation. On

the other side, if the dynamics of some degrees of freedom is such that one

can no longer count the number of the corresponding elementary

(*) H.J. Borchers, R. Haag and B. Schoer, Nuovo Cimento 29 (1963) 148.

AR L G A,
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excitations (for example because such degrees of freedom get "frozen" or
nconfined" as a result of the interaction, or give rise to a condensation
with any state containing an infinite number of elementary excitations etc.)

the representation cannot be a Fock one. We will see many examples of these

*
very interesting phenomena. Quite generally, if a, ,a, are the annihilation
i i

and creation operators of the elementary excitations of the non-interacting
system, the ground state of the interacting system will not satisfy the Fock
condition for the ai's. Form a physical point of view, this means that in
general the interaction induces a redefinition of the degrees of freedom of the
non-interacting system (collective effect). In this case the choice of the

*

the representation of the CCR (or CAR) is a non-trivial problem( ).Clearly

all these phenomena have no counterpart in ordinary QM.

(*) For an excellent review of this problem see A.S. Wightman, in Proc.Int.
Conf. on Particle and Fields, Rochester 1967 , C. Hagen et al. eds.
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1.3 Quantum vibrations in a crystal. Phonons

To simplify the discussion we start with a one dimensional chain of

atoms with

L = length of the chain
N = number of atoms
a = lattice distance (Na = L)

Boundary effects are taken care of by imposing periodic boundary conditions.
This also guarantees invariance under discrete translations of step a.

As a first approximation we will consider next neighbouring interaction
by an harmonic potential with elastic constant A . If qi, pi denote the de-
viation from the equilibrium position and the momentum of the i-th atom, the

Hamiltonian takes the form

2

5

H=% 35> +Ma, - q )2 ] (1.12)
i 1

i+l

i
m
(m = atomic mass).
According to the rules of QM the canonical variables q,p are required
to satisfy the CCR
la, » pJ.] = i, (1.13)
As in the case of single harmonic oscillator one can diagonalize the Hamiltonis

by a normal mode expansion of the q's and p's:

_ 1 -% ika *  -ikga
U = /2N21:< (ma, ) (&, e © ] (1.14)
. -1t % ikga * _ikfa
Po = Ton ZL:( (mmk) [a e -a e ] (1.14")
where
22 A
w = — - 2
K — (1 - cos ka)]
e — 1
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is the classical frequency of the normal mode. For small wave vectors

1
k ( ak<<1l or k<< - ) we get the linear dispersion relation

3

w = YVA/mak = w ak
o

The periodicity conditions

q1-+N = ql
then yield
21n 2nn
k_Na L,n=0,il,i'2..

Finally since qz ’ pz do not change if k * k + (27 /a), the variable k
is only defined modulo 27 /a and by convention will be chosen to lie in the

interval [ - n/a, %/a ]. Hence

n
k=-2al — R =0, %1, L. %N (N even)

(1.18)
n=0,*1, ... %% (N-1) (N odd)
From eqs. (L14) and(1.14')it follows that 2 a; obey the CCR

*

* *
=0 = s =96
Kt e =0= L, gl Loy o] K, k'
and the Hamiltonian is diagonal in the variables a, a

»*
H =§wk(ak 2 *+ %)

The elementary excitations (or quantum sound waves) are then characterized

by the wave vector k and by energy W It should be stressed that k

is not a true momentum (see eq.(1.15); it is called "pseudo-momentum" and

the corresponding conservation law involves also the momentum that the lattice

can exchange as a whole. For example, for an ion-phonon interaction one has

hq = hk + hKI’l
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where Jig is the momentum given by the ion, Wk is the phonon momentum and
Kn = +n2m/a is the momentum received by the lattice as a whole, also called
the wave vector of the reciprocal lattice. The above conservation law follows
from the invariance under (discrete) translations of multiples of a.

For the three dimensional case one proceeds in a similar way, with
the difference that for each k the elastic constant is ‘actually a tensor

K. (k). The normal modes are then found by diagonalizing the potential energy
ij

% K, (k) q, (k) q, (k)
ij i J

i.e. by determining the principal axes nl(i), ;Z(ﬁ), Bs(i) of Kij(i) for each
k. The creation and annihilation operators a*(i), a (ﬁ) for the mode along
s 3 [o 3

the a-th axis are then introduced through the equation

ik k.2 a ]
hdt > > l L) -1 - a
ea(k) [aa(k)e

-
% 2a

a,:-—l— 2 [ mu(k,a) ]

*(K) &
Y
¥ VBN Koo T2

-

+> > >
where ¢ (k) = na(k) denote the polarization vectors. They can be decomposed
a

-+ -~ >
along transverse, eTa(k), and longitudinal, eLa(E), polarizations

e (k) = e k.o 0, k.e. =kl
= + . = . = .
ea eTa eL ! eTa ! eln

The Hamiltonian then takes the form

H=2Y% é?i w(k, a) [aa(k) aa(k) + aa(k) a;(k)] (1.16)

To discuss the general features of the spectrum w(k,a ) it is convenient

to consider simplified models. We start by considering elastic waves with
definite wave vector k moving along such directions that only the transverse
mode (or the longitudinal mode) propagates. The atom displacements on

planes which are perpendicular (or parallel) to the direction of propagation
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are then in phase and the elastic wave can be described by just one co-
ordinate. One is then reduced to the one-dimensional case. If all the
atoms are identical one recovers exactly the linear chain discussed before

with (k) = ¢ k for small k. Such waves are the typical acoustic waves in

solids with propagation speed, dw/dk, given by the sound velocity.
Another interesting case is given by a linear chain consisting of

two kind of atoms of mass m1 and m2, respectively, which alternate at

distance a/2. In this case one gets two types of normal modes, with frequency

w and o_ :

1 2

2 K 4am, m, 2, ka %

W = = {1 - 1 —_—— i —_— -3}
1 i [1+ (myrm? o 0 ( 2 )] ’
2 K 4Am m ka %

(0] = m—— {1 + [ 1 ——; in2 —— }
2 n * (m, +m, P sin (2 )] '

where K is the elastic constant and B is the reduced mass
B =mmn,/ (m +m, ).

The ©, mode corresponds to a vibration in which the two kinds of atoms move
in phase; it is the analog of the elastic wave of a linear chain consisting

of identical atoms, and in fact, it is characterized by
ml(k) ~ ck for small k.

The m2 mode is characterized by

o (k) ~ (2K/y e

i.e. independent of k for small k. It corresponds to a motion in which the
two atoms move out of phase. In each cell, containing a pair of atoms m1

and m» the pair vibrates as if the other atoms were not present and if the
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two atoms have opposite charge, as it is the case for ionic or polar crystals,
the vibration gives rise to an optically active dipole (optical mode).

The two modes mentioned above are described by normal coordinates
which for low k correspond to the center of mass coordinate

(Q‘2 z:(mlq )/(m1+ m, )) and to the relative coordinate

20 " Ma%p41
(*)
Q= %y, 1 "9

1.4 Field operators

QM  was originally deviced to solve the problems of relativistic
wave mechanics and as such it was based on the concept of quantum fields.
In the framework discussed so far a field operator wv(x) can be introduced

by the transformation
s .
W) = 31 (X) a, (1.17)
i aji 1

where ‘fa (X) =<%,s ui> are the wave functions of the one particle states
i

| ai > and s denotes the spin variable and possibly other quantum numbers,
like charge. (For brevity in the following the index s will often be omit-
ted). Similarly, in momentum space one can introduce the operators

S =+

> ' +
k,s)= Y£o(k)a, = S<Kk, > .
a(k,s) % ui( )ai El s | o> a, (1.18)

The new operators (1.17)(1.18) essentially describe annihilation of a particle
- - * : >
at position x (or with sharp momentum k). Strictly speaking, this is an abuse

of language since eigenstates of position (or of momentum) do not exist and

(*) For a more precise and detailed treatment see e.g. R. Kubo and T. Nagamiya
Solid State Physics, Mc Graw-Hill Book Co. 1968, Part I, Chap.3.
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one should rather think in terms of one particle states corresponding to

very narrow wave packets hj(;) with mean position X (or with momentum peaked
at k). This would amount to average e.g. the field operator v(;) with the wave
functions hj(;)'

4 One can easily see that the CCR's (or CAR), egs.(1.7), (1.7'), (1.8)

(1.8'),imply the following (anti) commutation relations

[b(ks), v(F,s) ], =0y (X,8), v (F,80)],
. . v . (1.19)
[vix,8), v(y,s")] = 68(x-y)s__,
=z S5
or
[ atk,s), a*(fc'.ss')]'+ =8(k - k)s__,, etc. , (1.20)
x sSs

where the + denotes the anticommutator for fermions, and the - denotes the
commutator for bosons. The occurrence of §-functions is clearly a consequence

of the improper nature of the states |x,s > or |k,s > .
As before one can introduce a Fock representation based on the one
g .
particle states |x,s > (or |k,s > ). &n n-particle states will then be denoted

- -
ks , ... ks > and since the index i labelling the states has

>
by |k
y ks, ks, non

been replaced by a continuum variable k the normalization for the creation

and annihilation operators now reads

* o + + > > > >
k K,k ,eeo k > =¥n+1 |k, k., ... kK >
] a (k) [k, K, n Ik, &y n

+ + + > 1 + > > -~
k gses k 2 = — G(k -k,) k .o.k....ﬁ >
a (k) Ik, V& § Uy ke

(the symbol k. means that-this variable has to be omitted) so that
J

»* *
! "k )e.a(k) o >
1 n

-
k .00k 2= —
F I 1 n va?
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Exercise. Show that the normalized n-particle state '{n } is described
—_— 1°°°

by the following wave function

(n)
b 4

1
- ¥ .
{n ..}(xl ""xn)=c{n oo} n!%‘ Pp(fa (xl) fa (xn))

i i

1 1 n

where the sum is over all the permutations P, GP = 1 for bosons, SP = parity
*)

of the permutation for fermions, P is the permutation operator( PF{x)= F(Px)

and the normalization constant

n!

C{nl'“} n! n!
! Myt

for bosons, and

{n ...}
1

for fermions.

(*) For example if

p 1 2 ...
Jod o ..
one has 172
i ceeX, ) =F (x ...x
4% 1 n Gqcee Y ‘]1 Jn (P‘la) 1 n)
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1.5 Second quantization -

To complete the description of an infinite system in terms of elemen-

tary excitations we will discuss the representation of physical quantities

in terms of creation and annihilation operators.

i) One-body operators

Let A(l) be the operator that in ordinary QM describes a single particle
observable (like e.g. the momentum, the spin, etc.) and, with a suitable choice of
the single particle states, can be represented by a diagonal operator

1
A( )l a.> = A | o, >. (1.21)
i i i

The corresponding operator for the infinite system in which an arbitrarily

large number of particles can be excited is given by

A= A, a%a 1.22
2 A ey (1.22)
i
The physical meaning is obvious: A counts the number of particles in the i—th

state and multiplies this number by the corresponding eigenvalue Ai. For
example, if A(l) describes the kinetic energy of one particle, A describes

the total kinetic energy of the infinite system. With the above simple construc-
tion (1.21) (1.,22), one easily recovers the characteristic features of the so-
called second quantization whose historical motivations are rooted in the
attempt of building a relativistic wave mechanics. In fact, in terms of

the field operators introduced in eq. (1.17) the above operator A becomes

*
A= Sdx ax' ¥ A, < x lai><ai|X>‘l’ (x')w(x)
i

= fdx dx' <x']| A(l)l X >¢*(x')\v (x)
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For example, if A(l) is the one particle kinetic energy one has
(1) A
‘| E = -~ — §(x - x'")

<x'| kin| x> 2m 8¢
and

E = sdx v (x) (—-A—)wp(x) (1.23)

kin 2m
s s > ﬁ(l) > .)
Similarly for the momentum P one has < x'| | x > = - 1velx -x and

P - de \p*(x ) (- i )y (x)

Quite generally the expression for A can be formally obtained from the old
wave mechanical expression with the wave function replaced by a field operator

(second quantization). As a matter of fact, no further quantization has been

made; only the extension to multiparticle systems has been involved. Clearly
the ordinary QM is recovered by projecting on a definite n-particle space, For

*
example, in the one-particle subspace the operator v (x)yp(x) reduces to

<a | v(x)x) | «

K >=f (x) £ (x)

K
%k %k

and the above expressions reduce to the ordinary QM ones.

ii) Two-body operators

2
A two-body observable A( describes a property of a pair of particles.

With a suitable choice of basis one can write

(2)
A > = A =
|ai aj 1] |uiuj >y (Aij Aji)

and the corresponding operator for the infinite system is

A=% 2 A

# »*
. ai a, a, a,
i#j J

ij



The factor % is there to count each pair only once and the case j = i is

excluded in the sum to obtain a genuine two-body operator. In terms of

field operatcrs A takes the following form

2
A = fdx dy dx' dy' < x y| A( )I x' y'> 1f(x)p*(y)v(y')v(x')

. (2) .
For example if A is a two-body interaction potential,

2
<xy 1A 1 x5 C K Vik,y) (60x = x )60y = 37) + 6(x o3 )6 (y ~x'))

and for the infinite system one gets

H, . = fax dy V(x,y) V)V (y) v (y)w (%)

For translational invariant interactions V(x,y) = V(x - y) and in terms of

momentum field operators the above interaction Hamiltonian becomes

u

%, T - %™ -+ ~ > - -+
H. ¢ = /9 dp dq a"(k+p)a*(p -q) V(q) a(k) a(p) (1.24)
The above formula allows a very simple diagrammatic interpretation of the
elementary processes induced by Hint.To first order, the matrixelements~<flh|i>

>+ + +* > > -
of the Hamiltonian density h= a*(k +q) a*(p -q) V(q) a(k) a(p)
do not vanish only if in the initial state Ii > there are two particles

-+ +
with momentum k and p, which are destroyed by a(k) a(p), and in the final state
+ >

- -
[f > there are two particles of momentum k +q, p -q, which are created by

*» >+ > », > > . ~
a (k+p) a(p-q). The strength of the elementary process is governed by V(q).
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1.6 Electromagnetic field.Coherent states

In the original formulation of QM as quantum field theory the emphasis
was on the concept of field and the concept of particle was one of the most interesting
consequences; inparticular,the quantization of the electromagnetic field leads to
the explanation of photons as elementary excitation of the e.m. field.Here, we will
follow the opposite route by showing that the field operator for a system of mass-
less particles with spin one and zero charge, obeys the Maxwell equations
and therefore it provides a quantization of such equations.

-

We start by chosing as single particle observables the momentum k

-+ -
and the helicity A. The zero mass implies that the energy w(k) = |k| and
~
the helicity A = t1. The single particle (photon) states will then be
-
denoted by Iﬁ,x > and the annihilation and creation operators by a(k,A) and

- > -
a*(ﬁ, A ). For each k, we chose +two complex polarization vectors e(k, A ),

A = %1, satisfying the transversality condition

kK .ek,2) =0
and
-> * - -> ->
E(k, A ) = €("k, A ) y € (ks +). E(k)_) = O
As discussed in sect. 1.4, the field operator associated to the

system of photons is

3 > >
> -3/2 d k + ik.x * ik.x
A = (2 —— . . .
(x) = (2n) A;ﬂf Zo € [akx e va e ] (1.25)

The hermitean combination of a and a' is taken in order to have an hermitean

-
field A(x) , the quantum analogue of a real classical field. As we will see

Z describes the quantum vector potential in the Coulomb gauge (A =0, div; = 0).
o
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L3
To show that A(x) obeys the Maxwell equations one checks that the Hamiltonian

*

3
‘H = Jd 'k w
kK ®ka %a

-
when written in terms of A(x), coincides with the Maxwell Hamiltonian

-

1 3 aA 2 *
-1 el 1 E2. |
H=o fdx [( Y + (curl A)*] = 5 fdsx (E2+ H2)

-> > - d
(E £-3A/3t, H 2 curl A). The time evolution of X is clearly governed by the

time evolution of a, a¥*

-iw ¢
ak)‘ (t) = e k kA(O) etc.

1]

*
The CCR for a, a

*

(e s g I =6, 8k-a),

[ala]=o=[a*|a*]

1

determine the commutation relations for Ai(i), AJ(;) and therefore for E and ﬁ

[ 4, ,0), AJG.t) ] =o0,
. > . i > -
Aj(y,t) = i( Gij - — )6 (x-y), (1.26)

[Ai(x.t).

o

( E,(x,t) , Hj(y.t) = ieijka e §(x =¥, (1.26')

2
(where & zjgai and the following relation has been used

1 *

i K: ki
e e =(6 - J
Y ki ka ij

)
K2

For the applications it will be useful to know also the commutator at different

times
s aiaj
A -y ' - |- — ) D(x - X')y
[4,(x,1), Aj(xe) ] (8;5 3 (1.27)
3 kx - idot
px) = L Sdk PR T
(2n)? Wi ,
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D(x) is called the Pauli Jordan function. It is worthwhile to note that the
commutator of Ai(x,t), Aj(y,t') does not satisfy the locality (or causality)
property i.e. it does not vanish when (x,t) is spacelike with respect to (y,t').
Locality is instead satisfied by the commutators of E and fi. The commutation
relations (1.26') imply that it is not possible to simultaneously measure E

and ﬁ with extreme precision. Bohr and Rosenfeld have deduced the relations
(1,26' )exclusively by arguments based on Heisenberg uncertainty principle;

here we derived them from the corpuscolar properties of the e.m. field.

. -»> -+
It is worthwhile to mention that the mean value of A and also of E
and ﬁ vanish on states with definite photon number
-* -> -+
<n|lAln> =0=<n{E|n> =<n|H |n>
. 2 2 . R
whereas the expectation value of the energy E+H does not vanish. This

means that on those states the classical limit is not obvious. The classical

limit is easily obtained by considering the coherent states studied by |

*
Glauber( ). For simplicity we first consider the electromagnetic field in

3
a box of volume V = L with periodic boundary conditions and we consider
-
just one mode say k,X . The corresponding coherent state is labelled by

a complex number 2z and defined by

-% |Z|2 Zn +
=e > — | nka) > (1.28)

ka
Yn!

with |n(k, A> denoting a state with n photons in the ﬁ,x mode. The interesting 3

(*) R.J. Glauber, Ptys. Rev. Letters 10, 84 1963; Ptys. Rev. 131, 2766 (1963). For a general

account about coherent states see J.R. Klauder and E.C.G. Sudarshan, Fundamental of Quantum

Optics, W. Benjamin 1963
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property is that the expectation value of £ on 'zk1> is a classical electric

field of complex amplitude 2 \ (in the E,l mode ) :

k
i (kx kx - o t)
l(kx—mkt)_z* e—i( -0,

Y E [ze

ﬁ‘.t =—i
<zl Bat) lz> = &5 Vo, g

The above equation easily follows from

> = >
ak). | Zkk zkl l zkx
(1.29)
* *
<zlalz>=2 , <zla lz> =2
The first relation is a characteristic property of coherent states, which

can be defined as eigenstates of the destruction operators akl . From the

above relations (1.29) it also follows that

la al |2
< > = = < >
z|la alz |z LN
) » (1.29')
= < XN > > = < >
CaN ) z] W, > e Nea

and

AN /<N _ > = <N %

kA K\ ki

The relative uncertainty of the photon number in a coherent state goes to

zero as <NkA >+ o , i.e. in the limit ‘Izkk P+ =, corresponding

to very intense classical electric fields (laser beams).
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1.7 Coherent state representation. Infrared catastrophe

The above definition(1.28) of coherent states can also be written as

* * *
Zia'

2
1, . N
|Z, >- e i — Zja4 |O > = e‘/zlzil ezlal lo >Eu(zi) ]0)
1

(1 =k 1) and it can be generalized to infinite degrees of freedom, i.e. to

all modes. Let { zi} be a sequence of complex numbers such that

2
ZIle < o

then one can introduce a corresponding coherent state by

™ © nk

s 2 z
|{zi}>=exp[--/2 2|zll] E II k I{nk}>

]
* in}=0 k=1 oy

= exp [ 3 (2 a’i’ - z: a) 1 lo>=u( 2.} )]0 >, (1.30)
i

One can easily verify that
-1
UC{z }) "a, U{z, })=a +2z, (1.31)
i i i i i

i.e. U is a shift operator. Eqs.{1.30) and (1.31) easily imply

a, | {z, }> =z |{z }>

i i i i

The above formulae maintain a meaning also in the infinite volume limit

, with

{zk A} + a complex function f(k, r).

Given a coherent state |f > (or |z>) one can construct a representa-

tion of the CCR in the following way. For any polynomial P(a,a*)

* * *
< f| Pla,a )]f > = < 0| P(a + f,a +f) |o> (1.32)

The Hilbert space is then the closure of the set of states of the form

¥ =P(a,a ) |f> (1.33)




29
The physical meaning of the so obtained representation is very simple. The
sbove states describe photons in the presence of a radiation field which
has a well defined classical limit. As long as f(k,A )¢ L2 the representa-
tion is unitary equivalent to a Fock representation. The above representa-
tion can however be introduced even if f¢1fa without making reference to
the definition (1.30), but by using eq. (1.32) as defining equation for |f > and
for the states of the form (1.33). Formally |f > plays a role similar to
that of the ground state in the Fock representation, each state being described
in terms of elementary modifications of (i.e. as results of application of
P(a,a*) to ) the state [f>.

Quite generally if

A, =a, + T, (1.34)
i i i

2
with X |f. |” = =, then a representation which is Fock for the operators
¥ i
i
Ai (as the representation defined by eq. ( 1.32))cannot be a Fock represen-

tation for the operators ai, and conversely.

An example which requires the use of non-Fock coherent state represen-
tation is provided by the radiation field associated to a (classical) charged
particle which changes its velocity. More precisely we consider the limiting
Situation in which a particle moves with constant velocity v » 15 kicked at

oy

t = 0 and then moves with velocity v .

The field equation for the (transverse) electromagnetic potential are

Oico = 3 (1.35)
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By eq.(1.25)we have
a(k,t) = X w(k, 1) ax(ﬁ,t) = (20) % [ wR(E,t) + 18K, t) ]
by

and therefore eq. (1.35) becomes

d + + + <+ _z > >
i 7 2 (k,t) = wa(k,t) - (20) ° j(k,t)
which can be easily integrated to
) y F '
-in(t-t -% =i t iwt | ' '
a (k,t) = o 0¥ %) | it v ), i)y Bt j ™ j (k,t")at
i i o} i
t
(o)

Chosing the initial time to + - =» , the above equation becomes
- -iwt in ,+ -% -iwt - int' » '
s (kt) = e 2 () 4 a2w)F j’ ™ (K, trat

]

For the process described above,denoting by 6 the Heaviside function, one has

TG0 = e [6(el¥ 68X - ¥t) + o(=t) 6 (% - L) (1.36)

and therefore

»> _ . -iwt o -iwt in » :
ai(kwt) = e ai(k) = fai (k) + f}k,t% k (1.37)
with
i w- E.;')t 1
-+ ] - Vs
f_(k,t) = —e— E, e e + " i ]
1 Yauw & 1 w - k.v w - kK.v (1.37')

. - 3/2 2
Since for low K, f(k,t) ~ k » one has f¢L and therefore, if one chooses

a Fock representation for the radiation field in the distant past (i.e. for

a ) this representation will not be a Fock representation for the radiation

A e s e vy ey
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field at the time t. From a physical point of view this means that when

undergoing a scattering process a charged particle emits an infinite number

of infrared photons (infrared catastrophe). It is obvious from the above

equation that, in this simple case, the transition from in-operators to the

operators at time t is just provided by a shift operator; insisting on using

a Fock representation both for in as well as for operators at time t would

Jead to the so-called infrared divergences.
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1.8, General properties of states of infinite systems

As discussed in the previous sections, the description of a system
with infinite degrees of freedom involves i) the choice of the canonical va-
riables, say { a, a*}, and the construction of the algebra;f1 generated by

them (algebraic¢ structure), and ii) the identification of the relevant repre-

sentation n of ;%l , as an algebra of operators in a Hilbert space H, the

space of states of the system (dynamical structure). Clearly a representation

of;%l is fully determined by specifying a Hilbert space H and all the ma-

trix elements <V¥,A¥> , ¥eH, AeA.

A large class of physically interesting representations has the pro-
(*
perty that the states of the system can be analyzed in terms of the ground

state Yo and its elementary excitations, in the sense that the generic state

of the given representation can be written as

Y = Pla, &%) ¢ (1.38)

*
(with P a suitable polynomial) or a (strong) limit of states of that form (» {
This means that in n the canonical variables are (algebraically)complete in the
sense that their algebraic functions suffice for the description of the

states of the system. Representations satisfying the above property are there-

fore totally determined by the set of correlation functions

(*) More generally in terms of a "reference" state.

(**) More precisely, the set of vectors of the form(1.38) form a dense set in
the Hilbert space H in which the representation is defined. As mentioned

before, to avoid domain problems one should better use as canonical variables

the Weyl operatorsassociated to a, a*.

- -
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*
< ¥ a ... a aj el ¥ >, (1.39)

gince any matrix element <y , AY >, AE;fi can be reduced to matrix elements

(*) .
of the above form . Technically, representations having the above property

are said to have a cyclic ground state. Correlation functions of the type (1.39)

with canonical variables occurring at different times are usually called
Green functions. The knowledge of the Green functions does not only determine
the states of the system but also their time evolution, and it is therefore
equivalent to the full solution of the dynamical problem.

In most of the following chapters we will focus our attention on

physical systems characterized by a translationally invariant gzpund state:

ua) ¥ = ¥ , va,

-

where U{a) is the translation operator. This implies that the correlation
functions are translationally invariant, i.e. in x-space they are functions
of the differences xj - xi.

An important set of informaticn on the states of infinite systems

comes from the realization that in preparing or defining a state,only loca-

(*) In more detail, one can show that given a set of correlation functions
(1.39) satisfying the positivity condition: <A*A> > 0 for any Aq¢1,
one may define a vector space Dy, whose elements are labelled by poly-
nomials of the canonical variables, y,, and a semidefinite product
< Wpl,VP > = <pyPy>. D, is thus a pre-Hilbert space which after com-
pletion and quotient yields the Hilbert space of the representation.
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* . :
lized measurements are available in our laboratory.Therefore, starting fronm

a given state ¥ , one may only produce local excitations. To exploit this
o)

important point it is convenient to regard the algebra;fi as generated by

canonical variables which have some localization properties, like e.g. ¥(x),

¥*(x) or better the operators {

V) = L w(x)f (x)dx , v*(g ) (1.40)
a a a

with £ , g, localized functions. The algebraic characterization of locali-
a

zation, as it will be needed in the following, is that;/{ is generated by

e¢lements satisfying the following condition (which we will call asymptotic

locality ):

im [a ,B] =0 (1.41)
X} += ’

where A; denotes the i—translated of A. The physical meaning of condition

(1.41)is very clear: the "measurements" of localized operators do not inter -

fere when the distance of the localization regions goes to infinity. Clearly,

condition (1.41) is satisfied by th i
y the operators W(fu), W*(ga), with fu » B,

localized functions.

For an algebrq;#[generated by canonical variables which satisfy asymp-

totic locality we have: any irreducible representation with transiationally

invariant cyclic state has a unique translationally invariant state.

(*) R. Haag and D. Kastler, Journ.Math.Phys,

5, 818 (1964).
R. Haag, Nuovo Cimento, 25, 287 (1962).
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In fact , if the representation space H contains another invariant
t
state !; , which without loss of generality can always be chosen orthogonal

to !o, by the cyclicity of 'o there must be a polynomial P of the localized

operators which generateﬂ, such that

< ¥,PY¥Y > 40 (1.42)
[ [o]

-
Now, if P; denotes the x-translated of P,we can construct the ergodic mean:

lim
Ve

3
FP.dx =P (1.43)
v x av

*
(The limit exists in a weak sense ( )). Clearly for any localized operator A

av
since by eq. (1.41)

lim [P, ,A]
|%]+e

i
o

and the ergodic limit coincides with the ordinary limit when the latter exists.
Thus Pav commutes with all the elements which generate 74 and therefore it
commutes with 74. . In any irreducible representation Pav must therefore

be a multiple of the identity; this is in contrast with eq.(1.42) since

Another interesting property is that the uniqueness of the translationally

(*) See e.g. the discussion by R. Haag, in Critical Phenomena, lectures at
the Sitges Int.School on Stat.Mech., June 1976, Springer Lect.Notes
in Physics, Vol. 54
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invariant state isequivalent to the validity of the weak cluster property:

ergodic-lim [<¥ , A, B ¥ > _-<A> <B > ] =0 (1.44)

+> o X o] o
[x|+w

%*

for any A, B 2#1.k1féct,by Von Neumann ergodic theorem *) the ergodic mean of

a unitary operator U(%)

1 .
lim = jU(i) Sx = b i

\' inv '
Vi

is the projection Pinv on the suspace Ho of vectors which are invariant under
U(X). Clearly eq.(1.4)holds if and only if H_ is one dimensional.

The physical meaning of the cluster property is that the correlation
between operators localized in very distant regions, factorize; i.e. far

separated variables behave independently as far as expectation values are

concerned (this factorization is necessary for the construction of the scat-
tering matrix!).

Representations with unique ground state are the equivalent of the
pure phases in Statistical Mechanics. This characterization in terms of ir-
reducibility and validity of the (weak) cluster property justifies focusing
our attention on them.

One may justify the restriction to representations with a unique

translationally invariant ground state also by the following qualitative

considerations. If ¥ Y, are two transationally invariant orthogonal

1 ?

pure states, by applying'to each of them polynomials of the localized

(*) See e.g. M. Reed and B. Simon, Methods of Modern Mathematical Physics
vol. I, p. 57, Academic Press 1972
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(canonical) variables one obtains two (orthogonal) spaces ‘of states H H
-

From a physical point of view the Question is: if states of H can be pre-
1

pared in a certain laboratory, can one also prepare states of H in the same
2

laboratory? This amount to ask whether states of H_ can in some way be
2

*

i (*)
approx1mated by states of Hl. Since a state is fully determined by all

the possible measurements one can make on it, i.e. by all its expectation

values of all the observables, a general criterium of approximation is that

given a state Wz of H2 there is a sequence of states ¥ of H such that
n 1

(v .A‘l’n) — (‘"2' A ?2) (1.45)

n >

for any A e;f{ . This approximation has a clear physical meaning since it

is strictly related to the way a state is prepared in terms of measurements

Now, by general qualitative arguments which become particularly convincing

or can be made rigorous in some simple model (like spin models of the Ising

or Heisenberg type, or the (¢*), quantum field theory model), in order to get
an approximation of the type (1.45) one needs to use states wn with energy

En which diverges as n + =, Therefore states of H2 cannot be prepared by
starting from states of Hl, if only a finite amount of energy is available.

Hl and H2 are therefore "disjoint worlds" and only one can be chosen to describe

the states of the system which can be prepared in a given laboratory. At

the classical level, the appearance of "disjoint worlds" or "disjoint Hilbert

(*) Clearly this approximation cannct be in the strong or even in the weak

topology of Hl.
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space sectors”stable under time evolution has been proved in general to

(*)

follow from the non-linearity of the problem for hyperbolic equations' °.

(*) See C. Parenti, F. Strocchi and G. Velo, Comm.Math.Phys. 53, 65 (1977)
and the lectures by F. Strocchi in Topics in Functional Analysis 1980-81,
Scuola Normale Superiore 1982.
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II. INTERACTIONS WITH INFINITE DEGREES OF FREEDOM

2.1 Genuine infinite systems

The description of infinite systems described before, in terms of a
ground state and its elementary excitations,becomes particularly useful when
the interaction is such that the number of elementary excitations is not a
constant of motion. In the time evolution an arbitrarily large number of
degrees of freedom may be excited and therefore one has a genuine infinite
system with the difficulties and the interesting features of QM

Ordinary QM is recovered when: i) the Hamiltonian commutes with the
number N of elementary excitations, ii) the dynamics selects a representation
of the algebra of the canonical variables such that N is a well defined
operator. Condition ii) excludes the case of collective effects like conden-
sation, for which N is no. longer well defined, and spontaneous breaking of

gauge transformations of the first kind (see Part C ).

wWhen conditions i) and ii) are satisfied the dynamics is defined in

n
the Fock representations and one can consider the subspaces H(n)a P( )H,

with definite number of elementary excitations. The Schroedinger equation

for ageneric state ¥ can then be written as a system of decoupled independent

(n) . (n)

equations for each component ¥ e H

P L g _ iy
dt nn nn

and in each H(n) one has an ordinary QM for n particles. The situation changes

when [N,H ]# 0. In this case one has en infinite system of coupled equations

d _(n) (m) P(n)HP(m)

'-h
&
1]
e of
<
o}
i
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i.e. a genuine infinite system. In the following sections we will discuss

simple examples in which the number of particles is not a constant of motion.

2.2 Photon emission and absorption by atoms

The use of creation and annihilation operators allows a very simple
description of photon emission and absorption processes in atomic transition,
To this purpose we consider a physical system consisting of atoms and electro-

. N . . 3 . C s
magnetic radiation in a cubic box of volume V = L s With periodic boundary
conditions. In the approximation in which the nuclei are considered as infi-
nitely heavy and the electrons are treated non-relativistically, the atomic
system, in the absence of electromagnetic radiation, is described by the

following Hamiltonian (see sect. 1.5)
.

=1V (2 s V) (x) ax + &2
2m e

atoms -

where V(x) is the Coulomb potential which keeps the electrons bound to the

nuclei and e?H is the electron-electron electrostatic interactions. The
ee

interaction with the e.m. radiation is essentially determined by the minimal
. . > =+ e *
coupling or gauge invariance ( p+p - z A(x)) and the total Hamiltonian
becomes
-> - 2
[p-2A00)]

3
5 + V(x)} e (x) dx «+ eZHe_e

*
H=Hzad $I V(%) (

(2.1)
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The eigenstates of

H = Hrad + H
o o atoms

can be described in the Fock representation and since the Hamiltonian commutes
with the number of electrons (and therefore of atoms) we can restrict ourselves
to the subspace with a definite number of atoms,

for example one atom. The

jgenstates of H are then of the form |g >
eig o | 1 lnl » B, <o > where I%j>

denotes the state of the atom in the %j level and | n_ , n_... > denotes
1

2
the state with n, photons in the state | al> etc. (see sect. 1.6). By treating

- . . fa s
A(x) as a field operator and expanding it in terms of creation and annihilation
operators (as in sect. 1.6, eq.(1.25)) one immediately sees that H does not

commute with the photen number. The atomic transition
L. +n, =+ & v+ n, -1
J i

with the absorption of a photon in the i-th mode is then governed, to the

first order, by the amplitude

A <% v+n -1|H . ]% +n >
n, +n -1 Jj i int J i
i i
where
- e * + -+ 3
H = —S2 ry(x) 9#(x) A(x) d x
int
(2.2)
e2 s * (x) +2( )d3
- X A (x X
m W(X)"’
. . 2 X
(since the electron-electron interaction Hamiltonian e He-— gives vanishing

contribution to the above matrix element) and only the first term in eq.(2.2)
contributes to A. For the evaluation of A one has

< vix) Velx) | FERENCRANC
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*
with ¥_ , ¥ 1 denoting the atomic wave functions (see sect. 1.5), and
J
<--- - LI A -ae e * o >
By -1 IA(x) | e a
i i ii
ﬁ >
1 N 1Kj.x
T = Vi Sy
'\/V— 1AL ’V2mi
Hence
ie * - + iﬁi; 1 3
= - Va, S ¥ (x)V¥ i (x)e(k ,A,) e d x
n +n -1 me i J J 1 1
i i 2Va

i.e. the amplitude is proportional to the square root af the intensity of the
present radiation in the i-th mode (see sect. 1.6 eq.(1.29')) More interesting

is the emission process
2.+ n, -+ Lo +n +1
J i

for which one gets
- ->
- -iki.x
S VAT 1vx) Sy oa(x) o 3
+ —
S 1/ni FAL R d x.

VYav ey

The transition probability (per unit time) is then proportional to n_ +1.
i

i
+n; +1

n;

The contribution corresponding to n, = O (no e.m. radiation present) is called

spontaneous emission , whereas the contribution proportional to n. is called
i

induced emission. The coefficients ni, ni + 1 for the absorption .and emission
of photons by atoms were first deduced by Eistein in 1916 with arguments
based on the statistical properties of the €.m. radiation. The (more complete)
derivation outlined here as a simple result of the quantization of the e.m.

radiation was first discussed by Dirac in 1927.



5.3 Nuclear forces (Yukawa model)

In analeogy with the interaction between charged particles mediated
by the e.m. field and given by ju(x)Ap(x), with j (x) the e.m. current, in
1935 Yukawa suggested that a similar mechanism could explain the nuclear
»*

forces. A scalar meson field ¢(x) was assumed to mediate the nuclear forces(

through an interaction of the form (non- relativistic approximation)

. 3
Hint =g Jjlx) e (x)d™x

where j(x) is the nucleon charge density
J(x) = ¥v*(x)¥(x)

and ¢ (x) is the field operator which describes nucleons. The elementary ex-

citations or particles associated to the field ¢(x) are called mesons and

* %
in terms of creation and annihilation operators ¢(x) is written as )

ikx 4 (2,3)

3 .
o(x) = (20" M2 [ LK (a6t 4 ar(re”

1ﬂ2mk

n
~
~
+
3
~
3

where mi E = meson mass.
To simplify the discussion we do not consider spin effects and will

treat V¥(x) as a fermionic field operator satisfying anticommutation relations

(see sect. 1.4 eq.(1.19)).In the non-relativistic approximation mentioned

(*) In 1947 the above idea was experimentally proved to be correct with
the only difference that the meson field was a pseudoscalar field(pionic
field) and the interaction was pseudoscalar (j(x) - v(x) Yo ¥(x)).

(**) To simplify the discussion we consider a neutral field.



44

above, the model is governed by the following Hamiltonian

3
H =.I’mka*(k) a(k) d3k + I E(p)v*(p)¥(p) d p

3
+ -—g-/z S d3p iili V*(p +k)v(p) [ a(k) + a* (-k)]

(21r)3 Ve 4

with

E pz
p = 2 + » M + ——

Since the nucleons are treated non-relativistically the model cannot be
expected to describe correctly the emission and absorption of high energy
mesons and therefore an additional information must be added by hand, by

introducing a nucleon form factor F(k). The interaction Hamiltonian then

becomes
3 d3k
H = £ fdp — F(k) v¥(p +k)u(p) [ alk) + a*( -k)]=
int 3/2
(2m 2%(

= g/ u*(xp(x) Flx-y) o (y) ax oy (2.4)

This amounts to treating the nucleon as an extended object, since the interac-
tion density is not a local operator and it involves an elementary coupling
between the meson field ¢(y) and the nucleon density J(x), even when the
center of the nucleon is localized in x and the meson is localized in y. The
nucleonic extension is described by the Fourier transform of the form factor

F(k). The local limit (or the nucleon pointlike limit) is obtaineq by letting

Flx - y) +6(x - y)

(i.e. F(k)+1). From a technical point of view the rdle of the form factor F(k)
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;s that of guaranteeing the convergence of the integrals when needed,so that

the expressions wewill derive are all mathematically well defined.

The interaction Hamiltonian describes the elementary processes ghown

in Fig. 2.
p"‘k p+k R
/7
, —
Tk
P4
7/
\
— \ -— —
P Ak P
\
\
\

(a) (b)
Fig. 2 Meson absorption (a) and emission (b) by a nucleon. The vertex is
given by the form factor gF(k»ﬁﬁﬂFL.
The number of nucleons

N o= f px)(x) dox = £ ¥ (p)Wp) dop

*
commutes with the Hamiltonian so that we can try to discuss the dynamical

problem for each eigenspace of N. It is easy to see that the total momentum

3 1P berip)¥(p) + f dk ka'(k) alk)

is also a constant of motion.

(*) In a fully relativistic theory the meson nucleon interaction would also
allow for nucleon-pair creation or annihilation.




We start by looking at the N = O sector. A simple computation shows
that the ground state |0 >of the non-interacting theory (g = 0) is also an

eigenstate of H, (g # 0). It is therefore reasonable to choose a Fock re-

presentation for the operators a, a" .,V , ¥* corresponding to the elementary

excitations of the non-interacting system. As we will s=e later this is

Jjustified if m>0 and F(k) is a sufficiently decreasing function when k + «

In this case, the n (non-interacting) meson states a*(ki)---a*(kn)lo >

are also eigenstates of the total Hamiltonian with eigenvalue L w(ki). There-

fore, in the N = 0 sector the dynamics is rather trivial.

The dynamics is more interesting in the N # 0O sectors, where, as
we will see, collective effects appear. To simplify the discussion we will

consider the model in the extreme non-relativistic approximation for the

nucleon:

E(p) + M, (2.5)

i.e. the nucleons are considered so heavy that the momentum dependence of
the energy is neglected. The main advantage of this approximation is that
the model can be solved exactly and all its interesting features will be
under control. We consider the N = 1 gector. The state of one unperturbed
> >
nucleon with momentum p,¥y*(p) |0 >
eigenstate of H, with N =

+ -+
1 and P = p, is obtained as solution of the eigen-

value equation

-+ vt
Hlp >=M' |p>,

is not an eigenstate of H. The corresponding

F_

k
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one obtains a change of the mass

2

g |F(k) |2

] ak
(27?3 2 w¥k)

M=M—

= M- gisMm (2.6)

and the following eigenstate

: 3 -
1S . +* >
Ip> =e v(p)|o>=ra’q r I X ila-px

v*(q) .
(2n)® (2.7)
3 > >
£ d k ~ik.
cew =K s == raoe X (ax (k) - alex)) ]
(%) (2w 2mk
where
ig 3 3 F(k)
Sz ———,  tdpdk ¥ (p)u(p +k) [ a*(k) - a(-k)]
(20)>/2 Voellk)

Wwhen analyzed in terms of elementary excitations of the non-interacting
. L
system (g = 0) the (physical) nucleon state |p> is a superposition of

a Ybare" nucleon and infinite mesons (" meson cloud " ):

<3 'v% a*(k Veen a*(k ) y*(@)[0>=VZ &+ K -5) .

(- gV 1’-‘[ F* (ki)

o e e (k.)
2
2 = exp [ S .|F_(k)|_] (2.8)
(2x)® 20*

-is
(*) To derive eq.(2.7) it is useful to note that e |o0>= |0> and to expand

is ~is
e Yt e in powers of S.
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The transformation

VD) » e yr(p) e S (2.9)

is called a "dressing" transformation because it transforms the creation
operator of a "bare" nucleon into a creation operator of a physical nucleon.
It is interesting to note that infinite degrees of freedom of the non-inter-
acting system contribute to the definition of a physical nucleon state. This
is a first example of a collective effect. Such effects are characteristic
features of QM“ ywhere the interaction Hamiltonian does not only give rise
to transient effects like scattering as in ordinary QM, but it also leads to
a complete redefinition of the degrees of freedom or elementary excitations
of the system, with respect to the g = 0 case.

We can now discuss the validity of the Fock representation used so
far. First, in the local limit, F(k) -+ 1, the integral occurring in the defini-

tion of Z is logarithmically divergent for k + « (ultraviolet divergence), so

that Z +0. This means that in the local limit the states of the interacting
system cannot be analyzed in terms of elementary excitations of the non-—
interacting system. Equivalently, in the local limit one cannot choose a Fock
representation for a, a*, ¥, ¥*. The same difficulaty appears also if F(k)
decreases sufficiently fast for k **, but the mesons have zero mass, (m = 0).
In thiscase, the integral occurring in Z is again logarithmically divergent

but for k +0 (infrared divergence). Again one cannot choose a Fock representa-

tion for a, a*, ¥, ¥v*.

It should also be stressed that in the local limit M' ig linearly

ultraviolet divergent and therefore the spectrum of the total Hamiltonian
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in the N # 0 sectors redutes to the point — « unless a suitable subtraction
or renormalization procedure is adopted. This means that the model can be
extrapolated to very small distances (ultraviolet region) at the price of
loosing predictivity about the nucleon mass. The removal of the ultraviolet

cutoff, (F(k)*-FA(k) = 6(lk] = A), A » ») must be supplemented by a prescription

M‘n + In order to get a finite value for M' we have to
-]

*
introduce a cutoff dependence of the "bare" parameter ( M: M-»MA , such

about lim Mx

A+ oo

that Mk = MA - gIGMA converges to a prescribed finite value M' as A +» = .

From a physical point of view the conclusion is that the nucleon mass, a
parameter which is very sensitiveto the small distance structure of the nucleon
cannot be predicted without a more detailed theory of the high energy behaviour.
It is however a gratifying feature of the model, common also to all the so-
called renormalizable quantum field theories, that the lack of knowledge

about a more fundamental theory, which correctly describes the small distance
behaviour, can be totally taken care of by specifying a few physical para-
meters, here the nucleon mass, which can no longer be predicted and become

free parameters.Since, in general, the so-called "bare" parameters

in the unrenormalized Hamiltonian,(here the bare nucleon mass M),are not
measurable quantitites, prescribing the renormalized parameters,( here M;),
involves the same amount of freedom as fixing the bare ones and it is clearly
more physical. What is lost in this type of theories is the possibility of

a purely dynamical explanation of the mass since an infinite "bare" mass

counterterm is needed +to compensate the divergence of the dynamical

(*) Equivalently a cutoff dependent counterterm.



50

contribution g’GMA ; therefore the mass becomes a completely free parameter.

An interesting result of the model is the explanation of the nucleon-

!
nucleon potential as a result of meson exchange between the two nucleons. The |
i
[

(newtonian) concept of force at a distance is therefore derived from the L

more fundamental concept of field, which involves contact (or local) interac-

tions.

We start discussing the problem by applying perturbation theory methods,

We compute the energy shift of a two-nucleon state to lowest non-trivial
order. For simplicity we consider the extreme non-relativistic limit. in
which the two nucleons are regarded as fixed in the positions X, and ;2,
respectively. The restriction of the Hamiltonian to the subspace characte-
rized by this condition becomes

H :Imka; ak d3k +2M+ g f [F‘(x1 -y) + F(x2 —y)]¢(y)day

(since ¥*(x)¥(x) |x1, X, >= [ &(x - xl) +  6(x —x2)] |x1, X >).

2

At zero order the energy is 2M and the first order contribution vanishes since

< 2} H, . | 2 > = 0. The second order gives
in

- f

n oM~ E
n

< H > < >
2| intln nIHintlz

It is immediate to see that the only intermediate states which contribute

are the states with 2 nucleons plus a meson, and the above formula gives

3 > <+ - [
2g?  dk : ik, (%] - ‘
AE = - 28 5 2K |puy|e (14 &% 1mX2) |
(2 1) 2wli (2.10) |
@
-—;‘AE1‘+‘AE2
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The first term AE comes from the 1 in the square brackets and it is
independent from the relative position, ;2 - ;1, of the two nucleons; it is
in fact the dynamical contribution to the mass discussed above. The second
term AE2 describes the potential energy of the two nucleons and in the

local limit it becomes

-+ -+
g? e—mlxl-x2|
AEZ(xl , x2) A (2.11)

-+ -
Ix, - x5l

i.e. the so-called Yukawa potential . The range of this potential is 1/m

and from knowledge of the range of nuclear forces Yukawa predicted the meson

13 cm. In the limit m = O

mass. With m = pion mass one gets 1/m = 1.4 x 10
one obtains the Coulomb potential.
It is instructive to represent the two contributions diagramatically.

AEl is due to the emission and absorption of a meson by one nucleon, whereas

AE2 is due to a meson exchange

B ’
> ’ “ 9
AN ’ ,’ .
N ’ / \
N 7/ ]
7/ ]
N P [y 1
v ’ b S
N ’ ~
~ Ly ~ "4
Fig. 3a Fig. 3b

The above results are confirmed by the non-perturbative analysis of the

*
model. As shown by Wentzel( ) the second order perturbative calculation of AE

(*) G. Wentzel, Quantum theory of Fields, Interscience.
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gives the exact result. To this purpose, it suffices to introduce new field

opearators A* and ¥* for mesons and nucleons

A*(K) = et ax(k) e *° =

F(k
! dsp v*(p +k)y (p) (k)

(20)/2 V2 w?

\ 3 . ->_+ -+
v(p) = e'% yr(p) oIS L padq X T HATRIX gy
(o)
.exp [ - Ls/z ! dak F (k) e tk.x (a*(k) - a( k)) ]
(27) 2w3k

in terms of which the Hamiltonian takes a particularly simple form
3 ' 3
H =17 w(k) A¥(k) A(k) dk + M sr¥*(p)¥(p) d p +

+ rax d3y ¥ (x)¥*(y) Vix-y) ¥(y) ¥(x) ,

where

g? ok ik. (X ~y)
! IF(k) |2 e
(2q)} 2u?

Vix-y) =-

The advantage of this new form of the Hamiltonian is that the collective

(2.13)

(2.14)

effects have been explicitely exhibited in the bilinear part of the.Hamiltonian
(M +M'). There is no residual meson-nucleon interaction; the original inter-
action has been replaced by an effective nucleon-nucleon interaction with

a potential which reduces to the Yukawa potential, in the local or pointlike
limit. The disappearance of the meson-nucleon interaction is due to the extremeE

non-relativistic approximation (E(p) + M) made in the definition of the model.

|

!
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The collective effects leading to a redefinition of the basic parameters of

the theory (here the nucleon mass) are also called persistent effects, in

contrast with the transient effects typical of a scattering process. It is

a characteristic feature of QMu,that the interaction Hamiltonian is not only
responsible for transient or scattering effects, as in ordinary QM, but it
also leads to a redefinition of the degrees of freedom and of the basic
parameters of the theory.

The above eqs.(2.13) (2.14) clearly show which representation must
be chosen in order to have a meaningful dynamics: it is the Fock representation
for the field operators A and Y corresponding to the elementary excitations
of the interacting system (g # O). In the local limit and/or in the m +0
1imit, such excitations cannot be described in terms of the elementary excita-
tions of the non-interacting system (g = 0).

The Fock representation for A and Y is unitarily equivalent to the
Fock representation for a and ¢ for m # 0 and F(k) sufficiently decreasing
(the unitary operator which intertwines between the two representations is eis)

but it is not unitarily equivalent for m = O and/or F(k)-»1l.

In the latter cases the definition of A*(k) and Y¥%*(k) by the right-hand
side of egs.(2.12) (2.12')still maintains a meaning, but there is no unitary
opearator (exp iS becomes meaningless!) which intertwines between the new

field operators and the old ones.
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2.4 Electron-phonon interactions in metals and in polar crystals

We start by considering the electron-phonon interaction in the case
in which the phonons are associated to displacements of charged ions, like

in conducting media (acoustical mode). In the approximation in which the ions

are considered as very heavy the electrostatic interaction between electrons

and ions is described by the following Hamiltonian density
Lplx) U (x-q,),
i 1
where p(x) is the electron density
*
p(x) = v(x)v (x)

and U(x - qi) is the electrostatic potential due to the i-th ion, at position
qi. For small iondisplacements, U can be expanded around the equilibrium po-

o
sition §. = %

i

fe) -+
Ulx -q) =ulx-q) + VU.8q + ...
i i i i

The first term gives rise to an interaction term which is independent of the
lattice vibrations, whereas the second term gives rise to an interaction

Hamiltonian of the form

H = eZ fe*(x)y (x) §U(x - q®)sl, ox
int i 1 1

or, in momentum representation (M = ion mass, p = MN/V)

e

3 3 O ~
H, = Trdpd k p*(p)y(p-k) —K -eKA) Ulk)

i 2
int (2 “) 3/ i _V'm

+ s s s0 (2.15)

3.2 I
. [alk) ¢ "% +a*(-k,1) e 1k-q1]

?
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where the ion displacements Gai have been expanded in normal modes, as

in sect. 1.3, (acoustical waves).Clearly only longitudinal waves can inter-

act

+ -+
K+ e (k) = k| =k

and the interaction is very similar to that discussed in the Yukawa model,

with a form factor now given by

Flk) = —°  T(k)
Vou(k)

One might think that ﬁ(k) should be the Fourier transform of the Coulomb
potential. . Actually, the effective electron-ion potential is not a pure

Coulomb potential: it is so only at small distances, whereas al large sepa-

rations screening effects occur and a good approximation for low k ( k <<« kF =

= Fermi momentum) is given by

~ 4ne aTn nfa

U(k) = > — —
k?+p? n? k

" F

-1 *
with a = atomic Bohr. is therefore of the order of the lattice spacing

Thus for low k, since we are dealing with acoustical modes,

F(k) - C Vk

The Debye frequency, related to the inverse lattice spacing, provides the

3

ultraviolet cut-off for the integral in the Hamiltonian.

The lattice vibrations in a polar crystal are dominantly of the

(*) For a more detailed treatment see A.L. Fetter and J.D. Walecka, Quantum
Theory of Many-Particle Systems, Mc. Graw-Hill Book Co. 1971, Sect. 45.
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optical type,corresponding to amolecular motion in which the center of mass
is at rest and the relative coordinate of the two atoms is responsible for

the mode (See sect. 1.3). This gives rise to an optically active dipole

d(x) (
X) ~ e -
q& qE

,1)+ The electrostatic potential A (x) associated to the

. + >
dipole d(x) is given by
-
grad Ao(x) = 4 wd(x)

or

BA_(x) = 4r div a(x)

Hence

A (k) = 4 7 k-d(k)/k?

and the interaction Hamiltonian

3 *
Hint =e fd x ¥ (x) p(x) AO(X)
becomes
4ne? 3 3 4 kK.t (k)
H . = ————J/dkdp v (p+k) ¥ (p)
int (2 “)3/2 w2 k]G;;:;Z;j‘
[ alk,A) + a"(- k) ] (2.16)

Since for low k, w(k) ~ qo independent of k for an optical mode, the Hamilto-
nian(2.16) is again similar to that of the Yukawa model, but with a form

factor

k 1l C 1
F(k) = — -—

k2 Y25 w(o) Vo «x
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2.5 Polaron model. Mass and coupling constant renormalization

As mentioned before, the Hamiltonian for an electron in a polar crystal

(polaron model) , eq.(2.16),is very similar to that of the Yukawa model discus-

sed in Sect. 2.3. As before, the number of electrons
-— * 3
Ne-fw(p)w(p) dp

and the total momentum

2>

3 + -
P=srdk k a*(k)alk) + fd3p p ¥*(p)y(p)

are constants of motion and therefore the eigenstates of H can be classified
in terms of the.eigenvalues of Ne and P. However, here we cannot consider the
electron in the extreme non-relativistic approximation as for the Yukawa
medel and the free electron energy cannot be regarded as independent from
the momentum:

p* (2.17)

E (p) = — , m = free electron mass
o] 2m

The dependence of E(p) from ; does no longer allow the model to be exactly
soluble and we will treat it perturbatively. As in the Yukawa model, the

- -*>
eigenstate of H corresponding to Ne =1 and P = q, now called polaron, will

involve infinite non-interacting phonons,when analyzed in terms of the ele-

mentary excitations of the non-interacting system.To the first perturbative

order the polaron state is given by

>
n,0>< 0,n| Hipnt 1q,0>
I, e s (2.18)

la> = 9,0 > + I .
n E (q) - E(q)
o] n
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where |q,0 > and In,0 > are eigenstates of the free Hamiltonian and

Q
EQ(Q)v En(Q) are the corresponding energies. Due to the form of Hint only
the states with one electron of momentum § - K plus a phonon of momentum ¥,

-+ > o+
la -k, k, 0 >, can contribute to the sum in (2.18) (states with one electron

and n phonons will contribute to the n-th perturbative order).
The polaron energy E(q) can be compute by perturbation theory. Since
-+ -
< 0,q| H, ]2 0 > =0 the first non-trivial contribution is given by the

second order term

< - >|2
E(a) = B (a) + sa'k < A KiHint la>]
E_(a) -E (q =K) - w (k)
(o} (o]

2me? 3 2 2
L@ -2me g St/ 2k
(2 x)3 k? - 2kq cos® + 2muw(k)
i.e.
m e2C? 1 oo d k
AE=E(q)—EO(q)=——-2nf dcosef
8x%? - ® K%- 2kqcoso + 2mw(k)

By approximating w(k) = wo,the integral can be computed analytically. We.

will compute it for small q by expanding the denominator in powers of q. Put-

ting

X Ek/“meo ,a=q/¢2mm
o
we have
! =% oo 1
_{ d cos 6(2m wo) 2 fdax (1+ _ifiifﬂif_ + 4x2 a2 cosze.F )
1l+x? 1+x? (1L+x2)2
~¥% 1 8 2
= (2m mo) : o[ dx (2+-a? X _ e )
1+ x? (1 + x2)2°
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and
. q? e? m 2
E(q)-Eo-(Q) =--‘a(wo+-- + eee ), @ = — C
’ 12m an 2m°

The term -ew independent of q, is actually the ground state energy
shift due to.the electron-phonon interaction. The term -aq?/12m implies a
change in the mechanical properties of the electron as a result of the inter-

action with the phonon system:

2

E(q) = - aw + , m o= m/(1 - = )
[o 6

*

2m

»*
i.e. the polaron mass is m and differs from the free electron mass (mass

renormalization).

As for the Yukawa model we can compute the interaction potential

> - >
between two electrons at positions xl, x2 inside a polar crystal. To second

perturbative order we get

2 (2 e? 1

V(;l - ;2 ) = - ° = -
-+ -+ -+ +
T - "4 -X

8 %= x| re  [x -x|

with e = 2/C?. The potential is still of the Coulomb type, but with a change

of the coupling constant

ez 4+ et/ s

(coupling constant renormalization). e has the meaning of a dielectric

constant, which arises here as a collective effect. By measurements of di-
electric ccnstant one can determine the constant C and compare its determina-

tion in terms of microscopic parameters. Given C and @ one can determine
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III. RELATIVISTIC PARTICLE SYSTEMS

3.1 Relativistic field operators

The framework discussed in Chap.I is easily generalized to describe
relativistic particle systems. In this case the elementary excitations or
-+
particles may be labelled by the momentum k and the energy w(k), satisfying

the relativistic spectrum condition
w(k) = V2 + m2 (3.1)

+ >
(m = the particle mass). The creation and annihilation operators a(k), a*(k)
are usually defined in such a way that they obey Lorentz covariant commutation

relations. For example, for spinless particles
[ alk), a*(k') ] = 2k 6 (k - k') - (3.2)

k= w(k), and the field operators are defined by

3 \ .
1 f d k [a(k)e-lkx + a*(k) e—lkx ]

*(X,t) = o(x) =
(2n)*: 2

(kx = ke x- kot). The Hilbert space for such relativistic system carries a

representation of the Poincaré group by unitary operators U(a,A), such that
-1
U(a, A) ¢(x) U(a,a) = ¢0(A x + a) (3.3)

The Fock representation and related properties carry through in this case as

discussed in Chap. I.




61

3.2 Causality or locality

The relativistic invariance leads in this case to further constraints
with respect to the non-relativistic case. The most important one is the
causality or locality constraint. One can easily check that the canonical

commutation relations (3.2) lead to
->
[ o(x,t), ¢(y,t')] =0, (3.4)

-
if (x,t) is spacelike with respect to (;,tq,i.e. field operators at space-

like separated points commute. For fermionic fields eq.(3.4) is replaced

by the anticommutation relation
-+ -+
[ v(xvt)’ w*(Yrt') ] + =0 {(3.5)

if (;,t) is spacelike with respect to (;,t'). The property (3.4), (3.5) is
called locality or microscopic causality and it is supposed to have a more
fundamental status than the canonical commutation relations (3.2) (or the
analogous CAR's). The reason is that, as we will discuss in the following,
the relativity group is responsible for a more singular behaviour of the
field operators than in the non-relativistic case and the canonical commuta-

tion relations loose their meaning in the presence of interactions.

* * %
Theorem (Wightman)( ) Let ¢(x) be a hermitean scalar field ( )satisfying

the covariance equation (3.3) and let ﬁ)be the unique state invariant

(*) A.S. Wightman, Annales de 1'Inst. H. Poincaré, I, 403 (1964),
(**)The theorem extends also to non hermitean fields and also to fields

describing particles with spin.
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under U(a, A)

Ula, )Y = ¥ (3.6)
[e] [o]

Then ¢(x) cannot be an operator defined at each point x unless it is the
trivial operator ¢(x) Vo =cY , c a constant.
)

Proof. We consider the two-point function
<Y , ox)o(y) ¥ > = F(x,y)
o o

By eq.(3.3) and (3.6) it is a function of the difference x -y and if ¢ (x)
is an operator defined at each point, F is a continuous function of x -y

since

#x) ¥ = U(x,0)¢(0) ¥
(o] o

and U(x) is a (strongly) continuous unitary operator. Furthermore for each

sequence of complex numbers ai

a - = ¥y (]2 >
I &, F(xi yi) aj Il aj¢(xj) oll 20

* *
i.e. F is a function of positive type( ) and by BochnerAtheorem( ) its Fourier

transform is a finite positive measure
ipx

F(x) =Je du(p) : (3.7)

with

Sldu(p)]| < = (3.8)

(*) See L. Schwartz, Théorie des Distributions, Tome 1I, Ch.VviI, §9,
Hermann 1951.
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The transformation law (3.3) of ¢ under thé Lorentz group implies

u( Ap) = u(p)
. TR L tz i i i ardi o)
H i.e. is a Lorentz invariant measure.According to Garding analysis
p has the following form
d3
au(p) = b §(p) + ¢ de(p?) —2—
p? +p’
with b, ¢ constants, and eq.(3.8) requires ¢ = 0.This implies that
only the ground state can occur as intermediate state in the two point function,
that <To.¢(x) ?o> =/b and (¢(x) - /b ) Y = 0; thus ¢(x) is a trivial operator.

* ¢
A similar result holds ) if the covariance eq.(3.3) is replaced

by
i) the covariance under space time translations
-1 ’
Ua) ¢(x)U(a) ~ = ¢(x+a)
with. the generator P! satisfying the relativistic spectrum condition
'y
(p_ >0, pp 20)
o-—. u=

ii) locality of the fields

[ o(x), o(y) ] =0 if (x-y)*< o0

The above results show that strictly speaking one cannot introduce
the algebra of the field operators ¢(x), but only the algebra of the regu-

larized or smeared operators

$(£) = 5 o(x)E(x) dax (3.9)

(*) L. Girding and J.L. Lions, Nuovo Cimento Supp. 14, 45 (1959).
(**) A.S. Wightman, Annales dé 1'Inst. H. Poincaré, I, 403 (1964).
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with f(x) a sufficiently regular test function (typically f€C” and of compact
support). These problems become more acute in the presence of interactions,
when one can no longer require the validity of the CCR's (or the CAR's).

The singular behaviour of the fields is amplified by the interaction and one
cannot in general consider them at sharp time; only the smearing in space

and time guarantees that one gets well defined (possibly) unbounded operators.

Otherwise one would end up with CCR's of the form
- - -1 > ->
[ o(x,t), d 0(y,t) =1 z, 8(x-y) (3.10)

with Z3 a constant {the so-called wave function renormalization constant)

which is infinite when computed in perturbation theory, unless there is

no interaction.

For relativistic quantum field theory one must therefore give up the

algebraic constraint of the CCR's (or CAR's). Its place is taken by the

causality or locality constraint

[ #(£), o(g)]) =0 (3.11)

if support of f is spacelike with respect to supp of g (and similarly for

fermion fields). I[n conclusion, for relativistic systems , the

algebra of the canonical variables must be replaced by the field algebra;fl,

generated by polynomials of the smeared fields ¢(f), with the algebraic

constraint given by locality, eq.(3.11), (local field algebra).




3.3 Ground state and local excitations. Cluster property and uniqueness

of the ground state

As for non-relativistic systems, a representation of the local field
algebra is specified by the so-called ground state YO (vacuum state)}, which
is expected to be cyclic with respect to the polynomials of the fields #f).
This means that the states of the system can be described in terms of the
ground state and its local excitations. This is equivalent to say that a

representation is totally specified by the so-called correlation functions

(Wightman functions)

<¥ s ¢(fi) cee ¢(fn) Y, > (3.12)

The uniqueness of the translationally invariant state is a necessary property

for the irreducibility of the representation. The connection with the validi-

ty of the cluster property becomes sharper than in the non-relativistic case.
*

Theorem (Araki-Hepp—Ruelle)( ) In any representation of the field algebra

such that

1) there is a unitary representation of the space-time translations with

respect to which the basic fields transform covariantly

U(a) #(x)u(a)"" = o (x +a)

2) the generators of the space time translations satisfy the relativistic

(*) H. Araki, K. Hepp and D. Ruelle, Helv.Acta Phys. 35, 164 (1962).




66

spectrum condition (P x 0, P“Pu > 0)
0 2> 2

3) The basic fields satisfy locality

[ o(x), ¢(y) ] =0 for (x - y)2<0,

*
the cluster property

lim [< ¢(Xi)--- ¢(Xj) ¢(yi+ Aa)... ¢(yk + aa) >
e (3.13)
- <¢(xi) ¢(xj)> < ¢(yi)... ¢(yk) > ]

(a a spacelike vector) is equivalent to the uniqueness of the translationally

invariant state,

3.4 General properties of local quantum field theory

The general properties of the states of a relativistic system (quantum

field theory) which we have outlined above and justified on physical grounds
can be spelled out more precisely (Wightman axioms). A physically relevant
representation of the field algebra is required to have the following properties
1) The Hilbert space H contains a unitary representation of the Poincaré

group: {a,A}-=U(a,Ar )
2) The vacuum state Yo is the unique translationally invariant state
3) The spectrum of the generators of the space-time translations satisfies the

relativistic spectrum condition (Po >0, P?>0)

(*) The convergence is in the sense of distributions of;f'
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4) The fields transform covariantly under the Poincaré group.(For example

for a scalar field eq.(3.4) holds).
5) The fields ¢(f) satisfy the locality condition
[e(£), ¢o(a)] =o0
if supp f is spacelike with respect to supp g.

A more systematic and complete discussion of the above general pro-
perties does not fall into the scope of these notes. We refer to the excellent

presentation by R.F. Streater and A.S. Wightman, PCT, Spin and Statistics and

All That, Benjamin 1964. Here we want to mention that the above properties
can be equivalently state in terms of corresponding properties of the corre-

lation functions

< elx .. olx ) > = W(xl,..-xn) =wlE, .8 )

€r1E xn - xn—l’ namely

A) The Wightman functions are Poincaré covariant. For a scalar field

W(AE + a) = W(E)
B) The support of the Fourier transform of W(&) is contained in the forward
cone
. >h N _+
W(q) = 0 if qeg Vv
C) The cluster property (3.13) holds
D) The locality condition holds
w(ooo xixi.'.l’...) =‘W(.'. xi+1’xi. l..)

if (x. - x, _)2<0
i i+l
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E) The positivity condition holds

W(Er x f) =25Wn(xi... x) 3 £2(x,). 0 £ (x )
n

2+k=n

f e . e > 0
(xz+1) f(xn) dx1 dxn >

It is the content of Wightman reconstruction theorem that a set of correla-

tion functions satisfying A) - E) uniquely determine (up to isomorphisms)

a representation of the field algebra satisfying 1) - 5).

s e o -
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PART B — COLLECTIVE EFFECTS. CONDENSATION

I. ELECTRON GAS
1.1 Free electron gas. Bogoliubov transformation

We consider a system of N electrons in a cubic box of side L,with periodic

boundary conditions. For each electron the wave vector k = (kl, k2, ks)can take
the discrete values k; = (ZH/L)ni, ni - 0,1,..., so that the one particle states
are described by lattice points (nl, n,, n, ) and by a spin variable s, = t %.

The ground state is then characterized by the electrons occupying the lowest energ)
states, compatibly with Pauli principle. Each electron state occupies a "cell"

3
in k space of volume %(2w/L)” (the factor % is due to the spin multiplicity) and

therefore the ground state is characterized by a density

p(k)

2(L/2m)3 /3 for k < k_

1]
(@]

o(k) for k > kF

where kF is the maximum value of k which is occupied. kF is called the radius of

the Fermi sphere and it is determined by the electron density

N . 3 2 4 3 1 3
N = —=— = I p(k)d k = = =1 k_=— k .
3 3 3 F 2 F
L (27) 37
kﬁkF

The energy EF of an electron on the Fermi surface is

2 2
K 2 U 2 _.2/3
EF =—2-m— kF = ?m— (37 n) (1.1)
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It is useful to introduce the characteristic radius T, associated to the volume

Per electron

Sar (1.2)

S
"

v
N =

or the dimensionless parameter

r = r/a . a = Bohr radius.
s ° o o0 o)

The energy per electron in the ground state is

2
E L 3 2.21Ryd
== 2 (=) [dsk L3 <2 E = ya | (1.3)
N N 2nxn 2m 5 F %2

The quantities kF’ EF' r depend only on the density n and are therefore
s

stable under the thermodynamical limit (Vreo).

The ground state does not satisfy the Fock condition with respect to the

electron creation and annihilation operators :
alk,s) ¥ £0 for k < k
o F

This implies that a, a* do not describe the elementary excitation of the free

(S

electron gas. They are better described in terms of the modifications of the ground-

state, namely by specifying the number of electrons with k > kF and the number

of unoccupied states inside the Fermi sphere, called "holes". In this picture

the excitation of an electron from the ground state (k < kF) to a state with

k> kF is described by a creation of a hole of energy |e(k)| = |E(k) - EFI and

a creation of an excited state above the Fermi surface with energy E(k) - E_= e(k).
This suggests to make a change of canonical variables

c(k,s)

a(k,s), for k > k
F’ (1.4)

d(k,s)

a*(-k,-s), for k < kF

t
i
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(For gimplicity, in the following, we will sometimes omit the spin variable 8).

he choice of a*(-k,-s) instead of a*(k,s) in eq.(1.4) guarantees that the trans-
formation (1.4) commutes with translations and rotations in the infinite volume
1imit.

It is very simple to see that the ground state #o satisfies the Fock

f condition for the operators c and d and the Hamiltonian becomes

H = LE(k) a*(k)a(k) = Ze(k) + E |c(k)ld;dk +

k<k k
F <kp
e(k) c*c E_N
+Z (k) ofe,  +Eg N,
k >k
F
where e(k) = E(k) - EF and Nop is the total particle number operator. By choosing

%_as zero energy point for each elementary excitation, H » H - EFNop' one gets

the new Hamiltonian

= k) |A*A
By kfke(k) + Il e(e)|AgA (1.5)
F
ith A, = f > , = < .
with K ck or k kF Ak dk for k kF

The tranformation (1.4) is a special case of the so-called Valatin-Bogoliu=

bov tranformation

= - * = ¢
Ak u & Vi a* (ak)
{(1.6)
* = * o% _ * E a(a*
Ak ur a® Ve oa_, (ak)
For bosons, the canonicity condition implies
2 2
Iuk' - IV | =1
k
(1.7)
-vu =0
Yok T ko

[REREE SO ]
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i.e. i3
iayk _ bk s
uk = e cosho K’ Vk =€ Slnhek'
i - i(B_j —a_y)
<Pk 0‘k)tgh o = el( k™=K cgh ®
Without loss of generality we can consider the casecxk = 0 and obtain the solutm'
ek = e—k' (1.8 3
8 = 8 '
k -k
-
Similarly for fermions we get
2 2
lu 1%+ 1v, 1 =1 (1.9
ukv_k + vku_k= 0
with solution
ia i
u =e kK cos ek, Ve =€ k sino,
. _ i(B .-
el(Bk ak)tge - el( K a“k)tg o,
k -
Chosing ak = O we have the solution
% T 7 O
Bk = - B-k (1.0}

»*
The Fock representation for Ak' A

K is unitarily equivalent to the Fock represent:

»*

tion for ak, ak only if the following condition holds

2
z Ivkl < =
Kk (1.11)
Condition (1.11) can be easily derived by requiring that the number operator cor-

responding to the new variables

N= T A*A
k k
k

*
is well defined in the Fock representation for ak,ak »i.e. on the Fock ground

*
state wo for ak, ak . For finite volume V, the above condition (1.11) is clearly

satisfied by the transformation (1.4). Quite generally, in the infinite volume




—

limits o
3 2
ilvkl — V[ adk|vik)| > =

and therefore condition (1.11) can never be satisfied if ©(k) # O. In the infinite

volume limit the states with simple interpretation in terms of elementary excita-

»
tions assoclated to Ak’ Ak cannot be analysed in terms of Fock states

for a . a; . The inequivalence of the two representations in the infinite volume
1imit can be directly seen by noting that, in a {irreducible) Fock representation,
the no-particle state YO is the unique translationally invariant state and there-
fore,if there is a unitary operator exp i Q which induces the transformation (1.86),
exp 1 Q ‘o must be proportional to !o; this is possible only if Q = O.

Before closing this section it is worthwhile to remark that for the free

electron gas the energy per unit volume

E 3 2 2/3
— - n
V=5 (3 n) " n

2m

does not have a minimum for non-zero density. Therefore in the thermodynamical

1imit (V +®) the lowest energy state is the state with zero density (N/V + 0).

To get a ground state with non-zero density one must fix N/V = n in advance and
perform the limit V +« by keeping n fixed. In this way, however the density n
becomes an external parameter, which is put in by hand and there is no possibility
of predicting it. States with n # O would actually appear unstable towards a lo-~

wering of the density. As we will see in the following sections the interaction

will stabilize the electron gas, with the energy per unit volume attaining its

minimum at a finite density (fermion condensation).

T e

R
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1.2 Interacting ¢lectron gas. Hartree-Fock approximation

The model for a quantum theory of metals is a system of electrons
interacting with one another and with the lattice ions via the Coulomb po-~
tential. Since the ion mass is much larger than the electron mass, the ions

will be regarded as fixed. In terms of electron creation and ‘annihilation

operators the hamiltonian is

3
Hy = 7% v (x) hix)e(x), hix) = - B2 | yeyy
2m

H =

3 3 (1.12)
int %Fdxdy v*(x)v*(y) Vix-y) ¥ (y)v(x),

here m is the electron mass, U(x) is the Coulomb potential due to the ions

and V(x-y) is the electron-electron Coulomb potential.If fi(x) denotes the

single-particle wave function for the i-th state and a; the corresponding

creation operator, so that

V(x) = § f (x)a, ,
- i i
i
TheHamiltonian (1.12) may be written as
- » ) * o % .
H _Zhij aj 8, + % E %1%%3 s Vijka (1.13)
ij ijka
with 3
h . = fdx £*(x) h(x) f (x),
1] 1 J

3.3 . _
vijk!, =Jfdxdy fi(x) fj(y) V{x-y) fk(y) fz (x)

) (1.13")
The assumption at the basis of the Hartree-Fock approximation is that the

eigenstates of H and in particular the ground state can be described in terms

of single particle wave functions.

This means that the ground state for an N

electron system is approximately of the form |N; nl, n2...> » With suitable

e

- —— gt

T
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cti 3 .
wave functions fi(x) characterizing the single particle states. The dyna-
mical problem is then reduced to the determination of the f (x); for the
i
ground state they are determined by the condition of minimizing the expec-

tation value of H.

We have
<n N ... IHOI N an,. .. > = 35 nihii .
i
< H,. > =< n css -
int 1'"2 14, plnonge. > =
=% E <a’i*a‘.* aa>v
ik J ‘A ijke
=% ¥ <a*a*aa > (v, .  -v
ij ij ji ijji ijij

since for diagonal matrix elements only j =k, i = ¢ ori=%k, j=2g& can
contribute and by the CAR's a*a*a a,6 = - a*a*a_a_ . Moreover, since a_, =0,
ijilj igjgJji i

only the terms with i # j survive and, for i £ j, a*a®*a a_ = N _N_. Hence
ijJji ij

<H>=3% nihi' +% 3z nin.(vi... -V, ...
i J ij J  ijji 1j1] (1.14)

The above formula leads to a very simple and instructive physical interpreta-
tion. By spelling out the spin variables fi(x) = fi(x,c) the term vijji is

easily recqgnized as the classical Coulomb interaction:

= Id3x d3y f;(x,d) f;(y,o')V(x—y)fj(y,o')fi(x,a),

V. ...
1JJ1
and
e2' 3 3 <plx)» <ply)
£ nn, v, _ =-2—fdxdy , (1.15)
ij ) M |x-y]
where
E )12
<p(x)> = 3 < wo(x)vo(x) > =z. n, £, X,0 .
1

o

The other term, called exchangeiint‘eraction term, does not have a classical

PRSI
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analog and it appears as a consequence of the antisymmetrization of the

wave functions (Pauli principle):

% = - 3. 43 V(x— £*(y,0')f_(y,0")=
zznirx‘jvi.jiJ = T %3 myng d7x dy3oa(x,0)f (x,0)V(x y)fl 3 ;.
ij c
2 2
< ' > (1.186)
= - Ee- !d3x d3y 3 I Pag (x,y) I ’
gg’ | %=y |
where

< ooc.(X.y) >= <vo(x) vo(y)> "'%"1%”"’“”1 {(y.0")

The term (1.16) describes an effective spin dependent Hamiltonian as
it can be easily seen in the limit of no spin-orbit coupling,xfi(x,o) +~ gi(x)zi“L7
In fact,

t
in(c) Xj(c)
g
is non zero only if the electrons in the i-th and j—th states have parallel
spins and therefore the exchange terms is essentially equivalent to an effective

spin Hamiltonian of the form (Heisenberg Hamiltonian)

=% E Jij(1+ °i'°j) (1.17)

spin i3

Even if the Coulomb interaction is described by a spin independent potential,
the Pauli principle gives rise to a coupling between the i-th and j-th spins.'
It is useful to remark that the exchange terms is negative and therefore spin
allignement is favoured in the ground state. The above considerations are in
fact at the basis of Heisenberg theory of ferromagnetism. {
For the determination of the single particle wave functions for the growﬁ:

state it is convenient to incorporate the orthogonality condition into the

variational equation by means of a Lagrange multiplier Aij:
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the variation with respect to fj Yields the Hartree-Fock equation

2
2
_ _é_ Af (x,0) -UFf (x,0) + e fd3y .5_21122_ f (x,q) -

2m J i’

[x -y |
3 < py'gly,x)> (1.18)

et 2iay 2 fj(y,c') -2 Aaf (xi0)

g’ %=yl k J

since, in the expression (1.14) for < H >, the terms corresponding to i = j

in the direct Coulomb interaction are exactly cancelled by the i = j terms

in the exchange interaction,one may write the H-F equation (1.18) with the

reduced densities

< p(y} >J. = U’Elﬁ n £} .(y.a)fi'(y,o)
< s U'C(Y’X) >j z iE#J nif:.:(y’ 0')fi(x,0)

which do not contain the charge densities of the j-th electron.
The operator on the left hand side of eq.(1.18) is hermitian and
therefore by a change of basis one may always reduce to the case in which
the matrix Aij is diagonal
Aij = & Gij

For large N, the parameter Ej has the meaning of the energy of the j-th
electron in the presence of the other electrons and of the fixed ions. In fact,
for large N,the wave functions fi(x), i £ j, are not expegted to change appre-
ciably if the j-th electron is removed and the corresponding change in energy
is

< nl,...,nj,..IHInl,...nj,...> -<n ... nj-l"JH|n1’°'°nj-1""> =

2 Idsx f*(x,0). [ left-hand side of eq. (1.18)] = €
J
a

With the above interpretation of e,  the H-F equation can be read as a
J

Schridinger equation for the wave function of the j-th electron, in the
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presence of the potential U(x) due to the ions, of the Coulomb potential gy,

to

ch

and a possible approach to their solution is a self-consistent procedure,
One starts with a properly chosen set of functions f
responding o's and then determines the new fi(x, o) by the H-F equations.

The procedure is then iterated self-consistently.

equations corresponding to the Hamiltonian (1.12),

by

and ¥*(y)¥(x) in the sewmnd term on the left-hand side by their expectation

values. The above substitution gives rise to the direct and the exchange

term, respectively.

of

of

obtained by those uncontrolled approximations reflect the real behaviour of th

theory( ).

— ~y

the charge distribution < 5(x) > and of the potential due to the exchang,
arge distribution of the other electrons.

The H-F equations (1.18) form a set of N coupled non-linear equation,

i one computes the cor.

The H-F equations can be directly obtained from the non-linear fielq

2
i jL— Wx,t) = -[H, v(x)] = (- L A +Ux)W(x) +
ot 2m

b IV )0y ) (%) dy

a mean field approximation which replaces ¥*(y)¥(y) in the second term

The non-perturbative control of the Hartree-Fock approximation (and also
other approximations made in the following sections) is a (basic) open prww

many-body theory and the fundamental question remains whether the results

*

(*)

For a discussion of these problems and a general account on the general investigations on e

questions we refer to: W. Thirring, Quantum Mechanics of Large Systems, Springer Verlag 19




1.3 Ground state energy. Fermion condensation

A simple solution of the H-F equations can be easily found if the

jon density is approximated by a uniform density
pions - \'J

(*)

(jellium model). In this case the plane waves

fi(x,c) = 1 eikix xi(o)

v
are Solutions of eq.(1.18). Even if it is not clear that the above functions
minimize <H> , we will compute the ground state energy under this approxima-—
tion.
Since for plane waves the charge density is uniform,
<p(x)> = N/V

the direct Coulomb interaction (the third term in eq.(1.18)) is exactly can-

celled by ion electrostatic potential. It remains to compute the exchange

term. For plane waves we have

: )
ey > =4 T e X, ()X, (o)
and '

oo \
Y ALY A Y ALY
g

so that the exchange term becomes

(*) As usual, for the system in a cubic box of volume V we impose periodic

boundary conditions.

P —

e T

B s e T




80
2 (k. - k.)
itk, - k.)y >+
i k;x
- i Efday J - el 1 x,(d) =
v N J
i ly-x|
2 . > <> -> '-P--D
--2 3 ) kiR )X X X (o)
Vook <k e - & |2 J
i F i i
2 .E -
- 1= 5 A e I X o)
v > o+ 2 J
Ik, -k |
k. <k j 1
i °F

By approximating the sum over ki by an integral we get

3 2
M2k2 d q dre _
e (k) = - f =
i 3 > >
2m k<k,  (2n) |k - ql
(1.19)
2 2 2
K k 2e
= - k_ F(k/k
2m w F (k/ F)
where
1-%% [1+ x|
F(x) = ¥+ —= 4n
ax
11- x|
To obtain the total energy we have to sum eq.(1.19) over k < k y by taking

F

into account the factor 2 in the free part due to spin degeneracy, and the
factor % in the interaction term to avoid counting the contribution of each

pair of electrons, twice. The result is

2 2 2 2 2 :
Kk k ke - k kp + k
E=2 3 A SR I L L. L2 1
k< k 2kk - (1.20)
k <k 2m . - IkF kI_

By approximating the sums over k by integrals we get

2
E 3 . 3 2k e 2.21  0.916
— =g -ge = [ ] (1.21)
N o r r

2 S S
where e /2ao =1 Ryd = 13.6 eV,

It is worthwhile to remark that the second term in eq.(1.21) is due
to the exchange potential and corresponds to the interaction of electrons

with parallel spin. The important result is that, in the free case the energy
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per electron does not have a minimum for finite non-zero density, (it goes
to zero only when rs + » j.e. in the limit of zero density), whereas in the
interacting case the exchange interaction leads to aminimum for r, = 4.83

with E/N = - 1.29 eV (fermion condensation). For a typical metal like sodium

the experimental data give r_ = 3.96 and E/N = -1.13 eV, so that the agreement

is rather good, especially in view of the approximations made.
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1.4, Validity of the Hartree-Fock approximation: high density plasma

The calculation of the previous section relies on assumptions (the
Hartree-Fock approximation, the use of plane waves, etc.) which are not
obvious. To justify the above procedure one may try to have control on some
perturbative expansion which yields the result (1.20) to lowest order. Thig
is not a trivial task for several reasons. First of all,even if the electro-
magnetic coupling constant may be regarded as small, the interaction Hamiltonia
cannot be considered as a small perturbation. As a matter of fact, the infrapg
singularity of the Coulomb potential cannot be treated perturbatively(*).
Collective non-perturbative effects play a relevant role in the physical
properties of the electron gas and their treatment requires particular care,

In this section we will discuss the expansion around the high density
limit and its connection with the previous result. For the treatment of the
infrared singularity of the Coulomb potential we will discuss an infrared
regularization and its relation with the thermodynamical limit. In this way
we will see in a concrete case how the thermodynamicai limit (V+o, N+, N/V =1n
fixed) turns out to be useful for the study of many body systems(**): not only
it is suitable for the analysis of intensive quantities but it often leads to

a substantial simplification of the dynamical problem. We shall see another

example in the BCS model for superconductivity.

(*) D. Bohm and D. Pines, Phys. Rev. 92, 609; 626 (1953)

A.L. Fetter and J.D. Walecka, Quantum Theory of Many Particle Systems,

Mc Graw-Hill, New York 1971.

(**) A.L. Fetter and J.D. Walecka, loc. cit.
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The first difficulty is that the different terms of the Hamiltonian
(1.12) are not well defined because of the infrared divergences associated
to the Coulomb potential. For example the ion-electron interaction term can
be easily computed by treating the ions as a uniform charge distribution and

the electron as plane waves. One gets

2

N
_a? (= 2/3
Hi-e n - (v) Van V

co that the contribution to the "energy per particle” H e/V is
i-

divergent as V > ®. To keep track of the infrared divergences in a

correct way it is convenient to introduce an infrared cutoff by replacing
the Coulomb potential by a Yukawa potential e-ur/r and let u + O only after
the thermodynamical limit (V =+ w); This is what is prescribed by physical
considerations, since to get a reasonable thermodynamical limit the volume
size L = VY must be much larger than any other length in the problem and

therefore the interplay between the infrared cutoff and the volume size must

be constrained by

w < <L. (1.22)

To keep the invariance under translations we impose periodic boundary conditions.

One easily obtains

—ulx-x' |
N e
= -&° 2] - Ex Ex! — 0 =
Hi e =™ o vf %%
(1.23)

Nz e-ulil Nz an

- _a? (N s & L _et(dy =
_e(v)fd"x dz H e(v) uzV

where the integral over z has been approximated by an integration over an

-+ - -> >
infinite volume. (The change of variables x' + 2 =x - x' has lead to the

above integral over z because of translational invariance).




-2
As a consequence of eq.(1.22), the infrared divergence u -+ «

y as
W+ O can show up only if V » » (in such a way that ;< < V3/?),
Similarly for the ion electrostatic energy Hi one gets
~ulz|
ho=te [ex oo e|;| =2 e (%)2 T (1.29) |

Finally for the term'describing the electron-electron interaction one obtaing

e? z 4n +

+
e-e 2V q£0 Ak’}i Z+ a, (k+q) a, (p-q) \ (p) N (k)

1 2 2 1

n

1 2

(1.25)
2
e E 4y + 1
+ = a_ (k) a (p) a (p) a (k)
2v k'pf)‘nkz W Ay Ay A, A,
where in the discrete sum over q the term a = 0 has been isolated. Since

(p) a (p) a, (k) =N =N

kipaklslz Al Kz Az 1 op op

and we are interested in computing the energy per particle (E/N) for the

ground state,only the term N;p contributes in the thermodynamical limit of

the second term of eq.(1.25); it yields

1 N
5 e(v) T V (1.26)

and therefore a vanishing contribution to the energy per electron (for finite

V we can work with states with a definite value of N).

The three terms (1.23) (1.24) (1.25) add up to zero and therefore

the total Hamiltonian becomes
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nz 2 +
H = p)) £e 4 (p) a(p) + first term on the r.h.s. of eq. (1.25)
P, 2m LA
el —_ -l- - -
_& 2 [y k?a (k) a (k) +
T a s A A
o (1.27)

I‘S 47 + - - + - - - -
—-= 2 —— a  (k+q) a_ (p-q) a_ (p) a (k)
2V Q+p® A, A, Ay

the second line all the lengths have been measured in units of ro =

where in

size of the volume per electron (eq. (1.2)) (e.g. k = kok, V= rzv etc.)’and

r =

2, 2
r /a , a_ = Bohr radius = }i /me .
s o O o

Thus, with respect to the kinetic part, the interaction appears multi-

plied by a constant which goes to zero in the high density limit (ro + 0 or
rs + 0). We have thus obtained an interesting starting point for setting up
an expansion around the high density limit. The very simple calculations
outlined above show that a careful treatment of the infra-red singularities
and of the infinite volume limit lead to a cancellation of the infra-red di-
vergences(*) at the lowest order of a perturbative expansion around rs = 0.
The higher orders of such expansion require further analysis. It is not

too difficult to see that the second order calculation yields a ground state

energy per unit volume which is logarithmically divergent in the infra-red

region. 1In fact.

(*)  In terms of diagrams (see e.g. Part A, Sect. 2.3), the infra-red
divergence of the sum of diagrams

o . 0
is cancelled by the "counter terms" describing the interaction with the

background of positive ions (:) !
1

; 1



2nd
BT 1 Z 1 < (1-ny_g) (1-ng 1 g)nymyer > ;
(2vP k,k',q q* —§. (&+%'-R) ,

n
< I

< as above > {
= | & qd’kd k' !
WK D (GED :

> >
Since the term < > is non-vanishing only if k < kF, k' < kF,Ik—QI > kF'

]i'+a| > kF, for given §, K and k' must be in a layer of thickness |q| inside

- ——— g 2

the Fermi surface. Thus for small q the integration of the term < > over
k and k' lead to a contribution of order q and the integral over q is loga- [
rithmically divergent (ms q_ldq).

More generally one can see that infra-red divergences occur to all
orders of the expansion. A finite result can then be obtained either by ad
hoc prescriptions or by a resummation of the leading divergent terms(*) or by
taking into account, from the start, that by non-perturbative collective

(**)
effects the Coulomb potential gets "screened" at large distances - The
discussion of such procedures falls outside the scope of the present notes
and we refer the reader to the corresponding literature.

It is worthwhile to mention that the ground state energy so obtained

is not an analytic function of rs

E

2. e’ (2'21 _ 9.916 +0.0621lnr + 0.096 + O(r Inr ))

N 2a r; r s s s
o

(*) M. Gell-Mann and K. Brueckner, Phys. Rev. 106, 364 (1957).

(**) D. Bohm and D. Pines, loc. cit.
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I, SUPERFLUIDITY

2.1 Bose-Einstein condensation

The occurrence of a condensation phenomenon, as seen in the previous
chapter, leads to a representation of the algebra;fq of canonical variables,
which is not equivalent to the Fock representation and therefore one is facing
the problem of labelling the physically relevant representations. If we start
with a representation ' m, of the algebra;%lv generated by ¥(f), ¥*(g) in a
finite volume V, the infinite volume limit will in general yield a reducible
representation. A reduction into irreducible components can be obtained by
finding the operators @ which commute with;f{ and which therefofe reduce to
multiples of the identity in any irreducible representation of ;%l. An approach
to the identification of such operators Q has been discussed by Haag in con-

3*
| nection with the BCS model( ).

To this purpose one considers quasi local operators of the form

Q = % fd3x dy dz f(x,y.Z)w*(yl)..v.w*(yk)‘p(zl) ....p(zn) (2.1)

> > > - > +
where y,z are multivariables y = (yl,y ...yk); z = (z1 2Z 4 eae zn) and

2 2

f(x,y,z) is a function which is non-zero only if y and z are in a neighbourhood

(*) R. Haag, Nuovo Cimento 25, 287 (1962).




(*) * %
of x . One then considers the weak limits

(2.2)

[0}
[ 2]

w=1lim
Vo QV

(Haag charges). The important property of the Haag charges is that they com-

mute with;rQ . For example

1 3k 3 ) 3
lim [Qv,w(h)] = lim v fdax' d yd s f(x',y,z) n(x)d x
V+ e V +

—
?ﬁ(x-yj) v* ... w*(yj) T (yk)w(zl)... w(zn) =0

where the symbol ~~ means that the variable W*(yi) has to be omitted.

The Haag charges can therefore be used to label irreducible representations

of ;%1 .

. . 3,» ->
A simple example is obtained by choosing f(x,y,z) = ¢ (x - 2):
a
Q = w-lim Jd % b(x) = lim  —2 ‘
- = —_ (2.3
° V+ro v Voo V\] )
where
1 3 ik
a = — Jd'x e1 * b(x).

W v

Thus, if Nos a;ao denotes the number of particles with vanishing wave vector

k, we get
N
Q* Q =.lim — = n
o o—VL = o’
v
and since Qo is a c-number
i@
Q = Va e . (2.4)

(*) More generally f(x,y,z) is required to decrease rapidly when y or z are

far from x: for example f ¢ '8

(**)For a more detailed discussion see R. Haag, in Critical Phenomena, Springer

Lect. Notes in Physics, Vol. 54, 1976.
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The physically relevant representations of4 or equivalently their ground
states are then labelled by the parameters no,e : |no,e > . By translational
invariance one easily gets

ie

. 1 3
<N [v(x) | n,»® >—vl£mw v /4 x<n°,e|¢»(x)|no,e > = V?O e

and therefore the representations with n # 0 exhibit an order parameter,
o
which is not invariant under the gauge transformation

vix) =+ et v(x) aelR (2.5)

Clearly, ground states labelled by different values of the parameter no,
define inequivalent representations of;yq (Qo is a c-number in each irredu-
cible representation and it cannot be mapped into a different c-number by
a unitary transformation).
The subalgebra 74 c 74 generated by monomials containing an equal
]

number of ¢'s and y*'s is pointwise invariant under the transformation

(2.5), (gauge invariant algebra). Since the observables of the theory are

elements of;f{o » their correlation functions do not depend on the gauge

parameter 6 . Thus, ground states labelled by the same no and by diffe-

rent values of O define inequivalentrepresentations of;;l, but equivalent
representations of;#lo . We will return to these features later, in connection
with spontaneous symmetry breaking and gauge quantum field theories.

Finally, we comment on the determination of the ground state for a

system of free bosons in the infinite volume limit: V+ @« , < N>/V = n

fixed. We consider the energy per unit volume h, formally defined by
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H N
. v ~ ~ _ k
h = lim —v— = Zwk nk s nk =
+ o k

The ground state is characterized by the property of minimizingthe expectation

value of h, compatibly with the constraint

<N> <.~ > n
— = n =
' E k

This conditional minimization problem can be treated by using a Lagrange multi-

plier and by considering the operator -

h'=h-y( X A +i -n),
k#0
where ¥ has the meaning of a chemical potential.Theminimum of<h'> as a.

function of <H > ,<ﬁo> and y is obtained for u =0, <n > = o,<ﬁg= n,

i.e. all the particles are in the k = O state, (total Bose-Einstein condensa-

tion ). The elementary excitations have energy w(k) and for non-relativistic

2
particles (k) = k /2m.

2.2 Superfluidity

A non-trivial example of Bose-Einstein condensation is offered by
the theory of superfluidity, which can also be used to illustrate the gene—
ral ideas discussed before.

The phenomenon of superfluidity of the liquid Helium is related to.
the Bose character of the heliumatoms and it can be detected only at very
low temperatures,where other physical systems are in the solid phase. Schema-

tically, superfluidity can be reduced to the fact that a body of mass M

moving with velocity v, lower than a critical velocity Ve inside liquid helium

is not slowed down by viscosity at low enough temperatures. At a microscopic
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jevel a slowing down by viscosity can be explained in terms of creation of
elementary excitations in the fluid, at the expense of energy and momentum
by the body of mass M. Thus if (k) is the energy of:an excitation of mo-

mentum k, the conservation of energy and momentum gives
2 2
MY =% M' + wlk),
My! = Mv. = i;

By squaring the second equation and by combining it with the first, one gets

L2 2 2 2 + >
Mv'T = M v' o+ 2Mu(k) - 2M v.k,
>
i.e. ‘»; k Kk w(k)
"k T T Tk (2.6)

k + w (k) ) (2.7)
c . 2M k

Clearly if v < v, £ 0, eq.(2.6) cannot be satisfied since'ziﬁ/klﬁ_ V<oV,
and therefore a body moving with velocity v < vc’cannot loose energy by

creating an elementary excitation of the fluid. The problem of superfluidity

_is then reduced to the evaluation of vc, i.e. to the determination of the

energy of the elementary excitations of the fluid as a function of k. For

a fluid ‘with. elementary excitations olk) = k2/2m, as for the free Bose gas,
we get vc = 0 go that for any velocity v eq.(2.6) can be satisfied and we
have a normal fluid. On the other hand, fluids with phonon-like excitations
with w(k) = ck would lead to vc = ¢ i.e; to a superfluid behaviour. Elementary
excitations with a phonon-like spectrum may look rather unlikely for a fluid,
since acoustical phonons are typical of rigid systems, like crystals. As we
will show. in the next section, the liquid helium has such type « excitations,
for low k the system responds "rigidly" to external perturbations. As we will
see such rigidity is connected to an nordering" of the system and the phonon-
like excitations correspond to small oscillations in the presence of an

. order parameter (like.the spin waves in ferromagnets).
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2.3 Ground state and elementary excitations

Liquid helium consists of helium atoms, which are bosons, interacting

with a two-body (short range) potential. The Hamiltonian for the system in a

volume V is then of the form
H=H +gH - rdx o*(x) (- 2 )o(x) +
o int 2m

v Ixd% e*(x)e%y) Uxag)e(y)e (x) (2.8)

To discuss the properties of the ground state and of the elementary excita-

tions one has to realize that the separation of the Hamiltonian into Ho-+ gP&nt

is not very convenient since a perturbative expansion based on Ho leads to

. ")
divergent terms as V + w These divergences essentially originate because

representations labelled by different condensation parameters n are ine-

quivalent in the infinite volume limit and Ho leads to an expansion based

on a wrong value of no. To this effect, the interaction term gHint is not

a small perturbation and it is convenient to isolate the terms of Hint which

are responsible for the above divergences and to include them in anew defini-

tion of the unperturbed Hamiltonian. This is essentially equivalent to a

partial resummation of the perturbative series and the result is to properly
take into account collective (non-perturbative) effects associated to H.

To this purpose, one isolates the part of the interaction, (H . ), which
sing

is responsible for the V + = divergences to leading orders in g. One then

treat H + H | exactly by calculating the correpsonding ground state and
° sing

(*) For a detailed discussion of these divergences and for the general stra-

tegy see N. Hugenholtz and D. Pines, Phys.Rev. 116 » 489 (1959),
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the spectrum of elementary excitations. As we will see,the interaction leads

to a complete redefinition of the degrees of freedom with non-perturbative

features, like non-analyticity in g. To identify the leading terms of H, +
in

it is convenient to work with momentum space canonical variables; then

(2.9)
H = Sw(k) a*(k)alk) + = Ju(k -k *(k )a*®
>V - 3 Ja*( 1)a (kz)a(k3)a(k4) sk WK -k - Kk
1 2 3 a4

As we have seen in the preceding section the operator

1
vli".!. v Jd3x vix) = Qo

commutes with 74, and it is a multiple of the identity

Q = <u(x)> = Vi e
o] . (o]

in any irreducible representation. In the infinite volume 1limit

8% + Q (2.10)

)
W .

and we can make this substitution

)
in the Hamiltonian (2.9). For simplicity

in the following we will put 6 = O; for the general case see the discussion

at the end of this section.

The substitution (2.10) has the effect of completely eliminating the

k = O mode from the dynamics or equivalently to neglect the dynamical behaviour

of the condensate. As a result

N' = 3 a*(k)alk)
k#0

-1
does not commute with H (by terms of order V ) and therefore the condition

of fixed density has to be replaced by the equation

<N's /V =n'"=n-n

(*) See N. Bogoliubov, J.Phys. USSR 11, 23 (1947) reprinted in D. Pines

The Many-Body Problem, Benjamin 1962.

AL i b Nk Y, e R e Rk R S S R e - " N

e
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The above subsidiary condition may be incorporated in the dynamical problem

by means of a Lagrange multiplier , . One then determines the ground state

for the modified Hamiltonian .

H =H +gH. (n ) = u(N* = nV + n V) (2.11)
o int (o] o .

or equivalently of the Hamiltonian

H* = H H - ! 2.12
(o} te int (no) wNt, ( )

where Hint(no) is the interaction term after the substitution (2.10). The mi-

~ - *
nimization conditions for <H> /V = EO/V, with n fixed, give )

3 E, 3 <H»
u = e (.—0)5 —~—— .
an V. an v (2.13)
o o

so that u has the meaning of the chemical potential for the system with
Hamiltonian H', Since H and H' differ only by a c-number we may use H' in the
following.

We can now discuss the singular terms to leading .orders .in-g, The.

analysis is based on the weak coupling limit and on the(reasonable),assump-

tion

nk(g) = < Nk> /v g::o 0., .k#£0,

(as we have seen in the free Bose gas nk(g = 0) = 0). The above working hy-
pothesis will be used in a self-consistent way, by checking its validity at

the end of the calculations. The exact solutions of H + H , will in fact
sing

o
3/2,. . . .
lead to nk(g) ~ 0(g " ) for small g. With this behaviour of'nk(g) we analyse

(*) Eq.(2.13) is easily obtained from a(ﬁd/y)/ ano = 0, by using the Hellman-

d
3 =< = >
Feynman theorem ( Eo/ak = H>)
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the various terms of Hint'(vik denotes the term in which i creation operators

and k destruction operators have survived after the substitution (2.10)):

g * *
’z S U(q)a (kl)a (kz)a(kz-—q) a(k1+q)

b3
k. £0
1

2

js of order gnkV '

%
v, = g _'\‘,_0. © Zluk,) + Ul-k,) ] a*(k, Ja*(k,) al k + k),
n, %
v, =§ = Z(u(-k) + Uk,)] a*(k, +k_) atk dalk, ) ,
14 3

are of order gn ni v,

_ gn - * *
Voo * Voo = 5= ZlU(K)al-k)alk) + U(k)a*(k)a*(—k) ]

o]

v, = ;‘;o 2[20(0) + U(k) + U(-k)] a*(k)alk)
: g 2
are of order gnonkV and finally voo =350, U(o)V. The leading orders in g are

therefore given by

v v v z
02t Voot Vi Vo= H

sing

and the new unperturbed Hamiltonian is

2
- K
Ho = H(') + Hsing=2[ T -4+ egn_ U(k) + gn_ U(0) ] a*(k)a(k) +
+ B2 3u(k) [al-Kalk) + a*(k)a*(-k) ]+ % gn? u(0)V

(2.14)

where we have taken U(k) = U(-k), for simplicity.

-~ -~ 2
To lowest order E = <H°>= 1/agnoU(O)‘\l and therefore by eq.{(2.13)
o

g = gnou(o) (2.15)

8o that the coefficient of a*(k)a(k) in eq.(2.14) reduces to
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2
k

2m

+ g noU(k) z e(k) (2.16)

It is important to stress that the approximation involved in the derivation

of eq.(2.15) is a very delicate one in the sense that going beyond the first

order for the determination of u is not consistent with the neglection of

V12 + V21 in the definition of Ho. V12 + V21 are in fact of the same order
(*)

as the terms coming from higher order corrections to eq.(2.15) . As a matter

of fact, an uncareful treatment of this point would lead to aspurious energy

gap above the ground state, whereas there is no energy gap to all orders in g if the !

perturbation expansion is done properly, as shown by Hugenholtz and Pines.
The determination of the eigenstates of Ho is obtained by performing

a Bogoliubov transformation which diagonalizes Ho to the form

fa ot
[t}

3 E(k) A*(k)A(K) + Eo (2.17)

The new variables A, A* then define the elementary excitations of the system
as a result of the collective effects associated to Hsing' To obtain eq.(2.17)
we write

a(k) = u(k) A(k) - v(k) A*(-k)

a*(k) = u*(k)A*(k) - v*(k) A(-k) (2.18)
and for simplicity we consider even functions of k

u(k) = u(|k{) v(k) = v(|k|)

(*) This point has been clarified by N. Hugenholtz and D. Pines, loc.cit.
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The canonicity condition for A, A* requires

lu(k)l2 - IV(k)l2 =1

and the diagonalization condition, i.e. the vanishing of the coefficients of

AA and A*A* when the substitution (2.18) is done in eq.(2.14), yields

12+ vt 12 = 0/ (2007 - Pnlutn?) #

% (2.19)

2e20e) 2 %,
(0]

2v*(k)ulk) = gn U(K)/ le) - g

Furthermore, one obtains

Bk = [et0® - g7n2 ut0® ]
K K2U(K) %
=(Zmz * 8, Th ) (2.20)

For short range potentials U(0) is finite and non vanishing; moreover U(Q)

must be positive for stability reasons. Then for low k's
%
E(k) ~ (gnoU(o)/m) k =ck (2.21)
The collective effect has thus lead to a redefinition of the degrees of freedom

and a substantial redefinition of the energy spectrum with the appearance of

phonon like excitations, for low k's. These excitations are indeed very si-

milar to sound waves and in fact the sound velocity in the fluid, defined
by
2= 2B
s 9p

where p is the pressure

-~ 2
3B v _ _ 2 (o N5 yroy)= % en? Ul0),
pm-(o2)=- oy Uiey 4 gnd

coincides with ¢ : vs = C.
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It is worthwhile to remark that the delicate cancellation between
22 2 L. . Kk 2
the term -g n U(k)” in €q.(2.20) and the similar term coming from (k)
o
is crucial for the low k behaviour, given by eq.(2.21). An incorrect deter-

mination of u (see the discussion after eq.(2.16)) would have spoiled this

result.

For large k's, we have

2
E(k) . X
T 2m

2
since for short range potentials U(k)/k~ = 0, as k becomes large. One then

recovers the ordinary energy spectrum of a non relativistic particle of mass

m. In this limit one has

lu(k)l2 ~ 1 |v(k)|2 ~ (gnomU(k))2/k4 <1

so that the mixing of a,a* in the definition of A,A* is very small.
For intermediate values of k one experimentally observes a new dif-
ferent type of excitations {rotons) related to the non-linearity of the pro-

*
blem and the simple model discussed above does not account for them( )

It is clear from egs.(2.17), (2.18), (2.19) that the representation

of the CCR compatible with the dynamics cannot be the Fock representation

for a,a*, but the Fock representation for A,A* and the two representations

are not unitarily equivalent. The ground state is therefore defined by the

equation

A(k)|¥°> =0 vk

(*) See A.L. Fetter and J.D. Walecka, Quantum Theory of Many Particle Systems,

Mc. Graw-Hill Book, New York 1971, pp. 495-499,
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and the excited states are obtained by applying polynomials of A* to
L ) 3/2
We can now check the validity of the estimate nk(g)~ Oo(g ) for

g small. In fact

1 1 2
Y <n = = a* = =
Kk~ T 2% vf"’“‘”
3 2
: 1 s d'k k

—3 Y=y 5= + gn U(k) - E(k) ]
Vaeo 3 ER " 2m o

For weak interactions (g << 1) the integral is dominated by small k's and

one may therefore replace U(k) by U(0). Then, one gets

2
1 3/2 2
<n > = (2mgn U(0)) / ryfeayt Ll 3 =11
2 o 2%
4 (y+2y)

One can compute also the ground state energy per unit volume

2 2 2
E 2 naom 3 U(k 8 3/2 5/2
'1? =% gn, u(o) - ji—iljg—— Sfda 'k (2) + 5= ™ / (gnoU(o)) / +
5/2 16 n k 157
+olg )
which shows the non-analiticity in g.
The case Qo = noele can be obtained from the one discussed above

by means of a gauge transformation
ulk) + e % uk),  vik) + evix)
which implies
AlK) + e A(Kk)
Clearly the observable quantities like the ground state energy (but not the

ground state wave function) are independent'of 0.

b e T At e g e e G £

=i oo
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III SUPERCONDUCTIVITY

3.1 Properties of superconductors

A superconductor is a metal that, below a critical temperature Tc
and for not too high currents, behaves as a perfect conductor. This means
that, under these conditions, the conductivity is infinite or that the res-

istivity is zero; therefore by Ohm's law
E=pj=0 (3.1)
the electric field vanishes inside the superconductor. The phenomenon per-
sists if an external magnetic field H is introduced provided that H < HC(T),
HC(T) being the critical value of H at temperature T. Experimentally
K (T) = H_(0) [1- (3)7] .
c

The Maxwell equations and eq. (3.1) imply that inside the superconductor

-+
— =-ccurl E =0

and therefore the magne tic field inside the superconductor cannot vary with
time. Actually, the Meissner effect shows that not only aE/at = 0, but also
E = 0. If we start with a situation in which ﬁ = 0 (no external magnetic
field) and T < Tc » and then we increase the magnetic field up to Hc(T)’
since B cannot change inside the superconductor it remains zero there. Thus
the B-lines do not enter the superconductor. At T = Tc the metal starts be-

ES
having as a normal conductor (E # O inside and E # 0) and one gets a non-
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zero B field inside, if an external magnetic field is applied. Conversely,

. >
starting from T > Tc’ B # 0, if the temperature is lowered, experimentally

one finds that at T = Tc’ B jumps to zero inside the metal (Meissner effect).

The transformation just described is thus a reversible transformation and

B=o0 always inside a superconductor (T <T).
c

For a large classe of superconductors (below T ) the specific heat
c

C decreases exponentially

o -
n exp [ AO/KBT] )

a behaviour which indicates an energy gap a4 = 2KBT. For many superconductors,

o
in fact photon absorp tion occurs only for energies fw > AO.
Another very interesting feature of a superconductor is that the
condensation energy € defined as the difference between the ground state
energy of the metal in the superconductor state and the ground state energy

-7 -8
in the normal (conducting) state is of the order of 10 - 10 eV per elec-

tron (n~ 1 Kelving). Now this energy is much smaller than all the other energy

scales of the metal: i) the energy widths in metals are of the order of a
few eV, ii) the correlation and/or exchange energies are somewhat smaller
but always of this order of magnitude, iii) the electron interactions lead
to energy of the order of 1-10 eV and the coupling constant is a (~ 1/137),
iv) the electron phonon interactions have a coupling constant of order one
and lead to energies of the order of a few eV. It appears therefore rather

puzzling to explain the origin of such a small energy scale and one is actu-

ally facing what nowadays would be called a hierarchical problem. Such a
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hierarchical factor between ¢ and the other energy scales can hardly be ex-
c
plained by an approach based on perturbation theory methods and in fact, as

we shall>see, it indicates that non-perturbative effects are needed to ex-

plain the phenomenon.

3.2 Superconductivity and energy gap

Landau's argument for explaining superconductivity is similar to that
discussed for superfluidity. Let E(E) denote the spectrum of elementary ex-
citations in the superconductor. A flow of electric current in the super-
conductor is equivalent to an overall velocity 3, i.e. to a shift of momen-
tum a common to all the electrons in the superconduc€br. The ground state

N 2
energy will then get shifted by ¥Mg , M = total mass of the electron system.

If the source of the current 3 is switched off, the current flow will decrease,‘

provided there are transitions leading to creation of elementary excitations
and therefore to an attenuation of the overall momentum a. The energy momen-

tum conservation for such transitions requires

v’ = v + E(p)

-+ +*
Mv = Mv' + p

2
+ > P_
V.p = on E(p)

The above equation cannot be satisfied if |;| is smaller than

v =min(L+E_('a)‘)=minM
c 2M

b D (3.2)
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(since M is very large). Therefore, for v < v_ there cannot be current attenu-
c

ation. For the free electrons gas (see Chap. I)

£
E(p) = _.r
p) 2m 2m

and correspondingly one gets vc = 0, i.e. no superconductivity. More generally
if there is no energy gap above the Fermi sphere, i.e. E(p) + O as p » Pg

then clearly

on the other side, an energy spectrum of the form

E(p) = o [(;>2-pf,)2 + an2a27" (3.3)

would lead to

vc ='A/pF

As we shall see in the following sections, collective effects associated to
electron pair condensation give rise to an energy spectrum of the form(3.3)

and therefore to a critical velocity related to the "energy gap" A.

3.3 Electron-phonon interaction and electron pairs

A strong indication about the interaction which is responsible for

superconductivity comes from the observation that for different superconduc-

tors the critical temperature Tc is inversely proportional to the mass M of

the lattice ion

b oy on
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(isotope effect). In fact, a lower Tc corresponds to worse superconducting

nroperties and a higher ion mass implies a stronger lattice rigidity and cop,}
spondingly a weaker electron-phonon interaction; thus the isotope effect shoy,

that this interaction is responsible for the modification of the electron specd
trum.

To see this more precisely, one may start from the Frdhlich Hamiltonj,

(see Part A, Sect. 2.4)

H = S (et (p)u(p) + S o(k)al ()alk) +
(3.4)

g S F(k)vt(p+k)w(p) [alk) + at(-k)] = HO + Hep ,
- -
(F(k) ~ M ), and perform a canonical transformation

“
. H+H-= = H H, y H, S], 8
+ e He HO + ep + o s] +% [[ o ] ] +

which eliminates Hep up to second order in g. If S is of order g, it must

satisfy

H +[H,S] =0. (3.5)

ep o’

As we have discussed in Part A, Ch. II, the interaction Hamiltonian H_ep is
not only responsible for scattering processes but also for persistent effects
and in particular it gives rise to an effective electron-electron interaction
The role of the above transformation is to exhibit such effect at the lowest
order; it is therefore very similar to the transformation which exhibits the
existence of a nuclear potential by the elimination of the pion-nucleon int€”

action (see Part A, Sect. 2.3; in the present case, however, the transform&-

tion does not lead to the exact solution of the model).
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A solution of eq. (3.5) is

0n
[

g [ [A(k) at(-k) + B(K)a(k)] F(k) ¢* (p+k)o (p)d pdk = — s

with

Tl B - (e (k) —e(p) —w k),

>
"

- (e(p+k) - e(p) + w(k))

This leads to the following form of H {(up to order g2)

w(k)|F(k)|[?
[e(p'~k)-e(p')]? ~w?(k

N 2
H = HO + g 2] dsp'dspdsk

t+ ¥ (g1 '
s ) ws(p+k)vs,(p k)ws,(p)vs(p )

(3.6)
(plus  terms containing only two fermion operators),where the spin indices

s,s' have been spelled out. The second term* describes an effective elec-
tron-electron interaction with a potential which is not always positive (in
contrast with the Coulomb potential). The interaction becomes negative when
le(p'-k) - £(p')| < w(k) and therefore the above Hamiltonian favours the
formation of states with pairs of electrons satisfying the above condition.
This can be interpreted as an "attractive" force between electrons being in-

t

duced by the one-phonon exchange .

In conclusion. to the Coulomb interaction one adds the second term

of eq. (3.6) to get the effective electron-electron interaction in a super-

ctonductor.

—

t The same form of the effective e-e interaction could be derived by com-

Puting the one-phonon exchange between electrons (see e.g. Part A, sect. 2.3).

¥ For a more detailed discussion see C. Kittel, Quantum Theory of Solids,

J. Wiley 1963, Ch. 8.; G. Rickayzen, Theory of Superconductivity, Inter-

Science Publ. 1965.

e S -

pbeioes s s
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In order to get the main features of the electron spectrum one may
isolate some "dominant" piece of the above e-e.Hamiltonian. The euristic
idea+ is that i) the two body correlations are the dominant effect for the
transition from the normal to the superconductor state and ii) the two body
correlations are essentially determined by the electron-electron (elastic) |}
scattering near the Fermi surface. The phase space available for such a prg
cess, in which the outcoming electrons have momenta close to the Fermi surfy
is a function of the total momentum K strongly peaked around £ = 0. Moreovg
the exchange term of the Coulomb interaction is stronger for parallel spins
(1 +;1.;2) and therefore the "attractive'" interaction of eq. (3.6) is less
contrasted by the Coulomb interaction if the electron pairs have opposite
spins. These considerations motivate the choice of the following ''reduced"

Hamiltonian, the so-called Bardeen-Cooper-Schrieffer (BCS) Hamiltonian, to

discuss superconductivity:

H = HO + I V(k,p)w:(p+k)wts(—pAR)qu(-p)ws(D) ’ (3.7)

where the subscript s denotes the spin variable. Formally, the expression
(3.7) is obtained by replacing the integration with respect to p' in eq.
(3.6),(and in the similar expression for the Coulomb interaction), by the
condition p' = ~p. The potential V(k,p) is therefore given by

2 [F(k)|2w(k) 4ne?
[e(-p-k)-e(-p) ] 2-w?(k) ~* ‘kZip?

(3.8)

t See e.g. the discussion by L.N. Cooper, Theory of Superconductivity in

The Many-Body Problem, Bergen School of Physics 1961, C. Fronsdal ed.,

W.A. Benjamin 1962, pp. 42-46.
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(see Part A Sect. 2.4).

The approximations involved in the derivation of the BCS Hamiltonian
cannot be justified completely and some open problems remain'. It is without
doubt, however, that the BCS Hamiltonian represents a deep understanding of

the physics of superconductors and constitutes a very reasonable model for

superconductivity.  In any case, it can be regarded as an effective Hamiltonian

description. of the significant collective effects which are responsible for

superconductivity.

For the following, it is convenient to point out the general proper-

ties of the interaction Hamiltemian (3.7). First of all V(k,p) is real
V(k,p)* = V(k,p) (3.9)
Secondly V(k,p) is even
V(k,p) = V(-k,-p) (3.10)

Finally since' the Hamiltonian must be hermitian only the symmetric part of
V(k,p) contributes to eq. (3.7) and therefore V(k,p) may be taken to be sym-
metric

v(k,p) = Vi(p,k) (3.11)

As we have seen explictly in the case of the electron gas (Part B, Ch. 1),

the Pauli principle induces a "coupling" between the momentum and the spin of’

the electron and in fact the above interaction can also be written as

——

t For a discussion see e.g. G. Rickayzen, loc. cit. and J. Bardeen, Nobel
Prize speech in Physics Today 26, 41 (1973).
f For the' agreement between theory and experiment see J. Bardeen and J.R.

Schrieffer, Prog. Low Temp. Phys., Vol 111, North-Holland Amsterdam 1961.

e
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Z U(k'ys;pvs') wf(kss) 'p.f(—k,—S)"’(—p’—s’ )w(p’s' )‘

where

20(k,s;p,s') = V(k,p) Gss' - V(-k,p) §_ .

’

(3.12)

2u(-k,s; -p,s')

In the following the spin variable will not be spelled out in general, so F
that k will stand for k,s and -k for -K,-s. The old equations (3.9),(3.10) i
and (3.11) remain valid with the new notation for U defined by eq. (3.12),

In addition, eq. (3.12) gives

U(k;p) = =U(-k;p) (3.13)

3.4 BCS model. Exact solution in the thermodynamical limit

In this section we shall take the BCS Hamiltonian as our starting
point to show that the phenomenon of superconductivity is related to electron
pair condensation and to display the non-perturbative character of such con-
densation. 1In our opinion, the features of this phenomenon transcend the
specific example in which they arise and have a more general interest. It
may be useful to mention the kind of general problems for which superconduc-
tivity may qualify as an illuminating prototype. We already know that a metal

+
is characterized by electron condensation in the ¢y ¢ channel (< wfw > a

|

electron density), with a condensation energy of the order of 1 eV, the typi-

cal scale of the problem. Hartree-Fock methods (see Ch. I) can be used to

obtain the main features of such condensation phenomenon. As we shall see,

the attractive piece of the effective Hamiltonian (3.7) gives rise to an
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additional channel of condensation and the corresponding energy scale is

hierarchically suppressed with respect to the previous one; the phenomenon

is essentially non-perturbative. The BCS model is therefore instructive for
understanding non-perturbative fermion condensation phenomena. Finally we

shall get insight on the spectrum of elementary excitations in the presence

of such non-perturbative condensation.

To discuss the BCS lodel one may adopt the approximationf by which
the problem is reduced to the study of a spin system of the Heisenberg type

(quasi spin formalism). This is obtained by projecting the BCS Hamiltonian

on the subspace of states (called pair states), for which the electron states

Iﬁ >, |-§ > are either both occupied or both unoccupied.

As emphasized by Haag, the BCS model can actually be solved exactly
in the thermodynamical limit and we shall follow Haag's ideasT. Putting the
system in a box of volume V with periodic boundary conditions, the BCS
Hamiltonian takes the following form

2 +
H=x (&=~ c'(plelp) +
p 2m

(3.14)

g

+ T _
w = ula,p) ¢ (a) ¢ (-q) c(-p) c(p)

where u has the meaning of a chemical potential (see e.g. Sect. 2.1). The

equations of motion are

t+ p.W. Anderson, Phys. Rev. 112, 1900 (1958)

C. Kittel, Quantum Theory of Solids, J. Wiley 1963, Ch. 8

W. Thirring, Commun. Math. Phys. 7, 181 (1968); lectures at the
International School of Physics, Mallorca 1968, Plenum Press.

t R. Haag, Nuovo Cim. 25, 287 (1962)




110

2

od
i It c(p,t) = g; c(p,t) + 55 %?[Hp,q) c(-q,t) c(q,t) c+(-p,t)

where the properties of the potential, (eq. (3.13)), have been used.

Now the Fourier transform a(x) of the operator i

— 1 U(p,a) c(-q) c(q) (3.15) *}

Av(p) = oy é

has the form of a quasi local operator, eq. (2.1) (Ch. II Sect. 2.1),

labelled by the variable x

AV(X)f= 5% U(x,z-2') y(z) y(2') a3z a2 ,
v

In fact, for fixed x, U(x,z-z') goes to zero sufficiently rapidly, as

|[z-2'|+ « , in such a way that

lim 2 | Ulx,z-2') y(z') &z' = 0
Vo v

Therefore

Lin (a0, W] =0

so that in the infinite volume limit Av(x) commutes with the algebra 5*1 gemf
ated by the localized operators ¢(f), w+(g) and it is a c-number in any
irreducible representation of ;f{. Thus, in the thermodynamical limit the

dynamics gets linearized in each irreducible representation of ;41, since

the equations of motion become

2
. d
1= clp,t) = g—; c(p,t) + g a(p) o' (-p,t)

(3.16)
A(p) = w-lim a_(p) .
V-)-m V
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In each irreducible representation, the generator of time translation can

thus be taken of the form

2
+
Heff=g (%n.-u)c(p) C(D)+

(3.17)
g t, , t
2 § [a(p) e (P)c (-p) + alp)* c(-p) c(p)] +C

with C a constant. The Hamilton He can be diagonalized by a Bogoliubov

5

transformation (see Sect. 1.1). For simplicity we consider the case in

which A(p) is real and look for a transformation

c(p,s) = u(p,s) C(p,s) + vip,s) C*(-p,-s) (3.18)

with u, v real and satisfying
u(p,s) = u(-p,-s) , v(p,s) = -v(-p,-s)
The canonicity condition reads
u(p,s)® + vip,s)® = 1 .

By combining the above equation with the condition that the coefficient

of C*(p,s) C*(-p,-s) vanishes, one gets

ut(p,s) - vilp,s) = (& - w/[CE - )ty ga(p,en 1®
2u(p,si v(p,s) = gAlp,s)/[( gi - u)2 + gz2a(p,s?] % ,
H .= E(p,s) C*(p,s) C(p,s) + E_ ,
E(ps,) = vffigi - w? + g* a(p,s)? . (3.19)

Eo is as yet undetermined since Heff is defined up to a constant. Since
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E(p,s) > 0, the ground state vy is clearly defined by the condition
o

C(p,s) Wo =0 ¥ p,s (3.20)

and the representation is a Fock representation for the new operators C, C*.
The spectrum of the elementary excitations is given by eq. (3.18) and it
shows an "energy gap" above the Fermi sphere. This provides an explanation

of superconductivity, as discussed in Sect. 3.1, provided a(p,s) # O.

3.5 Gap equation. Non perturbative effects

The gap function aA(p) may be determined by self-consistency. Since
it is a c-number it can be calculated on any state and therefore by egs.

(3.18) (3.20)

L1
alp) = %iﬂ pos é U(p,q)< ¥ c(-q) c(q) ¥ >
1 3
= 5.3 d q U(p,q) u(q) v(q)

The properties of the potential, eq. (3.13), easily imply

aAlp,s) = -a(-p,-s) (3.21)

By using now the expression for uv in terms of A one gets an integral

equation for 4 (gap equation)

_ 1 3 f gA(Q|S')
dles) = -5 L | dallesias )[(<:12/2m-u)2+g’A(q.S')2]1/2

(3.22)

It is a non-linear equation having a trivial solution

A=0,

— o — R
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which corresponds to the Bogoliubov transformation discussed for the free
Fermi gas. This solution describes the normal behaviour of a metal. We are
interested in non-trivial solutions; in particular we may look for solutions
In this case one has

with a ground state invariant under space inversions.

u(p,s) = u(-p,s), v(-p,s) = v(p,s) and
a(-p,s) = a(p,s) (3.23)

i.e. a(p,s) is a function of |p|. Putting

aA{p)

A(IBI! s = +) = = A(lgll S=_l) ’

= -1
Up,a) = (4m) ™" | da_ U, s =4, 4, 5 = +)

the gap equation becomes

A(g) .
[(q2/2m—p)2+g2a(q)2]%

Alp) = = da ¢° 0 (p,q)

472

2
In the weak-coupling limit the integral is dominated by q /2m = p , i.e.

q= qF, and we get

K 1
da [(a2/2m-w)? + gZ'A(qF)zl'/z

q? ﬁ(p,qF)A(qF)

g
Alp) = - pry

0

K is a suitable cutoff which should account for the rough approximation of

the original integral in the high q region. For p = qF, we obtain
K
1= -2

T 4q2

a: 0 (a.a;) dal (a2/2m-1)2 + gzﬂ(qF)2]‘4

0]

The above equation has a sclution only if

g U (q,9.) <O

e p—
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i.e. if the interaction favours the formation of electron pairs close to

the Fermi surface. Under this condition one obtains

2n2
IglquU(qF.qF)

log(l-glA(q_F) = + C

with C a suitable constant which depends on K. In conclusion

2 2
lgla = C, exp (- —=—=) (3.24)

lglma U
This formula exhibits the highly non-perturbative character of the gap and

explains how a hierarchically suppressed energy scale can arise in a theory

in which no ad hoc tuning of the parameters has been made.

A similar essential singularity in g is exhibited by the difference
between the energy of the normal ground state and the superconducting

ground state.

o e+ e e e e e
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PART C — SYMMETRY BREAKING PHENOMENA

I  SPONTANEOUS SYMMETRY BREAKING

1.1 Infinite degrees of freedom and spontaneous symmetry breaking

For a non-perturbative discussion of spontaneous symmetry breaking, a
phenomenon which has recently played a very important role in many-body and
in elementary particle physics, it is convenient to start with the meaning
of symmetries in quantum mechanics.

An exact (or unbroken) symmetry in QM has the property that it maps the

states ¢ (i.e. of the rays of a Hilbert space ) onto themselves

T: & - P (1.1)

-~ -~

in such a way that the transition probabilities are left invariant
2 . Y
<@, ¥>" = |<@, ¥>| (1.2)

It is an important result due to Wignerf

that any transformation law of the
rays of a Hilhert space H , which satisfies property (1.2) can be describ-

ed by an operator U 4in #H , which is either unitary or antiunitary:

. ' = Ud (1.3)

T

ics of Atomic Spectra, Academic Press, N.Y. 1959

E. P. Wigner, Group Theory and its Applications to the Quantum Mechan-

V. Bargman, Journ. Math. Phys. 5, 862 (1964)
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This implies that the transformation (1.1) induces a corresponding trans-
formation of the observables or of the canonical variables

T: a=aA' = uauyl (1.4)

Clearly such transformation preserves the algebraic relations including the
adjoint operation (namely (AB)' = A'B', A*' = A'¥ etc.) and in particular
the commutation relations. A transformation law of the algebra A of
canonical variables, preserving the algebraic relations is called a
* - automorphismT of A . Since the equations of motion in the Heisenberg
picture can be read as algebraic relations between elements of A , they
are invariant under an automorphism of A . BAn interesting question is
whethexr any automorphism of A can be written in the form (1.4) and
therefore it defines an exact symmetry of the theory.ﬂ-
For quantum mechanical systems with finite degrees of freedom the an-
swer is always affirmative, i.e. for ordinary QM any éutomorphism of A,
or as it is usually called any symmetry of the equations of motion, defines
an exact symmetry. In fact, by definition the canonical variables {q,p}
and the transformed ones { q',p'} obey the same canonical commutation re-

lations and therefore, given an irreducible xepresentation @« of {q,pl

(i.e. a set of metrix elements < ¥, Pla,p) ¥ > )}, the representation 7'

1.
1T

For simplicity in the following we will often omit the & .

It is perhaps worthwhile to mention that two different representation
spaces are involved in the above problem. On one side the algebra itself
is a representation space for the given automorphism a: A — A', which may
be represented by unitary matrices on that spacé. On the other side, there
is the Hilbert space of states and the question is whether the given auto-

morphism can be represented by a unitary operator in the space of states.
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given by

7' (P(q,p)) = 7 (P(q',p")) 1.53)

is unitarily equivalent to 7 by Von Neumann's theorem (Part A, Sect.

1.1). This means that there is a unitary operator U such that

<UVY¥, Plg,p) U¥ > = <¥, P(q',p') ¥>

for any ¥ in the Hilbert space /{ of the representation 7 . Thus the given
automorphism is described by a unitary transformation ¥Y—->V¥' = UV in .

The situation drastically changes for the QM of systems with infinite
degrees of freedom since there are inequivalent representations of the ca-
nonical commutation relations and therefore a symmetry of the equations of
motion may fail to give rise to a transformation law of the states, which
preserves the transition probabilities. 1In this case, one says that the

symmetry is spontaneously broken. These words reflect the radical change

which has taken place in the last decades in treating approximate sym-
metries in many-body and in elementary particle theory. 1In the past, the
description of physical system exhibiting approximate symmetries was reduc-
ed to the problem of identifying explicit "forces" or "perturbations" re-
sponsible for such asymmetric effects. 1In this perspective, the dynamics
was described by a Hamiltonian consisting of a dominant symmetric part plus
a small asymmetric term. The progress of the last years has shown that the

above strategy is not only unconvenient from a practical point of view,

since the existence of asymmetric terms complicates the equations of motion

and their identification is somewhat arbitrary, but it is actually unac-
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ceptable on general grounds, because it is often impossible’ to reduce sym-
metry breaking effects to asymmetric terms in the Hamiltonian. The result

is that the dynamics must be defined in terms of a symmetric Hamiltonian

and that the symmetry breaking is due to a dynamic instability according to
which symmetric equations of motion may nevertheless lead to an asymmetric
physical description (see further comments below). As we have seen, such

phenomena are possible only for infinite quantum mechanical systems.

1.2 Symmetry breaking condition

From now on we will consider those symmetries,i.e. those automorphisms
of A, which lesve the Hamiltonian invariant, more precisely, which commute
with the time translations?T. They are the non-relativistic analog of the
so called internal symmetries in elementary particle physics, characterized
by their commutation with the Poincaré group. For such class of symmetries
the occurrence of spontaneous breaking can be discussed more easily.

We have already mentioned that the states of an infinite system are
described in terms of (local) elementary excitations of the ground state
and that for such description the uniqueness of the ground state is a pro-
perty which can hardly be dispensed with. Clearly, this does not exclude

the existence of more than one inequivalent representation of the algebra A

1.

vity in the presence of radiative corrections and of renormalization effects.

Tt

Such additional property is clearly not required for the invariance of

the equations of motion (see e.g. the case of Lorentz transformations).

On of the main difficulties of that program is to maintain its predicti-

P L S P

e,
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of the canonical variables, each characterized by a ground state and each

corresponding to a different "pure phase” of the infinite system. as dis-

cussed in Part A, Sect.1.8, the irreducibility of the representation or the

validity of the cluster property require that the ground state is unique in

each physically reasonable description of the states of the infinite system.
The "degeneracy of the ground state? which is frequently stated as a charac-
teristic feature of spontaneous symmetry breaking should actually be under-

stood as the occurrence of more than one inequivalent representation, each

with a unique ground state, formally related to one another by the symmetry,
see eq. (1.5).

It is sometimes stated that spontaneous symmetry breaking occurs when-
ever a symmetric Hamiltonian H has one ground state which is not symmetric,
In our opinion such statement requires some caution. For a system with a
finite number of degrees of freedom the above possibility can occur and the
symetry of H implies that an asymmetric ground state is degenerate with
respect to other ground states which are related to it by the symmetry
transformation. However, all the degenerate ground states belong to the
same Hilbert space in which the theoxy is defined and the symmetry is des-
cribed by a unitary operator, which pPreserves the transition probabilities.
For QMm the non-invariance of the ground state is a condition of spon-
taneous symmetry breaking provided one considers pure phases and symmetries
commuting with time translations. 1In this case, one can show that if the
Symmetry is not broken then the ground state is invariant. In fact, if U©

is the unitary operator which describes the symmetry, the equation

= .6
H\Ilo 0 (1.6)

implies
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vau u¥Y_ = EHUY = O
(o} o]

and therefore by the uniqueness of the ground state

uv = e V¥ . (1.7)

More generally, if ¢ is an automorphism of A
¢ : A—>A' = «a(d)

which commutes with the time translations, a necessary and sufficient con-
dition for a to describe an exact symmetry, in a representation with unique

cyclic ground state, is that all the correlation functions are invariant:

<V¥ ,A'¥Y > = <¥ ,a¥ > (1.8)
o o (o] (=]

for any polynomial A of the canonical variables. In fact, if the symmetry

is exact there is a unitary operator U such that

1

A' = UaU (1.9)

and eq. (1.7) implies (1.8). Conversely, if (1.8) holds the transformation

v -v |, ¥ = A‘I/o—>\If' = A'\I’o ’ (1.10)

is defined on a dense set, by the cyclicity of the ground state and it pre-
serves the scalar products, by eq. (1.8):
' 1 = v ' = kpe
<¥"' ,d'> <A\I'°.B\Il°> <‘I’°.A B\I’°>
=<¥ . BBV > = <V¥,3>
o

The transformation (1.10) 1s thus described by a unitary operator, which

describes the (unbroken) symmetry.
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1.3 Spontaneous breaking of continuous symmetries

It is of great interest for many~body and for elementary particle
physics to consider those sets of automorphisme of A , which form a Lie

group G and which are generated by a conserved current, in the sense that

for any polynomial At of the (localized) canonical variables at an

arbitrary time t the infinitesimal variation

can be written as

5a 3

e = 1 ;.i.x: J a’x[ jo(x't’o)’At] (1.11)
|%|< R .

where jo is the density of a conserved current (jo,j')

-»>
aojo +div j = 0 (1.12)

Unless otherwise stated, j(x,t) will be assumed to transform covariantly

undexr space-time translations

UG@,a) 36, U@a)Tt = 3G+ 3, e+ a) (1.13)

It must be stressed that in general the integral of the commutator

1.

More correctly, the integral should be regularized with a test func-
tion fR(;) = f£(X|/R) , with £ €C” and of compact support and with
f(x) = 1 4in the neighbourhood of x = 0. The task of giving a mathematic-
ally rigorous meaning to the various expressions entering in our discus-~
sion, 1s beyond the scope of these notes, even if it can be done without
serious difficulties. For this and other questions, see the excellent
review by J.A. Swieca, Goldstone's theorem and related topics, Cargése
lectures 1969.

It must be gtressed that condition (1.11) is required for operators which

are essentially localized; eq. (1.11) may fail for operators which do not

have gome sort of localization.

J |

S et rre
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(1.11) has better convergence properties for R +x , than the integral

3
d’x jo (x,to)
x|SR
In local quantum field theory the convergence of the integral (1.11) is

Qq(ty)

actually guaranteed by locality, as we will see in more detail laterx.

By using (1.11) the condition of unbroken symmetry, ed. (1.8), becomes

lim <¥_ [QR,A]\y°> = 0 VA E A (1.14)

R>
This condition is clearly implied by (1.8) and (1.11). Conversely, if eq.
(1.14) holds then, on the dense set of vectors of the form P = A\Ilo . AEA ,

one can define an operator Q

Q¥ = lim [QR.A]\I'O,

R

which is well defined and hermitean. Furthermore, if A can be decomposed in-—

to irreducible finite dimensional representations of G,Q can be exponentiat-

ed and U(r) = exp iQ 7 is the unitary operator which describes the symmetryT.

1.4 Goldstone's theorem for non-relativistic systems

We consider a continuous symmetry <& with the following properties:

1) « commutes with the time translations: ctTt = Tta

t

2) o is generated by a conserved current:

3
da = i lim f d'x £.(x) [ 3 (x.0),a 1, (1.15)
R>
T For details see J.A. Swieca, loc. cit.
Tt

Technically the limit has to be understood in the distributional sense
with respect to the variable ¢t .

o i jr ———
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and 2):

Thus

condition

.and gince

A careful

the limit

<§A>, = i lim<{QR(Q)..A]?° ¢ 0,
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Then, if « 1is spontaneously broken, i.e. for scme A

(1.16)
R

the energy spectrum cannot have a gap above the ground state (Goldstone's

To prove the theorem, we start by noting that as a consequence of 1)

um [Qe) , a) = lim T (IQ (0) , a_D

R>®

- 4T 8A

t

c, = lim <[Q.(t) , Al> = C =¢C

R ®

= -iT T 82 = -15A

t t

= lim[QR(O) , Al
R+ ®

(1.17)

R>®

independent of ¢t .

>
-+ ikx-iwt
Jo(k.w) = Ie <[ jo(X.t) v A]>° 4

(1. 16) gives

lim

£+0

analysis of eq.

For the two-point function

3

x dt (1.18)

lim ]R £ (RK) e twt Jo(f{,w)d3k dw = C

lim RERD = §@0)

R>o

(1.19)
Ie_iwt Jocf,w)dw = C

(1.19), in the distributional sense, shows that

% -0 can be interchanged with the integral sign and one gets
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[e‘“”t J_(0mdw = ¢ (1.20)

J (0 = Céla (1.21)

On the other hand by inserting in eq. (1.18) a complete set of states
IE P W, (;) > labeled by the momentum a . by the energy wa(q) with

respect to the ground state and by the index a ,

R N N ->
JO(}T,u) = i Im #daI el (k=X -i(wW- Wo (q))t Ca(;)d3x at a’q
. ng -
= iIm }EdaI e M@= WalkNE ¢ (ae
where
- = < . (0.0 - - ><-> -> | S
Culk) = <¥_[3(0,0)|k e (k) ><k, & (k) |A] ¥ >.
Hence , by eqg. (1.21)
A > s . 5 > >
_}m Jo(k,w) = J.Im}*m da (w_woz(k“ Ca(k) = C §w) (1.22)

k+0 k>0

It is clear that eqg. (1.22) is incompatible with the existence of a gap in

the energy spectrum, above the ground state,

To conclude that there are discrete excitations with enérgy spectrum

wa(k) going to zero as K >0 (the so called Goldstone modes), additional
information are needed. For example, that for Tc >0 only discrete values
of the index « contribute to eq. (1.22) and that Ca(l-:) is sufficiently

regular. In the absence of additional information one can only assert the

absence of an energy gap, for _]: -0 .
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A condition which ensures the existence of Goldstone modes was spacifi-

-‘.

ed by J. Swiaca in analogy with the relativistic case, but its control
appears difficult for non-relativistic systems.

The existence of the isclated point w= 0 4in the energy spectrum of
elementary excitations at zero momentum can be proved under the simple con-

dition that the charge density is integrable as commutatort. More pracisely

the condition is

3) the ground state expectation value of the charge density commutator
-
Co 3R ,a 1Y) , AEA

is a finite measure in the '; variable (possibly after time smearing if
necessary) .

The above condition, which is obviously satisfied in local field theo-
ry, states that the total charge QR generates the given group of auto-
morphisms independently of the choice of the smearing function fR(x).

In any case the result of the theorem is rather strong and there have
been attempts to evade this conclusion by appealing to various mecha-

nisms or pathologies which would invalidate the conclusion of the theo-

-
¥ J. Swieca, Cargése Lectures, 1969, The condition 1is that Jo(k,uﬂ

- -
can be written in the form G(k,w-E(k)) , with G a smooth function in

its first variable.

1 G. Morchio and F. Strocchi, ISAS Report 35/84/EP, April 1984.
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rem especially in connection with the superconductivity and the Higgs phenome-

nonT. In our opinion the problems are deeper than what appears in the litera-

ture and will be discussed later. Here, it is worthwhile to mention that con-

>
dition (1.15) involves the commutator of j(x,0) with the generic element 2
of A, in particular with operators at times t # 0. This cannot be decided on
the basis of merely kinematical equations like the CCR's (or the CAR's), since

it requires the knowledge of the dynamics. From the equal-time commutator

i lim [QR(t), At] = 6At (1.23)
R+ @

one can obtain the general (unequal-time) commutator

ilm [Q(e+7), A ] = 8A, (1.24)
R+ @
provided that
Lin [[@y(t),B]A] = limi[ 2o (t),a] = 0 (1.25)
R+® R+ ® t

Eq. (1.25) is in general a stronger property than aTt = 'I'ta since it is
not guaranteed that the action of o on the (infinite volume) Hamiltonian may

be described by lim | QB ]+ To show that eq. (1.23) and eq. (1.25) imply

R>®

eq. (1.24) it suffices to remark that
lim [QR(t +r) - QR(t), At ] =
Ro>®

t+7 a

= LI il ' =

lim f dt [dt, QR(t ), At] 0
R+

t We list some of the relevant papers:
T.W. Kibble, Broken Symmetries in Proc. of Int. Conf. Elem. Particles, Oxford

1965, p. 19
J.A. Swieca, loc. cit., pp. 223-224
G.S. Guralnik, C.R. Hagen and T.W. Kibble, Broken Symmetries and the Gold-

stone's theorem, in Advances in Particle Physics, vol.2, R.L. Cool and R.E.

Marshak eds. Interscience 1967, esp. Sect. V, egs. (5.3), (5.15) (5.16).
R.V. Lange, Phys. Rev. Letters 14, 3 (1965); Phys. Rev. 146, 301 (1965).
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By using the continuity equation one gets

d
lim. [ I QR(t).A] = 1lim - IfR(X) div[;(;,t),A] =

R+ R>®

-
= lim Id3y (V) () [ F(Ry,t) ,n 1R

R>>
and the right-hand side vanishes if

lim |§|2[3(§+§.t).z\] = 0

Ro>

> VAEA, (1.26)

The above equation holds if the time evolution preserves some sort of

locality, i.e. 1f for any A and B €A (A and B may be operators at dif-

ferent times)

tn |Z[(ay,B]= 0 (1.27)
| x|+ o

with Af the _i-t_:ranslated of A. We will call this property short range

asymptotic locality. A sufficient condition for eq. (1.27) is that the

interaction is a short range interactionT . For example for an interaction

Hamiltonian of the form

B = ;—mj VWYY &k + 5 f x &y V¥ ¥Ry) Vix-y) ¥(y) dix) (1.28)

eq. (1.27) holds if V is a short range potential. As we will see in the

next section this difficulties do not arise in local quantum field theory.

See the discussion in J. A. Swieca, Comm. Math. Phys. 4, 1 (1967)
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1.5 Spontaneous breaking of continuous symmetries in local quantum field

theoEX

As discussed in Part A, Ch.IIX, a local quantum field theory is speci-
fied by a representation of the algebra A generated by the polynomials of
the local fields wa(f) , £€c” and of compact support, satisfying the t

locality condition: !

[‘P(f)l‘P(g)]: 0 ’

if supp £ is spacelike with respect to supp g. We are interested in

|
f
representations of A with a unigue translationally invariant state f
(vacuum state), which is cyclic with respect to the polynomials of wa(f).
As before, a necessary and sufficient condition for a symmetry to be
exact is that all the correlation functions are invariant. For continuocus

symmetries generated by a conserved current an additional smearing in time ‘

T

is necessary due to the singular character of the fields at a point (see

Part A, sect. 3.2). The local charges will then be defined by

_ 3 :
QR,a = J d'x dt fR(x) alt) Jo(x,t) (1.29)

with £_(x) = £(|X|/R) as before and a(t) a C -function of compact
support, with - '
J a(t)dt = a(0) = 1. (1.30)

-0

jo(x,t) is now an element of the local field algebra, i.e. it is a

local field. A continuous symmetry is said to be generated by a

conserved current if

At least from a mathematical point of view.
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6A = 4 lim
R‘m[ Qn,a""] (1.31)

for any polynocmial A of the local fields.

As a consequence of locality, the current conservation now implies

that the right hand side of eq. (1.25) 4is independent of «(t). This

property 1ls essentially equivalent to eq. (1.24), i.e. to the t-indepen-

dence of

lim < y_, [QR(t),Al v, >,

R+

In fact, if 0t1 p 0!2 are two C -functions of compact support satisfying

eq. (1.30), then o= txl -oz2 satisfies

(=]
J a(t)dt = 0

{+-]
and therefore it can be written as

g t
] ]
it I a(t')dt

- d
alt) It g (t)

with f(t) € c” and having compact support. Hence

+ Al
2

r 2]

[ QRal = Qe Loy dap/at

-’
= J ax at Ve B [(3&,8) , A (1.32)

and by locality the r.h.s. vanishes in the limit R+ , since, for R suffi-
ciently large, the only points (;,t) for which -GfRB is different from zero
are spacelike, with respect to the (bounded) region in which A is localized.

By using again the property of locality, one can prove that in local
quantum field theory the spontaneous breaking of continuous symmetries
requires the existence of 8(92) singularities in the two-point function
Jo(p,po) , (see eg. 1.18), i.e. the existence of massless modes (Goldstone's
modes). The general proof of the Goldstone's theorem, which covers the case,
in which the breaking may occur by means of a composite operator or by the

non-invariance of an n-point function, will be given in the next section.
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Here, we give the simplified argument, due to Goldstone, Salam and
Weinberng, which exploits Lorents covariance and spectral condition in the

simple case in which the symmetry breaking condition <8A> # 0 is realized

by a scalar (local) field ¢(x). By this we mean thatﬂ-

Uta,Ay 9(x) U(a, A7} = @(Ax + a)

To this purpose we consider the two—point function < jM(X) ply)> i

by inserting a complete set of states with four-momentum P we have

4 1ip (x-y)
<3, e >, = }E d'pe < 0]3,(0)] n> <n|p(0)| 0 > (1.33)

By using the relativistic spectrum condition, ;9(2) =0, p° = 0 , and
n

(n)
the Lorentz covariance we can write

=]

(n) 2
P (n)

2
0|3 (0 v(0)|0 = ( 0 0
< |3y( )| n ><n| |0 > p P p(n)) (p(n)) (. .)

where 0(x) =1 for x>0 ,0(x) =0 for x < 0. If we write

[+
e(pz) = I dm28(p2—m2)
[

Tt

we get

o«
<l3,00 , el >, = 13 f an’ p(n?) Jd4p 5% - o)
0
[0(0%) - 6(-p°) ] PV (1.34)

T J. Goldstone, A. Salam and S. Weinberg, Phys. Rev. 127 965 (1962)
TF

describing a pointlike structure, but it is problematic for compound fields

The validity of this property is reasonable for an elementary field

or for fields describing bound states.

Tt

function: G. Killen, Helv. Phys. Acta 25, 417 (1952); H. Lehmann, Nuovo
Cimento 11, 342 (1954); A.S. Wightman, Phys. Rev. 101, 860 (1956)

This is the so-called Killen-Lehmann representation of the two point

—— e g
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Current conservation yields

2
m P(mz) = 0

i.e.
P(mz) = aa(mz)
Then
<[3,%,0 , 0@ > = as @
and the symmetry breaking condition gives
a = <dp(0)> # 0

Thus the Fourier transformation of the two point function (1.33) contains
2 X . .
a O (p°) singularity. More precisely, the component of mwwoinwe

subspace generated by j#(f)‘l'° has zero mass (Pz = 0).

1.6 Proof of Goldstone's theorem in local quantum field theory

In the simplified proof given above, Lorentz covariance seems to be the
crucial condition; as a matter of fact it is only indirectly so, because
for the two point function Lorentz covariance and relativistic spectrum
condition implyT locality, which is indeed the basic property for the Gold-
stone's theorem. We have already stressed this fact in Sect. 1.4.

By exploiting the property of locality we can indeed obtain a general and
rigorous proof of the Goldstone's theorem, covering also the case in which

the breaking occurs throﬁgh the expectation value of a "composite"™ field.

R. Jost, The general Theory of Quantized Fields, Ann. Math. Soc. 1965
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The argument makes use of the so-called Jost-Lehmann-Dyson (JLD) represen-
t

tation’ , which holds for the commutator of two local operators. 1In par-

ticular, if A is a local operator

® 2 3 2 » 4 > > 2 >
<[ QRc:’A ]>° = i[ dm Jd v pl(m . Y) [Jd xA(x-y,xo;m ) fR(x) o (xo) ]

]

(1.35)
3 2 > 4 > > > 2
+ [d y p2(m RN I dx fR(x) a (xo) ao Ax YoX_im )1

whexe Py (mz,i;) + 1=1,2 are tempered distributions with compact support
in the ; variable as a consequence of locality. A (;,xo;mz) is the Green
function of the Klein-Gordon equation

Df+m2f=0 P

in the sense that the solution f(:'f,t) corresponding to the initial data

£&, t=0) = p, () ;X @0 - py @)

can be written in the form

fEn = - [ Ey[p, @ AGF cin)y+ o, 3, AGT, tin) ]
B and . t
20 _ -i 4 2 _ 2 1PX-1p,
Alx,t;m”) = 2me fd p ©B(() - 0(-p))) 8(p" -m") e

T

F. Dyson, Phys. Rev. 110, 1460 (1958)

R. Jost and H. Lehmann, Nuovo Cimento. 3, 1598 (1957)

H. Araki, K. Hepp and D. Ruelle, Helv. Acta Phys. 35, 164 (1962)
A. S. Wightman, Analytic functions of several complex variables, in Les
Houches Lectures 1960.

V. S. Vladimirov, Methods of the Theory of Functions of Several Complex

-y

variables, Cambridge, Mass. M.I.T. Press 1966.
The case in which the infrared structure of the theory violates positivity,
a situation commonly realized in gauge theories, has been discussed in F.

Strocchi, Comm. Math. Phys. 56, 57 (1977)
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for a rigorous proof of the JLD representation we refer to the papers quot-
ed in the last footnote. Here we report a formal non rigorous derivation .

1£ F(p) is a function of the four vector p , vanishing for p“ < 0 we

can "decompose" it along the various hyperboloids p2 - ln2

F(p) = J an? F(p) 5 (p° - n?) =

[ dmz ;(m /P)
0

0

. 2
Clearly the Pourier transform p(m“,x) satisfies

(g + m2) p(mz.x) = 0

and therefore

plm2,70t) = - Jd3y[p(m2. ¥, t=0) A -y, t;m2) +

+ p(w, 3, t=0) 5, -y, timd) ]

+

For F(x) we get a representation of the form (1.35)1-'.
Now, by the relativistic spectrum condition, the Fourier transforma—
tion of the two point function < jo(;,t)A >c> vanishing for 92 <0 (and

clearly the same is true for <a jo(;,t) > O). By the above argument we then

> _ >
get the JLD representation for the commutator J(x,t)= < | I, (x,t) A ]>°.

¥ To make the argument rigorous one has to go to five dimensions
T For euristic arguments it may be useful to note that formally
2 > . . > 2 5 2 > 2 > 2.
p,m™,y) = i|] <0|J°(0)|q,m ><qm°|a|0>-<0|a|qmn®><q,m |;|°|0> ]

3
exp [ igy] d'q

> >
. 2 2
Pl(mz;-l;) i [ eld- Y d3q qo[<0lj°|3,m >< q,m |a|0> +

+ <0|aldm >< &,m2|j0|0> ]
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Moreover, for (; +t) spacelike with respect to the (bounded) localization
region of A, we have J(;,t) = 0, by locality, so that, for fixed t, J(;,t)
is of compact support in the x variable. This implies that also pi(mz,;)
are of compact support in the variable ; .

The second step for the proof of the Goldstone's theorem is to note

that by locality pi (m2,§) can be written in the following formT

- 2> — 2 > o>, 2
py(m,y) = p @) d(y) + V- g, m",y) (1.36)
where
P @’ = f b, >3 &y
and ;i are of compact support in the variable ; .

Again by locality the second term in (1.36) does not contribute to the
right hand side of eq. (1.35), in the limit of large R, since by integra-
tion by parts the differential operator -\; can be shifted to A (;—;,xo;mz)
and then to fR(;). Thus for large R , eq. (1.35) reduces to

o
fo dmz{ b_l(mz) [ Jd“x A(E,xo;mz) £.0K) alx ) | +

52(m2) [ fd‘lx ao A(J-{’,xo;mz) fR(;) a(xo) ] .

The integrals in square brackets can be evaluated explicitely and they give

3 ~ 3 _1 ~ ~
Jd p £ (p) (2p ) [« (p) -« (=p.) ]

p_ = /p? +m?

o
T To prove (1.36) one starts by defining
Y, oo
(1 2 > _ Lo 2 _ 2
0, @.,y) j dy,; {pi(m Y3r¥pe¥3) = 8(yy) p; m™,yl,y,,y;)dy]
- o
so that

(-]
2 > 2 2
P, (m ) = 8(y1) J p; (m 'Y;iYZ’YS)dyI + =

-0

ag_l) (m2 ,;)

By iterating this procedure to the variables ¥, » Y3 one gets eq. (1.36)
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and

1 3 & x
A IACICURETIERY -

P - Y p?+m
respectively. Since the commutator (1.35) does not depend on a in the

1imit of large R , we can choose a(xo) - a(-xo) (real), compatibly with

condition (1.30), so that

ap) = &(-p)

and only the second integral survives. For R+, (fR(E) -3 (5)), it becomes

- J Gm> Fz(mz) a(/n?) (1.37)
0

Now, by the general considerations discussed in the previous section, in
the limit of large R the right hand side of eq. (1.35) defines a func-
tional of the test function E (po) which depends only on the value of E

at the origin, (eq. (1.30)). We have just proved that this functional

reduces to the expression (1.37). Thus we have

,Tz(mz) = a 5@

and the symmetry breaking condition guarantees a # 01. .

T It is worthwhile to note that the proof of the Goldstone's theorenm
presented here covers also the case of theories with infrared singularities
which violate positivity and therefore the proof applies also to local
gauge theories (for details see F. Strocchi, Comm. Math. Phys. 56, 57

(1977)),
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1.7 Breaking of gauge symmetry in superfluidity

As we have seen in Chap. II of Part B, the system is described by the

Hamiltonian ( 2.8) and the algebra A of canonical variables is generat-

* .
ed by polynomials of the fields y(£) , Y(g) . The transformation

@y »el gy, YER (1.38)

breserves the algebraic relations, in particular the CCR and the equations
of motion, so that « is an automorphism of A or a symmetry. Furthermore
the transformation o 1leaves the Hamiltonian (2.8) invariant. Since
Y is a continuous variable, a defines a continuous symmetry and it is not

difficult to see that

ilim | Id?’x fR(S:*) Y*(x,0) $X,0, ¢(F,0] = i lin [N (0), ¢ ]
R>® R>®

= -i yG.0 = §y(F,0 (1.39)
Llin [N O, Y F0] = 1@ F,0 = 5¢GF.0 (1.39")
R
Since the potential is assumed to be of short range, the dynamics preserves
the short range asymptotic locality. Therefore the equal~-time relations

(1.39) (1.39') can be extended to unequal-time equations and the symmetry
is generated by the conserved current
* > *, -
ig = ¥ Y ' 1) = LTIy E - g T px)

(the continuity equation can be easily checked to follow from the equations

of motion induced by the Hamiltonian (2.8)),

The transformation (1.38) is a gauge transformation of the first kind

and it is natural to define the gauge invariant subalgebra Ainvc A , with
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the property that each of its elements is gauge invariant. Since the ob- |
. *
servables involve an equal number of ¥ and ¢ , the observable operators |
are elements of A . . !
inv
In Chap. II, Part B, the Bose-Einstein condensation, at the basis of ‘
the phenomenon of superfluidity, has been characterized by the Yorder !
parameter" ‘ |

<Y . V(x) v, > = Eo = /'n_o eie (1.40)

The above equation is a symmetry breaking condition for the symmetry

(1.38). Clearly, this is in agreement with what discussed in Chap. II of

Part B: the parameters n, and 6 label inequivalent irreducible represen-

tations of A and since the gauge transformation (1.38) would lead to

060 +«

the symmetry is spontaneously broken in any representation of A with a
unique translationally invariant state.

The assumptions of the Goldstone's theorem are satisfied and
one deduces the absence of an energy gap. The phonon-like excitations with
energy spectrum w(k) = ck, for small X, are in fact the Goldstone modes cor-
responding to the spontaneous breaking of the gauge transformation (1.38).

One may consider the possibility of focusing the attention to the

gauge invariant algebra without ever introducing gauge dependent operators
like VY(x) , lll*(x). From a conceptual point of view, such strategy appears
more economical, since all what is needed for the physical description of
the system is the knowledge‘ of the expectation values of Ainv over the
physical states of the system, i.e. one only needs to know the (physically

acceptable) representations of Ainv . From a practical point of view,

however, the above program looks more difficult than the one followed in
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Part B, Chap. II in which such representations where obtained through a
formulation based on the gauge dependent fields 1 ., l[l* . As a matter of
fact the equations of motion are more easily written in terms of the fields
v, W*.. The Hamiltonian itself is simply defined in terms of ¢ , ¢* and
the dynamics is more easily analysed by using V¥, dl* as canonical variables,

Furthermore, as discussed in Part A, sect. 1.8, the "completeness" of
the canonical variables essentially guarantees that the ground state is
cyclic with respect to the algebra of canonical variables (this is their
main "raison @'étre"). Therefore a representation w is campletely deter-

mined by the correlation functions of the gauge dependent variables:

*
<woo. Yix) .. Yty ... v, >

These properties no longer hold for Ainv : physically relevant representa-
tions of Ainv may in general be reducible with respect to Ainv and the
ground state may not be cyclic with respect to Ainv.f'

Finally, by using only gauge invariant operators one looses the possi-
bility of getting general information on the phenomenon of superfluidity by
relating it to a symmetry breaking; in particular, the occurrence of
phonon-like excitations (Goldstone modes) does not have a simple and
general explanation in terms of spontaneously broken symmetry. The gauge
transformations become the identity transformation on Ainv and clearly
there cannot be any symmetry breaking. Inequivalent representations of
Ainv will still be labeled by the (gauge invariant) parameter n, but the

connection with the symmetry breaking order parameter < ¢ > is lost. We

will return to such type of questions when we will discuss gauge theories.

t In this case the representation is not simply recovered from the

correlation functions of elements of Ainv .
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1.8 Dynamic instability and spontaneous symmetry breaking

We have discussed general non-perturbative criteria for the occurrence
of spontaneously broken symmetries and the natural question is how we know
in practice when such a phenomenon occurs.

A largely used tool

has been essentially the mean field approach. This means that for a

theory described by a Lagrangian like
= - L 2
L > (auw) + V(p)

with V(p) a polynomial bounded from below and of order up to four (stabi-
lity and renormalization constraints), the strategy is to loock for the ab-
solute minima of V(yp) and pick one of them say ¢ . Then the theory is
(perturbatively) defined by considering the (small) quantum fluctuations
around ¢ = ¢ . This pexturbative expansion leads to a vacuum expectation
value <y > which is equal to ¢ at lowest order. Spontaneous symmetry break-
ing is thus related to the fact that an invariant polynomial V(yp) might
have a non-invariant absolute minimum ¢ and therefore the theory construc-

ted around ¥ is not symmetric (Goldstone criterium). Since the mean field

approximation sometimes leads to incorrect results a different better cri-
terium is needed. A possibility is provided by the methodsT of constructive
field theory and by the so-colled functional integral approach. To that

purpose, the theory is formulated in euclidean spaceTT and an ultraviolet

T G. Velo and A. S. Wightman eds., Constructive Quantum Field Theory,

School of Math. Phys., Erice 1973, Springer Lecture Notes in Physics, vol.

25, Springer 1973

1 This is obtained by analytically continuing the correlation functions
i i times (this continuation is made possible

W(yl, Yoo -en yn-l) to imaginary (

by locality and spectrum condition). The so obtained correlation functions

are called Schwinger functions and they are covariant under the euclidean group.
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(lattice space) cutoff and an infrared (finite box) cutoff are introduced. The
problem is then reduced to a statistical mechanical problem, where the occyr.
rence of a phase transition or of a spontaneous symmetry breaking is determined

by the dependence of the correlation functions from the boundary conditions, in

the infinite volume limit. The basis for thia is thatT any ("locally Gibbs")
state over the algebra A can be obtained by suitably choosing the boundary
conditions. The resolution of the theory into pure phases is thus obtained by
suitably specifying the boundary conditions. & non-vanishing order parameter
can thus be obtained.

An equivalent way of resolving the correlation functions obtained by the
functional integral into those corresponding to pure phases is to introduce ag
external field (typically a linear function of the dynamical variable, e.g.
€({x) p{x)) and look for the limit € = 0O after the thermodynamical limit has
been taken. The dependence of the correlation functions from the way the limit
€ > 0 is taken, indicates a phase transition and/or a symmetry breaking (Bogo-

liubov criterium). When,in the infinite volume limit, the correlation functions

exhibit a dependence on the boundary conditions or on the way the external field

is removed, one says that there is a dynamical instabilityTt As a matter of

fact a small external field (small volume effect) or a surface effect (boundary
conditions) are enough to induce "transitions" from one phase to another,

For a more detailed discussion of these ideas which are borrowed from
Statistical Mechanics we refer the reader to any standard book on Critical

Phenomena.

T D. Ruelle, Statistical Mechanics, Benjamin 1969
Tt

in Physics and Astrophysics, Coral Grables 1972, Plenum Press 1973.

See A. S. Wightman, Constructive, Field Theory in Fundamental Interactions
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1.9 Heisenberg ferromagnet. Spontaneous magnetization and spin waves

The Heisenberg Hamiltonian for describing ferromagnetism is

(1.41)

H=-1J 2 % S?GJ'h Zsz
— i
i

R 1 1+
i,6

(see the discussion in Part B, Sect. 1.2), where the index i labels the lattice

sites, i + § is the nearest neighbor to i, o denotes the x, ¥, 2z components of

->
the spin S and h is an external magnetic field pointing in the z-direction®. It
is not difficult to show that, for finite lattice and also in the infinite volume

o (h) |
limit, the ground state ¥, is characterized by all the spirspointing in the

z direction. Such state is invariant under discrete translations and one has a

non-vanishing mean magnetization

ﬁ = <§_ > = < \l’(h)’ §_ ‘F(h)>
1 0 1 (o}

pointing in z-direction.

In the limit of vanishing external field,h + 0, the state with all the
spins pointing in the z direction is a lowest energy state and in the irreducible
representation of the spin algebra I corresponding to this ground state (i.e.
such that Yo is a cyclic vector) one has a non vanishing magnetization

(spontaneous gggggﬁization). It is also clear that any other state with all the

spins pointing in one direction (say n) is a lowest energy state, when h = O,

(t)

If only the terms corresponding to o = zZ are retained in eq.(1.41) one gets
the Ising Hamiltonian, whereas if only the terms with & = x, y are kept one

has the XY model.
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. . t . .
and it characterizes a different, actually inequivalent , (irreducible) represen.
tation of the algebra I . Any such state has a different mean magnetization,

i.e. a different value of the magnetic order parameter. One can check that

finite volume states Wov R Yév corresponding to all spins being aligned

in different directions define disjoint worlds in the infinite volume limit

lim (
V+ @

Yov? Yov
The physical meaning of this equation is that elements of the (norm closed) J
spin algebra I can only induce local perturbations on the infinite volume
ground state and they are therefore unable to induce transitions between ¥,

and Wé (in the infinite volume limit). One might also consider representations
of & corresponding to a mixed phase, namely those in which the cyclic state

with lowest energy is a mixture of two pure state corresponding to different

magnetizations; the representation would then be reducible and the cluster

property would fail.

The spin rotations define automorphisms of I which are spontaneously

broken in each irreducible representation with non zero magnetization. The

-
local generator is the total spin SV

D I

\' ig Vv i

(+) To see the inequivalence one considers the ergodic means
- B 1 >
Sm = w-lim 7 i€V Si
V+ @
which exist because the algebra f is asymptotically abelian (actually

-+
strictly local, since spin operators at different sitesg commute). Since S,

commutes with I , it labels inequivalent representations of 32 » and in each

-»>
representation it is represented by M.
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in the volume V and

lim < [ s

V+rm>

(1.42)

(spontaneous symmetry breaking).

In the model considered so far the dynamics involves short range
(actually only nearest neighbor) interactions so that the Goldstone theorem

I ¢
applies . The Goldstone modes are the so called spin waves, whose energy

spectrum w(k) goes to zero as k + O.

The spectrum of such elementary excitations can be computed by introduc-

*
ing the Bose operators ai, ai through the equations

* X 1
s°-S-a a st =8 + 15 = (25 - a*a. )ta,
1 1 1 1 1 1 11 1
_ 1 (1.43)
g. = a* (2s - a?a,)é
1 1 1l 1

(Holstein-Primakoff transformation) for spin S.

In the approximation in which one considers only excitations correspond-
ing to small perturbations of the ground state we may expand the square root

in egs. (1.43) and retain only first order terms

%
S? * S - a*a, ST s (25)%a.
i ii i i

(4 R.V. Lange, Phys. Rev. 146, 301 (1966); ibid. 156, 630 (1967).
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The Hamiltonian then takes the following form

* *
H = Z} 2s J(l—YE ) bf; b; EZm(k)bk bk

k k
where b; is the Fourier transform of ai
N
1 ik. xi
b; = —_— 2: e ai
NOi
and . ‘
Ya = z—l z e1 k. 6 ‘
k §

2z being the number of nearest neighbors to one site. The operators bk’ bk

are called destruction and creation operators for magnons; clearly (k) - 0

as Q.-* 0. ‘
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II GAUGE THEORIES AND HIGGS PHENOMENON

2.1 General considerations on gauge theories

With the development of approximate symmetries in elementary particle
physics, like SU(2), SU(3), SU(6) etc. the problem of explaining the origin
of their breaking became an important issue. To this purpose spontaneous
symmetry breaking appeared as an elegant and powerful mechanism; however,
since no Goldstone boson with the right quantum numbers was known, a lot of
effort was devoted to evade the Goldstone's theorem. By the middle sixties
the theorem was put on such a firm basisT that it was impossible to evade
its conclusions unless some of the assumptions were relaxed. A possibility
was offered by gauge theoriesﬂ- . On the basis of a perturbative expansion
based on a semiclassical approximation it was argued that scalar electro-
dynamics (the so-called abelian Higgs-Kibble model) exhibited a spontaneous

breaking, <¢>= 6 # 0 , without Goldstone bosonsi {Higgs phenomenon). Since

this and other peculiar features of gauge theories are largely independent
of the specific models, it is worthwhile to ask whether they can be under-

stood in terms of general physical ideas.

TD. Kastler, D.W. Robinson and J.A. Swieca, Comm. Math. Phys. 3,108(1966)
1

In some of the early papers the lack of manifest covariance was
emphasized as the relevant feature which prevents the proof of Goldstone's
theorem. As it has been stressed in the previous sections and it will dis-

cussed in detail later, the lack of locality is the crucial issue.

iP.W. Higgs, Phys. Letters 12, 132 (1964); Phys. Rev. Letters, 13, 508
(1964); Phys. Rev. 145, 1156 (1966)
F. Englert and R. Brout, Phys. Rev. Lettérs _1__3_, 321 (1964)
G.S. Guralnik, C.R. Hagen and T.W. Kibble, Phys. Rev. Letters 13, 585 (1966)
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The standard characterization of gauge theories is the invariance
under a group G of gauge transformations of the second kind (the so-called
local gauge transformations). However this invariance property does not
have a direct physical interpretation since gauge transformations act non-
trivially only on unphysical quantities. The original motivation by Yang
and MillsT relates the requirement of gauge invariance to the requirement
that internal quantum numbers or charges have only a local meaning and that
their relative identification at different points is meaningless. ‘This
sort of equivalence principle does not appear to be supported by strong
physical arguments and becomes rather puzzling in the cases (confinement
and Higgs models) in which the physical states do not carry gauge gquantum
numbers, (see below). As a matter of fact, in any formulation in which
only observable quantities appear, the gauge symmetry collapses to the
identity. It is therefore natural to ask whether the crucial features of
gauge theories can be traced back to a more physical property than the
invariance under unobservable gauge transformations.

To this purpose we start from classical considerations and recall that
a gauge group G is an infinite dimensional Lie group, since the group pa-
rameters are functions of space-time. (The subgroup G of G corresponding
to constant group parameters is a standard continuous Lie group). Now, the
invariance of the Lagrangian under a discrete group provides only conserva-

tion rules; when the group is enlarged to a continuous Lie group G one does
not only get a conservation law

o 3 o~
Q = a'x Jo(x't) = const (2.1)

for each generator of G but also a continuity equation

T C.N. Yang and R.L. Mills, Phys. Rev. 96, 191 (1954)
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a”jz(x) = ( (2.2)

This equation implies that the “"charge" associated to ja
7]

locally (not only globally), in the sense that for any finite volume V

the variation of the charge inside must be completely accounted for by a

charge flux through the boundaxy surface. When the continuous Lie group G

is extended to an infinite dimensional Lie group the invariance of the
Lagrangian leads to a further strengthening of the conservation laws.

We consider for simplicity the abelian case. In this case the invar-

iance of the Lagrangian £ = £ (¢, &0*; Ap) under the gauge transformation

ig A(x)

p(x) > e vix) , A“(x) > A (x) + 3 A(x)

yields the following continuity equation

) .
a“{ 5:£tp igA ¢ + comp. conjug. + £ &y/\} = 0 (2.3)

¥ ) a,, A,
Since A(x) is an arbitrary function of space-time the above equation

seems to lead to infinite conservation laws. As a matter of fact one gets

M, . 5L 6L _
9 Jl_‘/\(x) + 3, a#/\(x) + 3# apA(x) Y5 A a“aVA(x) o,
a“AV u v

where

. L
J”(x) ig GT‘P ¢ + compl. conj. ,

is the current which generates constant gauge transformations and the

arbitrariness of A (x) implies

a"‘jﬂ(x) = 0 (2.4)
y &L _ v
j = -3 = -3 F (2.5)
7 sa#Av py
T T T B (25

is conserved
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Thus, the apparently infinite conservation laws are actually equivalent to
egs. (2.5), (2.5').

The argument can be repeated for the non-abelian case. As a consequence
of the extension of the invariance group G to an infinite dimensional gauge
group, for each generator of G one does not only get the conservation law

a
(2.2), but also a local Gauss's law in the sense that the corresponding j#

is the divergence of an antisymmetric tensor

K _ Voo
3,0 = 3G, (%) (2.6)

Eq. (2.6) implies that the current conservation is reduced to a purely
geometrical or kinematical fact, since the equations of motion for the
field carrying the associated charge are not needed, {the current is in
some way superconserved).

The second important consequence of eq. (2.6} is that, due to Gauss's
theorem, the charge Qa can be measured by a flux at (spacelike) infinity.
Therefore the charge Qa does not depend on the local behaviour of the
solutions, but only on their behaviour at spacelike infinity. Since such
behaviour is stable under time evolution and local deformationsf, in a cer-
tain sense eq. (2.6) says that the charge Qa has a topological character.

As we will show in the following sections, most of the peculiar fea-
tures of gauge quantum field theories can be derived simply from the valid-
ity of a local Gauss's .law, independently of the specific model and/or of
the equations of motion. We want actually to suggest that the local Gauss's
law is the basic and primary feature which characterizes elementary parti-

cle interactions in a more physical way than gauge invariance, since it does

T See F. Strocchi, Lectures, in Topics in Functional Analysis 1980-81,

Scuola Normale Superiore 1982
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not require the introduction of unphysical fields, like the vector potenti-

al, and their gauge transformations. Gauge invariance can then be regérded

as a technical tool to write down Lagrangian functions which authomatically

lead to the validity of a local Gauss's lawT

-

2.2 Local Gauss's law in quantum field theory

The discussion of the previous section, besed on classical arguments

can be extended to the quantum case. BAlong the lines discussed so far, a

quantum description of an infinite system requires to fix the algebra of
canonical variables or the field algebra and to impose commutation rxela-
tions as algebraic constraints. To this purpose, we have to say which are
the independent dynamical variables to be used to generate our algebra. The
procedure of fixing the independent variables, compatibly with the Gauss's

law constraint (eq. (2.6)), goes under the name of fixing the gauge.

For simplicity we restrict our discussion to the abelian case. BAs it
is familiar in quantum electrodynamics, in orxder to set up a well defined
evolution problem (Cauchy problem) one introduces the so-called matter
fields ¥(x) , V(x) and the vector potential A,(x). The introduction of
gauge dependent variables looks unavoidable if the Hamiltonian has to be
expressed as a simple local function of the dynamical variables. However,
just because one has the kinematical constraint of the Gauss's law

i

(3 G, = 3j_) the four variables A#(x) are in general not independent.
io o

1'For a look to gauge theories which emphasizes the local Gauss's law

see F. Strocchi, Gauss's law in local quantum field theory, in Field Theory

Quantization and Statistical Physics, D. Reidel Publ.1981

ey o P e b e i
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1-

We list some of the possible gauge fixing .
i) Coulomb gauge. It is defined by the condition
—>
diva = 0 . (2.7)

In the free field case eq. (2.7) implies that also Ao = 0. In the interact-
ing case Ao is a dependent variable which is however different from zero.
The two-point function of A, takes the following form

3.0.
<ALx) ASIY) > = (8, -2 pix-y) . (2.8)

ij A
It is the same foxm we derived in the quantization of the (free) electro-
magnetic field, by using creation and annihilation operators for particles
(photons) with helicity * 1. Since the formulation only involves physical

degrees of freedom it is called a physical gauge. It is however a non-

local gauge in the sense that locality is violated
[Ai(x) ' Aj(y)] # 0 for (x-y)2 <0

Therefore the algebra generated by Y (f) ,lw(g) and Ap(h), with £, g, h

localized test functions, is not a local field algebra.

ii) Evans and Fultonfgauge, also called temporal gauge. It is essentially

defined by the condition
A =0 (2.9)

The two-point function of A“ takes the form

3-2 -1

<RG0 ALY > = = (g, + 3,0,070 = 02,070 - 00,07 ¢ D)

T For a more detailed and rigorous discussion we refer to F. Strocchi

and A.S. Wightman, Jour. Math. Phys. £§J 2198 (1974)

Lk} E. Evans and T. Fulton, Nucl. Phys. 21, 492 (1960)
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where 3 = nHau and n* 1is a fixed vector of the form nH = (1, 0, 0, 0).

when n# is chosen to be spacelike one has the so-called azial gauge. The

. -1
inverse operator 0 is defined by multiplication with (i n* k 1 in

M)
the Fourier transform. The commutator is not local in time because of the
non-local operator 3—1.

- T
iii) Gupta-Bleuler or Feymann gauge . BAll the four components of A, are

treated as independent and one has
<R, (x) A,ly) > = -g,,D(x-y) + 8,0,G(x-y)

where D and G are Lorentz invariant functions which satisfy locality.

In this gauge locality and covariance are preserved; the price is that un-

physical longitudinal modes are allowed to appear in the formulation of the
theory. The Gupta-Bleuler gauge can be regarded as the prototype of the

local and covariant gauge. It is worthwhile to remark that locality is a

reqularizing feature of the theory, so that the singularities are less
severe1ﬁ.than in the non-lccal gauges and the renormalization procedure
can be carried through in an easier way. This perhaps explains why prac-

tically all the calculations of radiative corrections in quantum electro-

i A detailed presentation of this gauge can be found in any standard
text book on quantum electrodynamics. For a discussion of its mathematical

aspects and of its general properties see F. Strocchi and A.S. Wightmann,

lec. cit.

1"‘-]E‘o:r the abelian case see K. Symanzik, Lectures on Lagrangian Quantum

Field Theory, Desy Report T71/1 and G. Morchio and F. Strocchi, Nucl. Phys.
B211, 471 (1983); B232, 547 (1984).

i N.N. Bogoliubov and D.V. Shirkov, Introduction to the Theory of

Quantized Fields, Interscience Publ. N.Y. 1959 H. Epstein and V. Glaser,

Adiabatic limit in perturbation theory, Lectures at Erice School 1975 on
Renormalization Theory, G. Velo and A.S. Wightman eds., D. Reidel 1976.
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dynamics have been performed by using local gauges. From a non perturbative
point of view the effect of locality is to "decouple" regions which are far
spacelike separated and therefore it keeps the time evolution as a local
effect. Clearly the infinite volume limit is greatly simplified in a local
theory; the definition of the dynamics may even become problematic in the
infinite volume limit if the interaction does not have suitable locality
propertiest. Finally it is worthwhile to mention that locality plus rela-
tivistic spectrum condition play an important r6le in passing from a
quantum field theory in Minkowski space to the so-called euclidean formula-
tion.rt which has proved to be so useful for a non-perturbative approach to
quantum field theorxy.

In the local gauges the Gauss's law constraint, eqg. (2.6), does not
hold as an operator equation, but only on the states which have a direct
physical interpretation. Since eq. (2.6) is a consequence of gauge invari-
ance it should not be a surprise that eq. (2.6) holds only as an expecta-

tion value on gauge invariant states.

T This may be seen in simple spin models or in many-body systenms.

Al See e.g. J. Glimm and A. Jaffe, Quantum Physics. A functional in-

tegral point of view, Springer 1981
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2.3 Gauss's law and locality. Charge superselection rule

Since the local Gauss's law implies that the charge associated to j
can be measured by a flux at spacelike infinity, it is natural to ask
whether a local excitation of the ground state can have an effect on such

behaviour at spacelike infinity. In fact, one can prove that if QR is the

charge associated to a current which obeys a local Gauss'slaw, then all the

local fields have zero charge:

. = . u -
lim [Qp 2] = lim [37F (x,t) £20(x) a(t),A]
. - _
= égmm[ dx 3£ (x)ale) [F_(xt),a] = 0 (2.10)

- -
because only the points Xx,t with |x| n R contribute to the integral and

for R large enough they are spacelike with respect to the localization

region of A.

Similarly, if QR is an unbroken charge associated to a current which

obeys a local Gauss' law, one cannot obtain a charged state by applying a

local field to the vacuum.

In fact, if ¥ = A‘TB , with A a local field, one has

l;m (¥,0, %) 1;m (¥, 3F) (£ P)

(a ¥, [ @F) (fa) AT

.'.
(a'a \Po , (OF) (fRa) ‘I'o)

Now, the first term vanishes by locality as in eq. (2.10), The last

term also vanishes essentially because it describes the matrix element of




——_ﬁ

164

the flux of the electric field at infinity between two chargeless (local)
states. This can be proved in general by using the result that if QR

is an unbroken charge, for any local state ® , one has

lm (.0 ¥ ) = 0 .

Clearly, (9F) (fRoz) is an unbroKen charge, because by eq. (2.10)

llizm <‘Ifo,[(aF)(fRa) ,A]‘II°> = 0

-'..

(for any local field A ) and a'a lPo is a local state; therefore the

f

above result applies and one finally gets

lim (¥, ¥) = o
R
R
It is worthwhile to remark that the above argument only uses the validity

of the local Gauss' law in the expectation values of the state V.

Thus, quite generally, to obtain charged states one must use a field
algebra which does not satisfy locality. The lack of locality is not only
related to the vector potential (see bPrevious section) but it is also
unavoidable if one wants to have field variables which generate charged

states from the vacuunm.

The alternative offered by the local gauges is to weaken the local

Gauss' law in the following way

. — av

J# = Gpu + AIJ (2.11)
T D. Maison, Nuovo Cimento All, 389 (1972) .
t

For a more detailed discussion see R. Ferrari, L.E. Picasso and F,

Strocchi, Nuovo Cimento 39a, 1 (1977) .

ST
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with A“ a purely gauge field with vanishing expectation values on the

physical states (weak local Gauss's law).

For example in the Gupta-Bleuler gauge

describes the photon longitudinal modes and it does not affect the physical

matrix elements. Indeed, for any two physical states ¥, ® the photon

transversality condition requires

<, a”Auq>>= 0 (2.12)

so that

<V, i, q’>=<‘l"avauq’ > . (2.13)

Eq. (2.12) can be turned into a condition which characterizes those states

vhich have a direct physical interpretation and excludes the unphysical

longitudinal modes. In the Gupta-Bleuler gauge this is explicitely ob-

tained by characterizing the physical states as those satisfying the so-

called Gupta-Bleuler condition

@"a)" ¥ = o , (2.14)

+
where (dA) denotes the positive frequency (or destruction operator) part

of the operator JA. Since 9A is a "free" field, (eq. (2.11) implies

Oda = 0), the identification of the destruction operator part is well

defined.
Thanks to the weak form of Gauss's law, eqd.(2.11), in the Gupta-Bleuler
gauge one. can have local charged fields; .physical charged states, i.e.

charged states satisfying the Gupta-Bleuler condition (2.14) can be obtain-
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ed as suitable limits of local charged states‘t

Finally, it is worthwhile to mention that if a symmetry generated by a

current which cbeys a local Gauss's law is not broken, the corresponding

generator does not only define a selection rule but a superselection rule,

i.e. it is impossible to prepare a physical state which is a coherent

superposition of eigenstates lq1 >, |q > with different charges, q # q,-

2
Coherent superposition means that one can measure the relative phase in

the superposition

ajq, >+ b[q2> . (2.15)

To prove the above statement we first note that a physical state V¥ is
completely identified by the results of all possible measurements on it,
i.e. by its matrix elements <V¥, a ¥ >, for any observable operator A .

To measure the relative phase in the superposition (2.15) we need an
observable A which has non-trivial matrix elements between lql > and

|q2>, i.e. we must have
<q1|[Q:A]|q2> = (q1 —q2)<q1|A|q2> £ 0 .

Now, locality may be a useful but not necessary property for generic
field operators (for example for unobservable fields), but it is unavoid-
able for observable operators, as required by Einstein causalitz. In fact,
by the discussion of Sects. 1.8 and 3.2 of Part a, only localized measure-

ments are possible in our laboratories and therefore only operators which

have some localization property may be cbservable. Causality then forces

For a more detailed and rigorous discussion of the general features of

the local gauges we refer the reader to J.M. Jauch and F. Rohrlich, The

Theory of Photons and Electrons, 2nd expanded edition, 2nd corrected print-
ing, Springer 1980; F. Strocchi and A.S. Wightman, Journ. Math. Phys. 15
2198 (1974); G. Morchio and F. Strocchi, Nucl. Phys. B211, 471 (1993);—§é§§’
574(1984)
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the vanishing of the commutator of two localized observables, when the

localization regions are relatively spacelike. Thus if A is an observ-

able, A must belong to the algebra generated by local operatorsT.

The proof of the electric charge superselection rule becomes then a

simple consequence of the above argumentsTT . If A is an observable operator

and |q> is a physical state of charge q also A|q> is a physical state and

one has
< ,A > = im
qlllQ ]lq2 1 <q1|[QR ,A]|q2>
= 1i < X
im qll [ (E)IE‘)R ,A]|q2>

Since Fpp is an observable operator, locality gives

1im [(aF)Ra,A] = 0 (2.16)

R

by the same argument used for eq. (2.10). The electric charge superselec-

tion rule was suggested in the early fifties on the basis of physical con-

f

siderations and it has been repeatedly questionedﬁT . The above argument

¥ This deep physical property has been emphasized and exploited by R.
Haag and D. Kastler, Journ. Math. Phys. 5, 848 (1964). For the formulation
of gquantum field theory in terms of local algebras of cbservables see also
Cargése Lectures in Physics vol. 4, D. Kastler ed., Gordon and Breach 1970,

and the Proceedings of the Int.School "E. Fermi" Varenna 1973, "C* algebras
and Their Applications to Statistical Mechanics and Quantum Field Theory,
D. Kastler ed., Soc. Ital. Fis. Bologna 1976.

tt The rather sketchy argument presented here can be made more rigorous
and extended to the non-abelian case; see F. Strocchi and A.S. Wightman,
Journ. Math. Phys. 15, 2198 (1974). There one can also find the discussion

of delicate points connected with renormalization.
¥ G.C. Wick, A.S. Wightman and E.P. Wigner, Phys. Rev. 88, 101 (1952)

Tt See e.g. Y. Aharonov and L. Susskind, Phys. Rev. 155, 1428 (1967) and
D. Kershaw and C. Woo, Phys. Rev. Letters, 33, 918 (1974)
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shows that it is the consequence of basic properties: the local Gauss's law

or Maxwell equations and Einstein causality.
The extension of the above prcof to the non-abelian case leads to in-

teresting properties. For example for an unbroken SU(2) gauge theory, the

three charges associated to the three generators Tl' T2, T3 define superse-—-

lection rules. Since Ql' Q2, Q3 do not commute, an eigenstate of say Q3
with non zero charge, is a non trivial coherent superposition of eigen-

states of say Ql; therefore if physical "coloured" states exist they can-

not be eigenstates of any colour charge Qi' They can only be colourless

mixtures, i.e. such that the expectation value of any charge Qi vanishes

on such states .

2.4 Gauss's law and Higgs phenomenon

The local Gauss's law, which we have emphasized as the characteristic
feature of gauge theories, also provides the key for understanding the
Higgs phenomenon, where an apparent symmetry breaking is not accompanied by
Goldstone particles. As for the superfluid case, the symmetry associated

to gauge transformations of the first kind can be given a non-trivial mean-

ing only by introducing gauge dependent operators. Since the choice of the-

gauge affects the algebra of gauge dependent fields the discussion of a

possible symmetry breaking may in general depend on the gauge.

T Because of the mixture character of the states, the vanishing of the

expectation values of Qi does not imply the vanishing of the expectation
2 2 2
values of Q1 + Q2 + Q3.
For a more detailed discussion see F. Strocchi, Phys. Rev. D17, 2010

(1978) Sect. IV.

e
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In the gauges in which the local Gauss's law holds in the strong form

the field algebra cannot satisfy locality if we want to reach sectors other
than the zerxo charge sector. As stressed in Chap. I the lack of locality is

already enough.to prevent the application of Goldstone's theorem and symme-

try breaking may occur without Goldstone particles. 1In fact, perturbation

-expansions based on mean field approximations exhibit this phenomenon

(Higgs phenomenon).

However, since perturbation theory and mean field ap-

proximation sometimes lead to incorrect results one may wonder whether the
phenomenon can be understood on a better basis and perhaps be turned into a
theorem in which the crucial ingredients are clearly specified. This can be
done by using local (renormalizable) gauges, whereas the situation is more
involved in non-local gauges (see following section).

Before proving the theorem we will give a simple non rigorous argument
showing that symmetries generated by currents which obey a local Gauss's

law cannot be broken according to the Goldstone mechanism. By Goldstone

mechanism we mean the saturation of the commutator < [QR,A] >o :+ With

<éa >° # 0, by massless (boson) states, in the limit R->®, This satura-

2

tion implies that such massless boson states [ P>, p = 0 , must have

non-vanishing matrix elements with jp (x)|0>, i.e.

<0 |j“(x) |lp># 0
If j u obeys a local Gauss's law, the above matrix element can be reduced to
the divergence of the matrix element

- oIPX = ipx
<0|F‘w(x)|0>-e <o|rpu(0)|p>_e £,,P)

The transformation properties of a massless spinless state under the

Lorentz group and the Lorentz covariance of F v

-1 _ -1p ,-1o
UCA) Fy (0 UOA) Ay NS TE A
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then imply

_ -1p ,-1o
£ = /\“ A, £p0tAP) -

Thus f,uv transforms as a covariant tensor under the Lorentz group and by

general arguments it must have the following form

2 2
fw @ = (g,,9(") +pp, £ 0 () .

The antisymmetry of va : & property which defines the local Gauss's law,

then gives f=g =0 and f 0.

kY "
A more convincing argument about the Higgs phenomenon can be given in

the local gauges.

Theorem (Higgs phenomenon). In a local quantum field theory, if the sym-

metry « 1is generated by a current j which obeys a weak local Gauss's

I

law and it is spontaneously broken, i.e. for some local operator A

<8a >, = lim < [QRa,A] >, * 0 ' (2.17)

R0
then: i) the Fourier transform of < ju(x,t)A >° must contain 8(p2) sin-

gularities (Goldstone's modes); ii) because of the weak local Gauss's law

the Goldstone's modes cannot correspond to physical particles, i.e. these

modes cannot show up in the physical spectrum.

Proof. The statement i) has essentially been proved in Sect. 1.6 of the
previais section since the proof given there was based on locality and no
comnitment was made about the mildness of the infrared singularities which

may occur in the correlation functions'.

-f

The point was a proof of the JLD representation covering also the
cases of infrared singularities which violate positivity (see F. Strocchi,
Commun. Math. Phys. 56, 57 (1977)). We refer to that paper also for a more
careful handling of the inner products <+, «>, which in local gauges do

not satisfy positivity.
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To prove statement ii) we remark that by eq. (2.16)
0 <dA> = 1 - =
# o Ri_;mm<[QRa @F) /31>
= 1i ,
R]-f?n <[ARa al>
where A#E jl-l - aVFv“. If the 6(92) singularities, which account for

the symmetry breaking, are due to contributions of massless particle states

‘I’G one would have
< ¥ ,A“(X) ‘I’G> £ 0

This shows that \IIG cannot be a physical state, since the vacuum is clearly
a physical state and by definition of weak Gauss's law the matrix elements

of Ap vanish between physical states.

The above theorem clarifies the conditions for the occurrence of the
Higgs mechanism and it characterizes the phenomenon as due to the disap-
pearence of the Goldstone's modes from the physical spectrum as a conse-
quence of the (weak) local Gauss's law. Since no assumption has been made
about A , except locality, the theorem covers also the case in which the
breaking occurs by a composite field or by a bound state or by a n-point
function, with n > 1.

Before closing this section we want to mention a choice of gauge (the
so called unitary gauge) defined by the following condit:ion1r . Let ¥ bea
point which minimizes the Higgs potential V(p) and let Ba denote the
matrix representation of the generators of the group G, in the representa-

tion R 0 furnished by the Higgs field v . The gauge is fixed by requiring

T This gauge and its properties have been discussed in detail by S.
Weinberg, Phys. Rev. D7, 1068 (1973)
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the following condition for the field ¢ (x)
0%g, 9 (x)) = 0

i.e. for each point x the component of ¢ (x) in the direction of Gacf,
vanish for each a.

Clearly in the unitary gauge the applicability of Goldstone's theorem
is evaded in a rather drastic way since the gauge fixing explicitely breaks
the group G and the Hamiltonian is no longer invariant under G. The sym-
metry is explicitely broken by hand and there is no genuine spontaneous

breaking phenomenon.

2.5 Higgs phenomenon without a symmetry breaking order parameter

The euristic argument, mentioned in the previous section,seems - to
irdicate that in the gauge in which the local Gauss's law holds in the
strong form it may be difficult to break a gauge symmetry spontaneously,
since the Goldstone mechanism is not available. The ordinary perturbation
expansion for the Higgs models is based on a non zero order parameter
¢ = <¢>, which is actually put in by hand on the basis of the classical
potential, {(essentially a mean field approximation), but there is really
no guarantee that "symmetry breaking" occurs if one performs a non-pertur-
bative analysis. The problem becomes even more acute if the Higgs mechan-

ism has to occur by some dynamical field or condensate, for which a pertur-

bative treatment is not available,
To have a more dynamical insight on the Higgs mechanism, it is con-

venient to use the euclidean formulation and the functional integral
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approach and the ideas of dynamic instability, discussed in the previous
Chapter.
By introducing an ultraviolet cutoff, typically formulating the theory on a

lattice, the problem is very similar to a statistical mechanical problem.

The correlation functions for finite volume V , <A1...An> are obtained

by the formula

= 21 -Ay
< Al...z-\n>v zv ID«p... e Al"'An ’

2, = ] Do... e BV,
where Av is the action integral in the volume V. 1In the infinite volume
limit, one gets in general the correlation functions of a mixed phase, i.e.
a reducible representation of the field algebra. To get a pure phase one
has to properly chose the boundary conditions, i.e. to resolve the possible
dynamical instability by specifying suitable boundary values of the fields.

The specification of the boundary condition for finite volume V amounts

to a redefinition of the action
-
Av Av+AS .
The occurrence of a non vanishing order parameter with symmetry breaking is
actually governed by the boundary term AS . whose influence on fixed lo-
calized regions may be non zero for suitable values of the parameters of

the theory.

The above considerations lead to rather simple and strong results if

one adopts the Wilson approach to gauge theories , namely if one uses an

action invariant under gauge transformations of the second kind. This

amounts to dropping the gauge fixing term in the Lagrangian. For example,

T See e.g. J. Glimm and A, Jaffe, Quantum Physics, A functional integral
point of view, Springer 1981.
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for the non-abelian Higgs model the euclidean action without gauge fixing

1.

reads
- 1 2 2 4
A J { 1 (J.‘;w) + [(au + ig Au)gp] + V(cp)} d'x (2.18)
where ¢ is a scalar field, Ay(x) is a matrix-field corresponding to the
representation of the gauge group generators and
F“V = a“ A, - aVA”+g[A“,AV] . (2.18")
The Wilson action Aw is the lattice version of the action (2.18) and

it is invariant under local gauge transformations a)\(x) . One can try to

get a non vanishing symmetry breaking parameter s;

<p> by fixing the

boundary condition for the functional integral, v [x)

¢ on the boundary

of the volume V. For any localized polynomial P (y) one gets

<y (x) (Plp))> = <P(aMx) (p)) >
-z (p RV DR )
j ol Ax) Y

w -1 W -1
Z-l Jv(a-;(‘p” e-AV(O()\ (@),...) e_AS(‘"l(‘o”

= Plyp) =
where a change of variables ¢ > ¢' = cx_)\1 (v) has been made in the last step.
Since one can c¢hoose a gauge transformation ak (x) such that a)\(x)

identity outside the localization region of P (p) and % (x) # identity

inside one gets
_1 _
As(a)\ )y = AS(‘P) (2.19)
and therefore

<aMx)(P(‘P)) > = <P(y) > . (2.20)

i For more details on gauge theories see e.g. L. D. Faddeev and A. A.
Slavnov, Gauge Fields. Introduction to Quantum Theory,Reading, The Benjamin

Cummings Publ. Co. 1980.
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The argument can be easily generalized to any correlation function of A#

and ¢ and one concludes that there cannot be any gauge symmetry breaking

in Wilson lattice formulation of gauge theories (Elitzur, De Angelis-De

.‘.

Falco-Guerra's theorem'). By eq. (2.20) only the correlation functions

which are invariant under gauge transformations of the second kind are non
vanishing in the Wilson approach and practically this amounts to consider-
ing only a representation of the gauge invariant algebra (or a reducible
representation of the gauge dependent field algebra).

The situation has some features in common with the case of superflui-
dity (see Sect. 1.7 of the previous chapter) and one may wonder whether the
absence of gauge symmetry breaking is actually a trivial consequence of the
choice of considering only gauge invariant operators, as in the theory of
superfluidity. Since in that case the use of gauge dependent canonical var-
jables turned out to be a wvery useful tool for discussing the dynamical
problem, it looks worthwhile to reconsider the problem in the presence of a
gauge fixing. The gauge fixing explicitly breaks the gauge transformations
of the second kind and, except for the unitary gauge discussed in the pre-
vious section, it is in general invariant under the gauge transformations
of the first kind. The presence of a gauge fixing then allows non vanishing
correlation functions which are globally but not locally gauge invariant.
From a practical point of view this is a useful feature, since the conven-
tional continuum approach to gauge theories involves the use of gauge
dependent correlation functions in an essential way: they are the building
blocks of the perturbative expansion. The calculation of transition ampli-

tudes in terms of Feynman's diagrams and the renormalization procedure are

5. Elitzur, Phys. Rev. D12, 3978 (1975).
G.F. De Angelis, D. De Falco and F. Guerra, Phys. Rev. D17, 1624 1978.
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heavily based on Green's functions which are not invariant under local
gauge transformations. Clearly for a theory with a gauge fixing the ques-
tion of the existence of a symmetry breaking order parameter has to be
reconsidered anew.

It has baen provadf that in the temporal gauge one cannot have a sym-
metry breaking order parameter by an argument which shows that the gauge
fixing is not able to yield a sufficiently strong coupling between the
boundary and the interior of V 4in the limit V + and therefore the

correlation functions are independent of the symmetry breaking boundary

conditions. The proof can be supplemented by an argument, valid for a
large class of gauges, which explains the result as a restoration of
symumetry due to disorder effects induced by field configurations with

non~trivial topology (point-like defects or instantons):rT

In conclusion, for this class of gauges the possible dynamical insta-
bility, if it exists associated to the Higgs phenomenon, cag;ot be resolved
by a symmetry breaking boundary condition (in contrast with the case of
Bose condensation). The absence of symmetry breaking then demands a charac-
terization of the Biggs phenomenon which is different from that usually

given in the standard perturbative approach. We recall that the standard

fJ. Fréhlich, G. Morchio and F. Strocchi, Nuclear Physics B190 [ PS3],
553 (1981)
Tt

case of low instanton density, a property which can be justified in Higgs's

See the above reference for details. The argument is reduced to the

models since due to quantum fluctuations the instanton size is expected to
be finite and small, of the order of m;I, the typical mass parameter oc-
curring in the Higgs potential, and the instanton density can be estimated

4 2
to be of the order of m, exp [-c/g”].

-t
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approach to the Higgs phenomenon is based on a perturbative expansion around
one absolute minimum ¥ of the classical Higgs potential (Goldstone's
criterium). The symmetry breaking condition is then put in by hand, on the
basis of a semiclassical or mean field approximation. Since V{yp) is invar-
iant under the gauge group G any other point ¢' of the critical orbit {vs},
i.e. any point Q' = ap, ®EG , is also an absolute minimum of V{y).. The
selection of one point ¢ of the orbit or more generally the occurrence of
symmetry breaking xequires a non-perturbative justification, which show
that a non-vanishing order parameter <¢ >= @ can be obtained by specifying
a suitable boundary condition or by introducing an external field. The
non-perturbative results mentioned above show, however, that for a large

class of gauges (¢ >= 0, independently of the symmetry breaking boundary

conditions introduced to define the infinite volume limit of the functional
integral and therefore the standard perturbative approach is not justified.
This may look rather disturbing especially because in the standard approach
the generation of fermion and vector boson masses is governed by the order

parameter (¢ ). Typically at lowest order one has

n
H
A
€
v

M

Y

My =9

and in general the existence of a symmetry breaking order parameter

seems to play a rather crucial rSle in the standard approach.

t For the experimental successes of the Glashow-Weinberg~Salam model
see E.S. Abers and B.W. Lee, Gauge Theories, Physics Reports vol. 9C, N.1.
(1973).
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2.6 Symmetric picture. Complementarity principle

We will now present a characterization of the Higgs phenomenon, which
does not require a symmetry breaking order parameter and therefore it
applies also to the gauge in which <¢ >= Q.

This approach is based on the concept of critical orbit {¢} = { set

of points of the form ap, « €G, with § an absolute minimum of Vip) }.
Whereas the choice of one point ¢ is a gauge dependent step, the orbit { ¢ }

is a gauge invariant concept. The residual group G

(7} of the orbit {¢}

is defined as the abstract group which is isomorphic to the stability

groups Ga, when ¥ varies over {¢}. The Higgs phenomenon can then be

characterized by the existence of critical orbit {¢} with residual group

G{ ) smaller than (not equal to) G. Clearly the rdle of the residual in-
variance group Ga of the standard formulation is now played by G @y
Whereas the selection of a point ¥ requires a non-trivial coupling between
the boundary condition and the interior of the volume V in the infinite
volume limit, the selection of a critical orbit {¢}is essentially a volume
effect. 1In the infinite volume limit the functional measure is essentially
concentrated on those field configuration which are "close" to the critical

“Ay(¥) 0 when V+o , if ¢ is not "close™ to {F}).

orbit (roughly e
By making reference to the orbit {g} , one may develop a gauge invar-
iant formulation of the Higgs phenomenon. For simplicity.we consider the

case of total breaking, namely G{-(;} = identity. The discussion will easi-

ly generalize to the case G{$}= U(1) , which is physically relevant for

the Glaskow-Weinberg-Salam SU(2) x U(1) wunified theory. The general case

G{—-} = H is more complicated; however since the complications are not
v

related to the Higgs phenomenon, but rather to the problem of describing
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physical states in the presence of an unbroken "colour" group H , it will
t

not be discussed here . The existence of a gauge-invariant description

is based on the following:

Theorem . If Gz = identity, for any set of local fields {\,Ua(x)} belong-
ing to an irreducible representation R\ll of G , there is a linear corres-
pondence between the fields of R‘ll and the G-invariant composite local
fields P (1) (p)y - ¥ = P*(tp) (Lii) \Uﬁ = ‘I’(i) (¢) , which are polynomials in

the Higgs scalars and linear in the fields ¥ . The correspondence is one

to one modulo fields of the same form which vanish on {¢ }.

Lemma . Let {9} be an orbit of a representation RB of a compact Lie
group G ,{¢}={¢ = R, g € G }, then any function F(p) defined on
the orbit {9} and transforming according to a representation R of G

(briefly R-covariant):
F(Rﬂ(g)tp) = R{(g) F(p) .
is the restriction to that orbit of an R-covariant polynomial.

Proof. Let Vg pe the vector space of the functions on the orbit {¢} ,

¥ For the general case see J. Frdhlich, G. Morchio and F. Strocchi,
Phys. Letters 97B, 249 (1980); Nucl. Phys. B190 [FS3] 553 (1981).
11

The use of gauge invariant fields in specific models with scalars in

the fundamental representation has been advocated by G.'t Hooft in Quarks

and Leptons, Cargése Lectures 1979, M. Levy et al. eds. Plenum 1980 and by
S. Dimopoulos, S. Raby and L. Susskind, Nucl. Phys. _B_lég_, 373 (1980). The
general case and the proof of the existence of the symmetric picture in
general was discussed in the previous reference, where it was shown to be a

purely geometrical fact with no conjecture about the dynamics.
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which transform according to R. Since G is a Lie group, V_ 1is a space

R

of continuous functions on {¢}. This follows from

|Fee,) - Fy)| = | (- Rrig),)) Flo,) |

where 92 is chosen in such a way that 2 and such that

J12 ¥4
912 —> identity, when v, -*sol. VR has dimensions at most equal to the
dimensions of the representation R ,» Since an R-covariant function is
completely determined by its value on a fixed point ¢ €E{y¢}.

Since the orbit is a compact space, by the Stone-Weierstrass theorem
each eiement of VR can be uniformly approximated by polynomials Pn (¢)
restricted to {¢}. Actually, only the R-covariant polynomials are suf-
ficient for the approximation. In fact, if Pn (¢) > Flp) on the orbit
{¢} , the R-covariant polynomials

PR&p) = (Vol(G))'lf dg r! (9) B (R,(g9)p) , Vol(G) EI dg ,
n G SN G

also converge to F(yp) on {p} since

-1 -1
Ipz(.p) - Flp) | = (Vvol(c)) " | JGdg(R {g) Pn(Ph(g)tp) ~ F(tp))l <
- -1
< (Vol(G)) lldeg R “(g) [P (R (9)y) - F(R ()| <

< sup_IPn(cp) - F(p)] > 0 .
¢ € {p}

Since VR is finite dimensional and obviously contains the vector space
VR of R-covariant polynomials restricted to {g} , (the elements of VR

are actually the equivalence classes with respect to the property of being

equal on {yp}) , the two vector spaces must coincide.

= identity)

Proof of the Theorem. (G _
) 72
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Any G-invariant local field, constructed in terms of Y € RH and
linear in Y € R is of the form of a scalar product (F(p),¥) with F{yp)
transforming according to R. Therefore, by fixing a point ¢ of the orbit,
the above invariant yields a definite component of R. Conversely, let us
fix a (normalized) vector vV, € R. For any point ¢ € {¢), since G__ is
the identity, there is exactly one element ¢ ‘pG G such that )

%‘%"7 = ¢ .

Clearly if ' = P}l(h) Y, then g_,=h o We then define

)

Flp) = R(c:J‘p)v1 .
Thus

F(R,(h)p) = R(g Jv, = R(h g(p)vi =

R, ()¢

R R(g)v, = R Flo) ;

i.e. F(¢) transforms according to the. representation R. By the above
Lemma F(p) is the restriction of a polynomial P(p) to the orbit {p} and |

(P(9),¥) is a G-invariant local.field which reduces to llli = (vi,lll) when

For a simple illustration see the SU(2) model discussed below,

The geometric meaning of the above theorem is that the number of G-in
variant composite fields which are polynomials in ¢ and linear in ¥ and are
linearly independent on the orbit {¢}is exactly equal to the dimensions of
R v One may thus describe the physical particles of R v by gauge invariant

fields (symmetric picture). The absence of degenerate multiplets in a sit-

uation in which all the correlation function are G-invariant can thus be

explained. by the fact that physical states are described by composite
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fields which are not related to one another by transformations of G . To
illustrate these features one may show that the fermion mass matrix can be
written in a gauge invariant form, without involving a gauge dependent sym-
metry breaking parameter <¢>. To this purpcse cne considers the fermion-

Higgs Yukawa coupling f Woz \bﬁ l&% 302, I' being coupling matrices. In the

standard picture the fermion mass is identified with the expectation wvalue
of 1&;’ ' I in lowest order. This can be seen by expanding the functional

integral computation of the two-point function <V (x) Va(y)> , around
o™ TP

Y= ¢ =<¢> In the symmetric picture one must compute the two point func-
tion of the fermion gauge invariant fields <wi(x)\pj(y)>. To this purpose it

is convenient to rewrite the Yukawa term in a different form; we note that

(1)

the polynomials P () can be suitably normalized in such a way that

i i i *
PozB (v) Pa (p) Pﬁ (p)
are G-covariant orthogonal projections satisfying

i
PRag® " o

Then

- 2 _ i, 3 )
Valp bg ©y = fj Py ¥y Bhs V5 Lg ¢y
_ o wipl, . *o3 2
= izj vyt \IfPa(ﬁP) Pﬁ(w)l‘aﬂsoz
The operator

i3

u m plig Pgw) rt

af ¥y,
is clearly gauge invariant and its expectation value (which may be non zero

even if there is no symmetry breaking order parameter) can be identified

with the fermion mass matrix.

The above analysis can be extended to the case in which G __ = u(1) ,

v}
which is rxealized in the 5SU(2) x U(1) Glashow-Weinberg-Salam model. In




—
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this case the physical particles which in the standard picture are neutral
with respect to the residual U(1) group are now described by G-invariant
composite fields, as before, whereas the physical particles which have a
non zero residual U(1l) charge are described by composite fields, which are
G-invariant modulo U(1) transformations. More precisely to each charged
particle one associate a representation {‘I’a} of G , which is equivalent

to R and it is of the form
‘I’a = PO!B {v) l]lﬁ

with P ﬁ(¢) a polynomial of the Higgs field cpT The important point is that
different charged fields of R v are now replaced by different representation
{‘l:x }1 of G. 1In this way one is reduced to a gauge invariant picture, sim-
jlar to the case in which local gauge transformations are unbrokenT . The

correlation function are computed by constructing the bilocal fields or

strings

\Ifa(cp) (x) P(exp J,ny AM(E) d'c"“)m3 ‘Ifﬁ(qz) (¥)

From a practical point of view a simpler description is obtained by asso-
ciating to each charged field of the standard picture a composite field
which is G-invariant "modulo U(1) transformations". The neutrino is

described by the G-invariant field

v’ = :I.Napoztli = det(py)

2 * -
with N a normalization constant, N = <¢ go>1. The left-handed electron

e * e
is described by ¥ L - Ny ¢ and the right-handed election by ¥ R \l/R .

f For more details see J. Fr8hlich, G. Morchio and F. strocchi, loc.cit.
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Thus one has

1 2 - *
P, p) = Ng, + P, (p) = .Neaﬁ v
and
e _ * 0 - * 1/2
<M (p)> = Nf <¢a8a«p2> £f <o >
Mp)> = NE < bye> = 0
<M (p)> £ <eg95% 9,

in agreement with the predictions of the standard model (the philosophy in
however very different!). Similar computations can be done for the W mass.
These results show that the existence of a symmetry breaking order parame-
ter is not necessary and that the experimental successes of the Glashow-
Weinberg-Salam model can be explained also if <p> = 0.

Finally it is worthwhile to mention that the above proof of the
existence of a complete set of gauge invariant fields does not require any
conjecture about the dynamics. The existence of a symmetric picture for the
Higgs phenomenon also sheds light on the rigorous results of lattice gauge

theory t « Which show that in an SU(2) gauge theory with scalars in the

fundamental representation no sharp boundary separates the confined and the

Higgs regime. This result has been extended to a general group*T and this

feature has lead to the conjectureTTf of the so-called complementarity

i K. Osterwalder and E. Seiler, Ann. Phys. 110, 440 (1978); see also E.
Fradkin and S. Shenker, Phys. Rev. D19, 3682 (1979)

Tt For a general gauge group the argument requires the introduction of as
many Higgs fields as necessary to completely break the symmetry. This very
artificial duplication of Higgs fields has some unpleasant features, like

that of generating pseudo Goldstone bosons, and it does not seem reasonable

for realistic mcdels.

Tt S. Dimopoulos, S. Raby and L. Susskind, Nucl. Phys. 173B, 208 (1980).
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principle. This principle states that a confining theory of fermions and
gauge bosons can be analyzed as if a dynamical Higgs phenomenon takes place
(Higgs's picture), or as if the gauge symmetry is unbroken (symmetric pic-
ture), the observable results being the same, The group theoretical
proof discussed above may be regarded as a proof of the complementarity
principle: on cne side a gauge invarijant description is proved to exist in
both the Higgs and the confinement regime, independently of the dynamical
behaviour of the theory, and on the other side the phase structure of the
theory is reduced to the properties of the residual group. Moreover for a
complete description in terms of gauge invariant (composite) fields the
above theorem shows that the relevant point is the triviality of the

residual group, rather than the condition that the scalars are in the

fundamental representation of the group.
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EXERCICES

Problem 1 Discuss the difficulty of formulating a relativistic

dynamics of (point) particles based on the concept of force at a

distance.

(For a discussion see e.g. V.V, Molotkov and I.T. Todorov, Commun.

Math. Phys. 79, 111 (1981).

Problem 2 Show that if in agiven representation of;fQ, the number
operator N = 2 a*i*ai is a well (densely) defined operator, then N

has a purely discrete spectrum with eigenvalues {0,1,2, ...} (and

in particular there is a "no particle'" state).

Problem 3 Show that the shift transformation for the creation and

destruction operators

a, * a, + 1, A
1 1 1 1

leads from a Fock representation for ai to a non-Fock representation

2
for Ai unless E Ifil < =

(Hint: Compute the expectation value of the two number operators

- * and N =) A* A ).
N, =X apa nd N, =2 a7 A, )




Problem 4 Show that the free Hamiltonian H =2 w, a* a with w2~
o k'k k k

> -
Jk] for small k's (no mass gap) can be well defined also in representa-

tions which are not unitarily equivalent to the Fock representation

int: _ : . -3/2
(Hint: Take ak = bk - fk with bk in a Fock representation and fk ~ k /
for small k (infrared representations)).

Problem S Compute the mean number of phonons in a polaron state in

-
the extreme non-relativistic limit (|q| <<1) to the first non-trivial
order in perturbation theory.
Problem 6 Show that in a quantum field theory with a unique transla-
tionally invariant state ﬁ) the two point function

<y L e(x) o(y) ¥ > = b , implies that ¢ (x) ¥ = 'bY¥

o] o o o
Problem 7 Compute the mean square deviation from total condensation,

< (N - No)2 >o (depletion), for a superfluid Bose system in the

Bogoliubov approximation.

Problem 8 Compute the (spatial) size of a Cooper pair in a super-

conductor using the BCS model.
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Problem 9 Discuss the spontaneous breaking of the Galilei group in

a.  condensed system (with non-zero average density)

->
(Hint: Compute the infinitesimal variation of the current operator j )

Problem 10 Discuss the spontaneous breaking of the electron charge
without Goldstone bosons and with energy gap , in the BCS model of
superconductivity. Identify a relevant general mechanism which explains

how the conclusions of the Goldstone theorem are evaded.

(Hint: Consider e.g. lim [ 4 Q(t), vv 1 )
R+ o dt R

Problem 11 Discuss the low k limit of the energy spectrum of a

2
charged Bose gas using eq.(2.20) of Part. B (U(k) = 4w /k"),

Problem 12 Show that for an isotropic ferromagnet with nearest

neighbours interactions

J 4 i si+5
i,8

and periodic boundary conditions,ground states have all the spins aligned.
. -+ > ‘2
(Hint: Use the identity Si-. Si = %(s. + Sj) + cenumber, and that by

+ -+ 2
angular momentum addition rules the highest eigenvalue for (S +S_)° is
1

> >
obtained if the spin Si and.Sj-are aligned ).
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Problem 13 Apply the Goldstone theorem to spontaneous magnetization

in a ferromagnet.

(See e.g. R.V. Lange Phys. Rev. 146, 301 (1966); ibid. 156, 630 (1967))

Problem 14 Find the gauge invariant form of the vector bosons mass
operator in the Glashov-Weinberg-Salam model.

(Hint: Use the symmetric picture).
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