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Preface

Low-dimensional correlated electron systems are a fascinating topic in
condensed matter physics which started in the 1930s, developed in the
1960s and received great attention from physicists during the last decade.
Research into low-dimensional magnetism occupied an important part of
this field, because it originated from electron correlations due to Coulomb
interaction. In the last twenty years the problems of low-dimensional
correlated electron systems has turned from a narrow, special topic of
mathematical physics into one of the central problems of condensed matter
physics. This became true due to the great progress in the miniaturization
of technology, and many great findings in the composition of new materials
like metal-oxides, carbon nanotubes, organic compounds, optical lattices
for ultra-cold quantum gases, etc., in most of which the scale of research is
micro- and nano-physics. New mesoscopic and nano-devices are based on
quantum dots, wires, rings in which the low-dimensionality and quantum
nature are basic features. This, in turn, resulted in the creation and devel-
opment of powerful theoretical and mathematical approaches, like Bethe’s
ansatz, bosonization and conformal field theory. These approaches are not
only important to the pure quantum many-particle theory, but also hap-
pen to be extremely useful in a number of areas related to this theory.
The reason for such an application is that certain important phenomena,
like high-Tc superconductivity, physics of magnetic impurities, etc., cannot
seem to be explained in the framework of weak couplings, i.e., perturba-
tive theory, or mean-field-like approach. One-dimensional exact solutions
provide a complete and unambiguous picture of correlated electron systems
and play a role in the basis to further applications of perturbative methods.

The aim of the book is to present an introduction to recent achieve-
ments in theoretical studies of exactly integrable low-dimensional models

vii
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of strongly correlated electrons and spin models. The central topic of this
book is finite size effects in lattice exactly solvable spin and electron mod-
els. However, this book is not a review. A great number of papers were
published since the 1920s till now on exact solutions in one-dimensional
quantum models and it would be completely hopeless to discuss and even
mention them all. (I would like to use this opportunity to sincerely apol-
ogise to those authors whose important contributions are not mentioned
here.) Unfortunately, it is impossible to write about the many very impor-
tant aspects of the Bethe’s ansatz, the main subject of this book, like its
purely mathematical developments, exact solutions of field theory mod-
els, continuous models of interacting electrons, models of systems with
more than one internal degree of freedom (e.g., orbital moments of elec-
trons), systems with lower symmetries, models with long-range interac-
tions, multi-chain quantum models, magnetic and hybridization impurities
in three-dimensional metals, etc., though they are related to the topic of
the book. Some effects, like the behaviour of elementary excitations in
quantum correlated electron and spin chains are also not presented here.
I can only refer the interested reader to some excellent monographs, re-
view articles, collections of reprints, like [Baxter (1982); Gaudin (1983);
Andrei, Furuya and Lowenstein (1983); Tsvelick and Wiegmann (1983);
Schlottmann (1989); Izyumov and Skryabin (1990); Jimbo (1990); Kore-
pin, Bogoliubov and Izergin (1993); Schlottmann and Sacramento (1993);
Korepin and Eßler (1994); Ha (1996); Schlottmann (1997); Takahashi
(1999)].

The structure of this book is as follows. After a short introduction to
statistical mechanics and thermodynamics, I remind the reader of some im-
portant facts about thermodynamics of quantum spins and free electrons
in crystals in Chapter 1. Very important Mermin–Wagner and Hohen-
berg theorems are also presented in this chapter, to explain to the reader
the importance of exact studies in low-dimensional quantum systems. In
Chapter 2 several exact results of one-dimensional theory of quantum spins
are presented. Those theories are relatively simple, but their knowledge
permits us to understand the deeper nature of homogeneous quantum spin
chains. Chapter 3 is devoted to the description of the main aim of this
book — the Bethe’s ansatz in its most known form, the co-ordinate Bethe
ansatz. The development of this method for models of correlated elec-
trons, the nested Bethe ansatz, is presented in Chapter 4. Chapter 5
explains features of the elegant algebraic Bethe ansatz, or the quantum
inverse scattering method to the reader. Hence, the reader experienced
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in Bethe ansatz is, probably, aware of those studies. The main results
of the book are presented in Chapters 6, 7 and 8. Chapter 6 describes
the difference in thermodynamic behaviours of bulk particles with those,
situated at edges (boundaries) of open chains. Similar effects of isolated
impurities are presented in Chapter 7. The reader can see how great the
difference in behaviours of host electrons (spins), and “surface” or impure
ones is. Very often effects for homogeneous hosts and “distinguished” sites
are qualitatively different, and they have to be taken into account when
one interprets data of experiments in low-dimensional electron systems. I
present results for various hosts and impurities, from the simplest ones, to
the more complicated. Chapter 8 gives the description for thermodynamic
behaviour of finite concentration of impurities in correlated electron and
quantum spin hosts. To the best of my knowledge, Bethe ansatz solvable
models are the only example, where it is possible to obtain exact thermo-
dynamic characteristics for correlated electron and spin systems with en-
sembles of impurities, e.g., to investigate the interplay between correlation
effects and disorder exactly. The important method of modern Bethe ansatz
thermodynamics, the quantum transfer matrix approach, is also presented
in that chapter. In Chapter 9 other finite size effects are described. For
example, recent experiments drew attention to studies of quantum topo-
logical effects, like persistent currents in quantum rings with or without
embedded quantum dots. Another aspect of similar finite size effects is
the possibility to extract from them the information about the asymp-
totic behaviour of correlation functions, using the conformal field theory
approach. This is why, in Chapter 9 a short introduction to the scaling
theory and conformal field theory is given. Finally, in Chapter 10 I discuss
which methods can be used beyond exact ones. Here some short descrip-
tions of scaling theory of quantum phase transitions and bosonization are
given. However, all these theories cannot be presented in detail, and I refer
the reader to several excellent books and review articles like [Ma (1976);
Sólyom (1979); Cardy (1996); Di Franchesco, Mathieu and Sénéshal (1997);
Sondhi, Girvin, Carini and Shahar (1997); Gogolin, Nersesyan and Tsvelik
(1998); van Delft and Schoeller (1998); Nagaosa (1998); Sachdev (1999);
Kadanoff (2000)]. I hope that those readers, who are familiar with exact
solutions, will find some new interesting facts about finite size effects in
one-dimensional quantum spin and electron systems, while the book can
serve as an introduction for beginners to introduce them to the beautiful
world of exact solutions.
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sure for me to thank the many friends and colleagues who contributed to
it. First of all I would like to thank my father, who introduced me to
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tion, helpful suggestions and essential support. I have benefited from and
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Chapter 1

Introduction

In this chapter we shall remind the reader of some basic ideas of thermo-
dynamics and statistical physics of interacting electron and spin systems.
We shall show how thermal fluctuations destroy long-range order in low-
dimensional quantum interacting systems at any nonzero temperature if
only short-range interactions are present.

1.1 Why is the Topic of the Book Worthwhile Studying?

Low-dimensional electron systems (insulating magnets and conductors)
have been an active topic of scientific research long before their experi-
mental realization in organic conductors, polymers, Peierls insulators and
nanoscale and mesoscopic systems, e.g., quantum wires and edge states of
the fractional quantum Hall effect devices. There are several principal dif-
ferences between one space dimension and higher dimensions, most of which
can be traced back to the reduced phase space in one dimension. Key prop-
erties distinguishing one-dimensional systems used to be connected with
thermal fluctuations destroying long-range order at any nonzero tempera-
ture if only short-range interactions are present and quantum fluctuations
tending to suppress a broken continuous symmetry, the spin-charge separa-
tion (the charge and spin content of wave functions of electrons move with
different speeds), the breakdown of the Fermi liquid description, i.e., ab-
sence of Fermi liquid quasiparticle pole in the Green’s function (it becomes
a marginal Fermi liquid or Tomonaga–Luttinger liquid with collective exci-
tations due to global conformal symmetry), and the localization of electrons
with even a small amount of disorder.

During recent years the interest in the strongly correlated electron
and quantum spin systems has grown considerably. Usually low-lying

1
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electron-hole excitations of three-dimensional metals are successfully de-
scribed within the phenomenological Landau’s Fermi liquid theory. A Fermi
liquid is the Fermi sphere and a gas of weakly interacting between each other
quasiparticles defined via poles in one-particle Green’s functions. Quasipar-
ticles continuously evolve from free fermions when the interaction is adi-
abatically switched on. This is why, they have the same sets of quantum
numbers and statistics as noninteracting electrons. In one space dimension
the residue of the Fermi liquid quasiparticle pole vanishes and it is replaced
by incoherent collective excitations, which follow from the global conformal
symmetry. These excitations involve non-universal power-law singularities,
which, in turn, determine the asymptotic behaviour of low-energy corre-
lation functions. Although the Fermi surface is still properly defined, the
discontinuity (jump) of the momentum distribution at the Fermi surface
disappears, due to the above mentioned singularities. Systems displaying
such breakdown of the Fermi liquid picture and exotic low-energy spectral
properties are known as Tomonaga–Luttinger liquids.

On the other hand, in a number of recent experiments on the low-
temperature behaviour of the rare-earth compounds and alloys, which are
essentially three-dimensional, the non Fermi liquid character of the be-
haviour of the specific heat, magnetic susceptibility and (magneto) resis-
tivity has also been observed during last couple of decades. It was pointed
out recently that these features of the non Fermi liquid characteristics can
be explained using the concept of the disordered behaviour of magnetic
impurities in such systems. Superconductivity and antiferromagnetism in
low dimensions has regained interest with the discovery of high-Tc super-
conductors and new heavy fermion superconductors. Very anisotropic mag-
netic and transport properties of the former arise primarily from the CuO
planes there. Many of normal state properties of the two-dimensional high-
Tc superconductors are very different from normal metals and cannot be
reconciled with a standard Fermi liquid theory. A marginal Fermi liquid
picture, similar to the one of one-dimensional electron systems, has been
proposed to explain some of these features. Models of stripe-like effec-
tively one-dimensional structures were proposed to explain some essential
properties of high-Tc cuprates and heavy fermion Kondo lattices. The one-
dimensional Kondo lattice model, realization of which is often considered
as realistic model for heavy fermion materials, is still poorly understood.
One can say that the finite concentration of magnetic impurities and ran-
dom distribution of their characteristics (Kondo temperatures) will give rise
to frustration, spin gap, non Fermi liquid critical behaviour and possible
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additional magnetic phase transitions (similar to metamagnetic ones). Pos-
sible implications of one-dimensional strongly correlated electron systems
other than high-Tc superconductors could be new metal-oxides with ladder
structure, and the edge states of the fractional quantum Hall effect, heavy
fermion systems, etc. Ladder spin or correlated electron structures are non-
trivial examples of quantum systems with the properties of both one- and
two-dimensional models.

A substantial level of understanding of one-dimensional quantum cor-
related electron and/or spin systems has been reached over the past years.
The exact solution with the help of the Bethe’s ansatz of numerous mod-
els together with field-theoretical studies have provided deep insight into
the ground state of systems, the complete classification of states, thermo-
dynamic properties, and an asymptotic behaviour of correlation functions.
Within the Bethe ansatz method the eigenfunctions and eigenvalues of the
stationary Schrödinger equation are parametrized by a set of parameters
known as rapidities. A system with internal degrees of freedom (such as a
spin) requires a sequence of additional, nested Bethe ansatz for the wave
function. In fact, each internal degree of freedom gives rise to one set
of rapidities. Independently of the symmetry of the wave function and
spin, eigenstates are occupied according to the Fermi-Dirac statistics, be-
cause hard-core particles are considered. Usually, in the ground state (and
at low temperatures) each internal degree of freedom contributes with one
Fermi (Dirac) sea. Fermi velocities of these Fermi seas are, generally speak-
ing, different from each other, giving rise to the effect of charge and spin
separation.

Over the past decade finite size effects in one-dimensional systems have
been of considerable interest. The finite size of a system (e.g., an electron
conductor or a magnetic chain) manifests itself in several ways. First,
impurities are important in low-dimensional quantum systems, since their
contribution to extensive quantities (e.g., the energy, charge and magnetic
susceptibilities, resistance and specific heat) can become relatively large and
observable. Boundaries and edges of open chains behave as some special
sort of impurities with many similarities and differences in their behaviours.
Second, the finite length of a mesoscopic (nanoscale) quantum chain (wire)
or ring gives rise to quantum topological effects, i.e., to persistent currents
with oscillation periods given by interferences of the Aharonov–Bohm and
Aharonov–Casher type. Finally, finite size corrections to the energy of
a one-dimensional system determine critical exponents of the asymptotic
dependence at large distances and long times of correlation functions via
conformal field theory.
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Integrable impurity models that represent realistic situations are a spin
(magnetic) impurity in quantum spin chains and the Anderson hybridiza-
tion impurity, in correlated electron chains. Similar behaviour was observed
in Kondo, mixed-valent and heavy-fermion systems. Persistent currents
have been observed experimentally in small quantum metal or semicon-
ductor rings in the geometry of the Aharonov–Bohm effect. Persistent
charge and spin currents arise from the magnetic flux and a radial electric
field through the ring, respectively. Quantization of fluxes leads to peri-
odic oscillations of currents. It is often important to know the influence of
magnetic impurities on persistent currents — this situation was recently re-
alized experimentally in nano-size devices, in which so called quantum dots
were embedded into quantum rings, where electron–electron correlations
play an essential role. The study of impurities or boundary potentials in
strongly correlated electron systems is a relatively new subject of investiga-
tions of the past decade. In one-dimensional quantum models, due to the
singularities in the density of states and collective excitations (Tomonaga–
Luttinger liquid properties) both impurities and interactions in the host
have to be examined with exact methods, because a perturbative approxi-
mate approach or a mean field-like theory could provide even qualitatively
incorrect results there. The interplay of interactions between electrons and
magnetic impurities can dramatically change low-energy properties in one-
dimensional quantum systems. Recent experiments on nanoscale quantum
rings with quantum dots embedded (applied point contact voltage) connect
the problem of impurities with that of conductance (closely related to recent
developments of theory of open low-dimensional electron systems), meso-
scopic persistent current and Coulomb blockade oscillations. The problem
of recent experiments on conductance oscillations for chiral edge state cur-
rents of the fractional quantum Hall effect in two-dimensional electron gas
and singularities of angle-resolved photoemission spectra of one-dimensional
electron systems are also deeply connected with low-temperature charac-
teristics of low-dimensional highly correlated electron systems.

In the present book we want to introduce the reader to the interesting
world of Bethe ansatz solvable (sometimes one uses the word integrable)
models of correlated electron systems in one space dimension. Our goal is to
give the reader descriptions of the main methods of the Bethe ansatz and to
show how the finite size effects, which we discussed above, can be described
in the framework of the Bethe ansatz theories. Unfortunately, we cannot
present all results here, which were published during recent years, and fol-
low only some, important (in our mind), main steps of the development of
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such theories. This is why, we want to apologize to those authors, whose
(very important) papers are not cited in this book, only because of the lack
of space and time. We also would like to apologize to the reader, who looks
for the proper description of approximate methods, used to describe one-
dimensional correlated electron systems. We shall mention those methods
only briefly, because those results have been reviewed in several brilliant
books and review articles. Finally, the book is devoted only to theoreti-
cal description of one-dimensional correlated electron systems, as a result
applications of the results to very interesting experiments (as well as the
description of those experiments themselves) are beyond the scope of our
book.

1.2 Thermodynamics

Thermodynamic potentials as a function of its natural (independent) vari-
ables completely determine the total thermodynamics of any system. Other
important quantities can be expressed as derivatives of thermodynamic po-
tentials. There are several such potentials. The most known is the internal
energy, E, with the natural variables S, the entropy of our system, and V ,
the volume, with

dE = TdS − pdV , (1.1)

where T is the temperature and p is the pressure. The other thermodynamic
potentials are obtained from the internal energy by Legendre transforma-
tions. If one has a convex function f(x) (i.e., such that its second derivative
with respect to x is positive, f ′′(x) > 0), the Legendre transform f̄(x) is
f̄(x) = xy − f(x), where x(y) is defined as a root for given y of the equa-
tion y = ∂f/∂x (the convexity guarantees that this equation can be solved
for any y that lies between the maximum and minimum gradients of f).
Obviously Legendre transformations are invertable. It also turns out that
¯̄f(x) = f(x). Then the Helmholtz free energy, F , which is the function of
the natural variables T and V , can be obtained as

dF = d(E − TS) = −SdT − pdV . (1.2)

The Gibbs free energy, G, is the function of the natural variables T and
p. [The fourth thermodynamic potential, H , which should not be confused
with the value of the magnetic field, see below, is the function of the natural
variables S and p.] The connection between the Gibbs free energy and the
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Helmholtz free energy is

G = F + pV . (1.3)

The temperature is the natural variable of the Helmholtz free energy, and
also other macroscopic parameters, which determine the energy levels of the
system, are natural variables too. For example, a simple magnetic system
has the Helmholtz free energy F (T, H), where H is an external magnetic
field. In such a case the Gibbs free energy is the Legendre transform of
F with respect to its second natural variable (e.g., G(T, M) = F + HM ,
where M is the magnetization of the system).

Usually one distinguishes extensive (i.e., proportional to the mass of the
system) and intensive variables. The Helmholtz and Gibbs free energies are
both extensive variables. There are two different ways the energy of the
system can be changed: one can work on the system, or one can supply
heat to it. The change of, e.g., the internal energy, is dE = TdS − pdV ,
where the first term is the supplied heat and the second term manifests the
work done on the system, both in a reversible change.

For any system, the natural variables for the Helmholtz or Gibbs free
energies are the temperature and an intensive variable, while the natural
variables of the other are T and an extensive variable (cf. H ↔ M for a
magnetic system). The per-particle value of the free energy whose natural
variables are intensive is usually called the chemical potential, µ. Often one
also introduces free energies and other extensive variables per unit mass (e,
f and g or s and m, respectively).

For the magnetic system one has

s = −
(

∂g

∂T

)
m

= −
(

∂f

∂T

)
H

,

e = f − T

(
∂f

∂T

)
H

=
(

∂βf

∂β

)
H

,

(1.4)

and

m = −
(

∂f

∂H

)
T

,

H = −
(

∂g

∂m

)
T

,

(1.5)

where the subscript denotes the fixed variable and β = (kBT )−1 (kB is
the Boltzmann’s constant, equal to 1.38×10−23 JK−1; in what follows we
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shall put it equal to 1, except for specially mentioned places, i.e., we shall
measure the temperature in energy units). The magnetic susceptibility χT

and the specific heat, cT , at constant temperature are then

χT = −
(

∂2f

∂H2

)
T

(1.6)

and

cH = −T

(
∂2f

∂T 2

)
H

, (1.7)

respectively. One can also define the specific heat at constant volume, cV .
By writing dE = cV dT − pT dV (where pT is the isothermal pressure), we
get cV = T (∂S/∂T )V , i.e., the entropy is S(T, V ) =

∫ T
dT ′cV (V, T ′)/T ′

(up to some arbitrary function of the volume).

1.3 Statistical Mechanics: Simple Models

When discussing the properties of quantum exactly solvable models we
shall mostly be concerned with thermal equilibrium. Here, together with
the thermodynamics, we need the help of statistical mechanics, because
it predicts the behaviour of a system with a great number of degrees of
freedom, given the laws ruling its microscopic behaviour. For systems in
thermal equilibrium a simple relationship between microscopic properties
and macroscopic behaviour takes place. Let us label the different micro-
scopic configurations of the system by the index α. These configurations
used to be called microstates. Depending on a system, microstates may
form either a continuous set (common for classical systems), or discrete
one (usual for a quantum system, e.g., in a finite volume: an example of a
discrete set of microstates are the eigenstates of a quantum Hamiltonian; we
shall mostly consider that situation in what follows). Even a system whose
Hamiltonian possesses discrete eigenstates can also be in a continuum of
states. The reason for such a property is due to a state being specified
by giving the magnitude for the considered system to be in each one of a
complete set of basic states. It turns out that these magnitudes are con-
tinuous variables. Nonetheless, in the framework of statistical mechanics
one usually operates with averages, and averaging the expectation value of
some quantum operator over all possible states produces the same result as
taking the average of only the members of a complete set of basis state.
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Denote the internal energy of some microstate α with Eα and let the
system be in thermal equilibrium with a heated bath (sometimes called
a thermostat) at temperature T . The probability pα of the system being
found in the microstate α is

pα = Z−1 exp(−βEα) . (1.8)

All time-independent properties of the considered system in thermal equi-
librium follow from this fundamental formula. The normalizing factor Z is
usually called the partition function: any system must always be in some
state, naturally, so that the total of pα must be one (i.e.,

∑
α pα = 1). It

yields for the partition function

Z =
∑

α

exp(−βEα) . (1.9)

This formula is known as the Gibbs probability distribution. The thermal
average 〈X〉 of any operator X of the system can be found if one knows mi-
crostates and energies of them, and knows the value Xα in each microstate.
Then we obtain

〈X〉 =
∑
α

Xαpα = Z−1
∑
α

Xα exp(−βEα) . (1.10)

Actually the Gibbs distribution provides a connection between microscopic
laws in a system and its behaviour in a thermal equilibrium.

The partition function Z is a function of temperature and of the pa-
rameters which determine the energies of microstates (usually called con-
straints). For instance, an external magnetic field H is such a constraint for
a magnetic system. A mechanical work is done on a system by varying the
constraints. In fact the reader can see that all the properties of the system
can be obtained from the functional dependence of the partition function
on T and the constraints.

According to the above, the mean (internal) energy of a system in ther-
mal equilibrium is

E(≡ 〈E〉) = Z−1
∑

α

Eα exp(−βEα) . (1.11)

It is the sum of all microstates of energies of all microstates weighted by
the probabilities that the system is in those microstates. Naturally, it
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follows that

E = −
(

∂ lnZ

∂β

)
V

(1.12)

(i.e., no mechanical work is done on the system). The specific heat of
the system in a change at which constraints do not vary, e.g., at constant
volume, is

cV =
(

∂E

∂T

)
V

= β2

(
∂2 lnZ

∂β2

)
V

. (1.13)

Hence, changes in the energy of the system must be due to a supplied heat.
Therefore, cV dT = TdS, and one gets cV = −β(∂S/∂β)V . Finally, the
entropy of the system can be written as

S = −β

(
∂ lnZ

∂β

)
V

+ lnZ (1.14)

up to an arbitrary function of the volume (which is a function of the con-
straints on the considered system; the third law of the thermodynamics
requires the entropy of the system to be a constant at T → 0 which deter-
mines that function to be zero). It is easy to find the Helmholtz free energy,
for which the natural variables are the temperature and the constraints,

F = −T lnZ (1.15)

which can also be re-written as Z = exp(−βF ).
It is possible to introduce many constraints. For a magnetic sys-

tem the magnetization Mi (conjugate to the constraint Hi) is Mi =
T (∂ lnZ/∂Hi)Hj �=i,β with other constraints fixed. Such equations are known
as the equations of state for the considered system. This implies that a sys-
tem with N constraints has 2N − 1 possible Gibbs free energies. The latter
differs in the choice of constraints.

As a result, the knowledge of the partition function (which can be found
from the knowledge of all the energies of microstates of a system), means
the knowledge of all thermodynamic potentials and other thermodynamic
characteristics. The Hamiltonian then is the function H of states α and con-
straints. The fundamental task of quantum mechanics is to find the states of
the Hamiltonian and related energies Eα. Then statistical mechanics finds
the partition function of a system in thermal equilibrium. Finally, with the
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help of thermodynamics, one can find all necessary thermodynamic poten-
tials and other thermodynamic characteristics of the considered quantum
system.

Let us consider as an example L quantum spins 1
2 situated in an exter-

nal magnetic field. The Hamiltonian of this system is called the Zeeman
Hamiltonian. Suppose the magnetic field H is directed along the axis z,
then the Zeeman Hamiltonian is

HZ = −H

L∑
j=1

Sz
j , (1.16)

where Sz
j is the operator of z-projection of the j-th spin, and one has L

spins. Notice, that in what follows we shall use the effective magneton,
i.e., the coefficient between the mechanical (spin) moment and magnetic
moment equal to 1, except for specially mentioned cases. Usually these
values are related via gµB, where g is the effective g-factor of the magnetic
ion and µB = �e/2m is the Bohr’s magneton, where −e denotes the charge
of an electron and m denotes its mass. The value of the Bohr’s magneton
is equal to 9.27×10−24 JT−1.

The partition function of these noninteracting spins can be written in a
simple form

Z =
(

2 cosh
H

2T

)L

. (1.17)

The Helmholtz free energy per spin is equal to

f = −T ln[2 cosh(H/2T )] . (1.18)

It is the smooth function of temperature, and, therefore, there is no phase
transition for noninteracting quantum spins. One can calculate the specific
heat per spin:

cH =
H2

4T 2 cosh2(H/2T )
, (1.19)

which shows that cH → 0 for T → 0 and T → ∞ and has a maximum as
a function of temperature. The magnetization per spin mz is calculated to
be

mz =
1
2

tanh(H/2T ) , (1.20)
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Fig. 1.1 The dependence of the specific heat on temperature for a spin- 1
2

in a magnetic
field H = 1, arbitrary units.

i.e., mz → 0 for H → 0 no matter what the value of T is and mz → ± 1
2

for H → ±∞. The magnetic susceptibility is

χ = [4T cosh2(H/2T )]−1 , (1.21)

which tends to zero for high and small temperatures. In the ground state
(i.e., at T = 0), the magnetization per site is zero at zero value of the
magnetic field and takes its nominal value (i.e., ± 1

2 for positive and negative
values of H , respectively) at any, even infinitesimally small value of |H |.
The illustration of the temperature behaviour of the Zeeman system is
presented in Figs. 1.1 and 1.2.

As the second simple example, let us consider the thermodynamics of
N noninteracting electrons. The Hamiltonian of these electrons is equal to

Hfree = − �
2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
, (1.22)

where m is the mass of a free electron. The wave function of this equation
ψ = V −1/2 exp(ikr), where V = L3 is the volume of the system and k is the
wave vector of an electron. The eigenfunction of the stationary Schrödinger
equation is

E =
�

2

2m
k2 . (1.23)

The value of the wave vector is related to the wave length λ as |k| = k =
2π/λ. Connecting the momentum p and the wave length with the de Broglie
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Fig. 1.2 The dependence of the magnetic susceptibility on temperature for a spin- 1
2

in
a magnetic field H = 1.

relation λ = 2π�/p, one obtains

E =
1

2m
p2 =

1
2
mv2 , (1.24)

which is nothing other than the classical energy for a free particle of the
mass m and velocity v. The value of k is determined from the boundary
conditions. Periodic boundary conditions require ψ(x+L, y, z) = ψ(x, y, z)
with similar relations for y and z. It defines the wave vectors as

kx,y,z =
2π

L
nx,y,z , (1.25)

where nx,y,z = 0,±1,±2, . . . . On the other hand, for open boundary
conditions ψ(0) = ψ(L) = 0; in each direction the eigenfunctions are
standing waves ψ = (

√
2/L)3 sin(nxπx/L) sin(nyπy/L) sin(nzπz/L), where

nx,y,z = 1, 2, . . . . It implies that boundary conditions introduce a quanti-
zation into such a simple problem: not every value of k (related to the
momentum of a particle) pertains to eigenfunctions of the Hamiltonian.

Actually we see that the distribution of numbers n = {nx,y,z} deter-
mines states of free electrons. However, the reader remembers that due to
the Pauli’s principle each electron can only be in one state. A very im-
portant level is the one which divides the filled and vacant levels of free
electrons in the ground state (known as the Fermi level nF ), as the func-
tion of the number of electrons N . The number of states, which have n less
than a certain value nF is 2×(4π/3)n3

F in a three-dimensional space, where
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the first multiplier takes into account the degeneracy due to two possible
values of spins of electrons (for H = 0). That implies (8π/3)n3

F = NL3.
At T = 0, the energy, related to nF , is equal to

E(nF ) ≡ EF =
�

2

2m

(
2π

L

)2

n2
F =

�
2

2m
(3π2N)2/3 . (1.26)

It is known as the Fermi energy (sometimes it is used to speak about the
Fermi temperature TF = EF /kB). The Fermi velocity of free electrons can
be defined as

vF =

√
2EF

m
=

�

m
(3π2N)1/3 . (1.27)

It is often important to find the number of states per unit energy range per
unit volume as a function of the energy. Let us denote the density of states
g(E). One gets in the ground state∫

g(E)dE = N =
1

3π2
(2mE/�

2)3/2 (1.28)

and, hence,

g(E) =
1

2π2
(2m/�

2)3/2
√

E . (1.29)

By the way, for the two-dimensional free electron system one has n2
F =

NL2/2π, EF = (�2/m)πN , vF = (�/m)
√

2πN and g(E) = m/π�
2, while

for the one-dimensional one we get n2
F = N2L2/4, EF = (�2/2m)π2N2,

vF = (�/m)πN , and g(E) = (1/π�)
√

m/2E−1/2, i.e., for small E the den-
sity of states of low-dimensional electron systems is enhanced in comparison
with the usual three-dimensional situation.

In the thermal equilibrium the partition function of free electrons with
energies E is Z =

∑
(1+exp[(µ−E)/T ]), where the sum is over all possible

states of electrons. Then, the Helmholtz free energy per state is

fstate = −T ln(1 + exp[(µ − E)/T ]) . (1.30)

The mean number of particles per state in the thermal equilibrium is equal
to

nF = −∂fstate

∂µ
=

1
exp[(E − µ)/T ] + 1

. (1.31)
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It is called the Fermi-Dirac distribution function. This function defines
the distribution of an ideal gas obeying Fermi statistics, i.e., for which the
Pauli principle works. In the thermal equilibrium the number of electrons
dN with the energies between E and E + dE is given by

dN = nF (E)g(E)dE =
1

2π2

(
2m

�2

)3/2 √
EdE

e(E−µ)/T + 1
. (1.32)

One can introduce the chemical potential µ as the Lagrangian multiplier,
and it is determined from the condition that the total number of electrons
must be constant

∫
dN = N (and the total energy should also be constant).

The chemical potential plays the role of the Fermi energy of electrons at
nonzero temperatures. In a high temperature limit nF (E) reduces to the
classical Boltzmann distribution law. In the ground state it is a step func-
tion, i.e., nF (E < EF ) = 1 for E < EF ≡ µ(T = 0), and nF (E > EF ) = 0
otherwise. Hence, at T = 0, one gets N = (1/3π2)(2mEF /�

2)3/2, in
agreement with the above. At any temperature one has nF (E = µ) = 1

2 .
The Fermi-Dirac distribution is called degenerate when T � µ and non-
degenerate when T 	 µ, i.e., in the classical Boltzmann limit.

We can write the internal energy per unit volume of the free electron
gas as

e =
∫ ∞

0

EnF (E)g(E)dE . (1.33)

For standard metallic systems the Fermi energy EF is often of the order of
several electron-Volts. Hence, it is important to know the behaviour of the
thermodynamic characteristics at low temperatures. Consider the integral
I =

∫∞
0 nF (E)[dF (E)/dE]dE, where F (E = 0) = 0 is any function. Inte-

grating by parts one gets I = −
∫∞
0 n′

F (E)F (E)dE. Expanding F (E) by
Taylor’s theorem F (E) = F (µ)+ (E −µ)F ′(µ)+ (1/2)(E −µ)2F ′′(µ)+ · · ·
one obtains I = L0F (µ) + L1F

′(µ) + L2F
′′(µ) + · · · , where Ln = −

∫∞
0

(E−µ)nn′
F (E)dE. It is possible to replace the lower limits on the integrals

by −∞ at low temperatures. Then the reader can see that L0 = 1, L1 = 0
(as well as for any odd n, because n′

F (µ) is an even function of E −µ), and

L2 =
T 2

2

∫ ∞

−∞

x2exdx

(1 + ex)2
=

π2T 2

6
. (1.34)

This expansion is known as the Sommerfeld expansion. To determine the
number of electrons N one can use the function F (E) =

∫ E

0 g(E)dE,



April 6, 2005 10:46 Finite Size Effects in Correlated Electron Models: Exact Results mybook

Introduction 15

so that

N =
∫ ∞

0

nF (E)g(E)dE =
∫ µ

0

g(E)dE +
π2T 2

6
g′(µ) . (1.35)

Taking into account that
∫ EF

0 g(E)dE = N , one gets

µ ≈ EF

(
1 − π2T 2

12E2
F

)
, (1.36)

which describes the low temperature corrections to the free energy. The
function F (E) =

∫ E

0
Eg(E)dE can yield the internal energy of free electrons

per site at low temperatures

e ≈ e0 + (µ − EF )EF g(EF ) +
3π2T 2

12
g(EF ) + · · · =

e0 +
π2

6
g(EF )T 2 + · · · , (1.37)

where e0 = 3NEF /5 is the ground state energy. The low temperature
specific heat per unit volume of the free electron gas can be written as

c =
π2

3
g(EF )T + · · · = γT , (1.38)

where the low temperature Sommerfeld coefficient of the specific heat per
unit volume is equal to

γ =
π2g(EF )

3
=

π2N

2EF
. (1.39)

It is possible to introduce the Zeeman effect of an external magnetic
field H on spins of electrons as the renormalization

g(E) → 1
2
(g[E + (H/2)] − g[E − (H/2)]) , (1.40)

which implies that the magnetization of the free electron gas per site is

mz =
∫

1
2
(g[E + (H/2)] − g[E − (H/2)])nF (E)dE . (1.41)

At small values of H one obtains mz ∼ H
∫

g′(E)nF (E)dE ∼ Hg(µ).
Then we can use the function F (E) =

∫ E

0
g′(E)dE, which implies that

at low temperatures the magnetic susceptibility of the free electron gas is
proportional χ ∼ g(EF ) = 3N/2EF , i.e., it is finite and proportional to the
density of states at zero temperature, or inversely proportional to the Fermi
energy. This is the famous Pauli paramagnetism of the free electron gas
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(naturally, the orbital moment of charged electrons produces the Landau’s
diamagnetic term, the derivation of which we shall not reproduce here).

It is also worthwhile mentioning that the energy of the tight-binding
lattice model of electrons with the Hamiltonian

Htb = −t
∑

δ

∑
σ

(a†
r,σar+δ,σ + H.c.) , (1.42)

where a†
r,σ (ar,σ) creates (destroys) an electron with the spin projection σ

at the lattice site r, t is the hopping integral, and the sum is over the nearest
neighbour sites, is reduced to the energy of the free electron gas in the limit
of small inter-site distances. Hence, in this limit one can use the above
results for the lattice tight-binding model of noninteracting electrons, too.
On the other hand, lattice effects can be included into the renormalization
of the values of g(E) etc. For example, the density of states of the d-
dimensional lattice can be obtained due to the equality

g(E)dE =
V0

dZ

∫
ddk (1.43)

where Z is the number of electrons per unit cell, k is the wave vector defined
up to the addition of an arbitrary linear combination of basic vectors h of
the reciprocal lattice of the crystal,

E(k) = E

(
k +

d∑
α=1

nαhα

)
, (1.44)

(nα are integers), and the integral is extended to the region within one
cell of the reciprocal space, in which E ≤ E(k) ≤ E + dE. Then an easy
calculation yields

g(E) =
V0

dZ

∑
br

∫
S(E)

dS√∑d
α=1

(
∂E(k)
∂kα

)2
, (1.45)

where the summation
∑

br extends over all branches of E(k), S(E) for each
branch is defined by E(k) = E, and dS is the length of an infinitesimal
portion of S(E). Then the analytic singularities of the density of states
can originate from the so-called critical points of E(k), i.e., the points (let
us call them Ec) where the derivatives ∂E/∂kα vanish. The analysis shows
that in one space dimension such critical points are related to the extreme
energies (edges) of each branch, where the singularities of the density of
states are g(E) ∼ |E − Ec|−1/2. For the two-dimensional lattice there
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is a logarithmic feature g(E) ∼ ln |E − Ec| at saddle points in the two-
dimensional space, while there are no singularities in the three-dimensional
case. These features of the behaviour of the density of states are known as
van Hove features due to L. van Hove.

1.4 Mermin Wagner Hohenberg Theorem

In our book we want to review some exact results for interacting elec-
tron and quantum spin systems. Most of these results are obtained for
low-dimensional quantum systems. Why is it important to study low-
dimensional quantum systems exactly? It is clear that at low tempera-
tures most thermal fluctuations of quantum systems are frozen, and they
do not play an important role for such a situation. However, as the reader
knows from quantum mechanics, there can exist zero temperature quan-
tum fluctuations which mostly determine the ground state (for T = 0)
and low-temperature behaviour of electron systems. These quantum fluc-
tuations are enhanced in low-dimensional systems, due to features of the
low-dimensional density of states. If one considers a many-body system, in
which an ordering takes place, then it is relatively simple to study the low-
temperature thermodynamics of that system, because one can describe the
many-body system using a simple wave function of a single particle. The
nonzero order parameter means that it has the same value at any place of
the system, and, hence, many-body effects are not so important (although
those many-body effects produce an ordering). On the other hand, for a
system in which there is no ordering, but an interaction between electrons
exists, one cannot use a single-particle description a priori.

This is why it is very important to present here the theorems due to
N. D. Mermin and H. Wagner and to P. C. Hohenberg, who stated that
isotropic Heisenberg systems with nearest-neighbour exchange interaction,
Bose liquid and interacting electron system do not manifest spontaneous
ordering for any nonzero temperature.

For example, for a low-dimensional magnetic system it means that there
is no spontaneous, at H → 0, magnetization in it.

The proof of this statement is based on the famous inequality due
to N. N. Bogolyubov for operators A and C and some (yet undefined)
Hamiltonian:

1
2T

〈{A, A†}〉〈[[C,H], C†]〉 ≥ |〈[C, A]〉|2 . (1.46)
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Here we use the standard notations of statistical mechanics from the pre-
vious section. Also, [. , .] ({. , .}) denote (anti)commutator, and A† is the
operator, Hermitian conjugated to A. Let us define

(A, B) =
′∑

α,α′
〈α|A|α′〉∗〈α|B|α′〉 pα − pα′

Eα′ − Eα
, (1.47)

where pα = Z−1 exp(−βEα) and the summation is over all pairs of states,
except those with Eα = Eα′ . The reader can observe that

0 <
pα − pα′

Eα′ − Eα
<

pα + pα′

2T
, (1.48)

which implies (A, A) ≤ 〈{A, A†}〉/2T . Then, by using the Schwartz in-
equality (A, A)(B, B) ≥ |(A, B)|2 for B = [C†,H] and (A, B) = 〈[C†, A†]〉
with the equality (B, B) = 〈[C†, [H, C]]〉, one proves Eq. (1.46).

To prove the Mermin–Wagner theorem let us apply the Bogolyubov
inequality to the quantum Hamiltonian of an interacting spin system

H = −
∑
r,r′

J(r − r′)
Sr

Sr′ − H

∑
r

Sz
r exp(−iKr) , (1.49)

where r and r′ run over lattice sites of some multi-dimensional lattice, peri-
odic boundary conditions are used for L spins, Sx,y,z

r are operators for the
projections of spin S in the r-th site of the lattice, and the sum

∑
r r2J(r)

converges (this is, naturally, the case for the nearest neighbour coupling).
As for K, it is zero for the ferromagnetic situation, and exp(iKr) = ±1 for
the same (different) sublattices in the antiferromagnetic situation. Then we
take the standard Fourier transforms of all three projections of 
Sr and J(r),
and define C = S+

k and A = S−
−k−K. The application of the Bogolyubov

inequality yields

1
2
〈{S+

k+K, S−
−k−K}〉 ≥ 4L2T (mz)2

(
L−1

∑
k′

[J(k′) − J(k′ − k)]

×〈4Sz
−k′Sz

k′ + {S+
k′, S

−
−k′}〉 + 2LHmz

)−1

, (1.50)
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where mz = L−1
∑

r〈Sz
r exp(iKr)〉. The denominator of the last formula is

positive. One can also show that

L−1
∑
k′

[J(k′) − J(k′ − k)]〈4Sz
−k′Sz

k′ + {S+
k′ , S

−
−k′}〉 + 2LHmz

< L−1|
∑
r

J(r)[1 − exp(ikr)]
∑
k′

〈4Sz
−k′Sz

k′ + {S+
k′ , S

−
−k′}〉|

+ 2L|Hmz| < 4L
∑
r

J(r)[1 − cos(kr)]S(S + 1) + 2L|Hmz|

< 2L

(
k2S(S + 1)

∑
r

r2|J(r)| + |Hmz|
)

. (1.51)

Then we replace the denominator by its upper bound from the last inequal-
ity and sum both sides of Eq. (1.50) over k. It yields

S(S + 1) >
2T (mz)2

L

∑
k

1
S(S + 1)k2

∑
r r2|J(r)| + |Hmz| . (1.52)

Then, in the so-called thermodynamic limit, L → ∞, we can proceed with
the calculation of the sums (integrals in the thermodynamic limit), inte-
grating only over the first Brillouin zone, which produces

(mz)2 <
2πS(S + 1)I

k2
0T ln(1 + I/|Hmz|) (1.53)

for the two-dimensional case, and

(mz)3 < |H |I
(

S(S + 1)
2T tan−1

√
I/|Hmz|

)2

(1.54)

for the one-dimensional case, where I = S(S + 1)k2
0

∑
r r2|J(r)| and k0 is

the characteristic vector in the k-space, related to the distance from the
origin to the nearest Bragg plane. Taking the limit of small values of the
magnetic field H , we finally reach the following inequalities

|mz| <
C√

T | ln |H ||
(1.55)

for two space dimensions and

|mz| <
C′|H |1/3

T 2/3
(1.56)

for one space dimension, where C and C′ are some constants.
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These inequalities actually state that for any nonzero temperature there
is no spontaneous magnetization (or spontaneous magnetizations of any
magnetic sublattices) for one- and two-dimensional Heisenberg magnets for
any value of site spins (including classical spins S → ∞). However, this
theorem does not rule out the possibility of other phase transitions, and
can be applied for anisotropic spin systems only for a special direction of
the magnetic field with respect to the anisotropy axis. Also, it does not
give any conclusion about the behaviour of spin systems in one and two
space dimensions in the ground state (at T = 0). Hence, the possibility of
quantum phase transitions, which take place in the ground state, exists. In
the following chapters we shall consider many examples of such quantum
phase transitions.

One can generalize the construction to the case of bosons in a superfluid
liquid or superconducting pairs of correlated electrons. This statement is
known as the Hohenberg theorem.

First, we remind the reader that

τAB
k,k′(t − t′) = L−d〈[Ak(t), [Bk′(t′)]]〉

=
∫ ∞

−∞

dω

2π
τAB
k,k′(ω) exp[−iω(t − t′)] (1.57)

is the spectral weight function, where d is the space dimension. If one defines
the response function as

χAB
k,k′(z) =

∫ ∞

−∞

dω

2π

τAB
k,k′(ω)
ω − z

(1.58)

and the static response function χ̂AB
k,k′ = χAB

k,k′(z = 0), then the equal-time
correlation function can be written as a function of the spectral weight
function

CAB
k,k′ = L−d〈{Ak(t) − 〈Ak(t)〉, Bk(t) − 〈Bk(t)〉}〉

=
∫ ∞

−∞

dω

2π
τAB
k,k′(ω) coth(ω/2T ) , (1.59)

which is the fluctuation-dissipation theorem.
Taking into account that (χ̂AB

k,k′)∗ = χ̂A†B†
k′,k and χ̂AA†

k,k ≡ χ̂AA†
k ≥ 0, one

can consider static response functions as scalar products. It is easy to show
that equal time correlation functions satisfy the Schwartz inequality

|χ̂AB
k′,k|2 ≤ χ̂AA†

k χ̂B†B
k′ , (1.60)
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which, due to |coth(ω/2T )| ≥ 2T/|ω| means that

2T χ̂AA†
k ≤ CAA†

k . (1.61)

It is the other manifestation of the Bogolyubov inequality.
For the emergence of the ordered superfluid in a Bose liquid one needs to

have a nonzero order parameter, the amplitude of zero mode, L−d/2〈ak〉 =
L−d/2〈a†

k〉 = L−d/2〈a0〉δ(k) =
√

n0δ(k), where n0 is the order param-
eter, and a†

k (ak) is the creation (destruction) Bose operator. To use the
Bogolyubov inequality we determine the operators Ak′(t) = i(∂ρ−k(t)/∂t)
and Bk(t) = L−d/2ak(t), where ρk is the Fourier transform of the density
operator a†(r, t)a(r, t) which has the property 〈ρ0〉 = N (N is the number
of Bose particles). It is easy to show that

τAB
k′,k(ω) = ωτρB

−k,k(ω) , τAA†
−k (ω) = ω2τρρ†

−k (ω) ,

χ̂AB
−k,k =

∫ ∞

−∞

dω

2π
τρB
−k,k(ω) = −√

n0 .
(1.62)

From the continuity equation

∂ρ

∂t
+ ∇ · j = 0 (1.63)

and the f -sum rule it follows that

k2n

m
=
∫ ∞

−∞

dω

2π
ωτρρ†

−k (ω) = P

∫ ∞

−∞

dω

2π

τAA†
−k (ω)

ω
= χ̂AA†

−k , (1.64)

where P denotes the principal part of the integral. Since k �= 0 and CBB†
k =

2〈a†
kak〉 + 1, we obtain

nk ≥ −1
2

+
Tmn0

k2n
. (1.65)

The value L−d
∑

k nk = n − n0 must be finite. But, as follows from
the above analysis, it is incompatible with Eq. (1.65) in one- and two-
dimensional cases, except for the situation, where n0 = 0, i.e., there is no
superfluid ordering in one- and two-dimensional Bose liquid for any nonzero
temperature.

For a superconducting Fermi system one can introduce the order
parameter

∆ = L−d
∑
q

fq〈a↑qa↓−q〉 , (1.66)
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where aσq destroys an electron with the momentum q and spin σ, and fq

is an arbitrary function with the properties f0 = 1 and
∑

q fq < ∞.
The Bogolyubov inequality is applied in this case to the operators

Ak′(t) = i(∂ρ−k(t)/∂t) and Bk(t) = L−d
∑

q fq〈a↓k−qa↑q〉, where one con-
siders the density operator for electrons. We see that

L−d〈[Bk, ρ−k]〉 = ∆ + η(k) , (1.67)

where η(0) = ∆. Following similar lines as above we get

CBB†
k ≥ 2Tm|∆ + η(k)|

k2n
. (1.68)

The left hand side of this Bogolyubov inequality can be written in the
form CBB†

k = Fk + Rk, where we introduced the Fourier transform of
F (r1 − r2) =

∫ ∫
drdr′f(r1 − r)f(r2 − r′)〈a†

↓(r)a
†
↑(r1)a↑(r2)a↓(r′)〉 and Rk

is a regular function for small k. Hence, one finally obtains

Fk ≥ −Rk +
2Tm|∆ + η(k)|

k2n
, (1.69)

but L−d
∑

k �=0 Fk < F (0) < ∞. This is again the clear contradiction with
Eq. (1.69) for one- and two-dimensional cases, unless ∆ = 0, i.e., there
is no nonzero superconducting order parameter for a system of interacting
electrons in one and two space dimensions at any nonzero temperature.

We have to stress again that the Hohenberg theorem also does not ex-
clude nonzero order parameter in the ground state, i.e., quantum phase
transitions.

Summarizing, for the most of low-dimensional electron systems with
the finite radius of interaction between particles temperature fluctuations
at T �= 0 destroy possible ordering. This is why, the mean-field-like descrip-
tion, though very useful for systems in which an ordering can take place,
cannot a priori be used. On the other hand, for most of low-dimensional
multi-electron systems an interaction between particles is not weak, and,
hence, one cannot use perturbative methods either. Moreover, singulari-
ties of the low-dimensional density of states enhance quantum fluctuations.
All this, in fact, determines why when studying one- and two-dimensional
electron systems it is important (and often, it is only possible) to use non-
perturbative, optimally exact methods of the modern theoretical physics.
Actually, in this book we want to introduce to the reader some very pow-
erful non-perturbative methods of the modern theoretical physics, and to
present a number of exact results for such low-dimensional electron systems.
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Our book will mostly concentrate on one-dimensional correlated electron
and quantum spin systems, because for two space dimensions one still has
too small an amount of exact results for quantum many-body systems.

As for the references in this book: we shall introduce the rele-
vant references at the end of each chapter. For example, the main
description of thermodynamics and statistical mechanics can be found
in [Landau and Lifshits (1980)]. The reader can find a description of
“standard” electron systems in [Mahan (1990)], and read about magnetic
systems in [Mattis (1965)]. The Fermi liquid description of correlation ef-
fects in standard three-dimensional metals can be found, e.g., in [Pines and
Nozières (1989)]. Our description of the Mermin–Wagner and Hohenberg
theorems closely follows original papers [Mermin and Wagner (1966);
Hohenberg (1967)]. Finally, the study of van Hove features in crystals
was introduced in [van Hove (1952)].
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Chapter 2

Quantum Spin-1
2

Chain with the
Nearest-Neighbour Couplings

In this chapter we shall introduce the one-dimensional many-body quan-
tum spin Hamiltonians and present some exact results for thermodynamic
characteristics of the systems, described by those Hamiltonians. Such spin
systems describe electron insulators in which charge degrees of freedom of
electrons are frozen (e.g., electrons are localized) and the only spin, mag-
netic excitations determine the states of electron systems. The simplest
Hamiltonian of a spin system is the Zeeman Hamiltonian which describes
the behaviour of spins in an external magnetic field. It shows how the
degeneracy in the determination of the directions of spins is lifted by the
magnetic field. However, one cannot describe the behaviour of most of
magnetic insulators with only the Zeeman interaction. Generally speak-
ing, there exists an interaction between spin degrees of motion of electrons
in a crystal. It was concluded that the most important interaction, re-
sponsible for magnetic properties of multi-electron systems is the exchange
interaction, which stems from the Coulomb interaction of electrons. The
Heisenberg model is the seminal model of quantum mechanics. It was in-
troduced to describe the exchange interaction of localized spin moments
in insulators. It is commonly accepted that for most of the properties
it is enough to consider exchange coupling between only nearest neigh-
bours on the lattice. The reader already saw such a Hamiltonian in the
previous chapter, when we considered the Mermin–Wagner theorem. In
the case of a three-dimensional lattice, the Heisenberg model successfully
describes ferromagnetic or antiferromagnetic ordering with the help of a
mean-field-like approximation. However, for a one-dimensional situation,
according to the Mermin–Wagner theorem, there is no magnetic order-
ing (at least for any nonzero temperature). This is why, it was necessary
to use non-perturbative methods of theoretical physics to study thermo-

25
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dynamics of a one-dimensional quantum Heisenberg model. Histori-
cally, the spin- 1

2 Heisenberg one-dimensional model (and its magnetically
anisotropic versions, see below) was the first model of interacting quantum
many-body system, for which an exact solution was obtained. The meth-
ods which were used for that purpose became very popular. Later, they
were used to to treat many more complicated quantum correlated electron
and spin models. This is why, we shall start our description of exact re-
sults of finite size effects for low-dimensional quantum models with this
class of models. It turns out, that these results are interesting not only
as “model” results to study important methods, but also were successfully
used to describe low-temperature thermodynamics of some recently created
quasi-one-dimensional magnetic compounds.

2.1 One-Dimensional Spin Hamiltonian

Let us start our consideration of quantum low-dimensional exactly solvable
models with the Heisenberg model. The Heisenberg model, which we want
to consider, describes the behaviour of spins S = 1

2 in a one-dimensional
chain, each of which interact with its nearest neighbours. For L spins in
the chain the total number of states is 2L, because the Hilbert space of each
site (for definition we enumerate this site with the subscript j) of the line
has two basis functions: one related to spin up (let us denote it by e+

j ), and
the other one, related to spin down (e−j ). There are four possible operators
acting in each site: the unity operator, Ij and three operators of the pro-
jections of the site spin Sx,y,z

j which constitute the SU(2) symmetry group.
For S = 1

2 , one can also use the Pauli operators σx,y,z
j = 2Sx,y,z

j with the
well-known commutation relations. It is convenient to introduce the linear
combinations of spin operators S±

j = Sx
j ± iSy

j . The reader can check that
the action of these operators on the basis functions is determined by the
following relations σ+

j e+
j = σ−

j e−j = S+
j e+

j = S−
j e−j = 0, σ+

j e−j = 2e+
j ,

σ−
j e+

j = 2e−j , σz
j e±j = ±e±j , S+

j e−j = e+
j , S−

j e+
j = e−j and Sz

j e±j = ± 1
2e±j .

The Hamiltonian of the quantum spin- 1
2 chain with nearest-neighbour in-

teractions can be written as

HHI =
L−1∑
j=1

[J(Sx
j Sx

j+1 + Sy
j Sy

j+1) + JzS
z
j Sz

j+1]

=
L−1∑
j=1

[
J

2
(
S+

j S−
j+1 + S−

j S+
j+1

)
+ JzS

z
j Sz

j+1

]
. (2.1)
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or as

HHI =
1
4

L−1∑
j=1

[J(σx
j σx

j+1 + σy
j σy

j+1) + Jzσ
z
j σz

j+1]

=
1
4

L−1∑
j=1

[
J

2
(
σ+

j σ−
j+1 + σ−

j σ+
j+1

)
+ Jzσ

z
j σz

j+1

]
. (2.2)

Here exchange constants J and Jz define the interaction between the neigh-
bouring sites of the spin chain. The case Jz �= J corresponds to the magnet-
ically anisotropic situation of the uniaxial magnetic anisotropy. [Generally
one can introduce 9 independent different exchange constants, but here we
limit ourselves with the most known situation.] The case J = 0 describes
the Ising chain. By the Heisenberg Hamiltonian people usually mean the
magnetically isotropic case J = Jz . Finally, sometimes it is instructive to
study the case Jz = 0 which is called the isotropic XY model (sometimes
it is called XX0, XX, or planar model). In what follows we shall call the
Hamiltonian Eq. (2.1) the Heisenberg–Ising Hamiltonian.

It is easy to show that the sign of J is irrelevant when one calcu-
lates the spectrum of eigenstates. For this purpose let us use the rela-
tions σz

j σx,y
j σz

j = −σx,y
j . Then one can apply to the Hamiltonian Eq. (2.1)

the unitary transformation U =
∏′

j σz
j , where the prime means that the

product extends over all odd sites of the chain. Naturally, this unitary
transformation implies that we turn each odd spin down. Then it follows
that UHHI(J, Jz)U † = HHI(−J, Jz).

We can add to the Hamiltonian HHI the Zeeman term, which describes
the effect of an external magnetic field on a quantum spin chain. The
Zeeman term commutes with the Heisenberg–Ising Hamiltonian Eq. (2.1),
and, hence, it has the same eigenfunctions as HHI . The case Jz < 0 pertains
to a ferromagnetic situation, while Jz > 0 determines an antiferromagnetic
interaction between spins.

2.2 Ising Chain

Probably the simplest case is the Ising chain (let us consider periodic bound-
ary conditions Sz

L+1 = Sz
1 ). The Ising Hamiltonian was introduced by

W. Lentz as a simplest model for a ferromagnet, and it is named due to
E. Ising, who first solved it in one space dimension. For the Ising model one
does not especially need to look for solutions of the stationary Schrödinger
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equation for the Hamiltonian, because local projections of spins, Sz
j , com-

mute with the Ising Hamiltonian, and eigenfunctions are trivial. However,
it is instructive to present the exact solution of statistical mechanics for
an Ising chain, which introduces such an important value as the transfer
matrix.

The partition function of the Ising chain can be written in a simple form

Z =
∑
sj

exp


−β

L∑
j=1

[
Jzsjsj+1 +

1
2
H(sj + sj+1)

]


=
∑
sj

L∏
j=1

exp
{
−β

[
Jzsjsj+1 +

1
2
H(sj + sj+1)

]}
≡ Tr(τ̂ )L , (2.3)

where sj is the eigenvalue of Sz
j (equal to ± 1

2 ) and we introduced the
transfer matrix as

τµ,ν ≡ exp
{
−β

[
Jzsµsν +

1
2
H(sµ + sν)

]}
. (2.4)

For S = 1
2 , each Sz

j has two possible values, so that τ̂ is 2 × 2 matrix.
Moreover, the latter is symmetric in its indices. The eigenvalues of τ̂ are
very easy to calculate, and, hence, one can calculate the trace of τ̂L. Since τ̂

is symmetric and positive, it has positive eigenvalues. The trace is invariant
under orthogonal transformations of τ̂ . Therefore, it can be diagonalized
by such a transformation. In the basis, in which τ̂ is diagonal, τ̂L is also
diagonal. Suppose Λ0 > Λ1 are the eigenvalues of τ̂ . Then it follows that
in the thermodynamic limit

lim
L→∞

ln(Trτ̂)L

L
= lim

L→∞

ln(ΛL
0 [1 − (Λ1/Λ0)L])

L
= ln Λ0 . (2.5)

The larger eigenvalue of Eq. (2.4) is

Λ0 = e−βJz/4

[
cosh(βH/2) +

√
cosh2(βH/2) − 1 + eβJz

]
. (2.6)

This is why, the Helmholtz free energy of an Ising chain per site in the
thermodynamic limit is equal to

f =
Jz

4
− T ln

[
cosh(H/2T ) +

√
cosh2(H/2T )− 1 + eJz/T

]
. (2.7)

It is a smooth function of temperature, and, therefore, there is no phase
transition in an Ising chain (except of the quantum phase transition at
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T = 0). One can calculate the specific heat at H = 0:

cH=0 =
J2

z

16T 2 cosh2(Jz/4T )
, (2.8)

which shows that cH → 0 for T → 0 and T → ∞ and has a maximum as
a function of temperature. The magnetization of the Ising ring per site mz

is calculated to be

mz =
sinh(H/2T )

2
√

cosh2(H/2T ) − 1 + eJz/T

, (2.9)

which implies that the Ising chain becomes magnetically ordered only at
the infinite value of the external magnetic field for T �= 0 and never be-
comes a ferromagnet, because mz → 0 for H → 0 no matter what the
value of T is. The magnetic susceptibility at zero H is calculated as
χH=0 = [4T exp(|Jz|/2T )]−1, which tends to zero for high (as 1/T ) and
low (exponentially) temperatures. The illustration of the temperature be-
haviour of the Ising chain is presented in Figs. 2.1 and 2.2. In the ground
state (i.e., at T = 0), the magnetization of the Ising chain is zero at zero
value of the magnetic field and takes its nominal value (i.e., ± 1

2 for positive
and negative values of H , respectively) at any, even infinitesimally small
value of |H | for the ferromagnetic interaction. This suggests, naturally,
that the point H = 0 (at T = 0) is the special point of the quantum phase
transition for the ferromagnetic Ising chain.

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

T

c

Fig. 2.1 The temperature dependence of the specific heat for the spin- 1
2

Ising chain
with Jz = 2 in a zero magnetic field.
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χ

Fig. 2.2 The temperature dependence of the magnetic susceptibility for the spin- 1
2

Ising
chain with Jz = 2 in a zero magnetic field.

2.3 Isotropic XY Ring

Often it is also useful to change from spin operators to Fermi operators aj

and a†
j (with the anticommutators {aj, a

†
l } = δj,l and {aj , al} = {a†

j, a
†
l } =

0) according to the well-known Jordan–Wigner transformation:

Sz
j =

1
2
(1 − 2a†

jaj) , S+
j =

j−1∏
l=1

(1 − 2a†
l al)aj ,

S−
j = a†

j

j−1∏
l=1

(1 − 2a†
l al) , (2.10)

(notice that νj ≡
∏j−1

l=1 (1−2a†
l al) = exp(iπ

∑j
l=1 a†

l al)). We point out that
this transformation is non-local, i.e., a spin operator in one site is described
by Fermi operators of many sites, and reversible, i.e., one can write Fermi
operators in terms of spin operators. Suppose L is even. Then we observe
that

(1 + νj)νj = (1 + νj) , (1 − νj)νj = (νj − 1) ,
1
2
(1 + νj)

1
2
(1 − νj) = 0 ,

1
2
(1 + νj) +

1
2
(1 − νj) = 1 ,

1
4
(1 ± νj)2 =

1
2
(1 ± νj) . (2.11)

Actually these equalities imply that 1
2 (1 + νL+1) is the projection of one

of the halves of our total space and 1
2 (1 − νL+1) is the complementary

projection.
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The Heisenberg–Ising Hamiltonian in an external magnetic field
Eqs. (2.1) and (1.16) can be exactly re-written in terms of these spinless
Fermi operators as

HHI + HZ =
J

2


L−1∑

j=1

(a†
jaj+1 + a†

j+1aj) − νL+1a
†
La1 − νL+1a

†
1aL




+
Jz

4


 L∑

j=1

(1 − 4a†
jaj) + 4

L−1∑
j=1

a†
jaja

†
j+1aj+1 + 4a†

LaLa†
1a1




− H

2

L∑
j=1

(1 − 2a†
jaj) . (2.12)

Then one can resolve the total Hamiltonian into two parts by using projec-
tion operators

HHI + HZ =
1
2
(1 + νL)[HHI + HZ ] +

1
2
(1 − νL)[HHI + HZ ]

=
1
2
(1 + νL)H+ +

1
2
(1 − νL)H− , (2.13)

where

H+ =
J

2


L−1∑

j=1

(a†
jaj+1 + a†

j+1aj) − a†
La1 − a†

1aL




+
Jz

4

L∑
j=1

(1 − 4a†
jaj + 4a†

jaja
†
j+1aj+1) −

H

2

L∑
j=1

(1 − 2a†
jaj) (2.14)

and

H− =
J

2

L−1∑
j=1

(a†
jaj+1 + a†

j+1aj) +
Jz

4

L∑
j=1

(1 − 4a†
jaj + 4a†

jaja
†
j+1aj+1)

− H

2

L∑
j=1

(1 − 2a†
jaj) . (2.15)

We can find the eigenvalues for each of H± separately and then take into
account the effect of the factors 1

2 (1 ± νL+1) by selecting half of the eigen-
values of H+ and half of those of H−. These two half-sets then constitute
the full set of eigenvalues of the total quantum spin- 1

2 chain Hamiltonian.



April 6, 2005 10:46 Finite Size Effects in Correlated Electron Models: Exact Results mybook

32 Finite Size Effects in Correlated Electron Models: Exact Results

Now it is clear why the XY model is distinguished from others: for
Jz = 0, the Hamiltonian of the spin- 1

2 chain is exactly equal to the sum
of Hamiltonians which are quadratic forms of the operators of free spinless
fermions. These Hamiltonians can be obviously diagonalized by using the
Fourier transform

a†
k = (L)−1/2

L∑
j=1

a†
j exp

[
iπ

(
kj

L
− 1

4

)]
,

ak = (L)−1/2

L∑
j=1

aj exp
[
−iπ

(
kj

L
− 1

4

)]
,

(2.16)

after which the XY Hamiltonian can be written as

H+ =
1
2

L/2∑
k=1

[(J cos[2π(2k − 1)/L] + 2H)(a†
2k−1a2k−1

+ a†
−2k+1a−2k+1) − 2H ] , (2.17)

and

H− =
1
2

(L/2)−1∑
k=1

[(J cos[4πk/L] + 2H)(a†
2ka2k + a†

−2ka−2k) − 2H ]

+
J + 2H

2
(a†

0a0 + a†
k=Lak=L) . (2.18)

Then it is not difficult to write down the partition function of the
isotropic XY model, because it is just the sum of partition functions of
several systems of free (non-interacting) spinless fermions

Z = 2L−1

(
L/2∏
k=1

cosh2

[
H + J cos[2π(2k − 1)/L]

2T

]

+ cosh
[
H + J

2T

]
cosh

[
H − J

2T

] (L/2)−1∏
k=1

cosh2

[
H + J cos[4πk/L]

2T

]

− sinh
[
H + J

2T

]
sinh

[
H − J

2T

] (L/2)−1∏
k=1

sinh2

[
H + J cos[4πk/L]

2T

]

+
L/2∏
k=1

sinh2

[
H + J cos[2π(2k − 1)/L]

2T

])
. (2.19)
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In the thermodynamic limit L → ∞ the partition function is simplified to
the expression

Z =
2L

π

∫ π

0

dk cosh2

[
H − |J | cos k

2T

]
. (2.20)

The expression for the partition function according to the rules of statistical
mechanics immediately yields the Helmholtz free energy per site of the
isotropic XY chain

f = −T

π

∫ π

0

dk ln
[
2 cosh

(
H − |J | cos k

2T

)]
. (2.21)

It is easy to write down the magnetization per site of the isotropic XY
model as

mz =
1
2π

∫ π

0

dk tanh
[
H − |J | cos k

2T

]
(2.22)

and the magnetic susceptibility at H = 0 as

χH=0 =
1

4πT

∫ π

0

dk

cosh2[|J | cos k/2T ]
. (2.23)

The internal energy per site at zero magnetic field is equal to

e = −|J |
2π

∫ π

0

cos kdk tanh[|J | cos k/2T ] , (2.24)

which produces the formula for the specific heat

cH=0 =
J2

4πT 2

∫ π

0

dk
cos2 k

cosh2[|J | cos k/2T ]
. (2.25)

Figures 2.3 and 2.4 present results for the behaviour of the magnetic
susceptibility and the low-temperature Sommerfeld coefficient of the specific
heat, γ, for an isotropic XY chain for H = 0 and in a weak magnetic field
H = 0.1J . Notice the difference in the low-temperature behaviour of these
characteristics for the XY chain and for the Ising chain. The difference
is due to the activation character of the spectrum of the Ising chain. It
results in the exponentially small behaviour of χ and cH=0 for the systems
with gapped elementary excitations. The reader can also see that a weak
magnetic field practically does not change the behaviour of thermodynamic
characteristics of an isotropic XY chain.



April 6, 2005 10:46 Finite Size Effects in Correlated Electron Models: Exact Results mybook

34 Finite Size Effects in Correlated Electron Models: Exact Results

χ

1.0 2.00.0 3.0
T

4.0
0.10

0.12

0.14

0.16

0.18

0.20

Fig. 2.3 The magnetic susceptibility of an isotropic XY spin- 1
2

chain with J = 2. The
solid line shows the results for H = 0, the dashed line — for H = 0.2. For this value of
H the dashed and solid lines practically coincide.

It is interesting to study the behaviour of an isotropic XY model in the
ground state, at T = 0. Remember that we deal with the fermionic system,
and, therefore, it is necessary to determine its’ Fermi sea for the ground
state, i.e., the ground state of free fermions pertains to the situation in
which all possible states of the Hamiltonian with negative energies are filled
and all states with positive energies are empty. This, naturally, depends
on the value of an external magnetic field. For H ≥ |J | the ground state
magnetization of the isotropic XY chain per site is equal to its nominal
value 1

2 (and for H ≤ −|J |, it is − 1
2 ). Obviously, in these domains of

values of H the ground state magnetic susceptibility is zero. These phases
are frequently referred to as ferromagnetic (or spin-saturated) phases. On
the other hand, for −|J | ≤ H ≤ |J | the ground state magnetization per
site of an isotropic XY model is equal to mz = (1/π) sin−1(H/|J |), see
Fig. 2.5, and the magnetic susceptibility reveals square-root singularities at
Hs = ±|J |.

The latter is a smooth function of the field, though, for H → 0, in
contrast with the previously considered behaviour of an Ising chain in the
ground state. Nevertheless, this is again the manifestation of the quan-
tum phase transition (of the second kind, according to the classification of
P. Ehrenfest).
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Fig. 2.4 The Sommerfeld coefficient γ = c/T for the specific heat of an isotropic XY
chain. The solid line shows the results for H = 0, the dashed line — for H = 0.2. For
this value of H the dashed and solid lines practically coincide.

2.4 Ising Chain in a Transverse Magnetic Field

In one of the previous sections we considered the simplest case of an Ising
ring in a magnetic field, parallel to the axis of the magnetic anisotropy
of the spin–spin exchange coupling. In that case the z-projection of spin
operator at each site commutes with the Hamiltonian, and, hence, there
is no (non-trivial) spin dynamics. However, the interesting spin dynamics
appears if the magnetic field is directed perpendicular to the axis of the
magnetic anisotropy of the spin–spin interaction. Equally important is the
fact that this case also permits us to obtain an exact solution, because, as is
clear from the previous section, the introduction of a magnetic anisotropy
in the xy plane of the XY chain (so-called anisotropic XY model) does not
violate the important property of its Hamiltonian: it can also be exactly
transformed to a quadratic form of Fermi spinless operators. This means
that one can introduce the term

∑L−1
j=1 (JxSx

j Sx
j+1 + JySy

j Sy
j+1) instead of∑L−1

j=1 J(Sx
j Sx

j+1 + Sy
j Sy

j+1) in the Hamiltonian HHI . Then one has to
change 2J → (Jx + Jy) in formulae of the previous section and add to the
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Fig. 2.5 The ground state magnetic moment of the isotropic XY spin- 1
2

chain with
J = 2.

Hamiltonians H± the following terms:

δH+ =
Jx − Jy

4


L−1∑

j=1

(a†
ja

†
j+1 − aj+1aj) − a†

La†
1 + a1aL




=
Jy − Jx

2

L/2∑
k=1

sin[2π(2k − 1)/L](a†
2k−1a

†
−2k+1−a−2k+1a2k−1) , (2.26)

and

δH− =
Jx − Jy

4

L∑
j=1

(a†
ja

†
j+1 − aj+1aj)

=
Jy − Jx

2

(L/2)−1∑
k=1

sin[4πk/L](a†
2ka†

−2k − a−2ka2k) . (2.27)

The reader can himself perform calculations, similar to those given above.
The only difference is that for the diagonalization of the quadratic form of
Fermi operators it is not enough in this case to use only Fourier transform;
one also needs the usual Bogolyubov transformation:

ak = ukbk + vkb†−k , a†
k = ukb†k + vkb−k ,

u−k = uk , v−k = −vk , u2
k + v2

k = 1 .
(2.28)
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It has to be used in such a way that after the transformation the fermion
Hamiltonian does not have the “anomalous” combinations b†kb†−k and b−kbk.
Then we obtain

2u2
k = 1 − (Jx + Jy) cos[2πk/L]

2εk
, 2v2

k = 1 +
(Jx + Jy) cos[2πk/L]

2εk
,

εk =
1
2

√
J2

x + J2
y + 2JxJy cos[2πk/L]− 4H |Jx + Jy| cos[2πk/L] + 4H2 ,

Hk = εk(b†kbk + b†−kb−k − 1) . (2.29)

After such a transformation we can write the expression for H+ =
(1/2)

∑L/2
k=1(2H2k−1 + (Jx + Jy) cos[2π(2k − 1)/L]), and analogous one for

H− (different due to the boundary terms). Then, one can obtain the ex-
pression for the partition function. It coincides with Eq. (2.19), with the
replacements

[H/2] + J cos[2π(2k − 1)/L] → ε2k−1 , [H/2] + J cos[4πk/L] → ε2k ,

[H/2] ± J → [H/2]± (Jx + Jy)/2 . (2.30)

The special case of the Ising chain pertains to Jx = 0 (or Jy = 0). Then,
in the thermodynamic limit, the Helmholtz free energy per site of the Ising
chain in the perpendicular to the Ising axis magnetic field can be written
as:

f = −T

π

∫ π

0

dk ln[2 cosh(
√

4H2 + J2 − 4H |J | cosk/4T )] (2.31)

(we used Jx = J , or Jy = J) and the magnetization per site is equal to

m =
1
2π

∫ π

0

dk tanh

[√
4H2 + J2 − 4H |J | cosk

4T

]

× 2H − |J | cos k√
4H2 + J2 − 4H |J | cos k

. (2.32)

The zero-field magnetic susceptibility is equal to

χH=0 =
1

8T

(
1

cosh2(J/4T )
+

4T

J
tanh(J/4T )

)
. (2.33)

It is important to point out that because
∑

j Sz
j does not commute with the

Hamiltonian in this case, there is no ferromagnetic phase (i.e., the domain
of values of the magnetic field, in which the magnetization becomes equal to
its’ nominal value, does not exist). The reader can see from Eq. (2.32) that
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m tends to 1
2 only in the infinite magnetic field. This is the consequence of

the magnetic anisotropy in the system. In the ground state the magnetic
susceptibility per site is equal to

χ =
J2

π

∫ π

0

sin2 kdk

(4H2 + J2 − 4H |J | cosk)3/2
, (2.34)

which implies the logarithmic singularity (i.e., weaker, than the square-
root singularity of the ground state magnetic susceptibility of the isotropic
XY chain) at Hc = |J |/2. Here we are again faced with a quantum phase
transition. Such a quantum phase transition with a logarithmic singularity
of the magnetic susceptibility is present for an anisotropic XY model, not
only in the Ising limit.

2.5 Dimerized XY Chain

The other model which permits us to obtain an exact solution, is the mul-
timerized (multi-sublattice) XY chain. The Hamiltonian of that model has
the form:

Hmul =
∑

j

(
N−1∑
n=1

[Jn(Sx
j,nSx

j,n+1 + Sy
j,nSy

j,n+1)]

+ JN (Sx
j,NSx

j+1,1 + Sy
j,NSy

j+1,1) − H

N∑
n=1

µnSz
j,n

)
, (2.35)

where we take into account possible N different magnetic sublattices in
a chain of spins 1

2 , each sitting in the j-th cell of a chain, j = 1, . . . , L.
Here Jn denote exchange constants, and µn denote effective magnetons.
They distinguish magnetic sublattices in each elementary cell of the one-
dimensional lattice from each other.

Using the generalized Jordan–Wigner transformation

Sz
j,n =

1
2
σj,n =

1
2
− a†

j,naj,n ,

S+
j,1 =

∏
l<j

N∏
n=1

σz
l,naj,1 ,

S+
j,m =

∏
l<j

N∏
n=1

σz
l,nσz

j,1 · · ·σz
j,m−1aj,m , m = 2, . . . , M ,

S−
j,n = (S+

j,n)+ , n = 1, . . . , M ,

(2.36)
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where A+ is the operator, Hermitian conjugated to A, the Hamiltonian
Eq. (2.35) can be exactly re-written as a quadratic form of Fermi operators.
Then, by using the Fourier transform ak,n = L−1/2

∑
j aj,n exp(−ikj) (with

−π ≤ k ≤ π), we get in the thermodynamic limit L → ∞

Hmul = −LH

2

N∑
n=1

µn +
∑

k

[
N−1∑
n=1

[
µnHa†

k,nak,n

+
Jn

2
(a†

k,nak,n+1 + a†
k,n+1ak,n)

]
+ µNHa†

k,Nak,N

+
JN

2
(a†

k,Nak,1e
ik + a†

k,1ak,Ne−ik)

]
. (2.37)

This is a quadratic form of Fermi operators, which can be diagonalized by
using a unitary transformation.

Let us consider the most important special case N = 2, i.e., the dimer-
ized spin- 1

2 XY chain. Here one can say that the chain is bond- and
site-alternating. Then the unitary transformation which diagonalizes the
Hamiltonian equation (2.37) can be explicitly written as (bkn destroys the
fermion mode with the quasimomentum k, which belongs to the n-th branch
of the spectrum)

ak1 = u11(k)bk1 + u12(k)bk2 , ak2 = u21(k)bk1 + u22(k)bk2 , (2.38)

after which the Hamiltonian finally becomes

Hdim = −LH

2
(µ1 + µ2) +

∑
k

2∑
n=1

εk,nb†k,nbk,n

=
∑

k

2∑
n=1

εk,n[b†k,nbk,n − (1/2)] , (2.39)

where

εk,1,2 =
1
2
[(µ1 + µ2)H ±

√
(µ1 − µ2)2H2 + J2

1 + J2
2 + 2J1J2 cos k] , (2.40)

and the coefficients of the unitary transformations are

u11(k) =
(

µ2H − εk1

εk2 − εk1

) 1
2

eiφ , u12(k) =
(

J1 + J2e
−ik

2(µ1H − εk2)

)
u11(k)ei(ψ−φ) ,

u21(k) =
(

J1 + J2e
ik

2(µ2H − εk1)

)
u11(k) , u12(k) = u11(k)ei(ψ−φ) , (2.41)
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where φ and ψ are arbitrary phases. Let us consider non-negative values of
the magnetic field H ≥ 0. We point out that in the thermodynamic limit
L → ∞ the first branch of the spectrum is positive for any value of the
quasimomentum k. On the other hand, the second branch is negative for
all k in the region H < Hc and positive for all k for H > Hs, where

Hc,s =
|J1 ∓ J2|
2
√

µ1µ2
. (2.42)

In the region Hc < H < Hs, εk,2 > 0 for |k| > kc, and εk,2 < 0 for |k| < kc,
where

kc = cos−1 2H2 − H2
c − H2

s

H2
s − H2

c

= cos−1 µ1µ2H
2 − J2

1 − J2
2

2J1J2
. (2.43)

Hence the spectrum of the system is gapless for Hc < H < Hs and it has a
gap (spin gap) for H > Hs and H < Hc. The ground state of a dimerized
XY spin chain is organized as follows. The first branch of excitations is
non-occupied for any value of the magnetic field at T = 0. For small values
of the magnetic field, H < Hc, the Dirac sea consists of all occupied states
of fermions from the second branch. In this case excitations have the gap
G(H) = (1/2)[

√
(µ1 − µ2)2H2 + (J1 − J2)2 − (µ1 + µ2)H ]. It is equal to

|J1 − J2|/2 for H = 0 and is closed at H = Hc. For intermediate values
Hc < H < Hs the Dirac sea consists of filled states of fermions from the
second branch with |k| < kc, and low-lying excitations are fermions from
the second branch with |k| > kc and holes for |k| < kc. Finally, in the
region of Hs < H the Dirac sea is empty and all excitations are activated.

The ground state magnetization of the dimerized spin chain for H < Hc

can be written as

mz
T=0 =

∑
k

(µ1 − µ2)2H
2
√

(µ1 − µ2)2H2 + J2
1 + J2

2 + 2J1J2 cos k

=
(µ1 − µ2)2HK(κ)

π
√

(µ1 − µ2)2H2 + (J1 + J2)2
, (2.44)

where K(κ) is the complete elliptic integral of the first kind and κ2 =
4J1J2/[(µ1 − µ2)2H2 + (J1 + J2)2]. Obviously for H → 0, there is no
spontaneous magnetization. It turns out that Mz = 0 for µ1 = µ2 for any
H < Hc. In this region of H absolute values of the z-projection of the
total spin (mechanic moment) of each sublattice are equal to each other
and compensate each other. For µ1 �= µ2, there can be a weak magnetic
moment in this phase. We can call this phase the “antiferromagnetic” one
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for µ1 = µ2, or “ferrimagnetic” one for the case of nonzero magnetization
for H < Hc. Notice that for J1 = J2 = J , but for µ1 �= µ2, the magnetic
susceptibility has a logarithmic singularity at H → 0, because

mz
T=0 = − (µ1 − µ2)2H

π|J | ln
|µ1 − µ2|H

2|J | . (2.45)

In the region of large fields the ground state magnetization is

mz
T=0 = (µ1 + µ2)/2 , (2.46)

i.e., the system is in the ferromagnetic phase, in which spins of each sub-
lattice have their nominal values 1

2 . Finally, in the intermediate region of
fields Hc < H < Hs the ground state magnetization per site is equal to

mz
T=0 =

(µ1 + µ2)
2

(
1 − kc

π

)
+

(µ1 − µ2)2HF (kc/2, κ)
π
√

(µ1 − µ2)2H2 + (J1 + J2)2
, (2.47)

where F (kc/2, κ) is the incomplete elliptic integral of the first kind. At
H = Hc,s two second order quantum phase transitions take place. The
magnetic susceptibility of the dimerized XY spin- 1

2 chain reveals square
root singularities in the ground state χ ∼ 1/

√
(H2

s − H2)(H2 − H2
c ).

The partition function (and other thermodynamic characteristics) of the
dimerized XY chain in the thermal equilibrium can be obtained straight-
forwardly. The Helmholtz free energy of the dimerized chain is equal to

f = −T
∑

k

2∑
n=1

ln[2 cosh(εk,n/2T )] . (2.48)

The magnetization is

mz = mz
T=0 +

(µ1 + µ2)
2

∑
k

(
cosh

(µ1 + µ2)H
2T

+ cosh

√
(µ1 − µ2)2H2 + J2

1 + J2
2 + 2J1J2 cos k

2T

)−1

×
[
sinh

(µ1 + µ2)H
2T

− (µ1 − µ2)H√
(µ1 − µ2)2H2 + J2

1 + J2
2 + 2J1J2 cos k

×
(

cosh
[
(µ1 + µ2)H

2T

]
+ e−

√
(µ1−µ2)2H2+J2

1+J2
2+2J1J2 cos k/2T

)]
.

(2.49)
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The magnetic susceptibility can be written as

χ =
∑

k

2∑
n=1

[
1
2

∂2εk,n

∂H2
tanh

εk,n

2T
+
[
∂εk,n

∂H

]2 1
4T cosh2(εk,n/2T )

]
. (2.50)

The specific heat can be calculated as

c =
∑

k

2∑
n=1

ε2
k,n

4T 2 cosh(εk,n/2T )
. (2.51)

It is instructive also to calculate the staggered magnetic susceptibility of
the dimerized XY chain, i.e., the response of the system to the alternating
magnetic field

χst =
(µ1 − µ2)2

2

∑
k

2∑
n=1

[
∂2εk,n

∂(µ1 − µ2)2H2
tanh

εk,n

2T

+
(

∂εk,n

∂(µ1 − µ2)H

)2 1
4T cosh2(εk,n/2T )

]
. (2.52)

Some analytic results can be written for the case N = 4, i.e., quadrimer-
ized XY chain. If µ1 = µ2 = µ3 = µ4 = µ there are four values of the
magnetic field H , at which quantum phase transitions in the ground state
take place:

µHc1,2,3,4 =
1

2
√

2

(
J2

1 + J2
2 + J2

3 + J2
4

±
√

[(J1 + J3)2 + (J2 ± J4)2][(J1 − J3)2 + (J2 ∓ J4)2]
)1/2

.

(2.53)

At these values of the magnetic field the ground state magnetic suscep-
tibility reveals square root singularities, characteristic for quantum phase
transitions of the second kind. Suppose that J1J2J3J4 > 0. Then for H

larger than the largest value of Hc1,2,3,4 the system at T = 0 is in the fer-
romagnetic phase with magnetic moments of each sublattice being equal to
their nominal value µ/2. For H smaller than the smallest value of Hc1,2,3,4

magnetic moments of sublattices compensate each other, and the ground
state magnetization is zero. It turns our that in these phases, as well as for
H being between two other critical values, the ground state magnetization
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of a multi-sublattice spin chain is not changed with the variation of an ex-
ternal magnetic field H , and the magnetic susceptibility is zero. It is used
to refer to such a situation as about magnetization plateaux.

It is interesting to notice that for a N -sublattice XY spin- 1
2 chain there

exist N quantum phase transitions with respect to an external magnetic
field directed along z axis. Moreover, it is important to emphasize that for
even N there is a spin-gapped “antiferromagnetic” phase at low values of
the magnetic field. On the other hand, there is no such a phase for N odd.
Equally important, in the ground state of the N -sublattice model there
are N phases with magnetization plateaux, in which the T = 0 magnetic
susceptibility is equal to zero. As the reader will see below, similar conclu-
sions can be made about the magnetic field behaviour of any “easy-plane”
antiferromagnetic spin- 1

2 chain.
Here it is worthwhile to present the theorem due to E. H. Lieb,

T. Schultz and D. J. Mattis about the ground state and excitations of
a Heisenberg–Ising spin- 1

2 chain with an “easy-plane” magnetic anisotropy.
First, we can prove that for such an antiferromagnetic model the ground

state is non-degenerate (and singlet) for even L. Let us use the same
transformation which was used to prove that HHI(J, Jz) = HHI(−J, Jz),
i.e., rotate all even (or odd) spins about z axis.

Consider, first, only states with
∑

j Sz
j = 0. A complete set of states

is the set of configurations in which L/2 spins are up and L/2 are down.
Denote these states by φa. Any eigenfunction of the Hamiltonian can be
expanded as Ψ =

∑
a caφa. The stationary Schrödinger equation in this

representation for the Hamiltonian after the unitary transformation is

(E − Jzεa)ca =
J

2

∑
a′

ca′ , (2.54)

where
∑

j Sz
j Sz

j+1φa = εaφa. The Hamiltonian is real, this is why one can
suppose that all ca are also real. Then, assume that for some ground state
Ψ0 with the energy E0 some ca = 0 for a = a1, . . . , ar. For these coefficients
we obviously have

∑
a′ ca′ = 0 for a = a1, . . . , ar. In at least one of these

equations (say the ap-th) some of ca �= 0 (otherwise the Hamiltonian would
break into blocks with no matrix elements connecting φa1 , . . . , φar with
other configurations, which is impossible). Hence, there are nonzero ca of
both signs. Now consider the trial wave function Ψ′

0 =
∑

a |ca|φa. On the
one hand, it is not an eigenstate of HHI , because |cap | = 0 but

∑
a′ |ca′ | �= 0,

so that from the variational principle we have for its energy E′
0 > E0. On
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the other hand we have

E′
0 = Jz

∑
a

εac2
a − J

2

∑
a,a′

|ca||ca′ | , (2.55)

and

E0 = Jz

∑
a

εac2
a − J

2

∑
a,a′

caca′ , (2.56)

which imply that E′
0 ≤ E0. This is in an obvious contradiction with the

variational principle. Hence, for any ground state with
∑

j Sz
j = 0 all

ca �= 0.
For any Ψ0 to be a ground state one needs E′

0 = E0. This occurs, if and
only if, all the terms caca′ are positive, i.e., the coefficients of all config-
urations connected through J with each other should have the same sign.
But each configuration is ultimately connected with every other through re-
peated application of the interaction with J . This is why, for every ground
state with

∑
j Sz

j = 0 all ca have the same sign. Then it is obvious that
there can be only one ground state with

∑
j Sz

j = 0. Otherwise, several
states would all have all positive coefficients and so could not be orthogo-
nal to each other. The onset of another ground state (whatever its multi-
plicity) would imply that there is a second ground state with

∑
j Sz

j = 0,
which is impossible, see above. This is why at least one ground state has∑

j Sz
j = 0. This is, in fact, true for any dimensions and any bipartite

lattice (i.e., which can be decomposed into two equivalent sublattices and
ferromagnetic interactions between spins of the same sublattice).

Next, consider the excited state

Ψk = exp

(
ik
∑

n

nSz
n

)
Ψ0 ≡ OkΨ0 . (2.57)

Let us study the unitary operator T that displaces all the spins by one
site cyclically TSjT

−1 = Sj+1 with periodic boundary conditions SL+1 =
S1. Observe that T = exp(iP ), where P is the total momentum of a
periodic spin chain. The reader can see that T obviously commutes with
the Hamiltonian [HHI , T ] = 0 (as well as [HHI , P ] = 0). Then, if Ψ0 is
an eigenstate of HHI , so is TΨ0. The reader already knows that Ψ0 is
non-degenerate, then TΨ0 = exp(iα)Ψ0. Thus

〈Ψ0|Ψk〉 = 〈Ψ0|Ok|Ψ0〉 = 〈Ψ0|TOkT−1|Ψ0〉 . (2.58)



April 6, 2005 10:46 Finite Size Effects in Correlated Electron Models: Exact Results mybook

Quantum Spin- 1
2

Chain with the Nearest-Neighbour Couplings 45

However, one has that

TOkT−1 = Ok exp(ikLSz
1) exp

(
−ik

L∑
n=1

Sz
n

)
. (2.59)

Ψ0 is a singlet. For even L we can choose exp(ikLSz
1) = −1, pro-

viding k = 2πm/L, where m is an odd integer. This means that
〈Ψ0|Ψk〉 = −〈Ψ0|Ψk〉 = 0, i.e., Ψk with k = 2πm/L is orthogonal to
Ψ0. We can also calculate the energy of the state Ψk as 〈Ψk|HHI |Ψk〉 =
〈Ψ0|Ok−1HHIOk|Ψ0〉. Notice that

Ok−1Sx
j Ok = Sx

j cos kj + Sy
j sin kj ,

Ok−1Sy
j Ok = Sy

j cos kj − Sx
j sin kj ,

Ok−1Sz
jOk = Sz

j ,

(2.60)

so that (taking into account periodic boundary conditions SL+1 = S1 and
that k = 2πm/L for the boundary term SLS1)

〈Ψ0|Ok−1HHIOk|Ψ0〉 = 〈Ψ0|HHI + J(cos k − 1)
L∑

j=1

(Sx
j Sx

j+1 + Sy
j Sy

j+1)

+ J sink

L∑
j=1

(Sx
j Sy

j+1 − Sy
j Sx

j+1)|Ψ0〉 . (2.61)

The reader knows that 〈Ψ0|HHI |Ψ0〉 = E0. Then it is easy to show that

(cos k − 1)〈Ψ0|
L∑

j=1

(Sx
j Sx

j+1 + Sy
j Sy

j+1)|Ψ0〉

= −1
2

[
(2π/L)2 − O(L−4)

]
L∑

j=1

〈Ψ0|Sx
j Sx

j+1 + Sy
j Sy

j+1|Ψ0〉

≤ [(2π/L)2(L/2) + O(L−3)] , (2.62)

and

J sin k〈Ψ0|
L∑

j=1

(Sx
j Sy

j+1 − Sy
j Sx

j+1)|Ψ0〉

= −i sink〈Ψ0|
[∑

n

nSz
n,HHI

]
|Ψ0〉 = 0 . (2.63)
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From these equations we conclude that for k = 2π/L the energy of the
state Ψk is

〈Ψk|HHI |Ψk〉 ≤ E0 + (2π2J/N) , (2.64)

i.e., there is no energy gap. This is why, an excited state for a periodic
Heisenberg–Ising “easy-plane” antiferromagnetic chain with nearest neigh-
bour interactions has vanishingly small excitation energy in the limit that
the length of a chain is infinite, if the ground state is non-degenerate. One
can obviously generalize this statement for any space dimension for bipar-
tite lattices without spin frustration and for any half-integer values of a
site spin (notice that one needs numbers of sites of the system in other
than along the direction of the transformation T directions to be mutually
prime with the number of magnetic sublattices along the T direction). In
particular, the generalization of the Lieb–Schultz–Mattis theorem is often
used for a description of the behaviour of spin ladders, i.e., finite number
of spin chains connected with each other (usually due to nearest-neighbour
couplings between chains).

One can consider the generalization of this theorem for higher spins S

and multi-sublattice spin chains in an external magnetic field parallel to
the axis of a magnetic anisotropy, due to M. Oshikawa, M. Yamanaka and
I. Affleck. In fact, they pointed out that the proof given above works for any
ground state z-projection of an average spin moment per spin sz (caused
by a nonzero magnetic field H) except for values N(S−sz) = q, where N is
the number of magnetic sublattices (distinguished by non-equal exchange
couplings, or by different effective magnetons, as we considered above) and
q is integer. We see that TΨ0 is orthogonal to Ψ0, except if N(S − sz) = q,
which follows from the action of the operator exp(ik[LSz

1 − ik
∑L

n=1 Sz
n]).

This implies that for any non-integer N(S− sz) there is a low-lying excited
state with the energy JO(1/L). For S = 1

2 and N = 1, it is a trivial
statement, naturally the reader knows that if the ground state moment
per spin is equal to ± 1

2 , we are in the ferromagnetic state (with gapped
excitations; the latter will be shown in detail in the next chapter), and the
points sz = ± 1

2 are quantum critical points. From the above the reader
can check that it is true for N -sublattice isotropic XY chain in a magnetic
field. The situation with integer spins S, N = 1 and sz = 0 is, in fact,
related to the well-known conjecture due to F. D. M. Haldane (known as the
Haldane’s hypothesis), who was the first to emphasize that for Heisenberg
antiferromagnetic integer-spin chains at H = 0, low-lying excitations have
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gaps, while for non-integer site spins there is no such a gap. The onset of
magnetization plateaux, considered above, persists at least for an “easy-
plane” magnetic anisotropy.

Summarizing, in this chapter we presented some simple exactly solvable
models of quantum spin chains: Ising chains, isotropic and anisotropic XY
chains, multimerized XY chains. Common features for the behaviours of
all these models are the absence of T �= 0 phase transitions, while quantum
phase transitions in an external magnetic field are characteristic features for
this class of systems. We presented thermodynamic characteristics for these
models and pointed out similarities and differences in the temperature be-
haviours of magnetic susceptibility and specific heat. Finally, we presented
the Lieb–Schultz–Mattis theorem and discussed the inset of magnetization
plateaux in the ground state of (multimerized) quantum spin chains.

The interested reader can find the solution of the Ising chain in [Ising
(1925)]. The Jordan–Wigner transformation is introduced in [Jordan and
Wigner (1928)]. The solution of an isotropic XY chain for H = 0 is
given in [Lieb, Schulz and Mattis (1961)]. We closely followed an ap-
pendix of that paper when discussing the Lieb–Schultz–Mattis theorem.
The reader can find the generalization of that theorem for a nonzero mag-
netic field in [Yamanaka, Oshikawa and Affleck (1997)]. The solution of
an isotropic and anisotropic XY model (including the case of an Ising
chain in the perpendicular magnetic field) can be found in [Katsura (1962);
Pikin and Tsukernik (1966); Pfeuty (1970)]. The generalized Jordan–
Wigner transformation and an analysis of the behaviour of multi-sublattice
spin chains is presented in [Zvyagin (1990a)]. The special important case of
a dimerized XY chain can be found in [Kontorovich and Tsukernik (1967)].
The Haldane hypothesis was introduced in [Haldane (1983)].
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Chapter 3

Co-ordinate Bethe Ansatz for a
Heisenberg Ising Ring

In this chapter we shall present the main ideas of the co-ordinate Bethe
ansatz using as the basic model the simplest case of interacting spin- 1

2 one-
dimensional systems.

3.1 Bethe Ansatz

Now our goal is to find the eigenfunctions and eigenvalues of the Hamilto-
nian HHI +HZ for the general case Jz �= 0, J �= 0. This, by now well-known
method, is due to H. Bethe who proposed it first for the Heisenberg spin
chain, is called the Bethe’s ansatz.

The total spin, as well as the z-projection of the total spin
∑L

j=1 Sz
j ,

commute with the Hamiltonian HHI + HZ . This is why, we classify all
states of the Hamiltonian by eigenvalues of the operator

∑L
j=1 Sz

j . It is
convenient to choose the basis functions in the form

|x1, . . . , xM 〉 ≡ e+
1 ⊗ · · · ⊗ e−x1

⊗ · · · ⊗ e+
j ⊗ · · · e−xM

⊗ · · · ⊗ e+
L (3.1)

(here ⊗ denotes the tensor product), such that the values xj in it determine
M coordinates of sites with spins down (all other spins are directed up).
[Naturally, we could choose the opposite basis with M spins up and L−M

spins down, and the results would be the same.] We suppose that 1 ≤ x1 <

x2 < · · · < xM ≤ L. Then the wave function can be written as

ΨM =
∑

x1<x2<···<xM

a(x1, . . . , xM )|x1, . . . , xM 〉 , (3.2)

where a(x1, . . . , xM ) is the wave function in the co-ordinate representation.
For this reason this method is often referred to as the co-ordinate Bethe
ansatz. Then the action of the Hamiltonian on the wave function Eq. (3.2) is

49
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easy to get. The condition for ΨM to be the eigenfunction of HHI+HZ (i.e.,
to fulfill the stationary Schrödinger equation, (HHI + HZ)ΨM = EΨM ) is

Ea(x1, . . . , xM ) =
(
−H(L − 2M)

2
+

JzL

4

)
a(x1, . . . , xM )

+
1
2

∑
x′
1,··· ,x′

M

[Ja(x′
1, . . . , x

′
M ) − Jza(x1, . . . , xM )] , (3.3)

where the set x′
1, . . . , x

′
M differs from x1, . . . , xM by an interchange of spins

of some one pair of neighbours. Clearly, this set of finite difference equations
is valid for any

∑L
j=1 Sz

j = (L/2) − M .
Let us now consider simple examples of the realization of Eq. (3.3).

First, suppose that M = 1. In this case we have

Ea(x) =
−2H(L − 2) + JzL

4
a(x)−Jza(x)+

J

2
a(x−1)+

J

2
a(x+1) . (3.4)

It has the well-known solution

a(x) = A exp(ikx) , E = −H(L − 2)
2

+
JzL

4
− (Jz − J cos k) , (3.5)

where an arbitrary constant A has to be determined from the normalization
condition for the wave function and k is defined by boundary conditions.
Let us consider periodic boundary conditions a(x) = a(x + L). Then we
have exp(ikL) = 1, and, hence, kL = 2πI, where non-equal integers are
I = 0,±1,±2, . . . .

For the case M = 2, we have to distinguish two situations. If x2 �= x1+1,
one has the equation

Ea(x1, x2) =
−2H(L − 4) + JzL

4
a(x1, x2) − 2Jza(x1, x2)

+
J

2
[a(x1 − 1, x2) + a(x1 + 1, x2)

+ a(x1, x2 − 1) + a(x1, x2 − 1)] , (3.6)

which general solution is

a(x1, x2) = A1e
i(k1x1+k2x2) + A2e

i(k2x1+k1x2) ,

E = −H(L − 4)
2

+
JzL

4
− 2Jz + J(cos k1 + cos k2) ,

(3.7)

where A1,2 are arbitrary constants.
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On the other hand, when x2 = x1 + 1 (i.e., down spins are situated at
the nearest neighbour sites) one has

Ea(x, x + 1) =
(
−H(L − 4)

2
+

JzL

4

)
a(x, x + 1) − 2Jza(x, x + 1)

+
J

2
[a(x − 1, x + 1) + a(x, x + 2)] . (3.8)

We can look for the solution of this equation in the form, similar to the
previous case

a(x1, x2) = A12e
i(k1x1+k2x2) + A21e

i(k2x1+k1x2) ,

E = −H(L − 4)
2

+
JzL

4
− 2Jz + J(cos k1 + cos k2) ,

(3.9)

but with the constraint on the amplitudes A12 and A21

Jz

(
A12e

ik2 + A21e
ik1
)

=
1
2
(A12 + A21)

(
1 + ei(k1+k2)

)
. (3.10)

The last formula implies

A21 = −A12e
iθ(k1,k2) (3.11)

where A12 is determined from the normalization condition for the wave
function and

θ(k1, k2) = tan−1

(
Jz sin k1−k2

2

J cos k1+k2
2 − Jz cos k1−k2

2

)
. (3.12)

Since in the case with two down spins not nearest neighbours we used
the same structure of the solution but with independent constants, one
may suppose that the function Eq. (3.9) is the general eigenfunction of
the Hamiltonian for the case M = 2 and any position of down spins. It
turns out that the phase factor θ(k1, k2) does not depend on the value
of an external magnetic field H , but the eigenvalue of the Hamiltonian
does depend on it. It is also instructive to observe that for the isotropic
XY model case Jz = 0, the phase θ(k1, k2) ≡ 0. Actually, this is the
manifestation of the fact, already known to the reader from the previous
chapter, the Hamiltonian of the isotropic XY model can be exactly mapped
onto the Hamiltonian of free (noninteracting) spinless fermions.
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The periodic boundary condition a(x1, x2) = a(x2, L + x1) (because we
supposed that x1 < x2) implies two similar equations for the values k1 and
k2:

eik1L = −e−iθ(k1,k2) , eik2L = −e−iθ(k2,k1) . (3.13)

Taking the logarithm one can re-write these equations in the form

k1L = 2πI1 − θ(k1, k2) , k2L = 2πI2 − θ(k2, k1) , (3.14)

with non-equal half-integers I1,2 = ± 1
2 ,± 3

2 , . . . , because the logarithm is
the multi-valued function.

The reader can directly check after some straightforward but lengthy
calculations performed in a similar way that the cases M = 3, 4 can also
be explicitly solved as for M = 2. This implies the general form of the
eigenfunction in the co-ordinate representation as the superposition of the
plane waves

a(x1, . . . , xM ) =
∑
P

AP exp


i

M∑
j=1

kPj xj


 , (3.15)

where P denotes a permutation of M indices 1, 2, . . . , M (there are M ! terms
here). This is nothing other than the famous Bethe ansatz! Amplitudes
AP are related to A1,2,...,M as

AP = ±A1,2,...,M exp[i
∑

θ(kj , kl)] , (3.16)

where the summation is extended over all pairs of indices j, l obtained from
the initial arrangement of them for AP , which is necessary to interchange in
order to get A1,2,...,M . The sign is determined by the parity of those permu-
tations. The eigenvalue of the Hamiltonian HHI + HZ , which corresponds
to the eigenfunction equation (3.15), is

E = −H(L − 2M)
2

+
LJz

4
−

M∑
j=1

(Jz − J cos kj) . (3.17)

Finally, the periodic boundary condition for the general case of any M can
be written as

eikjL = (−1)M−1e
−i

∑M
l=1,
l �=j

θ(kj,kl)

, j = 1, . . . , M , (3.18)
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which are well-known as the Bethe ansatz equations. Taking the logarithm
we obtain

Lkj = 2πIj −
M∑

l=1,
l �=j

θ(kj , kl) (3.19)

with half-integers Ij for even M and integers Ij for odd M . For example,
the convenient choice for these numbers is Ij = (L+M +1)/2 (mod 1). One
can naturally consider kj as quasimomenta of eigenstates. It is clear that
Bethe ansatz equations for essentially interacting system are very similar
to standard quantization conditions for noninteracting particles in a one-
dimensional box of length L.

These Bethe ansatz equations can be re-written in the following way.
For the case J = Jz < 0 (i.e., for the isotropic ferromagnetic Heisen-
berg chain) one can introduce the set of so-called rapidities {λj}M

j=1 in-
stead of quasimomenta {kj}M

j=1 as λj = 1
2 cot kj

2 (or, in other words,
kj = 2 tan−1 2λj = −i ln[(2λj+i)/(2λj−i)]). To have independent solutions
of Eq. (3.18), one has to consider, e.g., real kj in the domain 0 ≤ kj ≤ 2π,
which is related to the domain −∞ ≤ λj ≤ ∞. The goal of such an intro-
duction is to re-write Bethe ansatz equations in a differential form(

λj + (i/2)
λj − (i/2)

)L

=
M∏

l=1,
l �=j

λj − λl + i

λj − λl − i
, (3.20)

which, taking the logarithm, can be re-written as

2L tan−1(2λj) = 2πIj + 2
M∑

l=1,
l �=j

tan−1(λj − λl) , (3.21)

where Ij are (half)integers for M (even) odd, and the energy is

E = −HL

2
+

NJ

4
+

M∑
j=1

[H − 2J(4λ2
j + 1)−1] . (3.22)

It turns out that for J = Jz > 0, one can introduce the set of rapidities
as λj = 1

2 tan kj

2 . The domain −∞ ≤ λj ≤ ∞ is now related to the
one −π ≤ kj ≤ π. The energy and the Bethe ansatz equations, however,
formally have the same form as Eqs. (3.20) and (3.22).

For Jz �= J one can introduce the value cos η = Jz/J (real values of η

are related to the “easy-plane” magnetic anisotropy |Jz/J | ≤ 1, while the
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“easy-axis” magnetic anisotropy with |Jz/J | ≥ 1 is described by imaginary
values of η). The set of rapidities is now introduced via kj = −i ln(sin[λj +
(η/2)]/ sin[λj − (η/2)]). The Bethe ansatz equations and the energy can be
written as (

sin[λj + (η/2)]
sin[λj − (η/2)]

)L

=
M∏

l=1,
l �=j

sin[λj − λl + η]
sin[λj − λl − η]

(3.23)

and the energy

E = −HL

2
+

NJz

4

+
M∑

j=1

(
H − Jz +

J sin[λj + (η/2)]
2 sin[λj − (η/2)]

+
J sin[λj − (η/2)]
2 sin[λj + (η/2)]

)
. (3.24)

For Jz > J > 0, it is convenient to use the parametrization η → π + iη and
λj → (π − λj)/2 within the domain −π ≤ λj ≤ π. On the other hand, for
0 > J > Jz the convenient parametrization is η → iη and λj → λj/2 within
−π ≤ λj ≤ π. In the “easy-plane” anisotropic situation −J < Jz < J the
convenient parametrization is η → π − η and λj → (π − iλj)/2 within the
domain −∞ ≤ λj ≤ ∞.

Notice that θ is a single-valued real analytic function of J , Jz , kj , and kl

if the latter two are in the open interval given above, and θ(0, 0) = 0. These
conditions uniquely define the branch of tan−1. Moreover, θ(−p,−q) =
−θ(p, q) = θ(q, p). C. N. Yang and C. P. Yang proved (we shall not present
the proof of those theorems and refer the reader to the original papers,
where very transparent and elegant proofs are given) that

• For any M ≤ L/2 and 0 ≤ (Jz/J) < 1, the Bethe ansatz equations
have an unique solution in the interval for rapidities (momenta).
Each kj is an analytic function of Jz/J .

• This solution satisfies the condition kj = −kM−j+1, j = 1, . . . , M .
• For M ≤ L/2 and (Jz/J) ≤ 0, the Bethe ansatz equations have a

solution forming a continuous curve in the real kj × (Jz/J) space
with kj in the above mentioned interval. The curve extends from
Jz = 0 to all (Jz/J) < 0 and at each point on the curve one has
ki �= kj and kj = −kM−j+1 for j = 1, . . . , M .

• The ground state of the Heisenberg–Ising Hamiltonian for finite
L and M is nondegenerate for any real Jz/J . The ground state
energy is analytic in (Jz/J) for all real (Jz/J).



April 6, 2005 10:46 Finite Size Effects in Correlated Electron Models: Exact Results mybook

Co-ordinate Bethe Ansatz for a Heisenberg–Ising Ring 55

• For Jz = 0, the solution is unique.
• For any real (Jz/J) < 1 and for M ≤ L/2, the ground state is given

by the Bethe eigenfunction with kj = −kM−j+1 for j = 1, . . . , M .
• All kj are analytic in (Jz/J) in an open strip containing the semi-

infinite real axis (Jz/J) < 1.

Hence, the difficult problem of solving a stationary Schrödinger equation
for a quantum interacting many-body system is reduced to the solution of
a finite set of finite difference equations for rapidities. As we have seen, the
solution of the Bethe ansatz equations parametrizes the eigenfunctions and
eigenvalues of the considered quantum spin Hamiltonian.

3.2 Simple Solutions of the Bethe Ansatz Equations:
Strings

It is instructive to consider possible solutions of Bethe ansatz equations.
Let us for simplicity limit ourselves by the isotropic case Jz = J . For the
simplest case M = 1, we already presented the solution in Eq. (3.5). The
reader can see that only real λ = (1/2) cot 2πI/L realize the solution. It is
not so for M = 2. Here the Bethe ansatz equations for λ1,2 can be written
explicitly as(

λ1 + (i/2)
λ1 − (i/2)

)L

=
λ1 − λ2 + i

λ1 − λ2 − i
,

(
λ2 + (i/2)
λ2 − (i/2)

)L

=
λ2 − λ1 + i

λ2 − λ1 − i
. (3.25)

We can replace one of these equations by(
λ1 + (i/2)
λ1 − (i/2)

× λ2 + (i/2)
λ2 − (i/2)

)L

= 1 . (3.26)

The real λ1,2 solutions (which in the thermodynamic limit L → ∞ with
the exponential accuracy in L decouple) have the same form as for the case
M = 1. The energy of this solution is

E =
JL

4
− H(L − 4)

2
− J(2 − cos k1 − cos k2)

=
JL

4
− H(L − 4)

2
− 2J

(
1 − cos

k1 + k2

2
cos

k1 − k2

2

)
. (3.27)

However, there exists a complex solution λ1,2 = x1,2+iy1,2. Suppose y1 > 0.
Then the first equation of Eqs. (3.25) in the limit L → ∞ (i.e., with the
exponential accuracy in L) implies x1 = x2 = x, and y1 = y2 + 1. On the
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other hand, Eq. (3.26) yields y1 = 1
2 for any real x. Hence, the complex

solution of the Bethe ansatz equations for M = 2 is λ1,2 = x ± i 1
2 , which

has the energy

E =
JL

4
− H(L − 4)

2
− J(x2 + 1)−1

=
JL

4
− H(L − 4)

2
− J

2
[1 − cos(k1 + k2)] . (3.28)

This complex solution is usually referred to as the bound state, or the string
of length 2. It exists only if there is an essential interaction in a system
(i.e., when θ(ki, kj) �= 0; there are no bound states for the case Jz = 0,
in the isotropic XY model). From Eqs. (3.27) and (3.28), the reader can
conclude that for a fixed total momentum k1+k2 the values of the energy of
a complex solution for M = 2 is lower than the energy of two real solutions
in the ferromagnetic case Jz < 0, and it is higher than the energy of two
real solutions in the antiferromagnetic situation Jz > 0.

The so-called string hypothesis is often used to study cases with arbitrary
M . Define the string of length 2m + 1 as

λm = λ̃m + iy + O(e−κL) , y = −m,−m + 1, . . . , m − 1, m , (3.29)

where λ̃m is real (sometimes it is referred to as the centre of mass of the
string), m is a positive integer or half-integer and κ > 0 (i.e., strings
are solutions to Bethe ansatz equations only in the thermodynamic limit,
with the exponential in L accuracy). Then, real solutions of Bethe ansatz
equations can be referred to as strings of length 1 (with m = 0) or spinons.
Let us denote by µm the number of strings of length m. Then the total
number of strings is equal to

∑
m µ2m+1 and the total number of down

spins due to strings is

M =
∑
m

(2m + 1)µ2m+1 . (3.30)

µm, m and the total number of strings are often called a configuration.
Introducing strings as λj = λm

j + i[(m + 1)/2 − ν] with ν = 1, . . . , m and
summing Eq. (3.21) for a distinguished string of length m for the parameters
λj occurring in it, one obtains

θm(λm
j ) =

2π

L
Ij,m +

1
L

∑
n,l �=j,m

θmn(λm
j − λn

l ) , (3.31)
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where θm(x) = 2 tan−1(2x/m),

θmn(x) = (1 − δm,n)θ|m−n|(x) + 2θ|m−n|+2(x) + · · ·
+ 2θm+n−2(x) + θm+n(x) , (3.32)

and integers or half-integers Ij,m appear because the logarithm is the multi-
valued function. In what follows we shall show that it is often convenient
to introduce two sets of these quantum numbers. Namely, the first set,
Ij,m which characterizes the strings present in the given configuration,
parametrizes “quasiparticles” (often they are mentioned just as particles),
and the second set, I

(h)
j,m, which characterizes the unoccupied vacancies of

the given configuration of strings, parametrizes “quasiholes” (often men-
tioned just as holes).

The momentum of a string of length m for the isotropic case is

pm = 2 cot−1(2λm
j /m) , (3.33)

and the energy is

Em = E0 + Hm +
J

2
d

dλm
j

pm = E0 + Hm − 2Jm

4(λm
j )2 + m2

, (3.34)

where E0 = L(Jz −2H)/4. The expression for the energy can be re-written
in a convenient form

E = E0 + εm(pm) , εm(pm) = mH − J

m
(1 − cos pm) . (3.35)

The total energy with all possible strings can be written as

E = E0 +
∑
m

∑
j

[
Hm − 2Jm

4(λm
j )2 + m2

]
, (3.36)

and the total magnetic moment of the system with all possible strings is
equal to

Mz =
L

2
−

∞∑
m=1

mνm . (3.37)

3.3 Thermodynamic Bethe Ansatz

The string hypothesis states that all solutions of Bethe ansatz equations
can be written in the form of strings of all possible lengths.
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Then the main goal is to find the solutions to the Bethe ansatz equa-
tions in the thermodynamic limit L → ∞. In this limit it is convenient,
following L. Hulthén, to introduce distribution functions for particles and
holes, corresponding to strings of length m. We replace discrete quantum
numbers by some continuous variable Ij,m → xm and replace summation
over j by integration over xm. The densities of rapidities (sometimes re-
ferred to as “dressed densities”, to emphasize the fact that they are dif-
ferent from the ones of noninteracting quasiparticles, like an isotropic XY
model; the interaction “dresses” “bare” densities) ρm(x) are introduced
as ρm(x) + ρ

(h)
m (x) = dxm/dλ(xm). Here we also introduced the density

of holes ρ
(h)
m (x) as the complementary to ρm(x) function. Then, differen-

tiating equations (3.31) with respect to real parts of λj and introducing
continuous distributions of those real parts we obtain

am(λ) = ρ(h)
m (λ) +

∞∑
n=1

Amn ∗ ρn(λ) , (3.38)

where am(x) = 2m/[π(4x2 + m2)], the convolution, A ∗ B(x), means

Amn ∗ ρm(x) =
∫ ∞

−∞
dyAmn(x − y)ρm(y) (3.39)

and

Amn(x) = a|m−n|(x) + 2a(|m−n|+2)(x)

+ · · · + 2a(m+n−2)(x) + am+n(x) . (3.40)

Notice that here we introduced the term with n = m, unlike Eqs. (3.31),
by using the identity

lim
|m−n|→0

∫ ∞

−∞
dya|m−n|(x − y)ρm(y) = ρm(x) . (3.41)

Then the internal energy per site, e = E/L, and the magnetization mz =
Mz/L per site are given as

e = e0 +
∞∑

m=1

∫ ∞

−∞
dλε(0)

m (λ)ρm(λ) ,

mz =
1
2
−

∞∑
m=1

m

∫ ∞

−∞
dλρm(λ) ,

(3.42)
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where we introduced the “bare” energy of the string of length m as ε
(0)
m (λ) =

mH − 2Jm/[(2λ)2 + m2] = mH − Jπam(λ) and e0 = E0/L.
Then, following C. N. Yang and C. P. Yang, we can assume that the

distribution function ρm(λ) together with ρ
(h)
m (λ) minimizes the Helmholtz

free energy F = E − TS. The change of the entropy for the given configu-
ration of strings can be defined as

dSm = ln
[L(ρ(h)

m (λ) + ρm(λ))dλ]!

[Lρm(λ)dλ]![Lρ
(h)
m (λ)dλ]!

≈ L[(ρ(h)
m (λ) + ρm(λ)) ln[ρ(h)

m (λ) + ρm(λ)]

− ρ(h)
m (λ) ln ρ(h)

m (λ) − ρm(λ) ln ρm(λ)]dλ , (3.43)

where we used the Stirling formula lnx! ≈ x ln x. Then the Helmholtz free
energy per site of the Heisenberg–Ising chain in the thermodynamic limit
can be written as

f = e0 +
∞∑

m=1

∫ ∞

−∞
dλ[ε(0)

m (λ)ρm(λ) − T (ρ(h)
m (λ)

+ ρm(λ)) ln(ρ(h)
m (λ) + ρm(λ)) + Tρ(h)

m (λ) ln ρ(h)
m (λ)

+ Tρm(λ) ln ρm(λ)] . (3.44)

Using the relation δρ
(h)
m (x) = −

∑
n Amn∗δρn(x) one can write the variation

of Eq. (3.44) with respect to δρn(λ) as

δf =
∑
m

∫
dλ

(
ε(0)

m (λ) − T ln[1 + ηm(λ)]

−T
∑

n

Anm ∗ ln[1 + η−1
n (λ)]

)
δρm(λ) , (3.45)

where we introduced the function ηm(x) = ρ
(h)
m (x)/ρm(x) ≡ exp[εm(λ)/T ].

The function εm(λ) is often referred to as the dressed energy. Then δf = 0
implies

ε(0)
m (λ) = T ln[1 + ηm(λ)] − T

∑
n

Anm ∗ ln[1 + η−1
n (λ)] , (3.46)

which set of equations completes the set Eq. (3.38). Both two sets, first
derived by M. Takahashi, M. Gaudin and M. Suzuki for a Heisenberg–Ising
chain, are known as thermodynamic (or thermal) Bethe ansatz equations.
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[We do not present here thermodynamic Bethe ansatz equations for a mag-
netically anisotropic situation, because they are more complicated than the
isotropic case J = Jz and refer the interested reader to the original works.]
These equations can be re-written in the following useful form

εm(λ) = Ts(λ − λ′) ∗ ln[1 + ηm−1(λ′)][1 + ηm+1(λ′)] − 2πδm,1s(λ) ,

s(x) = 1/2 cosh(πx) , limm→∞
εm(λ)

m
= H .

(3.47)

Solving these equations for ρm(λ) and ηm(λ) one puts those solutions
into Eq. (3.44) and it constitutes the exact (in the thermodynamic limit)
Bethe ansatz solution for the quantum spin- 1

2 Heisenberg chain. In fact,
inserting the thermal equilibrium density functions into the expression for
the Helmholtz free energy we obtain

f = e0 +
J

2
[ψ(1/2) − ψ(1)] − T

∫ ∞

−∞
dλ

ln(1 + exp[ε1(λ)/T ])
2 cosh(πλ)

, (3.48)

where ψ(x) are digamma functions.
The results for the temperature behaviour of the Heisenberg chain for

H = 0 and for a weak magnetic field H = 0.1J for J = 2 are presented in
Figs. 3.1 and 3.2. Notice the difference in the low-temperature behaviour
of these characteristics for a Heisenberg chain and for an Ising chain, and
the similarity with the results for an isotropic XY chain, cf. the previous
chapter. Observe low-temperature logarithmic corrections for an isotropic
Heisenberg chain in comparison with an XY chain, see the next section.
The reader can see that a weak magnetic field practically does not change
the temperature behaviour of the specific heat of a homogeneous Heisen-
berg chain, but removes logarithmic corrections in the susceptibility (the
magnetic field reduces the symmetry of the system, naturally).

Thermodynamic Bethe ansatz equations are nonlinear integral equa-
tions. They can be solved analytically only in two limiting cases: high
temperatures, T → ∞, and low temperatures, T → 0. For all interme-
diate temperatures one has to solve these two infinite (in the framework
of the string hypothesis) sets of integral nonlinear equations numerically.
Still, the computation problem is much simpler than numerically solving
the stationary Schrödinger equation with the Heisenberg Hamiltonian. In
the following chapters we shall present a more convenient way to study
thermodynamics of quantum chains (in fact the results of Figs. 3.1 and 3.2
were obtained by using that method).
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Fig. 3.1 The magnetic susceptibility of an isotropic Heisenberg antiferromagnetic spin-
1
2

chain with J = 2. The solid line shows the results for H = 0, the dashed line — for
H = 0.2.

In the limit of high temperatures T 	 |J |, but keeping the ratio H/T

finite, one can consider ε
(0)
m (λ) ≈ mH (the term which does not depend on

the function to be determined is often referred to as the driving term in the
theory of integral equations). In this case driving terms do not depend on
λ and we can solve Eqs. (3.46) and (3.38) exactly. The solutions are:

ηm = f2(m) − 1 , f(m) =
zm+1 − z−m−1

z − z−1
, z = exp(−H/2T ) ,

ρm(λ) =
1

f(1)f(m)

(
am(λ)

f(m − 1)
− am+2(λ)

f(m + 1)

)
.

(3.49)

These solutions permit us to find the magnetization of the quantum spin
chain at high temperatures

mz =
1
2
−

∞∑
m=1

m

∫ ∞

−∞
dλρm(λ) =

1
2

tanh
H

2T
. (3.50)

It is the magnetization of the free gas of quantum spins 1
2 at high tem-

perature in the nonzero magnetic field. This result is transparent, because
we neglected the exchange interaction between spins in this limiting case.
The magnetic susceptibility is equal to χ = (1/4T cosh2(H/2T )). It is a
smooth function of the temperature with χ ∼ T−1 at high temperatures,
as expected.
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0.10

T

Fig. 3.2 The Sommerfeld coefficient for the specific heat of the isotropic Heisenberg
antiferromagnetic spin- 1

2
chain (J = 2). The solid line shows the results for H = 0, the

dashed line — for H = 0.2. For this value of H the dashed line practically coincides
with the solid one.

In Figs. 3.3–3.6, the temperature dependencies of magnetic suscepti-
bilities and Sommerfeld coefficients of the specific heat (γ = c/T ) at zero
external magnetic field for Heisenberg–Ising spin- 1

2 chains with an “easy-
plane” magnetic anisotropy are presented. These figures manifest how the
magnetic anisotropy changes the temperature behaviour of a Heisenberg–
Ising chain. Notice, that for an isotropic ferromagnetic Heisenberg chain
the magnetic susceptibility follows a Curie-like law.

3.4 The Ground State Behaviour

The other important limit which permits us to obtain an analytic solution
of thermodynamic Bethe ansatz equations, is the limit of T → 0. From
Eqs. (3.46), we have

εm(λ) = (m − 1)H + Tam ∗ ln(1 + exp[ε1(λ)/T ])

+ T

∞∑
n=2

(Am−1,n−1 − δm,n lim
n→0

an) ∗ ln(1 + exp[−εn(λ)/T ]) ,

(3.51)
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χ
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Fig. 3.3 The magnetic susceptibility at H = 0 of an antiferromagnetic Heisenberg–
Ising spin- 1

2
chain with J = 2 and an “easy-plane” magnetic anisotropy. The anisotropy

Jz/J = 0, 0.2, . . . , 1 for curves from top to bottom.

which implies that εm(λ) > 0 for m = 2, 3, . . . for the most interesting anti-
ferromagnetic situation J > 0. [Notice that in the ferromagnetic situation
J < 0, εm(λ) > 0 for all lengths of strings m = 1, 2, 3, . . . , and the ground
state energy is just e0. This ferromagnetic state can also be referred to as
the string of the infinite length for up spins.] Then one can introduce the
positive and negative parts of ε1(λ) as: ε+

1 (λ) = ε1(λ) for ε1(λ) > 0 and
ε+
1 (λ) = 0 for ε1(λ) ≤ 0, and ε−1 (λ) = ε1(λ) for ε1(λ) < 0 and ε−1 (λ) = 0

for ε1(λ) ≥ 0. By using these functions in the limit T → 0, we obtain

ε1(λ) + a2 ∗ ε−1 (λ) = ε
(0)
1 (λ) , (3.52)

which can be re-written as (here we use the fact that the distribution of
quantum numbers is symmetric with respect to zero)

ε1(λ) +
∫ B

−B

dλ′ ε−1 (λ)
π[(λ − λ′)2 + 1]

= H − J

(2λ)2 + 1
. (3.53)

This is, in fact, the determination of the Dirac (Fermi) sea for quasipar-
ticles (spinons) with dressed energies ε1(λ). The ground state pertains to
the situation in which all states of spinons with negative energies are filled
and all states with positive energies are empty. The limits of integration are
determined from the natural conditions ε1(±B) = 0. This means that ±B



April 6, 2005 10:46 Finite Size Effects in Correlated Electron Models: Exact Results mybook

64 Finite Size Effects in Correlated Electron Models: Exact Results

χ

0.0 1.0

T
2.0 3.0 4.0

1.0

2.0

3.0

Fig. 3.4 The same as in Fig. 3.3, but for a ferromagnetic “easy-plane”Heisenberg–Ising
spin- 1

2
chain. The anisotropy Jz/J = −0.9,−0.8,−0.6 . . . , 0 for curves from top to

bottom.

can be considered as the Fermi points for quasiparticles (spinons). Then
low-lying excitations for the antiferromagnetic Heisenberg spin- 1

2 chain are
quasiparticles with positive energies ε1(λ) and holes in the Fermi sea for
quasiparticles with negative energies. It is important to emphasize that
despite the symmetry of the wave function is not antisymmetric for per-
mutation of two quasiparticles for any Jz and J , the statistical behaviour
of quasiparticles is of the Fermi-Dirac type. As we shall show later, this
property is the general property of Bethe ansatz solvable models. For the
case of spin- 1

2 systems this property has the natural origin, though, it is
impossible to have more than one spin turn in each site of the lattice for
spins 1

2 . The equations for densities stem from the equations for dressed
energies. In the ground state, T = 0, we have

ρ1(λ) + ρ
(h)
1 (λ) = a1(λ) −

∫ B

−B

dλ′a2(λ − λ′)ρ1(λ′) . (3.54)

The ground state internal energy can be written as

eT=0 = e0 +
∫ B

−B

dλ
ε−1 (λ)

2π
= e0 +

∫ B

−B

dλε
(0)
1 (λ)ρ1(λ) (3.55)
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Fig. 3.5 The Sommerfeld coefficient of the specific heat at H = 0 for an antiferromag-
netic Heisenberg spin- 1

2
chain with J = 2 and an “easy-plane” magnetic anisotropy. The

anisotropy Jz/J = 0, 0.2, . . . , 1 for curves at high temperatures from bottom to top.

and the ground state magnetization is equal to

mz =
1
2
−
∫ B

−B

dλρ1(λ) . (3.56)

Obviously, the value of the magnetic field H determines these limits of
integration (i.e., Fermi points). The reader can see that for the antiferro-
magnetic situation J > 0 and large values of the external magnetic field
H > 2J (or H < −2J) the system is in the ferromagnetic (spin-saturated)
state and B = 0. Naturally, it means that in these regions of values of H

the ground state energy is equal to e0, the magnetization has its nominal
values ± 1

2 , and the magnetic susceptibility is zero. On the other hand, in
zero magnetic field, for the antiferromagnetic situation at H = 0, we have
B = ∞, i.e., quantum numbers (rapidities) fill the total interval (in the
thermodynamic limit L → ∞). In the ferromagnetic situation, J < 0, the
point of the quantum phase transition is H = 0: any infinitesimal mag-
netic field removes the two-fold degeneracy of a ferromagnetic chain and
the magnetization of the latter becomes nominal.
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Fig. 3.6 The same as in Fig. 3.5, but for a ferromagnetic “easy-plane” Heisenberg–
Ising spin- 1

2
chain. The anisotropy Jz/J = 0,−0.2, . . . ,−0.8,−0.9 for curves at high

temperatures from top to bottom.

3.5 Magnetic Field Behaviour in the Ground State:
Wiener Hopf Method

In this section we shall, for simplicity, consider the isotropic antiferromag-
netic Heisenberg chain J = Jz > 0. For small B, i.e., for H − Hs � Hs,
where Hs is the critical value of the magnetic field at which the quantum
phase transition takes place, we can evaluate the Helmholtz free energy by
the direct iteration of Eq. (3.54). Thus, one gets the series

f = e0 −
π2J

6

(
M

L

)3

+ H

(
M

L

)
+ O

([
M

L

]4
)

. (3.57)

The answer for the Helmholtz free energy for small values of the mag-
netic field can be also written analytically. Here we can apply the powerful
Wiener–Hopf method of solutions of linear integral equations. We shall use
this method in what follows very frequently, this is why, we want to present
it here in detail.

First, to prepare for the use of the Wiener–Hopf method in our case, let
us re-write the integral equation for dressed energies in the following way
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in the Fourier space

ε+
m(ω) = 2πmHδ(ω) − πJA1m(ω)

2 cosh(ω/2)
− A1m(ω)ε−m(ω) , (3.58)

where

Anm(ω) = coth(ω/2)[exp[−|ω||n − m|/2] − exp[−|ω|(n + m)/2]] . (3.59)

Notice that for H = 0 it immediately follows εm(λ) = 0, for any m > 1 and
ε1(λ) = −πJ/2 cosh(πλ). Let us multiply Eq. (3.58) by A11(ω)−1, where

Anm(ω)−1 = δn,m − (δn,m+1 + δn,m−1)/2 cosh(ω/2) . (3.60)

Then we take the inverse Fourier transform which yields

ε1(λ) =
H

2
− πJ

2 cosh(πλ)
+

(∫ −B

−∞
+
∫ ∞

B

)
dλ′J(λ − λ′)ε1(λ) , (3.61)

where

J(x) =
∫ ∞

−∞

dω

2π

e−(|ω|/2)−iωx

2 cosh(ω/2)
. (3.62)

Now we define y(λ) = ε1(λ+B), so that the Fermi point for dressed energies
corresponds to y(0). Then we re-write Eq. (3.61) as follows (here we use
the identity ε1(λ) = ε1(−λ))

y(λ) =
H

2
− πJ

2 cosh[π(λ + B)]
+
∫ ∞

0

dλ′J(λ − λ′)y(λ′)

+
∫ ∞

0

dλJ(λ + λ′ + 2B)y(λ′) . (3.63)

If H � J , then B is very large and J(λ + λ′ + 2B) ∼ B−1. Hence, the last
term in Eq. (3.63) is order B−1 smaller than the previous ones. We can,
then, solve Eq. (3.63) iteratively y(λ) = y1(λ) + y2(λ) + . . . , where

y1(λ) =
H

2
− πJ

2 cosh[π(λ + B)]
+
∫ ∞

0

dλ′J(λ − λ′)y1(λ′)

y2(λ) =
∫ ∞

0

dλ′J(λ − λ′)y2(λ′) +
∫ ∞

0

dλJ(λ + λ′ + 2B)y1(λ′)

(3.64)

etc. These equations have the Wiener–Hopf structure and can be solved
analytically.
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Let us divide y into positive y+ (λ > 0) and negative y− (λ < 0) parts.
It yields for the Fourier transform of the equation for y1

y+
1 (ω)

A11(ω)
+ y−

1 (ω) = πHδ(ω) − πJ exp(iωB)
2 cosh(ω/2)

. (3.65)

To apply the Wiener–Hopf method we re-write the kernel (A11)−1 as a
product of two functions, one, G+

1 (ω), being analytic in the upper half-
plane, and the other one, G−

1 (ω), being analytic in the lower half-plane,
where

G+
1 (ω) = G−

1 (−ω) =
1√
2π

(−iω + 0
2πe

)iω/2π

Γ[(1/2) − i(ω/2π)] . (3.66)

Observe that G±
1 (∞) is a constant. The Wiener–Hopf method uses the fact

that from the analyticity of the functions y±
1 (ω) and G±

1 (ω) it follows that

y+
1 (ω) = − q+(ω)

G+
1 (ω)

, y−
1 (ω) =

q−(ω)
G−

1 (ω)
, (3.67)

where

q±(ω) =
−iH√

2(ω ± i0)

− iJ

2

∫ ∞

−∞

dω′

2π

Γ[(1/2) + i(ω′/2π)]Γ[(1/2)− i(ω′/2π)]e−iω′B

G−
1 (ω′)(ω′ − ω ∓ i0)

.

(3.68)

We are interested in the results for large positive B, hence, the contour
of integration can be closed through the lower half-plane. Then, the value
of the integral can be given as the sum of the residua of Γ[(1/2)− i(ω′/2π)].
The leading term, i.e., the pole closest to the real axes, yields the result
(the next term is of the order of exp(−2πB) smaller)

y+
1 (ω) =

i√
2G+

1 (ω)

(
H

ω + i0
− π2J exp(−πB)√

2eΓ(3/2)(ω + iπ)

)
. (3.69)

From the Fourier transform of the equation for y2, it stems

y+
2 (ω)G+

1 (ω) +
y−
2 (ω)

G−
1 (ω)

=
[1 − G+

1 (ω)G−
1 (ω)] exp(−i2πBω)y+

1 (−ω)
G−

1 (ω)
. (3.70)
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The analyticity of y±
1,2(ω) and G±

1 (ω) implies

y+
2 (ω)G+

1 (ω)

= −i

∫ ∞

−∞

dω′

2π

[1 − G+
1 (ω′)G−

1 (ω′)] exp(−i2πBω′)y+
1 (−ω′)

G−
1 (ω′)(ω′ − ω − i0)

. (3.71)

Again, we use the fact that 0 < 1 � B and close the contour through
the lower half-plane. In this half-plane only G+

1 (ω) has singularities. The
leading singularity is the cut along the imaginary axis.

The parameter B is the function of the applied magnetic field H . It
is determined from the condition y(λ = 0) = 0, which is equivalent to the
condition limω→∞ ωy+(ω) = 0. By using the results for y+

1,2(ω) we get

H

[
1 +

1
2πB

− ln(2πB)
2(2πB)2

+ · · ·
]

=
π2J exp(−πB)√

2eΓ(3/2)
. (3.72)

Then the Helmholtz free energy can be written as

f(T = 0, H � J) = e0+
J

2
[ψ(1/2)−ψ(1)]−J

∫ ∞

−∞

dω

2π

eiωBy+(ω)
2 cosh(ω/2)

. (3.73)

The contour has to be closed through the upper half-plane. Then the
value of the integral is given by the sum of the residua of the poles of
1/ cosh(ω/2), any pole ω = i(2n + 1)π yields the term ∼ (H/J)2n+2. The
leading contribution arises from the closest to the real axis pole, ω = iπ,
and it gives − exp(−πB)y+(iπ) ∼ (H/J)2. Then the final answer for the
Helmholtz free energy of the Heisenberg antiferromagnetic spin- 1

2 chain in
a weak magnetic field is

f(T = 0, H � J) = e0 +
J

2
[ψ(1/2) − ψ(1)] − H2

2π2J

×
(

1 +
1

2 ln(AH/J)
− ln | ln(AH/J)|

4 ln2(AH/J)
+ · · ·

)
, (3.74)

where A =
√

2eΓ(3/2)/π2 is a constant. This implies the behaviour of the
magnetic susceptibility

χ =
1

π2J

(
1 +

1
2 ln(AH/J)

− ln | ln(AH/J)|
4 ln2(AH/J)

+ · · ·
)

, (3.75)

which is valid for even L. The antiferromagnetic spin- 1
2 chain with the odd

number of sites reveals the ground state and low-temperature behaviour,
different from the above discussed. The reason for this difference is clear,
there is a remnant spin- 1

2 , hence, the ground state is not a singlet at zero
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magnetic field. The ground state is degenerate for H = 0 with two different
momenta P = −πS(1±L−1)+ 1

2 (1± 1) mod 2π, where S is the eigenvalue
of the operator of the z-projection of the total spin

∑L
j=1 Sz

j . For example,
for the isotropic XY chain the ground state energy at H = 0 is

E = −J cos(π/L) cos(πS/L)
L sin(π/L)

. (3.76)

Naturally, the remnant magnetization for H → 0 for odd L implies the
divergent ground state susceptibility, different from the above expression
for even L.

To summarize, in this chapter we presented the co-ordinate Bethe ansatz
for quantum spin- 1

2 chains (Heisenberg–Ising chains) with periodic bound-
ary conditions. We derived sets of transcendental equations for quantum
numbers (rapidities), which parametrize eigenfunctions and eigenfunctions
of stationary Schrödinger equations for these models. The difference in the
behaviour of interacting systems and noninteracting ones (e.g., XY chains)
appears to be in the presence of bound states (complex solutions to Bethe
anzatz equations), and in the distribution of rapidities, which depends on
interactions, for real solutions. We considered the way of description of
solutions of Bethe ansatz equations in the thermodynamic limit. In the
framework of the string hypothesis thermodynamic Bethe ansatz integral
equations are derived for (dresssed by interactions) densities of rapidities
and dressed energies of all states. High-temperature solutions to those
equations are presented. The transition to the ground state shows how
the Fermi (Dirac) seas for these interacting models are organized. Finally,
in the framework of the Wiener–Hopf method we analytically derived the
Helmholtz free energy in the ground state as a function of an external
magnetic field.

The method, presented in this chapter was pioneered in [Bethe (1931)].
The scheme of the solution of Bethe ansatz equations in the thermody-
namic limit was given in [Hulthén (1938)]. Bethe ansatz equations for
a Heisenberg–Ising chain in the ground state without external magnetic
field were studied in [Orbach (1958)]. The ground state behaviour of a
Heisenberg–Ising chain in an external magnetic field was studied in [Yang
and Yang (1966a); Yang and Yang (1966b); Yang and Yang (1966c)]. Ap-
plication of the Wiener–Hopf method for the ground state behaviour of
a Heisenberg–Ising spin chain in a weak magnetic field was introduced
there. In those papers the reader can also find the proofs of important
theorems, which we presented above. Analysis of Bethe ansatz equations
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for Heisenberg–Ising chains can be also found in the books [Gaudin (1983);
Izyumov and Skryabin (1990)]. Thermodynamic Bethe ansatz method was
introduced in [Yang and Yang (1969)]. The introduction of the string hy-
pothesis for Bethe ansatz-solvable models of condensed matter physics was
reviewed in the excellent book [Takahashi (1999)].
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Chapter 4

Correlated Electron Chains:
Co-ordinate Bethe Ansatz

Quantum spin systems, considered in previous chapters, describe only spin
dynamics of correlated electrons. However, it is interesting and important
to also understand charge dynamics of correlated electron systems.

Usually there are two main energetical scales in the behaviour of
electrons: the width of the band of itinerant electrons (and related to it
characteristic velocity of electrons or the Fermi energy of electrons) and
the strength of the Coulomb repulsion between electrons. If the former is
much larger than the Coulomb repulsion, then electrons can be considered
as a free lattice gas of itinerant electrons with Bloch-like wave functions.
The weak interaction between electrons can be treated in the framework of
perturbation theories. This kind of theory is well developed. The other lim-
iting case, which is studied even better than the previous situation, is the
atomic (localized) behaviour of electrons, where the effect of the Coulomb
interaction is considered exactly, and the hopping of electrons between lat-
tice sites can be considered perturbatively. In such a case wave functions
of electrons are of Wannier-type rather than Bloch-like. However, the most
interesting situation pertains to the case in which the energy of the hop-
ping of electrons from site to site of the crystal lattice (which characteristic
energy is the bandwidth of electrons) is of the same order as the strength
of the repulsion between electrons. Here correlation effects and itinerant
effects interfere with each other, which results in a reach behaviour of such
systems: they can reveal metal-insulator phase transitions, heavy fermion
behaviour, very special magnetic behaviour etc. However, the theoretical
description of such a situation is very difficult. Why is it so? As we already
mentioned, the well-developed methods of theoretical physics like perturba-
tion theories cannot be applied in this region of parameters. On the other
hand, in most of cases one cannot a priori state that there is any kind

73
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of ordering in these systems. Thus, the mean-field like methods, the other
powerful approach of the theoretical physics, cannot also be applied in most
cases. Then the only possibility is to study some approximate models of
correlated electrons, which manifest both the itinerant and correlated na-
ture of electrons, using exact methods. This program can be realized, for
example, in one-dimensional models of correlated electrons.

4.1 Hubbard Chain

The Hubbard model was introduced (usually it is connected with the names
of M. C. Gutzwiller, J. Hubbard and J. Kanamori) as a simple effective
model for the treatment of correlation effects in metals. It is believed
to provide a qualitative description of magnetic properties of correlated
electron systems and possible metal-insulator transitions. It’s Hamiltonian
consists of the term, which describes the hopping of electrons between (usu-
ally neighbouring) sites of the lattice, and the term, which describes the
Coulomb interaction between electrons in the simplest approximation: elec-
trons with different spins can affect each other only locally, being at the
same site of the lattice. Even for such great simplifications and its concep-
tual simplicity the Hubbard model does not permit us to obtain explicit
results in any space dimension. The rare exclusion is the one-dimensional
case, where the exact solution in the framework of the Bethe ansatz was
obtained by E. H. Lieb and F. Y. Wu. In their study they used the nested
Bethe ansatz scheme, discovered by M. Gaudin and C. N. Yang for a more
simple continuous model of electrons with the local (so called δ-function)
interaction.

The Hamiltonian of the one-dimensional Hubbard model can be written
as:

HH = −t

L−1∑
j=1

∑
σ

(a†
j,σaj+1,σ + H.c.) + U

L∑
j=1

nj,↑nj,↓ , (4.1)

where a†
j,σ (aj,σ) creates (destroys) an electron with the spin projection

σ = ±1 ≡↑, ↓ (it is used to simply explain that electrons can have up spins
or down spins) at the lattice site j, nj,σ = a†

j,σaj,σ, t is the hopping integral
(in what follows we put it equal to unity, t = 1, i.e., we shall measure
all other energies in units of t) and U is the constant of the Hubbard
interaction.
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The Hilbert space of each site of the lattice realizes four possibilities:
there can be an empty site without electrons, one electron sitting at the site
(two possibilities because of two spins of electrons) and two electrons sitting
at the same site (sometimes it is referred to as a local pair). This is why
the total number of states for the lattice of L sites is 4L. It turns out that
the total numbers of electrons with spins up and down are conserved (the
commutators of their operators with the Hubbard Hamiltonian are equal
to zero [HH ,

∑
j nj,σ] = 0), and, therefore, one can classify all eigenstates

with quantum numbers, related to those integrals of motion. In the Bethe
ansatz scheme the convenient choice of these numbers is the total number
of electrons, N , and the number of electrons with down spins, M . Let us
consider the situation with 0 ≤ N ≤ L and 0 ≤ M ≤ N/2. Other cases
can be obviously obtained from this one by using unitary transformations
(e.g., by turning spins, or using a particle-hole transformation). We can
consider the wave function

Ψ =
∑

x1<x2<···<xN

ψ(x1, . . . , xN , σ1, . . . , σN )a†
x1,σ1

a†
x2,σ2

· · ·a†
xN ,σN

|0〉 ,

(4.2)
where the state |0〉 is taken such that aj,σ|0〉 = 0 for any j and σ. This wave
function is very similar to the wave function of the Heisenberg–Ising chain,
cf. the previous chapter. The difference is that now not only spin degrees
of freedom can be spread through the lattice, but electrons themselves can
move. The stationary Schrödinger equation for the wave function in the co-
ordinate representation can be written as (we use here periodic boundary
conditions)

Eψ(x1, . . . , xN , σ1, . . . , σN ) +
∑

j

ψ(x1, . . . , xj ± 1, . . . , xN , σ1, . . . , σN )

+ U
∑
j<l

δxj ,xl
δσj ,−σl

ψ(x1, . . . , xN , σ1, . . . , σN ) = 0 . (4.3)

Let us again consider the simple cases to understand the situation. In
the case N = 1, one has the equation

−ψ(x − 1, σ) − ψ(x + 1, σ) = Eψ(x, σ) , (4.4)

which has the trivial solution (it is, naturally, doubly degenerate, because
nothing depends on σ; this degeneracy can be removed when adding the
Zeeman term −(H/2)

∑
j(nj,↑ −nj,↓) to the Hubbard Hamiltonian, which,
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naturally, commutes with the latter, and, hence, it has the same eigen-
functions):

ψ(x, σ) = A exp(ikx) ,

E = −2 cosk ,
(4.5)

where A is determined from the normalization condition, and the momen-
tum k stems from the periodic boundary conditions exp(ikL) = 1.

For the case N = 2, we again must distinguish two situations. If two
electrons are situated at different sites, we have (there is no interaction in
this case)

−ψ(x1 + 1, x2, σ1, σ2) − ψ(x1 − 1, x2, σ1, σ2) − ψ(x1, x2 + 1, σ1, σ2)

−ψ(x1, x2 − 1, σ1, σ2) = Eψ(x1, x2, σ1, σ2) , (4.6)

which has the simple solution

ψ(x1, x2, σ1, σ2) = Aσ1,σ2e
i(k1x1+k2x2) − A′

σ1,σ2
ei(k2x1+k1x2) ,

E = −2(cos k1 + cos k2) ,
(4.7)

with arbitrary coefficients A, A′ (to be determined from the normalization
condition), and the values of k1,2 are also determined from periodic bound-
ary conditions exp(ik1,2L) = 1. Notice that the sign in the wave function
is due to the antisymmetry of the wave function of two fermions.

A more interesting case is when x1 = x2. Now the Schrödinger equation
for the wave function in the co-ordinate representation has the form

−ψ(x + 1, x, σ1, σ2) − ψ(x − 1, x, σ1, σ2) − ψ(x, x + 1, σ1, σ2)

−ψ(x, x − 1, σ1, σ2) + Uδσ1,−σ2ψ(x, x, σ1, σ2) = Eψ(x, x, σ1, σ2) . (4.8)

For equal spins of electrons σ1 = σ2, the solution coincides with the above
solution for electrons in different sites. For σ1 �= σ2, the interaction reveals
itself: when electrons occupy the same site, they “feel” each other. This
can be considered in terms of a scattering process, similar to the case of
the Heisenberg–Ising chain, i.e., the constants A become not independent,
but connected to each other due to the interaction. This can be formally
achieved by taking Aσ1,σ2(k1, k2) dependent on the region x1 < x2, or
x1 > x2:

ψ(x1, x2, σ1, σ2) = Aσ1,σ2(k1, k2)ei(k1x1+k2x2)

−Aσ1,σ2(k2, k1)ei(k2x1+k1x2) , (4.9)
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for x1 < x2 and

ψ(x1, x2, σ1, σ2) = Aσ2,σ1(k1, k2)ei(k1x1+k2x2)

−Aσ2,σ1(k2, k1)ei(k2x1+k1x2) , (4.10)

for x1 > x2. It can be written in the compact way as

ψ(x1, x2, σ1, σ2) =
∑
P

sign(PQ)AσQ1 ,σQ2
(kP1 , kP2)e

i
∑ 2

j=1 kPj
xQj , (4.11)

where P = (P1, P2) is a permutation of the momenta labels 1,2, (i.e., it is
the element of the symmetric group S2), and Q = (Q1, Q2) is the permuta-
tion of the labels of co-ordinates (it is assumed that xQ1 ≤ xQ2). The case
x1 = x2 requires the single-valuedness (continuity of the wave function),

Aσ1,σ2(k1, k2) − Aσ1,σ2(k2, k1) = Aσ2,σ1(k1, k2) − Aσ2,σ1(k2, k1) . (4.12)

Then the wave function equation (4.11) is the eigenfunction of the Hubbard
Hamiltonian in the co-ordinate representation, if the following equation
holds:

Aσ1,σ2(k2, k1) =
i(U/2)Aσ1,σ2(k1, k2) + (sin k1 − sin k2)Aσ2,σ1(k1, k2)

sink1 − sin k2 + i(U/2)
.

(4.13)

This condition can be re-written in a compact way as

Aσ2,σ1(k2, k1) =
∑
τ1,τ2

Sσ1τ1
σ2τ2

(k1, k2)Aτ1,τ2(k1, k2) , (4.14)

where Sσ1τ1
σ2τ2

(k1, k2) is the two-particle scattering matrix:

Sσ1τ1
σ2τ2

(k1, k2) =
(sin k1 − sink2)Iσ1τ1

σ2τ2
+ i(U/2)Πσ1τ1

σ2τ2

sink1 − sin k2 + i(U/2)
, (4.15)

where we introduced the identity operator Iσ1τ1
σ2τ2

= δσ2τ2δσ1τ1 and the per-
mutation operator Πσ1τ1

σ2τ2
= δσ1τ2δσ2τ1 .

It is straightforward but quite tedious to generalize the above consid-
eration to the N -electron problem. There are N ! possible arrangements of
x1, . . . , xN , and, hence, N ! space sectors to be matched at their common
boundaries. In analogy with Eq. (4.11), we can write the eigenfunction of
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the Hubbard chain for the general N case as

ψ(x1, . . . , xN , σ1, . . . , σN )

=
∑
P

sign(PQ)AσQ1 ,...,σQN
(kP1 , . . . , kPN ) exp


i

N∑
j=1

kPj xQj


 . (4.16)

Substituting it into the stationary Schrödinger equation we obtain the ex-
pression for the eigenvalue

E =
U(L − 2N)

4
− 2

N∑
j=1

cos kj . (4.17)

Using the condition of the single-valuedness of the wave function and solving
the matching conditions, i.e., the Schrödinger equation for the cases where
two of the coordinates coincide, one gets

AσQ′
1
,...,σQ′

N

(kP ′
1
, . . . , kP ′

N
)

=
∑
τ1,τ2

S
σQj

τ1
σQj+1τ2(kPj , kPj+1 )AσQ1 ,...,σQj−1 ,τ1,τ2,σQj+2 ,...,σQN

(kP ′
1
, . . . , kP ′

N
) ,

(4.18)

where Q and P are arbitrary permutations and Q′ = Q(j, j + 1), P ′ =
P (j, j + 1).

Periodic boundary conditions for N = 2, i.e.,

ψ(L + 1, x2, σ1, σ2) = ψ(1, x2, σ1, σ2) ,

ψ(0, x2, σ1, σ2) = ψ(L, x2, σ1, σ2) ,

ψ(x1, L + 1, σ1, σ2) = ψ(x1, 1, σ1, σ2) ,

ψ(x1, 0, σ1, σ2) = ψ(x1, L, σ1, σ2)

(4.19)

imply the following equations

AσQ1 ,σQ2
(kP1 , kP2) = eikP1LAσQ2 ,σQ1

(kP2 , kP1) . (4.20)

If we have two electrons with spins up (or with spins down), periodic bound-
ary conditions imply exp(ik1,2L) = 1, with the wave function in the sector
Q: ψ(x1, x2, σ1, σ2) =

∑
P sign(PQ) exp(i

∑2
j=1 kPj xQj ). If we have one

electron with spin up and one electron with spin down the situation is
more complicated, and one needs to introduce the nested Bethe ansatz.
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The generalization for the N -electron case is straightforward. The pe-
riodic boundary conditions

ψ(x1, . . . , , xj−1, 1, xj+1, . . . , xN , σ1, . . . , σN )

= ψ(x1, . . . , , xj−1, L + 1, xj+1, . . . , xN , σ1, . . . , σN ) ,

ψ(x1, . . . , , xj−1, 0, xj+1, . . . , xN , σ1, . . . , σN )

= ψ(x1, . . . , , xj−1, L, xj+1, . . . , xN , σ1, . . . , σN ) ,

(4.21)

where j = 1, . . . , N , yield

AσQ1 ,...,σQN
(kP1 , . . . , kPN )

= eikP1LAσQ2 ,...,σQN
,σQ1

(kP2 , . . . , kPN , kP1) , (4.22)

where Q and P are arbitrary from SN . These conditions can be re-written
using two-particle scattering matrices as

eikjLξ =
∑

σ′
1...σ′

N

(Tj)σ1...σN

σ′
1...σ′

N
(k1, . . . , kN )ξ′ , (4.23)

where

(Tj)σ1...σN

σ′
1...σ′

N
(k1, . . . , kN ) =

∑
τ1...τN−1

(Sσjτ1

σj+1σ′
j+1

)−1(kj , kj+1)

× (Sτ1τ2
σj+2σ′

j+2
)−1(kj , kj+2) · · · (Sτj−2τj−1

σN σ′
N

)−1(kj , kN )

× (Sτj−1τj

σ1σ′
1

)−1(kj , k1) · · · (S
τN−1σ′

j

σj−1σ′
j−1

)−1(kj , kj−1) . (4.24)

The vectors ξ, ξ′ are composed of N ! coefficients Aσ1,...,σN (k1, . . . , kN )
(which depend on P and Q). Including all coordinate permutations it is
N !×N !×N ! such coefficients, which are not all independent but restricted
by symmetries. It yields the solution for kj , analogous to the case of N

spins down for the Heisenberg–Ising chain, but one needs to distinguish
[N/2] + 1 cases (with [A] being the integer part of A) corresponding to the
possible values of M spins down.

We proceed further (with the help of the nested Bethe ansatz), introduc-
ing some auxiliary spin model on a one-dimensional ring of N sites. Every
site allows two spin configurations, spin up and spin down, analogous to the
ones for the Heisenberg–Ising chain. Let us introduce the following function

|kP1 , . . . , kPN 〉 =
∑

σ1,··· ,σN

Aσ1,··· ,σN (kP1 , . . . , kPN )|x1, . . . , xM 〉 , (4.25)
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where |x1, . . . , xM 〉 denotes the wave function with M down spins at posi-
tions x1 < · · · < xM , cf. the previous chapter devoted to the Heisenberg–
Ising Hamiltonian of the spin- 1

2 chain. Then the equality follows from the
above definition of the two-particle scattering matrix

|kP1 , kP2〉 = Y1,2(sin kP1 , sinkP2)|kP2 , kP1〉 , (4.26)

where

Y1,2(λ1, λ2) =
(λ1 − λ2)I + i(U/2)Π12

λ1 − λ2 + i(U/2)
(4.27)

with I and Π12 = (I +4
S1

S2)/2 being the identity matrix and permutation

operator for the Hilbert space of the auxiliary spin-1
2 model. The periodic

boundary conditions Eq. (4.19) can be written as

|kP1 , kP2〉 = eikP1LΠ12|kP2 , kP1〉 , (4.28)

or in the form

|kP1 , kP2〉 = eikP1LX12(sin kP1 , sin kP2)|kP1 , kP2〉 , (4.29)

where

Xl,j(λl, λj) = ΠljYl,j(λl, λj) =
(λl − λj)Πlj + i(U/2)I

λl − λj + i(U/2)
. (4.30)

These equations can be straightforwardly generalized for the case of M

spins down of N spins:

|kP1 , . . . , kPN 〉 = exp(iLkP1)Π12Π23 · · ·ΠN−1N |kP2 , . . . , kPN , kP1〉

= exp(iLkP1)Π12Π23 · · ·ΠN−1N

N−2∏
m=0

YN−m−1,N−m(sin kP1 , sinkPN−m)

× |kP1 , . . . , kPN 〉 = exp(iLkP1)X1,N (sin kP1 , sin kPN )

×X1,N−1(sin kP1 , sin kPN−1) · · ·X1,2(sin kP1 , sinkP2)|kP1 , . . . , kPN 〉 .

(4.31)

Now we need to distinguish [N/2] + 1 cases corresponding to the possible
values of M .
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Let us introduce the monodromy matrix (on the inhomogeneous lattice)
as

T σ1...σN ,τ
σ′
1...σ′

N ,τ ′(λ, λ0
1, . . . , λ

0
N )

=
∑

τ1...τN−1

Y ττ1
σ1σ′

1
(λ − λ0

1)Y
τ1τ2
σ2σ′

2
(λ − λ0

2) · · ·Y
τN−1τ ′

σN σ′
N

(λ − λ0
N ) , (4.32)

where λ is a spectral parameter, the inhomogeneities are introduced via
λ0

1,...,N , and

Y σ1τ1
σ2τ2

(x) =
xIσ1τ1

σ2τ2
+ i(U/2)Πσ1τ1

σ2τ2

x + i(U/2)
. (4.33)

It turns out that (the summation over repeated indices is understood)

Y
σ1σ′

1
σ2σ′

2
(x)Y σ′

1σ′′
1

σ3σ′
3

(x + y)Y σ′
2σ′′

2
σ′
3σ′′

3
(y) = Y

σ2σ′
2

σ3σ′
3

(y)Y σ1σ′
1

σ′
3σ′′

3
(x + y)Y σ′

1σ′′
1

σ′
2σ′′

2
(x) , (4.34)

which is well known as the famous Yang–Baxter relation for two-particle
scattering matrices. The definition of the monodromy matrix can be re-
written in a symbolic way by omitting spin indices as

T τ
τ ′(λ, λ0

1, . . . , λ
0
N ) = Y01(λ − λ0

1) · · ·Y0N (λ − λ0
N ) , (4.35)

where the subscript 0 denotes the additional indices, which are summed
over. Notice that Y (x)Y (−x) = I. With respect to the indices τ and τ ′

the monodromy matrix is 2 × 2 matrix. We define the trace of this 2 × 2
matrix as the transfer matrix on the inhomogeneous lattice, i.e.,

τ̂ (λ, λ0
1, . . . , λ

0
N ) = trT (λ, λ0

1, . . . , λ
0
N )

= tr0Y01(λ − λ0
1) · · ·Y0N (λ − λ0

N )

≡
∑

τ1...τN−1τ

Y ττ1
σ1σ′

1
(λ − λ0

1)Y
τ1τ2
σ2σ′

2
(λ − λ0

2) · · ·Y
τN−1τ
σN σ′

N
(λ − λ0

N ) . (4.36)

Let us denote the elements of the 2× 2 monodromy matrix on the inhomo-
geneous lattice as

T τ
τ ′(λ, λ0

1, . . . , λ
0
N ) =

(
Â B̂

Ĉ D̂

)
, (4.37)

where the operators Â, B̂, Ĉ and D̂ in the matrix representation have
indices σ′

1, . . . , σ
′
N , σ1, . . . , σN and also depend on inhomogeneities λ0

1,...,N ,
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but for simplicity we do not write that dependence explicitly. It follows
from the definition that

τ̂ (λ, λ0
1, . . . , λ

0
N ) = Â + D̂ . (4.38)

It is easy to show that

Y
τ1τ ′

1
τ2τ ′

2
(λ − λ′)T τ ′

1
τ3 (λ′)T τ ′

2
τ ′
3
(λ) = T τ2

τ ′
2
(λ)T τ1

τ ′
1
(λ′)Y τ ′

1τ3

τ ′
2τ ′

3
(λ − λ′) , (4.39)

which is the direct consequence of Eqs. (4.32) and (4.34). This equation is
called the Yang–Baxter relation for monodromy matrices. Multiplying it
from the left by Y τ3τ1

τ ′
3τ2

(λ′ − λ) and summing over the indices τ1 and τ2, we
obtain

τ̂(λ′)τ̂ (λ) = τ̂ (λ)τ̂ (λ′) , (4.40)

where τ̂(x) is the transfer matrix, which means that transfer matrices with
different spectral parameters commute. It turns out that this result does
not depend on inhomogeneities λ0

1,...,N .
The operators Â, B̂, Ĉ and D̂ obey the commutation relations,

which stem from Eq. (4.39), some of which are relevant for the following
consideration

[Â(x), Â(y)] = [D̂(x), D̂(y)] = [Â(x), D̂(y)] = 0 ,

(x − y)Â(x)B̂(y) = [x − y + i(U/2)]B̂(y)Â(x) − i(U/2)B̂(x)Â(y) ,

(y − x)D̂(x)B̂(y) = [y − x + i(U/2)]B̂(y)D̂(x) − i(U/2)B̂(x)D̂(y) ,

[B̂(x), B̂(y)] = [Ĉ(x), Ĉ(y)] = 0 . (4.41)

Let us denote the state with no spins down as |0〉 (it is often referred to as
the mathematical vacuum). Then the action of some matrix Y0j(x) (where
the index j denotes the position of this matrix in the inhomogeneous lattice)
on this vacuum state can be symbolically written as

Y0j(x)|0〉 =
1

x + i(U/2)

(
x + i(U/2) iUS−

j

0 x

)
|0〉 . (4.42)

It is important to emphasize that the lower left element of this matrix is
zero, this is why such a form is usually called as triangular matrix form.
From the definition of the monodromy matrix the operators Â, B̂, Ĉ and D̂

can be obtained by successive multiplications of such matrices Y for each
site of the lattice of N sites. Then one can see that

Ĉ|0〉 = 0 , (4.43)
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as the consequence of the properties of the triangular matrices. The action
of the operators Â and D̂ on the mathematical vacuum state is diagonal:

Â(λ)|0〉 = |0〉 ,

D̂(λ)|0〉 =
N∏

j=1

λ0
j − λ

λ0
j − λ + i(U/2)

|0〉 .
(4.44)

The operator B̂ plays the role of a “spin-lowering” operator. We can con-
sider the state with M down spins as a result of action of M operators
B̂:

|λ1, . . . , λM 〉 =
M∏

β=1

B̂(λβ)|0〉 . (4.45)

Let us act with the operator τ̂ = Â + D̂ on the state Eq. (4.45) using the
commutation relations Eq. (4.41). We get

τ̂(λ)|λ1, . . . , λM 〉 = Λ(λ, λ0
1, . . . , λ

0
N , λ1, . . . , λM )|λ1, . . . , λM 〉

+
M∑

γ=1

Λγ(λ, λ0
1, . . . , λ

0
N , λ1, . . . , λM )

M∏
β=1,
β �=γ

B̂(λβ)B(λ)|0〉 , (4.46)

where

Λ(λ, λ0
1, . . . , λ

0
N , λ1, . . . , λM ) =

M∏
β=1

λ − λβ + i(U/2)
λ − λβ

+
N∏

j=1

λ0
j − λ

λ0
j − λ + i(U/2)

M∏
β=1

λ − λβ − i(U/2)
λ − λβ

(4.47)

and

Λγ(λ, λ0
1, . . . , λ

0
N , λ1, . . . , λM )

=
i(U/2)
λ − λγ

(
−

M∏
β=1
β �=γ

λγ − λβ + i(U/2)
λγ − λβ

+
N∏

j=1

λ0
j − λγ

λ0
j − λγ + i(U/2)

M∏
β=1
β �=γ

λγ − λβ − i(U/2)
λγ − λβ

)
. (4.48)
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The state |λ1, . . . , λM 〉 is the eigenstate of the transfer matrix if Λγ = 0. It
is true, if

N∏
j=1

λ0
j − λγ + i(U/2)

λ0
j − λγ

=
M∏

β=1
β �=γ

λγ − λβ − i(U/2)
λγ − λβ + i(U/2)

, (4.49)

which holds for any γ = 1, . . . , M .
It is convenient to choose P = Q = 1 (the identity) in Eq. (4.23) and

restrict ourselves to the spin subspace only. The conditions Eq. (4.49)
guarantee that operators Tj commute with each other, hence, they can be
diagonalized simultaneously. It is easy to show, by using the properties of
Y matrices, that

Tj(k1, . . . , kN ) = τ̂(λ, λ0
1 = sin k1, . . . , λ

0
N = sin kN )|λ=sin kj , (4.50)

which implies

eikjL = Λ(λ, λ0
1 = sin k1, . . . , λ

0
N = sin kN , λ1, . . . , λM )|λ=sin kj . (4.51)

It is convenient to shift λγ → λγ + i(U/4). Then the conditions for the sets
kj (j = 1, . . . , N) and λγ (γ = 1, . . . , M) are

exp(ikjL) =
M∏

β=1

sin kj − λβ + i(U/4)
sin kj − λβ − i(U/4)

,

N∏
j=1

λγ − sin kj + i(U/4)
λγ − sin kj − i(U/4)

=
M∏

β=1
β �=γ

λγ − λβ + i(U/2)
λγ − λβ − i(U/2)

,

(4.52)

which are nothing other than the famous Bethe ansatz equations for the
Hubbard chain, first obtained by E. H. Lieb and F. Y. Wu. These Bethe
ansatz equations for charge (kj) and spin (λγ) rapidities are quantization
conditions (similar to simple quantization conditions for noninteracting par-
ticles). One has to solve these equations, and then put the solution(s) into
Eq. (4.17) to obtain the eigenvalues of the stationary Schrödinger equa-
tion for the Hubbard Hamiltonian in one space dimension for arbitrary
number of electrons N and number of electrons with spins down M . It is
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also instructive to write down the expression for the eigenfunctions (Π are
permutations from SM )

ψ(x1, . . . , xN , σ1, . . . , σN )

=
∑
P

sign(PQ)AσQ1 ,...,σQN
(kP1 , . . . , kPN ) exp(i

2∑
j=1

kPj xQj ) ,

AσQ1 ,...,σQN
(kP1 , . . . , kPN ) =

∑
1≤y1<···<yM≤N

∑
Π

×
∏

1≤j≤m≤M

λΠl
− λΠm − i(U/2)
λΠl

− λΠm

M∏
t=1

1
λΠt − sin kΠyt

+ i(U/4)

×
yt−1∏
s=1

λΠt − sinkΠs − i(U/4)
λΠt − sinkΠs + i(U/4)

, (4.53)

where yj are the positions of down spins in the sequence σ1, . . . , σN .
Observe that the structure of the Bethe ansatz equations (4.52) does not

depend on whether one has repulsive or attractive Hubbard interaction. For
the attraction one has to replace U → −U there.

The limit of small kj of the Hubbard model describes the continuum
gas of electrons with the δ-function interaction of the strength U/2 with
the Hamiltonian, here presented in the first-quantized form

Hδ = −
N∑

j=1

(
∂2

∂x2
j

)
+ (U/2)

∑
j<l

δ(xj − xl) , (4.54)

in which the spin degrees of freedom are not present explicitly: they are
incorporated via the symmetry of the wave function. The Bethe ansatz
solution to this problem is given by

exp(ikjL) =
M∏

β=1

kj − λβ + i(U/4)
kj − λβ − i(U/4)

,

N∏
j=1

λγ − kj + i(U/4)
λγ − kj − i(U/4)

=
M∏

β=1
β �=γ

λγ − λβ + i(U/2)
λγ − λβ − i(U/2)

,

(4.55)

where j = 1, . . . , N and γ = 1, . . . , M , and the energy

E =
N∑

j=1

k2
j + const . (4.56)
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Now we can study thermodynamic properties of a Hubbard chain. For
this purpose we shall use the string hypothesis, already known to the reader
from the previous chapter. In the thermodynamic limit L, N, M → ∞ with
N/L and M/L kept fixed we can consider three main classes of solutions
of Eq. (4.52). The first class consists of N − 2M∗ real charge rapidities
kj , which correspond to unbound electron excitations with densities ρ(k),
densities of holes ρh(k) and dressed energies ε(k) = T ln[ρh(k)/ρ(k)] =
T ln ξ(k). The second class represents complex charge rapidities describing
spin-singlet pairs (bound states) of electrons or bound states of them with
sin kl

α,n = λl′
α,n±i(U/4), where λl′

α,n = λ′
α,n+i(n+1−2l)(U/4) (l = 1, . . . , n)

are parts of the string of length (n − 1) with n = 1, . . . ,∞. λ′
α,n are real

and characterize the centre of motion of the bound state of n pairs and
α = 1, . . . , M ′

n label the strings. Notice that M∗ =
∑∞

n=1 nM ′
n. These exci-

tations have densities σ′
n(λ), densities of holes σ′

nh(λ), and dressed energies
ψn(λ) = T ln[σ′

nh(λ)/σ′
n(λ)] = T lnκn(λ). These two classes of solutions

are different from the solutions of the Heisenberg chain, presented in the
previous chapter, because they describe the propagation of charge degrees
of freedom of electrons. The third class, however, is already familiar to
the reader. This class consists of Mn spin strings (bound states) of length
(n− 1) of the form λl

α,n = λα,n + i(n+1− 2l)(U/4) (l = 1, . . . , n) with real
λα,n and α = 1, . . . , Mn. Naturally, because M is the number of down spins,
we have M = M∗ +

∑∞
n=1 nMn =

∑∞
n=1 n(M ′

n + Mn). These excitations
carry only spin and no charge and have densities σn(λ), densities of holes
σnh(λ), and dressed energies φn(λ) = T ln[σnh(λ)/σn(λ)] = T ln ηn(λ). We
remark that the case of the continuum gas of electrons with the δ-function
coupling has no bound states between pairs.

By using straightforward but tedious procedures, similar to the case
of the Heisenberg spin chain, we obtain the thermodynamic Bethe ansatz
equations for densities

ρ(k) + ρh(k) =
1
2π

+ cos k
∞∑

n=1

anU/4(sin k − λ) ∗ [σn(λ) + σ′
n(λ)] ,

σnh(λ) = anU/4(λ − sin k) ∗ ρ(k) −
∞∑

m=1

Anm(λ − λ′) ∗ σm(λ′) ,

σ′
nh(λ) =

1
π

Re
1√

1 − [λ − in(U/4)]2

−
∞∑

m=1

Anm(λ − λ′) ∗ σ′
m(λ′) − anU/4(λ − sin k) ∗ ρ(k) .

(4.57)
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The thermodynamic Bethe ansatz equations for dressed energies have the
form

ε(k) = −
(

2 cosk +
H

2
+ µ

)
+ T

∞∑
n=1

anU/4(sin k − λ) ∗ ln
1 + κ−1

n (λ)
1 + η−1

n (λ)
,

T ln[1 + ηn(λ)] = nH − T cos k anU/4(λ − sink) ∗ ln[1 + ξ−1(k)]

+ T

∞∑
m=1

Anm(λ − λ′) ∗ ln[1 + η−1
m (λ′)] ,

T ln[1 + κn(λ)] = −4 Re
√

1 − [λ − in(U/4)]2 − 2nµ

T ln[1 + ηn(λ)] = − T cos k anU/4(λ − sin k) ∗ ln[1 + ξ−1(k)]

+ T

∞∑
m=1

Anm(λ − λ′) ∗ ln[1 + κ−1
m (λ′)] .

(4.58)

Here ∗ denotes convolution, aUn/4(x) = (nU/4)/π[x2 + (nU/4)2], the
Fourier transform of Anm(x) is coth(|ωU |/8)[exp(−|n − m||ωU |/8) +
exp(−(n − m)|ωU |/8)], H is the external magnetic field, µ is the chem-
ical potential, and T is the temperature. The internal energy, the number
of electrons and the magnetization per site are given by

e = −2
∫ π

−π

dk cos kρ(k) − 4
∞∑

n=1

Re
∫ ∞

−∞
dλ
√

1 − [λ − in(U/4)]2σ′
n(λ) ,

N
L =

∫ π

−π

dkρ(k) + 2
∞∑

n=1

n

∫ ∞

−∞
dλσ′

n(λ) ,

mz =
1
2

∫ π

−π

dkρ(k) −
∞∑

n=1

n

∫ ∞

−∞
dλσn(λ) .

(4.59)

The Helmholtz free energy of the Hubbard chain per site is equal to

f = −T
∞∑

n=1

∫ ∞

−∞

dλ

π
Re

1√
1 − [λ − in(U/4)]2

ln[1 + κ−1
n (λ)]

− T

∫ π

−π

dk

2π
ln[1 + ξ−1(k)] = e0 − µ − T

∫ ∞

−∞
dλσ0(λ) ln[1 + κ1(λ)]

− T

∫ π

−π

dkρ0(k) ln[1 + ξ(k)] , (4.60)
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where the ground state (internal) energy per site and densities for H = 0
and half-filled band with µ = U/2 are

e0 = −4
∫ ∞

0

dω
J0(ω)J1(ω)

ω[1 + exp(ωU/2)]
,

ρ0(k) =
1
2π

+ cos k

∫ ∞

−∞
dλσ0(λ)aU/4(λ − sin k) ,

σ0(λ) =
∫ ∞

0

dω

2π

J0(ω) cos(ωλ)
cosh(ωU/4)

,

(4.61)

where J0,1(x) are Bessel functions.
It is important to notice that the thermodynamic Bethe ansatz equa-

tions for densities of the attractive Hubbard model follow from Eq. (4.57)
with the change of the signs of the second term in the right hand side of
the first equation. On the other hand, the thermodynamic Bethe ansatz
equations for dressed energies of the attractive Hubbard model follow from
Eq. (4.58) with the change of the signs of ln(1 + ξ−1) and the sign of the
driving term for dressed energies of pair excitations (2nµ keeps the same
sign though). One can see that these differences reflect the simple change
k → π − k. This simple difference is clear from the observation that the
transformation related to that change aj,σ → (−1)jaj,σ, a†

j,σ → (−1)ja†
j,σ

reverses the sign of hopping terms in the Hubbard Hamiltonian, but leaves
the other properties invariant. Then the Hamiltonian with negative U is
just the Hamiltonian for the repulsive Hubbard chain but with the total
negative sign. This means that the eigenstates are the same, but the ener-
gies differ by their signs. This is why, for the attractive Hubbard chain one
has to replace ξ(k) → ξ−1(k) in the last term of Eq. (4.60), to add the term
−U/2 to e0 (which now pertains to the case µ = −U/2), and to change the
sign of the second term for the expression for ρ0(k).

As for the spin- 1
2 Heisenberg chain, considered in the previous chapter,

thermodynamic Bethe ansatz equations for a Hubbard chain have analytic
solutions for high and low temperatures.

For high T we consider the limit T → ∞, but with U/T , H/T and
µ/T kept finite. In this limit the terms, which depend on k and λ in
driving terms can be neglected, and ξ, ηn and κn are constants. There is
no movement of excitations from site to site in this limit. Then the solutions
of the thermodynamic Bethe ansatz equations are

ξ =
w + w−1

z + z−1
, κn = f2(n) − 1 , ηn = g2(n) − 1 , (4.62)



April 6, 2005 10:46 Finite Size Effects in Correlated Electron Models: Exact Results mybook

Correlated Electron Chains: Co-ordinate Bethe Ansatz 89

where z = exp(−H/2T ), w = exp[(2µ − U)/2T ], and

f(n) =
wn+1 − w−n−1

w − w−1
, g(n) =

zn+1 − z−n−1

z − z−1
. (4.63)

The solutions for densities are

ρ =
1

1 + ξ

(
1
2π

+
1
π

cos k

(z + z−1)(w + w−1)
Re

1√
1 − [sin k − i(U/2)]2

)
,

σ′
n =

1
π

1
z + z−1 + w + w−1

(
1

f(n − 1)f(n)
Re

1√
1 − [λ − in(U/4)]2

− 1
f(n + 1)f(n)

Re
1√

1 − [λ − i(n + 2)(U/4)]2

)
,

σn =
1
π

1
z + z−1 + w + w−1

(
1

g(n − 1)g(n)
Re

1√
1 − [λ − in(U/4)]2

− 1
g(n + 1)g(n)

Re
1√

1 − [λ − i(n + 2)(U/4)]2

)
.

(4.64)

This is why, the numbers of electrons with spins up and down per site are

(N − M)
L

= (1 + exp[(2U − 2µ − H)/2T ])−1 ,

M

L
= (1 + exp[(2U − 2µ + H)/2T ])−1 .

(4.65)

These are obvious Fermi distribution functions. The total number of elec-
trons and the magnetization per site are

N

L
=

cosh(H/2T ) + exp[(2µ − U)/2T ]
cosh(H/2T ) + cosh[(2µ − U)/2T ]

,

mz =
1
2

sinh(H/2T )
cosh(H/2T ) + cosh[(2µ − U)/2T ]

.

(4.66)

Let us consider the behaviour of the magnetic susceptibility of the
Hubbard chain at high temperatures. It is also possible to consider the
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charge stiffness (charge susceptibility), defined as χc = −(∂2f/∂µ2) =
(∂(N/L)/∂µ). They are

χc =
1
T

1 + exp[(2µ − U)/2T ] cosh(H/2T )
(cosh(H/2T ) + cosh[(2µ − U)/2T ])2

,

χ =
1

4T

1 + cosh[(2µ − U)/2T ]
(cosh(H/2T ) + cosh[(2µ − U)/2T ])2

.

(4.67)

These expressions manifest that at high temperatures the Hubbard chain
has no phase transitions and the behaviour of its characteristics is smooth
with T , µ and H .

For low T we again, as in the previous chapter, separate dressed en-
ergies into their positive and negative parts, so that the terms with “+”
superscript are positive (empty states in the ground state) and those with
“–” superscript are negative (those which form Dirac seas). Re-writing
Eq. (4.58), we obtain

lnκn(λ) =
1

U cosh(2π(λ − λ′)/U)
∗ ln([1 + κn−1(λ′)][1 + κn+1(λ′)]) ,

ln ηn(λ) =
1

U cosh(2π(λ − λ′)/U)
∗ ln([1 + ηn−1(λ′)][1 + ηn+1(λ′)]) ,

for n ≥ 2, hence ψn > 0 and φn > 0 for n ≥ 2, and these excitations have no
Dirac seas. In the limit of low temperatures it is important to distinguish
the sign of the Hubbard coupling U . First, let us consider the repulsive
case U > 0. The T = 0 equation for ψ1 has the form

ψ1(λ) = U−2µ−aU/2(λ−λ′)∗ψ−
1 (λ′)−cos k aU/4(λ−sink)∗ε+(k) . (4.68)

Since for N ≤ L we have 2µ ≤ U , then ψ−
1 = 0 for any λ. Then the integral

ground state equations for dressed energies for the repulsive Hubbard chain
can be written as

φ1(λ) +
∫ B

−B

dλ′aU/2(λ′ − λ)φ1(λ′)

= H +
∫ Q

−Q

dk cos kaU/4(λ − sink)ε(k) ,

ε(k) = −2 cosk − µ − H

2
+
∫ B

−B

dλaU/4(λ − sin k)φ1(λ) ,

(4.69)
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and the equations for densities are

σ1(λ) + σ1h(λ) +
∫ B

−B

dλ′aU/2(λ′ − λ)σ1(λ′)

=
∫ Q

−Q

dkaU/4(λ − sin k)ρ(k) ,

ρ(k) + ρh(k) =
1
2π

+ cos k

∫ B

−B

dλaU/4(λ − sink)σ1(λ) ,

(4.70)

where the Fermi points for unbound electrons and spin strings of the length
1 (they are often called spinons, as for the Heisenberg–Ising chain) are re-
lated to the values of the chemical potential and magnetic field and deter-
mined from the conditions ε(±Q) = 0 and φ1(±B) = 0.

Let us consider the internal energy of the Hubbard chain as the function
of the number of electrons. From the symmetry we have

E(N − M, M, U) = −(L − N)U + E(L − N + M, L − M, U)

= (N − M)U + E(N − M, L − M,−U)

= MU + E(L − N + M, M,−U) , (4.71)

where N − M is the number of electrons with spins up. The chemical
potentials for adding or removing an electron can be defined as

µ+ = E(N − M, M + 1, U)− E(N − M, M, U) ,

µ− = E(N − M, M, U) − E(N − M − 1, M, U) .
(4.72)

Notice that for the half-filled band, unless N−M = M = N/2, the chemical
potential depends on the spin of the electron added or removed, and µ±
are related to opposite directions of spins. Since a metal (i.e., a conductor)
has to have a Fermi surface, then necessarily it follows that µ+ = µ−. On
the other hand, the insulator has to have an excitation gap when changing
the number of electrons, so µ+ > µ−. One can see that µ+ = U − µ− for
N = L, while µ+ = µ− if the band is not half-filled for U > 0. Hence,
the repulsive Hubbard chain is a metal (conductor) for N < L, and for the
half-filled situation it is an insulator unless U = 0. The gap µ+ − µ− in
zero magnetic field asymptotically approaches U − 4 for large U and it is
proportional to exp(−2πU) for small U (i.e., nonanalytically vanishes as
U → 0). We can consider this metal-insulator quantum critical behaviour
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from the viewpoint of the commensurability of the backward scattering
of electrons. If the Fermi vector 4kF is equal to the Brillouin zone, i.e.,
it is commensurate with the reciprocal lattice vector, then the spin-flip
backward scattering may give rise to a gap at the Fermi level in the charge
excitation spectrum (notice that one has the electron-hole symmetry). We
would like to emphasize here that in the continuum version of the Hubbard
chain (the electron gas with the δ-function repulsion) there is no metal-
insulator transition.

Let us now consider the half-filled band N = L. In this case we have
Q = π and ρh(k) = 0 and ρ(k) = 1/2π. The charged unbound electron
excitations have a gap, and we have from Eqs. (4.69) and (4.70)

φ1(λ) +
∫ B

−B

dλ′aU/2(λ′ − λ)φ1(λ′) = H −
∫ π

−π

dk cos2 kaU/4(λ − sin k) ,

σ1(λ) + σ1h(λ) +
∫ B

−B

dλ′aU/2(λ′ − λ)σ1(λ′)

=
∫ π

−π

dk

2π
aU/4(λ − sin k). (4.73)

The ground state energy and the magnetization are

e0 = −2
∫ π

−π

dk cos2 k

∫ B

−B

dλaU/4(λ − sin k)σ1(λ) ,

mz =
1
2
−
∫ B

−B

dλσ1(λ) .

(4.74)

It is interesting to note that if U is large the k dependence in driving terms
and the ground state energy can be neglected (sin k → 0) and the resulting
integral equations and expressions for the energy and magnetization coin-
cide with those for the spin- 1

2 antiferromagnetic Heisenberg chain, cf. the
previous chapter. Hence, in the limit of large U for the half-filling we can
use already known to us results to describe the quantum phase transition
in the external magnetic field. Moreover, for any U such a transition also
takes place, but at the critical field

Hs =
16

U +
√

16 + U2
, (4.75)

which pertains to the case B = 0. At this value of the magnetic field all
spins of electrons are polarized along the field direction, and the magnetic
susceptibility diverges as χ ∼ 1/

√
Hs − H . In zero magnetic field B = ∞
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and we can solve the integral equations analytically with the ground state
energy and densities given above in Eq. (4.61) and the magnetic suscepti-
bility and the low temperature specific heat per site are equal to

χ = =
I0(2π/U)

8πI1(2π/U)
,

c =
πI0(2π/U)
6I1(2π/U)

T + . . . ,

(4.76)

where I0,1(x) are modified Bessel functions. One can see that the following
(Wilson) relation for the Sommerfeld coefficient γ of the specific heat holds:

γ =
4π2χ

3
. (4.77)

For U → 0, we have Hs = 4 and the magnetization behaves as mz =
(1/2) − (1/π) sin−1

√
1 − (H/4)2. For U → ∞ we have Hs → 0, and,

hence, the divergent magnetic susceptibility at H = 0 (i.e., an infinitesimal
magnetic field transfers the infinite-U repulsive Hubbard chain into the
spin-polarized, ferromagnetic ground state). Notice that at the values for
which van Hove singularities of empty one-dimensional Dirac seas of low-
lying excitations take place, see below, the low-temperature specific heat is
proportional to

√
T .

Usually it is convenient to relate both of these characteristics with the
velocity of low-lying excitations (spinons in this case) taken at the Fermi
point

vF
σ = (2πσ1(λ))−1 ∂φ1(λ)

∂λ
|λ=B (4.78)

as γ = π/3vF
σ and χ = 1/4πvF

σ (at half-filling). It turns out that vF
σ = 0

at H = Hs (i.e., at B = 0), and the susceptibility diverges. Naturally, the
Fermi velocity of unbound electron excitations

vF
ρ = (2πρ(k))−1 ∂ε(k)

∂k
|k=Q (4.79)

is equal to zero at half filling.
Considering the charge stiffness the reader can better understand why

we wrote about a metal-insulator transition at half-filling as about the
quantum phase transition: the ground state charge stiffness of the repul-
sive Hubbard chain diverges at half filling as χc = 1/4πvF

ρ (similar to the
magnetic susceptibility at Hs). In the metallic situation, where both vF

ρ �= 0
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and vF
σ �= 0, one has the general formula

γ =
π

3

(
1

vF
ρ

+
1

vF
σ

)
. (4.80)

Naturally, this formula is valid except for situations with the van Hove
singularities.

Some other analytic results can be obtained for the metallic case N < L

for H = 0. Here φ1 and σ1 can be eliminated by the Fourier transformation
and we have

ε(k) = −2 cosk − µ +
∫ Q

−Q

dk′ cos k′A(sin k′ − sin k)φ1(λ)ε(k′) ,

ρ(k) + ρh(k) =
1
2π

+ cos k

∫ Q

−Q

dk′A(sin k′ − sin k)ρ(k′) ,

(4.81)

where A(x) = Re(ψ[1 + i(x/U)] − ψ[(1/2) + i(x/U)])/πU , and ψ(x)
is a digamma function. The number of electrons per site is given by
N/L =

∫ Q

−Q
dkρ(k). The chemical potential is, by its definition, obtained

from the condition ε(±Q) = 0. It increases with increasing U and the
number of electrons. For U = 0, we have e0 = −(4/π) sin(πN/2L) and
µ = −2 cos(πN/2L), while for U → ∞ (where it is forbidden for two
electrons to occupy the same site) we get e0 = −(2/π) sin(πN/L) and
µ = −2 cos(πN/L). The difference is transparent, because the effective
lattice size becomes twice as small for these effective “spinless fermions”.
The magnetic susceptibility, charge stiffness and Sommerfeld coefficient are
related to Fermi velocities of spinons and charged excitations, which are

vF
σ = −

∫ Q

−Q dk cos kε(k) exp(2π sin k/U)

U
∫ Q

−Q dkρ(k) exp(2π sin k/U)
,

vF
ρ = (2πρ(k))−1 ∂ε(k)

∂k
|k=Q .

(4.82)

The quantum phase transition to the spin-polarized state at T = 0 takes
place at

Hs = −
∫ Q

−Q

dk cos kε(k)aU/4(sin k) (4.83)

with the square-root singularity of the magnetic susceptibility. As we see,
this square-root singularity of the magnetic susceptibility is characteristic
for any one-dimensional system with SU(2) spin symmetry. It is related
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to the van Hove singularity of the one-dimensional empty Dirac sea of
spinons (low-lying spin excitations). The critical field Hs is equal to 4[1 −
cos(πN/2L)] for U = 0, and, for given N decreases monotonically with
increasing U (vanishing at U → ∞).

Now we turn to the attractive Hubbard chain, U < 0. Here one can
see that φn > 0 for any n for T → 0. Then the ground state equations for
dressed energies and densities have the form

ψ1(λ) +
∫ Q

−Q

dλ′aU/2(λ′ − λ)ψ−
1 (λ′)

= −4Re
√

1 − [λ + i(U/4)]2 − 2µ −
∫ B

−B

dk cos kaU/4(λ − sin k)ε−(k) ,

ε(k) = −2 cosk − µ − H

2
−
∫ Q

−Q

dλaU/4(λ − sin k)ψ−
1 (λ) , (4.84)

and

σ′
1(λ) + σ′

1h(λ) +
∫ Q

−Q

dλ′aU/2(λ′ − λ)σ′
1(λ

′)

=
1
π

Re
1√

1 − [λ + i(U/4)]2
−
∫ B

−B

dkaU/4(λ − sink)ρ(k) ,

ρ(k) + ρh(k) =
1
2π

− cos k

∫ Q

−Q

dλaU/4(λ − sin k)σ′
1(λ) ,

(4.85)

where the Fermi points for unbound electrons and spin-singlet pairs are
related to the values of the chemical potential and magnetic field and de-
termined from the conditions ε(±B) = 0 and ψ1(±Q) = 0 (do not confuse
with the repulsive case: now charge excitations are connected with quan-
tum numbers λ and Q, while spin is carried by excitations with quantum
numbers k and B).

At H = 0, the magnetization is zero and, hence, B = 0. All electrons
are bound in pairs, and unbound electron excitations have a spin gap. The
chemical potential for the empty band is equal to −2

√
1 + (U/4)2, while for

the half-filled band it is −U/2. µ monotonically decreases with increasing
|U | (as U2 for N small and as U for N → L). It requires a magnetic
field larger than the critical one to have unbound electron excitations. The
critical field needed to overcome the binding energy of a spin-singlet pair is



April 6, 2005 10:46 Finite Size Effects in Correlated Electron Models: Exact Results mybook

96 Finite Size Effects in Correlated Electron Models: Exact Results

equal to

Hc = −4 − 2µ − 2
∫ Q

−Q

dλaU/4(λ)ψ1(λ) , (4.86)

where ψ1(λ) is determined from the first of Eq. (4.84) with B = 0. Nat-
urally, Hc vanishes at U = 0 and grows with increasing |U |. The ground
state magnetization of an attractive Hubbard chain is zero for H ≤ Hc

and it is proportional to
√

H − Hc for values of the magnetic field slightly
above Hc. Hence, at Hc the ground state magnetic susceptibility has a
square-root divergence which signals a quantum phase transition. It is the
consequence of the van Hove singularity of the empty one-dimensional band
of unbound electron excitations. For larger values of the magnetic field, the
ground state magnetization of an attractive Hubbard chain saturates at Hs

at which all spin-singlet pairs are broken up, i.e., at Q = 0. Again, at Hs we
have the quantum phase transition, related to the van Hove one-dimensional
singularity of the empty band of pairs and all spins of electrons are polar-
ized by the magnetic field. The magnetic susceptibility diverges at Hs and
Hc (it is zero for H > Hs and H < Hc) and it is finite for fields just below
Hs (except for the half-filled case N = L).

The situation for the ground state of an attractive Hubbard chain is
reminiscent of the one for type-II superconductors. Namely, there are two
critical values of the external magnetic field. For H < Hc only Cooper-like
singlet pairs are low-lying excitations, while unbound electron excitations
are gapped. In the intermediate phase, Hc ≤ H ≤ Hs both pairs and un-
bound electron excitations are gapless. Finally, at H > Hs all excitations
have gaps. However, there is a drastic difference: in a one-dimensional at-
tractive Hubbard chain pairs are not coherent even at T = 0 (and, moreover,
for T �= 0, remember the Hohenberg theorem), and there is no spontaneous
superconductive ordering in that model.

The magnetic susceptibility, charge stiffness and Sommerfeld coefficient
for an attractive Hubbard model are again related to Fermi velocities of
pairs and unbound electron excitations

vF
σ′ = (2πσ′

1(λ))−1 ∂ψ1(λ)
∂λ

|λ=Q , vF
ρ = (2πρ(k))−1 ∂ε(k)

∂k
|k=B (4.87)

as χ = 1/4πvF
ρ , χc = 1/4πvF

σ′ (for H ≤ Hc), and γ = (4π2/3)[(vF
ρ )−1 +

(vF
σ′ )−1]. At H = 0, the Sommerfeld coefficient of the attractive Hubbard

chain is

γ =
πI0(2π/U)
6I1(2π/U)

. (4.88)
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Naturally, at the points of van Hove singularities of empty bands of low-
lying excitations the low-temperature specific heat is proportional to

√
T .

At finite but low temperatures the magnetic susceptibility is exponen-
tially small for H < Hc and H > Hs. At H = Hc or Hs the magnetic
susceptibility displays the

√
T feature corresponding to the van Hove sin-

gularity of empty bands. For Hc < H < Hs, on the other hand, the
magnetic susceptibility is finite as T → 0.

The spin gap implies that the limits U → 0 and T → 0 cannot be
interchanged for a Hubbard chain.

It is important also to emphasize that except for U = 0, there are no
other critical values of the Hubbard coupling constant for spin-1

2 electrons
(it is not so for the so-called degenerate SU(2S + 1)-symmetric Hubbard
chain with electrons carrying arbitrary spin S).

4.2 t-J Chain

Another important model of correlated electron systems, which possesses
an exact Bethe ansatz solution is the t-J model (it is integrable with some
restrictions on the values of coupling constants, see below). It became pop-
ular when it was realized that in the limit of strong repulsion the Hubbard
model with U > 0 reduces to it (for the antiferromagnetic situation). The
strong on-site repulsions limit site occupations to at most one electron.
States with double occupation of a site are energetically unfavourable and
can be projected out. Hence, in the t-J model there are only three states
per site: one empty state and two states with an electron, either with spin
up, or down, and the total number of states in the Hilbert space of the
t-J chain of the length L is 3L. However, virtual transitions to states with
doubly occupied sites give rise to an exchange and direct interaction be-
tween electrons on nearest neighbour sites. It turns out that a t-J model is
important as it is, without direct relation to the large U limit of a repulsive
Hubbard model. It is frequently invoked as a model for strongly correlated
electrons, in particular it is popular for the description of high-Tc cuprate
superconductors and heavy fermion systems.

The Hamiltonian of the one-dimensional t-J model can be written as:

HtJ =
L−1∑
j=1

[−t
∑

σ

P(a†
j,σaj+1,σ + H.c.)P

+ J 
Sj

Sj+1 + V

∑
σ

nj,σnj+1,σ] , (4.89)
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where a†
j,σ (aj,σ) creates (destroys) an electron with the spin projection σ =

±1 ≡↑, ↓ in the lattice site j, nj,σ = a†
j,σaj,σ, P = (1−nj,−σ)(1−nj+1,−σ) is

the projection operator which excludes double occupation of each site, 
Sj =
a†

j,σ

Sσ,σ′aj,σ′ is the operator of the spin of the electron in the lattice site j

(Sz
j = (1/2)(nj,↑−nj,↓), S+

j = a†
j,↑aj,↓, and S−

j = a†
j,↓aj,↑), t is the hopping

integral (in what follows we put it equal to unity, t = 1, i.e., we shall
measure all other energies in units of t), J is the exchange constant and V

is the coupling constant of the nearest-neighbour interactions, respectively.
This Hamiltonian can be expressed in terms of Hubbard operators Xab

j =
|aj〉〈bj |, where a, b denote states with one electron with spin up or down
and empty state (we can define them as ↑, ↓, 0, respectively), supplemented
with the local constraint X↑↑

j + X↓↓
j + X00

j = 1. These Hubbard operators
satisfy the following relations

Xab
j Xcd

l ± Xcd
l Xab

j = δj,l(δb,cX
ad
j ± δa,dX

cb
j ) . (4.90)

The Hamiltonian equation (4.89) can be re-written as

HtJ = −t

L−1∑
j=1

[∑
σ

(X0σ
j Xσ0

j+1 + X0σ
j+1X

σ0
j )

+ J
∑
σσ′

Xσσ′
j Xσ′σ

j+1 + V X00
j X00

j+1

]
. (4.91)

It turns out that the one-dimensional t-J Hamiltonian is exactly solv-
able by the Bethe’s ansatz only for J = ±2t = ±2, and V = −J/4, or
V = 3J/4. The model with these values of parameters used to be called
a supersymmetric model. We shall explain this definition in the following
chapter. Using the same method as in the previous section for a Hubbard
chain it is not difficult to find that the two-particle scattering matrix of a
supersymmetric t-J model for V = −J/4 is equal to

Sσ1τ1
σ2τ2

(k1, k2) =
1
2

(
[1 + exp(−2iψk1,k2)]I

σ1τ1
σ2τ2

+ [1 − exp(−2iψk1,k2)]Π
σ1τ1
σ2τ2

)
, (4.92)

where Iσ1τ1
σ2τ2

= δσ2τ2δσ1τ1 is the identity operator, Πσ1τ1
σ2τ2

= δσ1τ2δσ2τ1 is the
permutation operator, and

cotψk1k2 =
J

2
cot(k1/2) − cot(k2/2)

[1 − (J/2)] cot(k1/2) cot(k2/2) − [1 + (J/2)]
. (4.93)
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Equation (4.92) can be re-written as

Sσ1τ1
σ2τ2

(k1, k2) =
(p1 − p2)Iσ1τ1

σ2τ2
+ i(J/2)Πσ1τ1

σ2τ2

p1 − p2 + i(J/2)
, (4.94)

where p1,2 = (1/2) cot(k1,2/2) for J = 2, and p1,2 = (1/2) tan(k1,2/2) for
J = −2. On the other hand, for V = 3J/4, we have

Sσ1τ1
σ2τ2

(k1, k2) =
−(p1 − p2)Iσ1τ1

σ2τ2
− i(J/2)Πσ1τ1

σ2τ2

p1 − p2 − i(J/2)
. (4.95)

These equations have the same form as the two-particle scattering matrix of
a Hubbard model, Eq. (4.15), up to the re-formulation of charge rapidities
and, hence, we can use the results of the previous analysis and after straight-
forward, but tedious calculations we have for the sets pj (j = 1, . . . , N ,
where N is the number of electrons) and λγ (γ = 1, . . . , M , where M is the
number of down spin electrons) for V = −J/4

(
pj + i(1/2)
pj − i(1/2)

)L

=
M∏

β=1

pj − λβ + i(1/2)
pj − λβ − i(1/2)

,

N∏
j=1

λγ − pj + i(1/2)
λγ − pj − i(1/2)

=
M∏

β=1
β �=γ

λγ − λβ + i

λγ − λβ − i
.

(4.96)

Please pay attention that the Bethe ansatz equations do not depend on the
sign of J . The energy, contrary, depends on J

E = −J

N∑
j=1

(
1 − 2

4p2
j + 1

)
. (4.97)

The magnetic moment is equal to Sz = (N/2) − M . On the other hand,
for V = 3J/4, the Bethe ansatz equations are

(
pj + i(1/2)
pj − i(1/2)

)L

=
N∏

l=1
l �=j

pj − pl + i

pj − pl − i

M∏
β=1

pj − λβ − i(1/2)
pj − λβ + i(1/2)

,

N∏
j=1

λγ − pj + i(1/2)
λγ − pj − i(1/2)

=
M∏

β=1
β �=γ

λγ − λβ + i

λγ − λβ − i
,

(4.98)

and the expression for the energy coincides with Eq. (4.97) taken with
the opposite total sign. It turns out that the Bethe ansatz equations of the
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supersymmetric t-J model with V = 3J/4 are equivalent to the ones of the
SU(3)-symmetric spin-1 Hamiltonian

HSU(3) =
J

2

L∑
j=1

[
Sj

Sj+1 + (
Sj


Sj+1)2] , (4.99)

with N → N2 + N3 and M → N3 (N1 + N2 + N3 = L), where N1,2,3 are
the number of spins with the z-projections up, zero and down.

It is important to point out that for a supersymmetric t-J model one
can introduce a magnetic anisotropy, and this introduction does not violate
the exact integrability. Namely, the Hamiltonian

Han = −
L−1∑
j=1

[∑
σ

P(a†
j,σaj+1,σ + H.c.)P

− J

2

∑
σ,σ′

(eηsign(σ′−σ)nj,σnj+1,σ′ − a†
j,σaj,σ′a†

j+1,σ′aj+1,σ)

]
, (4.100)

where η is the parameter of the “easy-plane” magnetic anisotropy (with
J = ±2) is integrable by the Bethe’s ansatz. Naturally, for η = 0, this
Hamiltonian coincides with Eq. (4.89). The Bethe ansatz equations (we
keep the same notations for rapidities) are

(
sin[pj + i(η/2)]
sin[pj − i(η/2)]

)L

=
M∏

β=1

sin[pj − λβ + i(η/2)]
sin[pj − λβ − i(η/2)]

,

N∏
j=1

sin[λγ − pj + i(η/2)]
sin[λγ − pj − i(η/2)]

=
M∏

β=1
β �=γ

sin[λγ − λβ + iη]
sin[λγ − λβ − iη]

,

(4.101)

with the energy

E = −JN cosh η + J sinh2 η
N∑

j=1

1
cosh η − cos 2pj

(4.102)

and the magnetic moment Sz = (N/2) − M . It turns out that while the
Bethe ansatz eigenstates equation (4.102) are real for the “easy-plane” mag-
netic anisotropy η → iη, the Hamiltonian equation (4.100) is non-Hermitian
for such a choice of the anisotropy, and, hence, we shall not consider that
case in what follows.

Now let us study the thermodynamic properties of the supersymmetric
t-J chain using the string hypothesis. Let us start with the case V = −J/4.
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In the thermodynamic limit L, N, M → ∞ with N/L and M/L kept fixed
we can consider three main classes of solutions of Eq. (4.96). The first
class consists of N − 2M∗ real charge rapidities pj , which correspond to
unbound electron excitations with densities ρ(p), densities of holes ρh(p)
and dressed energies ε(p) = T ln[ρh(p)/ρ(p)] = T ln ξ(p). The second class
represents complex charge rapidities describing spin-singlet pairs (bound
states) of electrons with p±α = λ′

α ± i(1/2), where λ′
α are real and char-

acterize the centre of motion of pairs and α = 1, . . . , M ′. These exci-
tations have densities σ′(λ), densities of holes σ′

h(λ), and dressed ener-
gies ψ(λ) = T ln[σ′

h(λ)/σ′(λ)] = T lnκ(λ). It turns out that the su-
persymmetric t-J chain has no bound states between pairs. The third
class consists of Mn spin strings (bound states) of length (n − 1) of the
form λl

α,n = λα,n + i(n + 1 − 2l)/2 (l = 1, . . . , n) with real λα,n and
α = 1, . . . , Mn. Naturally, because M is the number of down spins, we
have M = M∗ +

∑∞
n=1 nMn. These excitations carry only spin and no

charge and have densities σn(λ), densities of holes σnh(λ), and dressed
energies φn(λ) = T ln[σnh(λ)/σn(λ)] = T ln ηn(λ).

Then, by using straightforward procedures, similar to the case of a Hub-
bard chain, we get thermodynamic Bethe ansatz equations for densities

ρ(p) + ρh(p) = a1(p) −
∞∑

n=1

an(p − λ) ∗ σn(λ) − a1(p − λ) ∗ σ′(λ) ,

σnh(λ) = an(λ − p) ∗ ρ(p) −
∞∑

m=1

Anm(λ − λ′) ∗ σm(λ′) ,

σ′
h(λ) = a2(p) − a2(λ − λ′) ∗ σ′(λ′) − a1(λ − p) ∗ ρ(p) .

(4.103)

The thermodynamic Bethe ansatz equations for dressed energies have the
form

ε(p) = −
(

J [1 − πa1(p)] +
H

2
+ µ

)

+ Ta1(p − λ) ∗ ln[1 + κ−1(λ)]

− T

∞∑
n=1

a1(p − λ) ∗ ln[1 + η−1
n (λ)] ,

T ln[1 + ηn(λ)] = nH + Tan(λ − p) ∗ ln[1 + ξ−1(p)]

+ T

∞∑
m=1

Anm(λ − λ′) ∗ ln[1 + η−1
m (λ′)] ,
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ψ(λ) = − (J [2 − πa2(λ)] + 2µ) + Ta1(λ − p) ∗ ln[1 + ξ−1(p)]

+ Ta2(λ − λ′) ∗ ln[1 + κ−1(λ′)] . (4.104)

Here ∗ denotes convolution, an(x) = (n/2)/π[x2 + (n/2)2], and
the Fourier transform of Anm(x) is coth(|ω|/4)[exp(−|n − m||ω|/4)+
exp(−(n − m)|ω|/4)]. The internal energy, the number of electrons and
the magnetization per site of the supersymmetric t-J chain for V = −J/4
are given by

e = −J
N

L
+ Jπ

∫ ∞

−∞
dpa1(p)ρ(p) + Jπ

∫ ∞

−∞
dλa2(λ)σ′(λ) ,

N

L
=
∫ ∞

−∞
dpρ(p) + 2

∫ ∞

−∞
dλσ′(λ) ,

mz =
1
2

∫ ∞

−∞
dpρ(p) −

∞∑
n=1

n

∫ ∞

−∞
dλσn(λ) .

(4.105)

The Helmholtz free energy of the supersymmetric t-J chain for V = −J/4
per site is equal to

f = −T

∫ ∞

−∞
dλa2(λ) ln[1 + κ−1(λ)]

−T

∫ ∞

−∞
dpa1(p) ln[1 + ξ−1(p)] = ψ(0) − µ − J . (4.106)

At high temperatures we consider the limit T → ∞, keeping H/T and
µ/T finite. In this limit the terms, which depend on p and λ in driving
terms can be neglected, and ξ, ηn and κ are constants. There is no move-
ment of excitations from site to site in this limit. The solutions of the
thermodynamic Bethe ansatz equations are

ξ =
√

1 + κ

1 + η1
, ηn =

[
sinh

(
nH
2T + x

)
sinh

(
H
2T

)
]2

− 1 ,

(1 + κ)3/2κ2 = exp(−2µ/T )[
√

1 + κ +
√

1 + η1] ,

exp(x) = exp(H/T )

√
1 + exp[−(H + 2µ)/2T ]
1 + exp[(H − 2µ)/2T ]

.

(4.107)
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The Helmholtz free energy per site at high temperatures is

f = −T ln[1 + 2 exp(µ/T ) cosh(H/2T )] , (4.108)

which describes three degrees of freedom per site (a hole and a free spin- 1
2 ).

The total number of electrons and the magnetization per site are

N

L
=

2 cosh(H/2T )
2 cosh(H/2T ) + exp(−µ/T )

,

mz =
sinh(H/2T )

2 cosh(H/2T ) + exp(−µ/T )
.

(4.109)

The charge and magnetic susceptibilities of the t-J chain at high tempera-
tures are

χc =
1
T

2 exp(−µ/2T ) cosh(H/2T )
[2 cosh(H/2T ) + exp(−µ/T )]2

,

χ =
1
T

1 + exp(−µ/T ) cosh(H/2T )
[2 cosh(H/2T ) + exp(−µ/T )]2

.

(4.110)

These expressions manifest that at high temperatures the supersymmetric
t-J chain with V = −J/4 has no phase transitions and the behaviour of its
characteristics is smooth with T , µ and H .

For low T we again, as in the previous chapter, separate dressed en-
ergies into their positive and negative parts, so that the terms with “+”
superscript are positive (empty states in the ground state) and those with
“–” superscript are negative (those which form Dirac seas). By using sim-
ilar procedures as in the previous section for a Hubbard chain, the reader
can see that dressed energies are positive, φn > 0, for any n, hence, these
excitations have no Dirac seas. Then the ground state equations for dressed
energies and densities have the form

ψ1(λ) +
∫

dλ′a2(λ′ − λ)ψ−
1 (λ′)

= −2J + πJa2(λ) − 2µ −
∫

dpa1(λ − p)ε−(p) ,

ε(p) = −J + πJa1(p) − µ − H

2
−
∫

dλa1(λ − p)ψ−
1 (λ) ,

(4.111)
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and

σ′
1(λ) + σ′

1h(λ) +
∫

dλ′a2(λ′ − λ)σ′
1(λ

′)

= a2(λ) −
∫

dpa1(λ − p)ρ(p) ,

ρ(p) + ρh(p) = a1(p) −
∫

dλa1(λ − p)σ′
1(λ) ,

(4.112)

where the Fermi points for unbound electrons and spin-singlet pairs are
related to the values of the chemical potential and magnetic field and de-
termined from the conditions ε(±B) = 0 and ψ1(±Q) = 0. These equations
are similar to the ones for the attractive Hubbard chain.

For the ferromagnetic coupling J = −2, two dressed energies ε(p) and
ψ(λ) have their minima at p = λ = 0. Then the ground state energy is
minimum if ψ(0) is maximum, i.e., when the band of pairs is empty, Q = 0,
(no spin-paired electrons, which is clear for the ferromagnetic case). All
electrons occupy states of the band ε(p), with

ε(p) = 2 − 4
4p2 + 1

− µ − H

2
. (4.113)

Hence, all states with |p| < B are occupied (the Dirac sea for unbound
electrons), where B2 = (4 + 2µ + H)/4(4 − 2µ − H).

For the antiferromagnetic situation J = 2, the dressed energies are
decreasing functions of |p| and |λ|. Hence, the Dirac seas, and, therefore,
the integrations in Eqs. (4.111) and (4.112) are in the intervals |p| ≥ B and
|λ| ≥ Q.

The case with one electron per site N = L, since the double occupancy
is excluded, pertains to the insulator. The hole density σ′

h vanishes, Q = 0,
and eliminating σ′ by using the Fourier transform we get

ρ(p) + ρh(p) = G0(p) +
∫
|p′|≥B

dp′G1(p′ − p)ρ(p′) , (4.114)

where Gn(x) =
∫∞
−∞ dω exp[−iωx− (n|ω|/2)]/4π cosh(ω/2). In the absence

of the magnetic field we have ρ = 0 (and σ′(λ) = G0(λ)). This is why, the
ground state energy is equal to

e0 = −2 ln 2 . (4.115)

The ground state is singlet. There is no gap for spin-carrying excitations
(unlike an attractive Hubbard chain). The magnetic susceptibility is finite.
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It coincides with the magnetic susceptibility of a Heisenberg spin- 1
2 antifer-

romagnetic chain, described in the previous chapter, with J = 2. Any weak
magnetic field begins to polarize electrons linearly with small logarithmic
corrections. At the critical value Hs (related to B = 0), the magnetic field
totally polarizes all the spins of electrons, and the system undergoes the
quantum phase transition into the spin-polarized (ferromagnetic) phase. It
is important to point out that, despite the ground state Bethe ansatz equa-
tions for a supersymmetric antiferromagnetic t-J chain with V = −1/2 are
similar to the ones for an attractive Hubbard chain, there is no gap for
unbound electron excitations for a t-J model, and, hence there is no phase
with only paired electrons (which implies Hc = 0).

For the metallic case N < L, the integral equation for density of un-
bound electrons can be written as

ρ(p) + ρh(p) = G0(p) +
∫
|p′|≥B

dp′G1(p′ − p)ρ(p′)

+
∫ Q

−Q

dλG0(p − λ)σ′
h(λ) . (4.116)

Actually the holes of pairs determine the metallic behaviour of the chain.
The magnetization is zero for H → 0. Notice, that even for a small magnetic
field the Fermi point B is much larger than any given Q. Then the last term
in the right hand side can be considered as small perturbation and for small
H (large B) we can solve this equation using the Wiener–Hopf method,
described the previous chapter. The H = 0 magnetic susceptibility (χ =
1/4πvF

ρ , where vF
ρ is the Fermi velocity of unbound electron excitations,

defined as for the case of a Hubbard chain), is

χ =
1

4π2

1 +
∫ Q

−Q
dλσ′

h(λ) exp(πλ)

1 + (1/2π)
∫Q

−Q
dλψ(λ) exp(πλ)

, (4.117)

where σh and ψ are solutions for zero magnetic field. The zero-field mag-
netic susceptibility diverges for N → 0 as the consequence of the van Hove
singularity of the empty band of pairs.

At H = 0, the magnetization is zero and, hence, B = ∞. All electrons
are bound in pairs (we assumed the even number of electrons), and there
are no unbound electron excitations. The equation for the density of pairs
in this case is

σ(λ) + σh(λ) = G0(λ) +
∫ Q

−Q

dλ′G1(λ′ − λ)σh(λ′) . (4.118)
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If the band is almost half-filled (Q small) we have σ′(λ) = [2−(N/L)]G1(λ)
for |λ| ≥ Q and zero elsewhere, where the number of electrons per site
is (N/L) = 1 − (2Q/π) ln 2. On the other hand, if the band is almost
empty (Q large) we have for the number of electrons per site (N/L) =
(πQ)−1 + (1/2) ln(Q)(πQ)−2 + . . . . The Fermi point can be related to the
value of the chemical potential µ = Q−2 − 2. The charge stiffness is inverse
proportional to the Fermi velocity of pairs. It is, naturally, divergent at
N → 0 (for empty band, where µ = −2), because the Fermi velocity of
pairs goes to zero in this limit.

In the metallic situation, where both vF
ρ �= 0 and vF

σ′ �= 0, except of van
Hove singularities (where the specific heat is proportional to

√
T ) one has

the general formula for the Sommerfeld coefficient of the low-temperature
specific heat

γ =
π

3

(
1

vF
ρ

+
1

vF
σ′

)
. (4.119)

At finite but low temperatures the magnetic susceptibility is exponen-
tially small for H > Hs. At H = Hs, the magnetic susceptibility displays
the

√
T feature corresponding to the van Hove singularity of empty bands.

For H < Hs, on the other hand, the magnetic susceptibility is finite as
T → 0.

For the system with V = 3J/4, the thermal equilibrium properties are
classified according to the string hypothesis as strings of the length (n− 1)
of both pj and λα, introduced as

pν
j,n = pj,n +

1
2
iν , pν

α,n = λα,n +
1
2
iν ,

ν = −(n − 1),−(n − 3), . . . , (n − 1), n = 1, . . . ,∞ ,

(4.120)

where pj,n and λα,n are real and related to the momentum of the centre
of mass of the bound state. Notice, that real rapidities pj and λj pertain
to n = 1. Dressed energies of string solutions can be denoted by ε

(l)
n =

T ln η
(l)
n , where l = 1 pertains to p-strings and l = 2 corresponds to λ-

strings. Thermodynamic Bethe ansatz equations for dressed energies can
be written as

ln η(l)
n = −πJ

T
δn,1Fm + F2 ∗ ln

[
(1 + η

(l)
n+1)(1 + η

(l)
n−1)

(1 + η
(m)
n )

]

+ F1 ∗ ln
[
(1 + η

(m)
n+1)(1 + η

(m)
n−1)

(1 + η
(l)
n )

]
, (4.121)
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where l, m = 1, 2 (l �= m), η
(l)
0 = 0 and

Fm(x) =
1√

3[2 cosh(2πx/3) − (−1)m]
. (4.122)

Equation (4.121) (which are similar in structure to the second form of
thermodynamic Bethe ansatz equations for a Heisenberg chain, cf. the
previous chapter) have to be complemented by the asymptotic conditions

lim
n→∞

1
n

ln η(1)
n =

2J − 2µ − H

2T
, lim

n→∞
1
n

ln η(2)
n =

H

T
. (4.123)

The Helmholtz free energy per site of the supersymmetric t-J chain with
V = 3J/4 is equal to

f = −J

3
− T

∫ ∞

−∞
dpF2(p) ln[1 + η

(1)
1 (p)]

−T

∫ ∞

−∞
dλF1(λ) ln[1 + η

(2)
1 (λ)] . (4.124)

The ground state pertains to the Dirac seas fillings of two low-lying
excitations (i.e., to solutions of Bethe ansatz equations with negative ener-
gies), namely, unbound electron excitations and spinons. The ground state
Bethe ansatz equations for dressed energies are

ε
(1)
1 (p) +

∫ Q

−Q

dp′a2(p − p′)ε(1)
1 (p′)

= J − πJa1(p) − µ − H

2
+
∫ B

−B

dλa1(p − λ)ε(2)
1 (λ) ,

ε
(2)
1 (λ) +

∫ B

−B

dλ′a2(λ − λ′)ε(2)
1 (λ′) = H +

∫ Q

−Q

dpa1(p − λ)ε(1)
1 (p) ,

(4.125)

and the equations for densities are

ρ1(p) + ρ1h(p) +
∫ Q

−Q

dp′a2(p − p′)ρ1(p′)

= a1(p) +
∫ B

−B

dλa1(p − λ)σ1(λ) ,

σ1(λ) + σ1h(λ) +
∫ B

−B

dλ′a2(λ − λ′)σ1(λ′)

=
∫ Q

−Q

dpa1(p − λ)ρ1(p) .

(4.126)
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The internal energy, the number of electrons and the magnetization per
site in the ground state are

e0 = J

∫ Q

−Q

dp[1 − πa1(p)]ρ1(p) ,

N

L
=
∫ Q

−Q

dpρ1(p) ,

mz =
N

2L
−
∫ Q

−Q

dλσ1(λ) .

(4.127)

The ferromagnetic situation J = −2 is trivial, as for the case V = −J/4.
For the most interesting antiferromagnetic situation J = 2 in the absence
of a magnetic field we have B = ∞ and the Dirac sea of spinons is totally
filled, σ1h = 0. Then the dressed energy and density of spinons can be
eliminated via a Fourier transformation. Hence, in zero field the ground
state problem reduces to the solution of Fredholm integral equations of the
second kind

ε
(1)
1 (p) +

∫ Q

−Q

dp′G3(p − p′)ε(1)
1 (p′) = 2 − 2πa1(p) − µ ,

ε
(2)
1 (λ) =

∫ Q

−Q

dpG0(p − λ)ε(1)
1 (p) ,

ρ1(p) + ρ1h(p) +
∫ Q

−Q

dp′G3(p − p′)ρ1(p′) = a1(p) ,

σ1(λ) =
∫ Q

−Q

dpG0(p − λ)ρ1(p) ,

(4.128)

where Gn(x) is the Fourier transform of exp(−n|ω|/2)/2 cosh(ω/2). We can
solve these equations analytically for small Q (which pertains to the small
number of electrons in the system) and large Q. At small Q the dominant
feature is the van Hove singularity of the empty band for unbound electron
excitations, and we have µ = −2 + 16Q2, (N/L) = (1/π)

√
2 + µ and E0 =

−2N . On the other hand, for Q → ∞ we obtain µ = 2, (N/L) = 2/3 (it is
the maximum band filling for this model, which corresponds to the equal
number of electrons with spins up, down, and empty sites; it is the point
of higher symmetry) and e0 = (2/3)[ψ(1/3) − ψ(1) + 2], where ψ(x) is a
digamma function. For large, but finite Q the Wiener–Hopf-like solution of
the integral equations gives Q ∼ | ln(2−µ)|, e.g., (N/L) = (2/3)−(2−µ)/3π.
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Why does the solution not exist for N > 2L/3? The Bethe ansatz is for-
mulated for the mathematical vacuum state with all spins pointing upward.
All states with non-negative magnetization can be generated by reversing
spins. The construction, however, breaks down if more than half of the
spins are reversed, because the wave functions (plane waves for the Bethe
ansatz) are no longer linearly independent. States of negative magnetiza-
tion are created by flipping states from the mathematical vacuum with all
spins pointing downward. A similar situation arises here for band fillings
larger than 2/3. Then empty states are in the minority as compared to
the electrons with spins up and down, and a different representation of the
mathematical vacuum state has to be used. If we assume that the number
of electrons with spins up is larger or equal to the number of electrons with
spins down the mathematical vacuum state consists of the filled band with
all L electron spins pointing upward, rather than the mathematical vacuum
corresponding to the absence of electrons, which we used.

The charge stiffness is the monotonically decreasing function of N ,
which becomes zero at N = 2L/3 and it is divergent at small N as 1/Q, as
the consequence of the van Hove singularity of the empty band of charged
unbound electron excitations. It is inverse proportional to the Fermi veloc-
ity of those charged low-lying excitations. The magnetic susceptibility is
equal to

χ = −
∫ Q

−Q dp exp(−πp)ρ1(p)

2π
∫ Q

−Q
dp exp(−πp)ε(1)

1 (p)
. (4.129)

Again, except for van Hove singularities (where the specific heat is pro-
portional to

√
T ) one has the general formula for the Sommerfeld coefficient

of the low-temperature specific heat

γ =
π

3

(
1

vF
ρ1

+
1

vF
σ1

)
, (4.130)

and the magnetic susceptibility is χ = (1/4π)[(vF
σ1

)−1+(vF
ρ1

)−1]. The latter
is divergent at N → 0, where vF

σ1
∼ Q2, and monotonically decreases with

increasing N .
At high temperatures for N = 2L/3 (where there is no charge dynamics)

for H = 0, the Helmholtz free energy per site is

f = −T ln 3 . (4.131)
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This result is simple to understand, if one takes into account that the
Hamiltonian of the supersymmetric t-J model with V = 3J/4 is equivalent
to the Hamiltonian of the spin-1 system. For the finite ratios H/T and µ/T

the free energy at high temperatures is the smooth function of µ, H and
T , i.e., there are no phase transitions in this model at high T .

Now we want to consider the supersymmetric antiferromagnetic t-J
chain with an “easy-axis” magnetic anisotropy and V = −1/2. This class
of models reveals the most interesting properties in the ground state, and,
hence, we restrict ourselves here with only T = 0 and low temperatures.
The ground state of the system is given by N − 2M unbound electron
states (with real charge rapidities pj) and M singlet Cooper-like bound
states for which charge rapidities are complex conjugated pairs. It follows
from Eq. (4.101) that they are related to spin rapidities λβ , such that (to
exponential accuracy e−L) p±α = λβ ± i η

2 . Inserting real charge rapidities
pj and pair solutions (characterized by λα) into Eq. (4.101) and taking the
logarithm of resulting equations we obtain

LΘ [pj , η/2] = 2πIj +
M∑

α=1

Θ [pj − λα, η/2] , j = 1, ..., N − 2M ,

LΘ [λα, η] = 2πJα +
N−2M∑

j=1

Θ [λα − pj , η/2]

+
M∑

β=1
β �=α

Θ [λα − λβ , η] , α = 1, ..., M ,

(4.132)

where Θ[x, η] = 2 tan−1(tanx coth η). The quantum numbers Ij and Jα

arise because the logarithm is a multivalued function. Quantum numbers
completely determine the solutions for the ground state and elementary
excitations. The ground state energy of the system is

E0 = −2
N−2M∑

j=1

1 − cos(2pj) cosh(η)
cosh(η) − cos(2pj)

− 2 cosh(η)
M∑

α=1

(
2 − sinh2(η)

sin2(λα) + sinh2(η)

)
. (4.133)

In the thermodynamic limit (i.e., L, N, M → ∞ with the ratios N/L

and M/L remaining fixed) we introduce densities for rapidities, ρ(p) and
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σ′(λ), and their holes, ρh(p) and σ′
h(λ). Bethe ansatz equations satisfied

by densities are

Θ′ [p, η/2] =
∫

dλΘ′ [p − λ, η/2]σ′(λ) + 2π[ρ(p) + ρh(p)] ,

Θ′ [λ, η] =
∫

dpΘ′ [λ − p, η/2] ρ(p)

+
∫

dλ′Θ′ [λ − λ′, η] σ′(λ′) + 2π[σ′(λ) + σ′
h(λ)] ,

(4.134)

where the prime at Θ[x, y] denotes derivative with respect to the first ar-
gument (x). Dressed energies, ε(p) for unbound electron states and ψ(λ)
for singlet pairs, satisfy following integral equations in the ground state

Θ′ [p, η/2]− µ − H

2
=

1
2π

∫
dΛΘ′ [p − λ, η/2]ψ(λ) + ε(p) ,

Θ′ [λ, η] − 2µ =
1
2π

∫
dvΘ′ [λ − p, η/2] ε(p)

+
1
2π

∫
dλ′Θ′ [λ − λ′, η] ψ(λ′) + ψ(λ) .

(4.135)

All states with negative (positive) dressed energy are populated (empty).
The bands ε(p) and ψ(λ) can form Dirac seas with the filling beginning at
the edges of the interval [−π, π], where dressed energies have their mini-
mum. In the thermodynamic limit the internal ground state energy of the
system is

e0 = −2
∫

ρ(p)
[
1 − cos(2p) cosh(η)
cosh(η) − cos(2p)

]
dp

− 2 cosh(η)
∫

σ′(λ)
[
2 − sinh2(η)

sin2(λ) + sinh2(η)

]
dλ . (4.136)

The number of electrons and the z-projection of the magnetization per site
are given by

(N/L) = 2
∫

dλσ′(λ) +
∫

dpρ(p) , mz = (1/2)
∫

dpρ(p) , (4.137)

respectively.
The energy of unbound electron states are gapped for an external mag-

netic field less than a critical value, Hc, given by

Hc = −2µ + 2Θ′ [π, η/2] − 1
π

∫
dλΘ′ [π − λ, η/2]ψ(λ) . (4.138)
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In other words, Hc is one half of the minimal external magnetic field nec-
essary to depair a singlet bound state. The presence of a spin gap and,
hence, this quantum phase transition in the ground state of an anisotropic
supersymmetric t-J chain at Hc distinguishes it from the isotropic situation
(at which η = 0, and, thus, Hc = 0). The presence of a spin gap is similar
to a Hubbard chain with an attraction between electrons. However, the
drastic difference exists between the present model and an attractive Hub-
bard chain. Namely, the attractive Hubbard chain respects SU(2) magnetic
symmetry, while the present model reveals only U(1) spin symmetry.

If the value of an external magnetic field is larger than Hs, given by

Hs = −2µ + 2Θ′ [π, η/2] , (4.139)

the magnetization is maximal, i.e., saturated. At this saturation field the
system undergoes a second order quantum phase transition into the fer-
romagnetic spin-polarized state, in which there are no pairs because the
dressed energy of bound electrons is gapped. This behaviour is also simi-
lar to a type-II superconductor in a magnetic field: for H ≤ Hc there are
only Cooper-pairs, while for Hc ≤ H ≤ Hs pairs and unbound electrons
coexist, which is reminiscent of the Meissner effect. Note, however, that
in a one-dimensional electron model there is no true superconducting or-
der with off-diagonal long range orderings, but the correlation functions
of singlet pairs and/or unbound electrons fall off with power-laws for long
times and/or distances. For H ≥ Hs, it is straightforward to obtain the
ground state energy. In the intermediate phase, Hc ≤ H ≤ Hs, however,
the ground state energy depends on the filling of both Dirac seas.

We first study the case H < Hc, where the ground state Dirac sea only
of singlet pairs (2M = N) is present. In this case Bethe ansatz equations
reduce to only one set of equations,

Θ′ [λ, η] = 2π[σ′(λ) + σ′
h(Λ)] +

[∫ −Q

−π

+
∫ π

Q

]
dλ′Θ′ [λ − λ′, η] σ′(λ′) .

(4.140)

Here ±Q are Fermi points, because in the ground state only states with λ ∈
[−π,−Q]∪[Q, π] are filled. The wave functions of pairs are symmetric (pairs
of electrons form bosons), but these bosons are hard-core ones, satisfying
an anyon-like exclusion statistics, as a consequence of interactions among
pairs. Because they are hard-core bosons, Cooper-pairs form a Dirac sea.
The parameter Q is related to the chemical potential, µ, via ψ(±Q) = 0.
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The energy and the total number of electrons are now given by Eq. (4.136)
with only the σ density term integrated over occupied states.

Next we consider the situation Hc ≤ H ≤ Hs, where both, unbound
electrons and singlet pairs, have gapless low-lying excitations, i.e., form
Dirac seas. Due to the van Hove singularity of the empty band of unpaired
electron states, the magnetization is proportional to

√
H − Hc for fields

H slightly larger than Hc. This feature is characteristic of a Pokrovsky–
Talapov level-crossing transition, which is the analog of a second order
phase transitions in one-dimension. With increasing magnetic field the
population of the Dirac sea of singlet pairs gradually decreases until Hs is
reached, which is the field at which the band is empty. For fields larger
than the saturation field Hs the magnetization is equal to mz = (N/2L).

At finite but low temperatures the magnetic susceptibility is exponen-
tially small for H < Hc and H > Hs. At H = Hc or Hs the magnetic
susceptibility and the Sommerfeld coefficient of the specific heat display√

T features corresponding to van Hove singularities of empty bands. For
Hc < H < Hs, on the other hand, the magnetic susceptibility is finite as
T → 0. The specific heat is proportional to temperature everywhere away
from van Hove singularities.

To summarize, in this chapter we presented the derivations of exact so-
lutions of stationary Schrödinger equations for several models of highly
correlated electrons: one-dimensional Hubbard repulsive and attractive
chains and supersymmetric t-J chains (with and without anisotropy of
interactions) with periodic boundary conditions in the framework of the
co-ordinate nested Bethe ansätze. Thermodynamic Bethe ansatz equations
are derived and solved analytically in several important cases. The ground
state behaviour and low-energy behaviour of thermodynamic characteristics
of these models are analyzed.

The importance of interactions in electron systems was pointed out in
[Anderson (1959)]. The Hubbard model was introduced in [Hubbard (1963);
Gutzwiller (1963); Kanamori (1963)]. The co-ordinate Bethe ansatz solu-
tion for a repulsive Hubbard chain is given in [Lieb and Wu (1968)]. A
nested Bethe ansatz scheme for correlated electron systems was pioneered in
[Gaudin (1967); Yang (1967)]. The ground state magnetic susceptibility of
a repulsive Hubbard chain was given in [Shiba (1970)]. For thermodynam-
ics of a one-dimensional repulsive Hubbard model in the framework of the
string hypothesis, consult [Takahashi (1999)], see also [Jüttner, Klümper
and Suzuki (1998)] for thermodynamic characteristics of a repulsive
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Hubbard chain. The exact solution of an attractive Hubbard chain can be
found in [Bahder and Woynarovich (1986); Lee and Schlottmann (1988);
Lee and Schlottmann (1989)], see also [Sacramento (1994); Sacramento
(1995)] for the numerical solution of thermodynamic Bethe ansatz equa-
tions in this case. The completeness of the Bethe ansatz solution for
a Hubbard chain was proved in [Eßler, Korepin and Schoutens (1992)].
The one-dimensional supersymmetric t-J model was solved in [Lai (1974);
Sutherland (1975); Schlottmann (1987)] (notice that the SU(3)-symmetric
t-J model was solved even earlier, in [Uimin (1970)]). The completeness of
the Bethe ansatz solution for a supersymmetric t-J chain was proved in [Fo-
erster and Karowski (1993a)]. The reader can find the exact solution of an
anisotropic t-J chain in [Bariev (1994); Bariev, Klümper, Schadschneider
and Zittartz (1993); Foerster and Karowski (1993b)]. The description of
the crossover one-dimensional phase transition can be found in [Pokrovsky
and Talapov (1979)]. The exclusion statistics was introduced in [Haldane
(1991)].
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Chapter 5

Algebraic Bethe Ansatz

In this chapter we shall describe the algebraic Bethe ansatz. This version of
the Bethe ansatz will be very useful for following studies of inhomogeneous
quantum chains, the main topic of this book. Generally speaking, it is very
important for the search of models which permit Bethe ansatz solutions.

5.1 The Algebraic Bethe Ansatz for a Spin-1
2

Chain

As we pointed out in the previous chapter, when we studied the nested
Bethe ansatz for a Hubbard chain, the problem for a quantum spin- 1

2 chain
can be solved in a different way than using the co-ordinate Bethe ansatz
from Chapter 3. Namely, we take into account that the condition on a
Bethe ansatz two-spin nested wave function for a Hubbard chain (which is,
in fact, the wave function of an inhomogeneous one-dimensional Heisenberg
spin- 1

2 model) can be written as

| . . . , kPm , . . . , kPn . . . 〉
= Ymn(sin kPm , sin kPn)| . . . , kPn , . . . , kPm , . . . 〉 . (5.1)

Here we used the wave function of a Hubbard chain

|kP1 , . . . , kPN 〉 =
∑

σ1,··· ,σN

Aσ1,··· ,σN (kP1 , . . . , kPN )|x1, . . . , xM 〉 , (5.2)

where |x1, . . . , xM 〉 denotes the wave function with M down spins (of N

electrons) at positions x1 < · · · < xM and the two-particle scattering matrix
Y of a Hubbard chain.

In general for a SU(2)-symmetric spin- 1
2 chain of length L one can in-

troduce spectral parameters λ (which, e.g., can be related to momenta of

115
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Bethe ansatz wave functions), so that

Ymn(λ) =
λÎmn + icP̂mn

λ + ic
, (5.3)

with Îmn and P̂mn being the identity and permutation operators acting in
the Hilbert space of the m-th and n-th spin (n, m = 1, . . . , L) Vn ⊗ Vn,
where Vn is isomorphic to C2, and c is some coupling constant. Here
the identity and permutation operators in that Hilbert space are Îββ′

αα′ =
δαα′δββ′ and P̂ ββ′

αα′ = δαβ′δα′β. For example, for the Heisenberg spin-1
2

model the permutation operator is equal to P̂ = (Î + 4
Sm

Sn)/2. The

permutation operator can be written as the 4 × 4 matrix in C2 ⊗ C2

P ββ′
αα′ =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 . (5.4)

In the previous chapter we also showed that the Yang–Baxter relation for
two-particle scattering matrices takes place

Y
σ1σ′

1
σ2σ′

2
(λ)Y σ′

1σ′′
1

σ3σ′
3

(λ + µ)Y σ′
2σ′′

2
σ′
3σ′′

3
(µ) = Y

σ2σ′
2

σ3σ′
3

(µ)Y σ1σ′
1

σ′
3σ′′

3
(λ + µ)Y σ′

1σ′′
1

σ′
2σ′′

2
(λ) , (5.5)

where summation over repeated indices is understood. The use of the
co-ordinate Bethe ansatz implies that all two-particle scattering matri-
ces satisfy Yang–Baxter relations. [These relations are called sometimes
“triangular”, or “star-triangular” ones.]

Generally speaking, we can introduce some R-matrix (the central object
of the algebraic Bethe ansatz, which is often also called the quantum inverse
scattering method). This method was developed mostly by the Leningrad
(St. Petersburg) group headed by L. D. Faddeev. For example, for spin-1

2

system it can be the 4×4 matrix acting on the tensor product space V0⊗V0,
where V0 is isomorphic to C2,

R(λ) =




a(λ) 0 0 0
0 b(λ) c(λ) 0
0 c(λ) b(λ) 0
0 0 0 a(λ)


 , (5.6)
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where a(λ), b(λ) and c(λ) are c-number functions. Actually, this structure
is implied by the structure of the two-particle scattering matrix for spin- 1

2

system

S(λ) =




a(λ) 0 0 0
0 c(λ) b(λ) 0
0 b(λ) c(λ) 0
0 0 0 a(λ)


 , (5.7)

which is the generalization of the two-particle scattering matrix of the
Heisenberg chain Y acting in V0 ⊗ V0. It turns out that R(λ) = P̂ S(λ).
Suppose these two-particle scattering matrices satisfy the Yang–Baxter
equation

S
σ1σ′

1
σ2σ′

2
(λ)Sσ′

1σ′′
1

σ3σ′
3
(λ + µ)Sσ′

2σ′′
2

σ′
3σ′′

3
(µ) = S

σ2σ′
2

σ3σ′
3
(µ)Sσ1σ′

1
σ′
3σ′′

3
(λ + µ)Sσ′

1σ′′
1

σ′
2σ′′

2
(λ) , (5.8)

cf. Fig. 5.1 (from that figure, the reader understands why the Yang–Baxter
relations are often referred to as “triangular” equations).

=

α
α

α

β

β

β

γ

γ

γ

β

β

βα

α
α

γ

γ

γ

1

2

3
1

2

3

1

2

3

1

1

2

2
2

1

3

3

3

S(u)

S(u+v)

S(v) S(v)

S(u)

S(u+v)

Fig. 5.1 Illustration of Yang–Baxter relations for two-particle scattering matrices.

We can demand from R-matrices to satisfy the Yang–Baxter equation
which can be written in the symbolic form for the R-matrices acting in the
space V0 ⊗ V0 ⊗ V0 as

R23(λ)R12(λ + µ)R23(µ) = R12(µ)R23(λ + µ)R12(λ) , (5.9)

where the subscripts indicate in which spaces the R-matrix acts nontrivially.
For the concrete example, considered here, these equations imply the fol-
lowing relations between the functions a(x), b(x) and c(x):

c(x)
b(x)

=
c(y)
b(y)

+
c(x − y)
b(x − y)

, (5.10)
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for which a solution in the most simple form for a linear function of the
spectral parameter for the quantity c(x)/b(x) is

c(x)
b(x)

=
x

ic
, (5.11)

where c is the coupling constant. Taking into account that S(λ = 0) = P̂

and, hence, R(λ = 0) = Î (in the Hilbert space V0 ⊗ V0) we can choose,
e.g., a(λ) = 1, b(λ) = ic/(λ + ic) and c(λ) = λ/(λ + ic), but such a choice
is not necessary: the only condition for the R-matrices with the structure
equation (5.6) to satisfy the Yang–Baxter equation is a(λ) : b(λ) : c(λ) =
(λ + ic) : ic : λ. Naturally, our choice of the solution of the Yang–Baxter
equation for R-matrices is not unique. In general, what is necessary for the
algebraic Bethe ansatz is to have R-matrices which satisfy the Yang–Baxter
relation.

We can now define an L-operator acting on the tensor product between
the “matrix-space” V0 (it is often called the auxiliary subspace) and the
quantum space Vn, which is identified with the Hilbert space over the n-th
site of our lattice. For example, for our case of spins 1

2 , we define

Ln(λ) =
λÎ0,n + icP̂0,n

λ + ic

= (λ + ic)−1

(
λIn + i[(In/2) + Sz

n]c 2iS−
n c

2iS+
n c λIn + i[(In/2)− Sz

n]c

)
,

(5.12)

where Î0,n and P̂0,n are the identity and permutation operators in the space
V0⊗Vn, respectively, and In and Sz,+,−

n are the identity and spin operators
acting in the quantum Hilbert space Vn. We can see that the following
Yang–Baxter relations for L-operators (they are often called intertwining
relations) hold

R(λ − µ)(Ln(λ) ⊗ Ln(µ)) = (Ln(µ) ⊗ Ln(λ))R(λ − µ) , (5.13)

where the tensor product is between quantum spaces, i.e., these Yang–
Baxter relations are nontrivial over the space V0⊗V0⊗Vn. In fact, intertwin-
ing relations determine the structure of L-operators, if one already knows
R-matrices. Actually, in the Hilbert space of all L spins of the Heisenberg
spin- 1

2 chain the L-operator is the matrix (Lj)
σ′
1,...,σ′

L,τ ′
σ1,...,σL,τ (λ) where the in-

dices σ1, . . . , σL and σ′
1, . . . , σ

′
L denote the state of spins at sites 1, . . . , L

before and after scattering (in the quantum space), while τ and τ ′ denote
the states before and after scattering in the auxiliary subspace, i.e., a L-
operator acts in the space V0 ⊗ V1 ⊗ · · · ⊗ VL. For a more general case
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indices of the quantum space define the state of all quantum particles in
the system. However, the L-operator acts nontrivially only in the quantum
subspace Vj :

(Lj)
σ′
1,...,σ′

L,τ ′
σ1,...,σL,τ (λ) = I1 ⊗ I2 ⊗ · · · ⊗ Sj(λ) ⊗ · · · ⊗ IL

= δσ1,σ′
1
δτ,γ1 · · ·S

γj−1γj

σjσ′
j

(λ) · · · δσL,σ′
L
δγL−1,τ ′ , (5.14)

i.e., it is diagonal over the indices σnσ′
n (n = 1, . . . , L) except of n = j.

Then we can introduce the monodromy matrix acting in the space V0 ⊗
V1 ⊗ · · · ⊗ VL as

T
σ′
1,...,σ′

L,τ ′
σ1,...,σL,τ (λ) = L1(λ) · · ·LL(λ)

= Sτ,γ1
σ1,σ′

1
(λ) · · ·Sγj−1γj

σjσ′
j

(λ) · · ·SγL−1,τ ′

σL,σ′
L

(λ) , (5.15)

cf. Fig. 5.2.

τ τ

σ

σ

1 2 Ln
n

n

. . . . . .

’

’

Fig. 5.2 Illustration of the monodromy operator of an integrable model.

Due to the definition and intertwining relations for L-operators the mon-
odromy matrices also satisfy Yang–Baxter (intertwining) relations

R(λ − µ)(T (λ) ⊗ T (µ)) = (T (µ) ⊗ T (λ))R(λ − µ) , (5.16)

see Fig. 5.3.

=

1

R(u−v) R(u−v)

T(u)

T(v) T(u)

T(v)
1

L
..

. L
...

Fig. 5.3 Illustration of the intertwining relations for monodromy operators.
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By tracing the monodromy matrix over the auxiliary space V0, we get
the transfer matrix

τ̂
σ′
1,...,σ′

L
σ1,...,σL (λ) = TrL1(λ) · · ·LL(λ)

= Sτ,γ1
σ1,σ′

1
(λ) · · ·Sγj−1γj

σjσ′
j

(λ) · · ·SγL−1,τ
σL,σ′

L
(λ) , (5.17)

for the graphical illustration see Fig. 5.4.

1 2 3L
L−1

0

. .
.

.

n

n

σ
n

σ

’

Fig. 5.4 Illustration of the transfer matrix of an integrable model.

Equations (5.16) and (5.17) imply that

[τ̂(λ), τ̂ (µ)] = 0 , (5.18)

i.e., transfer matrices with different spectral parameters commute. This
property is the fundamental property, which implies the exact integrability
of a system. The exact integrability means that there exists infinitely many
(for a system with infinitely many degrees of freedom) integrals of motion
which commute mutually, and, hence, have the common set of eigenfunc-
tions. Then one can construct any function of the transfer matrix, and due
to the property equation (5.18), all such functions will commute mutually
and with the transfer matrix.

Generally speaking, one can introduce any function of τ̂(λ) as integrals
of motion. In practice, the following series is used for the determination of
integrals of motion (which was given by M. Lüscher, the Hamiltonian from
this series was first introduced by B. Sutherland)

Q̂n(λ) = An
∂n−1 ln τ̂ (λ)

∂λn−1
|λ=0 , (5.19)
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where finally, after taking derivatives, the spectral parameter is taken to be
equal to its value, at which the R-matrix is unity (or two-particle scattering
matrix is the permutation operator), and An are constants. This series is
chosen because of the locality property: the integral of motion Q̂n acts
nontrivially only on n sites of a chain.

Let us consider some integrals of motion of a Heisenberg spin- 1
2 chain.

For n = 1, we have

Q̂1 = A1 ln τ̂(0) = A1 ln P̂01 · · · P̂0L = constP̂ , (5.20)

(where the subscript 0 denotes the auxiliary subspace), which is (up to
a constant) the total momentum operator (where τ̂ (0) is the cyclic shift
operator). The total momentum operator has the property

exp(−iP̂ )Sx,y,z
j exp(iP̂ ) = Sx,y,z

j+1 , (5.21)

which follows from the definitions. For n = 2, we need to consider an
operator which has the form

τ̂−1(λ)
∂τ̂ (λ)

∂λ
|λ=0

= const
L∑

j=1

δσ1,σ′
1
· · · δσj−1,σ′

j−1

∂S
σjσ′

j+1

σj+1σ′
j
(λ)

∂λ
|λ=0δσj+2,σ′

j+2
· · · δσLσ′

L

= −const
i

2c


4

L−1∑
j=1


Sj

Sj+1 − LÎ


 , (5.22)

where I is the identity operator and we used the property

∂S
σlσ

′
l+1

σl+1σ′
l
(λ)

∂λ
|λ=0 = −2i

c

[

Sσl+1σ′

l+1

Sσlσ′

l
− 1

4
δσl+1,σ′

l+1
δσlσ′

l

]
. (5.23)

We see that Q̂2 coincides (up to constants) with the Hamiltonian of the
spin- 1

2 Heisenberg model.
The reader can check that for a Heisenberg–Ising spin-1

2 chain one needs
to take the following parametrization of the trigonometric solution of the
Yang–Baxter equation

a(λ) : c(λ) : b(λ) = sin[λ + (η/2)] : sin[λ − (η/2)] : sin η , (5.24)

which, after some straightforward calculations along the described above
lines produces Q̂2 proportional to the Heisenberg–Ising Hamiltonian with
the parameter of the magnetic anisotropy (Jz/J) = cos η.
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To summarize, the strategy of the algebraic Bethe ansatz is as follows.
One starts with the solution of the Yang–Baxter equation for R-matrices.
Using that solution one constructs L-operators and monodromy operators
of a Bethe ansatz-integrable system. The trace of the monodromy operator
over the auxiliary subspace is the transfer matrix. As the consequence of
the Yang–Baxter relations for L-operators and monodromies (intertwining
relations), transfer matrices with different spectral parameters commute,
which constitutes the exact integrability of the model. Finally, the integrals
of motion (including the operator of the energy, the Hamiltonian) can be
constructed from the expression for the transfer matrix.

This is why, now the task of the algebraic Bethe ansatz is to find the
eigenfunctions and eigenstates of the transfer matrix. For the spin- 1

2 chain
it was done in the previous chapter for the nested Bethe ansatz of the
Hubbard chain. Here the reader can use those results taking them for
N = L and λ0

1,...,N = 0, i.e., for the homogeneous chain. Nevertheless, it
is better to repeat here the main steps, because this procedure is the main
issue of the algebraic Bethe ansatz.

Let us denote the elements of the 2 × 2 monodromy matrix in the aux-
iliary subspace V0 as

T τ
τ ′(λ) =

(
Â B̂

Ĉ D̂

)
, (5.25)

where the operators Â, B̂, Ĉ and D̂ in the matrix representation have
indices σ′

1, . . . , σ
′
L, σ1, . . . , σL. It follows from the definition that

τ̂(λ) = Â + D̂ . (5.26)

The operators Â, B̂, Ĉ and D̂ obey the following commutation relations,
which stem from the intertwining relations for monodromies,

[Â(x), Â(y)] = [D̂(x), D̂(y)] = [Â(x), D̂(y)] = 0 ,

c(x − y)Â(x)B̂(y) = B̂(y)Â(x) − b(x − y)B̂(x)Â(y) ,

c(y − x)D̂(x)B̂(y) = B̂(y)D̂(x) − b(y − x)B̂(x)D̂(y) ,

[B̂(x), B̂(y)] = [Ĉ(x), Ĉ(y)] = 0 .

(5.27)

Let us denote the mathematical vacuum as |0〉. The action of the L-operator
L0j(λ) on this vacuum state is

L0j(λ)|0〉 = (λ + ic)−1

(
λ + ic 2icS−

j

0 λ

)
|0〉 . (5.28)
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The lower left element of this matrix is zero. From the definition of the
monodromy matrix the operators Â, B̂, Ĉ and D̂ can be obtained by suc-
cessive multiplications of such L-operators for each site of the lattice of L

sites. We have Ĉ|0〉 = 0, while action of the operators Â and D̂ on the
mathematical vacuum state is diagonal:

Â(λ)|0〉 = a(λ)|0〉 = |0〉 , D̂(λ)|0〉 = cL(λ)|0〉 . (5.29)

The operator B̂ plays the role of a “spin-lowering” operator, hence we
consider the state with M down spins as a result of action of M operators
B̂:

|λ1, . . . , λM 〉 =
M∏

β=1

B̂(λβ)|0〉 . (5.30)

Let us act with the operator τ̂ = Â + D̂ on the state equation (5.30) using
the commutation relations (5.27). We get

τ̂ (λ)|λ1, . . . , λM 〉 = Λ(λ, λ1, . . . , λM )|λ1, . . . , λM 〉

+
M∑

γ=1

Λγ(λ, λ1, . . . , λM )
M∏

β=1,
β �=γ

B̂(λβ)B(λ)|0〉 , (5.31)

where

Λ(λ, λ1, . . . , λM ) =
M∏

β=1

c−1(λβ − λ) + cL(λ)
M∏

β=1

c−1(λ − λβ) (5.32)

and

Λγ(λ, λ1, . . . , λM )

=
b(λ − λγ)
c(λ − λγ)

( M∏
β=1
β �=γ

c−1(λβ − λγ) − cL(λγ)
M∏

β=1
β �=γ

c−1(λγ − λβ)
)

. (5.33)

The state |λ1, . . . , λM 〉 is the eigenstate of the transfer matrix if Λγ = 0. It
is true if

c−L(λγ) =
M∏

β=1
β �=γ

c(λβ − λγ)
c(λγ − λβ)

, (5.34)
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which holds for any γ = 1, . . . , M . The energy is the logarithmic derivative
of the eigenvalue of the transfer matrix taken at the value of the spectral
parameter λ = 0

E = A2
∂ ln Λ(λ, λ1, . . . , λM )

∂λ
|λ=0

=
2i

c
A2


L

4
−

M∑
j=1

(
1
λj

− 1
(λj + ic)

) . (5.35)

Taking the values λj → λj − i(c/2), and using c = 1 and A2 = −i(J/2),
we obtain the Bethe ansatz equations and the expression for the energy of
a Heisenberg chain, which coincide with the ones obtained in Chapter 3 in
the framework of the co-ordinate Bethe ansatz:(

λj + (i/2)
λj − (i/2)

)L

=
M∏

l=1,
l �=j

λj − λl + i

λj − λl − i
, (5.36)

where j = 1, . . . , M , and

E =
LJ

4
− 2J

M∑
j=1

(4λ2
j + 1)−1 . (5.37)

5.2 SU(2)-Symmetric Spin-S Chain

The usefulness of the algebraic Bethe ansatz reveals itself, naturally,
for other models, different from the models which possess co-ordinate
Bethe ansatz solutions. A good example of such a model is the SU(2)-
symmetric spin-S chain, for which the Bethe ansatz solution was provided
by H. M. Babujian and L. A. Takhtajan (Takhtadzhan). Here we shall
follow the strategy of the algebraic Bethe ansatz, described in the previous
section. We start with the Yang–Baxter equation for R-matrices, Eq. (5.9).
Suppose we obtain the solution of this equation in the form Eq. (5.6). Now
let us look for the solution of the intertwining equation for L-operator,
Eq.(5.13). In the previous section we considered this equation in V0 ⊗ Vn,
where the dimension of V0 coincided with the dimension of the quantum
Hilbert space for a spin 1

2 . Let us write the solution of this equation as:

σL0n(λ) =
(2λ + ic)

2ic
I0 ⊗ In +

1
2

σ0 ⊗ 
σn , (5.38)



April 6, 2005 10:46 Finite Size Effects in Correlated Electron Models: Exact Results mybook

Algebraic Bethe Ansatz 125

where we used the Pauli matrices for the definition of spins 1
2 for conve-

nience, see below. The notations are similar to the previous section, i.e., we
use the subscript 0 to define the auxiliary subspace and subscript n to define
the quantum subspace of the n-th spin, where the L-operator acts nontriv-
ially. It turns out that such a form does not contradict the intertwining
relations for L-operators, because the solution of the latter is determined
up to a multiplier, see the previous section. Using this L-operator, accord-
ing to the rules of the previous section, we can obtain the Hamiltonian of
the spin- 1

2 chain. However it is easy to check that the L-operator

σSL0n(λ) =
(2λ + ic)

2ic
I0 ⊗ In + 
σ0 ⊗ 
Sn , (5.39)

where we introduced the operator 
Sn acting in the subspace Vn with the
dimension 2S + 1, is also the solution of the intertwining relations. This
solution, as well as Eq. (5.38), respects the SU(2) symmetry. It is also
possible to consider the L-operator of the form

SL0n(λ) = −
2S∑
j=0

j∏
l=1

λ + ilc

λ − ilc
Pj , (5.40)

where Pj is the projection operator acting in the space which is a tensor
product of two spin S spaces (i.e., we consider here not only the quantum
space Vn, but also the auxiliary space V0 being of the dimension 2S +
1). Naturally, here we need to look for the solution of the Yang–Baxter
equation for R-matrices in the same auxiliary subspace of the dimension
(2S + 1) × (2S + 1). The projection operator fixes the state with the total
spin j, i.e., if |m〉 is a state with the total spin m, then Pj |m〉 = δm,j |m〉.
This operator can be written as

Pj =
2S∏

m=0,
m �=j


S0 ⊗ 
Sj − xm

xj − xm
, (5.41)

where

xm =
1
2
m(m + 1) − S(S + 1) . (5.42)

The illustration of the Yang–Baxter relations for the operators σSL(u) and
SL(u + v) see Fig. 5.5.

By using the construction of the previous section the reader can show
after some lengthy but straightforward calculations that the second integral
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Fig. 5.5 Illustration of Yang–Baxter relations for L-operators related to a SU(2)-
symmetric spin-S Hamiltonian.

of motion of the transfer matrix, which is constructed using the L-operators
as in Eq. (5.40), has the form

HSU(2) = A2

L−1∑
j=1

A2S(
Sj

Sj+1) , (5.43)

where A2 is a constant and

A2S(x) = − i

c

2S∑
m=1


 m∑

f=1

1
f


 2S∏

l=0,
l �=m

x − xl

xm − xl
. (5.44)

One can use the conditions c = i and A2 = −(J/4) to obtain the standard
Heisenberg Hamiltonian (up to a constant shift) for S = 1

2 . For example,
for S = 1 the Hamiltonian is

HSU(2) =
J

4

L−1∑
j=1

[
Sj

Sj+1 − (
Sj


Sj+1)2] . (5.45)

Please notice that this SU(2)-symmetric spin-1 exactly solvable Hamilto-
nian differs from the SU(3)-symmetric spin-1 exactly solvable one, intro-
duced in the previous chapter, by the value of the coefficient in front of the
biquadratic exchange term.

Actually, the Yang–Baxter equation which is necessary to be solved by
the L-operator Eq. (5.40) is

σSL12(λ)SL13(λ + µ)σSL23(µ) = σSL23(µ)SL13(λ + µ)σSL12(λ) , (5.46)

with obvious notations. This implies that for intertwining relations for
L-operators Eq. (5.40) one can use the R-matrices acting in the auxiliary
subspace V0 ⊗ V0 with the dimension 2 × (2S + 1).
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Now we can construct two monodromy matrices:

TS(λ) = SL1(λ) · · · SLL(λ) , (5.47)

which acts in the auxiliary subspace with the dimension (2S +1)×(2S +1),
and

Tσ(λ) = σSL1(λ) · · · σSLL(λ) , (5.48)

which acts in the auxiliary subspace with the dimension 2 × (2S + 1),
and two transfer matrices τ̂S(λ) and τ̂σS(λ), as the traces of monodromies
Eqs. (5.47) and (5.48), respectively. As follows from Eq. (5.46) and the
intertwining relation for the operator σL(λ) we have the Yang–Baxter (in-
tertwining) relations for these monodromies

SL(λ − µ))(TS(λ) ⊗ TS(µ)) = (TS(µ) ⊗ TS(λ))SL(λ − µ)) ,

σSL(λ − µ))(Tσ(λ) ⊗ TS(µ)) = (TS(µ) ⊗ Tσ(λ))σSL(λ − µ)) ,

σL(λ − µ))(Tσ(λ) ⊗ Tσ(µ)) = (Tσ(µ) ⊗ Tσ(λ))σL(λ − µ)) ,

(5.49)

in which the L-operators Eqs. (5.40), (5.39) and (5.38) play the roles of
R-matrices (in fact one can rewrite these equations using the R-matrices,
obtained by the multiplication of L-operators by the permutation operators
of the subspace with the dimensions (2S + 1) × (2S + 1), 2 × (2S + 1)
and 2 × 2, respectively). Then, multiplying from the left Eq. (5.49) by
SL−1(λ), σL−1(λ) and σSL−1(λ), respectively, and taking the traces over
the auxiliary subspaces, we get

[τ̂S(λ), τ̂S(µ)] = 0 , [τ̂σ(λ), τ̂S(µ)] = 0 , [τ̂σ(λ), τ̂σ(µ)] = 0 . (5.50)

At the points, where SL−1(λ), σL−1(λ) and σSL−1(λ) do not exist, the
commutativity follows from the analytical continuation principle. The first
of these equations means that transfer matrices τ̂S(λ) with different spectral
parameters commute, which justifies the construction of the Hamiltonian.
On the other hand, the second equation (i.e., the mutual commutation of
τ̂σ(λ) and τ̂S(µ)) implies that these transfer matrices have the same set of
eigenfunctions. The consideration of the eigenfunctions for τ̂σ(λ) is simpler
than for τ̂S(µ), and we concentrate on this case in what follows.

Let us again denote the elements of the 2× 2 monodromy matrix Tσ(λ)
as

Tσ(λ) =

(
Â B̂

Ĉ D̂

)
. (5.51)
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Hence, the transfer matrix τ̂σ(λ) is

τ̂σ(λ) = Â + D̂ . (5.52)

The operators Â, B̂, Ĉ and D̂ obey the commutation relations, which stem
from the intertwining relations for the monodromies Tσ(λ)

[Â(x), Â(y)] = [D̂(x), D̂(y)] = [Â(x), D̂(y)] = 0 ,

B̂(x)Â(y) = b(y − x)B̂(y)Â(x) + c(y − x)Â(y)B̂(x) ,

B̂(y)D̂(x) = b(y − x)B̂(x)D̂(y) + c(y − x)D̂(x)B̂(y) ,

[B̂(x), B̂(y)] = [Ĉ(x), Ĉ(y)] = 0 ,

(5.53)

where b(λ) = ic/(λ + ic) and c(λ) = λ/(λ + ic) are related to the elements
of the L-operator Eq. (5.38) (or the R-matrix). Let us again denote the
mathematical vacuum (the state with all spins up) as |0〉. Then the action
of the L-operator σSL0j(λ) on this vacuum state can be written as

σSL0j(λ)|0〉 =
1

2ic

(
2λ + ic(2S + 1) i4cS−

j

0 2λ − ic(2S − 1)

)
|0〉 . (5.54)

The lower left element of this matrix is zero. Then the reader can see that

Ĉ|0〉 = 0 , (5.55)

and the action of the operators Â and D̂ on the mathematical vacuum state
is diagonal:

Â(λ)|0〉 =
(

2λ + ic(2S + 1)
2ic

)L

|0〉 ,

D̂(λ)|0〉 =
(

2λ − ic(2S − 1)
2ic

)L

|0〉 .

(5.56)

The operator B̂ again plays the role of a “spin-lowering” operator. Hence,
one again can consider the state as an eigenstate of the transfer matrix
τ̂σ(λ)

|λ1, . . . , λM 〉 =
M∏

β=1

B̂(λβ)|0〉 . (5.57)
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Let us act with the operator τ̂ = Â + D̂ on the state Eq. (5.57) using the
commutation relations Eq. (5.53). We get

τ̂σ(λ)|λ1, . . . , λM 〉 = Λσ(λ, λ1, . . . , λM )|λ1, . . . , λM 〉 , (5.58)

where

Λσ(λ, λ1, . . . , λM ) =
(

2λ + ic(2S + 1)
2ic

)L M∏
β=1

λβ − λ + ic

λβ − λ

+
(

2λ − ic(2S − 1)
2ic

)L M∏
β=1

λ − λβ + ic

λ − λβ
. (5.59)

The state |λ1, . . . , λM 〉 is the eigenstate of the transfer matrix if

(
λγ + ic(2S + 1)/2
λγ − ic(2S − 1)/2

)L

=
M∏

β=1
β �=γ

λβ − λγ − ic

λβ − λγ + ic
, (5.60)

which holds for any γ = 1, . . . , M . Taking the values λγ → λj − i(c/2),
and using c = 1 we finally get the Bethe ansatz equations for the SU(2)-
symmetric spin-S chain(

λj + iS

λj − iS

)L

=
M∏

l=1,
l �=j

λj − λl + i

λj − λl − i
, (5.61)

where j = 1, . . . , M .
The energy is the logarithmic derivative of the eigenvalue of the transfer

matrix τ̂S(λ) taken at the value of the spectral parameter λ = 0. That
transfer matrix can be written as

τ̂S(λ) =
S∑

m=−S

(Ts)mm(λ) , (5.62)

i.e., the sum of diagonal matrix elements in the auxiliary subspace with the
dimension (2S + 1) × (2S + 1). The intertwining relations for this matrix
imply the following relations

(TS)mm(x)B̂(y) = cm(x − y)B̂(y)(TS)mm(x)

+ cm1(x − y)(TS)mm−1(x)Â(y)

+ cm2(x − y)(TS)m+1m(x)D̂(y)

+ cm3(x − y)(TS)m+1m−1(x)Ĉ(y) , (5.63)
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where

cm(x) =
[x + ic(2S + 1)/2][x − ic(2S − 1)/2]
[x + ic(2m + 1)/2][x + ic(2m − 1)/2]

,

cm1(x) = −
√

(S + m)(S − m + 1)
x + ic(2m − 1)/2

,

cm2(x) =

√
(S − m)(S + m + 1)
x + ic(2m + 1)/2

,

cm3(x) =

√
(S2 − m2)[(S + 1)2 − m2]

[x + ic(2m + 1)/2][x + ic(2m − 1)/2]
.

(5.64)

Now it is necessary to find the matrix elements of the operator SL(λ). Re-
denoting |0〉 = |S, S〉 (which respects the fact of the highest eigenvalue of
the operators Ŝ and Sz acting on this state) we obtain from the definition
of the projection operator Pj

〈S, m′|SL(λ)|S, m〉|S, S〉 = −
2S∑
j=0

j∏
l=1

λ + icl

λ − icl
(j, m + S|m, S)

× (m′, m + S − m′|j, m + S)|m + S − m′, m + S − m′〉 , (5.65)

where (j, l|m, S) = 〈j, l|m, S〉 are, in fact, the short-hand notations for the
Clebsch–Gordan coefficients. Then the diagonal matrix elements are

〈S, S|〈S, m|SL(λ)|S, m〉|S, S〉 ≡ (SL(λ))S,m
S,m

= −
2S∑
j=0

j∏
l=1

λ + icl

λ − icl
(j, m + S|m, S)2〈m, S|S, S〉

=
S∏

l=m+1

λ + ic(l − S)
λ + ic(l + S)

(SL(λ))S,S
S,S , (5.66)

where

(SL(λ))S,S
S,S = −

2S∏
l=1

λ + icl

λ − icl
. (5.67)

Then the action of the diagonal elements of SL(λ) on the mathematical
vacuum is

(SL(λ))S,m
S,m = −

S∏
l=m+1

λ + ic(l − S)
λ + ic(l + S)

2S∏
l′=1

λ + icl′

λ − icl′
. (5.68)
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Using this formula and taking into account the Bethe ansatz equations
Eq. (5.60) we finally obtain

τ̂S(λ)|λ1, . . . , λM 〉 = ΛS(λ, λ1, . . . , λM )|λ1, . . . , λM 〉 , (5.69)

where

ΛS(λ, λ1, . . . , λM )

=
S∑

m=−S

(
S∏

l=m+1

λ + ic(l − S)
λ + ic(l + S)

2S∏
l′=1

λ + icl′

λ − icl′

)L M∏
γ=1

cm(λ − λγ) . (5.70)

Unwanted terms become zero due to Bethe ansatz equations. Then, taking
the logarithmic derivative we obtain the energy of a SU(2)-symmetric spin-
S chain (notice that only the term with m = S contributes) as

E = const + A2
∂ ln ΛS(λ, λ1, . . . , λM )

∂λ

∣∣∣∣
λ=0

= const − 2i

c
A2

M∑
j=1

(
1

λj + ic(2S − 1)/2
− 1

λj + ic(2S + 1)/2

)
. (5.71)

Taking the values λj → λj−i(c/2), and using c = 1 and const = −i(J/2) we
obtain the expression for the energy of the SU(2)-symmetric spin-S chain

E = E0 − SJ

M∑
j=1

(λ2
j + S2)−1 . (5.72)

The total magnetization of this chain is equal to Mz = SL−M . We would
also like to present some interesting property of the monodromy matrix:



 L∑

j=1

Sx,y,z
j +

1
2
σx,y,z

0


 , Tσ(λ)


 = 0 . (5.73)

In the framework of the string hypothesis we look for the solution
of Eq. (5.61) in the form of strings of length 2m + 1 (we denote by
µm the number of strings of length m). Introducing strings as λj =
λj,m + i[(m + 1)/2 − ν] with ν = 1, . . . , m and summing Eq. (5.61) for
a distinguished string of length m for the parameters λj occurring in it, we
obtain

θm,2S(λm
j ) =

2π

L
Ij,m +

1
L

∞∑
n=1

µn∑
l=1

Θmn(λm
j − λn

l ) , (5.74)
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where θn(x) = 2 tan−1(x/n),

θm,n(x) =
min(m,n)∑

l=1

θm+1+n−2l(x) , (5.75)

and

Θmn(x) = (1 − δm,n)θ|m−n|(x) + 2θ|m−n|+2(x) + · · ·
+ 2θm+n−2(x) + θm+n(x) , (5.76)

and Ij,m are integers or non-integers, which appear because the logarithm
is the multi-valued function. Then we look for solutions to Bethe ansatz
equations in the thermodynamic limit L → ∞, introducing densities for par-
ticles and holes, corresponding to strings of length m: ρm(x) and ρmh(x),
respectively. Then, differentiating Eq. (5.74) with respect to real parts of
λj and introducing continuous distributions of those real parts we obtain

ρmh(λ) +
∞∑

n=1

Am,n ∗ ρn(λ) =
min(m,2S)∑

l=1

am+2S+1−2l , (5.77)

where ∗ denotes the convolution,

Am,n(x) = a|m−n|(x) + 2
min(n,m)−1∑

l=1

am+n−2l(x) + am+n(x) (5.78)

and am(x) = 2m/[π(4x2 + m2)]. Then the internal energy and magnetiza-
tion per site can be written as

e = e0 −
1
2

∞∑
m=1

∫ ∞

−∞
dλθ′m,2S(λ)ρm(λ) ,

mz = S −
∞∑

m=1

m

∫ ∞

−∞
dλρm(λ) ,

(5.79)

where e0 ≡ (E0/L).
Then, the set of equations for dressed energies εn(λ) =

T ln[ρnh(λ)/ρn(λ)] = ηn(λ) is

Hm − Jθ′m,2S(λ) = T ln[1 + ηm(λ)] − T
∑

n

An,m ∗ ln[1 + η−1
n (λ)] , (5.80)
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which set of equations completes the set Eq. (5.77). These equations can
be rewritten in the following useful form

εm(λ) = T (2 cosh[π(λ − λ′)])−1 ∗ ln[1 + ηm−1(λ′)][1 + ηm+1(λ′)]

− πJδm,2S

cosh[π(λ)]
, lim

m→∞
εm(λ)

m
= H . (5.81)

Inserting the thermal equilibrium density functions into the expression for
the Helmholtz free energy we obtain

f = e0 +
J

2
(ψ(1/2) − ψ[(1/2) + S])

−T

∫ ∞

−∞
dλ

ln(1 + exp[ε2S(λ)/T ])
2 cosh(πλ)

, (5.82)

where ψ are digamma functions.
In the limit of high temperatures T 	 |J |, but keeping the ratio H/T

finite, we can consider ε
(0)
m (λ) ≈ mH . In this case driving terms do not

depend on λ and we can solve Eqs. (5.80) and (5.77) exactly. This high
temperature solution describes the behaviour of a free spin S in an external
magnetic field H . The magnetic susceptibility is the smooth function of the
temperature at high T , as expected.

In the limit of T → 0 from Eq. (5.80) we see that εm(λ) > 0 for m �=
2S for the most interesting antiferromagnetic situation J > 0. In the
ferromagnetic situation, J < 0, εm(λ) > 0 for all lengths of strings m =
1, 2, 3, . . . , and the ground state energy is just e0. Then, introducing the
positive and negative parts of ε2S(λ) we obtain

ε2S(λ) + A2S,2S ∗ ε−2S(λ) = 2SH − Jθ′2S,2S(λ) . (5.83)

This equation determines the Dirac sea for quasiparticles with dressed en-
ergies ε2S(λ). The ground state pertains to the situation in which all states
with negative energies are filled and all states with positive energies are
empty. The Fermi points (related to the limits of integration) are deter-
mined from the conditions ε2S(±B) = 0. The equations for densities stem
from the equations for dressed energies. In the ground state, T = 0, we
have

πρ2Sh(λ) = θ′2S,2S(λ) − π

∫ B

−B

dλ′A2S,2S(λ − λ′)ρ2S(λ′) . (5.84)
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The ground state internal energy can be written as

eT=0 = e0 +
∫ B

−B

dλ[2SH − Jθ′2S,2S(λ)]ρ2S(λ) (5.85)

and the ground state magnetization is equal to

mz = S −
∫ B

−B

dλρ2S(λ) . (5.86)

The value of the magnetic field H determines these limits of integration
(i.e., Fermi points). For the antiferromagnetic case large values of the
external magnetic field |H | > Hs the system is in the ferromagnetic state
and B = 0. In these regions of values of H the ground state energy is
equal to e0, the magnetization has its nominal values S, and the magnetic
susceptibility is zero. On the other hand, in zero magnetic field, for the
antiferromagnetic situation at H = 0 we have B = ∞, i.e., rapidities
fill the total interval in the thermodynamic limit. In the ferromagnetic
situation, J < 0, the point of the quantum phase transition is H = 0: any
infinitesimal magnetic field removes the degeneracy of the ferromagnetic
spin-S chain and the magnetization of the latter becomes nominal.

The behaviour of the internal energy for small values of the magnetic
field can be found analytically, by using the Wiener–Hopf method. First,
we rewrite the integral equation for dressed energies in the following way
in the Fourier space

ε+
m(ω) = 2πmHδ(ω) − πJAm,2S(ω)

2 cosh(ω/2)
− A2S,m(ω)ε−m(ω) , (5.87)

where

An,m(ω) = coth(ω/2)[exp[−|ω||n − m|/2]− [exp[−|ω|(n + m)/2]] . (5.88)

Notice that the solution for H = 0 immediately follows: ε2S(λ) =
−πJ/2 cosh(πλ) and εm(λ) = 0 for any m > 1. Let us multiply Eq. (5.87)
by A2S,2S(ω)−1, where

An,m(ω)−1 = δn,m − (δn,m+1 + δn,m−1)/2 cosh(ω/2) . (5.89)

Then we take the inverse Fourier transform which yields

ε2S(λ) =
H

2
− πJ

2 cosh(πλ)
+

(∫ −B

−∞
+
∫ ∞

B

)
dλ′J(λ − λ′)ε2S(λ) , (5.90)
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where the kernel is the Fourier transform of 1−A2S,2S(ω)−1. Now we define
y(λ) = ε2S(λ+B), so that the Fermi point for dressed energies corresponds
to y(0). Then we rewrite Eq. (5.90) as follows (here we use the identity
ε2S(λ) = ε2S(−λ))

y(λ) =
H

2
− πJ

2 cosh[π(λ + B)]
+
∫ ∞

0

dλ′J(λ − λ′)y(λ′)

+
∫ ∞

0

dλJ(λ + λ′ + 2B)y(λ′) . (5.91)

If H � J , than B is very large and J(λ + λ′ + 2B) ∼ B−1. Hence, the last
term in Eq. (5.91) is order B−1 smaller than the previous ones. We can,
then, solve Eq. (5.91) iteratively y(λ) = y1(λ) + y2(λ) + . . . , where

y1(λ) =
H

2
− πJ

2 cosh[π(λ + B)]
+
∫ ∞

0

dλ′J(λ − λ′)y1(λ′)

y2(λ) =
∫ ∞

0

dλ′J(λ − λ′)y2(λ′) +
∫ ∞

0

dλJ(λ + λ′ + 2B)y1(λ′)
(5.92)

etc. One divides y into positive y+ (λ > 0) and negative y− (λ < 0) parts.
The Fourier transform of the equation for y1 is

y+
1 (ω)

A2S,2S(ω)
+ y−

1 (ω) = πHδ(ω) − πJ exp(iωB)
2 cosh(ω/2)

. (5.93)

To apply the Wiener–Hopf method we rewrite the kernel (A2S,2S)−1 as a
product of two functions, one, G+

2S(ω), being analytic in the upper half-
plane, and the other one, G−

2S(ω), being analytic in the lower half-plane,
where

G+
2S(ω) = G−

2S(−ω)

=
1

2
√

πS

(
S(−iω + 0)

πe

)iSω/π Γ[(1/2) − i(ω/2π)]Γ[1 − i(ωS/π)]
Γ[1 − i(ω/2π)]

.

(5.94)

Observe that G±
2S(∞) is a constant. The Wiener–Hopf method uses the

fact that from the analyticity of the functions y±
1 (ω) and G±

2S(ω) it follows
that

y+
1 (ω) = − q+(ω)

G+
2S(ω)

, y−
1 (ω) =

q−(ω)
G−

2S(ω)
, (5.95)
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where

q±(ω) = − iH
√

S

(ω ± i0)
− iJ

2

∫ ∞

−∞

dω′

2π

× Γ[(1/2) + i(ω′/2π)]Γ[(1/2)− i(ω′/2π)]e−iω′B

G−
2S(ω′)(ω′ − ω ∓ i0)

. (5.96)

We are interested in the results for large positive B, hence, the contour
of integration can be closed through the lower half-plane. Then, the value
of the integral can be given as the sum of the residua of Γ[(1/2)− i(ω′/2π)].
The leading term, i.e., the pole closest to the real axes, yields the result
(the next term is of the order of exp(−2πB) smaller)

y+
1 (ω) =

i
√

S

G+
2S(ω)

(
H

ω + i0
− π2JSS exp(−πB)

eSΓ(1 + S)(ω + iπ)

)
. (5.97)

The Fourier transform of the equation for y2 yields

y+
2 (ω)G+

2S(ω) +
y−
2 (ω)

G−
2S(ω)

=
[1 − G+

2S(ω)G−
2S(ω)] exp(−i2πBω)y+

1 (−ω)
G−

2S(ω)
. (5.98)

The analyticity of y±
1,2(ω) and G±

2S(ω) implies

y+
2 (ω)G+

2S(ω)

= −i

∫ ∞

−∞

dω′

2π

[1 − G+
2S(ω′)G−

2S(ω′)] exp(−i2πBω′)y+
−(−ω′)

G−
2S(ω′)(ω′ − ω − i0)

. (5.99)

Again, we use the fact that 0 < 1 � B and close the contour through
the lower half-plane. In this half-plane only G+

2S(ω) has singularities. The
leading singularity is the cut along the imaginary axis.

The parameter B is the function of the applied magnetic field H . It
is determined from the condition y(λ = 0) = 0, which is equivalent to the
condition limω→∞ ωy+(ω) = 0. Using the results for y+

1,2(ω) we get

H

[
1 +

S

πB
+

S2 ln(S/πB)
2(πB)2

+ · · ·
]

=
π2SSJ exp(−πB)

eSΓ(1 + S)
. (5.100)
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Then the Helmholtz free energy per site can be written as

f(T = 0, H � J) = e0 +
J

2
(ψ(1/2) − ψ[(1/2) + S])

− J

∫ ∞

−∞

dω

2π

eiωBy+(ω)
2 cosh(ω/2)

. (5.101)

The contour has to be closed through the upper half-plane. Then the
value of the integral is given by the sum of the residua of the poles of
1/ cosh(ω/2): any pole ω = i(2n + 1)π yields the term ∼ (H/J)2n+2. The
leading contribution arises from the closest to the real axis pole, ω = iπ,
and it gives − exp(−πB)y+(iπ) ∼ (H/J)2. Then the final answer for the
Helmholtz free energy of the Heisenberg antiferromagnetic spin chain in a
weak magnetic field is

f(T = 0, H � J) = e0 +
J

2
(ψ(1/2) − ψ[(1/2) + S])

− SH2

π2J

(
1 +

S

ln(AH/J)
− S2 ln | ln(AH/J)|

ln2(AH/J)
+ · · ·

)
,

(5.102)

where A = eSΓ(1 + S)/π2SS is a constant.

5.3 The Algebraic Bethe Ansatz for Correlated Electron
Models

As a good example of the power of the algebraic Bethe ansatz for correlated
electron models we study its solution to the supersymmetric t-J chain. Here
we also introduce to the reader the graded version of the Bethe ansatz.

Let us start with the graded linear space V (n|m) = V (n) ⊕ V (m), where
n and m denote the dimensions of the parts of this space and ⊕ denotes the
direct sum. Let {e1, . . . , en+m} be a basis of V (n|m), such that {e1, . . . , en}
is a basis of V (n) and {en+1, . . . , en+m} is a basis of V (m). The Grassmann
parities of the basis vectors (they are often called the grading) can be given
by ε1 = · · · = εn = 0 and εn+1 = · · · = εn+m = 1. Then any linear operator
on V (n|m) can be represented in a block form as

M =
(

A B

C D

)
, ε

(
A 0
0 D

)
= 0 , ε

(
0 B

C 0

)
= 1 , (5.103)
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and the supertrace (the graded trace) of this matrix is defined as

strM = trA − trD , (5.104)

where the traces on the right hand side are the usual operator traces in
V (n) and V (m), respectively. The graded tensor product V (n|m) ⊗ V (n|m)

in terms of its basis vectors {ea ⊗ eb} (where a, b = 1, . . . , m + n) can be
defined as

v ⊗ w = (eava) ⊗ (ebwb) = (ea ⊗ eb)vawb(−1)εvaεb , (5.105)

i.e., the additional factor (−1)εvaεb occurs comparing to the standard tensor
product. This factor originates from passing va past eb. The action of the
right linear operator F ⊗G on the vector v ⊗w in V (n|m) ⊗V (n|m) has the
form (F ⊗ G)(v ⊗ w) = F (v) ⊗ G(w) with its matrix elements

(F ⊗ G)ab
cd = FabGcd(−1)εc(εa+εb) . (5.106)

Then the identity operator in V (n|m) ⊗ V (n|m) is Îab
cd = δa,bδc,d and the

permutation operator is P̂ ab
cd = δa,dδc,b(−1)εbεd .

Using the above definitions of graded operators, it is easy to see that
the operator R(λ) = b(λ)Î + c(λ)P̂ , with c(λ) = λ/(λ + ic) and b(λ) =
ic/(λ + ic) satisfies the Yang–Baxter equations for R-matrices Eq. (5.9)
acting in V (n|m) ⊗ V (n|m).

Why is this mathematical construction relevant for physics? It is help-
ful when one considers a system of n species of bosons and m species of
fermions. In such a case V

(n|m)
j denotes the quantum Hilbert space of con-

figurations at every site of the lattice (if we consider a lattice situation).
For example, for the supersymmetric t-J model with V = −J/4 we have
one boson (an empty state) and two fermions (electrons with spins directed
upward and downward) at each site. Then the quantum space for each site
for such a model can be considered as V

(1|2)
j .

In the previous chapter we promised to explain why the t-J model
(here we shall mostly concentrate on the V = −J/4 case) is called super-
symmetric.

Let us consider nine operators at each site j (here we keep the notations
of the previous chapter). The first of these operators is the unity operator
Ij . The second one is related to the operator of the number of electrons
in site j, nj = nj↑ + nj↓, as Nj = 1 − (1/2)nj. Three other operators,
Sz

j = (1/2)(nj↑ − nj↓), S+
j = a†

j↑aj↓, and S−
j = a†

j↓aj↑, form the SU(2)
algebra. Finally, there are four more operators: Qj↑ = (1− nj↓)a

†
j↑, Qj↓ =

(1 − nj↑)a
†
j↓, Q†

j↑ = (1 − nj↓)aj↑ and Q†
j↓ = (1 − nj↑)aj↓. All these nine
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operators (let us call them, e.g., Jα
j , where α = 1, . . . , 9) are the generators

of the algebra gl(1|2) which can be written in the form

Jα
j Jβ

j − (−1)εαεβJβ
j Jα

j = fγ
αβJγ

j , (5.107)

where fγ
αβ are the structure constants of gl(1|2), and εα = 0 for the first

five generators (i.e., they are bosonic operators), and εα = 1 for the last
four (fermionic) operators. The fundamental matrix representation of the
generators is in the basis, in which the fermionic states are ej1 = (1 0 0)T

j

for the electron with spin down, ej2 = (0 1 0)T
j for the electron with spin

up, and the bosonic state is ej3 = (0 0 1)T
j (empty state) is:

S−
j =


0 0 0

1 0 0
0 0 0


 , S+

j =


0 1 0

0 0 0
0 0 0


 ,

Sz
j =

1
2


−1 0 0

0 1 0
0 0 0


 , Nj =

1
2


1 0 0

0 1 0
0 0 2


 ,

Q†
j↑ =


0 0 0

0 0 0
0 1 0


 , Qj↑ =


0 0 0

0 0 1
0 0 0


 ,

Q†
j↓ =


0 0 0

0 0 0
1 0 0


 , Qj↓ =


0 0 1

0 0 0
0 0 0


 .

(5.108)

We can introduce the invariant nondegenerate bilinear form Kαβ, given as
the supertrace over two generators

Kαβ = (Kαβ)−1 = str Jα
j Jβ

j . (5.109)

It is easy to show that using these operators we can write the Hamiltonian
of the supersymmetric t-J chain at V = −J/4 as

HtJ = −
L−1∑
j=1

∑
σ

(QjσQ†
j+1σ + Qj+1σQ†

jσ) +
J

2

L−1∑
j=1

(S+
j S−

j+1 + S−
j S+

j+1

+ 2Sz
j Sz

j+1 − 2NjNj+1 + IjIj+1) − 2J

L∑
j=1

(nj − 1) , (5.110)
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which at the supersymmetric point J = 2 can be rewritten as

HtJ = −
L∑

j=1


 9∑

α,β=1

KαβJα
j Jβ

j+1 − 2nj + 1




= −
L∑

j=1

[Πj,j+1 − 2nj + 1] , (5.111)

where the graded operator Πj,j+1 permutes the three possible configura-
tions (empty state and states with electrons with spins up or down) between
sites j and j +1, picking up a minus sign if both of the permuted configura-
tions are fermionic. This Hamiltonian is obviously supersymmetric, because
it is the quadratic form of the generators of the gl(1|2) algebra with the
coefficients being the invariant nondegenerate bilinear form of those gen-
erators. Notice that the sums of all nine generators over all sites of the
lattice commute with the Hamiltonian of the supersymmetric t-J model,
[HtJ ,

∑L
j=1 Jα

j ] = 0 for α = 1, . . . , 9.
One can show that the case V = 3J/4 (J = ±2t = ±2) pertains to the

grading, in which all nine Grassmann parities of generators are bosonic.
This is clear, because they form SU(3), but not gl(1|2) algebra.

Let us now consider the algebraic Bethe ansatz for the gl(n|m)-
symmetric correlated electron chain. For the gl(1|2)-symmetric chain the
Hilbert space at each site is isomorphic to C3 and is spanned by the above
mentioned three basis vectors. In the FFB grading, i.e., in which ej1 and
ej2 are fermionic (the Grassmann parities are ε1,2 = 1) and ej3 is bosonic
(the Grassmann parity is ε3 = 0) we can start from the mathematical vac-
uum state |0〉 =

∏L
j=1 ej3. This choice of the grading implies that R-matrix

for the gl(1|2)-symmetric chain has the form

R(λ) = b(λ)I + c(λ)

×




−1 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 −1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1




. (5.112)
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Let us consider the monodromy matrix T (λ) for the gl(n|m) symmetric
model as the (n + m) × (n + m) matrix in the auxiliary subspace

T (λ) =

(
Â B̂

Ĉ D̂

)
, (5.113)

where Â is n × n matrix, D̂ is m × m matrix, B̂ is n × m matrix and Ĉ is
m × n matrix. For the gl(1|2)-symmetric chain we have

Â(λ) =

(
Â11 Â12

Â21 Â22

)
, (5.114)

and

B̂ = (B̂1 B̂2)T , Ĉ = (Ĉ1 Ĉ2) . (5.115)

Hence, the transfer matrix τ̂(λ) is

τ̂ (λ) = strT (λ) = −tr Â + tr D̂ (5.116)

where for the gl(1|2)-symmetric chain we have

τ̂ (λ) = −Â11 − Â22 + D̂ . (5.117)

Let us define the action of the monodromy matrix on the mathematical
vacuum so that the action of diagonal matrix elements Tαα produces c-
numbers, i.e., Tαα(λ)|0〉 = aα(λ)|0〉 and the mathematical vacuum is the
eigenstate for these diagonal components, and the action of all upper ele-
ments Tαβ with α < β is zero, i.e., Tαβ(λ)|0〉 = 0 for α < β. Then the
monodromy matrix has the triangular form. Such a monodromy matrix sat-
isfies the intertwining relation for monodromy matrices Eq. (5.16) with our
R-matrix in the graded space. Then it is not difficult to show that transfer
matrices with different spectral parameters commute, which constitutes the
exact integrability of the problem.

For the gl(1|2)-symmetric correlated electron chain Ĉ1,2 operators play
the role of “creation operators” (please do not confuse: now we define the
operators Ĉ as “creation operators”, unlike the operators B̂ of the previous
sections, it is dictated by our choice of the mathematical vacuum). Let us
construct the states

|λ0
1, . . . , λ

0
N |F 〉 = Fa1...aN

N∏
j=1

Caj (λ
0
j )|0〉 . (5.118)
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Using the intertwining relations for the monodromy matrices we obtain the
following nontrivial commutation relations for the operators Â, B̂, Ĉ and
D̂

(−1)εaεf rdc
fb(y − x)Ĉf (x)Âad(y) = −b(y − x)Ĉb(y)Âac(x)

+ c(y − x)Âab(y)Ĉc(x) ,

Ĉa(y)D̂(x) = b(y − x)Ĉa(x)D̂(y)

+ c(y − x)D̂(x)Ĉa(y) ,

Ĉa(x)Ĉb(y) = rdb
ca(x − y)Ĉc(y)Ĉd(x) ,

(5.119)

where a, b, c, d, f = 1, 2 and

rab
cd(x) = b(x)δa,bδc,d − c(x)δa,dδc,b = b(x)I(2) + c(x)P (2) . (5.120)

Here the operators I(2) and P (2) play the role of the 4 × 4 identity and
permutation operators corresponding to the grading ε1,2 = 1. One can
check that the operator r(λ) satisfies the Yang–Baxter equation (5.9) (with
the replacements R → r; such a Yang–Baxter equation is called a graded
one) and can be identified as the R-matrix of a fundamental spin model
describing two species of electrons (with spins up and down).

Let us act with the transfer matrix on the state Eq. (5.118). We have

D(λ)|λ0
1, . . . , λ

0
N |F 〉 = a3(λ)

N∏
j=1

c−1(λ0
j − λ)|λ0

1, . . . , λ
0
N |F 〉

+
N∑

k=1

(T̃k)b1...bN
a1...aN

Cbk
(λ)

N∏
j=1,
j �=k

Cbj (λ
0
j ))Fa1...aN |0〉 ,

(5.121)

and

(−1)N [Â11(λ) + Â22(λ)]|λ0
1, . . . , λ

0
N |F 〉

=
N∏

j=1

c−1(λ − λ0
j)(tr[Â(λ)τ̂ (2)(λ)])b1...bN

a1...aN

N∏
j=1

Cbj (λ
0
j )Fa1...aN |0〉

− (Tk)b1...bN
a1...aN

N∑
k=1

Cbk
(λ)

N∏
j=1,
j �=k

Cbj (λ
0
j )Fa1...aN |0〉 . (5.122)
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Here the matrix

(τ̂ (2))b1...bN
a1...aN

(λ) = strT (2)(λ) (5.123)

plays the role of the graded transfer matrix of a fundamental spin model
describing two species of electrons (with spins up and down), with the
monodromy of the fundamental inhomogeneous spin model

T (2)(λ) = L
(2)
N (λ − λ0

N ) ⊗ · · · ⊗ L
(2)
1 (λ − λ0

1) , (5.124)

where

L
(2)
j (λ) = b(λ)P (2)

j + c(λ)I(2)
j . (5.125)

Again, L
(2)
j (λ) can be interpreted as the L-operator of the fundamental

spin model on the inhomogeneous lattice of the length N . The eigenvalue
condition

τ̂ (λ)|λ0
1, . . . , λ

0
N |F 〉 = Λ(λ, λ0

1, . . . , λ
0
N )|λ0

1, . . . , λ
0
N |F 〉 (5.126)

implies that Fa1...aN to be an eigenvector of the nested transfer matrix
τ̂ (2)(λ), and that the cancellation of the unwanted terms

[(T̃k)b1...bN
a1...aN

− (Tk)b1...bN
a1...aN

]Fa1...aN = 0 . (5.127)

The unwanted terms in Eqs. (5.121) and (5.122) are

(T̃kF )b1...bN = −Sb1...bk
a1...ak

(λ0
k)Fa1...akbk+1...bN

× a3(λ0
k)

b(λ0
k − λ)

c(λ0
k − λ)

N∏
j=1
j �=k

c−1(λ0
j − λ0

k) , (5.128)

and

(TkF )b1...bN = tr[Â(λ0
k)G(λ0

k)]b1...bk
a1...ak

Fb1...bk−1ak...aN

× (−1)k+1 b(λ − λ0
k)

c(λ − λ0
k)

N∏
j=1
j �=k

c−1(λ0
k − λ0

j ) , (5.129)

where

S(x) = rbk−1ak
ck−1ak−1

(λ0
k−1 − x)rbk−2ck−1

ck−2ak−2
(λ0

k−2 − x) · · · rb1c2
bka1

(λ0
1 − x) (5.130)
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and

G(x) = (L(2)
N )bkdN−2

bN aN
(x − λ0

N )(L(2)
N−1)

dN−2dN−3
bN−1aN−1

(x − λ0
N−1) · · ·

× (L(2)
k+1)

dkak

bk+1ak+1
(x − λ0

k+1) . (5.131)

It is easy to derive the following intertwining relation for the monodromy
matrices of the fundamental spin model

r(x − y)(T (2)(x) ⊗ T (2)(y)) = (T (2)(y) ⊗ T (2)(x))r(x − y) . (5.132)

Let us now define

T (2)(λ) =

(
Â(2) B̂(2)

Ĉ(2) D̂(2)

)
. (5.133)

Then the transfer matrix of the fundamental spin model can be written
as τ̂ (2)(λ) = −Â(2)(λ) − D̂(2)(λ). The intertwining relation implies the
following commutation relations

1
c(x − y)

Ĉ(2)(x)Â(2)(y) +
b(y − x)
c(y − x)

Ĉ(2)(y)Â(2)(x) = Â(2)(y)Ĉ(2)(x) ,

1
c(y − x)

Ĉ(2)(x)D̂(2)(y) +
b(x − y)
c(x − y)

Ĉ(2)(y)D̂(2)(x) = D̂(2)(y)Ĉ(2)(x) ,

[Ĉ(2)(x), Ĉ(2)(y)] = 0 .

(5.134)

Let us take as the mathematical vacuum for this nested fundamental
spin problem the state |0〉(2) =

∏N
j=1 |0〉

(2)
j . This state has the property

B̂(2)(λ)|0〉(2) = 0. Then it follows that

Â(2)(λ)|0〉(2) = (−1)N

N∏
j=1

c(λ − λ0
j)|0〉(2) ,

D̂(2)(λ)|0〉(2) = (−1)N

N∏
j=1

c(λ − λ0
j)

c(λ0
j − λ)

|0〉(2) .

(5.135)

Notice that [Âab(λ), T (2)
cd (λ)] = 0, for a, b, c, d = 1, 2 (i.e., in the auxiliary

subspace), which can be proved using the definition of the monodromy
matrix of the fundamental spin model. It is important, because we are also
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interested in the action of operators

[B̂(2)(λ)A21(λ) + D̂(2)(λ)A22(λ)]|0〉(2) = (−1)Na2(λ)
N∏

j=1

c(λ − λ0
j )

c(λ0
j − λ)

|0〉(2) ,

[Â(2)(λ)A11(λ) + Ĉ(2)(λ)A12(λ)]|0〉(2) = (−1)Na1(λ)
N∏

j=1

c(λ − λ0
j)|0〉(2) ,

[Â(2)(λ)A21(λ) + Ĉ(2)(λ)A22(λ)]|0〉(2) = 0 . (5.136)

Also, similar to the previous cases we can consider Ĉ(2) operators as “cre-
ation operators” for the fundamental spin model and study the action of
the transfer matrix τ̂ (2)(λ) on the state

∏M
γ=1 Ĉ(2)(λγ)|0〉(2). This state is

the eigenstate of the matrix tr[Â(λ)τ̂ (2)(λ)], which appears in Eq. (5.122),
with the eigenvalue

Λ̄(2)(λ, λ0
1, λ

0
N ) = (−1)N−1

(
a2(λ)

N∏
j=1

c(λ − λ0
j )

c(λ0
j − λ)

M∏
γ=1

c−1(λ − λγ)

+ a1(λ)
N∏

j=1

c(λ − λ0
j )

M∏
γ=1

c−1(λγ − λ)
)

, (5.137)

if the following conditions for the rapidities λγ are satisfied

a2(λγ)
a1(λγ)

N∏
j=1

c−1(λ0
j − λγ) =

M∏
β=1
β �=γ

c(λγ − λβ)
c(λβ − λγ)

, γ = 1, . . . , M . (5.138)

The cancellation of the first set of the unwanted terms yields (those
equations can be obtained after some lengthy but straightforward calcula-
tions, which we drop here)

a3(λk)
N∏

j=1
J �=k

c(λ0
k − λ0

j)
c(λ0

j − λ0
k)

Fb1...bN = (−1)N [trA(λk)τ̂ (2)(λk)]b1...bN
a1...aN

Fa1...aN ,

(5.139)
where k = 1, . . . , N . Inserting Eq. (5.137) here we obtain

a3(λ0
j )

a2(λ0
j )

=
M∏

γ=1

c−1(λ0
j − λγ) , j = 1, . . . , N . (5.140)
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Then the eigenvalue of the transfer matrix τ̂(λ) is equal to

Λ(λ) = a3(λ)
N∏

j=1

c−1(λ0
j − λ) − a2(λ)

N∏
j=1

c−1(λ0
j − λ)

M∏
γ=1

c−1(λ − λγ)

− a1(λ)
M∏

γ=1

c−1(λγ − λ) . (5.141)

Taking the logarithmic derivative of the eigenvalue Λ(λ) at λ = 0 we get

E =
N∑

j=1

[
A

ic

(λ0
j + ic)λ0

j

− 2

]
+ Aa−1

3 (0)
da3(λ)

dλ

∣∣∣∣
λ=0

, (5.142)

where A is a constant.
It turns out that these derivations never used the concrete form of L-

operators of the problem, but rather used the triangular property of the
monodromy matrix: the action of diagonal matrix elements Tαα produces
c-numbers, Tαα(λ)|0〉 = aα(λ)|0〉, and the action of all upper elements Tαβ

with α < β is zero, i.e., Tαβ(λ)|0〉 = 0 for α < β.
Let us consider the L-operator of the supersymmetric t-J chain for V =

−J/4 and J = 2 as

Lj(λ) = c(λ)I
(1|2)
j − b(λ)

×




(Nj + Sz
j )(Ij − Nj + Sz

j ) −S+
j −Qj↑

S−
j (Nj − Sz

j )(Ij − Nj − Sz
j ) −Qj↓

−Q†
j↑ −Q†

j↓ −(Nj − Sz
j )(Nj + Sz

j )


.

(5.143)

It is easy to check that such an L-operator satisfies the graded intertwin-
ing relations (Yang–Baxter relations) for L-operators with the graded R-
matrix, Eq. (5.112), from which we started. The corresponding monodromy
matrix T (λ) = LL(λ) ⊗ · · · ⊗ L1(λ) also satisfies the graded intertwining
relations. The reader can check that the action of the L-operator on our
mathematical vacuum |0〉 is

Lj(λ)|0〉 =


 c(λ) 0 0

0 c(λ) 0
b(λ)Q†

j↑ b(λ)Q†
j↓ 1


 , (5.144)
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i.e., it has the triangular form, which implies

T (λ)|0〉 =


 cL(λ) 0 0

0 cL(λ) 0
C1(λ) C2(λ) 1


 . (5.145)

Eq. (5.145) means the triangular action of the monodromy matrix on the
mathematical vacuum, i.e., this choice of the L-operator can be used for
the above described scheme with a1(λ) = a2(λ) = cL(λ) and a3(λ) = 1.
The Hamiltonian of the supersymmetric t-J chain for V = −J/4 and J = 2
can be obtained (up to constants) as

HtJ = −icA
∂

∂λ
ln[str τ̂ (λ)]|λ=0 . (5.146)

One can check that the Hamiltonian, constructed this way, coincides with
the Hamiltonian of the supersymmetric t-J chain, and Eqs. (5.138), (5.140),
and (5.142) for shifted rapidities λ0

j → λ0
j − ic/2 and c = 1 coincide

(up to constants) with the Bethe ansatz equations and the expression
for the energy of the supersymmetric t-J chain presented in the previous
chapter.

It is interesting to notice that the Bethe ansatz equations and the ex-
pression for the energy of the Hubbard chain can be obtained (up to con-
stants) from Eqs. (5.138), (5.140), and (5.142) with the choice λ0

j = sin kj

(j = 1, . . . , N), λγ → λγ − ic/2 (γ = 1, . . . , M) c = U/2, together with
a1(λ − ic/2) = a2(λ − ic/2), and a3(sin k) = a1(sin k) exp(ikL). This re-
flects the fact that the Hubbard chain also respects SU(2) (here equivalent
to gl(2)) spin symmetry. However, we have to point out that the algebraic
Bethe ansatz analysis for the Hubbard chain is, generally speaking, more
complicated, and we shall not present it here, referring the reader to the
original paper.

To summarize, in this chapter we presented the algebraic version of the
Bethe ansatz: the quantum inverse scattering method. The main feature of
the Bethe ansatz solvable models, i.e., factorization of multi-particle scat-
terings into a two-particle one is discussed in the formalism of Yang–Baxter
relations. In the framework of the algebraic Bethe ansatz we re-derived
Bethe ansatz equations for a Heisenberg spin- 1

2 chain and for a super-
symmetric t-J chain (with graded Bethe ansätze), and derived the exact
solution for higher-S SU(2)-symmetric spin chains (Takhtajan–Babujian
model). Using the algebra of operators we showed the supersymmetry of
the considered t-J chain.
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The algebraic Bethe ansatz (or the quantum inverse scattering method)
was formulated for lattice integrable models, e.g., in [Takhtadzhan and
Faddeev (1979)]. The Yang–Baxter relations were introduced by
M. Gaudin, C. N. Yang and R. J. Baxter [Gaudin (1967); Yang (1967);
Baxter (1982)]. The reader can find the description of the algebraic Bethe
ansatz in [Korepin, Bogoliubov and Izergin (1993)], see also [Izyumov
and Skryabin (1990)]. The construction of the integrals of motion for
Bethe ansatz-solvable models was proposed in [Lüsher (1978)]. The Bethe
ansatz solution of the SU(2)-symmetric spin-S chain was obtained in
[Takhtajan (1982); Babujian (1983)]. The graded Bethe ansatz solution of
the supersymmetric t-J chain can be found in [Eßler and Korepin (1992);
Göhmann (2001)]. For the algebra of generators of the gl(1|2)-symmetric
models, please, consult [Scheunert, Nahm and Rittenberg (1977)]. The
reader can find the algebraic Bethe ansatz solution of the Hubbard chain
in [Ramos and Martins (1997)].
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Chapter 6

Correlated Quantum Chains with
Open Boundary Conditions

In this chapter we shall present the results of the Bethe ansatz studies for
quantum spin and correlated electron chains with open boundary conditions
and shall discuss the effects of local potentials or fields applied to open
edges of quantum chains. The important generalization of the algebraic
Bethe ansatz for open chains will also be presented here.

6.1 Open Boundaries. XY and Ising Chains

So far we considered spin and correlated electron chains with periodic
boundary conditions, i.e., we considered chains in the ring geometry. How-
ever, the reader can ask the question: what will happen if a chain is not
closed in a ring?

At the level of the Hamiltonian it means that we have to equate the
terms like Sx,y,z

L Sx,y,z
1 , a†

Lσa1σ, a†
1σaLσ and nLσn1σ to zero in previous for-

mulae. To have more general results, we can add some boundary magnetic
fields to the Hamiltonian of a spin chain with open boundary conditions as

Hbs = −h1S
z
1 − hLSz

L . (6.1)

For the case of a correlated electron chain we can add not only the term
Eq. (6.1), but also the term

Hbc = −µ1n1 − µLnL , (6.2)

which determines the action of boundary potentials (for example, related to
point contact potentials applied only to edges of a chain). We shall call
the case with h1 = hL = µ1 = µL = 0 the situation with free boundary
conditions, or free edges of an open quantum chain.

149
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Let us start with the simplest spin- 1
2 chains. Consider, first, the

isotropic XY chain, Jz = 0. According to the procedure of Chapter 2, we
can use the Jordan–Wigner transformation from spin operators to spinless
Fermi operators. The Hamiltonian of the XY chain after such a transfor-
mation becomes a quadratic form of the Fermi operators. The difference
between the periodic and open boundary conditions appears to be not very
dramatic: one has to remove the terms −(J/2)[νL+1a

†
La1−νL+1La†

1aL] from
Eq. (2.12), but to add instead the terms −(h1/2)(1 − 2a†

1a1) − (hL/2)(1 −
2a†

LaL). Actually, it implies even simpler consideration than what was used
in Chapter 2. Namely, the Hamiltonian of the isotropic spin- 1

2 XY open
chain can be straightforwardly diagonalized with the help of the Fourier
transform. The dispersion law for these spinless fermions after the diago-
nalization becomes εk = H−2J cos k, i.e., the same as for the periodic case.
Here H describes, as in previous chapters, the homogeneous magnetic field
acting on all spins of a chain, i.e., the field H + h1,L acts on edge spins.
However, for the open boundary situation the values k (which play the role
of quasimomenta) are determined from the quantization conditions

eik(2L+2)

(
J ± 2h1e

−ik

J ± 2h1eik

)(
J ± 2hLe−ik

J ± 2hLeik

)
= 1 , (6.3)

where we can choose either plus, or minus signs. The reader can see that
even for free edges h1 = hL = 0 quantization conditions are different from
the case of a periodic chain. However, in this case the only real ks are
solutions to Eq. (6.3). Actually, these solutions (with real ks) define stand-
ing waves, unlike plane waves for the periodic boundary conditions. On
the other hand, nonzero boundary fields produce features, which are not
present in the periodic chain. Namely, one can see that complex ks can be
solutions to Eq. (6.3) for h1 �= 0, or hL �= 0. These complex solutions are
called boundary bound states. Their wave functions decay with distances
from edges, unlike the case with real ks. Notice, that even for complex so-
lutions for ks, energy eigenvalues are ever real. We shall consider features
of those solutions in what follows more precisely.

Let us study the effect of open boundaries for an isotropic XY chain in
the situation with the large length of the chain. In this case we can write
the expression for the internal ground state energy as

E = eL + f + o(L−1) (6.4)
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where e coincides with the ground state energy for a periodic chain of the
length L, and f is the energy of open edges themselves. For example, for
the homogeneous magnetic field equal to zero, H = 0, we obtain after some
straightforward calculations

f = −h1 + hL

2
− J

π

∑
j=1,L

∫ ∞

0

dx
sinh[2 − 2Sj(hj)]x

sinh 2x coshx
, (6.5)

where

Sj(hj) =
2
π

tan−1

(
J + 2hj

|J − 2hj|

)
, (6.6)

and tan−1 takes the principal branch for hj ≤ 2J , and takes the branch
with the principal value minus π for hj > 2J . The reader can see that
the difference, as expected, is of the order of 1 (compared to the main
contributions of order of L, which are equal for open and periodic chains;
we shall show that the latter is true for any exactly solvable quantum chain).
It is clear, because the difference between the periodic and open chains is
connected with only one link, i.e., it is the finite size effect. Even for hj = 0
the ground state energy of the open XY chain differs from the periodic one,
closed into a ring. The difference is equal to J [1 − (2/π)]. This is, in fact,
the energy of infinitely large potential walls at the edges of an open chain,
which reflect waves and produce standing waves instead of plane waves.
The reader can also see that for H = 0 the magnetic moments of edge spins
are

mz
1,L =

1
2
− 8

π2

J2

J2 + 4h2
1,L

∫ ∞

0

dx
x cosh x[2 − 2S1,L(h1,L)]

sinh 2x coshx
, (6.7)

which implies mz
1,L|h1,L=0 = 0. On the other hand, local magnetic suscep-

tibilities of edge spins are

χ1,L|h1,L=0 =
8

3πJ
, (6.8)

i.e., they are finite.
Now let us study the difference in the behaviours of the Ising model

(e.g., with Jx = J , Jy = Jz = 0) in the transverse magnetic field for
periodic and open boundary conditions.
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Consider the behaviour at the quantum critical point H = J/2. Here
the dispersion law is εk = J cos(k/2), where the quantization conditions are

eik(2L+2)

(
J2 − [(J + 2h1)2 − J2]e−ik

J2 − [(J + 2h1)2 − J2]eik

)

×
(

J2 − [(J + 2hL)2 − J2]e−ik

J2 − [(J + 2hL)2 − J2]eik

)
= 1 . (6.9)

Again, we see that for free edges h1 = hL = 0 only possible solutions for
this equation are real ks, but for h1 �= 0, or hL �= 0 complex solutions, i.e.,
boundary bound states, can appear.

Again, the main contribution to the ground state (internal) energy, e,
coincides with the one for the Ising chain in the transverse critical field
with periodic boundary conditions. The difference (in the quantum critical
point H = J/2 for h1 = hL = h) is

f = −J

4

(
1 − 2

π

)
+

J

π
F ([1 − (2h/J)]2 − 1) , (6.10)

where

F (x) = −1 +
1 − x2

2
√

x|1 − x| tan−1

(
2
√

x

|1 − x|

)
, (6.11)

and tan−1 takes the principal branch for x ≤ 1 and takes the branch with
the principal value minus π for x > 1.

Out of the quantum critical point the boundary bound states appear
even for free edges h1 = hL = 0. Here the dispersion law for free fermions
after the diagonalization is εk =

√
(J/2)2 − HJ cos k + H2, but quantiza-

tion conditions are

sin k(L + 1)
sinkL

=
J

2H
. (6.12)

The reader can see that for H < −J/2 (or H > J/2)) one of L roots of this
equation becomes complex: k0 = π + iv, where

sinh v(L + 1)
sinh vL

= − J

2H
. (6.13)

The excitation with k0 carries the energy

εk0 =
J

2
(−1)L(2H/J)L

∞∑
p=0

ap(−2H/J)2p . (6.14)
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Why is this one state so important? For H < −(J/2) this equation reveals
the asymptotic degeneracy of the ground state leading to the onset of an
ordering in the system when L → ∞ (the gap of order of (2H/J)L tends to
zero when L → ∞ more rapidly than 1/L). Suppose L is finite. The ground
state of the Ising model at H = 0 is doubly degenerate with 〈0|Sx

j |0〉 = ± 1
2 .

When a transverse magnetic field is switched on, this degeneracy is removed,
and, thus, one has 〈0|Sx

j |0〉 = 0, because the new ground state is symmetric
and remains unchanged when Sx

j is changed to −Sx
j , while the first excited

state is antisymmetric and changes its sign. If L tends to infinity, i.e., we
are in the thermodynamic limit, for H < −(J/2) (or H > J/2) the ground
state becomes degenerate with the boundary bound state and 〈0|Sx

j |0〉 �= 0.
On the other hand, if H < |J/2| the ground state remains non-degenerate
and no order appears. At any nonzero temperature, naturally, the long-
range order vanishes and there is no phase transition (i.e., in this system
only quantum critical point exists).

6.2 Open Boundaries: Co-ordinate Bethe Ansatz for the
Heisenberg Ising Chain

Let us now study the behaviour of the Heisenberg–Ising spin- 1
2 chain

with open boundary conditions using the co-ordinate Bethe ansatz. The
z-projection of the total spin commutes with the Hamiltonian HHI +HZ +
Hbs. This is why, we classify all states of the Hamiltonian by the eigen-
value of the operator

∑L
j=1 Sz

j , as for periodic boundary conditions. It is
convenient to choose the basis functions of the form

|x1, . . . , xM 〉 ≡ e+
1 ⊗ · · · ⊗ e−x1

⊗ · · · ⊗ e+
j ⊗ · · · e−xM

⊗ · · · ⊗ e+
L , (6.15)

where xj determine M coordinates of sites with spins down (all other spins
are directed up). We suppose that 1 ≤ x1 < x2 < · · · < xM ≤ L. Then the
wave function can be written as

ΨM =
∑

x1<x2<···<xM

a(x1, . . . , xM )|x1, . . . , xM 〉 , (6.16)

where a(x1, . . . , xM ) is the wave function in the co-ordinate representation.
First, suppose M = 1. In this case we have for x �= 1, L

Ea(x) = −H(L − 2)
2

a(x) +
JzL

4
a(x) − 5Jz

4
a(x)

− h1 + hL

2
a(x) +

J

2
a(x − 1) +

J

2
a(x + 1) . (6.17)
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At the boundaries we have slightly different equations

Ea(1) = −H(L − 2)
2

+
Jz(L − 3)

4
a(1) − Jza(1)

− −h1 + hL

2
a(1) +

J

2
a(2) ,

Ea(L) = −H(L − 2)
2

+
Jz(L − 3)

4
a(L) − Jza(L)

− h1 − hL

2
a(L) +

J

2
a(L − 1) .

(6.18)

We want the solution

a(x) = A(k) exp(ikx) − A(−k) exp(−ikx) ,

E = −H(L − 2) + h1 + hL

2
+

JzL

4
− 5Jz

4
+ J cos k

(6.19)

to be valid for x = 1 and x = L. This happens if the following equations
hold

Ja(0) = (Jz + 2h1)a(1) , Ja(L + 1) = (Jz + 2hL)a(L) . (6.20)

This can be re-formulated as

A(k)α(−k) − A(−k)α(k) = 0 , A(k)β(k) − A(−k)β(−k) = 0 , (6.21)

where

α(k) = −1
2
[J + (Jz − 2h1) exp(−ik)] ,

β(k) = −1
2
[J + (Jz − 2hL) exp(ik)] exp[ik(L + 1)] .

(6.22)

This yields

α(k)β(k) = α(−k)β(−k) , (6.23)

or this quantization condition can be written as

e2ik(L−1) (Jeik − 2h1 − Jz)(Jeik − 2hL − Jz)
(Je−ik − 2h1 − Jz)(Je−ik − 2hL − Jz)

= 1 . (6.24)

The solution for A(k) is A(k) = β(−k), but it should be noted that this
coefficient is determined up to a factor that is invariant under the change
k ↔ −k.
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For the case M = 2 we have to distinguish two situations. If x2 �= x1 +1
one has the equation

Ea(x1, x2) = −H(L − 4)
2

a(x1, x2) +
JzL

4
a(x1, x2)

− 9Jz

4
a(x1, x2) +

J

2
[a(x1 − 1, x2) + a(x1 + 1, x2)

+ a(x1, x2 − 1) + a(x1, x2 + 1)] . (6.25)

On the other hand, when x2 = x1 + 1 (i.e., down spins are situated at the
nearest neighbour sites) one obtains

Ea(x, x + 1) = −H(L − 4)
2

a(x, x + 1) +
JzL

4
a(x, x + 1) − 5Jz

4
a(x, x + 1)

+
J

2
[a(x − 1, x + 1) + a(x, x + 2)] . (6.26)

These equations coincide with Eqs. (6.25), if the following condition is sat-
isfied

Ja(x1, x1) + Ja(x1 + 1, x1 + 1) = 2Jza(x1, x1 + 1) . (6.27)

As for M = 1, these equations in the case of open boundary conditions are
added by the following equations

Ja(0, x2) = (Jz + 2h1)a(1, x2) ,

Ja(x1, L + 1) = (Jz + 2hL)a(x1, L) .
(6.28)

We can look for the solution of these equations in the form, similar to the
previous case

a(x1, x2) =
∑
P

εP A(k1, k2)ei(k1x1+k2x2) , (6.29)

where the sum extends over the permutations and the negations of k1 and
k2, and εP is the sign factor, that changes sign on negation or pair inter-
change. The eigenvalue for the energy is

E = −H(L − 4) + h1 + hL

2
+

JzL

4
− 9Jz

4
+ J(cos k1 + cos k2) . (6.30)
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Then the conditions on the coefficients A(k1, k2), which follow from
Eqs. (6.24) and (6.28) are

A(k1, k2)s(k1, k2) = A(k2, k1)s(k2, k1) ,

A(k1, k2)α(−k1) = A(−k1, k2)α(k1) ,

A(k1, k2)β(k2) = A(k1,−k2)β(−k2) ,

(6.31)

together with nine other equations that can be obtained from the above
formulae by applying permutations and negations. Here the coefficient is

s(k1, k2) = −1
2

(
J − 2Jze

ik2 + Jei(k1+k2)
)

. (6.32)

It implies

α(k1)β(k1)
α(−k1)β(−k1)

=
B(−k1, k2)
B(k1, k2)

, (6.33)

where

B(k, k′) = s(k, k′)s(k′,−k) . (6.34)

Finally, the quantization condition can be written as

e2ik1(L−1) (Jeik1 − 2h1 − Jz)(Jeik1 − 2hL − Jz)
(Je−ik1 − 2h1 − Jz)(Je−ik1 − 2hL − Jz)

=
B(−k1, k2)
B(k1, k2)

. (6.35)

Due to the symmetries k1,2 ↔ −k1,2 the eight more functional relations
result in only one additional equation (quantization condition)

e2ik2(L−1) (Jeik2 − 2h1 − Jz)(Jeik2 − 2hL − Jz)
(Je−ik2 − 2h1 − Jz)(Je−ik2 − 2hL − Jz)

=
B(−k2, k1)
B(k2, k1)

. (6.36)

The coefficient A(k1, k2) has the form:

A(k1, k2) = β(−k1)β(−k2)B(−k1, k2)e−ik2 . (6.37)

This implies the general form of the eigenfunction in the co-ordinate rep-
resentation as a superposition of waves

a(x1, . . . , xM ) =
∑
P

εP A(k1, . . . , kM ) exp


i

M∑
j=1

kjxj


 , (6.38)
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where the sum extends over all permutations and negations of of k1, . . . , kM

and εP changes sign at each such “mutation”. The coefficients are given as

A(k1, . . . , kM ) =
M∏

j=1

β(−kj)
∏

1≤j<l≤M

B(−kj , kl) exp(−ikl) . (6.39)

The quantization conditions for the quasimomenta kj can be written as

α(kj)β(kj)
α(−kj)β(−kj)

=
∏
l=1
l �=j

B(−kj , kl)
B(kj , kl)

, (6.40)

where j = 1, . . . , M . This can be re-written in the following way:

e2ikj(L−1) (Jeikj − 2h1 − Jz)(Jeikj − 2hL − Jz)
(Je−ikj − 2h1 − Jz)(Je−ikj − 2hL − Jz)

=
M∏

l=1,
l �=j

exp(−i[θ(kj , kl) + θ(kj ,−kl)]) , (6.41)

where j = 1, . . . , M and

θ(k1, k2) = tan−1

(
Jz sin k1−k2

2

J cos k1+k2
2 − Jz cos k1−k2

2

)
, (6.42)

which coincides with the definition of this function for periodic boundary
conditions, cf. Chapter 3. Equation (6.41) is the Bethe ansatz equation
for the Heisenberg–Ising spin- 1

2 chain with open boundary conditions. The
eigenvalue of the Hamiltonian HHI + HZ + Hbs, which corresponds to the
eigenfunction Eq. (6.38) is

E = −H(L − 2M) + h1 + hl

2
+

(L − 1)Jz

4
−

M∑
j=1

(Jz − J cos kj) . (6.43)

Taking the logarithm, e.g., for h1,L → ±∞, we get

(L − 1)kj = πIj −
1
2

M∑
l=1,
l �=j

[θ(kj , kl) + θ(kj ,−kl)] (6.44)

with positive integers Ij . It is easy to check that equation (6.41) for Jz = 0
agree with the quantization conditions and the definition of energies for the
isotropic spin- 1

2 XY chain with open boundary conditions.
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These Bethe ansatz equations can be again re-written in the following
way. For the case J = Jz (i.e., the isotropic Heisenberg chain) one can
introduce the set of rapidities {λj}M

j=1 instead of {kj}M
j=1 as in Chapter 3

(e.g., λj = 1
2 cot kj

2 etc.). Then the Bethe ansatz equations can be written
in the differential form(

λj + (i/2)
λj − (i/2)

)2L
λj + iS1

λj − iS1

λj + iSL

λj − iSL

=
M∏

l=1,
l �=j

λj − λl + i

λj − λl − i

λj + λl + i

λj + λl − i
. (6.45)

The energy is

E = −H(L − 2M) − h1 − h2

2
+

(L − 1)J
4

− 2J
M∑

j=1

(4λ2
j + 1)−1 (6.46)

where H is the value of the homogeneous magnetic field and

2S1,L =
J

h1,L
− 1 . (6.47)

For the anisotropic chain with cos η = Jz/J the set of rapidities is intro-
duced via kj = −i sin[λj + (η/2)]/sin[λj − (η/2)]. Bethe ansatz equations
and the energy of an open chain become(

sin[λj + (η/2)]
sin[λj − (η/2)]

)2L sin[λj + iS′
1]

sin[λj − iS′
1]

sin[λj + iS′
L]

sin[λj − iS′
L]

=
M∏

l=1,
l �=j

sin[λj − λl + η]
sin[λj − λl − η]

sin[λj + λl + η]
sin[λj + λl − η]

(6.48)

where

S′
1,L =

1
2

ln

(
sin[ln

√
cos η + (2h1,2/J) − (η/2)]

sin[ln
√

cos η + (2h1,2/J) + (η/2)]

)
, (6.49)

and the energy is

E = −HL + h1 + h2

2
+

(L − 1)Jz

4

−
M∑

j=1

(
Jz − H − J sin[λj + (η/2)]

2 sin[λj − (η/2)]
− J sin[λj − (η/2)]

2 sin[λj + (η/2)]

)
. (6.50)
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The quantities S′
1,L are defined in such a way that at h1,L = 0 they are

2S′
1,L = π − η, and for h1,L → ∞ one has S′

1,L = 2π − η.
We see that Bethe ansatz equations for an open chain differ from the

ones for a closed geometry, Eqs. (3.20)–(3.23), by:

• There are not only differences but also sums of rapidities on the
right hand sides of Bethe ansatz equations for an open case;

• The effective length of a chain is doubled, i.e., L is replaced by 2L

for a system with open boundaries;
• On the left hand sides of Bethe ansatz equations for an open case

there are multipliers connected with nonzero boundary fields.

Now, let us study how these differences affect thermodynamic character-
istics in the limit of large L and M (with M/L fixed), concentrating on the
case of the antiferromagnetic Heisenberg spin-1

2 chain (i.e., Jz = J > 0).
In the framework of the string hypothesis we look for the solution of

Eq. (6.45) in the form of strings. Introducing strings as λj = λj,m +
i[(m + 1)/2 − ν] with ν = 1, . . . , m, we get

θm,1(λm
j ) +

1
2L

(
θm,2S1(λ

m
j ) + θm,2S2(λ

m
j )
)

=
π

L
Ij,m +

1
2L

∞∑
n=1
n �=m

Mn∑
l=1
l �=j

[Θmn(λm
j − λn

l ) + Θmn(λm
j + λn

l )] , (6.51)

where θn(x) = 2 tan−1(x/n),

θm,n(x) =
min([m],[n])∑

l=1

θm+1+n−2l(x) , (6.52)

[x] denotes the integer part of x,

Θmn(x) = (1 − δm,n)θ|m−n|(x) + 2θ|m−n|+2(x) + · · ·
+ 2θm+n−2(x) + θm+n(x) , (6.53)

and integers 1 ≤ Ij,m ≤ (L + Mm − 2
∑∞

n=1 min(m, n)Mn) appear be-
cause the logarithm is the multi-valued function. Again, we introduce two
sets of these quantum numbers. The first set, Ij,m which characterizes
strings present in the given configuration, parametrizes quasiparticles, and
the second set, I

(h)
j,m, which characterizes unoccupied vacancies of the given

configuration of strings, parametrizes quasiholes.
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Then we look for solutions to thermodynamic Bethe ansatz equations
for large L, keeping corrections of order of L−1, too. In the framework
of the string hypothesis it is justified, because we dropped only terms of
order of exp(−L), when we used string solutions, cf. Chapter 3. In this
limit we introduce distribution functions (densities) for particles and holes,
corresponding to strings of length m: ρm(x) and ρmh(x), respectively. It
yields

ρmh(λ) +
1
2

∞∑
n=1

[Amn(λ − λ′) + Amn(λ + λ′)] ∗ [ρn(λ′) − p(λ′)δm,1]

=
1

2L

∞∑
n=1

[Am,n(λ − λ′) + Am,n(λ + λ′)] ∗ p(λ′)(δm,[2S1]+δm,[2S2]) , (6.54)

where p(λ) = 1/4 cosh(πλ/2), ∗ denotes the convolution,

Am,n(x) = a|m−n|(x) + 2
min(n,m)−1∑

l=1

am+n−2l(x) + am+n(x) , (6.55)

and am(x) = 2m/[π(4x2 + m2)]. The internal energy E and the total
magnetic moment Mz are given as

E = E0 −
1
2

∞∑
m=1

∫ ∞

0

dλθ′m,1(λ)ρm(λ) ,

Mz =
L

2
− L

∞∑
m=1

m

∫ ∞

0

dλρm(λ) ,

(6.56)

where E0 = −[2(HL + h1 + h2) − (L − 1)Jz]/4.
The set of thermodynamic equations for dressed energies εn(λ) =

T ln[ρnh(λ)/ρn(λ)] = ηn(λ) is

Hm − Jθ′m,1(λ) = T ln[1 + ηm(λ)]

− T

2

∑
n

[An,m(λ − λ′) + An,m(λ + λ′)] ∗ ln[1 + η−1
n (λ′)] , (6.57)

which completes the set Eq. (6.54). We, actually, see that the set of equa-
tions for dressed energies for the chains with open and periodic boundary
conditions coincide, up to the change An,m(λ−λ′) → (1/2)[An,m(λ−λ′)+
An,m(λ + λ′)].

The reader can observe that thermodynamic Bethe ansatz equations for
densities are linear integral equations. There are two kinds of driving terms:
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the ones of order of 1, and the ones of order of L−1. This is why, one can
divide densities as ρn(λ) = ρ

(0)
n (λ)+L−1ρ

(1)
n (λ) (and the same for densities

of holes). Then one can separate Bethe ansatz equations for densities into
two sets: one of the scale 1 for the main (of order of L) contribution to the
energy, magnetization, etc., i.e., for ρ

(0)
n (λ) only, and the other one of the

scale L−1 for the finite contribution (of order of 1) to the energy, magnetic
moment, etc., i.e., for ρ

(1)
n (λ) only. The former describes thermodynamics

of the bulk, while the latter reveals the contribution from edge spins. It
turns out that the set of equations for dressed energies does not have terms
of order of L−1 explicitly.

We already showed that the most interesting behaviour of one-
dimensional quantum systems is in the ground state and at low temper-
atures. The reader knows that for a spin- 1

2 Heisenberg chain only spinons
(i.e., strings of length 1) have negative energies (the Dirac sea). The latter
is defined as the solution of the equation

ε1(λ) +
1
2
[A1,1(λ − λ′) + A1,1(λ + λ′)] ∗ ε−1 (λ′) = H − Jθ′1,1(λ) (6.58)

with the same notations as in the previous chapters. The Fermi point
(related to the limit of integration) is determined from the condition
ε1(B) = 0. The equations for densities in the ground state are

ρ1(λ) + ρ1h(λ) = a1(λ) +
1

2L
(a2S1(λ) + a2S2(λ))

− 1
2

∫ B

0

dλ′[a2(λ − λ′) + a2(λ + λ′)]ρ1(λ′) . (6.59)

The ground state internal energy can be written as

ET=0 = E0 +
∫ B

0

dλ[H − Jθ′1,1(λ)]ρ1(λ) (6.60)

and the ground state magnetization is equal to

Mz =
L

2
− L

∫ B

0

dλρ1(λ) . (6.61)

Additional terms in Eq. (6.59) comparing Eq. (3.54) describe bound-
ary fields. There S1,L play the role of effective “boundary spins”. These
“boundary spins” depend on the values of the boundary fields h1,L. For
h1,L = 0 these boundary spins are infinite, leading to the effective twists
of π at each edge. At h1,L = ±J these effective “boundary spins” change
their signs. This situation is related to the effective addition or removal of
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one site to or from the chain, respectively, with finite zero-field magnetic
susceptibility. It leads to onsets of complex roots of Bethe ansatz equations
(6.45) in the ground state: for − 1

2 < S1,L < 0 there appear bound states
parametrized by complex rapidities λj = (i/2)[1 − (J/h1,L)], localized at
edges. Finally, for h1,L → ±∞ we have S1,L → − 1

2 , effectively removing
one site, respectively, from the system.

The value of a homogeneous magnetic field H determines the limit of
integration, i.e., the Fermi point. For the antiferromagnetic case large
values of the external magnetic field |H | > Hs = 2J the system is in the
ferromagnetic state and B = 0. In these regions of values of H the ground
state energy is equal to E0, the magnetic moments of all spins have their
nominal values 1

2 , and the magnetic susceptibility is zero. On the other
hand, in zero magnetic field, H = 0, for the antiferromagnetic situation we
get B = ∞.

Since ε1(λ) and ρ1(λ) are even functions, one can re-write the equation
for dressed energies as

ε1(λ) + A1,1(λ − λ′) ∗ ε−1 (λ′) = H − Jθ′1,1(λ) . (6.62)

The main contribution to the equations of densities, which describes the
behaviour of the bulk, can be written as

ρ
(0)
1 (λ) + ρ

(0)
1h (λ) = a1(λ) −

∫ B

B

dλ′a2(λ − λ′)ρ1(λ′) . (6.63)

It is easy to check that the answers for the main contribution for the open
chain coincide with those for the periodic chain, as expected.

Let us then concentrate on the finite size contributions, for which we
have the equation for dressed densities:

ρ
(1)
1 (λ) + ρ

(1)
1h (λ) =

1
2

[a2(λ) + a1(λ) + a2S1(λ) + a2S2(λ)]

−
∫ B

B

dλ′a2(λ − λ′)ρ(1)
1 (λ′) , (6.64)

where we introduced the term a1(λ) + a2(λ) to avoid double counting due
to the symmetrization of functions (with λ = 0) and to take into account
the term with λα = λβ in the right hand side of Eq. (6.45). In fact,
the limits of integration are already determined by the main contribution,
see Chapter 3. Combining all contributions we obtain for the vanishing
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homogeneous magnetic field H = 0, where B = ∞ and for positive S1,L:

E = E0 −
2L + 1

2
J ln 2 +

πJ

4
− J

4

[
ψ(3/4) − ψ(1/4) + ψ[(2S1 + 3)/4]

−ψ[(2S1 + 1)/4] + ψ[(2SL + 3)/4]− ψ[(2S1 + 3)/4]
]

, (6.65)

where ψ(x) are digamma functions. The reader can see that there is a
difference of order of 1 between this expression and the one for a periodic
chain. This is the ground state energy of free edges of the chain (the surface
energy) and the energy of applied boundary fields. The nature of the former
contribution is as follows: edges are affected by infinitely large potentials,
which do not permit waves to propagate through them. This ground state
corresponds to the total magnetic moment − 1

2 for nonzero h1,L and odd L,
and to zero for h1,L = 0 and even L.

For small values of the homogeneous magnetic field H we can apply the
Wiener–Hopf technique, described in Chapter 3. The magnetic moment of
open boundaries consists of two contributions: from free edges themselves
and from boundary fields. The magnetic moment of free edges of the open
chain is

mz
edges =

1
2

(
1

2|ln√
eH/

√
π3J |

− ln 1
2 |ln

√
eH/

√
π3J |

4(ln
√

eH/
√

π3J)2
+ · · ·

)
. (6.66)

This contribution is different from the linear in H contribution for the
magnetization per site of bulk spins (which is the same as for periodic
spin- 1

2 chain). Naturally, the magnetic susceptibility of free edges is also
different from the finite value of the one for bulk spins:

χedges = − 1
4H ln2(

√
eH/

√
π3J)

. (6.67)

Magnetic moments, caused by finite boundary magnetic fields h1,L are given
by

mz
h =

1
4

(
−1 +

2S1,L − 1
|ln√

eH/
√

π3J |
+ · · ·

)
, (6.68)

for 2S1,L � |ln√
eH/

√
π3J |, and

mz
h = − 1

π2(2S1,L − 1)
|ln

√
eH/

√
π3J | + · · · , (6.69)
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for 2S1,L 	 |ln√
eH/

√
π3J |. As discussed above, the contribution − 1

4 for
each boundary in a vanishing bulk field H is due to the fact that we consider
a chain of odd size in the presence of boundary fields. Magnetic moments
of boundary spins and their magnetic susceptibilities can be extracted for
H = 0 by differentiating Eq. (6.65) with respect to h1,L. Boundary mag-
netic moments vanish for H = h1,L = 0, but local boundary magnetic sus-
ceptibilities are finite. It is necessary to note that for large boundary fields
the result coincides with Eq. (6.69), but for small boundary fields the expec-
tation value of an edge spin is only half of the expression in Eq. (6.69). The
reason for such a difference is the non-commutativity of the limits H → 0
and h1,L → 0.

It turns out that if the homogeneous magnetic field H and the boundary
ones h1,L are connected to each other, e.g., via h1,L = (1 − µ1,L)H , where
µ1,L are effective magnetons of edge spins of an open chain, we can use the
above result for H small enough and/or µ1,L ∼ 1. For larger field H the
perturbative solution outlined above fails and integral equations should be
studied numerically.

It is important to point out that for negative S1,L, where boundary
bound states appear, the energy and the magnetic field dependence of mag-
netic moments are the same as above, despite appearing of local levels.

At low temperatures the contribution of free edges for h1,L = 0 can
produce for the most interesting case η = 0 the divergent local magnetic
susceptibilities χ ∼ (8T | lnx|)−1[1 − (ln | lnx|/2| lnx)] + . . . , where x =
aπJ

√
π/e/T , a is a constant, the divergent Sommerfeld coefficient of the

low-temperature specific heat γ ∼ 3π2/32T ln4 x; the boundary entropy is
S ∼ π2/32| lnx|3.

6.3 Open Boundaries. The Algebraic Bethe Ansatz

In the previous section we studied the behaviour of an open chain using the
co-ordinate Bethe ansatz. It is interesting now to show how the algebraic
version of the Bethe’s ansatz (the quantum inverse scattering method) is
modified due to the presence of open edges of a quantum chain and bound-
ary potentials. This technique was developed mostly by I. V. Cherednik
and E. K. Sklyanin.

As for the periodic chain we start with the R-matrix acting in the space
V1 ⊗ V2 ⊗ V3, which satisfies the Yang–Baxter equation

R23(λ)R12(λ + µ)R23(µ) = R12(µ)R23(λ + µ)R12(λ) , (6.70)
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where the subscripts indicate in which spaces the R-matrix acts nontrivially.
One can also require from the R-matrix the unitarity R12(x)R12(−x) =
ρ(x), crossing-unitarity R12(x)R12(−x−ic) = ρ̃(x) (where ρ and ρ̃ are scalar
c-functions), and we want the R-matrix to be symmetric P12R12(x)P12 =
R12(x) and Rt1

12(x) = Rt2
12(x), where P12 is the permutation operator P (x⊗

y) = y ⊗ x, and t1,2 denotes the transposition in the space V1,2. One
can consider the monodromy matrix T (x), which satisfies the intertwining
relations

R(λ − µ)(T (λ) ⊗ T (µ)) = (T (µ) ⊗ T (λ))R(λ − µ) . (6.71)

Now let us introduce two new algebras K± via so called reflection equa-
tions introduced by Cherednik and generalized by Sklyanin:

R12(x − y)K−
1 (x)R12(x + y)K−

2 (y) = K−
2 (y)R12(x + y)K−

1 (x)R12(x − y) ,

R12(y − x)(K+
1 )t1(x)R12(−x − y − 2ic)(K+

2 )t2(y)

= (K+
2 )t2(y)R12(−x − y − 2ic)(K+

1 )t1(x)R12(y − x) ,

(6.72)

respectively. The illustration of a reflection equation is presented in Fig. 6.1.

1

2

2’ 2’

2

1

1’

K(x)

K(y) K(y)

K(x)

=1’ R(x+y)

R(x−y)

R(x+y)

R(x−y)

Fig. 6.1 Illustration of a reflection equation for an integrable model with open boundary
conditions.

Then it is easy to show that the quantities τ̂o(λ) = trK+(λ)K−(λ),
can be considered as transfer matrices for open chains and commute with
different spectral parameters: [τ̂o(λ), τ̂o(µ)] = 0. The latter property con-
stitutes the exact integrability of the problem, as for the situation with
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periodic boundary conditions. Actually it is possible to consider the ma-
trices

K−(λ) = T−(λ)K̃−(λ)(T−)−1(−λ) ,

(K+)t(λ) = (T +)t(λ)(K̃−)t(λ)(T−)a(−λ) ,
(6.73)

where T a(x) = (T−1)t(x), K(x) = K−1(−x) and

T−(λ) = LN(λ) · · ·L1(λ) , T+(λ) = LL(λ) · · ·LN+1(λ) ,

K̃±(λ) = K±(λ) ,
(6.74)

where Ln(λ) are L-operators (which satisfy intertwining relations with
R-matrix), and K±(λ) are representations of K± in C1, i.e., c-number
matrices. One can prove that

τ̂(λ) = tr K+(λ)T (λ)K−(λ)T−1(−λ) , (6.75)

where T (λ) = T +(λ)T−(λ) = LL(λ) · · ·L1(λ) is the monodromy matrix,
and it is independent of the factorization of T (λ) into T+(λ) and T−(λ).
The illustration of a transfer matrix of an open integrable chain is presented
in Fig. 6.2.

1 .

L (−u)n

. L. .. .

−1 σn

σ
n
’

(u)L n

n

T(u)

T

K

−1(−u)

K (u)(u)+ −

Fig. 6.2 Illustration of a transfer matrix of an integrable model with open boundary
conditions.

Taking K−(0) = I and using the properties of L-operators and R-
matrices we can construct the Hamiltonian of an open chain as the
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logarithmic derivative of the transfer matrix of an open chain

Ho = const
(L−1∑

j=1

d

dλ
Lj,j+1(λ)|λ=0 +

1
2

d

dλ
K−

1 (λ)|λ=0

+
tr0 K+

0 (0) d
dλLN,0(λ)|λ=0

tr K+(0)

)
, (6.76)

where the index 0 denotes the auxiliary subspace and we used the notations
from Chapter 5.

Let us now apply this scheme to the open Heisenberg spin- 1
2 chain,

considered in the previous section with the help of the co-ordinate Bethe
ansatz.

We shall use the expressions for the R-matrix and L-operator from the
previous chapter, Eqs. (5.6) and (5.12), respectively. Reflection equations
then yield

K−(λ) = K(λ, ξ−) , K+(λ) = K(λ + ic, ξ+) ,

K(λ, ξ) =
(

ξ + λ 0
0 ξ − λ

)
.

(6.77)

Then the application of Eq. (6.76) produces (up to constants)

Ho =
L−1∑
j=1


Sj

Sj+1 + ic

(
1
ξ−

Sz
1 +

1
ξ+

SL
1

)
, (6.78)

which coincides with the Hamiltonian of the Heisenberg spin- 1
2 open chain

with h1,L → −icξ−1
∓ .

It is possible to write down

T a(x) =
σyT (x − ic)σy

δ{T (x − i(c/2))} , (6.79)

where

δ{T (x)} = tr12 P−
12T1(x − i(c/2))T2(x + i(c/2)) (6.80)

is the quantum determinant of T (x). Here P−
12 = 1

2 (1−P12) is the antisym-
metrizing operator. Then we can re-write

K−(λ) = T−(λ)K−(λ)
σy(T−)t(−λ − ic)σy

δ{T (−λ− i(c/2))} . (6.81)
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Then, let us introduce the matrices

U−(x) = T−(x)K−(x − i(c/2), ξ−)σy(T−)t(−x − ic)σy (6.82)

and

(U+)t(x) = (T +)t(x)(K+)t(x + i(c/2), ξ+)σyT +(−x)σy , (6.83)

which satisfy the reflection equations

L12(x − y)U−
1 (x)L12(x + y − ic)U−

2 (y)

= U−
2 (y)L12(x + y − ic)U−

1 (x)L12(x − y) ,

L12(y − x)(U+
1 )t1(x)L12(−x − y − ic)(U+

2 )t2(y)

= (U+
2 )t2(y)L12(−x − y − ic)(U+

1 )t1(x)L12(y − x) .

(6.84)

In fact all previous results can be applied to U±.
It is easy to prove that for any x and y

[∆{U−(x)}, U−(y)] = 0 , (6.85)

where

∆{U−(x)} = tr12 P−
12U

−
1 (x − i(c/2))L12(2x − ic)U−

2 (x + i(c/2)) . (6.86)

The latter quantity can be considered as the “Casimir operator” of the
algebra U−. The reader can check that

∆{U−(x)} = δ{T−(x)}δ{T−(−x)}∆{K(x − i(c/2), ξ−)}

= −(2x − 2ic)(x + ξ−)(x − ξ−)
L∏

j=1

δ{Lj(x)}δ{Lj(−x)} . (6.87)

Consider now U−(λ) in the auxiliary space as the 2 × 2 matrix

U−(λ) =
(
A B
C D

)
. (6.88)

One can write (U−)−1(x) = Ũ−(x−ic)/∆{U−(x−i(c/2))}, where Ũ−
1 (x) =

2 tr12 P−
12U

−
2 (x)L12(x) is usually called the algebraic adjunct of U−(x). This
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quantity can be written in the auxiliary space as 2 × 2 matrix

Ũ−(λ) =
(

D̃ −B̃
−C̃ Ã

)

= −
(

b(2λ)A− c(2λ)D B
C −c(2λ)A + b(2λ)D

)
. (6.89)

Then

∆{U−(x)} = U−(x + i(c/2))Ũ−(x − i(c/2))

= Ũ−(x − i(c/2)U−(x + i(c/2))

= D̃(x − i(c/2))D(x + i(c/2))

− B̃(x − i(c/2))C(x + i(c/2)) . (6.90)

It follows from these facts that

τ̂ (λ) = tr U+(λ)U−(λ)

= tr K(λ + i(c/2), ξ+)T (λ)K(λ − i(c/2), ξ−)σyT t(−λ)σy (6.91)

is the even function of the spectral parameter.
Let us introduce the mathematical vacuum as C|0〉 = 0, and with the

diagonal action of the operators A and D: A(x)|0〉 = α(x)|0〉 and D(x)|0〉 =
δ(x)|0〉 (do not confuse with a delta-function). It is easy to see that

∆+(x + i(c/2))∆−(x − i(c/2)) = ∆{U−(x)} , (6.92)

where ∆+(x) = α(x) and ∆−(x) = 2xδ(x) − icα(x). Again, we construct
the vector

|λ1, . . . , λM 〉 =
M∏

j=1

B(λj)|0〉 . (6.93)

Let us apply the operator

τ̂(λ) = (λ + ξ+ + i(c/2))A(λ) − (λ − ξ+ + i(c/2))D(λ) (6.94)

to the vector |λ1, . . . , λM 〉. The following commutation relations can be
used:
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(x − y)(x + y)D(x)B(y) = (x − y + ic)(x + y + ic)B(y)D(x)

+ 2c2B(x)A(y) − ic(x + y + ic)B(x)D(y)

+ ic(x − y + 2ic)B(x)D(y) ,

(x − y)(x + y)A(x)B(y) = (x − y − ic)(x + y − ic)B(y)A(x)

+ ic(x + y − ic)B(x)A(y)

− ic(x − y)B(x)D(y) ,

(6.95)

which stem from intertwining relations for monodromies. It is important to
emphasize that these relations differ from the ones for periodic boundary
conditions not only by the presence of coefficients with sums (x + y), but
also due to onsets of the operators A in the first relation and D in the
second one. The vector |λ1, . . . , λM 〉 is an eigenstate of the transfer matrix
of an open chain if

−λj + ξ+ − i(c/2)
λj − ξ+ + i(c/2)

∆+(λj)
∆−(λj)

(2λj − ic) =
M∏
l=1
l �=j

λj − λl − ic

λj − λl + ic

λj + λl − ic

λj + λl + ic
,

(6.96)
where j = 1, . . . , M . The eigenvalue of the transfer matrix is

Λ(λ) =
2λ + ic

2λ
(λ + ξ+ − i(c/2))∆+(λ)

M∏
j=1

λ − λj − ic

λ − λj

λ + λj − ic

λ + λj

− 1
2λ

(λ − ξ− + i(c/2))∆−(λ)
M∏

j=1

λ − λj + ic

λ − λj

λ + λj + ic

λ + λj
. (6.97)

Let us now put T−(λ) = T (λ) into the definition of U−(λ). In the auxiliary
2 × 2 space the monodromy of a periodic chain can be written as

T (λ) =

(
Â B̂

Ĉ D̂

)
. (6.98)

Its components act on the mathematical vacuum as

Ĉ|0〉 = 0 , Â|0〉 = δ+(λ)|0〉 ,

D̂|0〉 = δ−(λ)|0〉 ,
(6.99)
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where δ+(x + i(c/2))δ−(x − i(c/2)) = δ{T (x)}. Then after some tedious
but straightforward calculations one gets

∆+(x) = (x + ξ− − i(c/2))δ+(x)δ−(−x) ,

∆−(x) = −(2x − ic)(x − ξ− + i(c/2))δ+(−x)δ−(x) .
(6.100)

These expressions can be introduced into Eqs. (6.96) and (6.97). Then
taking the logarithmic derivative of Eq. (6.97) with respect to the spectral
parameter λ, equating λ = 0, and shifting λj → λj−i(c/2) we finally obtain
Bethe ansatz equations and the expression for the energy for a Heisenberg
chain with open boundaries (with c = 1), presented in the previous section.

6.4 Open Hubbard Chain

So far in this chapter we considered quantum spin chains with open bound-
ary conditions. Let us now see how open boundaries affect the behaviour
of correlated electron chains with the possible charge and spin dynamics.
Let us start with the open Hubbard chain, in which Hamiltonian Eq. (4.1)
we exclude terms −

∑
σ(a†

N,σa1,σ + H.c.), but, instead, introduce the term
−
∑

j=1,L

∑
σ pjσnjσ, describing local boundary potentials and magnetic

fields, which act on edge electrons. We assume the following wave function
to be the eigenfunction of the Hubbard Hamiltonian of an open chain:

ψ(x1, . . . , xN , σ1, . . . , σN )

=
∑
P

εP AσQ1 ,...,σQN
(kP1 , . . . , kPN ) exp


i

N∑
j=1

kPj xQj


 , (6.101)

where the sum extends over all permutations and negations of of k1, . . . , kN

and εP changes sign at each such “mutation”. Our strategy is the same as
in Chapter 4, but taking into account negations as in the second section
of the present chapter. By using the co-ordinate representation of the
wave function in a stationary Schrödinger equation we define scattering
and reflection matrices as follows

A...σj ,σj+1,...(. . . , kPj , kPj+1 , . . . )

= Y (kPj , kPj+1)A...σ′
j ,σ′

j+1,...(. . . , kPj+1 , kPj , . . . ) ,

AσQ1 ,...(kP1 , . . . ) = UσQ1
(kP1)AσQ1 ,...(−kP1 , . . . ) ,

A...σQN
(. . . , kPN ) = VσQN

(−kPN )A...σQN
(. . . ,−kPN ) ,

(6.102)
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where

Y (kj , kl) =
(sin kl − sin kj)Π + i(U/2)I

sin kl − sin kj + i(U/2)
, (6.103)

(I and Π are the identity and permutation operators), and boundary ma-
trices Uσ(k) and Vσ(k) are

U(k) =

(
α↑(k)

α↑(−k) 0

0 α↓(k)
α↓(−k)

)
, V (k) =

(
β↑(k)

β↑(−k) 0

0 β↓(k)
β↓(−k)

)
,

ασ(k) = 1 − p1σ exp(−ik) ,

βσ(k) = [1 − pLσ exp(−ik)] exp[ik(L + 1)] .

(6.104)

They have to satisfy the following relations:

U↑(k)U↓(−k) =
ξ1 + sin k

ξ1 − sin k
, V↑(k)V↓(−k) =

ξL + sin k

ξL − sin k
, (6.105)

where ξ1,L = ∞ for p1,L↑ = p1,L↓, and ξ1,L = (1 − p2
1,L↑)/2ip1,L↑ for

p1,L↑ = −p1,L↓. The fulfillment of these relations is necessary to apply the
algebraic Bethe ansatz for open chains, described in the previous section.
Hence, it is possible to obtain a Bethe ansatz solution for an open Hubbard
chain only for these two sets of boundary potentials, i.e., if one has only
boundary potentials or only boundary magnetic fields. We point out that,
as for an open spin chain, we can obtain all other similar relations by
negations and permutations of kj .

By using these matrices we obtain the following relation

A...σQj
,...(. . . , kPj , . . . ) = TjA...σQj

,...(. . . , kPj , . . . ) , (6.106)

where

Tj = tr0 K+
0 (kj)L01(kj ,−k1) × · · · × L0N (kj ,−kN )

×K−
0 (kj)L0N (kj , kN ) × · · · × L01(kj , k1) , (6.107)

where

L0n(kj , kn) =
(sin kj − sin kn)I0n + i(U/2)Π0n

sin kj − sin kn + i(U/2)
, (6.108)
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with I0n and P0n are the identity and permutation operators acting in the
quantum subspace Vn and auxiliary subspace V0, and

K−
0 (k) = V (k) ,

K+
0 (k) =

2 sink + i(U/2)

2 sink(2 sin k + iU)




(2 sin k + i(U/2))
α↑(k)

α↑(−k)

−i(U/2)
α↓(k)

α↓(−k)

0

0
(2 sin k + i(U/2))

α↓(k)

α↓(−k)

−i(U/2)
α↑(k)

α↑(−k)




.

(6.109)

To diagonalize the matrix Tj we proceed along the lines of Chapter 4 by
using the fundamental spin problem for an open spin- 1

2 chain from the pre-
vious section with introduced inhomogeneities (charge rapidities). Then
one obtains Bethe ansatz equations for an open Hubbard chain (this di-
agonalization was first performed by H. Schulz for p = 0) for the sets kj

(j = 1, . . . , N , N is the number of electrons) and λγ (γ = 1, . . . , M , M is
the number of electrons with spins directed downward)

∏
1,L

e1+i(4ξ1,L/U)(λγ) =
∏
±

N∏
j=1

e−1
1 (λγ ± sinkj)

M∏
β=1
β �=γ

e2(λγ ± λβ) ,

α↑(kj)
α↑(−kj)

β↑(kj)
β↑(−kj)

=
M∏

β=1

e1(sin kj − λβ)e1(sin kj + λβ) ,

(6.110)

where en(x) = (4x + iUn)/(4x − iUn). The energy is

E = −2
N∑

j=1

cos kj . (6.111)

In the framework of the string hypothesis we can write the thermody-
namic Bethe ansatz equations for the open Hubbard chain. Let us perform
it first for the values of boundary fields or potentials, at which there are no
boundary bound states, see the analysis below.

In the limit of large L, N, N with N/L and M/L kept fixed we can
consider three main classes of solutions of Eq. (6.110): one again considers
real charge rapidities, spin-singlet pairs and bound states of them, and
spin bound states, with the same notations as in Chapter 4. By using
straightforward procedures, similar to the case of a Heisenberg open chain,
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we obtain thermodynamic Bethe ansatz equations for densities

2[ρ(k) + ρh(k)] =
2
π

+
2
L

P (k) + cos k

∞∑
n=1

[aUn/4(sin k − λ)

+ aUn/4(sin k + λ)] ∗ [σn(λ) + σ′
n(λ)] ,

2σnh(λ) =
1
L

Qn(λ) + [aUn/4(λ − sin k) + aUn/4(λ + sin k)] ∗ ρ(k)

−
∞∑

m=1

[Anm(λ − λ′) + Anm(λ + λ′)] ∗ σm(λ′) ,

2σ′
nh(λ) =

4
π

Re
1√

1 − [λ − in(U/4)]2
+

2
L

Q′
n(λ)

−
∞∑

m=1

[Anm(λ − λ′) + Anm(λ + λ′)] ∗ σ′
m(λ′)

− [aUn/4(λ − sin k) + aUn/4(λ − sin k)] ∗ ρ(k) ,

(6.112)

where

P (k) =
1 − p1↑pL↑

π

1 + p1↑pL↑ − (p1↑ + pL↑) cos k

(1 + p2
1↑ − 2p1↑ cos k)(1 + p2

L↑ − 2pL↑ cos k)
,

Qn(λ) =
n∑

j=1

[axj1(λ) + axjL(λ)] ,

Q′
n(λ) = −

2n∑
j=1

P (kn,j) − Qn(λ) ,

(6.113)

with

xj1,L =
1 − p2

1,L↑
2p1,L↑

+ (n − 2j)
U

4
, (6.114)

and

kn,2j+1 = π − sin−1[λ + i(n − 2j)(U/4)] , j = 1, . . . , n − 1 ,

kn,2j = sin−1[λ + i(n − 2j)(U/4)] , j = 1, . . . , n − 1 .
(6.115)
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Thermodynamic Bethe ansatz equations for dressed energies have the form

ε(k) = −
(

2 cosk +
H

2
+ µ

)
+

T

2

∞∑
n=1

[aUn/4(sin k − λ)

+ aUn/4(sin k + λ)] ∗ ln
1 + κ−1

n (λ)
1 + η−1

n (λ)
,

T ln[1 + ηn(λ)] = nH − T

2
cos k[aUn/4(λ − sink)

+ aUn/4(λ + sin k)] ∗ ln[1 + ξ−1(k)]

+
T

2

∞∑
m=1

[Anm(λ − λ′)

+ Anm(λ + λ′)] ∗ ln[1 + η−1
m (λ′)] ,

T ln[1 + κn(λ)] = −4 Re
√

1 − [λ − in(U/4)]2 − 2nµ

− T

2
cos k[aUn/4(λ − sin k)

+ aUn/4(λ + sin k)] ∗ ln[1 + ξ−1(k)]

+
T

2

∞∑
m=1

[Anm(λ − λ′)

+ Anm(λ − λ′)] ∗ ln[1 + κ−1
m (λ′)] .

(6.116)

To remind the notations: aUn/4(x) = (nU/4)/π[x2 + (nU/4)2], the
Fourier transform of Anm(x) is coth(|ωU |/8)[exp(−|n − m||ωU |/8) +
exp(−(n − m)|ωU |/8)]. The internal energy, the number of electrons and
the total magnetic moment are given by

E = −2L

∫ π

0

dk cos kρ(k)

− 4L

∞∑
n=1

Re
∫ ∞

0

dλ
√

1 − [λ − in(U/4)]2σ′
n(λ) ,

N = L

∫ π

0

dkρ(k) + 2L
∞∑

n=1

n

∫ ∞

0

dλσ′
n(λ) ,

Mz =
L

2

∫ π

0

dkρ(k) − L

∞∑
n=1

n

∫ ∞

0

dλσn(λ) .

(6.117)
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Thermodynamic Bethe ansatz equations for densities of an open attrac-
tive Hubbard chain follow from Eq. (6.112) with the change of the signs of
the third term in the right hand side of the first equation. Thermodynamic
Bethe ansatz equations for dressed energies of an open attractive Hubbard
chain follow from Eq. (6.116) with the change of the signs of ln(1 + ξ−1)
and the sign of the driving term for dressed energies of pair excitations,
while 2nµ keeps the same sign.

Noting that thermodynamic Bethe ansatz equations for densities are
linear integral equations, one can divide them into two sets: one of the scale
1 for the main (of order of L) contribution to the energy, magnetization,
number of electrons, etc., and the other one, of order of L−1. The former
describes thermodynamics of the bulk of an open Hubbard chain, while the
latter reveals the contribution from electrons sitting at edges. The set of
equations for dressed energies does not have terms of order of L−1 explicitly.

Since all dressed energies, densities and kernels of integrals in
Eqs. (6.112) and (6.116) are even functions, we can re-write those equations
in the form, similar to a periodic Hubbard chain, permitting distributions
of k and λ over total intervals instead of half-intervals. It is important,
however, to exclude double counting of states related to kj and λγ with
j = γ = 0 and to count the possibility of λγ = λβ in Eq. (6.110), which
implies subsequent changes in the equations for densities of order of L−1,
cf. the results for an open Heisenberg chain. After this procedure we see
that the main contribution in L is, naturally, the same for a Hubbard chain
with periodic and open boundary conditions. The difference appears in
behaviours of energies, magnetic moments, valences (the average number
of electrons per site) of edge sites. By performing this program we obtain
the set of equations for densities (with the superscript (1) we again denote
the values of order of L−1), while the set of thermodynamic Bethe ansatz
equations for dressed energies of an open Hubbard chain formally coincides
with Eq. (4.58)

ρ(1)(k) + ρ
(1)
h (k) = P̂ (k) + cos k

×
∞∑

n=1

aUn/4(sin k − λ) ∗ [σ(1)
n (λ) + (σ′

n)(1)(λ)] ,

σ
(1)
nh (λ) = Q̂n(λ) + aUn/4(λ − sin k) ∗ ρ(1)(k)

−
∞∑

m=1

Anm(λ − λ′) ∗ σ(1)
m (λ′) ,
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(σ′
nh)(1)(λ) = Q̂′

n(λ) −
∞∑

m=1

Anm(λ − λ′) ∗ (σ′
m)(1)(λ′)

− aUn/4(λ − sin k) ∗ ρ(1)(k) ,

(6.118)

where

P̂ (k) = P (k) −
∞∑

m=1

aUm/4(sin k)(2 − δM ′
m,0 − δMm,0) ,

Q̂n(λ) = Qn(λ) +
∞∑

m=1

Anm(λ)(1 − δMm,0) ,

Q̂′
n(λ) = Q′

n(λ) +
∞∑

m=1

Anm(λ)(1 − δM ′
m,0) .

(6.119)

The internal energy, valences and magnetic moments of edge sites of an
open Hubbard chain are then

eedge = −2
∫ π

0

dk cos kρ(1)(k)

− 4
∞∑

n=1

Re
∫ ∞

0

dλ
√

1 − [λ − in(U/4)]2(σ′
n)(1)(λ) ,

nedge =
∫ π

0

dkρ(1)(k) + 2
∞∑

n=1

n

∫ ∞

0

dλ(σ′
n)(1)(λ) ,

mz
edge =

1
2

∫ π

0

dkρ(1)(k) −
∞∑

n=1

n

∫ ∞

0

dλσ(1)
n (λ) .

(6.120)

These corrections are nonzero even for p1,Lσ = 0, which is the contribution
from free edges themselves.

It is interesting to compare, e.g., the behaviours of a local specific heat
(connected to edge sites) and the one for bulk sites of an open Hubbard
chain. Denote the specific heat of bulk sites per site as c∞ and the lo-
cal specific heat of edges as cedge (notice that we do not now distinguish
contributions from edges themselves and boundary potentials or fields).
Then after some straightforward but tedious calculations one obtains, for
example, that at low temperatures (with H 	 T )

cedge = c∞δf (6.121)

for −µ ≤ −2 − (H/2), where δf = 0 for p1,L↑ = 1, and δf = (1 + 2p1↑ −
p1↑pL↑)/(1 − p1↑)(1 − pL↑) elsewhere. In this region of parameters the
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low temperature specific heat is proportional to
√

T . Observe that in the
absence of boundary potentials or fields, p1,L↑ = 0, the local specific heat
of edges coincides with the bulk one per site. For −µ > −2 − (H/2)
the specific heat is proportional to T (i.e., the Sommerfeld coefficient is
constant). Calculations yield

cedge = c∞πP̂ (Q) , (6.122)

where Q is the Fermi point of unbound electron excitations. For −µ ≥
2 − (H/2), H ≥ (

√
16 + U2 − U) the specific heat is also linear in T and

one gets

cedge = c∞
πP̂ (π)cc + Γcs

cc + cs
, (6.123)

where cc,s are contributions to the bulk specific heat due to charged and
spin low-lying excitations, respectively (c∞ = cc + cs) and

Γ =
π
√

1 + (U/4)2

2

(∫ π

−π

dkaU/4(sin k)P̂ (k) + Q̂1(0)
)

. (6.124)

Now let us consider the effect of boundary bound states. In principle
one is free to leave the boundary bound states empty. This gives rise
to another continuum of states, which are important if one studies, e.g.,
multiple Fermi edge singularities in the presence of those boundary bound
states. For simplicity we shall discuss the case with pLσ = 0 and p1↑ =
p1↓ = p, i.e., without boundary magnetic fields but with only one boundary
potential applied to the left edge of the chain. Other cases can be studied
analogously. We can consider four situations. For p < 1 there are no
boundary bound states, and we can use the previous analysis. For 1 <

p < p1 = (U/4) +
√

1 + (U/4)2 there is a complex solution to the Bethe
ansatz equations kN = i ln p. To take into account this solution, but to keep
the total number of roots of Bethe ansatz equations fixed, we renormalize
Eq. (6.110) as

e2ikj(L+1)sp(kj) =
∏
±

M∏
β=1

e1(sin kj ± λβ) ,

∏
±

e1±(8f/U)

N−1∏
j=1

e1(λγ − sin kj) =
∏
±

M∏
β=1
β �=γ

e2(λγ ± λβ) ,

(6.125)
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where j = 1, . . . , N − 1, γ = 1, . . . , M , sp(k) = [1 − p exp(−ik)]/[1 −
p exp(ik)] and f = −i sinkN = (p2 − 1)/2p < (U/4). The contribution
of this bound state to the energy is Eb1 = −(p2 + 1)/p + µ − (H/2). For
p1 < p < p2 = (U/2) +

√
1 + U2 there appears the complex solution λM =

i[f−(U/4)] (here f > U/4). We have to renormalize Bethe ansatz equations
to

e2ikj(L+1)sp(kj)

= e2−(8f/U)(sin kj)e8f/U (sin kj)
∏
±

M−1∏
β=1

e1(sin kj ± λβ) ,

e1−(8f/U)(λγ)e3−(8f/U)(λγ)
∏
±

N−1∏
j=1

e1(λγ ± sin kj)

=
∏
±

M−1∏
β=1
β �=γ

e2(λγ ± λβ) ,

(6.126)

where j = 1, . . . , N − 1, γ = 1, . . . , M − 1. Finally, for p > p2 a boundary
singlet bound state with λM = sinkN − i(U/4) = sinkN + i(U/4) = i[f −
(U/4)] appears. In this case Bethe ansatz equations are modified as

e2ikj(L+1)sp(kj) = e4−(8f/U)(λγ)e8f/U (λγ)
∏
±

M−1∏
β=1

e1(sin kj ± λβ) ,

∏
±

N−2∏
j=1

e1(λγ ± sinkj) =
∏
±

M−1∏
β=1
β �=γ

e2(λγ ± λβ) ,

(6.127)

where j = 1, . . . , N − 2, γ = 1, . . . , M − 1. The energy of this singlet
boundary bound state is Eb2 = −2

√
1 + [f − (U/2)]2 + µ − (H/2).

The energy of edges for a repulsive Hubbard open chain in the ground
state can be calculated as

eedge =
∫ Q

0

dkε(k)P̃ (k) +
∫ B

0

dλφ1(λ)Q̃1(λ) − µ

2
− H

4

+ 1 + θ(p − 1)Eb1 + Hθ(p − p1) + θ(p − p2)Eb2 , (6.128)

where θ(x) is the Heaviside step function,

P̃ (x) =
1
π
− cos kaU/4(sin k) +

p cos k − p2

π(1 + p2 − 2p cosk)
+ θ(p − p1) cos k[a4f (sin k) + a(U/2)−4f (sin k)] , (6.129)
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and

Q̃1(λ) = aU/2(λ) + θ(p − 1)θ(p1 − p)[a(U/4)−4f (λ) + a(U/4)+4f (λ)]

+ θ(p − p1)θ(p2 − p)[a4f−(U/4)(λ) + a(3U/4)−4f (λ)] . (6.130)

The dressed energies are the solution of the ground state equations
Eq. (4.69). In the absence of the homogeneous magnetic field H = 0 we
can simplify those equations, which become

ε(k) = µ−2 cos k+
∫ Q

−Q

dk′G(U/2),(U/2)(sin k− sin k′) cos k′ε(k′) , (6.131)

where Ga,b(x) is the Fourier transform of exp(−a|ω|/2)/2 cosh(bω/2). Then
the valence of the first site is

n1 = −∂eedge

∂p
= θ(p − 1)(1 − p−2) + θ(p − p2)

[f − (U/2)](1 + p2)
2p2

√
1 + [f − (U/2)]2

− 1
2

∫ Q

−Q

dkε(k)
(

γp(k) + θ(p − 1)θ(p2 − p)

× cos k
∂

∂p
[G(U/2)−2f,(U/2)(sin k)

+ G(U/2)+2f,(U/2)(sin k)] + θ(p − p2) cos k
∂

∂p
[a4f (sin k)

+ a4f−(U/2)(sin k)]
)

, (6.132)

where

γp(k) =
p2 cos k + cos k − 2p

π(1 + p2 − 2p cosk)
. (6.133)

Notice that θ-functions in Eq. (6.128) must not be differentiated with re-
spect to p to obtain Eq. (6.132). In the limit of large p only the first two
terms survive and the expected answer n1|p→∞ = 2 results. Depending
on U and the total number of electrons (or µ) the local charge stiffness
of the first site of an open Hubbard chain reveals one, two or no features,
which are related to the values of p at which n1 is close to zero, 1 and 2.
This behaviour is very different from the behaviour of bulk electrons in a
Hubbard chain.
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6.5 Open Supersymmetric t-J Chain

Let us now consider the behaviour of a supersymmetric t-J chain with open
boundary conditions. In this section we shall limit ourselves with the case
V = −J/4 and J = 2.

The analysis of reflection equations of an open supersymmetric t-J chain
in the framework of the algebraic Bethe ansatz shows that there are several
solutions of those equations. Here we shall consider two of them. In the
first case boundary potentials are applied as

Hb1 = −p′1n1 − p′LnL (6.134)

and in the second case edge sites are affected by the mixed influence of
boundary potentials and fields which are equal to each other

Hb2 = −1
2
[p1(2Sz

1 − n1) + pL(2Sz
L − nL)] . (6.135)

Let us denote

S′
1,L = 2 +

2
p′1,L

(6.136)

for the first case and

S1,L = 1 +
2

p1,L
(6.137)

for the second case.
The construction of Bethe ansatz equations of an open supersymmetric

t-J chain is similar to the one of a Hubbard chain of the previous section.
We, however, shall use a slightly different Bethe ansatz description of this
problem. Let us start with Bethe ansatz equations for the sets of spin
{λα}M

α=1 and charge {pj}N
j=1 rapidities, where N and M denote the number

of electrons and the number of electrons with spins down, respectively.
The Bethe ansatz equations are (for simplicity we now study the case with
p1,L = p′1,L = 0; the case with nonzero boundary potentials can be treated
analogously):

∏
±

N∏
j=1

e1(λα ± pj) =
∏
±

M∏
β=1

e2(λα ± λβ)

e2L
1 (pj) =

∏
±

M∏
β=1

e1(pj ± λβ) ,

(6.138)
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where en(x) = (2x + in)/(2x − in). Equations (6.138) are written for the
FFB grading. This form of Bethe ansatz equations for a periodic model was
introduced by C. K. Lai and P. Schlottmann. However, for some purposes
it will be more convenient to use the BFF grading scheme of the algebraic
Bethe ansatz with the Grassmann parities ε1 = 0 (this state is related to a
hole at the site) and ε2 = ε3 = 1. We re-write Eq. (6.138) as:

e2L
1 (uj) =

∏
±

Nh+M∏
k=1

e2(uj ± uk)
Nh∏
β=1

e−1
1 (uj ± νβ)

1 =
∏
±

Nh+M∏
k=1

e1(να ± uk) ,

(6.139)

where Nh = L − N is the number of holes (non-occupied sites). This form
of Bethe ansatz equations for a supersymmetric t-J chain with periodic
boundary conditions was first introduced by B. Sutherland. It is easy to
show that the two forms, Eqs. (6.138) and Eq. (6.139), are equivalent. For
this purpose one can consider the second set of Eq. (6.139) as the root of
some polynomial P (να) = 0 with

P (x) =
∏
±

Nh+M∏
k=1

(
x ± uk − i

2

)
−
∏
±

Nh+M∏
k=1

(
x ± uk +

i

2

)
. (6.140)

We separate the first Nh roots να of the Nh + M roots of P (x) and label
the remaining M roots by λα. Then we have the factorization

P (x) = const ·
∏
±

M∏
α=1

(x ± λα)
Nh∏
β=1

(x ± νβ) (6.141)

from which it follows

∏
±

M∏
α=1

e1(uj ±λα)
Nh∏
β=1

e1(uj ± νβ) =
P (uj + i/2)
P (uj − i/2)

=
∏
±

Nh+M∏
k=1

e2(uj ± uk) .

(6.142)
Then using this relation and the first set of Eq. (6.139) we obtain the second
set of Eq. (6.138), with uj = pj .
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Next, the second equation of (6.138) can be re-written as Q(pj) = 0
with the definition

Q(x) =
(

x +
i

2

)2L ∏
±

M∏
β=1

(
x ± λβ − i

2

)

−
(

x − i

2

)2L ∏
±

M∏
β=1

(
x ± λβ +

i

2

)
. (6.143)

As above, separating first the N roots pj of this polynomial and labeling
the remaining Nh + M roots by uk we obtain the factorization

Q(x) = const ·
∏
±

N∏
j=1

(x ± pj)
Nh+M∏

k=1

(x ± uk). (6.144)

From this we get

∏
±

N∏
j=1

e1(λα ± pj)
Nh+M∏

k=1

e1(λα ± uk) =
Q(λα + i/2)
Q(λα − i/2)

=
∏
±

M∏
β=1

e2(λα ± λβ) . (6.145)

Together with the second set of Eq. (6.139) for λα in place of να it gives
the first set of Eq. (6.138).

For nonzero boundary potentials we have

η1,2(uj)e2L
1 (uj) =

∏
±

Nh+M∏
k=1

e2(uj ± uk)
Nh∏
β=1

e−1
1 (uj ± νβ)

1 = ζ1,2(να)
∏
±

Nh+M∏
k=1

e1(να ± uk) ,

(6.146)

where

η1 = 1 , ζ1(x) = e−S′
1
(x)e−S′

L
(x) ,

η2(x) = e−S1(x)e−SL(x) , ζ2 = 1 .
(6.147)

The energy corresponding to the solution of Bethe ansatz equations is

E = −(µ−2)(L−Nh)−H

2
(L−Nh−2M)−Ep1,2−

Nh+M∑
j=1

4
4u2

j + 1
, (6.148)
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where Ep1 = p′1 + p′L and Ep2 = (p1 + pL)/2. The number of down spins
must be smaller than or equal to the number of up spins, i.e., 2M ≤ L−Nh

in this construction of the Bethe ansatz. The states which do not satisfy
this constraint must be constructed by switching the mathematical vacuum
to the state with down spin electrons at each site. This change formally
leads to p′1,L, p1,L → −p′1,L,−p1,L in the definition of S′

1,L and S1,L. The
advantage of this approach is the simplicity of the limiting case N = L (i.e.,
Nh = 0). The reader can see that in this case Bethe ansatz equations for
a supersymmetric t-J model coincide with the ones of a Heisenberg spin- 1

2

chain.
The analysis of thermodynamics of a supersymmetric open t-J chain is

similar to the one of the periodic t-J chain and to the analysis of an open
Hubbard chain from the previous section. We shall not present it here to
save space. The interested reader can perform such calculations without
difficulty, using the knowledge of methods of the previous section. We limit
ourselves with the most interesting case T = 0. The other advantage of
the Bethe ansatz equations (6.146) is that the ground state corresponds to
only real uj and να. In the limit of large L, M and Nh, but with the ratios
Nh/L and (Nh + M)/L fixed, the ground state Bethe ansatz equations for
dressed energies (with obvious notations) are

εs(x) = H − 2πa1(x) −
∫ B

−B

dya2(x − y)εs(y) +
∫ Q

−Q

dya1(x − y)εc(y) ,

εc(x) = µ − 2 − H

2
+
∫ B

−B

dya1(x − y)εs(y) ,

(6.149)

where an(x) = 2n/π(4x2 +n2), and εs(u) is minus the energy of an elemen-
tary excitation with the real rapidity u, while εc(ν) is minus the energy of
an elementary excitation with the real rapidity ν (i.e., they rather describe
holes, than quasiparticles). The Fermi points, as usual, are determined as
εs(±B) = 0 and εc(±Q) = 0, which are related in such a way to the values
of the chemical potential µ and the homogeneous magnetic field H . The
ground state Bethe ansatz equations for densities are

ρch(x) + ρc(x) =
1
L

[Y1,2(x) − a1(x)] +
∫ B

−B

dya1(x − y)ρsh(y) ,

ρsh(x) + ρs(x) = 2a1(x) +
1
L

[a2(x) + X1,2(x)]

−
∫ B

−B

dya2(x − y)ρsh(y) +
∫ Q

−Q

dya1(x − y)ρch(y) ,

(6.150)
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where

X1(x) = 0 , X2(x) = a−S1(x) + a−SL(x) ,

Y1(x) = a−S′
1
(x) + a−S′

L
(x) , Y2(x) = 0 .

(6.151)

The ground state energy is equal to

E = (µ − 2)N + HM z + Lεc(0) − 2µL + 4L

+
1
4π

∫ B

−B

dxX1,2(x)εs(x) +
1
4π

∫ Q

−Q

dxY1,2(x)εc(x)

− 1
2
εs(0) − µ

2
+ 1 +

H

4
+ Ep1,2 + 0(L−1) . (6.152)

It is worthwhile to present results here for the ground state properties of
bulk electrons, of edges, and contributions from boundary potentials. The
internal ground state energy for bulk electrons per site is

e = −µ + 2 − 2 ln 2 − 2a − 2 ln 2ζ(3)
π

A3 , (6.153)

where

a =
H2

8π2

(
1 − 1

2 lnH
+ · · ·

)
,

A2 =
2

2ζ(3)

(
µ̄ + 2a +

8 ln 2(µ̄ + 2a)3/2

3π
√

6ζ(3)

)
,

µ̄ = 2 ln 2 − µ + 2 .

(6.154)

The magnetic moment per bulk site is

mz =
H

2π2

(
1 +

ln 2
π

√
8(µ̄ + 2a)

3ζ(3)

)(
1 − 1

2 lnH
+ · · ·

)
+ · · · . (6.155)

The magnetic susceptibility per bulk site at H = 0 is χ = 1/2π2 + . . . . The
average valence of bulk sites is

N

L
= 1 − ln 2

π

√
8(µ̄ + 2a)

3ζ(3)
+ · · · (6.156)

and the charge stiffness per bulk site is

χc =
2 ln 2

π

1√
6ζ(3)(µ̄ + 2a)

+ . . . . (6.157)
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These answers coincide with the ones for periodic boundary conditions,
naturally. At half filling the charge susceptibility is divergent, as the con-
sequence of a one-dimensional van Hove singularity.

The contribution from edges themselves is

eedge = −1
2

[
− H

2 lnH

(
1 +

ln lnH

2 lnH

)
+ µ − 2 − π −

√
8(µ̄ + 2a)3

27ζ(3)
+ · · ·

]
,

mz
edge = − H

4 lnH

(
1 +

ln lnH

2 lnH

)
+ · · · ,

χedge =
1

4H ln2 H

(
1 +

ln lnH

2 ln H

)
+ · · · ,

nedge =
1
2

(
1 +

√
2(µ̄ + 2a)

3ζ(3)

)
+ · · · ,

χc,edge = − 4 ln 2 + π

2π
√

6ζ(3)(µ̄ + 2a)
+ · · · .

(6.158)

We see that the ground state magnetic susceptibility of open edges them-
selves of a supersymmetric t-J chain is divergent. The boundary charge
stiffness (charge susceptibility, or compressibility) of edges is negative and
diverges as one approaches half-filling.

Now we want to consider contributions from boundary potentials. For
small boundary potentials p′ (−2[1+(p′)−1] 	 B) the contributions due to
each boundary potential to the magnetic moment, magnetic susceptibility,
valence and compressibility are

mz
p′ =

H

π3
F

(
1 − 1

2 lnH

)
+ . . . ,

χp′ =
F

π3

(
1 +

H2

4π2(µ̄ + 2a)

)(
1 − 1

2 lnH

)
+ . . . (6.159)

np′ = −2F

π
+ . . . , χc,p′ =

F

π(µ̄ + 2a)
+ . . . ,

where

F = − p′

1 + p′

√
(µ̄ + 2a)
6ζ(3)

, (6.160)

we determined the valence and the charge stiffness as derivatives with re-
spect to the chemical potential µ. [The case in which boundary potentials
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and µ are connected to each other has to be considered numerically.] The
reader can see that valences of edges, caused by boundary potentials, are
larger than in the bulk. For large boundary potentials of the first type one
gets

mz
p′ =

H

4π2

(
1 − 1

2 lnH

)(
1 − 1

πF

)
+ · · · ,

χp′ =
1

4π2

(
1 − 1

πF
+

H2

4π3F (µ̄ + 2a)

)(
1 − 1

2 lnH

)
+ · · ·

np′ = −1
2

(
1 +

ln 2
π

√
2(µ̄ + 2a)

3ζ(3)

)
+

1
2πF

+ · · · ,

χc,p′ =
3 ln 2

π
√

6ζ(3)(µ̄ + 2a)
+

1
2πF (µ̄ + 2a)

+ · · · .

(6.161)

The reader can see that the valence at edges is less than the one in the bulk
due to the strong nonzero boundary potential of the first type.

Now let us consider the action of boundary potentials/magnetic fields
of the second kind. For each large boundary potential/magnetic field p 	
−2π/| lnH | we can find (here we write the first terms in series)

mz
p = −1

4
+

p + 1
2p lnH

+
HA

4π3
(ψ[(p − 1)/p]− ψ(−1/2p)) ,

χp = − 1 + h

2hH ln2 H
+

1
4π3

(ψ[(p − 1)/p] − ψ(−1/2p))
(

A +
H2

6π2ζ(3)A

)
,

np = − 1
2π

(ψ[(p − 1)/p] − ψ(−1/2p))

√
2(µ̄ + 2a)

3ζ(3)
,

χc,p =
1
2π

(ψ[(p − 1)/p] − ψ(−1/2p))

√
1

6(µ̄ + 2a)ζ(3)
, (6.162)

where we again considered a boundary potential as an independent param-
eter and determined characteristics as derivatives with respect to H and µ.
Each small boundary potential/magnetic field yields (we again present the
first terms in series)

mz
p = −p lnH

2π2
, χp = − p

2π2H
,

np =
p

2π

√
2(µ̄ + 2a)

3ζ(3)
, χc,p = − p

2π
√

6(µ̄ + 2a)ζ(3)
.

(6.163)
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It turns out that it is impossible to take H → 0 without taking p → 0 first.
This is why, the magnetic moment in this situation is small. However,
depending on how fast one takes p → 0, as compared to the homogeneous
magnetic field H , the contribution to the magnetic susceptibility, caused
by a weak boundary potential of the second kind, may diverge or not.

To summarize, in this chapter we introduced the reader to the main re-
sults of exact solutions of many-body quantum systems with open boundary
conditions. We started with simple XY and Ising chains, and then presented
Bethe ansatz solution to the problem in the frameworks of co-ordinate and
algebraic Bethe ansatz. For the latter the reflection equations (compli-
mentary to Yang–Baxter relations) are derived. Finally, we compared the
behaviours of correlated electron models with open and periodic boundary
conditions.

Open XY and Ising spin- 1
2 chains were studied in [Lieb, Schulz and

Mattis (1961); Pfeuty (1970)]. Studies of open Bethe ansatz integrable
chains was pioneered by M. Gaudin [Gaudin (1971)], see also [Gaudin
(1983)]. The co-ordinate Bethe ansatz ground state calculations for an open
spin- 1

2 Heisenberg–Ising chain can be found in [Alcaraz, Barber, Batchelor,
Baxter and Quispel (1987)]. The reader can find calculations of the con-
tributions from free edges themselves and boundary potentials of an open
Heisenberg chain in [Frahm and Zvyagin (1997b)], and thermodynamics of
an open Heisenberg–Ising chain in [de Sa and Tsvelik (1995)]. Reflection
equations were proposed in [Cherednik (1984)], and the algebraic Bethe
ansatz for open integrable chains was developed in [Sklyanin (1988)] (we
closely follow this work in the derivation of the algebraic Bethe ansatz
for open chains). The first Bethe ansatz solution of an open Hubbard
chain was performed in [Schulz (1985)]. Role of boundary potentials in
the behaviour of open spin and correlated electron chains was studied (and
in this chapter we follow those studies) in [Asakawa and Suzuki (1995);
Frahm and Zvyagin (1997a); Bedürftig and Frahm (1997); Yue and Deguchi
(1997)] for Hubbard and quantum spin chains and in [Eßler (1996)] for a
supersymmetric t-J chain.
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Chapter 7

Correlated Quantum Chains with
Isolated Impurities

In this chapter we shall present exact results for thermodynamic char-
acteristics of impurities in quantum spin and correlated electron chains
and compare their behaviours with those of free edges of homogeneous
quantum chains, and with magnetic and hybridization impurities in three-
dimensional metals (the Kondo and Anderson impurities).

7.1 Impurities in XY Chains

In previous chapters we considered mostly homogeneous quantum spin and
correlated electron chains. The only inhomogeneity, considered so far, was
the possibility of cutting a periodic chain. In that case the behaviour of
edges of open quantum chains was different from the behaviour of bulk
sites of that chain. This situation (with open chains) can be realized if one
introduces a nonmagnetic impurity into a periodic spin chain. However,
more generic situation with an impurity in a quantum correlated chain is
the following:

• An impurity can have different local characteristics (e.g., an ef-
fective magnetic moment or local potential energy) from those of
other sites of a chain;

• an impurity can be coupled to other sites of a chain with an in-
teraction, different in its strength (and, generally speaking, in the
way of coupling) from interactions between other sites of a chain.

Actually, an open boundary, studied in the previous chapter, can be
considered as a special impurity. The strength of an interaction of the
link between the first and the last sites of a periodic chain is zero for an
open chain, and, hence, it is different from couplings in the bulk. Also,

189
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an effective magnetic moment of such an “impurity” is modeled by a local
boundary magnetic field, and a local potential energy of such an impurity
is modeled by a local boundary potential. It is important, nevertheless, to
study the behaviour of a more general impurity, which is coupled to a host
chain with the coupling, different from the one of a host, but when this
coupling does not cut that chain.

Let us consider first a simple isotropic spin- 1
2 XY chain with a single

(isolated) impurity. The Hamiltonian of such a model can be written as

HXY i = −
∑

j �=j0,j0−1

J(Sx
j Sx

j+1 + Sy
j Sy

j+1) −
∑
j �=j0

µHSz
j

− J ′(Sx
j0S

x
j0+1+Sy

j0
Sy

j0+1+Sx
j0−1S

x
j0 +Sy

j0−1S
y
j0

)−µ′HSz
j0 , (7.1)

where we situated an impurity in the site number j0 (nothing actually
depends on the number of the impurity site, see below). The impurity is
different from other sites of the chain by its effective magneton µ′ (with µ

denoting magnetons of host sites), and by the exchange constant J ′, which
describes the coupling of the impurity site with the right and left nearest
neighbors (with J being the homogeneous coupling of the host), i.e., in this
case the local field, acting on the impurity is h = µ′H .

To diagonalize the Hamiltonian HXY i we first use the Jordan–Wigner
transformation Eq. (2.10), which exactly relates the spin-1

2 Hamiltonian to
the quadratic form of spinless Fermi operators as

HXY i = −J

2


 L−1∑

j=1,
j �=j0,j0−1

(a†
jaj+1 + a†

j+1aj) − νL+1a
†
La1 − νL+1a

†
1aL




− µH

2

L∑
j=1

j �=j0

(1 − 2a†
jaj) −

µ′H

2
(1 − 2a†

j0
aj0)

− J ′

2
(a†

j0
aj0+1 + a†

j0+1aj0 + a†
j0−1aj0 + a†

j0
aj0−1) . (7.2)

Suppose L is even. Dividing the Hamiltonian Eq. (7.2) into H± by using
the projection operators 1

2 (1 ± νL) as in Chapter 2, we can study those
parts separately.

HXY i =
1
2
(1 + νL)HXY i +

1
2
(1 − νL)HXY i

=
1
2
(1 + νL)H+

i +
1
2
(1 − νL)H−

i , (7.3)
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where

H+
i = −J

2


 L−1∑

j=1
j �=j0,j0−1

(a†
jaj+1 + a†

j+1aj) − a†
La1 − a†

1aL




− µH

2

L∑
j=1

j �=j0

(1 − 2a†
jaj) −

µ′H

2
(1 − 2a†

j0
aj0)

− J ′

2
(a†

j0
aj0+1 + a†

j0+1aj0 + a†
j0−1aj0 + a†

j0
aj0−1) , (7.4)

and

H−
i = −J

2

L−1∑
j=1

j �=j0 ,j0−1

(a†
jaj+1 + a†

j+1aj) + µH

L∑
j=1

j �=j0

a†
jaj −

(µ′ + µL)H
2

+ µ′Ha†
j0

aj0 −
J ′

2
(a†

j0
aj0+1 + a†

j0+1aj0 + a†
j0−1aj0 + a†

j0
aj0−1) .

(7.5)

One can find eigenvalues for each of H±
i separately and then take into

account the effect of factors 1
2 (1 ± νL+1) by selecting half of eigenvalues of

H+
i and half of those of H−

i .
Consider, e.g., the Hamiltonian H−

i (H+
i can be studied in a similar

way). It is a quadratic form of Fermi operators, and, hence, it can be
diagonalized with the help of the unitary transformation

aj =
∑

λ

uj(λ)aλ , i�
∂aλ

∂t
= ελaλ . (7.6)

The coefficients uj(λ) satisfy the following equations (we omit the explicit
dependence on λ here)

(ε − µH)uj +
J

2
(uj+1 + uj−1) = 0 , j �= j0, j0 ± 1 ,

(ε − µH)uj0±1 +
1
2
(Juj0±2 + J ′uj0) = 0 ,

(ε − µ′H)uj0 +
1
2
J ′(uj0+1 + uj0−1) = 0 .

(7.7)

The last three equations can be considered as the boundary condition for
the first homogeneous linear equation in finite differences. The standard
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solution of these equations describes a gas of fermions with the dispersion
law

εk = µH − J cos k . (7.8)

However, if

I2 > 1 ± x , (7.9)

where I = J ′/J , x = (µH/J)(α − 1), α = µ′/µ, impurity bound states are
split off from the continuous-like spectrum with the energies of these local
levels

ε1,2 = µH − J
x(1 − I2) ± I2

√
x2 + 2I2 − 1

2I2 − 1
. (7.10)

If just one of the inequalities is satisfied, then either the level ε1 below the
band of the continuous spectrum, or the level ε2 above the band of the
continuous spectrum, respectively, are split off. Notice that for 2I2 = 1
the bound state level is ε = µ′H + J/2x for |x| > 1

2 .
It is not difficult to calculate the magnetic moment of an impurity in

thermal equilibrium for large L (notice that in order to keep the total
number of states in a finite system one has to remove two states from the
bands of extended states)

mz
j0 =

µ′

2
− µ′I2

∑
k

sin2 k

|x + cos k − I2 exp(ik)|2
1

1 + exp(εk/T )

−µ′
∑

j=1,2

(1 − r2
1,2)

1 + r2
1,2(2I2 − 1)

1
1 + exp(ε1,2/T )

θ(I2 − 1 ∓ x) , (7.11)

where θ(x) is the Heaviside step function, and

r1,2 =
x ±

√
x2 + 2I2 − 1
2I2 − 1

. (7.12)

It turns out that we are interested only in |r1,2| < 1, i.e., in decaying
solutions. In what follows we shall consider only the case of large enough
L.

In the ground state the expression for the impurity magnetic moment
reduces to

mz
j0 =

µ′

2
− µ′I2

π

∫ k0

0

dk sin2 k

|x + cos k − I2 exp(ik)|2

−µ′ (1 − r2
1)

1 + r2
1(2I2 − 1)

θ(I2 − 1 − x)θ(−ε1) , (7.13)
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where k0 = cos−1(µH/J). The reader can see that the magnetic moment
of an impurity can have a jump when arguments of the Heaviside functions
vanish. However, for I2 = x + 1 we have r1 = 1 and there is no jump.
Hence, the jump exists only at the field value, at which ε1 = 0. The
necessary condition for such an onset of a jump is the inequality

I2 >
µα

2(1 + α)
=

µµ′

2(µ + µ′)
. (7.14)

The critical value of the field at which a jump can exist is

Hj =
JI2

µ
√

α(2I2 − α)
. (7.15)

The stronger inequality follows from the condition r1|H=Hj ≤ 1, which
reads I2 ≥ α. The magnitude of a jump is equal to

δmz
j0 = µ′ I2 − α

I2(α + 1) − α
, (7.16)

which has the maximum value µµ′/(µ + µ′). As I2 tends to α, the jump
vanishes and Hj becomes equal to Hs = J/µ, i.e., the value at which the
quantum phase transition in the homogeneous isotropic XY model into the
spin-polarized phase takes place. The local susceptibility of the impurity is

χj0 =
µµ′I2(α − 1)r2

1

J
√

x2 + 2I2 − 1[1 + r2
1(2I2 − 1)]2

+
µ′I2

√
1 − (H/Hs)2

2πJ [(I2 − α)2 − I4](H/Hs)2 + I4
θ(J − µH)

+
2µ′(µ′ − µ)

πJ

∫ k0

0

dk sin2 k(x + cos k − I cos k)
|x + cos k − I2 exp(ik)|4

+ µ′
√

H2
s − H2

H2(1 − 2I2) + H2
s (x2 + I4) + 2HHs(x − I2)

. (7.17)

If H > Hs, then the second, third and fourth terms in the above formula
vanish and the sign of the first term is determined by the sign of α − 1,
i.e., for α < 1 the susceptibility in this domain of values of field (adjoining
Hj) is negative. A decrease of the magnetic moment of an impurity in this
domain is then compensated by a positive jump. For I2 = α the second
term in Eq. (7.17) has the same square root singularity as in the homo-
geneous isotropic XY chain. For I2 > α both the moment and the local
susceptibility of an impurity are regular for all values of the magnetic field.
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The presence of an impurity affects the distribution of magnetic mo-
ments of a host. For example, in the ground state we obtain

mz
j

µ
=

1
2
− 1

π

(
k0 −

sin 2k0|j − j0|
2|j − j0|

)
− I2(1 − r1)2r

2|j−j0 |
1 θ(I2 − 1 − x)

1 + (2I2 − 1)r2
1

− I2

π

∫ k0

0

dk
sin2 k[(x + cos k) sin 2k|j−j0|−I2 sin k(2|j−j0|−1)]

|x + cos k − I2 exp(ik)|2 ,

(7.18)

from which the reader can see that magnetic moments of the host also un-
dergo jumps for I2 > α at H = Hj , which magnitudes decay exponentially
as distances from the impurity |j− j0| grow (naturally, then, they grow due
to the periodicity). The total jump of the total magnetic moment is equal
to

∆Mz = µ′ 2I2 − α

I2(1 + α) − α
. (7.19)

It is important to emphasize that the total jump of the total spin moment
is equal to 1.

It is interesting that results for a semi-infinite XY chain with an impurity
at the edge follow from the above results using the change I2 → I2/2.
Also, results for a (non-magnetic) impurity, which renormalizes a coupling
constant of only one link can be obtained with the change I2 → I2/2 for
µ′ = µ (α = 1).

Now, let us consider the behaviour of an impurity in the XY chain if the
local field h is directed, e.g., along x. This problem can be solved explicitly
only for the semi-infinite chain with an impurity at the edge and only for
the case H = 0. The Hamiltonian is

HXY i⊥ = −
∞∑

j �=0

J(Sx
j Sx

j+1 + Sy
j Sy

j+1) − hSx
0 − J ′(Sx

0 Sx
1 + Sy

0Sy
1 ) . (7.20)

Here we can use the following trick. The average magnetic moment of an
impurity with the above Hamiltonian is equal to

〈Sx
0 〉 = Z−1 tr[Sz

0 exp(−βHXY i⊥)] , (7.21)

where the partition function is Z = tr exp(−βHXY i⊥). Let us introduce the
auxiliary Hamiltonian Ha = HXY i⊥ + hSx

0 − 2hSx
0Sx

−1, where we formally
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added one spin j = −1 to the semi-infinite chain. Since the operator Sx
−1

has the eigenstates ± 1
2 the reader can see that

〈Sx
0 〉 = tr[ρaSx

0 (1 + 2Sx
−1)] = 2 tr[Sx

0 Sx
−1ρa] , (7.22)

where ρa = exp(−βHa)/tr[exp(−βHa)].
The diagonalization of the Hamiltonian Ha is obtained with the help of

the Jordan–Wigner transformation and following unitary transformation of
Fermi operators

aj =
∑

λ

[uj(λ)aλ + vj(λ)a†
λ] , (7.23)

the coefficients of which satisfy the following set of equations (we again
drop the explicit dependence on λ)

−J(uj+1 + uj−1) = 2εuj , J(vj+1 + vj−1) = 2εvj , j = 1, . . . ,∞ ,

−Ju2 − J ′u0 = 2εu1 , Jv2 + J ′v0 = 2εv1 ,

−J ′u1 − h(u−1 − v−1) = 2εu0 , −Jv2 + h(u−1 − v−1) = −2εv0 ,

−h(u0 − v0) = 2εu−1 , h(u0 − v0) = 2εv−1 .

(7.24)

Again, as for the previous case, the reader can see that there are two types
of solutions. One of them describes a continuous-like spectrum of extended
states, and the second describes local levels of impurity bound states. It
is also clear that solutions can be divided into two classes: the one, which
is dependent on h, and the other one, which is h-independent. Using this
solution we obtain the value of the magnetic moment of an impurity for
large L limit

mx
0 =

2νI2

π

∫
dk sin2 k cos k

|2(cos2 k − ν2) − I2 cos k exp(ik)|2 tanh(J cos k/2T ))

+
νr(1 − r2)

1 + r4(I2 − 1)
tanh[J(r2 + 1)/4rT ]θ(I2 − 2 + 2ν2) , (7.25)

where ν = h/J and

r =

√
2ν2 + I2 − 2 −

√
(4ν2 + I2)2 − 16ν2

2(1 − I2)
. (7.26)

It is interesting to consider some limiting cases. In the ground state for
small h we have

mz
0 ∼ (h/J) ln(h/J) , (7.27)
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while for h 	 J we obtain

mz
0 =

1
2
− I2

ν2
. (7.28)

It means that the magnetic susceptibility of an impurity spin is divergent
in the ground state for small fields, while the saturation value 1

2 is achieved
only in the infinitely large field h.

Now let us study the behaviour of an impurity in the dimerized XY
chain of spins 1

2 . The Hamiltonian of this system has the form

Hdimp =
∑
j �=j0

[J1(Sx
j,1S

x
j,2 + Sy

j,1S
y
j,2) − µ1HSz

j,1 − µ2HSz
j,2]

+
∑

j �=j0,j0−1

J2(Sx
j,2S

x
j+1,1 + Sy

j,2S
y
j+1,1) − µ′

1HSz
j0,1

+ J ′
1(S

x
j0,1S

x
j0,2 + Sy

j0,1S
y
j0,2) + J ′

2(S
x
j0,2S

x
j0+1,1 + Sy

j0,2S
y
j0+1,1) ,

(7.29)

where we used the same notations as in Chapter 2. An impurity is defined
by couplings J ′

1,2 and the effective moment µ′
1, which can be different from

the values in a host.
The Hamiltonian Hdimp can be exactly diagonalized using the gener-

alized Jordan–Wigner transformation from Chapter 2 and the procedure,
similar to the one, described above for the isotropic XY chain with an
impurity. Eigenstates of the system are divided into:

• Two bands of a continuous-like spectrum with energies

ε1,2(k) =
(µ1 + µ2)H

2

± 1
2

√
(µ1 − µ2)2H2 + J2

1 + J2
2 + 2J1J2 cos k ; (7.30)

• Discrete levels are split off the edges of the bands with energies

εj
1,2 =

(µ1 + µ2)H
2

± 1
2

√
(µ1 − µ2)2H2 + (J1 + J2rj)(J1 + J2r

−1
j ) . (7.31)
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Here |rj | ≤ 1, j = 1, 2 are real solutions of the equation

r2[J2
2J2

1 − (J ′
1)

2J2
2 − (J ′

2)
2J2

1 ] + rJ1J2[J2
1 + J2

2 − (J ′
1)

2 − (J ′
2)

2]

+ J2
1J2

2 = 2J1J2(µ′
1 − µ1)Hr

[
(µ1 − µ2)H

±
√

(µ1 − µ2)2H2 + J2
1 + J2

2 + J1J2(r + r−1)
]

. (7.32)

We are interested only in solutions of this equation, which satisfy the con-
dition |r| < 1. This equation is of the fourth order, and, hence, there can
be, generally speaking, up to four solutions (and, hence, up to four local-
ized levels, each being split off the upper or lower edges of two branches of
the continuous-like spectrum). The reader can can see that for J ′

1,2 = J1,2

and µ′
1 = µ1 the only solutions are r = ±1, i.e., there are no local levels

of impurity bound states in the homogeneously dimerized XY chain, as it
must be.

It is straightforward to calculate the specific heat of the system in the
limit of large L:

c =
1

4T 2

∑
m=1,2

[∫
dk[εm(k)]2

π cosh2(εm(k)/2T )
+

∑
l=1,2

(εl
m)2θ(1 − |rl|)

cosh2(εl
m(k)/2T )

]
, (7.33)

where θ(x) is the Heaviside function. We can also calculate for large enough
L the total magnetic susceptibility of the model:

χ =
1
2

∑
m=1,2

[∫
dk

π

(
∂2εm(k)

∂H2
tanh(εm(k)/2T ) +

1
2T

(
∂εm(k)

∂H

)2

× 1
cosh2(εm(k)/2T )

)
+

∑
l=1,2

θ(1 − |rl|)
(

∂2εl
m

∂H2
tanh(εl

m/2T )

+
1

2T

(
∂εl

m

∂H

)2 1
cosh2(εl

m/2T )

)]
. (7.34)

It is clear from the above expressions that contributions from extended
states (bands) to the specific heat and magnetic susceptibility are similar
to the ones for the homogeneous dimerized XY chain (notice that in order
to keep the total number of states in a finite system one has to remove four
states from extended states), but there appear additional contributions
from local levels of bound states.
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By using eigenvalues and eigenvectors we can obtain the magnetic mo-
ment of an impurity

mz
j0 = µ′

1

[
1
2
−

∑
m=1,2

∫
dk

π

2J2
2 (J ′

1J2 + J2J
′
1)

2 sin2 k

[ε1(k) − ε2(k)]
nmk

× [εm(k) − µ2H ](|2J2(µ′
1 − µ1)H [εm(k) − µ2H ] − J ′

2(J
′
1J2 + J ′

2J1)

+ J2 exp(ik)[J2
1 + J2

2 + 2J1J2 cos k − (J ′
1)

2 − (J ′
2)

2]|2)−1

−
∑

l,m=1,2

θ(1 − |rl|)nl,m4(1 − r2
l )J2

1 J2
2 (εl

m − µ2H)2((1 − r2
l )J2

2

× [2J1(εl
m − µ2H) + J ′

1(J1 + J2rl)]2 + r2
l 4(εl

m − µ2H)2[(J ′
1)

2J2
2

+ (J ′
2)

2J2
1 ] + (J ′

1)
2J2

2 (J1 + J2rl)2 + (J ′
2)

2J2
1 (J1 + J2r

−1
l )2)−1

]
,

(7.35)

where n1,2k = [1 + exp(ε1,2(k)/T )]−1 and nlm = [1 + exp(εl
m/T )]−1. In the

ground state, since ε1(k) and ε1,2
1 are always non-negative, n1k = n1m = 0.

Also one has to replace n2k → θ[−ε2(k)] and n2m → θ[−ε1,2
2 ].

It turns out that for µ′
1 = µ1 we can write the explicit formula for r:

r1,2 = (2[(J ′
1)

2J2
2 + (J ′

2)
2J2

1 − J2
1J2

2 ])−1J1J2[J2
1 + J2

2 − (J ′
1)

2 − (J ′
2)

2

±
√

[J2
1 + J2

2 − (J ′
1)2 − (J ′

2)2]2 + 4[(J ′
1)2J

2
2 + (J ′

2)2J
2
1 − J2

2J2
1 ]] .

(7.36)

In this case eigenvalues of local impurity levels are:

ε1,2
1,2 =

(µ1 + µ2)H
2

± 1
2

[
(µ1 − µ2)2H2 + (J ′

1)
2 + (J ′

2)
2

− [(J ′
1)2J2

2 + (J ′
2)2J2

1 ]
2[(J ′

1)2J
2
2 + (J ′

2)2J
2
1 − J2

1J2
2 ]

(J2
1 + J2

2 − (J ′
1)

2 − (J ′
2)

2

±
√

[J2
1 + J2

2 − (J ′
1)2 − (J ′

2)2]2+4[(J ′
1)2J

2
2 + (J ′

2)2J
2
1 − J2

2J2
1 ])

]1/2

.

(7.37)

It is interesting to note that for µ′
1 = µ1 = µ2 the magnetic moment of

an impurity in the ground state depends on the magnetic field only via the
limit of integration for extended states (the contribution from local levels of
bound states and integrand do not depend on H). Hence, in this limit the
local magnetic susceptibility of an impurity is zero in the phases H ≤ Hc



April 6, 2005 10:46 Finite Size Effects in Correlated Electron Models: Exact Results mybook

Correlated Quantum Chains with Isolated Impurities 199

and H ≥ Hs, where the critical values of the homogeneous dimerized XY
chain, cf. Chapter 2, are

Hc,s =
|J1 ∓ J2|
2
√

µ1µ2
. (7.38)

In the ground state for µ′
1 = µ1 the Heaviside functions θ(−εl

2) imply
the onset of critical values

Hj1,2 =

√
J2

1 + J2
2 + J1J2(r1,2 + r−1

1,2)

2
√

µ1µ2
= (2

√
µ1µ2)−1

[
(J ′

1)
2 + (J ′

2)
2

− [(J ′
1)

2J2
2 + (J ′

2)
2J2

1 ]
2[(J ′

1)2J
2
2 + (J ′

2)2J
2
1 − J2

1J2
2 ]

(J2
1 + J2

2 − (J ′
1)

2 − (J ′
2)

2

±
√

[J2
1 + J2

2−(J ′
1)2 − (J ′

2)2]2+4[(J ′
1)2J

2
2 + (J ′

2)2J
2
1 − J2

2J2
1 ])

]1/2

.

(7.39)

At these values of an external field a jump of the magnetic moment of
an impurity can take place. If 0 < r1,2 ≤ 1, the corresponding critical
field Hj1,2 exceeds critical values of the homogeneous dimerized XY chain,
i.e., Hc ≤ Hs ≤ Hj1,2. On the other hand, if −1 ≤ r1,2 < 0, we have
Hj1,2 ≤ Hc ≤ Hs. Depending on the relation between exchange constants
the following situations are possible:

• (a) For J2
1 + J2

2 > (J ′
1)

2 + (J ′
2)

2 and (J ′
1)

2J2
2 + (J ′

2)
2J2

1 > J2
1J2

2 , or
for J2

1 +J2
2 < (J ′

1)
2 +(J ′

2)
2 and (J ′

1)
2J2

2 +(J ′
2)

2J2
1 > J2

1J2
2 , one has

r1 > 0, r2 < 0 and, hence, Hj2 ≤ Hc and Hs ≤ Hj1;
• (b) For J2

1 +J2
2 > (J ′

1)
2 +(J ′

2)
2 and (J ′

1)
2J2

2 +(J ′
2)

2J2
1 < J2

1 J2
2 , one

has r1 < 0, r2 < 0, and Hj1,2 ≤ Hc;
• (c) Finally, for J2

1 + J2
2 < (J ′

1)2 + (J ′
2)2 and (J ′

1)2J2
2 + (J ′

2)2J2
1 <

J2
1J2

2 , one has r1 > 0, r2 > 0, and Hj1,2 ≥ Hs.

In the case (a) local levels of bound states ε1
1,2 emerge when the following

conditions are satisfied

2J2
1J2

2 < (J ′
1)

2J2
2 + (J ′

2)
2J2

1 − J1J2[J2
1 + J2

2 − (J ′
1)

2 − (J ′
2)

2] , (7.40)

while local levels ε2
1,2 emerge when

2J2
1J2

2 < (J ′
1)

2J2
2 + (J ′

2)
2J2

1 + J1J2[J2
1 + J2

2 − (J ′
1)

2 − (J ′
2)

2] . (7.41)
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In the case (b) local levels ε1,2
1,2 are formed, if one has

2J2
1J2

2 > (J ′
1)

2J2
2 + (J ′

2)
2J2

1 − J1J2[J2
1 + J2

2 − (J ′
1)

2 − (J ′
2)

2] . (7.42)

Finally, in the case (c) local levels ε1,2
1,2 are formed if

2J2
1J2

2 > (J ′
1)

2J2
2 + (J ′

2)
2J2

1 + J1J2[J2
1 + J2

2 − (J ′
1)

2 − (J ′
2)

2] . (7.43)

Jumps of host magnetic moments exponentially decrease with increasing
the distance between host spins and an impurity (again, one has to take
into account periodic boundary conditions).

7.2 Impurities in Spin Chains: Bethe Ansatz

In the previous section we considered characteristics of magnetic impurities
in isotropic XY spin- 1

2 chains. Those studies are relatively easy because
the reader knows that Hamiltonians of spin- 1

2 XY chains in the transverse
magnetic field can be exactly mapped onto Hamiltonians of quadratic forms
of Fermi operators (by using the Jordan–Wigner transformation). However,
a nonzero Ising component, Jz �= 0, as the reader knows from Chapter 2,
introduces an interaction between Jordan–Wigner fermions, and we needed
a more sophisticated approach, the Bethe ansatz. Is it possible to study
exactly, e.g., a Heisenberg–Ising chain with an impurity, similar to the one
of the previous section? It is easy to check that the Hamiltonian

Hi =
∑

j �=j0,j0−1

[J(Sx
j Sx

j+1 + Sy
j Sy

j+1) + JzS
z
j Sx

j+1] −
∑
j �=j0

µHSz
j

+ J ′(Sx
j0S

x
j0+1 + Sy

j0
Sy

j0+1 + Sx
j0−1S

x
j0 + Sy

j0−1S
y
j0

)

+ J ′
z(S

z
j0S

z
j0+1 + Sz

j0−1S
z
j0) − µ′HSz

j0 (7.44)

cannot be diagonalized by using the Bethe ansatz. The reason is very
simple: the two-particle scattering matrix of the system with the Hamilto-
nian Eq. (7.44) does not satisfy Yang–Baxter relations, which are necessary
conditions to apply the Bethe ansatz scheme, as we showed in Chapter 5.
Moreover, the reader saw in Chapter 6 that the only possibility to intro-
duce a local magnetic field (a local potential) is to apply it to edges of an
open quantum chain, to preserve the Bethe ansatz integrability. Hence,
at least from this perspective, the reader already knows how impurities,
which can be described only by the action of a local magnetic field (or
a local potential), behave. Nonetheless, the question appears: can one
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consider inhomogeneous quantum chains, in which a coupling between an
impurity and the host is different from couplings between other sites of
the host, but such that their Hamiltonians can be diagonalized by using
the Bethe’s ansatz? The answer is affirmative. To find such Hamiltonians,
we shall follow the pioneering idea of N. Andrei and H. Johannesson, look
for some transfer matrices composed with “defect” L-operators (which will
define an impurity), but constructed in such a way that those impurity
L-operators and, hence, monodromy operators with impurity L-operators
included satisfy intertwining relations with R-matrices (which satisfy Yang–
Baxter relations). The idea was to use the fact, already known to the reader
from Chapter 5. Namely, we know that L-operators of higher spin values,
Eq. (5.39), which describe the Takhtajan–Babujian model, satisfy inter-
twining relations with the R-matrix of the Heisenberg chain, cf. Fig 7.1.

=
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L(v) L(v)

L

L L

L

Fig. 7.1 Illustration of the Yang–Baxter relations for a host’s and impurity’s L-operator.

Let us construct the monodromy matrix

Timp(λ) = L01(λ) · · ·L0L(λ)LS′
0imp(λ − θ) , (7.45)

where

L0n(λ) =
1

λ + i(c/2)
I0 ⊗ In + ic

1
2

σ0 ⊗ 
σn , (7.46)

and

LS′
0imp(λ) =

1
λ − θ + icS′

(
λ − θ + ic(S′)z

imp ic(S′)−imp

ic(S′)+imp λ − θ − ic(S′)z
imp

)
,

(7.47)
see Fig. 7.2.

The subscript imp denotes the co-ordinate of an impurity. The impurity
L-operator differs from other L-operators by two parameters. The first
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1 2 L imp

0 0

...

Fig. 7.2 Illustration of a monodromy operator of an integrable model with an impurity,
situated at the last site of the lattice.

one, S′ determines the value of the spin of an impurity, while the role of
the other parameter, θ, (absent in the analysis of Andrei and Johannesson)
we shall clarify below. Naturally, for θ = 0 and S′ = 1

2 the impurity L-
operator coincides with the ones of the host. It is easy to check that the
L-operators Eqs. (7.46) and (7.47) satisfy Yang–Baxter relations mutually
and intertwining relations with R-matrices of the Heisenberg chain for any
S′ and θ. It is also easy to check that the monodromy operators Eq. (7.45)
satisfy intertwining relations with the R-matrices of the Heisenberg chain,
and, moreover, this fact does not depend on the position of an impurity
L-operator, cf. Fig. 7.3.

=

1

R(u−v) R(u−v)

T(u)

T(v) T(u)

T(v)
1. L..

. ..
L

imp

imp

Fig. 7.3 Illustration of intertwining relations for monodromy operators of an integrable
model with an impurity.

Then, it follows that the transfer matrices with different spectral pa-
rameters, constructed as traces of Eq. (7.45) over the auxiliary subspace,
commute. This constitutes the exact integrability of the problem. Now
it is necessary to construct the Hamiltonian of the Bethe ansatz solvable
Heisenberg spin chain with an impurity. To do it, we shall follow the pro-
cedure, described in Chapter 5, i.e., we shall use as the Hamiltonian the
logarithmic derivative of the transfer matrix (with embedded impurity L-
operator) with respect to the spectral parameter λ, putting then λ = 0.
The Hamiltonian is H = HH +Himp, where HH = J

∑L
j=1


Sj

Sj+1 (S = 1

2 ,
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and periodic boundary conditions are assumed). Suppose that the impurity
L-operator is situated between mth and (m + 1)th L-operators of the host,
then

Himp = Jimp

(
(
Sm + 
Sm+1)
S′

imp + {
Sm

S′

imp,

Sm+1


S′
imp}

− 2iθ[
Sm

S′

imp,

Sm+1


S′
imp] + (θ2 − 2S′(S′ + 1))
Sm


Sm+1

)
, (7.48)

where

Jimp =
4J

4θ2 + (2S′ + 1)2
(7.49)

plays the role of a coupling constant between the impurity site and two
neighboring sites of the host Heisenberg chain, and [., .] ({., .}) denotes
a commutator (anticommutator), for the illustration see Fig. 7.4. The
term with the commutator can be re-written as −iθ[
Sm


S′
imp,


Sm+1

S′

imp] =
θ
Sm(
S′

imp × 
Sm+1), where (
a ×
b) denotes the vector product. The reader
can see that θ actually determines the coupling between the impurity and
the host, i.e., distinguishes the impurity site even for S′ = 1

2 . It is impor-
tant to notice that for S′ = 1

2 and θ = 0 the model reduces to the L+1-long
periodic Heisenberg chain. On the other hand, for θ = ∞ the impurity term
is totally decoupled from the host Heisenberg Hamiltonian. The fact that
the Hamiltonian is blind to the position of an impurity is, naturally, the
artifact of the Bethe ansatz construction, used here.

Jimp Jimp

m m+1

JJ’

imp

Fig. 7.4 Illustration of interactions in a Hamiltonian with a Bethe ansatz integrable
impurity. In the simplest case of the isotropic Heisenberg spin- 1

2
chain the local impurity-

host exchange constant is Jimp = 4J/[4θ2
j + (2S′ + 1)2].

Bethe ansatz equations, which solutions determine eigenfunctions and
eigenvalues of the Schrödinger equation with the Heisenberg Hamiltonian
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with an integrable impurity are

eL
1 (λj)e2S′(λj − θ) =

M∏
l=1
l �=j

e2(λj − λl) , j = 1, . . . , M , (7.50)

where en(x) = (2x + in)/(2x − in), and M is the number of spins down
(the total magnetic moment is Mz = (L/2) + S′ − M), and the energy is

E = E0 −
M∑

j=1

(
2J

4λ2
j + 1

− H

)
,

E0 =
(L − 1)J

4
− H(2S′ + L)

2
+

Jimp(θ2 + 2S′)
4

.

(7.51)

Notice, that except for the trivial contribution to the energy of the ferro-
magnetic state E0, the expression for the energy does not depend on the
parameters of an impurity explicitly.

It is straightforward to generalize the above construction for the
Heisenberg–Ising chain with an integrable impurity. For Jz �= J we again
introduce the value cos η = Jz/J (real values of η are related to the
“easy-plane” magnetic anisotropy |Jz| ≤ J , while the “easy-axis” mag-
netic anisotropy with |Jz| ≥ J is described by imaginary values of η). The
Bethe ansatz equations and the energy can be written as

(
sin[λj + (η/2)]
sin[λj − (η/2)]

)L sin[λj − θ + S′η]
sin[λj − θ − S′η]

=
M∏

l=1,
l �=j

sin[λj − λl + η]
sin[λj − λl − η]

(7.52)

and the energy is

E = −H(L + 2S′)
2

+
(L − 1)Jz

4
+

Jan
impJz(cosh θ + 2S′)

4J

−
M∑

j=1

(
Jz − H − J sin[λj + (η/2)]

2 sin[λj − (η/2)]
− J sin[λj − (η/2)]

2 sin[λj + (η/2)]

)
, (7.53)

where Jan
imp = J sin2 η/(sinh2 θ + sin2 η).

For the most interesting case of S′ = 1
2 the Hamiltonian of the

Heisenberg–Ising ring with an integrable impurity, e.g., for the “easy-
plane” magnetic anisotropy has the form H =

∑
j Hj,j+1 + Himp, where
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the impurity site is supposed to be situated between mth and (m + 1)th
sites of the host,

Hj,j+1 = J 
Sj

Sj+1 + (Jz − J)Sz

j Sz
j+1 , (7.54)

and

Himp = Jan
imp(B̂1(Hm,imp + Himp,m+1) −Hm,m+1

− 2iB2[Hm,imp,Himp,m+1]) , (7.55)

where the operator B̂1 modifies the Heisenberg-like interaction by mul-
tiplying transverse terms (with x and y components) with cosh θ, and
B2 = tanh θ/ sin η. The isotropic Heisenberg limit is obtained by the re-
scaling θ, η → 0 with θ/η → θ being fixed.

The reader can see that an impurity acts threefold. First, it is coupled
to two neighboring sites of the host chain. Second, it renormalizes the
coupling between neighboring sites of the host. And, finally, it introduces
three-site terms. All these terms are determined by nonzero θ and the
value of the spin of an impurity, S′, being nonequal to the value of host
spins. There is no other free parameter of an impurity, using one, one can
remove the second and third parts of the impurity Hamiltonian. Three-site
terms violate time-reversal (T) and parity (P) symmetries separately, but
TP, naturally, holds, so that the CPT-theorem works. These three-spin
terms introduce the topological spin current (spin chirality) around the
elementary triangular cell (formed by the impurity spin and spins of two
neighboring sites of the host). One can check that these three-site terms
are only important in a quantum mechanical description. If one replaces
quantum spins by classical vectors, then a three-spin term is a total time
derivative, and, hence, does not change classical equations of motion. One
can speak about three-spin terms as about local Noether spin topological
currents, induced by an impurity (they are also similar to the Pontriagin
indices, or winding numbers). Naturally, the Hamiltonian of an integrable
impurity is different from what was expected, Eq. (7.44) for S′ = 1

2 . The
question appears, whether one can avoid the action of these three-spin
terms and the renormalization of an interaction between host sites. The
answer comes if one considers a chain with open boundary conditions. If an
impurity is situated in the bulk of an open chain, the only difference is the
presence in the Hamiltonian terms with boundary fields and the absence
of interactions between the first and the last sites of the chain. However,
suppose an impurity is situated at the edge (e.g., first) site of an open chain.
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Then the impurity Hamiltonian with an impurity situated to the left from
the first host site has the form

Himpop = Jimp

(

S1


S′
imp + h1

[
(S′)z

imp + 2θ(Sx
1 (S′)y

imp − Sy
1 (S′)x

imp)

+ {(S′)z
imp, 
S′

imp

S1} +

(
θ2 − S′(S′ + 1) +

1
4

)
Sz

1

])
, (7.56)

where h1 is the boundary local magnetic field acting on the impurity site. If
we put h1 = 0, we obtain the deserved Hamiltonian Himpop = Jimp


S1

S′

imp,
in which the action of an impurity is only in the renormalization of the
coupling of an impurity to the neighboring host site, i.e., what we wanted.
Then, by using the methods of the previous chapter, we can write the Bethe
ansatz equations and the expression for the energy of the open Heisenberg
chain with an impurity

e2L
1 (λj)e2S′(λj − θ))e2S′(λj + θ)e2S1(λj)e2SL(λj)

=
∏
±

M∏
l=1,
l �=j

e2(λj ± λl) (7.57)

and

E = −H(L − 2M + 2S′) − h1 − h2

2
+

JimpS
′

2
+

(L − 1)J
4

− 2J

M∑
j=1

(4λ2
j + 1)−1 , (7.58)

where

2S1,L =
J

h1,L
− 1 , (7.59)

for an impurity in the bulk, and h1 → 4h1[4θ2 +(2S′ +1)2] for an impurity
situated at the left edge of an open chain. Notice that it is the only change
related to the position of the impurity. Actually for h1 = hL = 0 Bethe
ansatz equations for an open Heisenberg chain with an impurity do not
depend on the position of an impurity. These equations for the interesting
for us case h1 = hL = 0 are similar to Bethe ansatz equations of a periodic
Heisenberg chain with an integrable impurity, but with several changes.
First, there is a renormalization L → 2L. The reader already knows what
does this change produce from the previous chapter. As for the impurity
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effect: for an open chain we have two multipliers, related to the impurity,
with ±θ, instead of one term in Eq. (7.50). Physics of this change is clear:
it originated from the fact that a reflection from a boundary wave also
scatters off an impurity, but that reflected wave has the opposite sign of its
wave vector, and, thus, of the rapidity, while the sign of θ remains the same.
In what follows we shall analyze the behaviour of an integrable impurity
in an open Heisenberg chain, and shall only point out differences which
appear in the periodic case. Also, we mostly limit ourselves to real θ.

In the limit of large L (results will be given for the generic case L odd)
in the framework of the string hypothesis thermodynamic Bethe ansatz
equations for an open chain with an impurity

ρmh(λ) +
1
2

∞∑
n=1

[Am,n(λ − λ′) + Am,n(λ + λ′)] ∗ [ρn(λ′) − p(λ′)δm,1]

=
1

2L

∞∑
n=1

[Am,n(λ − λ′) + Am,n(λ + λ′)] ∗ p(λ′ − θ)(δm,2S′) , (7.60)

where p(λ) = 1/4 cosh(πλ/2), ∗ denotes the convolution,

Am,n(x) = a|m−n|(x) + 2
min(n,m)−1∑

l=1

am+n−2l(x) + am+n(x) , (7.61)

and am(x) = 2m/[π(4x2 + m2)]. Then the internal energy E and the total
magnetic moment Mz are given as

E = E0 − J
∞∑

m=1

∫ ∞

0

dλθ′m,1(λ)ρm(λ) ,

Mz =
L

2
+ S′ − L

∞∑
m=1

m

∫ ∞

0

dλρm(λ) .

(7.62)

The set of thermodynamic equations for dressed energies εn(λ) =
T ln[ρnh(λ)/ρn(λ)] = ηn(λ) is

Hm − Jθ′m,1(λ) = T ln[1 + ηm(λ)]

− T

2

∑
n

[An,m(λ−λ′) + An,m(λ + λ′)] ∗ ln[1 + η−1
n (λ′)] ,

(7.63)

which completes the set Eq. (7.60). We see that equations for dressed
energies do not depend on the parameter of an impurity explicitly.
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Thermodynamic Bethe ansatz equations for densities are linear integral
equations. There are two kinds of driving terms: the ones of order of 1,
and the ones of order of L−1. This is why, we can divide the densities as
ρn(λ) = ρ

(0)
n (λ) + L−1ρ

(1)
n (λ) (and the same for densities of holes). Then

one can separate Bethe ansatz equations for densities into two sets: one of
the scale 1 for the main (of order of L) contribution to the energy, magne-
tization, etc., i.e., for ρ

(0)
n (λ) only, and the other one of the scale L−1 for

the finite contribution (of order of 1) to the energy, magnetic moment, etc.,
i.e., for ρ

(1)
n (λ) only. The former describes thermodynamics of the bulk,

while the latter reveals the contribution from edges of open chain and from
an impurity.

The most interesting behaviour of the one-dimensional quantum system
is in the ground state and at low temperatures. For the spin-1

2 Heisenberg
chain only spinons have a Dirac sea. The latter is defined as the solution
of the equation

ε1(λ) +
1
2
[A1,1(λ − λ′) + A1,1(λ + λ′)] ∗ ε−1 (λ′) = H − Jθ′1,1(λ) . (7.64)

The Fermi point (related to the limit of integration) is determined from the
condition ε1(B) = 0. The equations for densities in the ground state are

ρ1(λ) + ρ1h(λ) = a1(λ) +
1

2L
(a2S′(λ + θ) + a2S′(λ − θ))

− 1
2

∫ B

0

dλ′[a2(λ − λ′) + a2(λ + λ′)]ρ1(λ′) . (7.65)

The ground state internal energy can be written as

ET=0 = E0 +
∫ B

0

dλ[H − Jθ′1,1(λ)]ρ1(λ) (7.66)

and the ground state magnetization is equal to

Mz =
L

2
+ S − L

∫ B

0

dλρ1(λ) . (7.67)

Two additional terms in Eq. (7.65) comparing to the homogeneous case
describe the behaviour of an impurity.

For the antiferromagnetic case large values of the external magnetic field
|H | > Hs = 2J the system is in the ferromagnetic state and B = 0. In
these regions of values of H the ground state energy is equal to E0, the
magnetic moments of all spins have their nominal values, ± 1

2 for the host
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and ±S′ for an impurity, and the magnetic susceptibility is zero. For zero
magnetic field in the antiferromagnetic situation at H = 0 we have B = ∞.

Since ε1(λ) and ρ1(λ) are even functions, we can re-write the equation
for dressed energies as

ε1(λ) + A1,1(λ − λ′) ∗ ε−1 (λ′) = H − Jθ′1,1(λ) . (7.68)

This equation, naturally, coincides with the one for a periodic Heisenberg
chain with an impurity. The main contribution to equations of densities,
which describes the behaviour of the bulk, can be written as

ρ
(0)
1 (λ) + ρ

(0)
1h (λ) = a1(λ) −

∫ B

B

dλ′a2(λ − λ′)ρ1(λ′) . (7.69)

It is easy to check that the answers for the main contribution for an open
chain coincide with those for a periodic chain, as expected.

Let us then concentrate on finite size corrections (considering the case
L odd), for which we have the equation for dressed energies:

ρ
(1)
1 (λ) + ρ

(1)
1h (λ) =

1
2

[a2(λ) + a1(λ) + a2S′(λ + θ) + a2S′(λ − θ)]

−
∫ B

B

dλ′a2(λ − λ′)ρ(1)
1 (λ′) , (7.70)

where we introduced the term (1/2L)[a1(λ) + a2(λ)] to avoid the double
counting due to the symmetrization of functions (with λ = 0) and to take
into account the term with λα = λβ in the right hand side of Eq. (7.57).
The limits of integration are determined by the host. For periodic boundary
conditions we have to change the driving term as

1
2

[a2(λ) + a1(λ) + a2S′(λ + θ) + a2S′(λ − θ)] → a2S′(λ − θ) . (7.71)

Combining all contributions we obtain for the vanishing homogeneous mag-
netic field H = 0, where B = ∞:

E = E0 −
2L + 1

2
J ln 2 +

πJ

4
− J

4

[
ψ(3/4)− ψ(1/4)

+
∑
±

(ψ[(2S′ + 3)/4 ± iθ] − ψ[(2S′ + 1)/4 ± iθ])

]
, (7.72)

where ψ(x) are digamma functions. For small values of the homogeneous
magnetic field H we can apply the Wiener–Hopf technique. For a periodic
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system we have to replace the terms of order of 1 by

−J

2
(ψ[(2S′ + 3)/4 − iθ] − ψ[(2S′ + 1)/4 − iθ]) . (7.73)

The magnetic moment of free edges themselves is given in the previous
chapter. The magnetic moment of an impurity S′ �= 1

2 in an open chain is

mz
imp = µi

[
1 +

∑
±

(
± 1

2| ln√
eH/

√
π3JA±|

− ln 1
2 | ln

√
eH/

√
π3JA±|

4(ln
√

eH/
√

π3JA±)2
+ · · ·

)]
. (7.74)

Here A± = exp(±πθ). There is a resonance at |ln√
eH/

√
π3J | = π|θ|, and,

hence, TK =
√

π3/eJ exp(−π|θ|) can be considered as the usual Kondo
temperature for a magnetic impurity. This is why, the reader can see that
the parameter θ in fact determines the resonance shift of the Abrikosov–
Suhl (Kondo) resonance of a magnetic impurity in a quantum spin chain.
As we saw, it is related to the coupling between an impurity and the host.
For a periodic chain with an impurity we obtain

mz
imp = µi

[
1 ± 1

2|lnH/TK | −
ln 1

2 |ln H/TK |
4(lnH/TK)2

+ · · ·
]

. (7.75)

In the limit of small H the difference in answers for the behaviour of the
impurity magnetization in open and periodic chains is negligible; it can be
essential for high enough values of the field. For H � TK we take µi =
S′− 1

2 , and the upper sign, i.e., the impurity spin S′ is underscreened by the
low-lying excitations of the chain to the value S′− 1

2 , and the latter behaves
asymptotically free. On the other hand, for H 	 TK we choose µi = S′

and the lower sign, which means that at higher values of the magnetic field
the non-screened spin of an impurity S′ behaves asymptotically free. For
θ = 0, which pertains to the impurity spin coupled to the host with the
maximal strength, the Kondo screening is maximum (TK is maximum).
On the other hand, TK → 0 for θ → ∞, and the spin of an impurity is
not screened. This case is also obvious physically, because it corresponds
to the impurity spin totally decoupled from the host. If we have S′ = 1

2

in the region H � TK we have to use µ = 2H/π2J coshπθ for an open
chain and µ = 4H exp(π|θ|)/π2J for a periodic chain. This implies that
the ground state of an impurity is singlet, i.e., it is totally screened by low-
lying excitations of the host with the magnetic susceptibility of an impurity
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χimp = 4/
√

πeTK , i.e., inverse proportional to the Kondo temperature, as
expected. It is renormalized by a factor of T−1

K with respect to the host
susceptibility.

As it is clear from Eqs. (7.48) and (7.56), an imaginary θ implies the
non-Hermitian Hamiltonian for an impurity situated in the bulk. The only
possibility to consider imaginary θ with the Hermitian Hamiltonian is to
study an impurity at the edge of an open spin chain with the zero boundary
field. One can see that imaginary θ with θ > S + 1

2 pertain to the ferro-
magnetic coupling of the impurity spin to the host (other cases correspond
to an antiferromagnetic impurity-host interaction). For imaginary θ we can
divide it into its integer and fractional part, 2|θ| = [2|θ|] + {2|θ|}. In this
case the fractional part can define the “Kondo temperature” of an impurity
TK ∼ J [cos(π{2|θ|}/2)]−1. Hence, this “crossover scale” is larger than the
characteristic energy of spinons, which, in turn, defines the critical field Hs

of a quantum phase transition to the spin-saturated (ferromagnetic) phase.
It follows that the only special point in the behaviour of such an impurity is
Hs. Another feature of an imaginary θ is that incident and reflected waves
effectively scatter off different effective “impurity spins”, S ± [2|θ|]

2 . Nega-
tive effective spins signal the onset of local levels (related to bound states
caused by the impurity spin situated at the edge, however their appearance
is not connected with the boundary field, as in Chapter 6, but only with
the ferromagnetic coupling of the impurity spin to the host).

For low temperatures T � TK we can use the Sommerfeld expansion
and calculate H = 0 contributions to the magnetic susceptibility and the
specific heat of the S′ = 1

2 impurity. The entropy of such an impurity
is zero at T = 0. The Sommerfeld coefficient of an impurity is equal to
γimp = 8π3/2/3

√
eTK , which implies the Wilson ratio γimp/χimp = 2π2/3,

i.e., the universal Fermi liquid-like behaviour. On the other hand, at high
temperatures T 	 TK , we have a Curie-like behaviour of the magnetic
susceptibility χimp ∼ 1/12T and a Schottky-like behaviour of the specific
heat. For S′ �= 1

2 for both high and low temperatures we have a Curie-
like behaviour of the magnetic susceptibility of an impurity, but with the
coefficient, proportional to [(S′)2 − 1

4 ]/3 at T � TK and [S′(S′ + 1)]/3 for
T 	 TK . The remnant entropy is equal to Simp = ln(2S′ − 1)/2 in this
case, and we have a Schottky-like maximum in the behaviour of the specific
heat of an impurity.

It is important to emphasize that the finite value of the magnetic
susceptibility of an impurity in the case of an open chain is very small
comparing to the divergent magnetic susceptibility of free edges, cf. the
previous chapter.
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At high temperatures T 	 J with H/T finite the impurity spin behaves
as a free spin S′.

We can generalize the approach considering the behaviour of a spin S′

impurity in an anisotropic spin-S Takhtajan–Babujian chain. To construct
the Hamiltonian we start with R

µiµi+1
αiβi

(λ), the standard R-matrix of a spin
S chain with the uniaxial “easy-plane” anisotropy. Indices αi and βi denote
states of the spin at site i (acting in the Hilbert space Vi), and µ denotes
states in the auxiliary space (Hilbert space V0). The R-matrix has the form

R = P

2S∑
j=0

j−1∏
l=0

sinh η[i2(2S − l) − λ]
sinh η[i2(2S − l)]

2S−1∏
l=j

sinh η[i2(2S − l) + λ]
sinh η[i2(2S − l)]

×
2S∏
p=0
p �=j

2 sin2 ηX̂0i − sin ηp sin η(p + 1)
sin η(j − p) sin η(j + p + 1)

, (7.76)

where λ is the spectral parameter, η is the parameter of the (“easy-plane”)
magnetic anisotropy, the operator P permutes the spaces Vi and V0 and

X̂0i = eiηSz
i

(
1
2
[S+

i S−
0 + S−

i S+
0 ] +

cos ηS cos η(S + 1)
sin η

Sz
i Sz

0

+
sin ηS sin η(S + 1)

sin2 η
cos ηSz

i cos ηSz
0

)
e−iηSz

0 , (7.77)

which in the limit of the SU(2)-symmetric system (η → 0) simplifies to

Si


S0 + S(S + 1). R-matrices satisfy the Yang–Baxter relation. The trans-
fer matrix τ̂β

α (λ) has the form of the trace over the auxiliary space of the
product of L-operators (constructed similar to the ones in Chapter 5) with
the same values of spins S in sites of the host and the L-operator of a
spin S′ with its spectral parameter shifted by θ in the impurity site. L-
operators satisfy intertwining relations, hence, transfer matrices with dif-
ferent spectral parameters commute and the problem is exactly integrable.
The Hamiltonian of the uniaxial quantum spin S chain with an impurity
with the spin S′ is obtained as the derivative of the logarithm of the transfer
matrix with respect to the spectral parameter (taken at λ = 0). It has the
form H =

∑
j JHj,j+1 +Himp. In general, the form of the lattice Hamilto-

nian is very complicated; it depends on S, S′, θ and the anisotropy η. For
example, for the isotropic SU(2)-symmetric spin S host the structure of the
Hamiltonian with an impurity is (without an impurity it corresponds to a
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Takhtajan–Babujian chain, cf. Chapter 5)

Himp = J

(
Hm,imp + Himp,m+1 + {Hm,imp,Himp,m+1}

− 2iθ[Hm,imp,Himp,m+1] + (θ2 − 2S′(S′ + 1))Hm,m+1

)
, (7.78)

where

Ha,b =
S+S′∑

j=|S−S′|+1

j∑
k=|S−S′|+1

k

k2 + δa,b,impθ2

S+S′∏
l=|S−S′|

x − xl

xj − xl
, (7.79)

x = 
Sa

Sb (a, b = m, m+1, imp), and 2xj = j(j +1)−S(S +1)−S′(S′ +1).

Note that in this case the multiplier at the impurity term is [θ2+(S+S′)2]−1

and the coefficient in front of Hm,m+1 becomes −2S′(S′ + 1) − (S′ + S)2.
For an anisotropic case one has to replace x by X̂m,m+1, cf. Eq. (7.77) and
xj by appropriate coefficients from Eq. (7.76).

Bethe ansatz equations, the solutions of which determine eigenfunctions
and eigenvalues of the Schrödinger equation with the Takhtajan–Babujian
Hamiltonian with an integrable impurity in the case of periodic boundary
conditions are

eL
2S(λj)e2S′(λj − θ) =

M∏
l=1
l �=j

e2(λj − λl) , j = 1, . . . , M , (7.80)

where en(x) = (2x + in)/(2x − in), the total magnetic moment is Mz =
LS + S′ − M), and the energy is

E = E0 − J

M∑
j=1

(
S

λ2
j + S2

− H

)
. (7.81)

Again, the Hamiltonian is simplified in the case of an impurity situated
at the edge of an open chain with boundary fields equal to zero. The
reader already saw above that the difference in the behaviour of a magnetic
impurity itself in an open and periodic chain is small in the most interesting
case of a weak magnetic field, and, therefore, we shall present results for
the periodic case below. Results for the behaviour of a magnetic impurity
with open boundary conditions can be straightforwardly obtained from the
ones for a periodic situation. We emphasize again, that for open boundary
conditions there exists a contribution of free edges themselves, which is of
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the same order of magnitude as the contribution from a single impurity,
but its features can be stronger than the ones from an impurity.

We shall present our results for the generic case L odd. Let us first
study the ground state behaviour of the considered system. In the absence
of a magnetic field the ground state energy of an impurity is

[e0(θ)]imp = −πJ sin(2ηS)
4ηS

×
∫

dωei πωθ
η

sinh[πω
η min(S, S′)] sinh[(π2

2η − πmax(S, S′))ω]

sinh(πω) sinh(πω
2 )

.

(7.82)

Consider now the ground state behaviour of an impurity in a small magnetic
field H . The ground state energy of an impurity is equal to (we shall
consider small enough η < π/2S)

[e0(θ, H)]imp = [e0(θ)]imp −
∫

dω

2η
e

iωπθ
η

y+(πω
η ) sinh(ωπS′)

2 cosh(πω
2 ) sinh(ωπS)

(7.83)

for S′ ≤ S and

[e0(θ, H)]imp = [e0(θ)]imp − π(S′ − S)H
π − 2Sη

−
∫

dω

2η
e

iωπθ
η

y+(πω
η ) sinh[(ω π2

2η − πS′)]

2 cosh(πω
2 ) sinh[(ω π2

2η − πS)]
(7.84)

for S′ ≥ S. Here y+(ω) is the positive part of the solution of the equation

y(u) +
∫ ∞

0

du′y(u′)J(u − u′) − HS +
πJ sin(2ηS)

4ηS cosh[π(u+B)
η ]

= −
∫ ∞

0

du′y(u′)J(u + u′ + 2B) , (7.85)

where the Fourier transform of J(x) is

J(ω) =
sinh(ηω

2 ) sinh(πω
2 )

2 cosh(ηω
2 ) sinh(ηωS) sinh[ω(π

2 − ηS)]
(7.86)

and B is connected with the value of the external magnetic field.
Equation (7.85) for small fields can be solved as the sequence of Wiener–
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Hopf equations. It also gives the connection between H and B:

H =
π2J sin(2ηS)

2ηS
e−

(B+a)π
η

Γ(1 + π
2η )

Γ(1 + S)Γ(1 − S + π
2η )

+ . . . , (7.87)

where a is a constant.
For S′ = S we close the contour of integration in Eq. (7.84) through the

upper half-plane (the main pole is of cosh(πω/2)) and obtain

[e0(θ, H)]imp = [e0(θ)]imp − 2S2η(π − 2ηS)H2

2π3 sin(2ηS)TK

+
AH2+4η/(π−2ηS)

TK
+ . . . , (7.88)

for H � TK , where A is a constant and for small η, TK = vF exp(−π|θ|/η)
(vF = πJ sin(2ηS)

4ηS → πJ/2 is the Fermi velocity of low-lying excitations,
i.e., strings of the length 2S). It plays the role of the Kondo temperature,
similar to the crossover scale in the behaviour of a magnetic impurity in a
metal. The spin of a magnetic impurity is totally compensated for H ≤ TK .
The magnetic susceptibility of an impurity is finite as H → 0 and it is
renormalized by a factor of T−1

K with respect to the host susceptibility. For
H 	 TK the impurity spin is not screened.

For S′ > S the main contribution to the integral arises from the poles
at ω = iπ/η (and then ω = 2π/(π − 2ηS)) which produces for H � TK

[e0(θ, H)]imp = [e0(θ)]imp − (S′ − S)πH

(π − 2ηS)

−CH

(
H

TK

)2η/(π−2ηS)

+ . . . , (7.89)

where C is a constant. The reader can see that for H → 0 the spin of an
impurity is underscreened to the value S′−S by host low-lying excitations.
For H 	 TK the spin of an impurity S′ is not screened and behaves with
the known asymptotic freedom. It turns out that some authors connect
the multiplier (1−2ηS/π) with the renormalization of the effective g-factor
of spins, while other works relate such a change to the non Fermi liquid
critical behaviour caused by the magnetic anisotropy.

Finally, for S′ < S and H � TK we get

[e0(θ, H)]imp = [e0(θ)]imp − C′H

(
H

TK

)1/S

+ . . . , (7.90)
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for S > 1, where C′ is a constant, and for S = 1, S′ = 1
2 we have

[e0(θ, H)]imp = [e0(θ)]imp − 2η(π − 2η)H2

4π4 sin(2η)TK
ln(TK/H) + . . . . (7.91)

Hence, for S′ < S the spin of an impurity is overscreened, which produces
the critical, non Fermi liquid behaviour.

For low T the temperature behaviour of the magnetic susceptibility and
specific heat of an impurity also strongly depends on relative values of host
spins S and the impurity spin S′. For S > S′ the impurity is underscreened
by low-lying excitations of the chain. The magnetic susceptibility χimp of
such an impurity is divergent at H = 0 for T → 0. The specific heat cimp

exhibits a Schottky anomaly, related to the undercompensated spin of an
impurity. The entropy of an impurity at T = H = 0 becomes nonzero,
Simp = ln[1 + 2π(S′ − S)/(π − 2ηS)]. A finite magnetic field lifts the
degeneracy and the remnant entropy becomes zero. On the other hand, for
S′ < S the spins of low-lying excitations of the antiferromagnetic critical
chain overscreen the spin of an impurity. This yields the critical behaviour,
which reveals itself in divergences of the T → 0 magnetic susceptibility of
an impurity and of the low-T Sommerfeld coefficient of the specific heat for
H = 0. In this case one has a remnant T = H = 0 entropy of an impurity
Simp = ln(sin[π(2S′ +1)/(2S′+2)]/sin[π/(2S +2)]), which is removed by a
finite magnetic field that lifts the spin degeneracy of the system. It is not
difficult to show that at low T one has cimp ∝ χimp ∼ (T/TK)2/(S+1) for
S > 1, and γimp ∝ χimp ∼ T−1

K ln(TK/T ) at zero magnetic field. For the
case S′ = S we obtain the low temperature behaviour of the free energy of
an impurity (for H = 0)

f(θ)imp = [e0(θ)]imp − πST 2

2(S + 1)TK

[
1 +

3S3

[ln(αTK/T )]3

]
+ . . . , (7.92)

where α is a constant. In the presence of a weak magnetic field H � T we
can calculate the temperature corrections to the free energy of an impurity

f(θ)imp = e0(θ, H)imp − πST 2

2(S + 1)TK
− SH2

2πTK

×
[
1 +

S

ln(αTK/T )
+

S2 ln |ln(αTK/T )|
ln2(αTK/T )

]
+ O(T 2) , (7.93)

which is the famous Kondo behaviour of the asymptotically free spin (char-
acteristic for a Kondo impurity in a free electron host).
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At high temperatures T 	 J with H/T finite the impurity spin behaves
as a free spin S′.

We see that the behaviour of an impurity in an antiferromagnetic quan-
tum spin chain is similar to the behaviour of a magnetic impurity in a metal
(the Kondo impurity). This similarity is not occasional. Let us consider
the behaviour of a Kondo impurity in a metal. The Hamiltonian, which
describes the Kondo problem, is

HK =
∑
k,σ

εkψ†
k,σψk,σ + (I/2)

∑
k,k′,σ,σ′


S′ψ†
k,σ
σσσ′ψk′σ′ , (7.94)

where ψ†
k,σ creates an electron with spin σ and quasimomentum k, 
S is the

operator of the impurity spin (〈(
S′)2〉 = S′(S′+1)) situated at x0, εk is the
energy of the free electron gas and I is the local exchange constant between
an impurity and the free electron host. It is easy to prove that the problem
is effectively one-dimensional. One expands the electron wave in spherical
harmonics about an impurity

ψ†
k,σ =

∑
l

∑
m

Ylm(k/k)ψ†
k,l,m,σ . (7.95)

Then the Hamiltonian obtains the form

HK =
∑

k,l,m,σ

εkψ†
k,l,m,σψk,l,m,σ

+ (I/2)
∑

k,k′,σ,σ′


S′ψ†
k,0,0,σ
σσσ′ψk′,0,0,σ′ , (7.96)

where only s-waves interact with the impurity. Fourier transforming the
Hamiltonian yields the effectively one-dimensional Hamiltonian. Then usu-
ally the relativistic dispersion law for electrons (linearized about Fermi
points) is considered (we put the Fermi velocity equal to 1 below).

In the framework of the Bethe ansatz the behaviour of the Kondo model
is described by the solution of Bethe ansatz equations. They determine the
sets of quantum numbers, charge ({kj}N

j=1, N is the number of electrons)
and spin ({λα}M

α=1, M being the number of down spins) rapidities, which
parametrize eigenvalues and eigenfunctions of the Schrödinger equation of
the Kondo Hamiltonian. There are two types of scattering processes in
the problem. Let us look for the two-particle scattering matrix between a
magnetic impurity and an electron in the form:

Si = Ŝσ,σ′
s,s′ (α) =

1
2
[a′(α)+c′(α)]δσ,σ′δs,s′ +[a′(α)−c′(α)]
S′

s,s′
σσ,σ′ , (7.97)



April 6, 2005 10:46 Finite Size Effects in Correlated Electron Models: Exact Results mybook

218 Finite Size Effects in Correlated Electron Models: Exact Results

where α is the spectral parameter, s and s′ denote z-projections of the impu-
rity’s spin before and after scattering, (while σ and σ′ denote z-projections
of the spin of an electron, respectively), c′(α) = αa′(α)/(α + ig), and g is
related to the impurity-electron exchange constant I. We emphasize that a
dynamical magnetic Kondo impurity produces only elastic scattering, with-
out any reflection. For the exact integrability of the problem two-particle
scattering matrices have to satisfy the Yang–Baxter relations:

Si,j(α)Si
i,x0

(α + α′)Si
j,x0

(α′) = Si
j,x0

(α′)Si
i,x0

(α + α′)Si,j(α) (7.98)

and

Si,j(α)Si,k(α + α′)Sj,k(α′) = Sj,k(α′)Si,k(α + α′)Si,j(α) , (7.99)

where i, j, k enumerate positions of electrons and x0 denotes the position
of a magnetic impurity. Then two-particle scattering matrices between
electrons dynamically yield the form, similar to Eq. (7.97) due to the Kondo
interaction with the magnetic impurity:

S1,2 = S
σ2,σ′

2
σ1,σ′

1
(α) =

1
2
[a(α) + c(α)]δσ1,σ′

1
δσ2,σ′

2

+
1
2
[a(α) − c(α)]
σσ1,σ′

1

σσ2,σ′

2
, (7.100)

where c(α) = αa(α)/(α + ig) and a(0) = 1. Those electron-electron scat-
terings also do not produce any reflection. It is easy to check that Yang–
Baxter relations are satisfied provided h(α) = h′(α) and h(α) + h(α′) =
h(α+α′), where h(α) = c(α)/[a(α)−c(α)]. The Hamiltonian HK yields the
electron-impurity scattering matrix of the form Eq. (7.97) with a′(α0) =
(α0 + ig)[eiIS′/2 + e−i(S′+1)I/2]/2α0 and (2S′ + 1)g = α0 tan[(2S′ + 1)I/4].
[Notice, that as the reader knows from Chapter 5, Yang–Baxter relations
can be satisfied up to an arbitrary factor in a(α), b(α), a′(α) and b′(α), i.e.,
not in the unique way.] Then, proceeding as it was described in Chapter 4,
we obtain Bethe ansatz equations for the Kondo problem with periodic
boundary conditions in a box of length L

e2S′(λα + α0/g)eN
1 (λα) =

M∏
β=1,β �=α

e2(λα − λβ) ,

exp(ikjL) = exp(iIS′/2)
M∏

α=1

e1(λα) , E =
N∑

j=1

kj ,

(7.101)
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where α = 1, . . . , M , j = 1, . . . , N . Taking into account the second set of
Eqs. (7.101) we can re-write the expression for the energy as

E =
2π

L

N∑
j=1

Ij +
N(IS′ − 2πM)

2L
− 2N

L

M∑
α=1

tan−1 2λα , (7.102)

where Ij appear because the logarithm is the multi-valued function. The
total magnetic moment is MZ = (L/2) + S′ − M . We see that actually
the Bethe ansatz equations for an impurity in a quantum spin- 1

2 chain co-
incide with the ones for a Kondo impurity in a metal, up to re-definitions
of eigenvalues and θ. It is also easy to show that the Bethe ansatz equa-
tions for the n-channel Kondo impurity in a metal coincide with the ones
for a spin-S′ impurity in a S = n/2 SU(2)-symmetric quantum antiferro-
magnetic chain, up to similar re-definitions. Hence, our analogies become
transparent. The Kondo temperature for the Kondo case is defined as
TK = (2N/L) exp(−πα0/g), i.e., it is also related to the shift in Bethe
ansatz equations, as for a spin chain.

7.3 Impurity in Correlated Electron Chains

So far in this chapter we considered the behaviour of magnetic impurities
in insulating systems, in which only spin degrees of freedom possessed dy-
namics. It is interesting to investigate how impurities behave in correlated
electron chains using exact methods. From the previous chapter the reader
already knows one possible model of an impurity: it pertains to a local field
or potential. For the Bethe ansatz integrable models this kind of impurity
can be considered only when it is situated at the edge of an open chain.
Now we shall study the behaviour of an integrable impurity of another
kind: the one, studied in the previous section, which is introduced into
the Bethe ansatz scheme via a special L-operator, which, though, satisfies
Yang–Baxter (intertwining) relations with R-matrices of the host model.

Let us start our consideration with the supersymmetric antiferromag-
netic t-J model for the most popular case V = −J/2 and J = 2. We
shall first work in the framework of the graded scheme of the algebraic
Bethe ansatz, introduced in Chapter 5. We begin with the gl(1|2) invariant
R-matrix, which satisfies the Yang–Baxter equation. We already proved
in Chapter 5 that one can construct monodromy operators, which traces,
transfer matrices, with different spectral parameters mutually commute.
This constitutes the exact integrability. The only condition we demanded
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from a monodromy matrix was the following. The action of diagonal ma-
trix elements of the monodromy Tαα on the mathematical vacuum in the
auxiliary 3× 3 space has to produce c-numbers, Tαα(λ)|0〉 = aα(λ)|0〉, i.e.,
the mathematical vacuum is the eigenstate for these diagonal components,
and the action of all upper elements Tαβ with α < β is zero ( Tαβ(λ)|0〉 = 0
for α < β). Then the eigenvalue of the transfer matrix for the eigenstate

|λ0
1, . . . , λ

0
N |F 〉 = Fa1···aN

N∏
j=1

Caj (λ
0
j )|0〉 , (7.103)

where C plays the role of “creation operators” is

Λ(λ) = a3(λ)
N∏

j=1

c−1(λ0
j − λ) − a2(λ)

N∏
j=1

c−1(λ0
j − λ)

M∏
γ=1

c−1(λ − λγ)

− a1(λ)
M∏

γ=1

c−1(λγ − λ) . (7.104)

Taking the logarithmic derivative of the eigenvalue Λ(λ) at λ = 0 we get

E =
N∑

j=1

[
A

ic

(λ0
j + ic)λ0

j

− 2

]
+ Aa−1

3 (0)
da3(λ)

dλ

∣∣∣∣
λ=0

, (7.105)

where A is a constant. The Bethe ansatz equations were the conditions on
rapidities {λ0

j}N
j=1 and {λγ}M

γ=1:

a2(λγ)
a1(λγ)

N∏
j=1

c−1(λ0
j − λγ) =

M∏
β=1
β �=γ

c(λγ − λβ)
c(λβ − λγ)

, γ = 1, . . . , M ,

a3(λ0
j )

a2(λ0
j )

=
M∏

γ=1

c−1(λ0
j − λγ) , j = 1, . . . , N .

(7.106)

Let us now study the representation of diagonal matrix elements of the
monodromy matrix for a supersymmetric t-J model with an impurity. Con-
sider the unity operator Ij , the operator of the number of electrons per site
nj , and three operators of projections of the total spin of the system, S±,z

j ,
respectively. They form U(1) and SU(2) subalgebras ([Sz

j , S±
j ] = ±S±

j ,
[S+

j , S−
j ] = 2Sz

j ) of gl(2|1). Fermion operators (Q±
1,2)j satisfy anticommu-

tation relations

{(Q±
1 )j , (Q±

2 )j} = ±
S±

j

2
, {(Q±

1 )j , (Q∓
2 )j} = ±

−Sz
j ± nj

2
. (7.107)
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with other mutual anticommutators being zero. They satisfy commutation
relations with the bosonic generators

[Sz
j , (Q±

l )j ] = ± (Q±
l )j

2
, [nj, (Q±

l )j ] = (−1)l+1 (Q±
l )j

2
,

[S∓
j , (Q±

l )j ] = (Q∓
l )j , [S±

j , (Q±
l )j ] = 0 ,

(7.108)

with l = 1, 2. To remind, we denote [., .] ({., .}) a commutator (anticom-
mutator). In the basis, where nj , S2

j and Sz
j are diagonal, non-vanishing

matrix elements of (Q±
1,2)j are

〈
S +

1
2
, S − 1

2
, σ ± 1

2
|(Q±

1 )j |S, S, σ

〉
= ±

√
S ∓ σ

2
,

〈
S, S, σ|(Q±

2 )j |S +
1
2
, S − 1

2
, σ ∓ 1

2

〉
=

√
S ± σ

2
.

(7.109)

Actually these operators are sums of local operators of the same structure
at each site of the system. For S = 1

2 one can express these operators
in terms of standard electron creation and annihilation operators as nj =
nj,↑ + nj,↓, 2Sz

j = nj,↑ − nj,↓, S±
j = c†j,↑,↓cj,↓,↑, (Q+

1 )j = (1 − nj,↓)c
†
j,↑,

(Q+
2 )j = (1−nj,↑)cj,↓, and (Q−

1,2)j = (Q+
1,2)

+
j . The multipliers (1−nj,σ) of

fermionic operators Q exclude double occupations of each site, as it must
be for a t-J model. Notice that in Chapter 5 we used definitions, in which,
for S = 1

2 , (Q+
1 )j = Qj↑, (Q+

2 )j = Qj↓, (Q−
1 )j = Q†

j↑, (Q−
2 )j = Q†

j↓, and
we used the operator Nj = Ij − (1/2)nj.

Let us consider the L-operator of host sites of a supersymmetric t-J
chain for V = −J/4 and J = 2 as

Lj(λ) = c(λ)I
(1|2)
j − b(λ)

×




(Nj + Sz
j )(Ij−Nj + Sz

j ) −S+
j −Qj↑

S−
j (Nj−Sz

j )(Ij−Nj−Sz
j ) −Qj↓

−Q†
j↑ −Q†

j↓ −(Nj − Sz
j )(Nj + Sz

j )


 .

(7.110)

For the impurity site we introduce the operator with its spin equal to S′

and the spectral parameter being shifted by θ, i.e.,

Limp(λ) = c(λ − θ)I
(1|2)
imp − b(λ − θ)

×




(Nj + Sz
j )(Ij − Nj + Sz

j ) −S+
j −(Q+

1 )j

S−
j (Nj−Sz

j )(Ij−Nj−Sz
j ) −(Q+

2 )j

−(Q−
1 )j −(Q−

2 )j −(Nj − Sz
j )(Nj + Sz

j )


 .

(7.111)
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In these formulas we used the same values for b(x) and c(x) as in
Chapter 5 for a t-J chain. It is easy to check that these L-operators sat-
isfy graded intertwining relations (Yang–Baxter relations) for L-operators
with a graded R-matrix, Eq. (5.112), from which we started. Correspond-
ing monodromy matrix of a supersymmetric t-J chain with an impurity
T (λ) = Limp(λ)LL(λ) ⊗ · · · ⊗ L1(λ) also satisfies graded intertwining rela-
tions. One can check that the action of this monodromy on the mathemat-
ical vacuum |0〉 is

T (λ)|0〉 =


 cL(λ)cS′ (λ − θ) 0 0

0 cL(λ)cS′(λ − θ)Z(λ − θ) 0
C1(λ) C2(λ) 1


 , (7.112)

where cS′(x) = (x+ icS′)/[x+ ic(1+S′)] and Z(x) = (x − icS′)/(x + icS′).
Equation (7.112) means the triangular action of the monodromy ma-
trix on the mathematical vacuum, i.e., this choice of the L-operator can
be used for the above described scheme with a1(λ) = cL(λ)cS′(λ − θ),
a2(λ) = cL(λ)cS′(λ − θ)Z(λ − θ) and a3(λ) = 1. The Hamiltonian of the
supersymmetric t-J chain with an impurity for V = −J/4 and J = 2 can
be obtained (up to constants) as

HtJimp = −icA
∂

∂λ
ln[str τ̂ (λ)]|λ=0 (7.113)

for shifted rapidities λ0
j → λ0

j − ic/2 and c = 1. It consists of two parts, the
host Hamiltonian, Hhost, and the impurity Hamiltonian, Himp. The host
Hamiltonian is Hhost =

∑
j Hj,j+1, where

Hj,j+1 = −
∑

σ

P(c†j,σcj+1,σ + c†j+1,σcj,σ)P + c†j,↓cj,↑c
†
j+1,↑cj+1,↓

+ c†j,↑cj,↓c
†
j+1,↓cj+1,↑ − nj,↑nj+1,↓ − nj,↓nj+1,↑ , (7.114)

which is the standard Hamiltonian of a t-J chain, studied in previous
chapters. The impurity’s part of the Hamiltonian (for an impurity situ-
ated between sites m and m + 1) is

Himp =
(M, σ|M + σ)
θ2 + (S + 1

2 )2
(Hm,imp + Himp,m+1 − 2S(S − 1)Hm,m+1

+ {Hm,imp,Himp,m+1} − 2iθ[Hm,imp,Himp,m+1]) , (7.115)

where {. , .} ([. , .]) denote anticommutator (commutator) and (M, σ|M +σ)
denotes the Clebsch–Gordan coefficient (1

2σ, S′M |12S′SM + σ) with S =
S′ + 1

2 . An integrable impurity embedded in a host lattice is (as for the
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spin case) located on a link of the chain and interacts with electrons on both
sites joined by the link. All the coupling constants of the impurity Hamil-
tonian depend on two parameters: S, determining the spin of the impurity,
and the off-resonance shift θ (here we mostly limit ourselves with real θ),
determining the impurity-host coupling even for S = 1

2 . From Eq. (7.115) it
is clear, that the “impurity” of spin S = 1

2 and θ = 0 is, in fact, an addition
of one more site to the host. On the other hand, the case θ → ∞ defines
an impurity, totally decoupled from the host ring. Three-site terms of the
impurity Hamiltonian violate the T and P symmetries separately, while
their product PT is of course invariant. These terms are total time deriva-
tives in the classical sense and are only important in quantum mechanical
aspects. Although the reflection amplitude is zero as a consequence of the
integrability, an impurity interacts with both partial waves (forward and
backward moving electrons). Three-site terms can be avoided by placing
the impurity site at the open end of the host chain. This considerably
simplifies the impurity Hamiltonian, since one of the neighboring host sites
is absent. Bethe ansatz equations for the supersymmetric t-J model for
V = −J/4 and J = 2 with an impurity for periodic boundary conditions
are:

e2S′(λα − θ)
N∏

j=1

e1(λα − pj) =
M∏

β=1

e2(λα − λβ) , α = 1, . . . , M ,

e2S′+1(pj − θ)eL
1 (pj) =

M∏
α=1

e1(pj − λα) , j = 1, . . . , N .

(7.116)

The total magnetization is Mz = (N/2) + S − M and the energy of the
system is given by

E = −JN + J

N∑
j=1

(1/2)
(1/4) + p2

j

. (7.117)

The reader already knows how to generalize Bethe ansatz equations (and
following results) for an impurity with open boundary conditions:

∏
±

e2S′(λα ± θ)
N∏

j=1

e1(λα ± pj)
M∏

β=1

e−1
2 (λα ± λβ) = 1 , α = 1, . . . , M ,

e2L
1 (pj) =

∏
±

e−1
2S′+1(pj ± θ)

M∏
α=1

e1(pj ± λα) , j = 1, . . . , N .

(7.118)
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It is instructive to obtain the Bethe ansatz description of the same model
using a different Bethe ansatz scheme. We can start from the two-particle
scattering matrices of the host

X̂(λ) =
Îsλ ± iP̂s

λ ± i
, (7.119)

where Îs is the identity and P̂s the two-particle permutation operator in
the spin subspace. The impurity scattering matrix in the spin subspace can
be written as

Ŝσ,σ′
M,M ′(λ) =

Aδσ,σ′δM,M ′ + Bδ−σ′,σδM ′,M+2σ

λ − θ − i(2S′ + 1)/2
, (7.120)

where σ (σ′) and M (M ′) are the electron and impurity spin S′ components
before (after) scattering, and

A = λ − θ − i(2S′ + 1)
[
1
2
− (σM |M + σ)(σ′M ′|M ′ + σ′)

]
,

B = i(2S′ + 1)(σM |M + σ)(σ′M ′|M ′ + σ′) ,

(7.121)

where S = S′ + 1
2 . The impurity Ŝ matrix is generally a two-parameter

function (a discrete parameter is the spin of the impurity and the coupling
to the host, θ, is a continuous parameter), which differs the impurity matrix
Ŝ from X̂ (X̂ = Ŝ(θ = 0) for S = 1

2 ). Matrices X̂ satisfy the Yang–Baxter
relation

X̂12(λ1 − λ2)X̂13(λ1 − λ3)X̂23(λ2 − λ3)

= X̂23(λ2 − λ3)X̂13(λ1 − λ3)X̂12(λ1 − λ2) , (7.122)

where indices enumerate scattering host electrons. The scattering matrix
Ŝ satisfies the following Yang–Baxter relation:

X̂12(λ1 − λ2)Ŝ1,imp(λ1 − θ)Ŝ2,imp(λ2 − θ)

= Ŝ2,imp(λ2 − θ)Ŝ1,imp(λ1 − θ)X̂12(λ1 − λ2) , (7.123)

where the indices for the matrices S show which particles scatter. The
monodromy matrix in the spin subspace on the inhomogeneous lattice is
defined as

L(λ, p1, . . . , pN , θ)

= X̂01(p1 − λ)X̂02(p2 − λ)X̂0N (pN − λ)S0imp(θ − λ) , (7.124)
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where the index 0 defines the auxiliary subspace, and λ is the spectral
parameter. With respect to the states of the auxiliary space the monodromy
matrix Eq. (7.124) forms 2×2 matrix. Monodromy matrices satisfy the
Yang–Baxter relation

X̂12(λ − λ′)L(λ, v1, . . . , θ)L(λ′, v1, . . . , θ)

= L(λ′, v1, . . . , θ)L(λ, v1, . . . , θ)X̂12(λ − λ′) , (7.125)

which is the direct consequence of Eqs. (7.122) and (7.123). The exact
integrability of the system follows from the fact that transfer matrices
(T (λ) = tr0 L(λ, p1, . . . , θ), which is the trace over the states of the aux-
iliary particle) commute with different spectral parameters, because any
functions of T (λ) commute mutually and with the transfer matrix (i.e., we
have an infinite number of conservation laws). Let us construct the matrix
Tj(pj) defined as

Tj(pj) = X̂−1
j,j−1(pj − pj−1) · · · X̂−1

j,1 (pj − p1) × · · · × Ŝ−1
j,imp(pj − θ)

× X̂−1
j,N(pj − pN ) × · · · × X̂−1

j,j+1(pj − pj+1) . (7.126)

The action of the matrix Tj(pj) implies periodic boundary conditions, i.e.,
that one has to interchange a given electron with all other electrons in the
periodic box, including the impurity. Corresponding eigenvalue of Tj(pj)
is exp(ikjL), which is related to pj for the supersymmetric t-J chain for
V = −J/4, J = 2 as [(2pj + i)/(2pj − i)]L. Substituting λ = vj into the
monodromy matrix we see that T (λ = vj) = Tj(vj). Consider components
of the monodromy matrix taken in the subspace of the auxiliary particle,
Li,j (i, j = 1, 2). The transfer matrix is, naturally, T (λ) = L11(λ)+L22(λ).
These operators obey commutation relations, which follow from Eq. (7.125).
Let us denote the vacuum state Ω0 as L21Ω0 = 0. The vacuum state is the
eigenstate of diagonal matrix elements with eigenvalues

L22(λ) =
θ − λ − i(2S′ − 1)/2
θ − λ − i(2S′ + 1)/2

N∏
j=1

vj − λ

vj − λ + i
,

L11(λ) =
θ − λ + i(2S′ + 1)/2
θ − λ − i(2S′ + 1)/2

.

(7.127)

On the other hand, the operator L12 has the properties like a “spin-
lowering” one, such that the vector
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Ω(α1, . . . , αM ) =
M∏

β=1

L12(αβ)Ω0 (7.128)

corresponds to M flipped spins. Bethe ansatz equations are the conditions
on the sets of parameters pj and αβ , under which the state Ω is the eigen-
state of the transfer matrix T . The application of the operator L11 + L22

produces the eigenvalue (with the reproduction of the state Ω)

L11(λ)
M∏

β=1

λ − αβ + i

λ − αβ
+ L22(λ)

M∏
β=1

λ − αβ − i

λ − αβ
(7.129)

and unwanted terms. The condition of cancellation of those unwanted terms
is

θ − αγ + i(2S′ + 1)/2
θ − αγ − i(2S′ − 1)/2

N∏
j=1

pj − αγ + i

pj − αγ
=

M∏
β=1

αγ − αβ − i

αγ − αβ + i
. (7.130)

Substituting λ = pj, αγ = λγ + i/2 and using Eq. (7.126) we obtain
Eq. (7.116).

We shall present results here for the periodic case; the ones for open
boundary conditions can be obtained in a similar way. The results will be
presented for the generic case N even. In the framework of the string hy-
pothesis we can write thermodynamic Bethe ansatz equations for densities
of a supersymmetric t-J chain for V = −J/4, J = 2 as (here we keep the
same notations as in Chapter 4). After the Fourier transformation we have

σm+1,h(ω) + σm+1,h(ω) + δm,2S′
eiθω

2πL

= 2 cosh(ω/2)[σm(ω) + σm,h(ω)] , m ≥ 1 ,

σ′
h(ω) + 1 +

e(−S′|ω|+iθω)

2πL
= 2e|ω|/2 cosh(ω/2)[σ′(ω) + σ′

h(ω)] + ρ(ω) ,

σ1,h(ω) + σ′
h(ω) + 1 = 2 cosh(ω/2)[ρ(ω) + ρh(ω)] .

(7.131)

Thermodynamic Bethe ansatz equations for dressed energies for the
chain with an impurity coincide with Eq. (4.104). The internal energy, the
number of electrons and the magnetization of a supersymmetric t-J chain
for V = −J/4, J = 2 with an impurity are given by
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E = −2N + 2πL

∫ ∞

−∞
dpa1(p)ρ(p) + 2π

∫ ∞

−∞
dλa2(λ)σ′(λ) ,

N = L

∫ ∞

−∞
dpρ(p) + 2L

∫ ∞

−∞
dλσ′(λ) ,

Mz = S +
L

2

∫ ∞

−∞
dpρ(p) − L

∞∑
n=1

n

∫ ∞

−∞
dλσn(λ) .

(7.132)

The Helmholtz free energy of a supersymmetric t-J chain with an impurity
for V = −J/4, J = 2 is equal to

F

T
= −L

∫ ∞

−∞
dλa2(λ) ln[1 + κ−1(λ)] − L

∫ ∞

−∞
dpa1(p) ln[1 + ξ−1(k)]

−
∫ ∞

−∞
dλ(G2S′+1(λ − θ) ln[1 + κ(λ)] + G0(λ − θ) ln[1 + η2S′(λ)]) ,

(7.133)

where an(x) = 2n/(4x2 + n2) and the Gn(x) is the Fourier transform of
exp(−n|ω|/2)/2 cosh(ω/2).

At high temperatures we obtain

fimp = −T ln(ZS + exp[g(θ) − µ]ZS−(1/2)) , (7.134)

where ZS is the partition function of the free spin S:

ZS =
sinh[(2S + 1)H/2T ]

sinh(H/2T )
, (7.135)

the chemical potential µ is measured from the bottom of the conduction
band, and the function g(θ) measures the admixture of states with the
spin S and S − 1

2 (it is even in θ and monotonically decreases with θ for
positive θ with g(±∞) = 0). For µ = 0, i.e., for the empty band the
configuration with S − 1

2 is favored, while for µ = 2 ln 2 (half-filling) the
favored configuration is rather S. For a fixed H the specific heat of an
impurity displays a Schottky anomaly, while the magnetic susceptibility
follows the Curie law at high temperatures.

In the ground state integral equations for densities (we here write down
only equations for the part of order of L−1, dropping the superscript; equa-
tions for dressed energies and the ones for densities of order of 1 coincide
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with the ones from Chapter 4) are:

ρh(p) + ρ(p) +
∫
|λ|>Q

dλa1(p − λ)σ′(λ) = a2S(p − θ) ,

σ′
h(λ) + σ′(λ) +

∫
|λ|>Q

dλ′a2(λ − λ′)σ′(λ′)

+
∫
|p|>B

dpa1(p − λ)ρ(p) = a2S+1(λ − θ) .

(7.136)

In the absence of a magnetic field, B → ∞, we can obtain analytical results
for the valence of an impurity

nimp =
∫
|p|>B

dpρ(p) + 2
∫
|λ|>Q

dλσ′(λ) , (7.137)

which is equal to nimp = (2S + 1)Q/2π(Q2 − θ2) for large Q (we assumed
that Q 	 |θ|), i.e., for low electron density, and nimp = 1−O(Q) for small
Q, i.e., for the electron density close to half-filling. Hence, as a function of
the band filling the valence of an impurity smoothly varies between 0 (for
N → 0) and 1 (for N → L). The valence is a decaying function of θ for fixed
band filling. It is clear, because the larger θ pertain to weaker coupling of
an impurity to the host. The valence is maximum for θ = 0 which is the
resonance situation (the impurity level is situated at the Fermi point for
the Dirac sea of pairs). The impurity valence also decreases as a function
of S close to half filling, and increases for higher values of the impurity spin
for small total number of electrons in the system. The magnetization of an
impurity for H = 0 is S′ = S − 1

2 .
For H �= 0 we can obtain the valence of an impurity for S− 1

2 	 |Q− θ|
as nimp ≈ 2

√
|Q − θ|/π(2S − 1), and for the opposite case S − 1

2 � |Q− θ|
as nimp = 1

2 + (1/π)[ln 2
√
|Q − θ| − (2S − 1)/2

√
|Q − θ|], where

Q2 =
2

3ζ(3)

(
2 ln 2 − µ +

H2

4π

)
. (7.138)

We point out the magnetic field dependence of the impurity valence in both
limits. When switching on the magnetic field the valence of an impurity
becomes smaller than unity even at half filling. This is connected with the
fact that the magnetic field acts twofold: it affects the magnetization of an
impurity, and also creates spin excitations of the host (which carry charge
too) and changes the number of charged excitations, e.g., destroying pairs,
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which carry zero spin. This is the manifestation of correlations between
electrons in the host.

The ground state magnetization is the sum of two contributions, the
magnetization arising from the valence admixture and the one due to spin
degrees of freedom of an impurity. Since the magnetic field is usually much
smaller than the band width, the former contribution is small (and linear
in H), and can be neglected. Then the Fredholm equation, which describes
only the “Kondo-like” spin excitations is

ρh(p) + ρ(p) −
∫
|p′|>B

dp′G1(p − p′)ρ(p′) = G2S−1(p − θ) . (7.139)

Here we assumed that 0 < 1 � θ. Then one can introduce the Kondo
temperature via π(θ − B) = ln(H/TK), and we obtain the solution for the
magnetization of an impurity

mz
imp = µi

(
1 ± 1

2|ln(H/TK)| −
ln|ln(H/TK)|
4 ln2(H/TK)

+ · · ·
)

, (7.140)

where we use for H 	 TK the lower sign and µi = S, and for H � TK

we use the upper sign and µi = S − 1
2 for S > 1

2 , and µi = H/TK for
S = 1

2 . This means that the impurity spin is underscreened at low fields
to the value S − 1

2 for S > 1
2 , while for S = 1

2 it is totally screened with
the finite magnetic susceptibility (inverse proportional to the Kondo tem-
perature). For high enough values of the magnetic field the impurity spin
behaves as an asymptotically free spin S. We see, that the Kondo temper-
ature depends on the band filling via B. If charge fluctuations are totally
suppressed, for N = L, the Kondo temperature is TK = EF exp(−π|θ|).
Notice that for open boundary conditions one has similar behaviour of an
impurity itself (contributions from open edges also appear, see Chapter 6)
with the renormalized Kondo temperature, in which exp(−π|θ|) is replaced
by [2 cosh(πθ)]−1. The magnetic susceptibility at H = 0 of the impurity
spin is Curie like (∼ T−1) in the Kondo limit with the Curie constant
S(S + 1)/3 for T 	 TK and with [S2 − (1/4)]/3 at T � TK for S > 1

2

and it is finite for low temperatures for S = 1
2 . We emphasize on the cor-

rections due to the mixed valence of an impurity: they shift the value of
the Kondo temperature, e.g., as TK → TK(1 + 2ζ(3)Q3) for Q � 1. This
is also the manifestation of correlations between electrons in the host. It
is important to notice that only unbound electron excitations which carry
spin can screen the spin of an impurity. Spin-singlet pairs only renormalize
the valence of an impurity, but their distribution affects the distribution of
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unbound electron excitations. At H ≥ Hs, in the spin-saturation phase,
the magnetization of an impurity is equal to Mz

imp = S′ + (nimp/2), where
nimp is the valence of an impurity. The specific heat of an impurity ex-
hibits two features: a Kondo resonance at T ∼ TK and a Schottky peak at
T ∼

√
π3/eH . For higher values of H both peaks can merge into one.

As it is clear from Eq. (7.115), the imaginary θ implies the non-
Hermitian Hamiltonian for an impurity situated in the bulk of a correlated
electron chain. The only possibility to consider imaginary θ with the Hermi-
tian Hamiltonian is to study an impurity at the edge of an open t-J chain
with zero boundary fields/potentials. Imaginary θ with θ2 > (S + 1

2 )2

pertains to the ferromagnetic coupling of an impurity to the correlated
electron host (other cases correspond to antiferromagnetic impurity-host
interactions). For imaginary θ we can divide it into its integer and frac-
tional part, 2|θ| = [2|θ|] + {2|θ|}. In this case the fractional part can define
the “Kondo temperature” of an impurity TK ∼ [cos(π{2|θ|}/2)]−1. Hence,
such a “crossover scale” is larger than the characteristic energy of low-lying
spin excitations of the bulk, which, in turn, defines the critical field Hs of
a quantum phase transition to the spin-saturated (ferromagnetic) phase.
Hence, there is only one special point in the behaviour of such an impurity,
Hs. Another feature of imaginary θ is that incident and reflected waves
effectively scatter off different effective “impurity spins”, S − 1±[2|θ|]

2 and
S ± [2|θ|]

2 . Negative effective “impurity spins” signal the onset of local lev-
els (related to bound states, caused by an impurity situated at the edge,
however their appearance is not connected with a boundary potential, as
in Chapter 6, but only with the ferromagnetic coupling of an impurity to
the host). These levels can influence the remnant entropy of an impurity.

It is interesting to mention that there is another possibility to include
a magnetic impurity into an integrable correlated electron chain. We can
consider the impurity scattering matrix in the spin subspace being similar
to an exchange impurity of the Kondo problem

Ŝσ,σ′
M,M ′(λ)

=

√
x2 + c2

4x2 + (2S + 1)2c2

2
x + ic

[(x + i(c/2))δσ,σ′δM,M ′ + ic
σσσ′ 
SMM ′ ] .

(7.141)

We shall not present the investigation of this case here, but rather refer the
interested reader to original publications.

Now let us consider the behaviour of an impurity in the supersymmetric
t-J chain with V = 3J/4 and J = 2. Here we shall consider a slightly
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different impurity with the impurity scattering matrix in the spin subspace

Ŝσ,σ′
M,M ′(λ) =

Aδσ,σ′δM,M ′ − Bδσ′,−σδM ′,M+2σ

λ − θ + i(2S + 1)/2
(7.142)

where σ (σ′) and M (M ′) are the electron and impurity spin S′ components
of the before (after) scattering, and

A = λ − θ + i(2S + 1)
[
1
2
− (σM |M + σ)(σ′M ′|M ′ + σ′)

]
,

B = i(2S + 1)(σM |M + σ)(σ′M ′|M ′ + σ′) .

(7.143)

The Clebsch–Gordan coefficient selects the way how the impurity interacts
with itinerant electrons. The impurity can temporarily absorb the spin of
one conduction electron and form an effective spin S′ = S − 1

2 . The Bethe
ansatz describes such a system as the solution of equations

eL
1 (pj) = (−1)N

N∏
l=1
l �=j

e2(pj − pl)
M∏

β=1

e−1
1 (pj − λβ) , j = 1, . . . , N ,

e2S(λα − θ)
N∏

j=1

e1(λα − pj) =
M∏

β=1
β �=α

e2(λα − λβ) , α = 1, . . . , M ,

E = 2N − 4
N∑

j=1

(4p2
j + 1)−1 , Mz =

N

2
+ S − M .

(7.144)

The most interesting properties of an impurity is in the ground state and at
low temperatures. In the absence of a magnetic field the impurity valence
is equal to nimp = 2QG2S(θ) for low electron density Q → 0, where Q is the
Fermi point of charged low-lying excitations. The energy of an impurity in
this limit is eimp = −2nimp. On the other hand, for large electron density
Q → ∞ we obtain nimp = 1

3 , independent on θ and

eimp = −2
3
Re

[
ψ

(
S + 2 − iθ

3

)
− ψ

(
S + 1 − iθ

3

)]
, (7.145)

where ψ(x) is a digamma function. For this case H = 0 the magnetiza-
tion of an impurity is equal to mz

imp = S − 1
2 . The charge susceptibility

of an impurity is equal to the one of the host per site. The energy is a
monotonically increasing function of |θ|, and the valence of an impurity
is a monotonically decreasing one. The behaviour of the magnetization
and magnetic susceptibility of an impurity is similar to the one of the pre-
vious case, i.e., depending on the value of the impurity spin, it is either
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underscreened by low-lying spin-carrying excitations of the host, or totally
screened for S = 1

2 with the finite magnetic susceptibility. At very large
fields H ≥ Hs the impurity magnetization becomes equal to S. The charac-
teristic crossover scale, that defines the low-energy behaviour of a magnetic
impurity is the Kondo temperature, which is proportional to exp(−π|θ|). It
means that θ measures the resonance shift. The smaller θ (i.e., the stronger
the coupling of the impurity site to the host), the larger Kondo scale.

It is also important to consider the behaviour of a magnetic impurity
in the supersymmetric t-J chain with the “easy-axis” magnetic anisotropy,
considered in Chapter 4, with the host Hamiltonian Eq. (4.100). This case is
important, because here we can study the behaviour of a magnetic impurity
in the correlated host with spin-gapped excitations. The structure of the
Hamiltonian of an impurity is similar to Eq. (7.55). The energy of the
system is given by (with standard notations)

E = −2
N∑

j=1

1 − cos(2vj) cosh(η)
cosh(η) − cos(2vj)

+ const . (7.146)

The z-projection of the magnetic moment of the system is Mz = S +
(N−1)

2 − M . The Bethe ansatz description (here we present the case of
periodic boundary conditions) of that model is based on the solution of the
following equations

sin(λα − θ + i(2S − 1)η
2 )

sin(λα − θ − i(2S − 1)η
2 )

N∏
j=1

sin(λα − vj + i η
2 )

sin(λα − vj − i η
2 )

=
M∏

β=1

sin(λα − λβ + iη)
sin(λα − λβ − iη)

,

sin(vj − θ + iSη)
sin(vj − θ − iSη)

[
sin(vj + i η

2 )
sin(vj − i η

2 )

]L

=
M∏

α=1

sin(vj − λα + i η
2 )

sin(vj − λα − i η
2 )

,

(7.147)

where j = 1, . . . , N and α = 1, . . . , M . Only the first factor on the left
hand sides of Eqs. (7.147) correspond to the impurity, while the energy,
Eq. (7.146), depends only implicitly on the impurity. Bethe ansatz equa-
tions are again independent of the position of an impurity in the chain.

Dropping the analysis of the Bethe ansatz solution we only present re-
sults here. Energies of unbound electron states are gapped for an external
magnetic field less than a critical value, Hc, see Chapter 4. Hc is one half
of the minimal external magnetic field necessary to depair a singlet bound
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state (pair). If the value of the external magnetic field is larger than Hs,
the magnetization is maximal, i.e., saturated. At this saturation field the
system undergoes a second order phase transition into the ferromagnetic
spin-polarized state, in which there are no pairs because the dressed energy
of unbound electrons is gapped. This behaviour is similar to a type-II su-
perconductor in a magnetic field: for H ≤ Hc there are only Cooper-pairs,
while for Hc ≤ H ≤ Hs pairs and unbound electrons co-exist, which is rem-
iniscent of the Meissner effect. Note, however, that in a one-dimensional
electron gas there is no true superconducting order with off-diagonal long
range order, but correlation functions of singlet pairs and/or unbound elec-
trons fall off with power-laws for long times and/or distances. For H ≥ Hs

it is straightforward to obtain the ground state energy. In the intermediate
phase, Hc ≤ H ≤ Hs, however, the ground state energy depends on the
filling of both Dirac seas.

We first consider the case H < Hc, where the ground state consists
only of singlet pairs (2M = N). The magnetization of an impurity is
exactly S′ for H ≤ Hc for both, open or periodic, boundary conditions.
This implies that the Kondo effect is absent in this model, due to the
spin-gap, induced by the Ising-like (“easy-axis”) magnetic anisotropy. The
low-lying excitations do not carry spin, and, consequently, cannot couple
to the spin S′ to form a magnetic moment of spin S for H ≤ Hc. Recall
that S′ = S −1/2 represents the effective spin of the low temperature fixed
point. The valence varies as a function of the number of electrons in the
system from one for a filled band or the maximal number of conduction
electrons to zero for an empty band of conduction electrons.

Next we consider the situation Hc ≤ H ≤ Hs, where both, unbound
electrons and singlet pairs, have gapless low-lying excitations, i.e., form
Dirac seas. The valence of an impurity again depends on the density of
electrons, and, interestingly, also on the external magnetic field. Due to
the van Hove singularity of the empty band of unpaired electron states, the
magnetization of the host is proportional to

√
H − Hc for fields H slightly

larger than Hc. This feature is characteristic of a Pokrovsky–Talapov level-
crossing transition, which is the analog of a second order phase transitions
in one-dimension. The magnetization of an impurity is driven by the host,

Mz
imp = S − 1

2
+ fS(θ, η)

√
H − Hc , (7.148)

where fS(θ, η) is also a function of the band filling. The magnetic suscepti-
bility of an impurity has a square root singularity as Hc is approached from
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above. This is also very different from the standard Kondo effect, where
for spin- 1

2 the magnetic susceptibility of an impurity is finite for small mag-
netic fields. For open boundary conditions the magnetic susceptibility of an
impurity diverges as strongly as the magnetic susceptibility of open edges
themselves (all inversely proportional to

√
H − Hc). This is also very dif-

ferent from the usual behaviour of a magnetic impurity in an open t-J chain
with SU(2) spin symmetry and gapless excitations, where the magnetic sus-
ceptibility of edges diverges (though logarithmically), while the one for an
impurity of spin S = 1

2 remains finite. With increasing magnetic field the
population of the Dirac sea of singlet pairs gradually decreases until Hs is
reached, which is the field at which the band is empty. For fields larger
than the saturation field Hs the magnetization of an impurity is equal to
Mz

imp = S − [(1 − nimp)/2], where nimp is the valence of the impurity.
For imaginary θ, the Hamiltonian of an impurity if placed in the bulk,

i.e., not at the edge, is non-Hermitian (the energy eigenvalues are real,
though). This is independent of the boundary conditions (open or periodic).
In this case incoming and reflecting waves of electrons “see” two different
effective spins of the impurity corresponding to S′ ± [2|θ|]

2 . However, the
Ising magnetic anisotropy of the model again suppresses any manifestation
of the Kondo effect, since only spin-singlet pairs are gapless for H ≤ Hc, but
cannot screen effective spins of an impurity. For fields slightly larger than
Hc the van Hove singularity of the empty band of unbound electron states
manifests itself, rather than the weaker logarithmic Kondo singularities.

At finite but low temperatures the magnetic susceptibility of an impurity
(as well as the susceptibility of edges of an open chain) is exponentially small
for H < Hc and H > Hs. At H = Hc or Hs the magnetic susceptibility
and the Sommerfeld coefficient of the specific heat display the

√
T features

corresponding to the van Hove singularities of empty bands. For Hc < H <

Hs, on the other hand, the magnetic susceptibility is finite for S = 1
2 as

T → 0 and Curie-like for S ≥ 1
2 . The specific heat is proportional to the

temperature everywhere away from van Hove singularities.
Here it is instructive to compare the behaviour of an impurity in the

supersymmetric t-J chain with the behaviour of the Anderson impurity
model with the Hamiltonian

HA =
∑
k,σ

εkψ†
k,σψk,σ +

∑
k,σ

Vk,σ(ψ†
k,σdσ + d†σψk,σ)

+
∑

σ

εdnσ + Un↑n↓ , (7.149)
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where the notations are similar to Eq. (7.94), with nσ = d†σdσ, d†σ creates an
electron on the impurity orbital, U denotes the Coulomb repulsion, and εd

measures the energy of the impurity orbital from the Fermi level. The inter-
action of conduction electrons with localized electrons is described by the
magnitude of the hybridization, Vk,σ, which is often supposed to be k- and
σ-independent, Vk,σ = V . Using similar arguments as for the Kondo prob-
lem, see above, one can reduce the Hamiltonian to the one-dimensional one,
in which the relativistic dispersion law for itinerant electrons (linearized
about Fermi points) is considered (we put the Fermi velocity equal to 1),

HA =
∑

σ

∫
dx

(
−iψ†

σ(x)
d

dx
ψσ(x) + V δ(x)[ψ†

σ(x)dσ + d†σψσ(x)] + εdnσ

)

+ Un↑n↓ . (7.150)

By solving the stationary Schrödinger equation with the Hamiltonian
Eq. (7.150) for one conduction electron and one electron, localized on the
orbital, and for two conduction electrons, then by using Yang–Baxter equa-
tions for the subsequent two-particle scattering matrices, one finds that
eigenfunctions and eigenstates are parametrized by the solution of the fol-
lowing equations (obtained for periodic boundary conditions in a box of
length L)

N∏
j=1

e1(λα − g(kj)) = −
M∏

β=1

e2(λα − λβ) , α = 1, . . . , M ,

eV 2(pj − εd)e−ikjL =
M∏

α=1

e1(g(kj) − λα) , j = 1, . . . , N ,

(7.151)

where g(k) = (2k − 2εd −U)2/8UV 2. The energy of the system is given by

E =
N∑

j=1

kj . (7.152)

Theorists often study the situation in which the Coulomb repulsion of elec-
trons localized on orbitals is considered to be large, so that in this limit one
has to replace g(k) → k/V 2. One can see that the Bethe ansatz equations
of the Anderson model (after the renormalization λα → λα/V 2) for large U

(which excludes a double occupation) are similar to the ones of the super-
symmetric t-J chain for V = −J/4 and J = 2, for an impurity with S′ = 0
(S = 1

2 ) but with two differences: namely, with the presence of an additional
parameter V 2, and with the linearized dispersion law. It is interesting to
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notice that the ground state of the Anderson impurity model also pertains
to the filling of Dirac seas for unbound electron excitations and spin-singlet
pairs, as for the t-J chain. This is why, the analogy in the behaviours of the
Anderson impurity model and an impurity in a correlated electron chain
becomes transparent. It is known that an Anderson impurity, depending on
the value of εd (which works analogous to θ), reveals non-magnetic regime
with nimp ∼ 0, mixed valence regime and the magnetic regime (where the
valence of an impurity is close to 1). In the magnetic regime, where charge
fluctuations are suppressed, the behaviour of the impurity spin is similar to
the behaviour of a Kondo magnetic impurity, with the characteristic Kondo
temperature TK ∼ exp(−π|εd|/V 2).

Let us now consider how an integrable impurity behaves in a Hubbard
chain. Bethe ansatz equations can be obtained within the second scheme
(introducing the impurity scattering matrix in the spin subspace). For the
repulsive Hubbard chain let us study the behaviour of an impurity with the
scattering matrix

Ŝσ,σ′
M,M ′(λ) =

√
4x2 + U2

16x2 + (2S + 1)2U2

4
2x + iU

× [(x + i(U/4))δσ,σ′δM,M ′ + i(U/2)
σσσ′ 
SMM ′ ] . (7.153)

This two-particle scattering matrix satisfies Yang–Baxter relations with
two-particle scattering matrices of electrons for the Hubbard chain, cf.
Chapter 4. By using the method, described above, Bethe ansatz equations
for this system with periodic boundary conditions can be written as

λα − θ + iUS/2
λα − θ − iUS′/2

N∏
j=1

λα − sin kj + iU/4
λα − sin kj − iU/4

=
M∏

β=1
β �=α

λα − λβ + iU/2
λα − λ − iU/2

,

eikjL+iφj =
M∏

β=1

sin kj − λβ + iU/4
sin kj − λβ − iU/4

,

(7.154)

where j = 1, . . . , N and α = 1, . . . , M and φj = tan−1[2(sin kj − θ)/U ] −
tan−1[4(sin kj − θ)/U(2S + 1)]. The magnetization of the model is Mz =
(N/2)+ S −M , and the energy is E = −2

∑N
j=1 cos kj + const. The reader

is already aware that one can divide everything into the part, describing the
host, and the one, describing the impurity. We shall write only equations
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and results for an impurity, because the host part behaves in the same way
as it is presented in Chapter 4.

The most interesting behaviour is in the ground state, where Bethe
ansatz integral equations for densities (we keep the notations of Chapter 4
and drop the superscript, which denotes an impurity) are:

ρ(k) + ρh(k) = cos k

∫ B

−B

dλaU/4(λ − sin k)σ(λ)

− cos k

2
[a(2S+1)U/4(sin k − θ) − aU/2(sin k − θ)] ,

σ(λ) + σh(λ) +
∫ B

−B

dλ′aU/2(λ − λ′)σ(λ′)

=
∫ Q

−Q

dkaU/4(λ − sin k)ρ(k) + aSU/2(λ − θ) .

(7.155)

The energy, magnetization and the valence of the impurity are given by

eimp = −2
∫ Q

−Q

dk cos kρ(k) , nimp =
∫ Q

−Q

dkρ(k) ,

mz
imp = S +

1
2

∫ Q

−Q

dkρ(k) −
∫ B

−B

dλσ(λ) .

(7.156)

For H = 0 we have B = ∞. For the half-filled host (i.e., for the insulator)
the valence of an impurity is zero independent on θ and S. In the limit
U → 0 the valence is nimp = 1 for |θ| < sin Q and zero otherwise, while
for U → ∞ it is always zero. The valence monotonically decreases with
increasing U and has its maximum at Q = π/2. The energy of an impurity
monotonically increases with |θ|, while the valence monotonically increases
for the metallic case. The effect is largest when the impurity parameter θ

lies in the Dirac sea for charged excitations, because it is in resonance with
itinerant electron states. The magnetization of an impurity mz

imp = S − 1
2

for H = 0. For the weak magnetic field it is totally screened by host
excitations for S = 1

2 with the finite magnetic susceptibility. The relation
of the magnetic susceptibilities of the impurity and the host for large |θ|
and sufficiently large U is

χimp

χhost
=

e2π|θ|U + nimp

N/L
. (7.157)
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For S > 1
2 in the metallic case in the Kondo limit, where charge fluctuations

can be neglected we obtain

mz
imp = µi

(
1 ± 1

2|ln(H/TK)| −
ln |ln(H/TK)|
4ln2(H/TK)

+ · · ·
)

, (7.158)

where TK ∼ exp(−2π|θ|U). Here we use for H 	 TK the lower sign and
µi = S, and for H � TK we use the upper sign and µi = S− 1

2 . This implies
that the impurity spin is underscreened at low fields to the value S− 1

2 , and
for high enough values of the magnetic field the impurity spin behaves as
the asymptotically free spin S. Naturally, at H = Hs the impurity spin is
S, and the impurity susceptibility reveals a square root divergence, as the
consequence of the van Hove singularity of the empty band.

For the attractive Hubbard chain U < 0 we study the impurity scatter-
ing matrix of the form

Ŝσ,σ′
M,M ′(x) =

Aδσ,σ′δM,M ′ + Bδ−σ′,σδM ′,M+2σ

x − θ − iU(2S′ + 1)/4
, (7.159)

where

A = x − θ − i
U(2S′ + 1)

4
[1 − 2(σM |M + σ)(σ′M ′|M ′ + σ′)] ,

B = iU(2S′ + 1)(σM |M + σ)(σ′M ′|M ′ + σ′)/2 ,

(7.160)

with S = S′ + 1
2 . This two-particle scattering matrix also satisfies Yang–

Baxter relations with the two-particle scattering matrices of electrons for
the Hubbard chain. Bethe ansatz equations for such a system with periodic
boundary conditions can be written as

λα − θ + iUS′/2
λα − θ − iUS′/2

N∏
j=1

λα − sin kj + iU/4
λα − sin kj − iU/4

=
M∏

β=1
β �=α

λα − λβ + iU/2
λα − λ − iU/2

,

eikjL sin kj − θ + iU(2S′ + 1)/4
sin kj − θ − iU(2S′ + 1)/4

=
M∏

β=1

sin kj − λβ + iU/4
sin kj − λβ − iU/4

,

(7.161)

where j = 1, . . . , N and α = 1, . . . , M . In the ground state Bethe ansatz
integral equations for densities of an impurity are:
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ρ(k) + ρh(k) + cos k

∫ Q

−Q

dλaU/4(λ − sink)σ′(λ)

= cos k aU(2S′+1)/4(sin k − θ) ,

σ′(λ) + σ′
h(λ) +

∫ Q

−Q

dλ′aU/2(λ − λ′)σ′(λ′)

= −
∫ B

−B

dkaU/4(λ − sin k)ρ(k) + a(S′+1)U/2(λ − θ) .

(7.162)

The valence of an impurity, magnetization and energy are given by

nimp =
∫ B

−B

dkρ(k) + 2
∫ Q

−Q

dλσ′(λ) , mz
imp = S′ +

1
2

∫ B

−B

dkρ(k) ,

eimp = −2
∫ B

−B

dk cos kρ(k)

− 4Re
∫ Q

−Q

dλ
√

1 − [λ − i(U/4)]2σ′(λ) .

(7.163)

For H < Hc the valence of an impurity varies between 0 and 1. For
U → 0 we have nimp = 1 for |θ| < Q and zero otherwise. For large U → ∞
the impurity valence tends to zero. It is a monotonically decreasing function
of θ, while the energy of an impurity is a monotonically increasing function.
For H < Hc, where only spin-singlet pairs have their Dirac sea, the impurity
magnetization is equal to S − 1

2 . When Hc is approached from above the
impurity magnetic susceptibility has the square root singularity, similar to
the case of an impurity in the anisotropic t-J chain. At Hs, where the Dirac
sea for pairs is empty, the magnetization of an impurity is equal to mz

imp =
S − 1

2 + nimp

2 . We see, that such a behaviour of an impurity, where there is
no characteristic Kondo logarithmic dependencies, is typical for a magnetic
impurity embedded into a one-dimensional correlated electron host with
spin-gapped low-lying excitations. The strong van Hove singularity of the
empty Dirac sea (the singularity due to the quantum phase transition in
the host) is more stronger than weak Kondo logarithms in these cases. On
the other hand, the valence of an impurity depends on the band filling
and on the parameter of an impurity θ, but also depends on the value of
the external magnetic field. The last feature is the manifestation of strong
correlations in the chain.

Some other possibility of integrable impurities in correlated electron
hosts are known. It is worthwhile mentioning the model, in which an im-
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purity site differs from other host sites of the supersymmetric t-J chain by
different representation. For example, this site permits four states, unlike
other sites of the chain, where two states with electron either with spin up
or down and the empty state are possible. For other models one replaces
an empty state of an impurity by the state with two electrons. Hamiltoni-
ans of such models are very complicated, too, but the characteristic feature
of Bethe ansatz solvable Hamiltonians with an impurity survives. An im-
purity is coupled to two neighboring sites of the host, it renormalizes the
interaction and hopping between these sites of the host, and causes three-
site terms, which violate T and P symmetry, but preserve PT symmetry.
Again, choosing open boundary conditions with zero boundary fields and
potentials one can avoid unwanted terms in the impurity Hamiltonian. For
instance, the valence of an impurity with four possible states varies with the
band filling from 0 to 2, as expected. The magnetic susceptibility of such
an impurity is finite. There exists some critical electron density, which de-
pends on the external magnetic field H , at which the charge susceptibility
of an impurity (charge stiffness) has a feature. We again refer the interested
reader to original publications.

To summarize, in this chapter we presented to the reader with exact
results for behaviours of single magnetic impurities in quantum spin chains
and correlated electron chains. We started with the description of magnetic
impurities in simple XY chains, then followed by the description of single
magnetic impurities in Heisenberg quantum spin chains. Finally, the Bethe
ansatz description of the behaviour of single magnetic and hybridization
impurities in correlated electron chains was presented. We compared the
behaviour of an impurity with the behaviour of host sites and with the
behaviour of edges of open chains and with the behaviours of the Anderson
impurity model and the Kondo model.

Studies of the behaviour of a magnetic impurity in an isotropic
XY chain can be found in [Tjon (1970); Kleiner and Tsukernik (1975);
Kleiner and Tsukernik (1980)]. The behaviour of an impurity in a dimer-
ized spin- 1

2 XY chain is presented in [Zvyagin and Segal (1995)]. The
first Bethe ansatz study of a spin-S impurity in a spin- 1

2 periodic chain is
[Andrei and Johannesson (1984)], for higher-spin host see [Schlottmann
(1991)]. The reader can find the study of a two-parametric magnetic
impurity (which can have the same spin as the host ones) in an open
and periodic spin chain in [Frahm and Zvyagin (1997b)], for thermo-
dynamics see also [Zvyagin (2002)]. The behaviour of a magnetic im-
purity in a uniaxial spin chain is described in [Schlottmann (1999);
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Schlottmann (2000)]. The comparison of characteristics of a magnetic im-
purity in a quantum spin chain and in a metal (for Bethe ansatz equations
of a Kondo impurity, see, e.g., [Wiegmann (1981)] for a single-channel
case and [Tsvelick and Wiegmann (1984)] for a multi-channel situation)
can be found in [Zvyagin (2002)]. The first co-ordinate Bethe ansatz
description of a magnetic impurity in a correlated electron gas with a
δ-function attraction was in [Schulz (1987)]. The two-parametric mag-
netic impurity in a supersymmetric t-J periodic chain was introduced and
solved in [Schlottmann and Zvyagin (1997a)]. For a comparison use the
exact solution of the Anderson impurity model [Wiegmann and Tsvelick
(1983)]. For an impurity in an open t-J chain, and for the algebraic Bethe
ansatz description of the magnetic impurity in an integrable chain con-
sult [Zvyagin (1997)], see also [Zvyagin and Johannesson (1998)], where
the ferromagnetic coupling of an impurity to the host was considered,
and [Zvyagin (2003)]. The reader can find the Bethe ansatz descrip-
tion of an impurity in a Hubbard chain in [Zvyagin and Schlottmann
(1997)]. Other (nonmagnetic) integrable impurities in correlated elec-
tron chains are presented, e.g., in [Bedürftig, Eßler and Frahm (1996);
Foerster, Links and Tonel (1999)]. An interesting approach for integrable
impurities, which can be simultaneously scatterers and reflectors was re-
cently proposed in [Mintchev, Ragoucy and Sorba (2002)].
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Chapter 8

Correlated Quantum Chains with a
Finite Concentration of Impurities

In this chapter we shall present Bethe ansatz results for thermodynamic
characteristics of a finite concentration of impurities in quantum spin and
correlated electron chains. We shall mainly consider two effects: the onset of
impurities-induced bands and the behaviour of disordered impurities. Both
these effects qualitatively differ the situation with the finite concentration
of impurities from the behaviour of a single impurity.

8.1 Impurities’ Bands

The problem of the behaviour of many impurities in quantum chains is a
special problem of great interest. From the previous chapter the reader
already knows how the behaviour of an isolated (single) impurity differs
from the behaviour of host particles in quantum correlated chains. If the
number of impurities, Ni, is much less then the number of host sites, L,
(or, in other words, the concentration of impurities c � 1) one can consider
those impurities as independent and their contribution to characteristics
of the studied system can be considered as additive. On the other hand,
the reader is aware that, e.g., in metals with a finite concentration of mag-
netic impurities, a reflection of conduction electrons off magnetic impuri-
ties produces an impurity-impurity long-range interaction (known as the
Ruderman–Kittel–Kasuya–Yosida, or RKKY, coupling). Naturally, prop-
erties of interacting magnetic impurities in metals are then very different
from those of isolated impurities. This, actually, determines the aim of this
chapter: we want to inform the reader about exact results, which are known
for the situation with many impurities in correlated electron hosts (in the
insulator case, where only spin degrees of freedom possess the dynamics,
and in the metallic case).

243
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Let us start from the description of the behaviour of impurities of a finite
concentration in quantum spin chains. Generally speaking, one can solve
the stationary Schrödinger equation for the XY spin-1

2 chain with many
embedded impurities, because by using the Jordan–Wigner transformation
one can exactly transform such a Hamiltonian to a quadratic form of Fermi
operators. However, the explicit diagonalization of that form is a very
difficult problem (one needs to diagonalize L×L matrix of the tridiagonal,
in the case of the nearest-neighbor interactions, different from each other
matrix elements).

One of the great advantages of Bethe ansatz integrable impurities,
studied in the previous chapter, is the possibility to find thermodynamic
characteristics of quantum chains with many impurities. It is based on the
fact that, by construction, one can introduce any number of L-operators of
integrable impurities into the monodromy operator of a quantum exactly
solvable chain. All monodromy operators, obtained that way, satisfy inter-
twining (Yang–Baxter) relations with R-matrices of the host, and, hence,
transfer matrices of those monodromies with different spectral parameters
commute. This constitutes the exact integrability of such systems. Natu-
rally, all integrable impurities, studied in the previous chapter, which can
be introduced to a monodromy, preserving the Bethe ansatz solvability,
have the same property: they do not produce any reflection. This, natu-
rally, limits the applicability of exact results, which can be obtained. For
example, it is impossible to have the RKKY-like interaction between impu-
rities. Nevertheless, in the framework of the Bethe ansatz it is possible to
introduce an interaction between the nearest-neighboring impurities, which
can produce features of thermodynamic characteristics of integrable impu-
rities, reminiscent of real magnetic impurities in metals with the RKKY
interaction.

Actually, the Hamiltonian of a spin chain with the finite concentra-
tion of impurities, c, is the same as Eqs. (7.48), (7.55), or (7.78), with
many impurities embedded between sites of the host chain. Suppose the
concentration of impurities is such that many of them are situated at the
nearest-neighboring links of the original host chain. Then, it is obvious
from the construction of the Hamiltonian of impurities and its’ algebraic
Bethe ansatz, that one can consider the other Hamiltonian, for which im-
purities and host sites are interchanged. Naturally, this corresponds to the
situation, in which “impurities” define “host” chain, and original host sites
play the role of impurities situated at links between the sites with impu-
rities and coupled to the neighboring sites with impurities. The situation
is reminiscent of zig-zag spin chains, in which there is a nearest-neighbor
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and the next to nearest neighbors interaction. Additional Hamiltonian has
the same structure as the original one, by definition. It is easy to check
that transfer matrices of these two Hamiltonians commute for any spectral
parameters in the case if shifts, θ, are the same for both systems. This fact
depends neither on how many neighboring impurities are connected with
each other (or, in other words, how long these effective spin clusters are,
connected to each other via zig-zag-like interaction, which is determined
by the parameter θ), nor on overall multipliers (J) in front of each Hamil-
tonian. Then, the commutation of transfer matrices implies that these
Hamiltonians have the same set of eigenfunctions. Summarizing, one can
introduce a direct coupling between integrable impurities situated at neigh-
boring links of the host Bethe ansatz-integrable chain, for the illustration,
see Fig. 8.1, and, in the case if interactions between the host and impurities
and impurity-impurity interaction are related to the same parameter θ, such
an impurity-impurity interaction does not violate the exact integrability of
the problem. Naturally, this fact pertains not only to quantum spin chains,
but, also, to correlated electron systems with impurities, constructed this
way.

J’

J

J

Jimp

J’ J’

Jimp imp

m−1 m m+1

imp1 imp2

Fig. 8.1 Illustration of impurity-host and impurity-impurity interactions. In the sim-
plest case of the isotropic Heisenberg spin- 1

2
chain the local impurity-host exchange

constant is Jimp = 4J/[4θ2
j + (2S′ + 1)2], and J ′ = θ2

j Jimp.

Bethe ansatz equations for a spin S Heisenberg (Takhtajan–Babujian)
chain with Ni = cL (please, do not confuse this with the coupling constant
of the algebraic Bethe ansatz description, set to unity here) embedded
impurities with spin S′ can be written as:

eL
2S(λj)eNi

2S′(λj − θ) =
M∏
l=1
l �=j

e2(λj − λl) , j = 1, . . . , M , (8.1)
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where en(x) = (2x + in)/(2x − in), the total magnetic moment is Mz =
LS + NiS

′ − M , and the energy is

E = E0 −
M∑

j=1

(
J(1 − c)S
λ2

j + S2
+

JcS′

(λj − θ)2 + (S′)2
− H

)
, (8.2)

where E0 is the energy of the ferromagnetic state (of the mathematical
vacuum with all spins directed upward). For c = 0 or c = 1 we recover the
standard Bethe ansatz equations for a Takhtajan–Babujian homogeneous
spin-S or spin-S′ chain, cf. Chapter 5. Notice, that for c = 1

2 the system
reduces to an alternating spin-S−S′ zig-zag-like chain. It is clear also that
for Ni = 1 the situation reduces to the case of a single impurity, studied
in the previous chapter. The reader can, obviously, see that Bethe ansatz
equations do not depend on whether θ is real or complex. Moreover, we
see from the expression for the energy that the energy is ever real, does not
matter whether θ is real or complex. However, as the reader knows from the
previous chapter, the Hamiltonian of an integrable system is non-Hermitian
for imaginary θ (it is senseless to consider only two impurities at edges of
an open chain to look for a concentration dependence of thermodynamic
characteristics of a system with a finite concentration of impurities). This
is why, from now on in this chapter we limit ourselves by real θ. Also, we
shall consider here the case of L + Ni even.

In the framework of the string hypothesis integral Bethe ansatz equa-
tions for for dressed energies are (with the notations, similar to previous
chapters)

T ln[1 + ηn(λ)] − T

∞∑
n=1

∫ ∞

−∞
dλ′Anm(λ − λ′) ln[1 + η−1

m (λ)]

= nH − πJ(1 − c)
min(n,2S)∑

l=1

an+2S+1−2l(λ)

− πJc

min(n,2S′)∑
l=1

an+2S′+1−2l(λ − θ) , (8.3)

where ρn, ρnh, εn = T ln(ρnh/ρn) = T ln ηn are the density, density of
holes, and the dressed energy of the spin string of length n. The set of
integral equations for densities of spin strings of length n has the form
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ρnh(λ) +
∞∑

n=1

∫ ∞

−∞
dλ′Anm(λ − λ′)ρm(λ′) = (1 − c)

×
min(n,2S)∑

l=1

an+2S+1−2l(λ) + c

min(n,2S′)∑
l=1

an+2S′+1−2l(λ − θ) . (8.4)

The internal energy per site is

e = e0 +
∞∑

n=1

∫ ∞

−∞
dλρn(λ)

[
nH − πJ(1 − c)

min(n,2S)∑
l=1

an+2S+1−2l(λ)

− πJc

min(n,2S′)∑
l=1

an+2S′+1−2l(λ − θ)
]

, (8.5)

the Helmholtz free energy per site and the magnetization per site are equal
to

f = f0−T

∫ ∞

−∞

dλ

2 cosh(πλ)
[
(1−c) ln[1 + η2S(λ)] + c ln[1 + η2S′(λ−θ)]

]
,

mz = cS′ + (1 − c)S −
∞∑

n=1

n

∫ ∞

−∞
dλρn(λ) ,

(8.6)

where

f0 = J(1 − c)S (ψ[(1/4) + (S/2)] − ψ[(3/4) + S/2)])

+ JcS′ (ψ[(1/4) + (S′/2) − iθ] − ψ[(3/4) + S/2) − iθ]) , (8.7)

and ψ(x) are digamma functions.
Let us consider the actions of parameters of impurities, S′ and θ, sepa-

rately. First, let us investigate which contribution S �= S′ yields for θ = 0.
In such a case in the ground state only two kinds of strings, the ones of
length 2S, and the ones of length 2S′ can have negative energies, i.e., their
Dirac seas. Energies of all other states (solutions to Bethe ansatz equations)
are non-negative. At H = 0 the solution of the ground state equations for
dressed energies is a singlet with

ε2S

(1 − c)
=

ε2S′

c
= − πJ

2 cosh(πλ)
,

ρ2S

(1 − c)
=

ρ2S′

c
=

1
2 cosh(πλ)

.

(8.8)
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It is important to point out here that the above results are valid only for
finite c. On the other hand, if c → 0 (Ni = 1), the situation is different
since only spin strings of length 2S (but not of 2S′) have their Dirac sea. In
this limit ε2S′ vanishes, and one has ρ2S′ = [2L cosh(πλ)]−1. Consequently,
the limit Ni → 1 (c → 0) is singular. For isolated impurities at H = T = 0
one gets the remnant magnetization S′ − S for S′ > S and critical non
Fermi liquid behaviour for S′ < S, i.e., it is not a singlet. As the reader
knows from the previous chapter, there exists a remnant entropy of a single
impurity for S �= S′. Hence, the situation with a single impurity can
be qualitatively different from the case of a finite concentration of such
impurities. It is namely because the onset of the new band of impurities’
states (the new Dirac sea), ε2S′ , which appears only for finite concentrations
of similar impurities, due to the interaction between nearest impurities.

To be concrete, let us write down integral equations for dressed energies
and densities for the case S = 1

2 and S′ = 1 (other cases can be studied in
a similar way). Those ground state integral equations have the form

εn(λ) = nH − πJgn(λ) −
∫ B1

−B1

dλ′Kn1(λ − λ′)ε1(λ′)

−
∫ B2

−B2

dλ′Kn2(λ − λ′)ε2(λ′) ,

ρn(λ) + ρnh(λ) = gn(λ) −
∫ B1

−B1

dλ′Kn1(λ − λ′)ρ1(λ′)

−
∫ B2

−B2

dλ′Kn2(λ − λ′)ρ2(λ′) ,

(8.9)

where n = 1, 2 and

K11(x) = a2(x) , K22(x) = a4(x) + 2a2(x) ,

K12(x) = K21(x) = a3(x) + a1(x) ,

g1(x) = (1 − c)a1(x) + ca2(x) ,

g2(x) = (1 − c)a2(x) + ca1(x) + ca3(x) .

(8.10)

Here B1,2 are the Fermi points of Dirac seas, determined from the conditions
ε1,2(±B1,2) = 0. Naturally, for H = 0 both B1,2 = ∞. Both these limits
decrease with increasing the value of the magnetic field H . However, for
c small B2 decreases faster than B1. This situation holds for any S′ > S.
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The monotonic decrease of the values of the Fermi points implies that the
Dirac seas for ε2S and ε2S′ are gradually depleted with the field. The
magnetization is zero at H = 0 and is monotonically increased with H

until the Dirac sea for bound spin states with higher spin (for c < (1 − c))
becomes empty. For example, for S = 1

2 the Dirac sea for ε2S′ (S′ > 1
2 ) is

depleted first at the critical field Hc(c), defined as

Hc =
J

2S′


1 − c

S′ + c

2S′∑
l=1

2
4S′ + 1 − 2l




+
1

2S′

∫ B1

−B1

dλε1(λ)[a2S′+1(λ) + a2S′−1(λ)] . (8.11)

As the consequence of the van Hove singularity of the empty band (Dirac
sea) for ε2S the magnetization per site has a cusp with the infinite slope
when Hc(c) is approached from below. At Hc(c) the ground state magnetic
susceptibility diverges. This value of the magnetic field pertains to the
second order quantum phase transition. Naturally, for c → 0, the critical
field Hc(c) tends to zero, giving rise to the singular behaviour of a single
impurity at H = T = 0. For H = Hc only the Dirac sea ε2S (S < S′) is
partially filled. The magnetization increases monotonically with increasing
field until the Dirac sea ε2S (for S < S′ and c < (1 − c)) becomes empty.
For example, for S = 1

2 this happens at

Hs(c) = J
2S′(1 − c) + c

S′ . (8.12)

At this quantum critical line the second order quantum phase transition to
the spin-saturated (ferromagnetic) phase takes place. Close to H = Hs(c)
the ground state magnetic susceptibility diverges as 1/

√
Hs − H (and the

magnetization has a cusp). For H > Hs the magnetic susceptibility is
zero and the ground state magnetization per site is (1 − c)S + cS′. Hc(c)
decreases linearly with c, while Hs(c) increases linearly with c. For c > 1−c

the Dirac seas for ε2S and ε2S′ interchange their roles in the ground state
behaviour in the external magnetic field.

The low temperature specific heat of the chain is proportional to T

(i.e., the Sommerfeld coefficient is constant), except of critical lines Hc,s(c),
where it is proportional to

√
T .

Now let us study the effect of a nonzero coupling constant θ. Here we
limit ourselves, e.g., with the case S = S′ = 1

2 (other cases can be studied
analogously). Consider the ground state behaviour of a Heisenberg spin
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chain with a finite concentration of impurities. The ground state pertains
to solutions of Bethe ansatz equations with negative energies. The set of
integral equations for densities of rapidities and dressed energies of low-
lying excitations (spinons for S = S′ = 1

2 ) are:

ρ1(λ) + ρ1h(λ) +
∫

(B)

dνa2(λ− ν)ρ1(ν) = (1− c)a1(λ) + ca1(λ− θ) (8.13)

and

ε1(λ)+
∫

(B)

dνa2(λ−ν)ε1(ν) = H−πJ(1−c)a1(λ)−πJca1(λ−θ) . (8.14)

Integrations are performed over the domain (B), determined in such a way
that dressed energies inside these intervals are negative. The limits of
integrations are determined by zeros of dressed energies; they are Fermi
points for each Dirac sea. The ground state for H = 0 is known, see above
for S = S′ = 1

2 . There Fermi points for the Dirac sea of spinons are ±∞.
In the nonzero external magnetic field H �= 0 the situation appears to be
very different for different values of the coupling constant θ and c. Let us
for simplicity shift λ → λ − (θ/2) (nothing, naturally, depends on such a
shift for a periodic system).

For small θ < θc(c) (the critical value of θc is dependent of the concen-
tration of impurities c) there is only one Fermi sea for spinons (i.e., there is
only one minimum in the distribution of dressed energies), cf. Fig. 8.2. For
H ≥ Hs and θ < θc the system is in the spin-saturated, ferromagnetic phase
at zero temperature and spinons become gapped. The magnetic suscepti-
bility manifests a square root singularity at Hs: χ(H) ∼ 1/

√
(Hs − H). It

is related to the one-dimensional van Hove singularity of an empty Dirac
sea of spinons. In a weak magnetic field the magnetic susceptibility is pro-
portional to χ ∝ (π2J)−1(1 + (2| lnAH |)−1 − (ln | lnAH |/4 ln2 AH) + · · · )
where A is a non-universal constant (logarithmic corrections appear due to
SU(2)-symmetry of the model).

At θ = θc there is also only one minimum in the distribution of dressed
energies. However, this extremum is more flat than for θ < θc. Instead of
the behaviour of the dressed energy near the minimum ∼ λ2 for θ < θc,
for θ = θc it is proportional to λ4, cf. Fig. 8.3. This is why, the magnetic
susceptibility manifests the different singularity χ(H) ∼ 1/(Hs − H)3/4 at
Hs for θ = θc. For H ≥ Hs elementary excitations are gapped and the
ground state magnetic susceptibility is zero.
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λ

ε(λ)

H=H

H

s

Fig. 8.2 Dressed energy of spinons as a function of a spectral parameter of a Heisenberg
spin chain with a finite concentration of impurities for θ < θc. For illustrative purposes
we shifted the spectral parameter by −θ/2 and consider the case c = 1

2
.

ε

0

H  = Hs c

λ

(λ)

Fig. 8.3 The same as in Fig. 8.2 but for θ = θc.

For θ > θc two minima for the dressed energy of spinons appear at
λ = ±θ/2, i.e., there are two minima and one maximum in the distribution
of dressed energies, cf. Fig. 8.4.

Hence, the ground state behaviour strongly depends on the value of an
external magnetic field and the concentration of impurities. There are two
critical values of the field for θ > θc. For H ≥ Hs the system is in the
spin-saturated phase with gapped spinon excitations. The magnetic sus-
ceptibility also manifests square-root singularity at Hs (χ ∼ 1/

√
Hs − H).

For H < Hs spinons are gapless. There exists an additional critical value
of an external magnetic field, Hc, which also depends on c and θ (it is,
unfortunately, impossible to find the explicit analytic expression for Hc,
because one needs a numerical solution of the Fredholm integral equation
with finite limits of integration). For H < Hc and θ > θc there is only one
Dirac sea for spinons. However, for H > Hc the behaviour of a spin chain is
drastically changed: there are two Dirac seas for spinons (with four Fermi
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ε

Hs

0

H
Hc

λ
(λ)

Fig. 8.4 The same as in Fig. 8.2 but for θ > θc. Filled circles and filled squares denote
Fermi points for “particles” and “holes” for H �= 0. Notice that for H < Hc there are
only two Fermi points (open circles).

points). One can also speak about the onset of the Dirac sea of “holes”
of spinons (related to the onset of the maximum in the dependence of the
dressed energy on λ) for H > Hc. According to this picture the critical
field Hc pertains to the van Hove singularity of the empty band of these
“holes” of spinons. Notice, that at θ = θc, Hc = Hs, i.e., this point is
tricritical. Fillings of these two Dirac seas for spinons for H > Hc, θ > θc

are not independent. This is the direct consequence of the fact that the
same magnetic field determines fillings of the Dirac seas for “particles” and
“holes”, or, in other words, fillings of two Dirac seas for spinons centered
at λ = ±θ/2. The Dirac sea for “holes” disappears, naturally, for H → Hc,
θ → θc. We have to point out here that there is a crucial difference between
behaviours of a quantum spin chain with a finite concentration of impurities
and correlated electron models in the metallic phase. In the later case two
Dirac seas of the ground states are connected with different kinds of exci-
tations, e.g., unbound electrons and spinons for a repulsive Hubbard chain,
or Cooper-like singlet pairs and unbound electrons for a supersymmetric
t-J chain for V = −J/4 or an attractive Hubbard chain. They pertain
to two different kinds of Lagrange multipliers: the chemical potential and
magnetic field. Thus, low-lying excitations are practically independent of
each other (spin-charge separation). [Note that spin and charge sectors are
connected though via integral equations. This is the consequence of the fact
that unbound electrons carry both charge and spin.] On the other hand,
two Dirac seas appear for the same kinds of excitations for a spin chain
with a finite concentration of impurities. Their fillings are governed by the
same Lagrange multiplier, the magnetic field. Two Dirac seas appear for
nonzero c due to two minima in the bare energy distribution and correspond
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to nonzero θ in Bethe ansatz equations. The ground state phase diagram
of a spin chain with a finite concentration of impurities H − θ is presented
in Fig. 8.5.

0

1

2

3

4

1 2 3 4 5 6

H

tricritical point

2nd order

2nd order

ferro

incommensurate

θ

Fig. 8.5 The ground state phase diagram of a spin- 1
2

Heisenberg antiferromagnetic
chain with a finite concentration of impurities as a function of the magnetic field H and
coupling constant of impurities θ.

The limit c → 0 (Ni = 1) is again singular. For c → 0 the critical
field Hc goes to zero. The magnetic susceptibility of the impurity spin is,
though, finite for S = S′, at low temperatures and it is determined by the
parameter θ (i.e., related to its’ Kondo temperature). On the other hand,
for c �= 0 there is a second order quantum phase transition at H = Hc with
the square root singularity in the behaviour of the magnetic susceptibility
at T = 0 for θ > θc(c). At Hc = Hs for θ = θc(c) the singularity is more
weak.

The low temperature behaviour of the magnetic susceptibility and the
low-temperature Sommerfeld coefficient of the specific heat have square
root features at H = Hc for θ > θc, and in the tricritical point they are
proportional to T−3/4. The quantum phase transition at Hc is a transition
between a commensurate (for H < Hc) and an incommensurate phase. Out
of the lines of phase transitions the magnetic susceptibility is finite at low
temperatures and Curie-like at high temperatures, while the Sommerfeld
coefficient is finite, reminiscent of the Fermi liquid behaviour.
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Summarizing, a finite concentration of impurities in quantum spin
chains causes the onset of quantum phase transitions (related either to
the different coupling of impurities to the host, or to different spins of im-
purities, or to both reasons together). These quantum phase transitions
are consequences of the appearance of additional Dirac seas (bands) caused
by the finite concentration of impurities. The limiting procedure to the
behaviour of a single impurity is singular, because of van Hove singularities
of those empty one-dimensional bands.

Now, let us consider the behaviour of correlated electron chains with a
finite concentration of magnetic impurities.

Let us start with a supersymmetric t-J chain with a finite concentration
of impurities. For V = −J/4, J = 2 situation Bethe ansatz equations are

eNi

2S−1(λα − θ)
N∏

j=1

e1(λα − pj) =
M∏

β=1

e2(λα − λβ) , α = 1, . . . , M ,

eNi

2S(pj − θ)eL
1 (pj) =

M∏
α=1

e1(pj − λα) , j = 1, . . . , N .

(8.15)

The total magnetization is Mz = (1 − c)(N/2) + cS − M , where c = Ni/L

is the concentration of impurities and the energy of the system is equal to

E = E0 + 2π
N∑

j=1

[(1 − c)a1(pj) + ca2S(pj − θ)]

− 2πc

M∑
α=1

a2S−1(λα − θ) , (8.16)

where the last two terms are related to impurities. If the energy is measured
from the bottom of the conduction band, then E0 = 0. Naturally, for Ni = 1
we obtain Bethe ansatz equations for a single impurity. For c = 0 (and
Ni = 0) we obtain standard Bethe ansatz equations for a supersymmetric
t-J chain. At half filling, on the other hand, the model reduces to the spin-
1
2 Heisenberg chain with a finite concentration of spin-S impurities (this
can be seen more directly in the Sutherland’s version of the Bethe ansatz
equations, cf. Chapter 6).

As the reader already knows, the manifestation of differences in the
behaviour of a quantum correlated chain with a finite concentration of
impurities is most pronounced in the ground state. Let us write down the
set of integral Bethe ansatz equations (we keep the notations of previous
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chapters) for dressed energies at T = 0

ε(p) = 2π(1 − c)a1(p) + 2πca2S(p − θ) − µ − H

2

− a1(p − λ) ∗ ψ(λ) + a2S−1(p − λ) ∗ φ2S−1(λ) ,

ψ(λ) = 2π(1 − c)a2(λ) + 2πca2S+1(λ − θ) − 2µ

− a1(p − λ) ∗ ε(p) − a2(λ − λ′) ∗ ψ(λ) ,

φ2S−1(λ) = (2S − 1)H − 2πc

2S−1∑
l=1

a2l−1(λ − θ) − a2S−1(λ − p) ∗ ε(p)

−
(

a4S−2(λ − λ′) + 2
2S−2∑
l=1

a2l(λ − λ′)

)
∗ φ2S−1(λ′) ,

(8.17)

where ∗ denotes the convolution over the intervals for which dressed energies
are negative. One can see that a finite concentration of magnetic impurities
results in the onset of an additional Dirac sea for spin strings of length
2S − 1. The reader can check, that for c → 0 the second term in the third
equation becomes zero and, hence, the dressed energy of spin strings of
length 2S − 1 becomes positive for any H , like dressed energies of other
spin excitations. Densities satisfy the equations

ρ(p) + ρh(p) = (1 − c)a1(p) + ca2S(p − θ) − a1(p − λ) ∗ σ′(λ)

− a2S−1(p − λ) ∗ σ2S−1(λ) ,

σ′(λ) + σ′
h(λ) = (1 − c)a2(λ) + ca2S+1(λ − θ)

− a1(p − λ) ∗ ρ(p) − a2(λ − λ′) ∗ σ′(λ) ,

σ2S−1(λ) + σ2S−1,h(λ)

= c

2S−1∑
l=1

a2l−1(λ − θ) + a2S−1(λ − p) ∗ ρ(p)

−
(

a4S−2(λ − λ′) + 2
2S−2∑
l=1

a2l(λ − λ′)

)
∗ σ2S−1(λ′) .

(8.18)

The number of electrons and the magnetization are given by

N =
∫

dpρ(p) + 2
∫

dλσ′(λ) , Mz =
1
2

∫
dλσ2S−1,h(λ) , (8.19)
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and the ground state energy is

E = 2π

∫
dp[(1 − c)a1(p) + ca2S(p − θ)]ρ(p)

+ 4π

∫
dλ[(1 − c)a2(λ) + ca2S+1(λ − θ)]σ′(λ)

− 2πc(2S − 1)
2S−1∑
l=1

∫
dλa2l−1(λ − θ)σ2S−1(λ) . (8.20)

Naturally, the results for Ni = 1 coincides with the ones from the pre-
vious chapter. We see that again, the transition c → 0 (with Ni = 1) is
singular (for S �= 1

2 , because of the additional Dirac sea for spin strings of
length 2S − 1 and for S = 1

2 because of the additional Dirac sea for θ > θc

in a nonzero magnetic field).
For H = 0 and S �= 1

2 we have φ2S−1(λ) = −πc/ cosh[π(λ − θ)]. Hence,
the Dirac sea of spin strings has no holes and the magnetization is zero.
This differs from the case of a single impurity with S > 1

2 , for which the
remnant magnetization, and, hence, the remnant entropy appears, cf. the
previous chapter. The integral equation for dressed energies of spin-singlet
pairs is decoupled for H = 0 because of the spin gap for unbound electron
excitations

ψ(λ) = 2π(1− c)a2(λ) + 2πca2S+1(λ− θ)− 2µ− a2(λ− λ′) ∗ψ(λ′). (8.21)

The integration limits depend on the band filling. For θ < θc1(c, S) there is
only one Dirac sea for pairs. However, for θ > θc1 an additional Dirac sea
can appear depending on the band filling. Hence, in this case we can observe
a quantum phase transition between commensurate and incommensurate
phases, which is governed by the number of electrons in a correlated electron
chain. This transition is of the second order for θ > θc1 and there is
a tricritical point at θ = θc1. The charge stiffness and the Sommerfeld
coefficient of the specific heat are divergent at the critical line µ = µc1,
with the low-temperature square root singularities. On the other hand, at
the tricritical point their singularities are weaker, proportional to T−3/4.

On the other hand, for H > Hs the Dirac sea for spin-singlet pairs is
depopulated and the Dirac sea for spin strings is also empty. The ground
state behaviour is determined by unbound electron excitations with dressed
energies

ε(p) = 2π(1 − c)a1(p) + 2πca2S(p − θ) − µ − H

2
. (8.22)
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The number of electrons is determined by the integral over p at which the
energy of unbound electrons is negative. The saturation field Hs is given by
the lowest magnetic field so that the Dirac sea for pairs is empty, i.e., when
µ = H

2 . In general, the saturation field has to be determined numerically.
The magnetization in the spin-saturated phase is Mz = (1 − c) N

2L + cS.
At nonzero magnetic field for small θ only one minimum exists for spin

strings at λ = 0. Hence, in this region only one critical value of the magnetic
field, Hs exists, at which the system undergoes a transition to the spin-
saturated phase. For θ larger than some, generally speaking, other critical
value θc2(c, S), there appears an additional Dirac sea for spin strings of
length 2S − 1. This additional Dirac sea also affects the behaviour of
the ground state characteristics of a correlated electron chain with a finite
concentration of impurities. It reveals itself in the onset of an additional
quantum critical point at Hc, which describes the quantum phase transition
from a commensurate phase at H < Hc to an incommensurate phase for
H > Hc (both for θ > θc2). This phase transition is related to the van Hove
singularity of an additional Dirac sea of spin strings of length 2S−1, which
becomes empty at H = Hc. For larger values of the magnetic field a phase
transition to the spin-saturated, ferromagnetic phase at H = Hs takes
place. At the lines H = Hc and H = Hs the magnetic susceptibility has
square root singularities for the values of the magnetic field larger (smaller)
than Hc (Hs), and at low temperatures the magnetic susceptibility and the
Sommerfeld coefficient are proportional to T−1/2. At the tricritical point
θ = θ2c, H = Hc = Hs the quantum phase transition is weaker, with
divergences, proportional to T−3/4. Out of the lines of phase transitions
the magnetic susceptibility is finite at low temperatures and Curie-like at
high temperatures, while the Sommerfeld coefficient is finite, reminiscent
of the Fermi liquid behaviour.

The situation with S = 1
2 differs from the considered above, because

there are no only spin-carrying low-lying excitations. In this case it is more
convenient to use the expression for the magnetization

Mz =
1
2

∫
dpρ(p) . (8.23)

However, dressed energies of spin-singlet pairs and unbound electron exci-
tations can have additional Dirac seas due to nonzero θ for large θ. Hence,
additional quantum phase transitions due to a finite concentration of im-
purities can also take place. These phase transitions again manifest that
the limit Ni = 1 (c → 0) is singular.
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In the general case, to know the quantative behaviour of a supersym-
metric t-J chain with a finite concentration of impurities one has to solve
integral equations for dressed energies and densities numerically.

Now let us briefly consider the behaviour of a supersymmetric t-J chain
with V = 3J/4 and J = 2 with a finite concentration of impurities. The
Bethe ansatz describes such a system as the solution of equations

eL
1 (pj) = (−1)N

N∏
l=1
l �=j

e2(pj − pl)
M∏

β=1

e−1
1 (pj − λβ) , j = 1, . . . , N ,

eNi

2S(λα − θ)
N∏

j=1

e1(λα − pj) =
M∏

β=1
β �=α

e2(λα − λβ) , α = 1, . . . , M ,

E = −2π(1 − c)
N∑

j=1

a1(pj) − 2πc

M∑
α=1

a2S(λα − θ) ,

Mz =
(1 − c)N

2
+ Sc − M ,

(8.24)

where the energy is measured from the bottom of the conduction band.
The model reveals the most interesting properties in the ground state and
at low temperatures.

The analysis is similar to the cases, considered above. The ground state
set of Bethe ansatz equations for dressed energies is

ε1 + a2 ∗ ε1 + (a2S−1 + a2S+1) ∗ ε2S − a1 ∗ φ1 − a2S ∗ φ2S

= −2π(1 − c)a1(p) − µ − H

2
,

ε2S + K2S ∗ ε2S + (a2S−1 + a2S+1) ∗ ε1 − K1 ∗ φ2S − a2S ∗ φ1

= −2π(1 − c)a2S(p) − 2Sµ − SH ,

φ1 + a2 ∗ φ1 + (a2S−1 + a2S+1) ∗ φ2S − a1 ∗ ε1 − a2S ∗ ε2S

= H − 2πca2S(λ − θ) ,

φ2S + K2S ∗ φ2S + (a2S−1 + a2S+1) ∗ φ1 − K1 ∗ ε2S − a2S ∗ ε1

= 2SH − 2πcK1(λ − θ) ,

(8.25)

where

K1(x) =
2S∑
l=1

a2l−1(x) , K2S(x) = a4S(x) + 2
2S−1∑
l=1

a2l(x) . (8.26)
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This set implies that the finite concentration of impurities causes the onset
of additional Dirac seas for charged bound states of the length 2S and
spin strings of the length 2S, comparing to the case without impurities, cf.
Chapter 4. The set of Bethe ansatz equations for densities is

ρ1 + ρ1,h + a2 ∗ ρ1 + (a2S−1 + a2S+1) ∗ ρ2S

− a1 ∗ σ1 − a2S ∗ σ2S = (1 − c)a1(p) ,

ρ2S + ρ2S,h + K2S ∗ ρ2S + (a2S−1 + a2S+1) ∗ ρ1

−K1 ∗ σ2S − a2S ∗ σ1 = (1 − c)a2S(p) ,

σ1 + σ1,h + a2 ∗ σ1 + (a2S−1 + a2S+1) ∗ σ2S − a1 ∗ ρ1

− a2S ∗ ρ2S = ca2S(λ − θ) ,

σ2S + σ2S,h + K2S ∗ σ2S + (a2S−1 + a2S+1) ∗ σ1 − K1 ∗ ρ2S

− a2S ∗ ρ1 = cK1(λ − θ) .

(8.27)

The analysis of the ground state and low temperature behaviour of this
model is very similar to the above one. The case Ni = 1 (c → 0) is singular,
because of van Hove singularities of additional Dirac seas. These additional
Dirac seas for a finite concentration of impurities are related either to S �= 1

2

or to large enough θ. Then additional quantum phase transitions as a func-
tion of an applied magnetic field or governed by the filling of the system
with electrons take place with special divergent behaviours of spin or charge
susceptibilities and the Sommerfeld coefficient of the low-temperature spe-
cific heat. The interesting feature of the behaviour of a finite concentration
of spin S = 1

2 impurities is the onset of two additional (together with the
quantum critical point of a transition to the spin-saturated phase Hs, which
is equal to Hs = Hs(c = 0)+2c/(θ2 +1)) quantum critical points, at which
the magnetic susceptibility diverges.

Finally, let us investigate the behaviour of a finite concentration of mag-
netic impurities in an attractive Hubbard chain. This case is of interest
physically, because it manifests how a finite concentration of magnetic im-
purities changes the ground state properties of a system with gapped spin-
carrying low-lying excitations. Bethe ansatz equations can be written as(

λα − θ + iU(S − 1
2 )

λα−θ − iU(S − 1
2 )

)Ni N∏
j=1

λα−sinkj + iU/4
λα − sin kj − iU/4

=
M∏

β=1
β �=α

λα−λβ + iU/2
λα−λ − iU/2

,

eikjL

(
sin kj−θ + iUS/2
sin kj − θ − iUS/2

)Ni

=
M∏

β=1

sin kj−λβ + iU/4
sin kj − λβ − iU/4

,

(8.28)
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where j = 1, . . . , N and α = 1, . . . , M . In the ground state Bethe ansatz
integral equations for the densities are:

ρ(k) + ρh(k) + cos k

∫ Q

−Q

dλaU/4(λ − sin k)σ′(λ)

=
1 − c

2π
+ c cos k aSU/2(sin k − θ) ,

σ′(λ) + σ′
h(λ) − 1 − c

π
Re

1√
1 − [λ − i(U/4)]2

− ca(2S+1)U/4(λ − θ)

= −
∫ Q

−Q

dλ′aU/2(λ − λ′)σ′(λ′) −
∫ B

−B

dkaU/4(λ − sink)ρ(k) .

(8.29)

The energy is given by

e = ceimp − 2(1 − c)
∫ B

−B

dk cos kρ(k)

− 4(1 − c)Re
∫ Q

−Q

dλ
√

1 − [λ − i(U/4)]2σ′(λ) , (8.30)

where eimp is the energy of impurities per site, and the number of electrons
and magnetization per site are equal to

N
L =

∫ B

−B

dkρ(k) + 2
∫ Q

−Q

dλσ′(λ) ,

Mz

L
= cS +

1 − c

2

∫ B

−B

dkρ(k) .

(8.31)

The expression for the energy of impurities can be derived from the
algebraic Bethe ansatz. It is very cumbersome. The total energy can be
approximated for c � 1 as

e = −2
∫ B

−B

dk cos k[1 + cRρ]ρ(k)

− 4Re
∫ Q

−Q

dλ
√

1 − [λ − i(U/4)]2[1 + cRσ′ ]σ′(λ) , (8.32)

where Rρ = ρimp/ρhost and Rσ′ = σ′
imp/σ′

host, ρ = ρhost + (1/L)ρimp,
σ′ = σ′

host + (1/L)σ′
imp. Then the ground state equations for an attractive

Hubbard chain with a finite concentration of magnetic impurities can be
approximated as
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ε(k) +
∫ Q

−Q

dλaU/4(λ − sin k)ψ(λ) = −2 cosk[1 + cRρ] − µ − H

2
,

ψ(λ) +
∫ Q

−Q

dλ′aU/2(λ − λ′)ψ(λ′) = −
∫ B

−B

dkaU/2(λ − sin k)ε(k)

− 4Re
√

1 − [λ − i(U/4)]2[1 + cRσ′ ] − 2µ .

(8.33)

Naturally, the Fermi points are determined by the conditions ε(±B) = 0
and ψ(±Q) = 0. Since the total number of electrons is conserved, the limits
of integration are renormalized due to the nonzero impurity concentration
c.

One can check that the answers for a single impurity c → 0 (Ni = 1)
coincide with the ones given in Chapter 7.

Let us calculate the spin gap G, which is the smallest energy required
to depair a singlet bound state. In zero magnetic field it is given by

G = −2[1 + cRρ] − µ −
∫ Q

−Q

dλaU/4(λ)ψ(λ) . (8.34)

The analysis of the numerical solution of the above presented integral equa-
tions shows that the spin gap decreases with the concentration of impuri-
ties as the consequence of the term, proportional to Rρ, which is in general
larger than the renormalization of the chemical potential as a function of c

(observe that (dµ/dc) < 0). The decrease is linear with the concentration.
At some critical concentration ccr the gap can be closed. The value dG/dc

is negative and monotonically increases with θ. |θ| < Q is in-resonance
case (here an isolated impurity lies in the continuum of charge rapidities
of Cooper pairs), while the large |θ| describes the off-resonance situation.
The mechanism of the reducing of a spin gap due to magnetic impurities
is then of the pair weakening type rather than pair breaking as for stan-
dard magnetic impurities in a Bardeen–Cooper–Schrieffer superconductor.
No unpaired electrons are generated as long as there is a spin gap. The
pair weakening decreases with increasing spin for small |θ|, while it is re-
versed for large absolute values of θ. For S = 1

2 and very large |θ| the spin
gap slightly increases with the impurity concentration. This is related to
the fact that a finite concentration of magnetic impurities works twofold:
it increases the density of states of pairs, supporting pairs, but, on the
other hand, as usual for magnetic impurities, it reduces “superconducting”
properties.
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For the impurity concentration larger than ccr a fraction of itinerant
electrons is depaired and spontaneously magnetized. It follows from the
fact that ε(k) is negative, and Mz �= 0 for H = 0. This differs the behaviour
of a finite concentration of magnetic impurities introduced into a correlated
electron chain with the spin gap. As the reader saw, magnetic impurities
in correlated electron chains without spin gaps, see above studied cases of
supersymmetric t-J chains, are antiferromagnetically correlated, and the
ground state is a magnetic singlet.

8.2 Disodered Ensembles of Impurities in Correlated
Chains. “Quantum Transfer Matrix” Approach

In the previous section we studied the behaviour of many similar impuri-
ties in quantum correlated chains. However, sometimes impurities possess
characteristics different from each other. This is why, it is important to in-
vestigate how the disorder in the distribution of characteristics of impurities
can affect thermodynamic behaviour of quantum chains.

It is known that the theoretical description of disordered systems is
more complicated than the study of homogeneous ones. So far, only a few
exact results are known about the behaviour of disordered systems. Bethe
ansatz solvable models give a rare opportunity to find exactly (and in many
cases analytically) thermodynamic characteristics of ensembles of impuri-
ties with randomly distributed parameters. Actually, it is, probably, clear
to the reader, who already knows the structure of Bethe ansatz integrable
chains with embedded impurities. The fact that impurity L-operators (in-
troduced into monodromy matrices) satisfy intertwining (Yang–Baxter) re-
lations with R-matrices of the host, and, the exact integrability, as the
consequence of these algebraic constructions, does not depend on the val-
ues of characteristics of an impurity (e.g., on the values of θ and S′). Also,
this fact does not depend on how many impurities are introduced. Hence,
this crucial feature gives the possibility to consider as many different im-
purities of the structure, studied in Chapter 7, as it is necessary, and all
models, constructed this way will be integrable. Naturally, this does not
pertain to boundary impurities, which introduce reflections. This is why,
the main feature of disordered impurities, which permit exact solutions, is
the absence of reflection (i.e., these impurities are only elastic scatterers and
do not cause relaxation). Naturally, this condition prohibits the presence
of local levels caused by impurities (bound states caused by an interaction
are possible to study though). To summarize, the Bethe ansatz gives the
unique possibility to study the common effect of disorder and interactions,
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which is impossible, to the best of our knowledge, with the help of any
other method.

To start, let us consider quantum spin chains with embedded impurities,
studied in the previous chapter, each of which is characterized by its own
spin S′

j and own coupling to the host chain, i.e., own θj . According to
the previous section, we can also study neighboring impurities, coupled to
each other (in the case if they have the same θj). However, in what follows
we shall study the situation, in which lengths of such clusters are small
compared with the length of a chain L.

From the previous chapter the reader, in fact, is informed that due to
the linearity of integral thermodynamic Bethe ansatz equations for den-
sities the contribution from each impurity can be considered as additive.
This is, naturally, based on the use of the string hypothesis. Now we shall
study a different version of Bethe ansatz thermodynamics, which is not
based on the string hypothesis in what follows. For the consideration of
one-dimensional inhomogeneous quantum spin chain at any temperature
we choose a suitable lattice path integral representation by some mapping,
preserving integrability. Following several authors, (here it is worthwhile
to mention M. Suzuki, M. Inoue, T. Koma, A. Klümper, P. A. Pearce and
others, who contributed to the development of this method), we propose
to study an associated two-dimensional classical vertex model instead of
the direct treatment of a one-dimensional quantum system, as we used in
previous chapters. The connection of exactly Bethe ansatz solvable quan-
tum one-dimensional problem with the one of classical models of statistical
mechanics is well known and it has been studied in several monographs, to
which we refer the reader.

Let us start with the R-matrix Eq. (7.76) which describes the behaviour
of a quantum spin-S chain with the uniaxial magnetic anisotropy. Let us
for definiteness consider the case of the “easy plane” anisotropy. One can
introduce R-matrices of different type, related to the initial one by an anti-
clockwise rotation R̄µν

αβ(u) = Rαβ
νµ (u) and R̃µν

αβ(u) = Rβα
µν (u) by a clockwise

rotation. Then the transfer matrix τ̄(u, {θ}L
i=1) can be constructed in a

way similar to the case of a standard transfer matrix constructed with the
help of usual R-matrices. Here θj characterizes the coupling of the j-th
impurity to the host. Then we substitute u = −J sin η/NT , where N is the
Trotter number. We observe that

[τ(u)τ̄ (u)]N/2 = e−H/T + O(1/N) . (8.35)

Hence, the partition function of the quantum one-dimensional system is
identical to the partition function of an inhomogeneous classical vertex
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model with alternating rows on a square lattice of size L × N

Z = lim
N→∞

tr[τ(u)τ̄ (u)]N/2 . (8.36)

Interactions on the two-dimensional lattice are four-spin interactions with
coupling parameters depending on (NT )−1 and interaction parameters θi,
where i is the number of the column to which the considered vertex of
the lattice belongs. Note that interactions are homogeneous in each col-
umn, but vary from column to column. This is similar to the McCoy–Wu
model, which is the two-dimensional Ising model with a columnar disor-
der. [However in its’ one-dimensional realization the Hamiltonian of the
McCoy–Wu model can be mapped on a quadratic fermion form by means
of the Jordan–Wigner transformation, i.e., there are no interactions in that
model; models, considered in this section, definitely reveal an essential cou-
pling between particles.] We study this system in the thermodynamic limit
N, L → ∞ using an approach, which is based on a transfer matrix describing
transfers in horizontal direction. Corresponding column-to-column transfer
matrices are referred to as quantum transfer matrices (an external magnetic
field H is included by means of twisted boundary conditions)

τQTM (θj , u) =
∑

µ

eµ1H/T

N/2∏
i=1

R
µ2i−1µ2i

α2i−1β2i−1
(u + iθj)

× R̃
µ2iµ2i+1
α2iβ2i

(u − iθj) . (8.37)

The illustration of a quantum transfer matrix is presented in Fig. 8.6.
In general all quantum transfer matrices corresponding to L columns are
different. However, all these operators commute pairwise. Therefore, the
Helmholtz free energy per lattice site of the considered one-dimensional
quantum chain can be calculated from the largest eigenvalue of a quantum
transfer matrix (corresponding to only one eigenstate). The Helmholtz free
energy per site f of a one-dimensional inhomogeneous quantum spin chain is
given by only the largest eigenvalue of the quantum transfer matrix ΛQTM

as

f = − lim
L→∞

T

L

L∑
i=1

lim
N→∞

ln ΛQTM (θi, u) , (8.38)

where u = −J sin η
TN and the dependence on N is understood implicitly.

Let us consider the hierarchy of quantum transfer matrices acting on the
subspace ⊗NV2S (subscripts determine spins of scatterers) with Tn being a
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L
θθθ1 2 i... ...

numberN
Trotter

QTM

S

S

S’

Fig. 8.6 The classical two-dimensional model with four-spin interaction around vertices
and alternating coupling parameters from column to column, related to a quantum one-
dimensional chain.

member of such hierarchy with the auxiliary subspace Vn (here the index
n determines the spin of the auxiliary particle, i.e., the auxiliary particle
with spin S′ scatters off N spins S). By means of a Bethe ansatz procedure
we find the eigenvalue of the quantum transfer matrix to be given by

ΛQTM(θi) =
Λ2S′(2θi

η )∏2S′
p=1(sinh(ipη))N/2

(8.39)

and

Λp(x) =
p+1∑
l=1

λ
(p)
l (x) , (8.40)

where

λ
(p)
l (x) = ψ

(p)
l (x)eH(p+2−2l)/T

× Q[x + i(p + 1)]Q[x − i(p + 1)]
Q[x + i(2l − p − 1)]Q[x + i(2l − p − 3)]

,

ψ
(p)
l (x) =

p−l+1∏
z=1

φ−[x − i(p − 2S − 2z)]φ+[x + i(p − 2S + 2 − 2z)]

×
l−1∏
z=1

φ−[x − i(p − 2S + 2 − 2z)]φ+[x + i(p − 2S − 2z)]

(8.41)
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with p ≥ 2, Λ0 = 1 and

Λ1(x) = φ+[x − i(2S − 1)]φ−[x − i(2S + 1)]eH/T Q(x + 2i)
Q(x)

+ φ−[x + i(2S − 1)]φ+[x + i(2S + 1)]e−H/T Q(x − 2i)
Q(x)

. (8.42)

Here we have dropped the dependence on u and θi, which are fixed, and
consider the dependence on the spectral parameter x explicitly. We have
used

φ±(x) = sinhN/2[η
x ± iu′

2
] ,

Q(x) =
m∏

j=1

sinh[η
x − xj

2
]

(8.43)

with the renormalized u′ = 2u/η. Here {xj}m
j=1 is the set of Bethe ansatz

rapidities which are subject to the “local” Bethe ansatz equations

φ−[xj + i(2S − 1)]φ+[xj + i(2S + 1)]
φ+[xj − i(2S − 1)]φ−[xj − i(2S + 1)]

= −e2H/T Q(xj + 2i)
Q(xj − 2i)

(8.44)

where m is the number of the roots of the “local” Bethe ansatz equations,
being different for different eigenstates of the quantum transfer matrix. For
the largest eigenvalue we have to take m = NS. However, we shall not solve
Eq. (8.44) directly, but rather shall be interested in the functional properties
of the eigenvalue of a quantum transfer matrix. Note that Λ0 = 1 and

Λp(x + i)Λp(x − i) = fp(x) + Λp−1(x)Λp+1(x) , (8.45)

where p ≥ 1 and

fn(x) =
n∏

j=1

∏
±

φ±[x± i(n−2S−2j +1)]φ±[x± i(2S−n+2j+1)] . (8.46)

For this purpose we introduce auxiliary functions yn(x), Yn(x) = 1+yn(x),
b(x), b̄(x), B(x) = 1 + b(x) and B̄(x) = 1 + b̄(x) by
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yn(x) = Λn−1(x)Λn+1(x)/fn(x) , n ≥ 1 ,

b(x) =
λ

(2S′)
1 (x + i) + · · · + λ

(2S′)
2S′ (x + i)

λ
(2S′)
2S′+1(x + i)

,

b̄(x) =
λ

(2S′)
2 (x − i) + · · · + λ

(2S′)
2S′+1(x − i)

λ
(2S′)
1 (x − i)

,

(8.47)

where n ≥ 1. Then one can straightforwardly check that (y0 = 0)

yn(x + i)yn(x − i) = Yn−1(x)Yn+1(x) ,

Λ2S′(x + i) = B(x)λ(2S′)
2S′+1(x + i)

= e−2S′H/T
∏
±

2S′∏
j=1

φ±[x + i(2j + 2S − 2S′ −±1)]
Q(x − 2iS′)
Q(x + 2iS′)

,

Λ2S′(x − i) = B̄(x)λ(2S′)
1 (x − i)

= e2S′H/T
∏
±

2S′∏
j=1

φ±[x − i(2j + 2S − 2S′ ± 1)]
Q(x + 2iS′)
Q(x − 2iS′)

.

(8.48)

The first set of equations is known as the fusion hierarchy (so-called Y -
system). Let us use the first 2S′− 2 equations of the Y -system as they are.
In the equation for y2S′−1 we replace Y2S′(x) by B(x)B̄(x), due to

Yp(x) = B(x)B̄(x) , (8.49)

i.e., we have

y2S′−1(x − i)y2S′−1(x + i) = Y2S′−2(x)B(x)B̄(x) . (8.50)

Then it obviously yields

b(x) = e(2S′+1)H/T
∏
±

φ±[x + i(2S − 2S′ ± 1)]Λ2S′−1(x)∏2S′
j=1 φ±[x + i(2j + 2S − 2S′ ± 1)]

× Q[x + i(2S′ + 2)]
Q(x − 2iS′)

,

b̄(x) = e−(2S′+1)H/T
∏
±

φ±[x + i(2S − 2S′ ± 1)]Λ2S′−1(x)∏2S′
j=1 φ±[x − i(2j + 2S − 2S′ ± 1)]

× Q[x − i(2S′ + 2)]
Q(x + 2iS′)

(8.51)
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and

Λk−1(x − i)Λk−1(x + i) = Yk−1(x)fk−1(x) , (8.52)

which are the consequences of definitions.
The reader can see that these auxiliary functions are analytic, non-zero

and have constant asymptotic behaviour for the strip −1 < Im x ≤ 0 for
b(x) and B(x), for the strip 0 ≤ Im x < 1 for b̄(x) and B̄(x) and for the
strip −1 ≥ Im x ≥ 1 for yn and Yn. Introducing a(x) = b( 2

π (x + iε)) and
ā(x) = b̄( 2

π (x − iε)) (infinitesimal ε > 0), taking the logarithmic derivative
of these functions, then Fourier transforming the equations, eliminating the
functions Q(x) and finally inverse-Fourier transforming, we obtain the final
set of nonlinear integral equations. Eventually, we take the limit N → ∞.
Proceeding this way we find for our system the following set of nonlinear
integral equations for the “energy density” functions a, ā, A = 1 + a,
Ā = 1 + ā, yn and Yn, dependent of the spectral parameter x:

ln y1(x) =
∫

k′(x − y) lnY2(y)dy ,

ln yj(x) =
∫

k′(x − y) ln[Yj−1(y)Yj+1(y)]dy , 2 ≤ j ≤ 2S′ − 1 ,

∫
[k′(x − y) lnY2S′−2(y) + k′(x − y + iε) lnA(y)

+ k(x − y − iε) ln Ā(y)]dy = ln y2S′−1(x) ,

(8.53)

and∫
[k(x − y) lnA(y) − k(x − y − iπ + iε) ln Ā(y)

+ k′(x − y + iε) lnY2S′−1(y)]dy = ln a(x) +
vF

T coshx
− πH

2(π − 2Sη)T∫
[k(x − y) ln Ā(y) − k(x − y + iπ − iε) lnA(y)

+ k′(x − y − iε) lnY2S′−1(y)]dy = ln ā(x) +
vF

T coshx
+

πH

2(π − 2Sη)T
,

(8.54)

where vF = πJ sin(2ηS)
4ηS is the Fermi velocity of low-lying excitations, with

kernel functions
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k(x) =
1
2π

∫
dω

sinh[(π2

2η − 2S+1
2 π)ω] cos(xω)

2 cosh(πω
2 ) sinh(π−2Sη

2η πω)
(8.55)

and

k′(x) =
1
2π

∫
dω

cos(xω)
2 cosh(πω

2 )
. (8.56)

It is important to emphasize that this set of nonlinear equations does not
depend on θj . The Helmholtz free energy per site f is given by

f(x) = e0(x) − T

2π

∫
lnA(y)dy

cosh(x − y + iε)
− T

2π

∫
ln Ā(y)dy

cosh(x − y − iε)
, (8.57)

where e0 is the ground state energy. The Helmholtz free energy of the total
quantum spin chain with impurities is

F =
∑

j

f [
π

η
θj + iπ(S′ − S)] , (8.58)

where the sum is taken over all the sites (for sites without impurities we
get f(0)). Notice that for S′ < S one has to put lnY2S′ into Eqs. (8.53)
and (8.54) instead of lnAĀ, as follows from Eq. (8.49).

These equations can be easily solved numerically for arbitrary values of
the magnetic field and temperature. The random distribution of the val-
ues θj can be described by a distribution function P (θj). It is worthwhile
to emphasize here the simplicity of the derived equations: For each im-
purity there are only two parameters, the real and imaginary shifts of the
spectral parameter in the formula for the free energy per site Eq. (8.57).
Then the exact solvability of the problem for any number of impurities
permits to introduce the distribution of these shifts (related to strengths of
impurity-host couplings pertained to local Kondo temperatures, which one
can introduce to describe the local behaviour of each magnetic impurity in
a quantum correlated chain, cf. the previous chapter, and spins of impuri-
ties). One has only 2S′ + 1 non-linear integral equations, Eqs. (8.53) and
(8.54), to solve, and the answer can in principle be obtained for arbitrary
temperature and magnetic field ranges.

It turns out that for the most important case S = S′ = 1
2 the set of

integral equations is considerably simplified. We have yn = 0 (Yn = 1), and
only two integral equations totally describe thermodynamics of a disordered
ensemble of spin- 1

2 integrable impurities in a spin- 1
2 chain.
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The next-largest eigenvalue of the quantum transfer matrix is related
to the correlation length ξ of the longitudinal spin-spin correlation function
as

ξ−1 + iPF = − lim
N→∞

ln
Λ(2)

QTM

ΛQTM
+ · · · , (8.59)

where PF is the Fermi momentum of low-lying excitations. For the simplest
case S = S′ = 1

2 the nonlinear equations, which describe thermodynamics
of such an excitation are two last equations from Eqs. (8.54) with yn = 0
(Yn = 1) and with the addition of driving terms

±iπ ∓ 2iπk[x − λ1 ∓ i(π/2)] ∓ 2iπk[x − λ2 ∓ i(π/2)]

+ ln
sinh η

π−η [x − λ0 ∓ i(π/2)]

sinh η
π−η [x − λ0 ± i(π/2)]

, (8.60)

for the equations for a(x) and ā(x), respectively, where λ0,1,2 define the
positions of holes, related to elementary excitations (with λ1,2 on the real
axis, or forming a conjugate pair and complex rapidity λ0 with Imλ0 = η/2).
These parameters are not arbitrary, but satisfy coupled equations

a[λ1 + i(π/2)] = a[λ2 + i(π/2)] = a[λ0 + i(π/2)] = −1 ,

ā[λ1 − i(π/2)] = ā[λ2 − i(π/2)] = ā[λ0 − i(π/2)] = −1 .
(8.61)

The next-largest eigenvalue of the quantum transfer matrix is then

ln
Λ(2)

QTM (x)
ΛQTM (x)

= ln
(

tanh
1
2
(x − λ1) tanh

1
2
(x − λ2)

)
. (8.62)

Naturally, the method, described above, is valid for the study of homo-
geneous systems, too. We would like to emphasize that in the low temper-
ature regime lattice effects are non-essential and couplings of impurities to
the host can be considered as contact ones in the thermodynamic limit.

The coupling of an impurity to the host (Jj
imp) is determined by the

constant θj . The reader already knows that precisely this constant deter-
mines the effective Kondo temperature of the impurity, e.g., in a Heisenberg
spin chain via TjK ∝ exp(−π|θj |). For energies higher than this crossover
Kondo scale one has an asymptotically free impurity spin S′, while for lower
energies the impurity spin is underscreened for S′ > S (with the Curie-like
behaviour of a remnant effective spin S′ − S), totally screened for S′ = S

(with the usual marginal Fermi liquid-like behaviour persisting with the
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finite susceptibility and linear temperature dependence of the specific heat
at low temperature, and, hence, a finite Wilson ratio in the ground state)
and overscreened for S′ < S with the critical non Fermi liquid behaviour of
a single impurity spin. It is similar to the findings in the theory of a Kondo
impurity in a free electron matrix. In other words, θj measures the shift of
the Kondo resonance (higher values of |θj | correspond to lower values on
the Kondo scale) of the impurity level with host spin excitations, similar
to the standard picture of the Kondo effect in a free electron host.

One can see from Eqs. (8.53)–(8.58) that for low T the temperature
behaviour of the magnetic susceptibility and specific heat of isolated impu-
rities strongly depends on relative values of host spins S and impurity spin
S′. This fact, naturally, agrees with the description of thermodynamics of
quantum spin chains with the help of the string hypothesis, presented in
previous chapters.

For S < S′ an impurity is underscreened by low-lying excitations of a
chain. Naturally, the total low-temperature magnetic susceptibility of any
disordered ensemble of such impurities is also divergent at low tempera-
tures. On the other hand, for S′ < S the spins of low-lying excitations
of an antiferromagnetic “easy-plane” chain overscreen the spin of a single
magnetic impurity. This yields the critical behaviour, which reveals itself in
divergences of the T → 0 magnetic susceptibility of a single magnetic impu-
rity and of the low-temperature Sommerfeld coefficient of the specific heat.
The total low-temperature magnetic susceptibility and the Sommerfeld co-
efficient of any disordered ensemble of such impurities are also divergent
at low temperatures. Here the disorder of distributions of impurity-host
couplings does not yield any qualitative changes, introducing only specific
additional features of the non Fermi liquid behaviour of the total system,
which is already present for a single magnetic impurity.

A more interesting situation is for the case S′ = S. Here the so-
lution of Eqs. (8.53)–(8.57) can be obtained analytically at low temper-
atures. We know that at sufficiently low temperatures the functions a

and lnA manifest a sharp crossover behaviour, reminiscent of a step func-
tion: |a| � 1 and | lnA| � 1 for x < lnαTjK/T and |a|, | lnA| ∼ O(1)
for x > lnαTjK/T , where α is some constant and for small anisotropy
TjK = vF exp(−π|θj |/η), cf. Chapter 6. We can introduce the scaling func-
tions ln a± = ln a(±[x + ln(αTjK/T )]), ln ā± = ln ā(±[x + ln(αTjK/T )]),
lnA± = lnA(±[x + ln(αTjK/T )]), ln Ā± = ln Ā(±[x + ln(αTjK/T )]),
ln y±

p = ln yp(±[x + ln(αTjK/T )]) and lnY ±
p = lnYp(±[x + ln(αTjK/T )]),

where p = 1, ..., 2S′− 1. In terms of those scaling functions Eqs. (8.53) and
(8.54) are renormalized in such a way that driving terms in the last two
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equations for H = 0 become proportional to v exp(−x ± iε) (where small
corrections of order of O(T ) were neglected). Hence, the only asymptotic
behaviour of A and Ā at large spectral parameter is essential. Then it is
not difficult to obtain the low temperature behaviour of the Helmholtz free
energy per site (for H = 0, α is a constant)

f(θj) = e0(θj) −
πST 2

2(S + 1)TjK

[
1 +

3S3

[ln(αTjK/T )]3

]
+ · · · . (8.63)

In the presence of a weak magnetic field H � T we can calculate temper-
ature corrections to the Helmholtz free energy per site

f(θj) = ej
0(θj , H) − πST 2

2(S + 1)TjK

− SH2

2πTjK

[
1 +

S

ln(αTjK/T )
+

S2 ln | ln(αTjK/T )|
ln2(αTjK/T )

]
+ O(T 2) . (8.64)

Proceeding as above for the correlation length (for S = S′ = 1
2 ) we

obtain for the low temperature dependence of the correlation length

ln
Λ(2)

QTM

ΛQTM
= π∆

T

TjK
+ iPF , (8.65)

where PF = (N − M)π and 2∆ = (∆N)2 + (∆M)2 + 2n, where ∆N ,
∆M and n are integers or half-integers determining the spin projection,
momentum and the number of particle-hole excitations related to λ1,2,0, ∆
is known as the conformal dimension (see the next chapter).

For a single impurity P (θj) = δ(θj − θ) we immediately recover the
Kondo behaviour of an asymptotically free spin (characteristic for a Kondo
impurity in a free electron host and for a single impurity in a Heisenberg
antiferromagnetic chain, cf. the previous chapter). For the homogeneous
case we put θj = 0 (it means that TjK → vF where vF is the Fermi velocity
of low-lying excitations, e.g., spinons for S = 1

2 ). The reader can see that
the only one parameter gets renormalized in the disordered case — the
Fermi velocity of U(1)-symmetric low-lying excitations. The Kondo scale
plays the role of a “local Fermi velocity” for an impurity.

Considered model permits to average over a distribution of θj (or local
Kondo temperatures), because of the factorization of the Helmholtz free
energy of the total system. This is the consequence of the Bethe ansatz
integrability of a model (i.e., of the only elastic scattering off impurities).
Note that θj-dependence, present in low energy characteristics, results only
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in universal scales, TjK , (it is not so for higher energies, but the latters are
irrelevant for low temperature disorder-driven divergences). Hence for low
energies we can use distributions of TjK , which are also more appropriate
in the connection to experiments on quantum spin chains with disordered
impurities. This is why, the main features of low energy characteristics of
a disordered integrable spin chain are determined by distributions of local
Kondo temperatures for impurities. Let us consider the strong disorder
distribution, which starts with the term P (TjK) ∝ G−λ(TjK)λ−1 (λ <

1) valid till some energy scale G, do not confuse with the spin gap of
previous sections, for the lowest values of TjK (that distribution was shown
to pertain to real disordered quantum spin chains and some heavy fermion
alloys). Now we can calculate the low temperature behaviour of the average
magnetic susceptibility, Sommerfeld coefficient of the specific heat (for the
most interesting case S = S′ = 1

2 ) of the form (the lower limit of the integral
over the distribution of TjK gives a regular contribution)

〈χ〉 ∝ 〈γ〉 ∼ G−λT λ−1 . (8.66)

These formulas definitely manifest low-temperature divergences of 〈χ〉 and
〈γ〉 and the strong renormalization in a disordered spin chain as compared
to the homogeneous situation. The ground state average magnetization
reveals 〈Mz〉 ∼ (H/G)λ behaviour, also different from the homogeneous
case. It is interesting to notice that the average correlation length for
S = S′ = 1

2 is 〈ξ〉 ∼ (π∆)−1(G/T )λ.
In the important marginal case λ = 1 logarithmic temperature diver-

gences appear. Here one has the distribution P (TjK = 0) = P0 �= 0 valid
till G. Then averaging the low temperature part of the susceptibility and
Sommerfeld coefficient we obtain

〈χ〉 ∝ 〈γ〉 ∼ −P0

2π
[ln(G/T ) + ln

√
ln(αG/T ) + · · · ] . (8.67)

Here we again see low-temperature divergences of 〈χ〉 and 〈γ〉 (more weak,
though, comparing to the previous case). We can also calculate the low field
ground state magnetization: 〈Mz〉 ∼ HP0[− ln(H/G) − ln(ln(H/C′G)) +
· · · ]. The average correlation length is 〈ξ〉 ∼ −(2/P0∆T )[ln(G/T ) +
ln
√

ln(αG/T )]−1 + · · · .
The weak power law or logarithmic dependence pertains to the Grif-

fiths singularities (due to R. B. Griffiths) in the proximity of a critical
point T = 0. For these distributions of TjK the Wilson ratio at T = 0 is
equal to 2π2/3, characteristic for a Fermi liquid like situation. It turns out
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that above mentioned results for low temperatures are valid also for random
ensembles of S′ = n/2 (where n is the number of channels) multi-channel
Kondo impurities with local anisotropic, generally speaking, interactions
of latters with conduction electrons, because at low temperatures the dif-
ference between the energy of a quantum spin- 1

2 Heisenberg chain and the
spin subsystem of a Kondo model is negligible.

We can illustrate analytic results by numerical calculations for solu-
tions of Eqs. (8.53)–(8.58). In Figs. 8.7 and 8.8 temperature dependencies
for the magnetic susceptibility and the Sommerfeld coefficient for the most
interesting magnetically isotropic Heisenberg antiferromagnetic spin S = 1

2

chain are depicted. Solid lines show the finite values of χ and γ in this
case without impurities. However, dashed and dotted lines present an-
swers for distributions of θj with a strong disorder. The latter means that
wings of distributions are large enough, comparing to maxima of distri-
butions. The dotted line corresponds to the Lorentzian distribution with
P (θj) = [(2θj/η)2 + π2]−1. The dashed line pertains to the so-called log-
arithmically normal distribution with P (θj) = exp(−[ln(|2θj/η| + 10−6) +
1
4 ]2)/

√
π(|2θj/η| + 10−6), which is also characteristic for a strong disor-

der. The reader can see the qualitative difference between the behaviour
of S′ = S magnetic impurities with a strong disorder of the distribution of
their couplings to the host comparing to the homogeneous spin chain. The
magnetic susceptibility and the Sommerfeld coefficient strongly diverge at
T → 0 for strongly randomly distributed parameters of impurity-host cou-
plings. It is in a drastic contrast with the homogeneous case. It turns out
that low-temperature asymptotics of the log-normal case of the disorder are

c ∼ [ln(1/T ) exp([ln ln(1/T )]2)]−1 ,

χ ∼ [T ln ln(1/T ) exp([ln ln(1/T )]2)]−1 ,
(8.68)

while for the Lorentzian distribution one has

c ∼ [ln(1/T )]−2 ,

χ ∼ [T ln(1/T )]−1 .
(8.69)

In Figs. 8.9–8.10 similar behaviours for magnetic susceptibilities and
Sommerfeld coefficients of the homogeneous case, and cases with log-normal
and Lorentzian distributions (strong disorder) and the Gaussian distribu-
tion (weak disorder, see below) for the mostly anisotropic “easy-plane”
case η = π/2 (for S = 1

2 this corresponds to the isotropic XY model).
The reader can see, that changes due to the nonzero magnetic anisotropy
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Fig. 8.7 The magnetic susceptibility (H = 0) of a Heisenberg spin- 1
2

antiferromagnetic

chain with 1
2

magnetic impurities. The exchange constant of the host is J = 2. Solid
line shows the homogeneous chain; the long-dashed line — the Gaussian distribution; the
dashed line — the log-normal distribution; the dotted line — the Lorentzian distribution

of θj .

of the “easy-plane” type are only qualitative. This is clear, because such
an “easy-plane” magnetic anisotropy does not produce gaps for low-energy
excitations (i.e., it is marginally irrelevant perturbation from the renor-
malization group viewpoint), and, hence, the system remains in a critical
regime.

On the other hand, a weak disorder does not produce such qualita-
tive changes in the behaviour of random ensembles of disordered magnetic
impurities. By a weak disorder we mean a narrow distribution of θj . Long-
dashed lines of Figs. 8.7–8.10 depict the temperature behaviour of the en-
semble of magnetic impurities with the weak Gaussian distribution of θj

(which is close to a single impurity distribution P (θj) = δ(θj)). The reader
can see that such a narrow distribution (weak disorder) does not yield di-
vergences of the low-temperature magnetic susceptibility and Sommerfeld
coefficient of the specific heat. The reason for such a different behaviour
of wide and narrow distributions of the parameters, which define impurity-
host couplings (or strong–weak disorder, respectively), is clear. At low
energies a local Kondo temperature defines the crossover scale for the be-
haviour of a magnetic impurity. For the case S′ = S a single magnetic
impurity is screened by low-lying excitations of the host for T < TjK , and
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Fig. 8.8 The Sommerfeld coefficient γ (H = 0) of the same chain. The solid line shows
the homogeneous chain; the long-dashed line — the Gaussian distribution; the dashed
line — the log-normal distribution; the dotted line — the Lorentzian distribution of θj .

is not screened for T > TjK (with the Curie-like behaviour of the un-
screened remnant spin). For ensembles of magnetic impurities with a weak
disorder the temperature is larger than the average Kondo temperature of
the ensemble of impurities, and, hence, the total magnetic susceptibility
and the Sommerfeld coefficient are finite for T → 0. Contrary, for a strong
disorder, many local Kondo temperatures are less than the temperature.
Those impurities remain unscreened by low-lying excitations of the host,
and, hence, the total magnetic susceptibility and the Sommerfeld coefficient
become divergent for T → 0.

Finally we would like to attract the attention of the reader, to empha-
size how the magnetic field lifts the degeneracy. In Figs. 8.11–8.12 the
temperature behaviour of magnetic susceptibilities and Sommerfeld coef-
ficients for isotropic cases for the log-normal and Lorentzian distributions
(cf. Figs. 8.7-8.8), but for the nonzero magnetic field H = 0.2 are depicted.
The reader can clearly see that such a field removes divergences in the
low-T susceptibilities and Sommerfeld coefficients for models with a strong
disorder. As an example, the temperature dependences of the same values
for H = 0.2 are shown for a homogeneous chain. It turns our that the weak
magnetic field does not yield any qualitative changes in the temperature
behaviour, as expected.
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Fig. 8.9 The magnetic susceptibility of an isotropic XY chain (η = π/2) with 1
2

mag-
netic impurities for H = 0. The solid line shows the homogeneous chain; the long-dashed
line — the Gaussian distribution; the dashed line — the log-normal distribution; the dot-
ted line — the Lorentzian distribution of θj .

For higher values of spins the changes, as compared to the case S′ =
S = 1

2 , are only quantative. For example, the values of χ and c become
larger for larger spin values. However, there are no drastic changes in
the behaviour of disordered ensembles of impurities, in comparison with
the case, discussed above. This seems to be natural, because only low-
lying excitations (those, which have Dirac seas in the ground state) are
responsible for the Kondo-like screening of spins of impurities, while other
excitations (which quasi-energies are described by yp and Yp), are more
higher-energetic.

Now let us turn to the behaviour of ensembles of disordered impurities
in correlated electron chains, where not only spin dynamics, but also charge
dynamics is permitted. Here the ideology of the Bethe ansatz consideration
is very similar to the one for quantum spin chains, because we, actually,
used the concrete structure of R-matrices, etc. only to have the concrete
realization of Yang–Baxter algebras. This is why, we can apply the powerful
machinery of the Bethe ansatz to correlated electron chains with ensembles
of integrable impurities with randomly distributed parameters, too.

As an example, let us consider the characteristics of a supersymmetric t-
J chain with integrable impurities. We limit ourselves to the case of S = 1

2
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Fig. 8.10 The Sommerfeld coefficient γ of the same XY chain. The solid line shows the
homogeneous chain for H = 0; the long-dashed line — the Gaussian distribution; the
dashed line — the log-normal distribution; the dotted line — the Lorentzian distribution
of θj .

impurities, because, as the reader already saw, namely in this case the
renormalization of thermodynamic characteristics is the most dramatic.

In the ground state we obtain the valence of a single jth impurity
nj(θj) = 1

2 + (1/π)[ln 2
√
|Q − θj |], where Q2 = [2/3ζ(3)][2 ln 2 − µ +

(H2/4π)]. Actually, we see that the result for the average ground state
valence of disordered impurities per site is not dependent on the universal
energy scale TjK , but it also gets renormalized for disordered impurities,
depending on the distribution of θj . The energy scale for the renormal-
ization of the average valence is much larger for charge degrees of freedom
than for spin degrees of freedom of correlated chains, since the magnetic
field is usually much smaller than the band width. The magnetization per
site for small magnetic fields is mz

j (θj) = (H/TjK)[1 + (1/2| ln(H/TjK)|)−
(ln | ln(H/TjK)|/4 ln2(H/TjK)) + · · · ], which does show the universal en-
ergy scale TjK . This local Kondo scale depends on the band filling. If
charge fluctuations are totally suppressed, for N = L, the local Kondo
temperature is TjK = vF

s exp(−π|θj |), where vF
s is the Fermi velocity of a

spin-carrying low-lying excitation. Corrections due to the mixed valence
of each impurity shift the value of the local Kondo temperature, e.g., as
TjK → TjK(1 + 2ζ(3)Q3) for Q � 1. This is again the manifestation of
correlations between electrons.
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Fig. 8.11 The magnetic susceptibility of a Heisenberg spin- 1
2

antiferromagnetic chain

with 1
2

magnetic impurities for H = 0.2. The solid line shows the homogeneous chain; the
dashed line — the log-normal distribution; the dotted line — the Lorentzian distribution.

For nonzero temperatures we can apply the quantum transfer matrix
method. The nonzero elements of the R-matrix of the related to the super-
symmetric t-J chain two-dimensional Perk–Schultz model can be written
as

Rαα
αα(x) =

ic + εαx

ic
, Rµµ

αα(x) =
εαεµx

ic
,

Rµα
αµ(x) = 1 + sign(α − µ)x ,

(8.70)

where x is the spectral parameter, α, µ = 1, 2, 3 and ε1,2,3 are the Grass-
mann parities, see Chapter 5. Introducing, as above, clockwise and anti-
clockwise rotated matrices, we find again that the Helmholtz free energy
per site is obtained from the largest eigenvalue of the quantum transfer
matrix.

Using the analytical properties of the quantum transfer matrix we can
derive the following set of nonlinear integral equations for the “energy den-
sity” functions, which at low T are closely related to Gibbs’ exponents of
“dressed energies” of spin, a(x) and ā(x), and charge, c(x), excitations of
the supersymmetric t-J chain, the solution of which describes thermody-
namics of the supersymmetric t-J model for any values of temperature,
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Fig. 8.12 The Sommerfeld coefficient γ of the same chain. The solid line shows the
homogeneous chain for H = 0.2; the dashed line — the log-normal distribution; the
dotted line — the Lorentzian distribution.

magnetic field and chemical potential (related to the total number of elec-
trons in the system)

T ln a(x) = −2πΨa(x + iε) + µ + (H/2)

−TΨa ∗ ln(1 + ā)|x+2iε − TΨa ∗ ln(1 + c)|x+iε ,

T ln c(x) = −2πΨc(x) + 2µ − TΨc ∗ ln(1 + c)

−TΨa ∗ ln(1 + ā)|x+iε − TΨā ∗ ln(1 + a)|x−iε ,

(8.71)

where ∗ means convolution,

Ψa(x) =
1

2πx(x − i)
, Ψā(x) =

1
2πx(x + i)

,

Ψc(x) =
1

π(x2 + 1)
, (8.72)

and 0 < ε < 1. The equation for ā(x) is obtained from the one for a by the
replacements i → −i, H → −H and a ↔ ā. The derivation of this set of in-
tegral equations is reminiscent of the above derivation of nonlinear integral
equations for a spin chain and we refer the interested reader to the original
publication. The Helmholtz free energy per site of a supersymmetric t-J
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chain with impurities does depend on θj and is given by

f(θj) = 2µ − T ln c(θj) (8.73)

and the total Helmholtz free energy is F =
∑L

j=1 f(θj), where for the host
sites we put θj = 0. For a single impurity P (θj) = δ(θj − θ) and we recover
in the Kondo limit the logarithmic Kondo behaviour of an asymptotically
free spin (which is characteristic both to a Kondo impurity in a free electron
host and to a single magnetic impurity in a t-J chain). For the case of the
homogeneous chain we put θj = 0.

The numerical solution of Eq. (8.71) shows that for narrow distributions
(weak disorder) a disordered supersymmetric t-J chain is in a singlet state,
i.e., the Kondo screening persists. For broad distributions (strong disorder)
the non Fermi liquid behaviour is manifested. Here low temperature mag-
netic susceptibility diverges, i.e., there is no Kondo quenching. The low
temperature divergences disappear upon applying a finite magnetic field
which restores the screening of impurities.

We can analytically solve Eq. (8.71) in several important limiting cases.
First, for low T the Helmholtz free energy per site is given by

f(θj) ≈ e0(θj) −
πT 2

6
[v−1

c (θj) + v−1
s (θj)] + . . . , (8.74)

where e0(θj) ≡ ej
0 is the ground state energy per site, and vc,s(θj) are Fermi

velocities of charge and spin low-lying excitations of the supersymmetric t-J
chain taken at the associated Fermi points shifted by θj . For θj = 0 it is
the known low temperature limit of the homogeneous host. The only low
energy parameters which get renormalized by the disorder are the effective
“local velocities” of low-lying charge and spin excitations. For low densities
of electrons (where µ � T ) for H = 0 we obtain the Helmholtz free energy
per site (we put ε = 1/2)

f(θj) ≈ ej
0 − T ln(1 + 2e−1/T (θ2

j+1)) . (8.75)

For the high density regime µ 	 T one can use the approximation ln c ≈
ln(1 + c). This yields

T ln a =
π

coshπx
+

H

2
+ Tk(x) ∗ ln(1 + a) − Tk(x + i) ∗ ln(1 + ā) , (8.76)

and similar for ā, with the kernel

k(x) =
1
2π

∫
dω

eiωx

1 + e|ω| . (8.77)
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The free energy per site becomes

f(x) = e0(x) + µ − T

∫
dy

ln(1 + a)(1 + ā)
coshπ(x − y)

. (8.78)

The reader can recognize in these nonlinear equations the ones of Eq. (8.54)
in the limit η → 0 and S = S′ = 1

2 , i.e., the equations for a disordered
Heisenberg spin 1

2 chain. It is clear, because in the limit of large µ the
electron density per site is equal to 1 (the largest possible value for a t-J
model).

In the low temperature regime lattice effects are non-essential and cou-
plings of impurities to the host can be considered as contact ones. Typically
corrections to low temperature asymptotics of thermodynamic character-
istics of quantum chains possessing SU(2) spin symmetry manifest loga-
rithmic behaviour (singularities), see below, Chapter 10. Their origin can
be traced back to marginal operators existing for models with SU(2) spin
symmetry (present in a supersymmetric t-J chain). To know how loga-
rithmic singularities in the low temperature susceptibility and specific heat
get renormalized for a disordered supersymmetric t-J chain in the high
density regime (which is the most important because it pertains to the
Kondo, magnetic, behaviour of impurities) we perform an analytic low-
temperature study of Eqs. (8.71). We again introduce scaling functions
a±(x) ≡ a(±x ± Ln), where Ln = ln(αTjK/T ) (α is a constant) etc.
Eq. (8.71) are transformed so that for the new set of scaling functions
the only known asymptotic behaviour of “energy density” functions 1 + a±
and 1 + ā± at large spectral parameter enters. Then we obtain (at H = 0)
the Helmholtz free energy of the dense limit of a supersymmetric t-J chain
per site

f(T j
K) = ej

0 + µ − πT 2

6TjK
[1 + 3(2Ln)−3] + · · · . (8.79)

For a weak nonzero magnetic field H � T we calculate logarithmic tem-
perature corrections for the Helmholtz free energy per site as

f(T j
K) = ej

0(H) + µ − πT 2

6TjK

− H2

4πTjK
[1 + (2Ln)−1 − (2Ln)−2 ln(2Ln)] + O(T 2) . (8.80)

Notice that for the dense limit of the low temperature behaviour of a t-J
chain with disordered impurities the dependence on θj enters only as TjK ,
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i.e., as distributions of “characteristic velocities” of spin excitations (or
crossover scales, which pertain to each impurity). It is not the case for
higher energies and for lower densities, but those are not important for low
temperature disorder-driven divergences. Hence, for low energies we can
use distributions of TjK , which are also more appropriate in connection to
experiments. For the case of a homogeneous chain TjK → vF

s , where vF
s is

the Fermi velocity of low-lying spin-carrying excitations of a supersymmet-
ric t-J chain. We can apply the results obtained above for a Heisenberg spin
chain for the dense limit of a supersymmetric t-J chain with disordered im-
purities. Notice that the average compressibility for the high density limit
also reveals the low temperature divergence.

Summarizing, in this chapter we considered exact Bethe ansatz solu-
tions for spin and correlated electron chains with finite concentrations of
magnetic impurities. For similar impurities we showed how the finite con-
centration of them and interactions between them yield impurity bands,
which drastically change the behaviour of the system. We also presented
exact results for thermodynamic characteristics of correlated electron and
spin chains with disordered ensembles of magnetic impurities. For this pur-
pose we used the “quantum transfer matrix” approach, which description
is presented to the reader.

Quantum spin chains with a finite concentration of impurities were
introduced in [Schlottmann (1994)], see also [de Vega and Woynarovich
(1992)]. The special case of zig-zag spin and correlated electron chains
was reviewed in [Zvyagin (2001b)]. The reader can find the descrip-
tion of impurities’ bands in integrable correlated electron chains with a
finite concentration of impurities in [Schlottmann and Zvyagin (1997b);
Schlottmann (1998a); Schlottmann (1998b)]. The description of the
McCoy–Wu model can be found in [McCoy and Wu (1973)]. The reader
can find an information about the Griffiths phase in [Griffiths (1969)]. For
the quantum transfer matrix approach we refer to [Suzuki (1985); Suzuki
and Inoue (1987); Inoue and Suzuki (1988); Koma (1990); Pearce and
Klümper (1991); Klümper, Batchelor and Pearce (1991); Klümper (1993);
Klümper (1998)]. In particular, thermodynamic quantum transfer ma-
trix equations for a supersymmetric t-J chain and a repulsive Hubbard
chain are derived and studied in [Jüttner, Klümper and Suzuki (1997);
Jüttner, Klümper and Suzuki (1998)]. The description of disordered
ensembles of spin- 1

2 impurities in Heisenberg and Heisenberg–Ising spin
chains can be found in [Klümper and Zvyagin (1998); Zvyagin (2000);
Klümper and Zvyagin (2000)]. It was generalized in [Zvyagin (2002)] for any
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values of spins of the host and impurities and for ensembles of disordered
Kondo impurities in metals for single- and multi-channel situations. The
exact solution for a correlated electron t-J chain with randomly distributed
impurities was obtained in [Zvyagin (2001a)].
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Chapter 9

Finite Size Corrections in Quantum
Correlated Chains

In this chapter we shall study the next order corrections in L−1 to thermo-
dynamic characteristics of correlated quantum chains. These corrections
are related to quantum topological effects in these chains (like persistent
currents) and to the asymptotic behaviour of correlation functions in the
conformal limit.

9.1 Finite Size Corrections for Quantum Spin Chains

Let us start to consider finite size corrections with the simplest model of
a spin- 1

2 Heisenberg-Ising chain with periodic boundary conditions. Bethe
ansatz equations Eq. (3.19) for the state with the z-projection of the total
spin Sz = (L/2) − M can be re-written for Jz/J = cos η as

zL(λj) =
Jj

L
, (9.1)

where we introduced the so-called counting function

zL(x) =
1
2π

(
p0(x) − 1

L

M∑
l=1

φ0(x − λl)

)
, (9.2)

with

p0(x) = 2 tan−1[cot(η/2) tanh(x/2)] ,

φ0(x) = 2 tan−1[cot η tanh(x/2)] ,
(9.3)

285
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and quantum numbers Jj = (M + 1)/2 (mod 1). The energy and the total
momentum of this state are defined as

E = E0 +
M∑

j=1

(
H − J sin2 η

coshλj − cos η

)
,

P = −2π

L

M∑
j=1

Jj ,

(9.4)

where E0 is the energy of the ferromagnetic, spin-polarized state (with
M = 0). Let us specify the set of quantum numbers Jj . Let us choose two
numbers J± = M/2 (mod 1), so that

J+ − J− = M , −1
2
(J+ + J−) = D . (9.5)

For Jj we take all the numbers equal to (M + 1)/2 (mod 1) between J+

and J−. This pertains to a Dirac sea of M particles with D particles
moved from the left Fermi point to the right one. We can also introduce
the function σL(x) = dzL(x)/dx. By using the Euler–Maclaurin formula
we can re-write the finite sum as the series

1
L

∑
j

f(λj) =
∫ Λ+

Λ−
dλf(λ)σL(λ)

− 1
24L2

(
f ′(Λ+)
σL(Λ+)

− f ′(Λ−)
σL(Λ−)

)
+ O(L−3) , (9.6)

where the limits of integration are defined as zL(Λ±) = J±/L. Then it
follows that

σL(x) =
1
2π

[
dp0(x)

dx
−
∫ Λ+

Λ−
dyK(x − y)σL(y)

− 1
24L2

(
1

σL(Λ+)
dK(x − Λ+)

dx
− 1

σL(Λ−)
dK(x − Λ−)

dx

)]
, (9.7)

where K(x) = dφ0(x)/dx. This linear integral equation is completed by
the equations, determining Λ±:

1
2

(∫ ∞

Λ+
dλσL(λ) −

∫ Λ−

−∞
dλσL(λ)

)
=

D

L
,

∫ Λ+

Λ−
dλσL(λ) =

M

L
.

(9.8)
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Equation (9.7) can be written in the form

σL(x) = σ(x|Λ+, Λ−) − 1
24L2

(
ρ(x|Λ+, Λ−)

σL(Λ+)

+
ρ(−x| − Λ−,−Λ+)

σL(Λ−)

)
, (9.9)

where σ(x|Λ+, Λ−) and ρ(x|Λ+, Λ−) are the solutions of the following linear
integral equations:

ρ(x|Λ+, Λ−) =
1
2π

(
dK(x − Λ+)

dx
−
∫ Λ+

Λ−
dyK(x − y)ρ(y|Λ+, Λ−)

)
,

σ(x|Λ+, Λ−) =
1
2π

(
dp0(x)

dx
−
∫ Λ+

Λ−
dyK(x − y)σ(y|Λ+, Λ−)

)
,

(9.10)

with the accuracy which is necessary for our purposes it is enough to define
Λ± of order of L−1. This is why we may replace σL(x) with σ(x|Λ+, Λ−)
in Eqs. (9.8), which yields(∫∞

Λ+ dλσ(λ|Λ+, Λ−) −
∫ Λ−

−∞
dλσ(λ|Λ+, Λ−)

)
=

D

N
,

∫ Λ+

Λ−
dλσ(λ|Λ+, Λ−) =

M

L
.

(9.11)

The energy of the state can be written as

E = E0 + Lε

(
M

L
,
D

L

)
− 1

24L

(
e(Λ+, Λ−)
σL(Λ+)

+
e(−Λ−,−Λ+)

σL(Λ−)

)
, (9.12)

where

ε

(
M

L
,
D

L

)
= −

∫ Λ+

Λ−
dλε0(λ)σ(λ|Λ+, Λ−) ,

ε0(x) = H − J sin2 η

coshx − cos η
,

(9.13)

and

e(Λ+, Λ−) =
dε0(Λ+)

dΛ+
−
∫ Λ+

Λ−
dλε0(λ)ρ(λ|Λ+, Λ−) . (9.14)

When one takes the thermodynamic limit L, M → ∞ keeping (M/L) =
ν(H), (D/L) = δ finite, then ε[ν(H), δ] is the internal energy per site of
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the infinite system. In the ground state this internal energy ε∞ must be
minimal with respect to ν(H) and δ. We perform such a minimization,
expanding then ε[(M/L), (D/L)] about that minimum. If δ = 0, then
Λ+ = −Λ− = Λ. We get

ε

(
M

L
,
D

L

)
= ε∞ +

e(Λ,−Λ)
σ(Λ|Λ,−Λ)

×
[

1
4Z2

(
M

L
− ν(H)

)2

+ Z2 D2

L2

]
, (9.15)

where we introduced the dressed charge Z = ξ(Λ) as the solution of the
following equation

ξ(x) = 1 − 1
2π

∫ Λ

−Λ

dyK(x − y)ξ(y) , (9.16)

taken at the Fermi point. Actually, it is not difficult to recognise that
ξ(x) = (∂ε(x)/∂H). The dressed charge of the excitation shows how the
interaction “dresses” the “bare charge” of the “bare” energy of a low-lying
excitation. The reader can see that in the considered model η measures
the strength of interaction (for η = π/2, i.e., for the isotropic XY chain,
spinons are non-interacting fermions, and for them Z = 1). For H = 0 we
have

Z =
√

π

2(π − η)
. (9.17)

For the isotropic Heisenberg chain case with H = 0 one obtains Z = 1/
√

2.
On the other hand, for H = Hs we get Z = 1. Actually, it is easy to show
that the dressed charge is related to the magnetic susceptibility via

χ =
Z2

πvF
, (9.18)

which follows from the definition of the dressed charge.
Then we calculate

E = E0 + Lε∞ − 1
L

e(Λ,−Λ)
σ(Λ|Λ,−Λ)

(
1
12

− 1
4Z2

[M − ν(H)L] − Z2D2

)
.

(9.19)
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One can denote

vF =
e(Λ,−Λ)

2πσ(Λ|Λ,−Λ)
, (9.20)

where vF is the Fermi velocity of a spinon (for H = 0 it is equal to
vF = πJ sin η/2η). It is easy to see that the equation for σ(x|Λ,−Λ) from
Eqs. (9.9) coincides with the ground state Bethe ansatz equation for the
density of spinons ρ1(λ) = σ(λ|Λ,−Λ), with Λ = B. The reader can also
check that Eq. (9.14) is the derivative of the ground state Bethe ansatz
equation for the dressed energy of spinons ε1(λ) taken at λ = B, from
which it follows that

e(Λ,−Λ) =
∂ε1(λ)

∂λ
|λ=Λ , (9.21)

so that the above definition of the Fermi velocity coincides with the defi-
nitions of Fermi velocities of low-lying excitations (for this concrete model,
spinons) which were used in previous chapters. Then, let us introduce
particle-hole excitations by removing Jj from the Dirac sea and introduc-
ing Jj outside the sea. Notice that in order not to change M and D, i.e.,
the total number of quasiparticles and the number of quasiparticles moved
from the left Fermi point to the right one, the number of the particles and
holes for particle-hole excitations should be equal in the vicinity of both
the left and right Fermi points. We characterize the holes and particles in
the vicinity of J± as

J±
p = J± ± n±

p , J±
h = J± ∓ n±

h , (9.22)

where the numbers n±
p,h > 0 are half integers. We can introduce their total

numbers as

n± =
∑

(n±
p + n±

h ) , (9.23)

where n± are integers since J±
p = J±

h . The expression for the total momen-
tum is then

P (M, D, n±) =
2π

L
(MD − n+ + n−) + 2DPF , (9.24)

where PF = π
2 (1 − 2mz) is the Fermi momentum, and

E(M, D, n±) = E0 + Lε∞ − πvF

6L
+

2πvF

L
(∆ + n+ + n−) , (9.25)
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where

∆ = [2Z]−2[M − Lν(H)]2 + Z2D2 . (9.26)

These equations mean that the low-energy state of a quantum spin chain
with periodic boundary conditions is characterized by a set of quantum
numbers, M , D and n±, which defines particle excitations, excitations
which manifest transfers from one Fermi point to the other one, and
particle-hole excitations above the ground state.

The reader can check the above results for the case of the isotropic XY
chain, for which the results for finite L are presented in Chapter 2. Defining
m0 = M0/L, where M0 relates to the total magnetization Mz = (L/2)−M0

in the minimum, we get for the internal energy per site

e = e0 −
J

π
sin(πm0) + Hm0

− πJ

6L2
sin(πm0)[1 − 3(M − m0L)2] + O(L−3) , (9.27)

where cosπm0 = H/|J |.
Equations (9.24) and (9.25) are rather universal. They can be applied

to any Bethe ansatz solvable model, which can be described by only one
set of rapidities, which states form the Dirac sea with the Fermi energy of
low-lying excitations vF . The only condition for the application of these
equations is the metallic character of the low-lying spectrum, i.e., that
energies of these low-lying excitations are of order of L−1 (gapless). The
reader can see that only definitions of p0(x) and φ0(x) are model-dependent.
Each excited state is determined by a set of quantum numbers M , D and
n±.

Let us now see how this description is modified when one considers finite
size corrections for models with a single impurity. Calculations similar to
the above yield

E(M, D, n±) = E0 + Lε∞ + eimp − πvF

6L
+

2πvF

L
(∆imp + n+ + n−) ,

∆imp = [2Z]−2[M − nimp − Lν(H)]2 + Z2(λ)[D − dimp]2 ,

(9.28)

where nimp is the valence of an impurity for models of particles with inter-
action (or it is related to the magnetization of the impurity for spin models)
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and

dimp =
1
2

(∫ −B

−∞
dλρ

(1)
1 (λ) −

∫ ∞

B

dλρ
(1)
1 (λ)

)
, (9.29)

where B denotes the Fermi point (B = Λ in the notations of the above)
and ρ

(1)
1 satisfies an equation for density of an impurity of order of L−1, cf.

Chapter 7. Naturally, the values nimp and dimp are defined mod 1. They
determine shifts of the values ∆M = M − Lν(H) and ∆D = D − Lδ due
to a single impurity. It is important to emphasize that a dressed charge
of a quantum spin chain with a single impurity does not depend on the
parameters of the impurity.

Now let us see how a finite concentration of impurities can modify the
answer for finite size corrections. The reader knows from the previous
chapter that a finite concentration of similar impurities is responsible for
the onset of additional Dirac seas, connected with impurities. Then, each
Dirac sea contributes to finite size corrections in the form, equivalent to
Eqs. (9.24) and (9.25) with its own Fermi velocity and sets of quantum
numbers M , D and n±. Here it is important to emphasize that those
quantum numbers are not all independent, because the filling of Dirac seas,
caused by a finite concentration of impurities, is related to the same gen-
eralized chemical potential (for spin systems — to the magnetic field H),
which governs the filling of all Dirac seas, cf. Chapter 8.

The interesting case, which deserves special consideration, is the case of
a finite concentration of impurities with θj = θ, e.g. a finite concentration
of spin- 1

2 impurities in a Heisenberg spin- 1
2 antiferromagnetic chain with

the direct interaction between impurities situated between the neighbour-
ing sites of the host chain for θ > θc and H > Hc, see the previous chapter.
Let us shift all rapidities by λj → λj + θ/2, to symmetrize the situation
(nothing depends on that shift, naturally). The Dirac seas (i.e., spinons
with negative energies) are in the intervals [−B+,−B−] and [B−, B+] (min-
ima in the distributions of rapidities at ∓θ/2). This can be also interpreted
as the symmetrically distributed (around zero) Dirac seas of “particles” for
[−B+, B+] and the Dirac sea of “holes” for [−B−, B−]. Naturally, Fermi
velocities of “particles” are positive, v+ = (2πρ(B+))−1ε′(λ)|λ=B+ , while
Fermi velocities of “holes” are negative, v− = −(2πρ(B−))−1ε′(λ)|λ=B− .
Finite size corrections to the energy for this case are

E = Lε∞ − π

12L
(v+ + v−) +

π

L

(
v+(∆+

l + ∆+
r ) + v−(∆−

l + ∆−
r )
)

, (9.30)
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where the dispersion laws of “particles” and “holes” are linearized about
Fermi points for each of Dirac sea. Here ∆±

l,r are (superscripts denote Dirac
seas; subscripts denote right and left Fermi points of each of these two Dirac
seas):

2∆∓
l,r =

[
(Z−±∆M+ − Z+±∆M−)

2 det Ẑ

∓ (X−±∆D+ − X+±∆D−)
2 det X̂

]2

+ 2n∓
l,r , (9.31)

where the “−” sign between the terms in square brackets corresponds to
particles about the right Fermi point and “+” to the ones about the left
Fermi point. Here ∆M± denote differences between the numbers of parti-
cles excited in the Dirac seas of “particles” and “holes”, labelled by upper
indices. ∆D± denote the numbers of excitations transfered from the right
to the left Fermi point, respectively, and n±

l,r are the numbers of the particle-
hole excitations for each of Dirac seas (for “particles” and “holes”). ∆M±

and ∆D± are not independent. Their values are restricted by the following
relations: ∆M+ −∆M− = ∆M , and ∆D+ −∆D− = ∆D, where ∆M and
∆D determine in a standard way the changes of the total magnetization
and the total momentum of the system, respectively, due to excitations.
There are only two independent of four such possible excitations. This is
the direct consequence of the fact that only one magnetic field determines
the filling of Dirac seas for “particles” and “holes”, or, in other words, the
filling of two Dirac seas for spinons centred at ±θ/2.

The dressed charges Zik(Qk) and Xik(Qk) (i, k = +,−) are matrices
in this phase. They can be expressed by using the solution of the integral
equation

f(u|B±) =
(∫ B+

−B+
−
∫ B−

−B−

)
K(u − v)f(v|B±) = K(u − B±) , (9.32)

with

Xik(Bk) = δi,k + (−1)k 1
2

(∫ ∞

Bi

−
∫ −Bi

−∞

)
dvf(v|Bk) ,

Zik(Bk) = δi,k − (−1)k

∫ Bi

−Bi

dvf(v|Bk) .

(9.33)

Notice that dressed charges depend on the value of the coupling constant
θ indirectly, only via limits of integrations. The Dirac sea for “holes”
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disappears, naturally, for H → Hc, θ → θc. The slopes of dressed energies
of “particles” and “holes”at Fermi points of Dirac seas (Fermi velocities)
differ in general from each other. Hence, in this region dressed charges are
2 × 2 matrices. At the critical line Hc the Dirac sea of “holes” disappears
(as well as components of the dressed charge matrix X̂) with square root
singularities. Note that the dressed charge Z becomes Z = (2X)−1 at the
line of the quantum phase transition Hc.

So far we have studied systems with periodic boundary conditions. Let
us investigate how open boundary conditions change the answers. Proceed-
ing as for the periodic case we obtain

E(M, n) = E0 + Lε∞ + eb −
πvF

24L
+

πvF

L
(∆b + n) ,

∆b = [2Z2]−1[M − Θ(h1,L) − Lν(H)]2 ,

(9.34)

where eb is the energy of open boundaries (both, the contributions from
open edges, and from boundary fields), cf. Chapter 6, and Θ(h1,L) is the
contribution from open edges themselves and boundary fields h1,L of the
finite size

Θ(h1,L) = −1
2

∫ B

−B

dλρ
(1)
1 (λ) . (9.35)

At H = 0 it is

Θ(h1,L) =
η

2(π − η)
− 1

2(π − η)

∑
1,L

tan−1

(
cot(η/2)

2h1,L − cos η + 1
2h1,L − cos η − 1

)
,

(9.36)

defined mod 1. It determines the shift of ∆M = M − Lν(H) due to open
edges and boundary fields. The reader can see the differences by comparing
this with the case of periodic boundary conditions. First, there appears the
contribution of order of 1, which describes the “surface energy” (bound-
ary fields and edges of an open chain themselves), cf. Chapter 6. This
contribution is, obviously, similar to the contribution of a single impurity.
Second, similar to the contribution from a single impurity, open edges and
boundary fields renormalize the shift ∆M . Third, in the contribution for
ground state one has to replace L → 2L (as expected). Finally, there is
only one Fermi point for open boundary conditions, and, hence, D = 0
(there is no transfer from one Fermi point to the other) and we can intro-
duce particle-hole excitations about only one Fermi point. It is important
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to emphasize that a dressed charge of a quantum chain does not depend on
the parameters of open edges and boundary fields, i.e., it is universal.

The next order corrections in the series for spin systems, which respect
SU(2) symmetry are logarithmic, due to the presence of marginal operators
in the renormalization group sense. For a Heisenberg spin- 1

2 antiferromag-
netic chain it follows that the series with the next (logarithmic) correction
is

E = E0 + Lε∞ − πvF

6L

[
1 +

3
8 ln3 AL

+ O

(
ln ln AL

4 ln2 AL

)]
, (9.37)

where A is a constant.

9.2 Finite Size Corrections for Correlated Electron Chains

Now let us find finite size corrections to the energy and the momentum of
correlated electron chains, like a Hubbard chain and a supersymmetric t-J
chain, first with periodic boundary conditions. We can introduce counting
functions

zi,L(x) =
1
2π


p0

i (x) − 1
L

2∑
j=1

Nj∑
l=1

φ0
ij(x, uj,l)


 , i = 1, 2 , (9.38)

and σi,L = (∂zi,L(x)/∂x) with φ0
ij(x, y) = −φ0

ji(y, x), which satisfy Bethe
ansatz equations, cf. Chapter 4,

zi,L(λj) =
Ji,j

L
, (9.39)

where J1,j = N2/2 (mod 1) and J2,j = (N1 + N2 + 1)/2 (mod 1). Here we
denoted for a repulsive Hubbard model

u1,j = sin kj , u2,j = λj , N1 = N , N2 = M ,

p0
1(x) = sin−1 x , p0

2(x) = 0 , φ0
11 = 0 , (9.40)

φ0
12(x, y) = 2 tan−1[4(x − y)/U ] , φ0

22(x, y) = 2 tan−1[2(x − y)/U ] .

For an attractive Hubbard chain we have

u1,j = sin kj , u2,j = λj , N1 = N − 2M , N2 = M ,

p0
1(x) = sin−1 x , p0

2(x) = 2Re(sin−1[x + i(U/4)]) ,
(9.41)
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with the same φ0
ij(x, y) as for a repulsive Hubbard chain. For a supersym-

metric t-J chain with V = −J/4 and J = 2 these functions are

u1,j = pj , u2,j = λj , N1 = N , N2 = N − 2M ,

p0
1(x) = 2 tan−1 2x , p0

2(x) = 2 tan−1 x , φ0
11 = 0 ,

φ0
12(x, y) = 2 tan−1[2(x − y)] , φ0

22(x, y) = 2 tan−1(x − y) .

(9.42)

The momentum and energy of the state with N electrons, M of which
having their spin down are

P =
2π

L

2∑
i=1

Ni∑
j=1

Jij , E = E0 +
2∑

i=1

Ni∑
j=1

ε0
i (ui,j) (9.43)

where for a repulsive Hubbard ring we have

ε0
1(x) = −µ − H

2
− 2 cos[sin−1(x)] , ε0

2(x) = H , (9.44)

for an attractive Hubbard model

ε0
1(x) = −µ − H

2
− 2 cos[sin−1(x)] ,

ε0
2(x) = −2µ− 4Re

√
1 − [x + i(U/4)]2 ,

(9.45)

and for a supersymmetric t-J model one uses

ε0
1(x) = −µ − H

2
− 2 + 2πa1(x) , ε0

2(x) = −2 + 2πa2(x) − 2µ , (9.46)

with the same notations as in Chapter 4. Let us choose two sets of numbers
J±

1 = (N2 + 1)/2 (mod 1) and J±
2 = (N1 + N2)/2 (mod 1), so that

1
2
(J+

i + J−
i ) = Di , J+

i − J−
i = Mi , i = 1, 2 , (9.47)

for a Hubbard chain, and J+
1 − J−

1 = L − N + M and J+
2 − J−

2 = L − N

for a t-J chain, which determine numbers of particles in each Dirac sea for
low-lying excitations and numbers of particles which are transfered from
the left Fermi point of excitations of each kind to the right Fermi point.
With this choice Ji,j are all numbers between J+

i and J−
i . By using the
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Euler–Maclaurin formula, which we can re-write as

1
L

n2∑
j=n1

f(n/L) =
∫ (2n2+1)/2L

(2n1−1)/2L

dxf(x)

− 1
24L2

[
f ′
(

2n2 + 1
2N

)
− f ′

(
2n1 − 1

2N

)]
+ O(L−3) ,

(9.48)

we can derive the following equations

σi,L(x) =
1
2π

[
dp0

i (x)
dx

−
2∑

j=1

(∫ Λ+
j

Λ−
j

dyKij(x, y)σj,L(y)

− 1
24L2

(
1

σj,L(Λ+
j )

∂Kij(x, Λ+
j )

∂x
− 1

σj,L(Λ−
j )

∂Kij(x, Λ−
j )

∂x

))]
,

(9.49)

where Kij(x, y) = (∂φ0
ij(x, y)/∂x). Here Λ±

i satisfy the equations

zi,L(Λ±
i ) =

J±
i

L
. (9.50)

Notice that for the case of a supersymmetric t-J model integrations are
performed not from Λ−

j to Λ+
j , but from −∞ to Λ−

j and from Λ+
j to ∞.

These linear integral equations are completed by the equations, determining
Λ±

i :

1
2

(∫ π,(∞)

Λ+
i

dxσi,L(x) −
∫ Λ−

i

−π,(−∞)

dxσi,L(x)

)

+
δi,1

π

∫ Λ+
2

−Λ−
2

dxσ2,L(x) tan−1(4x/U) = −Di

L
,

∫ Λ+
i

Λ−
i

dxσi,L(x) =
Mi

L
,

(9.51)

for a Hubbard chain (with π in limits for unbound electrons), and similar
relations for a t-J chain with necessary changes of the ranges of integrations,
see above.
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The equations for σi,L(x) can be written in the form

σi,L(x) = σi(x|Λ+
1,2, Λ

−
1,2) +

1
24L2

2∑
j=1

(
ρj(x|Λ+

1,2, Λ
−
1,2)

σj,L(Λ+
j )

−
ρj(−x| − Λ−

1,2,−Λ+
1,2)

σj,L(Λ−
j )

)
, (9.52)

where σ(x|Λ+
1,2, Λ

−
1,2) and ρi(x|Λ+

1,2, Λ
−
1,2) are the solutions of the following

linear integral equations

σi(x|Λ+
1,2, Λ

−
1,2) =

1
2π


dp0

i (x)
dx

+
2∑

j=1

∫ Λ+
j

Λ−
j

dyKij(x, y)σj(y|Λ+
1,2, Λ

−
1,2)


 ,

ρi(x|Λ+
1,2, Λ

−
1,2)

=
1
2π

2∑
j=1

(
∂Kij(x, Λ+

j )
∂x

+
∫ Λ+

j

Λ−
j

dyKij(x, y)ρj(y|Λ+
1,2, Λ

−
1,2)

)
, (9.53)

for a Hubbard chain. For a t-J chain one has to change the ranges of inte-
grations as explained above. Another possibility is to convert the integrals
from −∞ to Λ−

j and from Λ+
j to ∞ to the ones from Λ−

j to Λ+
j for a t-J

chain. This can be performed by a Fourier transformation, which implies
the formal changes K11 → −K22, K22 → 0, p0

2 → 0, dp0
1(x)/dx → K12(x),

ε0
1(x) → H −K21(x, 0), and ε0

2(x) → 2+µ− (H/2). Notice, that after such
a transformation for a supersymmetric t-J chain one has

∫ Λ+
1

Λ−
1

dxσ1,L(x) = 1 − N − M

L
,

∫ Λ+
2

Λ−
2

dxσ2,L(x) = 1 − N

L
. (9.54)

Then the energy of the state can be written as

E = E0 + Lε∞(Λ+
i , Λ−

i )

+
1

24L

2∑
i=1

(
ei(Λ+

i , Λ−
i )

σi,L(Λ+
i )

+
ei(−Λ−

i ,−Λ+
i )

σi,L(Λ−
i )

)
, (9.55)

where

ε∞(Λ+
i , Λ−

i ) =
2∑

j=1

∫ Λ+
j

Λ−
j

dxε0
j(x)σj(x|Λ+

1,2, Λ
−
1,2) , (9.56)



April 6, 2005 10:46 Finite Size Effects in Correlated Electron Models: Exact Results mybook

298 Finite Size Effects in Correlated Electron Models: Exact Results

and

ei(Λ+
i , Λ−

i ) =
dε0

i (Λ
+
i )

dΛ+
i

−
2∑

j=1

∫ Λ+
j

Λ−
j

dxε0
j(x)ρj(x|Λ+

1,2, Λ
−
1,2) . (9.57)

Naturally, these equations can be re-written in terms of dressed energies

ε∞(Λ+
i , Λ−

i ) =
1
2π

2∑
i=1

∫ Λ+
i

Λ−
i

dxεi(x|Λ+
1,2, Λ

−
1,2)

(
dp0

i (x)
dx

)
, (9.58)

where the dressed energies εi(x|Λ+
1,2, Λ

−
1,2) satisfy the set of equations

εi(x|Λ+
1,2, Λ

−
1,2) = ε0

i (x) −
2∑

j=1

∫ Λ+
j

Λ−
j

dyKt
ij(x, y)εj(y|Λ+

1,2, Λ
−
1,2) , (9.59)

which implies

ei(Λ+
i , Λ−

i ) =
∂ε0

i (x|Λ+
1,2, Λ

−
1,2)

∂x
|x=Λ+

i
. (9.60)

In the infinite chain ε∞(Λ+
i , Λ−

i ) is minimal with respect to Λ±
i at given µ

and H . This condition leads to

εi(Λ±
i |Λ+

1,2, Λ
−
1,2) = 0 , (9.61)

which is the determination of the ground state Fermi points for dressed
energies. From the symmetry one can suppose that in the ground state
Λ+

i = −Λ−
i = Λi. The next step is to expand ε∞(Λ+

i , Λ−
i ) up to the second

order in (Λ±
i ∓ Λi). We find

ε∞(Λ+
i , Λ−

i ) = ε∞(Λi,−Λi) +
2∑

j=1

∂
∂xεj(x|Λ1,2,−Λ1,2)|x=Λj

σj(Λj |Λ1,2,−Λ1,2)

× 1
2
(
[σj(Λj |Λ1,2,−Λ1,2)(Λ+

j − Λj)]2

+ [σj(Λj |Λ1,2,−Λ1,2)(Λ−
j + Λj)]2

)
. (9.62)

(We write this equation with the accuracy of L−2.) The reader already
knows from Chapter 4 that

1
σj(λj |Λ1,2,−Λ1,2)

∂

∂x
εj(x|Λ1,2,−Λ1,2)|x=Λj = 2πvF

j , (9.63)

where vF
j are Fermi velocities of low-lying excitations. It is easy to check

that for Λ±
i = ±Λi the equations for σi(x|Λ1,2,−Λ1,2) and εi(x|Λ1,2,−Λ1,2)
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coincide with the standard definitions of densities and dressed energies for
the ground state in the thermodynamic limit from previous chapters. Let
us denote νi = Mi/L, δi = Di/L and calculate

∂νi

∂Λ+
j

= − ∂νi

∂Λ−
j

= σj(Λj |λj ,−Λj)Zji ,

∂δi

∂Λ+
j

= ∂δi

∂Λ−
j

= σj(Λj |λj ,−Λj)Xji ,

(9.64)

where we introduced dressed charge matrices Zij and Xij . It is not difficult
to see from the above equations that Xij = 1

2 (Zt
ij)

−1. Dressed charge ma-
trices can be expressed as Zij = ξij(Λi), where ξij(x) satisfy the equations

ξij(x) = δij +
2∑

l=1

∫ Λl

−Λl

dyKt
il(x, y)ξlj(y) . (9.65)

Again, the coefficients of a dressed charge matrix satisfy the relation
ξij(x) = (∂εi(x)/∂µj), where µi are generalized chemical potentials for
low-lying excitations. For example, for a repulsive Hubbard chain they are
µ1 = −µ − H

2 and µ2 = H , and for an attractive Hubbard chain we have
µ1 = −µ− H

2 and µ2 = −2µ. A dressed charge matrix measures how strong
the interaction is in a system. The reader can see that, e.g., for a Hubbard
chain for U = 0 the dressed charge matrix is the unity matrix. Nondiago-
nal components of a dressed charge matrix show that despite the fact that
quantum numbers J1,2 define different states, those states are not inde-
pendent (the reader knows it, because Bethe ansatz equations for charged
excitations and excitations, which carry spin, for densities and dressed ener-
gies are connected to each other). If there was a real spin-charge separation
in Bethe ansatz solvable models for correlated electrons, then equations for
densities and dressed energies for charge-carrying and spin-carrying exci-
tations were independent of each other, and dressed charge matrices were
diagonal. This is why the reader has to remember that when one speaks
about a spin-charge separation in Bethe ansatz solvable models of correlated
electrons, it only means that their low-lying excitations are spread with dif-
ferent velocities, and those excitations, as a rule, carry different charges and
spins. It is important to notice that often a transpose definition of dressed
charge matrices is used.

It is instructive to present some results for dressed charge matrices for
integrable correlated electron models. For a repulsive Hubbard chain for
H = 0 we have Z11 = 2Z12 = ξ(Q), Z21 = 0, and Z22 = 1/

√
2. Here for
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large U 	 sin Q, ξ(Q) = 1 + 4 ln 2 sinQ/πU (for small number of electrons
it implies sinQ → πN/L, and for the half-filling ξ(π) = 1). For U 	 1
one obtains ξ(Q) = 1 + 4 ln 2 sin(πN/L)/πU . For small U � sin Q, one
gets ξ(Q) =

√
2(1 − U/8π sinQ). Summarizing, for H = 0 one has the

component of a dressed charge varying in the interval 1 ≤ ξ(Q) ≤
√

2.
For H = Hs diagonal components of the dressed charge matrix of a

repulsive Hubbard chain become equal to 1, while Z21 = 0 and Z12 =
(2/π) tan−1[4 sin(πN/L)/U ], i.e., it varies between 0 and 1 as one changes
U and/or N . At half-filling the behaviour of a repulsive Hubbard chain
is equivalent to the one of a Heisenberg antiferromagnetic spin- 1

2 model,
because charged excitations become gapful.

For an attractive Hubbard chain for H < Hc one has only charged low-
lying excitations. The dressed charge varies between 1 and 1/

√
2, depending

on N and U . On the other hand, at H = Hs the components of a dressed
charge matrix are Z11 = 1, Z21 = 0, Z12 = − 1

2 and Z22 = 1/
√

2.
For a supersymmetric t-J chain the behaviour of a dressed charge matrix

at H = 0 is similar to the one of a repulsive Hubbard chain. At half filling
one has Z11 = 1, Z21 = 0, Z12 = 1

2 and Z22 is equivalent to the dressed
charge of a Heisenberg antiferromagnetic spin- 1

2 model.
It is also instructive to connect components of a dressed charge matrix

with physical values. Denoting χ and χc as spin and charge susceptibilities,
and χmix = (∂mz/∂µ), we get, e.g. for a repulsive Hubbard chain

πẐ−1V̂ (Ẑ−1)t =

(
L2

N2χc
+ 1

4χ + 1
χmix

− 1
2χ − 1

χmix

− 1
2χ − 1

χmix

1
χ

)
, (9.66)

where Ẑ is the dressed charge matrix, and

v̂ =
(

vF
1 0
0 vF

2

)
. (9.67)

It is possible to write similar formulas for an attractive Hubbard chain and
for a supersymmetric t-J chain.

By using dressed charge coefficients and velocities of low-lying excita-
tions it is easy to write

E = E0 + Lε∞(Λi,−Λi) −
π

6L

2∑
i=1

vF
i +

2π

L

2∑
i=1

vF
i ∆i , (9.68)
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where

∆1 =


 2∑

j=1

Z1j(Dj − δjL)




2

+
1

4(detZ)2
[Z22(M1 − ν1(µ, H)L)

−Z21(M2 − ν2(µ, H)L)]2 ,

∆2 =


 2∑

j=1

Z2j(Dj − δjL)




2

+
1

4(detZ)2
[Z12(M1 − ν1(µ, H)L)

−Z11(M2 − ν2(µ, H)L)]2 .

(9.69)

We can again introduce particle-hole excitations by removing Ji,j from a
Dirac sea for low-lying excitations and introducing Ji,j outside the sea. In
order not to change Mi and Di, i.e., the total number of quasiparticles and
the number of quasiparticles moved from the left Fermi point to the right
one in each Dirac sea for low-lying excitations, the number of particles and
holes for particle-hole excitations should be equal both in the vicinity of
the left and right Fermi points. We characterize holes and particles in the
vicinity of J±

i as

J±
i,p = J±

i ± n±
i,p , J±

i,h = J±
i ∓ n±

i,h , i = 1, 2 , (9.70)

where the numbers n±
i,p,h > 0 are half integers. We then introduce total

numbers as

n±
i =

∑
(n±

i,p + n±
i,h) , (9.71)

where n±
i are integers since J±

i,p = J±
i,h. The expression for the total mo-

mentum is then

P (Mi, Di, n
±
i ) =

2π

L

2∑
i=1

(MiDi + n+
i − n−

i ) + 2
∑

σ

PF
σ Dσ , (9.72)

where the Fermi momenta are

PF
σ =

π

2

(
N

L
± 2mz

)
, (9.73)

for a repulsive Hubbard chain D↑ = D1, D↓ = D1 + D2, for an attractive
Hubbard chain D↑ = D1 + D2 and D↓ = D2, while for a supersymmetric
t-J chain one has D↑ = −D1 − D2 and D↓ = −D2, and it is necessary to
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add to the total momentum the term 2π(D1 + D2). The expression for the
total energy is

E(Mi, Di, n
±
i ) = E0 + Lε∞(Λi,−Λi) −

π

6L

2∑
i=1

vF
i

+
2π

L

2∑
i=1

vF
i [∆i + n+

i + n−
i ] . (9.74)

Hence, the low-energy state of a correlated electron chain with periodic
boundary conditions is characterized by two sets of quantum numbers, Mi,
Di and n±

i , which define particle excitations, excitations, which manifest
transfers from one Fermi point to the other one, and particle-hole exci-
tations for Dirac seas of all low-lying excitations with possible negative
energies above the ground state.

This description is modified when one considers finite size corrections
for a correlated electron chain with a single impurity. Calculations, similar
to the above, yield ∆i → ∆i,imp, where

∆1,imp =


 2∑

j=1

Zt
1j(Dj − dj,imp − δjL)




2

+
1

4(detZ)2
[Z22(M1

−m1,imp − ν1(µ, H)L) − Z21(M2 − m2,imp − ν2(µ, H)L)]2 ,

∆2,imp =


 2∑

j=1

Zt
1j(Dj − dj,imp − δjL)




2

+
1

4(detZ)2
[Z12(M1

−m1,imp − ν1(µ, H)L) − Z11(M2 − m2,imp − ν2(µ, H)L)]2 ,

(9.75)

where m1,2,imp are related to the valence, nimp, and the magnetization,
mz

imp of an impurity. For a repulsive Hubbard chain they are nimp =
m1,imp, mz

imp = 1
2m1,imp − m2,imp. For an attractive Hubbard chain and

for a supersymmetric t-J chain we have mz
imp = 1

2m1,imp and nimp =
m1,imp + 2m2,imp. As for dj,imp, they define shifts of the total momentum
of a correlated electron chain caused by an integrable impurity as

di,imp = −1
2

(∫ ∞

Λi

dxσ
(1)
i (x) −

∫ −Λi

−∞
dxσ

(1)
i (x)

)

+
1
4π

[xi(∞) + xi(−∞)] , (9.76)
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where, for example for an integrable impurity in a supersymmetric t-J chain,
considered in Chapter 7, we have

x2(y) = 2
∫ B

−B

dx tan−1[2(y − x)]σ(1)
1,h(x) + 2 tan−1[2(y − θ)/(2S + 1)]

+ 2
∫Q

−Q
dz 1

1+(y−z)2 σ
(1)
2h (z) ,

x1(x) = 2 tan−1[(x − θ)/S] + 2
∫ Q

−Q

dy tan−1[2(x − y)]σ(1)
2h (y)

(9.77)

for periodic boundary conditions, where σ
(1)
i satisfies the equation for den-

sity of an impurity of order of L−1, cf. Chapter 7. Observe that, for a
supersymmetric t-J chain, one has to replace σ

(1)
i → σ

(1)
ih (i.e., densities of

holes). Naturally, the values mj,imp and dj,imp are defined mod 1. They
determine shifts of the values ∆Mi = Mi −Lνi(µ, H) and ∆Di = Di −Lδi

due to a single impurity. It is important to emphasize that a dressed charge
matrix of a correlated electron chain with a single impurity also does not
depend on the parameters of the impurity.

For a finite concentration of impurities in correlated electron chains
these expressions are changed due to the addition of Dirac seas for low-lying
excitations (new Dirac seas) caused by a finite concentration of impurities.

Calculations of finite size corrections for correlated electron chains with
open boundary conditions proceed along the same lines as above. The
answer is

E = E0 + Lε∞ + eb −
π

24L

2∑
i=1

vF
i +

π

L

2∑
i=1

vF
i ∆b

i , (9.78)

where eb is the energy of open boundaries (both, the contributions from
open edges and boundary potentials/fields), cf. Chapter 6,

∆b
1 =

1
2(detZ)2

[Z22(M1 − Θ1(p1,L) − ν1(µ, H)L)

−Z21(M2 − Θ2(p1,L) − ν2(µ, H)L)]2 ,

∆b
2 =

1
2(detZ)2

[Z12(M1 − Θ1(p1,L) − ν1(µ, H)L)

−Z11(M2 − Θ2(p1,L) − ν2(µ, H)L)]2) ,

(9.79)

and Θi(p1,L) are the contributions from open edges themselves and bound-
ary potentials/fields p1,L of the finite size. For example, for a repulsive
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Hubbard chain they are

Θi(p1,L) =
1
2

(∫ Λi

−Λi

dxρ
(1)
i (x) − 1

)
+ Θi,bs . (9.80)

Here Θi,bs define the contribution from boundary bound states, determined
mod 1. For the boundary potentials/fields p1,L,↑ = ±p1,L,↓ at zero homo-
geneous magnetic field H = 0 one obtains

Θ2(p1,L) = −Θ1(p1,L)
2

− s(b1,L)
2

, (9.81)

where s(x) = 0 for p1,L,↑ = p1,L,↓ and for p1,L,↑ = −p1,L,↓ we have s(x) = 1
for x > 0 and s(x) = −1 for x < 0 with

b1,L =
U

4
+

p2
1,L,↑ − 1
2p2

1,L,↑
. (9.82)

The role of boundary bound states can be investigated, e.g., for the bound-
ary potential p1,↑ = p1,↓ = p applied only to the left boundary, cf. Chap-
ter 6. One has Θ1,bs = θ(p − 1) + θ(p − p2) and Θ2,bs = θ(p − p2), where
θ(x) are Heaviside step functions, and p2 is defined in Chapter 6.

Studies of phase shifts Θi for an attractive Hubbard chain and a super-
symmetric t-J chain can be performed in an analogous way.

9.3 Elements of Conformal Field Theory

The reader knows that any classical system close to the point of the second
order (continuous) phase transition, reveals strong precursor fluctuations
of the ordered phase. The typical scale, related to those fluctuations, is the
correlation length, which, for for H = 0 is proportional

ξ ∼ |T − Tc|−ν (9.83)

where Tc is the temperature of the phase transition and ν > 0. Naturally,
the correlation length diverges at the phase transition point. Thermody-
namic characteristics, like the specific heat, magnetic or charge susceptibil-
ities, etc. can exhibit similar divergencies. For example, the specific heat
for H = 0 behaves when T → Tc as

cH=0 ∼ 1
α

[( |T − Tc|
Tc

)−α

− 1

]
. (9.84)
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The magnetization (per site) for H = 0, when T approaches Tc from below,
can be expressed as

mz ∼ (Tc − T )β , (9.85)

and at the critical point T = Tc the magnetization per site is proportional
to

mz ∼ H1/δ , (9.86)

while the magnetic susceptibility at H = 0 behaves as

χ ∼ |T − Tc|−γ , (9.87)

when T → Tc. It is also possible to consider the behaviour of a two-point
correlation function at the temperature of the second order phase transition,
T = Tc for H = 0, which behaves as

G(2)(r) ∼ 1
rd−2+η

, (9.88)

where d is the space dimension. Observe that the magnetic susceptibility
is χ ∝

∫
G(2)(r)ddr, so that χ ∼ ξ2−η. For r 	 ξ we have

G(2)(r) ∼ exp(−r/ξ)
r(d−1)/2

, (9.89)

which implies ξ2 =
∑

r2G(2)(r)/
∑

G(2)(r). Finally, there is a critical
exponent, which is related to the time dependence close to the critical point.
The typical relaxation time τr diverges as the critical point is approached
as

τr ∼ ξz . (9.90)

(These notations are commonly accepted in the theory of phase transitions;
please do not confuse with the previous notations, where the same letters
were used.)

Critical exponents are connected by the scaling relations between each
other. B. Widom suggested that near Tc the Helmholtz free energy per site
can be approximated by some function Ψ of one variable

f(T, H) = td/ytΨ(h/tyh/yt) , (9.91)

where t = |T − Tc|/Tc, do not confuse with time variable, and h = H/H∗,
H∗ is some constant (this equation is known as the Widom scaling hypoth-
esis). Using the scaling hypothesis, one can derive the relations between
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the critical exponents α, β, γ and δ. For example, we can calculate the
zero-field magnetization

mz(H = 0) = −t(d−yh)/ytΨ′(0) , (9.92)

which yields

β =
d − yh

yt
. (9.93)

Similarly one obtains

χ|H=H∗ = t(d−2yh)/ytΨ′′(0) , (9.94)

from which it immediately follows that

γ =
2yh − d

yt
. (9.95)

Let us now calculate the zero-field specific heat

cH=0 ≈ − 1
Tc

∂2

∂t2
[td/ytΨ(h/tyh/yt)]|H=0 = −d − yt

y2
t

t(d/yt)−2 Ψ(0)
Tc

, (9.96)

which implies

α = 2 − d

yt
. (9.97)

One can find, by re-expressing the Widom scaling hypothesis as f(T, H) =
hd/yhΨ̃(h/tyh/yt), where Ψ̃(u) = u−d/yhΨ(u),

mz
T=Tc

= −H(d/yh)−1 dΨ̃(∞)
yh

, (9.98)

from which one can derive

δ =
yh

d − yh
. (9.99)

We can eliminate yh and yt to obtain two relations (due to G. S. Rushbrooke
and R. B. Griffiths, respectively)

α + 2β + γ = 2 ,

α + β(δ + 1) = 2 .
(9.100)
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L. P. Kadanoff introduced the hypothesis about the behaviour of the two-
point correlation function (at H = 0, for clarity)

G(2)(r, t) ∼ t2(d−yh)/ytΨ(rt1/yt)
rd−2+η

. (9.101)

The reader can see that Ψ(u) must be a constant for small u and it has to
behave as Ψ(u) ∼ ud−2+η when u is large, which yields

η = d + 2 − 2yh . (9.102)

Obviously it follows that ξ ∼ t−1/yt , so that

ν =
1
yt

. (9.103)

It is easy to show (the following relations are due to M. E. Fisher and
B. D. Josephson, respectively) that

γ = (2 − η)ν ,

νd = 2 − α .
(9.104)

The last relation is often referred to as a hyperscaling relation, since it con-
nects the singularity in the specific heat with the behaviour of a correlation
length. Notice that it is invalid when d is sufficiently large: when d exceeds
the “upper critical dimension” dc, all the critical exponents are indepen-
dent on d, in which regime the exponent of t in the Kadanoff’s hypothesis
is ν. Scaling relations are universal and depend on the symmetry of the
system. Correlation functions diverge as power laws of distance and time
at the critical point. One can calculate the exponents of those divergen-
cies from the concrete model under consideration. According to the above,
many one-dimensional systems (for which Tc = 0) are critical at T = 0 (in
fact, those which have gapless low-lying excitations).

Let us investigate symmetries of many-electron systems at a critical
point. This conformal field theory analysis was pioneered by A. A. Belavin,
A. M. Polyakov and A. B. Zamolodchikov. These systems at a criti-
cal point are translationally and rotationally invariant. (They are also
Lorentz-invariant in higher dimensions. However, in one space dimension
the Lorentz invariance is, in fact, rotations in the (x, t)-plane.) At a critical
point a system is characterized by the scale invariance x → λx. The rota-
tional and scale invariances together mean the invariance under the global
conformal symmetry group. (To remind: simple conformal transformations
keep invariant angles between two vectors.) The global conformal group is
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finite dimensional for higher dimensional systems (also taking time into ac-
count), as well as the associated Lie algebra of generators of the group. This
is why, the finite number of constraints permits an evaluation of only two- or
three-point correlation functions, but not higher correlators. As the reader
saw above, if one knows how correlation function behave, then it implies,
e.g., that one understands the behaviour of thermodynamic characteristics
of a system close to a critical point. Therefore, it is important to obtain
expressions for correlation functions. It turns out that for one-dimensional
dynamical systems the global conformal group is finite dimensional, and,
hence, all correlation functions can be found in principle.

Consider the transformation x → x + ξ(x). It is conformal, if ξ(x)
satisfies some constraints. Formally all analytic functions are permitted
for a conformal transformation. In higher space dimensions ξ(x) is only
the polynomial of the second degree in x. Such a group is called the local
conformal group. It is wider than the global conformal group. Let us use
complex variables, which describe right- and left-moving one-dimensional
electrons:

z = vτ + ix , z̄ = vτ − ix , (9.105)

where v is the characteristic velocity of the field theory and τ = it + signt

is the Euclidean time. Conformal transformation implies

z → z + ξz(z) = f(z) , z̄ → z̄ + ξ̄z̄(z̄) = f̄(z̄) . (9.106)

Since ξz(z), f(z), ξ̄z̄ and f̄(z̄) are analytic, they can be expanded in Laurent
series, e.g.

ξz(z) =
∞∑

n=−∞
ξnzn+1 , (9.107)

etc. The generators of the local conformal group in this case are

ln(z) = −zn+1 ∂

∂z
, l̄n(z̄) = −z̄n+1 ∂

∂z̄
. (9.108)

These generators satisfy the local conformal algebra known as the classical
Virasoro algebra:

[ln, l̄m] = 0 , [ln, lm] = (m − n)lm+n ,

[l̄n, l̄m] = (m − n)l̄m+n .
(9.109)
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It is interesting to notice that the global conformal algebra is generated by
two sets of operators l0,±1 and l̄0,±1. Since these two algebras are indepen-
dent, the global conformal algebra is related to the natural variables for
left- and right-moving particles. To remind, in a physical theory one deals
with z̄ = z∗.

In quantum mechanics an infinitesimal symmetry variation of some field
φ is generated by

δξφ = ξ[Q, φ] , (9.110)

where Q is some general conserved charge, associated with the symmetry.
Local co-ordinate transformations are generated by general charges. One
can construct such a charges from an energy-momentum (stress-energy)
tensor Tij . This tensor is symmetric, Tij = Tji, because of the rotational
invariance. Due to the scale invariance one has trTij = 0. There are no
additional constraints due to the conformal invariance. These conditions
mean that only diagonal components of an energy-momentum tensor do
not vanish

T (z) = Tzz(z) , T̄ (z̄) = T̄z̄z̄(z̄) . (9.111)

Consider two operators A(z) and B(z), both being analytic functions
of z (similar expressions can be obtained for functions of z̄). In what
follows we suppose to consider a field theory, containing such operators, in
which one can compute all multi-point correlation functions of the operators
A(z), B(z) and all others, which occur in the theory. The operator product
expansion is meant if the operators A(z) and B(z) are assumed to have the
following property as z1 → z2

A(z1)B(z2) =
C(z2)

(z1 − z2)2
+

D(z2)
(z1 − z2)

+ O(1) , (9.112)

where C(z) and D(z) are some operators. Operator product expansion be-
comes a true equation when inserted in any correlation function with other
operators of the considered field theory at positions wj , when the distance
between z1 and z2 becomes much smaller than the distances between z1 and
z2 and the positions wj of other operators. Notice that an operator product
expansion is the local property of the field theory. Then Eq. (9.112) implies

[Am, Bn] = nCn+m + Dn+m . (9.113)

This expression means that the transforms of the operators A and B are re-
lated to the transforms of C and D which multiply the poles of the operator
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product expansion of A with B. Consider the operator product expansion
for the energy-momentum tensor

T (z)T (w) =
c/2

(z − w)4
+

2
(z − w)2

T (w) +
1

z − w

∂

∂z
T (z) , (9.114)

where the coefficient c is called a central charge. One can derive the algebra
of generators from the Laurent series of the energy-momentum tensor

T (z) =
∞∑

n=−∞
Lnz−n−2 , (9.115)

which is the (quantum) Virasoro algebra

[Ln, L̄m] = 0 , [Ln, Lm] = (m − n)Lm+n +
c

12
(n − 1)n(n + 1)δn,−m ,

[L̄n, L̄m] = (m − n)L̄m+n +
c̄

12
(n − 1)n(n + 1)δn,−m , (9.116)

where c̄ is also a central charge. The classical Virasoro algebra pertains to
the case c = c̄ = 0. From these formulas it is clear that central charges
determine universality classes of the considered class of systems. A clas-
sical symmetry cannot be carried out in quantum mechanics because of
renormalization effects: for classical Virasoro algebras one has zero central
charges.

One can write the generalized charge as

Q =
1

2πi

∮
[dzT (z)ξ(z) + dz̄T̄ (z̄)ξ̄(z̄)] . (9.117)

Then a field variation can be written as

δξξ̄φ(w, w̄) =
1

2πi

∮
dz[T (z)ξ(z), φ(w, w̄)]+dz̄[T̄ (z̄)ξ̄(z̄), φ(w, w̄)] . (9.118)

For the special class of fields, known as primary fields, one has

δξξ̄φ(w, w̄)

=
(

h
∂

∂z
ξz(z) + ξz(z)

∂

∂z
+ h̄

∂

∂z̄
ξ̄z̄(z̄) + ξ̄z̄(z̄)

∂

∂z̄

)
φ(w, w̄) , (9.119)

where h and h̄ are real numbers. They are called the conformal weights of
a primary field φ(w, w̄). In fact, the last formula is the infinitesimal version
of the transformation

φ(w, w̄) →
(

∂f

∂z

)h (
∂f̄

∂z̄

)h̄

φ(f(w), f̄ (w̄)) . (9.120)
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One can introduce

∆ = h + h̄ , s = h − h̄ , (9.121)

with ∆ being the scaling dimension and s being the scaling spin of the pri-
mary field φ(w, w̄). In a basis of eigenfunctions of L0 and L̄0 the operators
(L0 + L̄0) and i(L0 − L̄0) are generators of dilations and rotations, respec-
tively. All other fields are usually called secondary fields (descendants).

Equation (9.120) denotes how some complex tensor of the rank (h, h̄)
transforms. Usually, it transforms with integer powers of (∂f/∂z) and
(∂f̄/∂z̄) which are numbers of z and z̄ indices. For primary fields one
could also imagine non-integer exponents. Such non-integer exponents are
called anomalous dimensions. From this viewpoint scaling dimensions of
primary fields are anomalous ones.

By using Eq. (9.119) one can calculate some correlation functions. For
instance, consider the variation of a two-point correlation function. It must
be invariant under a conformal transformation

δξξ̄G
(2)(z1,2, z̄1,2) ≡ δξξ̄〈φ1(z1, z̄1)φ2(z2, z̄2)〉

= 〈(δξξ̄φ1)φ2〉 + 〈φ1(δξξ̄φ2)〉 = 0 , (9.122)

which, together with Eq. (9.119), implies

G(2)(z1,2, z̄1,2) =
C12

(z1 − z2)2h(z̄1 − z̄2)2h̄
, (9.123)

where C12 ∝ δ∆1,∆2 is a constant. A three-point correlation function can
be derived in a similar way.

One can introduce the operator product expansion of the energy-
momentum tensor with a primary field φ (known also as Ward identities)
as

T (z)φ(w, w̄) =
h

(z − w)2
φ(w, w̄) +

1
z − w

∂

∂w
φ(w, w̄) + · · · . (9.124)

Operator product expansion is valid at short distances, where the radial
ordering takes place. (For right-movers this equation is called holomor-
phic part of the stress-energy tensor. There is an equivalent equation for
left-movers, called antiholomorphic part; in what follows we shall mostly
not present those antiholomorphic counterparts to save the space.) Any
secondary field has a higher than double-pole singularity in its operator
product expansion.
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The reader can see from the operator product expansion of the energy-
momentum tensor that Ln are generators of transformations of fields asso-
ciated with the monomial of degree n + 1 in z. Let us consider the trans-
formation ξz(z) = −ξnzn+1. One has δφ(z, z̄) = −ξn[Ln, φ(z, z̄)]. Due
to the unitarity of the energy-momentum tensor, its generators satisfy the
following relation:

L†
m = L−m . (9.125)

For the vacuum state |0〉 the regularity of the energy-momentum tensor
means

Lm≥−1|0〉 = 0 , L†
m≤−1|0〉 = 0 . (9.126)

The energy-momentum tensor transforms under a local conformal transfor-
mation z′ = f(z) as

T (z) → T (z′) =
(

dz′

dz

)2

T (z′) +
c

12


 ∂3z′

∂z3

∂z′
∂z

− 3
2

(
∂2z′
∂z2

)2

(
∂z′
∂z

)2

 . (9.127)

From the first term of this formula the reader can see that the energy-
momentum tensor is a field of conformal weight (2, 0). The last term of
that formula is called the Schwarz derivative.

Consider the representations of the Virasoro algebra, which can be con-
structed from the highest weight states |h〉, (created by the action of a
holomorphic primary field φ on the vacuum state, i.e., |h〉 = φ(0)|0〉) as

L0|h〉 = h|h〉 , Ln>0|h〉 = 0 , (9.128)

i.e., a highest weight state is an eigenfunction of L0. On the other hand, Ln

(n > 0) are lowering operators, which destroy the highest weight state. L−n

(n > 0) play the role of “creation operators”. Acting on the highest weight
states they generate descendant states L−n1 · · ·L−nk

|0〉 (with 1 ≤ n1 ≤
· · · ≤ nk and the eigenvalue of of L0 being h + n1 + · · ·+ nk). These states
form the basis for the representation vector space. The highest weight state
has the lowest eigenvalue. Hence, in a given sector of the considered field
theory, it is the ground state. Descendant states are excited states. n is the
level related to an operator L−n. The conformal weight of all descendant
states on some level N is h+N . One usually calls the vector space generated
from the highest weight state Verma module. We can group all states
in a conformal field theory into conformal towers (families). Conformal
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towers consist of a highest weight state and all descendant states. Action
of different primary fields on the vacuum state produces different highest
weight states. It turns out that conformal towers are the very convenient
way of classification of low-energy excitations in a system. All correlation
functions of secondary fields can be found from those of only primary fields.

In fact, unitary representations of the Virasoro algebra only exist for
certain values of central charges and conformal weights. For example, it is
true for c ≥ 1 and h ≥ 0, or for

c = 1 − 6
m(m + 1)

, m = 3, 4, . . . ,

hp,q(m) =
[(m + 1)p − mq]2 − 1

4m(m + 1)
,

(9.129)

(known as the Kac formula) where 1 ≤ p ≤ m − 1 and 1 ≤ q ≤ p. The
most useful from these series is c = 1

2 , which describes the two-dimensional
Ising model. Another example, c = 1, known as the Gaussian model, is
considered in the next chapter.

Above one supposed that fields are defined in the infinite space plane.
That means

〈T (z)〉 =
∞∑

m=−∞
〈0| Lm

zm+2
|0〉 = 0 . (9.130)

If one considers finite systems of the size L with periodic boundary condi-
tions, we can use the exponential transformation

z = exp(2πiu/L) , u = −i
L

2π
ln z (9.131)

to map the infinite z-plane onto a strip u of width L with periodic boundary
conditions. Under this transformation the Laurent expansion of the energy-
momentum tensor becomes a Fourier transformation,

T (u) =


T (z)− c

12


 ∂3u

∂z3

∂u
∂z

− 3
2

(
∂2u
∂z2

)2

(
∂u
∂z

)2



(dz

du

)2

, (9.132)

which means that

〈T (u)〉 =
c

24

(
2π

L

)2

. (9.133)
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To remind, the energy-momentum tensor measures the cost of energy
because of the change in a metric (the change in the action δA =
−(2π)−1

∫
Tij(∂ξj/∂xi)dxdτ). Then the change in energy related to a non-

conformal transformation u′
1 → (1 + ε)u1, u′

2 → u2 (i.e., a horizontal dila-
tion of the u-strip), which changes the length of the system, yields

E = E0 −
cπv

6L
. (9.134)

Hence, we can determine the central charge from finite size calculations.
Local conformal transformations (not global ones, for which c = 0) are
not defined in all points of a complex plane. They are also not one-to-one
mappings of that complex plane on itself. This is why, one has such a shift
in the energy due to the finite size.

The change to open boundary conditions corresponds to the introduc-
tion of a cut in the plane from z0 to z1. Choosing 0 < ivτ0 = z0 < ivτ1 = z1

real and mapping the plane to a cylinder via the conformal transformation
Eq. (9.131) this cut gets mapped onto a seam in the direction of the cylin-
der. The correction to the ground state energy in the case of open boundary
conditions is then

E = E0 −
cπv

24L
. (9.135)

Let us study now, following J. L. Cardy, the two-point ground state cor-
relation function of a primary operator φ(z, z̄) with the conformal weights
(h, h̄). Under the conformal transformation, which maps the infinite z-plane
onto a strip u, this correlator transforms as

〈φ(u, ū)φ(u′, ū′)〉 =
C(∆)(π/L)2∆

(sinh[π(u − u′)/L])2h(sinh[π(ū − ū′)/L])2h̄
, (9.136)

with C(∆) being a constant.
At finite temperatures correlation functions have to satisfy periodic

boundary conditions in the Matsubara Euclidean time with the period
L = 2v/T . This defines the temperature behaviour of the two-point corre-
lation function

〈φ(u, ū)φ(u′, ū′)〉 =
C(∆)(πT/2v)2∆

(sinh[πT (u − u′)/2v])2h(sinh[πT (ū − ū′)/2v])2h̄
.

(9.137)
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On the physical surface ū = u∗ the finite size expression for the two-point
correlation function can be expanded as (u = vτ + ix)

〈φ(u, ū)φ(u′, ū′)〉

= C(∆)
(

2π

L

)2∆ ∞∑
N,N̄=0

aNaN̄ exp[−2πv(∆ + N + N̄)(τ − τ ′)/L]

× exp[−2πi(s + N − N̄)(x − x′)/L] , (9.138)

where N and N̄ are characteristics of descendant operators. On the other
hand, one can present the correlation function as an action of some operator
φ̂(u2) on states of a Hilbert space

〈φ(u, ū)φ(u′, ū′)〉 =
∑

n

〈0|φ̂(u2)|n, k〉〈n, k|φ̂(u2)|0〉e−(En−E0)(τ−τ ′) ,

(9.139)
where k is the momentum (i.e., the space dependence is proportional to
exp(ikx2)). It follows that

En = E0 +
2πv

L
(∆ + N + N̄) ,

k = k0 +
2π

L
(s + N − N̄) .

(9.140)

This expression actually relates finite size corrections to the energy and
momentum with the conformal dimension and conformal spin of primary
fields. k0 and E0 are the momentum and the energy of the highest weight
state in the conformal tower built by a primary field φ, extrapolated to the
infinite system.

At L → ∞ the correlation functions of primary fields are then (we write
them in terms of x and τ , taking x′ = τ ′ = 0)

〈φ(x, t)φ(0, 0)〉 =
C exp[i(k0 + k̄0)x]

(vτ + ix)2h(vτ − ix)2h̄
, (9.141)

where C is a constant. Correlation functions of secondary (descendant)
fields can be obtained by the replacement (h, h̄) → (h + N, h̄ + N̄).

For open boundary conditions two-point correlation functions for L �
(u − u′) are given by

〈φ(u, ū)φ(u′, ū′)〉
= C(∆)

∑
n

〈0|φ(0)|B; n, k〉〈B; n, k|φ(0)|0〉e(EB
n −E0)(τ−τ ′) , (9.142)
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where B changes periodic boundary conditions to open ones. The proce-
dure, similar to the periodic case, yields

EB
n = E0 +

πv

L
(∆ + N) . (9.143)

Summarizing, the conformal field theory gives the possibility to connect
characteristics of finite size corrections to the energy and momentum (the
latter for periodic boundary conditions) with correlation functions of pri-
mary fields and conformal towers of descendant fields, generated by primary
fields.

9.4 Asymptotics of Correlation Functions

As we have shown in the previous section, the knowledge of finite size correc-
tions to the energy and the momentum of many one-dimensional quantum
systems gives the possibility to find the asymptotic behaviour of correlation
functions for primary and secondary fields. Thanks to conformal invariance,
the universality class of the considered model can be uniquely described by
single dimensionless number, the central charge of the underlying Virasoro
algebra. The value of the central charge can be extracted from the finite
size correction to the ground state energy. Then, each primary field with
the scaling dimension ∆ = h + h̄ and scaling spin s = h − h̄ gives rise to a
tower of excited states. Correlation functions of primary fields for periodic
boundary conditions are known to be (see the previous section), e.g., for
an infinite chain in the ground state

〈φ(x, t)φ(0, 0) =
C(∆)e−2iDP F x

(vF t + x)2h(vF t − x)2h̄
+ · · · , (9.144)

(note that the momentum is not determined uniquely). One has similar re-
lations for a finite size chain in the ground state, and temperature behaviour
of correlation functions, namely

〈φ(x, t)φ(0, 0)〉 =
C(∆)(π/L)2∆

(sin[π(vF t + x)/L])2h(sin[π(vF t − x)/L])2h̄
+ · · · ,

(9.145)
and

〈φ(x, t)φ(0, 0)〉

=
C(∆)(πT/2vF )2∆

(sinh[πT (x−ivF τ)/2vF ])2h(sinh[πT (x+ivF τ)/2vF ])2h̄
+· · · . (9.146)
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Here the coefficients C(∆) are expressed in terms of corresponding form-
factors C(∆) = (π/L)−∆|〈0|φ|n〉|2, where |n〉 are eigenfunctions related to
excitations. It is important to emphasize that these asymptotics are valid
for small enough temperatures (where the approximation of dispersion laws
of low-lying excitation by a linearized function is correct; also, considered
temperatures have to be lower than gaps of other excitations, like bound
states, etc.) and for large enough sizes of the system L, where finite size
corrections in series in L−1 are small. The presence of marginal operators
in the theory can lead to logarithmic corrections to conformal asymptotics
of correlation functions. Such operators appear, e.g. for systems with the
SU(2) spin symmetry.

Notice, that for excitations with gaps (which need activation energies)
their correlation functions decay exponentially, proportional to exp(−x/ξ),
where ξ ∼ vF /G is the correlation length (G is the gap).

Let us denote the following functions

Gz(x, t) = 〈Sz(x, t)Sz(0, 0)〉 , G⊥(x, t) = 〈S−(x, t)S+(0, 0)〉 ,

Gaa(x, t) = 〈a↓(x, t)a†
↓(0, 0)〉 , Gnn(x, t) = 〈n(x, t)n(0, 0)〉 ,

Gsp(x, t) = 〈a†
↑(x, t)a†

↓(x, t)a↓(0, 0)a↑(0, 0)〉 ,

(9.147)

where we, in fact, introduced the continuum version of operators related to
considered models as anσ → aσ(x), etc. The last three correlation functions
determine the electron-electron, density-density, and pair-pair (for singlet
pairs) correlators, respectively.

The simplest case is the situation for quantum spin chains, a repulsive
Hubbard chain and a supersymmetric t-J model at half-filling, all for H <

Hs, and an attractive Hubbard chain for H < Hc. Here one has only one
Dirac sea (and, hence, only one kind of low-lying excitations, which produce
finite size corrections), while other excitations are related to higher energies,
because of their gaps (activation energies). From the calculation of finite
size corrections the reader knows that this case pertains to c = 1 (i.e., to
the Gaussian model). Scaling dimensions of primary fields are ∆, given in
the first section of this chapter. Then, conformal weights of primary fields,
which determine exponents of correlation functions, are

h =
1
2

(
∆M

2Z
+ Z∆D

)2

, h̄ =
1
2

(
∆M

2Z
− Z∆D

)2

, (9.148)

while for secondary fields one has h + n+ and h̄ + n−. Here ∆M and
∆D are connected with excitations above the ground state, see the first
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section of this chapter. It is necessary to choose the minimal values of the
numbers ∆M , ∆D, and n±, which describe a concrete excitation under
consideration. It is important to point out that one requires that all the
conformal weights be non-negative, otherwise there would be unphysical
divergencies in correlation functions. Observe, also, that the choice of ∆M

defines the choice of ∆D, i.e., the latter is not really independent, because
of the restrictions on quantum numbers Jj and J± (which, in turn, follows
from the demand for Bethe ansatz wave functions to be non-degenerate).

Then it is relatively easy to obtain asymptotics of correlation functions.
For a Heisenberg-Ising spin- 1

2 chain (H < Hs) we have

G⊥(x, t) ≈ C1

[x2 − (vF t)2]θ⊥
+

C2

|vF t + x|ν Re
(

e2iP F x vF t − x

vF t + x

)
+ · · · ,

Gz(x, t) ≈ (mz)2 +
2A[(vF t)2 + x2]
[(vF t)2 − x2]2

+
B cos(2PF x)

[x2 − (vF t)2]θz
+ · · · ,

(9.149)

where A, B, C1,2 are constants, θz = Z2, θ⊥ = 1/4θz, and ν = 2θz+(2θz)−1.
These expressions are related to the choice ∆M = 1, ∆D = 0, and ∆M = 0,
∆D = 1, respectively. For the half-filled repulsive Hubbard chain and for
a supersymmetric t-J chain for H < Hs one obtains expressions for spin-
spin correlation functions, similar to the above case with vF → vF

2 , and
Z → Z22, while the expression for a density-density correlation function
coincides with the one for Sz-Sz correlator, but with the change (mz)2 → 1.
For an attractive Hubbard chain for H < Hc the asymptotic behaviour of
spin-singlet pair correlator and density-density correlator are similar to the
behaviour of G⊥(x, t) and Gz(x, t), respectively, with the change (mz)2 →
1, vF → vF

2 , and Z → Z22. Here the choice of ∆M2 and ∆D2 is similar to
the above choice for a quantum spin chain.

In the cases of spin chains with the finite concentration of similar impu-
rities (with the same spins as in the host chain), a repulsive Hubbard chain
away from half-filling, a supersymmetric t-J chain, all for H < Hs, and an
attractive Hubbard chain for Hc < H < Hs, the reader knows that the
ground states correspond to fillings of two Dirac seas. Hence, there are two
kinds of low-lying excitations, which give contributions to finite size correc-
tions to the energy and momentum. These contributions imply that in the
conformal limit one has the semidirect product of two independent Virasoro
algebras, both having central charge equal to 1 (i.e., the semidirect prod-
uct of Gaussian models). We write about the semidirect product, because
Fermi velocities of low-lying excitations, are, generally speaking, different
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from each other. (In the degenerate case, at which vF
1 = vF

2 , models are
also conformally invariant with the central charge c = 2.)

To find the analog of an equation for asymptotics of correlation functions
of primary and secondary fields we can write

E = E0(0) +
2π

L

2∑
i=1

vF
i (hi + h̄i + n+

i + n−
i ) + · · · ,

P = P0(0) + 2π
L

∑2
i=1(hi − h̄i + n+

i − n−
i ) + 2DiP

F
i ,

(9.150)

where E0(0) and P0(0) are the energy and momentum of the ground state.
Comparing these equations with the results of the second section of this
chapter we can obtain conformal weights as functions of the parameters of
the concrete models (note that the conformal spin cannot be determined
uniquely, because of the possible gap of the momentum). Generalizing the
expression for correlation function for the present case we get

〈φ(x, t)φ(0, 0)〉

=
C(∆1,2) exp[−2i(D1P

F
1 + D2P

2
F )x]

(vF
1 t + x)2h1(vF

1 t − x)2h̄1(vF
2 t + x)2h2 (vF

2 t − x)2h̄2
+ · · · , (9.151)

where

h1 =
1
2

(
Z22∆M1 − Z21∆M2

2detZ
+ Z11∆D1 + Z12∆D2

)2

+ n+
1 ,

h̄1 =
1
2

(
Z22∆M1 − Z21∆M2

2detZ
− Z11∆D1 − Z12∆D2

)2

+ n−
1 ,

h2 =
1
2

(
Z12∆M1 − Z11∆M2

2detZ
+ Z21∆D1 + Z22∆D2

)2

+ n+
1 ,

h̄2 =
1
2

(
Z12∆M1 − Z11∆M2

2detZ
− Z21∆D1 − Z22∆D2

)2

+ n−
1 ,

(9.152)

and similar expressions as for the case of only one Dirac sea of low-
lying excitation for the ground state correlations for finite chains and low-
temperature behaviour of correlation functions. Again, we have to choose
the minimal and non-negative exponents. It is important to point out
that the choice of ∆Mi defines (but not totally) the choice of ∆Di, i.e.,
∆D1 = (∆M1 + ∆M2)/2 (mod 1), and ∆D2 = ∆N1/2 (mod 1).

Let us see what is the concrete choice of ∆Mi and ∆Di for asymptotics
correlation of concrete models. For example, for a repulsive Hubbard chain
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for 0 ≤ 0 < Hs we choose for Gaa(x, t) ∆M1 = 1, ∆M2 = 1, ∆D1 = 0 (mod
1), ∆D2 = 1

2 (mod 1). For the density-density correlator we get ∆M1 =
∆M2 = 0, ∆D1 = ∆D2 = 0 (mod 1). For Gz(x, t) the choice is the same as
for density-density correlator. For G⊥(x, t) one takes ∆M1 = 0, ∆M2 = 1,
∆D1 = 1

2 (mod 1), ∆D2 = 0 (mod 1). For pair-pair correlation function
the choice is: ∆M1 = 2, ∆M2 = 1, ∆D1 = 1

2 (mod 1), ∆D2 = 0 (mod 1).
For example, asymptotics for the density-density correlation function look
like

Gnn(x, t) ≈ (N/L)2 +
C1 cos(2PF

1↑x)

|vF
1 t + x|2(Z11−Z12)2 |vF

2 t + x|2(Z21−Z22)2

+
C2 cos(2PF

1↓x)

|vF
1 t + x|2Z2

12 |vF
2 t + x|2Z2

22
+

C3 cos[2(PF
↑ + PF

1↓)x]

|vF
1 t + x|2Z2

11 |vF
2 t + x|2Z2

21

+
C4[(vF

1 t)2 + x2]
[(vF

1 t)2 − x2]2
+

C5[(vF
2 t)2 + x2]

[(vF
2 t)2 − x2]2

+ · · · . (9.153)

For H = 0 it reduces to (notice that PF
↑ = PF

↓ = πN/2L)

Gnn(x, t) ≈ (N/L)2 +
C′

1 cos(2PF x)
|vF

1 t + x|θ1/4|vF
2 t + x| +

C3 cos(4PF x)
|vF

1 t + x|θ1

+
C4[(vF

1 t)2 + x2]
[(vF

1 t)2 − x2]2
+

C5[(vF
2 t)2 + x2]

[(vF
2 t)2 − x2]2

+ · · · , (9.154)

θ1 = 2ξ2(Q); see the second section of this chapter. It varies from 2 to 4 as
the Hubbard repulsion constant increases from 0 to ∞. In this case H = 0
we also have

Gaa(x, t) ≈ 1
|vF

1 t + x|ν1 |vF
2 t + x|1/2

Re
[
A1e

−iP F x

(
x − vF

1 t

x + vF
1 t

)1/4

×
(

x − vF
2 t

x + vF
2 t

)1/4]
+

1
|vF

1 t + x|ν3 |vF
2 t + x|1/2

×Re

[
A2e

−i3P F x

(
x − vF

1 t

x + vF
1 t

)3/4 (
x − vF

2 t

x + vF
2 t

)1/4
]

+ · · · (9.155)

where ν1 = θ−1
1 + θ1/16, and ν3 = θ−1

1 + 9θ1/16. These exponents are
monotonic functions of the Hubbard interaction constant U , 1

2 ≤ ν1 ≤ 5
8

for 0 ≤ U ≤ ∞, and 5
2 ≥ ν3 ≥ 13

8 for 0 ≤ U ≤ ∞, respectively. Spin-spin
correlators are equal to each other for H = 0, and their expression coincides
with the one for density-density correlator with the change (N/L) → 0. For
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the correlator of spin-singlet pairs one obtains

Gsp(x, t) ≈ B1

|vF
1 t + x|4/θ1 |vF

2 t + x|

+
1

|vF
1 t + x|νs

Re
[
B2e

−i2P F x x − vF
1 t

x + vF
1 t

]
+ · · · (9.156)

where νs = 4
θ1

+ θ1
4 , which increases from 2 to 5

2 when U is changed between
0 to ∞.

For an attractive Hubbard chain for Hc < H < Hs and for a super-
symmetric t-J chain (for the latter one has to take negative values of ∆Mi

because we used holes in our description) one gets for Gaa(x, t) ∆M1 = 1,
∆M2 = 0, ∆D1 = 1

2 (mod 1), ∆D2 = 0 (mod 1). For the density-density
correlator we choose ∆M1 = ∆M2 = 0, ∆D1 = ∆D2 = 0 (mod 1).
For Gz(x, t) the choice is the same as for density-density correlator. For
G⊥(x, t) we take ∆M1 = 1, ∆M2 = 0, ∆D1 = 1

2 (mod 1), ∆D2 = 0 (mod
1). For pair-pair correlation function the choice is: ∆M1 = 0, ∆M2 = 1,
∆D1 = 1

2 (mod 1), ∆D2 = 0 (mod 1).
It is easy to compute the Fourier transforms of correlation functions

g(k, ω) =
∫

dx

∫
dtG(x, t) exp[i(ωt − kx)] . (9.157)

In general this integral is not absolutely convergent. The calculation near
the singularities ω = ±vF

i (k − k0), where k0 determines space oscillations
(by the term in the numerator), yields

g(k, ω) = const[ω ∓ vF
1 (k − k0)]2(h2+h̄2+A)−1 , (9.158)

where A = h1 for the upper sign, and A = h̄1 for the lower sign, for
ω ≈ ±vF

1 (k − k0), and

g(k, ω) = const[ω ∓ vF
2 (k − k0)]2(h1+h̄1+B)−1 , (9.159)

where B = h2 for the upper sign, and B = h̄2 for the lower sign, for
ω ≈ ±vF

2 (k − k0). It turns out that to obtain these expressions one needs
to consider the case with the sum of all conformal weights positive and
the sum of three of them less than 1

2 , and then continue analytically. For
the Fourier transform of equal-time correlators g(k), one has to consider
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the cases k > k0 and k < k0 separately. Contour integration produces (for
p > 0)

g(k0 + p)
g(k0 − p)

= (−1)2s , (9.160)

where s = h − h̄ is the conformal spin for the considered field (operator),
which implies

g(k ∼ k0) ∝ [sign(k − k0)]2s|k − k0|2∆1+2∆2−1 . (9.161)

The extra sign will appear for gaa(k).
Very similar consideration is applied in the case of additional Dirac

seas present in the ground state due to a finite concentration of similar
impurities. Here each additional Dirac sea implies additional factors like
(x ± vt) with their conformal weights and Fermi velocities. The only, but
very important difference appears because the filling of Dirac seas, caused
by a finite concentration of impurities, is not independent from the filling
of Dirac seas of the host, and, hence, related shifts ∆M and ∆D are not
independent. It is based on the fact that the same magnetic field and/or
the same chemical potential govern the filling of Dirac seas for the host and
the ones, caused by a finite concentration of impurities.

In the case of a single impurity, as the reader see from the first two
sections of this chapter, an impurity does not renormalize the structure
of conformal asymptotics of correlation functions and Fermi velocities, but
does renormalize exponents (conformal weights). A phase shift due to an
impurity is known to be important for many physical systems via the Friedel
sum rule.

In the case of open boundary conditions the reader sees that the struc-
ture of asymptotics of correlation functions and Fermi velocities are the
same as in the case of periodic boundary conditions. However, conformal
weights are strongly renormalized, because of the absence of transfers from
one Fermi point to the other (backscattering). These changes of exponents
of boundary correlation functions are related, e.g., to the orthogonality
catastrophe, or X-ray edge singularities due to open edges of a chain. It
is interesting to observe that one can measure the strength of bulk inter-
actions in a chain by applying a local (boundary) potential: the shift of a
boundary exponent due to the boundary potential depends on how strong
the coupling between electrons (or spins) in the chain is.
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9.5 Persistent Currents in Correlated Electron Rings

Another issue in which one can apply the knowledge of finite size corrections
is the description of persistent currents in correlated electron rings.

Persistent currents are thermodynamic characteristics of a quantum
ring. They are connected with the Aharonov–Bohm phase shift, which ap-
pears when charges move along a loop, pierced by a magnetic flux. Recall,
the Aharonov–Bohm effect essentially entails the force-free (in the absence
of any forces) nonlocal topological influence of electro-magnetic interaction
(and in the more general setting, any gauge interaction) on quantum dy-
namics of charged particles in non-simply connected geometry. According
to general principles of quantum mechanics this effect is equal in effect to
a variation of the phase of a particle wave function, which causes the in-
terference pattern to shift periodically (with respect to the magnetic field
flux) in an experiment. For any closed path enclosing a solenoid this phase
variation is equal to

φAB =
2πΦ
Φ0

, (9.162)

where Φ is the magnetic flux in the solenoid, and Φ0 = 2π�c/e, where
c is the speed of light in vacuum, and e is the charge of a particle. Ac-
cording to this simple relation, any flux that is a multiple of Φ0 induces a
phase shift that does not have any influence on particle quantum dynamics.
In the classical description the effect does not occur for any value of the
flux, because the motion of particles takes place in the region outside the
solenoid, where electric and magnetic fields are identically zero. In con-
densed media the Aharonov–Bohm effect normally shows up as magnetic
oscillations of kinetic and thermodynamic characteristics of samples in ex-
tremely weak magnetic fields, when field-induced forces can be disregarded.
Since the electron wave function is not macroscopically coherent for metals
in a normal state, Aharonov–Bohm oscillations of thermodynamic variables
(persistent currents) are observable in samples of small (mesoscopic) dimen-
sions, smaller than the mean free path between inelastic collisions, and at
sufficiently small temperatures. As we showed, electron-electron correlation
effects are most conspicuous in the low-dimensional case. Hence, Aharonov–
Bohm oscillations can serve as a testing ground for investigations of those
electron-electron correlations in conducting loops via the period, the initial
phase shift and the magnitude of oscillations.

An external magnetic flux yields the nonzero momentum of charged
particles. A persistent current is then related to the total orbital moment
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of all charges in the one-dimensional ring. It is the derivative of the energy
of a system in equilibrium with respect to the applied magnetic flux:

J(Φ) = −c
∂F (Φ)

∂Φ
, (9.163)

where F is the Helmholtz free energy of the total ring. In the ground state
it reduces to the derivative of the ground state energy.

One has to distinguish between persistent currents and transport cur-
rents. Recall, transport currents are kinetic characteristics of any system,
characterized by the resistivity and related to it transition amplitude. In a
linear response theory the resistivity is the coefficient connecting the value
of a transport current with the value of an applied electric field. Hence, a
transport current is the consequence of the difference in potentials applied
to the source and drain cf. Fig. 9.1 (a). Contrary, a charge persistent cur-
rent can exist without any applied external electric field: it does not need
any source and drain, cf. Fig. 9.1 (b).

ΦS D

a b

Φ

Fig. 9.1 Different geometries for the manifestation of the Aharonov–Bohm effect of an
external magnetic flux Φ in a conducting ring: (a) the transport current geometry with
the source (S) and drain (D); (b) the persistent current geometry.

When the ring between the source and drain is pierced by an external
magnetic flux in the geometry of Fig. 9.1 (a), a transport current is also
affected by that flux. Hence, the resistivity of a transport current also
becomes flux-dependent. However, such a transport current is not exactly
equal to a charge persistent current. This difference in the basic nature of
transport and persistent currents produces, e.g., the main difference in the
answers, when one considers the effect of a magnetic impurity in a metallic
ring, pierced by a flux.

The Aharonov–Casher effect is dual to the Aharonov–Bohm one. It is
related to the movement of a particle with a magnetic moment (spin) around
a two-dimensional electric flux, e.g., the electric flux F = 4πτ generated by
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a string passing through the center of a ring with linear charge density τ .
It produces the phase shift of a particle with spin

φAC =
2πF

F0
, (9.164)

where F0 = 2π�c/µB is the unit electric flux, µB is the Bohr’s magneton.
Then the spin persistent current is

Js(F ) = −c
∂F (F )

∂F
. (9.165)

Electro-magnetic fluxes Φ and F can be included into the Hamiltonian
of a one-dimensional electron system via the standard Peierls factors Φ↑ =
π[(Φ/Φ0)+(F/F0)] and Φ↓ = π[(Φ/Φ0)−(F/F0)] for electrons with spins up
and down, respectively. Then a simple gauge transformation can transfer
these phase shifts into twisted instead of periodic, boundary conditions.

One can obtain Bethe ansatz equations for correlated electron rings
with electro-magnetic fluxes either by using the direct co-ordinate scheme,
cf. Chapter 4, or introducing the operator

T = eiΦ↑ 1
2
(I0 + σz

0) + eiΦ↓ 1
2
(I0 − σz

0) (9.166)

into the monodromy operator of the associated spin problem (recall, sub-
script 0 denotes the auxiliary subspace). Then Bethe ansatz equations,
e.g., for a Hubbard model for the sets of rapidities kj (j = 1, . . . , N) and
λγ (γ = 1, . . . , M) become

eiΦ↓−iΦ↑
N∏

j=1

λγ − sinkj + i(U/4)
λγ − sinkj − i(U/4)

=
M∏

β=1
β �=γ

λγ − λβ + i(U/2)
λγ − λβ − i(U/2)

,

eikjL−iΦ↑ =
M∏

β=1

sin kj − λβ + i(U/4)
sin kj − λβ − i(U/4)

,

(9.167)

and for a supersymmetric t-J chain (for V = −J/4, J = 2)

N∏
j=1

λα − pj + i/2
λα − pj − i/2

eiΦ↓−iΦ↑ =
M∏

β=1

λα − λβ + i

λα − λβ − i
, α = 1, . . . , M ,

[
pj + i/2
pj − i/2

]L

e−iΦ↑ =
M∏

α=1

pj − λα + i/2
pj − λα − i/2

, j = 1, . . . , N ,

(9.168)

with the same definitions of the energy as before.
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It is easy to see that in the thermodynamic limit the effect of twisted
boundary conditions caused by topological Aharonov–Bohm–Casher phase
factors is zero. The main contribution from those factors appears to be
related with finite size corrections to the energy and the momentum, studied
in the second section of this chapter. Taking into account Aharonov–Bohm–
Casher topological phases, counting functions of the second section become

zi,L(x) =
1
2π


p0

i (x) − 1
L

Φi −
1
L

2∑
j=1

Mj∑
l=1

φ0
ij(x, uj,l)


 , i = 1, 2 ,

(9.169)
where Φ1 = π[(Φ/Φ0) + (F/F0)] and for a repulsive Hubbard ring Φ2 =
−2πF/F0, while for an attractive Hubbard ring and for a supersymmetric
t-J ring we have Φ2 = 2πΦ/Φ0. The counting functions are periodic in
F with the period F0 and F0/2, and in Φ with the periods Φ0 and Φ0/2
(depending on the model, for a repulsive Hubbard case one has 2F/F0

periodicity and no 2Φ/Φ0 one, while for an attractive Hubbard chain and a
supersymmetric t-J chain the situation is the opposite). Hence, they remain
invariant under replacements (F/F0) → {{F/F0}}, (2F/F0) → {{2F/F0}},
(Φ/Φ0) → {{Φ/Φ0}} and (2Φ/Φ0) → {{2Φ/Φ0}}, where {{x}} denotes the
fractional part of x to the nearest (half)integer. Spin and charge rapidities
parametrize each eigenvalue and eigenfunction of the stationary Schrödinger
equation, and, therefore, all characteristics of integrable models have to
reveal those periodicities also.

Then, proceeding as in the second section we obtain

∆1 =


 2∑

j=1

Z1j [(Dj + Φ̃i) − δjL]




2

+
1

4(detZ)2
[Z22(M1 − ν1(µ, H)L) − Z21(M2 − ν2(µ, H)L)]2 ,

∆2 =


 2∑

j=1

Z2j [(Dj + Φ̃i) − δjL]




2

+
1

2(detZ)2
[Z12(M1 − ν1(µ, H)L) − Z11(M2 − ν2(µ, H)L)]2 .

(9.170)

In these equations Φ̃i denote the fractional part of Φi to the nearest
(half)integer. Finite size correction to the total momentum is



April 6, 2005 10:46 Finite Size Effects in Correlated Electron Models: Exact Results mybook

Finite Size Corrections in Quantum Correlated Chains 327

P =
2π

L

2∑
i=1

[Mi(Di + Φ̃i) + n+
i − n−

i ] + 2
∑

σ

PF
σ Dσ , (9.171)

where the Fermi momenta are for a repulsive Hubbard chain D↑ = D1+Φ̃1,
D↓ = D1 +D2 +Φ̃1 +Φ̃2, for an attractive Hubbard chain D↑ = D1 +D2 +
Φ̃1 + Φ̃2 and D↓ = D2 + Φ̃2, while for a supersymmetric t-J chain one has
D↑ = −D1 −D2 − Φ̃1 − Φ̃2 and D↓ = −D2 − Φ̃2, and it is necessary to add
to the total momentum the term 2π(D1 + D2 + Φ̃1 + Φ̃2). The finite size
correction to the energy is

E(Mi, Di, n
±
i ) = E0 + Lε∞(Λi,−Λi) −

π

6L

2∑
i=1

vF
i

+
2π

L

2∑
i=1

vF
i [∆i + n+

i + n−
i ] . (9.172)

It is a trivial exercise for the reader to check that there are no corrections
to the energy for open chains, which is the manifestation of the fact that one
can totally remove topological phases, related to external electro-magnetic
fluxes, from the answers in that case.

From the formulas for the energy and momentum we can see that

• Charge persistent currents (the Aharonov–Bohm effect) in cor-
related electron rings are determined by a virtual movement of
low-lying charge-carrying excitations (for the case of a repulsive
Hubbard ring they are connected with unbound electron excita-
tions, while for an attractive Hubbard ring and for a supersym-
metric t-J ring with V = −J/4 they are connected with unbound
electron excitations and spin-singlet pairs, with the interference of
those two kinds of oscillations);

• Spin persistent currents (the Aharonov–Casher effect) in correlated
electron rings are determined by a virtual movement of low-lying
spin-carrying excitations (for the case of a repulsive Hubbard ring
they are connected with unbound electron excitations and spinons,
with the interference of two kinds of oscillations, while for an
attractive Hubbard ring and for a supersymmetric t-J ring with
V = −J/4 they are connected with only unbound electron excita-
tions);

• Magnitudes of spin and charge persistent currents are determined
by Fermi velocities of low-lying excitations and coefficients of a
dressed charge matrix;
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• The form of oscillations in the ground state is “saw-tooth”-like. It
is due to the presence of all harmonics;

• The periodicity of charge and spin persistent currents are deter-
mined by charges and spins of those virtual excitations;

• The initial shifts of those persistent currents (parity effect) are de-
termined by the values of Di (i.e., those initial shifts are different
for different values of the total number of electrons and the total
magnetic moment of a system).

Magnitudes of some oscillations become equal to each other at some val-
ues of the external magnetic field, e.g., for H = 0 for a repulsive Hubbard
ring and supersymmetric t-J chain, or for H = Hc for an attractive Hub-
bard ring (because some non-diagonal matrix elements of a dressed charge
matrix are zero at those critical points). Then the interference of periods
of oscillations is not manifested, naturally.

For H < Hs charge persistent currents of a repulsive Hubbard ring
reveal the period of oscillations Φ0, while spin persistent currents manifest
the interference pattern of two kinds of periodicities: with F0 and F0/2.
On the other hand, spin persistent currents of an attractive Hubbard ring
for Hc < H < Hs and of a supersymmetric t-J ring (for V = −J/4)
manifest the period of oscillations F0, while charge persistent currents of
those models reveal the interference of oscillations with two periods: Φ0 and
Φ0/2. For H < Hc in an attractive Hubbard ring there are no mesoscopic
(with the magnitude of order of L−1) spin persistent currents, and there is
only one period of oscillations of charge persistent currents, equal to Φ0/2.
For H > Hs there are no mesoscopic persistent currents in the ground state.
It is important to point out that at crossover points the part of the energy,
related to persistent current can display jumps as a function of Φ or F .
These “discontinuities” of the energy are, however, microscopic, of order of
the uncertainty of the energy according to Heisenberg’s principle. These
singularities can be interpreted as “supercurrents” necessary to generate the
discontinuities of the energy. Any nonzero temperature, naturally, removes
those “supercurrents”.

Any nonzero temperature strongly reduces magnitudes of persistent cur-
rents: They become not mesoscopic, but rather exponentially small. The
form of these oscillations becomes harmonic, instead of the “saw-tooth”-
like in the ground state, since the temperature suppresses higher harmonic
content.

To study the parity effect, let us concentrate on charge persistent cur-
rents of a repulsive Hubbard ring at H = 0. One has to distinguish three
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main cases. For odd N charge persistent currents are paramagnetic J(Φ) =
(2vF

1 ξ2(Q)/Φ0L)[(π/2)−|2πΦ/Φ0|]signΦ for Φ < Φ0/2. There is a crossover
of the low-lying levels at Φ = 0 and Φ = ±Φ0/2. For even N charge per-
sistent current are diamagnetic J(Φ) = (2vF

1 ξ2(Q)/Φ0L)(Φ/Φ0). There
exists a crossover of low-lying levels at Φc = Φ0[(1/4) + (vF

2 /2vF
1 ξ2(Q))]

for N = 4n + 2 (n is an integer) and at Φ = (Φ0/2) − Φc for N = 4n.
Summarizing, the parity effect for charge persistent currents in a repulsive
Hubbard chain is similar to rings of noninteracting electrons, except of the
case N = 4n, where the persistent current is changed from a paramagnetic
one into a diamagnetic one. Parity effects for spin persistent currents and
for persistent currents in other models of correlated electrons can be studied
analogously.

Let us consider how a single impurity can affect persistent currents.
The analysis, totally equivalent to the above shows, that a single impu-
rity changes neither magnitudes of oscillations (i.e., velocities of low-lying
excitations and dressed charge matrices do not depend a single impurity),
nor periods of oscillations. The only parameter, which gets renormalized
due to an impurity is the initial phase shift of oscillations of persistent
currents. This effect is related to the way how an integrable impurity can
be introduced into a correlated electron ring without destroying the exact
solvability, because the impurity introduces a chirality into the problem,
i.e., it renormalizes the momentum of the ring, cf. Chapter 7.

Now, let us examine how a finite concentration of impurities can affect
persistent currents. The reader already knows that a finite concentration of
impurities can yield additional Dirac seas in the ground state. Hence, the
effect of such impurities is related to the onset of new, additional oscillation
patterns, related to virtual movements of low-lying excitations due to those
impurities-induced Dirac seas, and with subsequent interferences of those
new oscillations with the previous ones.

It is also interesting to mention so called microscopic oscillations of
persistent currents. These oscillations appear only for small rings with
small number of electrons and very strong interactions. Let us consider,
e.g., Bethe ansatz equations for a repulsive Hubbard ring for U 	 1 for
F = 0 and Φ �= 0. In this limit one can neglect sin kj in comparison with
U/4 and λγ . Then it follows that

Lkj = 2π

(
Jj +

Φ
Φ0

+
1
N

M∑
γ=1

Jγ

)
, (9.173)
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with the energy

E = E0 − 2
sin(πN/L)
sin(π/L)

× cos

[
2π

L

(
Φ
Φ0

+
1
N

M∑
γ=1

Jγ +
J+ + J−

2

)]
, (9.174)

where J+ and J− are the maximal and minimal values of Jj (i.e., (J+ +
J−)/2 = D1). The energy for Φ �= 0 can be minimized by choosing the set
of Jγ such that

∑M
γ=1 Jγ = −p for

2p − 1
2N

<
Φ
Φ0

+
I+ + I−

2
<

2p + 1
2N

. (9.175)

Hence, the energy as a function of Φ becomes a quasiperiodic (with a
“period” N−1) sequence of quasiparabolic segments (they become strictly
parabolic for large N). These are microscopic oscillations of a charge per-
sistent current. Obviously, they disappear when U becomes smaller or N

becomes larger. The nature of these oscillations is obvious: one excites
additional spinon oscillations (which carry nonzero momentum p) to mini-
mize the energy lost caused by the external flux. It means that microscopic
oscillations of persistent currents appear only in correlated electron chains,
where at least two low-lying collective excitations with different velocities
can exist. Similar microscopic oscillations of charge and spin persistent
currents appear in other one-dimensional models of correlated electrons.

The magnitude of oscillations of persistent currents is related to the
stiffness constant D (E(Φ) = E(0) + DΦ2/L2−d + O(Φ4), where d is the
dimension of the space) of a transport current in the ground state. It is
easy to show that

D =
1
Ld


−〈0|T |0〉

2d
−
∑
n�=0

|〈0|jx|n〉|2
En − E0


 , (9.176)

where T is the kinetic energy of electrons. Let us switch on the vector poten-
tial Ax exp(−iωt), i.e., we get the electric field Ex = (iω/c)Ax exp(−iωt).
Then the imaginary part of the ac conductivity of a chain is

Imσxx(ω) =
2e2

�2ωLd


−〈0|T |0〉

2d
− P

∑
n�=0

|〈0|jx|n〉|2(En − E0)
(En − E0)2 − (�ω)2


 , (9.177)
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where P denotes the principal part. It is easy to show that

limω→0 ωImσxx(ω) =
2e2

�2
D ,

limω→∞ ωImσxx(ω) = − 2e2

�2dLd
〈0|T |0〉 .

(9.178)

It is well-known that the high-frequency behaviour of the real part of the
conductivity is related to the imaginary part via the f -sum rule∫ ∞

−∞
dωReσxx(ω) = − πe2

�2dLd
〈0|T |0〉 . (9.179)

On the other hand, the low-frequency behaviour implies that

Reσxx(ω) =
2πe2

�

(
Dδ(�ω) +

1
Ld

∑
n�=0

|〈0|jx|n〉|2δ[(En − E0)2 − (�ω)2]
)

.

(9.180)

This expression means that nonzero D (related to the Drude weight), is
connected with the magnitude of the charge persistent current in the ground
state. Hence, a nonzero D implies infinite dc conductivity in the ground
state.

Let us consider how a magnetic impurity (for simplicity we shall study
the case S = 1

2 ) in a correlated electron chain can affect the ground state
magnetoresistivity. We can suppose that due to the contact interaction
the impurity-host S-matrix of the real system is momentum independent,
and only a function of energy. This assumption is, naturally, correct in the
long-wave limit. The impurity-host scattering matrix can be characterized
by scattering phase shifts, and the magnetoresistivity due to an impurity
can be expressed in terms of phase shifts for electrons at the Fermi levels
of low-lying excitations. The T -matrix (S = 1 − iT = exp(2iδ), where
the phase shift is given mod 2π) can be defined by the one-electron zero
temperature Green’s function from

Gk,k′,σ(ω) = G0
k,σ(ω) + G0

k,σ(ω)T (ω)G0
k′,σ(ω) . (9.181)

Hence, the propagator of this equation at ω = 0 yields the phase shift at
the Fermi level. Time evolution is given by an additional electron (hole)
state at the Fermi level, because the propagator annihilates one electron
(hole) at t = 0 and creates it at time t. When an electron (hole) propagates
through a chain it causes the change in a phase L[E(N)−E(N−1)]. Let us
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assume that a chain has the width much larger than the atomic scale, but
much smaller than the length of the ring L. Then the scattering gives the
formula for the ground state magnetoresistivity due to a magnetic impurity

R =
R0∑

σ
1

sin2 δF
σ

, (9.182)

where δF σ = (π/2)(nimp ∓ 2mz
imp), and R0 characterizes the scattering of

a correlated electron system in the unitary limit. For a fixed band filling
the magnetoresistivity decreases when increasing the magnetization of an
impurity. This is why, the magnetoresistivity, i.e., the characteristic of the
magnitude of a transport current, strongly depends on the presence of a
magnetic impurity in a chain, while such an impurity affects only the initial
phase of a charge persistent current in a ring.

Summarizing, in this chapter we presented the calculation of finite-size
corrections to characteristics of exactly solvable models of quantum spins
and correlated electrons with periodic and open boundary conditions, with
and without inhomogeneities. We reminded the reader the main features
of the description of critical phenomena and conformal field theory. The
latter was used to calculate the asymptotic behaviour of low-energy corre-
lation functions of considered models. Also, another finite-size effect, the
behaviour of persistent currents for periodic correlated electron chains is
studied.

The calculation of finite size corrections for Bethe ansatz-solvable mod-
els was pioneered in [de Vega and Woynarovich (1985)]. The reader can
find calculations of finite size corrections for quantum correlated chains,
e.g., in [Woynarovich, Eckle and Truong (1989); Woynarovich (1989);
Klümper, Batchelor and Pearce (1991); Pearce and Klümper (1991);
Kawakami and Yang (1991); Bariev, Klümper, Schadschneider and Zittartz
(1993); Bariev (1994)], homogeneous chains with periodic (twisted) bound-
ary conditions, in [Alcaraz, Barber, Batchelor, Baxter and Quispel (1987);
Asakawa and Suzuki (1995); Frahm and Zvyagin (1997a); Bedürftig and
Frahm (1997)] for chains with open boundary conditions, see also [Frahm
and Zvyagin (1997b); Zvyagin (2002); Zvyagin (2003)] for quantum chains
with impurities. The dressed charge technique was introduced in [Korepin
(1979)]. I can suggest the use of, e.g., the well-known books [Ma (1976);
Cardy (1996); Kadanoff (2000); Sachdev (1999)] for the description of crit-
ical phenomena in the vicinity of a phase transition. The scaling hy-
pothesis was introduced in [Widom (1965a); Widom (1965b)], see also
[Rushbrooke (1963)], and developed in [Griffiths (1965); Kadanoff (1966);
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Josephson (1967a); Josephson (1967b); Fisher (1969)]. The conformal field
theory was pioneered in [Belavin, Polyakov and Zamolodchikov (1984)].
The reader can find more about the conformal field theory from, e.g.,
the monographs [Di Franchesco, Mathieu and Sénéshal (1997); Gogolin,
Nersesyan and Tsvelik (1998); Korepin, Bogoliubov and Izergin (1993)].
Conformal field theory for finite systems was developed in [Cardy (1986a);
Cardy (1986b)]. Correlation functions for quantum spin and correlated elec-
tron models were calculated, e.g., in [Bogoliubov, Izergin and Reshetikhin
(1987); Bogolyubov and Korepin (1989); Bogolyubov and Korepin (1990);
Frahm and Korepin (1990); Frahm and Korepin (1991); Kawakami and
Yang (1991)] for periodic systems and [Asakawa and Suzuki (1995);
Bedürftig and Frahm (1997); Frahm and Zvyagin (1997b)] for chains with
open boundary conditions. For more accurate calculations of correlation
functions for integrable models, than by using the conformal field theory,
consult [Korepin, Bogoliubov and Izergin (1993)]. The Aharonov–Bohm
and Aharonov–Casher effects were introduced in [Aharonov and Bohm
(1959)] and [Aharonov and Casher (1984)], respectively. First calcula-
tions of persistent currents (in superconductors) can be found in [Byers
and Yang (1962)]. For the behaviour of a charge persistent current in a
non-interacting metallic ring see, e.g., [Cheung, Gefen, Riedel and Shin
(1988)]. Persistent current in a correlated electron chain was first calcu-
lated in [Zvyagin (1990b)]. Calculations of spin persistent currents (the
Aharonov–Casher effect) in a correlated electron chain are presented in
[Zvyagin and Krive (1992)]. The description of a parity effect and micro-
scopic oscillations of charge persistent currents can be found, e.g., in [Yu
and Fowler (1992)]. The reader can find a review of properties of charge per-
sistent currents in correlated electron rings in [Zvyagin and Krive (1995)].
The connection between charge persistent currents and ac optical conduc-
tivity (Drude weight) was proposed in [Shastry and Sutherland (1990)], and
we closely follow their description here. For the behaviour of persistent
currents in correlated quantum rings with a single impurity see [Zvyagin
(2003)] (there the reader can also find studies of the ground state magne-
toresistivity in a correlated electron ring with a magnetic impurity), and
for correlated rings with a finite concentration of magnetic impurities see,
e.g., [Zvyagin and Schlottmann (1995)].
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Chapter 10

Beyond the Integrability:
Approximate Methods

In this very short chapter we shall briefly review several approximate meth-
ods which are used in the theory of one-dimensional quantum chains. Many
recent excellent review articles and books considered these approximate
methods, and the purpose of the introduction of this short chapter is only
for the “completeness” of the impression of the reader.

10.1 Scaling Analysis

The first (and the simplest) class of methods used in the approximate de-
scription of quantum correlated chains is connected with the renormaliza-
tion group approach. Such a study shows that exponents for characteristics
of low-dimensional systems are non-integer in general, in contrast to simple
perturbation theories, which of course are not legitimate. An application
of scaling relations provides a simple tool to understand some essential
aspects of the behaviour of quantum correlated chains under a relevant
perturbation. To remind, the response of a classical Helmholtz free energy
fcl and the correlation function ξcl of a classical critical d-dimensional sys-
tem perturbed by a relevant operator δH′ with the renormalization group
eigenvalue y−1 > 0 near a critical point is

∆fcl ∝ δdy , ξcl ∝ δ−y , (10.1)

where d is the space dimension. A quantum critical d-dimensional system
formally behaves in a scaling regime equivalently to a (d + z)-dimensional
classical system, where z is the dynamical critical exponent. To remind,
the divergence of correlation functions for quantum critical points implies
divergencies not only in space, but also in time, because the real space in
which one has to consider quantum critical systems is (d + 1), where 1 is

335
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due to time. It should take a longer time to propagate across the distance
of correlation length. One can introduce the “correlation length” (actually
a relaxation time) in time direction τr which diverges as τr ∼ ξz, cf. the
previous chapter. As a consequence of divergences in both, ξ and τr, various
physical quantities in the critical region close to a quantum critical point
have a dynamic scaling form,

Ψ(k, ω) = ξ∆Ψ(kξ, ωτr) , (10.2)

where the observable Ψ is measured at the wave vector k and frequency
ω (∆ is the scaling dimension): i.e., close to the critical point there is no
other characteristic length scale than ξ and no other characteristic time
scale than τr. At the scale-invariant critical point correlation lengths are
divergent, and, hence, the only characteristic length is 2π/k, and the only
characteristic frequency is ω(k) ∼ (vF k)z . This implies the simpler scaling
form

Ψ(k, ω)c = k−∆φ̃([vF k]z/ω) . (10.3)

The behaviour of a two-point correlation function G(2)(r) ∼ r−d+2−η im-
plies for the Fourier transform G(2)(k) ∼ k−2+η. The Fourier transform of
a correlation function for (d + 1)-dimensional problem is then

G(2)(k, ω) ∼
[√

(vF k)2z − ω2

]−2+η

, (10.4)

i.e., there is no other characteristic frequency than (vF k)z itself, thus, col-
lective modes have become overdamped and the system is in an incoherent
diffusive regime.

That is why, the ground state energy and the gap of low-lying excitations
of a d-dimensional quantum critical system are formally proportional to
the free energy and the inverse correlation function of a (d+z)-dimensional
classical critical system, respectively. The renormalization group eigenvalue
y−1 is related to the scaling dimension ∆ of the particular operator by

∆ + y−1 = d + z . (10.5)

For a conformally invariant quantum critical chain we have d = z = 1, i.e.,

y = (2 − ∆)−1 . (10.6)

Hence the renormalization of the ground state (internal) energy per site of
a quantum critical chain and the gap for low-lying excitations G (which is
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equal to zero at the unperturbed point) to a relevant perturbation are

∆Eq ∝ −δ2/(2−∆e) , Gq ∝ δ1/(2−∆e) , (10.7)

respectively, where the subscript q implies the quantum situation, and ∆e

is the minimal scaling exponent for energy-energy correlation functions
(i.e., if the Hamiltonian of the quantum critical chain with the nearest-
neighbour interactions is H =

∑
j Hj,j+1, the energy-energy correlation

function is 〈Hr,r+1H0,1〉). Here we ignored logarithmic corrections. They
can be present due to marginal operators in the renormalization group
sense. For example, they appear when one studies systems with the SU(2)
spin symmetry. To find the scaling dimension for a quantum critical chain
(as a function of, e.g., coupling constants, band fillings, hopping integrals,
external uniform magnetic field, etc.) we can use the conformal field theory,
cf. the previous chapter. According to the conformal field theory approach
asymptotics of correlation functions of primary fields in the ground state
are known to be

〈φ∆±(x, t)φ∆±(0, 0)〉 ∼ exp(2iDPF x)
(vF τ + ix)2h(vF τ − ix)2h̄

, (10.8)

where vF and PF are the Fermi velocity and the Fermi momentum, respec-
tively. Scaling dimensions and spins for each primary field are determined
by ∆φ = h + h̄ and sφ = h − h̄. Conformal weights (h, h̄) can be cal-
culated according to the finite size analysis of the low energy physics of
a critical quantum model. For critical correlated electron models the low
energy physics in general case corresponds to a semidirect product of two
conformal field theories. At total and half-filling of the band for a repulsive
Hubbard chain the gap can be opened in the spectrum of charged low-lying
excitations, or, for an attractive Hubbard chain the gap for unbound elec-
tron excitations persists for H < Hc. Also, in the spin-saturated phase,
for H > Hs, spin-carrying excitations are gapped. Thus, in such cases the
semidirect product reduces to one conformal field theory.

It means that for a quantum critical chain the gap in spectrum of low-
lying excitations due to a relevant perturbation is

G ≈ vF

(
δ

vF

)1/(2−∆e)

, (10.9)
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and the ground state energy correction reads

∆E ≈ −vF

(
δ

vF

)2/(2−∆e)

. (10.10)

For example, for spin- 1
2 chains the dimerization (a relevant perturba-

tion) produces exponents for a spin gap (for H = 0) from 2
3 for the isotropic

antiferromagnetic Heisenberg chain (∆e = 1
2 ) to 1

2 for the isotropic XY
chain (which is related to free fermions, ∆e = 1), cf. Chapters 2 and 9. In
such a way exponents describe the strength of interactions in a quantum
critical system.

Now, few words about logarithmic corrections. As the reader knows
from the previous chapter, for some models (e.g., those, which respect the
SU(2) spin symmetry), finite size corrections due to low-lying excitations
can be written as

E = E0 +
2πvF

L

[
∆ +

b

lnL
+ · · ·

]
. (10.11)

According to the conformal field theory the amplitude b determines multi-
plicative logarithmic corrections to the two-point correlation function,

〈φ(x)φ(0)〉 ≈ 1
[x(ln x)b]2∆

. (10.12)

Hence, the correction to the gap of low-lying excitations of a quantum crit-
ical system (which has logarithmic finite size corrections) due to a relevant
perturbation δ appears to be

G ∼
(

δ

(ln δ)b∆e

) 1
(2−∆e)

. (10.13)

At nonzero temperatures one has to use the scaling form

Ψ(T, ω) = f(�ω/T, δ/T 1/zν) , (10.14)

where δ measures the distance to the quantum critical point. In the regime
�ω � T one expects the behaviour of the scaling function of a single scaling
variable δ/T 1/zν. The effect of deviation from the critical value is rescaled
by the factor of T 1/zν. The transition appears sharper as the temperature
is lowered. On the other hand, for �ω 	 T the scaling is dominated by
ω, and the scaling function is independent of T , and, hence, the scaling
variable reduce to (�ω/T )−1/zνδ/T 1/zν ∼ δ/ω1/zν .
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10.2 Bosonization

There are many ways of the introduction of bosonization of Fermi fields.
D. C. Mattis and E. H. Lieb were pioneers of this way of consideration
of one-dimensional condensed matter models. Usually theorists distinguish
between the Abelian bosonization and non-Abelian bosonization for electron
systems. The goal of the diagonalization of the Hamiltonian of interact-
ing electron system with the help of bosonization is to find relevant (and
simple) quantum numbers, which (approximately) parametrize low-energy
eigenvalues and eigenfunctions of the stationary Schrödinger equation.

The bosonization is related to the presentation of the Hamiltonian of
an interacting system as a quadratic form of current operators (e.g., in the
Sugawara construction). It is connected to the important example of the
application of the conformal field theory, the Gaussian model, whose action
is the action of the bosonic field Φ(z, z̄):

A =
g

2π

∫
dzdz̄

(
∂Φ
∂z

)(
∂Φ
∂z̄

)
, (10.15)

where g is the coupling constant. This model is critical and conformal
invariant. The solution of equations of motion can be given in terms of
right- and left-moving fields (holomorphic and antiholomorphic parts) as
Φ(z, z̄) = [φ(z) + φ̄(z̄)]/2

√
g. The correlation functions are

〈φ(z)φ(w)〉 = − ln(z − w) , (10.16)

and similar for the antiholomorphic part. One can see that the fields φ(z)
are not conformal fields, but their derivatives are. To show how this comes
about we can construct the energy-momentum tensor

T (z) = −1
2

: [∂φ(z)/∂z)]2 :

≡ −1
2

lim
a→0

(
∂φ[z + (a/2)]

∂z

∂φ[z − (a/2)]
∂z

− 1/d2

)
. (10.17)

From the operator product expansion of φ with T one gets

T (z)
∂φ(w)

∂w
=

1
(z − w)2

∂φ(w)
∂w

+
1

z − w

∂2φ(w)
∂w2

+ · · · , (10.18)

from which the reader can see that (∂φ(w)/∂w) is a primary field with the
conformal weight (1, 0). It is possible to identify these derivatives with some
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currents J(w) = i(∂φ(w)/∂w). The current-current correlation function is

〈J(z)J(w)〉 =
1

(z − w)2
. (10.19)

Then one can write the Laurent series for currents

J(z) =
∞∑

n=−∞

Jn

zn+1
, Jn =

1
2πi

∮
dzznJ(z) . (10.20)

For periodic boundary conditions Jn are the Fourier components of the
current. They satisfy the algebra

[Jn, Jm] = nδn,−m , (10.21)

which is known as U(1) Kac–Moody algebra (the reader can see that it
is bosonic up to a factor n, which can be absorbed into the re-definition
of Jn). This algebra in mathematics is often called an affine Lie algebra.
After transforming back one obtains

[J(x1), J(x2)] = −i
∂

∂x1
δ(1)(x1 − x2) , (10.22)

where the right hand side is known as a Schwinger term, or a chiral U(1)
anomaly. The modes with n < 0 can be considered as “creation operators”
and those with n > 0 are “annihilation operators”. U(1) Kac–Moody alge-
bra is the special case of some more general Lie algebra of the generators
Ja

n

[Ja
n , Jb

m] = ifabcJc
n+m + knδa,bδn,−m , (10.23)

where fabc are structure constants of the algebra and integer k is the level of
Kac–Moody algebra. The central charge of the associated Virasoro algebra
is related to k as

c =
3k

k + 2
. (10.24)

The reader can see that for U(1) Kac–Moody algebra the central charge is
c = 1.

The Kac–Moody generators are useful in classifying excitations of the
Gaussian model. The Hamiltonian (sometimes called as Sugawara Hamil-
tonian) is related to the energy-momentum tensor

T (x) =
1
2

: J(x)J(x) : +
π2

6L2
(10.25)
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via

HS =
1
2π

∫
dx[T (x) + T̄ (x)] . (10.26)

It is obvious from the first formula that c = 1. The generators of the
Virasoro algebra are given by

2π

L
Lm =

1
2π

∫ ∞

0

dxei2πmx/LT (x)

=
π

L

∞∑
n=−∞

: JnJm−n : −δm,0
cπ

12L
, (10.27)

where c = 1. Then it is possible to derive the commutation relation between
Lm and Jn as

[Lm, Jn] = −nJn+m . (10.28)

It is important to notice that

[HS , Jm] = −2π

L
mJm , (10.29)

which reveals that the transform of the current operator, Jm, acts as a
“creation operator” for m < 0 and as a “annihilation” one for m > 0. The
spectrum is harmonic because of the linearized dispersion law. This is why
the operators Jm can be used to generate the conformal tower of descendant
states from the highest weight state.

For complicated correlated electron chains the goal of the bosonization
procedure is to present, e.g., in the framework of the Sugawara construction,
the Hamiltonian of electrons as a quadratic form of current operators, which
satisfy Kac–Moody algebra. Then conformal properties of the latter permit
to know the structure of low-energy excitations.

To characterize electron states we can start with the introduction of the
number operators

N̂σ =
∑

k

: a†
k,σak,σ :≡

∑
k

[a†
k,σak,σ − 0〈0|a†

k,σak,σ|0〉0] . (10.30)

These operators count the number of electrons with spin σ with respect to
the free electron reference ground state |0〉0 of the Hamiltonian

H0 =
∑
k,σ

vF k : a†
k,σak,σ : , (10.31)
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where k ≡ P − PF measures the deviation from the Fermi momentum
PF . The dispersion has been linearized about the Fermi energy EF as
ε(P ) ≈ vF k + EF . Columns denote the normal ordering with respect to
the free Dirac sea of the vacuum state |0〉0, which is defined as

ak>0,σ|0〉0 = a†
k≤0,σ|0〉0 = 0 . (10.32)

The operators a†
k,σ and ak,σ satisfy standard anticommutation relations.

The values of k are quantized as k = (2π/L)[nk − P0/2], where nk are
integers. P0 = 0, 1, since in the ground state the chemical potential (and,
hence, PF ) has to either coincide with a degenerate level for P0 = 0, or
lie between two of them, P0 = 1. In both cases the energy level spacing is
2πvF /L, cf. the previous chapter. All sums over k have to be unbounded,
since we want to use unbounded fermion momentum spectrum. For this
purpose one can take the effective bandwidth D (do not confuse with the
number of particles transfered from one Fermi point to the other one) to be
infinite, but then introduce an (ultraviolet) cut-off. It is possible to denote
the (non-unique) N -electron ground state as

|N〉 = |N↑〉 ⊗ |N↓〉 (10.33)

in such a way that N̂σ|N〉 = Nσ|N〉.
Now we can introduce one-dimensional chiral Fermi fields as

ψσ(x) =

√
2π

L

∑
nk

eikxak,σ , (10.34)

where x belongs to the interval −L/2 and L/2. The reader can check that
these fields satisfy standard anticommutation relations

{ψσ(x), ψ†
σ′ (x′)} = 2πδ(x − x′)δσ,σ′ . (10.35)

P0 = 0 pertains to periodic boundary conditions for ψσ(x), while P0 = 1
corresponds to antiperiodic ones. We can also define bosonic electron-hole
creation operators as

b†q,σ =
i

√
nq

∑
nk

a†
k+q,σak,σ (10.36)

where nq are positive integers (q = 2πnq/L > 0). These operators cre-
ate “density excitations” (or currents, see below) with the momentum q
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for electrons with spin σ. The reader can check that they satisfy Bose
commutation relations

[bq,σ, b†q′,σ′ ] = δq,q′δσ,σ′ . (10.37)

The important property of these Bose operators is that they commute with
N̂σ:

[bq,σ, N̂σ′ ] = 0 . (10.38)

We can choose from all states |N〉 a unique state |N〉0, called the N -
particle ground state because all other states of |N〉 have higher energies.
This state contains no holes, i.e.,

bq,σ|N〉0 = 0 , (10.39)

valid for any positive q and σ. Observe that |N〉0 has lower energy than
the vacuum state |0〉0. For P0 = 0 the states a0,σ|0〉0 are degenerate with
|0〉0. Any N -electron state can be written as an action of some function of
b†q,σ onto |N〉0.

Now we can introduce bosonic fields

φσ(x) = −
∑
q>0

1
√

nq

(
e−iqxbq,σ + eiqxb†q,σ

)
e−aq/2 , (10.40)

where a ∼ (PF )−1 is a short-distance (ultraviolet) cut-off, introduced to
avoid possible divergencies, if the bandwidth D goes to infinity. The fields
(∂φσ(x)/∂x) are canonically conjugated to φσ(x), because of the following
commutation relations:[

φσ(x),
∂φσ′(x′)

∂x′

]
= 2πiδσ,σ′

(
a

π[a2 + (x − x′)2]
− 1

L

)
. (10.41)

To complete the classification of states one needs to introduce the Klein
factors (sometimes called ladder operators), defined as

U †
σf(b†)|N〉0 = f(b†)a†

Nσ+1,σ|N〉0 ,

Uσf(b†)|N〉0 = f(b†)aNσ ,σ|N〉0 ,
(10.42)

so that Uσ (U †
σ) commutes with any function of b† and removes (adds) an

electron with spin σ from (to) the top-most filled level of |N〉0 in a way
that it decreases (increases) the electron number with spin σ by one. They



April 6, 2005 10:46 Finite Size Effects in Correlated Electron Models: Exact Results mybook

344 Finite Size Effects in Correlated Electron Models: Exact Results

satisfy the following Clifford algebra:

UσU †
σ = U †

σUσ = 1 ,

{Uσ, Uσ′} = 0 , {U †
σ, U †

σ′} = 0 , σ �= σ′ ,

{Uσ, U †
σ′} = 2δσ,σ′ , [Uσ, N̂σ′ ] = δσ,σ′Uσ ,

[Uσ, b†q,σ′ ] = [Uσ, bq,σ′ ] = 0 .

(10.43)

One can explicitly express Klein factors as a function of fermionic and
bosonic fields, introduced above, as

Uσ =
√

aψσ(0)eiφσ(0) . (10.44)

Using the above operators one can bosonize fermion fields as

ψσ(x) =
1√
a
Uσe−i(2N̂σ−P0)πx/Le−iφσ(x) ,

ρσ(x) =: ψ†
σ(x)ψσ(x) :=

∂φσ(x)
∂x

+
2πN̂σ

L
,

(10.45)

so that the Hamiltonian of free electrons with the linearized about Fermi
points dispersion law can be written as

H0 =
∑

σ

πvF

L
N̂σ(N̂σ + 1 − P0) +

∑
q>0,σ

vF qb†q,σbq,σ

=
∑

σ

πvF

L
N̂σ(N̂σ + 1 − P0) +

∫ L/2

−L/2

dx

2π

vF

2
:
(

∂φσ(x)
∂x

)2

: . (10.46)

Using the bosonization rules it is easy to express correlation function of
Fermi fields as a function of those for Bose fields

〈T ψσ(z)ψ†
σ′(0)〉 =

δσ,σ′sign(τ)
a

e〈T φσ(z)φσ(0)−φσ(0)φσ(0)〉 , (10.47)

where T defines the time-ordering operator for the Euclidean time τ and we
used the property of any function of Bose operators B̂ =

∑
q>0(λdf

†
q +λ̃qbq),

governed by the free bosonic Hamiltonian with the linear dispersion law

〈exp(λB̂)〉 = exp(〈B̂2〉λ2/2) . (10.48)
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It is possible to define the physical Fermi field as

Ψph,σ(x) =

√
2π

L

∞∑
P=−∞

eiPxaP,σ

=

√
2π

L

∞∑
k=−P F

(
e−i(P F +k)xa−k−P F ,σ + ei(P F +k)xaP F +k,σ

)
,

(10.49)

where P > 0 pertain to right-moving electrons and P < 0 correspond to
left-movers. They can be approximately viewed as two separate “species”
as ak,L/R,σ = a∓(k+P F ),σ, with the dispersion law εk,L/R = ε[∓(k + PF )].
Then one can factor out rapidly fluctuating phase factors exp(∓iPF x)
(which is, naturally, valid only for large enough PF ) and express Ψph,σ(x)
in terms of slowly varying (on the scale of (PF )−1) fields ψ̃L/R,σ as

Ψph,σ(x) ≈ e−iP F xψ̃L,σ(x) + eiP F xψ̃R,σ(x) ,

ψ̃L/R,σ(x) =

√
2π

L

∞∑
k=−∞

e∓ikxak,L/R,σ .
(10.50)

It means that we extended the single-particle Hilbert space by introducing
additional states at the bottom of the Fermi sea, below ε(P = 0), e.g.,
εk,L/R = ε(0)+vF (k+PF ) for k < −PF . Usually EF 	 1 these additional
states need very high energies for their excitation, and do not change the
low-energy physics close to Fermi points. Then one can define left- and
right-moving boson fields, and operators ρ̃L/R,σ(x) as above.

The simple model Hamiltonian of interacting spinless fermions can then
be presented as

H = H0 + Hint = ivF

∫ L/2

−L/2

dx

2π
:
[
ψ†

L(x)
∂

∂x
ψL(x)

−ψ†
R(x)

∂

∂x
ψR(x)

]
: +

∫ L/2

−L/2

dx

2π
:
[
g2ρ̃L(x)ρ̃R(x)

+
g4

2
(ρ̃2

L(x) + ρ̃2
R(x))

]
:=

v

4

∫ L/2

−L/2

dx

2π
:
[
1
g
(ρ̃L(x) + ρ̃R(x))2

+ g(ρ̃L(x) − ρ̃R(x))2
]

: , (10.51)
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where

v =
√

(vF + g4)2 − g2
2 , g =

√
vF + g4 − g2

vF + g4 + g2
. (10.52)

Interactions between electrons are described by such a Hamiltonian that
are often called forward scattering interactions.

This Hamiltonian can be easily diagonalized by using the bosonization
and Bogolyubov transformation

H =
πv

L

(
1 + g2

g

∑
L,R

[
N̂2

L/R

2
+
∑

q

nqb
†
q,L/Rbq,L/R

]

+
1 − g2

g

[
N̂LN̂R −

∑
q

nq(bq,Lbq,R + b†q,Rb†q,L)

])

=
2πv

L

∑
±

(
g±N̂ 2

± +
∑

q

nqB
†
q,±Bq,±

)

= v
∑
±

[
2π

L
g±N̂2

± +
1
2

∫ L/2

−L/2

dx

2π
:
(

∂Φ±(x)
∂x

)2

:

]
, (10.53)

where N̂± is number operator in the new basis (after the Bogolyubov trans-
formation) and

N̂± =
N̂L ∓ N̂R

2
,

Φ±(x) = −
∑
q>0

e−aq/2

√
nq

[
e−iqxBq,± + eiqxB†

q,±

]
,

Bq,±, =
1√
8g

[(1 + g)(bq,L ∓ bq,R) ± (1 − g)(b†q,L ∓ b†q,R)] .

(10.54)

Equivalently, one can define currents

JL/R,k =
∫ L/2

−L/2

dx

2π
: ψ̃L/R(x)†ψ̃L/R(x) : . (10.55)
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Then the Hamiltonian of, e.g., free spinless fermions can be written as
the quadratic form of the normal ordered operators for chiral (Noether)
currents

H0 = H0,L + H0,R =
vF

2

∫ L/2

−L/2

dx

2π

× (: JL(x)JL(x) : + : JR(−x)JR(−x) :) =
2πvF

L

×
(

1
2
(JR,0JR,0 + JL,0JL,0) −

1
12

+
∞∑

k=1

(JR,−kJR,k + JL,−kJL,k)
)

.

(10.56)

The last line implies that one has two (non-interacting) theories with central
charges being equal to 1. The reader can compare this result with the one
for the Sugawara construction of the Gaussian model. It turns out that the
expression for the Hamiltonian of free fermions seems quartic in fermion
operators, since JR/L are quadratic in fermion operators. However, there
is no contradiction with the definition of H0, because we used the normal
ordering operation. Using similar calculations as for the Gaussian model
we can show that

[H0,L/R, JL/R,m] = −2πvF

L
mJL/R,m . (10.57)

Since we know the commutation relations for JL/R, it is an easy task to
calculate the spectrum of the Sugawara construction of the Hamiltonian,
in which zero modes define the spectra of primary states, and the ones
with k ≥ 1 pertain to descendants. These descendant states are particle-
hole excitations, while different zero modes determine different Kac–Moody
conformal towers. The eigenvalues of JL/R,0 are often called the charge of
conformal tower. On the other hand, they measure the total number of
fermions. So, the low-energy excitations of the Hamiltonian of free spinless
fermions are representations of the U(1) Kac–Moody algebra, related to
the Gaussian (free bosonic) field theory. The energy spectrum of the free
spinless fermion Hamiltonian in the Sugawara form after bosonization can
be written as

E =
2πvF

L

(
− 1

12
+

Q2
R + Q2

L

2
+ mR + mL

)
, (10.58)

where QL/R are non-negative integers, related zero modes, and mL/R are
non-negative integers, related to particle-hole excitations (descendants).
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On the other hand, the reader saw above that the inclusion of forward scat-
tering interactions renormalizes velocities of low-lying excitations (vF → v)
and introduces the parameter g. The latter one is related, as the reader
remembers from the previous chapter, to the conformal weights (or scal-
ing dimensions and spins) of primary operators. From this viewpoint, the
Sugawara construction of the bosonized form of the low-energy Hamilto-
nian of spinless fermions with only forward scattering interactions gives the
easy way to construct asymptotics of correlation function exponents via the
results of the conformal field theory.

Let us turn now to the consideration of electrons (fermions with spin
σ). The Abelian bosonization uses the fact that the Hamiltonian of elec-
trons with spins is often invariant under U(1)σ=↑×U(1)σ=↓ symmetry, i.e.,
the conservation of the total charge and the z-projection of the total spin
moment. This symmetry implies

ψ̃L/R,σ → exp(iασ)ψ̃L/R,σ . (10.59)

Using this fact we can write bq,c/s = (bq,↑± bq,↓)/
√

2 (and similar for bq,c/s,
which imply

φq,c/s = (φq,↑ ± φq,↓)/
√

2 ,

N̂q,c/s = (N̂q,↑ ± N̂q,↓)/
√

2 .
(10.60)

For interactions conserving the total charge and the z-projection of the
total spin moment due to the linearization of the dispersion law low-lying
excitations, which describe dynamics of charge and spin degrees of free-
dom, the latter are separated from each other (spin-charge separation).
Then the Hamiltonian in the bosonized form can be written as a sum of
mutually commuting parts, one of which describes the charge low-energy
dynamics, and the other one describes the spin dynamics of the correlated
electron chain. In fact, for only forward scattering interactions one can use
e.g., above formulas for spinless fermions for charge and spin part of the
Hamiltonian. Then, for such interactions, the Hamiltonian of interacting
electron model is diagonalized using Abelian bosonization.

It turns out, however, that there exist electron-electron interactions like

Hbac = g1

∑
σ

∑
k1,k2,q

a†
k1,R,σak1−q,L,σa†

k2,L,−σa†
k2+q,R,−σ , (10.61)

which are usually called backward scattering. They can be expressed in the
bosonization language as
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Hbac ∝ g1

∑
σ

∫ L/2

−L/2

dx

2π
cos(

√
8φs) , (10.62)

where φs is the linear combination of φ±,σ. The most important difference
of that expression from forward scattering interactions is that creation and
annyhilation fermion operators related to right- and left-movers cannot be
written in the form of pair products of ρ̃L/R. Such a Hamiltonian cannot
be simply diagonalized as for the forward scattering. Backward scattering
interactions usually produce gaps for low-lying excitations (i.e., they are
relevant perturbations in the renormalization group sense).

The non-Abelian bosonization uses the fact that the Hamiltonian of elec-
trons with spins is, in fact, invariant under larger group U(1)×SU(2), which
has non-Abelian component. The aim of the non-Abelian bosonization is
to provide bosonization scheme in which SU(2) symmetry is preserved at
all steps, unlike the Abelian one. The U(1) symmetry implies

ψ̃L/R,σ → exp(iα)ψ̃L/R,σ (10.63)

(α↑ = α↓ = α). The U(1) Noether current, which measures the total
electron density, is

JL/R,k =
∑

σ

∫ L/2

−L/2

dx

2π
: ψ̃L/R,σ(x)†ψ̃L/R,σ(x) : . (10.64)

On the other hand, the non-Abelian SU(2)-symmetry implies

ψ̃L/R,σ → Uσ′
σ ψ̃L/R,σ′ ,

ψ̃†
L/R,σ → (U †)σ′

σ ψ̃†
L/R,σ′ ,

(10.65)

where Uσ′
σ is SU(2)-symmetric matrix. The SU(2) Noether current is


JL/R,k =
∑
σ,σ′

∫ L/2

−L/2

dx

2π
: ψ̃L/R,σ(x)†
σσ,σ′ ψ̃L/R,σ′(x) : , (10.66)

where the components of 
σ are Pauli matrices.
The task of the non-Abelian bosonization is to find a Sugawara construc-

tion for the Hamiltonian, quadratic in the Abelian U(1) currents J (charge
densities) and non-Abelian SU(2) currents 
J (spin densities). The reader
can check, that one cannot write holomorphic and antiholomorphic parts
of the Hamiltonian (as it was easily done for spinless fermions) only as the
quadratic form of Abelian U(1) charge currents. However, it remedied by
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taking into account the non-Abelian SU(2) spin currents. After some simple
algebra we can write the Sugawara construction for free spinful electrons

H0 = H0,L,c + H0,R,c + H0,L,s + H0,R,s

=
vF

4

∫ L/2

−L/2

dx

2π

(
: JL(x)JL(x) : + : JR(−x)JR(−x) :

+ : 
JL(x) 
JL(x) : + : 
JR(−x) 
JR(−x) :
)

. (10.67)

All four parts of the Hamiltonian are mutually commuting (the commuta-
tion of spin and charge parts of the Hamiltonian follows from the fact that
[JL,R, 
JL/R] = 0). One can define the holomorphic part for the energy-
momentum tensor for charge and spin as

Tc(x) =
1
4

: JR(x)JR(x) : +
π2

6L2
,

Ts(x) =
1
3

: 
JR(x) 
JR(x) : +
π2

6L2
,

(10.68)

and similar for the antiholomorphic one. Using their Fourier transforms
one can get for right-movers (holomorphic part)

H0,R,c =
2πvF

L

(
Lm=0,c −

1
24

)

=
2πvF

L

[(
1
4
JR,0JR,0 −

1
24

)
+

1
2

∞∑
m=1

JR,−mJR,m

]
, (10.69)

and

H0,R,s =
2πvF

L

(
Lm=0,c −

1
24

)

=
2πvF

L

[(
1
3


JR,0

JR,0 −

1
24

)
+

2
3

∞∑
m=1


JR,−m

JR,m

]
, (10.70)

and similar for antiholomorphic part (left-movers). The commutation rela-
tions for Fourier transforms for charge U(1) operators are

[JL/R,n, JL/R,m] = 2nδn,−m (10.71)

(it is the U(1) Kac–Moody algebra), with

[Lc,n, JR,m] = −mJR,n+m (10.72)
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(and similar for antiholomorphic part). The last formula implies again
that charge-carrying Fourier transforms of current operators JL/R,m act as
raising and lowering (“creation” for m < 0 and “annihilation” for m > 0)
operators of the energy of the charge part of the Hamiltonian. Since we
know the commutation relations for charge currents, it is an easy task to
write down the spectrum of the Sugawara construction of the charge part of
the Hamiltonian, in which zero modes define the spectra of primary charge
states, and the ones with m ≥ 1 pertain to descendants. These descendant
states are charge particle-hole excitations, while different charge zero modes
determine different charge Kac–Moody conformal towers.

For spin SU(2) operators the commutation relations for Fourier trans-
forms are (α, β, γ = x, y, z)

[JL/R,n,α, JL/R,m,β] = iεαβγJL/R,n+m,γ +
1
2
nδα,βδn,−m (10.73)

(it is the SU(2) Kac–Moody algebra), notice that

[JL/R,0,α, JL/R,0,β] = iεαβγJL/R,0,γ , (10.74)

i.e., they form the standard SU(2) spin algebra, and

[Ls,n, JR,m,α] = −mJR,n+m,α (10.75)

(and similar for antiholomorphic part). Spin-carrying Fourier transforms of
current operators JL/R,m,α act as “creation” for m < 0 and “annihilation”
for m > 0 operators of the energy of the spin part of the Hamiltonian.
Again, since we know the commutation relations for spin currents, it is
an easy task to write down the spectrum of the Sugawara construction of
the spin part of the Hamiltonian, in which zero modes define the spectra
of primary spin states, and the ones with m ≥ 1 pertain to descendants.
These descendant states are spin particle-hole excitations, while different
spin zero modes determine different spin Kac–Moody conformal towers.

Summarizing, the energy spectrum of the free electron Hamiltonian in
the Sugawara form after non-Abelian bosonization can be written as

E =
2πvF

L

(
−1

6
+

Q2
R + Q2

L

4
+

jR(jR + 1) + jL(jL + 1)
3

+ mR,c + mL,c + mR,s + mL,s

)
, (10.76)

where QL/R and jL/R are non-negative integers, related to charge and spin
zero modes, respectively, and mL/R,c,s are non-negative integers, related
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to particle-hole charge and spin excitations. (Notice that for free elec-
trons the only allowed combination of U(1) and SU(2) primary states is
QL/R = 2jL/R (mod 2) with jL/R = 0, 1

2 .) Inclusion of forward scattering
interactions renormalizes velocities of low-lying charge and spin excitations,
vF → vc,s, and introduces two parameters of interactions gs,c (the SU(2)
symmetry fixes the value of gs). The latter are related to the conformal
weights (or scaling dimensions and spins) of primary charge and spin op-
erators. Again, the Sugawara construction of the bosonized form of the
low-energy Hamiltonian of spinful electrons with only forward scattering
interactions in the non-Abelian scheme permits to easily construct asymp-
totics of correlation function exponents via the results of the conformal field
theory.

In fact, by using the bosonization procedure we (approximately) mapped
the Hamiltonian of a one-dimensional correlated electron system to the
Hamiltonian of a free Bose gas with the linear dispersion law, which de-
scribes particle-hole excitations, plus zero modes, which describe changes
of the number of electrons about the right and left Fermi points (or, in the
other basis, which is often used, the change of the total number of electrons
close to Fermi points and transfers from the right to the left Fermi point).
This is very similar to the answer, obtained in the previous chapter, where
we used exact results. The difference is because in the bosonization ap-
proximation spin and charge zero modes yield independent contributions
to the low energy states, i.e., for the bosonized picture there is a spin-charge
separation. On the other hand, as the reader remembers, there is no ex-
act spin-charge separation in the exact Bethe ansatz description, because
of non-diagonal components of dressed charge matrices. Also, it turns out
that the bosonization deals with weak enough interactions, comparing to
the Fermi velocities of free electrons.

The class of Hamiltonians, similar to what we studied above, i.e., with
only forward scattering, was named by F. D. M. Haldane as a Luttinger liq-
uid (or Tomonaga–Luttinger liquid). Physicists believe that the low-energy
physics of metallic phases of one-dimensional correlated electron systems
is often well described by the Luttinger liquid picture. The disadvantage
of this (very universal for some class of models) approach is that one ever
starts the filling of Dirac seas from the situation of the free electron gas.
Hence, this description seems to be good for models, in which low-energy
excitations have the same structure as free electrons, i.e., unbound elec-
tron excitations. It is impossible to derive the bosonized Hamiltonian for
systems, in which low-energy excitations have a different structure, e.g.,
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for pairs, though one can introduce the Luttinger liquid Hamiltonian for
them phenomenologically, and, then, apply the powerful machinery of the
bosonization. Also, it is necessary to keep in mind that the bosonization
picture is limited for weak electron-electron interactions.

Summarizing, in this chapter we briefly presented several approximate
theoretical methods, used to describe non-integrable quantum many-body
models: the scaling approach and the bosonization. These methods can
serve as complementary ones to the exact methods, studied in the previous
chapters of this book.

The reader can find the description of the renormalization group ap-
proach and scaling in, e.g., [Ma (1976); Cardy (1996); Kadanoff (2000);
Sachdev (1999)]. The description of quantum phase transitions can be
found in [Sondhi, Girvin, Carini and Shahar (1997); Sachdev (1999)]. Cal-
culations of logarithmic corrections for quantum chains due to marginal
operators are given in [Affleck, Gepner, Schulz and Ziman (1989)]. The
bosonization approach for correlated electron systems was pioneered in
[Mattis and Lieb (1965)]; see also [Tomonaga (1950); Luttinger (1963)]. It
was first used for calculations of correlation functions of correlated quantum
chains in [Luther and Peschel (1974)]. Approximate description of low-
dimensional correlated electron models was reviewed in [Sólyom (1979)].
The conception of the Luttinger (Tomonaga–Luttinger) liquid was intro-
duced by Haldane in [Haldane (1981)]. The reader can find the mod-
ern reviews of the bosonization procedure, e.g., in the well-known book
[Gogolin, Nersesyan and Tsvelik (1998)] and the review article [van Delft
and Schoeller (1998)].
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Göhmann, F. (2001). Algebraic Bethe ansatz for gl(1|2) generalized model and
Lieb-Wu equations, Nucl. Phys. B 620, pp. 501–518.

Gogolin, A. O., Nersesyan, A. A. and Tsvelik, A. M. (1998). Bosonization and
Strongly Correlated Systems, Cambridge, Cambridge University Press.

Griffiths, R. B. (1965). Thermodynamic inequality near the critical point for
ferromagnets and fluids, Phys. Rev. Lett. 14, pp. 623–624.

Griffiths, R. B. (1969). Nonanalytic behavior above the critical point in a random
Ising ferromagnet, Phys. Rev. Lett. 23, pp. 17–19.

Gutzwiller, M. C. (1963). Effect of correlation on thr ferromagnetism of transition
metals, Phys. Rev. Lett. 10, pp. 159–162.

Ha, Z. N. C. (1996). Quantum Many-Body Systems in One-Dimensional Solvable
Models, Singapore, World Scientific.

Haldane, F. D. M. (1981). ‘Luttinger-liquid theory’ of one-dimensional quantum
fluids: I. Properties of the Luttinger model and their extension to the gen-
eral 1D interacting spinless Fermi gas, J. Phys. C: Solid. State Phys. 14,
pp. 2585–2609.

Haldane, F. D. M. (1983). Non-linear field theory of large-spin Heisenberg anti-
ferromagnets — semi-classically quantized solitons of the one-dimensional
easy-axis Neel state, Phys. Rev. Lett. 50, pp. 1153–1156.



April 6, 2005 10:46 Finite Size Effects in Correlated Electron Models: Exact Results mybook

358 Finite Size Effects in Correlated Electron Models: Exact Results

Haldane, F. D. M. (1991). “Fractional statistics” in arbitrary dimensions: A
generalization of the Pauli principle, Phys. Rev. Lett. 67, pp. 937–940.

Hohenberg, P. C. (1967). Existence of long-range order in one and two dimensions,
Phys. Rev. 158, pp. 383–386.

Hubbard, J. (1963). Electron correlations in narrow energy band, Proc. Roy. Soc.
A 276, pp. 238–257.
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