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Preface

This is a book describing electronic structure theory and application within
the framework of a methodology implemented in the computer code RSPt. In
1986, when the code that was to become RSPt was developed enough to be
useful, it was one of the first full-potential, all-electron, relativistic implemen-
tations of DFT (density functional theory). While RSPt was documented par-
asitically in many publications describing the results of its application, it was
many years before a publication explicitly describing aspects of the method
appeared. In the meantime, several excellent all-electron, full-potential meth-
ods had been developed, published, and become available. So why a book
about RSPt now?

The code that became RSPt was initially developed as a personal research
tool, rather than a collaborative effort or as a product. As such it required
some knowledge of its inner workings to use, and as it was meant to be max-
imally flexible, the code required experience to be used effectively. These at-
tributes inhibited, but did not prevent, the spread of RSPt as a research tool.
While applicable across the periodic table, the method is particularly useful
in describing a wide range of materials, including heavier elements and com-
pounds, and its flexibility provides targeted accuracy and a convenient and
accurate framework for implementing and assessing the effect of new models.
A fair number of informal developers arose in the course of doctoral, post-
doctoral, and professional research, principally at Uppsala University and at
many other institutions as well. As a consequence, a number of innovative
extensions to the code were developed, many of which were never integrated
in the “official” version of RSPt and were consequently lost or shelved, often
to be re-invented at a later date.

This situation started to change in 2006 when a group of researchers with
a stake in the methodology met to establish a protocol for continuous develop-
ment of a single RSPt thread. We established a code repository with develop-
ing branches merged periodically and a web site to facilitate communication,
disseminate stable versions of the code, and provide a forum for user support
and discussion. This group meets yearly to evolve the organization and suggest
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ongoing and future efforts. The results of this organization have been grat-
ifying. Computationally, data structures and memory allocation have been
substantially reworked, eliminating non-standard and annoying remnants of
Fortran 77 and enhancing modularity. RSPt is now k-point-, band-, and FFT-
parallel. In methodology, physics modules such as DMFT and SIC are now
present in the stable version, and forces are finally available without restric-
tion.

No one is explicitly paid to do this development. At best, code and method
development support particular research directions. The development contin-
ues, however, largely because the developers believe that expanding the capa-
bility and efficiency of RSPt will benefit their research, and that making RSPt
more accessible will enhance the research of others. This book, encompassing
electronic structure theory, technical detail, and representative application, is
another step in this process.

Los Alamos John Wills
Uppsala Olle Eriksson
August 2010
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Part I

Formalisms





1

Introductory Information

Abstract In this introductory chapter a short historical note on the history of
linear muffin-tin orbital methods is given, together with general background infor-
mation and units used throughout the book. The main objectives with the book are
presented as well as information about web-based information, which easier enables
using the full-potential linear muffin-tin orbitals method.

1.1 Objectives and What You Will Learn
from Reading This Book

The purpose of this book is to give a full account of an implementation of
a method for calculating the electronic structure of materials, using linear
muffin-tin orbitals as basis functions. The method is referred to as RSPt (rel-
ativistic spin-polarized test), where after some 20 years of use and develop-
ment the letter “t” is a mystery. The invention of linear muffin-tin orbitals
is due to Andersen [11] and the first step toward what now is RSPt was
taken by Wills and Cooper [258]. From reading this book you will be famil-
iar with electronic structure theory in general, including density functional
theory [116, 140], a theory for which Walter Kohn shared the Nobel Prize
in chemistry 1998. You will also be familiar with the use of linear muffin-tin
orbitals as basis functions for calculations of electronic structures of solids.
This book contains in addition to a technical description of linear muffin-
tin orbitals and their implementation in RSPt, several examples of the use
of RSPt in the field of phase stability, magnetism, optics, and excited state
properties. Simple instructions on how to download the source code from the
RSPt web site (http://www.rspt.net/), how to compile it and perform test
runs of the code, and a manual for input and output are also provided here,
with the hope that from reading this book you will be comfortable in setting
up the code, run it on a single- or multi-processor computer architecture, as-
sess the quality of the calculations, and to analyze the calculated results. By
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the time you have read this book, you will find that a database with calcu-
lated electronic structures using the RSPt method is available at the web site
http://gurka.fysik.uu.se/esp/, where tens of thousands of results from already
made electronic structure calculations can be found and extracted.

In order to successfully absorb the information provided in this book,
it is recommended that you have studied elementary textbooks in solid state
physics, e.g., the book of Kittel [134], Marder [163], or by Ashcroft and Mermin
[22]. It is also recommended to study a book on molecular orbital theory, e.g.,
the book by Atkins [24].

1.2 On Units

Throughout this book we make use of atomic Rydberg units, in which � = 1,
e2 = 2, and the electron mass m = 1/2. The unit of length is the Bohr
radius a0 = �

2/me2 = 0.529178 Å, the unit of energy is the Rydberg, Ry =
e2/2a0 = 13.6058 eV, and the rest energy of the electron mc2 = e2/a0α

2 where
α ∼ 1/137 is the fine-structure constant.

1.3 Obtaining RSPt and the RSPt Web Site

The source code, RSPt, can be downloaded from http://www.rspt.net/. Here
one finds also a manual for the input and the output of the code, information
on how to install the source code, as well as a user’s forum, where one can
obtain answers for most technical questions concerning installing and running
RSPt. A full account of the installation and running of RSPt is given in
Chap. 9. The RSPt source code is freely available.

1.4 A Short Comment on the History of Linear
Muffin-Tin Orbitals and RSPt

The RSPt method is an all-electron, full-potential (FP) implementation of
density functional theory using linear muffin-tin orbitals (LMTOs) as basis
functions, and the technique is in general often referred to as an FP-LMTO
method. By “all-electron” it is meant that all electrons in the solid are con-
sidered in the calculation of electron density and total energy (as opposed, for
instance, to a pseudo-potential method, where only the valence electrons are
considered). The term “full potential” implies that no approximation is made
to the shape of the electron density or the electronic potential (as opposed
to the popular atomic sphere approximation, ASA [11], where the crystal is
considered to be composed of space-filling atomic spheres, with a spherically
symmetric potential inside each sphere).
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The development of linear muffin-tin orbitals is due to Andersen, as is the
use of linear augmented plane waves [11]. The LMTO basis set can be ob-
tained from the older Korringa–Kohn–Rostocker (KKR) method [139, 142],
where the main difference is the linearization of the energy-dependent basis
functions. We will describe this technical difference between the two methods
in Chaps. 5 and 6. The use of linear muffin-tin orbitals is by now well docu-
mented, and since the original suggestion of their usefulness some 4,000 appli-
cations have to this date been published (according to ISI web of knowledge).
By now, several implementations of electronic structure methods which are
based on LMTOs can be found, with varying degrees of sophistication. The
most efficient and computationally least demanding variant of the method
relies on the aforementioned atomic sphere approximation (ASA). An early
account of this method, which often is described as LMTO-ASA, is the orig-
inal reference of Andersen, but also in the book of Skriver [209] and in the
works of [38]. Extensions of the original ideas of LMTOs can be found in the
tight-binding version of the method [12], as well as the full-charge density im-
plementation of it [248]. The LMTO-ASA method has also been adopted in a
Green’s function formalism with the capability of treating disordered alloys in
the coherent-potential approximation (CPA) [1, 210, 254]. In addition to the
RSPt implementation of a full-potential LMTO method, there exists other
independent, separate full-potential implementations using linear muffin-tin
orbitals [199]. It should also be mentioned here that a derivative of the LMTO
method exists in the form of the exact muffin-tin orbitals method (EMTO)
[13, 247].

The main advantage with a full-potential implementation using linear
muffin-tin orbitals, as described here, is that the electronic structure prob-
lem is solved with very high accuracy, so that total energies and Hellman–
Feynman forces can be calculated with high precision, while maintaining a
limited basis set, which makes the analysis of the calculated results straight-
forward. As will be shown in Chap. 11, an accuracy of the total energy (or
rather difference in total energy for two different crystallographic geometries)
of order μRy is needed to calculate, e.g., the elastic constants of materials.
In Chap. 12 it is argued that an accuracy better than 0.1 μRy is needed to
calculate the difference in total energy for two different magnetic orientations
of regular magnetic transition metals like bcc Fe or hcp Co, and that the RSPt
method can reach such high accuracy.

This implementation in RSPt is the result of both planning and evolu-
tion. One motivation for developing the method that eventually became RSPt
was to be able to investigate the properties of f -electron elements and com-
pounds, testing the applicability of density functional theory (DFT), in the
local or nearly local approximation in describing the often unusual properties
of these materials. Thus RSPt was born as a “full-potential” electronic struc-
ture method, expressing the shape of the electron density and potential in full
generality. There were (and are) several other approximations to overcome,
such as the “frozen core” approximation, in which the core electron density
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is an external, constant input, and the lack of relativistic effects, particularly
the spin–orbit interaction. RSPt treats all electrons on the same footing (“all-
electron”) and includes relativistic effects such as the spin–orbit interaction
in the one-electron Hamiltonian as well as spin polarization.

Another motivation for developing a new method was to provide a basis,
based on first principles, for going beyond DFT, to include many-electron
effects (strong correlation). The first use of the method, in fact, was to
parametrize a Schrieffer–Wolff Hamiltonian to treat hybridization-mediated
magnetic interactions in cerium monopnictides [258]. The Schreiffer–Wolff
Hamiltonian, like most phenomenological Hamiltonians treating strong corre-
lation in solids, treats on-site correlation explicitly. As this was a motivating
factor for the development of a new method, therefore, the natural choice
was to use a site-centered basis. Thus RSPt uses linear muffin-tin orbitals
(LMTOs), described in this book, as the basis for one-electron wave func-
tions. Chapter 7 illustrates the usefulness of this choice. By choosing LMTO
bases, RSPt, like other FP-LMTO methods, builds on a minimal basis set,
emphasizing the applicability of the basis functions rather than basis set size,
simplicity, or completeness.

The FP-LMTO method, as expressed in RSPt, solves the DFT electronic
structure problem using a standard variational procedure based on the Kohn–
Sham procedure [140] with a local (e.g., LDA [140]) or nearly local (e.g., GGA
[179, 180]) approximation for the exchange and correlation functional as ap-
propriate for that procedure. An input potential, an estimate of the exact
potential (RSPt uses the one-electron potential as the variational parame-
ter), is used to construct a one-electron Hamiltonian, and the eigenvalues and
eigenvectors of this Hamiltonian are found within the span of a particular
basis (the FP-LMTO method uses non-orthogonal linear muffin-tin orbitals).
The Fermi energy is found by occupying the eigenstates in order, constrained
by the required number of electrons, and the electron density is constructed
by summing the occupied one-electron densities and used to construct a new
one-electron potential. This potential is combined with the input potential
to produce a new estimate of the exact potential, and the process continued
until the input and output potentials are identical within a specified toler-
ance. When this self-consistency is achieved, the total energy calculated from
self-consistent potential is the accurate ground state energy for the exchange-
correlation functional used.

There have been several “FP-LMTO” implementations [168, 198, 199, 225,
255, 258]. In what follows, we try to distinguish features common to many
implementations (labeled as “FPLMTO”) from our particular methodology
(labeled “RSPt”).
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Density Functional Theory
and the Kohn–Sham Equation

Abstract The basic formulas of density functional theory (DFT) are derived, to-
gether with a discussion about the form and accuracy of different approximations
to the energy functional used in DFT. Central concepts in DFT, like exchange and
correlation hole, exchange and correlation energy, and the Kohn–Sham equation are
presented. A short description about the historical development of density functional
theory as also given.

Calculations of material properties using density functional theory (DFT)
have become a very active field of research in recent years. The basic idea
of DFT is to use the electron charge density n(r) as the basic variable in-
stead of the many-electron wave function used in Hartree–Fock theory. This
seemingly small – but in reality very nontrivial – step has provided the frame-
work for fast and efficient calculations on highly complex materials, so it is
easy to understand that DFT is popular. Figure 2.1 illustrates how the field
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Fig. 2.1. Number of publications per year with topic “density functional” according
to Web of Science (www.isiknowledge.com)



8 2 Density Functional Theory and the Kohn–Sham Equation

has grown in recent years. The number of publications per year in the field
appears to have increased nearly exponentially during the last two decades.
Nowadays, DFT-based computational methods are must-have tools in mate-
rials research and quantum chemistry. In recognition of the enormous success
of DFT and computational schemes based on DFT, Walter Kohn and John A.
Pople received the 1998 Nobel Prize in chemistry.

Over the years, the original formulation of DFT and the Kohn–Sham
approach has been extended to cover a large number of situations, as, for
instance, degenerate ground states [138], spin-polarized systems [188, 250],
relativistic systems [162, 189], diamagnetic effects [246], finite temperature
[166], excited states [102, 182, 234], fractional occupation numbers [158, 183],
or multicomponent systems like electron–hole liquids [130, 196] and systems
where the Born–Oppenheimer approximation is not valid [44]. In this chap-
ter, we give a brief overview of the basic DFT machinery. More complete
treatments can be found, e.g., in [75, 164].

2.1 The Many-Particle Problem

The basic problem in condensed matter theory which DFT attempts to solve
is how to deal mathematically with the interactions of a large number of par-
ticles. If the system we are interested in is an atom or a small molecule, the
number of particles is still rather small, but if we are dealing with larger sys-
tems, describing the wave function of the system explicitly becomes infeasible.

Despite these seemingly insurmountable difficulties, let us anyway start by
writing the full Hamiltonian, in the non-relativistic case, of the many-body
problem for a metal or other material in terms of the individual coordinates of
each particle. The solid is a strongly coupled system consisting of two species –
electrons and nuclei – with Coulomb interaction both between themselves and
each other. The Hamiltonian (in SI units) will therefore consist of the following
terms:

H = −�
2

2

∑

I

∇2
I

MI
+

1
2

∑

I �=J

ZIZJe
2

4πε0|RI − RJ | −
�

2

2m

∑

i

∇2
i

+
1
2

∑

i�=j

e2

4πε0|ri − rj | −
∑

i,I

ZIe
2

4πε0|ri − RI | , (2.1)

where the indices i, j are used for electrons and I, J are for atomic nuclei,
MI denotes nuclear masses, m is the electron mass, RI and ri stand for nu-
clear and electron coordinates, respectively, and ZI denotes atomic number.
All attempts to find the eigenvectors and eigenvalues to this Hamiltonian in-
volve approximations. To begin with, the nuclei are far more massive than
the electrons and their velocities are therefore relatively low in comparison.
Therefore, one may assume that the time scale for electron relaxation is much
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shorter than the time scale of atom movement, so that the electron cloud can
be assumed to be completely relaxed at any moment even if the atoms are,
e.g., vibrating. This is called the Born–Oppenheimer (BO) approximation,
which permits us to separate the time scales of electron and atom motion and
thus to treat the terms in (2.1) dealing with the electron states separately
from the ones dealing with the atomic nuclei. Further, the BO approximation
allows us to recast the term describing the Coulomb interaction between the
atomic nuclei and the electron cloud – the last term in (2.1) – as an external
potential acting on the electrons. Although the Born–Oppenheimer approxi-
mation is very accurate in most cases, it does not always apply. One example
is graphene [128].

Thus, our many-particle problem has been reduced to a strongly inter-
acting “gas”1 or liquid of electrons moving in an external potential, and the
Hamiltonian acting on the electrons can now be written as

H = −1
2

∑

i

∇2
i +

1
2

∑

i�=j

e2

|ri − rj | −
∑

i,I

ZIe
2

|ri − RI | = T +W + Vext . (2.2)

The first term, T , is the kinetic energy operator of the electrons. The second,
W , is the Coulomb potential from electron–electron interaction, and the third
term, Vext, is the external potential, i.e., the Coulomb potential from the
interactions between the electrons and the nuclei. The corresponding total
energy E is the expectation value of H in (2.2), i.e.,

E = 〈Ψ |H|Ψ〉 = T +W +
∫

d3r Vext(r)n(r) , (2.3)

with T and W now denoting the expectation values of the kinetic energy and
electron–electron interaction operators, respectively. From classical physics we
know that the Coulomb energy of a charge density interacting with itself is

EHartree =
1
2

∫
d3r d3r′

n(r)n(r′)
|r − r′| . (2.4)

This term is called the Hartree energy and is an important part of the middle
term W in (2.3), but obviously not the full story. To begin with, the Hartree
energy contains a spurious self-interaction. Further, since electrons are parti-
cles, their motions will be correlated causing a depletion in the charge density
around each electron. In addition, the quantum-mechanical nature of elec-
trons causes a special type of correlation – exchange – due to the exclusion
principle. These extra terms are usually grouped together in the so-called
exchange-correlation energy Exc.

1 The original meaning of the word gas, chaos, may provide a better association.
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2.2 Early Attempts to Solve the Many-Particle Problem

Before describing the DFT approach to solving the many-electron problem, it
is instructive to briefly summarize some of its forerunners. We start with the
free electron model (FEM), which actually works very well for many simple
metals such as aluminum. We then proceed with the Hartree and Hartree–Fock
approaches and finally the Thomas–Fermi model, which might be thought of
as a very early form of DFT since it uses the electron charge density as the
basic variable instead of the wave function.

2.2.1 Free Electron Model

A very early attempt to solve the above electron problem for metals was the
free electron model (FEM) [221–223]. In this very simple model, the conduc-
tion electrons in metals are assumed to constitute an ideal gas of fermions,
i.e., by construction, the electrons are assumed to interact with each other
in the same way as do neutral gas molecules in an ideal gas, with the added
feature that the electrons obey fermion statistics. The ion cores and nuclei are
taken as stationary.

FEM, originally due to Sommerfeld, succeeds in describing metals like
silver or aluminum surprisingly well. However, this does not mean that the
conduction electrons in a metal are free. If they were, these metals would soon
disintegrate and not be the rather tough and tenacious substances we know.
As already mentioned, the electrons interact very strongly with each other and
with the nuclei through the Coulomb interaction. The reason why FEM works
so well has been formulated in the Landau hypothesis [150], which states that
a system composed of a large number of interacting particles has low-lying
excited states that can be viewed as particles themselves, called quasiparticles,
and that in many cases the energy spectrum of the quasiparticle system is very
similar to the spectrum of the interacting system. Physically, a quasiparticle
in the electron system may be viewed as a single electron surrounded by an
equilibrium distribution of other electrons. The idea is similar to the charge
renormalization of the naked Dirac electron due to vacuum polarization.

Another idea in the same direction is to map the many-electron problem
onto an independent electron moving in an effective potential. This is the
conceptual core of the Kohn–Sham formulation of DFT, as will be explained
in more detail later in this chapter. This is of fundamental importance, since
although the theorems of DFT are very general and powerful they do not,
as we will see, provide us with a practical scheme for actually performing
calculations. For that, we need the Kohn–Sham approach.

2.2.2 The Hartree and Hartree–Fock Approaches

The Hartree approach [113] assumes that the electrons are non-interacting,
so that each electron i obeys a Schrödinger-like equation
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Heffψi(r) =
(
−1

2
∇2 + Veff(r)

)
ψi(r) = εiψi(r) , (2.5)

where the electrons move in an effective potential Veff(r). The ground state is
determined by occupying the lowest lying eigenstates, while obeying the Pauli
principle. The difficulty and great limitation of this approach is to decide the
form of Veff(r).

In contrast, in the Hartree–Fock method, one uses a total wave function
for the system instead of separate single-particle wave functions ψi(r). The
total Hartree–Fock wave function is symmetrized so that it changes sign when
two electron quantum numbers are switched, i.e., the effect of “exchange” is
built into the wave function by construction. However, because of the use of
a single Slater determinant other electron–electron correlations are neglected.
Actually, one might consider this the definition of “exchange.” The Hamilto-
nian (2.2) acts on the Hartree–Fock wave function and the solution is found by
variational calculus, i.e., minimization of the total energy with respect to the
coefficients in the expansion of the wave function. In the absence of spin–orbit
coupling, the Hartree–Fock wave function can be written as a Slater determi-
nant [211]. The Hartree–Fock approach has had large success and was, until
the development of hybrid functionals such as P3LYP [227], the method of
choice in quantum chemistry.

2.2.3 Thomas–Fermi Theory

The idea of replacing the wave function with the charge density was proposed
in 1927 [236], resulting in the so-called Thomas–Fermi approach to electronic
structure. Dirac improved on the theory by including a term describing the
exchange energy [74]. The total energy of the system is written as

ETF = C1

∫
d3r n(r)5/3 +

∫
d3r Vext(r)n(r)

+C2

∫
d3r n(r)4/3 +

1
2

∫
d3r d3r′

n(r)n(r′)
|r − r′| , (2.6)

with C1 = (3/10)(3π2)2/3 and C2 = −(3/4)(3/π)1/3. The first term describes
the kinetic energy, then follows the electron–nuclei interaction, the exchange
and finally the Hartree term. In the expression above, the kinetic energy and
correlation terms of the many-electron system are calculated assuming a ho-
mogeneous electron gas (HEG). The HEG is of fundamental importance in
DFT, and thus we repeat the definition of it here and also the definition of
the often used parameter rs. The density n of the homogeneous electron gas is

n =
N

Ω
, (2.7)

whereN is the total number of electrons in the volume Ω. The electron density
is often expressed using the parameter rs, defined as
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rs =
(

3
4πn

)1/3

. (2.8)

Here, rs is the radius of a sphere containing exactly one electron. The larger the
rs is, the lower is the electron density. In atoms and materials, the electron
density is far from being homogeneous, and not so surprisingly, the HEG
approximation turns out to be too coarse. The Thomas–Fermi theory failed
to produce any quantitatively impressive results, but the basic idea – using
the electron charge density as the basic variable instead of the wave function –
turned out to be most fruitful. Finally, we note that in (2.6), all terms are
integrals of the charge density, i.e., they are functionals2 of the charge density.

2.3 Density Functional Theory

Physical systems with the same number of electrons but different external
potentials have different charge densities n(r) in their ground states. This is
obvious in the case of, for example, C2H2 and N2, two molecules which both
contain 14 electrons but have very different external potentials. Interestingly,
it is also a completely general and exact statement and constitutes as such
an important part of density functional theory (DFT). The example above
illustrates the underlying idea in DFT, which is to use the charge density n
as the basic variable.

In the following, the basic theorems of DFT will be presented [116]. The
Kohn–Sham ansatz [140], which is of central importance in the practical use
of DFT, is also described. The aim is to present ideas and assumptions rather
than mathematical detail, and therefore only the simplest version of the the-
ory, i.e., the non-degenerate, non-relativistic, non-spin-polarized case will be
discussed explicitly.

2.3.1 Hohenberg–Kohn Theory

The theorems initially formulated by Hohenberg and Kohn [116] constitute
the theoretical basis of DFT. The formulation here follows the one in [75].
Consider a system of charged spinless fermions (in practice, a paramagnetic
system of electrons) with a non-degenerate ground state described by the
non-relativistic time-independent Hamiltonian (2.2). The theory, originally
developed by Hohenberg and Kohn, can be summarized in three statements.

Statement 1 (Uniqueness) : The ground state expectation value of any ob-
servable is a unique functional of the exact ground state density n(r).

Thus, for example, the ground state total energy E of a system can always
and unambiguously be written as E[n].
2 A functional is a mapping from a function to a number. Functionals are usually

denoted with square brackets [ ].
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Statement 2 (Variational Principle) : The exact ground state density mini-
mizes the total energy functional E[n].

This statement provides us, at least in principle, with a scheme how to find
the ground state charge density. Simply try all possible densities and choose
the one that gives the lowest energy.

For the third statement, we need to rewrite our total energy expression
(2.3) slightly. The part of the energy functional associated with the exter-
nal potential can be singled out the remaining terms are summarized in a
new functional F [n] containing the kinetic energy and the electron–electron
interaction energy. The total energy functional can then be written as

E[n] = F [n] +
∫

d3r Vext(r)n(r) . (2.9)

Statement 3 (Universality) : The functional F [n] is universal in the sense that
it does not depend on Vext(r).

Thus, the mathematical form of F [n] will be the same irrespective of sys-
tem. It will be the same for plutonium metal, a hydrogen molecule, and a
superconducting ceramic.

To proceed further, we follow the path by Kohn and Sham [140] and rewrite
the universal functional F [n] = T [n] +W [n] as

F [n] = TS[n] +
1
2

∫
d3r d3r′

n(r)n(r′)
|r − r′| + Exc[n] . (2.10)

The first term, TS[n], is the kinetic energy of a hypothetical non-interacting
electron gas with the same density, and the second term is easily recog-
nized as the classical Coulomb interaction. The functional Exc[n] is called
the exchange and correlation energy. All many-particle effects are contained
in Exc[n]; among others, the many-particle contribution to the kinetic en-
ergy and the effects due to the Pauli exclusion principle. In order for the
term TS[n] to be meaningful at all, the density n(r) has to be a ground state
density of a non-interacting particle system, i.e., it has to be non-interacting
V -representable.3

In principle, it is possible to calculate the ground state charge density and
total energy from (2.9) using the variational principle (statement 2 in the
Hohenberg–Kohn theory). In order to do this, we need to know the function-
als Exc[n] and TS[n], the two remaining unknown terms in the total energy
functional.

As regards Exc[n], many approximative functionals have been developed,
although we can probably never hope to find the exact functional since this
functional retains in its heart all the difficulties of the many-particle problem.
More surprisingly, the single-particle kinetic energy TS[n] has yet escaped
3 A density is V -representable if it is the density of a ground state of the Hamilto-

nian for some (local) external potential Vext. In order to make use of the varia-
tional principle, one has to ascertain that each trial density is V -representable.
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all attempts to be exactly written as a functional of the density. This latter
difficulty is in fact the reason for not using the total energy expression directly
in the variational procedure. Instead, one works around the problem with the
help of the Kohn–Sham scheme.

2.3.2 The Kohn–Sham Equation

The basic idea of the Kohn–Sham scheme is to map the many-particle prob-
lem onto a system of non-interacting particles with the same ground state
density n(r) as the original many-particle system. To this end, we perform
the variation of the energy functional (2.9) of the many-particle system, with
F [n] defined by (2.10):

δE[n] = 0 (2.11)

gives4

μ =
δE[n]
δn(r)

= Vext +
∫

d3r′
n(r′)
|r − r′| +

δTS[n]
δn(r)

+
δExc[n]
δn(r)

, (2.12)

where μ is the Lagrange multiplier corresponding to the requirement of integer
particle number. μ is also the chemical potential. Now, perform the same ex-
ercise on the energy functional of a system of non-interacting particles moving
in some external potential, say Veff . This energy functional is

E[n] = TS[n] +
∫

d3r Veff(r)n(r) (2.13)

and variation gives, expressed in the standard way of writing functional deriva-
tives,

μ =
δE[n]
δn(r)

=
δTS[n]
δn(r)

+ Veff . (2.14)

We see that (2.12) can be written in the form of (2.14) provided

Veff = Vext +
∫

d3r′
n(r)

|r − r′| +
δExc[n]
δn(r)

. (2.15)

4 δE[n]/δn(r) is the functional derivative of δE[n] with respect to n(r). When the
functional has the simple form

F [φ] =

∫
d3rf(r, φ(r)) ,

i.e., F is an integral depending on φ(r) (but not on the gradient of φ(r) or any
higher order derivatives such as the Laplacian), then the functional derivative is

δF [φ]

δφ
=

∂f

∂φ
.
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The reason for the name Veff is now clear. It can be looked upon as an effective
external potential in which the non-interacting electrons are moving. The last
term in (2.15) is called the exchange-correlation potential, i.e.,

Vxc =
δExc[n]
δn(r)

. (2.16)

The effective potential Veff transforms the many-particle problem to a single-
particle formulation, and the Hamiltonian Heff corresponding to (2.13) is

Heff = −1
2
∇2 + Veff(r) , (2.17)

which gives a set of coupled Schrödinger-like equations, also called the Kohn–
Sham (KS) equations

Heff(r)ψi(r) =
[
−1

2
∇2 + Veff(r)

]
ψi(r) = εiψi(r) . (2.18)

The solutions {εi, ψi(r)|ε1 ≤ ε2 ≤ ε3 ≤ · · · } to (2.18) are called Kohn–
Sham eigenvalues and eigenfunctions (or orbitals). The ground state density
is given by

n(r) =
N∑

i=1

|ψi(r)|2 , (2.19)

where the sum is over the N lowest eigenstates of Heff , and since Heff directly
depends on n(r), (2.19) constitutes the coupling between the N one-electron
equations in (2.18). With knowledge of the solution to (2.18), the kinetic
energy term TS can be exactly calculated by multiplying the Kohn–Sham
equation (2.18) with ψ∗

i from the left, sum over i and integrate over all space,
i.e.,

TS =
N∑

i=1

〈ψi| − 1
2
∇2|ψi〉 =

N∑

i=1

εi −
∫

d3rVeff(r)n(r) , (2.20)

and thus the problem of calculating the value of the functional TS[n] is solved.
Only with the Kohn–Sham approach outlined above has one been able to cal-
culate ground state properties of many-electron systems with an accuracy that
compares favorably both with the results of much more involved configuration
interaction calculations as well as experimental data.

The somewhat hand waving line of reasoning above does of course not
constitute a proof of the validity of the KS approach. In fact, the underly-
ing assertion that all interacting V -representable densities are assumed to be
also non-interacting V -representable is not at all obvious. However, it can be
shown that this assertion is equivalent to the question of whether an exten-
sion of TS[n] can be constructed whose functional derivative is well defined at
interacting V -representable densities. Such an extension has been shown to
exist [84], and thus the KS approach is established rigorously.
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Total Energy

Finally, by combining (2.13), (2.15), (2.16), and (2.20), we obtain the following
expression for the total energy:

E =
N∑

i=1

εi − 1
2

∫
d3r d3r′

n(r)n(r′)
|r − r′| −

∫
d3r Vxc[n]n(r) + Exc[n] . (2.21)

It is worth noting that apparently the total energy is not equivalent to the
sum of Kohn–Sham eigenvalues, contrarily to what one might naively expect.
Mathematically, the Kohn–Sham eigenvalues are nothing more than Lagrange
multipilers introduced to handle the constraint that the number of electrons
must be conserved.

2.3.3 Approximations to Exc[n]

The one term in the total energy functional yet to be discussed is the exchange-
correlation energy, Exc. By construction, this term has to be approximated
in some way, and with an approximative expression for Exc, there is of course
no longer a true variational principle. This implies that there is no guarantee
that the energy obtained by minimizing the approximate energy functional
will be higher than the exact ground state energy. Furthermore, the true
ground state charge density will not in general minimize the approximate
energy functional. However, the variation principle will still be employed, and
the resulting density will be taken as the ground state density.

The Exchange-Correlation Hole

The exchange-correlation hole nxc(r, r′) is a useful concept when discussing
approximations to Exc[n]. It is also sometimes called the Fermi-Coulomb hole,
and its definition involves the pair-correlation function, which is the probabil-
ity of finding a particle at r if we know there is one at r′. The physical origin of
the exchange-correlation hole is that electrons will correlate their motion so as
to screen out the electric field. The electron is left surrounded by a hole in the
electron density which contains an equal and opposite charge. The exchange-
correlation energy as it appears in the Kohn–Sham equation may then be
interpreted physically as the energy due to interaction of the electrons with
the exchange-correlation hole. In this way, the exchange-correlation energy
can be written as

Exc[n] =
∫

d3r d3r′ n(r)W (r, r′)nxc(r, r′) , (2.22)

where W (r, r′) is the interaction potential. Charge neutrality of the electron–
hole systems leads directly to the charge conservation sum rule
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∫
d3r′ nxc(r, r′) = −1 ∀r . (2.23)

This sum rule should always be fulfilled since the total charge of the electron
and its exchange-correlation hole add up to zero. An interesting result is that
if the interaction potential W (r, r′) depends only on the distance between
the particles, i.e., W = W (|r − r′|), then only the spherical average of the
exchange-correlation hole contributes to Exc [107].

Local Density Approximation (LDA)

The local density approximation (LDA) consists of the replacement of the
exact Exc[n] by the LDA functional

ELDA
xc [n] =

∫
d3r n(r)εxc(n) , (2.24)

where εxc(n) is the exchange and correlation energy per particle of a homo-
geneous electron gas with density n(r). The exchange-correlation potential,
defined by (2.16) as the variation of the exchange-correlation energy, assumes
a simple form in LDA; variation of (2.24) gives

V LDA
xc =

∂(nεxc)
∂n

. (2.25)

Several expressions for the function εxc(n) have been developed [48, 114, 183,
250]. It can be shown [108] that the LDA exchange-correlation hole is spherical
and satisfies the charge conservation sum rule, (2.23), as well as other relations
based on various physical criteria [133]. We note also that all functionals in
wide use are actually spin density functionals in order to be able to address
the spin degree of freedom. In spin density functionals, one defines two charge
densities – one for spin up and one for spin down. For simplicity, we do not
mention the spin degree of freedom explicitly in the discussion below.

Since LDA is derived from the homogeneous electron gas, one expects that
it should work well only for systems with slowly varying densities. However,
the applicability of LDA goes way beyond this and has proven to produce good
results even for systems regarded as very inhomogeneous. One reason for this
success may be found in the fact that if the interaction potential depends
only on the distance between the particles, the approximate hole does not
have to be very similar to the true hole. It is quite sufficient that the spherical
average is well approximated, since that is the only part which will affect Exc.
It has been verified explicitly that LDA meets this criterion. The exact hole
is poorly reproduced, but the spherical average is very well reproduced [107].
Another reason is that since LDA satisfies the charge conservation sum rule,
a systematic cancellation of errors must be present.



18 2 Density Functional Theory and the Kohn–Sham Equation

More Elaborate Functionals

Although LDA works much better than one would expect, it does produce
some systematic errors which of course are relevant to try to remove or at
least diminish. For instance, LDA overestimates the bonding, leading to too
small lattice parameters and too large bulk moduli. Since the birth of DFT,
extensions of LDA to higher order in density gradients have been investi-
gated, but it was not until the 1990s that a useful expression was finally
developed.

Generalized Gradient Approximation

A general approach – in which Exc is assumed to depend in some general way
on the charge density and its gradients – gives rise to a family of approxi-
mations called the generalized gradient approximations (GGA). If we let the
magnitude of the first-order gradient of the density enter the expression, the
exchange correlation energy can be written as

EGGA
xc [n] =

∫
d3r n(r)f(n, |∇n|) , (2.26)

where f(n, |∇n|) is some function which is to be modeled so that the resulting
functional behaves well according to various criteria. Perdew and coworkers
[177–179] have constructed functionals in this way. The exchange-correlation
potential in the GGA becomes an intricate expression involving terms of type
n, |∇n|, ∇2n, and ∇n · ∇|∇n|.5Attempts such as this one to set up alter-
natives to or go beyond the LDA by modeling the exchange-correlation hole
are usually classified as non-local or semi-local density schemes. The schemes
developed by Perdew and coworkers give functionals which retain the attrac-
tive features of LDA, while at the same time improving the description of the
average hole through the use of the gradient. In many cases these functionals
are superior to LDA and have therefore become the most commonly used ones
in modern DFT calculations.

Orbital-Dependent Functionals

Although GGA in many ways is a great step forward compared to LDA,
it still does not solve the long-standing problems connected with the so-
called strongly correlated systems. Examples of such systems are transition
5 When the functional has the form

F [φ] =

∫
d3r f(r, φ(r),∇φ(r)) ,

the functional derivative is

δF [φ]

δφ
=

∂f

∂φ
−∇ · ∂f

∂∇φ
.
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metal oxides, lanthanides, actinides, and heavy fermion systems. Apparently,
there is room for improvement in the description of correlations. In the
self-interaction correction (SIC), one attempts to remove the spurious self-
interaction present in the usual treatment of the electron–electron interaction.
The self-interactions are canceled exactly in the Hartree–Fock approach and
also in exact exchange (EXX) schemes, but these schemes have other draw-
backs. Another popular scheme is LDA+U [14], in which an orbital-dependent
interaction is introduced via the parameter U . Historically, the first attempts
to incorporate the effect of a Hubbard U in an electronic structure calculation
was made by Lopez-Aguilar and Costa-Quintana [159] but even before that
there were recipes discussed as to how to do this in the Hartree–Fock approx-
imation [233]. Almost a decade later came the implementation of Anisimov
et al. [14] with the application to NiO and an independent work of Boring
et al. [36] with an application to Ce metal.

Hybrid Functionals

The LDA and GGA functionals work well for the solid state but less well for
atoms and molecules. In quantum chemistry, therefore, hybrid functionals like
B3LYP [227] have become very popular. Hybrid functionals are constructed
by combining an orbital-dependent Hartree–Fock part and an explicit density
functional. The coefficients in the parameterizations are determined by fitting
to atomic and molecular data.

Functionals Based on the Airy Gas

Another way of treating strongly inhomogeneous regions of the charge density
is to abandon the homogeneous electron gas and replace it with the Airy gas.
The Airy gas is a model of an edge electron gas moving in the effective Airy
potential

Veff(z) =
{∞ for z ≤ −L
Fz for −L < z <∞ , (2.27)

which is linear in z, independent of x and y, and has a hard wall at −L far from
the electronic edge at z = 0. This is the route followed in the development
of the LAG [148] and AM05 [20] functionals. Test calculations show that this
indeed seems to be a very promising route. Results comparable to the best
GGA are obtained for atoms and molecules as well as solids.





3

Consequences of Infinite Crystals
and Symmetries

Abstract In this short chapter the consequences of periodicity and general sym-
metry of a crystal is presented. The seven crystal lattices are introduced and as an
example the point group operations of a cubic material are illustrated.

Normally calculation of the electronic structure of materials is an application
of density functional theory (i.e., one tries to find a solution to the Kohn–
Sham equation, discussed in Sect. 2.3.2), to a crystalline environment, which
means that an infinite, periodic object is considered. Although crystals can
grow very large, an example is shown in Fig. 3.1, they are not infinite. The
effect of the finiteness of the crystal, the surface, sometimes influences the
physical and chemical properties investigated in an experiment, and it is not
seldom that one tries to isolate these very properties, in the fields of surface
physics. Here, we shall be concerned by bulk properties, essentially ignore the
surfaces, and mostly consider the mathematical advantages of considering an
infinite crystal.

A crystal has a periodicity which is defined by the Bravais lattice vec-
tors. The lattice points R for which the environment is identical are hence
defined by R = n1R1 + n2R2 + n3R3, where n1, n2, and n3 are integers and
Rj(j = 1 − 3) are the Bravais lattice vectors. A crystal is made up of one or
several atoms per unit cell. The symmetry properties of a crystal lattice are of
great importance, since the computational cost may be reduced significantly
when utilizing these symmetries. For a three-dimensional material there are
in general 7 lattice systems (shown in Table 3.1) and 14 Bravais lattices. As
an example we mention that the group of cubic lattice systems contains three
Bravais lattices: the body-centered cubic (bcc) lattice, the face-centered cubic
(fcc) lattice, and the simple cubic lattice (sc). As a side mark, we note that Po
is the only element of the periodic table which crystallizes as sc at ambient
conditions. As an example the sc lattice is shown in Fig. 3.2. The symme-
try properties of a crystal are described by the space group, which in three
dimensions is made from combinations of 32 crystallographic point groups
combined with translations. The combination of all symmetry operations of a
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Fig. 3.1. Gypsum crystal illustrating that crystals may grow big [94], although not
infinitely large

three-dimensional lattice results in a total of 230 space groups describing all
possible crystal symmetries.

Let us as an example consider the different point group operations of
a cubic structure. We illustrate this structure as a cubic building block in
Fig. 3.3. The simplest symmetry operation which leaves the cube invariant is
the identity operation. In the figure the three (red) arrows indicate the rele-
vant axis for which we can perform rotations which leave this cubic building
block invariant. It is around the axis aligned along the 100-direction possible
to perform three 90◦ rotations (i.e., rotations with angles 90, 180 and 270◦, the
fourth rotation, 360◦, is identical to the identity). There are three axes of such
rotations (100, 010, and 001) and hence there are nine rotations of this kind.
Around the 111-axis it is possible to make two 120◦ rotations (the third such
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Table 3.1. Table showing the seven crystal lattices

Crystal lattice Symmetry requirements

Cubic 4 threefold axes
Hexagonal 1 sixfold axis of rotation
Rhombohedral and Trigonal 1 threefold axis of rotation
Tetragonal 1 fourfold axis of rotation
Orthorhombic Either 3 twofold axes of rotation or 1 twofold axis

of rotation and two mirror planes
Monoclinic Either 1 twofold axis of rotation or 1 mirror plane
Triclinic All cases not satisfying the requirements

of any other system

Fig. 3.2. Unit cell of the simple cubic structure. Picture kindly provided by Albin
Nilsson

Fig. 3.3. Schematic picture of a cubic building block (crystal) and its symmetry
axis (red arrows)



24 3 Consequences of Infinite Crystals and Symmetries

rotation is identical to the identity). There are four such axis, which amounts
to eight rotations of this kind. Finally, the arrow along the 110-direction al-
lows for one 180◦ rotation (a second such rotation is identical to the identity).
There are six such axis, and hence six rotations of this kind. Summing up the
identity and all possible rotations hence amounts to 24 symmetry operations.
All these 24 operations can for the sc, fcc, or bcc crystal structure be com-
bined with a subsequent inversion of the lattice, which results in an additional
24 allowed symmetry operations. Some of these latter symmetry operations
are equivalent to a reflection of the lattice through a plane, but some of them
cannot be described as such and are referred to as roto-inversions. Taken to-
gether there are hence 48 point group operations for a cubic material such
as the sc, fcc, or bcc crystal structure. However, a Bravais lattice of sc, fcc,
or bcc type with more than one atom in the primitive cell (more than one
atom in the crystallographic basis) may have a lower number of point group
operations. An example of this is the zinc blende (diamond) structure, with
two atoms per unit cell, one at (0,0,0) and one at (1/4,1/4,1/4). GaAs crys-
tallizes in this structure with the Ga atom at position (0,0,0) and the As atom
at (1/4,1/4,1/4). This material has no inversion, which means that there are
only 24 allowed point group operations.



4

Introduction to Electronic Structure Theory

Abstract An introduction to electronic structure theory of solids is presented, in-
cluding the general form of the one-electron wave function. The evaluation of the
electron density, density of states as well as the calculation of energy bands is de-
scribed. Different types of integration of reciprocal space are presented, and numer-
ical examples given for their accuracy. The calculation of a self-consistent field is
also described, as is the Rayleigh-Ritz variational method.

4.1 Born–Oppenheimer Approximation
and One-Electron Theory

All theories for calculating the material properties and the total energy of
solids, surfaces, and interfaces start out by, as noted in Chap. 2, adopting the
Born–Oppenheimer approximation. This approximation simply neglects the
movement of the atomic nuclei and the electrons are considered to be moving
around in a material where all nuclei are at fixed positions. The motivation
for this is that the electrons are much lighter than the nuclei and thus move
much faster. For most materials this approximation is a very good one. One
can now focus solely on the electrons, which in itself is a formidable problem.
The electrons interact with the positive atomic nuclei and with each other,
via Coulombic forces. Although the former interaction is by no means simple,
it can be treated, whereas the latter interaction is in general impossible to cal-
culate and one must resort to approximations, like DFT, discussed in Chap. 2.
This results in that an effective one-electron Schrödinger-like equation needs
to be solved.

4.2 Born–von Karman Boundary Condition
and Bloch Waves

Due to the periodic symmetry of bulk materials, discussed in Chap. 3, a num-
ber of additional simplifications evolve. A discussion of this can also be found
in, for instance, the textbook by Ashcroft and Mermin [22]. First of all one
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observes that the one-electron potential is periodic with respect to translations
involving a Bravais lattice vector. In the Kohn–Sham equation this means that
Veff(r) = Veff(r + R), where R is a Bravais lattice vector of the materials. By
introducing the Born–von Karman boundary condition for the wave function
of the electron states,

ψi,k(r +NR) = ψi,k(r) , (4.1)

where N is a (large) integer, one can show that electrons moving through a
infinite, periodic crystal must obey Bloch’s theorem [22]. This theorem states
that the one-electron wave function (e.g., the solution to the Kohn–Sham
equation) must obey the following condition:

ψi,k(r + R) = eik·Rψi,k(r) . (4.2)

Note that a vector k has been introduced. This is a vector of reciprocal space1

and one has only to consider k-vectors which lie inside the first Brillouin zone
(BZ). An example of a BZ is shown in Fig. 4.1 for an fcc Bravais lattice. In
addition one needs to solve the Kohn–Sham equation for a solid for each k-
vector being separate and independent of the others. Note that in (4.2) an
index “i” appears, since for each k-point there are in general several eigenstates
to the Kohn–Sham equation. The one-electron density, the so very crucial
ingredient in density functional theory, is then calculated as a sum over all
possible k-vectors and occupied eigenstates,

n(r) =
occupied∑

i

∑

k

|ψi,k(r)|2 . (4.3)

4.3 Energy Bands and the Fermi Level

A popular way to display the result of an electronic structure calculation,
i.e., the self-consistent solution to the Kohn–Sham equation, is to plot the
eigenvalues of the Kohn–Sham equation as a function of k-point, preferably
along the high symmetry lines and high symmetry points of the BZ (e.g., the
ones shown in Fig. 4.1 for the fcc lattice). An example of such a plot of the
electronic structure, the “band plot”, is shown on the left-hand side of Fig. 4.2,
for CeN. This compound crystallizes in the rock-salt structure which is an fcc
Bravais lattice with two atoms per unit cell. For this reason the high symmetry
lines and high symmetry points of the “band plot” in Fig. 4.2 are the same
as the ones shown in Fig. 4.1. Note from Fig. 4.2 that the highest occupied
energy, the Fermi level, is marked as a horizontal dashed line. Electron states
below this energy are hence occupied and the states above are unoccupied.

1 Reciprocal space is spanned by the vectors Gi, defined as Gi · Rj = 2πδij .
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Fig. 4.1. Example of a Brillouin zone (BZ). The BZ is shown for an fcc lattice. In
the figure high symmetry points and lines are marked and labeled (Γ, Σ, Δ, etc.)
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Fig. 4.2. Energy band structure of CeN (left part of the figure). The horizontal
dashed line is the Fermi level. Symmetry lines of the plot refer to the k-points
shown in Fig. 4.1. The corresponding DOS function is shown in the right part of the
figure. Here are also shown partial DOS, projected onto the 4f and 5d orbitals of the
Ce atom as well as the 2p orbitals of the N atom. Figure redrawn after [68]

4.4 Different Types of k-Space Integration

One more of the popular outputs of an electronic structure calculation is,
apart from the total energy and the energy bands discussed above, the density
of states (DOS). This is a property of the electronic structure which is very
useful for analyzing and understanding a calculation. We will discuss this point
further in the section on applications. The DOS may also be used to calculate
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the charge density from a calculation, as well as the sum of eigenvalues of all
occupied states. Both these entities enter the expression for the total energy
of the material. A derivation of the DOS may be found in most textbooks on
solid state physics and it is not repeated here. Instead we quote the result
that the DOS, for spin-degenerate states, can be calculated from,

D(E) =
∑

i

1
4π3

∫

BZ

δ(E − Eik)dk . (4.4)

The Fermi level can now be calculated from the DOS via the expression

Nval =
∫ EF

−∞
D(E)dE , (4.5)

where Nval is the number of valence electrons considered in the calculation.
RSPt calculates the DOS function using either the so-called linear tetrahe-

dron method [126, 153] or the so-called Gaussian broadening method (GBM)
[169]. The general principles of the so-called linear tetrahedron method, LTM,
can best be illustrated using a two-dimensional Brillouin zone as an example.
The basic philosophy of the LTM is the same for two- and three-dimensional
systems, and since two-dimensional objects are easier to visualize we continue
describing the essentials of the LTM using a two-dimensional Brillouin zone
as an example. We will for simplicity also consider only one spin-degenerate
energy band. In Fig. 4.3 we show the reciprocal lattice vectors as well as the
Brillouin zone (BZ) for the considered hypothetical two-dimensional crystal.
In this figure we show in color the part of the BZ where the eigenvalues of the
Kohn–Sham equation are lower than a certain energy, E. This energy could
be the Fermi level or any other chosen energy. The number of electrons which
are found up to this energy, the number of states at energy E, is proportional
to the colored area in Fig. 4.3. If the colored area is the same as the area of
the full Brillouin zone, the number of state equals 2 (since this corresponds to
a completely filled, spin-degenerate energy band). Hence the number of states
occupying the band at energy E is proportional to two times the area of the
colored region divided by the area of the BZ, i.e., the number of states can be
calculated as

N(E) = 2 · aoccupied(E)
ABZ

. (4.6)

The DOS can then be calculated as D(E) = dN(E)
dE . The question then is how

to calculate aoccupied(E) and its energy derivative. In the LTM this is done by
first setting up a uniform mesh of k-points forming a triangular pattern in the
BZ, as shown in Fig. 4.3 (for a three-dimensional BZ the triangles are replaced
by corner sharing tetrahedra). The Kohn–Sham equation is solved for k-points
at the corners of each triangle. Hence every triangle is associated with three
k-points defining the corners, k1, k2, and k3, with corresponding eigenvalues,
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Fig. 4.3. Illustration of the LTM in two dimensions. The BZ is divided into triangles,
and the k-states which is occupied up to an energy E are shown as the colored region
(top). The tetraheder labeled “tetraheder 1” is shown in the lower right part of the
figure. In the lower, left part of the figure an approximate linear interpolation of the
occupied area is shown. For details see text

ε1, ε2, and ε3. The area aoccupied(E) can now be calculated as a sum of the
colored part of the areas of each triangle in Fig. 4.3. If the considered energy,
E, is larger than ε1, ε2, and ε3 of a certain triangle, the area of this triangle
contributes fully to the sum, and if E is smaller than ε1, ε2, and ε3, the chosen
triangle does not contribute at all. This represents the simple triangles, since
the area of a triangle which contributes fully can be calculated easily. The case
when E is larger than ε1 but smaller than ε2 and ε3 provides somewhat of a
challenge. Such a triangle is illustrated in the lower right-hand part of Fig. 4.3.
A good approximation of the occupied area of this triangle is shown in the
lower left part of Fig. 4.3. Here the area is defined by the k-points k1, k12,
and k13. The point k1 is known, since it was generated in the uniform mesh.
The point k12 is calculated by linear interpolation between points k1 and k2

in the following way, k12 = k1 +(k2 −k1) · (E− ε1)/(ε2 − ε1). In a similar way
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the point k13 is calculated to be equal to k1 + (k3 − k1) · (E − ε1)/(ε3 − ε1).
Once these k-points have been identified via linear interpolation it is easy to
calculate the colored area of the triangle in the lower left part of Fig. 4.3. A
similar procedure can be applied to calculate the area of the triangle where ε1
and ε2 are lower in energy than E, but where ε3 is higher. One then makes a
sum of the occupied areas of all triangles. The approximation of replacing the
area of the triangle in the lower right-hand part of Fig. 4.3 with the one in the
lower left part of this figure becomes better for smaller triangles, since then
the linear interpolation is more accurate. Hence all reliable implementations of
the LTM require a rather large number of triangles (or tetrahedra). The LTM
provides an analytical expression of aoccupied(E) which involves a large sum
of the contribution of all triangles. Since there is an explicit energy expression
from the contribution from every triangle (tetrahedron), it is an easy task to
calculate dN(E)

dE , i.e., the density of states function.
It is worthwhile to note that a modification of the linear tetrahedron

method, called modified tetrahedron method (MTM), was suggested by Blöchl
et al. [33]. The MTM corrects for the curvature of the energy band to some
extent, and as we show in a numerical example below this does result in an
improved convergence of the total energy as a function of number of k-points.

In addition to the use of the tetrahedron method, RSPt also makes use
of a direct summation of electron states, in order to evaluate the Fermi level,
charge density, and eigenvalue sum. This is done using the expression,

N =
∑

i

∫ ∞

−∞
f(E)

1
4π3

∫

BZ

δ(E − Eik)dkdE , (4.7)

where f(E) is Fermi distribution function, which attains the value 1 below
the Fermi energy and 0 above. This method also makes use of a uniform mesh
of k-points, distributed as to fulfill the symmetry of the space group of the
lattice. The sum in (4.7) can be written as weighted sums over the bands,
i, and the discrete set of sampled k-points, kj , with weight functions, wji.
The sum over k-points is now carried out first by considering a convolution of
each discrete eigenvalue with a Gaussian function of width, ω. This method,
referred to as Gaussian broadening method (GBM), leads to a fast and stable
convergence of the charge and spin densities, as well as the total energy. The
GBM can be seen as a truncation of a complete series expansion of a δ-function
in terms of Hermite polynomials, Hn, with a Gaussian weight function [169].
Then the step function, f(E), can be written as

f(E) = f0(E,ω) +
∞∑

n=1

AnH2n−1

(
E −EF

ω

)
e(−(

E−EF
ω )2) , (4.8)

where f0(E,ω) = 1
2 (1 − erf(E−EF

ω )) (erf stands for error function) and An

are coefficients which may be calculated analytically. In practical calculations
one has to truncate the sum in the equation above and the resulting “step”
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Fig. 4.4. Calculated total energy of fcc Cu using three different k-space integra-
tions. The x-axis shows the number of divisions of the BZ in one direction, nk. The
total number of k-points in the full Brillouin zone is hence (nk)3. Picture kindly
provided by Mr. Sumanta Bhandary

function is called fN (E; ω), if N terms are kept in the sum in (4.8). If the
function which is “smeared” by fN (E; ω) can be represented by a polynomial
of 2N there is no error involved in the truncation [169]. In RSPt a choice is
possible for how many terms one would like to consider in (4.8), i.e., N , as
well as the value of ω. The default values are N = 0 and ω = 20 mRy.

In Fig. 4.4 we compare three different k-space integration methods and
how fast the total energy converges for fcc Cu, with respect to the number
of k-points in the BZ. Note that the linear tetrahedron method is by far the
most slowly converging method, which is a general feature in first principles
electronic structure calculations. Among the other two methods, the GBM and
the modified tetrahedron method, one can observe that the latter converges
faster, and that the two methods approach the same total energy. As a matter
of fact, Fig. 4.4 suggests that also the linear tetrahedron method approaches
the same total energy as that from the modified tetrahedron method, and from
theoretical grounds one can show that this must be the case when the number
of k-points approaches infinity. As a rule of thumb the modified tetrahedron
method is preferred, and this is also the standard setting of RSPt.

4.5 Self-Consistent Fields

The Kohn–Sham equation (2.18) is an example of what is referred to as a self-
consistent field calculation. The effective potential in the Kohn–Sham equa-
tion depends, among other things, on the electron charge and magnetization
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density. The density is hence an input to this equation. However, via (4.3)
the electron density is also an output to the equation, and it is necessary that
the input density and output density are the same, i.e., that a self-consistent
field is obtained in the calculation. This is done by guessing a trial density (in
RSPt this is done from charge densities obtained from an atomic calculation,
which are placed on the atomic positions of the unit cell in the calculations),
solving the Kohn–Sham equation with this trial density, and via (4.3) calcu-
late a new density, which may be used as an input to a second iteration. The
process is iterated until self-consistency is achieved, i.e., until the input and
output densities differ only by a small amount. In practical calculations this
is a very important convergence to check for, with respect to the number of
iterations, and together with the convergence of the total energy it represents
the most important parameter to monitor during the self-consistent cycle. In
practice it is impossible to use the entire output density of one iteration as an
input density of a consecutive iteration. Hence, it is necessary to mix some of
the input density and some of the output density of a given iteration, to form
a new trial input density for the next iteration. The simplest way to do this
is to use a linear mixing procedure, according to the equation

ninput
i+1 (r) = (1 − α)ninput

i (r) + αnoutput
i (r) . (4.9)

In this equation i and i + 1 denote two consecutive iterations in the self-
consistent cycle, and α is the mixing parameter. Although it might be desired
to chose as large value of α as possible, since this in principle could reduce
the number of iterations in a calculation, one has in practice to find a suit-
able choice of the mixing parameter. If too much of the output density of one
iteration is used as input to the next, there is a risk that uncontrolled oscil-
lations in the charge density and total energy will occur, and self-consistency
is never obtained. A smaller amount of mixing of the output density of one
iteration used as input to the next avoids this problem and the convergence of
the density and total energy occurs without oscillations. However, a too small
choice of α may produce a very slow convergence, and it is desirable to find
an “optimal” mixing parameter. The value of the optimal mixing parameter
varies from material to material.

RSPt uses as its standard setting a mixing scheme which more efficiently
reaches self-consistency, compared to (4.9), and the improved method is re-
ferred to as the Broyden mixing scheme [41]. In this method the form of the
equation describing the mixing is similar to the form in (4.9), with the differ-
ence being that the scalar entities α and 1−α are replaced by matrices α̃ and
β̃, to yield

ninput
i+1 (r) = β̃ninput

i (r) + α̃noutput
i (r) . (4.10)

The matrices α̃ and β̃ are updated during the self-consistent iterations in order
to quicker reach self-consistency, according to the analysis of [40]. In the first
iteration RSPt uses for α̃ and β̃ diagonal matrices, where the diagonal matrix
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elements are the scalar value α and 1 − α, respectively. α is hence an input
parameter to RSPt. Typical values of this parameter range from ∼0.2, for
systems which are well behaved and easy to converge (fcc Cu is an example),
to 0.005 for very difficult systems (a surface of Ce would be an example of
this). For a simple system, convergence may be obtained after 5–10 iterations,
whereas for difficult materials hundreds of iterations may be needed to achieve
self-consistency.

In practice the densities used by RSPt, and in reality in all electronic
structure codes, are stored on a grid. RSPt uses a real space representation
inside the muffin-tin spheres and a Fourier representation for the interstitial
density. This can symbolically be expressed as the density being stored on
discrete points as n(rj), where the “points,” rj , are either points of real space
or the components of the Fourier expansion. A good test for convergence which
is used by RSPt is

1
N

N∑

j

√
(noutput(rj) − ninput(rj))2 . (4.11)

This mean square difference, which in the RSPt community is referred to as
“fsq” (this parameter will appear several times, later on in this book), should
for most materials reach values of the order of 10−7−10−10, if the total energy
should be converged to within a fraction of a mRy.

4.6 Rayleigh–Ritz Variational Procedure

We have outlined above a number of concepts which appear due to the trans-
lational symmetry of a solid, i.e., the Kohn–Sham equation must be solved for
a number of k-vectors which, for a given cycle in the self-consistent loop, may
be treated as independent of each other. In addition one has to find ways to
approximate the k-space summation of the electron states and we have given
examples of how one may do this. We are now ready to tackle the toughest
part of the problem, namely to find a solution to the Kohn–Sham equation
itself. One approach is to expand the (unknown) Kohn–Sham wave function
in a set of (known) basis functions as

ψk(r) =
lmax∑

l

clkχlk(r) . (4.12)

There are several choices of basis functions, which have given rise to different
electronic structure methods with different names, such as LCAO (linear com-
bination of atomic orbitals), LAPW (linear augmented plane waves), PPW
(pseudo-potential plane waves), and LMTO (linear muffin-tin orbitals). The
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sum in the equation above is truncated after sufficiently many basis func-
tions have been included and the coefficients clik are, via the Rayleigh–Ritz
principle [24], determined from the following secular equation:

lmax∑

l

[Hll′ − EikOll′ ]clik = 0 , (4.13)

where

Hll′ =
∫

Uc

χ∗
lk(r)

(−∇2

2
+ Veff

)
χl′k(r)d3r ≡

∫

Uc

χ∗
lk(r)heffχl′k(r)d3r

(4.14)
and

Oll′ =
∫

Uc

χ∗
lk(r)χl′k(r)d3r , (4.15)

where the integral is over the unit cell (Uc). Once Hll′ and Oll′ have been
evaluated the eigenvalues, Eik (i = 1 − lmax), are determined by [24]

det |Hll′ − EikOll′ | = 0 , (4.16)

a standard numerical problem, which may be solved by existing software such
as LAPACK or BLAS.
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Linear Muffin-Tin Orbital Method
in the Atomic Sphere Approximation

Abstract In this chapter the linear muffin-tin orbitals (LMTO) are defined, which
includes linearization of the radial part of the wave function, the ‘head’ and ‘tails’
of the basis functions, and the so called structure constant. The atomic sphere
approximation (ASA) is introduced and a comparison between the Korringa–Kohn–
Rostoker (KKR) method and the linear muffin-tin orbital method is made. The
advantages and disadvantages of the LMTO-ASA method are discussed.

5.1 Muffin-Tin Methods

It is crucial to use a good basis set for the study of the electronic structure
of materials. The full-potential augmented plane wave [160, 212] (APW) and
the Korringa–Kohn–Rostoker [139, 142] (KKR) methods can be used, in prin-
ciple, to solve exactly the Kohn–Sham equation. However, these methods are
numerically involved and their linearization, introduced by Andersen [11], is
most efficient. Andersen’s linearization has not only made the techniques for
solving the electronic structure problem transparent by reducing it merely to
a diagonalization of a matrix, containing as elements the one-electron Hamil-
tonian. Linearization also cuts the cost of calculation by at least an order
of magnitude. The linearized versions of these two powerful methods were
named the linear augmented plane wave (LAPW) and linear muffin-tin or-
bital (LMTO) methods, respectively [11].

In this chapter we present the LMTO basis set used to calculate the elec-
tronic structure of solids. In the next chapter we discuss the most general basis
used for an all-electron calculation where the potential is not supposed to be
spherical nor of muffin-tin type. This most general description allows the study
of open structures without having to use the so-called empty spheres. In this
chapter, we start by introducing the LMTO-ASA method and its derivation
and show its connection to the KKR method.

To define the basis set, space is divided into non-overlapping spheres
called “muffin-tin” spheres and the region between these spheres is called
the interstitial region (see Fig. 5.1). Inside each muffin-tin sphere in the unit
cell the Schrödinger equation is solved at a fixed energy eν for each angular
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Fig. 5.1. Illustration of how space in a crystal is divided into muffin-tin and inter-
stitial regions

momentum �, and in the interstitial region the Helmholtz equation is solved
for each variational parameter κ (which will be defined later). The lineariza-
tion amounts to the use of a linear combination of the solution φ�(e, r) of
the Schrödinger equation (or Kohn–Sham equation) for a fixed energy and its
energy derivative φ̇�(e, r) inside each muffin-tin sphere. These linear combina-
tions are matched to an envelop function (Hankel function) in the interstitial
region. In this chapter we discuss mainly the LMTO basis set in the so-called
atomic sphere approximation (ASA). We will start from the KKR method
and derive the LMTO method from it.

The LMTO method uses partial waves to solve the Schrödinger equation
in the solid. Thus it combines the best features of both the KKR method
and the linear combination of atomic orbitals (LCAO) method without the
drawback of those methods. In the ASA, the atomic unit cell, which is in a
form of a polyhedron, is approximated by a sum of atomic spheres of the same
volume [11]. In making this approximation one deals with a system of slightly
overlapping spheres, but as long as this overlap is not too large, the calculated
energy bands and total energies are accurately described. In general, closely
packed solids are well described with this approximation. However, for open or
loosely packed systems one needs to use the so-called empty spheres, which are
placed in natural voids of the crystal in such a way that the overlap between
all spheres in the unit cell is minimal. With the empty spheres, all regions of
space are described by local spherical potentials [209].

5.1.1 The Korringa, Kohn, and Rostoker (KKR) Method

The KKR method is an exact solution for a muffin-tin potential. Each atom
is surrounded by a muffin-tin sphere of radius S. The region between atoms
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Fig. 5.2. Full-potential (left) and muffin-tin approximation to this potential (right).
In the interstitial region the potential is constant. In the muffin-tin region the
potential has a spherical symmetry. In most compact materials, where the inter-
stitial region is small the muffin-tin potential is very close to the all-electron full
potential

is called the interstitial region. This is shown in Fig. 5.1, where the potential
is flat in between the muffin-tin spheres. In Fig. 5.2 we show the full effective
potential that electrons feel when moving through a solid, as given by the
DFT and the Kohn–Sham equation. The potential has no geometrical con-
straints to it and is therefore called the full potential. In Fig. 5.2 we also show
an approximation to this full potential, where a spherical average has been
made within the muffin-tin spheres and in between the muffin-tin spheres (in-
terstitial region) a constant average is used. This is the so-called muffin-tin
potential and is given by

V (r) =
∑

R

v(|r − R|)θ(S − |r − R|) , (5.1)

around each atomic nucleus, with a constant value in between. The constant
potential in between muffin-tin spheres is often denoted the muffin-tin zero
and labeled Vmtz.

The KKR wave function is given by

ΦL(e, r) ≡ YL(r̂)
{
φ�(e, r), r ≤ S

a�K�(
√
e, r) + b�J�(

√
e, r), r ≥ S

}
, (5.2)

where Y�m(r̂) ≡ i�Y�m(r̂) and L↔ �m. The function φ is a numerical solution
to the Schrödinger equation (or Kohn–Sham) at energy e for the potential V .

(−∇2 + V (r)θ(S − r)
)
φ�(e, r) = eφ�(e, r) . (5.3)

In (5.2) the function inside S is called the “head” of the basis function, and
the function outside is referred to as the “tail”. The linear combination of
K and J (the Hankel and Bessel functions, respectively) is a solution to the
Helmholtz equation:
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(∇2 + κ2θ(r − S)
)
(aK�(κ, r) + bJ�(κ, r)) = 0 (κ2 = e− Vmtz) (5.4)

J�(κ, r) ≡ κ−�j�(κr)

K�(κ, r) ≡ −κ�+1

{
n�(κr), κ2 > 0
n�(κr) − ij�(κr) κ2 < 0, (κ = i|κ|)

}
,

where n� and j� are, respectively, the spherical Neumann and Bessel functions.
The function Φ in (5.2) is not normalizable at negative energies because of the
Bessel function J . A solution at (almost) all energies is obtained by making
a Bloch wave from the function

χL(e, r) = ΦL(e, r) − b�JL(
√
e, r)YL(r̂) . (5.5)

The wave function

ψ(e,k, r) ≡
∑

L

AL

∑

R

eik·RχL(e, r − R) (5.6)

is a solution for the Kohn–Sham equation, if the tails of all orbitals cancel the
Bessel function J in all muffin-tin spheres.

The tail expansion of the wave function can be written as [11]

∑

R

eik·R(1 − δ(R, 0))K�(κ, |r − R|)YL(r − R)
∣∣∣
r<s

=
∑

L′
J�′(κ, r)YL′(r̂), BL′,L(κ,k) , (5.7)

where the coefficients B are the so-called structure constants. It can be shown
[173] that

KL(κ, r − R) =
∑

L′
BL′,L(κ,R − R′)JL′(κ, r − R′), |r − R′| < |R − R′|

which means that a tail function centered on one lattice site can be expanded
around some other lattice site with Bessel functions centered on this other
site, a fact which can be used to derive the KKR equation.

The KKR Equation

We are now ready to apprehend the KKR equation for obtaining a solution
to the Kohn–Sham equation of a muffin-tin potential. In order to do this we
consider a sphere at R = 0, where the wave function can be written as

ψ(e,k, r)
∣∣∣
R=0

=
∑

LAL

(
φL(e, r) − b�J�(κ, r)YL(r̂) (5.8)

+a�

∑
L′ J�′(κ, r)YL′(r̂)BL′,L(e,k)

)
. (5.9)
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In this equation, the last term represents the sum of tail functions centered
at lattice sites not equal to R = 0, expanded in Bessel functions centered
at R = 0. For these tails to cancel the term b�J�(κ, r)YL(r̂) in the equation
above, we obtain the tail cancellation equation

∑

L

(
BL′,L(e,k) − δLL′

b�
a�

)
AL = 0 . (5.10)

The coefficients a� and b� are calculated so that a tail is attached continuously
and differentiably to φ:

(
φ(S) Sφ′(S)

)
=
(
a b

)(K(S) SK′(S)
J (S) SJ ′(S)

)
.

Given that S2(KJ ′−K′J ) = 1, where K′(S) and J ′(S) are the radial deriva-
tives of K and J at S, the KKR equation becomes

∑

L

(
BL′,L(e,k) + δLL′

K�(κ, S)
J�(κ, S)

DK −Dφ

DJ −Dφ

)
AL = 0 , (5.11)

where Dφ ≡ Sφ′(S)/φ(S).

5.1.2 The KKR-ASA Method

To obtain the KKR-ASA method we extend the muffin-tin radius to the
Wigner–Seitz radius such that the volume of the spheres is equal to the vol-
ume of the unit cell. In this approximation the overlap between the spheres
and the void which occurs between the spheres are ignored. Without the in-
terstitial region the functions K and J can have any energy with the only
condition that the tail cancellation holds.

In the KKR-ASA method the limit κ → 0 is taken [11], in which the
Hankel and Bessel functions are given by

K�(S) → (2�− 1)!!/S�+1, J�(S) → S�/(2�+ 1)!!, DK → −�− 1, DJ → �

In the limit where κ→ 0 the KKR equation gives the KKR-ASA equation

∑

L

(
SL′,L(k) + δLL′(2�+ 1)

Dφ(e) + �+ 1
Dφ(e) − �

)
AL = 0 , (5.12)

where the KKR-ASA (and also the LMTO-ASA) structure function is de-
fined as

SL′,L(k) ≡ S�′+1BL′,L(0,k)s�

(2�′− 1)!!(2�− 1)!!
. (5.13)

The structure function (or structure constant) SL′,L expands (S/r)�+1YL cen-
tered at a sphere R �= 0, in functions (r/S)� centered at R = 0. All the energy
dependence is in the potential parameters
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P�(e) = (2�+ 1)
Dφ(e) + �+ 1
Dφ(e) − �

. (5.14)

The KKR-ASA equations are more stable than the KKR ones and have an
easier interpretation.

5.1.3 The LMTO-ASA Method

One of the main advantages with the LMTO-ASA method is computational
efficiency which is obtained by suppressing the energy dependence of the KKR
wave function

χL(e, r) = ΦL(e, r) − b�JL(
√
e, r)YL(r̂) . (5.15)

To obtain a variational energy-independent basis set, and therefore to a com-
putationally efficient eigenvalue problem, we need the following:

(1) Fix the tail function energies:
√
e→ κ, so that it is now a parameter.

(2) Taylor expands the radial function for each angular momentum around
some fixed energy eν

φ(e, r) ≈ φ(eν , r) + φ̇(eν , r)(e− eν) (φ̇ ≡ ∂φ/∂e), (5.16)

where φ and φ̇ are orthogonal to the core states, i.e., any solution of
the same Hamiltonian contained entirely within the muffin-tin or atomic
sphere. The tail functions are not orthogonal to the core states, and with-
out strict tail cancellation one may find core eigenvalues.

(3) Replace all Bessel functions inside the spheres by a linear combinations
of φ and φ̇, in a continuous and differentiable way. This is the so-called
augmentation part of the LMTO (or LAPW) basis functions.

The LMTO basis functions are independent of energy, i.e., the energy deriva-
tive χL

χ̇L(e, r) = Φ̇L(e, r) − ḃ�J̃L(κ, r)YL(r̂) (5.17)

is zero at e = eν . We define therefore the augmented Bessel functions:

J̃L(κr) =

{
Φ̇�(eν ,r)

b�
, r ≤ RMT

j�(κr), r > RMT.

Given the normalized wave function φ�(e, r) = 〈Φ2
�(e, r)〉−

1
2 Φ�(e, r), in the

muffin-tin sphere. In this case

Φ̇�(eν , r) = 〈Φ̇2
�(eν , r)〉 1

2φ�(eν , r) + 〈< Φ2
� (eν , r)〉 1

2 φ̇�(eν , r)

= 〈Φ̇2
�(eν , r)〉 1

2 Φ�(DΦ̇, r) = 〈Φ̇2
� (eν , r)〉 1

2 Φ�(Dj�
, r) , (5.18)

because DΦ̇ = Dj�
.
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To insure the differentiability of the function at the muffin-tin radius, the
function Φ should be given by

Φ�(D, r) ≡
(
φ�(r) + ω(D)φ̇�(r)

)
with ω(D) = −φ(S)

φ̇(S)
D −Dφ

D −Dφ̇

. (5.19)

In this equation φ(S) = φ(eν , r = S) and φ̇(S) = φ̇(eν , r = S). At the
boundary of the muffin-tin sphere at R = 0

KL(κ, r) = ΦL(e, r) + b�JL(κ, r) . (5.20)

The tail K̃L muffin-tin orbital, arising from site R, can be expanded using J̃L

functions centered around another site R′:

K̃L(κ, r − R) =
{∑

L′ J̃L′(κ, r − R)BL′,L(κ,R′− R), |r − R′| ≤ RMT,
KL(κ, r − R), |r − R′| ≥ RMT,

where the functions J̃L are defined by

J̃L(κ, r) =

{
J�(κ,S)

Φ�(DJ ,S)
ΦL(DJ , r), r ≤ S,

JL(κ, r), r ≥ S.

The linear muffin-tin orbital is now given by

χ̃L(κ, r) =

{ K�(κ,S)
Φ�(DK,S)ΦL(DK, r), r ≤ S,

K̃L(κ, r), r ≥ S.

χk
L(κ, r)

∣∣∣
r<S

≡
∑

R

eik·Rχ̃L(r − R)
∣∣∣
r<S

=
∑

L′
YL(r̂) (5.21)

×
( K�(κ, S)

Φ�(DK, S)
Φ�(DK, r)δ(L,L′) +

J�(κ, S)
Φ�(DJ , S)

Φ�′(DJ , r)BL′,L(κ,k)
)
.

One Site Expansion

The crystal wave function for a muffin-tin potential is now given by a linear
combination of the function defined in (5.21), i.e.,

Ψnk(κ, r) =
∑

L

αnk
L χk

L(κ, r) . (5.22)

Here χk
L(κ, r) is a Bloch wave function (5.21) which can be written as

χk
L(κ, r) =

∑

R

eikRχ̃L(κ, r − R)

= χ̃L(κ, r) +
∑

L′

⎛

⎝
∑

R �=0

eikRBL′,L(κ,0 − R)

⎞

⎠ J̃L′(κ, r − 0)

= χ̃L(κ, r) +
∑

L′
J̃L′(κ, r − 0)BL′,L(κ,k). (5.23)
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The limits S → SWS and κ → 0 produce the LMTO-ASA method [11, 209],
and when κ �= 0 we obtain the so-called augmented spherical wave (ASW)
method [90, 257].

5.1.4 Matrix Elements of the Hamiltonian

To calculate the matrix elements of the Hamiltonian and the wave function
overlap, Andersen showed [11] that one needs only the so-called potential
parameters obtained at the muffin-tin radii and the structure constants which
carry information of the geometry of the lattice. We will limit ourselves here
to the case where κ = 0 and start this section by defining the four potential
parameters. Let us exploit the fact that for any angular momentum, �, the
functions φ and φ̇ are orthogonal if φ is square summable1:

∂

∂e

∫ s

0

drr2φ(r)2 = 2
∫ s

0

drr2φ(r)φ̇(r) = 0 . (5.24)

This leads to

Hφ = eνφ, Hφ̇ = φ+ eν φ̇ , (5.25)

where eν is a fixed energy for which the wave function φ is computed for every
angular momentum, �, and atomic species, t, in the unit cell. Note also that
φ and φ̇ are orthogonal to the core states. The trial wave function for a given
radial logarithmic derivative D is given by (5.19). As discussed, the parameter
ω(D) is obtained in terms of the logarithmic derivatives at the boundary of
the muffin-tin spheres, Dφ and Dφ̇ of φ(S) and φ̇(S), respectively:

ω(D) = −φ(S)
φ̇(S)

D −Dφ

D −Dφ̇

. (5.26)

We have therefore the flexibility to choose any logarithmic derivative for the
trail wave function at the muffin-tin sphere boundaries. This flexibility will
allow us to match the trial functions at the boundary of the sphere to any tail
function. The matrix elements of the Hamiltonian in any muffin-tin sphere are
given by matrix elements involving the structure constants and the function
defined in (5.19). The matrix elements of the latter can be evaluated from the
expression

〈Φt′�′m′ |H − eνt�m|Φt�m〉 = δt′tδ�′�δm′mωt�(D) . (5.27)

We will also omit the atomic species index, t, for simplicity, since it is clear that
all wave functions and energy derivatives inside the muffin-tin spheres depend
on the index t. The corresponding contribution to the overlap is given by
1 Note that we will omit the subscript � of the wave function φ when no confusion

is possible.
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〈Φ�′m′ |Φ�m〉 = δ�′�δm′m(1 + 〈φ̇2〉ω2
t�(D)) . (5.28)

Note that we are assuming only one trial wave function per angular momen-
tum, �, and atomic species, t. A generalization to many wave functions per
angular momentum is readily incorporated and will be discussed in Chap. 6.
It is then clear that all matrix elements can be written in terms of the struc-
ture constants and five “potential parameters”: φ(S), φ̇(S), 〈φ̇2〉, Dφ, and Dφ̇.
However, it can be shown using Green’s second identity that one of the po-
tential parameters is dependent on the other parameters. Indeed let us choose
two wave functions φ1 and φ2 computed at the energies e1 and e2, respectively.
We then get the relationship

∫ S

0
dr

(
(rφ1(r))

∂2

∂r2
(rφ2(r)) − (rφ2(r))

∂2

∂r2
(rφ1(r))

)

= −(e2 − e1)
∫ S

0

dr r2φ1(r)φ2(r)

= S2
(
φ1(r)φ′2(r) − φ′

1(r)φ2(r)
)∣∣∣

r=S
.

In the last step of this equation we have used Green’s second identity. We now
divide the left-hand side by e2 − e1 and obtain

∫ S

0

dr r2φ1(r)φ2(r) = S2

(
φ′1(r)

(φ2(r) − φ1(r))
(e2 − e1)

− φ1(r)
(φ′2(r) − φ′

1(r))
(e2 − e1)

) ∣∣∣
S
.

Then we let e2 − e1 go to zero and φ2 approach φ1 (we thus drop the “1” and
use φ) and so obtain the energy derivatives of φ and φ′, denoted, respectively,
by φ̇ and φ̇′:

∫ S

0

dr r2φ2(r) = S2
(
φ′(r)φ̇(r) − φ(r)φ̇′(r)

)∣∣∣
S

= S(Dφ −Dφ̇)φ(S), φ̇(S) . (5.29)

Since the left-hand side is normalized and equals 1, the derived relation lets
us express, for example, Dφ̇ in terms of φ(S), φ̇(S), and Dφ. These poten-
tial parameters depend strongly on the choice of the fixed energy eν . In-
stead of these parameters Andersen [11] used the equivalent potential param-
eters ω�(−� − 1), SΦ2

�(−� − 1, S), Φ�(−� − 1, S)/Φ�(�, S), and 〈φ̇2
� 〉−1/2. To

simplify the notation, we note that one often uses the short hand notation:
Φ�(−�− 1, S) ≡ Φ�(−), ω�(−�− 1) ≡ ω�(−), Φ�(�, S) ≡ Φ�(+).

In the ASA the Bloch wave function, given by (5.21), can be rewritten in
the limit where κ = 0 as

χk
L(r) = ΦL(−, r) −

∑

L′

ΦL′(�′, r)
2(2�′ + 1)

Φ�(−)
Φ�′(�′)

SL′,L(k) . (5.30)
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Using the above potential parameters and the Bloch wave function given by
(5.30), the matrix elements of the Hamiltonian and the overlap can be writ-
ten as

〈χk
L′|H − eν |χk

L〉
= ω�(−)δL,L′ −

(
1 +

ω�′(�′)
ω�′(−�′− 1) − ω�′(�′)

+
ω�(�)

ω�(−) − ω�(�)

)
TL′,L(k)

+
∑

L′′
TL′,L′′(k)

ω�′′(�′′)
[ω�′′(−�′′− 1) − ω�′′(�′′)]2

TL′′,L(k) .

〈χk
L′|χk

L〉 =
(
1 + 〈φ̇2

� 〉ω2
� (−)

)
δL,L′ −

(
1 + 〈φ̇2

�′〉ω�′(−�′− 1)ω�′(�′)
ω�′(−�′− 1) − ω�′(�′)

+
1 + 〈φ̇2

� 〉ω�(−)ω�(�)
ω�(−) − ω�(�)

)
TL′,L(k)

+
∑

L′′
TL′,L′′(k)

ω�′′(�′′)
[ω�′′(−�′′− 1) − ω�′′(�′′)]2

TL′′,L(k) , (5.31)

where the normalized structure constants TL′,L(k) are defined in terms of
SL′,L(k) as

TL′,L(k) = SΦ�′(−�′− 1)SL′,L(k)Φ�(−) . (5.32)

The matrix elements given by (5.31) and (5.31) are thus readily computed once
the four potential parameters are known and it is these parameters which are
recalculated each time in the self-consistent cycle of the LMTO-ASA method.
The structure constants SL′,L(k) are only computed once and may be stored
to be used over and over, in the self-consistent calculation. This makes the
LMTO-ASA one of the fastest ab initio band structure method. This method
can be improved by correcting the above matrix elements by means of the so-
called combined correction terms which will take into account approximately
the interstitial region wave function. We will not discuss those corrections in
this chapter and direct the reader to the original paper of Andersen [11] for
further details. However, in the next chapter we will describe the full-potential
version of the LMTO method, which goes beyond the combined correction to
the ASA. We will in this chapter show how one can overcome the ASA and
treat correctly the interstitial region, the charge density, and the potential.
Before we do this we make a comment on the choice of linearization energy
as well as the main advantages and drawbacks of the LMTO-ASA method.

5.1.5 Logarithmic Derivatives and Choice of the
Linearization Energies

The bandwidth may be estimated similar to the Wigner–Seitz rule, from the
logarithmic derivative, which is defined to lie between zero and minus infinity
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Fig. 5.3. The logarithmic derivative as a function of energy (left) and the atomic
wave function (right) of the Gd 4f wave function

(an example is shown in Fig. 5.3 for Gd). Here, Dφ = 0 corresponds to the
bottom of the canonical band, Dφ = −�−1 to the center of the canonical band,
and Dφ = −∞ to the top of the canonical band. To avoid the so-called “ghost
bands” (for a more detailed analysis of the “ghost bands”, see [209]) one must
be careful in choosing the linearization energies. A good check is always to
restrict the linearization energy to the center of the band. As it can be seen
from the φ wave function of Gd (Fig. 5.3 right) when Dφ approaches large
negative energies the wave function has a node at the muffin-tin radius, which
corresponds to an antibonding state at the top of the band. The bonding state
is obtained when Dφ is close to zero, since the radial derivative of the wave
function is zero at the muffin-tin radius, which corresponds to the Wigner–
Seitz rule for the bonding state. Skriver has used extensively the Wigner–
Seitz rule to describe the canonical band structures many materials, including
Pt3Sn, β′-MgHg, and β′-MgTl [207, 208].

5.1.6 Advantages of LMTO-ASA Method

The LMTO-ASA method has the following advantages: (1) ease of interpre-
tation, (2) speed, and (3) simplicity. The advantage follows from the fact that
this method is very close to the LCAO formalism, i.e., instead of the atomic
potential, the muffin-tin potential defines the basis set to construct the Bloch
wave function of the material. The atomic wave function is constructed using
only s, p, d basis function for transition metals. For rare-earths and actinides
one have to also include the f orbitals in the expansion of the crystal wave
function. This use of a minimal basis set makes the method extremely fast,
because one has to diagonalize only a small-sized Hamiltonian. For example,
to obtain the band structure of silicon (with two atoms per unit cell) one need
only diagonalize an eight by eight Hamiltonian.

Disadvantages of the method are as follows: (1) The limited accuracy
in particular that Hellman–Feynman forces have been difficult to evaluate
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accurately with this method; (2) the method is limited to close-packed sys-
tems, which means, e.g., that oxides might be difficult to handle accurately;
(3) for open structures, as stated in the beginning one has to use the so-called
empty spheres to make the system close packed, and although this works it
is an inconvenience especially when structure optimizations are needed. In
the next chapter we will see that a full-potential treatment overcomes this
problem, allowing for highly accurate calculations while maintaining an ac-
ceptable speed. When this text is written it is readily possible to carry out
a full-potential calculation with linear muffin-tin orbitals, on a single proces-
sor of a standard computer, for a crystal which contains 50–100 atoms of
an f -electron system and 200–300 atoms for a transition metal system. The
LMTO-ASA calculations can easily handle 5–10 times as many atoms in the
unit cell.



6

The Full-Potential Electronic Structure
Problem and RSPt

Abstract The full-potential methodology is presented in this chapter, with details
of how the non-spherical electron density and potential are expanded in the muffin-
tin regions, as well as the interstitial region. Details in the implementation of the
full-potential linear muffin-tin orbitals (FP-LMTO) method are presented, with a
general definition of the mathematical functions used and the symmetry aspects
of these functions. The difference between a minimal, double and triple basis set
is described, and numerical tests of the convergence of these basis functions are
presented.

6.1 General Aspects

In this chapter we describe in detail how RSPt solves the full-potential prob-
lem of a solid, using linear muffin-tin orbitals as basis functions. The chapter
highlights the difference to the LMTO-ASA method and includes a descrip-
tion of base geometry of the full-potential calculations, the choice of basis
functions, how to calculate matrix elements of the Hamiltonian and overlap,
as well as how to construct a potential from a calculated charge density. In
order to successfully use RSPt one does not need to follow in detail all the
aspects of this implementation, although it is of course desired.

6.1.1 Notation

Descriptions of electronic structure methods unavoidably carry a high over-
head in functional symbols and indices, and what follows is no exception. For
reference we define here special symbols and functions used extensively; other
symbols will be defined as they are used. The particular forms of the functions
and parameters (although not necessarily the symbols we use) are in common
use in LMTO literature (see, for example, [209]).
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Spherical Harmonics

YL(r̂) ≡ i�YL(r̂), (6.1)

CL(r̂) ≡
√

4π
2�+ 1

YL(r̂), (6.2)

CL(r̂) ≡ i�CL(r̂), (6.3)

L ≡ {�,m} , (6.4)

where Y is a spherical harmonic [124]. The real space functions Y�m and
C�m have convenient properties under rotations and are used for wave func-
tions (Y) and electron densities and potentials (C) around atomic sites. The
function C�m is used for functions in reciprocal space. Note that the harmon-
ics defined above are complex. Basis functions in RSPt are complex for all
symmetries.

Bessel Functions

The envelope functions of LMTO bases are spherical waves, the radial com-
ponents of which are solutions to the Helmholtz equation with both positive
and negative energies. In what follows, the argument κ, the square root of
a kinetic energy, falls in the interval π/2 > arg(κ) > 0 and is continued to
the real or imaginary axis. The following definitions create solutions to the
Helmholtz equations with distinct energy scaling:

K�(κ, r) ≡ −κ�+1

{
n�(κr) − ij�(κr), κ2 < 0
n�(κr), κ2 > 0

, (6.5)

KL(κ, r) ≡ K�(κ, r)YL(r̂), (6.6)

J�(κ, r) ≡ j�(κr)/κ�, (6.7)

JL(κ, r) ≡ J�(κ, r)YL(r̂) , (6.8)

where L denotes �m and n� and j� are spherical Neumann and Bessel func-
tions, respectively [124]. For simplicity, we refer to K as a generalized Hankel
function.

The Lattice, Unit Cell, and Atom Positions

In the language of RSPt, a material is described as a three-dimensional, infi-
nite, periodic system, i.e., a crystal lattice. The lattice is described by a set
of vectors R = Rn, where the 3 × 3 matrix R is a lattice basis and the vec-
tors n are integer vectors. The reciprocal to this lattice is the set of vectors
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G = Gm where G is the inverse transpose of R. The lattice defines a unit
cell at each lattice site with atom sites at positions τ , relative to each lattice
point R. Thus the position of a particular atom in space is the site R + τ .
The set of sites τ related to each other, up to a lattice vector, by a sym-
metry operation of the point group of the lattice we call a type, designated
by t and defined by t(τ) = {τ ′ : Pτ ′ = τ + R}. Every type corresponds to
a space group coordinate position set label. The unit cell of the reciprocal
lattice is equivalent to the Brillouin zone of the lattice, and points in this
cell are labeled by k, so that a Fourier representation f̃ of a function f is
f(r) =

∑
G

∫
G

exp(i(k + G) · r)f̃(k + G)d3k.

6.1.2 Dividing Space: The Muffin-Tin Geometry

The electron density in a material varies continuously between two extremes.
Near atomic sites, the potential is dominated by the spherically symmetric
Coulomb potential of the atomic nucleus. In the region between atoms, the
nuclear Coulomb potential is screened by electron density near the nucleus,
and the electron density in this region is better described by deviations from
uniformity. In a full-potential electronic structure method, we seek to describe
the electron density and potential as accurately as necessary and as efficiently
as possible. To accomplish this in FPLMTO methods a spherical region is
defined around each atomic site in which a spherical wave expansion is most
efficient, and in the region between the spheres, a plane-wave expansion is
used to most efficiently describe nearly uniform behavior. An appropriate slice
through a crystal thus looks like a muffin-tin. The spheres surrounding atomic
sites are thus called muffin-tin spheres, and the region between the spheres is
called the interstitial , denoted by I. The muffin-tin radius of a sphere at site
τ is denoted by St where t is the type of τ . To give a frivolous illustration, a
point in the material can be described by

r =
∑

R

∑

τ

(r′ + τ + R)θ(St − r′) + rθ(r ∈ I),

where r′ = r − τ − R. The muffin-tin radius is chosen to make the overall
convergence of functional expansions efficient, subject to the constraint that
spheres do not overlap. Factors to be considered in choosing a muffin-tin radius
are discussed below.

6.1.3 A Note on the Language of FPLMTO Methods

The previous chapter described muffin-tin orbitals, linearization, and the
LMTO-ASA, a method which has contributed greatly to our understand-
ing of the behavior of materials [209]. The LMTO-ASA describes the elec-
tronic structure and bonding of a material in terms of a minimal basis and a
few, physically transparent, parameters which facilitate a physically intuitive
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description of material properties. FPLMTO, which might be said to have
LMTO-ASA as a parent, uses much of the same language with that method.
In departing from LMTO-ASA to achieve its goals, however, this language
becomes less precise. A simple example of this is the association of particular
bands with a particular atomic site and angular momentum character (e.g., a
Ce 4f band). Because an accurate calculation of necessity represents regions
that belong to no atomic site, this characterization becomes less precise even
when electron bands are derived from site-centered spherical waves. Another
example is linearization. The LMTO-ASA basis, consisting of a radial function
and its energy derivative, has a precise relationship to a linear expansion of
an “exact” calculation. The full-potential LMTO basis uses this same radial
basis, but with no corresponding derivative expansion in the region between
spheres. Thus linearization in the full-potential LMTO becomes a choice of
basis, rather than a derivative expansion. Although the language is still useful,
it should be remembered that the language of accurate electronic structure
method becomes less precise as the predictions of the method become more
accurate.

6.2 Symmetric Functions in RSPt

RSPt makes explicit use of symmetry in its expressions. For example, the
density and potential of body-centered tetragonal (bct) elemental crystal will
be expressed in functional expansions explicitly containing that symmetry.
Motivations for this are efficiency in calculation and expression as well as
the damping of numerical noise. RSPt calculates the crystal symmetry from
the input lattice basis R, the positions {τ} of atoms in the unit cell, and
parameters of the calculation such as spin polarization and relativity. In a
calculation sampling many possible symmetries, such as a structural relax-
ation, the lowest possible symmetry should be used for all calculations, and
all higher symmetries sampled will be implicit, rather than explicit. If desired,
of course, the minimal symmetry, i.e., the point group with one element, can
be used routinely, although the calculation will be somewhat harder to con-
verge and not filtered for numerical noise. The form of symmetric functions in
RSPt determines the form and interpretation of input and output quantities.

Another example of RSPt’s manic use of symmetry is found in the use
of a local coordinate system attached to each atomic site. In a material in
which any type contains more than one site (any space group position set of
multiplicity greater than 1), the local symmetry of each site of that type is
lower than the point group symmetry, the elements factored out being used
to rotate between all the sites of a type. In order to use the same linear
combinations of spherical harmonics to describe the crystal harmonics of the
local point group on each site, the coordinate systems of each atomic site in
a type must rotate into each other, i.e., they must be symmetrically related.
Rotating coordinate systems is more efficient than rotating coefficients since
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the rotation in this case never has to be explicitly be done. It does add,
however, to an already over-burdened collection of symbols and indices by
defining the rotation Dτ from global to local coordinates. Another instance in
which local coordinate systems are useful, regardless of type multiplicity, is
found in spin-polarized electronic structure coupled to the lattice through the
spin–orbit interaction. With a fixed spin direction, orienting local coordinates
along the spin axis simplifies the expression of crystal harmonics.

As examples of symmetric functions in RSPt, we describe the one-electron
potential V (r) and the density n(r) of a crystal. Recalling the division of
the crystal into muffin-tin spheres and an interstitial, two forms of symmetric
expansions (crystal harmonic and reciprocal lattice star) are used. Within the
muffin-tin region, the potential and density are expressed as an expansion in
crystal harmonics D, linear combinations of spherical harmonics C invariant
under the local group of the atomic site. The potential and density expanded
around site τ at cell R = 0 are

V (r)
∣∣∣
rτ <St(τ)

=
1
rτ

(
−Zte

2 +
∑

h

vht(rτ )Dht(Dτ r̂τ )

)
, (6.9)

n(r)
∣∣∣
rτ <St(τ)

=
1

4πr2τ

∑

h

(2�h + 1)nht(rτ )Dht(Dτ r̂τ ), (6.10)

Dht(r̂) =
∑

m

αht(m)C�hm(r̂) , (6.11)

where rτ = r − τ − R, t = t(τ), h indexes the set of crystal harmonics
appropriate to this type, and Dτ is a transformation to local coordinates.
Note that the crystal harmonic D depends only on type.

In a calculation, the sum over crystal harmonics in (6.9) and (6.10) is
carried out to convergence, convergence being judged by the stability of the
total energy. The maximum harmonic could be different for potential and
density, and indeed for every atom type. In practice, one parameter, which will
be called out in this chapter to illustrate the practical use of RSPt, controls all
symmetric expansions; it is �h, the maximum � value of any crystal harmonic
in the expansion of a symmetric function.

In the interstitial region, the potential and density are expressed in Fourier
series:

V (r)
∣∣∣
r∈I

=
∑

S
Ṽ (S)DS(r), (6.12)

n(r)
∣∣∣
r∈I

=
∑

S
ñ(S)DS(r), (6.13)

DS(r) =
∑

G∈S
eiG·r . (6.14)
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Here, S labels a star of the reciprocal lattice, the set of reciprocal lattice
vectors related by point group elements P : S(G) = {G′ : PG = G′}. The
potential defined by truncating the expansions in (6.9) and (6.12) at zeroth
order is called the muffin-tin potential, used in the KKR method and to define
FP-LMTO bases as described in Sect. 6.3.

6.2.1 The Fourier Grid for Symmetric Functions in RSPt

The star expansions, (6.12) and (6.13), like the muffin-tin crystal harmonic
expansions, are truncated at a value designed to achieve convergence, as mea-
sured by the stability of the total energy. The star expansions, although
representing the true density and potential only in the interstitial region,
define functions, called pseudo-functions, continuous throughout the unit cell.
The truncation of expansions in reciprocal lattice vectors is determined by
the resolution imposed on these pseudo-functions in real space. A grid with
points

r(i, j, k) = R

⎛

⎝
i/N1

j/N2

k/N3

⎞

⎠ ,

where R is the lattice basis, is laid on the unit cell of the crystal lattice for the
purpose of resolving pseudo-functions, and the size and relative dimensions of
this grid map directly onto the size and relative dimensions of the reciprocal
lattice, which determines the extent of the expansions in (6.12) and (6.13). The
gridding Ni is chosen so that the subcells have sides of approximately equal
dimensions, i.e., |r(1, 00)| ∼ |r(010)| ∼ |r(001)|. Although RSPt provides a
default, the grid size, like everything else, is under user control.

6.3 Basis Functions

The basis functions of FP-LMTO methods are, just as in LMTO-ASA, lin-
earized muffin-tin orbitals (LMTOs) – augmented spherical waves, solutions
to the Helmholtz (or free-Dirac) equation in the interstitial, and atomic-like
functions calculated from the spherical (zeroth order) component of the one-
electron potential centered on that site.

6.3.1 Muffin-Tin Orbitals

In the (non-linear) KKR method presented in Chap. 5, energies and wave
functions are “exact” solutions to an approximate potential – the “muffin-tin
potential.” This potential is just the RSPt potential [(6.9) and (6.12)] with
expansions truncated at zeroth order: atomic-like and spherically symmet-
ric in non-overlapping spheres surrounding atomic sites, and constant in the
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interstitial region between the spheres, capturing an essential aspect of the
potential in a crystal.

The KKR trial wave functions

ψ(k, r) =
∑

L

AL(k)
∑

R

eik·RχL(E, r − R) (6.15)

are linear combinations of the muffin-tin orbitals χ defined by (5.2) and (5.5).
The eigenfunctions of FP-LMTO methods will have the same form as KKR
trial wave functions with the MTOs appropriately linearized. In seeking solu-
tions to the wave equation for the full crystal potential, the procedure leading
to (5.10) can be generalized to achieve a non-linear full-potential solution
[76]. Alternatively, one could imagine using the solutions to muffin-tin poten-
tial KKR at representative energies as basis functions for a linear solution to
the full-potential problem. FP-LMTO methods follow a similar but simpler
route, in which the muffin-tin orbitals (MTOs) of (5.5) are transitioned to lin-
ear muffin-tin orbitals (LMTOs) and adopted as basis functions with which to
construct variational eigenvalues and eigenvectors for the full-potential prob-
lem. FP-LMTO bases are described in detail below. The process of lineariza-
tion in transitioning from the KKR-ASA to the LMTO-ASA is described in
Chap. 5.

6.3.2 FP-LMTO Basis Functions

We now use MTOs as motivation for introducing LMTOs, the basis functions
of FP-LMTO methods. The description that follows is for non- or scalar-
relativistic LMTOs; the same description easily transitions to the case of Dirac
spinors. Basis functions in an FP-LMTO method are generalized Hankel func-
tions in the interstitial and numerical, atomic-like functions in the muffin-tin
spheres, joined at the sphere boundaries by a condition insuring continuity
and differentiability.

In the Interstitial

In the interstitial region, I, between the muffin-tin spheres, bases are Bloch
sums of spherical Hankel or Neumann functions, identical to an MTO at a
fixed energy κ2:

χi(k, r)
∣∣∣
r∈I

=
∑

R

eik·RKLi
(κi, rτi+R) .

rτ = Dτ (r − τ ) (6.16)

The rotation Dτ in (6.16) takes the argument into a coordinate system local
to each site τ , as discussed in Sect. 6.2. The function on the right-hand side of
(6.16) is sometimes called the envelope function. The parameters specifying a
basis function, inherent in this definition, are
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τ the site in the unit cell on which the spherical wave is based,
L the angular momentum parameters � and m of the spherical wave with

respect to its parent site at τ + R, and
κ2 the kinetic energy of the basis in the interstitial region, which may be

positive or negative.

The angular momentum parameters specifying the basis set are chosen to
represent the atomic states from which crystal eigenstates are derived. In the
LMTO-ASA, it is usual to include � bases one higher than the highest relevant
band. In the method described here, it is more common to get this variational
freedom from the multiplicity of bases. Basis sets typically include multiple
bases with the same angular momentum parameters, centered on the same
sites, but using different interstitial energies κ2

i . There is no simple algorithm
for choosing a consistently good set of interstitial kinetic energy parameters.
Possible schemes are discussed in Sect. 6.3.4.

In the Muffin Tins

Muffin-tin orbitals, when tail cancellation occurs, are atomic-like functions
in the muffin-tin spheres. Linear muffin-tin orbitals follow suit, augmenting
the spherical wave, (6.16), by replacing K and its tail J by atomic-like basis
functions. Because the Helmholtz equation is translationally invariant and
singular at a single point, the envelope function (K) can be expanded in a
series of regular solutions (J ) away from its center. As a Bloch wave,

∑

R

eik·RKL(κ, r − R) = KL(κ, r) +
∑

L′
JL′(r)BL′;L(κ,k) , (6.17)

where B is the KKR structure constant presented in Chap. 5. Expressing this
expansion in a somewhat more compact form, the envelope function centered
on site τ is expanded in the sphere at site τ ′ in the unit cell at R = 0 as

∑

R

eik·RKL(κ, rτ+R) =
∑

L′
KT

L′(κ, rτ ′)Sτ ′L′,τL(κ,k), (6.18)

rτ = Dτ (r − τ ) ,

KL(κ, r) =
(KL(κ, r)
JL(κ, r)

)
, (6.19)

Sτ ′L′,τL(κ,k) =

(
δ(L′, L)δ(τ ′, τ)

BL′L(κ, τ ′− τ ,k)

)
. (6.20)

The structure constant vector S is rotated so that the initial and final states
are in local site coordinates. On the surface of the muffin-tin sphere, the FP-
LMTO basis is thus
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χi(k, r)
∣∣∣
rτ =St

=
∑

L

KT
L (κ, St)SτL,τiLi

(κ,k) . (6.21)

Inside the muffin-tin spheres, each � component of the envelope function K in
(6.21) is replaced by an atomic function

UL(r) = U�(r)YL(r̂)

U�(r) =

(
u�(K, r)
u�(J , r)

)
(6.22)

such that, at the muffin-tin radius S,
(
U�(S) U ′

�(S)
)

=
(
K�(κ, S) K ′

�(κ, S)
)

(6.23)

and the functions u are calculated from a radial wave equation Hr(V0) for
the spherically averaged potential V0(r) in the muffin tins. The augmentation
functions u can be obtained in a number of ways, provided only that their
behavior is representative of a solution to H. For example, u(K) and u(J )
could be constructed from two numerical solutions calculated at different en-
ergies (e.g., the bottom and center of a band, which is actually the basis of
the ASW method).

A linearized MTO, the basis of FP-LMTO methods, represents the be-
havior of a solution in a range of energies around a representative energy by
using a Taylor series to first order in the energy (hence linearized). A function
φ and its energy derivative φ̇ are calculated by integrating the radial wave
equation so that

Hr(V0)φ(e, r) = eφ(e, r), (6.24)

Hr(V0)φ̇(e, r) = φ(e, r) + eφ̇(e, r) . (6.25)

If φ is normalized, φ and φ̇ are linearly independent. Linear combinations of
φ and φ̇ are used that match both K and J :

ΦL(e, r) = Φ�(e, r)YL(r̂) =
(
φ�(e, r)
φ̇�(e, r)

)
YL(r̂), (6.26)

UL(r) = ΩT
� ΦL(e, r),

ΩT =
(
K� K

′
�

) (
Φ� Φ

′
�

)−1
. (6.27)

Finally, we can write an FP-LMTO basis function in any sphere as

χi(k, r)
∣∣∣
rτ <St

=
∑

L

ΦT
Lt(e�t(i), rτ )Ω�t(e�t(i), κi)SτL,τiLi

(κi,k) . (6.28)

The basis set, expanded in a muffin tin, acquires an additional parameter to
add to the set of parameters specifying a basis function. The parameter ei
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in (6.28) is a set of energies e�t(i) used by basis set χi for its representation
in the muffin tins. Thus ei is the set of energies used to expand an RSPt
basis in a muffin-tin sphere and it is analogous to a principal quantum num-
ber and is another parameter specifying a basis function. It often happens in
heavy elements that energy levels derived from atomic states having differ-
ent principle quantum numbers but the same angular momentum quantum
number are part of the same, fully hybridizing basis. For example, describing
the properties of elemental actinides at any pressure requires a basis with
both 6p and 7p characters, since both electron states form energy bands with
dispersion. Similarly, an adequate calculation of the structural properties of
transition metal oxides requires both semi-core and valence s and p states on
the transition metal ions. In the RSPt basis, the “energy set” parameter ei

distinguishes bases with the same angular momentum behavior. The descrip-
tion of the evolution of core states from localized to itinerant under pressure
also requires multiple principle quantum numbers per � value. In the RSPt
basis, the “energy set” parameter ei distinguishes bases with the same angular
momentum behavior.

In principle, and as implemented, each (τ�κ) basis can use its own unique
energy set. It is more usual to use a common energy set for a set of basis
states giving rise to bands of similar energies within the scope of a particular
calculation. The configuration of the basis shown in Table 6.1, for example,
uses a set of energies for “semi-core” 6s and 6p bases, and another set of
energies to represent “valence” bases. The choice of energies in an energy
parameter set is discussed below.

The sum over L in (6.28) introduces another parameter in RSPt. As the
upper component of S in (6.20) is only non-zero for χs parent L, this sum is es-
sentially a sum over the tails of χ in a muffin tin. The extent of this summation

Table 6.1. Parameters for the default basis set for an elemental actinide: parent
angular momentum parameter (�), energy set for radial expansions (e-set), and the
index of the kinetic energy in the interstitial region (κ-index). The default set of κ2

values, corresponding to the kinetic energy indices, is given at the bottom of the
table (see discussion in the text)

n � e-Set κ-Index n � e-Set κ-Index n � e-Set κ-Index

6 s 1 1 7 s 2 1 6 d 2 1

6 s 1 2 7 s 2 2 6 d 2 2

6 p 1 1 7 s 2 3 5 s 2 1

6 p 1 2 7 p 2 1 5 s 2 2

7 p 2 2

7 p 2 3

κ2: 1: 0.3

2: −2.3

3: −0.6
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introduces another parameter; �m, the maximum � in the expansion of the tails
of the basis functions in any muffin-tin sphere. The parameter �m is chosen
to converge the total energy and generally takes on values 6 ≤ �m ≤ 12. Be-
cause the tail expansion is carried out to a higher � than is usual for any basis
parent, the structure constant (S or B) is rectangular.

Radial Basis Functions in RSPt

The description of the radial functions φ and φ̇ used to represent basis func-
tions in muffin-tin spheres presented above [(6.24), (6.25), and (6.26)] is appro-
priate for the Schrödinger equation for V0(r) in a muffin tin. The radial bases
in RSPt are actually four-component spinors obtained from the Harmon–
Koelling (H–K) equation [137], a modification of the Dirac equation for the
spherical potential V0. In a slightly varied form, the Harmon–Koelling equa-
tion designed to obtain all relativistic effects except the spin–orbit interaction
produces functions G and F such that

(HD −mc2)ψκm(e, r) = eψκm(e, r) + V̂so(r)
(
G�(e, r)/r

0

)〈
r
∣∣κm

〉
, (6.29)

V̂so(r) =
1
2r

(
∂

∂r

1
M(e, r)

)
σ · L, (6.30)

ψκm(e, r) =
1
r

(
G�(e, r)

−iσr

(
F�(e, r) − σ·L

2McrG�(e, r)
)

)
〈
r
∣∣κm

〉
,

(6.31)

where HD is the Dirac Hamiltonian, σr = r̂ ·σ, M(e, r) = m+(e−V (r))/2c2),
and

〈
r
∣∣κm

〉
=

∑

m�ms

Y�m(r̂)
∣∣ms

〉 (
� m� s ms

∣∣� s j m
)
,

κ =

{
j − 1

2 , j = �− 1
2 ,

−(j + 1
2 ), j = �+ 1

2 ,

κ is not to be confused with the basis kinetic energy parameter.
G and F in (6.29) and (6.31) depend only on �. The RSPt radial basis

function φ is obtained from (6.29) by transforming from
∣∣�sjm

〉
to

∣∣�m�sms

〉

to obtain

φL(e, r)
∣∣ms

〉
=

1
r

(
G�

−iσr

(
F� − σ·L

2McrG�

)
)
YL(r̂)

∣∣ms

〉
. (6.32)

Thus, formally, the Dirac Hamiltonian, acting on a muffin-tin basis, returns
the energy times the muffin-tin basis and a spin–orbit term. The muffin-tin
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basis function φ also has a spin–orbit term in its lower component; that term
is carried through all calculations with every term coupling spins in the result
ignored. This definition of φ includes all relativistic effects to all orders, with
the exception the spin–orbit interaction, while maintaining a basis with spin
and orbit (almost) decoupled, and facilitating the incorporation of the spin–
orbit interaction; a fully relativistic calculation amounts to not neglecting the
second term in (6.29).

The second radial basis function, φ̇, is obtained from (6.25) using an an-
alytic derivative of the radial wave equation, including energy dependence of
M(e, r).

6.3.3 Choosing a Basis Set

The range of energies captured in a normal calculation extends from the 1s1/2

deep core state to well above the Fermi energy EF. Most of these states are
localized in core region and are calculated separately. The variational basis
will contain basis functions designed to represent the highest energy atomic
configuration, and possible the next highest energy configuration as well. Also
included in the basis will be accommodation for the highest significant angu-
lar momentum component. For example, the atomic configuration of Al is
3s(2)3p(1); the corresponding valence basis would contain 3s, 3p, and 3d LM-
TOs; as discussed below, a good choice would have three s and p orbitals with
different interstitial kinetic energies and two d orbitals with different kinetic
energies. We write this as

• 3 × (3s, 3p), 2 × 3d (Al)

As a rule of thumb, valence s and p states use three tails, higher angular
momentum and semi-core states would use two tails. For a 4d and 5d transition
metals, it may be advantageous to include semi-core states. Examples are

• 2 × (4s, 4p), 3 × (5s, 5p), 2 × (4d) (Mo)
• 2 × (5s, 5p, 4f), 3 × (6s, 6p), 2 × (5d) (W)

For f -electron materials, semi-core states are important, even at zero pressure.
Table 6.1 gives the default basis configuration for an actinide element.

6.3.4 Choosing Basis Parameters

Interstitial Kinetic Energies

There is no simple algorithm for choosing a consistently good set of interstitial
kinetic energy parameters κ2 (also called tails), the parameters that generate
the representation of the bases in the interstitial region. Proposed schemes
include bracketing the relevant energy spectrum [198] and finding and fixing
a representative set to use for all calculations, eliminating variation between
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calculations [168]. Another scheme is to use a single tail per energy set e(i)
but to minimize the energy with respect to the value of that tail at each
volume and configuration [187]. Minimizing the total energy with respect to
the values (and number) of tails is a natural choice, but it is time consuming
and reduces the value of using a compact basis set. Instead, it is desirable
to find a scheme to generate good choices for general use, possibly based on
energies generated in the course of a calculation. For example, it can be shown
that, for a single tail, the value that minimizes the total energy is close to the
average interstitial kinetic energy, 〈T̂ 〉I .

RSPts default configuration for most materials gives a basis with three tails
in the highest energy set (a “triple κ basis”), representing the nominal valence
bands, and two tails in the next lower energy set, representing the uppermost
core levels. The values of κ2 are drawn from the same set of three values:
κ2 ∈ {0.3,−2.3,−0.6}. These values were obtained from minimizing the total
energy for a particular actinide in its ground state and have been found to give
reasonable results in general. The highest value is close to the 〈T̂ 〉I in a metal,
and in fact the highest value is generally replaced iteratively by the calculated
〈T̂ 〉I from a previous iteration. Choosing the same values for both valence and
“semi-core” states lends stability but diminishes the physical significance of
the κs in distinguishing between states of very different character. This tail
configuration is accompanied by a particular choice for muffin-tin energy pa-
rameters for radial bases differing only in principle quantum number. In the
default configuration, both semi-core and valence s and p states are present in
the basis (for example, semi-core 6s and 6p and valence 7s and 7p for an ac-
tinide). In this configuration, energies for the valence s and p are chosen so that
the valence radial bases are strictly orthogonal to the corresponding semi-core
bases (see “Muffin-tin energy parameters” below). This results in high values
for the e�t(valence) but maximizes the completeness of the combined basis.

Another successful configuration is that used by researchers at Uppsala
University. This scheme assigns two low-energy tails for semi-core states and
two different and higher energy tails for the valence bands. All κ2 are neg-
ative. The algorithm for choosing the values, as given by Björkman [32], is
to set the highest of the four κ2 to −0.1, the lowest to the minimum of the
lowest semi-core band, and to space the other two tails evenly between these
values. By using different energies for semi-core and valence bands, these tails
have more physical significance than the RSPt default setup. The Uppsala
configuration has been used successfully to describe many different properties
of materials. In this configuration, the e�t are set to resonance energies for
semi-core states and to �-projected energies for valence states (see “Muffin-tin
energy parameters” below).

Björkman [32] analyzed these two configurations by considering the sta-
bility of a calculation against changes in the underlying muffin-tin geometry.
FP-LMTO bases change character at the muffin-tin radius, but if functional
expansions of the eigenstates in the interstitial as well as the muffin-tins are
sufficiently complete, the total energy will be insensitive to the precise value
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Fig. 6.1. Energy as a function of sphere size for different choices of energy
parameters

of the boundary. Björkman applied this criterion to evaluate different config-
urations. Figure 6.1, drawn from [32], shows the total energy of fcc Pb as
a function of the interstitial volume fraction, for four different tail configu-
rations. The minimum volume fraction (the spheres cannot overlap) is 0.26.
The first configuration, labeled “Default” is the default RSPt configuration;
the second is the default configuration with the highest κ2 replaced by the
〈T̂ 〉I . Both of these configurations are relatively stable and give a low en-
ergy until a volume fraction ∼ 0.5, where the energy starts to rise steeply.
The use of the interstitial average does not change this behavior significantly,
possibly because this energy is close to 0.3 for a close-packed metal. The Upp-
sala configuration, in contrast, has a higher energy and more variation at low
volume fractions, and also rises steeply at high fractions. It should be noted,
however, that the comparison is between a “triple-κ” and a “double-κ” basis
set, the former presumably having more variational freedom. This presump-
tion is born out by examining the results for the last configuration, labeled
“Uppsala+1.” This configuration is obtained from the Uppsala configuration
by the addition of a third tail in the valence energy set, with a value set to
the 〈T̂ 〉I , and by using the default RSPt e�t configuration for semi-core and
valence energy sets. Not only is the energy lowest of all the configurations, but
variation is less than ∼2 mRy over the range of interstitial volume fractions
from 0.26 to 0.8. This result would seem to show the value of (1) a triple-κ
basis for valence states, (2) tying the κ2 to physically meaningful energies,
and (3) maintaining orthogonality between muffin-tin energy sets. It appears
that Björkman’s “Uppsala+1” configuration (red curve) would make a good
starting point for developing and testing parameter sets for other and more
complex materials.



6.3 Basis Functions 61

Muffin-Tin Energy Parameters: “eν”s

In electronic structure methods using muffin-tin orbitals, the muffin-tin en-
ergy parameters {e�} are usually taken from “�-projected average energies.”
With multiple energy sets, energy predictions for each set are necessary, so
the projected energies become “� and energy set projected average energies,”
defined for each type by

(
Ē�t(ei, ej), Q̄�t(ei, ej)

)
=
∑

n

Vc

(2π)3

∫
d3kΘ(EF − enk) (enk, 1) (6.33)

×
∑

m

∑

τ∈t

∫

τ

r2dr
〈
ψnk

∣∣�mei

〉〈
�mej

∣∣ψnk(r)
〉
,

where the enk are the eigenvalues and ψnk the eigenvectors. For a single energy
set, a well-defined prediction for e�t(i) is Ē�t(i)/Q̄�t(i). With multiple energy
sets, this is a reasonable estimate provided that the basis set using separate
sets gives rise to bands well separated in energy. Because this is not always
the case, the �-projected charge is a sum over cross-terms between energy sets

Q̄�t =
∑

ij

Q̄�(ei, ej) .

These energy and charge matrices must be made diagonal to obtain reasonable
predictions of the e�t(i). RSPt does this with a simple Mulliken population
analysis [170].

Another scheme, particularly useful for states using different energy sets
or not having significant occupation, is to set the e�t(i) to particular energy
criteria. RSPt optionally sets the e�t(i) using criterion for minimum and max-
imum band energies and resonance energies, with principal quantum numbers
identified by counting nodes in the muffin-tin spheres. Yet another, comple-
mentary, method is to maximize the completeness of the radial basis in the
muffin-tin sphere. To accomplish this, assuming the energy parameter for a
low energy state e�(1) is determined, the energy parameters for the same �
in higher energy sets may be chosen so that the radial function has one more
node and the same logarithmic derivative at the muffin-tin radius, hence

∫ S

0

r2dr φ�(e1, r)φ�(ei, r) = 0 , i > 1 . (6.34)

Although this usually generates energy parameters out of the range of occu-
pied states (since the logarithmic derivative of semi-core states is usually large
in magnitude and negative), this choice seems to give a total energy close to
the minimum with respect to this parameter.
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Choosing Muffin-Tin Radii

There are many relevant considerations in choosing muffin-tin radii. Assuming
all expansions are taken to convergence, the density and potential depend on
the muffin-tin radii only through the dependence of basis functions on the
radii. As discussed above, basis functions have a different functional form
inside the muffin-tin spheres, and the choice of muffin-tin radius affects this
crossover. Hence, assuming the Hamiltonian is the same inside and outside the
spheres (the treatment of relativity may affect this as discussed below), the
muffin-tin radii are variational parameters and the optimum choice minimizes
the total energy. If the basis is large enough, however (suitably complete
within and without the spheres), the energy is insensitive to the choice of
radii. A reasonable choice results from choosing radii that are within both the
minimum in charge density and the maximum in potential along a line between
nearest neighbors. Relativistic effects are usually taken into account only in
the muffin-tin spheres, in which case the Hamiltonian depends on the radii;
hence, when relativistic effects are important, the radii are not variational
parameters. Muffin-tin radii also affect the convergence of the pseudo-bases
used to calculate the interstitial potential matrix and the interstitial density.
See the discussion below.

6.4 Matrix Elements

6.4.1 Muffin-Tin Matrix Elements

The potential in a muffin tin at τ is given in (6.9). Note that the normalization
for the spherical harmonic C in (6.3) is such that (−Zte

2 + vht(r))/r is the
potential when �h = 0. Note that this part of the potential is contained in the
energy parameter e of the radial basis functions.

Combining (6.9) and (6.28), the matrix elements of the non-spherical po-
tential in the muffin tins are
〈
χi

∣∣Vh>0

∣∣χj

〉∣∣∣
mt

=
∑

τ

∑

L

S†
τL,τiLi

(κi,k) (6.35)

×
(∑

h

∑

L′
ΩT

�t(ei, κi)
〈
Φ�t(ei)

∣∣vht

∣∣ΦT
�′t(ej)

〉
Ω�′t(ej , κj)

×〈L∣∣Dht

∣∣L′〉SτL′,τjLj
(κj ,k)

)
.

The matrix element of the Dht is a sum over Gaunt coefficients:
〈
L
∣∣Dht

∣∣L′〉 =
∑

mh

αht(mh)G( �′, m′; �, m; �h, mh

)

G( �′, m′; �, m; �h, mh

)
=
∫

Y�′m′Y∗
�mC�hmh

.
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6.4.2 Interstitial Matrix Elements

Overlap and Kinetic Energy

The interstitial overlap matrix can be easily obtained from an integral over
the interstitial surface (the only non-zero contributions, in a crystal periodic
in three dimensions, come from the surfaces of the muffin-tin spheres) and the
kinetic energy is proportional to the overlap:

∫

I
χ†

i (r)χj(r) = −(κ2
j − κ2

i )
−1

∫

I

(
χ†

i∇2χj − (∇2χ†
i )χj

)

= (κ2
j − κ2

i )
−1

∑

τ

s2t

∫
dΩτW (χ†

i , χj) , (6.36)

where W (f, g) = fg′− f ′g. Basis functions on muffin-tin spheres are given in
(6.21), hence

〈
χi

∣∣∣χj

〉∣∣∣
I

=
∑

τ

s2t
∑

L

S†
L,Li

(κi, τ − τ i,k)

×W
(
K�(κi, st),KT

� (κj , st)
)

κ2
j − κ2

i

SL,Lj
(κj , τ − τ j ,k) . (6.37)

In the limit κ2
j → κ2

i , the evaluation of (6.36) requires the derivative with
respect to κ2 of the structure constant.

Potential Matrix Elements

The greatest difference between LMTO-based full-potential methods is in the
way the matrix elements of the potential are calculated over the interstitial
region. The method being described here uses a Fourier representation of basis
functions and the interstitial potential to calculate these matrix elements.
Other approaches for computing these elements are described in the literature
[168, 225].

A Fourier transform of the basis functions described in Sect. 6.3.2 would
be too poorly convergent for practical use. However, the evaluation of the
interstitial potential matrix requires only a correct treatment of basis func-
tions and potential in the interstitial region. This degree of freedom can be
used to design “pseudo-basis set,” equal to the true basis in the interstitial
region although not in the muffin-tin spheres, and has a Fourier transform
which converges rapidly enough for practical use. We define this pseudo-basis
set by

χ̃i(k, r)
∣∣∣
r∈I

=
∑

R

eik·RK̃�i
(κi, |r − τ i − R|)YLi

(r − τ i − R) (6.38)

K̃�(κ, r) ≡ K�(κ, r) , r > S , S ≤ Sτ . (6.39)
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Since rapid Fourier convergence is the criterion for constructing the pseudo-
basis, it is useful to consider the Fourier integral of a Bloch function with
wave number k:

χ̃(G) = − 1
Vc(|k + G|2 − κ2)

∫

Vc

d3r e−i(k+G)·r(∇2 + κ2)χ̃(r) , (6.40)

where Vc is the unit cell volume. Equation (6.40) is obtained by casting ∇2+κ2

on the plane wave then doing two partial integrations; surface terms vanish due
to periodicity. From (6.40) it is evident that the Fourier integral of a pseudo-
basis satisfying the first criterion (equal to the true basis in the interstitial
region) may be obtained from integral over muffin-tin spheres. If in addition,
the pseudo-basis is different from a Hankel function only in its parent sphere,
the Fourier integral is a finite integral over a single muffin-tin sphere. The
problem then is to find a function χ̃ such that (∇2 + κ2)χ̃ has a rapidly
convergent Fourier integral, vanishes outside a radius less than or equal to the
parent muffin-tin radius for the basis, and has a value and slope equal to K
at this radius.

A good choice for such a function is obtained by solving

(∇2 + κ2
) K̃�(κ, r)YL(r̂) = −c�

( r
S

)�[
1 −

( r
S

)2]n

YL(r̂)Θ(S − r) , (6.41)

for a radius S < Sti
and with c� chosen to match onto K at S. This is easily

done analytically. The resulting Fourier transform is

χ̃i(k + G) =
4π
Vc

YLi
(k + G)e−i(k+G)·τ i

(|k + G|2 − κ2
i )

|k + G|�i
JN (|k + G|, S)

JN (κi, S)
, (6.42)

where N = �i + ni + 1. The subscript i has been purposely left off N and s
(see below).

These coefficients converge like 1/Gn+4, provided JN (|k + G|, s) achieves
its large argument behavior, and n can be chosen to optimize convergence.
Weinert [253] used an analogous construction as a tool to solve Poisson’s
equation. He proposed a criterion for the convergence of the Fourier series
(6.42) which amounts to choosing the exponent n in (6.42) so that |k+Gmax|s
would be greater than the position of the first node of J�+n+1. We find this
criterion to be useful provided anisotropy in reciprocal space is accounted
for. This is accomplished by using the minimum reciprocal lattice vector on
the surface of maximal reciprocal lattice vectors, rather than simply using
Gmax.

Notice that this criterion is a criterion for N = �+n+1. The basis Fourier
components are simplified, and the amount of information stored reduced, by
simply using a single argument for all bases, i.e., all bases use the same value
of N . It is also possible to use a single radius s, less than or equal to the
smallest muffin-tin radius, since the only requirement is on the pseudo-bases
in the interstitial region. In practice, a few radii are desirable if large and small
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atoms are present in the same calculation, since small radii give less convergent
Fourier coefficients. In any event, no more than a few radii are necessary to
handle systems with many atoms. Notice also that local coordinates have been
left out of (6.42). The resulting potential matrix may be easily rotated to local
coordinates at the end of the calculation.

As expressed in (6.42), the Fourier components are products of phases
e−i(k+G)·τ , which scale like the number of atoms squared (the size of the
reciprocal lattice grid grows linearly with the number of atoms), and a function
of lattice vectors and a few parameters, which scales linearly with the number
of atoms. The phase factors are simple to calculate by accumulation and need
not be stored.

The potential in the interstitial region is similarly obtained from a “pseudo-
potential” Ṽ that equals the true potential in the interstitial region and has
rapidly converging Fourier coefficients:

V (r)
∣∣∣
I

= Ṽ (r)
∣∣∣
I
, (6.43)

Ṽ (r) =
∑

S
Ṽ (S)DS(r), (6.44)

DS =
∑

G∈S
eiG·r. (6.45)

The sum in (6.44) is over stars S of the reciprocal lattice.
Integrals over the interstitial region are performed by convoluting the po-

tential with an interstitial region step function and integrating over the unit
cell:

〈
χi

∣∣V
∣∣χj

〉
I =

〈
χ̃i

∣∣Ṽ
∣∣χ̃j

〉
I =

〈
χ̃i

∣∣θI Ṽ
∣∣χ̃j

〉
c
.

The potential matrix element is calculated by convoluting the convoluted
potential with a basis and performing a direct product between convoluted
and unconvoluted bases. If basis functions are calculated n3 reciprocal lat-
tice vectors, the interstitial potential will be calculated on (2n)3 vectors. The
convolution is exact if it is carried out on a lattice containing (4n)3 vectors.
The size of the set of reciprocal lattice vectors necessary to converge the to-
tal energy using this treatment of the interstitial region varies from between
≈150 and 300 basis plane waves per atom, depending on the smoothness of
the potential and the convergence required.

Another way of integrating over the interstitial region, more usual in site-
centered methods, is to integrate Fourier series over the unit cell and subtract
the muffin-tin contributions with pseudo-bases and pseudo-potential expressed
as an expansion in spherical waves. The convolution has an advantage in acting
with a single representation, and, given a finite representation for bases and
potential, the convolution may be done exactly.
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The Fourier Grid for Pseudo-basis Functions in RSPt

The normal Fourier grid is constructed to resolve the pseudo-density and
potential, which give the true density and potential in the interstitial, in the
unit cell. The density is constructed from products of wave functions, and
potential matrix elements are taken with products of pseudo-bases, thus the
Fourier grid for a pseudo-basis function is half the size, in each dimension, of
the normal Fourier grid. Remembering that the pseudo-basis converges only
if JN (|k + Gmax|, Sτ ) reaches its asymptotic behavior, the muffin-tin radius
must be large enough for this to occur given that GmaxS on the pseudo-basis
Fourier grid is ≈1/8 its value on the normal grid. Convergence error and
warning messages can sometimes be trace to small radii.

6.5 Charge Density

When a solution to the wave equation at every physical energy is available, the
charge density may be obtained from a set of energy-dependent coefficients.
The spherically symmetric charge density in a muffin-tin sphere, coupled with
an �-projected density of states, is an example. In a variational calculation,
as is being described here, all that is available is a (variational) solution to
the wave equation at a set of discrete energies, and the charge density must
be obtained simply from the square of the eigenvectors, or equivalently from
expectation values of occupation numbers.

Having calculated a set of eigenvalues and eigenvectors A of the generalized
eigenvalue problem, the charge density in the interstitial region is

ñ(r)
∣∣∣
I

=
∑

S
ñ(S)DS(r) (6.46)

ñ(S) =
1
NS

∑

G∈S

∑

nk

wnk
1
Vc

∫

Vc

d3r e−iG·r∣∣
∑

i

ψ̃i(k, r)Ai(nk)
∣∣2, (6.47)

where NS is the number of vectors in the reciprocal lattice star S, and∑
nk wnk is used to sum over occupied states. The square of the wave func-

tion is obtained by convoluting the Fourier components of ψ with A, Fourier
transforming, and taking the modulus.

In the muffin-tin spheres the charge density is

n(r)
∣∣∣
rτ <st

=
∑

h

nht(rτ )Dht(r̂τ ), (6.48)

nht(r) =
∑

e�

∑

e′�′
ΦT

t�′(ei′, r)Mht(e�, e′�′)Φt�(ei, r), (6.49)
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Mht(e�, e′�′) =
2�h + 1

4π

∑

mhmm′
α∗

ht(mh)G( �, m; �′, m′; �h, mh

)
(6.50)

×
∑

nk

wnkVτ�m(e)V†
τ�′m′(e′),

VτL(e) =
∑

i

δ(e, ei)Ωt�(e, κi)SτL,τiLi
(κi,k)Ai(nk) . (6.51)

The process of calculation is evident in the sequence of equations.

6.6 Core States

In principle, though rarely in practice, the variational basis can be used to find
all of the electron eigenvalues and vectors, starting from the deep core 1s1/2

state. In practice, electron states that are localized (i.e., have minimal extent
outside a muffin-tin sphere) are placed in a core. The radial functions of these
core states are solved for as in an atomic calculation, which also determines
their energy. The wave equation used for core states can optionally be different
from that of the valence states or the core states can be calculated just as the
valence is; i.e., spin polarized if the valence is polarized, fully relativistic if the
valence is fully relativistic.

Core states, even spherically symmetric complete shells, contribute non-
muffin-tin components to the interstitial region and to muffin-tin spheres sur-
rounding other sites. Whether it is essential to include this contribution de-
pends on the size of the contribution, and any sizable contribution implies
that there are states being treated as localized which are not localized within
the scope of the calculation. Nevertheless, confining states to the core is often
useful, and including the core contribution to the full potential is not diffi-
cult. One possibility, the one used in this method, is to fit the part of the
core electron density to a linear combination of Hankel functions and expand
this density in the interstitial region as a Fourier series and in the muffin-
tin spheres in a harmonic series, in the same way the basis functions are
treated.

6.7 Potential

6.7.1 Coulomb Potential

The Coulomb potential is obtained by first calculating the Coulomb potential
in the interstitial region, then, using the value of the interstitial potential on
the muffin-tin sphere, calculating the potential in the spheres by a numerical
Coulomb integral of the muffin-tin electron density for each harmonic.

The interstitial Coulomb potential is calculated in a way similar to that
suggested by Weinert [253]. Express the electron density as

n(r) = ñ(r) +
∑

Rτ

(
n(r) − ñ(r)

)
Θ(st − rτ ) , (6.52)



68 6 The Full-Potential Electronic Structure Problem and RSPt

where ñ is the squared modulus of the pseudo-eigenvectors, which is equal
to the true electron density in the interstitial region. The first term on the
right-hand side of (6.52) has, by construction, a convergent Fourier series. The
second term is confined to muffin-tin spheres. To calculate the Coulomb po-
tential in the interstitial region, this term may be replaced by any density also
confined to the muffin-tin spheres and having the same multipole moments. If
a charge density satisfies these requirements and also has a convergent Fourier
series, the Coulomb potential in the interstitial region may be easily calculated
from the combined Fourier series. Such a charge density can be constructed in
a similar way to that detailed for the pseudo-bases. Construct a pseudo-charge
density satisfying

ñ(p)(r) =
∑

Rτ

∑

h

ñ(p)(ht, rRτ )Dht(Dτ ˆrRτ ), (6.53)

ñ
(p)
ht (r) = cht

( r
st

)�h
(
1 −

( r
st

)2)n

Θ(st − r), (6.54)

0 =
∫

τ

d3r r�
τD

∗
ht(Dτ r̂τ )

(
ñ(p)(r) − n(r) + ñ(r)

)
. (6.55)

This charge density has Fourier components

ñ(p)(r) =
∑

τ

∑

h

e−iG·τ (−i)�hDht(DτG)
4π
Vc

(Qht{n} −Qht{ñ})
s�h+n+1

×
(
2(�h + n+ 1) + 1

)
!!

(2�h + 1)!!
G�hJ�h+n+1(G, st) , (6.56)

where the multipole moments Q are defined by

Qht{n} =
2�h + 1

4π

∫

st>rτ

r�h
τ Dht(r̂τ )n(r) d3rτ . (6.57)

The Fourier components ñ(p)(r) converge like 1/Gn+2 provided j�+n+1 attains
its asymptotic form. The exponent n is chosen using the same considerations
as for the pseudo-basis set.

The Coulomb potential in the interstitial region is then given by

Vc(r)
∣∣∣
I

= Ṽc(r)
∣∣∣
I

=
∑

G �=0

4πe2
(
ñ(G) + n(p)(G)

)

G2
eiG·r . (6.58)

From the Coulomb potential in the interstitial region follows the Coulomb
potential on the surface of the muffin-tin spheres. The Coulomb potential
inside the muffin-tin spheres is

V (c)(r)
∣∣∣
rτ <st

=
∑

h

Dht(Dτ r̂τ )
[
e2
∫ st

0

r�h
<

r�h+1
>

4πr′2nh(r)
2�h + 1

dr′ (6.59)

+
(
V

(c)
h (s) − e2

s�h+1

∫ s

0

4πr′�h+2nh(r′)
2�h + 1

dr′
)(r

s

)�h
]
,
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where
V

(c)
ht (st) ≡ 2�h + 1

4π

∫

rτ=st

dr̂D∗
ht(Dτ r̂)V (c)(r) (6.60)

is the harmonic component of the potential on a sphere boundary.

6.7.2 Density Gradients

Gradients of the electron density are needed for the evaluation of gradient-
corrected density functionals. These functionals depend on invariants (with
respect to the point group) constructed from density gradients (e.g., |∇n|2).
This reduces computation significantly in the muffin-tin spheres, for if f and
g are invariant functions (i.e., f(r) =

∑
h fh(r)Dh(r̂)), and d = ∇f ·∇g, then

d(r) =
∑

h dh(r)Dh(r̂) with

4πr2

2�h + 1
dh(r) =

∑

h,h′

∑

k,k′=±1

f
(k)
h (r)g(k′)

h′ (r)I(kk′;hh′) , (6.61)

where the set of parameters I is easily calculable from 3j and 6j coefficients
and integrals over the harmonic functions Dh, and

f
(k)
h =

4π
2�+ 1

{
rf ′− �h, k = 1,
rf ′ + �h + 1, k = −1,

(6.62)

and similarly for g.
Gradients of the interstitial charge density, represented as a Fourier series,

are poorly represented by differentiating the series term by term. A stable rep-
resentation of the density gradient that converges well is obtained by defining
the derivative as the difference between adjacent grid points, divided by twice
the grid spacing as suggested by Lanczos [149]. This is equivalent to differen-
tiating, term by term, the Lanczos-damped series for the charge density.

6.8 All-Electron Force Calculations

6.8.1 Symmetry

The set of internal forces acting on the atomic sites of a crystal is a symmetric,
discrete function of atomic coordinates and has a spherical expansion on the
crystal sites with the same coefficients as the continuous symmetric functions
(6.9) and (6.10). Since forces are vectors, their representation has � = 1, and
if a site has no invariant harmonics with � = 1, there is no force on that site.
So the force on an atomic site may be expressed as

f(τ) =
∑

h:�h=1

fht

∑

m

αmêm Uτ , (6.63)
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where the coefficients α are as in (6.11), the êm are spherical unit vectors [82],
and Uτ is the transformation to local coordinates for spherical vectors. A force
calculation is, as much as possible, a calculation of the set {fht}. The size of
this set is often much smaller than three times the number of atoms. The
displacements of atoms allowed by symmetry also have the form of (6.63):

δτ =
∑

h:�h=1

δτht

∑

m

αmêm Uτ . (6.64)

Minimizing the energy with respect to the atomic positions is a process of
finding the set {δτht} that gives fht = 0.

6.8.2 Helmann–Feynman and Incomplete Basis Set Contributions

The calculation of forces in an all-electron method has been nicely described
by Yu et al. [267] for the LAPW method. In addition to the terms discussed in
that paper, a force calculation using a site-centered basis has the additional,
and significant, complication that the bases depend on atomic position not
only through augmentation but also through parentage.

The contributions to the total force on a site in an all-electron calcula-
tion follow directly from a derivative of the LDA total energy with respect to
atomic positions. The terms listed by Yu et al. are (1) a “Helmann–Feynman”
term, ∂E/∂τ , which accounts for the explicit dependence of the energy func-
tional on atomic positions; (2) an “incomplete basis set” (IBS) term, which
arises when derivatives of basis functions are not contained in the space cov-
ered by the basis set; (3) a core-correction term, arising because core states
are calculated using only the spherical average of the potential; and (4) a
muffin-tin term, a surface term arising from the change in integration bound-
aries when atoms are moved and the discontinuity of the second derivative
of basis functions across muffin-tin boundaries. There are two other terms to
consider. The first arises when a calculation is not fully self-consistent and
has the form − ∫

Vc
(Vout − Vin)dn(r)/dτ , where Vout and Vin are output and

input potentials. The second term arises from the way in which Brillouin zone
integrals are done. Whether by quadrature or linear interpolation, the result
is a set of weights (occupations) multiplying quantities evaluated at discrete
Brillouin zone points. The terms listed above do not take into account the
change of weights with atomic positions.

The evaluation of the IBS term in a method using site-centered bases is
significantly more involved than in the LAPW method. This term has the
form

F IBS = −
∑

nk

wnk

∑

ij

A∗
i,nk

(〈
ψi

∣∣H − enk

∣∣dψj/dτ
〉

+
〈
dψi/dτ

∣∣H − enk

∣∣ψj

〉)Aj,nk , (6.65)

where the A are eigenvectors. Both LAPW and LMTO methods have a depen-
dence on atomic positions through augmentation (the expansion of the basis
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set in atomic-like spherical waves) in the muffin-tin spheres, and both methods
have an implicit dependence of basis functions on atomic positions through
self-consistency, a term largely ignored and usually negligible. A site-centered
basis, however, depends on atomic positions also through its parent site (the
site it is centered on). The contribution from augmentation is fairly easily
accounted for at the density stage of a calculation, after integrals over the
Brillouin zone have been done. The parent contribution, however, requires
evaluation at the part of the calculation where eigenvalues and vectors are
obtained, which makes its calculation time consuming.

There are four types of contributions to dψ/dτ :

− d
dτ

ψi(k, r) = i
(
δ(1)

τ + δ(2)
τ + δ(3)

τ + δ(4)
τ

)
ψi(k, r), (6.66)

δ(1)
τ ψi(k, r) ≡ Θ(r ∈ I)δ(τi, τ)p̂ψi(k, r), (6.67)

δ(2)
τ ψi(k, r) ≡ δ(τi, τ)

∑

τ ′L

Θ(st′ − rτ ′)ΦT
t′L(ei, rτ ′)Ωt′�(ei, κi)

×
(

0
−i∇τBL,Li

(κi, τ
′− τ i,k)

)
, (6.68)

δ(3)
τ ψi(k, r) ≡ Θ(st − rτ )

∑

L

p̂ΦT
tL(ei, rτ )Ωt�(ei, κi)SL,Li

(κi, τ − τ i,k),

(6.69)

δ(4)
τ ψi(k, r) ≡ −Θ(st − rτ )

∑

L

ΦT
tL(ei, rτ )Ωt�(ei, κi)

×
(

0
−i∇τBL,Li

(κi, τ − τ i,k)

)
, (6.70)

where p̂ is the momentum operator −i∇. The first two terms, (6.67) and
(6.68), are parent terms, change in a basis due to a change in the site the
basis is centered on. The first term, (6.67), is the derivative of the wave func-
tion in the interstitial region (6.16) with respect to its parent site. Since the
gradient of a solution to the Helmholtz equation is a solution to the Helmholtz
equation, matrix elements 〈ψip̂ψj〉I and 〈ψi|−∇2|p̂ψj〉I are calculated as inte-
grals over the surface of the muffin-tin spheres. As in (6.37), when interstitial
region tail parameters are the same, the evaluation requires κ2 derivatives
of structure functions. Working out this contribution proceeds as in (6.37),
although arriving at a finite form requires identities such as
∑

μ

êμUτb

(
B�ama,�b−1mb−μ(κb, τ a − τ b,k)G( �b − 1, mb − μ; �b, mb; 1, μ

)
κ2

b

−B�ama,�b+1 mb−μ(κb, τ a − τ b,k)G( �b + 1, mb − μ; �b, mb; 1, μ
))

=
∑

μ

êμUτa

(
B�a+1ma+μ,�bmb

(κb, τ a − τ b,k)G( �a, ma; �a + 1, ma + μ; 1, μ
)

−B�a−1ma+μ,�bmb
(κb, τa − τ b,k)G( �a, ma; �a − 1, ma + μ; 1, μ

)
κ2

b

)
.

(6.71)
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Potential matrix elements
〈
ψi

∣∣V
∣∣ψj

〉
are calculated using Fourier series as in

Sect. 6.4.2 with gradients taken as discussed after (6.62).
The second term, (6.66), is the analog of the first term in the muffin-tin

spheres, i.e., this term is the derivative of a basis with respect to its parent
site evaluated in the muffin-tin spheres. This term requires the gradient with
respect to atomic positions of the structure function B. This gradient is easily
obtained from the structure function itself:

B′
�m,�′m′(κ, τ − τ ′,k) ≡ ∂

∂u
B�m,�′m′(κ,u,k)

∣∣∣
u=τ−τ ′

≡
∑

μ

iêμUτB′(μ)
�m,�′m′(κ, τ − τ ′,k),

B′(μ)
�m,�′m′(κ, τ − τ ′,k) =

(
G( �, m; �+ 1, m+ μ; 1, μ

)

×B�+1m+μ,�′m′(κ, τ − τ ′,k)
−κ2G( �, m; �− 1, m+ μ; 1, μ

)

×B�−1m+μ,�′m′(κ, τ − τ ′,k)
)

τ − τ ′ �= 0 . (6.72)

If convergence with respect to � on the left-hand side of the structure function
is sufficient for the energy, terms in �max + 1 in (6.72) may be neglected in
evaluating forces. As stated above, the evaluation of these terms is somewhat
time consuming.

Fig. 6.2. The deviation of the internal coordinates of rhombohedral BaTiO3 from
ideal, calculated using all-electron force calculations as a function of volume with
both LDA (open symbols) and GGA (filled symbols) exchange-correlation functions.
The red filled symbols are experimental points [147]. The LDA equilibrium volume
is 0.958 Vexp; the GGA volume is 1.037 Vexp. The energy was also minimized with
respect to the rhombohedral angle at each volume
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Examples of the use of forces for structural relaxation are given in Figs. 6.2
and 6.3. Figure 6.2 shows deviations from ideal lattice positions calculated for
rhombohedral BaTiO3 as a function of volume compared to experiment [147].
The rhombohedral angle was also relaxed at each volume in this calculation.
The Ti coordinate is a displacement along [109]. The oxygen displacements
Δx are along face diagonals while Δz is toward the cell center. These calcu-
lations included Ti 3s and 3p and Ba 5s and 5p along with the usual valence
bases in a single, fully hybridizing basis. At convergence, forces on internal co-
ordinates were less than 1 mRy/Bohr. Figure 6.3 is a calculation of structural
relaxation of As-vacancy-interstitial complex in Si. To a 64-atom Si supercell
was added an As impurity at a tetrahedral interstitial position and a Si inter-
stitial at an exchange position both surrounding a vacancy. The crystal, far
from equilibrium, was then allowed to relax. Two internal coordinates (of a
total of 106) were fixed to fix the center of mass of the crystal. The energy
was minimized with respect to the other 104 internal coordinates by zeroing
the forces (to within 1 mRy/Bohr). The forces were zeroed using a simple
Broyden’s method.

Fig. 6.3. Relaxation of a silicon 65 atom supercell containing a vacancy, a Si inter-
stitial, and an As interstitial. Of the 106 internal coordinates in this cell, 104 were
allowed to relax (two coordinates were fixed to fix the center of mass of the crystal).
The calculation used a simple Broyden’s method to zero atomic forces
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Dynamical Mean Field Theory

Abstract The basic reasons for why the common approximation to the exchange
and correlation energy of density functional theory is inaccurate for certain mate-
rials are outlined. A possible fix to this problem, in terms of dynamical mean field
theory (DMFT) is described, and details of how it is implemented in the FP-LMTO
method are presented. The different choices of correlated orbitals which are to be
considered in DMFT are also given. Examples of DMFT calculations are presented
using different approximations to the ‘impurity part’ of the DMFT calculations.

7.1 Strong Correlations

Density functional theory within the LDA and GGA approximation is nowa-
days a standard tool for electronic structure calculations. It gives quantitative
description of the electronic structure and ground state properties of most
solids, and we will discuss several aspects of this in Chaps. 10, 11, and 12.
However, LDA and GGA are derived in the limit of a nearly uniform electron
density, and they fail in the opposite limit of localized electron states with
strong Coulomb correlations.

Consider an example. Sodium (Na) crystallizes in the body-centered cu-
bic structure with lattice constant approximately 4.29 Å. It is a good metal
with nearly free 3s electrons. Now let us increase the lattice constant to 1 m,
creating a system of virtually isolated Na atoms. LDA still gives a metal-
lic solution, albeit with a very narrowband (with bandwidth W ). In reality,
such system would be insulating, of course. If two conduction electrons hap-
pen to be on the same Na site, there is a loss of energy equal to U (on-site
Coulomb interaction). If U �W , a current cannot flow and the system is an
insulator (more specifically, a Mott insulator). In other words, the motion of
electrons becomes correlated. Such on-site (Hubbard-like) correlation effects
are not properly treated by LDA/GGA, although these functionals can de-
scribe well other correlation effects (such as screening). Several review articles
have covered this issue [220].
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The strength of the on-site correlations is determined by the parameter
U/W , where U is the screened on-site Coulomb interaction and W is the
bandwidth. If U/W � 1 then the system is weakly correlated and well de-
scribed by LDA/GGA. The strongly correlated regime U/W � 1 gives us
atomic-like behavior (Hubbard bands, Mott insulators). For the most inter-
esting case U/W ∼ 1 we have a mixture of band-like and atomic-like behavior,
as well as Kondo behavior, intermediate valence, or heavy fermion materials.
Since W depends strongly on unit cell volume, all solids are Mott insulators
at very large volumes (like in the example above of Na) and good metals at
very small volumes (metallization under pressure). Under ambient conditions,
many d and f metals and their compounds display strong correlation effects
and should not be treated within LDA/GGA.

Dynamical mean field theory (DMFT) [96] is an approximate method for
solving the Hubbard model. It covers the whole range of the parameter U/W
from uncorrelated metal to Mott insulator. The formal small parameter of
DMFT is 1/d, where d is the number of spatial dimensions. DMFT is exact
in the limit of infinite dimensions, while for d = 3 DMFT is a reasonable
approximation. Recently DMFT has been combined with LDA-based first-
principles calculation to create the LDA/GGA+DMFT method [15, 95, 115,
143, 157]. This method is able to calculate the electronic structure of strongly
correlated solids ab initio. LDA/GGA+DMFT has been recently implemented
in the FP-LMTO code RSPt [72, 73, 106, 237], which is sometimes loosely
referred to as “Brianna.” We will in the remainder of this text refer to this
technique as RSPt+DMFT. In the following sections we briefly outline the
LDA/GGA+DMFT formalism, followed by details of our implementation,
and, finally, a few examples. The presentation is based on [73, 106, 237] and
can also be found in the thesis of [72].

7.2 LDA/GGA+DMFT Method

The LDA/GGA+DMFT formalism in its most typical form [95, 115, 143] is
based on several key assumptions:

• All physics of sp electrons is described well enough by the LDA/GGA.
• The solid is represented by an effective multiband Hubbard Hamiltonian,

called HLDA/GGA+U.
• The hopping part of HLDA/GGA+U is the LDA/GGA Hamiltonian, Heff .
• The Hubbard-U term is added “by hand” for the correlated electrons (d

or f states) only.
• The resulting Hamiltonian is treated within the DMFT scheme [96].
• A double-counting correction is applied to avoid including certain effects

twice.

All of these assumptions are approximations; they are not rigorously true
[115]. In the end, just like with LDA and GGA, we have to rely on our physical
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experience to judge whether the LDA/GGA+DMFT method is good for a
given physical problem or not.

7.2.1 LDA/GGA+U Hamiltonian

In LDA/GGA, a solid is described by the Kohn–Sham (KS) equation, (2.18),
which we here cast in a slightly different form

[Heff − ε]
∣∣ψ
〉

= 0 , (7.1)

where the one-particle LDA/GGA Hamiltonian Heff acts in the Hilbert space
of one-electron states

∣∣ψ
〉
. Solution of the KS equation gives the KS eigenval-

ues and eigenvectors. While, in principle, the KS eigenspectrum is an auxiliary
quantity without direct physical meaning, in practice it is often regarded as
the ab initio band structure. In contrast to the true electron and hole exci-
tations, however, the “KS quasiparticles” have infinite lifetime, hence each
calculated spectral property has zero lifetime broadening.

A typical correlated solid includes delocalized sp states and more localized
d or f states. The LDA/GGA+DMFT method assumes that the correlation
effects of the sp states are treated well within LDA/GGA, while DMFT is nec-
essary only for the more localized states. This method defines a subspace of
“correlated states”

∣∣R, ξ
〉
, where R is a Bravais lattice vector, and the index ξ

numbers all correlated states within a unit cell. The correlated states are nor-
mally required to be orthogonal and normalized 〈R1, ξ1|R2, ξ2〉 = δR1,R2δξ1,ξ2 .
Usually the correlated states are defined as atomic-like d or f orbitals (rep-
resented as orthogonalized muffin-tin orbitals or Wannier-like functions). In
that case, the quantum number ξ stands for the atomic quantum numbers
m,σ and the correlated site τ within the unit cells (if there are more than one
such site).

The LDA/GGA+U Hamiltonian is

HLDA/GGA+U = Heff +
1
2

∑

R

∑

ξ1,ξ2,ξ3,ξ4

Uξ1,ξ2,ξ3,ξ4c
†
R,ξ1

c†R,ξ2
cR,ξ4cR,ξ3 , (7.2)

where the Coulomb parameters (“4-index U”)

Uξ1,ξ2,ξ3,ξ4 =
∫ ∫

drdr′Ψ∗
R,ξ1

(r)Ψ∗
R,ξ2

(r′)Vee(r − r′)ΨR,ξ3(r)ΨR,ξ4(r
′)

(7.3)

are the matrix elements of the screened Coulomb interaction Vee(r − r′) be-
tween four correlated orbitals

{∣∣R, ξ
〉}

located at the same site; and

Heff =
∑

i

Heff(ri) , (7.4)



78 7 Dynamical Mean Field Theory

where ri are the coordinates of all electrons. For the atomic-like correlated
orbitals, the Coulomb parameters can be expressed in terms of Slater param-
eters Fn:

Uξ1,ξ2,ξ3,ξ4 =
2l∑

n=0

an(ξ1, ξ3, ξ2, ξ4)Fn , (7.5)

where

an(ξ1, ξ3, ξ2, ξ4) =
4π

2n+ 1

+n∑

q=−n

〈ξ1|Ynq|ξ3〉 〈ξ2|Y ∗
nq|ξ4〉 . (7.6)

The values of the Slater parameters, F n, are calculated in RSPt from radial
integrals of wave functions [128]. The first Slater integral, F 0, has to be scaled
down significantly, since it always turns out too big in a direct calculation, a
well-known effect which is ascribed to screening effects.

For d electrons, one often uses just two parameters U and J

U = F 0, J =
F 2 + F 4

14
, (7.7)

assuming F 4/F 2 = 0.625.

7.2.2 LDA/GGA+DMFT Equations

The LDA/GGA+U Hamiltonian has the form of a multiband Hubbard Hamil-
tonian. Heff plays the role of “hopping.” However, Heff already includes
Hartree and exchange terms, as well as some correlation effects (e.g., screen-
ing). The Hubbard-U term is added to take care of the correlation effects
not accounted for by LDA/GGA. The DMFT scheme [96] is then applied to
this Hamiltonian. The basic quantity of DMFT is the local Green’s function
GR(z). It is defined as the one-electron Green’s function (GF) projected to
the correlated states at site R

GR(z) = PRG(z)PR , PR =
∑

ξ

∣∣R, ξ
〉〈

R, ξ
∣∣ , (7.8)

where
G(z) = [z + μ−Heff −Σ(z)]−1 (7.9)

is the one-electron GF, Σ(z) is the self-energy, and z in our calculations takes
values of the Matsubara frequencies

z = iωn = iπT (2n+ 1) , n = 0,±1,±2, . . . , (7.10)

where T is the temperature of the system. Explicitly, the matrix elements of
GR(z) are
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(GR(z))ξ1,ξ2
≡ 〈R, ξ1|GR(z)|R, ξ2〉 = 〈R, ξ1|G(z)|R, ξ2〉 . (7.11)

The approximation of DMFT is the locality of the one-electron self-energy,
namely it states that Σ(z) can be written as the sum of local self-energies for
all Bravais lattice sites

Σ(z) =
∑

R

ΣR(z) . (7.12)

This expression is local in the sense that it has zero matrix elements between
different sites

〈R1, ξ1|Σ|R2, ξ2〉 = δR1,R2 (ΣR1)ξ1,ξ2
. (7.13)

Moreover, if there are several correlated sites within the unit cell, and the
Hubbard-U term does not have matrix elements between different sites,
(ΣR)ξ1,ξ2

takes a block diagonal form with a block for each site.
The DMFT equations can be derived (together with the locality of Σ) in

the infinite-dimension limit of the Hubbard model [96, 115]; or, alternatively,
they can be obtained as the best local solution of the spectral density functional
theory [95, 143]. In DMFT, the lattice problem is substituted by the impurity
problem (effective Anderson model), i.e., the problem of a single correlated
site in the self-consistent bath described by the bath GF (or dynamical mean
field) G0(R, z) defined by

G−1
0 (R, z) = G−1

R (z) +ΣR(z) . (7.14)

There exist a number of algorithms (called solvers) for solving the impurity
problem numerically. A typical solver gets G−1

0 (R, z) and Uξ1,ξ2,ξ3,ξ4 as input
data and provides the new ΣR(z) on output. The DMFT version of RSPt
currently includes three solvers, but several additional ones are being devel-
oped. The SPTF solver is best suited for weak correlations, but it is fast,
works in spin-polarized case (while treating crystal field and spin–orbit ef-
fects correctly), and gives accurate DOS and spectral densities. The quantum
Monte Carlo (QMC) solver is numerically exact (works for any U/W ), but it
cannot be used directly in the spin-polarized case, and it gives poor-quality
DOS curves. RSPt also includes the Hubbard-I solver, which is basically the
limiting case of DMFT for U � W . A double-counting correction must be
applied to all DMFT calculations. The simplest double-counting correction
for metals is

Σ(iωn) → Σ(iωn) −Σ(+i0) ,

which only marginally changes the Fermi surface. A somewhat better choice
is obtained by averaging Σ(+i0) over orbital indices.

The new corrected Σ is then plugged back to (7.9), closing the DMFT
cycle, which should be repeated self-consistently until convergence is reached.
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Just like in LDA/GGA, the chemical potential μ (Fermi energy) must be
updated on every iteration to produce the correct number of electrons

N = lim
δ→+0

T
∑

iωn

eiωnδTrG(iωn) = T
∑

iωn

Tr
[
G(iωn) +

1
2

]
. (7.15)

Once the convergence is reached, various physical quantities can be calculated,
such as the density of states (DOS)

D(ε) = − 1
π

Tr
[
Im Ĝ(ε+ i0)

]
, (7.16)

and the spectral density (k-resolved DOS)

A(k, ε) = − 1
π

∑

χ

〈k, χ̃|ImG(ε+ i0)|k, χ〉 , (7.17)

which is the correlated quasiparticle band structure (
{∣∣k, χ

〉}
is the k-space

LDA/GGA basis set, see below). In the absence of self-energy it reduces to
the usual Kohn–Sham band structure

AKS(k, ε) =
∑

n

δ (ε− εn(k)) .

The real part of Σ simply shifts the bands, while the imaginary part of Σ
introduces smearing due to the finite lifetime of quasiparticles. Apart from
coherent (quasiparticles) features, a spectral density might also have nonco-
herent (virtually k-independent) ones, such as Hubbard bands and satellites.

The LDA/GGA+DMFT total energy is given by [73]

E = ELDA/GGA −
∑

kν

εkνΘ(μ− εkν) +
∑

iωn

Tr (HeffG) +
1
2

∑

iωn

Tr (ΣG) ,

where the first term is the LDA/GGA total energy, the second one is the
eigenvalues sum of occupied Kohn–Sham states (with minus sign). The third
term is 〈Heff〉, the expectation value of the first term in (7.2). Together with
the second term, it gives the DMFT correction to the LDA/GGA eigenvalues
sum. Finally, the fourth term is 〈HU〉, the expectation value of the second
term in (7.2).

7.3 Implementation

As mentioned, the LDA/GGA+DMFT scheme has been implemented in RSPt
[72, 73, 106, 237]. The DMFT implementation in RSPt is one of a few cur-
rent all-electron full-potential LDA/GGA+DMFT implementations (previ-
ously, most LDA/GGA+DMFT implementations were based on LMTO-ASA
or KKR-ASA). Below we summarize the main features of the implementation.
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7.3.1 Using the LMTO Basis Set

In the implementation, the set of correlated orbitals
{∣∣R, ξ

〉}
is defined in-

dependently of the k-space FP-LMTO basis set
{∣∣k, χ

〉}
. It is not possible

to use the set
{∣∣R, ξ

〉}
as the basis set for the entire LDA/GGA+DMFT

calculation, as it is far from being complete. As Heff in (7.9) is defined for
the FP-LMTO basis set, it is necessary to use both sets of functions in an
LDA/GGA+DMFT calculation. As the basis set

{∣∣k, χ
〉}

is neither orthog-
onal, nor normalized, one should be very careful, as the rules of the linear
algebra are quite different from the case of an orthonormal basis set. With
the overlap matrix Sχ1,χ2 = 〈χ1|χ2〉, the conjugate basis set

{∣∣χ̃
〉}

is defined
by the relations

〈χ̃1|χ2〉 = 〈χ1|χ̃2〉 = δχ1,χ2 ,
∑

χ

∣∣χ̃
〉〈
χ
∣∣ = 1̂ , (7.18)

or, explicitly,
∣∣χ̃1

〉
=
(
S−1

)
χ2,χ1

∣∣χ̃2

〉
,

〈
χ̃1

∣∣ =
(
S−1

)
χ1,χ2

〈
χ̃2

∣∣ . (7.19)

With the definition of the matrix elements of an operator

Aχ1,χ2 = 〈χ1|Â|χ2〉 , Â =
∑

χ1,χ2

∣∣χ̃1

〉
Aχ1,χ2

〈
χ̃2

∣∣ , (7.20)

we obtain the following rules of linear algebra (operator to matrix correspon-
dence):

Â → A operator, (7.21)
1̂ → S unity operator, (7.22)

ÂB̂ → AS−1B product of two operators, (7.23)

Â−1 → SA−1S inverse of an operator. (7.24)

Here we have put a hat above operators to distinguish them from matrices.
To transform physical quantities back and forth between sets

{∣∣k, χ
〉}

and{∣∣R, ξ
〉}

, we assume the completeness of the basis set
{∣∣k, χ

〉}
in the subspace

spanned by
{∣∣R, ξ

〉}
. The local GF (7.8) becomes

Gξ1,ξ2(z) =
∑

k,χ1,χ2

〈ξ1|χ1〉 [S(k)(z + μ) −Heff(k) −Σ(k, z)]−1
χ1,χ2

〈χ2|ξ2〉 ,

(7.25)
where

Σχ1,χ2(k, z) =
∑

ξ1,ξ2

〈k, χ1|ξ1〉Σξ1,ξ2(z) 〈ξ2|k, χ2〉 (7.26)

is the self-energy in the FP-LMTO basis set.
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7.3.2 Correlated Orbitals

At present, the RSPt+DMFT implementation has two choices for correlated
orbitals. The first, more traditional, one uses orthogonalized d or f type RSPt
basis functions transformed to the real space. We call it orthogonalized LMTO
(ORT) correlated subspace. It is poorly localized, and the orbitals

∣∣R, ξ
〉

do
not have pure lm character due to both tail cancellation and orthogonaliza-
tion. This approach requires using only one kinetic energy tail (minimal basis
set) for correlated electrons in the LDA/GGA part of the calculation, although
sp electrons can still use two or more tails.

The second choice is somewhat opposite, since it involves well-localized
correlated orbitals. We call it muffin-tin-only (MT) correlated subspace.

∣∣R, ξ
〉

is chosen as

ΨR,ξ(r) =

{
Φl(|r − Rξ|)Ylm(r̂ − Rξ), |r − Rξ| < RMT,ξ

0, |r − Rξ| > RMT,ξ

, (7.27)

Rξ ≡ R + τξ is the site where the orbital
∣∣R, ξ

〉
is located and RMT,ξ is the

muffin-tin radius for this site. The LMTO radial function Φl(r) is the solution
of the radial Schrödinger equation in the spherically averaged Kohn–Sham
potential, for a certain energy Eν (before the linearization). This function is
zero outside a given muffin tin, thus it is well localized, and the orbitals from
different sites do not overlap. The orbitals now have pure lm character, and it
is possible to use two or more tails for correlated electrons. Other choices of the
correlated orbitals are possible, e.g., hybrid orbitals or a linear combinations
of Wannier functions.

7.3.3 Other Technical Details

When implementing the DMFT formalism in a computer code, one uses many
technical tricks to make the code robust and efficient [72, 73, 106, 237]. Here
is the list of some:

• Only the Matsubara frequencies above the real axis are used, because
G(−iωn) is just the complex conjugate of G(iωn).

• Since the calculation of the local GF (7.25) involves inverting a matrix
in the RSPt basis set for each Matsubara frequency and each k-point (a
rather time-consuming procedure), a smaller linear-logarithmic Matsubara
mesh is used. However, solvers use the normal (linear) Matsubara mesh,
so G and Σ are transformed back and forth between the two meshes using
cubic splines.

• The sum in (7.15) converges very slowly; therefore, a rather elaborate
scheme for calculating the number of electrons is used in practice [73].

• When calculating the DOS and the spectral density, the GF is calculated at
the z = ε+iλ contour, where λ is a small constant value (≈10−3 Ry). Σ(z)
is evaluated at this contour using Pade analytical continuation algorithm.
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This does not work with the QMC solver, where a different approach
(MAXENT) is used for calculating the DOS.

• The k-sum in (7.25) involves integration over the entire Brillouin zone. In
practice, this involves the weighted sum over k-points in the irreducible
wedge of the Brillouin zone plus the sum over all symmetry group op-
erations, which are applied to each of the (2l + 1) × (2l + 1) blocks of
〈ξ1|G|ξ2〉.

7.4 Examples

7.4.1 Body-Centered Cubic Iron

The LDA/GGA+DMFT self-energy and spectral function of bcc iron are pre-
sented in Figs. 7.1 and 7.2. For this calculation the SPTF solver was used,

Fig. 7.1. Imaginary part of the self-energy Im Σ(ε + i0) for bcc iron, majority spin
(top), and minority spin (bottom) for orthogonalized LMTO (ORT) and muffin-tin-
only (MT) correlated subspaces (from [106])
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Fig. 7.2. Real part of the self-energy Re Σ(ε+i0) (left) and density of states (right)
for bcc iron (from [106]). Data from LDA are given as red dotted lines and DMFT
data are given as solid lines

with U = 2.3 eV and J = 0.9 eV. In Fig. 7.1 we show the imaginary part of
the self-energy ImΣ(ε+i0) for majority and minority spins. The three curves
in Fig. 7.1 are calculations with different selections of correlated orbitals and
different temperatures. It may be noted that they are qualitatively similar,
proving that both MT- and ORT-correlated orbitals can be used to describe
iron within LDA/GGA+DMFT, although we consider the MT set the better
of the two. The exact amplitude of the peaks in Σ depends on the choice
of the correlated orbitals, which illustrates the importance of selecting cor-
related orbitals wisely. A slight change in the values of U and J can often
compensate for a specific choice of correlated orbitals. Notice also that Σ is
basically temperature independent in a wide range of temperatures. In Fig. 7.2
(left panel) we show the real part of Σ (only for the MT orbitals). Figure 7.2
(right panel) shows the total density of states of bcc Fe (LDA/GGA+DMFT
vs LDA/GGA), while the spectral density is presented in Fig. 7.3 for high-
symmetry directions.

The majority spin ImΣ(ε+i0) in Fig. 7.1 has the major peak at ε � −7 eV,
of amplitude −3.4 eV. This gives rather strong damping of quasiparticles and
a broadening of the spectral features, as we can observe in Fig. 7.3. However,
ImΣ(ε+ i0) = 0 at ε = μ; therefore, the quasiparticles are well defined close
to the Fermi level. There is also a shoulder-like feature at ε � −2 eV. The
correlation effects are more pronounced for the majority spin electrons, which
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Fig. 7.3. Spectral density for bcc iron (from [106])

is a well-known fact for Fe and Co (as the minority spin d band has more
empty states than the majority spin band).

The LDA/GGA+DMFT density of states (Fig. 7.2, right panel) shows the
narrowing of the majority- spin d-band compared to the LDA DOS and also
a satellite at ε � −7 eV. This is the effect of ReΣ(ε+ i0). The positive region
of ReΣ for the majority spin electrons between −6 eV and the Fermi level in
Fig. 7.2 (left panel) leads to the narrowing of the band, while the sharp neg-
ative peak at −8 eV “draws” the electrons down in energy, creating the DOS
satellite. The photoemission satellite (at −6 eV in the experiment) is an exper-
imentally observed noncoherent spectral feature in Fe (also in Co and particu-
larly fcc Ni), which is a correlation effect not reproduced by LDA/GGA. The
smearing of the quasiparticle bands, given by ImΣ, is a common many-body
effect for d and f metals, which is absent in standard LDA/GGA calculations
of the DOS.

7.4.2 Systems Close to Localization, the Hubbard-I Approximation

For materials where the Coulomb interaction within a given electronic shell
dominates all other interactions, it has been shown that the Hubbard-I ap-
proximation is very efficient and appropriate [152, 157, 232, 237]. Examples of
such materials are the rare-earth elements and compounds with rare-earths.
In this approximation one starts with an atomic model, which describes cor-
related (e.g., f) states of a single ion at a given site R:

Hat
R =

1
2

∑

mj

UR
m1m2m3m4

c†R,m1
c†R,m2

cR,m3cR,m4 + ξ
∑

i

li ·si−μ
∑

m

c†R,mcR,m .

(7.28)

The index mj labels the correlated spin orbitals (for an f-system this means
the index runs from 1 to 14), and c†m and cm are the corresponding creation
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and annihilation operators; see also (7.2). Note that in (7.28) we use for
the correlated orbitals, ξi, spherical harmonics functions, labeled mi. In the
Hubbard-I approximation, the spin–orbit coupling is included in the second
term of (7.28) where ξ is the spin–orbit constant, and l and s are the orbital
and spin angular momentum operators. The last term in (7.28) contains the
chemical potential, μ.

The Hamiltonian in (7.28) is diagonalized in the complete space of all
Slater determinants of a given fn configuration. In addition to the fn con-
figurations found in the (mixed) ground states also their neighboring fn±1

configurations must be included in the calculation to account for possible ex-
citations. From the eigenvalues, Eμ (Eν), and eigenvectors, |μ〉 (|ν〉), one can
then construct a local one-particle Green’s function

Gat
mm′(ω) =

1
Z

∑

μν

〈μ|cm|ν〉〈ν|c†m′ |μ〉
ω + Eμ − Eν

(
e−βEμ + e−βEν

)
, (7.29)

where β = 1
KBT

and Z the partition function. An atomic self-energy can now
be calculated from

Σat(ω) = (Gat
0 )−1(ω) − (Gat)−1(ω) , (7.30)
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Fig. 7.4. Spectral density for YbInCu4 (from [237]). In the lower panel the exper-
imental spectrum (dots) is compared to an LDA calculation (full line) and in the
upper panel to a DMFT Hubbard-I calculation (full line)
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where Gat
0 (ω) = [(ω−μ)−Heff ]−1. The Hubbard I approximation states that

the atomic self-energy Σat(ω) for a set of strongly correlated orbitals is ap-
proximately the local self-energy ΣR(ω) of the corresponding single impurity
problem used in the DMFT scheme.

In Fig. 7.4 we show the calculated spectral properties using RSPt+DMFT
in the Hubbard-I approximation, for a well-known mixed valence compound
YbInCu4. Note that we show in the figure experimental data from [59] and
we compare these data to a regular LDA calculation (bottom panel) and a
Hubbard-I calculation (top panel). As it is clear from the figure the LDA
calculation fails completely in reproducing the observed spectral properties,
whereas the Hubbard-I calculation essentially reproduces all observed fea-
tures. Some of the peaks of the Hubbard-I calculation are positioned at bind-
ing energies slightly off-set from the observations. Also, the intensity of some
peaks are not perfectly given from the theory, but the overall features of the
spectral properties are reproduced. A full account of this study can be found
in [237].
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Implementation

Abstract Details of the implementation of the FP-LMTO method are presented in
this chapter. This includes programming language, routines for numerical operations
like diagonalization and fast Fourier transforms, and parallelization aspects.

Over the years RSPt has grown and more and more features have been added
by different developers. The unspoken agreement between what used to be the
small number of developers was to keep the code small and fast sometimes at
the cost of ease of readability and developer friendliness. The coding style and
preferences of the developers differed and a large number of different versions
with different features implemented existed. All these changed with a wish to
make RSPt a public Open Source project. The source code was moved into an
SVN repository and most of the codes have been documented. There is work
in progress to remove the pre-Fortran90 ad hoc dynamical memory allocation
using Cray pointers. Any developer wishing to contribute to the project can
apply for access to the software repository through the Forum at the project
homepage http://www.rspt.net.

RSPt is still a comparably small code. The main trunk in the repository
is less than 80,000 lines of code. This is partly due to the extensive use of
built-in or library-provided functionality and reuse of code. For example, the
two most time-consuming parts of the ground state calculation, the Fourier
transforms used when constructing the basis set, and the diagonalization of
the Hamiltonian where the program can spend up 90% of the execution time
are performed using highly optimized external numerical libraries.

8.1 Fortran-C Interface

RSPt is written in both Fortran and C and this mixture places some con-
straints on the code. The top function, “main,” is written in C, most of the
different features in Fortran, and the core functions used to construct the basis
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set are written in C so there are Fortran subroutines calling C functions and
the other way around. The perhaps most obvious difference between the two
languages is the naming conventions. Most, but not all, Fortran compilers add
an underscore to the subroutine names and they are case insensitive whereas
most, with very few exceptions, C compilers are case sensitive and do not add
any character to the name. In RSPt an explicit underscore has been added to
the names of the functions in the C part of the code that is called by Fortran
subroutines and to the calls from C to Fortran. In the source code comments
have been left describing how to implement two other methods that can be
used to handle the different naming conventions, namely precompiler macros
and dynamical naming through functions. Neither method is fully portable
and is therefore not used.

The difference in call-by-name and call-by-reference between Fortran and
C is handled by using pointers in C functions.1 No strings are passed between
Fortran subroutines and C functions to avoid portability problems with the
termination of strings. The lack of a complex type in C is addressed in two
different ways. In most places a struct made out of two floats is used as a
complex type but in the C code connected to the Fourier transforms the real
and imaginary components of each number are put after each other in an
array of length 2N . The memory layout of the two methods are in most cases
the same but to avoid portability issues the two methods are never mixed.

Most of the older COMMON blocks have been transformed into modules
but some remain, especially the block containing the MPI-related variables,
see below. The different blocks are imported into the relevant C functions as
external structs in the header file mpicom.h.

Finally, as the program is linked using the C compiler, unless an explicit
link step is used, the necessary Fortran libraries must be added to the list of
libraries to be linked in the file RSPTmake.inc. Exactly which libraries that
are needed depends on the choice of compiler. Some examples can be found
in the directory RSPTmakes in the source code distribution.

8.2 Diagonalization

There are four different methods available in RSPt for diagonalizing the
Hamiltonian matrix. The performance of the different methods depends on the
hardware, choice of performance library, and the size of the matrix. Three of
the methods use LAPACK so it is very important to use an efficient implemen-
tation of the performance library to reach the highest possible performance.
All four methods start by transforming the matrix into a bi- or tridiagonal
form, in some cases with an initial LU transformation and depending on the

1 Users of classical AT&T UNIX (e.g., older Sun OS and different flavors of BSD)
might have to add the length of the arrays pointed to as additional arguments in
the function definitions in the C part of the code calling or called by Fortran.
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details of the setup the diagonalization can end with a back-transform to the
original form.

The default method used in the automatic setup by the program symt,
diag=1, is the LAPACK subroutine zhpevx where a selected subset of the
eigenvalues and eigenvectors is calculated using a QR or QL algorithm. A
parallel case is diag=3 where zhpevr is used instead and all eigenvalues and
vectors are calculated.

An alternative is diag=2 which uses the LAPACK subroutine zheevr. This
subroutine uses a different method, dpds, whose efficiency strongly depends
on the hardware and the exact implementation of the algorithm. It is well
worth to test the method for different matrix sizes.

The fourth method, diag=0, is internal and is also based on the QL and QR
algorithms. This method can be used when there is no good performance li-
brary available. The diagonalizer returns the eigenvalues and vectors unsorted
and for very large matrix sizes the sorting can take a substantial time.

It is hard to give a definite recommendation on which method to use. The
optimal choice depends on the problem size and the efficiency of the perfor-
mance library but in general diag=0 is the fastest for smaller sizes and diag=1
for larger matrix sizes. The critical size depends on the hardware and the per-
formance library and should be tested. The performance of diag=2 can vary
a lot but on some computers it can be much faster than the other methods.
The different methods can give a very small difference in the eigenvalue spec-
trum for a single iteration but they all converge to the same result within the
numerical precision of the computer.

8.3 Fast Fourier Transforms

Fourier transforms are used in several different places in the code for differ-
ent purposes. In the ground state calculation all transforms are done using
the FFTW-3 library (http://www.fftw.org/) through a driver function called
fftc .2 Each transform is given a unique identifier so that the calling function
can be identified by the driver function. FFTW creates a plan for each trans-
form size and direction which is used to optimize the algorithm. Because of
the unique identifier the plans for each transform can be preserved and stored
saving the time needed to recalculate the plan.

Formally any mesh size can be used but empirical tests have shown that
some sizes are much more efficient on some hardware, depending, e.g., on the
number of registers in the CPU and cache size. Generally, the smaller factors
the mesh size can be divided into, the higher the performance will be, but for
non-uniform meshes the relation is complex and highly hardware dependent.

The Fourier transforms in the DMFT part of the program are performed
in a different way. Taking advantage of the properties of Green’s function
2 The underscore is added to the C function name to match the Fortran naming

convention.
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the transform can be expressed in a closed form. First, the cubic spline of
the function is calculated using the value of the function and its higher mo-
ments at a number of spline points. The transform integral can then be solved
analytically.

8.4 Parallelization

Even though RSPt is relatively fast it is often desirable to shorten the wall
clock time needed to finish a calculation. The sequential code is highly op-
timized, especially if high-performance versions of FFTW and LAPACK are
used. The use of multiple processors will often shorten the wall clock time but
always at the cost of the total CPU time. There is always a communication
overhead and almost always some parts of the code that cannot be parallelized
and therefore will add to the total execution time without adding anything of
value when run on more than one processor. As long as there are more unre-
lated calculations to be done, e.g., different volumes, than there are processors
available it is always best to run different sequential calculations. Parallel cal-
culations should only be run when there are more processors available than
tasks.

There are three different independent ways to run RSPt in parallel mode.
They can be used independently or in any combination. The most basic mode
is parallelization over k-points. It is done using MPI and is invoked with the
precompiler option -DMPI. This mode is very efficient with a small commu-
nication overhead. The k-points are divided into contiguous blocks and all
summations are performed in such a way that the behavior mimics that of
the corresponding sequential summation.3 To get the highest possible effi-
ciency the number of k-points in each block should be the same. Some of the
communication is blocking so the processes have to wait for the last process
to finish its task before they can continue so if just one or a few processors
have one extra k-point to calculate the rest of the processors will be idle while
that k-point is calculated. No extra input is needed and this mode has been
shown to scale fairly well to over 1,024 processors.

The next mode is over bands. It is also done using MPI but the com-
munication overhead is higher than for parallelization over k-points. In this
mode it is actually the construction of the matrix elements that is performed
in parallel; the diagonalization of the Hamiltonian matrix is still performed
sequentially.

The band-parallel mode is invoked with the combination of the pre-
compiler options -DMPI and -DUSE CARTESIAN TOPOLOGY. The two-
dimensional Cartesian grid size is read from the file CARTESIAN TOPOLOGY
containing two numbers in free format. The first number is the number of grid

3 Summations are non-commuting on binary computers, i.e., the result depends on
the order in which the terms are summed.
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points in the k-point direction and the second the number of grid points in
the band direction. The product of the two numbers must be equal to the
number of processors used. For a pure parallelization over bands set the first
number to 1.

This mode is of most use when calculating large supercells with fewer k-
points than processors. The program scales well up to about six processors
per k-point depending on the size of the Hamiltonian matrix. It is always best
to spend the available processors on k-points rather than bands.

The third mode is parallel over the Fourier transform grid and is invoked by
the precompiler option -DHAVE FFTW3 THREADS and can be used with
any of the two other modes or by itself. This mode uses threads and can
therefore not be used between different hosts. The number of threads is set
in the file FFTW MAX THREADS. FFTW can choose to use fewer threads
depending on the size of the transform. The communication overhead is small
but the different threads operate on the same array which may cause memory
congestion if the memory bandwidth is too low. The scaling again depends on
the size of the transform and the hardware but good scaling can be expected
for up to four processors for smaller sizes and up to eight processors for larger
sizes. FFTW must be compiled with – enable-threads and RSPt must be
linked with the two libraries libfftw threads.a and libfftw.a in that order for
this mode to work.
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Obtaining RSPt from the Web

Abstract In this short chapter details of how to obtain the FP-LMTO code from
the web site http://www.rspt.net are given. In addition, a short instruction on how
to install the FP-LMTO code is presented.

The source code and manual for RSPt and a few auxiliary programs are freely
available at the project homepage http://www.rspt.net. Only registered users
can upload or download code but it is free to register. The registration process
is protected by a bot filter in the form of a security question that should be
easily answered by regular users. When registering a username a valid e-mail
address must be supplied. Note that Gmail addresses cannot be used. When an
application has been approved a temporary password is sent to the registered
e-mail address. The process of reviewing and approving applications is for
security reasons manual so there can be a delay of a few days at the worst,
especially during holidays.

At the homepage there is also a forum where registered users can post
questions (and answers of course). The forum is read by most of the developers
and the response time can of course vary but it is short most of the time.
There is also a calendar where important events, like the annual FP-LMTO
workshop, are announced and a wiki.

9.1 Installing RSPt

RSPt is fairly easy to install and the program has been ported to a lot of
different platforms. Below is brief instruction on how to install RSPt. A more
detailed instruction can be found in the manual that is included in source
code package.

• Download the source code from http://www.rspt.net. The source code can
be found in the section My Downloads which can be found in the top frame.
The source code package is called rsptNNN.tar.gz where NNN is the SVN
version number.
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• Install FFTW3 (http://www.fftw.org) and LAPACK if not already in-
stalled on the computer. The performance of the code strongly depends
on the efficiency of these to libraries so it is strongly recommended that an
optimized performance library like MKL, ATLAS, ACML, or GOTOBlas
is used.

• Unpack the package using gzip and tar or any other programs with the
same functionality.

• In the directory rsptNNN edit the file RSPTmake.inc and adapt it to
the local environment. RSPt uses both Fortran and C. Compilers from
the GNU compiler suite from version 4.1.2 can be used although newer
versions are preferred.

• Do make in the top directory. If there were no errors the executable rspt
can now be found in the bin directory.

• The default setup is for a serial program. To compile any of the parallel
versions edit RSPTmake.inc accordingly, rename bin/rspt so that it is not
overwritten and change directory to rsptDir/src. Do make clean; make.
More information on the different parallelization modes can be found in
the manual.

9.2 Running RSPt

RSPt is very rich in features and input variables and the program can be run
in many different ways. We refer to the manual where a technical summary
as well as a detailed installation instruction and information regarding the
different input and output files can be found.

RSPt needs a few input files but all but one can be created automatically.
First, create a directory called sym in the directory where the input files are
going to reside. In the directory sym, create a file called symt.inp where the
lattice vectors, spin axis, atomic positions, and strain matrix are defined.

# Bravais lattice
-0.50000000 0.50000000 0.50000000
0.50000000 -0.50000000 0.50000000
0.50000000 0.50000000 -0.50000000
# Spin axis
0.00000000 0.00000000 1.00000000 a
# Number of elements
1
# Data vectors
0.00000000 0.00000000 0.00000000 26 l x
# Strain matrix
1.00000000 0.00000000 0.00000000
0.00000000 1.00000000 0.00000000
0.00000000 0.00000000 1.00000000
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The file is in free format. In the case of non-orthogonal lattice vectors the
vectors must be defined with high precision of the same order as the machine
precision. Please note that the lattice vectors are defined in column order in
this file but in row order in all other files. In the example the spin axis is given
in Cartesian coordinates (a) but it can also be given in units of the Bravais
lattice vectors (l). For other options, please see the manual.

The atomic positions can be given, among other options, in Cartesian co-
ordinates or in units of the Bravais lattice vectors (a or l). The last item on the
line, x in this case, is a tag that is used together with the atomic number (26
in this case) to group identical atoms together. Atoms with different atomic
numbers or different tags are always considered inequivalent but atoms with
the same atomic number and tag may be equivalent, depending on if the sym-
metry generator can find a symmetry operation linking the different atoms.
This feature can be used, e.g., in anti-ferromagnetic structures to differ be-
tween spin-up and spin-down sites.

The strain matrix can be used to introduce a virtual distortion of the
lattice that mimics the effect on the lattice while preserving the symmetry
of the lattice. The strain matrix is very useful, e.g., when calculating elastic
constants.

The rest of the input is created in the main directory by the program symt
with the option -all using some educated guesses. First, the atomic density
must be created by running make in the directory atom. The atomic density
is used as a starting point for the main program. Next go to the directory bz
and run cub to create the k-point mesh. Link the output file cub.k.NN, where
NN is the number of mesh points in one direction, to the file spts in the main
directory. In the same way link the file cub.t.NN containing the tetrahedron
list to the file tetra.

Finally the files in the directory dta may have to be edited. In this directory
there are different parts of what is going to be the main input file data. Please
see the manual regarding all the different options. Especially the Fourier grid
and the muffin-tin radii must be adopted to the particular systems. The lat-
ter can be found in the files element NN where NN is the atomic number.
When all the necessary files have been edited link the files length scale and
strain matrix to the main directory and do make data in that directory.

RSPt can be run for only one iteration by running rspt in the main direc-
tory. RSPt can also be run to some convergence in fsq. This is done by the
command runs rspt level of convergence max number of iterations. Adapt the
name of the binary that runs should use, the level of convergence, and the
number of iterations runs should run before stopping if convergence is not
reached depending on the situation.

There are more auxiliary programs that can be used for different tasks. All
of them are documented in the manual with their arguments and, if necessary,
input files.
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Total Energy and Forces: Some Numerical
Examples

Abstract Numerical examples of calculations of total energy, equation of state and
Hellman-Feynman forces are given. The calculation of first principles phonons is also
exemplified with fcc Al and bcc U. A comparison between a few selected exchange
and correlation functionals is also made for the calculation of the equation of state.

In the remainder of this book we will give examples of applications of RSPt
to materials science: in the field of magnetism, phase stability and elastic-
ity, chemical bonding of solids, equation of state, lattice dynamics, structural
phase transitions, bulk and surface physics, as well as electronic excitations.
We begin this description with equation of state properties.

10.1 Equation of State

The behavior of materials under pressure is of both theoretical and practical
interest in, e.g., geophysics where computer simulations sometimes are the
only viable tool. Methods based on pseudo-potentials can have insurmountable
difficulties in these kinds of calculations as the pseudo-potentials used most
often lack the flexibility to give a good solution to the electronic structure
calculation over a wide span of different pressures. All-electron methods do
not have this limitation. If the basis set is flexible enough an accurate solution
can be found for several orders of magnitude in compression.

As an example the calculated pressure as a function of compression is
shown in Fig. 10.1. In this example aluminum has been compressed by more
than two orders of magnitude. Here the equation of state is calculated using
RSPt, and it is compared with the Thomas–Fermi equation of state. The latter
is known to be exact in the limit of free electrons at high pressure where
electron correlation is negligible [194]. Thomas–Fermi theory in its crudest
form neglects shell effects and quantum-mechanical effects and therefore the
total energy for the more exact RSPt method is lower over a wide interval
of compressions but as the compression increases the RSPt equation of state
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Fig. 10.1. Pressure as a function of compression in aluminum. The result from
RSPt (full line) is in good agreement with the Thomas–Fermi result (TF-dashed
line) at high pressure

approaches the Tomas–Fermi result as can be expected. Because RSPt is an
all-electron method the effect of the deeper shells becoming band-like state
can be seen in the plot as wiggles in the line.

At these extreme pressures the kinetic energy dominates the total energy,
as can be seen in Table 10.1 where different contributions to the total en-
ergy are shown, and it is therefore essential to use an exchange-correlation
functional with a correct asymptotic behavior at ultrahigh pressure which
treats the kinetic contribution to the XC energy. This contribution is usually
rather small and is often neglected. Of the different functionals implemented
in RSPt, AM05 [20] is shown to give the best results at ultrahigh pressure
(this functional is analyzed further in the chapter on chemical bonding). Other
functionals yield an unwanted softening at high pressure. An example can be
seen in Fig. 10.2.

Table 10.1. Different contributions to the energy of fcc Al at two pressures. All
energies are in Ry. ΔE is the difference in energy between the highest and lowest
occupied valence states. Some contributions to the total energy have been left out
in the table

Low pressure (1 bar) High pressure (42 Gbar)

Volume 16.95 Å3 0.099 Å3

Total energy −484.027 −298.522

Kinetic energy 168.027 550.509

XC energy −35.582 −61.555

Eigenvalue sum −37.193 346.116

ΔE 7.496 51.435
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Fig. 10.2. A comparison between two different XC functionals, AM05 [20] and PBE
[179], for the equation of state of Al, as implemented in RSPt. Notice the softening
of the equation of state for PBE functional

To reach such ultrahigh compressions there are a few things that must be
handled with care. First, the basis set must be sufficiently flexible. At low
pressure the valence electrons have a finite dispersion and exhibit band-like
behavior. All other electrons are atomic like without dispersion and can be
handled as core states. When the pressure is increased, in Fig. 10.3 the DOS is
shown as an example at the extremely high value of 42 Gbar, the valence bands
will become wider, and the core states will gradually have a finite dispersion
and must be treated as Bloch states which may hybridize with all other states.
This usually means that a second energy set must be used, as discussed in
Chap. 6, introducing the so-called pseudo-core states. In Fig. 10.3 one set of
εν has been used for the 2s and 2p states, and a separate set of ενs has been
used for the 3s, 3p, and 3d valence states. At ambient pressure the 2s and
2p states have essentially no hybridization with any other state. However, as
the figure shows at high pressures the 2s and 2p states are far from being
core states, since they have substantial width and hybridize with each other
and all other states. Hence, at these pressures the 2s and 2p states are in all
respects to be viewed as valence states, since they have finite dispersion and
hybridization. However, sometimes a nomenclature is used to refer to these
states as pseudo-core, to indicate that they come from states which normally
(at ambient conditions) are treated as core electrons.

The effect of the inclusion of a second energy set on the total energy and
equilibrium volume of palladium can be seen in Fig. 10.4. The results from the
calculation with a pseudo-core, i.e., two energy sets, are obtained with both
the 4s and 4p states in the pseudo-core, and with the 5s, 5p, and 4d states as
valence states. This configuration is compared in the figure to a calculation
with only one energy set, which has the 4s and 4p states in the core and
only the 5s, 5p, and 4d as valence states. As is obvious from Fig. 10.4 there



104 10 Total Energy and Forces

0

2

4

Pa
rt

ia
l D

oS
 (

st
at

es
/R

y)

Energy (Ry)

Pa
rt

ia
l D

oS
 (

st
at

es
/R

y)

2s 2p

3s, 3p, 3d

2s, 2p 3s, 3p, 3d

1 bar

42 Gbar

–20 –10 0 10
0

0.2

0.4

0.6

Al

Fig. 10.3. The partial density of states of aluminum at 1 bar (upper) 42 Gbar
(lower). The Fermi level is at 0 Ry. The core states 2s and 2p are indicated by vertical
lines in the upper graph. Note that in the upper panel the energy range for the DOS
calculation does not exceed 2 Ryd. At higher pressure the bands become wider and
the 2s and 2p states now have band character with a substantial bandwidth

1413 15
Volume (Å3)

–0.015

–0.01

–0.005

0

To
ta

l E
ne

rg
y 

(R
y)

Two sets
One set

Pd

Experiment

Fig. 10.4. Total energy as a function of volume for palladium for two different basis
sets (see text). The vertical line is the experimental volume. The absolute energies
are not directly comparable and has been shifted to coincide at the respective minima



10.1 Equation of State 105

is a marked difference between the two calculations. In addition, even though
the 4s states are almost 6 Ry below the Fermi energy they contribute to the
hybridization and influence the result. As a matter of fact, the omission of the
4s states from the pseudo-core makes a difference to the calculated equilibrium
volume (data not shown).

To reach very small volumes in an equation of states calculation, a variable-
sized muffin-tin radius that scales with the length scale should be used, as
opposed to a fixed-sized radius, which is fixed for the lowest volume of the
calculation. In this way, the best possible basis set for all volumes is obtained
in RSPt. However, since currently spin–orbit interaction is only implemented
in the muffin-tin region and not in the interstitial region, this procedure is
somewhat troublesome for relativistic calculations. The strength of the spin–
orbit interaction decreases rapidly away from the nucleus of the atom, meaning
that the electron movement is really fast only close to the nucleus. Despite
this fact, the total energy will, for relativistic calculations, depend to some
degree on the choice of muffin-tin radius. The dependence of energy on muffin-
tin radius was also analyzed for different basis sets, in Chap. 6, where specific
choices were shown to essentially remove this energy dependence. However, for
materials where the spin–orbit effect is important, typically for the actinides,
the dependence of total energy with respect to muffin-tin radius cannot be
avoided. Hence when comparing the energies of different crystal structures, or
for the calculation of elastic constants or different magnetic configurations, it
is vital that the same muffin-tin radius is used, for each considered volume of
the calculation. If this is done, reliable results can be obtained.

For equation of state calculations, it has been shown [172] that the best way
to handle this problem is to keep the muffin-tin radius fixed for all volumes.
The muffin-tin radius must be chosen to be big enough to fit all core states
(without their leaking into the interstitial) and still be small enough to fit in
the smallest volume considered in the calculation.

10.1.1 Convergence

There are two different parts to the problem of convergence: to get an accu-
rate solution and to get the correct solution. Neither of the two parts implies
the other; there can be extremely accurate but wrong solutions and correct
solutions of low accuracy. It is fairly easy to check the accuracy of the calcula-
tion by looking at the output parameter “fsq,” which was defined in Sect. 4.6.
There is no simple relation between “fsq” and the convergence in total energy
but an fsq value of 10−10–10−12 usually corresponds to a convergence in total
energy of the order of parts of mRy or better, depending on the complexity
of the problem.

This is usually good enough for a simple equation of state calculation or
to calculate a good density of state but a stronger convergence is needed to
calculate, e.g., the magnetic anisotropic energy or very accurate forces. Then
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an fsq of 10−14–10−18 can be necessary. To reach such a high convergence and
get a correct solution several things must be handled correctly:

The Basis Set: With a basis set that is too small it is impossible to get an
accurate and correct solution. If states that in reality have a finite dispersion
are put in the core the solution will be unsatisfactory as shown in Fig. 10.4. If
the dispersion of a state is high, e.g., at small volumes, a single basis function
might not be flexible enough to describe the state over a wide energy range.
Usually two or three basis functions with the same quantum numbers but
with different tails are used.

Sampling Reciprocal Space: A simple Fermi surface can often be described
with a smaller number of k-points, but the k-point density needed increases
with increased complexity of the Fermi surface. The total number of k-points
needed also depends on the size of the reciprocal space which increases with
decreasing volume. It is hard to give any exact number so the convergence
in k-points should always be tested. If a smearing-based integration method
is used (Gaussian or Fermi–Dirac) the convergence in smearing width should
also be tested. A small smearing demands more k-points but a smearing that
is too large will wipe out possibly important features on the Fermi surface.

Fourier Grid: The Fourier grid is used for two things. First, it defines the
cut-off for the basis set expansion in the interstitial. There is an analytical
test for the convergence of the expansion and the result is presented in the
output file as Fourier transform parameters. For all radii it should be 6 or
higher. The Fourier grid is also used to define the shape of the muffin tin
(really the transform of the muffin-tin shape) and therefore also the match-
ing between the basis functions in the muffin tins and the interstitial. The
charge density at the muffin-tin radius for the first few harmonics should
match from the inside and the outside. Again the exact details depend on the
type of calculation and the convergence necessary but the first few harmonics
should match to within one part in 1,000 or better. The volume dependence
on the number of Fourier grid points is complex and should be checked for all
volumes.

10.2 Phonon Calculations

Phonons are harmonic collective distortions of the lattice which depend on
the electronic structure, through the Hellman–Feynman forces in the mate-
rial. A popular method used to calculate the response to a general pertur-
bation, of which phonons are a special case, is the linear response method
[27]. This method has the advantage compared to supercell-based methods
that all phonon wave vectors and symmetries can be treated and compared
to dielectric matrix approaches the convergence is much faster [26]. Unfor-
tunately this method is not feasible with the current version of RSPt. The
power and flexibility of the basis set come again at the price of complexity.
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The linear order phonon spectrum depends on the difference between the un-
perturbed forces and the forces of the perturbed system, i.e., the response
to a displacement of a perturbed system. The perturbation in this case is
wτ (R) = wτ exp (iq · R) and will affect not only the expansion coefficients
but also the basis functions, as above. Instead indirect methods must be used
to calculate the phonon spectrum. One such method is diagonalization of the
so-called dynamical matrix.

In the harmonic approximation the potential energy is given by

U =
1
2

∑

R,R′

∑

ijαβ

Ciα,jβ(R − R′)wiα(R)wjβ(R′) . (10.1)

Using this expression for the potential energy one can show that the force on
atom i is given by

Fiα(R) =
∑

R′

∑

jβ

Ciα,jβ(R − R′)wjβ(R′) . (10.2)

The Fourier transform of (10.2) is

Fiα(q) = −
∑

jβ

Ciα,jβ(q)wjβ(q) , (10.3)

where Ciα,jβ(q) is the Fourier transform of Ciα,jβ(R − R′) and wjβ(q) the
transform of wjβ(R′).

Equation (10.3) can be inverted for a given q. The dynamical matrix is
then given by

Diα,jβ(q) =
Ciα,jβ(q)√
MiMj

, (10.4)

where Mi is the mass of the ith atom. The phonon frequencies and the normal
modes are given by diagonalization of the dynamical matrix. This can be done
using software like PHON (www.homepages.ucl.ac.uk/∼ucfbdxa/phon/) or
PHONON (wolf.ifj.edu.pl/phonon/).

For example, PHONON will give a list of displacements of one or more
atoms in a supercell. The number of displacements grows with the complexity
of the system. If the symmetry is lower than cubic a displacement in each
unique direction is needed and if the unit cell contains more than one atom,
each of the different atoms must be moved. When the resulting forces for each
mode have been calculated the phonon spectrum is calculated through direct
diagonalization of the dynamical matrix. The result is exact for high symme-
try points in the phonon reciprocal space. The accuracy for low frequencies
depends on the size of the supercell used. Usually a 3 × 3 × 3 supercell will
give acceptable results for a bcc or fcc unit cell with one or two atoms per
unit cell but even such a small cell contains more than 100 atoms.

In this way the phonon structure can be calculated for any material that
RSPt can handle. Figure 10.5 presents an example where the phonon structure
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of bcc uranium has been calculated. The body-centered cubic structure is not
the ground state of uranium but it has been suggested that this structure will
be stable at higher pressure. An unstable material will develop the so-called
soft modes indicated by states with negative frequencies. The uncompressed
material in the bcc structure has several soft modes but at higher compressions
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the density of states is zero at negative frequencies. This implies that bcc
uranium will be dynamically stable at some high pressure.

Another example of a phonon calculation is given in Fig. 10.6 where the
phonon dispersion has been calculated for fcc aluminum using a 3× 3× 3 su-
percell. In the figure a comparison is made with experimental data. Overall,
the agreement between theory and experiment is good. The largest disagree-
ment which can be found is that at the zone boundary the theoretical curves
are somewhat too low in frequency.
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Chemical Bonding of Solids

Abstract In this chapter an analysis of chemical binding of materials is made,
introducing concepts like the crystal orbital overlap population. Numerical exam-
ples of equilibrium volume of the transition metals, lanthanides and actinides are
presented. Calculated equilibrium volumes of refractory materials are compared to
experimental values. The cohesive energy is defined, and calculations are compared
to experiment for the lanthanides. The structural stability of sp-bonded metals,
transition metals, and actinides is discussed. In addition calculations of mixed va-
lent materials, using the Kimbal–Falicov model are described. The chapter ends with
a description of calculations of elastic constants of materials. For all calculations a
comment on convergence of different computational parameters is made.

First principles theory in general gives an accurate description of the chemical
binding of solids. This is evidenced by the quantitative agreement between
calculations and observations for several physical and chemical properties,
which directly reflect the nature and strength of the chemical bonds of the solid
under study. Examples of this are equilibrium volume and crystal structure,
equation of state, phase stability and valency, as well as elastic constants. In
general, theory reproduces these properties with an error not exceeding a few
percent, which is quite remarkable. RSPt describes all these properties with
high accuracy, and in general the results are similar to other full-potential,
all-electron methods, such as FPLAPW.

Although theoretical calculations often reproduce observations, this alone
does not guarantee that a deeper understanding of the material property
under study has been gained. There are several theoretical tools available
to ease interpreting a theoretical result, and one of the tools available in
RSPt is the crystal orbital overlap population, COOP [117], which in RSPt
is named balanced COOP, or BCOOP [105], for reasons described below.
In addition, angular momentum projected occupation numbers, ionicity, and
charge density are useful when analyzing a calculation. We describe below,
how to use these tools in RSPt for sp-bonded materials, transition metals,
f-electron systems, as well as a few intermetallic compounds.
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11.1 Electron Densities

One of the more obvious ways to analyze the nature of the chemical binding
of a material is to simply inspect the self-consistently calculated charge den-
sity. This is a property which on formal grounds, as described in Chapter 2, is
calculated reliably. As an example of a self-consistent charge, or electron, den-
sity we show in Fig. 11.1 this property for MgB2. This material was discovered
in 2001, to be a superconductor with a rather high critical temperature, 39 K
[171]. The crystal structure of this compound is hexagonal, with B planes
interleaved with layers of Mg atoms. The chemical bonding in a B plane is
expected to be strongly covalent and the interaction between B planes and
Mg planes is primarily ionic. Hence, an inspection of the charge density in a B
plane should signal covalently bonded B atoms. The density shown in Fig. 11.1,
calculated with RSPt [224], shows that the electron density is located primar-
ily in the region between B atoms, which is typical for covalent chemical bonds.
In RSPt one has to specify the plane in the crystal structure where one wants
to make an inspection of the charge density, as described in the manual of the
program (the manual can be found at http://www.rspt.net/).

0.2

0.1

0.0

Fig. 11.1. Calculated valence charge density of MgB2. The density is shown for a
cut in a plane which contains B atoms only. The B atoms located on the red dots.
The scale on the right-hand side gives the electron density per a.u.3 Picture kindly
provided by P. Souvatzis

11.2 Crystal Orbital Overlap Population (COOP)

Crystal orbital overlap population (COOP) and related chemical binding in-
dicators are used to distinguish between bonding and antibonding states in
crystalline solids. The concept comes from quantum chemistry. If a molecule is
described with the one-electron Kohn–Sham (or Hartree–Fock) Hamiltonian
H, with the eigenspectrum (H − εn)

∣∣ψn

〉
= 0, then the binding character of

a state
∣∣ψn

〉
is given by the orbital population (OP)

OPij = Sijc
∗
i (n)cj(n) , (11.1)

where Sij = 〈i|j〉 is the overlap matrix element between atomic orbitals
∣∣i
〉

and
∣∣j
〉

and ci(n) are the eigenvector’s components
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∣∣ψn

〉
=
∑

i

ci(n)
∣∣i
〉
. (11.2)

OPij tells us how does the state ψn contribute into the covalent bond between
orbitals

∣∣i
〉

and
∣∣j
〉
. Positive OP means ψn is a bonding state and negative

OP means it is an antibonding state. The absolute value of the OP measures
the strength of the respective contribution. The sum of all OPs (including the
diagonal ones, OPii, which have no direct physical meaning) is equal to 1

∑

ij

OPij = 〈ψn|ψn〉 = 1 , (11.3)

assuming the eigenvector is normalized. Note that, strictly speaking, the or-
bital population is not a physical quantity (in the sense it is not an expectation
value of any hermitian operator) and it depends on the choice of the basis set
{∣∣i〉}. However, for reasonable choices of the basis set, the qualitative picture
of the chemical binding given by OP is not much affected by this choice.

For a solid state, the crystal orbital overlap population [117] is the orbital
population-weighted density of states

COOPij(ε) =
∑

nk

δ(ε− εnk)c∗i (nk)cj(nk)Sij(k) . (11.4)

COOP is an energy-resolved quantity which is positive for bonding states
(more precisely, the states that make a bonding contribution to the bond
i− j) and negative for the antibonding ones. COOP can be defined for both
real space orbitals

∣∣iR
〉

and the k-space orbitals
∣∣ik

〉
=

∑
R exp(ikR)

∣∣iR
〉
.

They are connection by the expression

COOPij(ε) =
1
N

∑

R1,R2

COOPiR1,jR2(ε) =
∑

R

COOPi0,jR(ε) , (11.5)

where N is the number of sites in the lattice. The sum of COOP for all pairs
of orbitals (including the diagonal elements) is equal to the density of states

∑

ij

COOPij(ε) = DOS(ε) . (11.6)

For covalent bonds (including bonds between partially filled d- and f -shells),
COOP shows both bonding (positive COOP) and antibonding (negative
COOP) states. For metallic bonds, COOP is positive up to the Fermi level,
while for ionic bonds COOP is negative everywhere.

A related quantity is the crystal orbital Hamilton population (COHP) [77]

COHPij(ε) =
∑

nk

δ(ε− εnk)c∗i (nk)cj(nk)Hij(k) , (11.7)

which uses the Hamiltonian matrix elements Hij instead of the overlap matrix
elements Sij . COHP roughly has the physical meaning on the energy-resolved
contribution to the binding energy of the covalent bond i− j
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∫ EF

−∞
dε COHPij(ε) = Ebond

ij . (11.8)

The sign of COHP is the opposite to that of COOP (negative COHP means
bonding states). The problem with COHP is that it depends on the position
of the origin of the energy scale (energy zero). Namely, upon transformation
ε→ ε+�ε, the Hamiltonian transforms as Hij → Hij +�εSij , and therefore

COHPij(ε) → COHPij(ε) + �εCOOPij(ε) . (11.9)

COHP is only defined unambiguously for the orthogonalized orbitals
∣∣̃i
〉

=∑
j(S

−1/2)ji

∣∣j
〉
. However, the process of the orthogonalization destroys the

pure lm character of the atomic-like orbitals.
It is important to note that COOP is only a good quantity if the basis

set is nearly orthogonal (the off-diagonal overlap matrix elements are small).
In the opposite limit of the nearly linear-dependent basis set COOP diverges
for the antibonding states. In RSPt, the basis set is often close to the linear
dependence for certain k-points when more than one kinetic energy tail is
used. This leads to a problem with huge antibonding peaks in the COOP. To
overcome this difficulty, Grechnev et al. [105] proposed a modified version of
COOP called balanced COOP (BCOOP). BCOOP is defined in the following
way. Let the quantum number α include the physically significant quantum
numbers (atom type t, spin projection σ, and the angular quantum number l).
An eigenvector ψn(k) can be written as a sum of non-orthogonal contributions∣∣α(n,k)

〉

|α〉 =
∑

i∈A(α)

ci |i〉 ,
∑

α

|α〉 = |ψn(k)〉 , (11.10)

where A(α) is the set of all orbitals i with the given quantum number α, and
any values of other quantum numbers, such as m, kinetic energy tail, and site
within given type. The COOP in this notation is

COOPα1,α2(ε) =
∑

nk

δ (ε− εn(k)) 〈α1|α2〉 (11.11)

and BCOOP is defined as

BCOOPα1,α2(ε) =
∑

nk

δ (ε− εn(k))
〈α1|α2〉∑

α 〈α|α〉 . (11.12)

For “good” basis sets BCOOP practically coincides with COOP, while for
“bad” basis sets (which are close to linear dependence) BCOOP is much more
robust: It is much less basis set dependent and the huge antibonding peaks
are avoided [105]. The calculation of BCOOP is a standard function of RSPt,
and control flags for its calculation are described in the RSPt manual.

As an example of how BCOOP, implemented in RSPt, describes the chem-
ical bonding in a transition metal, we display this function for hcp Ru in
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Fig. 11.2. BCOOP of hcp Ru. Dashed curve represents the density of states and
solid line the BCOOP function. The Fermi level is at zero energy

Fig. 11.2. In this figure we also show the DOS. The figure shows that d-orbitals
for less than a half-filled shell are bonding (positive BCOOP) and more than
half-filled shell are antibonding (negative BCOOP). Hence, the chemical bond-
ing of hcp Ru can be understood as stemming from all the bonding states have
been filled and that some of the antibonding states are becoming filled, such
that the Fermi level cuts through a region of antibonding states. This pic-
ture coincides perfectly with the general understanding of chemical bonding
of transition metal elements, as being explained by the Friedel model [112].

11.3 Equilibrium Volumes of Materials

The equilibrium volume of a material is described extremely accurately by
density functional theory in most implementations, and RSPt is no exception
to this. In order to illustrate this we will use here as examples the transi-
tion metals, f-electron systems, as well as selected compounds. In RSPt the
equilibrium volume is identified as the volume for which the total energy of
the material has its lowest total energy. Hence, a few total energy calcula-
tions (or order 5–10) are needed to find this energy minimum. In general, the
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total energy for each volume needs to be converged to a level where addi-
tional self-consistent calculations do not change the energy with more than
a tenth of a mRy. The number of k-points needed for sampling the full Bril-
louin zone of simple crystal structures with one or a few atoms per unit cell is
approximately 2,000–5,000. In practice, the symmetry of the crystal reduces
the number of k-points needed, since only the irreducible wedge needs to be
sampled. For instance, a crystal with cubic symmetry has 48 point group op-
erations, and hence the irreducible wedge is 1/48 of the full Brillouin zone.
Hence the number of k-points needed for achieving an accurate total energy,
for the calculation of reliable equilibrium volumes, is only 40–100, for “easy”
crystal structures with not too many atoms per cell. In general the density
of k-points needed to achieve an accurate total energy scales inversely with
the volume of the Brillouin zone. Hence, larger systems with many atoms per
unit cell require in general fewer k-points.

11.3.1 Transition Metals

In Fig. 11.3 we show as an example of transition metals, the experimental and
theoretical equilibrium volumes of the elements of the 4d transition metal
series. These calculations have been performed with RSPt using the AM05
functional [20] for exchange and correlation as well as the generalized gra-
dient correction of PBE [179]. Note that in general, theory reproduces the
observed volumes with only a small error. When comparing the two func-
tionals, it seems that overall AM05 agrees with observations somewhat better
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Fig. 11.3. Self-consistent calculations of equilibrium volumes of elements from the
4d transition metal series, using the AM05 functional [20] and the gradient-corrected
functional for the PBE parametrization [179]. Calculations are compared to T = 0 K
experimental values
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than PBE. The largest error made by AM05 is for Y and in general this func-
tional seems to reproduce the later transition metals better than the earlier
ones. For PBE the situation is reversed, the early elements are almost per-
fectly reproduced, whereas the elements later on in the series have too large
volumes compared to observations. The general trend exhibited by the equi-
librium volumes in Fig. 11.3 reflects the division of bonding states for the early
part of the series and antibonding states for the later part, as is displayed in
the BCOOP curve in Fig. 11.2. Hence, additional filling of electron states for
less than a half-filled d-shell increases the strength of the chemical bond and
causes therefore a contraction of the equilibrium volume. Additional filling of
antibonding states will in a similar fashion cause an increase in equilibrium
volume.

11.3.2 Lanthanides and Actinides

In Fig. 11.4 we show the volumes of the lanthanide series, both as given by
calculations based on LDA and PBE [65, 67]. In the figure we also include
experimental data. Note that the gradient-corrected functional overall per-
forms much better in reproducing the experimental data for the lanthanides
than the LDA functional. It is also clear from the figure that the volumes of
the lanthanides can be divided into two groups, one with larger volumes (Ba,
Eu, and Yb) and one with smaller volumes. This comes naturally from the
fact that Ba, Eu, and Yb are divalent elements, with only two electrons in
the valence band which can contribute to the chemical bonding. The group of
rare-earth elements with lower volumes are the trivalent ones, where the extra
electron in the valence band contributes to strengthen the chemical bonding,
which reduces the equilibrium volume [127]. We will return to the stability of

Fig. 11.4. Calculated and measured equilibrium volumes of the lanthanide series.
Theoretical data made by GGA (filled circles) and LDA (open circles)
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the divalent and trivalent states of the rare-earth series below. Furthermore,
it should be noted that all elements of the rare-earth series, possibly with
the exception of the α-phase of Ce, have a 4f shell which is atomic like and
chemically inert. The other conspicuous part of the lanthanide series, which
is also captured by theory, is that the volumes become contracted as one tra-
verses the series. This behavior is referred to as the “lanthanide contraction,”
and reflects the incomplete screening of the nuclear charge by an additional
electron of the 4f shell, when one goes from an element with nuclear charge
Z to Z + 1.

The volumes of the light actinide series are shown in Fig. 11.5. Note that
in this figure we show equilibrium volumes only of Th, Pa, U, Np, and Pu,
since Ac is a normal trivalent element where the presence of the 5f electron
states is hardly noticeable, at least not as concerns the equilibrium volume,
and the heavy actinides (Am and onwards in the series) have a localized 5f
shell, and hence a behavior of the equilibrium volumes which is similar to that
of the lanthanide series [260]. For the elements Th, Pa, U, Np, and Pu the
5f-shell is in general not localized in the same way as it is in the lanthanides.
Instead the 5f states are more or less itinerant, and this produces a chemical
bonding which can best be described from the Friedel model, just as is the
case of the d-shell of the transition metals, as discussed in Sect. 11.3.1 and
around Fig. 11.2. Figure 11.5 shows an overall acceptable agreement between
theory and experiment. The agreement is maybe not as good as that found for
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Fig. 11.5. Calculated and measured volumes of the actinide series. Experimental
data given at room temperature. Theoretical data are given from GGA theory to
which the experimental thermal expansion was added, to correspond to room tem-
perature volumes. The red squares are from [215] and the blue square is from [172]
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the transition metals, but nevertheless it must be viewed as satisfying. The
electronic structure of the actinides is extremely complex, with an interplay
between a large spin–orbit splitting in the 5f shell, which also forms a rather
narrowband, so that correlation effects start to become visible. In addition,
the shallow core states (the 6s and 6p states) overlap with neighboring atomic
states, so that they must be treated as valence band states. Hence several
electronic shells must be considered in the calculation, which poses a technical
problem. This is solved in RSPt by separate energy sets, as discussed above,
which forms a common fully hybridizing set of energy bands.

As an example we show the DOS of the α-phase of Pu in Fig. 11.6. In
this figure we show the total DOS as well as the partial DOS of one of the

–2 –1
0

D
en

si
ty

 o
f 

St
at

es
 (

ar
b.

 u
ni

ts
)

Energy (Ry)

Pu

0 1

–2 –1 0

Pa
rt

ia
l D

en
si

ty
 o

f 
St

at
es

 (
ar

b.
 u

ni
ts

)

p–states
d–states
f–states

Energy (Ry)

1

Fig. 11.6. Calculated DOS of α-Pu. In the upper panel the total DOS is shown,
and in the lower panel the partial DOS of the p-states, d-states, and f-states. The
partial DOS is shown only for 1 of the 16 atoms of the unit cell of the monoclinic
phase of α-Pu. The 6p1/2 states are primarily located close to −2 Ry, the 6p3/2 states
primarily between −1.5 and −1 Ry, the 6d states start at approximately −0.3 Ry
and are extended to over 1Ry, whereas the 5f states have a width of ≈0.5 Ry and
are pinned by the Fermi level
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atoms of the monoclinic cell of α-Pu. Note that a projection to a selection
of angular momentum states is done in the figure, i.e., the p, d, and f states.
This projection does not make a distinction between, e.g., 6p and 7p states,
and in principle the p-partial DOS in Fig. 11.6 contains components from
both 6p and 7p states. In addition, all states considered in the calculation can
hybridize with each other. In a calculation of a free Pu atom the 6p states are
spin–orbit split and located at ≈ −2 Ry for the 6p1/2 states and at ≈ −1.5 Ry
for the 6p3/2 states. This atomic feature also shows up in the DOS of the
electronic structure of solid Pu; the spin–orbit coupling is clearly visible, and
p states are clearly seen at ≈−2 and ≈−1.5 Ry, albeit broadened. If one were
to plot the radial component to the eigenfunctions of the p-states at these
energies, one would note that they are dominated by 6p states, not the 7p
states. If on the other hand one were to investigate the radial component
of p-projected states at much higher energies, e.g., above the Fermi level,
one would encounter 7p states. For the 5f states the spin–orbit splitting is
around 0.1 Ry, and this has a tendency to split the 5f partial DOS into two
components, which are separated by a gap. This is also visible in Fig. 11.6, but
one should note that other effects, associated with the formation of electron
bands, including the crystal field splitting, are active in producing a partial
DOS which is separated into two regions that are separated by a gap. The
width of the 5f states, as shown by Fig. 11.6, is of the order of 0.5 Ry, which is
rather close to the estimates of the Hubbard-U for Pu (values between 0.2 and
0.4 seem reasonable for metallic Pu), discussed in the DMFT section. Hence
there are three interactions in the 5f shell of Pu which are rather similar in
strength, the spin–orbit coupling, the Coulomb repulsion among electrons,
and the hopping of 5f electrons from lattice site to lattice site, producing
energy bands. This feature of Pu makes it a formidable theoretical problem to
investigate, and only recently has some light been cast on this outstandingly
complex element [85, 198, 206].

11.3.3 Compounds

The final example of how RSPt reproduces experimental equilibrium volumes
is taken for a few refractory compounds, i.e., TiC, TiN, and TiO. The calcu-
lated volumes (both from LDA and GGA) [5] are compared to observations
in Fig. 11.7. Note that for TiC and TiN, the GGA results reproduce the ob-
served volumes with only a very small error. For TiO the GGA calculation
results in a slightly too large volume, which has been analyzed in part to be
due to a deviation from perfect stoichiometry in the experimental sample [5].
Overall, the data in Fig. 11.7 demonstrate that also for materials with some
complexity in the chemical binding, equilibrium volumes are reproduced by
RSPt with good accuracy, even if the chemical binding is rather complex, and
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Fig. 11.7. Calculations using RSPt for the equilibrium volumes of TiC, TiN, and
TiO, compared to experimental data. Data redrawn after [5]

includes a large covalent component between the d-electron element and the
p-electron element.

11.4 Cohesive Energy

The cohesive energy, i.e., the energy difference of a crystalline material and
the sum of the atomic energies of the elements constituting the material, is
also a ground state property which in principle should be reproduced well by
density functional theory. In order to illustrate how well this is captured by
the RSPt implementation, we show in Fig. 11.8 the calculated cohesive energy
of the lanthanide series [65, 67]. The property shown in this figure is actually
the generalized cohesive energy, which according to the definition [131], has
eliminated the energies of the multiplet structure of the 4f shell, as well as the
promotional energy within the 4f shell. In short, the data in Fig. 11.8 display
the energy gained by the non-f valence electrons when the solid is formed.
Details of how this energy is defined are described in [65, 67]. Figure 11.8
shows that the trivalent materials have a larger generalized cohesive energy,
compared to the divalent ones, which reflects the fact that more electron
states contribute to the chemical binding here. Overall, the agreement between
theory and experiment is found to be good in Fig. 11.8 and, just like for
the equilibrium volumes, it is clear that the gradient-corrected functional in
general reproduced observations better than LDA. The convergence needed
in RSPt, in terms of the number of k-points sampled in the Brillouin zone, as
well as the number of self-consistent iterations, is the same as for calculations
of equilibrium volumes, discussed above.
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Fig. 11.8. Calculated generalized cohesive energy (see text) for divalent and triva-
lent lanthanides, compared to experimental data. Calculations have been based on
LDA as well as GGA

11.5 Structural Stability and Pressure-Induced
Phase Transitions

The structural stability of a material is a property which first principles calcu-
lations in general reproduce with outstanding accuracy. Several studies have
confirmed this finding, where possibly the most conspicuous result was pub-
lished by Skriver [209] in a paper which considered the structural stability
of most elements of the periodic table. The observed structures were in this
work reproduced for almost all considered elements, clearly a major achieve-
ment of a theory, and subsequent calculations have only slightly modified the
structural stabilities of [209].

The calculation presented in [209] was based on the atomic sphere ap-
proximation. Subsequent calculations based on a full-potential geometry, like
RSPt, give for most elements a very similar structural stability as that found
by Skriver. We exemplify the accuracy of RSPt in reproducing structural sta-
bilities by considering an sp-bonded element, Ca, a transition metal, Ti, and
an actinide element, Pu. The structural stability of several other materials
has been considered in the past, e.g., as reported in [87, 216, 218].

As concerns computational details, accurate calculations of structural sta-
bility require a somewhat more dense k-point mesh compared to a calculation
of the equilibrium volume or cohesive energy, sometimes up to a factor of two
to three times as dense.

11.5.1 An sp-Bonded Material, Ca

The most interesting structural properties of Ca are studied as a function
of applied pressure, and we summarize shortly the relevant experimental
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situation. This divalent element shows a set of phase transitions [174, 265];
starting from fcc it transforms to a bcc structure at ≈20 GPa. With further
increase of the pressure, a transition to an sc phase transition was observed
at ≈30 GPa. In this set of transitions, the appearance of the sc structure is
unexpected, since it seldom appears for elements of the periodic table (Po
is as mentioned the only known example at ambient pressure). In contrast,
pressure-induced phase transitions from fcc → bcc or from bcc → fcc are very
common.

In Fig. 11.9 we show calculations using RSPt [4] of the structural prop-
erties of Ca. Note that the energies of the fcc, bcc, sc, and hcp structures
are compared in this figure. The experimental trend of phase stability, fcc
→ bcc → sc, as a function of increasing pressure, is found to be repro-
duced by the calculations. The calculated transition pressure of the fcc →
bcc phase transformation is 15 GPa, which compares rather well with the ob-
served pressure of 19.5 GPa [174]. The calculated pressure for the bcc → sc
transition is 33 GPa which also compares favorably with the observed tran-
sition pressure of 32 GPa [174]. The observed transition sequence of Ca was
analyzed in detail in [4] and found to occur because of a pressure-induced
transfer of electron states from the s-projected orbitals to d-projected orbitals,
and that the filling of the d-projected states drives the transition to the sc
phase [4].

Fig. 11.9. Structural stability of Ca as a function of compression. The bcc structure
is the reference energy and is set to zero energy. The energy of the hcp phase is
marked as red, the fcc phase is marked as blue, and the sc phase is marked as green.
Figure redrawn after [4]
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Note from the figure that theory predicts a destabilization of the sc struc-
ture and that at sufficiently small volumes, the hcp structure should be stable.
So far, this phase has not been verified, although the destabilization of the sc
structure is an experimental fact. Recent experimental work on Ca reported
two new high pressure phases at 113 GPa [265]. The structures of these phases
have so far not been identified, but recent theory have proposed an incom-
mensurate crystal structure of Ca at these pressures [17].

11.5.2 Transition Metals

The group IV elements, Ti, Zr, and Hf, have similar structural properties as a
function of temperature or pressure. At room temperature and ambient pres-
sure the hcp phase is stable, but with an applied pressure the so-called ω-phase
is stabilized. A further applied pressure is known to stabilize the bcc struc-
ture, at least for Zr and Hf [6]. Hence the phase diagram of these elements is
sufficiently complex to serve as a good test on the accuracy of a first principles
theory. For this reason we have chosen to illustrate the accuracy of RSPt in
reproducing the structural properties of transition metals for one of the group
IV elements, Ti. The structural properties of Ti at very low temperature have
not been reported, so it is in principle difficult to compare first principles the-
ory with observations. However, an extrapolation of the known phase diagram
to low temperatures and zero pressure suggests that the hcp and ω-phase are
close to being degenerate in energy [266]. Hence the experimental data avail-
able suggest that the phase stability at zero temperature is expected to start
at ambient pressure with the hcp and ω-phase being close to degenerate and
that with increasing applied pressure a stabilization first of the ω-phase and
second of the bcc structure. This trend is captured in its entity by RSPt, as
shown in Fig. 11.10, where the crystallographic phase stability of this element
is shown. Several studies of structural phase stabilities of transition metal ele-
ments and compounds have in the past been published with RSPt, especially
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Fig. 11.10. Calculated structural stability of Ti, as a function of volume, with the
hcp structure being the reference level, which is set to zero energy. The experimental
equilibrium volume is 17.6 Å3. The energy of the ω-phase is given by the red line,
the energy of the fcc phase is given by the blue line, and the energy of the bcc phase
is given by the green line
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concerning pressure-induced structural phase transitions [216, 217], often with
excellent agreement between calculations and experimental observations.

11.5.3 Systems with f-Electrons

Concerning the electronic structure, plutonium is one of the most complex
elements known, as discussed above. This is reflected also in the structural
properties of this element, where as a function of increasing temperature a
sequence of phase transitions are known experimentally [215]. Starting from
the low-temperature monoclinic α-phase, which has 16 atoms per unit cell, a
transition to the β, γ, δ, δ′, and ε phases has been identified as a function
of increasing temperature. The stability of the low-temperature α-phase is an
excellent test for first principles theory, since this puts very high demands
on the accuracy of the electronic structure method used. As an example of
how RSPt performs for this task, we show in Fig. 11.11 a comparison between
the calculated total energy of eight different crystal structures, as a function
of volume [228]. The structures considered are typically found experimentally
among the transition metals and the actinides. Note from the figure that of all
the structures considered, the experimentally observed α-phase has the lowest
total energy at the experimental equilibrium volume, clearly a gratifying result
given the complexity of the electronic structure of this material. Further,
a sequence of phase transitions is suggested by the data in Fig. 11.11, and
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Fig. 11.11. Structural stability of Pu, as a function of volume. The different crystal
structures are compared to the bcc structure. Therefore the total energy of the
bcc phase represents the zero energy line. The experimental equilibrium volume is
≈20.3 Å3
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Pu is predicted to become bcc at sufficiently low volumes. A full account of
the physics behind the complex crystallographic phases of Pu and the light
actinides can be found in [218, 219, 259].

11.6 Valence Configuration of f-Elements

The stability of a particular electronic configuration, fn[spd]3 or fn+1[spd]2, is
referred to as the valence stability. It has been shown that the energy differ-
ence between two or several such valence configurations, Δ0, can be calculated
using first principles theory. This involves calculating the contribution to the
energy difference between the two configurations which comes from the itin-
erant [spd]-states, i.e., the generalized cohesive energy, and the contribution
from the localized 4f states [127]. An example of such a calculation using RSPt
is shown for the rare-earth elements in Fig. 11.12 and it may be noted that
theory and experiment do not differ by more than ≈0.1 eV. This calculation
thus reproduces the observed trivalent state of all the rare-earths except for Eu
and Yb, where correctly the divalent configuration is reproduced. In addition
it is known to reproduce the valence stability of rare-earth-based compounds
as well [66].

It is in addition possible to calculate accurately the transition from one
valence configuration to another as a function of pressure. This is illustrated in
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Fig. 11.12. Energy difference between divalent and trivalent phases of the 4f ele-
ments. The divalent phase is stable for negative values (Eu and Yb). Experimental
values are given as red diamonds and theoretical values as blue circles (LDA) and
filled circles (GGA)
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Fig. 11.13 for elemental Yb, which is divalent at ambient pressure. In the high-
pressure experiments of [53] it was concluded that Yb undergoes a pressure-
induced transition to an intermediate valence state, i.e., a state where the
valence configuration is not simply an integer, like divalent or trivalent, but a
non-integer valence configuration. At 100 GPa it was estimated that Yb has
transformed completely to a trivalent state.

The consideration of the electronic structure of an intermediate valence
material requires a combination of data from density functional theory and
the so-called Kimbal–Falicov model [101, 190]. One may start by considering a
divalent rare-earth element, which corresponds to an fn+1 configuration. For
a given volume, one can calculate the total energy difference, Δ0, between the
trivalent (fn configuration) and the divalent states, as shown in Fig. 11.12. A
straightforward calculation of Δ0 cannot reproduce the energetics of an inter-
mediate valence state, since it simply concludes that if Δ0 > 0, the divalent
state is stable and if Δ0 < 0 the trivalent state is stable. As a first step, one
considers the valence configuration z = 2 + x, which is determined by the
energy balance between the difference of the fn+1 and fn configurations and
the variation of the band energy when promoting x electrons:

x =

EF+|Δ(x)|∫

EF

dEN (E) , (11.13)
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Fig. 11.13. Calculated equation of state for fcc Yb (red circles) compared to exper-
iment (full line). The two broken lines are isothermal equation of states for divalent
(upper blue line) and trivalent (lower dotted line) fcc Yb. Data taken from [56]
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where EF is the Fermi energy for the divalent state, N(E) is the density of
states of itinerant valence electrons (for Yb metal it is dominated by the 5d
states), and Δ(x) is a renormalized promotion energy [101, 190].

In [121–123], a BCS-like theory of intermediate valence systems, with a
d − f excitonic pairing, was suggested. In that model, the main correlation
effect on the valence stability is the Hartree–Fock renormalization of Δ0, i.e.,

Δ (x) = Δ0 +Gx , (11.14)

where G is the Falicov interaction parameter. G can be determined as the
derivative of the center of the 5d band with respect to the number of 4f
electrons, and one obtains the valence, i.e., the correct self-consistent value of
x, by solving (11.13) and (11.14) iteratively.

We plot in Fig. 11.13 the calculated EOS (open circles) together with the
experimental data (full curve) of [53]. For comparison, the equation of state
for divalent and trivalent Yb is also shown in the figure. The agreement be-
tween experiment and the theory based on the Kimbal–Falicov model is good,
whereas the trivalent and divalent EOS curves do not capture the overall
behavior of the experimental data.

11.7 Elastic Constants

The elastic response of a material gives information on how the material de-
forms and becomes strained when subjected to a given stress. This informa-
tion is contained in the materials’ elastic constants. The strain of the system
is normally expressed in a matrix form as

e =

⎛

⎝
1 + αxx αxy αxz

αyx 1 + αyy αyz

αzx αzy 1 + αzz

⎞

⎠ , (11.15)

where the elements αab in the matrix e represent how the Bravais lattice
vectors of the system become distorted (a thorough account for the theory
of elasticity is given by Wallace [251]). First principles calculations of elastic
constants are obtained first by making a Taylor expansion of the systems total
energy in the strained state using the following expression:

E(V, e)=E(V0,1) + V0

⎛

⎝
∑

a,b

τabαab +
1
2

∑

ab,cd

Cab,cdαabαcd + · · ·
⎞

⎠ , (11.16)

where E(V, e) is the total energy of the strained system, E(V0,1) the total
energy of the unstrained system, 1 is the matrix e with all values of αab equal
to zero, τab is an element in the stress tensor, and Cab,cd is the adiabatic
elastic constant. Normally one adopts the Voigt notation that replaces the
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index xx with 1, yy with 2, zz with 3, etc., and in this notation the elastic
constant is written as Cij where i and j are integers ranging from 1 to 6. The
calculation of Cij now proceeds by a suitable choice of αi in (11.15) that gives
rise to a strain corresponding to a specific elastic constant or a particular
combination of elastic constants. For instance, the choice of all αi equal to
zero except α3 results in the following total energy expression, E(V, α3) =
E(V0,1) + V0(τ3α3 + 1

2
C33α3α3). By first calculating the total energy of the

system, e.g., using density functional theory, for different values of α3 (typical
values range between 0.01 and 0.1) and then fitting the resulting energy curve
to the expression for E(V, α3) quoted above one can extract a theoretical value
of C33. One must bear in mind that a precise calculation of elastic constants
requires a very high accuracy in determining energy differences of different
strain states, roughly on the order of μRy/atom. A significantly denser k-
point mesh is therefore needed to achieve accurate elastic constants, so that
the number of k-points has to reach of the order 10,000–20,000 points in the
full Brillouin zone for an element with one atom per unit cell.

In Fig. 11.14 experimental and theoretical data using RSPt and LDA [261]
of 1

2
(C11 −C12) (this is a particular combination of elastic constants for cubic

materials that is called C
′
) and C44 are shown for a selection of the cubic tran-

sition elements (C11, C12, and C44 are the only independent elastic constants
for a cubic material). The elements have been ordered in the way of increasing
values of C

′
. Note that the experimental values of C

′
and C44 range from 0.02

to 3 Mbar and that despite this large span, the theory reproduces the experi-
mental data within some ≈10%. First principles calculations of spin-polarized
bcc Fe, fcc Co, and fcc Ni reproduce experiments with approximately the same
accuracy [217]. For a hexagonal material the symmetry aspects result in five
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independent elastic constants, C11, C33, C55, C12, and C13 [251]. Among the
transition metals there exist experimental data for several elements, and RSPt
in the LDA approximation reproduces these data with an error not exceeding
≈15% (see Fig. 11.15) [92].

The experimental elastic constants are typically reproduced with some-
what better accuracy using GGA compared to LDA, and the general de-
viation between experiment and theory, as shown in Figs. 11.14 and 11.15,
is expected to be even smaller for GGA calculations. This is exemplified in
Fig. 11.16 where the calculated values of C11, C12, and C44 are shown both
from LDA and GGA calculations together with experimental values, for TiC,
TiN, and TiO [5]. In Fig. 11.16 it may be seen that the GGA theory repro-
duces the experimental values somewhat better than the LDA calculations,
but the general trend is not influenced by the choice of GGA or LDA.

Overall, GGA is known to reproduce the chemical binding better than
LDA, so that quantitatively it results in a better agreement between experi-
ment and theory. If one is interested in general trends, for instance, if a specific
elastic constant is bigger in one element compared to another, or the trend
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of the equilibrium volume or the changes in structural properties across a
transition metal series, LDA is as good as GGA. As concerns the magnetic
properties, it is less clear if one can identify a general trend where GGA can
be said to be better than LDA, as we will discuss in some detail in the next
chapter.
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Magnetism

Abstract Chapter 12 describes the theory of magnetism, with focus on spin and
orbital moments, and the magnetic anisotropy. Numerical examples are presented,
both for bulk and surfaces, and the particular symmetry aspects of relativistic one-
electron theory and magnetism are described. The different contributions to the
magnetic anisotropy are analyzed, as are the often cumbersome aspects of a slow
convergence of the calculation of the magnetic anisotropy with respect to the number
of k-points.

There are several properties of a magnetic material which determine function-
ality in a variety of applications, and for this reason have caught attention
for scientific studies. Among the key magnetic properties, we note the satura-
tion magnetization, the ordering temperature, the type of magnetic ordering,
as well as the magnetic anisotropy. The saturation magnetization is obtained
when all atoms of, e.g., a ferromagnetic material have atomic spins aligned,
and the material is in a mono-domain state. A measurement of the saturation
magnetization can hence give information about the size of the atomic mo-
ment, which in general is composed of a spin and an orbital part. A schematic
picture of this is shown to the left in Fig. 12.1. Both these moments can be
calculated from first principles theory, and we will give examples of such cal-
culations in this chapter. Another property which is available for theoretical
studies is the nature of the magnetic ordering, such as ferromagnetism, fer-
rimagnetism, and antiferromagnetism. By simply comparing total energies
in DFT calculations, for different magnetic configurations, gives evidence for
which magnetic structure should be observed experimentally. The final exam-
ple we want to mention of a magnetic property which is available from first
principles theory is the magnetic anisotropy. All materials have a tendency to
have the magnetic moments aligned along crystallographic axis, the so-called
easy axis. As an example we note that fcc Ni has the 〈111〉 axis as the easy
axis and for bcc Fe it is the 〈001〉 axis. Only by applying an external field can
the magnetization be made to rotate away from the easy axis, toward a hard
axis (an example is shown in the right-hand side of Fig. 12.1).
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Fig. 12.1. Illustration of the contribution of spin (S) and orbital (L) angular momen-
tum to the atomic magnetic moment (left). Picture of the rotation of the magnetic
moment away from the easy axis by an external field (right) (picture kindly provided
by O. Karis)

12.1 Spin and Orbital Moments of Itinerant
Electron Systems

The calculation of spin moments can in the simplest procedure be done from
a spin-polarized calculation, where one finds a solution to the Kohn–Sham
equation, (2.18), for spin-up and spin-down states separately, in which an ef-
fective potential is constructed separately for each spin projection and the
spin–orbit coupling is neglected. For some materials an asymmetric popula-
tion of spin-up and spin-down states then appear; the material becomes spin
polarized. Other materials do not become spin polarized when separate solu-
tions to the Kohn–Sham equation are allowed for, which simply means that
the used energy functional favors a spin-degenerate solution. When a compar-
ison is made between spin-polarized calculations of the Kohn–Sham equation,
and experimental observations, the agreement is near perfect. Theory repro-
duces the experimental observation of a spin-polarized or a spin-degenerate
state for most materials. As a matter of fact, among the elements of the pe-
riodic table, it is only Cr, Mn, Fe, Co, Ni, the lanthanides, and a few of the
heavy actinides (Am an onwards) which are experimentally known to have a
lifted degeneracy between the two spin channels. Density functional theory in
most implementations, and the RSPt code is no exception here, reproduces
this fact perfectly.

In these calculations the spin moment is calculated from

ms = gsΣi 〈ψi |sz|ψi〉 , (12.1)

where the sum is over all occupied states, and for a solid it is meant to the
Brillouin zone. Furthermore, gs is the g-factor of the electron spin (which
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in practice is put equal to 2), and ψi is the solution to (2.18). For a spin-
polarized calculation of a collinear configuration, in which spin–orbit coupling
is neglected, all the solutions to (2.18) have pure spin projection, i.e., no mix-
ing between spin states appears. This yields a contribution to the expectation
value equal to +ms for spin-up states and −ms for spin-down states, and the
sum in (12.1) can be made straightforwardly. An alternative to using (12.1)
is to evaluate the density of states of the spin-up and the spin-down states,
according to the procedures described in Chap. 3 and then integrate the den-
sity of states of each spin channel to the Fermi level. An example of such a
calculation is shown in Fig. 12.2, where a spin-polarized calculation of bcc Fe
is shown. From this figure it is clear that the occupation of spin-up states
is larger than the occupation of the spin-down states. The calculated spin
moment is the difference in occupation of the two spin channels, multiplied
by gs.

The calculation of an orbital moment is analogous to that of the spin
moment and may be done in practice from the equation

ml = Σi 〈ψi |lz|ψi〉 . (12.2)

Note that the g-factor for the orbital moment is 1, but that otherwise the
expressions in (12.1) and (12.2) are similar. It should be noted that in order for
an orbital moment to appear, both spin polarization and spin–orbit coupling
must be present in the calculation [39].
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Fig. 12.2. Illustration of a spin-polarized electronic structure calculation, using
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12.1.1 Symmetry Aspects of Relativistic Spin-Polarized
Calculations

The symmetry properties of a spin-polarized calculation which includes spin–
orbit coupling requires some discussion, since in this case there is a coupling
between spin degrees of freedom and real space. This can be seen easiest by
noting that in the simplest form, spin–orbit coupling enters as ξl · s to the
Hamiltonian, where s is an operator of spin space and l an operator of real
space. The consequences of this, as regards symmetries, maybe best discussed
using the example of symmetries of a cubic crystal, described in Chap. 3. Here
we discussed the 48 point group operations which are allowed if magnetism is
neglected. If we consider a material where the magnetization (M) is pointing
along the 001 axis (bcc Fe is an example of this, since the 001 axis is the easy
magnetization axis of this element), a 180◦ rotation around the x- or y-axis
is no longer allowed, since this rotates the magnetization direction with 180◦,
and hence M → −M. In a similar fashion a 120◦ rotation around the 111
axis rotates the magnetization from the 001 direction to the 010 direction,
and again the original magnetic structure is not found. Further examples of
operations which are allowed in a non-magnetic crystal, but are not allowed
in a magnetic calculation, where the spin–orbit coupling is included in the
Hamiltonian, are the 90◦ rotations around the x- or y-axis. For both these
operations the magnetization is rotated away from the 001 direction. As a
matter of fact, the only operations which are allowed are the identity and
three 90◦ rotations around the 001 axis. Also, a 180◦ rotation around the
x-axis results in that M → −M, and if this operation is followed by the time
reversal operator (which changes the sign of the magnetization) we end up
with the magnetization pointing along 001, and we have an allowed symme-
try operation. The inclusion of additional symmetry operations for magnetic
materials, i.e., the time reversal operator, defines the so-called double group,
which has been discussed by Bradley [54]. In a similar fashion, a 180◦ rota-
tion around y followed by the time reversal operator is an allowed symmetry
operation, as is a 180◦ rotation around the vectors [111] and [111], followed
by time reversal. This results in a total of eight allowed symmetry operations.
Any of these eight operations can also be multiplied by the inversion opera-
tion, producing eight more allowed symmetry operations (since the spin is a
pseudo-vector, it is not modified by the inversion). As a result we obtain a
total of 16 symmetry operations for a bcc structure with the magnetization
aligned along a 〈001〉 direction. If, e.g., the magnetization is chosen to point
along a 〈111〉 direction, only 12 symmetry operations are allowed.

12.1.2 Elements and Compounds

In Table 12.1 we show as an example, a comparison between measured spin and
orbital moments and the corresponding RSPt calculations of bcc Fe, hcp Co,
and fcc Ni. It can be seen that the agreement between theory and experiment
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Table 12.1. Calculated spin and orbital moments for bcc Fe, hcp Co, and fcc
Ni, compared to experimental values [226]. Note that values are obtained with the
quantization axis pointing along different crystallographic directions

Element Direction μs (SO) μl (SO) μs (OP) μl (OP) μs (expt) μl (expt)

bcc Fe 001 2.193 0.049 2.193 0.078 2.13 0.08

bcc Fe 111 2.193 0.049 2.193 0.078

hcp Co 0001 1.590 0.076 1.590 0.123 1.52 0.14

hcp Co 101̄0 1.590 0.076 1.590 0.118

fcc Ni 001 0.608 0.048 0.611 0.066

fcc Ni 111 0.608 0.048 0.611 0.065 0.57 0.05

is very good concerning the spin moment, a level of agreement that is rather
typical for magnetic materials. As concerns the orbital moment there are two
levels of approximations used, one is a regular calculation in which spin–orbit
coupling has been introduced (data labeled SO) and the other is a calculation
in which the so-called orbital polarization [86] was used. It may be seen that
theory reproduces the observed orbital moment best from the OP calculation.
We mention here that recent calculations based on DMFT, by Chadov et al.
[55], also give very good orbital moments for these elements, highlighting
the importance of electron correlations to obtain an accurate orbital moment.
Note from Table 12.1 that the calculated spin and orbital moments are almost
independent of which quantization axis is chosen. This is a general effect for
magnetic 3d transition elements, where the spin–orbit interaction is weak, but
for materials composed of heavier elements there is a stronger dependence. If
anything should be distinguished in the table, it is that for hcp Co, the orbital
moment is larger (for the OP calculation) when the moments are pointing
along the 0001 direction (the easy axis). This is referred to as an orbital
moment anisotropy (OMA). The results for hcp Co is a general behavior, and
it can as a matter of fact be derived from perturbation theory that there is
a proportionality between the magnetic anisotropy energy (MAE) and the
OMA [42]. This derivation is made under the assumption that cross-terms
in the spin–orbit interaction (i.e., ξ(l+s− + l−s+)) are neglected compared
to diagonal terms (i.e., ξlzsz). For the materials listed in Table 12.1 this
relationship holds well.

The spin moments listed in Table 12.1 represent the magnetization density
integrated over the whole unit cell. In RSPt, as well as in other methods
which define space in a muffin-tin geometry, one can extract this information
inside the muffin-tin spheres and in the interstitial region. One finds from
such a division of space that the magnetic moment is always dominated by
the muffin-tin contribution (typically over 95% of the moment comes from
the muffin-tin region), which simply means that the magnetization density is
located close to the atomic nucleus, with only a small part extending into the
interstitial region. The orbital moment is typically even more localized around
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Table 12.2. Calculated spin and orbital moments for the V atom in VAu4. Note
that in addition to a normal RSPt calculation we list spin and orbital moments of
the V atom for a calculation with the spin–orbit coupling switched of on the Au site
(second row in the table)

atom μs μl

V (with spin–orbit on Au site) 1.67 0.16

V (no spin–orbit on Au site) 1.71 −0.10

the atomic nucleus, and hence its contribution is expected to be almost entirely
localized inside the muffin-tin sphere. As a matter of fact, the orbital moments
listed in Table 12.1 are extracted only from the muffin-tin region. There is a
practical reason behind this, since (12.2) is easiest evaluated over this region.
By performing calculations with different values of the muffin-tin radii one
obtains very minor changes in the orbital moment (of order of a few percent),
which demonstrates that the orbital moment of the interstitial region can be
neglected.

In Table 12.2 we show the calculated spin and orbital moments of VAu4

[124], a magnetic material which has the peculiarity of being composed of
atomic species which in the elemental form are not magnetically ordered.
The moments shown in the table are the spin and orbital moment of the V
atom, the Au atoms have only tiny-induced moments which we do not show.
Table 12.2 shows a peculiar fact, in that the spin and orbital moments are
parallel for V. Hund’s third rule dictates that the spin and orbital moments
should be parallel for electron shells which are more than half filled (e.g., for
Fe, Co, and Ni, where the spin and orbital moments indeed are parallel – see
Table 12.1) and antiparallel for materials with electron shells which are less
than half filled. Vanadium is an example of the latter, but the coupling in
VAu4 is nevertheless parallel. For a calculation when the spin–orbit coupling
is switched of on the Au site (see second row in Table 12.2) the coupling is
the expected antiparallel one. This demonstrates that for the full calculation
the spin–orbit coupling of the Au atom also influences the orbital moment of
the V atom, rotating it with 180◦ to become parallel to the V spin moment.
As a matter of fact it can be shown from perturbation theory that the spin–
orbit interaction of a ligand atom, like Au in VAu4, can influence the orbital
moment and anisotropy of a magnetic atom, like V in VAu4 [124].

12.1.3 Surfaces

We show in Fig. 12.3 the calculated orbital moments for a system with reduced
symmetry, a thin film of Co on a Cu (001) surface. In the experiments, which
were based on X-ray magnetic circular dichroism (XMCD – to be discussed
in detail in Chap. 13), the ratio between orbital and spin moment is extracted
most accurately, and it is for this reason this ratio is shown in Fig. 12.3, also
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Fig. 12.3. Calculated (red squares) and measured (black squares) ratios between
the orbital and spin moment. The measurements were done with X-ray magnetic
circular dichroism (XMCD). Both experiment and theory are obtained as a function
of Co thickness (d). Data redrawn after [238]

for the theoretical calculations. It may be noted from the figure that the ratio
between orbital and spin moment increases as the Co thickness decreases,
since the surface layer represents a low symmetry structure where spin–orbit
effects are enhanced. As a matter of fact it can be shown from perturbation
theory that for a cubic systems the spin–orbit effect enters the OMA and
MAE effectively as ( ξ

W )4, where ξ is the strength of the spin–orbit coupling
and W the bandwidth. For a tetragonal symmetry, e.g., a mono-layer of Co on
Cu (001), the spin–orbit effect enters as ( ξ

W )2. Since for 3d transition metals
the value of ξ is of the order of 50–70 meV/atom and W is of the order of 5 eV,
it is clear that materials with reduced symmetry have much larger spin–orbit
effects. A final note from this section is that both theoretical and experimental
values can be fitted with a common function (solid line in the figure), a sign
of good agreement between theory and experiment.

12.2 Magnetic Anisotropy Energy

Van Vleck [244] was first in pointing out that the magnetic anisotropy energy,
the MAE, comes from the spin–orbit interaction. Typically the MAE is tiny
compared to most other energies of a solid. The cohesive energy is as an exam-
ple of the order of 1–10 eV/atom, whereas the energies involved for structural
stabilities are typically not larger than 0.5 eV. Magnetic excitations, such as
magnon curves, also involve energies typically less than 0.5 eV/atom [35, 197].
Compared to these energies, the MAE is for many materials tiny, with values
of a few μeV/atom for elements like Fe and Ni, and a few tens of μeV/atom
for hcp Co. Hence an extremely high accuracy is needed in order to reproduce
measured MAE values. We discuss in this section how RSPt performs in this
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task. Before entering this discussion we note that when it comes to theoretical
work on the MAE, based on electronic structure calculations, several seminal
works have been published in the past [58, 78, 141].

12.2.1 k-Space Convergence

The most important technical aspect of calculations of the MAE is the inte-
gration of k-space. As discussed in Sect. 4.4 there are several ways of how to do
this, and it seems that the method which in most cases gives the most reliable
result is the modified tetrahedron method (MTM). In some cases the Gaussian
broadening method (GBM) also gives good results, whereas the tetrahedron
method in general gives less accurate results and should be avoided. We show
in Fig. 12.4, as an example of how the k-space integration converges, the MAE
of fct Co (with a c/a ratio of 1.1). This result was published in [43]. It should
be noted that an fct structure of Co could only be stabilized if thin films of Co
were grown on a substrate; in bulk form Co crystallizes in the hcp structure.
Note from the figure that for the tetragonal fct geometry, the 001 axis is the
easy axis with a rather large value of the MAE, which reaches values of the
order of 1 μeV/atom. Calculations in a hypothetical cubic fcc structure give
values of the order of 1–2 μeV/atom. The reason for the enhanced MAE of
the fct phase, compared to the fcc phase, is as discussed above, due to how
the spin–orbit coupling enters the calculation to a lower (more important)
order for low symmetry structures. As for the actual value of the MAE we
note that within a 20% deviation all calculations give similar results. It fur-
ther seems that the GBM data are in better agreement with the MTM data
if smaller values of the Gaussian width is used. This is a general behavior.
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Fig. 12.4. Calculated MAE of fct Co using the GBM and the MTM. For the
GBM the width of the Gaussian used in the calculations is given for the different
calculations (in mRy). Note the logarithmic scale on the x-axis, which shows the
number of k-points used in the full Brillouin zone
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The MTM data must be considered as the most precise one, since when the
sampling density approaches infinity this k-space integration should be exact,
a statement which cannot be made by the GBM. However, if not too large
values of the Gaussian is used (i.e., ≤ 10 mRy) this technique is also reliable,
and in some cases it converges faster than the MTM. A final note in this sec-
tion is that of order of 100,000 k-points of the full Brillouin zone is needed to
achieve a converged result. For magnetic materials based on 3d elements, with
low symmetry, this is a typical number which is needed. For cubic materials
a higher number of k-points is needed, sometimes approaching 106. This is,
however, not a huge problem in the RSPt implementation, which can handle
this on a single-processor calculation. Calculations done in a parallel mode
are of course preferred, since k-space parallelization is extremely efficient in
RSPt and most other solid state softwares.

12.2.2 MAE of hcp Gd

We now describe the calculated MAE of an example which illustrates some of
the complexities of these calculations. In Fig. 12.5 we show the MAE of hcp
Gd. In this calculation the 4f states were treated as localized, core electrons.
Hence they were not allowed to hybridize with the dispersive valence electron
states. The division of electrons as valence or core states is extremely easy
in RSPt and other all-electron methods with numerical basis functions (e.g.,
the LAPW method). The reason for treating the 4f electrons as core states in
hcp Gd is simply that it is a well-known experimental fact that for the rare-
earth elements (except the α-phase of Ce) these states do not hybridize with
other electron states. Instead they are atomic states with a many-electron
wave function which should be calculated from angular momentum vector
coupling algebra. The calculated data [56] in Fig. 12.5 are also compared to
measurements, and it can be seen that experiment give an easy axis which is
at an angle of some 30◦ away from the c-axis. The first principles calculations
(right side of the figure) also give an easy axis which is tilted away from the c-
axis, with an energy minimum at 30◦ from the c-axis and with an energy gain
of ≈2 μeV/atom, compared to when the moment is parallel to the c-axis. When
the classical dipole contribution is added to the MAE calculation, the easy axis
is at an angle of 20◦ from the c-axis [56]. Hence theory reproduces the peculiar
feature of an easy axis of Gd which is not aligned along a crystallographic
direction, but is pointing away from the c-axis. However, the angle is somewhat
underestimated in the calculations and illustrates that it is difficult to achieve
an accuracy of μeV/atom level.

In the left part of Fig. 12.5 the contribution to the MAE is broken up into
different contributions, e.g., from states that are close to the Fermi level, and
for states with energies lower in energy, for different regions in k-space. It
may be seen in the figure that the majority of the contribution to the MAE
comes from states close to the Fermi level. This is a general phenomenon,
since the MAE can be shown to be the result of occupied states which are
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spin–orbit coupled to unoccupied states. In second-order perturbation theory
(which is appropriate for hcp Gd with a non-cubic symmetry), the MAE can
be approximated as

EMAE ≈ Σo,u
|〈o |ξ l · s|u〉|2

εo − εu
, (12.3)

where ξ is the strength of the spin–orbit coupling, whereas |o〉 and |u〉 are the
eigenstates of occupied and unoccupied levels, respectively. Since this contri-
bution clearly becomes more important when the difference between εo and
εu is small, it is states close to the Fermi level which are the most important
ones for the MAE. Hence, in a sense the calculation of the MAE of a material
is to a large extent a matter of very accurately resolving the Fermi surface of
that material.

12.3 Magnetism of Nano-objects

We have seen earlier in this chapter that for the case of fcc Co, the ratio
between the orbital and spin moments increases dramatically as the thickness
of the surface layer is reduced. In general, the dimensionality of a system has
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profound consequences for its magnetic properties. This means that clusters,
nanowires, and surfaces may have very different magnetic properties compared
to the corresponding bulk material.

RSPt has been used to analyze the magnetic properties of transition metals
in the form of ultra-thin nanowires, i.e., wires that are only one atom thick
[69, 70, 214]. When interpreting the calculations, it is important to realize that
the magnetic phase we attempt to describe in this way is a superparamagnetic
one rather than a static one since thermal fluctuations tend to be large in
nanosystems.

In transition metal nanowires, the d-bandwidth is considerably smaller
than in the bulk. For metals such as Pd or Pt, which have a relatively high
magnetic susceptibility already as bulk, the decreased d-bandwidth makes
it favorable to spin-polarize. Pd is an especially illustrative case since the
isolated atom is a singlet with a full 4d shell and an empty 5s shell. The
two levels are almost degenerate, with the 5s level just slightly above the 4d
level. In the bulk, the Pd 4d band is partially filled but too wide to produce
a spin-polarized ground state. The nanowire forms an intermediate between
the atomic and bulk situations. Both the 4d and 5s atomic levels broaden into
bands, but since the 5s band becomes much broader than the 4d band, it is
favorable for the system to partially empty the 4d band into the 5s band. At
the same time, the one-dimensional 4d density of states is large enough at the
Fermi level to fulfill the Stoner criterion, and thus a magnetic ground state
results.

In Pt nanowires, the large spin–orbit coupling gives rise to a very interest-
ing phenomenon. The ground state is magnetic, with the moments pointing in
the wire direction. However, it turns out that the magnetic moment decreases
as it is rotated away from the wire direction. At an angle of 45◦ from the
direction of the wire, the moment disappears completely. This phenomenon
is called colossal magnetic anisotropy (CMA) and is predicted to give rise to
anomalous tunneling behavior in Pt nanowires [214].
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Excitated State Properties

Abstract The phenomenological theory of optical properties of materials is pre-
sented. The general theory of calculations of optical properties from first principles
theory is given, with special emphasis on the implementation in the FP-LMTO
method. Numerical examples of semi-conductors as well as metals are presented. In-
terband and intraband transitions are discussed, as are maneto-optical effects. The
chapter ends with a description of the theory of x-ray magnetic circular dichroism,
and how its calculation is made possible in the FP-LMTO method.

With RSPt, it is possible to calculate optical and magneto-optical spectra
as well as X-ray absorption (XAS) and X-ray magnetic circular dichroism
XMCD. The implementation is based on the dipole approximation. Further-
more, the usual DFT underestimation of the energy band gap is dealt with us-
ing the scissors operator. This very simple model makes the calculations fast.
More elaborate, alternative ways of computing excited states within DFT
involve the GW approximation, the two-particle Dyson equation, or time-
dependent DFT. In this chapter, we give details on our implementation and
its limitations and strengths and we discuss the physical reasons as to why
the simple dipole approximation combined with the scissors operator give such
good results. We also present some general background theory for these types
of excitation spectra and give examples of calculated spectra.

13.1 Phenomenology

Let us introduce the subject of calculating excitation spectra by briefly re-
viewing the macroscopic theory of optical and magneto-optical properties. The
interaction of electromagnetic radiation with a magnetic medium is described
classically by Maxwell’s equations [125]. For linear materials the electric dis-
placement D is related to the total electric field E and the polarization P as
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D = ε0E + P = (1 + χe)ε0E = εE . (13.1)

Similarly, the magnetic field B is related to H and the magnetization M
according to

B = μ0(H + M) = (1 + χm)μ0H = μH . (13.2)

Here, ε0, μ0, χe, and χm are the vacuum permittivity, the vacuum permeabil-
ity, the electric susceptibility, and the magnetic susceptibility, respectively. ε
is the dielectric function and μ the magnetic permeability. A third fundamen-
tal equation is Ohm’s law, which connects the macroscopic current density J
with the electric field E according to

J = σ.E , (13.3)

where σ is the conductivity. Equations (13.1), (13.2), and (13.3) are known
as the material equations. They characterize the response functions of the
medium to external excitations. In general the dielectric function is a function
of both spatial and time variables that relate the displacement field D(r, t)
to the total electric field E(r′, t′) according to

D(r, t) =
∫ ∫ t

−∞
ε(r, r′, t′)E(r′, t′)dt′dr′ . (13.4)

In the following we neglect the spatial dependence of the dielectric function
and consider only its frequency dependence ε(ω). Usually, the effect of the
magnetic permeability μ(ω) on optical phenomena is small and we therefore
assume from now on that μ(ω) = μ0I where I is a unit tensor. It should
be stressed also that ε and μ may depend on the field strength. In such
cases higher order terms in a Taylor expansion of the material parameters
lead to the appearance of non-linear effects [34]. Using the material equations
and Maxwell’s equations it can be shown that the dielectric function and the
conductivity are connected according to

ε =
1
ε0

(
1 + i

σ

ω

)
. (13.5)

The real part of the dielectric function ε is often denoted ε(1) or ε1 and the
imaginary part is denoted ε(2) or ε2. Similar notation for the conductivity σ
is also in use.

For non-magnetic materials with cubic structure, the form of the dielectric
tensor becomes particularly simple. The three diagonal components of the
dielectric tensor are then equal, the off-diagonal components are zero, and
thus we can write

ε(ω) = ε(ω)I . (13.6)

With a macroscopic magnetization M directed along the z-axis, the symmetry
is lowered and ε(ω) becomes [135]
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ε(M, ω) =

⎛

⎝
εxx εxy 0
−εxy εxx 0

0 0 εzz

⎞

⎠ . (13.7)

The components of the dielectric tensor depend on the magnetization and
satisfy the Onsager relations

εij(−M, ω) = εji(M, ω) , (13.8)

where i, j = x, y, or z. The diagonal components of the dielectric tensor are
therefore even functions of M and the non-diagonal ones are odd functions of
M. In the lowest order in M

εxy ∼M, εzz − εxx ∼M2 . (13.9)

In the absence of an external current (J = 0) and free charges (ρ = 0)
Maxwell’s equations reduce to

∇× E = −μ0
∂H
∂t

, (13.10)

∇× H = ε
∂E
∂t

. (13.11)

After substitution of E and H in the form of plane waves

E = E0e[i(q.r−ωt)], (13.12)
H = H0e[i(q.r−ωt)],

we obtain (for the cubic example with M along the z-axis) the secular equation
⎛

⎝
N2 − εxx −εxy 0

εxy N2 − εxx 0
0 0 N2 − εzz

⎞

⎠

⎛

⎝
Ex

Ey

Ez

⎞

⎠ = 0 , (13.13)

where ω is the frequency of the radiation and q the wave vector of light.
When the light propagates along the z-direction, Ez = 0, and one finds the
eigenvalues

N2
± = εxx ± iεxy . (13.14)

This means that the normal modes accounting for the response (the displace-
ment field D) to the plane-wave field E are

D± = N2
∓(Ex ± iEy) , (13.15)

i.e., a left and right polarized light wave with complex refractive indices of N−
and N+, respectively. The eigenmodes or eigenfunctions (13.15) correspond to
photons with helicity of +1 (spin and momentum parallel) and −1 (spin and
momentum antiparallel). The eigenvalues N± determine the response of the
system to the circular waves. We see that the response to D− will be different
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from the response to D+ if and only if the off-diagonal components of the
conductivity tensor are non-zero. Since this occurs when a magnetic field is
present (assuming that the spin–orbit interaction is present), the difference in
response to the circular waves caused by the magnetic field is named magneto-
optical effects. Time reversal of D− gives D+ and vice versa, and thus the
magneto-optical effects can also be viewed as originating from broken time
reversal symmetry. From the form of the eigenvalues we see that the absorptive
part of the off-diagonal optical conductivity is proportional to the difference
in absorption of left and right circularly polarized light, and its sign is directly
related to the spin polarization of the states responsible for the transitions.

Experimental optical results often come in the form of reflectivity spec-
tra, energy loss, absorption, refractive indices, and changes in the direction
of polarization upon reflection or transmittance. Below, we summarize some
of the most common formulas connecting the dielectric function and optical
conductivity with measured quantities. In the following formulas, the Carte-
sian coordinate subscripts and the functional dependence on ω have been
suppressed.

13.1.1 Index of Refraction and Attenuation Coefficient

The complex index of refraction N is often written as N = n + ik, where n
is referred to as the (real) index of refraction and k the extinction coefficient.
The physical interpretation of these quantities is that when a plane wave of
light is propagating through a material, the velocity of propagation is c/n,
i.e., lower compared to the velocity of light of vacuum, c. The amplitude is
also attenuated with a factor e−kr, where r is the distance traveled in the
material.

13.1.2 Reflectivity

The reflectivity is the ratio between the incident and reflected light intensities.
Since the intensity is proportional to the square of the wave amplitude, this
can be written as

R = r∗r , (13.16)

where r is called the reflection coefficient. It is the (complex) ratio between
the incident and the reflected electric field of the plane wave. For normal
incidence, the reflection coefficient is given by [37]

r =
N − 1
N + 1

(13.17)

and the reflectivity becomes

R =
∣∣∣∣
N − 1
N + 1

∣∣∣∣
2

. (13.18)
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13.1.3 Absorption Coefficient

The absorption coefficient α is defined as

α = −1
I

dI
dr

, (13.19)

where I is the intensity of the plane wave a distance r into the material. By
differentiation of I expressed using the plane wave (13.12), one finds that α is
proportional to the imaginary part of the refractive index times the frequency:

α =
2ωk
c

. (13.20)

13.1.4 Energy Loss

When a beam of monoenergetic electrons impinges on a solid, excitations in
the solid, e.g., plasmon excitations or interband transitions, result in energy
losses in the electron beam. In this case, the electric field causing the response
is in the direction of propagation of the beam, and not perpendicular to it, as
is the case for photons. From dielectric theory one can show that the energy
loss of the electron beam is proportional to the energy loss function L, which
is defined as

L = −Im
1
ε
. (13.21)

13.1.5 Faraday Effect

In 1845, Faraday discovered [91] that the polarization vector of linearly polar-
ized light is rotated upon transmission through a sample of thickness d that
is exposed to a magnetic field parallel to the propagation direction of light.
Indeed, in a ferromagnet, the left-hand and right-hand circularly polarized
light waves propagate with different refractive indices or different velocities
c/n− and c/n+, i.e., there is magnetic circular birefringence. When the two
transmitted light waves are combined at the exit surface of the sample, they
yield again linearly polarized light, but its plane of polarization is rotated
by the so-called Faraday angle θF. Further, if two circularly polarized waves
attenuate at different rates, then after traveling through the sample, their rel-
ative amplitude changes. The transmitted light becomes elliptically polarized,
with an ellipticity ηF corresponding to the ratio of the minor to the major
axes of the polarization ellipsoid.

The Faraday rotation and ellipticity are related to the complex refractive
index N through

θF + iηF =
ωd

2c
(N+ −N−) , (13.22)

where c is the velocity of light in vacuum and d is the thickness of the film.
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The Faraday ellipticity is closely related to the magnetic circular dichro-
ism, which is defined as the difference of the absorption coefficient μ between
right and left circularly polarized light

Δμ = (μ+ − μ−) = −4ηF
d

. (13.23)

13.1.6 Magneto-optical Kerr Effect

About 30 years after Faraday’s work, Kerr [132] observed that when linearly
polarized light is reflected from a magnetic material, its polarization plane
(the major axis of the ellipse) rotates over a small angle with respect to that
of the incident light.

The relative orientation of the magnetization vector with respect to the
reflective surface and the plane of incidence of the light beam determines
the three types of the magneto-optical effects in reflection: the polar, the
longitudinal, and the transversal or equatorial Kerr effects; see Fig. 13.1. For
linearly polarized incident light the reflected light will be elliptically polarized
in the polar Kerr geometry. For most materials the Kerr rotation and ellipticity
are of the order of 1◦. Some original papers on the basic theory and review
articles on the subject are listed in [19, 29, 184]. In the polar geometry, which
is the only one discussed here, the magnetic moment is perpendicular to the
surface and parallel to the z-axis and the light beam. In a magnetic material,
the normal modes, or eigenfunctions, of the conductivity tensor are circular
waves or helicity eigenfunctions. Normal modes are reflected separately, since
the response of one normal mode by definition never contain components from
any other normal mode. In analogy with reflection of a plane wave discussed
above, the reflection coefficients r± for the two circular waves are

r± =
N± − 1
N± + 1

, (13.24)

whereN± are the refractive indices (13.14). In order to define the Kerr rotation
and ellipticity, we rewrite the reflection coefficients for the circular waves as

r± = |r±|eiΔ± . (13.25)

M

(c)

M

(a)

M

(b)

Fig. 13.1. The different geometries for the MO Kerr effect: (a) the polar, (b) the
longitudinal, and (c) the transversal Kerr effects
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Here, Δ± are the phase shifts experienced by the circularly polarized waves
upon reflection. The polar Kerr rotation θK is half the relative phase shift in
the reflected amplitude of the two circular polarizations, i.e.,

θK = −1
2

(Δ+ − Δ−) . (13.26)

If the two circular waves experience the same phase shift, the reflected wave
will have the same polarization direction as the incident wave, and θK is zero.
A finite phase change difference will result in that the plane of polarization of
the light is rotated. The maximum possible (meaningful) phase shift difference
between two waves is 90◦, and so the extreme values of θK are ±90◦. The polar
Kerr ellipticity ηK is a measure of how the shape of the wave has changed
upon reflection and depends only on the absolute magnitudes of the reflection
coefficients according to

tan ηK = −|r+| − |r−|
|r+| + |r−| . (13.27)

As an explicit example, consider the case when the incident wave is a plane
wave. Then, if the outgoing wave is also a plane wave, |r+| = |r−| and ηK is
zero. In the other extreme only one of the circular waves is reflected at all and
either |r+| or |r−| is zero. Then ηK reaches its extremum value of ±45◦. The
formulas (13.24), (13.25), (13.26), and (13.27) above can be summarized in a
compact form as the quotient between the two reflection coefficients:

r−
r+

=
1 + tan ηK

1 − tan ηK
e2iθK =

(N− − 1)(N+ + 1)
(N− + 1)(N+ − 1)

. (13.28)

For small Kerr signals, the complex Kerr angle is approximately given by [129]

θK + iηK =
−σxy

σxx

√
1 + 4πi

ω σxx

. (13.29)

This last expression is the one normally used in the calculations of the
magneto-optical Kerr effect.

13.2 Excited States with DFT:
A Contradiction in Terms?

The density functional theory (DFT) of Hohenberg, Kohn, and Sham is
the method of choice for describing the ground state properties of materi-
als [116, 140]. However, in the initial derivation of the DFT, the eigenvalues
are Lagrange multipliers introduced to minimize the energy functional with a
constraint on the number of particles, which also leads to an orthogonalization
of the eigenstates, which in turn are used to compute the total energy and the
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charge density. In this formulation the eigenvalues therefore have no physical
meaning and should not be considered as excited states. Nevertheless, the
DFT in the local density approximation (LDA) or in its spin-resolved local
density formulation (LSDA) has been used successfully to compute the excited
states, namely, optical and magneto-optical properties, X-ray absorption, and
magnetic dichroism spectra.

The LDA or LSDA were indeed intended to compute the ground state
properties of materials, and their use during the last two decades has pro-
duced an excellent track record in the computation of these properties for
a wide variety of materials, ranging from simple metals to complex semi-
conductor superlattices. However, it is now believed that the DFT can do
more than just compute the ground state properties. This is because the
Kohn–Sham equations may be viewed as deriving from a simplified quasi-
particle (QP) theory where the self-energy is local and time averaged, i.e.,
Σ(r, r′, t) ≈ Vxc(r)δ(r − r′)δ(t), here Vxc(r) is the local exchange and corre-
lation potential as, for example, parameterized by Von Barth and Hedin [250].
Viewed in this way, the KS eigenvalues are then approximate QP energies and
may be compared to experimental data. This argument is supported by quasi-
particle calculations within the so-called GW approximation of Hedin [114]
showing that the valence QP energies of semiconductors are in good agree-
ment with these obtained using LDA, and the conduction QP energies differ
by, approximately, a rigid energy shift [100, 118]. In the literature this shift is
often called “scissors-operator” shift [155, 156].

Spectroscopy has become a standard tool for measuring excited states
of materials. It owes its impressive advances mainly to the availability of
synchrotron-tunable highly polarized radiation. In particular, the measure-
ment of optical, magneto-optical properties as well as magnetic X-ray dichro-
ism are now becoming routine tasks for probing the structural and magnetic
properties of materials. Considerable attention has been focused on transition
metal surfaces and thin films due to their novel physical properties different
from that of bulk materials, as well as due to potential industrial applica-
tions such as magneto-optical recording, sensors, or technology based on gi-
ant magneto-resistance. In this respect, theory is falling far behind experiment
and it is becoming hard to give a basic interpretation of experimental data.

13.3 Quasiparticle Theory Versus the Local
Density Approximation

The quasiparticle (QP) electronic structure of an interacting many-body sys-
tem is described by the single-particle eigenstates resulting from the interac-
tion of this single particle with the many-body electron gas of the system. The
single-particle eigenstate energies are the results of solving a Schrödinger-like
equation containing the non-local and energy-dependent self-energy instead of
the exchange-correlation potential appearing in Kohn–Sham-like equations:
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(T + VH + Vext)Ψ(r) +
∫

d3r′Σ(r, r′, E)Ψ(r′) = EΨ(r) . (13.30)

Note that in this equation we have used E to symbolize an eigenvalue, unlike
ε used in all other chapters of this book. The reason for this change of nomen-
clature is that historically ε is used in the definition of the dielectric function,
(13.1). In (13.30), the self-energy Σ contains all many-body effects. Almost
all ab initio QP studies were performed within the so-called GW approxima-
tion, where the self-energy Σ is calculated within Hedin’s GW approximation.
This method consists of approximating the self-energy as the convolution of
the LDA self-consistent Green function G and the screened Coulomb interac-
tionW within the random-phase approximation. The QP eigenvalues are often
obtained using first-order perturbation theory starting from LDA eigenvalues
and eigenvectors [98, 118, 119], although there are early calculations start-
ing from Hartree–Fock [231] or tight-binding [228] methods. Nevertheless, the
best results are based on a DFT starting point [18, 25, 98, 99, 118, 119, 195].

Thus the GW -predicted optical excitation energies of semiconductors are
within 0.1 eV from the experimental results and the surprising fact is that the
QP wave functions are almost identical to those produced within the LDA
[118] (the wave function overlap is more than 99%). For a general review of
GW calculations, see the review by Araysetianwan and Gunnarsson [18] or by
Aulbur et al. [25].

It is clear that the quasiparticle Schrödinger equation resembles the Kohn–
Sham equation. Both equations describe a fictitious electron moving in an
effective potential. The difference is that the self-energy is non-local and en-
ergy dependent, whereas the LDA potential is local and averaged over time.
This resemblance can be further pushed by noticing that DFT can be used to
obtain excitation energies. For example, the ionization energy, I, and the elec-
tron affinity, A, are both defined as differences between ground state energies:

I = E(N − 1) − E(N ) and A = E(N) − E(N + 1) , (13.31)

where N is the number of electrons of the system. Since the DFT gives the
correct ground state energies it should produce, in principle, the correct ion-
ization and electron affinity energies. For metals, the addition or removal of
an electron from the system costs the same energy, and hence the ioniza-
tion energy is equal to the electron affinity. For insulators, the energy gap
makes all the difference and hence breaks this symmetry. Thus the energy
band gap is given by Eg = I − A = E(N + 1) + E(N − 1) − 2E(N). In
practice, however, the calculation is often obtained within the LDA and the
energy band gap is calculated as the difference between the lowest conduc-
tion band and the highest valence band. It was shown by Sham and Schlüter
[204, 205] and Perdew and Levy [181] that the calculated energy gap differs
from the true band gap by an amount Δ even when the DFT is used with-
out the LDA. For silicon, the calculated LDA energy gap is about half of the
true band gap. In germanium the situation is even worse – the calculated
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LDA energy gap is zero. For most of the semiconductors, the GW calcula-
tions show that the LDA eigenvalues differ from the GW quasiparticle energy
by a constant Δ which is almost independent of the k-point. This finding
is important and shows that the LDA eigenvalues have some meaning and
could be used to calculate excited states. So as stated in the introduction, the
Kohn–Sham equations could be viewed as deriving from a simplified quasi-
particle (QP) theory where the self-energy is made local and time averaged,
i.e., Σ(r, r′, t) ≈ Vxc(r)δ(r− r′)δ(t). This approximation is certainly good for
metals where we have a good database for excited state calculated within the
LDA [3, 8, 10, 62, 110, 111, 144, 151, 175, 192, 239, 252, 256] and where the
agreement with experiment is good. For semiconductors, this approximation
is not bad either, provided we know the value of the discontinuity of the ex-
change and correlation. Usually, this value is provided by GW calculations or
by experiment.

13.4 Calculation of the Dielectric Function

We now turn our focus to the quantum-mechanical description of the dielec-
tric function and how it can be approximately calculated using the momentum
matrix elements. We also provide technical details regarding the implementa-
tion in RSPt.

13.4.1 Dynamical Dielectric Function

An electromagnetic field of frequency ω and a wave vector q +G interacting
with atoms in a crystal produces a response of frequency ω and a wave vector
q + G′ (G and G′ being reciprocal lattice vectors). The microscopic field of
wave vector q +G′ is produced by the Umklapp processes as a result of the
applied field E0(q +G,ω)

E0(q + G, ω) =
∑

G′
εG,G′(q, ω)E(q + G′, ω) , (13.32)

where E(q +G,ω) is the total field producing the non-diagonal elements in the
microscopic dielectric function εG,G′(q, ω). The microscopic dielectric function
in the random-phase approximation is given by [2, 262]

εG,G′(q, ω) = δG,G′ − 8πe2

Ω|q + G||q + G′| (13.33)

×
∑

k,n,n′

fn′,k+q − fn,k

εn′,k+q − εn,k − �ω + iδ

〈n′,k + q|ei(q+G)r|n,k〉〈n,k|e−i(q+G′)r|n′,k + q〉 .
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Here n and n′ are the band indexes, fn,k is the zero temperature Fermi dis-
tribution, and Ω is the cell volume. The energies εn,k and the crystal wave
function |n,k〉 are produced for each band index n and for each wave vector
k in the Brillouin zone.

The macroscopic dielectric function in the infinite wavelength limit (q →
0) is given by the inversion of the microscopic dielectric function

ε(ω) = lim
q→0

1
[ε−1

G,G′(q, ω)]0,0

(13.34)

= ε0,0(ω) − lim
q→0

∑

G,G′ �=0

ε0,G(q, ω)T−1
G,G′(q, ω)εG′,0(q, ω) ,

where T−1
G,G′ is the inverse matrix of TG,G′ containing the elements εG,G′ with

G and G′ �= 0, and ε0,0 is the macroscopic dielectric function without local
field effects. The first term of this equation is the interband contribution to
the macroscopic dielectric function and the second term represents the local-
field correction to ε. The most recent ab initio pseudo-potential calculation
found that the local-field effect reduces the static dielectric function by at
most 5% [155]. Previous calculations with the same method have also found
a decrease of ε∞ by about the same percentage [28, 118]. For insulators the
dipole approximation of the imaginary part of the first term ε0,0 of (13.34) is
given by [83]

ε(2)(ω) =
e2

3ω2π

∑

n,n′

∫
dk|〈n,k|v|n′,k〉|2fn,k(1 − fn′,k)δ(ek,n′,n − �ω) .

(13.35)
Here, v is the velocity operator and in the LDA v = p/m (p being the
momentum operator), and where ek,n,n′ = εn′,k−εn,k. Since ε(2)(ω) is directly
proportional to the absorption matrix elements, it is called the absorptive
part of the dielectric function. In contrast, ε(1)(ω) is called the dispersive part
and can be calculated from ε(2)(ω) using the Kramers–Kronig relations [31].
The real and imaginary parts of the dielectric function will also be called ε1
and ε2.

As an alternative to the above approach based on the dielectric function,
one can derive a microscopic model the optical conductivity tensor (in atomic
units e2 = 1 and m =1/2) using Kubo formalism. Within linear response
theory and using band structure methods Callaway and Wang [151, 252] found
that the optical conductivity is given by

σ
(1)
αβ (ω) =

4π
ω

∑

k

∑

νν′

(f(ενk) − f(εν′k))(
ω − ωνν′(k)+iγ

) Mα
ν′ν(k)Mβ

νν′(k)
ωνν′(k)

, (13.36)

where Mα
ν′ν(k) are transition matrix elements. The two descriptions are of

course equivalent. The matrix elements 〈n,k|p|n′,k〉 are calculated for each
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projection pj , j = x, y, z, with the wave function |n,k〉 expressed in terms
of the full-potential LMTO crystal wave function. The k-space integration is
performed using the tetrahedron method [126, 153] with a large number of
irreducible k-points the Brillouin zone. The irreducible k-points are obtained
from a shifted k-space grid with respect to the high symmetry planes and Γ
point. The shift should be a half step in each of the kx, ky, and kz directions.
This scheme produces highly accurate integration in the Brillouin zone by
avoiding high symmetry points. In this way, the problem of connecting de-
generate energies to non-degenerate energies is avoided. To take into account
the fractional occupancy at the Fermi level, the BZ integration is performed
using the algorithm of Rath and Freeman [191].

13.4.2 Momentum Matrix Elements

To calculate the momentum matrix elements, we first define a tensor op-
erator of order 1 from the momentum operator ∇0 = ∇z = ∂/∂z and
∇±1 = ∓1/

√
2(∂/∂x ± i∂/∂y). The muffin-tin part of the momentum ma-

trix elements is calculated using the commutator [∇2, xμ] = 2∇μ so that
∫

Sτ

drφτ�′(r) Y�′m′(r̂ − τ)∇μφτ�(r)Y�m(r̂ − τ) = − i
2G

1μ
�m,�′,m′

∫ Sτ

0
r2drφτ�′( 2

r
d
dr r + �(�+1)−�′(�′+1)

r )φτ�(r) , (13.37)

where G1μ
�m,�′,m′ are the Gaunt coefficients and Sτ is the radius of the muffin-

tin sphere of atom τ . In the interstitial region the plane-wave representation of
the wave function makes the calculation straightforward. However, special care
has to be taken regarding the removal of the extra contribution in the muffin-
tin spheres. We find it much easier and faster to transform the interstitial
matrix elements to an integral over the surface of the muffin-tin spheres, using
the commutation relation of the momentum operator and the Hamiltonian in
the interstitial region. The calculation of the interstitial momentum matrix
elements is then similar to the calculation of the interstitial overlap matrix
elements (see Chap. 6). The κ = 0 case has been already derived by Chen using
the Korringa, Kohn, and Rostoker Green function method [49]. We have tested
that the plane-wave summation and the surface integration provide the same
results.

The momentum operator commutes with the Laplacian; therefore, the ma-
trix elements of the momentum operator over the interstitial region can be
calculated as an integral over the surface of the muffin-tin spheres. We use
the fact that

−∇2 pψ = κ2pψ .

A Hankel function can be integrated over a volume by knowing its integral
over the bounding surface, i.e.,
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∫

I
d3r∇ (ψ∗

1∇piψ2 − (∇ψ∗
1 ) piψ2) =

(
κ2

1 − κ2
2

) ∫

I
d3rψ∗

1piψ2 . (13.38)

The surface of the interstitial consists of the exterior of the muffin-tin spheres
and the unit cell boundary.

Over the surface of the muffin tins, the surface area is S2dΩ and the
normal to the sphere points inward:

(
κ2

1 − κ2
2

) ∫

I
d3r ψ∗

1piψ2

= −
∑

τ

S2
τ

∫
dS

(
ψ∗

1

∂

∂r
piψ2 −

(
∂

∂r
ψ∗

1

)
piψ2

)
. (13.39)

At a muffin-tin sphere boundary Sτ the Bloch wave function is given by (6.15).
We let W denote the Wronskian W (f, g) = fg′ − f ′g. We further define

S2W0 = S2W (KT
� (κ),K�(κ)) =

(
0 1
−1 0

)

and

wτ�κ1, κ2 = Sτ
W (KT

� (κ)),K�(κ) −W0

κ2
1 − κ2

2

,

pψi|τ =
∑

μ

êμ

∑

�m

[
K�−1m−μ

(
κ2

i 0
0 1

)
G( �− 1, m− μ; �, m; 1, μ

)

×−K�+1m−μ

(
1 0
0 κ2

i

)
G( �+ 1, m− μ; �, m; 1, μ

)]

×B�m,�imi
(τ − τi, κi,k) (13.40)

then

〈ψfpψi〉τ =
∑

τ

∑

μ

êμ

∑

�m

[
B�−1m−μ,�f mf

(τ − τf , κf ,k)wτ�−1(κf , κi)

×
(
κ2

i 0
0 1

)
G( �− 1, m− μ; �, m; 1, μ

)

×−B�+1m−μ,�fmf
(τ − τf , κf ,k)wτ�+1(κf , κi)

×
(

1 0
0 κ2

i

)
G( �+ 1, m− μ; �, m; 1, μ

)]

×B�m,�imi
(τ − τi, κi,k)

)
+ Δ(f , i, κi) , (13.41)

where
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(κ2
f − κ2

i )Δ(f , i, κi) =
∑

μ

êμ(τi)
[

(13.42)

+B�
�i+1mi−μ,�f mf

(τi − τf , κf ,k)

×G( �i + 1, mi − μ; �i, mi; 1, μ
)
κ2

−B�
�i−1mi−μ,�f mf

(τi − τf , κf ,k)

×G( �i − 1, mi − μ; �i, mi; 1, μ
)
κ2

]

+
∑

μ

êμ(τf )
[

(13.43)

+B�f +1mi+μ,�f mf
(τf − τi, κi,k)

×G( �f , mi; �f + 1, mf + μ; 1, μ
)

−B�f−1mf−μ,�imi
(τf − τi, κi,k)

×G( �f , mf ; �f − 1, mf + μ; 1, μ
)
κ2

]
.

The implementation used in the current version of RSPt makes use of the
above equations.

13.4.3 Velocity Operator and Sum Rules

Equation (13.35) cannot be used directly to determine the optical properties
of semiconductors, when the GW approximation or the scissors operator is
used to determine the electronic structure. The velocity operator should be
obtained from the effective momentum operator peff which is calculated using
the self-energy operator, Σ(r,p), of the system [61]

v =
peff

m
=

p
m

+
∂Σ(r,p)
∂p

. (13.44)

As already mentioned, GW calculations show that the quasiparticle wave func-
tion almost equals the LDA wave function [100, 118]. Based on this assump-
tion, it can be shown [61] that in the case of the scissors operator, where all the
empty states are shifted rigidly by a constant energy Δ, the imaginary part of
the dielectric function is a simple energy shift of the LDA dielectric function
toward the high energies by an amount Δ, i.e., εQP

2 (ω) = εLDA
2 (ω−Δ/�). The

real part of the dielectric function is then obtained from the shifted ε2 using
Kramers–Kronig relations. The expression for the static dielectric function
ε1(0) = εQP

∞ (the phonon contribution is neglected) is given by

εQP
∞ = 1 +

2e2

3ω2π2

∑

n,n′

∫
dkfn,k(1 − fn′,k)

|〈n,k|p|n′,k〉|2
(ek,n′,n + Δ)e2k,n′,n

, (13.45)
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εQP
∞ is very similar to εLDA

∞ except that the interband gap ek,n′,n is substituted
by the QP interband gap ek,n′,n + Δ.

It is useful to check whether the LDA calculations fulfill the f-sum rule :

2
3mnv

∑

k

∑

n,n′
fn,k(1 − fn′,k)

|〈n,k|p|n′,k〉|2
ek,n′,n

= 1 , (13.46)

where nv is the number of valence bands, should be always checked to ensure
the accuracy of the calculations.

It is seen that the dielectric function εQP
2 calculated using the scissors-

operator shift does not satisfy the sum rule (ωP is the free electron plasmon
frequency): ∫ ∞

0

ωε2(ω)dω =
π

2
ω2

P , (13.47)

because (i) εLDA
2 satisfies this rule and (ii) εQP

2 is obtained by a simple shift
of εLDA

2 by the scissors-operator Δ toward higher energies. The impossibility
to satisfy both the f-sum rule and the integral sum rule within the scissors
approximation shows the limitation of this approximation. While the scissors-
operator approximation describes nicely the low-lying excited states, which is
demonstrated by the good determination of the static dielectric function and
the low energy structures, i.e., E1 and E2, in the imaginary part of the dielec-
tric function, it seems to fail in describing the higher excited states. This is
not surprising because the higher excited states, which are free electron like,
are most probably well described within LDA and need no scissors-operator
shift. This is supported by the fact that the energy loss function, −Imε−1,
within the LDA has its maximum roughly at the free electron plasmon fre-
quency whereas within the scissors approximation the maximum is artificially
shifted to higher energies. For our purpose, the scissors-operator shift remains
a good approximation for the description of the low-lying excited states of
semiconductors and their optical properties.

13.5 Optical Properties of Semiconductors

We have used RSPt, with the formalism outlined above, to calculate the opti-
cal properties of several materials [3, 9, 62, 185, 192]. In general the results are
in good agreement with the experimental results. For semiconductors, how-
ever, good agreement with experiment is only achieved when the so-called
scissors-operator shift is used. Figure 13.2 presents a relativistic calculation
of the imaginary part of the dielectric function of GaAs compared to the
experimental results of [23].

The LDA relativistic results underestimate the band gap by about 1.3 eV.
When the imaginary part of the dielectric function is shifted to higher energies
by 1.3 eV, we find that the E1 and E2 peaks are located at too high energy in
the calculation. One needs to shift the spectrum by less than the band gap as
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Fig. 13.2. Calculated imaginary part of the dielectric function of GaAs at the ex-
perimental equilibrium volume both within LDA and shifted by 1.3 eV, compared
with the experimental results of [23]. The experimental E1 is only slightly under-
estimated while E2 is overestimated. Notice that the dielectric function shifted by
1.3 eV, which produces the correct band gap, overestimates the peak positions by
about 0.3 eV. Excitonic effect should shift these peaks to lower values in agreement
with experiment

done in [9] to produce good agreement with experiment. It seems then that the
optical band gap is less than the band energy gap (1.5 eV). The optical band
gap is produced by interband transitions to the low-lying conduction states.
Excitonic effects are therefore important and are responsible for the reduction
of the energy gap of semiconductors. It is interesting to notice though that
the static dielectric function is in good agreement with experiment for GaAs,
Si, and Ge when the shift correspond to the energy band gap obtained from
photoluminescence [9, 155, 156].

More interesting are the wide band gap materials where the LDA calculated
static dielectric function is in good agreement with experiment despite that
the band gap is still underestimated by LDA. Correcting the band gap using
the scissors operator makes the static dielectric much smaller than the mea-
sured value. As an example of wide gap material, we present in Fig. 13.3 the
imaginary part of the dielectric function of GaN for the cubic (3) and wurtzite
structures (B4).

Table 13.1 shows that the LDA dielectric constant calculations are in agree-
ment with available experimental results and the pseudo-potential (PP) re-
sults [52] including local-field effects (an error concerning our calculation is
reported in [52]; our value for ε‖∞ is not 4.48 but 5.48 and the PP value should
then be 5.54). It is interesting to notice that the static dielectric function is
in good agreement for all the nitrides [52] while the band gap is underesti-
mated. The scissors-operator shift fails to explain the static dielectric function
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Fig. 13.3. Calculated imaginary and real parts of the dielectric function of GaN in
its cubic and wurtzite forms. The LDA band gap for the cubic phase is 1.8 eV and
for the wurtzite phase 2.2 eV

Table 13.1. Calculated static dielectric function ε∞ for GaN compared to pseudo-
potential (PP) results and experiment. For the wurtzite structure we have calculated

the dielectric function for two polarization directions – ε
‖
∞ for a polarization parallel

to the xy-plane and ε⊥∞ which is perpendicular to the xy-plane

Zinc blende Wurtzite

ε∞ ε
‖
∞ ε⊥∞

PP 5.74 5.54 5.60

Present work 5.96 5.48 5.65

Expt. 5.35 5.35 ± 0.2
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of large gap semiconductors. Recently, both local-field effects and electron–
hole interaction were included on an ab initio computation of the dielectric
function of few semiconductors [7, 29, 30] by extending the semi-empirical
approach by Hanke and coworkers [60, 165, 167, 230, 231] which is based
on the solution of the Bethe–Salpeter equation [60, 165, 167, 230]. The ex-
citonic effects seem to improve significantly the agreement between theory
and experiment. However, for large band gap semiconductors, such as dia-
mond, the inclusion of the excitonic effects seems to underestimate the optical
band gap by as much as 1 eV [29, 30]. It is not clear from these calculations
whether the static dielectric function for wide-band gap semiconductors is
improved when excitonic effects are included. More theoretical work along
these lines is needed to fully understand the dielectric function of wide-gap
semiconductors.

13.6 Optical Properties of Metals

In the case of metals, the problem associated with the self-energy and the dis-
continuity of the exchange-correlation derivate disappears due to screening.
On the other hand, at low photon energies, a large contribution to the optical
response will come from the metallic electrons. For materials with a band gap,
intraband transitions cannot take place since no bands are partially occupied.
The opposite is true for metals. Here, low-energy intraband transitions con-
stitute an important part of the total response for the diagonal components
of the conductivity tensor. They are usually modeled with the Drude formula,
which is based on the free electron model. The Drude formula is

σD(ω) =
ω2

P

4π(γD − iω)
, (13.48)

where γD is the inverse relaxation time and ωP is the (unscreened) plasma
frequency. This contribution is also called the intraband contribution to the
optical spectra, to distinguish them from the interband contribution calculated
from (13.35). The plasma frequency can be calculated by integrating over the
Fermi surface and can thus be predicted from band structure calculations. In
the free electron model, the relation between the plasma frequency and the
number of electrons per unit volume N is given by

ω2
P =

4πNe2

m
, (13.49)

which can be used as a definition of the effective number of electrons Neff per
unit volume. The other Drude parameter, γD, is proportional to the inverse of
the mean free time between scattering events. This parameter changes from
sample to sample of the same material, since it depends on, e.g., the amount
of impurities and dislocations.
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Experimentally, the Drude parameters are calculated by fitting the Drude
formula to a region of the optical spectrum where the interband transitions can
be neglected. It is not always the case that such a region exists. One example
of this is Fe, and the Drude parameters for Fe extracted from experimental
data should therefore be interpreted with care. In magnetic metals, there is an
intraband contribution also to the off-diagonal components of the conductivity
tensor [88, 193].

The calculated optical properties of the group 4B transition metal carbides,
nitrides, and oxides have been reported in [64]. These materials, also called
refractory metal compounds, are hard and chemically stable, making them
suitable as coatings of various kinds. The spectra of all compounds are related,
and the differences can be qualitatively understood in terms of band filling,
nuclear charge, and bandwidth. Since these materials are wideband systems,
the achieved good agreement with experimental spectra, see Fig. 13.4, is not
unexpected. An important aspect governing the optical properties is the onset
of interband transitions. This occurs quite early in the carbides, whereas it is
postponed in the nitrides. In fact, ZrN and HfN have virtually no interband
transitions below 4 eV.

In the energy region lacking interband transitions, the reflectivity will be
high, and as the interband transitions begin, the material will start to ab-
sorb light. The reflectivity then decreases, with the result that a thin film of
the material will appear transparent. This spectral selectivity can be used in,
e.g., energy saving window coatings, radiative coolers, and solar collectors. In
general one wishes to have complete transmittance in the visible wavelength
range 0.38–0.78 μm, whereas thermal radiation (approx. 2 μm and longer wave-
lengths) should be reflected. The optimal ranges of absorption and reflection
differ slightly depending on the application. TiN rather closely meets the cri-
teria for an energy-efficient window coating [245].
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Fig. 13.4. Calculated optical conductivity of TiC compared with experiment. The
experimental optical conductivity is for TiC0.90 and is calculated from reflectivity
data [161]
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Fig. 13.5. Calculated real part of the optical conductivity, σ
(1)
xx , of CeN compared

with experimental data [200]

More surprisingly, the optical properties of CeN are also well described
using RSPt [68]. It is expected that electron–electron correlation effects be
important in this material due to the presence of Ce 4f electrons. Despite
this, an itinerant description of the 4f electrons produces an optical spectrum
in close agreement with the experimental results [200, 201] (see Fig. 13.5). In
contrast, the localized description of the 4f electrons does not reproduce any
of the low-energy features in the spectrum. The itinerant picture also repro-
duces the experimental lattice parameter and provides good agreement with
experimental data for the magnetic susceptibility and the electronic specific
heat.

13.7 Magneto-optical Properties

Magnetism affects the polarization of light, both reflected and transmitted.
Thus, measuring these polarization changes has become an important exper-
imental tool for characterizing materials and calculating the magneto-optical
spectra with electronic structure methods is a very sensitive test on how well
the methods manage to describe the electron states in the material. In RSPt,
the magneto-optical Faraday and Kerr effects can be calculated on the level
of the dipole approximation. As an example of such a calculation, we show
here Kerr rotation spectra for Fe, Co, and Ni; see Fig. 13.6. We find generally
good agreement between our calculations, earlier calculations, and experiment
for the absorptive conductivities and the Kerr rotation. For the off-diagonal
dispersive conductivity and the ellipticity of Fe and Co, our calculations have
larger amplitudes at higher energies. A general feature of all standard density
functional calculations on these materials is that the bandwidths are overes-
timated, which causes structures in the calculated spectra to be shifted to
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Fig. 13.6. Calculated and measured polar MOKE rotation for bcc Fe. Solid line:
calculation with FP-LMTO [63]. Dashed line: calculation with ASW [175]. The ex-
perimental data shown are as follows: filled circles (Visnovsky et al., unpublished),
gray squares [243], and filled diamonds [145, 146]
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Fig. 13.7. Calculated and measured Faraday rotation for MnBi. The solid line
refers to a calculation with FP-LMTO [192] and the circles refer to data measured
by Di and Uchiyama [71]

higher energies compared to experiment. It is reasonable to believe that this
is due to underestimation of correlation effects.

In Fig. 13.7, we show calculated Faraday rotation spectra for the man-
ganese pnictides MnAs, MnSb, and MnBi [192]. For MnBi, experimental data
exist and we see that our calculation reproduces the trend in those data.
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13.8 X-Ray Absorption and X-Ray Magnetic
Circular Dichroism

In recent years the study of magneto-optical effects in the X-ray range has
gained a great importance as a tool for the investigation of magnetic materials
[10, 80]. X-ray absorption spectroscopy (XAS) probes selectively each core
orbital of each atomic species in a material. Two decades ago the theoretical
work of Erskine and Stern showed that the X-ray absorption could be used
to determine the X-ray magnetic circular dichroism (XMCD) in transition
metals when left and right circularly polarized X-ray beams are used [89]. More
recently, these ideas were implemented experimentally and XAS was used to
determine the local magnetic properties of each magnetic atomic orbital in a
magnetic compound [202, 242]. Thus the circular magnetic X-ray dichroism
is an important tool for the investigation of magnetic materials [16, 40, 45,
46, 50, 80, 81, 109, 202, 213, 229, 235, 242, 263, 264], especially through the
use of sum rules for the direct determination of the local orbital and spin
contributions to the total magnetic moment [47, 235].

The first theoretical investigations of XMCD are those of Thole et al.
[47, 235] who implemented an atomic multiplet approach [57]. This approach
is based on an empirical atomic calculation. In addition to the absence of
hybridization effects, this method – as all other empirical methods – relies
on data from experimental spectra. Results from calculations applying this
method to the 3d94fn+1 multiplets of the M4,5 edges of lanthanides are sum-
marized in the paper of Thole et al. [47, 235].

Some years later Chen et al. [50] made use of the Erskine and Stern model1

[88] for their experimental L2,3-edge spectra of nickel. The disagreement be-
tween the measured branching ratio and that predicted by the model has been
ascribed to the change of spin-dependent unoccupied density of states near
the Fermi level caused by the spin–orbit coupling effect. A year later the same
group [51] published results of a tight-binding analysis in which they pre-
sented an attempt to include the spin–orbit coupling for d valence states. The
valence spin–orbit ξ and exchange splitting Δex parameters extracted from
numerical experiments are found to be, respectively, larger and smaller than
those of the ground state to achieve an optimal agreement between the simu-
lated and experimental spectra. Later Smith et al. [213] included properly the
spin–orbit coupling within a tight binding scheme. The results for nickel are
not too different from those of the previous calculation [51] but the parame-
ters (ξ, Δex) found for iron revealed the sensitivity of the XMCD spectra on
the unfilled d bandwidth. The discrepancies between the calculated and the
experimental parameters were imputed to many-body effects, e.g., since the
core hole is created, the 3d valence electrons will see a stronger attractive core

1 According to this model the large spin–orbit coupling of the core states and its
small value for valence states should allow us to treat these valence states without
spin–orbit coupling.
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potential and the spatial extent of their orbitals will contract. Consequently,
relativistic effects such as the spin–orbit coupling will be stronger, and the
exchange interaction among the first neighbors will be weaker.

The development of X-ray spectroscopy experiments probing the magnetic
properties of a large variety of magnetic rare-earth materials and the growing
interest in the scientific community toward their applications in media stor-
age, strong magnets, and the emerging field of spintronics have stimulated
our XMCD calculations for these materials. The discovery of XMCD sum
rules may be a powerful tool for understanding and characterizing magnetic
properties.

13.8.1 The XMCD Formalism

The attenuation of the X-ray intensity when passing through a sample of
thickness d is given by Beer’s law:

I(d) = I0e−μqλ(ω)d , (13.50)

where μqλ(ω) is the absorption coefficient which in general depends on the
wave vector q, the energy �ω, and the polarization λ of the radiation. In the
X-ray regime the absorption coefficient μqλ is related to the absorptive part
of the dielectric function εqλ or the optical conductivity σqλ via [81]

μqλ(ω) =
ω

c
ε
(2)
qλ (ω) =

4π
c
σ

(1)
qλ (ω) . (13.51)

This means that μqλ(ω) can be evaluated2 from

μqλ(ω) =
πc2

�ωmV

occ∑

i

unocc∑

f

|Mqλ
if |2δ(�ω − Ef + Ei) . (13.52)

In contrast to the optical and magneto-optical calculations described earlier in
this chapter, in which the matrix elements of the electron–photon interaction
are evaluated between two Bloch states, the matrix elements Mqλ

if are calcu-
lated between a well-localized initial core state i and an extended final state f .
The sum over initial states i is usually restricted to one core shell which could
be achieved by an experimental fine-tuning of a particular absorption edge.
This important property makes X-ray absorption an element-specific probe.
2 Equation (13.52) can be considered as the limit of the real part of the matrix

elements (13.36) when the frequency (ω) becomes too high (X-ray regime). In
this case the frequency ω can be rewritten as ω = ω0 + δω because of the sharp
energy of the involved core levels, and therefore

1

ω
=

1

ω0 + δω
∼ 1

ω0
.

This is why the factor 1
ω

is again present in (13.52).
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The Mqλ
if matrix transitions account for the electron–photon interaction

operator

Ĥel−ph = −1
c
JAqλ(r) = −1

c
JeλAeiqr , (13.53)

where Aqλ(r) is the vector potential with the wave vector q and polarization
λ, J is the electronic current density operator

J = −ecα , (13.54)

and α accounts for the electronic momentum operator3 (�/i)∇. The com-
ponents of the polarization vector for linearly polarized light are given by

ex =

⎛

⎝
1
0
0

⎞

⎠ , ey =

⎛

⎝
0
1
0

⎞

⎠ , ez =

⎛

⎝
0
0
1

⎞

⎠ . (13.56)

For q pointing along the z-axis, left (+) and right (−) circularly polarized
lights are presented by the polarization vector

e± =
1√
2

⎛

⎝
1
±i
0

⎞

⎠ . (13.57)

In order to get insight into the corresponding absorption phenomena one needs
to calculate matrix elements of the form

Mqλ
if = 〈ψi|Ĥel−ph|ψf 〉 . (13.58)

It is generally argued that in the frequency range of conventional optics the
amplitude of the vector potential varies only on a microscopic scale. This
implies that it is sufficient to expand the exponential factor in (13.53)

eiqr = 1 + iqr − 1
2
(qr)2 . . . (13.59)

and retain just the first constant term, in which case only the electric dipole
interaction is accounted for. For X-ray regime (XMCD) the next term in the
expansion that represents the quadrupolar interaction may also be important.
However, Arola et al. [21] showed that the contribution from the quadrupo-
lar interaction to the K edge cross sections of iron is two orders of magni-
tude smaller than that of the electric dipole contribution. Within the dipolar
approximation the absorption coefficient reduces to
3 Within a relativistic formalism the total momentum operator is expressed as

α = p +
�

4mc2
σ × ∇V =

�

i
∇ +

�

4mc2
σ × ∇V , (13.55)

while in the non-relativistic case (c → ∞) this operator reduces to the electronic
momentum operator.



13.8 X-Ray Absorption and X-Ray Magnetic Circular Dichroism 169

Mqλ
if = 〈ψi|αeλ|ψf 〉 . (13.60)

The ec constant is deliberately omitted. It is worth mentioning that the sym-
metry reduction due to the presence of spontaneous magnetization, that leads
to the appearance of non-zero off-diagonal components of the dielectric ten-
sor, e.g., εxy in (13.7), occurs only if both the spin polarization and the spin–
orbit coupling are simultaneously taken into account in the calculations. The
XMCD calculations are performed in two steps. First, a good convergence is
achieved (in terms of total energy and charge density) within a relativistic
calculation where the Spin-orbit coupling is included in the variational step,
after that one iteration is carried out in order to calculate the absorption
coefficients using the electronic wave functions accounting for the supposed
ground state. The initial core wave functions ψi are given by

ψi = ψjμ =
∑

msc

Cjμ

lcμ−msc,
1
2 msc

φlc(r)Ylcμ−msc(r̂)χmsc

=
∑

msc

Cjμ

lcmc, 1
2 msc

φlc(r)Ylcmc(r̂)χmsc ,
(13.61)

and the final wave functions ψf are the dispersive (k-dependent) FP-LMTO
valence wave functions, (6.27), which we here recast in a slightly different
form,

ψf = ψσ
ν (k, r) =

∑

lm

(Alm(k)φl(r)Ylm(r̂) +Blm(k)φ̇lYlm(r̂))χms , (13.62)

where χsc, χs, msc, and ms are the core spin functions, the valence spin func-
tions, the corresponding magnetic quantum numbers, respectively. Cjμ

lcμ−ms,
1
2

are the Clebsh–Gordan coefficients, j is the total momentum of the electron,
lc and l are the core and valence angular momentum quantum numbers, μ
(or mj) and m are the corresponding magnetic quantum numbers. The core
and valence states are calculated separately and in a different way, that is
to say that the core wave functions corresponding to deep energy levels are
determined within a fully relativistic calculation while valence eigenfunctions
are evaluated within a scalar relativistic calculation including the SOC at the
variational step. Let us consider one edge transitions involving the initial i
states and the final f states. The Mqλ

if matrix can be rewritten as

Mqλ
if =

∑

m,msc

Cjμ

lcmc, 12 msc
〈φlc(r)Ylcmc(r̂)|αeλ|(Alm(k)φl(r)Ylm(r̂)

+Blm(k)φ̇lYlm(r̂))〉δmscms . (13.63)

Using the relation

αeλ =
er.eλ

i
∂

∂r
− 1
r
(er × L).eλ, (13.64)
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where L is the orbital angular momentum operator, (13.63) becomes

Mqλ
if (k) =

∑

m,ms

Cjμ

lcmc, 12 ms

(〈
φlcYlcmc

∣∣∣∣
er.eλ

i
∂

∂r

∣∣∣∣ (Alm(k)φlYlm +Blm(k)φ̇lYlm

〉

−
〈
φlcYlcmc

∣∣∣∣
1
r
(er × L).eλ

∣∣∣∣ (Alm(k)φlYlm +Blm(k)φ̇lYlm

〉)
.

(13.65)

Both of the terms inside the parenthesis can be separated into radial and an-
gular part and integrated. We can therefore perform the k integration using
the tetrahedron method; we can calculate the corresponding absorption coef-
ficients μq+(ω), μq−(ω), and μq0(ω) for left, right, and z polarized light, and
therefore calculate the key physical quantity:

Δμ(ω) = μq+(ω) − μq−(ω) �= 0 . (13.66)

If X-rays are absorbed by a magnetic solid the absorption coefficients for
left and right circularly polarized photons are in general different so that
Δμ �= 0. This quantity can be measured experimentally [202] and is called
X-ray magnetic circular dichroism (XMCD).

The corresponding matrix transitions elementsMqλ
if (k) are non-zero only if

⎧
⎨

⎩

Δl = l − lc = ±1
Δm = m−mc = λ
Δms = ms −msc = 0

(13.67)

These conditions are used to select the allowed transitions within the dipolar
approximation and they are known as the dipole selection rules.

13.8.2 The XMCD Sum Rules

Magnetic compounds and alloys characterization represents one of the out-
standing problems in condensed matter physics. Recently, a considerable evo-
lution of the spectroscopic techniques has been achieved and was helped by
theoretical efforts. With the derivation of the sum rules by Thole and cowork-
ers [45, 46, 235] XMCD spectroscopy became the most used technique for
studying magnetic materials. These sum rules supply a firm basis to estimate
directly from XMCD spectra the orbital moment (ML = −μB

�
〈Lz〉) and the

magnetic moment (MS = −2μB
�

〈Sz〉) contributions to the total magnetic mo-
ment associated with a specific state of given symmetry. Thus the magnetic
spin and orbital moments of the absorber atom are related to the integrated
absorption spectra for a specific core shell and polarization of the radiation as
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∫

j+

ΔμdE −
[
lc + 1
lc

] ∫

j−
ΔμdE

=
N

nh

[
l(l + 1) − 2 − lc(lc + 1)

3lc
〈Sz〉 (13.68)

+
l(l + 1) [l(l + 1) + 2lc(lc + 1) + 4] − 3(lc − 1)2(lc + 2)2

6llc(l + 1)
〈Tz〉

]

and ∫

j++j−
ΔμdE =

N

2nh

[
l(l + 1) + 2 − lc(lc + 1)

l(l + 1)

]
〈Lz〉 , (13.69)

where N is the total integrated spectrum corresponding to the unpolarized
radiation (known also as the isotropic absorption contribution)

N =
∫

j++j−

⎛

⎝
∑

λ=+,−,0

μλ

⎞

⎠ dE , Δμ = μ+ − μ− , (13.70)

and Tz is the magnetic dipole operator

Tz =
1
2

[σ − 3r̂(r̂.σ)]z . (13.71)

∫
j++j−

means that the integral is performed over both of the j+ = l+1/2 and
j− = l − 1/2 edge spectra, e.g., j+ = 3/2 and j− = 1/2 for the L2,3 edges of
transition metals, r̂ is the unit vector, nh denotes the number of holes or the
number of unoccupied final states, and 〈Sz〉, 〈Lz〉, and 〈Tz〉 are, respectively,
the expectation values of the magnetic moment, the orbital moment, and the
magnetic dipole operator.

The expectation value of the magnetic dipole operator accounts for the
asphericity of the spin magnetization. This asphericity can be considered as
a magnetic anisotropy resulting from the spin–orbit coupling or crystal-field
effects.

The application of these sum rules provides us with the magnetic spin and
orbital moments since the expectation value of the Tz operator is determined.
In order to extract these moments from the absorption spectra we have used
the sum rules for the different edges:

K edge

∫ Ecut

EF

ΔμdE =
N

nh
〈Lz〉 , (13.72)

where

N =
∑

λ=+,−,0

∫ Ecut

EF

Δμλ , (13.73)
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L2,3 edges

∫ Ecut

EF

[
(μ+

L3
− μ−L3

) − 2(μ+
L2

− μ−L2
)
]
dE =

N

3nh
[〈Sz〉 + 7 〈Tz〉] , (13.74)

∫ Ecut

EF

[
(μ+

L3
− μ−

L3
) + (μ+

L2
− μ−L2

)
]
dE =

N

2nh
〈Lz〉 , (13.75)

where

N =
∑

λ=+,−,0

∫ Ecut

EF

(Δμλ
L3

+ Δμλ
L2

) , (13.76)

M4,5 edges

∫ Ecut

EF

[
(μ+

M5
− μ−

M5
) − 3

2
(μ+

M4
− μ−

M4
)

]
dE =

N

3nh
[〈Sz〉 + 6 〈Tz〉] , (13.77)

∫ Ecut

EF

[
(μ+

M5
− μ−

M5
) + (μ+

M4
− μ−

M4
)
]
dE =

N

3nh
〈Lz〉 , (13.78)

where

N =
∑

λ=+,−,0

∫ Ecut

EF

(Δμλ
M5

+ Δμλ
M4

) . (13.79)

The integrations are carried out from the Fermi energy EF up to an energy
cutoff Ecut. This energy represents the energy of the top of the final magnetic
states. The number of holes nh is also calculated from the density of states,
and it is determined from the integration of the unoccupied part of the partial
density of final states.

In order to make useful and relevant application of these sum rules one
should know their limitations due to the assumptions made in order to derive
them. In fact, to derive the XMCD sum rules, Thole and coworkers adopted
a single ion model combined with a scalar relativistic approach. The main
assumption of the derivation is that of the two-step model [202]. Depending
on the photon polarization, the XMCD transitions occur in two steps. Because
of the conservation of the angular momentum during the absorption process
the angular momentum carried out by the photon is completely or partially
transferred to the photo-electron, in a second step the exchange spin splitting
of the final state is different whether the spin of the incoming electron is up
or down. This could simulate the eventual change of the exchange splitting
resulting from the spin dependence of the incoming photo-electron. The other
assumptions of the underlying physics of the XMCD sum rules are to ignore
the following [79]:

1. The exchange splitting of the core states
2. The asphericity of the core states
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3. The difference between the radial relativistic part of the final wave func-
tions, i.e., the radial parts φl(r) of p1/2 and p3/2 or d3/2 and d5/2 are the
same

4. The energy dependence of the wave function

Despite such limiting approximations, the validity of the sum rules appears
to be now rather well established, at least in the cases of the L2,3 absorption
edges of 3d [50, 93, 264], 4d [250], and 5d [104] transition metals. However,
one should keep in mind that there are some problems when applying the
sum rules to XMCD spectra. The most severe one is the separation of the L2-
and L3-spectra, e.g., because of the strong hybridization between the 2p N
orbitals.

Thole and coworkers show that the circular magnetic X-ray dichroism
is related to the magnetic moment of the photo-excited atom when the core
electron is excited to the conduction states that are responsible of the magnetic
properties of the material. On the theoretical side, Ebert and his coworkers
[81, 109] have developed a fully relativistic local spin density approximation
approach that was used with success to calculate the XMCD at the K-edge
of Fe, the L3-edge of gadolinium, and Fe and Co multilayers. Wu et al. used
slab linear-augmented plane-wave method to study the L2,3 XMCD of Fe [264].
Brouder and coworkers use multiple scattering theory to solve the Schrödinger
equation using spherical potentials and spin–orbit coupling as a perturbation
in the final state [40]. Recently, Ankudinov and Rehr used a method based
on a non-relativistic treatment of propagation based on high order multiple
scattering theory and spinor-relativistic Dirac–Fock treatment of the dipole
matrix elements to calculate the Fe–K edge and Gd–L3 edge XMCD [16].

Figure 13.8 represents the K-edge X-ray absorption of Fe, for left and
right circularly polarized light, compared to the experimental results. The
agreement at low energy with experiment is good and starts degrading at
higher energies above the mean absorption peak. It is of interest to point out
that the magnetic X-ray dichroism at the K-edge which is due to the spin
polarization and the spin–orbit in the final state is very small in the case
of Fe. The difference between the right and left circular polarization of the
light is not even visible on the graph. However, the X-ray magnetic circular
dichroism can be measured and Fig. 13.9 shows a good agreement between the
calculated dichroic signal and the experimental results of Shütz [202].

At the L2,3 edge of 3d transition metals the X-ray magnetic dichroism
is much important because it is meanly due to the presence of the strong
spin–orbit coupling in the initial 2p states (in the case of Fe the spin–orbit
splitting between the 2p3/2 and 2p1/2 is about 13 eV). In Fig. 13.10 we show the
calculated X-ray absorption and XMCD at the Co in PtCo-ordered alloy [103].

To compare the results with experiment we have to take into account the
effect of the core hole and the experimental resolution. This is done by con-
voluting the calculated spectra by a Lorentzian of widths of 0.9 and 1.4 eV
for the L2 and L3 edges, respectively; in addition, a Gaussian broadening of
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Fig. 13.9. Calculated X-ray magnetic dichroism at the K-edge of Fe compared to
the experimental spectrum of Shütz [202]

0.4 eV is added to take into account the experimental resolution. The calcula-
tion of the X-ray magnetic circular dichroic signal ignoring the electron–hole
recombination effect provides a semi-quantitative agreement with the exper-
imental spectra. Hence, we believe that the core hole effect represented here
by a Lorentzian broadening plays a significant role in determining the correct
L3/L2 branching ratio for 3d transition metals. The underestimation of the
L2,3 branching ratio remains a challenge for theorists, and further theoretical
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development along the line proposed by Schwitalla and Ebert [203] is needed
to bring the theory at the level of the experiment.

For the 4d-transition metals, the core hole is deeper, and the agreement
with the experimental result is satisfactory. Figure 13.11 shows the calculated
XMCD at the site of Pt of the CoPt-ordered alloy. In contrast to what is
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Fig. 13.11. Calculated X-ray magnetic dichroism at the L2,3-edge of Pt compared
to the experimental spectrum of Grange et al. [103]
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obtained for Co, the results for the Pt site show a much better agreement
with experiment, due to the fact that the core hole effect is less intense (core
hole much deeper than that of Co). For the Pt atom we used both a Lorentzian
(1 eV) and a Gaussian (1 eV) to represent the core hole effect and a Gaussian
of 1 eV width for the experimental resolution. The experimental and theoret-
ical L2 and L3 edges are separated by a spin–orbit splitting of the 2p core
states of 1,709 and 1,727 eV, respectively. The widths of both L2 and L3

edges are comparable to experiment, but the calculated L2 intensity is much
larger. This produces a calculated integrated branching ratio of 1.49 which is
much smaller than the experimental ratio of 2.66. Here again the theory is
underestimating the branching ratio.

We have also applied our method of calculating XAS and XMCD on two
magnetic double perovskites − Sr2FeMoO6 (SFMO) and Sr2CrReO6 (SCRO).
These systems are of technological interest in the field of spintronics, and es-
pecially SFMO has received great attention due to its alleged perfect half-
metallicity [136]. Perfectly half metallic materials could in principle produce
a completely spin-polarized current which would be highly useful for spin-
injection applications. In practice, the half-metallicity will be destroyed by,
e.g., surface effects, lattice imperfections, grain boundaries, and finite tem-
perature. Furthermore, there is actually no need for perfect half-metallicity in
order to obtain a low-field magneto-resistive effect based on intergrain tunnel-
ing. Thus, it is envisaged that many of the systems belonging to the family of
magnetic double perovskites may be highly relevant for applications in spin-
tronics. In addition, these complex magnetic oxides are very interesting sys-
tems in themselves to study. They can be viewed as magnetic semiconductor

Fig. 13.12. Calculated XAS and XMCD for the Fe L2,3-edges in SFMO, compared
to experimental data
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materials, and analyzing the XMCD spectra may aid in elucidating the nature
of the magnetic state in these systems, especially the size and direction of the
moments on the Mo and Re sites.

Figure 13.12 shows the L-edge Fe XAS and XMCD signal in SFMO [135].
The calculations are seen to reproduce most of the experimental features,
but the calculated branching ratios are not well reproduced, probably due
to our neglect of the core–hole interactions. Another possible explanation for
the discrepancies is the anti-site disorder always present in these complex
magnetic oxides. The L-edge spectra from Mo are shown in Fig. 13.13. In
SFMO, the Mo moments are very small but despite this added complication,
the calculations reproduce the experimental spectra rather well. The Mo states
are rather delocalized, so in this case, core–hole interactions might be less
important.

Fig. 13.13. Calculated XAS and XMCD for the Mo L2,3-edges in SFMO, compared
to experimental data

Fig. 13.14. Calculated XAS and XMCD for the Cr L2,3-edges in SCRO
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Fig. 13.15. Calculated XAS and XMCD for the Re L2,3-edges in SCRO, compared
to experimental data

In the next two figures, we show XAS and XMCD results for SCRO, a
pseudo-half-metallic double perovskite [240, 241] with a relatively high Curie
temperature (635 K). Figure 13.14 shows calculated spectra for the Cr L-edges
(no experimental comparison available) and Fig. 13.15 shows spectra for the
Re L-edges. The calculated Cr XMCD spectra exhibit a clear XMCD signal
with a simple structure – a negative peak at the L2 edge followed by a positive
peak at the L3 edge. In contrast, the Re spectra have much more structure.
Our calculation reproduces the main features of the experimentally measured
signal. We also note that the calculated XMCD-integrated peak areas are
significantly larger than the measured ones.

The calculated spectra can be combined with the XMCD sum rules for
calculating the spin and orbital moments. Thus in this way recalculated mo-
ments are then compared with the moments calculated directly in the ground
state calculation. This procedure gives interesting insights into the precision of
the sum rules and overall self-consistency of the XMCD calculations. For ex-
ample, the SFMO directly calculated and sum-rule-derived Mo spin moments
are identical (−0.29μB), whereas the orbital moments are 0.02 and 0.056μB,
respectively. A longer discussion of this issue for both SFMO and SCRO can
be found in [131, 240].
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A Database of Electronic Structures

Abstract In this short chapter, an data-base of electronic structures are described
and a method in data-mining technology is presented, for how such a data-base
might be used to search for new functional materials.

It is now possible to extract electronic structures and ground state proper-
ties from RSPt at the web site http://gurka.fysik.uu.se/ESP/ (we will hence-
forth refer to this database as the electronic structure database, ESD). The
method with which this was done is described in [176] and is due to the efforts
of Dr. M. Klintenberg. The purpose of this database is partly to provide a
benchmark for beginners in the field of electronic structure theory, who can
compare their calculations of electronic structures to already existing data.
It is advised that when being in a learning stage of using RSPt, to perform
a few calculations on materials with varying complexity, which are found in
the ESD. This could involve transition metal elements and compounds, e.g.,
YNi2, as well as semiconducting materials, like Si or ZnO. So far only non-
spinpolarized calculations have been listed, but the electronic structure and
magnetism of magnetic systems are currently being developed. However, the
database generated in ESD also offers an entirely new way to perform theo-
retical materials research, since when combined with data-mining algorithms
it can significantly accelerate the search for new compounds with specified
properties. We will below exemplify this possibility with one example, which
has been published in full detail in [176].

14.1 Database Generation

The first step toward generating a useful database for electronic structures and
ground state properties using RSPt has, as mentioned, now been published
[176]. In this work it is described how the majority of materials synthesized
and characterized structurally to this date have had their electronic structures
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calculated by means of RSPt. Of the over 140,000 compounds currently listed
in the international crystal structure database (ICSD), almost all have had the
electronic structure investigated and published on the ESD. These calculations
are done for the experimentally observed crystal structure and density, in a
fully automatic mode where scripts generate input files automatically and
without manual inspection [176]. Since setting up input datafiles is still an
obstacle in electronic structure calculations in general, the automatization
drastically improves on the speed with which electronic structure calculations
are done, and this is a key reason for why over a relatively short time, a large
number of calculations have been published. However, since the quality of each
individual calculation is not monitored manually, the approach is in need of
a robust and accurate electronic structure method, like RSPt. In addition,
quality control is important, and the best way to do this is by inspection of
the results. The reader is encouraged to consult the ESD web site, perform
a search for a few known electronic structures, and test if the result is the
expected one.

14.2 Data-Mining: An Example from
Scintillating Materials

Once a huge number of (hopefully) accurate electronic structures and ground
state properties have been generated, the question naturally arises what one
should do with all these results. A possible answer is to find suitable algorithms
for searching among all these data and to extract information, e.g., about a
specific material property which is of interest. This could involve large mag-
netic anisotropies, stiff materials with a large bulk modulus, or materials with
suitable band gaps for optical properties. We give here as an example of the
fruitfulness of this approach, some of the details of a data-mining study for
the identification of novel materials for scintillating materials, a work which
is published in [176].

One sub-group of scintillator materials is the so-called activated semicon-
ductors, like Ga-doped ZnO [154]. Among the already known semiconducting
scintillators certain material characteristics stand out, and it is information
of this kind which can be used when searching for new materials in a large
database. Experience shows that efficient scintillator materials should have
an electronic band gap in the range 0.4–4 eV and they should have effective
masses of the valence band and conduction band which are above a threshold
value [176]. In addition there is a requirement that the density of the material
should be high and that high-energy photons which enter the material are
absorbed primarily by the photo-electric effect and not by Compton scatter-
ing. One may now search among all the materials listed in the ESD, if new
compounds can be predicted which also obey the necessary criteria for acti-
vated semiconductors for scintillating properties. As was shown in [176], a data
mining with these criteria of all compounds in ESD resulted in 66 predicted
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compounds which should be suitable for scintillating applications. Among
the 66 identified compounds, all of the already known activated semiconduc-
tors were found, and this serves as a test of the accuracy of the data-mining
algorithms. However, in addition to the known materials, the data-mining
procedure of [176] resulted in several new materials which await testing for
their performance as scintillators.

The example above serves as an example for how large databases might
be used for predicting new materials. The challenge with this approach of
theoretical materials science is to identify suitable material properties to use
in the data-mining algorithms. Here physical and chemical insight and expe-
rience of a specific class of functional materials become important. However,
in the field of theoretical bio-chemistry this has been an important mode of
operation for quite some time, with several important findings, and it is time
the materials science community also adopt this approach.
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Future Developments and Outlook

Abstract In this final chapter a short summary and outlook is presented. In addi-
tion, future, anticipated developments of the FP-LMTO method are listed.

This book has given an introduction to current research into the electronic
structure-related properties of materials, in particular using the software
RSPt. In this final chapter, we speculate about future developments in RSPt
that will incorporate current and evolving developments in electronic structure
theory and modeling. RSPt, a volunteer effort, develops when some interested
individual takes the initiative to implement a needed capability, so develop-
ment depends on the interests of users. However, some areas have been con-
sistently represented in the development of RSPt, such as structural stability
and phase transitions under pressure, mechanical properties and equation of
state, magnetic structure and magneto-crystalline anisotropy, and the struc-
tural, electronic, and magnetic properties of f -electron materials. If nothing
else, RSPt is likely to grow in capabilities applicable to these areas.

Electronic structure, density functional, and dynamical mean field theo-
ries, and the methods for solving the equations encapsulating these theories
have been presented in Part I. Developments in density functional theory and
the realization of non-DFT theories are providing increased flexibility and
predictability to electronic structure calculations and in coming years will no
doubt become part of a new and richer suite of tools. Explicit, nearly local
exchange-correlation density functionals fit naturally in the RSPt framework
and so are relatively straightforward to implement. As an example, RSPt was
one of the first electronic structure codes to incorporate the recently developed
functional AM05 [20].

A rigorous functional formalism and form for relativistic calculations is of
interest and would fit well with the structure and applications of RSPt. It
seems unlikely, however, that a nearly local density functional will ever give
a good description of materials with strong electron correlation, an area that
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has been a driving theme of many developments in RSPt. Dynamical mean
field theory – DMFT – is the most recent capability to be added to the code
and is still in intense development. Important improvements in this capability
include the development of a fast single impurity solver accurate for all values
of the correlation parameter and a consistent connection in energy to the
density functional host. The application of DMFT would benefit from efficient
distributed inversion in the transition between DFT and DMFT. Other non-
DFT methodologies, such as the Gutzwiller variational approach, are also of
interest and under consideration.

Part II of this book has described the application of the theories and
methodologies of Part I to problems in materials and condensed matter
physics. Chapters on total energy and forces, chemical bonding, and mag-
netism highlight applications at which RSPt excels. As examples, RSPts abil-
ity to transition seamlessly through core-valence transitions is especially useful
in equation of state calculations, while its handling of full-potential compo-
nents and ability to resolve fine energy differences enable the direct calculation
of magneto-crystalline anisotropy and structural phase transitions. Magneto-
crystalline anisotropy energies depend on fine details of the Fermi surface and
hence require a very large sampling of the Brillouin zone to converge. This
application is ideally suited to parallel sampling. Similarly, structural stabil-
ity, in particular the search for stable or metastable structures in complex
materials, is suited for sampling configurations in parallel.

RSPt has both capabilities nicely implemented. However, RSPt has always
been written to minimize operations, rather than memory, and uses somewhat
complex logical structures to both minimize operations and improve accuracy.
Both of these design aspects are detrimental to the implementation of RSPt
on developing architectures, homo- or heterogenous, where memory per node
is drastically decreasing. Re-designing the code to take advantage of new ar-
chitectures would range in difficulty from using appropriate library calls to
reworking the relationship between program components. As currently im-
plemented, RSPt is never “short range.” Basis functions and densities are
expressed partially in real space and partly in reciprocal space, in order to
allow convergence of expansions with minimum calculation. A representation
entirely in real space, for example, either with or without a Brillouin represen-
tation, might ultimately simplify implementation and thus prove preferable
for new supercomputing architectures.

The final chapter of Part II describes the electronic structure database
which contains the results of a large number of electronic structure calcu-
lations, done with RSPt, categorized by calculated physical properties. The
chapter gives an example of data mining to search for new scintillators. Other
disciplines, such as astrophysics, are finding that data-mining large experimen-
tal databases is becoming a new mode of discovery. As with these experimental
databases, the ESD can implement a new mode of materials discovery. With
increased capacity, or increased participation, the ESD could be expanded to
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include, for example, theoretically stable complex materials correlating mate-
rial properties with structure.

RSPt has reached its present state through the efforts of motivated re-
searchers who modify it to suit their own interests. Similarly, its future devel-
opments will depend on the interests of current and future users. In Part I,
Chap. 9 described the rspt.org web site and gave instructions for obtaining
RSPt source and a manual. rspt.org also has support pages and information
on current development. We hope that this site will serve as a focal point for
introducing RSPt to new users and lure them into the web of developers.
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